

Lecture Notes in Computer Science 5218
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Gadi Taubenfeld (Ed.)

Distributed
Computing

22nd International Symposium, DISC 2008
Arcachon, France, September 22-24, 2008
Proceedings

13

Volume Editor

Gadi Taubenfeld
School of Computer Science
The Interdisciplinary Center
P.O.Box 167
Herzliya 46150, Israel
E-mail: tgadi@idc.ac.il

Library of Congress Control Number: 2008935023

CR Subject Classification (1998): C.2.4, C.2.2, F.2.2, D.1.3, F.1.1, D.4.4-5

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-87778-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-87778-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12525812 06/3180 5 4 3 2 1 0

Preface

DISC, the International Symposium on Distributed Computing, is an annual
forum for presentation of research on all aspects of distributed computing, in-
cluding the theory, design, implementation and applications of distributed al-
gorithms, systems and networks. The 22nd edition of DISC was held during
September 22-24, 2008, in Arcachon, France.

There were 101 submissions submitted to DISC this year and this volume
contains 33 15-page-long regular papers selected by the Program Committee
among these submissions. Every submitted paper was read and evaluated by
Program Committee members assisted by external reviewers. The final decisions
regarding acceptance or rejection of each paper were made during the electronic
Program Committee meeting held during June 2008. Revised and expanded
versions of a few best selected papers will be considered for publication in a
special issue of the journal Distributed Computing.

The Program Committee selected Robert Danek and Wojciech Golab as the
recipients of this year’s Best Paper Award for their paper “Closing the Complex-
ity Gap Between FCFS Mutual Exclusion and Mutual Exclusion.”The Program
Committee selected Wojciech Wawrzyniak as the recipient of this year’s Best
Student Paper Award for the paper “Fast Distributed Approximations in Pla-
nar Graphs” coauthored with Andrzej Czygrinow and Michal Hańćkowiak.

This volume of the proceedings also contains 11 two-page-long brief an-
nouncements (BA). These BAs present ongoing work or recent results whose
full description is not yet ready; it is expected that full papers containing these
results will soon appear in other conferences or journals. The main purpose
of the BA track is to announce ongoing projects to the distributed computing
community and to obtain feedback for the authors. Each BA was also read and
evaluated by the Program Committee.

The support of the sponsors, which are mentioned later, is gratefully
acknowledged.

July 2008 Gadi Taubenfeld

The 2008 Edsger W. Dijkstra Prize in

Distributed Computing

The Edsger W. Dijkstra Prize in Distributed Computing is awarded for an out-
standing paper on the principles of distributed computing, whose significance
and impact on the theory and/or practice of distributed computing has been
evident for at least a decade.

The Dijkstra Award Committee has selected Baruch Awerbuch and David
Peleg as the recipients of this year’s Edsger W. Dijkstra Prize in Distributed
Computing. The prize is given to them for their outstanding paper: “Sparse
Partitions” published in the proceedings of the 31st Annual Symposium on Foun-
dations of Computer Science, pp. 503–513, 1990.

The “Sparse Partitions” paper by Awerbuch and Peleg signified the coming-
of-age of the area of distributed network algorithms. A line of research that
started with Awerbuch’s synchronizer and Peleg’s spanner has culminated in this
ground-breaking paper that has had a profound impact on algorithmic research
in distributed computing and in graph algorithms in general.

The paper presents concrete definitions of the intuitive concepts of locality
and load, and gives surprisingly effective constructions to trade them off. The
fundamental technical contribution in the paper is the algorithm of coarsening,
which takes, as input, a decomposition of the graph to possibly overlapping
components, and generates a new decomposition whose locality is slightly worse,
but whose load is far better. The desired balance between locality and load is
controlled by a parameter provided by the user. While many other underlying
ideas were present in prior work of Awerbuch and Peleg (separately), in the
“Sparse Partitions” paper these ideas have come together, with a unified view,
resulting in a new powerful toolkit that is indispensable for all workers in the
field.

The magnitude of the progress achieved by the new techniques was immedi-
ately recognized, and its implications spawn much research to this day. In the
“Sparse Partitions” paper itself, the authors improve on the best known results
for two central problems of network algorithms, and many other applications
of the results followed, quite a few of them in applications that were visionary
at their time. To mention just a few, these include computation of compact
routing tables and location services of mobile users (in the original paper), dra-
matically more efficient synchronizers, effective peer-to-peer network design, and
scheduling in grid-like computing models. Besides these applications of the re-
sults, the paper can be viewed as one of the important triggers to much of the
fundamental research that was dedicated to exploring other variants of the basic
concepts, including the notions of bounded-growth graphs, tree metrics, general
and geometric spanners.

VIII Preface

It is interesting to view the Sparse Partitions paper in a historical context.
The area of network algorithms has its roots in classical graph algorithms. Dis-
tributed algorithms have proved to be an algorithmically rich field with the
“Minimum Spanning Tree” paper of Gallager, Humblet and Spira. Motivated by
the asynchronous nature of distributed systems, Awerbuch invented the concept
of a synchronizer. Peleg, coming from the graph theoretic direction, general-
ized the notion of spanning tree and invented the concept of spanners. In the
“Sparse Partitions” paper, the additional ingredient of load was added to the
combination, yielding a powerful conceptual and algorithmic tool. The results
superseded the best known results for classical graph algorithms, thus showing
the maturity of the field, which closed a circle by becoming a leading source for
graph algorithms of any kind.

Award Committee 2008:

Yehuda Afek Tel-Aviv University
Faith Ellen University of Toronto
Shay Kutten Technion
Boaz Patt-Shamir Tel-Aviv University
Sergio Rajsbaum UNAM
Gadi Taubenfeld, Chair IDC

Organization

DISC is an international symposium on the theory, design, analysis, implemen-
tation and application of distributed systems and networks. DISC is organized
in cooperation with the European Association for Theoretical Computer Science
(EATCS). The symposium was established in 1985 as a biannual International
Workshop on Distributed Algorithms on Graphs (WDAG). The scope was soon
extended to cover all aspects of distributed algorithms as WDAG came to stand
for International Workshop on Distributed AlGorithms, and in 1989 it became
an annual symposium. To reflect the expansion of its area of interest, the name
was changed to DISC (International Symposium on DIStributed Computing) in
1998. The name change also reflects the opening of the symposium to all aspects
of distributed computing. The aim of DISC is to reflect the exciting and rapid
developments in this field.

Program Committee Chair

Gadi Taubenfeld IDC Herzliya, Israel

Organization Committee Chair

Cyril Gavoille University of Bordeaux, France

Steering Committee Chair

Rachid Guerraoui EPFL, Switzerland

Program Committee

James Anderson UNC at Chapel Hill, USA
Bernadette Charron-Bost Ecole Polytechnique, France
Cyril Gavoille University of Bordeaux, France
Chryssis Georgiou University of Cyprus, Cyprus

X Organization

Phil Gibbons Intel Research Pittsburgh, USA
Seth Gilbert EPFL, Switzerland
Tim Harris Microsoft Research Cambridge, UK
Danny Hendler Ben Gurion University, Israel
Dariusz Kowalski University of Liverpool, UK
Amos Korman CNRS and University of Paris 7, France
Shay Kutten Technion, Israel
Marios Mavronicolas University of Cyprus, Cyprus
Michel Raynal IRISA, University of Rennes, France
Luis Rodrigues INESC-ID, IST, Portugal
Tami Tamir IDC Herzliya, Israel
Gadi Taubenfeld

(Chair) IDC Herzliya, Israel
Sébastien Tixeuil University of Paris 6, France
Philippas Tsigas Chalmers University, Sweden
Mark Tuttle Intel, USA
Roger Wattenhofer ETH Zurich, Switzerland
Haifeng Yu National University of Singapore, Singapore

Organization Committee

Cyril Gavoille
(Chair) University of Bordeaux, France

Nicolas Hanusse CNRS, University of Bordeaux, France
David Ilcinkas CNRS, University of Bordeaux, France
Ralf Klasing, CNRS, University of Bordeaux, France
Michael Montassier University of Bordeaux, France
Akka Zemmari University of Bordeaux, France
Sergio Rajsbaum

(publicity) UNAM, Mexico

Steering Committee

Shlomi Dolev BGU, Israel
Antonio Fernández University Rey Juan Carlos, Spain
Rachid Guerraoui

(Chair) EPFL, Switzerland
Andrzej Pelc University of Quebec, Canada
Sergio Rajsbaum UNAM, Mexico
Nicola Santoro Carleton University, Canada
Gadi Taubenfeld IDC, Israel

Organization XI

External Reviewers

Ittai Abraham
Uri Abraham
Filipe Araujo
James Aspnes
Amos Beimel
Samuel Bernard
Nicolas Bonichon
Olivier Bournez
Nicolas Burri
Ran Canetti
Nuno Carvalho
Daniel Cederman
Wei Chen
Gregory Chokler
Andrzej Czygrinow
Paolo D’Arco
Shantanu Das
Gianluca De Marco
Roberto De Prisco
Bilel Derbel
Shlomi Dolev
Raphael Eidenbenz
Michael Elkin
Yuval Emek
Hugues Fauconnier
Antonio Fernandez
Paola Flocchini
Roland Flury
Felix Freiling
Zhang Fu
Eli Gafni
Leszek Gasieniec
Georgios Georgiadis
Anders Gidenstam
Olga Goussevskaia
Vincent Gramoli
Fabiola Greve
Phuong Ha
Nicolas Hanusse
David Hay
Ted Herman
Martin Hutle
David Ilcinkas
Sidharth Jaggi

Yuh-Jzer Joung
Erez Kantor
Jasleen Kaur
Ralf Klasing
Marina Kopeetsky
Adrian Kosowski
Evangelos Kranakis
Danny Krizanc
Ajay Ksemkalyani
Michael Kuhn
Arnaud Labourel
Emmanuelle Lebhar
João Leitão
Christoph Lenzen
Andrzej Lingas
Zvi Lotker
Olivier Ly
Urmi Majumder
Lior Malka
Dahlia Malkhi
Jean-Philippe Martin
Toshimistu Masuzawa
Remo Meier
Michael Merideth
Stephan Merz
Alessia Milani
Dorian Miller
Alan Mislove
Neeraj Mittal
José Mocito
Peter Musial
Mikhail Nesterenko
Nicolas Nicolaou
Tim Nieberg
Yvonne Anne Oswald
Charis Papadakis
Marina Papatriantafilou
Boaz Patt-Shamir
Andrzej Pelc
David Peleg
Ljubomir Perkovic
Maria Potop-Butucaru
Sergio Rajsbaum
Pascal von Rickenbach

XII Organization

Etienne Riviere
Paolo Romano
Adi Rosen
Matthieu Roy
Eric Ruppert
Johannes Schneider
Alex Shvartsman
Vasu Singh
Philipp Sommer
H̊akan Sundell

Corentin Travers
Frédéric Tronel
Sara Tucci-Piergiovanni
Milan Vojnovic
Jennifer Welch
Josef Widder
Eric Winfree
Piotr Zielinski

Sponsors

LaBRI

Pôle RésCom

LaBRI

Pôle RésCom

Table of Contents

Regular Papers

The Mailbox Problem (Extended Abstract) . 1
Marcos K. Aguilera, Eli Gafni, and Leslie Lamport

Matrix Signatures: From MACs to Digital Signatures in Distributed
Systems . 16

Amitanand S. Aiyer, Lorenzo Alvisi, Rida A. Bazzi, and
Allen Clement

How to Solve Consensus in the Smallest Window of Synchrony 32
Dan Alistarh, Seth Gilbert, Rachid Guerraoui, and Corentin Travers

Local Terminations and Distributed Computability in Anonymous
Networks . 47

Jérémie Chalopin, Emmanuel Godard, and Yves Métivier

A Self-stabilizing Algorithm with Tight Bounds for Mutual Exclusion
on a Ring (Extended Abstract) . 63

Viacheslav Chernoy, Mordechai Shalom, and Shmuel Zaks

Fast Distributed Approximations in Planar Graphs 78
Andrzej Czygrinow, Michal Hańćkowiak, and Wojciech Wawrzyniak

Closing the Complexity Gap between FCFS Mutual Exclusion and
Mutual Exclusion . 93

Robert Danek and Wojciech Golab

The Weakest Failure Detector for Message Passing Set-Agreement 109
Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and
Andreas Tielmann

Local Maps: New Insights into Mobile Agent Algorithms 121
Bilel Derbel

r3: Resilient Random Regular Graphs . 137
Stanko Dimitrov, P. Krishnan, Colin Mallows, Jean Meloche, and
Shalini Yajnik

Online, Dynamic, and Distributed Embeddings of Approximate
Ultrametrics . 152

Michael Dinitz

Constant-Space Localized Byzantine Consensus . 167
Danny Dolev and Ezra N. Hoch

XIV Table of Contents

Optimistic Erasure-Coded Distributed Storage . 182
Partha Dutta, Rachid Guerraoui, and Ron R. Levy

On the Emulation of Finite-Buffered Output Queued Switches Using
Combined Input-Output Queuing . 197

Mahmoud Elhaddad and Rami Melhem

On Radio Broadcasting in Random Geometric Graphs 212
Robert Elsässer, Leszek G ↪asieniec, and Thomas Sauerwald

Ping Pong in Dangerous Graphs: Optimal Black Hole Search with Pure
Tokens . 227

Paola Flocchini, David Ilcinkas, and Nicola Santoro

Deterministic Rendezvous in Trees with Little Memory 242
Pierre Fraigniaud and Andrzej Pelc

Broadcasting in UDG Radio Networks with Missing and Inaccurate
Information . 257

Emanuele G. Fusco and Andrzej Pelc

Efficient Broadcasting in Known Geometric Radio Networks with
Non-uniform Ranges . 274

Leszek G ↪asieniec, Dariusz R. Kowalski, Andrzej Lingas, and
Martin Wahlen

On the Robustness of (Semi) Fast Quorum-Based Implementations of
Atomic Shared Memory . 289

Chryssis Georgiou, Nicolas C. Nicolaou, and
Alexander A. Shvartsman

Permissiveness in Transactional Memories . 305
Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh

The Synchronization Power of Coalesced Memory Accesses 320
Phuong Hoai Ha, Philippas Tsigas, and Otto J. Anshus

Optimizing Threshold Protocols in Adversarial Structures 335
Maurice Herlihy, Flavio P. Junqueira, Keith Marzullo, and
Lucia Draque Penso

Hopscotch Hashing . 350
Maurice Herlihy, Nir Shavit, and Moran Tzafrir

Computing Lightweight Spanners Locally . 365
Iyad A. Kanj, Ljubomir Perković, and Ge Xia

Dynamic Routing and Location Services in Metrics of Low Doubling
Dimension (Extended Abstract) . 379

Goran Konjevod, Andréa W. Richa, and Donglin Xia

Table of Contents XV

Leveraging Linial’s Locality Limit . 394
Christoph Lenzen and Roger Wattenhofer

Continuous Consensus with Failures and Recoveries 408
Tal Mizrahi and Yoram Moses

No Double Discount: Condition-Based Simultaneity Yields Limited
Gain . 423

Yoram Moses and Michel Raynal

Bosco: One-Step Byzantine Asynchronous Consensus 438
Yee Jiun Song and Robbert van Renesse

A Limit to the Power of Multiple Nucleation in Self-assembly 451
Aaron D. Sterling

Using Bounded Model Checking to Verify Consensus Algorithms 466
Tatsuhiro Tsuchiya and André Schiper

Theoretical Bound and Practical Analysis of Connected Dominating
Set in Ad Hoc and Sensor Networks . 481

Alireza Vahdatpour, Foad Dabiri, Maryam Moazeni, and
Majid Sarrafzadeh

Brief Announcements

On the Solvability of Anonymous Partial Grids Exploration by Mobile
Robots . 496

Roberto Baldoni, François Bonnet, Alessia Milani, and
Michel Raynal

The Dynamics of Probabilistic Population Protocols 498
Ioannis Chatzigiannakis and Paul G. Spirakis

A Distributed Algorithm for Computing and Updating the Process
Number of a Forest . 500

David Coudert, Florian Huc, and Dorian Mazauric

Corruption Resilient Fountain Codes . 502
Shlomi Dolev and Nir Tzachar

An Early-Stopping Protocol for Computing Aggregate Functions in
Sensor Networks . 504

Antonio Fernández Anta, Miguel A. Mosteiro, and
Christopher Thraves

Easy Consensus Algorithms for the Crash-Recovery Model 507
Felix C. Freiling, Christian Lambertz, and Mila Majster-Cederbaum

XVI Table of Contents

Evaluating the Quality of a Network Topology through Random
Walks . 509

Anne-Marie Kermarrec, Erwan Le Merrer, Bruno Sericola, and
Gilles Trédan

Local-Spin Algorithms for Abortable Mutual Exclusion and Related
Problems . 512

Robert Danek and Hyonho Lee

Data Failures . 514
Simona Orzan and Mohammad Torabi Dashti

Reliable Broadcast Tolerating Byzantine Faults in a Message-Bounded
Radio Network . 516

Marin Bertier, Anne-Marie Kermarrec, and Guang Tan

Eventual Leader Election in the Infinite Arrival Message-Passing
System Model . 518

Sara Tucci-Piergiovanni and Roberto Baldoni

Author Index . 521

The Mailbox Problem
(Extended Abstract)

Marcos K. Aguilera1, Eli Gafni1,2, and Leslie Lamport1

1 Microsoft Research Silicon Valley
2 UCLA

Abstract. We propose and solve a synchronization problem called the mailbox
problem, motivated by the interaction between devices and processor in a com-
puter. In this problem, a postman delivers letters to the mailbox of a housewife
and uses a flag to signal a non-empty mailbox. The wife must remove all letters
delivered to the mailbox and should not walk to the mailbox if it is empty. We
present algorithms and an impossibility result for this problem.

1 Introduction

Computers typically use interrupts to synchronize communication between a proces-
sor and I/O devices. When a device has a new request, it raises an interrupt line to
get the processor’s attention. The processor periodically checks if the interrupt line has
been raised and, if so, it interrupts its current task and executes an interrupt handler to
process unhandled device requests. The interrupt line is then cleared so that it can be
used when new requests come from the device. (This is a slight simplification, since
there is typically an interrupt controller between the device and processor. In this case,
we consider the interrupt controller as the “device” that interrupts the processor.) It is
imperative that the processor eventually execute the interrupt handler if there are un-
handled requests. Furthermore, it is desirable to avoid spurious interrupts, in which the
processor executes the interrupt handler when there is no unhandled request. A closely
related problem occurs in multi-threaded programming, in which the processor and the
devices are separate threads and the interrupt is some type of software signal [8,10].

In this paper, we study a theoretical synchronization problem that arises from this
setting, which we call the mailbox problem. From time to time, a postman (the device)
places letters (requests) for a housewife (the processor) in a mailbox by the street.1 The
mailbox has a flag that the wife can see from her house. She looks at the flag from
time to time and, depending on what she sees, may decide to go to the mailbox to pick
up its contents, perhaps changing the position of the flag. The wife and postman can
leave notes for one another at the mailbox. (The notes cannot be read from the house.)
We require a protocol to ensure that (i) the wife picks up every letter placed in the
mailbox and (ii) the wife never goes to the mailbox when it is empty (corresponding
to a spurious interrupt). The protocol cannot leave the wife or the postman stuck at the
mailbox, regardless of what the other does. For example, if the wife and postman are

1 This problem originated long ago, when all mail was delivered by men and only women stayed
at home.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 1–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 M.K. Aguilera, E. Gafni, and L. Lamport

both at the mailbox when the postman decides to take a nap, the wife need not remain at
the mailbox until the postman wakes up. We do not require the wife to receive letters that
are still in the sleeping postman’s bag. However, we interpret condition (i) to require
that she be able to receive mail left by the postman in previous visits to the mailbox
without waiting for him to wake up.

The following simple protocol was once used in computers. The postman/device raises
the flag after he delivers a letter/request; the wife/processor goes to the mailbox if the flag
is raised and lowers the flag after emptying the mailbox. It is easy to see that this can cause
a spurious interrupt if the postman goes to the mailbox while the flag is still raised from a
previous visit and falls asleep after putting a letter in the box and before raising the flag.

There are obviously no spurious interrupts with this protocol if the postman can
deliver mail to the box and raise the flag in an indivisible atomic action, while the
wife can remove mail from the box and lower the flag in an indivisible atomic action.
Moreover, the problem is solvable if the wife and postman can leave notes for one
another, and the reading or writing of a note and the raising or lowering of the flag can
be performed atomically. Here is a simple algorithm that uses a single note written by
the postman and read by the wife. The postman stacks letters in delivery order in the
box. After delivering his letters, the postman as a single action writes the total number
of letters he has delivered so far on his note and raises the flag. When she sees the
flag up, the wife as a single action lowers the flag and reads the postman’s note. Then,
starting from the bottom of the stack, the wife removes only enough letters so the total
number she has ever removed from the box equals the value she read on the note.

What if a single atomic action can only either read or write a note or read or write a
flag? Then, we show that there are no algorithms that use only two Boolean flags, one
writable by the wife and one by the postman. However, perhaps surprisingly, there is a
wait-free algorithm that uses two 14-valued flags, as we show. We do not know if there
is an algorithm that uses smaller flags.

The mailbox problem is an instance of a general class of problems called bounded-
signaling problems. We give a general algorithm for any problem in this class. The
algorithm is non-blocking but not wait-free. It is an open problem whether there are
general wait-free algorithms in this case.

The paper is organized as follows. We first define the mailbox problem in Section 2.
In Section 3, we give a wait-free algorithm for the problem. To do so, we first explain
the sussus protocol in Section 3.1. We then give a non-blocking algorithm that uses
flags with large timestamps in Section 3.2. We show how to shrink these timestamps in
Section 3.3. We then explain how to change the non-blocking algorithm into a wait-free
algorithm in Section 3.4. In Section 4, we show that there are no non-blocking (or wait-
free) algorithms that use only two Boolean flags. Next, we consider general bounded-
signaling problems in Section 5. We describe related work in Section 6. Because of
space limitations, most proofs are omitted from the paper.

2 Problem Definition

We now state the mailbox problem more precisely. For simplicity, we let only one letter
at a time be delivered to or removed from the mailbox. It is easy to turn a solution to
this problem into one in which multiple letters can be delivered or removed.

The Mailbox Problem 3

We assume a postman process and a wife process. There are three operations: the
postman’s deliver operation, the wife’s check operation, which returns a Boolean value,
and her remove operation. The postman can invoke the deliver operation at any time.
The wife can invoke the remove operation only if the last operation she invoked was
check and it returned TRUE. We describe the execution of these operations in terms
of the mailbox metaphor—for example “checking the flag” means executing the check
operation. Remember that deliver and remove respectively delivers and removes only
a single letter.

Safety properties. We must implement deliver , check , and remove so that in every
system execution in which the wife follows her protocol of checking and obtaining
TRUE before removing, the following safety properties hold.

If the wife and postman never execute concurrently, then the value returned by an
execution of check is TRUE if and only if there are more deliver than remove executions
before this execution of check . This is the sequential specification of safety.

Neither the wife nor the postman can execute multiple operations concurrently,but the
wife can execute concurrently with the postman. The allowable behaviors are specified
by requiring that they act as if each operation were executed atomically at some point
between its invocation and its completion—a condition known as linearizability [4].

Liveness properties. A process executes an operation by performing a sequence of
atomic steps. A solution should also satisfy a liveness property stating that, under some
hypothesis, a process’s operation executions complete. We now state two possible live-
ness properties we can require of an algorithm. We number the two processes, letting
the wife be process 0 and the postman be process 1. Thus, for each process number i ,
the other process number is 1−i .

– (Non-blocking) For each i , if process i keeps taking steps when executing an oper-
ation, then either that operation execution completes or process 1−i completes an
infinite number of operations.

– (Wait-free) For each i , every operation execution begun by process i completes
if i keeps taking steps—even if process 1−i halts in the middle of an operation
execution [3]. The algorithm is said to be bounded wait-free [3] or loop-free [6]
if each operation completes before the process executing it has taken N steps, for
some fixed constant N .

Process communication and state. A solution requires the two processes to communi-
cate and maintain state. For that, processes have shared variables. We assume that there
are two shared variables: Flag and Notes . It is desirable that Flag assume only a small
number of values, but Notes can assume infinitely many values.

Operation check should be efficient: its execution should access a small amount of
persistent state. We consider two alternative interpretations of this requirement:

– (Weak access restriction) Operation check accesses at most one shared variable,
Flag , and it only accesses this variable by reading.

– (Strong access restriction) Operation check accesses at most one shared variable,
Flag , it only accesses this variable by reading, and it returns a value that depends
only on what it reads from Flag .

4 M.K. Aguilera, E. Gafni, and L. Lamport

With the weak access restriction, check can remember and use process-local state across
its executions, while with the strong access restriction, check is a memoryless operation
that is a function of Flag alone.

We are interested in solutions in which variables are atomic registers or arrays of
atomic registers, and an atomic step can read or write at most one atomic register.

3 Algorithms

We now give a solution to the mailbox problem with the strong access restriction and,
a fortiori, with the weak access restriction as well. It is easy to find such a solution if
Flag can hold an unbounded number of values. For example, we can use the algorithm
mentioned in the introduction in which the postman writes his note and raises the flag
in one atomic step, except having him write his note in Flag . We now present a solution
in which Flag is an array Flag[0..1] with two single-writer atomic registers (a single-
writer atomic register is an atomic register writable by a single process), each of which
can assume only 14 values. We do not know if there is a solution that uses fewer values.

We explain our algorithm in several steps. We first present an auxiliary protocol in
Section 3.1. Then, in Section 3.2, we give a solution to the mailbox problem that is
non-blocking and uses flags with unbounded timestamps. In Section 3.3, we show how
to bound the timestamps. Finally, we show how to make the algorithm wait-free in
Section 3.4.

3.1 The sussus Protocol

The sussus protocol is defined in terms of an operation sussus(v) that can be invoked at
most once by each process i . Intuitively, when a process i invokes sussus(v) with v =
v i , the process tries to communicate value v i to the other process and learn any value
communicated by the other process. The operation returns an outcome and a value to
process i . This value is either ⊥ or the value v1−i with which the other process invokes
sussus . The outcome is either success or unknown. A success outcome indicates that
process i communicates its value successfully to the other process, provided the other
process invokes operation sussus and completes it. An unknown outcome indicates that
process i does not know whether it communicates its value successfully. More precisely,
the protocol is bounded wait-free and satisfies the following safety properties:

– (SU1) If both processes complete their operation execution,2 then at least one ob-
tains the outcome success .

– (SU2) For each i , if process i completes the operation execution before process
1−i invokes the operation, then process i obtains the outcome success .

– (SU3) For each i , if both processes complete the operation execution and process
i obtains the outcome success , then process 1−i obtains the value v i with which
process i invoked the operation.

Figure 1 shows the sussus protocol, written in +CAL [7]. Procedure sussus shows
the code for operation sussus , while the code at the bottom shows an invocation to

2 A process may not complete the operation execution if it stops taking steps.

The Mailbox Problem 5

variables A = [i ∈ 0 . . 1 �→ ⊥],
B = [i ∈ 0 . . 1 �→ ⊥];

(* A and B are shared arrays indexed by 0 . . 1 with A[i] = B [i] = ⊥ for each i *)

procedure sussus(v) (* output: outcome , outvalue *)
{

s1: A[self] : = v ; (* self is the process id: 0 or 1*)
s2: outvalue : = A[1 − self];

if (outvalue = ⊥)
outcome : = “success”; (* Case A *)

else {
s3: B [self] : = “done”;
s4: if (B [1 − self] = ⊥)

outcome : = “unknown”; (* Case B *)
else outcome : = “success”; (* Case C *)

};
s5: return;

};

process (Proc ∈ 0 . . 1)
(* process−local variables *)
variables outcome , outvalue;

{
m1: with (v ∈ Int){ call sussus(v); }

}

Fig. 1. The sussus protocol

sussus with a value v chosen non-deterministically from the set Int of all integers. The
outcome and value returned by operation sussus are placed in variables outcome and
outvalue, respectively. Labels in +CAL indicate the grain of atomicity: an atomic step
consists of executing all code from one label to the next. In the first step of procedure
sussus , process i sets array element A[i] of shared variable A to value v . In the next
step, process i reads A[1−i] and stores the result in local variable outvalue. If the value
read is ⊥ then process i sets outcome to “success”. Otherwise, in a third step, process
i sets B [i] to “done” and, in a fourth step, it reads B [1−i]; if the result is ⊥, process
i sets outcome to “unknown”, otherwise it sets outcome to “success”. Observe that
each atomic step accesses at most one array element of one shared variable.

To see why the protocol satisfies properties SU1–SU3, observe that there are three
possibilities for the values of variables outcome and outvalue when a process com-
pletes its operation:

Case A: outcome = “success”, outvalue = ⊥
Case B: outcome = “unknown”, outvalue �= ⊥
Case C: outcome = “success”, outvalue �= ⊥

These cases are indicated by comments in the code.
Figure 2 shows these cases as six pairs, where each pair 〈i , ρ〉 represents process i

ending up in case ρ. Beneath each such pair, we indicate the outcome that process i

6 M.K. Aguilera, E. Gafni, and L. Lamport

obtains, with S standing for success and U for unknown . Two adjacent pairs indicate
the results obtained by each process in some execution. For example, we see the adja-
cent pairs 〈1,B 〉 and 〈0,C 〉 and the letters U and S beneath them. This indicates that,
in some execution, process 1 ends up in case B with outcome unknown , while process
0 ends up in case C with outcome success . It turns out that every execution in which
both processes complete their execution of sussus corresponds to some adjacent pair
in the figure. It is easy to prove this by straightforward case analysis, and even easier
by model checking the +CAL code. Properties SU1–SU3 follow easily from this fact
together with the observation that v1−i is the only value other than ⊥ that process i can
possibly obtain. (Remember that each process invokes operation sussus at most once.)

〈0,A〉 〈1, B〉 〈0, C 〉 〈1, C 〉 〈0,B〉 〈1,A〉
S U S S U S

Fig. 2. Possibilities when both processes complete execution of the sussus protocol

3.2 Non-blocking Algorithm with Large Flag Values

We now present a solution to the mailbox problem that is non-blocking and uses flags
that keep large, unbounded timestamps. In this algorithm, the postman and wife each
keep a private counter with the number of times that they have executed deliver and
remove, respectively. To deliver or remove a letter, a process increments its counter and
executes a procedure to compare its counter with the other process’s counter (see proce-
dures deliver and remove in Figure 3). The comparison procedure is explained in detail
below. Its effect is to write to Flag[i] a record with two fields, Rel and Timestamp. Rel
is either “=” or “ �=”, according to the result of the comparison. Timestamp indicates
how recent the result in Rel is; this information is used elsewhere to determine which
of Flag[0] or Flag[1] has the most recent result.

The wife checks if the mailbox has letters or not by reading Flag[0] and Flag[1],
choosing the flag with highest timestamp, and verifying if that flag says “=” or “ �=”. If
it says “=” then the wife considers the mailbox to be empty, otherwise, to be non-empty
(see procedure check in Figure 3).

In the comparison procedure, a process i executes one or more rounds numbered
1, 2, . . ., starting with the smallest round it has not yet executed. In each round k , pro-
cess i executes an instance of the sussus protocol to try to communicate the value of
its counter and, possibly, learn the value of the other process’s counter. If the outcome
of sussus is success, process i compares its counter with the most recent value that it
learned from the other process. The comparison result is written to Flag[i] together
with timestamp k , the process’s current round. The process is now done executing the
compare procedure. If, on the other hand, the outcome of sussus is unknown then pro-
cess i proceeds to the next round k+1. This continues until, in some round, the outcome
of sussus is success.

The detailed code for the comparison procedure is shown in Figure 4. It invokes
a multi-instance version of the sussus protocol in procedure multisussus , which is a

The Mailbox Problem 7

variables (* shared variables *)
A = [k ∈ Int , i ∈ 0 . . 1 �→ ⊥], (* A is an array indexed by the integers and 0 . . 1 *)
B = [k ∈ Int , i ∈ 0 . . 1 �→ ⊥],
Flag=[i ∈ 0 . . 1 �→ [Timestamp �→0,Rel �→“=”]]; (* Flag is an array of records with

fields Timestamp and Rel initialized to 1 and ”=” *)
process (proc ∈ 0 . . 1)

variables (* process-local variables *)
counter = 0, (* # times removed/delivered *)
round = 0, (* current round number *)
otherc = 0, (* last known counter of other process *)
outcome , (* output of procedure multisussus *)
outvalue , (* output of procedure multisussus *)
hasmail ; (* output of procedure check *)

{
m1: while (TRUE) {

if (self = 0) { (* wife-specific code *)
m2: call check();
m3: if (hasmail) call remove();

}
else call deliver(); (* postman-specific code *)

} (* while *)
}
procedure deliver(){

d1: counter : = counter + 1;
d2: call compare(counter);
d3: return;

};
procedure remove(){

r1: counter : = counter + 1;
r2: call compare(counter);
r3: return;

};
procedure check() (* output: hasmail *)

variables t f 0, t f 1; (* procedure-local variables *)
{

c1: t f 0 := Flag [0];
c2: t f 1 := Flag [1];
c3: if (t f 0.Timestamp > t f 1.Timestamp){

if (t f 0.Rel = “=”) hasmail : = FALSE;
else hasmail : = TRUE;

} else {
if (t f 1.Rel = “=”) hasmail : = FALSE;
else hasmail : = TRUE;

};
c4: return;

};

Fig. 3. Non-blocking algorithm with large flag values (1/2). Top: shared and global variable defi-
nitions. Middle: starting code. Bottom: procedures.

8 M.K. Aguilera, E. Gafni, and L. Lamport

procedure compare(c)
{

s1: outcome : = “unknown”;
s2: while (outcome �= “success”) {

(* advance round *)
s6: round : = round + 1;
s7: call multisussus(round , c);
s8: if (outvalue �= ⊥) {

otherc : = outvalue; (* remember outvalue *)
};

}; (* while *)
s9: if (c �= otherc)

Flag [self] : = [Timestamp �→ round , Rel �→ “�=”];
else Flag [self] : = [Timestamp �→ round , Rel �→ “=”];

s10: return;
};

procedure multisussus(rnd , v) (* output: outcome and outvalue *)
{

ss1: A[rnd , self] : = v ;
ss2: outvalue : = A[rnd , 1 − self];
ss3: if (outvalue = ⊥)

outcome : = “success”;
else {

ss4: B [rnd , self] : = “done”;
ss5: if (B [rnd , 1 − self] = ⊥)

outcome : = “unknown”;
else outcome : = “success”;

};
ss6: return;

};

Fig. 4. Non-blocking algorithm with large flag values (2/2)

trivial extension of the code in Figure 1. Shared variable Notes , used in the mailbox
problem definition, is not shown in the code: for clarity, we replaced it with two shared
variables, A and B . These variables should be regarded as fields Notes .A and Notes .B
of Notes . Procedure check writes its return value to process-local variable hasmail ,
since in +CAL, a procedure call has no mechanisms for returning a value.

Intuitively, the algorithm works because the rounds provide a way to order operation
executions, ensuring linearizability. Roughly speaking, we can assign each operation
execution to a round, as follows:

– An execution of remove or deliver by a process is assigned the first round in its ex-
ecution in which the other process learns the process’s value or the process obtains
outcome success from sussus.

The Mailbox Problem 9

– An execution of check is assigned the larger of the timestamps it reads from Flag[0]
and Flag[1].

We now order operation executions according to their assigned round number. If two
operation executions are assigned the same round number, we order deliver before
remove before check operations. This ordering ensures that if some operation execution
op completes before another operation execution op′ starts then op is ordered before
op′. For example, if an execution of deliver by the postman completes in round k then
a subsequent execution of remove by the wife cannot be assigned to round k or smaller.
This is because it is impossible for the postman to learn the wife’s new value in round
k or smaller since the postman already executed them.

Theorem 1. The algorithm in Figures 3 and 4 is a non-blocking algorithm that solves
the mailbox problem with the strong access restriction.

A fortiori, the algorithm is also a non-blocking algorithm that solves the mailbox prob-
lem with the weak access restriction.

3.3 Non-blocking Algorithm with Small Flag Values

We now give an algorithm that uses flags with small values. We do so by modifying
the algorithm in the previous section, which uses unbounded timestamps, to use instead
timestamps that assume only 7 different values.

In the new algorithm, as in the previous one, processes execute in (asynchronous)
rounds. However, in the new algorithm, the timestamp that a process uses in round k is
not k ; it is a value chosen dynamically at the end of round k−1 according to what the
process sees in that round.

Let tsk ,i be the timestamp that process i uses in round k . To understand how tsk ,i

is chosen, we consider some properties that it must have. Let us assume that the sussus
protocol in round k returns outcome success for process i—otherwise tsk ,i does not
get written to Flag[i] and so it is irrelevant. In the previous algorithm of Section 3.2,
tsk ,i=k . Such a timestamp has the property that it is larger than any timestamps from
previous rounds. This is too strong a property to try to satisfy with bounded times-
tamps. However, closer inspection reveals that it is sufficient for tsk ,i to be larger than
previous-round timestamps that could appear in Flag[1−i] at the same time that tsk ,i

appears in Flag[i]. It turns out that there are only two such timestamps: the timestamp
already in Flag[1−i] when process i ends round k−1, and the last timestamp learned
by process i when process i ends round k−1. Thus, at the end of round k−1, process i
needs to pick tsk ,i so that it dominates these two timestamps.

Therefore, to bound the number of timestamps, we must choose them from a finite set
TS with an antisymmetric total relation � such that, for any two elements t1, t2∈TS ,
there is an element s ∈ TS that strictly dominates both t1 and t2 under �. This would
be impossible if we required the relation � to be transitive, but we do not. A computer
search reveals that the smallest set with the requisite relation � contains 7 elements. We
take TS = 1 . . 7 to be our 7-element set and define

10 M.K. Aguilera, E. Gafni, and L. Lamport

Array ∆= 〈〈1, 0, 1, 1, 1, 0, 0〉,
〈1, 1, 1, 0, 0, 0, 1〉,
〈0, 0, 1, 0, 1, 1, 1〉,
〈0, 1, 1, 1, 0, 1, 0〉,
〈0, 1, 0, 1, 1, 0, 1〉,
〈1, 1, 0, 0, 1, 1, 0〉,
〈1, 0, 0, 1, 0, 1, 1〉〉

v � w ∆= (Array[v][w] = 1)
v � w ∆= v � w ∧ v �= w
dominate(v ,w) ∆= CHOOSE x ∈ 1 . . 7 : x � v ∧ x � w

Figures 5 and 6 shows the detailed code of the algorithm sketched above. Figure 5 is
very similar to Figure 3. The significant changes to the algorithm are in Figure 6, where
asterisks indicate a difference relative to Figure 4.

Theorem 2. The algorithm in Figures 5 and 6 is a non-blocking algorithm that solves
the mailbox problem with the strong access restriction. It uses a Flag with two 14-
valued single-writer atomic registers.

variables (* shared variables *)
same as before except for this minor change:

Flag=[i ∈ 0 . . 1 �→ [Timestamp �→1, Rel �→“=”]];

process (proc ∈ 0 . . 1)
variables (* process-local variables *)

same as before, with the following additions

ts = 1, (* current timestamp *)
nextts = 2, (* next timestamp to use *)
otherts = 1, (* last known timestamp of other process *)

{
same as before

}
procedure deliver() same as before

procedure remove() same as before

procedure check()
same as before, except replace

if (t f 0.Timestamp > t f 1.Timestamp){
with

if (t f 0.Timestamp � t f 1.Timestamp) {
procedure multisussus(rnd , v) same as before

Fig. 5. Non-blocking algorithm with small flag values (1/2). This part is very similar to Figure 3.

The Mailbox Problem 11

procedure compare(c)
{

s1: outcome : = “unknown”;
s2: while (outcome �= “success”) {

(* advance round *)
s6: round : = round + 1;

∗ ts : = nextts; (* use timestamp chosen at end of last round *)

∗ s7: call multisussus(round , [Timestamp �→ ts, Count �→ c]);
(* record with Timestamp and Count fields set to ts and c *)

s8: if (outvalue �= ⊥) {
∗ otherts : = outvalue.Timestamp; (* remember timestamp of other process *)
∗ otherc : = outvalue.Count ; (* remember counter of other process *)

};
∗ nextts : = dominate(otherts, Flag [1 − self].Timestamp); (* for next round *)

}; (* while *)
s9: if (c �= otherc)

∗ Flag [self] : = [Timestamp �→ ts, Rel �→ “�=”]; (* use ts as timestamp *)
∗ else Flag [self] : =[Timestamp �→ ts, Rel �→ “=”];

s10: return;
};

Fig. 6. Non-blocking algorithm with small flag values (2/2). Asterisks indicate changes relative
to Figure 4.

3.4 Wait-Free Algorithm with Small Flag Values

The algorithms of Sections 3.2 and 3.3 are non-blocking but not wait-free, because a
process completes a deliver or remove operation only when it obtains outcome suc-
cess from the sussus protocol. Thus, if the process keeps getting outcome unknown in
every round, the process never completes its operation. Closer examination reveals this
could only happen with the wife, because of the way processes invoke operations: if
the postman got stuck forever in a deliver execution, the wife would execute enough
remove operations for the mailbox to be empty, which would cause her to stop invoking
remove (since she invokes remove only if check returns TRUE), and this would allow
the postman to eventually obtain outcome success and complete his operation.

Therefore, the algorithm fails to be wait-free only in executions in which the postman
executes infinitely many deliver operations while the wife gets stuck executing remove.
But there is a simple mechanism for the wife to complete her operation. Because the
postman’s counter is monotonically increasing, if the wife knows that the postman’s
counter is larger than her own, she can simply complete her operation and leave her
flag unchanged, since her flag already indicates that her counter is smaller than the
postman’s — otherwise she would not be executing remove in the first place. This
mechanism is shown in Figure 7 in the statement labeled “s3”.

We have also included a simple optimization in which, if process i sees that its
round r i is lagging behind the other process’s round r1−i , then process i jumps to
round r1−i−1. The reason it is possible to jump in this case is that process i will obtain

12 M.K. Aguilera, E. Gafni, and L. Lamport

max(x , y)
∆
= IF x > y THEN x ELSE y

procedure compare(c)
variables t round , t otherround ;

{
s1: outcome : = “unknown”;
s2: while (outcome �= “success”) {

∗ s3: if (self = 0 ∧ c < otherc) return; (* wife process *)

(* advance or skip round *)
∗ s4: t otherround : = Round [1 − self];
∗ s5: t round : = max(Round [self] + 1, t otherround − 1);
∗ s6: Round [self] : = t round ;

ts : = nextts;
s7: call multisussus(t round , [Timestamp �→ ts, Count �→ c]);
s8: if (outvalue �= ⊥) {

otherts : = outvalue.Timestamp;
otherc : = outvalue.Count ;

};
nextts : = dominate(otherts, Flag [1 − self].Timestamp);

}; (* while *)
s9: if (c �= otherc)

Flag [self] : = [Timestamp �→ ts, Rel �→ “�=”];
else Flag [self] : =[Timestamp �→ ts, Rel �→ “=”];

s10: return;
};

Fig. 7. Wait-free algorithm with small flag values: compare procedure. Asterisks indicate
changes relative to the non-blocking algorithm with small flag values.

an outcome unknown from the sussus protocol in every round from r i to r1−i−1. In
each of these rounds, the process would learn the value of the other process, but what it
learns in a round is subsumed by what it learns in a higher round. Therefore, the process
only needs to execute round r1−i−1. This optimization is shown in Figure 7 in the
statements labeled “s4” through “s7”. It uses an additional shared array Round [i] that
stores the current round of process i (this used to be in process-local variable round ,
which no longer is used), where initially Round [i] = 0 for i = 0, 1.

Theorem 3. The algorithm in Figures 5 and 7 is a wait-free algorithm that solves the
mailbox problem with the strong access restriction. It uses a Flag with two 14-valued
single-writer atomic registers.

4 Impossibility

We now show that it is impossible to solve the mailbox problem when Flag has only
two bits, each writable by a single process. This result holds even if Notes can hold
unbounded values.

The Mailbox Problem 13

Theorem 4. There is no non-blocking algorithm that solves the mailbox problem with
the strong access restriction when Flag is an array with two 2-valued single-writer
atomic registers.

Proof sketch. We show the result by contradiction: suppose there is such an algorithm
A. Let Flag[0] and Flag[1] denote the two 2-valued single-writer atomic registers. We
show how to use A to solve consensus using only registers, which is impossible [2,9].

If Flag[0] and Flag[1] are writable by the same process, it is easy to get a contradic-
tion. Without loss of generality we can assume Flag[0] is writable by the wife (process
0) and Flag[1] is writable by the postman (process 1).

A solo execution of an operation is one where only one process takes steps (the other
does nothing).

We define a function C such that C (F 0,F 1) is the value returned by a solo execu-
tion of check when Flag[i] = F i at the beginning of the execution. This is well-defined
because (1) with the strong access restriction, operation check returns a value that de-
pends only on what it reads from Flag , and (2) in a solo execution of check , the value
of Flag does not change.

Assume without loss of generality that initially Flag[0]=Flag[1]=0.

Claim. C (0, 0)=C (1, 1)=FALSE and C (0, 1)=C (1, 0)=TRUE.
To show this claim, note that initially check returns FALSE as no letters have been

delivered. Moreover, initially Flag[0]=Flag[1]=0. Therefore C (0, 0) = FALSE.
From the initial system state, a solo execution of deliver by the postman must set

Flag[1] to 1 (otherwise a subsequent execution of check incorrectly returns C (0, 0) =
FALSE) and we have C (0, 1) = TRUE.

After this solo execution of deliver , suppose there is a solo execution of remove by
the wife. This execution sets Flag[0] to 1 (otherwise a subsequent execution of check
incorrectly returns C (0, 1) = TRUE) and we have C (1, 1) = FALSE.

After these solo executions of deliver and remove, suppose there is a solo execution
of deliver . Then, it sets Flag[1] to 0 and we have C (1, 0) = TRUE. This shows the claim.

Let S be the system state after a solo execution of deliver from the initial state. In
state S , Flag[0]=0 and Flag[1]=1.

We now give an algorithm that we will show solves consensus for the two processes.
Process i first writes its proposed value into a shared variable V [i]. Then, starting from
state S , process 0 executes operation remove of algorithm A and process 1 executes
operation deliver of A. If process i ends up with a different value in Flag[i] than when
it started, then it decides on the value of V [0]; otherwise, it decides on the value of V [1].

This algorithm solves consensus because (a) if process 0 executes by herself then
remove flips the value of Flag[0] so the process decides on V [0]; (b) if process 1
executes by himself then deliver leaves Flag[1] unchanged so the process decides on
V [1]; (c) if both processes execute then, after they finish, the values of Flag[0] and
Flag[1] either both flip or both remain the same (it is not possible for only one of them
to flip, because C (0, 0) = C (1, 1) = FALSE and operation check must return TRUE

afterwards), and so both processes decide the same value.
This consensus algorithm uses only atomic registers and it is wait-free since A is

non-blocking and each process invokes at most one operation of A. This contradicts the
consensus impossibility result [2,9].

14 M.K. Aguilera, E. Gafni, and L. Lamport

5 Bounded-Signaling Problems

The mailbox problem is an instance of a broader class of problems, called bounded-
signaling problems, which we now define. In a bounded-signaling problem, each pro-
cess i = 0, 1 has an input v i that can vary. From time to time, a process wishes to
know the value of a finite-range function f (v0, v1) applied to the latest values of v0

and v1. Each input v i could be unbounded and, when it varies, process i can access all
of shared memory. However, when a process wishes to know the latest value of f , it is
limited to accessing a small amount of state.

For example, in the mailbox problem, v0 is the number of letters that the wife has
removed, v1 is the number of letters delivered by the postman, and f (v0, v1) indicates
whether v0 = v1 or v0 �= v1. The mailbox problem places some problem-specific
restrictions on how v0 and v1 can change. For instance, they are monotonically nonde-
creasing and v0 ≤ v1 because if check returns FALSE then the wife does not execute
remove. Other bounded-signaling problems may not have restrictions of this type.

A precise statement of a bounded-signaling problem is the following. We are given
a finite-range function f (x , y), and we must implement two operations, change(v) and
readf (). If operations never execute concurrently, readf must always return the value of
f (v0, v1) where v i is the value in the last preceding invocation to change(v) by process
i or v i = ⊥ if process i never invoked change(v). The concurrent specification is
obtained in the usual way from this condition by requiring linearizability. Furthermore,
the implementation of readf must access a small amount of persistent state. We consider
two alternative interpretations of this requirement:

– (Weak access restriction) Operation readf accesses at most one shared variable, of
finite range; and it accesses this variable only by reading.

– (Strong access restriction) Operation readf accesses at most one shared variable,
of finite range; it accesses this variable only by reading; and it returns a value that
depends only on what it reads from the shared variable.

It turns out that the algorithm in Section 3.3 can be changed as follows to solve any
bounded-signaling problem with the strong access restriction. We replace deliver and
remove with a single procedure change(v) that sets counter to v , and we modify the
end of procedure compare to compute f with arguments c and otherc (instead of just
comparing c and otherc), and write the result and timestamp to Flag . The resulting
algorithm is non-blocking. It is an open problem whether there exist wait-free algo-
rithms for the general problem. Our wait-free algorithm in Section 3.4 does not solve
the general problem since it relies on problem-specific restrictions on the inputs v i .

6 Related Work

The mailbox problem is a type of consumer-producer synchronization problem, with
the unique feature that the consumer must determine if there are items to consume by
looking only at a finite-range variable.

Work on bounded timestamping shows how to bound the timestamps used in certain
algorithms (e.g., [5,1]). That work considers a fixed-length array that holds some finite

The Mailbox Problem 15

set of objects that must be ordered by timestamps. In our algorithms, it is not evident
what this set should be. However, we believe some of the binary relations devised in that
body of work could be used in our algorithms instead of the relation given by Matrix
in Section 3.3 (but this would result in much larger timestamps than the ones we use).

Acknowledgements. We are grateful to Ilya Mironov for pointing out to us that the
relation of Section 3.3 should exist for sufficiently large sets, and to the anonymous
reviewers for useful suggestions.

References

1. Dolev, D., Shavit, N.: Bounded concurrent time-stamping. SIAM Journal on Comput-
ing 26(2), 418–455 (1997)

2. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one
faulty process. J.ACM 32(2), 374–382 (1985)

3. Herlihy, M.P.: Wait-free synchronization. ACM Transactions on Programming Languages
and Systems 13(1), 124–149 (1991)

4. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems 12(3), 463–492 (1990)

5. Israeli, A., Li, M.: Bounded time-stamps. Distributed Computing 6(4), 205–209 (1993)
6. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Communica-

tions of the ACM 17(8), 453–455 (1974)
7. Lamport, L.: The +CAL algorithm language (July 2006),

http://research.microsoft.com/users/lamport/tla/pluscal.html
(The page can also be found by searching the Web for the 25-letter string obtained by
removing the “-” from uid-lamportpluscalhomepage)

8. Lampson, B.W., Redell, D.D.: Experience with processes and monitors in Mesa. Communi-
cations of the ACM 17(8), 453–455 (1974)

9. Loui, M.C., Abu-Amara, H.H.: Memory requirements for agreement among unreliable asyn-
chronous processes. Advances in Computing Research 4, 163–183 (1987)

10. Saltzer, J.H.: Traffic control in a multiplexed computer system. Technical Report Project
MAC Technical Report MAC-TR-30, M.I.T (June 1966)

http://research.microsoft.com/users/lamport/tla/pluscal.html
uid-lamportpluscalhomepage

Matrix Signatures: From MACs to Digital

Signatures in Distributed Systems

Amitanand S. Aiyer1, Lorenzo Alvisi1,�, Rida A. Bazzi2, and Allen Clement1

1 Department of Computer Sciences,
University of Texas at Austin

2 School of Computing and Informatics,
Arizona State University

Abstract. We present a general implementation for providing the prop-
erties of digital signatures using MACs in a system consisting of any
number of untrusted clients and n servers, up to f of which are Byzan-
tine. At the heart of the implementation is a novel matrix signature
that captures the collective knowledge of the servers about the authen-
ticity of a message. Matrix signatures can be generated or verified by
the servers in response to client requests and they can be transmitted
and exchanged between clients independently of the servers. The imple-
mentation requires that no more than one third of the servers be faulty,
which we show to be optimal. The implementation places no synchrony
requirements on the communication and only require fair channels be-
tween clients and servers.

1 Introduction

Developing dependable distributed computing protocols is a complex task. Prim-
itives that provide strong guarantees can help in dealing with this complexity
and often result in protocols that are simpler to design, reason about, and prove
correct. Digital signatures are a case in point: by guaranteeing, for example, that
the recipient of a signed message will be able to prove to a disinterested third
party that the signer did indeed sign the message (non repudiation), they can
discourage fraudulent behavior and hold malicious signers to their responsibil-
ities. Weaker primitives such as message authentication codes (MACs) do not
provide this desirable property.

MACs, however, offer other attractive theoretical and practical features that
digital signatures lack. First, in a system in which no principal is trusted, it is
possible to implement MACs that provide unconditional security—digital sig-
natures instead are only secure under the assumption that one-way functions
exist [1], which, in practical implementations, translates in turn to a series of
unproven assumptions about the difficulty of factoring, the difficulty of comput-
ing discrete logarithms, or both. Second, certain MAC implementations (though
not the ones that guarantee unconditional security!) can be three orders of mag-
nitude faster to generate and verify than digital signatures [2].
� This work was supported in part by NSF grant CSR-PDOS 0720649.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 16–31, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Matrix Signatures: From MACs to Digital Signatures 17

Given these rather dramatic tradeoffs, it is natural to wonder whether, under
different assumptions about the principals, it is possible to get the best of both
worlds: a MAC-based implementation of digital-signatures. It is relatively easy
to show that such an implementation exists in systems with a specific trusted
entity [3]—in the absence of a specific trusted entity, however, the answer is
unknown.

The few successful attempts to date at replacing digital signatures with MACs
[2,4,5,6,7] have produced solutions specific only to the particular protocols for
which the implementation was being sought—these MAC-based, signature-free
protocols do not offer, nor seek to offer, a generic mechanism for transform-
ing an arbitrary protocol based on digital signatures into one that uses MACs.
Further, these new protocols tend to be significantly less intuitive than their
signature-based counterparts, so much so that their presentation is often con-
fined to obscure technical reports [2,8].

In this paper we study the possibility of implementing digital signatures using
MACs in a system consisting of any number of untrusted clients and n servers,
up to f of which can be Byzantine. We show that, when n > 3f , there exists
a general implementation of digital signatures using MACs for asynchronous
systems with fair channels. We also show that such an implementation is not
possible if n ≤ 3f—even if the network is synchronous and reliable.

At the heart of the implementation is a novel matrix signature that captures
the collective knowledge of the servers about the authenticity of a message. Ma-
trix signatures can be generated or verified by the servers in response to client
requests and they can be transmitted and exchanged between clients indepen-
dently of the servers.

Matrix signatures do not qualify as unique signature schemes [9]. Depending
on the behavior of the Byzantine servers and message delivery delays, the same
message signed at different times can produce different signatures, all of which
are admissible. Unique signature schemes have a stronger requirement: for every
message, there is a unique admissible signature. We show that unique signature
schemes can also be implemented using MACs, but that any such implementation
requires an exponential number of MACs if f is a constant fraction of n.

In summary, we make four main contributions:

– We introduce matrix signatures, a general, protocol-agnostic MAC-based
signature scheme that provides properties, such as non-repudiation, that so
far have been reserved to digital signatures.

– We present an optimally resilient implementation of a signing and verification
service for matrix signatures. We prove its correctness under fairly weak
system assumptions (asynchronous communication and fair channels) as long
as at most one third of the servers are arbitrarily faulty.

– We show that no MAC based signature and verification service can be imple-
mented using fewer servers, even under stronger assumptions (synchronous
communication and reliable channels).

– We provide an implementation of unique signatures, and show a bound on
the number of MACs required to implement them.

18 A.S. Aiyer et al.

2 Related Work

Matrix signatures differ fundamentally from earlier attempts at using MACs in
lieu of signatures by offering a general, protocol-agnostic translation mechanism.

Recent work on practical Byzantine fault tolerant (BFT) state machine repli-
cation [2,4,5,6] has highlighted the performance opportunities offered by substi-
tuting MACs for digital signatures. These papers follow a similar pattern: they
first present a relatively simple protocol based on digital signatures and then
remove them in favor of MACs to achieve the desired performance. These trans-
lations, however, are protocol specific, produce protocols that are significantly
different from the original—with proofs of correctness that require understanding
on their own— and, with the exception of [2], are incomplete.

[10] addresses the problem of allowing Byzantine readers to perform a write
back without using digital signatures; however, it uses secret-sharing and relies
on having a trusted writer.

Srikanth and Toueg [7] consider the problem of implementing authenticated
broadcast in a system where processes are subject to Byzantine failures. Their
implementation is applicable only to a closed system of n > 3f processes, with
authenticated pairwise communication between them. They do not consider the
general problem of implementing signatures: in their protocol, given a message
one cannot tell if it was “signed” unless one goes through the history of all
messages ever received to determine whether the message was broadcast—an
impractical approach if signed messages are persistent and storage is limited. In
contrast, we provide signing and verification primitives for an open asynchronous
system with any number of clients.

Mechanisms based on unproven number theoretic assumptions, are known to
implement digital signatures using local computation without requiring any com-
munication steps [11,12]. Some also provide unconditional security [13]; but, they
bound the number of possible verifiers and allow for a small probability that a ver-
ifier may be unable to convince other verifiers that the message was signed.

If there is a trusted entity in the system signatures can be implemented over
authenticated channels (or MACs) [3]. In the absence of a known trusted princi-
pal, implementing digital signatures locally requires one-way functions [1]. Our
results show that even with partial trust in the system, implementing digital
signatures is possible without requiring one-way functions.

3 MACs and Digital Signatures

Digital Signatures and MACs allow a message recipient to establish the authen-
ticity of a message. Unlike MACs, digital signatures also allow a message recipient
to prove this authenticity to a disinterested third party [14]—non repudiation.

3.1 Digital Signatures

A signature scheme over a set of signers S and a set of verifiers V consists of a
signing procedure SS,V and a verification procedure VS,V :

Matrix Signatures: From MACs to Digital Signatures 19

SS,V : Σ
∗
�→ Σ

∗
VS,V : Σ

∗
× Σ

∗
�→ Boolean × Σ

∗

The signing procedure SS,V is used to sign a message. It outputs a signature,
which can convince the verifier that the message was signed.

The set S contains all the processes that can invoke the signing procedure.
The set V contains all processes that may verify a signature in the signature
scheme.

The verification procedure, VS,V , takes as input a message and a signature
and outputs two values. The first value is a boolean and indicates whether the
verification procedure accepts or rejects the signature. The second value is a
signature, whose role needs some explaining.

The signature schemes we define guarantee that (i) a verifier always accepts
signatures that are generated by invoking the signing procedure and that (ii) any
message whose signature is accepted was, at some point, signed by a member of S
by invoking the signing procedure although the signature that the verifier accepts
may not be the one produced by the signing procedure. We call these second type
of signatures derivative.

In traditional, non-distributed, implementations of signatures, one does not
expect that a verifier be presented with a derivative signature that was not
explicitly generated by the signing procedure. In a distributed implementation,
and for reasons that will become clear in Section 6, when we discuss the actions
that Byzantine nodes can take to disrupt a MAC-based signature scheme, the
existence of derivative signatures is the norm rather than the exception, and one
needs to allow them in a definition of signature schemes. Furthermore, because
the non-deterministic delays and Byzantine behavior of faulty servers, there exist
derivative signatures that may nondeterministically be accepted or rejected by
the verification procedure. It may then be impossible for a verifier who accepted
the signature to prove to another the authenticity of a message.

So, from the perspective of ensuring non repudiation, derivative signatures
present a challenge. To address this challenge, we require the verification proce-
dure, every time a verifier v accepts a signed message m, to produce as output
a new derivative signature that, by construction, is guaranteed to be accepted
by all verifiers. This new signature can then be used by v to authenticate the
sender of m to all other verifiers. Note that, if the first output value produced
by the verification procedure is false, the second output value is irrelevant.

Digital signature schemes are required to satisfy the following properties:

Consistency. A signature produced by the signing procedure is accepted by the
verification procedure.

SS,V (msg) = σ ⇒ VS,V (msg, σ) = (true, σ′)

Validity. A signature for a message m that is accepted by the verification pro-
cedure cannot be generated unless a member of S has invoked the signing pro-
cedure.

VS,V (msg, σ) = (true, σ′) ⇒ SS,V (msg) was invoked

20 A.S. Aiyer et al.

Verifiability. If a signature is accepted by the verification procedure for a mes-
sage m, then the verifier can produce a signature for m that is guaranteed to be
accepted by the verification procedure.

VS,V (msg, σ) = (true, σ′) ⇒ VS,V (msg, σ′) = (true, σ”)

Verifiability is recursively defined; it ensures non-repudiation. If the verification
procedure accepts a signature for a given message, then it outputs a signature
that is accepted by the verification procedure for the same message. In turn, the
output signature can be used to obtain another signature that will be accepted
by the verification procedure and so on.

Any digital signature scheme that meets these requirements provides the gen-
eral properties expected of signatures. Consistency and validity provide authen-
tication; verifiability provides non-repudiation.
Unique Signature Schemes. Unique signature schemes are signature schemes
for which only one signature can be accepted by the verification procedure for a
given message. If (SS,V ,VS,V) is a unique signature scheme, then, in addition to
consistency, validity and verifiability, it satisfies:

V(msg, σ) = (true, σproof) ∧ V(msg, σ′) = (true, σ′
proof) ⇒ σ = σ′

It follows from the definition that σproof = σ′
proof = σ = σ′, implying that, for

unique signatures, the signature produced in output by the verification procedure
is redundant . It also follows from the definition and the consistency requirement
that unique signatures have deterministic signing procedures.

3.2 Message Authentication Codes

MACs are used to implement authentication between processes. A message au-
thentication scheme consists of a signing procedure SU and a verifying procedure
VU .

SU : Σ∗ �→ Σ∗ VU : Σ∗ × Σ∗ �→ Boolean

The signing procedure SU takes a message and generates a MAC for that mes-
sage. The verification procedure VU takes a message along with a MAC and
checks if the MAC is valid for that message. For a given MAC scheme, the set
U contains all processes that can generate and verify MACs for the scheme.

MACs are required to ensure authentication, but not non-repudiation. For-
mally, they are required to satisfy:

Consistency. A MAC generated by the signing procedure will be accepted by
the verifying procedure.

SU (msg) = µ ⇒ VU (msg,µ) = true

Validity. A MAC for a message m that is accepted by the verification procedure
cannot be generated unless a member of U has invoked the signing procedure.

VU (msg, µ) = true ⇒ SU (msg) was invoked

Matrix Signatures: From MACs to Digital Signatures 21

3.3 Discussion

Keys, Signatures, and MACs. Formal definitions of signature schemes typically
include signing and verification keys. In our work we omit the keys for simplicity
and assume they are implicitly captured in SS,V and VS,V . In our setting, S is
be the set of processes that know the key needed to sign and V is the set of
processes that know the key needed to verify.

MACs are also typically defined with reference to a symmetric secret key K
that is used to generate and verify MACs. In our setting, processes that know
K are members of the set U of signers and verifiers. In proving a lower bound
on the number of MAC schemes needed to implement unique signatures, we find
it convenient to identify a MAC scheme with the key K it uses. In this case,
we distinguish between the name of the key, K, and the value of the key k as
different schemes might use the same key value.

Signers and Verifiers. Since we will be considering Byzantine failures of servers
and clients (participants), the composition of the sets S or U for a given scheme
might change because a participant can give the secret signing key to another
participant. To simplify the exposition, we assume that the sets of signers (ver-
ifiers) include any participant that can at some point sign (verify) a message
according to the scheme.

Semantics. Formalisms for MACs and digital signatures typically express their
properties in terms of probabilities that the schemes can fail. For schemes that
rely on unproven assumptions, restrictions are placed on the computational pow-
ers of the adversary. In this paper we are only interested in implementing sig-
nature using a finite number of black box MAC implementations. We state our
requirement in terms of properties of the executions that always hold without
reference to probabilities or adversary powers. This does not affect the results,
but leads to a simpler exposition.1

4 Model

The system consists of two sets of processes: a set of n server processes (also
known as replicas) and a finite set of client processes (signers and verifiers).
The set of clients and servers is called the set of participants. The identifiers of
participants are elements of a completely ordered set.

An execution of a participant consists of a sequence of events. An event can be
an internal event, a message send event or a message receive event. Two particu-
lar internal events are of special interest to us. A message signing event invokes a
1 Our implementations use only finitely many MACs, consequently the probability

of breaking our implementation can be made arbitrarily small if the probability of
breaking the underlying MAC implementations can be made arbitrarily small. Also,
our requirements restrict the set of allowable executions, which in essence place a
restriction on the computational power of the verifiers. In particular, they do not
allow a verifier to break the signature scheme by enumerating all possible signatures
and verifying them.

22 A.S. Aiyer et al.

signing procedure. A message verification event is associated with the invocation
of a verification procedure. In our implementations of signature schemes we only
consider communication between clients and servers to implement the signing
and the verification procedures.

Clients communicate with the servers over authenticated point-to-point chan-
nels. Inter-server communication is not required. The network is asynchronous
and fair—but, for simplicity, our algorithms are described in terms of reliable
FIFO channels, which can be easily implemented over fair channels between
correct nodes.

Each process has an internal state and follows a protocol that specifies its
initial states, the state changes, and the messages to send in response to messages
received from other processes. An arbitrary number of client processes and up to
f of the server processes can exhibit arbitrary (Byzantine) faulty behavior [15].
The remaining processes follow the protocol specification.

5 Signatures Using MACs

We first present the high level idea assuming two trusted entities in the system.
One trusted entity acts as a signing-witness and one acts as a verifying-witness.
The two witnesses share a secret-key K that is used to generate and verify MACs.

Signing a message. A signer delegates to the signing witness the task of signing
a message. This signing witness generates, using the secret key K, a MAC value
for the message m to be signed and sends the MAC value to the signer. This
MAC-signature certifies that the signer s wants to sign m. It can be presented
by a verifier to the verifying-witness to validate that s has signed m.

Verifying a signature. To verify that a MAC-signature is valid, a verifier (client)
delegates the verification task to the verifying witness. The verifying witness
computes, using the secret key K, the MAC for the message and verifies that it
is equal to the MAC presented by the verifier. If it is, the signature is accepted
otherwise, it is rejected.

Since the two witnesses are trusted and only they know the secret key K, this
scheme satisfies consistency, validity and verifiability.

6 A Distributed Signature Implementation

In an asynchronous system with n ≥ 3f +1 servers, it is possible to delegate the
tasks of the signing witness and the verifying witness to the servers. However,
achieving non-repudiation is tricky.

6.1 An Illustrative Example: Vector of MACs

Consider a scheme, for n = 3f + 1, where each server i has a secret key Ki is
used to generate/verify MACs. The “signature” is a vector of n MACs, one for
each server.

Matrix Signatures: From MACs to Digital Signatures 23

h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

h3,1 h3,2 h3,3 h3,4

h4,1 h4,2 h4,3 h4,4

h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

? ? ? ?
? ? ? ?

? h1,2 ? ?
? h2,2 ? ?
? ? ? ?
? ? ? ?

A Matrix-signature Valid Signature Admissible Signature

Fig. 1. Example Matrix-signatures

To sign a message, the signer contacts the servers to collect the MACs. How-
ever, due to asynchrony, it cannot collect more than (n − f) = (2f + 1) MACs.

To verify a signature, the verifier contacts the servers to determine which
MACs are correct. Since, up to f Byzantine nodes could have sent wrong values
to the signer, ensuring consistency requires that the verifier accept the “signa-
ture” even if only f + 1 MAC are accepted by the servers.

This allows the adversary to fool a non-faulty verifier into accepting a vector
that contains only one correct MAC value. If that happens, the verifier will not
be able to convince other verifiers that the message was signed.

6.2 Matrix Signatures

To deal with the difficulties raised in the illustrative example, we propose matrix
signatures. A matrix signature consists of n2 MAC values arranged in n rows
and n columns, which together captures the servers’ collective knowledge about
the authenticity of a message.

There are n signing-witness-servers and n verifying-witness-servers; both im-
plemented by the same n servers. Each MAC value in the matrix is calculated
using a secret key Ki,j shared between a signing-witness-server i and a verifying-
witness-server j.2

The ith row of the matrix-signature consists of the MACs generated by the ith

signing-witness-server. The jth column of the matrix-signature consists of the
MACs generated for the jth verifying-witness-server.

Clients can generate (or verify) a signature by contacting all the signing-
witness (or, respectively, verifying-witness) servers. The key difference with the
protocol described in the previous section is that the signature being used is a
matrix of n × n MACs as opposed to a single MAC value.

We distinguish between valid and admissible matrix signatures:

Definition 1 (Valid). A matrix-signature is valid if it has at least (f + 1)
correct MAC values in every column.

Definition 2 (Admissible). A matrix-signature is said to be admissible if it
has at least one column corresponding to a non-faulty server that contains at
least (f + 1) correct MAC values.

2 Although signing-witness-server i and verifying-witness-server k are both imple-
mented by server i, for the time being, it is useful to think of them as separate
entities.

24 A.S. Aiyer et al.

Admissibility and validity respectively capture the necessary and sufficient con-
ditions required for a matrix-signature to be successfully verified by a non-faulty
verifier. Thus, every valid signature is admissible, but the converse does not hold.

6.3 Protocol Description

The protocol for generating and verifying matrix-signatures is shown in Figure 2.

Generating a Signature. To generate a matrix-signature, the signer s sends
the message Msg to be signed, along with its identity, to all the signing-witness-
servers over authenticated channels. Each signing-witness-server generates a row
of MACs, attesting that s signs Msg, and responds to the signer. The signer
waits to collect the MAC-rows from at least (2f + 1) signing-witness-servers to
form the matrix-signature.

The matrix-signature may contain some empty rows corresponding to the
unresponsive/slow servers. It may also contain up to f rows with incorrect MAC
values, corresponding to the faulty servers.

Verifying a Signature. To verify a matrix-signature the verifier sends (a) the
matrix-signature, (b) the message, and (c) the identity of the client claiming to
be the signer to the verifying-witness-servers. A verifying-witness-server admits
the signature only if at least (f + 1) MAC-values in the server’s column are
correct; otherwise, it rejects. Note that a non-faulty server will never reject a
valid matrix-signature.

The verifier collects responses from the servers until it either receives (2f +1)
〈ADMIT, . . .〉 responses to accept the signature, or it receives (f+1) 〈REJECT〉
responses to reject the signature as not valid.

Regenerating a valid signature. Receiving (2f +1) 〈ADMIT, . . .〉 responses does
not guarantee that the signature being verified is valid. If some of these responses
are from Byzantine nodes, the same signature could later fail the verification if
the Byzantine nodes respond differently.

Verifiability requires that that if a signature passes the verification procedure,
then the verifier gets a signature that will always pass the verification procedure.
This is accomplished by constructing a new signature, that is a valid signature.

Each witness-server acts both as a verifying-witness-server and a signing-
witness-server. Thus, when a witness-server admits a signature (as a verifying-
witness-server), it also re-generates the corresponding row of MAC-values (as
a signing-witness-server) and includes that in the response. Thus, if a verifier
collects (2f + 1) 〈ADMIT, . . .〉 responses, it receives (2f + 1) rows of MAC-
values, which forms a valid signature.

Ensuring termination. The verifier may receive (n − f) responses and still not
have enough admit responses or enough reject responses to decide. This can
happen if the signature being verified, σ, is maliciously constructed such that
some of the columns are bad. This can also happen if the signature σ is valid,
but some non-faulty servers are slow and Byzantine servers, who respond faster,
reject it.

Matrix Signatures: From MACs to Digital Signatures 25

Signature Client-Sign (Msg Msg) {
∀i : σMsg,S [i][] :=⊥
send 〈SIGN, Msg, S〉 to all
do {

// Collect MAC-rows from the servers
rcv〈σi[1 . . . n]〉 from server i

σMsg,S [i][1 . . . n] := σi[1 . . . n]
} until received from ≥ 2f + 1 servers
return σMsg,S

}

(bool, Signature) Client-Verify(Msg Msg,
Signer S, Signature σ) {

∀i : σnew[i][] :=⊥; ∀i : resp[i] :=⊥;
send 〈VERIFY, Msg, S, σ[][]〉 to all
do {

either {
rcv 〈ADMIT, σi[1 . . . n]〉 from server i

σnew[i][1 . . . n] := σi[1 . . . n]
resp[i] := ADMIT
if (Count(resp, ADMIT) ≥ 2f + 1)

return (true, σnew);
} or {

rcv 〈REJECT〉 from server i

if (resp[i] =⊥) { resp[i] := REJECT }
if (Count(resp, REJECT) ≥ f + 1)

return (false, ⊥);
};
// If can neither decide, nor wait – Retry
if (Count(resp, ⊥) ≤ f)

send 〈VERIFY, Msg, S, σnew[][]〉 to
{ r : resp[r] �= ADMIT}

} until (false)
}

void Signing-Witness-Server(Id i) {
while(true) {

rcv 〈SIGN, Msg, S〉 from S

∀j : compute σi[j] := MAC(K i,j , S : Msg)
send 〈σi[1 . . . n]〉 to S

}
}

void Verifying-Witness-Server(Id j) {
while(true) {

rcv 〈VERIFY, Msg, S, σ〉 from V

correct cnt := |{i : σ[i][j] ==
MAC(K i,j , S : Msg)}|

if (correct cnt ≥ f + 1)
∀l : compute σj [l] := MAC(K j,l, S : Msg)
send 〈ADMIT, σj [1 . . . n]〉 to V

else
send 〈REJECT〉 to V

}
}

Fig. 2. Matrix-signatures

To ensure that the verifier gets (2f + 1) 〈ADMIT, . . .〉 responses it retries by
sending σnew, each time σnew is updated, to all the servers that have not sent
an 〈ADMIT, . . .〉 response. Eventually, it either receives (f + 1) 〈REJECT〉
responses from different servers (which guarantees that σ was not valid), or it
receives (2f + 1) 〈ADMIT, . . .〉 responses (which ensures that the regenerated
signature, σnew , is valid).

6.4 Correctness

Algorithm described in Figure 2 for matrix-signatures satisfies all the require-
ments of digital signatures and ensure that the signing/verification procedures
always terminate for n ≥ 3f + 1 [16].

Lemma 1. Matrix-signature generated by the signing procedure (Fig 2) is valid.

Lemma 2. Valid signature always passes the verification procedure.

Proof. A valid signature consists of all correct MAC-values in at least (f + 1)
rows. So, no non-faulty server will send a 〈REJECT〉 message. When all non-
faulty servers respond, the verifier will have (2f + 1) 〈ADMIT, . . .〉 messages.

26 A.S. Aiyer et al.

Lemma 3. If a matrix-signature passes the verification procedure for a non-
faulty verifier, then it is admissible.

Lemma 4. An adversary cannot generate an admissible signature for a message
Msg, for which the signer did not initiate the signing procedure.

Proof. Consider the first non-faulty server (say j) to generate a row of MACs
for the message Msg for the first time. If the signer has not initiated a the
signing procedure then j would generate the row of MACs only if it has received
a signature that has at least f + 1 correct MAC values in column j. At least
one of these MAC values has to correspond to a non-faulty server (say i). Ki,j

is only known to the non-faulty servers i and j, thus it is not possible that the
adversary can generate the correct MAC value.

Lemma 5. If a signature passes the verification procedure then the newly re-
constructed matrix-signature is valid.

Lemma 6. If a non-faulty verifier accepts that S has signed Msg, then it can
convince every other non-faulty verifier that S has signed Msg.

Theorem 1. The Matrix-signature scheme presented in Figure 2 satisfies con-
sistency, validity and verifiability.

Proof. Consistency follows from Lemmas 1 and 2. Validity follows from Lem-
mas 3 and 4. Verifiability follows from Lemmas 2 and 5.

Theorem 2. The signing procedure always terminates.

Theorem 3. The verification procedure always terminates.
Proof. Suppose that the verification procedure does not terminate even after
receiving responses from all the non-faulty servers. It cannot have received more
than f 〈REJECT〉 responses. Thus, it would have received at least (f + 1)
〈ADMIT, . . .〉 responses from the non-faulty servers that is accompanied with
the correct row of MACs. These (f + 1) rows of correct MACs will ensure that
the new signature σnew is Valid.

Thus all non-faulty servers that have not sent a 〈ADMIT, . . .〉 response will do
so, when the verifier retries with σnew . The verifier will eventually have (n−f) ≥
(2f + 1) 〈ADMIT, . . .〉 responses.

6.5 Discussion

Our distributed implementation of digital signatures is based on an underlying
implementation of MACs. We make no additional computational assumptions
to implement the digital signatures. However, if the underlying MAC implemen-
tation relies on some computational assumptions (e.g. collision resistant hash
functions, or assumptions about a non-adaptive adversary) then the signature
scheme realized will be secure only as long as those assumptions hold.

Matrix Signatures: From MACs to Digital Signatures 27

7 The n ≤ 3f Case

We show that a generalized scheme to implement the properties of signatures
using MACs is not possible if n ≤ 3f . The lower bound holds for a much stronger
system model where the network is synchronous and the point-to-point channels
between the processes are authenticated and reliable.

7.1 A Stronger Model

We assume that the network is synchronous and processes communicate with
each other over authenticated and reliable point-to-point channels. We also as-
sume that processes can maintain the complete history of all messages sent and
received over these authenticated channels.

This model, without any further set-up assumptions, is strictly stronger than
the model described in Section 4. A lowerbound that holds in this stronger model
automatically holds in the weaker model (from Section 4) where the network is
asynchronous and the channels are only guaranteed to be fair.

In this model, we show that it is possible to implement MACs over authen-
ticated channels. If, in this model, signatures can be implemented using MACs
with n ≤ 3f , then they can also be implemented over authenticated channels
with n ≤ 3f . Using signatures, it is possible to implement a reliable-broadcast
channel with just n ≥ f +1 replicas [17]. So, it would be possible to implement a
reliable-broadcast channel assuming a MAC-based implementation of signatures
with n servers, where (f + 1) ≤ n ≤ 3f .

But, it is well known that implementing a reliable-broadcast channel in a syn-
chronous setting over authenticated point-to-point channels, without signatures,
requires n ≥ 3f + 1 [17]. We conclude that implementing signatures with MACs
is not possible if n ≤ 3f .

It only remains to show that MACs can be implemented in the strong model.

Lemma 7. In the strong system model, MACs can be implemented amongst any
set of servers, U , using authenticated point-to-point channels between them.

Proof. (outline) To sign a message, the sender sends the message, tagged with
the identity of set U , to all the servers in U over the authenticated point-to-point
channels. Since the network is synchronous, these messages will be delivered to all
the servers in U within the next time instance. To verify that a message is signed,
a verifier looks into the history of messages received over the authenticated
channel. The message is deemed to have been signed if and only if it was received
on the authenticated channel from the signer.

8 Unique Signatures

We provide an implementation of unique signatures when n > 3f . By Lemma 7,
it follows that the implementation is optimally resilient. Our implementation

28 A.S. Aiyer et al.

requires an exponential number of MAC values. We show that any implemen-
tation of unique signatures requires that an exponential number of MAC values
be generated if f is a constant fraction of n. The implementation is optimal if
n = 3f + 1; the number of MAC values it requires exactly matches the lower
bound when n = 3f + 1.

Our implementation uses unique MAC schemes. These are schemes for which
only one MAC value passes the verification procedure for a given message and
that always generate the same MAC value for a given message. Many widely
used MAC schemes are unique MAC schemes, including those that provide un-
conditional security.3

8.1 A Unique Signature Implementation

We give an overview of the implementation; detailed protocol and proofs can be
found in [16].

In our unique signature scheme, the signing procedure generates signatures
which are vectors ofN =

(
n

2f+1

)
MAC values, one for each subset of 2f+1 servers.

The i’th entry in the vector of signatures can be generated (and verified) with
a key Ki that is shared by all elements of the i’th subset Gi of 2f + 1 servers,
1 ≤ i ≤

(
n

2f+1

)
. For each Ki, the MAC scheme used to generate MAC values is

common knowledge, but Ki is secret (unless divulged by some faulty server in Gi).
To sign a message, the signer sends a request to all the servers. A server

generates the MAC values for each group Gi that it belongs to and sends these
values to the signer. The signer collects responses until it receives (f+1) identical
MAC values for every group Gi. Receiving f + 1 identical responses for every
Gi is guaranteed because each Gi contains at least f + 1 correct servers. Also,
receiving (f +1) identical MAC values guarantees that the MAC value is correct
because one of the values must be from a non-faulty server.

To verify a unique signature, the verifier sends the vector of N MACs to all
the servers. The i’th entry Mi is verified by server p if p ∈ Gi and Mi is the
correct MAC value generated using Ki. A verifier accepts the signature if each
entry in the vector is correctly verified by f + 1 servers. The verifier rejects a
signature if one of its entries is rejected by f + 1 servers. Since the underlying
MAC schemes are unique and each Gi contains 2f + 1 servers, a signature is
accepted by one correct verifier if an only if it is accepted by every other correct
verifier and no other signature is accepted for a given message.

8.2 Complexity of Unique Signature Implementations

Implementing MAC-based unique signature schemes requires an exponential
number of keys. Here we outline the approach for the proof; details can be
3 For many MAC schemes the verification procedure consists of running the MAC

generation (signing) procedure on the message and comparing the resulting MAC
value with the MAC value to be verified. Since the signing procedure is typically
deterministic, only one value can pass the verification procedure.

Matrix Signatures: From MACs to Digital Signatures 29

found in [16]. We identify the MAC schemes used in the implementation with
their secret keys and, in what follows, we refer to Ki instead of the MAC scheme
that uses Ki. We consider a general implementation that uses M secret keys.
Every key Ki is shared by a subset of the servers; this is the set of servers that
can generate and verify MAC values using Ki. We do not make any assumptions
on how a signature looks. We simply assume that the signing procedure can be
expressed as a deterministic function S(msg, k1, k2, . . . , kM) of the message to
be signed (msg), where k1, . . . , kM are the values of the keys K1, . . . ,KM used
in the underlying MAC schemes.

The lower bound proof relies on two main lemmas which establish that (1)
every key value must be known by at least 2f + 1 servers, and (2) for any set of
f servers, there must exist a key value that is not known by any element of the
set. We can then use a combinatorial argument to derive a lower bound on the
number of keys.

Since we are proving a lower bound on the number of keys, we assume that
the signature scheme uses the minimum possible number of keys. It follows, as
shown in the following lemma, that no key is redundant. That is, for every key
Ki, the value of the signature depends on the value of Ki for some message and
for some combination of the values of the other keys.

Lemma 8 (No key is redundant). For each key Ki, ∃msg, k1, . . . ki−1, k
α
i , k

β
i ,

ki+2, . . . , kM : S(msg, k1, . . . , ki−1, k
α
i , ki+1, . . . , kM) = σ1, S(msg, k1, . . . , ki−1,

kβ
i , ki+1, . . . , kM) = σ2 and σ1 �= σ2

Proof. (Outline) If the signature produced for a message is always independent
of the key Ki, for every combination of the other keys. Then, we can get a smaller
signature implementation, by using a constant value for Ki, without affecting
the resulting signature.

Lemma 9 (2f + 1 servers know each key). At least (2f + 1) servers know
the value of Ki.

Proof. We show by contradiction that if Ki is only known by a group G, |G| ≤
2f , servers. the signature scheme is not unique. If |G| ≤ 2f , G is the union
of two disjoint sets A and B of size less than f + 1 each. From Lemma 8,
∃msg, k1, . . . ki−1, k

α
i , k

β
i , ki+1, . . . , kM : S(msg, k1, . . . , ki−1, k

α
i , . . . , kM) = σ1,

S(msg, k1, . . . , ki−1, k
β
i , ki+1, . . . , kM) = σ2, and σ1 �= σ2

Consider the following executions, where message msg is being signed. In all
executions, the value of Kj is kj for j �= i.

– (Exec α) The symmetric key value for Ki is kα
i . All servers behave correctly.

The resulting signature value is σ1.
– (Exec α′) The symmetric key value for Ki is kα

i . Servers not in B behave
correctly. Servers in B set the value of Ki to be kβ

i instead of kα
i . The

resulting signature value is also σ1 because the signature scheme is unique
and tolerates up to f Byzantine failures and |B| ≤ f .

– (Exec β) The symmetric key value for Ki is kβ
i . All servers behave correctly.

The resulting signature value is σ2.

30 A.S. Aiyer et al.

– (Exec β′) The symmetric key value for Ki is kβ
i . Servers not in A behave

correctly. Servers in A set the value of Ki to be kα
i instead of kβ

i . The
resulting signature value is also σ2 because the signature scheme is unique
and tolerates up to f Byzantine failures and |A| ≤ f .

Executions α′ and β′ only differ in the identities of the faulty servers and are
otherwise indistinguishable to servers not in G and to clients. It follows that the
same signature value should be calculated in both cases, contradicting the fact
that σ1 �= σ2.

Lemma 10 (Faulty servers do not know some key). For every set of f
servers, there exists a secret key Ki that no server in the set knows.

Proof. If a given set of f servers has access to all the M secret keys, then, if all
the elements of the set are faulty, they can generate signatures for messages that
were not signed by the signer, violating validity.

We can now use a counting-argument to establish a lower bound on the number
of keys required by a MAC-based unique signature implementation [16].

Theorem 4. The number of keys used by any MAC-based implementation of a
unique signature scheme is ≥

(
n
f

)
/
(
n−(2f+1)

f

)
It follows that for n = 3f + 1, the unique signature implementation described
in Section 8.1 is optimal. In general, if the fraction of faulty nodes f

n > 1
k , for

k ≥ 3, then the number of MACs required is at least (k
k−2)f .

References

1. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: STOC 1990: Proceedings of the twenty-second annual ACM symposium on
Theory of computing, pp. 387–394. ACM, New York (1990)

2. Castro, M.: Practical Byzantine Fault Tolerance. PhD thesis, MIT (January 2001)
3. Schneier, B.: Applied cryptography: protocols, algorithms, and source code in C,

2nd edn. John Wiley & Sons, Inc., New York (1995)
4. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery.

ACM Trans. Comput. Syst. 20(4), 398–461 (2002)
5. Cowling, J., Myers, D., Liskov, B., Rodrigues, R., Shrira, L.: HQ replication: A hy-

brid quorum protocol for Byzantine fault tolerance. In: Proc. 7th OSDI (November
2006)

6. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: Speculative
byzantine fault tolerance. In: Proc. 21st SOSP (2007)

7. Srikanth, T.K., Toueg, S.: Simulating authenticated broadcasts to derive simple
fault-tolerant algorithms. Distributed Computing 2(2), 80–94 (1987)

8. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: Speculative
byzantine fault tolerance. Technical Report TR-07-40, University of Texas at
Austin (2007)

9. Goldreich, O.: Foundations of Cryptography. Volume Basic Tools. Cambridge Uni-
versity Press, Cambridge (2001)

Matrix Signatures: From MACs to Digital Signatures 31

10. Aiyer, A., Alvisi, L., Bazzi, R.A.: Bounded wait-free implementation of optimally
resilient byzantine storage without (unproven) cryptographic assumptions. In: Pelc,
A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 443–458. Springer, Heidelberg (2007)

11. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. on Info
Theory 22(6), 644–654 (1976)

12. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

13. Hanaoka, G., Shikata, J., Zheng, Y., Imai, H.: Unconditionally secure digital signa-
ture schemes admitting transferability. In: Okamoto, T. (ed.) ASIACRYPT 2000.
LNCS, vol. 1976, pp. 130–142. Springer, Heidelberg (2000)

14. Bishop, M.: Computer Security. Addison-Wesley, Reading (2002)
15. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans.

Program. Lang. Syst. 4(3), 382–401 (1982)
16. Aiyer, A.S., Lorenzo Alvisi, R.A.B., Clement, A.: Matrix signatures: From macs

to digital signatures. Technical Report TR-08-09, University of Texas at Austin,
Department of Computer Sciences (February 2008)

17. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM 27(2), 228–234 (1980)

How to Solve Consensus

in the Smallest Window of Synchrony

Dan Alistarh1, Seth Gilbert1, Rachid Guerraoui1, and Corentin Travers2

1 EPFL LPD, Bat INR 310, Station 14, 1015 Lausanne, Switzerland
2 Universidad Politecnica de Madrid, 28031 Madrid, Spain

Abstract. This paper addresses the following question: what is the
minimum-sized synchronous window needed to solve consensus in an oth-
erwise asynchronous system? In answer to this question, we present the
first optimally-resilient algorithm ASAP that solves consensus as soon
as possible in an eventually synchronous system, i.e., a system that from
some time GST onwards, delivers messages in a timely fashion. ASAP
guarantees that, in an execution with at most f failures, every process
decides no later than round GST + f + 2, which is optimal.

1 Introduction

The problem of consensus, first introduced in 1980 [25,22], is defined as follows:

Definition 1 (Consensus). Given n processes, at most t of which may crash:
each process pi begins with initial value vi and can decide on an output satisfying:
(1) Agreement: every process decides the same value; (2) Validity: if a process
decides v, then v is some process’s initial value; (3) Termination: every correct
process eventually decides.

In a seminal paper [10], Dwork et al. introduce the idea of eventual synchrony
in order to cirumvent the asynchronous impossibility of consensus [11]. They
study an asynchronous system in which, after some unknown time GST (global
stabilization time), messages are delivered within a bounded time. They show
that consensus can be solved in this case if and only if n ≥ 2t + 1.

Protocols designed for the eventually synchronous model are appealing as they
tolerate arbitrary periods of asynchrony: in this sense, they are “indulgent” [13].
Such protocols are particularly suited to existing distributed systems, which are
indeed synchronous most of the time, but might sometimes experience periods of
asynchrony. In practice, the system need not be permanently synchronous after
GST; it is necessary only that there be a sufficienly big window of synchrony for
consensus to complete.

This leads to the following natural question: For how long does the system need
to be synchronous to solve consensus? In other words, how fast can processes
decide in an eventually synchronous system after the network stabilizes? The
algorithm presented in [10] guarantees that every process decides within 4(n+1)
rounds of GST, i.e., the required window of synchrony is of length 4(n+ 1). On

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 32–46, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

How to Solve Consensus in the Smallest Window of Synchrony 33

the other hand, in [7], Dutta and Guerraoui show that, in the worst case, at
least t + 2 synchronous rounds of communication are needed. They also present
an algorithm for t < n/3 that matches this lower bound, but they leave open
the question of whether there is an optimally resilient algorithm that decides in
any synchronous window of size t + 2. In this paper, we once and for all resolve
this question by demonstrating a consensus algorithm that guarantees a decision
within t + 2 rounds of GST.

Early decision. Even though, in the worst case, at least t + 2 synchronous
rounds are needed to solve consensus, in some executions it it is possible to
decide faster. Lamport and Fisher [21] showed that, in a synchronous system, if
an execution has at most f ≤ t failures, it is possible to decide in f + 2 rounds.
Dolev, Reischuk, and Strong [5] showed that this bound was optimal. It has
remained an open question as to whether there is an optimally resilient early
deciding protocol for eventually synchronous systems.

Intuitively, eventual synchrony requires one additional round: t+1 synchronous
rounds to compute the decision, and one additional round to determine that the
execution was, in fact, synchronous. Similarly, early-deciding algorithms require
one additional round: f +1 synchronous rounds to compute the decision, and one
round to determine that there were only f failures. Thus, the question at hand is
whether these rounds can be merged: can we verify in just one round both that
the execution was synchronous and that there were only f failures? The algorithm
presented in this paper achieves exactly that feat, terminating within f+2 rounds
after GST in an execution with at most f failures.

Results. In this paper, we present the ASAP algorithm which solves consensus
and ensures the following properties: (1) Optimal resilience: ASAP can tolerate
up to t < n/2 crash failures; notice that no consensus algorithm can tolerate
≥ n/2 failures in an eventually synchronous system. (2) Early deciding: in every
execution with at most f ≤ t failures, every process decides no later than round
GST + f + 2; again, notice that this is optimal.

Key ideas. The ASAP algorithm consists of three main mechanisms. The first
mechanism is responsible for computing a value that is safe to decide; specifically,
each process maintains an estimate, which is updated in every round based
on the messages it receives. The second mechanism is responsible for detecting
asynchrony; processes maintain (and share) a log of active and failed processes
which helps to discover when asynchronies have occurred. Finally, the third
mechanism is responsible for determining when it is safe to decide; specifically,
a process decides when it has: (1) observed ≤ f failures for some f ≤ t; (2)
observed at least f + 2 consecutive synchronous rounds; and (3) observed at
least two consecutive rounds in which no process appears to have failed. The
ASAP algorithm combines these mechanisms within a full information protocol,
meaning that in each round, each process sends its entire state to every other
process. (Optimizing the message complexity is out of the scope of this paper.)

Perhaps the key innovation in the ASAP algorithm is the mechanism by
which a process updates its estimate of the decision value. We begin with the

34 D. Alistarh

näıve approach (as in [24]) in which each process adopts the minimum estimate
received in each round. In a synchronous execution with at most f ≤ t failures,
this guarantees that every process has the same estimate no later than round
f + 1. We augment this simple approach (generalizing on [7]) by prioritizing an
estimate from a process that is about to decide. Moreover, we break ties among
processes about to decide by giving priority to processes that have observed
more consecutive synchronous rounds. This helps to ensure that if a process
does, in fact, decide, then every process has adopted its estimate. This same
prioritization scheme, however, poses a problem when a process that has been
given priority (since it is about to decide), finally does not decide (due to a newly
detected asynchrony). To resolve this issue, we sometimes waive the priority on
an estimate: when a process pi receives an estimate from another process pj

that is about to decide, pi examines the messages it has received to determine
whether or not pj (or any process that has received pj ’s message) can decide. If
pi can prove that process pj does not decide, then pi can treat the estimate from
process pj with normal priority. Otherwise, if pi cannot be certain as to whether
pj will or will not decide, pi makes the conservative decision and prioritizes the
estimate from pj . This notion of selective prioritization is at the heart of our
ASAP algorithm, and may be of use in other contexts, such as k-set agreement
and Byzantine agreement.

2 Related Work

Beginning with Dwork et al. [10], a variety of different models have been used to
express eventual synchrony, including failure detectors [3, 4] and round-by-round
failure detectors (RRFD) [12]. These approaches have led to the concept of indul-
gent algorithms [7, 13, 14]—algorithms that tolerate unreliable failure detectors,
expressed in the RRFD model. More recently, Keidar and Shraer [17, 18] intro-
duced GIRAF, a framework that extends the assumptions of RRFD.

An important line of research has approached the question we address in this
paper in a different manner, asking how fast consensus can terminate if there are
no further failures after the system stabilizes. Keidar, Guerraoui and Dutta [8]
show that at least 3 rounds are needed after the system stabilizes and failures
cease, and they present a matching algorithm1. Two further papers [17,18] also
investigate the performance of consensus algorithms under relaxed timeliness
and failure detector assumptions after stabilization.

Paxos-like algorithms that depend on a leader form another class of algorithms
in this line of research. Work in [19,23] and [1,2] minimizes the number of “stable”
synchronous communication rounds after a correct leader is elected that are

1 It may appear surprising that we can decide within f +2 rounds of GST, as [8] shows
that it is impossible to decide sooner than three rounds after failures cease. Indeed,
a typical adversarial scenario might involve failing one processor per round during
the interval [GST +1, GST +f], resulting in a decision within two rounds of failures
ceasing. However, this is not a contradiction as these are worst-case executions in
which our algorithm does not decide until 3 rounds after failure cease.

How to Solve Consensus in the Smallest Window of Synchrony 35

needed to reach agreement, matching lower bounds in [20] and [16], respectively.
A related algorithm is presented in [9], which guarantees termination within
17 message delays after stabilization, for the case where no failures occur after
stabilization. In fact, it is conjectured there that a bound of O(f) rounds is
possible in the case where f failures occur after stabilization. Our paper resolves
this conjecture in the affirmative.

Note that our approach to network stabilization differs from both of these
previous approaches in that it focuses only on the behavior of the network,
independent of failures or leader election.

Finally, Guerraoui and Dutta [6, 7] have investigated the possibility of early-
deciding consensus for eventual synchrony and have obtained a tight lower bound
of f + 2 rounds for executions with f ≤ t failures, even if the system is initially
synchronous. They also present an algorithm for the special case where t < n/3
(not optimally resilient) that solves consensus in executions with at most f
failures within f + 2 rounds of GST , leaving open the question of an optimally
resilient consensus algorithm, which we address in this paper.

3 Model

We consider n deterministic processes Π = {p1, . . . , pn}, of which up to t < n/2
may fail by crashing. The processes communicate via an eventually synchronous
message-passing network, modeled much as in [7, 10, 17]: time is divided into
rounds ; however, there is no assumption that every message broadcast in a round
is also delivered in that round. Instead, we assume only that if all non-failed
processes broadcast a message in some round r, then each process receives at
least n− t messages in that round 2. We assume that the network is eventually
synchronous : there is some round GST after which every message sent by a
non-failed process is delivered in the round in which it is sent.

4 The ASAP Consensus Algorithm

In this section, we present an optimally-resilient early-deciding consensus algo-
rithm for the eventually-synchronous model that tolerates t < n/2 failures and
terminates within f + 2 rounds of GST , where f ≤ t is the actual number of
failures. The pseudocode for ASAP can be found in Figures 1 and 2.

4.1 High-Level Overview

The ASAP algorithm builds on the idea of estimate flooding from the classi-
cal synchronous “FloodSet” algorithm (e.g., [24]) and on the idea of detecting
asynchronous behavior introduced by the “indulgent” At+2 algorithm of [7].
2 A simple way to implement this would be for each node to delay its round r + 1

message until at least n − t round r messages have been received, and ignoring
messages from previous rounds; however, this affects the early-deciding properties of
the algorithm, as a correct process can be delayed by asynchronous rounds in which
it does not receive n − t messages.

36 D. Alistarh

Each process maintains an estimate, along with other state, including: for each
round, a set of (seemingly) active processes and a set of (seemingly) failed pro-
cesses; a flag indicating whether the process is ready to decide; and an indicator
for each round as to whether it appears synchronous. At the beginning of each
round, processes send their entire state to every other process; ASAP is a full-
information protocol. Processes then update their state and try to decide, before
continuing to the next round. We briefly discuss the three main components of
the algorithm:

Asynchrony Detection. Processes detect asynchrony by analyzing the mes-
sages received in preceeding rounds. Round r is marked as asynchronous by a
process p if p learns that a process q is alive in a round r′ > r, even though it be-
lieves 3 q to have failed in round r. Notice that a process p may learn that process
q is still alive either directly—by receiving a message from q—or indirectly—by
receiving a message from a third process that believes q to be alive. The same
holds for determining which processes have failed. Thus, a process merges its
view with the views of all processes from which it has received messages in a
round, maximizing the amount of information used for detecting asynchrony.

Decision. A process can decide only when it is certain that every other process
has adopted the same estimate. There are two steps associated with coming to
a decision. If a process has observed f failures, and the previous f + 1 rounds
are perceived as synchronous, then it sets a “ready to decide” flag to true. A
process can decide in the following round under the following circumstances: (i)
it has observed f failures; (ii) the last f + 2 rounds appear synchronous; and
(iii) there are no new failures observed in the last two rounds. Once a process
decides, it continues to participate, informing other processes of the decision.

Updating the Estimate. The procedure for updating the estimate is the key
to the algorithm. Consider first the simple rule used by the classic synchronous
consensus protocol, where each process adopts the minimum estimate received in
every round. This fails in the context of eventual synchrony since a “slow” process
may maintain the minimum estimate even though, due to network delays, it is
unable to send or receive messages; this slow process can disrupt later decisions
and even cause a decision that violates safety. A natural improvement, which
generalizes the approach used in [7], is to prioritize the estimate of a process
that is about to decide. Notice that if a process is about to decide, then it
believes that it has seen at least one failure-free synchronous round, and hence
its estimate should be the minimum estimate in the system. However, this too
fails, as there are situations where a process has a synchronous view of f + 1
rounds with f failures without necessarily holding the smallest estimate in the
system. Thus, we award higher priority to messages from processes that are
ready to decide, but allow processes to de-prioritize such estimates if they can
prove that no process decides after receiving that estimate in the current round.

3 Note that, throughout this paper, we use terms like “knowledge” and “belief” in
their colloquial sense, not in the knowledge-theoretical sense of [15].

How to Solve Consensus in the Smallest Window of Synchrony 37

procedure propose(vi)i1
begin2

esti ← vi; ri ← 1; msgSeti ← ∅; sF lagi ← false3
Activei ← []; Failedi ← []; AsynchRoundi ← []4
while true do5

send(esti, ri, sF lagi, Activei, Failedi, AsynchRoundi, decidei) to all6
wait until received messages for round ri7

msgSeti [ri] ← messages that pi receives in round ri8
Activei[ri] ← processes from which pi gets messages in round ri9
Failedi[ri] ← Π \ Activei[ri]10
f ← |Failedi[ri]|11

updateState() /* Update the state of pi based on messages received */12
if (checkDecisionCondition() = false) then13

esti ← getEstimate()14

if (sCounti ≥ f + 1) then sF lagi = true15
else sF lagi = false16

end17
ri ← ri + 118

end19

end20

Fig. 1. The ASAP algorithm, at process pi

It remains to describe how a process p can prove that no process decides upon
receiving q’s message. Consider some process s that decides upon receiving q’s
message. If p can identify a process that is believed by q to be alive and which
does not support the decision being announced by q, then p can be certain that s
will not decide: either s receives a message from the non-supporting process and
cannot decide, or s does not receive its message and thus observes a new failure,
which prevents s from deciding. Thus, a sufficient condition for discarding q’s flag
is the existence of a third process that: (i) q considers to be alive in the previous
round, and (ii) receives a set of messages other than q’s in r− 1 (Proposition 9).
Although this condition does not ensure that p discards all flags that do not lead
to decision, it is enough for ASAP to guarantee agreement.

4.2 Detailed Description

We now describe the pseudocode in Figures 1 and 2. When consensus is initiated,
each process invokes procedure propose() (see Figure 1) with its initial value. A
decision is reached at process pi when decide i is first set to true; the decision is
stored in est i. (For simplicity, the algorithm does not terminate after a decision;
in reality, only one further round is needed.)

State Variables. A process pi maintains the following state variables: (a) ri is
the current round number, initially 1. (b) est i is pi’s estimate at the end of round
ri. (c) Activei[] is an array of sets of processes. For each round r′ ≤ ri, Activei[r′]
contains the processes that pi believes to have sent at least one message in round
r′. (d) Failed i[] is an array of sets of processes. For each round r′ ≤ ri, Failed i[r′]
contains the processes that pi believes to have failed in round r′. (e) msgSet i is
the set of messages that pi receives in round ri. (f) AsynchRound i[] is an array
of flags (booleans). For each round r′ ≤ ri, AsynchRound i[r

′] = true means that

38 D. Alistarh

r′ is seen as asynchronous in pi’s view at round ri. (g) sCount i is an integer
denoting the number of consecutive synchronous rounds pi sees at the end of ri.
More precisely, if sCount i = x, then rounds in the interval [ri − x + 1, ri] are
seen as synchronous by pi at the end of round ri. (h) sFlag i is a flag that is set
to true if pi is ready to decide in the next round. (i) decided i is a flag that is set
to true if process pi has decided.

Main algorithm. We now describe ASAP in more detail. We begin by outlining
the structure of each round (lines 5-18, Figure 1). Each roundbeginswhenpi broad-
casts its current estimate, together with its other state, to every process (line 6);
it then receives messages for round ri (line 7). Process pi stores these messages in
msgSet i (line 8), and updates Activei[ri] and Failed i[ri] (lines 9–11).

Next, pi calls the updateState() procedure (line 12), which merges the newly
received information into the current state. It also updates the designation of
which rounds appear synchronous. At this point, checkDecisionCondition is called
(line 13) to see if a decision is possible. If so, then the round is complete. Oth-
erwise, it continues to update the estimate (line 14), and to update its sFlag i

(line 15–16). Finally, process pi updates the round counter (line 18), and pro-
ceeds to the next round.

Procedure updateState(). The goal of the updateState() procedure is to
merge the information received during the round into the existing Active and
Failed sets, as well as updating the AsynchRound flag for each round. More
specifically, for every message received by process pi from some process pj, for
every round r′ < ri: process pi merges the received set msgj .Activej [r′] with its
current set Activei[r′]. The same procedure is carried out for the Failed sets.
(See lines 3-8 of updateState(), Figure 2).

The second part of the updateState procedure updates the AsynchRound flag
for each round. For all rounds r′ ≤ ri, pi recalculates AsynchRoundi[r′], marking
whether r′ is asynchronous in its view at round ri (lines 9-14). Notice that a
round r is seen as asynchronous if some process in Failed i[r] is discovered to also
exist in the set Activei[k] for some k > r, i.e., the process did not actually fail in
round r, as previously suspected. Finally, pi updates sCounti, with the number
of previous consecutive rounds that pi sees as synchronous (line 15).

Procedure checkDecisionCondition(). There are two conditionsunderwhich
pi decides. The first is straightforward: if pi receives a message from another pro-
cess that has alreadydecided, then it too candecide (lines 3–6). Otherwise, process
pi decides at the end of round rd if: (i) pi has seen ≤ f failures; (ii) pi observes
at least f + 2 consecutive synchronous rounds; and (iii) the last two rounds ap-
pear failure-free, i.e. Activei[rd] = Activei[rd − 1] (line 8). Notice that the size
of Failed i[ri] captures the number of failures that pi has observed, and sCount i

captures the number of consecutive synchronous rounds.

Procedure getEstimate(). The getEstimate() procedure is the key to the
workings of the algorithm. The procedure begins by identifying a set of pro-
cesses that have raised their flags, i.e., that are “ready to decide” (lines 3–4).
The next portion of the procedure (lines 5-13) is dedicated to determining which

How to Solve Consensus in the Smallest Window of Synchrony 39

of these flagged messages to prioritize, and which of these flags should be “dis-
carded,” i.e., treated with normal priority. Fix some process pj whose message is
being considered. Process pi first calculates which processes have a view that is
incompatible with the view of pj (line 6); specifically, these processes received a
different set of messages in round ri −1 from process pj. None of these processes
can support a decision by any process that receives a message from pj .

Next pi fixes fj to be the number of failures observed by process pj (line 7), and
determines that pj ’s flag should be waived if the union of the “non-supporting”
processes and the failed processes is at least fj + 1 (line 8). In particular, this
implies that if a process ps receives pj’s message, then one of three events occurs:
(i) process ps receives a non-supporing message; (ii) process ps receives a message
from a process that was failed by pj ; or (iii) process ps observes at least fj + 1
failures. In all three cases, process ps cannot decide. Thus it is safe for pi to
waive pj ’s flag and treat its message with normal priority (lines 9-11).

At the end of this discard process, pi chooses an estimate from among the
remaining flagged messages, if any such messages exist (lines 14-19). Specifically,
it chooses the minimum estimate from among the processes that have a maximal
sCount , i.e., it prioritizes processes that have seen more synchronous rounds.
Otherwise, if there are no remaining flagged messages, pi chooses the minimum
estimate that it has received (line 18).

5 Proof of Correctness

In this section, we prove that ASAP satisfies validity, termination and agree-
ment. Validity is easily verified (see, for example, Proposition 2), so we focus on
termination and agreement.

5.1 Definitions and Properties

We begin with a few definitions. Throughout, we denote the round in which
a variable is referenced by a superscript: for example, estr

i is the estimate of
pi at the end of round r. First, we say that a process perceives round r to be
asynchronous if it later receives a message from a process that it believes to have
failed in round r.

Definition 2 (Synchronous Rounds). Given pi ∈ Π and rounds r, rv, we say
that round r is asynchronous in pi’s view at round rv if and only if there exists
round r′ such that r < r′ ≤ rv and Activerv

i [r′] ∩ Failedrv

i [r] �= ∅. Otherwise,
round r is synchronous in pi’s view at round rv.

A process perceives a round r as failure-free if it sees the same set of processes
as alive in rounds r and r + 1.

Definition 3 (Failure-free Rounds). Given pi ∈ Π and rounds r, rv, we
say that round r ≤ rv is failure-free in pi’s view at round rv if and only if
Activerv

i [r] = Activerv

i [r + 1].

40 D. Alistarh

procedure updateState()1
begin2

for every msgj ∈ msgSeti[ri] do3
/* Merge newly received information */
for round r from 1 to ri − 1 do4

Activei[r] ← msgj .Activej [r] ∪ Activei[r]5

Failedi[r] ← msgj .Failedj [r] ∪ Failedi[r]6

end7

end8

for round r from 1 to ri − 1 do9
/* Update AsynchRound flag */
AsynchRoundi[r] ← false10
for round k from r + 1 to ri do11

if (Activei[k] ∩ Failedi[r] 	= ∅) then AsynchRoundi[r] ← true12
end13

end14

sCounti ← max�(∀ri − � ≤ r′ ≤ ri, AsynchRoundi[r
′] = true)15

end16

procedure checkDecisionCondition()1
begin2

if ∃msgp ∈ msgSeti s.t. msgp.decidedp = true then3
decidei ← true4
esti ← msgp.estp5

return decidei6

end7
/* If the previous f + 2 rounds are synchronous with at most f failures */
if (sCount ≥ |Failedi[ri]| + 2) and (Activei[ri] = Activei[ri − 1]) then8

decidei ← true9
return decidei10

end11

end12

procedure getEstimate()1
begin2

flagProcSeti ← {pj ∈ Activei[ri] |msgj .sF lagj = true}3
flagMsgSeti ← {msgj ∈ msgSeti |msgj .sF lagj = true}4

/* Try to waive the priority on flagged messages. */
for pj ∈ flagProcSeti do5

/* Find the set of processes that disagree with pj’s view. */

nonSupportj
i ← {p ∈ Activei[ri] : msgp.Activep[ri − 1] 	= msgj .Activej [ri − 1]}6

fj ← |msgj .Failedj [ri − 1]|7

if (|nonSupportj
i ∪ Failedj [ri − 1]| ≥ fj + 1) then8

msgj .sFlagj [ri − 1] ← false9

flagMsgSeti ← flagMsgSeti \ {msgj}10
flagProcSeti ← flagProcSeti \ {pj}11

end12

end13
/* Adopt the min estimate of max priority; higher sCount has priority. */
if (flagMsgSeti 	= ∅) then14

/* The set of processes that have the highest sCount */
highPrSet ← {pj ∈ flagMsgSeti|msgj .sCountj = maxpl∈flagMsgSeti

(sCountl)}15

est ← minpj∈highPrSet(estj)16

else17
est ← minpj∈msgSeti

(estj)18

end19
return est20

end21

Fig. 2. ASAP procedures

How to Solve Consensus in the Smallest Window of Synchrony 41

Note that, by convention, if a process pm completes round r but takes no steps
in round r + 1, pm is considered to have failed in round r. We now state two
simple, yet fundamental properties of ASAP :

Proposition 1 (Uniformity). If processes pi and pj receive the same set of
messages in round r, then they adopt the same estimate at the end of round r.

Proposition 2 (Estimate Validity). If all processes alive at the beginning of
round r have estimate v, then all processes alive at the beginning of round r + 1
will have estimate v.

These properties imply that if the system remains in a bivalent state (in the sense
of [11]), then a failure or asynchrony has to have occured in that round. Propo-
sition 7 combines these properties with the asynchrony-detection mechanism to
show that processes with synchronous views and distinct estimates necessarily
see a failure for every round that they perceive as synchronous.

5.2 Termination

In this section, we show that every correct process decides by round GST +f+2,
as long as there are no more than f ≤ t failures. Recall that a process decides
when there are two consecutive rounds in which it perceives no failures. By the
pigeonhole principle, it is easy to see that there must be (at least) two failure-free
rounds during the interval [GST + 1,GST + f + 2]; unfortunately, these rounds
need not be consecutive. Even so, we can show that at least one correct node
must perceive two consecutive rounds in this interval as failure-free.

We begin by fixing an execution α with at most f failures, and fixing GST
to be the round after which α is synchronous. We now identify two failure-free
rounds in the interval [GST +1,GST +f+2] such that in the intervening rounds,
there is precisely one failure per round.

Proposition 3. There exists a round r0 > GST and a round r� > r0 such that:
(a) r� ≤ GST + f + 2; (b) rounds r0 and r� are both failure free; (c) for every
r : r0 < r < r�, there is exactly one process that fails in r; and (d) ∀i > 0 such
that r0 + i < r�, there are no more than (r0 + i) − GST − 1 failures by the end
of round r0 + i.

The claim follows from a simple counting argument. Now, fix rounds r0 and r�

that satisfy Proposition 3. For every i < �: denote by ri the round r0+i; let qi be
the process that fails in round ri; let q� = ⊥. Let Si be the set of processes that
are not failed at the beginning of round ri. We now show that, for every round
r in the interval [r1, r�−1], if a process in Sr receives a message from qr, then it
decides at the end of round r. This implies that either every process decides by
the end of r�, or, for all rounds r, no process in Sr receives a message from qr.

Lemma 1. Assume r0 + 1 < r�, and some process in S� does not decide by the
end of r�. Then ∀i : 0 < i < �:

(i) For every process p ∈ Si+1 \ {qi+1}, process p does not receive a message
from qi in round ri.

42 D. Alistarh

(ii) If process qi+1 �= ⊥ receives a message from qi in round ri, then process qi+1

decides at the end of ri.

We can now complete the proof of termination:

Theorem 1 (Termination). Every correct process decides by the end of round
GST + f + 2.

Proof (sketch). If r0 +1 = r�, then it is easy to see that every process decides by
the end of r�, since there are two consecutive failure-free rounds. Otherwise, we
conclude by Lemma 1 that none of the processes in S� receive a message from
q�−1 in round r�−1. Thus every process receives messages from S�−1 \ {q�−1}
both in rounds r�−1 and r�, which implies that they decide by the end of r�.

5.3 Agreement

In this section, we prove that no two processes decide on distinct values. Our
strategy is to show that once a process decides, all non-failed processes adopt
the decision value at the end of the decision round (Lemma 2). Thus, no decision
on another value is possible in subsequent rounds.

Synchronous Views. The key result in this section is Proposition 7, which
shows that in executions perceived as synchronous, there is at least one (per-
ceived) failure per round. The idea behind the first preliminary proposition is
that if an estimate is held by some process at round r, then there exists at least
one process which “carries” it for every previous round.

Proposition 4 (Carriers). Let r > 0 and p ∈ Π. If p has estimate v at the end
of round r, then for all rounds 0 ≤ r′ ≤ r, there exists a process qr′ ∈ Activer

p[r
′]

such that estqr′ [r′ − 1] = v.

Next, we prove that processes with synchronous views see the same information,
with a delay of one round. This follows from the fact that processes communicate
with a majority in every round.

Proposition 5 (View Consistency). Given processes pi and pj that see rounds
r0 + 1, . . . , r0 + � + 1 as synchronous: ∀r ∈ [r0 + 1, r0 + �], Activer0+�+1

i [r + 1] ⊆
Activer0+�+1

j [r].

The next proposition shows that if a process observes two consecutive syn-
chronous rounds r and r + 1 with the same set of active processes S, then
all processes in S receive the same set of messages during round r.

Proposition 6. Let r, rc be two rounds such that rc > r. Let p be a process that
sees round r as synchronous from round rc. If Activerc

p [r] = Activerc
p [r+1], then

all processes in Activerc
p [r] receive the same set of messages in round r.

The next proposition is the culmination of this section, and shows that in periods
of perceived synchrony, the amount of asynchrony in the system is limited. It
captures the intuition that at least one process fails in each round in order to
maintain more than one estimate in the system. Recall, this is the key argument
for solving consensus in a synchronous environment.

How to Solve Consensus in the Smallest Window of Synchrony 43

Proposition 7. Given processes pi, pj that see rounds r0 + 1, . . . , r0 + � + 1 as
synchronous and adopt distinct estimates at the end of round r0 + �+1, then for
all r ∈ [r0 + 1, r0 + �], |Activer0+�+1

i [r + 1]| < |Activer0+�+1
i [r]|.

Proof (sketch). We proceed by contradiction: assume there exists a round r ∈
[r0 +1, r0 + �] such that Activer0+�+1

i [r+1] = Activer0+�+1
i [r]. This implies that

all processes in Activer0+�+1
i [r] received the same set of messages in round r by

Proposition 6. Proposition 1 then implies that all processes in Activer0+�+1
i [r]

have adopted the same estimate at the end of round r, that is, they have adopted
estr0+�+1

i .
Proposition 4 implies that there exists a process p ∈ Activer0+�+1

j [r + 1] that
adopts estimate estr0+�+1

j at the end of r. By the above, this process is not in
Activer0+�+1

i [r]. This, together with the fact that estr0+�+1
i �= estr0+�+1

j implies
that p ∈ Activer0+�+1

j [r + 1] \Activer0+�+1
i [r], which contradicts Proposition 5.

Decision Condition. In this section, we examine under which conditions a
process may decide, and under what conditions a process may not decide. These
propositions are critical to establishing the effectiveness of the estimate-priority
mechanism. The following proposition shows that every decision is “supported”
by a majority of processes with the same estimate. Furthermore, these processes
have a synchronous view of the previous rounds.

Proposition 8. Assume process pd decides on vd at the end of r0+f+2, seeing
f +2 synchronous rounds and f failures (line 10 of checkDecisionCondition). Let
S := Activer0+f+2

d [r0 + f + 2]. Then:

(i) For all p ∈ S,Activer0+f+1
p [r0 + f + 1] = S and estr0+f+1

p = vd.
(ii) At the end of r0 +f +1, processes in S see rounds r0 +1, r0+2, . . . , r0 +f+1

as synchronous rounds in which at most f failures occur.

The proposition follows from a careful examination of the decision condition.
Next, we analyze a sufficient condition to ensure that a process does not decide,
which is the basis for the flag-discard rule:

Proposition 9. Let p be a process with sFlag = true at the end of round r > 0.
If there exists a process q such that q ∈ Activer

p[r] and Activer
q[r] �= Activer

p[r],
then no process that receives p’s message in round r + 1 decides at the end of
round r + 1.

Notice that if a process receives a message from p and not from q, then it sees q
as failed; otherwise, if it receives a message from both, it sees a failure in r−1. In
neither case can the process decide. The last proposition is a technical result that
bounds a process’s estimate in rounds in which it receives a flagged estimate:

Proposition 10. Let r > 0 and p ∈ Π. Let flagProcSetrp be the set of pro-
cesses in Activer

p[r] with sF lag = true. Assume flagProcSetrp is non-empty,
and let q be a process such that, ∀s ∈ flagProcSetrp, est

r−1
q ≤ estr−1

s , also q /∈
Failedr−1

s [r−1] and p receives a message from q in round r. Then estrp ≤ estr−1
q .

44 D. Alistarh

Safety. We now prove the key lemma which shows that if some process decides,
then every other non-failed process has adopted the same estimate. The first
part of the proof uses Propositions 5 and 7 to determine precisely the set of
processes that remain active just prior to the decision, relying on the fact that
there must be one new failure per round. The remainder of the proof carefully
examines the behavior in the final two rounds prior to the decision; we show
that in these rounds, every process must adopt the same estimate. This analysis
depends critically on the mechanism for prioritizing estimates, and thus relies
on Proposition 10.

Lemma 2 (Safety). Let rd be the first round in which a decision occurs. If
process pd decides on value v in round rd, then every non-failed process adopts
v at the end of round rd.

Proof (sketch). Assume for the sake of contradiction that there exists a process
q such that estrd

q = u �= v. Fix f to be the number of failures observed by process
pd and fix round r0 > 0 such that rd = r0 + f + 2. The case where f ∈ {0, 1}
needs to be handled separately; in the following, we assume that f > 1.

Since pd decides at the end of r0+f+2, Proposition 8 implies that there exists
a support set S of at least n−f processes such that pd receives a message in round
r0 + f + 2 from all processes in S, and ∀p ∈ S,Activer0+f+1

p [r0 + f + 1] = S.
Furthermore, processes in S have sCount ≥ f + 1 and est = v at the end of
r0 + f + 1. Since process q receives at least n− t messages in round r0 + f + 2,
it necessarily receives a message from a process in S. Denote this process by pi.
We make the following claim:

Claim. Process q receives a message from some process pj in round r0 + f + 1
such that est j = u, pj /∈ S, sFlag j = true and sCountj ≥ f + 1.

The claim follows from the observation that q cannot discard pi’s flag (as per
Proposition 9), therefore there has to exist a process pj with estimate u and flag
set with priority at least as high as pi’s. Hence, at the end of round r0 +f +1 we
have two processes pi and pj that see rounds r0 +1, . . . , r0+f+1 as synchronous
and adopt distinct estimates. This leads to the following claim:

Claim. For every process p ∈ S ∪ {pj}, Activer0+f+1
p [r0 + f] = S ∪ {pj}.

In particular, Proposition 7 implies that pj sees one failure per round, and hence
|Activer0+f+1

j [r0 + f]| ≤ n− f + 1. Since Activer0+f+1
i [r0 + f + 1] = S, Propo-

sition 5 implies that S ∪{pj} ⊆ Activer0+f+1
j [r0 + f]. Since pj /∈ S, we conclude

that S ∪ {pj} = Activer0+f+1
j [r0 + f]. A similar argument yields that, for all

p ∈ S,Activer0+f+1
p [r0 + f] = S ∪ {pj}.

In the remaining portion of the proof, we show that no process in S ∪ {pj}
adopts estimate max(u, v) at the end of r0+f+1, which leads to a contradiction.
Let m := min(u, v) and M := max(u, v). Proposition 4 ensures that there exist
processes pm, pM ∈ S ∪ {pj} such that estr0+f−1

m = m and estr0+f−1
M = M . Let

fj = |Failedr0+f+1
j [r0 + f + 1]|. We can then conclude:

How to Solve Consensus in the Smallest Window of Synchrony 45

Claim. There exists a set S′ of at least n− fj − 1 processes in S such that every
process in S ∪ {pj} receives messages from S′ in round r0 + f + 1 and processes
in S′ have estr0+f ≤ min(u, v).

To see this, notice that process pj receives exactly n − fj messages in round
r0 + f + 1; one of these messages must have been sent by pj itself, while the
remaining n − fj − 1 of these messages were sent by processes in S. We denote
these processes by S′. Notice that the processes in S′ are not considered failed
by other processes in S in round r0 + f + 1 since they support pd’s decision in
round r0 + f +2. It follows that the processes in S′ have received messages from
every process in S ∪ {pj} in round r0 + f . With some careful analysis, we can
apply Proposition 10 to conclude that for all s ∈ S′, estr0+f

s ≤ m, from which
the claim follows. Finally, we show that, because of S′, no process in S ∪ {pj}
can adopt M at the end of r0 + f + 1, which contradicts the existence of either
pi or pj, concluding the proof.

Claim. For every process p in S ∪ {pj}, estr0+f+1
p ≤ m.

This follows because every process p in S receives a message from a process s ∈ S′

in round r0 + f +1, and no other process in S could have failed s in r0 + f ; thus
we can again apply Proposition 10 to conclude that estr0+f+1

p ≤ estr0+f
s ≤ m,

and the claim follows, which concludes the proof of Lemma 2.

We can now complete the proof of agreement:

Theorem 2 (Agreement). No two processes decide on different estimates.

Proof (sketch). Let rd be the first round in which a decision occurs. Since major-
ity support is needed for a decision (see Proposition 8), all processes deciding in
rd decide on the same value. Lemma 2 shows that all processes adopt the same
estimate at the end of rd, and by Proposition 2, no other value is later decided.

6 Conclusions and Future Work

We have demonstrated an optimally-resilient consensus protocol for the eventu-
ally synchronous model that decides as soon as possible, i.e., within f +2 rounds
of GST in every execution with at most f failures. It remains an interesting
question for future work as to whether these techniques can be extended to k-
set agreement and Byzantine agreement. In particular, it seems possible that
the mechanism for assigning priorities to estimates based on what a process can
prove about the system may be useful in both of these contexts. Indeed, there
may be interesting connections between this technique and the knowledge-based
approach (see, e.g., [15]).

References

1. Boichat, R., Dutta, P., Frolund, S., Guerraoui, R.: Deconstructing paxos. SIGACT
News 34(1), 47–67 (2003)

2. Boichat, R., Dutta, P., Frolund, S., Guerraoui, R.: Reconstructing paxos. SIGACT
News 34(2), 42–57 (2003)

46 D. Alistarh

3. Chandra, T., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. J. ACM 43(4), 685–722 (1996)

4. Chandra, T., Toueg, S.: Unreliable failure detectors for reliable distributed systems.
J. ACM 43(2), 225–267 (1996)

5. Dolev, D., Reischuk, R., Strong, H.R.: Early stopping in byzantine agreement. J.
ACM 37(4), 720–741 (1990)

6. Dutta, P., Guerraoui, R.: The inherent price of indulgence. In: PODC, pp. 88–97
(2002)

7. Dutta, P., Guerraoui, R.: The inherent price of indulgence. Distributed Comput-
ing 18(1), 85–98 (2005)

8. Dutta, P., Guerraoui, R., Keidar, I.: The overhead of consensus failure recovery.
Distributed Computing 19(5-6), 373–386 (2007)

9. Dutta, P., Guerraoui, R., Lamport, L.: How fast can eventual synchrony lead to
consensus? In: DSN, pp. 22–27 (2005)

10. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35(2), 288–323 (1988)

11. Fisher, M., Lynch, N., Paterson, M.: Impossibility of distributed consensus with
one faulty process. J. ACM 32(2), 374–382 (1985)

12. Gafni, E.: Round-by-round fault detectors: Unifying synchrony and asynchrony
(extended abstract). In: PODC, pp. 143–152 (1998)

13. Guerraoui, R.: Indulgent algorithms (preliminary version). In: PODC, pp. 289–297
(2000)

14. Guerraoui, R., Raynal, M.: The information structure of indulgent consensus. IEEE
Transactions on Computers 53(4), 453–466 (2004)

15. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed
environment. J. ACM 37(3), 549–587 (1990)

16. Keidar, I., Rajsbaum, S.: On the cost of fault-tolerant consensus when there are
no faults (preliminary version). SIGACT News 32(2), 45–63 (2001)

17. Keidar, I., Shraer, A.: Timeliness, failure-detectors, and consensus performance.
In: PODC, pp. 169–178 (2006)

18. Keidar, I., Shraer, A.: How to choose a timing model? In: DSN, pp. 389–398 (2007)
19. Lamport, L.: Generalized consensus and paxos. Microsoft Research Technical Re-

port MSR-TR-2005-33 (March 2005)
20. Lamport, L.: Lower bounds for asynchronous consensus. Distributed Comput-

ing 19(2), 104–125 (2006)
21. Lamport, L., Fisher, M.: Byzantine generals and transaction commit protocols

(unpublished) (April 1982)
22. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans.

Program. Lang. Syst. 4(3), 382–401 (1982)
23. Lamport, L.: Fast paxos. Distributed Computing 19(2), 79–103 (2006)
24. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
25. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.

J. ACM 27(2), 228–234 (1980)

Local Terminations and Distributed

Computability in Anonymous Networks�

Jérémie Chalopin1, Emmanuel Godard1, and Yves Métivier2

1 Laboratoire d’Informatique Fondamentale de Marseille
CNRS & Aix-Marseille Université

{jeremie.chalopin,emmanuel.godard}@lif.univ-mrs.fr
2 LaBRI, Université de Bordeaux

metivier@labri.fr

Abstract. We investigate the computability of distributed tasks in re-
liable anonymous networks with arbitrary knowledge. More precisely,
we consider tasks computable with local termination, i.e., a node knows
when to stop to participate in a distributed algorithm, even though the
algorithm is not necessarily terminated elsewhere. We also study weak
local termination, that is when a node knows its final value but con-
tinues to execute the distributed algorithm, usually in order to provide
information to other nodes.

We give the first characterization of distributed tasks that can be
computed with weak local termination and we present a new characteri-
zation of tasks computed with local termination. For both terminations,
we also characterize tasks computable by polynomial algorithms.

1 Introduction

We investigate the computability of distributed tasks in reliable anonymous net-
works with arbitrary knowledge. Impossibility results in anonymous networks
have been investigated for a long time [Ang80]. Among the notable results are
the ones of Boldi and Vigna [BV99, BV01], following works of Angluin [Ang80]
and of Yamashita and Kameda [YK96a, YK96b]. In [BV99], a characterization
of what is computable with arbitrary knowledge is presented. In a following pa-
per [BV01], another characterization is presented but the processes have to know
a bound on the number of nodes in the network. To quote the introduction of
[BV99], “in a sense the whole issue becomes trivial, as one of the main problems
– termination – is factored out a priori”. That’s why we focus in this paper not
only on the way to solve a distributed task, but also on what is exactly at stake
when one talks about termination in a distributed context.

About Terminations of Distributed Algorithms. Contrary to sequential
algorithms, what is the termination of a distributed algorithm is not so intuitively
obvious. If we take a global perspective, termination occurs when there is not

� Partially supported by grant No ANR-06-SETI-015-03 awarded by A.N.R.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 47–62, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

48 J. Chalopin, E. Godard, and Y. Métivier

anything left to do in the network: no message is in transit and no process
can modify its state. But if we are interested in the local point of view of a
node executing a distributed algorithm, it is generally not obvious to detect
when it can stop waiting for incoming messages. And as usual in the local-global
relationship, this is not always possible, or it involves more computation.

Moreover, if we look carefully at what the distributed algorithm is aimed at,
we have to begin to distinguish between the termination of the task we want
to achieve (the associated computed values) and the termination of our tool,
the distributed algorithm. Indeed, a node does not necessarily need to detect
that the algorithm has globally terminated, but it is interesting if it can detect
it has computed its final value (local termination). For example, in the case of
composition of algorithms, or for local garbage collecting purpose, there is, a
priori, no special need to wait that everyone in the network has computed its
final value. One can define a hierarchy of termination for distributed tasks:

– implicit termination: The algorithm is globally terminated but no node is,
or can be aware of this termination;

– weak local termination: Every node knows when it has its final value, but
does not immediately halt in order to transmit information needed by some
other nodes;

– local termination: Every node knows when it has its final value and stops
participating in the algorithm;

– global termination detection: At least one node knows when every other node
has computed its final value.

Related Works. In the seminal work of Angluin [Ang80], the first impossibility
results for distributed computability in anonymous networks were established.
Using the notion of coverings we also use in this paper, she prove that it is
impossible to elect a leader in a wide class of “symmetric” networks. She also
shows that it is impossible to have a universal termination detection algorithm
for any class of graphs that strictly contains the family of all trees.

Distributed computability on asynchronous anonymous rings have been first
investigated by Attiya, Snir and Warmuth [ASW88]. They show that any func-
tion can be computed with a quadratic number of messages. Some results have
been presented when processes initially have ids (or inputs) but they are not
assumed to be unique. In this setting, Flocchini et al. [FKK+04] consider Elec-
tion and Multiset Sorting. Mavronicolas, Michael and Spirakis [MMS06] present
efficient algorithms for computing functions on some special classes of rings. In
all these works, it is assumed that processes initially know the size of the ring.
In [DP04], Dobrev and Pelc consider Leader Election on a ring assuming the
processes initially know a lower and an upper bound on its size.

Yamashita and Kameda have investigated computability on anonymous arbi-
trary graphs in [YK96a]. They assume either that the topology of the network
or a bound on the size is initially known by the processes. They use the notion of
views to characterize computable functions. In [BV02b], Boldi and Vigna char-
acterize what can be computed in a self-stabilizing way in a synchronous setting.

Local Terminations and Distributed Computability in Anonymous Networks 49

This result enables them to characterize what can be computed in anonymous
networks with an implicit termination. This characterization is based on fibra-
tions and coverings, that are some tools we use in this paper. In [BV01], Boldi
and Vigna characterize what can be computed on an anonymous networks with
local termination provided the processes initially know a bound on the size of
the network. This characterization is the same as for implicit termination.

In [BV99], Boldi and Vigna consider tasks computable with local termination
with arbitrary knowledge. Their characterization is based on partial views and is
really different from the one given in [BV01]. As explained by Boldi and Vigna in
[BV99], in all these works (except [BV99]), the processes initially know at least
a bound on the size of the network. In this case, all kinds of terminations are
equivalent: what can be computed with implicit termination can be computed
with global termination detection. In the literature, one can found different al-
gorithms to detect global termination provided that there exists a leader [DS80],
that processes have unique ids [Mat87], or that processes know a bound on the
diameter of the network [SSP85]. A characterization of tasks computable with
global termination detection is presented in [CGMT07].

Our Results. In this regard where termination appears as a natural and key
parameter for unification of distributed computability results – the link made
by Boldi and Vigna in [BV02b] between computability with implicit termination
on anonymous network and self-stabilization is very enlightening –, we present
here two characterizations of computability with local and weak local termina-
tions on asynchronous message passing networks where there is no failure in the
communication system. By considering arbitrary families of labelled graphs, one
can model arbitrary initial knowledge and arbitrary level of anonymity (from
completely anonymous to unique ids).

We characterize the tasks that are computable with weak local termination
(Theorem 5.2). Such tasks are interesting, because weak local termination is a
good notion to compose distributed algorithms. Indeed, it is not necessary to en-
sure that all processes have terminated executing the first algorithm before start-
ing the second one. We show that the following intuitive idea is necessary and
sufficient for computability with weak local termination: if the k-neighbourhoods
of two processes v, w cannot be distinguished locally, then if v computes its final
value in k steps, w computes the same final value in k steps.

Then, we present a new characterization of the tasks that are computable
with local termination (Theorem 8.3). Our characterization is built upon the
one for weak local termination. When we deal with local termination, one has
also to take into account that the subgraph induced by the processes that have
not terminated may become disconnected during the execution. In some cases,
it is impossible to avoid such a situation to occur (see Section 3 for examples).

With the results from [BV02b, CGMT07], we now get characterizations of
computability for each kind of termination we discussed. What is interesting is
that all of them can be expressed using the same combinatorial tools.

Moreover, the complexity of our universal algorithms is better than the
view-based algorithms of Boldi and Vigna and of Yamashita and Kameda that

50 J. Chalopin, E. Godard, and Y. Métivier

necessitate exchanges of messages of exponential size. It enables us to characterize
tasks that are computable with (weak) local termination by polynomial algo-
rithms, i.e., algorithms where for each execution, the number of rounds, the
number and the size of the messages are polynomial in the size of the network.

2 Definitions

The Model. Our model corresponds to the usual asynchronous message passing
model [Tel00, AW04]. A network is represented by a simple connected graph
G where vertices correspond to processes and edges to direct communication
links. The state of each process is represented by a label λ(v) associated to
the corresponding vertex v ∈ V (G); we denote by G = (G, λ) such a labelled
graph. We assume that each process can distinguish the different edges that are
incident to it, i.e., for each u ∈ V (G) there exists a bijection δu between the
neighbours of u in G and [1, degG(u)] (thus, u knows degG(u)). We denote by δ
the set of functions {δu | u ∈ V (G)}. The numbers associated by each vertex to
its neigbours are called port-numbers and δ is called a port-numbering of G. A
network is a labelled graph G with a port-numbering δ and is denoted by (G, δ).

Each processor v in the network represents an entity that is capable of per-
forming computation steps, sending messages via some port and receiving any
message via some port that was sent by the corresponding neighbour. We con-
sider asynchronous systems, i.e., each of the steps of execution may take an
unpredictable (but finite) amount of time. Note that we consider only reliable
systems: no fault can occur on processes or communication links. We also assume
that the channels are FIFO, i.e., for each channel, the messages are delivered in
the order they have been sent. In this model, a distributed algorithm is given by a
local algorithm that all processes should execute (note that all the processes have
the same algorithm). A local algorithm consists of a sequence of computation
steps interspersed with instructions to send and to receive messages.

In the paper, we sometimes refer to the synchronous execution of an algo-
rithm. Such an execution is a particular execution of the algorithm that can be
divided in rounds. In each round, each process receives all the messages that
have been sent to it by its neighbours in the previous round; then according to
the information it gets, it can modify its state and send messages to its neigh-
bours before entering the next round. Note that the synchronous execution of
an algorithm is just a special execution of the algorithm and thus it belongs to
the set of asynchronous executions of this algorithm.

Distributed Tasks and Terminations. As mentioned earlier, when we are
interested in computing a task in a distributed way, we have to distinguish what
kind of termination we want to compute the task with. Given a family F of net-
works, a network (G, δ) ∈ F and a process v in (G, δ), we assume that the state of
v during the execution of any algorithm is of the form (mem(v), out(v), term(v)):
mem(v) is the memory of v, out(v) is its output value and term(v) is a flag in
{Term,⊥} mentioning whether v has computed its final value or not. The initial
state of v is (in(v),⊥,⊥) where the input in(v) is the label of v in (G, δ).

Local Terminations and Distributed Computability in Anonymous Networks 51

A distributed task is a couple (F ,S) where F is a family of labelled graphs
and S is a vertex-relabelling relation (i.e., if ((G, λ), δ) S ((G′, λ′), δ′), then
G = G′ and δ = δ′) such that for every (G, δ) ∈ F , there exists (G′, δ) such
that (G, δ) S (G′, δ). The set F is the domain of the task, S is the specifi-
cation of the task. The classical leader election problem on some family F of
networks is described in our settings by a task (F ,S) where for each (G, δ) ∈ F ,
(G, δ) S (G′, δ) for any G′ = (G, λ′) such that there is a unique v ∈ V (G)
with λ′(v) = leader. Considering arbitrary families of labelled graphs enables
to represent any initial knowledge: e.g. if the processes initially know the size of
the network, then in the corresponding family F , for each (G, δ) ∈ F and each
v ∈ V (G), |V (G)| is a component of the initial label of v.

We say that an algorithm A has an implicit termination on F if for any
execution of A on any graph (G, δ) ∈ F , the network reaches a global state where
no messages are in transit and the states of the processes are not modified any
more. Such a global final state is called the final configuration of the execution.

Given a task (F ,S), an algorithm A is normalized for (F ,S) if A has an
implicit termination on F and in the final configuration of any execution of A
on some (G, δ) ∈ F , for each v ∈ V (G), term(v) = Term, out(v) is defined and
((G, in), δ) S ((G, out), δ) (i.e., the output of the algorithm solves the task S).

A task (F ,S) is computable with local termination (Lt) if there exists a nor-
malized algorithm A for (F ,S) such that for each v ∈ V (G), once term(v) =
Term, (mem(v), out(v), term(v)) is not modified any more. A task (F ,S) is
computable with weak local termination (wLt) if there exists a normalized al-
gorithm A for (F ,S) such that for each v ∈ V (G), once term(v) = Term,
(out(v), term(v)) is not modified any more.

For both terminations, one can show that we can restrict ourselves to tasks
where F is recursively enumerable. A vertex v is active if it has not stopped the
execution of the algorithm, i.e., v can still modify the value of mem(v). When we
consider weak local termination, all vertices always remain active, whereas when
we consider local termination, a vertex is active if and only if term(v) �= Term.
If a vertex is not active anymore, we say that it is inactive.

3 Examples of Tasks with Different Kinds of Terminations

We present here three simple examples that demonstrate the hierarchy of ter-
minations. We consider the family F containing all networks ((G, in), δ) where
for each vertex v, its input value has the form in(v) = (val(v), d(v)) where
val(v) ∈ N and d(v) ∈ N∪{∞}. The specification we are interested in is the fol-
lowing: in the final configuration, for each (G, δ) and for each vertex v ∈ V (G),
out(v) = max{val(u) | distG(u, v) ≤ d(v)}1.

We add some restrictions on the possible initial value for d(v) in order to define
three different tasks. In the general case (no restriction on the values of d(v)),
the task we just described is called the Maximum Problem. If we consider the
same task on the family F ′ containing all networks such that for each v ∈ V (G),
1 When d(v) = ∞, out(v) is the maximum value val(u) on the entire graph.

52 J. Chalopin, E. Godard, and Y. Métivier

(2, d) (2, d)

(2, d)

12

1

21

2(C3, δ)
(2, d1)

v1

(2, d) (2, d) (2, d)

v0

(2, d) (2, d)(val2, d)

v2

(2, 1) (2, 2) (2, r)(2, r + 1)

v31 2 1 2 1 2 1 2 1 2 1 21 2

r + 1r r
(P3r+4, δ

′)

Fig. 1. Networks highlighting differences between the different kinds of termination

d(v) �= ∞, the corresponding task is called the Local Maximum Problem. If
we consider the same task on the family F ′′ containing all networks such that
for each edge {v, w}, |d(v) − d(w)| ≤ 1, then we obtain a different problem that
is called the Locally Bounded Maximum Problem.

The Maximum Problem can be solved with implicit termination by a flood-
ing algorithm. Suppose now that there exists an algorithm A that can solve the
Maximum Problem with wLt. Consider the synchronous execution of A over
the graph (C3, δ) of Figure 1 where d = ∞ and let r be the number of rounds
of this execution; after r rounds, term(v) = Term and out(v) = 2, for each
v ∈ V (C3). Consider now the path (P3r+4, δ

′) on 3r + 4 vertices of Figure 1
where d = d1 = ∞ and val2 > 2. After r synchronous rounds over (P3r+4, δ

′),
v0 gets exactly the same information as any v ∈ V (C3) and thus after r rounds,
term(v0) = Term and out(v0) = 2 whereas the correct output is out(v0) = val2.
Thus A does not solve the Maximum Problem with wLt.

The Local Maximum Problem can be solved with weak local termination
by a flooding algorithm running in waves. Suppose now that there exists an al-
gorithm A that can solve the Local Maximum Problem with Lt. Consider
the synchronous execution of A over the graph (C3, δ) of Figure 1 where d = 1
and let r be the number of rounds of this execution. Consider now the path
(P3r+4, δ

′) of Figure 1 where d = 1, val2 > 2 and d1 ≥ 2r + 2. After r syn-
chronous rounds on P3r+4, for the same reasons as before, term(v0) = Term.
Since v0 has stopped before it knows val2 and since after v0 has stopped, no
information can be transmitted through v0, out(v1) cannot possibly be val2,
but the correct output is out(v1) = val2. Thus A does not solve the Local

Maximum Problem with wLt.
The Locally Bounded Maximum Problem can be solved with local ter-

mination by the previous wave-based flooding algorithm. Suppose now that there
exists an algorithm A that can solve the Locally Bounded Maximum Prob-

lem with global termination detection. Consider the synchronous execution of
A over the graph (C3, δ) of Figure 1 where d = 1 and let r be the number
of rounds of this execution; after r rounds, a vertex v ∈ V (C3) is in a state
S indicating that all processes have computed their final values. Consider now
the path (P3r+4, δ

′) of Figure 1 where d1 = d = 1, val2 > 2 and on the path
v2 = w0, w1, . . . , wr+1 = v3 between v2 and v3, for each i ∈ [1, r], d(wi) = i.
After r synchronous rounds on P3r+4, for the same reasons as before v is in the
state S indicating that all processes have computed their final values. However,
since dist(v2, v3) = r + 1, after r rounds, the vertex v3 does not know the value

Local Terminations and Distributed Computability in Anonymous Networks 53

of val2 and thus out(v3) cannot possibly be val2. Thus A does not solve the
Locally Bounded Maximum Problem with global termination detection.

4 Digraphs and Coverings

Labelled Digraphs. In the following, we will consider directed graphs (di-
graphs) with multiple arcs and self-loops. A digraph D = (V (D), A(D), s, t) is
defined by a set V (D) of vertices, a set A(D) of arcs and by two maps s and
t that assign to each arc two elements of V (D): a source and a target. If a is
an arc, we say that a is incident to s(a) and t(a). A symmetric digraph D is a
digraph endowed with a symmetry, that is, an involution Sym : A(D) → A(D)
such that for every a ∈ A(D), s(a) = t(Sym(a)). In a symmetric digraph D, the
degree of a vertex v is degD(v) = |{a | s(a) = v}| = |{a | t(a) = v}| and we
denote by ND(v) the set of neighbours of v. Given two vertices u, v ∈ V (D), a
path π of length p from u to v in D is a sequence of arcs a1, a2, . . . ap such that
s(a1) = u, ∀i ∈ [1, p − 1], t(ai) = s(ai+1) and t(ap) = v. If for each i ∈ [1, p− 1],
ai+1 �= Sym(ai), π is non-stuttering. A digraph D is strongly connected if for
all vertices u, v ∈ V (D), there exists a path from u to v in D. In a symmetric
digraph D, the distance between two vertices u and v, denoted distD(u, v) is the
length of the shortest path from u to v in D.

A homomorphism γ between the digraph D and the digraph D′ is a mapping
γ : V (D) ∪A(D) → V (D′) ∪ A(D′) such that for each arc a ∈ A(D), γ(s(a)) =
s(γ(a)) and γ(t(a)) = t(γ(a)). An homomorphism γ : D → D′ is an isomorphism
if γ is bijective.

Throughout the paper we will consider digraphs where the vertices and the
arcs are labelled with labels from a recursive label set L. A digraph D labelled
over L will be denoted by (D,λ), where λ : V (D) ∪ A(D) → L is the labelling
function. A mapping γ : V (D)∪A(D) → V (D′)∪A(D′) is a homomorphism from
(D,λ) to (D′, λ′) if γ is a digraph homomorphism from D to D′ which preserves
the labelling, i.e., such that λ′(γ(x)) = λ(x) for every x ∈ V (D)∪A(D). Labelled
digraphs will be designated by bold letters like D,G, . . .

In a symmetric digraph D, we denote by BD(v0, r), the labelled ball of center
v0 ∈ V (D) and of radius r that contains all vertices at distance at most r of v0

and all arcs whose source or target is at distance at most r − 1 of v0.
Given a simple connected labelled graph G = (G, λ) with a port-numbering

δ, we will denote by (Dir(G), δ) the labelled digraph (Dir(G), (λ, δ)) constructed
in the following way. The vertices of Dir(G) are the vertices of G and they have
the same labels as in G. Each edge {u, v} is replaced by two arcs a(u,v), a(v,u) ∈
A(Dir(G)) such that s(a(u,v))= t(a(v,u))=u, t(a(u,v))=s(a(v,u)) = v, δ(a(u,v)) =
(δu(v), δv(u)), δ(a(v,u)) = (δv(u), δu(v)) and Sym(a(u,v)) = a(v,u). This construc-
tion encodes that a process can answer to a neighbour, i.e., “pong” any message.

Given a set L, we denote by DL the set of all symmetric digraphs D = (D,λ)
where for each a ∈ A(D), there exist p, q ∈ N such that λ(a) = (p, q) and
λ(Sym(a)) = (q, p) and for each v ∈ V (D), λ(v) ∈ L and {p | ∃a, λ(a) =
(p, q) and s(a) = v} = [1, degD(v)]. In other words, DL is the set of digraphs
that locally look like some digraph obtained from a simple labelled graph G.

54 J. Chalopin, E. Godard, and Y. Métivier

Symmetric Coverings, Quasi-Coverings. The notion of symmetric coverings
is fundamental in this work; definitions and main properties are presented in
[BV02a]. This notion enables to express “similarity” between two digraphs.

A (labelled) digraph D is a covering of a digraph D′ via ϕ if ϕ is a homo-
morphism from D to D′ such that each arc a′ ∈ A(D′) and for each vertex
v ∈ ϕ−1(t(a′)) (resp. v ∈ ϕ−1(s(a′)), there exists a unique arc a ∈ A(D) such
that t(a) = v (resp. s(a) = v) and ϕ(a) = a′. A symmetric digraph D is a
symmetric covering of a symmetric digraph D′ via ϕ if D is a covering of D′ via
ϕ and if for each arc a ∈ A(D), ϕ(Sym(a)) = Sym(ϕ(a)).

The following lemma shows the importance of symmetric coverings when we
deal with anonymous networks. This is the counterpart of the lifting lemma that
Angluin gives for coverings of simple graphs [Ang80] and the proof can be found
in [BCG+96, CM07].

Lemma 4.1 (Lifting Lemma [BCG+96]). If D is a symmetric covering of
D′ via ϕ, then any execution of an algorithm A on D′ can be lifted up to an
execution on D, such that at the end of the execution, for any v ∈ V (D), v is in
the same state as ϕ(v).

In the following, one also needs to express similarity between two digraphs up
to a certain distance. The notion of quasi-coverings was introduced in [MMW97]
for this purpose. The next definition is an adaptation of this tool to digraphs.

Definition 4.2. Given two symmetric labelled digraphs D0,D1, an integer r, a
vertex v1 ∈ V (D1) and a homomorphism γ from BD1(v1, r) to D0, the digraph
D1 is a quasi-covering of D0 of center v1 and of radius r via γ if there exists a fi-
nite or infinite symmetric labelled digraph D2 that is a symmetric covering of D0

via a homomorphism ϕ and if there exist v2 ∈ V (D2) and an isomorphism δ from
BD1(v1, r) to BD2(v2, r) such that for any x ∈ V (BD1(v1, r)) ∪ A(BD1(v1, r)),
γ(x) = ϕ(δ(x)).

If a digraph D1 is a symmetric covering of D0, then for any v ∈ V (D1) and for
any r ∈ N, D1 is a quasi-covering of D0, of center v and of radius r. Reversely,
if D1 is a quasi-covering of D0 of radius r strictly greater than the diameter of
D1, then D1 is a covering of D0. The following lemma is the counterpart of the
lifting lemma for quasi-coverings.

Lemma 4.3 (Quasi-Lifting Lemma). Consider a digraph D1 that is a quasi-
covering of D0 of center v1 and of radius r via γ. For any algorithm A, after r
rounds of the synchronous execution of an algorithm A on D1, v1 is in the same
state as γ(v1) after r rounds of the synchronous execution of A on D′.

5 Characterization for Weak Local Termination

We note V the set {(D, v) | D ∈ DL, v ∈ V (D)}. In other words, the set V is
the disjoint union of all symmetric labelled digraphs in DL. Given a family of
networks F , we denote by VF the set {((Dir(G), δ), v) | (G, δ) ∈ F , v ∈ V (G)}.

Local Terminations and Distributed Computability in Anonymous Networks 55

A function f : V −→ L ∪ {⊥} is an output function for a task (F ,S) if
for each network (G, δ) ∈ F , the labelling obtained by applying f on each
v ∈ V (G) satisfies the specification S, i.e., (G, δ) S (G′, δ) where G′ = (G, λ′)
and λ′(v) = f((Dir(G), δ), v) for all v ∈ V (G).

In order to give our characterization, we need to formalize the following idea.
When the neighbourhood at distance k of two processes v, v′ in two digraphs
D,D′ cannot be distinguished (this is captured by the notion of quasi-coverings
and Lemma 4.3), and if v computes its final value in less than k rounds, then v′

computes the same final value in the same number of rounds. In the following
definition, the value of r(D, v) can be understood as the number of rounds needed
by v to compute in a synchronous execution its final value in D.

Definition 5.1. Given a function r : V −→ N∪{∞} and a function f : V −→ L′

for some set L′, the function f is r-lifting closed if for all D,D′ ∈ DL such that
D is a quasi-covering of D′, of center v0 ∈ V (G) and of radius R via γ with
R ≥ min{r(D, v0), r(D′, γ(v0))}, then f(D, v0) = f(D′, γ(v0)).

Using the previous definition, we now give the characterization of tasks com-
putable with wLt. We also characterize distributed tasks computable with wLt

by polynomial algorithms (using a polynomial number of messages of polynomial
size). We denote by |G| the size of V (G) plus the maximum over the sizes (in
bits) of the initial labels that appear on G.

Theorem 5.2. A task (F ,S) where F is recursively enumerable is computable
with wLt if and only if there exist a function r : V −→ N ∪ {∞} and an output
function f : V −→ L ∪ {⊥} for (F ,S) such that

(i) for all D ∈ DL, for all v ∈ V (D), r(D, v) �= ∞ if and only if f(D, v) �= ⊥,
(ii) f|VF and r|VF are recursive functions,
(iii) f and r are r-lifting-closed.

The task (F ,S) is computable by a polynomial algorithm with wLt if and only
if there exist such f and r and a polynomial p such that for each (G, δ) ∈ F and
each v ∈ V (G), r((Dir(G), δ), v) ≤ p(|G|).

Proof (of the necessary condition). Assume A is a distributed algorithm that
computes the task (F ,S) with weak local termination. We define r and f by
considering the synchronous execution of A on any digraph D ∈ DL. For any
v ∈ V (D), if term(v) = ⊥ during the whole execution, then f(D, v) = ⊥ and
r(D, v) = ∞. Otherwise, let rv be the first round after which term(v) = Term;
in this case, f(D, v) = out(v) and r(D, v) = rv. Since A computes (F ,S), it is
easy to see that f is an output function and that f and r satisfy (i) and (ii).

Consider two digraphs D,D′ ∈ DL such that D is a quasi-covering of D′, of
center v0 ∈ V (G) and of radius R via γ with R ≥ r0 =min{r(D, v0), r(D′, γ(v0))}.
If r0 = ∞, then r(D, v0) = r(D′, γ(v0)) = ∞ and f(D, v0) = f(D′, γ(v0)) = ⊥.
Otherwise, from Lemma 4.3, we know that after r0 rounds, out(v0) = out(γ(v0))
and term(v0) = term(γ(v0)) = Term. Thus r0 = r(D, v0) = r(D′, γ(v0)) and
f(D, v0) = f(D′, γ(v0)). Consequently, f and r are r-lifting closed. ��

56 J. Chalopin, E. Godard, and Y. Métivier

The sufficient condition is proved in Section 7 and relies on a general algorithm
described in Section 6. Using this theorem, one can show that there is no univer-
sal election algorithm for the family of networks with non-unique ids where at
least one id is unique, but that there exists such an algorithm for such a family
where a bound on the multiplicity of each id in any network is known.

6 A General Algorithm

In this section, we present a general algorithm that we parameterize by the task
and the termination we are interested in, in order to obtain our sufficient con-
ditions. This algorithm is a combination of an election algorithm for symmetric
minimal graphs presented in [CM07] and a generalization of an algorithm of
Szymanski, Shy and Prywes (the SSP algorithm for short) [SSP85]. The algo-
rithm described in [CM07] is based on an enumeration algorithm presented by
Mazurkiewicz in a different model [Maz97] where each computation step involves
some synchronization between adjacent processes. The SSP algorithm enables
to detect the global termination of an algorithm with local termination provided
the processes know a bound on the diameter of the graph. The Mazurkiewicz-like
algorithm always terminates (implicitly) on any network (G, δ) and during its
execution, each process v can reconstruct at some computation step i a digraph
Di(v) such that (Dir(G), δ) is a quasi-covering of Di(v). However, this algorithm
does not enable v to compute the radius of this quasi-covering. We use a gen-
eralization of the SSP algorithm to compute a lower bound on this radius, as it
has already be done in Mazurkiewicz’s model [GMT06].

We consider a network (G, δ) where G = (G, λ) is a simple labelled graph
and where δ is a port-numbering of G. The function λ : V (G) → L is the initial
labelling. We assume there exists a total order <L on L and we assume that if
the label λ(v) is modified during the execution, then it can only increase for <L.

The state of each v is a tuple (λ(v), n(v), N(v),M(v), a(v), A(v)) where:

– λ(v) ∈ L is the initial label of v and if it is modified during the execution, it
will necessarily increase for <L.

– n(v) ∈ N is the number of v computed by the algorithm; initially n(v) = 0.
– N(v) ∈ Pfin(N×L×N2)2 is the local view of v. At the end of the execution, if

(m, �, p, q) ∈ N(v), then v has a neighbour u whose number is m, whose label
is � and the arc from u to v is labelled (p, q). Initially N(v) = {(0,⊥, 0, q) |
q ∈ [1, degG(v)]}.

– M(v) ⊆ N × L×Pfin(N × L× N2) is the mailbox of v; initially M(v) = ∅. It
contains all information received by v during the execution of the algorithm.
If (m, �,N) ∈ M(v), it means that at some previous step of the execution,
there was a vertex u such that n(u) = m, λ(u) = � and N(u) = N .

– a(v) ∈ Z ∪ {∞} is a counter and initially a(v) = −1. In some sense, a(v)
represent the distance up to which all vertices have the same mailbox as v. If
a(v) = ∞, it means that v has terminated the algorithm (local termination).

2 For any set S, Pfin(S) denotes the set of finite subsets of S.

Local Terminations and Distributed Computability in Anonymous Networks 57

– A(v) ∈ Pfin(N × (Z ∪ {∞})) encodes the information v has about the values
of a(u) for each neighbour u. Initially, A(v) = {(q,−1) | q ∈ [1, degG(v)]}.

In our algorithm, processes exchange messages of the form < (n, �,M, a), p >.
If a vertex u sends a message < (n, �,M, a), p > to one of its neighbour v, then
the message contains following information: n is the current number n(u) of u, �
is the label λ(u) of u, M is the mailbox of u, a is the value of a(u) and p = δu(v).

As in Mazurkiewicz’s algorithm [Maz97], the nice properties of the algorithm
rely on a total order on local views, i.e., on finite subsets of N3 × L. Given two
distinct sets N1, N2 ∈ Pfin(N × L × N2), we define N1 ≺ N2 if the maximum of
the symmetric difference N1 �N2 = (N1 \N2)∪ (N2 \N1) for the lexicographic
order belongs to N2. One also says that (�,N) ≺ (�′, N ′) if either � <L �′, or
� = �′ and N ≺ N ′. We denote by � the reflexive closure of ≺.

Our algorithm Agen(ϕ) is described in Algorithm 1. The algorithm for the
vertex v0 is expressed in an event-driven description. The first rule I can be
applied by a process v on wake-up only if it has not received any message: it takes
the number 1, updates its mailbox and informs its neighbours. The second rule R
describes the instructions a process v has to follow when it receives a message m
from a neighbour. It updates its mailbox M(v) and its local view N(v) according
to m. Then, if it discovers the existence of another vertex with the same number
and a stronger local view, it takes a new number. Then, if its mailbox has not
changed, it updates A(v) and increases a(v) if possible (according to a function
ϕ). Finally, if M(v) or a(v) has been modified, it informs its neighbours.

Later, we will add rules that enable a process to compute its final value and
we will define the function ϕ(v) depending on the termination we are interested
in. Using the information stored in its mailbox, each v will be able to reconstruct
a digraph D such that (Dir(G), δ) locally looks like D up to distance a(v).

Properties of the Algorithm. We consider a graph G with a port number-
ing δ and an execution of Algorithm 1 on (G, δ). For each vertex v ∈ V (G), we
note (λi(v), ni(v), Ni(v),Mi(v), ai(v), Ai(v)) the state of v after the ith compu-
tation step. The following proposition summarizes some nice properties that are
satisfied during any execution of Algorithm 1 on (G, δ).

Proposition 6.1 ([CM07, Cha06]). Consider a vertex v and a step i ≥ 1.
Then, λi−1(v) ≤L λi(v), ni−1(v) ≤ ni(v), Ni−1(v) � Ni(v), Mi−1(v) ⊆ Mi(v).

If Mi−1(v) = Mi(v) and if v is active at step i, then ai−1(v) ≤ ai(v) ≤
ai−1(v) + 1 and ai(v) ≥ min{a | ∃(q, a) ∈ Ai(v)} if ∃(q, a) ∈ Ai(v) with a �= ∞.

For each (m, �,N) ∈ Mi(v) and each m′ ∈ [1,m], ∃(m′, �′, N ′) ∈ Mi(v), ∃v′ ∈
V (G) such that ni(v′) = m′. If m = ni(v), (�,N) ≤ (λi(v), Ni(v)).

If ai(v) ≥ 1, for each w ∈ NG(v), there exists a step j ≤ i− 1 such that w is
inactive at step j, or aj(w) ≥ ai(v) − 1 and Mj(w) = Mi(v).

An interesting corollary of Proposition 6.1 is that if the label λ(v) of each v is
modified only finitely many times, then there exists a step i0 after which for any
v, the value of (λ(v), n(v), N(v),M(v)) is not modified any more.

58 J. Chalopin, E. Godard, and Y. Métivier

Algorithm 1. The general algorithm Agen(ϕ).
I : {n(v0) = 0 and no message has arrived at v0}
begin

n(v0) := 1 ;
M(v0) := {(n(v0), λ(v0), ∅)} ;
a(v0) := 0 ;
for i := 1 to deg(v0) do

send < (n(v0), λ(v), M(v0), a(v0)), i > through i ;

end

R : {A message < (n1, �1, M1, a1), p1 > has arrived at v0 through port q1}
begin

Mold := M(v0) ;
aold := a(v0) ;
M(v0) := M(v0) ∪ M1 ;
if n(v0) = 0 or ∃(n(v0), �

′, N ′) ∈ M(v0) such that (λ(v0), N(v0)) ≺ (�′, N ′)
then

n(v0) := 1 + max{n′ | ∃(n′, �′, N ′) ∈ M(v0)} ;

N(v0) := N(v0) \ {(n′, �′, p′, q1) | ∃(n′, �′, p′, q1) ∈ N(v0)} ∪ {(n1, �1, p1, q1)} ;
M(v0) := M(v0) ∪ {(n(v0), λ(v0), N(v0))} ;
if M(v0) �= Mold then

a(v0) := −1 ;
A(v0) := {(q′,−1) | ∃(q′, a′) ∈ A(v0) with a′ �= ∞} ;

if M(v0) = M1 then
A(v0) := A(v0) \ {(q1, a

′) | ∃(q1, a
′) ∈ A(v0)} ∪ {(q1, a1)} ;

if ∀(q′, a′) ∈ A(v0), a(v0) ≤ a′ and (ϕ(v) = True or ∃(q′, a′) ∈ A(v) such that
a(v0) < a′ and a′ �= ∞) then a(v0) := a(v0) + 1 ;
if M(v0) �= Mold or a(v0) �= aold then

for q := 1 to deg(v0) do
if (q,∞) /∈ A(v) then

send < (n(v0), λ(v), M(v0), a(v0)), q > through port q ;

end

7 Tasks Computable with Weak Local Termination

In order to show that the conditions of Theorem 5.2 are sufficient, we use the
general algorithm presented in Section 6 parameterized by the functions f and
r. In the following, we consider a function enumF that enumerates the elements
of F . During the execution of this algorithm on any graph (G, δ) ∈ F , for any
v ∈ V (G), the value of λ(v) = in(v) is not modified.

Consider the mailbox M = M(v) of a vertex v during the execution of the
algorithm Agen on a graph (G, δ) ∈ F . We say that an element (n, �,N) ∈ M is
maximal in M if there does not exists (n, �′, N ′) ∈ M such that (�,N) ≺ (�′, N ′).
We denote by S(M) be the set of maximal elements of M . From Proposition 6.1,
after each step of Algorithm 1, (n(v), λ(v), N(v)) is maximal in M(v). The set
S(M) is said stable if it is non-empty and if for all (n1, �1, N1) ∈ S(M), for all

Local Terminations and Distributed Computability in Anonymous Networks 59

(n2, �2, p, q) ∈ N1, p �= 0, n2 �= 0 and �2 �= ⊥ and for all (n′
2, �

′
2, N

′
2) ∈ S(M),

there exists (n′
2, �

′′
2 , p

′, q′) ∈ N1 if and only if �′2 = �′′2 and (n1, �1, q
′, p′) ∈ N ′

2.
From [CM07], we know that once the values of n(v), N(v),M(v) are final, then
S(M(v)) is stable. Thus, if S(M(v)) is not stable, M(v) will be modified.

If the set S(M) is stable, one can construct a labelled symmetric digraph
DM =(DM , λM) as follows. The set of vertices V (DM) is the set {n | ∃(n, �,N) ∈
S(M)}. For any (n, �,N) ∈ S(M) and any (n′, �′, p, q) ∈ N , there exists an arc
an,n′,p,q ∈ A(DM) such that t(a) = n, s(a) = n′, λM (a) = (p, q). Since S(M) is
stable, we can define Sym by Sym(an,n′,p,q) = an′,n,q,p.

Proposition 7.1. If S(M(v)) is stable, (Dir(G), δ) is a quasi-covering of DM(v)

of radius a(v) of center v via a mapping γ where γ(v) = n(v).

Thus, once v has computed DM(v), it can enumerate networks (K′, δ′K) ∈ F and
vertices w′ ∈ V (K ′) until it finds a (K′, δ′K) such that K(v) = (Dir(K′), δK′) is
a quasi-covering of DM(v) of center w(v) ∈ V (K) and of radius a(v) via some
homomorphism γ such that γ(w(v)) = n(v) (this enumeration terminates by
Proposition 7.1). We add a rule to the algorithm, called wLt(enumF , f, r), that
a process v can apply to computes its final value, once it has computed K(v)
and w(v). We also add priorities between rules such that a vertex that can apply
the rule wLt(f, r) cannot apply the rule R of algorithm Agen(ϕ).

Procedure wLt(enumF ,f,r): The rule added to the algorithm for wLt

if term(v0) �= Term and a(v0) ≥ r(K(v0), w(v0)) then
out(v0) := f(K(v0), w(v0)) ;
term(v0) := Term ;

We now define the function ϕ that enables a vertex v to increase a(v). The
function ϕ is true for v only if term(v) �= Term and S(M(v)) is stable (otherwise,
v knows that its mailbox will be modified in the future) and r(K(v), w(v)) > a(v)
(otherwise, v can compute its final value).

Correction of the Algorithm. We denote by AwLt(enumF , f, r) the algorithm
defined by Agen(ϕ) and by wLt(enumF , f, r). We consider a network (G, δ) ∈ F
and an execution of AwLt(enumF , f, r) on (G, δ). Let G′ = (Dir(G), δ).

Using Propositions 6.1 and 7.1, one can show that the execution terminates
(implicitly) and that in the final configuration, for any v ∈ V (G), term(v) =
Term. Since f is an output function for (F ,S), the next proposition shows that
AwLt(enumF , f, r) computes the task (F ,S) with weak local termination.

Proposition 7.2. For any v ∈ V (G), if term(v) = Term, out(v) = f(G′, v).

Proof. Consider a process v just after it has applied Procedure wLt(enumF , f, r):
S(M(v)) is stable, r(K(v), w(v)) ≤ a(v) and out(v) = f(K(v), w(v)).

Since K(v) is a quasi-covering of DM(v) of radius a(v) ≥ r(K(v), w(v)) and
of center w(v) via a mapping γ such that γ(w(v)) = n(v) and since f and r are

60 J. Chalopin, E. Godard, and Y. Métivier

r-lifting closed, out(v) = f(K(v), w(v)) = f(DM(v), n(v)) and r(K(v), w(v)) =
r(DM(v), n(v)). From Proposition 7.1, since a(v) ≥ r(DM(v), n(v)) and since f
is r-lifting closed, out(v) = f(DM(v), n(v)) = f(G′, v). ��

8 Tasks Computable with Local Termination

When we consider local termination, one needs to consider the case where some
vertices that terminate quickly disconnect the graph induced by active vertices.

We extend to symmetric digraphs the notion of views that have been intro-
duced to study leader election by Yamashita and Kameda [YK96b] for simple
graphs and by Boldi et al. [BCG+96] for digraphs.

Definition 8.1. Consider a symmetric digraph D = (D,λ) ∈ DL and a vertex
v ∈ V (D). The view of v in D is an infinite rooted tree denoted by TD(v) =
(TD(v), λ′) and defined as follows:

– V (TD(v)) is the set of non-stuttering paths π = a1, . . . , ap in D with s(a1) =
v. For each path π = a1, . . . , ap, λ′(π) = λ(t(ap)).

– for each π, π′ ∈ V (TD(v)), there are two arcs aπ,π′ , aπ′,π ∈ A(TD(v)) such
that Sym(aπ,π′) = aπ′,π if and only if π′ = π, a. In this case, λ′(aπ,π′) = λ(a)
and λ′(aπ′,π) = λ(Sym(a)).

– the root of TD(v) is the vertex corresponding to the empty path and its label
is λ(v).

Consider the view TD(v) of a vertex v in a digraph D ∈ DL and an arc a such
that s(a) = v. We define TD−a(v) be the infinite tree obtained from TD(v) by
removing the subtree rooted in the vertex corresponding to the path a. Given
n ∈ N and an infinite tree T, we note T�n the truncation of the tree at depth n.
Thus the truncation of the view at depth n of a vertex v in a symmetric digraph
D is denoted by TD(v)�n. It is easy to see that for any D ∈ DL, any v ∈ V (D)
and any integer n ∈ N, TD(v) �n is a quasi-covering of D of center v′ and of
radius n where v′ is the root of TD(v)�n.

Given a digraph D and a process v0 ∈ V (D) that stops its computation
after n steps, the only information any other process v can get from v0 during
the execution is contained in the n-neighbourhood of v0. In order to take this
property into account, we define an operator split. In split(D, v0, n), we remove
v0 from V (D) and for each neighbour v of v0, we add a new neighbour v′0 to v
that has a n-neighbourhood indistinguishable from the one of v0. Thus, for any
process v �= v0, in a synchronous execution, both v0 and the vertices we have just
added stop in the same state after n rounds and consequently v should behave
in the same way in the two networks and stop with the same final value after
the same number of rounds. This idea is formalized in Definition 8.2.

Given a digraph D = (D,λ) ∈ DL, a vertex v0 ∈ V (D) and an integer n ∈ N,
split(D, v0, n) = (D′, λ′) is defined as follows. First, we remove v0 and all its
incident arcs from D. Then for each arc a ∈ A(D) such that s(a) = v0, we add a
copy of TD−a(v0)�n to the graph. We denote by v(a) the root of this tree and we

Local Terminations and Distributed Computability in Anonymous Networks 61

add two arcs a0, a1 to the graph such that Sym(a0) = a1, s(a0) = t(a1) = v(a),
s(a1) = t(a2) = t(a), λ′(a0) = λ(a) and λ′(a1) = λ(Sym(a)). Note that for any
vertex v �= v0 ∈ V (D), v can be seen as a vertex of split(D, v0, n).

Definition 8.2. Given a function r : V −→ N∪{∞}, a function f : V −→ L′ is
r-splitting closed if for any D ∈ DL, for any vertex v0 ∈ V (D) and any vertex
v �= v0 ∈ V (D), f(D, v) = f(split(D, v0, n), v) where n = r(D, v0).

We now give the characterization of tasks computable with Lt. The proof is
postponed to the journal version. For the necessary condition, we uses the same
ideas as for the necessary condition of Theorem 5.2 and the proof of the sufficient
condition also relies on the general algorithm presented in Section 6.

Theorem 8.3. A task (F , S) where F is recursively enumerable is computable
with Lt if and only if there exist some functions f and r satisfying the conditions
of Theorem 5.2 and such that f and r are r-splitting closed.

The task (F ,S) is computable by a polynomial algorithm with Lt if and only
if there exist such f and r and a polynomial p such that for each (G, δ) ∈ F and
each v ∈ V (G), r((Dir(G), δ), v) ≤ p(|G|).

References

[Ang80] Angluin, D.: Local and global properties in networks of processors. In:
Proc. of STOC 1980, pp. 82–93 (1980)

[ASW88] Attiya, H., Snir, M., Warmuth, M.: Computing on an anonymous ring. J.
ACM 35(4), 845–875 (1988)

[AW04] Attiya, H., Welch, J.: Distributed computing: fundamentals, simulations,
and advanced topics. John Wiley and Sons, Chichester (2004)

[BCG+96] Boldi, P., Codenotti, B., Gemmell, P., Shammah, S., Simon, J., Vigna, S.:
Symmetry breaking in anonymous networks: characterizations. In: Proc.
of ISTCS 1996, pp. 16–26. IEEE Press, Los Alamitos (1996)

[BV99] Boldi, P., Vigna, S.: Computing anonymously with arbitrary knowledge.
In: Proc. of PODC 1999, pp. 181–188. ACM Press, New York (1999)

[BV01] Boldi, P., Vigna, S.: An effective characterization of computability in
anonymous networks. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180,
pp. 33–47. Springer, Heidelberg (2001)

[BV02a] Boldi, P., Vigna, S.: Fibrations of graphs. Discrete Mathematics 243(1-3),
21–66 (2002)

[BV02b] Boldi, P., Vigna, S.: Universal dynamic synchronous self-stabilization. Dis-
tributed Computing 15(3), 137–153 (2002)

[CGMT07] Chalopin, J., Godard, E., Métivier, Y., Tel, G.: About the termination
detection in the asynchronous message passing model. In: van Leeuwen,
J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.)
SOFSEM 2007. LNCS, vol. 4362, pp. 200–211. Springer, Heidelberg (2007)

[Cha06] Chalopin, J.: Algorithmique distribuée, calculs locaux et homomorphismes
de graphes. PhD thesis, Université Bordeaux 1 (2006)

[CM07] Chalopin, J., Métivier, Y.: An efficient message passing election algorithm
based on Mazurkiewicz’s algorithm. Fundamenta Informaticae 80(1–3),
221–246 (2007)

62 J. Chalopin, E. Godard, and Y. Métivier

[DP04] Dobrev, S., Pelc, A.: Leader election in rings with nonunique labels. Fun-
damenta Informaticae 59(4), 333–347 (2004)

[DS80] Dijkstra, E.W., Scholten, C.S.: Termination detection for diffusing com-
putation. Information Processing Letters 11(1), 1–4 (1980)

[FKK+04] Flocchini, P., Kranakis, E., Krizanc, D., Luccio, F., Santoro, N.: Sorting
and election in anonymous asynchronous rings. J. Parallel Distrib. Com-
put. 64(2), 254–265 (2004)

[GMT06] Godard, E., Métivier, Y., Tel, G.: Termination detection of distributed
tasks. Technical Report 1418–06, LaBRI (2006)

[Mat87] Mattern, F.: Algorithms for distributed termination detection. Distributed
computing 2(3), 161–175 (1987)

[Maz97] Mazurkiewicz, A.: Distributed enumeration. Information Processing Let-
ters 61(5), 233–239 (1997)

[MMS06] Mavronicolas, M., Michael, L., Spirakis, P.: Computing on a partially
eponymous ring. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS,
vol. 4305, pp. 380–394. Springer, Heidelberg (2006)

[MMW97] Métivier, Y., Muscholl, A., Wacrenier, P.-A.: About the local detection of
termination of local computations in graphs. In: Proc. of SIROCCO 1997,
pp. 188–200. Carleton Scientific (1997)

[SSP85] Szymanski, B., Shy, Y., Prywes, N.: Synchronized distributed termination.
IEEE Transactions on software engineering 11(10), 1136–1140 (1985)

[Tel00] Tel, G.: Introduction to distributed algorithms. Cambridge University
Press, Cambridge (2000)

[YK96a] Yamashita, M., Kameda, T.: Computing functions on asynchronous
anonymous networks. Math. Systems Theory 29(4), 331–356 (1996)

[YK96b] Yamashita, M., Kameda, T.: Computing on anonymous networks: Part
I - characterizing the solvable cases. IEEE Transactions on parallel and
distributed systems 7(1), 69–89 (1996)

A Self-stabilizing Algorithm with Tight Bounds

for Mutual Exclusion on a Ring

(Extended Abstract)

Viacheslav Chernoy1, Mordechai Shalom2, and Shmuel Zaks1,�

1 Department of Computer Science, Technion, Haifa, Israel
vchernoy@tx.technion.ac.il, zaks@cs.technion.ac.il
2 TelHai Academic College, Upper Galilee, 12210, Israel

cmshalom@telhai.ac.il

Abstract. In [Dij74] Dijkstra introduced the notion of self-stabilizing
algorithms and presented, among others, an algorithm with three states
for the problem of mutual exclusion on a ring of processors. In this work
we present a new three state self-stabilizing algorithm for mutual exclu-
sion, with a tight bound of 5

6
n2 + O(n) for the worst case complexity,

which is the number of moves of the algorithm until it stabilizes. This
bound is better than lower bounds of other algorithms, including Di-
jkstra’s. Using similar techniques we improve the analysis of the upper
bound for Dijkstra’s algorithm and show a bound of 3 13

18
n2 + O(n).

1 Introduction

The notion of self stabilization was introduced by Dijkstra in [Dij74]. He con-
siders a system, consisting of a set of processors, and each running a program
of the form: if condition then statement. A processor is termed privileged if its
condition is satisfied. A scheduler chooses any privileged processor, which then
executes its statement (i.e., makes a move); if there are several privileged proces-
sors, the scheduler chooses any of them. Such a scheduler is termed centralized.
A scheduler that chooses any subset of the privileged processors, which are then
making their moves simultaneously, is termed distributed. Thus, starting from
any initial configuration, we get a sequence of moves (termed an execution). The
scheduler thus determines all possible executions of the system. A specific subset
of the configurations is termed legitimate. The system is self-stabilizing if any
possible execution will eventually get — that is, after a finite number of moves
— only to legitimate configurations. The number of moves from any initial con-
figuration until the system stabilizes is often referred to as stabilization time
(see, e.g., [BJM06, CG02, NKM06, TTK00]).

Dijkstra studied in [Dij74] the fundamental problem of mutual exclusion, for
which the subset of legitimate configurations includes the configurations in which
exactly one processor is privileged. In [Dij74] the processors are arranged in a

� This research was supported in part by the Technion V.P.R. fund.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 63–77, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

64 V. Chernoy, M. Shalom, and S. Zaks

ring, so that each processor can communicate with its two neighbors using shared
memory, and where not all processors use the same program. Three algorithms
were presented — without proofs for either correctness or complexity — in which
each processor could be in one of k > n, four and three states, respectively (n
being the number of processors). A centralized scheduler was assumed. The
analysis — correctness and complexity — of Dijkstra’s first algorithm is rather
straightforward; its correctness under a centralized scheduler is for any k ≥ n−1,
and under a distributed scheduler for any k ≥ n. The stabilization time under
a centralized scheduler is Θ(n2) (following [CGR87] this is also the expected
number of moves). There is little in the literature regarding the second algorithm,
probably since it was extended in [Kru79] to general trees, or since more attention
was devoted to the third algorithm, which is rather non-intuitive. For this latter
algorithm Dijkstra presented in [Dij86] a proof of correctness (another proof was
given in [Kes88], and a proof of correctness under a distributed scheduler was
presented in [BGM89]). Though while dealing with proofs of correctness one can
sometimes get also complexity results, this was not the case with this proof of
[Dij86]. In [CSZ07] we provide an upper bound of 53

4n
2 on the stabilization time

of Dijkstra’s third algorithm. In [BD95] a similar three state algorithm with an
upper bound of 5 3

4n
2 is presented. In [CSZ08a] this upper bound was improved

to 1 1
2n

2, and a lower bound of n2 was shown.

2 Our Contribution

In this work we present a new three state self-stabilizing algorithm for mutual
exclusion for a ring of processors, and show a tight bound of 5

6n
2 + O(n) for its

worst case time complexity. For the lower bound we provide an example that
requires 5

6n
2−O(n) moves until stabilization. For the upper bound we proceed in

two ways. The first one is using the more conventional tool of potential functions,
that is used in the literature of self-stabilizing algorithms to deal mainly with
the issue of correctness (see, e.g., [Dol00]). In our case the use of this tool is not
straightforward, since the potential function can also increase by some of the
moves (see Section 4.5). We use this tool to achieve a complexity result; namely,
an upper bound of 1 1

12n
2 + O(n). The second one is using amortized analysis.

This more refined technique enables us to achieve a tight bound of 5
6n

2 + O(n).
We use both techniques to improve the analysis for Dijkstra’s algorithm that

results in an improved upper bound of 3 13
18n

2 + O(n) for its worst case time
complexity. We also show a lower bound of 1 5

6n
2 −O(n) of Dijkstra’s algorithm.

Therefore in the worst case our algorithm has better performance than Dijkstra’s
and than the one of [BD95].

In Section 3 we present Dijkstra’s algorithm and outline the details of the
proof of [Dij86] needed for our discussion. In Section 4 we present our new
self-stabilizing algorithm and its analysis. In Section 5 we present the above-
mentioned lower and upper bounds for Dijkstra’s algorithm. We summarize our
results in Section 6. Most proofs are sketched only or omitted in this Extended
Abstract (for more details see [CSZ08b]).

A Self-stabilizing Algorithm with Tight Bounds for Mutual Exclusion 65

3 Dijkstra’s Algorithm

In this section we present Dijkstra’s third algorithm of [Dij74] (to which we refer
throughout this paper as Dijkstra’s algorithm, and its proof of correctness of
[Dij86]). Our discussion assumes a centralized scheduler. In our system there are
n processors p0, p1, . . . , pn−1 arranged in a ring; that is for every 0 ≤ i ≤ n − 1,
the processors adjacent to pi are p(i−1) mod n and p(i+1) mod n. Processor pi has a
local state xi ∈ {0, 1, 2}. Two processors — namely, p0 and pn−1 — run special
programs, while all intermediate processors pi, 1 ≤ i ≤ n − 2, run the same
program. The programs of the processors are as follows:

Program for processor p0:
IF x0 + 1 = x1 THEN

x0 := x0 + 2
END.

Program for processor pi, 1 ≤ i ≤ n − 2:
IF (xi−1 − 1 = xi) OR (xi = xi+1 − 1) THEN

xi := xi + 1
END.

Program for processor pn−1:

IF (xn−2 = xn−1 = x0) OR (xn−2 = xn−1 + 1 = x0) THEN

xn−1 := xn−2 + 1

END.

The legitimate configurations for this problem are those in which exactly one
processor is privileged. The configurations x0 = · · · = xn−1 and x0 = · · · = xi �=
xi+1 = · · · = xn−1 are legitimate.

This algorithm self stabilizes; namely, starting from any initial configuration
the system achieves mutual exclusion. Given an initial configuration x0, x1, . . . ,
xn−1, and placing the processors on a line, consider each pair of neighbors pi−1

and pi, for i = 1, . . . , n−1 (note pn−1 and p0 are not considered here to be neigh-
bors). In this work we denote left arrow and right arrow, introduced in [Dij86],
by ’<’ and ’>’. Notation xi−1 < xi means xi = (xi−1 + 1) mod 3 and xi−1 > xi

means xi = (xi−1 − 1) mod 3. Thus, for each two neighboring processors with
states xi−1 and xi, either xi−1 = xi, or xi−1 < xi, or xi−1 > xi. For a given
configuration C = x0, x1, . . . , xn−1, Dijkstra introduces the function

f(C) = #left arrows + 2#right arrows . (1)

Example 1. For n = 7, a possible configuration C is x0 = 1, x1 = 1, x2 =
0, x3 = 1, x4 = 2, x5 = 2, x6 = 0. This configuration is denoted as [1 = 1 > 0 <
1 < 2 = 2 < 0]. For this configuration we have f(C) = 3 + 2 × 1 = 5.

It follows immediately from (1) that for any configuration C of n processors

0 ≤ f(C) ≤ 2(n− 1) . (2)

66 V. Chernoy, M. Shalom, and S. Zaks

Table 1. Dijkstra’s algorithm

Type Proc. C1 C2 ∆f

0 p0 x0 < x1 x0 > x1 +1

1 pi xi−1 > xi = xi+1 xi−1 = xi > xi+1 0

2 pi xi−1 = xi < xi+1 xi−1 < xi = xi+1 0

3 pi xi−1 > xi < xi+1 xi−1 = xi = xi+1 −3

4 pi xi−1 > xi > xi+1 xi−1 = xi < xi+1 −3

5 pi xi−1 < xi < xi+1 xi−1 > xi = xi+1 0

6 pn−1 xn−2 > xn−1 < x0 xn−2 < xn−1 −1

7 pn−1 xn−2 = xn−1 = x0 xn−2 < xn−1 +1

There are eight possible types of moves of the system: one possible move for
processor p0, five moves for any intermediate processor pi, 0 < i < n − 1, and
two moves for pn−1. These possibilities are summarized in Table 1. In this table
C1 and C2 denote the configurations before and after the move, respectively,
and ∆f = f(C2) − f(C1). In the table we show only the local parts of these
configurations. As an example, consider the type 0 move in which p0 is privileged.
In this case C1 and C2 are the local configurations x0 < x1 and x0 > x1,
correspondingly. Since one left arrow is replaced by a right arrow, we have ∆f =
f(C2) − f(C1) = 1.

It is proved that each execution is infinite (that is, there is always at least one
privileged processor). Then it is shown that p0 makes infinite number of moves.
Then the execution is partitioned into phases; each phase starts with a move of p0

and ends just before its next move. It is argued that the function f decreases at
least by 1 after each phase. By (2) it follows that Dijkstra’s algorithm terminates
after at most 2(n− 1) phases.

4 New Self-stabilizing Algorithm for Mutual Exclusion

In this section we present a new algorithm A for self-stabilization. Our discussion
includes the following steps. We first describe the new algorithm; we note the
issues in which it differs from Dijkstra’s algorithm, discuss its lower bound and
prove its correctness. We then introduce a new function h, with which we achieve
an upper bound, and finally provide a proof for the tight upper bound using
amortized analysis.

4.1 Algorithm A
Algorithm A is similar to Dijkstra’s algorithm with the following changes: moves
of types 4 and 5 are not allowed, and moves of type 6 do not depend on processor
p0. Informally Algorithm A allows the arrows to move and bounce (change di-
rection at p0 and pn−1) until they are destroyed by moves of type 3. New arrows
may be created by a move of type 7.

A Self-stabilizing Algorithm with Tight Bounds for Mutual Exclusion 67

Table 2. Algorithm A

Type Proc. C1 C2 ∆f̂ ∆f ∆h

0 p0 x0 < x1 x0 > x1 +1 +1 n − 2

1 pi xi−1 > xi = xi+1 xi−1 = xi > xi+1 0 0 −1

2 pi xi−1 = xi < xi+1 xi−1 < xi = xi+1 0 0 −1

3 pi xi−1 > xi < xi+1 xi−1 = xi = xi+1 0 −3 −(n + 1)

4

5

6 pn−1 xn−2 > xn−1 xn−2 < xn−1 −1 −1 n − 2

7 pn−1 xn−2 = xn−1, f̂ = 0 xn−2 < xn−1 +1 +1 n − 1

Program for processor p0:
IF x0 + 1 = x1 THEN

x0 := x0 + 2
END.

Program for processor pi, 1 ≤ i ≤ n − 2:
IF (xi−1 − 1 = xi = xi+1) OR (xi−1 = xi = xi+1 − 1) OR (xi−1 = xi + 1 = xi+1)
THEN

xi := xi + 1
END.

Program for processor pn−1:

IF (xn−2 = xn−1 = x0) OR (xn−2 = xn−1 + 1) THEN

xn−1 := xn−2 + 1

END.

We define the function f̂ for any configuration C as follows:

f̂(C) = (#left arrows − #right arrows) mod 3 . (3)

Recalling (1) we get: f̂(C) ≡ f(C) (mod 3) . Since ’<’ (resp. ’>’) is a shortcut
for xi − xi−1 ≡ 1 (mod 3) (resp. xi − xi−1 ≡ −1 (mod 3)), we have that
f̂(C) ≡ (xn−1 − x0) (mod 3). In particular f̂(C) = 0 iff xn−1 = x0.

We summarize the moves of algorithm A in Table 2. In this table we also
include the changes in the function f̂ and the function h (that will be introduced
in Section 4.5) implied by each move. We include the rows for moves 4 and 5
(that do not exist) to simplify the analogy to Dijkstra’s algorithm.

4.2 Lower Bound

We denote configurations by regular expressions over {<,>,=}. For example,[
<3==<>>

]
and

[
<3=2<>2

]
are possible notations for the configuration x0 <

x1 < x2 < x3 = x4 = x5 < x6 > x7 > x8. Note that this notation does not
lose relevant information, since the behavior of the algorithm is dictated by the
arrows (see Table 2).

68 V. Chernoy, M. Shalom, and S. Zaks

Theorem 1. The worst case stabilization time of algorithm A is at least 5
6n

2 −
O(n).

Proof (sketch). Assume n = 3k+ 3. For any 0 ≤ i ≤ k, let Ci :=
[
=3i<3k−3i+2

]
.

In particular, C0 is
[
<3k+2

]
and Ck is

[
=3k<<

]
. One can show (see [CSZ08b])

an execution with 3k+9i+7 moves, starting from Ci and ending at Ci+1. Then,
starting from C0 the execution reaches Ck in

∑k−1
i=0 (3k + 9i + 7) = 15

2 k2 + O(k)
moves. Substituting k = 1

3n − 1 we get 5
6n

2 −O(n). ��

4.3 Correctness

In this section we prove the correctness of algorithm A. It is similar to that of
[Dij86], but simpler, mainly since there are fewer cases to consider.

Lemma 1 (no deadlock). In any configuration at least one processor is priv-
ileged.

Proof. Assume, by contradiction, that there is deadlock in some configuration
C = [x0, x1, . . . , xn−1]. If xi > xi+1 for some i, then xi+1 > xi+2 and similarly
this will imply xj > xj+1, for every j ≥ i; thus pn−1 is privileged, a contradiction.
Hence we can assume there are no ’>’ arrows. Similarly there are no ’<’ arrows.
Therefore C is

[
=n−1

]
. In this case pn−1 is privileged, a contradiction. ��

Lemma 2. In any infinite execution, p0 makes an infinite number of moves.

Proof (sketch). Consider an infinite execution C0 → C1 → . . . → Ci → . . ., in
which starting from some configuration Ck0 , p0 doesn’t move. Then p1 is allowed
to make at most two moves, hence starting from some future configuration Ck1 ,
p1 and p0 do not move. By induction, for any 0 ≤ i ≤ n−2, there is a configura-
tion Cki , starting from which neither of p0, p1, . . . , pi move. Now, starting from
configuration Ckn−2 , pn−1 is allowed to make at most one move. Since no other
processor makes a move, we are deadlocked — a contradiction. ��

Given a segment e of an execution of algorithm A, ti(e) denotes the number of
type i moves in e. Our analysis shows that each execution eventually stabilizes,
and we are thus interested in its prefix until it reaches stabilization. For this
reason, through the paper we will denote such a prefix by E. We will use ti as a
shortcut for ti(E). In the discussion we will consider segments of E delimited by
two successive moves of type i; this will mean that each such segment starts with
the first type i move and ends just before the second type i move. For example,
a phase is a segment of E delimited by two successive moves of type 0.

Lemma 3. Assume e ⊆ E is a segment delimited by any two successive moves
of type 7. Then t0(e) + 2t6(e) ≡ 2 (mod 3).

Proof. After the first type 7 move f̂ = 1, before the second move f̂ = 0. The
only moves that change f̂ in e are the moves of type 0 (resp. 6), which increases
(resp. decreases) it by 1. Therefore 1 + t0(e) − t6(e) ≡ 0 (mod 3). ��

A Self-stabilizing Algorithm with Tight Bounds for Mutual Exclusion 69

Lemma 4. Assume e ⊆ E is a phase. Then

1. t3(e) ≥ 1.
2. t6(e) ≥ t7(e) − 1.

Proof (sketch).

1. The arrow ’>’ that is created in the first type 0 move must disappear, in
order to allow to an arrow ’<’ to reach the left end and to initiate the next
type 0 move.

2. If t7(e) ≤ 1, the claim holds trivially. Otherwise t7(e) ≥ 2, and there are
t7(e) − 1 segments in e each of which is delimited by two successive type
7 moves. For each such segment e′, t0(e′) = 0. Applying Lemma 3, we get
t6(e′) ≥ 1. Therefore t6(e) ≥ t7(e) − 1. ��

Lemma 5. Assume e ⊆ E is a phase. Then the function f decreases at least by
1 during e.

Proof. Using Lemma 4, we get that the function f decreases by (−1) · t0(e) +
(+3)·t3(e)+(−1)·t7(e)+(+1)·t6(e) ≥ −1·1+3·1−1·t7(e)+1·(t7(e)−1) = 1. ��

The above lemmas prove the following theorem:

Theorem 2 (correctness). Algorithm A self-stabilizes.

4.4 Basic Properties

Let a be the number of arrows in the initial configuration of E. Since the number
of arrows is always non-negative, we have a+t7−2t3 ≥ 0. Lemma 3 implies 2t7 ≤
t0 + 2t6. Starting with these basic inequalities, and exploring more properties
of the execution we derive a system of inequalities that allows us to get the
following bounds.

We start by informally introducing the term life-cycle of an arrow. We say
that a move of type 7 creates an arrow and in this way starts its life-cycle. A
move of type 3 destroys both arrows, ending their life-cycles. The life-cycle of
an arrow appearing in the initial configuration starts from that configuration.

Next we introduce the term mark. If an arrow is created by a move 7 it is
marked by ’7’. If an arrow makes a move of types 0 (resp. 6) it gets an additional
mark 0 (resp. 6). That allows us to introduce types of arrows — according to
marks collected during the execution.

Example 2. Arrow of type >60 starts its life-cycle from the initial configuration,
then it reaches processor pn−1 and makes a move of type 6. Afterwards it makes
n − 2 moves of type 2, reaches processor p0 and makes a move of type 0. After
making some, possibly 0, moves of type 1 it is destroyed. Only one arrow of
this type can be in the given execution and such an arrow can make at most 3n
moves during its life-cycle.

70 V. Chernoy, M. Shalom, and S. Zaks

Example 3. Arrow of type >70 starts its life-cycle by a move of type 7. Then it
reaches processor p0 and makes a move of type 0. Afterwards, it possibly makes
some moves of type 1. Such an arrow can make at most 2n moves.

Lemma 6. The execution E may contain arrows of the following types only: >,
>0, >70, >60, <, <7, <6.

Proof. Omitted.

The next step is to introduce the type of collision. Consider a move of type 3,
for short collision. The types of two arrows destroyed in the collision define the
type of the collision.

Example 4. Collision of type >60<7 is a move of type 3 that destroys arrows >60

and <7. Clearly, only one collision of such a type can occur during the execution.

Lemma 7. The execution E may contain collisions of the following types only:
><, ><7, ><6, >0<, >0<7, >0<6, >70<7, >60<7.

Proof. Omitted.

The following theorem presents the main property of algorithm A, and is the
basis of the subsequent analysis.

Theorem 3. t7 ≤ 1
3a.

Proof (sketch). We consider two cases:

1. Case 1: t6 = 0. Then by Lemma 3: 2t7 ≤ t0 and according to Lemma 4:
t0 ≤ t3. Hence, 4t7 ≤ 2t0 ≤ 2t3 ≤ a + t7 or 3t7 ≤ a.

2. Case 2: t6 > 0. The last move of type 6 divides the execution into two parts.
The first part ends with the last move of type 6. The second part starts after
the move and ends until stabilization. Clearly, this part is also not empty.
The first part: . . . 7 . . . 0 . . . 0 . . . 7 . . . 6 . . . 7 . . . 6 . . . 6 . . . 0 . . . 7 . . . 6.
The second part: . . . 0 . . . 7 . . . 0 . . . 0 . . . 7 . . . 0 . . . 0 . . . 0 . . . 0 . . . 7 . . . 0
Let’s denote by t01, t02, t31, t32, t71, t72 the number of moves of types 0,
3 and 7 in the first and second parts, respectively. Clearly, t0 = t01 + t02,
t3 = t31 + t32, t7 = t71 + t72.
Then, the following holds:
2t72 ≤ t02 ≤ t32 — see the case 1.
2t71 ≤ t01 + 2t6 — according to Lemma 4.
t71 + t01 + t6 ≤ t31 — any move of type 0, 6, 7 corresponds to a specific move
of type 3 (the only collisions that can occur in the first part of the execution
are ><, ><7, ><6, >0<). By the above inequalities, using LP techniques
(details are omitted) we get: t7 ≤ a

3 .
��

The following inequalities follow from the above:

A Self-stabilizing Algorithm with Tight Bounds for Mutual Exclusion 71

Lemma 8

1. t3 ≤ 2
3a.

2. t0 + t6 + t7 − t3 ≤ 1
3a ≤ 1

3n.
3. t0 + t6 + t7 + t3 = O(n).

Proof. Omitted.

Using the inequalities of Lemma 8, we now proceed in two ways — as detailed
in Section 2 — to derive the upper bound. We first use a potential function
(Section 4.5), and then amortized analysis, which enables us to track the route
made by each arrow, and thus achieve a tight bound (Section 4.6).

4.5 Upper Bound Using a Potential Function

We now introduce the function h. This function decreases by 1 during each move
of types 1 or 2 and decreases by (n+1) during each move of type 3. Unfortunately,
moves of other types increase the function. This exhibits the main technical
difficulty in applying this technique for bounding the time complexity. However,
by combining results of the previous section and the properties of h we manage
to derive the upper bound on the number of moves to reach stabilization.

Given a configuration C = x0, x1, . . . , xn−1, we define the function h(C) as
follows:

h(C) =
∑

1 ≤ i ≤ n − 1
xi−1 < xi

i +
∑

1 ≤ i ≤ n − 1
xi−1 > xi

(n− i) . (4)

The changes of the function h in each of the six possible types of moves are sum-
marized in Table 2. These changes can be obtained directly from the definition
of h. For example, for a move of type 0 we get that ∆h = (n− 1)− (1) = n− 2,
and for a move of type 3 ∆h = (0) − ((i + 1) + (n− i)) = −(n + 1).

Lemma 9. For any configuration C, 0 ≤ h(C) ≤ 3
4n

2.

Proof. Omitted.

Theorem 4. The stabilization time of algorithm A is bounded by 1 1
12n

2+O(n).

Proof. We denote by ∆hi the changes of h in a move of type i. Let C be the
initial configuration of E. Considering the last (may be legitimate) configuration
C′ of E, we get h(C′) = h(C) +

∑
i ti ·∆hi. By Lemma 9, h(C′) ≥ 0. Therefore

t1 + t2 ≤ h(C) +
∑

i	=1,2 ti · ∆hi ≤ h(C) + (t0 + t6 + t7 − t3)(n − 1). Applying
Lemmas 9 and 8 (part 2), we get: t1 + t2 ≤ 3

4n
2 + 1

3n · n = 1 1
12n

2. By Lemma 8
(part 3), the number of moves of other types is O(n). ��

4.6 Upper Bound Using Amortized Analysis

We define the weight of an arrow to be the number of moves of types 1 and 2
made by the arrow during its life-cycle. We also define the weight of a collision
to be the sum of weights of the two arrows participating in the collision.

72 V. Chernoy, M. Shalom, and S. Zaks

Clearly, the number of moves of both types 1 and 2 made by all arrows until
stabilization equals the sum of weights of all collisions occurred in the execution.

Consider the ith collision, for some i ≥ 1. Denote by a(i) the number of arrows
in the configuration in which the collision i occurs. Denote by t7(i) the number
of moves of type 7 made before the collision i. Clearly, a− 2i+ t7(i) = a(i). The
following key lemma is the main tool for estimating the weight of a collision.

Lemma 10. Consider the ith collision in the execution E. If the collision is of
any type except >60<7, its weight is bounded by max{2n, 2(n− a + 2i)}. If the
collision is of type >60<7, its weight is bounded by max{3n, 3(n− a + 2i)}.

Proof (sketch). The initial configuration has a arrows and n − a empty places
where arrows are allowed to move. i collisions destroy 2i arrows. Assume first
that t7(i) = 0, then the number of empty places where the arrows participating
in the collision are allowed to move is bounded by n − a(i) = n − a + 2i. And
hence, the weight of the collision is bounded by 2(n− a(i)) = 2(n− a+2i). Now
assume t7(i) > 0. The number of empty places is now n−a(i) = n−a+2i−t7(i).
But the weight of collision is bounded by 2(n− a(i) + t7(i)) = 2(n− a+ 2i). ��

Using the last lemma we compute the tight bound on the number of moves until
stabilization.

Theorem 5. The stabilization time of algorithm A is bounded by 5
6n

2 + O(n).

Proof (sketch). Note that Lemma 8 (part 3) bounds by O(n) the number of
moves of all types except for types 1 and 2. The number of these moves is
bounded as follows. By Lemma 10 we get

t1 + t2 ≤
t3∑

i=1

min{2(n− a + 2i), 2n} + 3n .

Using Lemma 8 (part 1), we then derive

t1 + t2 ≤
1
2 a∑

i=1

2(n− a + 2i) +

2
3 a∑

i= 1
2 a

2n + 3n =
4
3
an− 1

2
a2 + O(n) .

Since 0 < a < n it follows that t1 + t2 ≤ 5
6n

2 + O(n). ��

5 Analysis of Dijkstra’s Algorithm

In this section we present an improved analysis for the upper bound of Dijkstra’s
algorithm. Our discussion includes three steps. We first discuss its lower bound,
next we improve its upper bound by using the function h and finally provide a
proof for a better upper bound using amortized analysis. We use the definitions
and notations in earlier sections, in particular E is the prefix until stabilization
of any given execution of Dijkstra’s algorithm.

A Self-stabilizing Algorithm with Tight Bounds for Mutual Exclusion 73

5.1 Lower Bound

Theorem 6. The worst case stabilization time of Dijkstra’s algorithm is at least
1 5

6n
2 −O(n).

Proof (sketch). Assume n = 3k. For any 0 ≤ i ≤ k − 1, we define configuration
Ci :=

[
=3i<3k−3i−1

]
. For example C0 is

[
<3k−1

]
and Ck−1 is

[
=3(k−1)<<

]
. One

can show (see [CSZ08b]) an execution that takes 3k+27i+13 moves to go from
Ci to Ci+1. Then the execution starting from C0 takes:

∑k−2
i=0 (3k + 27i+ 13) =

33
2 k2 −O(k) moves to reach Ck−1. Substituting k = 1

3n we get 1 5
6n

2 −O(n). ��

5.2 Extended Properties of Dijkstra’s Algorithm

In this section we derive some properties of Dijkstra’s algorithm. They refine the
ones in [CSZ07], and enable us to improve the upper bound, as presented in the
next section.

The following is easily observed by inspection of Table 3 describing Dijkstra’s
algorithm.

Observation 1 ([CSZ07]). For any configuration C:

1. Any move of processor pi, 1 ≤ i ≤ n − 2, does not change the function f̂ ,
i.e., ∆f̂ = 0.

2. pn−1 is privileged according to case 7 iff f̂(C) = 0 and xn−2 = xn−1.
3. pn−1 is privileged according to case 6 iff f̂(C) = 2 and xn−2 > xn−1.
4. After processor pn−1 makes a move (case 6 or 7), we reach a configuration

C such that f̂(C) = 1.

We summarize the changes of the functions f̂ implied by each move in Table 3.
In this table we also include the changes of function h (to which we will return
back later).

For any execution E, we denote by |E| the number of moves in E. Let ar

(resp. al) be the number of ’>’ (resp. ’<’) arrows in the initial configuration of
given execution. Let also a = al + ar. Moves of types 3, 4 and 5 are termed
collisions. Intuitively, an execution with maximal number of moves must contain
no moves of type 3, since such collisions destroy two arrows while other collisions
destroy only one arrow. The following key lemma allows to focus on executions
E with t3(E) = 0, and is the basis for the amortized analysis in Section 5.3.

Lemma 11. For every execution E, there is an execution E′ containing no
moves of type 3, such that |E′| ≥ |E| −O(n).

Proof. See [CSZ08b].

In particular for any worst case execution E there is an execution E′ (t3(E′) = 0)
with the same number of moves up to a term of O(n). As we are interested in
O(n2) bounds, we will ignore this term and assume without loss of generality
that a worst case execution does not contain type 3 moves.

From now on we consider only executions, such that t3 = t3(E) = 0.

74 V. Chernoy, M. Shalom, and S. Zaks

Table 3. Dijkstra’s algorithm

Type Proc. C1 C2 ∆f̂ ∆f ∆h

0 p0 x0 < x1 x0 > x1 +1 +1 n − 2

1 pi xi−1 > xi = xi+1 xi−1 = xi > xi+1 0 0 −1

2 pi xi−1 = xi < xi+1 xi−1 < xi = xi+1 0 0 −1

3 pi xi−1 > xi < xi+1 xi−1 = xi = xi+1 0 −3 −(n + 1)

4 pi xi−1 > xi > xi+1 xi−1 = xi < xi+1 0 −3 3i − 2n + 2 ≤ n − 4

5 pi xi−1 < xi < xi+1 xi−1 > xi = xi+1 0 0 n − 3i − 1 ≤ n − 4

6 pn−1 xn−2 > xn−1, f̂ = 2 xn−2 < xn−1 −1 −1 n − 2

7 pn−1 xn−2 = xn−1, f̂ = 0 xn−2 < xn−1 +1 +1 n − 1

Lemma 12 ([CSZ07])

1. Assume e ⊆ E is a segment delimited by any two successive moves of pro-
cessor pn−1 where the second move is of type 6. Then t0(e) ≥ 1.

2. Assume e ⊆ E is a segment delimited by any two successive moves of pro-
cessor pn−1 where the second move is of type 7. Then t0(e) ≥ 2.

3. Assume e ⊆ E is a phase. Then t4(e) ≥ 1.

Lemma 13

1. Assume e ⊆ E is a segment delimited by any two successive moves of pro-
cessor pn−1 where the second move is of type 6. Then t5(e) ≥ 1.

2. ar − 2t4 + t5 + t0 − t6 ≥ 0 .
3. al − 2t5 + t4 − t0 + t6 + t7 ≥ 0 .

Proof (sketch). The proof of 1 is omitted. The proofs of 2 and 3 follow from
counting the number of left and right arrows in any configuration. ��

We summarize all constraints of Lemmas 12 and 13 in the following system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t6 + 2t7 ≤ t0
t0 ≤ t4
t6 ≤ t5
0 ≤ ar − 2t4 + t5 + t0 − t6
0 ≤ al − 2t5 + t4 − t0 + t6 + t7
al + ar ≤ a

Using LP techniques (whose details are omitted here) it can be shown that:

Lemma 14

1. t7 ≤ 2
3a.

2. t0 ≤ 4
3a.

3. t4 + t5 ≤ 5
3a.

4. t0 + t4 + t5 + t6 + t7 ≤ 3 2
3a ≤ 3 2

3n.

A Self-stabilizing Algorithm with Tight Bounds for Mutual Exclusion 75

5.3 Upper Bound Analysis

We now present the upper bound analysis for Dijkstra’s algorithm. We start
by using the tool of potential functions. It turns out that we can use the same
function h above (see (4)). Clearly, all the properties of this function, including
Lemma 9, are applied here too, and we can get:

Theorem 7. The stabilization time of Dijkstra’s algorithm is bounded by 4 5
12n

2

+ O(n).

Proof (sketch). Since t3 = 0: t1 + t2 ≤ h(C) + (t0 + t4 + t5 + t6 + t7)(n − 1).
Applying Lemmas 9 and 14 (part 4), we get t1 + t2 ≤ 3

4n
2 +3 2

3n ·n = 4 5
12n

2. ��

As in the case of algorithm A, the amortized analysis tool enables us to derive a
better bound. We extend the notation from Section 4.6: a move of type 4 (resp.
5) destroys two arrows and creates a new arrow of type ’<4’ (resp. ’>5’).

Example 5. An arrow of type <56 starts its life-cycle by being created by a move
of type 5, then it reaches processor pn−1 and makes a move of type 6. Afterwards,
it possibly makes some moves of type 2. Clearly, such an arrow may make at
most 2n moves during its life-cycle.

Example 6. An arrow of type >60 is possible in the execution. Assume an arrow
makes a move of type 6, as the execution is before stabilization, the configuration
contains other arrows (necessarily at the left side of the arrow). All these arrows
must be destroyed to allow the arrow to reach processor p0. At the same time new
arrows may be created by type 7 moves, so that the system remains unstabilized.

Lemma 15. The execution E may contain arrows of the following types only:
>, >5, >0, >40, >70, <, <4, <7, <6, <56.

Proof. Omitted.

Example 7. A collision of type <56<56 is a collision of two arrows having the
same type <56. Clearly, the weight of the collision is bounded by 4n.

Lemma 16. The execution E contains at most one collision of type <6<56, and
at most 1

6 t0 collisions of type <56<56.

Proof (sketch). We omit the proof of the first part of the lemma. The second
part is implied by the the fact that between two such collisions there are two
moves of type 7 and two moves of type 6, and hence between every two collisions
of that type there are at least 6 moves of type 0. ��

Our purpose is to find an estimation for the sum of weights of all collisions
occurred in the execution. Let’s consider ith collision (i ≥ 1). We denote by a(i)
the number of arrows in the configuration in which the collision i occurs. Recall
that a denotes the number of arrows in the initial configuration. Let’s denote
by t7(i) the number of moves of type 7 made before the collision i occurs. Since
t3 = 0, a−i+t7(i) = a(i) holds. The following key lemma allows tighter estimate
of the weight of collisions (its proof is similar to that of Lemma 10):

76 V. Chernoy, M. Shalom, and S. Zaks

Lemma 17. Consider the ith collision in the execution E. If the collision is
of any type except <56<56 and <6<56, its weight is bounded by min{3n, 3(n −
a + i)}. If the collision is of type <56<56 or <6<56, its weight is bounded by
min{4n, 4(n− a + i)}.

Using the last lemma we compute a tighter bound on the number of moves until
stabilization.

Theorem 8. The stabilization time of Dijkstra’s algorithm is bounded by 3 13
18n

2

+ O(n).

Proof (sketch). Note that Lemma 14 bounds by O(n) the number of moves of
all types except for types 1 and 2. In order to estimate the number t1 + t2 of
these moves, we consider two cases:

1. The execution does not contain collisions of types <56<56 or <6<56. In this
case

t1+t2 ≤
t4+t5∑
i=1

min{3(n−a+i), 3n} =
a∑

i=1

3(n−a+i)+

5
3 a∑

i=a

3n ≤ 3
1
2
n2+O(n) .

2. The execution contains collisions of types <56<56 or <6<56. According to
Lemma 16, the number of <56<56 collisions is bounded by 1

6 t0 ≤ 2
9a, and the

number of <6<56 collisions is bounded by one. In this case we estimate the
total weight of all collisions by giving 4n weight to the last 2

9a+ 1 collisions:

t1 + t2 ≤
a∑

i=1

3(n− a + i) +

5
3 a− 2

9 a−1∑
i=a

3n +

5
3 a∑

i= 5
3 a− 2

9 a−1

4n ≤ 3
13
18

n2 + O(n) .

��

6 Conclusion

In this work we presented a new three state self-stabilizing algorithm for mutual
exclusion for a ring of processors, and showed a tight bound of 5

6n
2 + O(n)

for its time complexity. For the upper bound we used two techniques: potential
functions and amortized analysis; the first technique is simpler, but the second
one leads to the tight bound. Our algorithm has a better worst case performance
than two known three-state algorithms; namely, Dijkstra’s algorithm and the one
in [BD95]. We also improved the analysis of Dijkstra’s algorithm and showed an
upper bound of 3 13

18n
2 + O(n) and a lower bound of 1 5

6n
2 −O(n).

References

[BD95] Beauquier, J., Debas, O.: An optimal self-stabilizing algorithm for mutual
exclusion on bidirectional non uniform rings. Proceedings of the Second
Workshop on Self-Stabilizing Systems 13, 17.1–17.13 (1995)

A Self-stabilizing Algorithm with Tight Bounds for Mutual Exclusion 77

[BGM89] Burns, J.E., Gouda, M.G., Miller, R.E.: On relaxing interleaving assump-
tions. In: Proceedings of the MCC Workshop on Self-Stabilizing Systems,
MCC Technical Report No. STP-379-89 (1989)

[BJM06] Beauquier, J., Johnen, C., Messika, S.: Brief announcement: Computing au-
tomatically the stabilization time against the worst and the best schedules.
In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 543–547. Springer,
Heidelberg (2006)

[CG02] Cobb, J.A., Gouda, M.G.: Stabilization of general loop-free routing. Journal
of Parallel and Distributed Computing 62(5), 922–944 (2002)

[CGR87] Chang, E.J.H., Gonnet, G.H., Rotem, D.: On the costs of self-stabilization.
Information Processing Letters 24, 311–316 (1987)

[CSZ07] Chernoy, V., Shalom, M., Zaks, S.: On the performance of Dijkstra’s third
self-stabilizing algorithm for mutual exclusion. In: 9th International Sym-
posium on Stabilization, Safety, and Security of Distributed Systems (SSS),
Paris, November 2007, pp. 114–123 (2007)

[CSZ08a] Chernoy, V., Shalom, M., Zaks, S.: On the performance of Beauquier
and Debas’ self-stabilizing algorithm for mutual exclusion. In: Shvartsman,
M.M.A.A., Felber, P. (eds.) SIROCCO 2008. LNCS, vol. 5058, pp. 221–233.
Springer, Heidelberg (2008)

[CSZ08b] Chernoy, V., Shalom, M., Zaks, S.: A self-stabilizing algorithm with tight
bounds for mutual exclusion on a ring. Technical Report CS-2008-09, De-
partment of Computer Science, Technion, Haifa, Israel (July 2008)

[Dij74] Dijkstra, E.W.: Self stabilizing systems in spite of distributed control. Com-
munications of the Association of the Computing Machinery 17(11), 643–644
(1974)

[Dij86] Dijkstra, E.W.: A belated proof of self-stabilization. Distributed Comput-
ing 1, 5–6 (1986)

[Dol00] Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
[Kes88] Kessels, J.L.W.: An exercise in proving self-stabilization with a variant func-

tion. Information Processing Letters 29, 39–42 (1988)
[Kru79] Kruijer, H.S.M.: Self-stabilization (in spite of distributed control) in tree-

structured systems. Information Processing Letters 8, 91–95 (1979)
[NKM06] Nakaminami, Y., Kakugawa, H., Masuzawa, T.: An advanced performance

analysis of self-stabilizing protocols: stabilization time with transient faults
during convergence. In: 20th International Parallel and Distributed Process-
ing Symposium (IPDPS 2006), Rhodes Island, Greece, April 25-29 (2006)

[TTK00] Tsuchiya, T., Tokuda, Y., Kikuno, T.: Computing the stabilization times of
self-stabilizing systems. IEICE Transactions on Fundamentals of Electronic
Communications and Computer Sciences E83A(11), 2245–2252 (2000)

Fast Distributed Approximations in Planar

Graphs

Andrzej Czygrinow1, Michal Hańćkowiak2,�, and Wojciech Wawrzyniak3,��

1 Department of Mathematics and Statistics
Arizona State University

Tempe, AZ 85287-1804, USA
andrzej@math.la.asu.edu

2 Faculty of Mathematics and Computer Science
Adam Mickiewicz University, Poznań, Poland

mhanckow@amu.edu.pl
3 Faculty of Mathematics and Computer Science

Adam Mickiewicz University, Poznań, Poland
wwawrzy@amu.edu.pl

Abstract. We give deterministic distributed algorithms that given δ >
0 find in a planar graph G, (1 ± δ)-approximations of a maximum in-
dependent set, a maximum matching, and a minimum dominating set.
The algorithms run in O(log∗ |G|) rounds. In addition, we prove that no
faster deterministic approximation is possible and show that if random-
ization is allowed it is possible to beat the lower bound for deterministic
algorithms.

1 Introduction

In recent years, there has been a growing interest in designing distributed ap-
proximation algorithms for special families of networks. In particular, efficient
(in the model described below) distributed algorithms for some problems in
constant-degree graphs, unit-disc graphs, or planar networks have been recently
proposed. In contrast, for general networks most of the problems that admit easy
solutions in special classes of graphs seem either unapproachable or are prov-
ably intractable (see for example [KMW04]). In this paper, we give determin-
istic distributed approximation algorithms for the maximum independent set,
the maximum matching, and the minimum dominating set problems in planar
graphs. The algorithms run O(log∗ |G|) rounds and find a (1± δ)-approximation
in a planar graph G. In addition, we prove lower bounds for the time complex-
ity of deterministic approximation algorithms and show that if randomization is
allowed then it is possible to beat the lower bound for deterministic procedures
and give faster solutions.

� This work was supported by grant N206 017 32/2452 for years 2007-2010.
�� This work was supported by grant N206 017 32/2452 for years 2007-2010.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 78–92, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Fast Distributed Approximations in Planar Graphs 79

1.1 Model of Computations and Notation

We will work in a synchronous, message-passing model of computations (model
LOCAL in [Pe00]). In this model a graph is used to represent an underlying
network. Vertices of the graph correspond to computational units, and edges
represent communication links. The network is synchronized and in one round a
vertex can send, receive messages from its neighbors, and can perform some local
computations. Neither the amount of local computations nor the size of messages
sent is restricted in any way. Consequently, in this model in a graph of diameter
t, any graph-theoretic function can be computed in O(t) rounds. In addition, we
assume that vertices have unique identifiers from {1, . . . , |G|} where |G| is the
order of the underlying graph G. In some applications graphs will have additional
weights. The interpretation of the weights depends on specific applications and
they do not impact the communication in any way. We will mostly follow [D05]
in graph-theoretic terminology. In particular, we will use |G| to denote the order
of graph G and ||G|| to denote the size of G.

1.2 Related Work

Theory of distributed approximation algorithms has attracted some attention re-
cently. For a nice overview of important results in this area the reader is referred
to the survey by Elkin [E04]. Although there are very few deterministic dis-
tributed approximation algorithms that run in o(|G|) rounds in a general graph
G, in the case when the underlying network has additional properties, algorithms
that give a non-trivial approximation are much easier to design. The most em-
inent example is the classical algorithm of Cole and Vishkin from [CV86]. The
algorithm finds in O(log∗ |G|) rounds a maximal independent set in a constant-
degree graph G and provides therefore a constant approximation for the maxi-
mum independent set problem in this type of a network. Results of Linial ([L92])
and Naor ([N91]) give matching Ω(log∗ |G|) lower bounds for the running time
of deterministic and randomized distributed algorithm that find a maximal inde-
pendent set in a cycle and show that the log∗ |G| running time cannot be beaten
if one expects exact, non-approximate, solutions. Similarly, in the case of unit-
disk graphs, it is possible (see [KMNW05a], [KMNW05b], [CH06b], or [SW08])
to give fast approximation algorithms for many graph-theoretic problems that
seem intractable in general networks.

In planar graphs, approximations that run in the poly-logarithmic number of
rounds and give the approximation error of (1±O(1/ logk |G|) are known for all
problems discussed in this paper ([CHS06], [CH06a]). However if one is willing
to accept a larger approximation error (for example (1±δ)) but in a much faster
fashion (say in O(log∗ |G|) or O(1) rounds) then the methods from [CHS06] or
[CH06a] do not give any indication if such algorithms are possible to obtain. In
addition, it has not been clear if approximation problems are significantly easier
than the original Maximal Independent Set problem and if it is possible to beat
the log∗ |G| bound and give O(1)-running time algorithms that find approximate
solutions. In this direction, very recently and independently of the work in this

80 A. Czygrinow, M. Hańćkowiak, and W. Wawrzyniak

paper, Lenzen, Oswald, and Wattenhofer ([LOW08]) gave a 71-approximation for
the minimum dominating set problem that runs in O(1) rounds and Lenzen, Wat-
tenhofer proved in [LW08] a lower bound which is identical with our result from
Section 4.1. The arguments from [LW08] and Section 4.1 are completely different.

1.3 Results

We will prove a few results on distributed approximations in planar graphs.
The main result is a collection of deterministic distributed algorithms which ap-
proximate a maximum independent set, a maximum matching, and a minimum
dominating set in planar graphs. The algorithms run in O(log∗ |G|) rounds. In
addition, we prove that no deterministic algorithm can run faster and give an ap-
proximation error achieved by our algorithms. At the same time, we note that an
easy randomized procedure beats the lower bound for deterministic algorithms
and with high probability finds a (1±δ)-approximation and runs in O(1) rounds.

More formally, we show that there is a deterministic distributed algorithm
which for a given δ > 0 finds in a planar graph G an independent set I of size
which is at least (1 − δ)α(G) where α(G) is the independence number of G.
The algorithm runs in O(log∗ |G|) rounds (Theorem 4). Algorithms with a simi-
lar performance can be obtained for the maximum matching problem (Theorem
5), and for the minimum dominating set problem (Theorem 6). In addition, in
the case of the maximum independent set problem, the weighted version of the
problem can be approximated in O(log∗ |G|) rounds (Theorem 4). These results
are complemented by some lower bounds. We prove that for any c > 0, no de-
terministic distributed algorithm can find a c-approximation of the maximum
independent set in a planar graph G in o(log∗ |G|) rounds, nor there is a de-
terministic distributed algorithm that finds a c-approximation of a maximum
matching in a planar graph G in o(log∗ |G|) rounds (Section 4.1). In the case of
the dominating set problem the situation is different and it is possible to find
a O(1)-approximation in O(1) rounds (see [LOW08] or Section 3.3) but for any
δ > 0 there is no deterministic algorithm which in o(log∗ |G|) rounds finds a
(5 − δ)-approximation of a minimum dominating set in a planar graph G (Sec-
tion 4.1). Finally, we note that an easy randomized procedure can find with high
probability a (1−δ)-approximation of the maximum independent set in a planar
graph in O(1) rounds (Section 4.2) and so in the case randomness is allowed,
approximation is significantly easier than solving the Maximum Independent Set
problem.

1.4 Organization

In the next section, we describe a partitioning algorithm which is used in Section 3
to obtain deterministic approximations for the maximum independent set, the
maximum matching, and the minimum dominating set problems. In Section 4 we
give lower bounds and discuss randomized algorithms.

Fast Distributed Approximations in Planar Graphs 81

2 Clustering Algorithm

In this section, we give a deterministic algorithm which in O(log∗ |G|) rounds
finds a partition of a weighted planar graph with the property that the weight
of the edges between different partition classes is significantly smaller than the
total weight of the graph. The procedure is invoked in the next section to give
approximation algorithms. We will consider weighted graphs with weights de-
fined on vertices as well as weights defined on edges. For a graph G = (V,E) we
will use ω : V → R+ to denote a vertex-weight function and ω̄ : E → R+ to
denote a edge-weight function. In addition, we will sometimes slightly abuse the
notation and if F is a subgraph of G = (V,E) with ω̄ : E → R+ (or ω : V → R+)
then ω̄(F) (or ω(F)) will be used to denote ω̄(E(F)) (or ω(V (F))). If P is a
path then the length of P will be the number of edges in P (i.e |P | − 1).

In the course of computations we will be contracting connected subgraphs
of a planar graph and recomputing the weights. Specifically, if G = (V,E) is a
planar graph, ω̄ : E → R+ , and U1, U2, . . . , Ul are pair-wise disjoint subsets of
V such that G[Ui] is connected then we define G̃ to be the weighted graph in
which every Ui is contracted to a vertex and for u, u′ ∈ V (G̃) with u �= u′ we set

ω̄G̃(u, u′) =
∑

x∈U,y∈U ′
ω̄(x, y) (1)

where U = Ui if u is obtained by contracting Ui and U = {u} otherwise (the
same for U ′). We proceed with a few auxiliary definitions and facts.

Definition 1. A directed graph −→
F such that the maximum out-degree in F is

one is called a pseudo-forest.

If −→F is a directed graph then we use F to denote the graph obtained from −→
F by

ignoring the orientation of edges.

Fact 1. Let G = (V,E) be a planar graph with edge-weight function ω̄ : E →
R+. There is a distributed procedure which in two steps finds a pseudo-forest −→

F
such that F is a subgraph of G and ω̄(F) ≥ ω̄(G)/6.

Proof. First we show that there exists a pseudo-forest −→F such that F is a subgraph
of G and ω̄(F) ≥ ω̄(G)/3. Indeed, since G is planar its edge set is the union of at
most 3 forests by the theorem of Nash-Williams. Now, select the heaviest forest
and root the trees to obtain the desired graph F with ω̄(F) ≥ ω̄(G)/3. Next we
prove that a desired pseudo-forest can be obtained by a distributed procedure.
Consider the following simple algorithm. Every vertex v selects the heaviest edge
{u, v} incident to v and puts the orientation from v to u. If an edge has been
assigned the orientation in both directions then one of them is selected arbitrarily.
Clearly the obtained graph is a pseudo-forest. Since G is the union of three forests
F1, F2, F3 and 2ω̄(F) ≥ max{ω̄(Fi)}, we have ω̄(F) ≥ ω̄(G)/6. ��

In addition we have the following simple fact.

Fact 2. If −→F is a connected pseudo-forest such that the diameter of F is d then−→
F contains a directed path of length at least d/2.

82 A. Czygrinow, M. Hańćkowiak, and W. Wawrzyniak

We develop some more notation which will be used in the next procedure. Let−→
F be a pseudo-forest vertices of which are properly colored with colors from
some set S. For a vertex v and for a set of colors C ⊂ S, let in(v, C) be the set
of arcs (u, v) (from u to v) such that the color of u is in C and let out(v, C) be
defined analogously. If C is empty then in(v, C) and out(v, C) are empty and
their weights are equal to zero.

HeavyStars

1. Find a pseudo-forset −→
F in G using the procedure from Fact 1.

2. Use Cole-Vishkin algorithm [CV86] to properly color the vertices of −→F using
colors from {1, 2, 3}.

3. For every non-isolated vertex v in parallel:
(a) If color of v is 1 then v marks all edges from in(v,{2, 3}) if ω̄(in(v,{2, 3}))>

ω̄(out(v, {2, 3})) and v marks the edge from out(v, {2, 3}) otherwise.
(b) If color of v is 2 then v marks all edges from in(v, {3}) if ω̄(in(v, {3})) >

ω̄(out(v, {3})) and v marks the edge from out(v, {3}) otherwise.
4. Let Qi’s denote connected components of the graph induced by marked

edges. In parallel, find in each Qi vertex-disjoint stars with weight of at least
ω̄(Qi)/2 and return them. (This is easily accomplished by rooting Qi’s and
considering odd and even levels.)

Lemma 1
diam(Qi) < 10.

Proof. Suppose diam(Qi) ≥ 10. Then from Fact 2, there is a directed path of
length at least 5. If there is an internal vertex v in the path of color 1 then
either the edge coming to v or coming out of v (but not both) is marked by 3(a).
Otherwise, since the length is at least 5, there must be an internal vertex of color
2 with both of its neighbors of color 3 and by 3(b) only one of these edges can
be marked. ��

Lemma 2. HeavyStars returns stars of weight at least ω̄(G)/24 and runs in
O(log∗ |G|) rounds.

Proof. From Fact 1, we have ω̄(F) ≥ ω̄(G)/6. Every edge of F has either one
endpoint in color 1 and the second from {2, 3} or one endpoint in color 2 another
in color 3. Consequently the edges considered in steps 3(a) and 3(b) form a
partition of E(F) and so the weight of the union of Qi’s is at least half of the
the weight of F . Finally, the stars will have at least half of the weight of Qi’s and
so the weight of them is at least ω̄(G)/24. The first, third, and the fourth step
require O(1) rounds and the coloring from step two can be found in O(log∗ |G|)
rounds. ��

Fast Distributed Approximations in Planar Graphs 83

We will now describe the clustering algorithm. The procedure takes 0 < ε < 1
as an input.

Clustering

1. H := G
2. Iterate �

(
log
(

1
ε

)
/ log

(
24
23

))
� times:

(a) Call HeavyStars to find vertex-disjoint stars in H .
(b) Modify H by contracting each star to a vertex and computing the weights

as in (1).
3. Let W denote the set of vertices contracted to w. Return {W |w ∈ V (H)}.

Lemma 3. Given 0 < ε < 1, Clustering finds a partition (V1, . . . , Vl) of V (G)
such that if G̃ is obtained by contracting each of Vi’s and recomputing the weights
as in (1) then

ω̄(G̃) ≤ εω̄(G).

The algorithm runs in O(log∗ |G|) rounds.

Proof. From Lemma 2 in each iteration the algorithm contracts the stars of
weight which is at least 1/24 of the total weight of the graph. Consequently
after l iterations the weight of graph H is at most

(
23
24

)l
ω̄(G) ≤ εω̄(G) if l =

�
(
log
(

1
ε

)
/ log

(
24
23

))
�. The running time is O(log∗ |G|) from Lemma 2. ��

3 Approximating Algorithms

In this section, we will use the clustering procedure from the previous section to
give deterministic distributed approximations.

3.1 Maximum-Weight Independent Set

We will start with the maximum-weight independent set problem. Let G = (V,E)
be a planar graph with ω : V → R+. For an edge {u, v} ∈ E, define

ω̄({u, v}) = min{ω(u), ω(v)}. (2)

We have the following fact.

Fact 3
ω̄(G) ≤ 3ω(G).

Proof. From Nash-Williams theorem G has an orientation such the out-degree is
at most three. For an oriented edge (u, v) (from u to v) we have the weight of
the edge to be at most ω(u). Since the out-degree is at most three, a vertex can
be the starting point of at most three edges. ��

To approximate a maximum-weight independent set we will invoke a modified
procedure from [CH06c]. This algorithm proceeds as follows. First, consider the

84 A. Czygrinow, M. Hańćkowiak, and W. Wawrzyniak

edge-weighted graph with weights from (2) and invoke Clustering to find a
partition (V1, . . . , Vl) of V (G). Then find optimal independent sets Ii in each of
the G[Vi]. (Note that the diameter of G[Vi] is O(1).) Finally correct the solution
obtained in the previous step by deleting u from Ii if {u, v} is the edge with
v ∈ Ij and ω(u) < ω(v) (In the case the weights are equal use the identifiers
to break the symmetry). Using a similar argument to the one from [CH06c] we
obtain:

Theorem 4. There is a deterministic distributed algorithm which for given 0 <
δ < 1 finds in a planar weighted graph G = (V,E) with ω : V → R+ an
independent set I of weight which is at least (1 − δ)OPT where OPT denotes
the weight of a max-weight independent set. The algorithm runs in O(log∗ |G|)
rounds.

Proof Outline. Since G is planar, OPT ≥ ω(G)/4 as χ(G) ≤ 4. Let I be the union
of Ii’s before the correction step. Then ω(I) ≥ OPT as the procedure finds the
optimal solution in each of G[Vi]’s and the restriction of any independent set
to Vi is an independent set. In the correction step, for every edge between two
different clusters we delete one of its endpoints, weight of which is at most the
weight of the edge by (2). Consequently, the total weight of deleted vertices is
at most the weight of edges between different clusters. By Fact 3, the weight of
deleted vertices is at most

εω̄(G) ≤ 3εω(G) ≤ 12εOPT = δOPT

provided ε = δ/12. ��

Unlike the maximum independent set problem, in the case of matchings and
dominating sets we can only give algorithms for the un-weighted versions of
these problems. The reason is very simple, since G is planar, we know that
the optimal solution to the maximum-weight independent set problem is of size
proportional to ω(G). This however is not the case for the weight of an optimal
solution to the max-wight matching or the min-weight dominating set problem.
In fact, even when the weights are all equal to one, an optimal solution to the
above two problems can be substantially smaller than the order of the graph.
However, in the case a graph G is un-weighted, one can use simple preprocessing
to reduce G to a graph where optimal solution is of size which is proportional
to its order.

3.2 Maximum Matching

In the case of the maximum matching problem we can adopt the ideas from
[CHS06] to show:

Theorem 5. There is a deterministic distributed algorithm which for given 0 <
δ < 1 finds in a planar graph G = (V,E) in O(log∗ |G|) rounds a matching M
such that

|M | ≥ (1 − δ)β(G)

where β(G) is the size of a maximum matching in G.

Fast Distributed Approximations in Planar Graphs 85

Proof Outline. The algorithm is similar to the one from [CHS06]. First, from
[CHS06] (Lemma 6), we know that if induced stars of size at least two and
induced double stars of size at least three are eliminated from G so that only
one edge from a star and two paths of length two from each double star are left
(which can be done in O(1) rounds) then the matching in the new graph G′ will
be of size Ω(|G′|). Since at most one edge from a single star and at most two
edges from a double star can be in a matching in G, we have β(G) = β(G′).
Second, in G′ we invoke the procedure Clustering and find a partition of G′

(the edge weights are initially equal to one). Finally, in each subgraph induced by
partition classes we find an optimal solution, which can be done in O(1) rounds,
and return the union. The fact that the error of approximation is as claimed can
be verified in the same way as in the argument for Theorem 4. ��

3.3 Minimum Dominating Set

In the case of the dominating set, we must do some more preprocessing. Specif-
ically, the algorithm first finds a constant approximation of the minimum dom-
inating set in O(1) rounds and then proceeds to improve this approximation
and finds a dominating set of size (1 − δ)γ(G) where γ(G) is the size of a min-
imum dominating set in G. To complete the second step O(log∗ |G|) rounds
are needed. As noted in the introduction, recently in [LOW08], a O(1)-rounds
71-approximation of the minimum dominating set for planar graphs is given.
Although the constant approximation is not the focus of this paper we briefly
describe an alternative way for finding a O(1)-approximation in Section A. Using
a similar argument as in the case of matchings we have:

Theorem 6. There is a deterministic distributed algorithm which for given 0 <
δ < 1 finds in a planar graph G = (V,E) in O(log∗ |G|) rounds a dominating set
D such that

|D| ≤ (1 + δ)γ(G)

where γ(G) is the size of a minimum dominating set in G.

Proof. The algorithm is similar to the one from [CH06a]. After a constant ap-
proximation is obtained using the procedure from Lemma 9 from Section A or
the algorithm from [LOW08], we proceed in the following fashion. Let D =
{w1, . . . , wk} denote the dominating set obtained from the preprocessing phase.
Then

|D| ≤ cγ(G) (3)

for some constant c. A partition (W1, . . . ,Wk) of V (G) is obtained by every
vertex of G joining the group of exactly one of the vertices from D that dominates
it. Then k = |D| and each Vi induces a graph of diameter at most two in G. We
contract Vi’s to obtain a planar graph H and set the weights of the edges to be
equal to one. Note that ||H || < 3k. Set ε = δ/(6 · c) and use Clustering to find
a partition (V1, . . . , Vl) of V (H) which by Lemma 3 is such that the weight of
the edges between different clusters is at most ε||H ||. Un-contract Vi’s and Wi’s
to obtain a partition (U1, . . . , Ul) of V (G). Finally in each of G[Ui]’s (which has

86 A. Czygrinow, M. Hańćkowiak, and W. Wawrzyniak

a constant diameter) find an optimal dominating set Di and return the union
of these dominating sets. The running time of the algorithm is O(log∗ |G|). To
prove the approximation error, let D∗ be a minimum dominating set in G and
let D̄ be obtained from D∗ by adding all vertices wi from D with the property
that a vertex in Wi ⊂ Uj has a neighbor in V \ Uj . We have

|D̄| ≤ |D∗| + 2ε||H || < γ(G) + 6ε|D| ≤ γ(G)(1 + δ)

from (3). In addition
|
⋃

Di| ≤ |D̄|

as D̄ ∩ Ui is a dominating set in G[Ui] and Di is an optimal solution in G[Ui].
Therefore, |

⋃
Di| ≤ (1 + δ)γ(G). ��

4 Lower Bounds and Randomization

In this section, we will establish lower bounds for deterministic approximation
algorithms and discuss randomized procedures.

4.1 Lower Bounds

Our lower bounds will be based on the general Ramsey’s theorem (see for ex-
ample [We01]). It is known (see [Pa99]) that Ramsey’s theorem can be used to
argue that no deterministic distributed algorithm can properly color a cycle C
with O(1) colors and run in o(log∗ |C|) rounds. We will first use this method
to establish similar results for approximation algorithms. Let R(2,m; l) denote
the least number of vertices n such that in any 2-coloring of the edges of the
complete l-uniform hypergraph on n vertices there is a monochromatic com-
plete sub-hypergraph on m vertices. The general Ramsey’s theorem shows that
R(2,m; l) is finite and a proof of the theorem provides a tower-type upper bound
(height of tower is proportional to l) for R(2,m; l).

Lemma 4. For any positive integer T there is no deterministic distributed algo-
rithm that finds in a cycle on n vertices an independent set of size Θ(n/ log(2T) n)
in T rounds. There is no deterministic distributed algorithm that finds an inde-
pendent set of size Θ(n/ log∗ n) in a cycle on n vertices in o(log∗ n) rounds.

Proof. For notational convenience we will assume that if S = {i1, . . . , il} is a
subset of [n] := {1, . . . , n} with l elements then the elements are indexed so that
ik < il when k < l. Let C be a cycle with V (C) = [n]. For a distributed algorithm
A that finds in T rounds an independent set in C, let FA :

(
[n]

2T+1

)
→ {0, 1} be

defined by FA({i1, . . . , i2T+1}) = 1 if and only if iT+1 is selected by A to the
independent set provided i1, i2, . . . i2T+1 is a path in C. Then FA is a 2-coloring
of the edges of the complete (2T + 1)-uniform hypergraph H with V (H) = [n].
Let m be such that n ≥ R(2,m; 2T + 1). Then, from the Ramsey’s Theorem,
H contains a monochromatic complete hypergraph K on m vertices. Observe
that if m > 2T + 1 then the color of the edges in K cannot be one. Indeed,

Fast Distributed Approximations in Planar Graphs 87

if {i1, . . . , i2T+2} is a subset of V (K) then by definition of FA, iT+1 and iT+2

are selected by A to the independent set if the path i1, . . . , i2T+2 is a subgraph
of C. Consequently every edge in K has color zero and if K = {v1, . . . , vm}
then none of vT+1, . . . , vm−T is in the independent set returned by A provided
P := v1, . . . , vm is the subgraph of C. Therefore, out of m vertices in K, m− 2T
are not in the independent set returned by A. If n − m ≥ R(2,m; 2T + 1) then
we can repeat the above argument to the hypergraph induced by [n] \ V (K).
Let p denote the number of times we will repeat the above reasoning. Then the
size of the independent set returned by the algorithm A when the ordering of
vertices in C is determined by the repeated application of the Ramsey’s theorem
is at most 2Tp + R(2,m; 2T + 1) which is at most 2nT/m + R(2,m; 2T + 1) as
pm ≤ n. It is known (see [N95]) that for some constant c,

R(2,m; 2T + 1) ≤ 22···2cm

where the number of 2’s in the tower is 2T . Thus for any constant T if m =
Θ(log(2T) n) then the size of the independent set is at most O(n/ log(2T) n). In
addition, very similar computations give that for the size of an independent
set to be Ω(n/ log∗ n), T must be Ω(log∗ n). Indeed, let ε > 0 and for n large
enough let m and T be two integers with (log∗ n)2/(2c) ≤ m ≤ (log∗ n)2/c and
ε log∗ n/(8 · c) ≤ 2T + 1 < ε · log∗ n/(4 · c). Then

2nT/m < εn/(2 log∗ n).

At the same time, for n large enough,

log(2T+1) R(2,m; 2T + 1) ≤ 2 log log∗ n

and 2 log log∗ n < 0.5 log(2T+1) n < log(2T+1) (εn/(2 log∗ n)). Consequently, the
size of the independent set returned by the algorithm is smaller than εn/ log∗ n.

��

A very similar lower bound can be obtained for matchings. In the case of
the dominating set the situation is different and it is possible to find a O(1)-
approximation in zero rounds. On the other hand, one can show that no de-
terministic α-approximation with α < 2 can run in o(log∗ |G|) rounds. We will
prove something slightly stronger for planar graphs.

Fact 7. There is no deterministic distributed algorithm which for every δ > 0
finds in o(log∗ |G|) rounds a dominating set of size which is at most (5− δ)γ(G)
in a planar graph G.

Proof. Let δ > 0 be fixed and suppose that there is a deterministic distributed
algorithm that finds a dominating set in any planar graph G of size at most
(5 − δ)γ(G). From a cycle C on n vertices (with 10|n), we create a graph G in
the following way. Let G = (V,E), where V = V (C) and E = E(C) ∪ {v, u ∈
V, dC(v, u) = 2}. Note that this virtual graph can be obtained from C by a
distributed algorithm, G is 4-regular, γ(G) = n/5, and G is planar. From a

88 A. Czygrinow, M. Hańćkowiak, and W. Wawrzyniak

dominating set D in G returned by the algorithm we can obtain an independent
set I in C as follows. Consider C[D] and add to I all isolated vertices. For every
vertex v ∈ D with degC(v) = 1 , if the neighbor of v, w, has degC(w) = 1 then
add the vertex with a smaller identifier to I and if degC(w) = 2 then add v
to I. Let Di be the subset of D with vertices of degree i in C[D]. Note that if
v ∈ D2, that is v has degree two in C[D], then every vertex from V \ D which
is dominated by v in G is also dominated by a vertex from D1. Therefore, we
have |I| ≥ |D0|+ |D1|/2 and 4|D0|+3|D1| ≥ n−|D|. Since |D| ≤ (5− δ)γ(C) =
(1−δ/5)n, 4|D0|+3|D1| ≥ δn/5 and so |I| ≥ |D0|+ |D1|/2 ≥ δn/30. By Lemma
4 this is not possible. ��

4.2 Randomized Algorithms

In this section we will briefly discuss randomized algorithms. We focus on the
maximum independent set problem as algorithms for other problems can be
obtained using similar consideration.

Lemma 5. Let G be a graph with maximum degree at most ∆. Then there is
distributed randomized algorithm which in two rounds finds an independent set
I in G such that with probability larger than 1− exp{−|G|/(2∆+4(∆2 + 1))} the
size of I is at least |G|/(2∆+2(∆2 + 1)).

Proof. The algorithm is trivial and we will only outline it. It proceeds in two
rounds and in the first round every vertex marks itself with probability 1/2,
choices made independently. In the second round a marked vertex un-marks itself
if at least one of its neighbors is marked. Let S be a maximal set of vertices at
distance at least three in G. Note that |S| ≥ |G|/(∆2 + 1) and the events that
two vertices from S are marked after the second round are independent. The
expected number of vertices selected from S is at least |G|/(2∆+1(∆2 + 1)) and
by Chernoff’s bound the probability that it is smaller than |G|/(2∆+2(∆2 + 1))
is less than exp{−|G|/(2∆+4(∆2 + 1))}. ��

Lemma 6. Let K be a positive integer and let G = (V,E) be a weighted planar
graph with ω̄ : E → {1, . . .K}, the maximum degree ∆, and with no isolated
vertices. Then there exist pair-wise disjoint subsets V1, . . . , Vl of V (G) such that

– diam(G[Vi]) ≤ 2(M − 1);
– ∆(G̃) ≤ ∆M , max{ω̄(e)|e ∈ E(G̃)} ≤ K∆M ;
– ω̄(G̃) ≤ 9ω̄(G)/10

where M := �log(1−1/(5·82·210))

(
1

20K∆

)
� and G̃ is obtained from G by contracting

Vi’s and recomputing the weights as in (1).

Proof. Let ε := 1/(20K∆) and let M be as above. Let I = {v ∈ V (G)|degG(v) ≤
9}. Clearly |I| ≥ 2|G|/5. Use the algorithm from Lemma 5 to find an independent
set I1 ⊆ I with |I1| ≥ |G|/(5 · 82 · 210). Repeat the process in V \ I1 to find I2 of
size (|G|−|I1|)/(5 ·82 ·210) and continue M times. Let I1, . . . , IM be independent
sets obtained by repeating the above procedure M times. Then with parameters

Fast Distributed Approximations in Planar Graphs 89

as above every vertex v ∈ Ij has at most nine neighbors in V \ (I1 ∪· · · ∪ Ij) and
with high probability,

∑
|Ij | ≥ (1− ε)|G|. For every j and every v ∈ Ij , v selects

one edge from v to the set V \ (I1 ∪ · · · ∪ Ij) of the largest weight if it has at
least one neighbor in V \ (I1 ∪ · · · ∪ Ij). The subgraph obtained in this way is a
forest with trees T1, . . . , Tl each of diameter at most 2(M − 1). Let Vi := V (Ti).
Note that the total weight of edges incident to V \ (I1 ∪ · · · ∪ IM) is at most
K ·∆ · ε|G| provided

∑
|Ij | ≥ (1 − ε)|G|. Therefore,∑

ω̄(Ti) ≥ (ω̄(G) −K ·∆ · ε|G|)/9 ≥ ω̄(G)/10

as ε = 1/(20K∆) and ω̄(G) ≥ |G|/2. In addition, ∆(G̃) ≤ ∆M as there are at
most (∆M − 1)/(∆ − 1) vertices in Ti and consequently max{ω̄(e)|e ∈ G̃} ≤
K∆M . Finally, note that the probability that the above procedure fails is at
most O(M exp{−O(ε|G|)} by Lemma 5 as if in the course of computations |G|−
(|I1| + · · · + |Iq|) ≤ ε|G| for some q < M then we have

∑
|Ij | ≥ (1 − ε)|G| with

probability one. ��

Corollary 8. There exists a randomized distributed algorithm which for a given
δ > 0 finds in the constant number of rounds (the constant depends on δ only) an
independent set I in a planar graph G the size of which is with high probability
larger than or equal to (1 − δ)α(G).

Proof. Let R := 48/δ and let V̄ = {v ∈ V (G)|degG(v) > R}. Then |V̄ | ≤
δα(G)/2 as α(G) ≥ |G|/4. Let G′ be the subgraph of G induced by V \ V̄ and
define ω̄(e) := 1 when e ∈ E(G′). We apply Lemma 6 L times with L such
that (0.9)L ≤ δ/16 contracting subsets repeatedly and putting aside isolated
vertices if any arise. Now we consider partition of V into V1, . . . , Vl obtained
by un-contracting the vertices (some of the Vi’s can be singletons). We have
diam(G[Vi]) ≤ C where C depends on δ only and we call a vertex v ∈ Vi border
if it has a neighbor in V (G) \ Vi. Disregard all the border vertices to obtain V̄i’s
and find optimal independent sets Ii’s in G[V̄i]’s. Finally return the union of Ii’s.
The solution returned by the procedure has size of at least α(G) − |B| where B
is the set of border vertices and |B| ≤ δα(G)/2 + 2(0.9)L|G| ≤ δα(G). ��

Acknowledgment

The authors are grateful to referees for many useful comments and suggestions.

References

[AGLP89] Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.A.: Network De-
composition and Locality in Distributed Computation. In: Proc. 30th
IEEE Symp. on Foundations of Computer Science, pp. 364–369 (1989)

[CV86] Cole, R., Vishkin, U.: Deterministic coin tossing with applications to
optimal parallel list ranking. Information and Control 70, 32–53 (1986)

90 A. Czygrinow, M. Hańćkowiak, and W. Wawrzyniak

[CH06a] Czygrinow, A., Hańćkowiak, M.: Distributed almost exact approxima-
tions for minor-closed families. In: Azar, Y., Erlebach, T. (eds.) ESA
2006. LNCS, vol. 4168, pp. 244–255. Springer, Heidelberg (2006)

[CH06b] Czygrinow, A., Hańćkowiak, M.: Distributed approximation algorithms
in unit disc graphs. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp.
385–398. Springer, Heidelberg (2006)

[CH06c] Czygrinow, A., Hańćkowiak, M.: Distributed algorithms for weighted
problems in sparse graphs. Journal of Discrete Algorithms 4(4), 588–
607 (2006)

[CHS06] Czygrinow, A., Hańćkowiak, M., Szymanska, E.: Distributed approxi-
mation approximations for planar graphs. In: Calamoneri, T., Finoc-
chi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 296–307.
Springer, Heidelberg (2006)

[D05] Diestel, R.: Graph Theory, 3rd edn. Springer, Heidelberg (2005)

[E04] Elkin, M.: An Overview of Distributed Approximation. ACM SIGACT
News Distributed Computing Column 35(4,132), 40–57 (2004)

[KMW04] Kuhn, F., Moscibroda, T., Wattenhofer, R.: What Cannot Be Computed
Locally! In: Proceedings of 23rd ACM Symposium on the Principles of
Distributed Computing (PODC), pp. 300–309 (2004)

[KMNW05a] Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Fast Determin-
istic Distributed Maximal Independent Set Computation on Growth-
Bounded Graphs. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724,
pp. 273–287. Springer, Heidelberg (2005)

[KMNW05b] Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Local Approx-
imation Schemes for Ad Hoc and Sensor Networks. In: 3rd ACM Joint
Workshop on Foundations of Mobile Computing (DIALM-POMC),
Cologne, Germany, pp. 97–103 (2005)

[LOW08] Lenzen, C., Oswald, Y.A., Wattenhofer, R.: What Can Be Approxi-
mated Locally? In: 20th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA 2008), Munich, Germany, pp. 46–54 (2008)

[LW08] Lenzen, C., Wattenhofer, R.: Leveraging Linial’s Locality Limit. In:
22nd International Symposium on Distributed Computing (DISC 2008),
Arcachon, France (to appear, 2008)

[L92] Linial, N.: Locality in distributed graph algorithms. SIAM Journal on
Computing 21(1), 193–201 (1992)

[N91] Naor, M.: A lower bound on probabilistic algorithms for distributive
ring coloring. SIAM J. on Discrete Mathematics 4(3), 409–412 (1991)

[N95] Nesetril, J.: Ramsey Theory. In: Graham, R.L., Groschel, M., Lovász,
L. (eds.) Handbook of Combinatorics, vol. II, pp. 1331–1403. Elsevier,
Amsterdam (1995)

[Pa99] Panconesi, A.: Distributed Algorithms Notes (manuscript)

[Pe00] Peleg, D.: Distributed Algorithms. In: A Locality-Sensitive Approach,
SIAM Press, Philadelphia (2000)

[SW08] Schneider, J., Wattenhofer, R.: A log∗ Distributed Maximal Indepen-
dent Set Algorithm for Growth-Bounded Graphs. In: PODC 2008 (to
appear, 2008)

[We01] West, D.: Introduction to graph theory, 2nd edn. Penitence-Hall Inc.
(2001)

Fast Distributed Approximations in Planar Graphs 91

A Appendix

A.1 Constant Approximation of the Minimum-Dominating Set

Our algorithm follows from the next few observation. Let K be a positive integer
which is large enough (the precise bound for K follows from computations and in
the current argument is significantly larger than 71, the constant from [LOW08])
and let G = (V,E) be a planar graph. We define B := {v|deg(v) ≥ K}, S :=
V \B, and B′ := {v ∈ B||N(v) ∩ S| ≥ 202}.

Definition 2. Let u, v ∈ B′. Vertex u is called v-redundant if the following
conditions are satisfied.

(a) |N(u) ∩N(v) ∩ S| ≥ |N(u) ∩ S|/10.
(b) Either |N(v)∩S| > |N(u)∩S| or |N(v)∩S| = |N(u)∩S| and ID(v) > ID(u).

Note that the constant 10 in (a) is almost arbitrary and the reason for part (b) is
to break symmetry. In particular, from part (b), a vertex u is never u-redundant.
We first observe a few simple facts about redundant vertices.

Fact 9. Let u, v ∈ B′ be such that |N(u) ∩ N(v) ∩ S| ≥ |N(u) ∩ S|/10. Then
either u is v-redundant or v is u-redundant.

Fact 10. If u is v-redundant then v is not u-redundant.

Finally we note that u cannot be v-redundant with too many v’s.

Fact 11. Let G = (V,E) be a planar graph. Then for u ∈ B′ there are at most
19 vertices v ∈ B′ such that u is v-redundant.

Proof. Since G is planar, we have |N(u)∩N(v)∩N(w)| ≤ 2 for any three distinct
vertices u, v, w. Assume u is v-redundant for every v ∈ {v1, . . . , vk}. Then

|N(u) ∩ S| ≥
k∑

i=1

|N(u) ∩N(vi) ∩ S| − 2
(
k

2

)
≥ k|N(u) ∩ S|

10
− k2 > |N(u) ∩ S|

when k = 20. ��

Lemma 7
γ(G′) ≤ Kγ(G).

Proof. First notice that to obtain G′ only edges between S and B′ can be deleted
from G. Let D be a dominating set in G. We will add some vertices to D to
obtain a dominating set D′ in G′. If u ∈ D ∩ B′ and degG(u) �= degG′(u) then
add to D all vertices v such that u is v-redundant. By Fact 11 there are 19 such
v’s. If u ∈ D ∩ S and degG(u) �= degG′(u) then degG(u) ≤ K − 1 and add all
neighbors of u in G to D. Then |D′| ≤ K|D| as K ≥ 20 and D′ is a dominating
set in G′. Indeed, any vertex v which is dominated by a vertex u ∈ D with
uv ∈ E \ E′ is in D′. ��

92 A. Czygrinow, M. Hańćkowiak, and W. Wawrzyniak

Lemma 8. Let H = (V,E) be a planar graph with no redundant pairs, let K
be a positive integer which is large enough, and let B = {v ∈ H |degH(v) ≥ K}.
Then

γ(H) ≥ min
|B|
2

,
|H |
K2

.

Proof. Let D be a dominating set in H . Consider D1 = D∩B and D2 = D \D1.
Every vertex from D2 has the degree of at most K − 1 and so there are at most
K|D2| vertices dominated by D2. Let W be the set of vertices dominated by D2.
If |W | ≥ |H |/K then |D2| ≥ |H |/K2 and we are done. Assume therefore that
|W | < |H |/K and let A = V \ (W ∪ B). Since H is planar, |B| ≤ 6|H |/K and
so |A| ≥ (1 − 7/K)|H | with every vertex from A dominated by a vertex from
D1 ⊆ B. Consider the bipartite subgraph H ′ of H with bipartition (B,A) and all
edges of H with one endpoint in B, another in A and let d1, . . . , dk be vertices
from D1 that dominate A. Every vertex a from A chooses one i ∈ {1, . . . , k}
such that di dominates a and joins the group of di. In this way we obtain stars
S1, . . . , Sk with centers in d1, . . . , dk and every a ∈ A belonging to exactly one
star. Let B̄ = {b ∈ B|degH′(b) ≥ degH(b)/2}. We note that

|B̄| ≥
(

1 − 12
K

)
|B| (4)

as otherwise 2||H [B]|| > 12
K |B|K/2 ≥ 6|B| but H [B] is planar. Note that if

b ∈ B̄ then deg′H(b) ≥ K/2 ≥ 202 and so b ∈ B′. Since there are no redundant
pairs in H , for every b, di ∈ B′ we have |NH′(b) ∩ NH′ (di)| < |NH′(di)∩S|

10 . Now
consider the planar graph H ′′ obtained from H by contracting each of the stars
to a single vertex. Every vertex from B̄ has degree of at least 10 in H ′′ and H ′′

is planar. Thus,
5|B̄| ≤ ||H ′′|| < 3(|B| + k)

which gives

|D1| ≥ k ≥ (2 − 12/K)|B|
3

≥ |B|/2

if K ≥ 24. ��

Lemma 9. There is a distributed algorithm that finds a Ω(1)-approximation of
a minimum dominating set in a planar graph in O(1) rounds.

Proof. After fixing K in the argument above, graph G′ is obtained by delet-
ing edges as described in Lemma 7. Then in H all vertices from B = {v ∈
H |degG′(v) ≥ K} are added to the dominating set and finally all vertices in G′

which are not dominated in G′ by B are added to the dominating set. The domi-
nating set has size Ω(γ(G)). Indeed, from Lemma 7, γ(G) = Ω(γ(G′)) and from
Lemma 8, γ(G′) = Ω(|B|)+Ω(|C|) where C is the set of vertices not dominated
by B in G′ (Clearly these vertices can only be dominated by vertices of degree
at most K − 1 in G′). ��

Closing the Complexity Gap between

FCFS Mutual Exclusion and Mutual Exclusion�

Robert Danek and Wojciech Golab

Department of Computer Science
University of Toronto

{rdanek,wgolab}@cs.toronto.edu

Abstract. First-Come-First-Served (FCFS) mutual exclusion (ME) is
the problem of ensuring that processes attempting to concurrently access
a shared resource do so one by one, in a fair order. In this paper, we close
the complexity gap between FCFS ME and ME in the asynchronous
shared memory model where processes communicate using atomic reads
and writes only, and do not fail. Our main result is the first known FCFS
ME algorithm that makes O(log N) remote memory references (RMRs)
per passage and uses only atomic reads and writes. Our algorithm is also
adaptive to point contention. More precisely, the number of RMRs a
process makes per passage in our algorithm is Θ(min(k, log N)), where k
is the point contention. Our algorithm matches known RMR complexity
lower bounds for the class of ME algorithms that use reads and writes
only, and beats the RMR complexity of prior algorithms in this class
that have the FCFS property.

1 Introduction

Coordinating access to shared resources is a key problem in programming mul-
tiprocessors. Mutual exclusion [1], also known as locking, is the approach most
popular in practice for allowing multiple processes to access a shared resource
safely. We consider this problem under the customary assumptions that pro-
cesses are asynchronous (i.e., execute at arbitrary speeds) but do not fail. A
mutual exclusion algorithm for a shared memory multiprocessor consists of a
trying protocol (TP) and an exit protocol (EP) that surround the critical section
(CS). The latter contains code that actually accesses the shared resource. A sin-
gle execution of the TP, CS, and EP is called a passage. When a process is not
inside the TP, EP, or CS, we say that it is in the non-critical section (NCS).

The trying and exit protocols ensure that at most one process can be in the
critical section at a time, while also guaranteeing that processes wanting to access
the resource can eventually do so. We can state the correctness properties of a
mutual exclusion algorithm more precisely as follows:

Mutual Exclusion (ME): If a process p is in the CS, then no process q �= p
is in the CS concurrently with p.

� Research supported in part by the Natural Sciences and Engineering Research Coun-
cil of Canada.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 93–108, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

94 R. Danek and W. Golab

Lockout Freedom (LF): If a process p enters the trying protocol, then p even-
tually enters the CS.

Bounded Exit (BE): If a process enters the exit protocol, then the process
returns to the NCS in a bounded number of its own steps.

Note that to satisfy lockout freedom, we must make the (standard) assumption
that every process is live, meaning that as long as it is outside the NCS, it
continues to take steps until it returns to the NCS.

The above properties do not preclude situations where a process waits inside
the trying protocol for a long time while other processes are repeatedly granted
entry to the critical section. This may be undesirable, and a mutual exclusion
algorithm that grants processes entry into the critical section in an order that is
more fair may be preferred. One form of fairness is captured by the First-Come-
First-Served (FCFS) property [2], which informally requires that processes are
granted entry into the critical section in the order in which they execute the
beginning of the trying protocol. To define this more precisely, we split the
trying protocol into two parts: the first part, the doorway (DWY), which a
process completes in a bounded number of its own steps; and a second part, the
waiting room (WRM). We can now define FCFS as follows:

First-Come-First-Served (FCFS): If a process p finishes the doorway before
a process q �= p starts the doorway, then q does not enter the CS before p
does in the corresponding passages.

A natural way to measure the time complexity of a mutual exclusion algorithm
is to count the number of memory accesses performed during a passage. This is
problematic in the asynchronous model as a process may execute an unbounded
number of memory accesses while busy-waiting for another process to clear the
critical section. Instead, we measure time complexity by counting only the remote
memory references (RMRs) performed during a passage, where an RMR is a
memory access that traverses the processor-to-memory interconnect. We refer
to this measure as an algorithm’s RMR complexity.

To classify memory accesses as local or remote, we consider two shared mem-
ory architectures: the Distributed Shared Memory (DSM) model, and the Cache-
Coherent (CC) model [3]. In the DSM model, each processor is associated with
a memory module that it can access locally, and that others may access only
remotely. In the CC model, on the other hand, any memory location can be
made locally accessible by storing its contents in a local cache, which is kept up
to date (by either updating or invalidating stale entries) by a coherence protocol.
Different varieties of the CC model exist, all satisfying the following property
under ideal conditions: once a variable is loaded into a cache, it remains cached
at least until it is overwritten by another process.

Algorithms that perform all busy-waiting using local memory references (e.g.,
repeatedly testing the value of a cached variable) are known as local-spin; they
have bounded RMR complexity and offer practical performance benefits [4].
The RMR complexity of an ME algorithm may depend on the number of pro-
cesses contending for access to the CS. Point contention describes this quantity

Closing the Complexity Gap 95

precisely; for our purposes it is defined as the maximum number of processes
simultaneously outside of the NCS during an execution fragment. An ME algo-
rithm whose RMR complexity grows gradually with point contention is known
as adaptive (to point contention).

Summary of results. Our main technical contribution is an FCFS ME algorithm
based on reads and writes only, which has RMR complexity O(min(k, logN))
when point contention is k and there are N processes. The complexity of our
algorithm is optimal, at least when k ∈ O(log logN) [5] or k ∈ Θ(N) [6]. Prior
algorithms either require stronger synchronization primitives, lack the FCFS
property, or have suboptimal RMR complexity.

Our algorithm uses as building blocks two novel wait-free components: a set-
like data structure called SpecialSet , and a ticket dispensing mechanism. The
SpecialSet records a set of process IDs, and has two operations: InsertSelf(),
which a process can use to add its ID to the set, and RemoveSelf(), which a
process can use to remove itself from the set and also to learn the ID of exactly
one other process in the set (if any). Our SpecialSet and the ticket dispenser are
accessed according to certain restrictions on parallelism, which simplifies their
implementation.

As a complexity upper bound, our algorithm has several implications regard-
ing mutual exclusion:

(1) The worst-case RMR complexity of FCFS ME using only reads and writes
is no greater than for ordinary (i.e., deadlock-free) ME; both problems are
solvable using O(logN) RMRs per passage, matching the recent lower bound
of Attiya, Hendler and Woelfel [6].

(2) FCFS ME can be solved using only reads and writes with RMR complexity
adaptive to point contention, matching the linear lower bound of Kim and
Anderson for k ∈ O(log logN) [5] in addition to the logarithmic worst-case
lower bound [6].

(3) As a consequence of (1) and (2), and the fact that the lower bounds on ME
RMR complexity [6,5] hold even if comparison primitives (such as Compare-

And-Swap) are available, FCFS ME and adaptive FCFS ME are no more
costly to solve (in terms of RMRs) using reads and writes only than using
reads, writes, and comparison primitives. This strengthens somewhat a prior
result of Golab, Hadzilacos, Hendler and Woelfel [7], which implies the anal-
ogous conclusion for ME algorithms that do not have FCFS or bounded exit.

2 Related Work

The mutual exclusion problem was first solved by Dijkstra [1], although his
solution did not satisfy lockout freedom. Rather, it satisfied a weaker progress
property, called deadlock freedom:

Deadlock Freedom: If some process p is stuck forever in the trying protocol,
then some process q �= p executes through the critical section infinitely often.

96 R. Danek and W. Golab

FCFS mutual exclusion was first formulated and solved by Lamport in [2],
where he presented his famous Bakery algorithm. Lamport [8] was also the first
to study fast mutual exclusion. Fast mutual exclusion ensures that a process
takes a constant number of steps entering the CS when there is no contention,
but provides no performance guarantees otherwise. In adaptive mutual exclusion
the performance of an algorithm instead degrades gradually as the contention
for the CS increases. Adaptive mutual exclusion algorithms were presented by
Styer [9], Choy and Singh [10], and Attiya and Bortnikov [11]. These algorithms
are adaptive to metrics different from RMR complexity, and moreover, the RMR
complexity of these algorithms is unbounded.

Yang and Anderson (YA) [12] presented the first mutual exclusion algorithm
that uses only reads and writes and has RMR complexity O(logN). Kim and
Anderson [13] (KA) later presented an adaptive mutual exclusion algorithm,
also using only reads and writes, that used as building blocks parts of Lamport’s
fast mutual exclusion algorithm and the YA algorithm. Its RMR complexity is
O(min(k, logN)), where k denotes point contention. This improves upon the
adaptive algorithm of Afek, Stupp and Touitou [14].

Several lower bounds exist for the RMR complexity of mutual exclusion and
adaptive mutual exclusion. Kim and Anderson [5] showed that the RMR com-
plexity of adaptive ME algorithms based on reads and writes only must grow
at least linearly with point contention up to Ω(log logN), which is matched by
algorithm KA. Attiya, Hendler and Woelfel [6] later showed that the worst-case
RMR complexity for the same class of algorithms is Θ(logN), which is matched
by algorithm YA. (This builds on prior results by Cypher [15], Anderson and Kim
[16], and Fan and Lynch [17].) A related result by Golab, Hadzilacos, Hendler
and Woelfel [7] implies that the Θ(logN) lower bound is tight also for algorithms
that use comparison primitives, such as Compare-And-Swap (CAS), and do
not require FCFS or bounded exit.

Jayanti [18] presented the first FCFS adaptive mutual exclusion algorithm.
It has RMR complexity O(min(k, logN)), and makes use of LoadLinked and
StoreConditional – a pair of synchronization primitives stronger than reads
and writes.

Taubenfeld [19] also presented an FCFS adaptive mutual exclusion algorithm.
This algorithm is a modification of Lamport’s Bakery algorithm, and uses only
reads and writes. Its RMR complexity, however, is O(k2), which is suboptimal
in light of our results.

3 FCFS Algorithm and High-Level Description

Our algorithm (shown below in Figure 1) has the following high-level structure.
In the doorway, a process receives a ticket from a wait-free ticket dispenser
(line 4) that incurs O(min(k, logN)) RMRs per invocation. The dispenser is
similar to a modular atomic counter, which returns tickets with increasing values
from a bounded interval. As the dispenser is not actually atomic, processes that
invoke the dispenser concurrently may receive the same ticket. Also, even though

Closing the Complexity Gap 97

shared variables:
Set : SpecialSet , Q : PriorityQueue , Head : array[1..N] of Boolean

(In the DSM model, Head [p] is local to process p)

private variables:

ticket : {0, .., 7N − 1}, tmp id : integer

loop1

NCS2

Set .InsertSelf() // Doorway begins.3

ticket := ObtainTicket() // Doorway ends.4

LOCK()5

Head [p] := false6

tmp id := Set .RemoveSelf()7

if tmp id �= ⊥ then8

// Enqueue process tmp id with ‘‘dummy’’ ticket.

Q .Insert((tmp id ,−1))9

Q .Remove((p,−1)) // Remove (p,−1) from queue if present.10

Q .Insert((p, ticket)) // Reinsert p with ‘‘proper’’ ticket.11

tmp id := Q .FindMin() // Get the head process in the queue.12

Head [tmp id] := true // Notify head process to advance.13

UNLOCK()14

await Head [p] = true // Wait to reach the head of the queue.15

LOCK()16

CS // The critical section.17

Q .Remove((p, ticket)) // Remove p from the priority queue.18

DoneWithTicket()19

tmp id := Q .FindMin()20

if tmp id �= ⊥ then21

Head [tmp id] := true // Notify next process to advance.22

UNLOCK()23

end loop24

Fig. 1. FCFS Mutual Exclusion Algorithm for process p ∈ {1, ..., N}

the dispenser returns tickets from a bounded interval, the interval is large enough
to ensure that tickets are not reused too soon. After a process p obtains a ticket,
it enters the waiting room (lines 5–16) where it adds itself to a priority queue
(Q) ordered by ticket (line 11). To ensure that FCFS is not violated, p waits
to reach the front of the queue before entering the CS (line 15). Once p is done
with the CS, p removes itself from the queue (line 18), and notifies its successor
(lines 20–21).

We use an auxiliary lock (lines 5, 14, 16, 23) to serialize operations on Q . This
allows us to implement Q with a min-heap, which has time complexity O(log k).
The ME algorithm that we use for the auxiliary lock is Kim and Anderson’s
algorithm [13], which has RMR complexity O(min(k, logN)).

98 R. Danek and W. Golab

The priority queue has standard operations Insert, Remove, and FindMin,
and its entries are pairs of the form (process ID, ticket). Insert is idempotent,
and Remove has no effect if attempting to remove an item that is not in the
queue. FindMin() returns the process ID whose corresponding ticket is minimal
(i.e., the head element), or ⊥ if the queue is empty. What it means for a ticket to
be minimal in a collection of tickets, and more generally how tickets are ordered,
is explained in detail in Section 5.

Processes use the Boolean array Head to notify another process when it be-
comes the head of the queue. A process can become the head of the queue after
another process removes itself from the queue in the exit protocol (line 18), or
after the queue is modified in the waiting room (lines 10–11).

Our algorithm contains additional features, not described above, to handle
the following race condition: process p finishes the doorway before q starts the
doorway, but then q adds itself to Q before p. By the FCFS property, p should
enter the CS before q, but until p is added to Q , q cannot tell (from the state
of Q alone) whether it should enter the CS before or after p. To prevent q
from entering the CS prematurely, we use special “dummy tickets” and a shared
object, Set , of a set-like type called SpecialSet . At the beginning of the doorway,
at line 3, a process q adds itself to Set . In the waiting room, at line 7, q removes
itself from Set , and also learns the ID of one other process p �= q in Set , if it
exists (⊥ otherwise). If p exists, then p must be in the trying protocol at or before
the lock at line 5. In that case, q adds p to Q at line 9 with a “dummy” ticket
−1, which is smaller than any “proper” ticket returned by the ticket dispenser
at line 4. The insertion of p into Q in this way guarantees that p will be ahead
of q in Q until p executes the locked code at lines 6–13, where it replaces its
dummy ticket in Q with its proper ticket (lines 10–11). This ensures that q
cannot advance into the CS prematurely.

The set operations (line 3 and line 7), and the ticket dispenser operations
(line 4 and line 19), are explained in more detail in Sections 4 and 5, respectively.

4 SpecialSet – A Set-Like Data Structure

In this section, we describe the data type of the shared object Set used in our
mutual exclusion algorithm. We refer to this type as SpecialSet , because its state
is represented by a set but it supports only a few set operations, and only in
restricted ways.

The sequential specification of SpecialSet is as follows. The state of SpecialSet
is a set of process IDs. Two operations are used to access SpecialSet :

– InsertSelf() adds the ID of the calling process to the set, and returns
nothing.

– RemoveSelf() removes the caller’s ID from the set, and returns the ID of
one other process in the set, if it exists, otherwise returns ⊥.

Closing the Complexity Gap 99

Processes must access SpecialSet according to the following etiquette:

Condition 1

(a) The calls to InsertSelf() and RemoveSelf() made by any process occur
in an alternating sequence, beginning with InsertSelf(), and ending with
RemoveSelf(); and

(b) Operation RemoveSelf() is executed in mutual exclusion.

For our purposes, it suffices to make the implementation of SpecialSet for
N processes linearizable and wait-free, with step complexity O(min(k, logN)),
where k denotes point contention. (Note that by Condition 1, if a pro-
cess has completed InsertSelf() but not yet started its subsequent call to
RemoveSelf(), then it is enabled to execute another step, and so we count it
in evaluating point contention.)

Below we describe a simple but non-adaptive implementation of SpecialSet for
N processes, with step complexity O(logN). Then, we give an informal overview
of how the implementation can be made adaptive using existing ideas.

4.1 Non-adaptive Implementation

The data structure underlying the implementation of SpecialSet for N processes
is a full binary tree of height �logN�. Each node in the tree stores a process
ID or ⊥, initially ⊥. We denote the value stored at node n by NodeV al[n]. In
addition to the tree, we use an array MyNode[1..N] of pointers to tree nodes
or ⊥, initially all ⊥. For any process ID p, we will refer to MyNode[p] as p’s
node. Informally, if MyNode[p] = np for some tree node np then p is in the
set and p uses tree nodes on the path between np and the root node to record
information about itself. In the non-adaptive implementation, np will be a unique
and statically determined leaf node, referred to as p’s leaf node.

The InsertSelf() access procedure for process p first determines p’s leaf node
at line 25, and then passes control to the helper function InsertHelper(p),
which is also used by RemoveSelf(). (Here the ID of p’s leaf node is statically
determined, but in the adaptive version of the algorithm it is not.) In function

shared variables:
NodeV al: mapping from node ID to process ID or ⊥, initially all ⊥
MyNode: array[1..N] of pointer to tree node or ⊥, initially all ⊥

Fig. 2. Variables used in SpecialSet implementation

MyNode[p] := ID of p’s leaf node25

InsertHelper(p)26

Fig. 3. InsertSelf() for process p ∈ {1, . . . , N}

100 R. Danek and W. Golab

l := MyNode[z]27

foreach node n on path from l to root do28

NodeV al[n] := z29

end30

Fig. 4. InsertHelper(z)

Output: process ID or ⊥
l := MyNode[p]31

foreach node n on the path from l to root do32

if n has a sibling node then33

n′ := sibling of n34

q := NodeV al[n′]35

if q �= ⊥ and MyNode[q] �= ⊥ then36

InsertHelper(q)37

MyNode[p] := ⊥38

return q39

end40

end41

end42

MyNode[p] := ⊥43

return ⊥44

Fig. 5. RemoveSelf() for process p ∈ {1, . . . , N}

InsertHelper(p), the calling process traverses the binary tree from p’s node
to the root and writes p’s ID at each node visited.

The RemoveSelf() access procedure works as follows. The caller, say process
p, first determines its tree node, say l, by reading MyNode[p]. Next, p traverses
the tree from l to the root. For each node visited, p reads the ID stored at the
sibling node (O(logN) nodes in total). For each process ID encountered, say q,
p checks whether q’s node is not ⊥. If the latter condition holds, then p stops its
traversal immediately after inspecting q’s node, and executes InsertHelper(q).
(Here q �= p holds because p’s leaf node is statically determined.) By calling
InsertHelper(q) at this point, p ensures that if there are any nodes between
the current node and the root that contain the ID p, they will be overwritten
with an ID that is still in the set. If this were not done, then future calls to
RemoveSelf() might behave as though there are no remaining items in the set,
and erroneously return ⊥. Finally, p’s execution of RemoveSelf() overwrites
MyNode[p] with ⊥ and returns q. Otherwise, if no such q is found, then upon
reaching the root node, p’s execution of RemoveSelf() overwrites MyNode[p]
with ⊥ and returns ⊥.

Closing the Complexity Gap 101

4.2 Adaptive Implementation

The non-adaptive implementation of SpecialSet described above can be altered
so that its step complexity becomes adaptive to k – the point contention (as
defined earlier for executions involving a SpecialSet object). The main idea is to
choose p’s node so that it has distance O(min(k, logN)) from the root, which
is difficult since p’s node must be unique among all processes that are in the
set. One approach is to build the tree dynamically using splitter-like objects,
which are based on Lamport’s “fast path” mechanism. Anderson and Kim used
such objects to construct an adaptive ME algorithm based on reads and writes
only [13]. The RMR complexity of this algorithm is O(min(k, logN)), and key
portions of it have step complexity O(min(k, logN)).

Rather than using pieces of the Anderson and Kim algorithm to create our
adaptive implementation of SpecialSet , we execute the entire ME algorithm in
our implementation and extract certain useful information from that execu-
tion. This allows us to re-use complex synchronization machinery directly rather
than modifying it and re-proving its correctness properties. The wait-free por-
tion of the trying protocol of the Anderson-Kim algorithm is executed inside
InsertSelf(), and the remainder in RemoveSelf(). Since RemoveSelf() is
executed in mutual exclusion by Condition 1, this means that the executing pro-
cess will never busy-wait inside the Anderson-Kim algorithm. (In fact, we can
replace the locks used therein with “no-ops”.)

5 Ticket Dispenser

Our mutual exclusion algorithm internally uses numbered tickets, much
like Lamport’s bakery algorithm [2]. Tickets are obtained by calling
function ObtainTicket(), which is used in conjunction with function
DoneWithTicket() according to the following etiquette:

Condition 2. The calls to ObtainTicket() and DoneWithTicket()
made by any process occur in an alternating sequence, beginning with
ObtainTicket(), and ending with DoneWithTicket().

Informally, we can think of ObtainTicket() as returning a (not necessarily
unique) element of some pool of free tickets, and DoneWithTicket() as clean-
ing up some internal state once a process is done using a particular ticket. (Using
a pair of functions in this way makes the ticket dispenser somewhat more com-
plex to specify, but easier to implement.)

We say that a process is participating in the ticket dispenser if it has be-
gun its call to ObtainTicket() but not yet completed its subsequent call
to DoneWithTicket(). If a participating process has completed its call to
ObtainTicket(), then we say that it holds the ticket returned by that call.
A ticket is active if it is held by some process, otherwise it is inactive. Tickets
satisfy the following properties:

102 R. Danek and W. Golab

Specification 1

(a) The domain of tickets is the set of integers modulo mN for some integer
m ≥ 3.

(b) At any time, the set of tickets that are active is confined to some interval of
fewer than mN/2 consecutive integers modulo mN .

We will use (a) and (b) as follows to define a total order on the set of tickets
that are simultaneously active. Given two active tickets i and j, where i < j,
we will say that i is less than j (denoted i � j) if j − i < mN/2, otherwise
we will say that i is greater than j (denoted i � j). (We will also use � and �
to denote weak inequalities.) Finally, if i = j then we will say i is equal to j.
For technical reasons, we also define a special dummy ticket, denoted −1, which
can be compared against and is less than any active ticket. We say that two
tickets are comparable if they are simultaneously active (or one or both is −1),
and incomparable otherwise. Finally, note that our mutual exclusion algorithm
compares tickets only implicitly, inside the priority queue.

Having defined an ordering among simultaneously active tickets, we are now
ready to specify the correctness properties of ObtainTicket().

Specification 2. Consider any execution at the end of which distinct processes
p and q hold tickets tp and tq, respectively. Let Cp and Cq denote the calls to
ObtainTicket() that generated these tickets, respectively.

– If Cp occurred before Cq, then tp � tq.
– If Cp occurred after Cq, then tp � tq.
– If Cp and Cq were concurrent, then the ordering among tp and tq is arbitrary

To simplify the implementation of the operations ObtainTicket() and
DoneWithTicket(), we restrict concurrent executions of these functions as
follows:

Condition 3

(a) Function DoneWithTicket() is executed in mutual exclusion.
(b) Moreover, if processes p and q are participating simultaneously and hold tick-

ets tp and tq, respectively, where tp�tq, then p subsequently completes a call
to DoneWithTicket() before q does. (In other words, p stops participating
before q does.)

Condition 4. For any execution fragment during which some process p is (con-
tiguously) participating in the ticket dispenser, every other process participates
at most three times during that execution fragment.

Condition 5. For any execution fragment during which some process p is
(contiguously) executing inside ObtainTicket(), if another process q exe-
cutes ObtainTicket() (partially or completely) during that fragment, then
q does not subsequently call DoneWithTicket() before p finishes its call to
ObtainTicket() under consideration.

Closing the Complexity Gap 103

For our purposes, an implementation of the ticket dispenser must satisfy the
following: given that Conditions 2–5 hold, Specifications 1–2 must hold, and
the InsertSelf() and RemoveSelf() operations must have step complexity
O(min(k, logN)), where k denotes point contention. (Note that by Condition 2,
if a process has completed ObtainTicket() but not yet started its subsequent
call to DoneWithTicket(), then it is enabled to execute another step, and so
we count it in evaluating point contention.)

5.1 Adaptive Implementation

Next, we describe an implementation of the ticket dispenser that is adaptive in
the number of participating processes.

shared variables:
Tickets : array[0..7N -1] of {INUSE, FREE }
initially Tickets [0..(3N-1)] = FREE and Tickets [3N..(7N-1)] = INUSE

lastTicket : 0..7N -1 initially 7N -1

private variables:
ticket : 0..7N -1 uninitialized

Fig. 6. Variables used in ticket dispenser implementation

first := lastTicket45

i := 146

// Find upper bound on the smallest FREE ticket.

while i < 3N ∧ Tickets [(first + i) mod 7N] = INUSE do47

i := min {3N, i × 2}48

// Now do binary search to find the ticket.

last := first + i49

while first < last do50

midpoint := �(first + last)/2�51

if Tickets [midpoint mod 7N] = INUSE then52

first := midpoint + 153

else54

last := midpoint55

// At this point first = last holds.

ticket := first mod 7N56

Tickets[ticket] := INUSE57

return ticket58

Fig. 7. Implementation of ObtainTicket()

104 R. Danek and W. Golab

// Reset a ticket that was previously active.

Tickets[(ticket + 3N) mod 7N] := FREE59

lastTicket := ticket60

Fig. 8. Implementation of DoneWithTicket()

The algorithm uses a shared circular array Tickets of length 7N , whose entries
represent the state of the correspondingly numbered tickets. Each entry is either
INUSE or FREE, indicating, as we explain later, whether the corresponding ticket
is active. The shared variable lastTicket stores the ticket that was held by the last
process that stopped participating in the ticket dispenser, i.e., the last process
that called DoneWithTicket(), and is used by ObtainTicket() to efficiently
find a FREE ticket. ObtainTicket() uses a two-stage search mechanism to de-
termine the next FREE ticket. First, the algorithm attempts to find an interval
of consecutive tickets, starting at lastTicket , that contains a FREE ticket. This is
done at lines 45–49 by searching rightwards from lastTicket in steps of exponen-
tially increasing size, up to a distance of 3N . Starting at lastTicket ensures that
the search is adaptive to point contention, k, and taking steps of exponentially
increasing size bounds the total number of steps taken to be O(log k). We only
need to search up to a distance of 3N from lastTicket , since, by Condition 4,
every other process participates at most three times while the search is being
done. This means there will be at most 3(N − 1) INUSE tickets after lastTicket .

Once a FREE ticket is found, the interval from lastTicket to the FREE ticket is
guaranteed to contain at least one FREE ticket. However, there may be another
FREE ticket earlier in the interval. The algorithm performs a binary search of the
interval at lines 50–55 to pinpoint such a ticket if it exists. The ticket computed
is stored in the private variable ticket at line 56, and marked INUSE at line 57.

Function DoneWithTicket() simply resets a previously-active ticket at
line 59 (so that it can be reused later), and then updates lastTicket at line 60.

6 Correctness of FCFS ME Algorithm

In this section we provide a very high-level overview of why the FCFS ME
Algorithm defined in Figure 1 is correct, and why it has RMR complexity
O(min(k, logN)).

The correctness of the FCFS ME algorithm relies on the correctness of the
SpecialSet and ticket dispenser implementations outlined in Sections 4 and 5.
These implementations are correct only if they are used according to the eti-
quette outlined in Conditions 1–5. Our proof that these conditions hold in Fig-
ure 1 relies on the ME algorithm satisfying FCFS. Our proof for FCFS, however,
relies on the correctness of the SpecialSet and ticket dispenser, which leads to
a cycle of dependencies. We deal with this cycle through careful induction on
the length of the execution history. (An execution history is an alternating se-
quence of states and process steps, where a state consists of the values assigned

Closing the Complexity Gap 105

to all private and shared variables in the system, and a step is a shared memory
operation by a process.)

The proof proceeds in two parts. The first part shows that FCFS holds in any
execution history in which the SpecialSet and ticket dispenser are correct. The
second part uses induction to show that Conditions 1–5 hold in any execution
history, and hence that the SpecialSet and ticket dispenser are correct. We pro-
ceed in reverse, sketching the second part of the proof first, and then sketching
the remaining details.

Lemma 1. Conditions 1–5 hold in any execution history of the algorithm.

Proof sketch. By inspection of the ME algorithm in Figure 1, Conditions 1–3(a)
hold. To show that Conditions 3(b)–5 hold, we use induction on the length of
the execution history H . In the initial state of H , no process has taken a step,
and so the conditions hold trivially. We assume that the conditions hold up to
some state s in the execution history, and show that the conditions also hold in
the next state s′ after s. Suppose, by way of contradiction, that the conditions
do not hold in state s′. Since all conditions are satisfied up to s, it can be shown
that exactly one condition is not satisfied in s′. Due to space limitations, we
only argue for a contradiction when Condition 4 does not hold. In this case,
there must be some process p contiguously participating in the ticket dispenser
while another process q participates four times. Process q must have started
participating for the fourth time when it took a step between s and s′. It turns
out (by Condition 5) that p must have finished executing ObtainTicket()
before q went through the CS when it participated in the ticket dispenser the
second time. Thus, during q’s third time participating, p will have finished the
doorway before q starts it. FCFS holds prior to s′, and so q cannot execute
through the CS and participate a fourth time until p has executed through the
CS. But this means that when q participates for the fourth time, p will no longer
be participating contiguously, contradicting the assumption that it is.

Lemma 2. The algorithm satisfies mutual exclusion.

Proof. The lemma follows from the correct use of the auxiliary lock, which sur-
rounds (among other things) the CS.

Lemma 3. The algorithm satisfies bounded exit.

Proof. The Kim and Anderson [13] algorithm, which we use for the auxiliary
lock, satisfies bounded exit. Consequently, it follows from the structure of our
algorithm that it too satisfies bounded exit.

Lemma 4. The algorithm satisfies FCFS.

Proof sketch. Assume that some process p finishes the doorway before some
process q starts the doorway, and suppose, by way of contradiction, that q enters
the CS before p in the corresponding passages. Immediately before q does so,
p and q hold their tickets simultaneously. Since p finished the doorway before

106 R. Danek and W. Golab

q started it, p’s call to ObtainTicket() finished executing before q’s call to
ObtainTicket() started. This and the ticket dispenser specification imply that
p’s ticket is smaller than q’s. If p adds itself to Q at line 11 before q, then q has
no hope of entering the CS before p since p will be in front of q in Q . So it must
be the case that q adds itself to Q before p by executing the locked segment
of code at lines 6–13 before p. In this case, however, q’s call to RemoveSelf()
at line 7 returns tmp id �= ⊥ (possibly tmp id = p), since Set contains p. This
means that at line 9, q adds some process to Q with a dummy ticket. Process
q cannot be signalled to enter the CS while there is a dummy ticket in Q , and
it turns out the latter condition holds at least until p adds itself with its proper
ticket to Q . When p does add itself to Q , it will be in front of q, since p has
a smaller ticket than q. This implies that p will enter the CS before q, which
contradicts the assumption that q enters before p.

Lemma 5. The algorithm satisfies deadlock freedom.

Proof sketch. Suppose, by way of contradiction, that deadlock freedom does not
hold. That is, some process p loops forever in the trying protocol, and after some
point in the execution, no process enters the CS. It turns out that the only place
where p may be looping is at line 15, while waiting to be signalled to enter the
CS. Furthermore, since there is a point after which no process enters the CS,
there must be a last call to Q .FindMin() (line 12 or 20). The contradiction
that we derive is to show that after the last call to Q .FindMin(), there must be
another call to Q .FindMin().

When the last call to Q .FindMin() occurs, it cannot return ⊥. If it did return
⊥, this would mean Q is empty. But then p’s final execution of the locked segment
of code at lines 6–13 must occur after the last call to Q .FindMin(), otherwise
p would already be in the queue and at (or about to execute) line 15 when the
latter call occurs. This implies that p executes Q .FindMin() after the last call
to Q .FindMin().

It also follows that when the last call to Q .FindMin() occurs, it returns the
ID of a process q that is not associated with a dummy ticket. If q were associated
with a dummy ticket, then q must be in the trying protocol before the locked
segment of code. This means that q eventually executes Q .FindMin() after the
last call to Q .FindMin().

Thus, one of the two following cases must hold: (i) the last call to
Q .FindMin() is at line 12 and returns the ID of the caller, a process q; or
(ii) the last call to Q .FindMin() is at line 20 and returns the ID of a process q
that is at lines 14–16 at the time. In both cases, q will eventually be signalled
to enter the CS, and so q will eventually call Q .FindMin() at line 20, after the
last call to Q .FindMin().

Lemma 6. The algorithm satisfies lockout freedom.

Proof. Lockout freedom follows directly from FCFS (Lemma 4) and deadlock
freedom (Lemma 5).

Closing the Complexity Gap 107

Lemma 7. The algorithm has RMR complexity O(min(k, logN)) in both the
DSM and CC models.

Proof sketch. The ticket dispenser operations and SpecialSet operations have
step complexity O(min(k, logN)). For the auxiliary lock at lines 5, 14, 16, 23,
we use the adaptive mutual exclusion algorithm of Kim and Anderson [13], which
has RMR complexity O(min(k, logN)). For the priority queue, we use a min-
heap implementation, which has step complexity O(log k). The busy-wait loop
at line 15 incurs O(1) RMRs in the CC model, and no RMRs in the DSM model.
Every other line of the algorithm causes at most O(1) RMRs per passage.

The preceding lemmas culminate in the following theorem:

Theorem 1. The algorithm defined by Figure 1 is a correct FCFS mutual ex-
clusion algorithm, and it has RMR complexity O(min(k, logN)) in both the DSM
and CC models, where k is the point contention and N is the number of processes
in the system.

Acknowledgements. We are grateful to Vassos Hadzilacos for his insightful feed-
back during the writing of this paper. We also thank the anonymous referees for
their helpful comments.

References

1. Dijkstra, E.: Solution of a problem in concurrent programming control. Communi-
cations of the ACM 8(9), 569 (1965)

2. Lamport, L.: A new solution to Dijkstra’s concurrent programming problem. Com-
munications of the ACM 17(8), 453–455 (1974)

3. Mellor-Crummey, J., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems 9(1),
21–65 (1991)

4. Anderson, T.: The performance of spin lock alternatives for shared-memory mul-
tiprocessors. IEEE Transactions on Parallel and Distributed Systems 1(1), 6–16
(1990)

5. Kim, Y.-J., Anderson, J.: A time complexity bound for adaptive mutual exclusion.
In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 1–15. Springer, Heidelberg
(2001)

6. Attiya, H., Hendler, D., Woelfel, P.: Tight RMR lower bounds for mutual exclusion
and other problems. In: Proc. STOC 2008, pp. 217–226 (2008)

7. Golab, W., Hadzilacos, V., Hendler, D., Woelfel, P.: Constant-RMR implementa-
tions of cas and other synchronization primitives using read and write operations.
In: Proc. PODC 2007, pp. 3–12. ACM, New York (2007)

8. Lamport, L.: A fast mutual exclusion algorithm. ACM Trans. Comput. Syst 5(1),
1–11 (1987)

9. Styer, E.: Improving fast mutual exclusion. In: PODC 1992: Proceedings of the
eleventh annual ACM symposium on Principles of distributed computing, pp. 159–
168. ACM, New York (1992)

10. Choy, M., Singh, A.K.: Adaptive solutions to the mutual exclusion problem. Dis-
trib. Comput. 8(1), 1–17 (1994)

108 R. Danek and W. Golab

11. Attiya, H., Bortnikov, V.: Adaptive and efficient mutual exclusion. Distrib. Com-
put. 15(3), 177–189 (2002)

12. Yang, J.H., Anderson, J.H.: A fast, scalable mutual exclusion algorithm. Dis-
tributed Computing 9(1), 51–60 (1995)

13. Kim, Y.J., Anderson, J.: Adaptive mutual exclusion with local spinning. Dist.
Computing 19(3), 197–236 (2007)

14. Afek, Y., Stupp, G., Touitou, D.: Long lived adaptive splitter and applications.
Distrib. Comput. 15(2), 67–86 (2002)

15. Cypher, R.: The communication requirements of mutual exclusion. In: SPAA 1995:
Proc. of the 7th annual ACM symposium on Parallel algorithms and architectures,
pp. 147–156. ACM Press, New York (1995)

16. Anderson, J., Kim, Y.J.: An improved lower bound for the time complexity of
mutual exclusion. Distributed Computing 15(4), 221–253 (2002)

17. Fan, R., Lynch, N.: An Ω(n log n) lower bound on the cost of mutual exclusion. In:
PODC 2006: Proc. of the 25th annual ACM symposium on Principles of distributed
computing, pp. 275–284. ACM Press, New York (2006)

18. Jayanti, P.: f-arrays: Implementation and applications. In: PODC 2002: Proceed-
ings of the twenty-first annual symposium on Principles of distributed computing,
pp. 270–279. ACM, New York (2002)

19. Taubenfeld, G.: The black-white bakery algorithm and related bounded-space,
adaptive, local-spinning and fifo algorithms. In: Guerraoui, R. (ed.) DISC 2004.
LNCS, vol. 3274, pp. 56–70. Springer, Heidelberg (2004)

The Weakest Failure Detector for

Message Passing Set-Agreement

Carole Delporte-Gallet1, Hugues Fauconnier1,
Rachid Guerraoui2, and Andreas Tielmann1,�

1 Laboratoire d’Informatique Algorithmique, Fondements et Applications (LIAFA),
University Paris VII, France

2 School of Computer and Communication Sciences,
EPFL, Switzerland

Abstract. In the set-agreement problem, n processes seek to agree on at
most n−1 different values. This paper determines the weakest failure de-
tector to solve this problem in a message-passing system where processes
may fail by crashing. This failure detector, called the Loneliness detector
and denoted L, outputs one of two values, “true” or “false” such that:
(1) there is at least one process where L outputs always “false”, and (2)
if only one process is correct, L eventually outputs “true” at this process.

Keywords: set-agreement, failure detectors.

1 Introduction

The set-agreement problem [1] has no deterministic solution in asynchronous
systems where any number of processes can fail by crashing [2,3,4] and the re-
maining processes have no information about such failures. With failure detection
however, the impossibility can be circumvented [5]. For instance, with a perfect
failure detection mechanism that accurately detects crashes, it is trivial for the
processes to reach agreement. A natural question is what failure information is
necessary and sufficient to reach agreement. In the parlance of [6], this question
can be precisely formulated using the notion of “weakest failure detector”: In
short, the weakest failure detector to solve a problem is one that (a) indeed
solves the problem and (b) can be emulated by any failure detector that solves
the problem. Property (a) conveys the sufficiency of the failure detector whereas
property (b) conveys its necessity.

Several papers have been devoted to determine the weakest failure detector
to solve the set-agreement problem in a distributed system where any number of
processes can fail by crashing [7,8,9,10]. In particular, Zieliński proved recently
that anti-Ω – a failure detector that outputs id’s of processes such that the id of
at least one correct process is output only finitely many times – is the weakest
failure detector for set-agreement in a shared memory system [10]. The proof of

� Work was supported by grants from Région Ile-de-France.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 109–120, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

110 C. Delporte-Gallet et al.

the result is particularly involved and builds on earlier proof techniques from [6]
and [8].

In the context of message passing however, the weakest failure detector for
set-agreement has not been determined yet and one might have hoped to derive it
somehow from anti-Ω. Indeed, Zieliński conjectured in [11] that failure detector
Σ [12] – the weakest failure detector to build a shared memory in a message pass-
ing system – is both sufficient and necessary to implement set-agreement. This
would mean that some common denominator of anti-Ω and Σ would constitute
the weakest failure detector for set-agreement in message passing. Nevertheless,
Delporte et al. recently disproved Zieliński’s conjecture by showing that Σ is
not necessary, albeit sufficient [13]. The question of the weakest failure detector
to solve set-agreement in a message passing system remained thus open. The
contribution of this paper is precisely to close the question.

We introduce the Loneliness failure detector, denoted L, and we show that
it is the weakest failure detector for set-agreement in a message passing system.
Failure detector L outputs, whenever queried by a process, one of two values:
“true” or “false” such that the following two properties are satisfied: (1) there
is at least one process where the output is always “false”, and (2) if only one
process is correct (does not crash), then the output at this process is eventually
“true” forever. We first give an algorithm that solves set-agreement using L. The
particularity of the algorithm is its non-symmetric nature as it heavily exploits
the total order on the identity of the processes. We then assume that there is
an algorithm A that solves set-agreement (with some failure detector), and we
show how to “extract” from A the output of L. Our approach here is, on the
one hand, different from the approach of [6] where each process locally simulates
several runs of A and, on the other hand, different from the approach of [10],
as well as [8], where the extraction relies on the asynchronous impossibility of a
problem. In our case, the processes execute one instance of A, without knowing
the automaton of A performed at each process. The processes obtain the output
of L by “simply” intercepting communication between these automata. This
leads to a very simple, almost trivial, extraction algorithm.

Our proof that L is the weakest in message passing is thus remarkably simple
and this might be surprising compared to the rather involved proof of Zieliński
[10] in shared memory systems. Somehow, we show that – contrary to a wide
belief – results in message passing systems are sometimes easier to prove than
in shared memory.

We prove that – not surprisingly – failure detector L is strictly stronger than
anti-Ω, the weakest in a shared memory system. (Indeed a message passing sys-
tem can be emulated by a shared memory system but the converse requires ad-
ditional assumptions, e.g., a majority of correct processes [14].) Furthermore, we
show that no failure detector that may behave arbitrarily for any finite amount
of time is stronger than L (but nevertheless such failure detectors can be in-
comparable with L). We also show that for n > 2, Σ is strictly stronger than
L, confirming the result of [13] that emulating a shared memory requires more
information about failures than reaching agreement (Figure 1).

The Weakest Failure Detector for Message Passing Set-Agreement 111

Σ L anti-Ω

emulate registers

in message-passing

set-agreement

in message-passing

set-agreement

in shared-memory

weakest

failure

detector

problem

is strictly strongeris strictly stronger

Fig. 1. Relations between failure detector classes

The rest of the paper is organized as follows. We first define our model in
Section 2. Then we show that L is sufficient for set-agreement in Section 3 and
that L is also necessary in Section 4. In Section 5, we show that L is strictly
stronger than anti-Ω. And finally, in Section 6 we show that for n > 2, Σ is
strictly stronger than L.

2 Model and Definitions

2.1 Processes and Failure Detectors

The system model we consider is that of Chandra et al. [6] which we briefly recall
here. We consider a set Π = {p1, . . . , pn} of n ≥ 2 processes which communi-
cate by message passing over a fully connected network with reliable links. Any
number of processes may fail by prematurely halting, i.e. they crash. However,
no process can otherwise deviate from its protocol. We assume a global clock T
that is used to depict steps in an execution; the clock is not accessible to the
processes.

A failure pattern is a function from time T to 2Π that specifies for every time
t which processes have crashed by time t. A process pi that does not crash in a
failure pattern F is said to be correct in F (pi ∈ correct(F)). A process is said
to be alive until it crashes. Processes that are not correct are called faulty. An
environment E is a set of possible failure patterns. In this paper, we consider
every environment, i.e. any number of processes may crash and in particular any
process may crash at any time.

A failure detector D is a distributed oracle that provides the processes with
information about failures. A failure detector is defined by its histories. Given
a failure pattern F ∈ E , a history H of a failure detector D is a function from
Π ×T to RD, the failure detector range of D, i.e. the set of possible outputs of
D: D(F) denotes a set of failure detector histories that are allowed for F .

An algorithm A is modeled as a set of n deterministic automata, one for every
process in the system. A run of A proceeds in steps and at every time t at most
one process executes a step. We assume only fair runs, i.e. every correct process

112 C. Delporte-Gallet et al.

executes infinitely many steps. A step consists of receiving a (possibly empty)
message, reading a value of a failure detector, changing the state accordingly,
and outputting a (possibly empty) message.

A failure detector is said to solve a problem in a given environment E if there
is an algorithm that solves the problem using message passing and that failure
detector (and no other information about failures) for every failure pattern in E .
A failure detector D is said to be stronger than another failure detector D′ in an
environment E if there is an algorithm that uses only D to emulate the output
of D′ for every failure pattern in E . Similarly, detector D is weaker than D′ in E
if D′ is stronger than D in E . Failure detector D is said to be strictly stronger
than failure detector D′ in environment E if D is stronger than D′ in E but not
vice versa.

The weakest failure detector [6] D to solve a given problem in an environment
E is a failure detector that is sufficient to solve the problem in E and that is also
necessary to solve the problem, i.e. D is weaker than any failure detector that
solves the problem in E .

We define D to be (strictly) stronger (resp. weaker) than D′ if D is (strictly)
stronger (resp. weaker) in every environment. Similarly, a weakest failure detec-
tor for a problem is defined to be a weakest failure detector for this problem for
every environment.

2.2 Set-Agreement

In the set-agreement problem, every process pi starts with some proposal value vi

and tries to decide a value such that the following three properties are satisfied:

Agreement: At most n− 1 different values are decided.
Validity: Every value that has been decided must have been a proposal value

of some process.
Termination: Eventually, every correct process decides a value.

2.3 Failure Detector L
We now define the Loneliness detector L. This failure detector outputs one of
two values “true” and “false”. The intuition behind the semantics of this failure
detector is that if the output at some correct process is “false” forever, then
there is another alive process in the system. By convention, we assume that if a
process is crashed at time t, then its failure detector output at time t is “false”.
The following properties are satisfied:

– at least one process never outputs “true”, and
– if only one process is correct, then it eventually outputs “true” forever.

More formally:

Definition 1. The range of L is {“true”, “false”}. For every environment E,
for every failure pattern F ∈ E, and every history H ∈ L(F):

∃pi ∈ Π, ∀t,H(pi, t) �= “true” (1)
∧ ∀pi ∈ Π, correct(F) = {pi} ⇒ ∃t, ∀t′ ≥ t,H(pi, t

′) = “true” (2)

The Weakest Failure Detector for Message Passing Set-Agreement 113

3 The Sufficient Part

To show that failure detector L is sufficient to solve set-agreement in our model,
we give an algorithm that implements set-agreement with L. The algorithm is
depicted in Figure 2.

To ensure that at most n−1 proposal values are decided, every process tries to
agree with another process on one value. To achieve this, initially some processes
send their values. To prevent a circular value exchange, i.e. a situation where the
proposal values are simply permuted, the values are only sent to processes with
a higher id. This means, that process p1 sends its value to everybody (except
itself), process pi to all processes from pi+1 to pn, and process pn to nobody.

If some process receives1 one of these values, it sends this value to all other
processes and decides. As long as there is another correct process, every correct
process decides either through one of the messages that were initially sent or, if
it does not receive such a message (e.g., because it has a lower id than the other
correct processes), it decides through a message of an already decided process.
Note that it may be possible that a process receives its initial value back in
such a message. In this case, the sender of this message does not decide its own
proposal value.

To deal with crashes, we only execute these steps if the output of the failure
detector is “false”. But in the case of only one correct process in the system,
we do not want to wait for messages of other processes forever. Therefore, if the
output of the failure detector changes to “true” – and by its property (2) in the
case of only one correct process it will eventually do so – this process simply
decides its own proposal value. We can do this without violating agreement,
because by property (1) there will always be one process that does not decide

Algorithm for process pi:

1 to propose(v):

2 initially:
3 send 〈v〉 to all pj with j > i;

4 on receive 〈v′〉 do:
5 send 〈v′〉 to all;
6 decide v′; halt; (∗ decision D1 ∗)

7 on L = “true” do:
8 send 〈v〉 to all;
9 decide v; halt; (∗ decision D2 ∗)

Fig. 2. Implementing set-agreement with L

1 For simplicity of the presentation, we assume that the code Lines 5-6 and Lines 8-9
are executed atomically.

114 C. Delporte-Gallet et al.

due to a “true” output, and as we have argued before, processes that decide due
to a message exchange eliminate at least one value.

Proposition 1. The algorithm in Figure 2 implements set-agreement in every
environment E.

Proof. We have to prove the three properties of set-agreement, namely agree-
ment, validity, and termination.

Agreement. We start with the agreement property of set-agreement. We assume
a run where all processes decide and every process pi has a distinct initial value
vi. Without this assumption, agreement is trivially met.

By Property (1) of L, not all processes can have decided by decision D2.
Therefore, in such a run at least one process decides by D1. This means that
it is sufficient to show that if at least one process decides by D1, then at most
n− 1 values are decided.

Among the processes that decide by D1, consider pi as the process with the
highest id and let v′ be the decided value. We distinguish between the two cases
where pi decides its initial value (v′ = vi), and where it does not.

Case 1: The only possibility that the decided value v′ is equal to pi’s value vi

is that a process pj with j > i has received pi’s initial message and decided
vi. Therefore, pi and pj decide the same value and at most n− 1 values are
decided.

Case 2: If v′ is not equal to vi and i = n, then vn will never be decided because
process pn does not send its value to anybody. If i < n, then the only
possibility that vi is decided is if a process pk with k > i has received vi

from pi and decided by D1. But as pi is the process with the highest id that
decides by D1, such a k does not exist. And therefore, vi is never decided.

Validity. The validity property of set-agreement is trivially satisfied, since only
proposal values are sent.

Termination. If some correct process decides by D1 or D2, then it sends its
decided value to all processes and all correct processes that have not yet decided
eventually receive this value and also decide.

Therefore, it remains to show that in every run some correct process decides
by D1 or D2. We distinguish two cases: the case when there exist at least two
correct processes in a run with a failure pattern F ∈ E , and the case with only
one correct process.

Case 1: If there are at least two correct processes and none decides by D2,
then eventually, the one with the highest id receives the initial message of
the other ones and decides by D1.

Case 2: If there is only one correct process and it does not decide by D1, then
by property (2) of L, this process eventually decides by decision D2. ��

The Weakest Failure Detector for Message Passing Set-Agreement 115

4 The Necessary Part

Following the approach of Chandra et al. [6], we show that failure detector L is
necessary to solve set-agreement in our model by providing an algorithm that
emulates the output of L given any algorithm A and failure detector D, such that
A using D solves set-agreement. Figure 3 presents such an emulation algorithm.
The output of our emulation of L is provided through a special variable output.

The idea for the emulation of L is that if all messages that are sent by algo-
rithm A get delayed for a very long time, the safety properties of set-agreement
still have to hold, while for the case that only one process is correct, even the
liveness property has to hold, i.e. the algorithm has to terminate. Therefore,
every process executes A with D, omits to send any messages that are generated
by algorithm A to other processes, and outputs “false” until A terminates.

Property (1) of L is thus always fulfilled, because otherwise the executions
at all processes would have terminated without ever receiving a message and
therefore agreement could not have been guaranteed. But nevertheless, if there
is only one correct process pi, the algorithm A executed at pi has to terminate
and property (2) of L is also guaranteed.

Interestingly, this technique works for every non-trivial problem in which com-
munication between processes is necessary, i.e. where not all processes may termi-
nate without receiving messages from other processes. Therefore, L is necessary
for all of these problems.

Proposition 2. The algorithm in Figure 3 implements L in every environment
E.

Proof. Assume there exists a run r, where the algorithm in Figure 3 does not
fulfill property (1) of L with a failure pattern F ∈ E . This means, that in run r,
for every process, there exists a time when output = “true”, i.e. the execution of
algorithm A has terminated at all processes without receiving any message from
other processes at all.

Let t be the time at which A has terminated at all processes in run r. Then,
since the system is totally asynchronous, it is possible to construct a valid run
r′ of A with the same failure pattern F , where all messages to other processes
get delayed to a time after t, and all processes have terminated A at time t.

Algorithm for process pi:

1 output := “false”;
2 execute A with value i and detector D, but omit sending messages to others;
3 if A has terminated, then output := “true”;

Fig. 3. Implementing L with an algorithm A and a failure detector D that solve set-
agreement

116 C. Delporte-Gallet et al.

Note that a failure detector is solely specified as a function over a failure
pattern in an execution, i.e. it is not allowed to output any information about
the state of other processes or to give hints about the proposal values.

Therefore, to fulfill the validity property of set-agreement, the decision value
at every process pi can only be its proposal value i. A contradiction with the
agreement property of set-agreement. Therefore, property (1) of L is always
satisfied.

If for some run r of our algorithm, for some process pi, F is the failure pattern
in run r and correct(F) = {pi}, then it is possible to construct a run rA of A in
which no faulty process is able to send a message (because the system is totally
asynchronous) and pi takes exactly the same steps as in r. By the termination
property of set-agreement, eventually algorithm A has to terminate in run rA at
pi. Since r and rA are indistinguishable for pi, it terminates the execution ofA also
in r and the output changes to “true”. Thus, property (2) is also satisfied. ��

Theorem 1. L is the weakest failure detector for set-agreement in a message
passing system.

Proof. We have shown in Proposition 1 that L is sufficient and in Proposition 2
that it is necessary for set-agreement in all environments. ��

5 Comparing L and Anti-Ω

To keep our proofs as generic as possible, we first introduce the notion of eventual
failure detectors. We say that a failure detector is an eventual failure detector if
the detector can behave arbitrarily for any finite amount of time. A more formal
definition can be found in [15] where such failure detectors are called strongly
unreliable failure detectors.

Zieliński shows in [16] that every eventual failure detector (that satisfies some
other assumptions that are irrelevant here) is stronger than anti-Ω, the weakest
failure detector for set-agreement in a shared memory [10]. Each query to the
anti-Ω detector returns a process id. The failure detector guarantees that there
is a correct process whose id will be returned only finitely many times. Clearly,
anti-Ω is an eventual failure detector and L is not. We show that L is strictly
stronger than anti-Ω. This means, that to implement set-agreement in message
passing there is a strictly stronger failure detector necessary than in shared
memory.

Lemma 1. L is stronger than anti-Ω.

Proof. An implementation of anti-Ω using L is given in Figure 4. The basic idea
is simple: Every process pi outputs the id j of a process pj such that j is the
lowest id of all processes from which pi has not yet heard that they have had
a “true” as failure detector output. For this, the processes remember the ids
of processes that have received a “true” from L in a set lonely. The output of
anti-Ω is emulated in a special variable output.

The Weakest Failure Detector for Message Passing Set-Agreement 117

Algorithm for process pi:

1 initially:
2 lonely := ∅;
3 output := {1};

4 on L = “true” do:
5 lonely := lonely ∪ {i};
6 send 〈lonely〉 to all;
7 output := min({1, . . . , n} \ lonely);

8 on receive 〈lonely′〉 do:
9 if lonely �= lonely′ then send 〈lonely ∪ lonely′〉 to all;
10 lonely := lonely ∪ lonely′;
11 output := min({1, . . . , n} \ lonely);

Fig. 4. Implementation of anti-Ω using L

We now show that this transformation indeed emulates anti-Ω. From property
1 of the definition of L, the output of at least one process is never a “true”.
Therefore, there is always at least one id that is output (i.e. it is never lonely =
{1, . . . , n}).

To prove that there is a correct process whose id is output only finitely often,
note that eventually the set lonely is the same at all correct processes because it
can only grow and will always be a subset of {1, . . . , n} (and every correct process
relays it after every change). Therefore, eventually all correct processes have the
same output. Now assume the id of every correct process is output infinitely often
at the processes. This implies that there is only one correct process, because all
processes always output the minimum of {1, . . . , n}\lonely which can only shrink
and therefore never oscillates between different process ids. But from property
2 of the definition of L, a single correct process eventually receives a “true” and
therefore belongs to its set lonely. A contradiction. ��

Lemma 2. No eventual failure detector is stronger than L.

Proof. Assume there exists an algorithm A that transforms an eventual failure
detector D to L. Then, assume for every 1 ≤ i ≤ n, a run ri of A with failure
pattern Fi and correct(Fi) = {pi} and where the faulty processes take no steps.
If A is correct, then eventually the output at process pi in run ri has to be
“true”, say at time ti. Similarly, assume a run r of A with a failure pattern
F with correct(F) = Π , but no process pi receives a message from any other
process before or at time ti and every pi is scheduled as in ri. Let the output
of D at every process pi before time ti be exactly as in run ri (this is possible,
since D may behave arbitrarily for any finite amount of time). Then, for every
process pi, run ri is indistinguishable from run r before time ti and every process
pi outputs “true” at time ti. But this contradicts property 1 of L. ��

118 C. Delporte-Gallet et al.

Theorem 2. L is strictly stronger than anti-Ω.

Proof. Follows directly from Lemma 1 and Lemma 2. ��

6 Comparing L and Σ

We now show that Σ, the weakest failure detector to emulate a shared memory
in message-passing systems [12] is strictly stronger than L. In a sense, this indi-
cates that emulating a shared memory in message passing is strictly harder than
solving set-agreement, confirming the result of [13]. By convention, we assume
that if a process is crashed at time t, then its failure detector output is Π at
time t. At each invocation, Σ outputs a list of trusted processes and it satisfies
two properties:

Intersection: Given any two lists of trusted processes, possibly at different
times and by different processes, at least one process belongs to both lists.

Completeness: Eventually no faulty process is ever trusted by any correct
process.

Lemma 3. Σ is stronger than L.

Proof. The reduction is simple: At the beginning, every process outputs “false”.
For every process pi, if the output of Σ is {pi}, output “true”.

Assume that for every process there is some time when the output of L is
“true”. Since this happens only if at every process pi, {pi} is output, the inter-
section property of Σ is clearly violated. Therefore, this will never happen and
property 1 of L is never violated.

From the completeness property follows that if a process pi is the only correct
process, the output will eventually be “true” (property 2 of L). ��

For the special case that the system consists only of two processes, the specifica-
tions of set-agreement and consensus are equivalent. Delporte-Gallet et al. show
in [17] that for this case Σ is the weakest failure detector for consensus. Together
with Theorem 1 this immediately implies that L and Σ are also equivalent for
this case. However, in the following lemma we show that for n > 2 this is not
the case.

Lemma 4. L is not stronger than Σ, if n > 2.

Proof. Assume there exists an algorithm A that transforms L into Σ. Let P =
P1, P2, P3 be any partitioning of Π . Then assume two runs r1 and r2 where the
processes in Pi are correct in run ri and all other processes are faulty from the
beginning, and the output of L at the processes in partition Pi is “true”. Since
A fulfills completeness, it eventually has to output in every run ri a subset of
Pi, say at time ti.

Now imagine a run r in which the processes in P1 and P2 are correct and
the output of L is “true”. Additionally, no message of a process from a different
partition is received in partition P1 and P2 before time t1 (respectively t2) and

The Weakest Failure Detector for Message Passing Set-Agreement 119

the messages between the processes in P1 and P2 are exactly scheduled as in
runs r1 and r2. The runs r1 and r2 are indistinguishable from run r before time
t1 (respectively t2). Therefore, the output at time ti will be a subset of Pi for
partition i = 1, 2. But this contradicts to the intersection property of Σ. So there
exists no such algorithm A. ��

Theorem 3. If n > 2, then Σ is strictly stronger than L.

Proof. Lemma 3 shows that Σ is stronger than L and Lemma 4 shows that it is
strictly stronger. ��

7 Summary

We have determined the weakest failure detector for set-agreement in a message-
passing system where processes may fail by crashing. The failure detector is
called L and it returns at every invocation “true” or “false”. It ensures that (1)
there is at least one process where the output is always “false”, and (2) if there
is only one correct process, then the output at this process is eventually “true”
forever.

Acknowledgments. We are grateful to Sam Toueg for helpful suggestions on the
sufficient part of our proof. Furthermore, we would like to thank the reviewers
for their helpful comments.

References

1. Chaudhuri, S.: More choices allow more faults: Set consensus problems in totally
asynchronous systems. Inf. Comput. 105(1), 132–158 (1993)

2. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: The topology of
public knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000)

3. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asyn-
chronous computations. In: STOC 1993: Proceedings of the twenty-fifth annual
ACM symposium on Theory of computing, pp. 91–100. ACM, New York (1993)

4. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
Journal of the ACM 46(6), 858–923 (1999)

5. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43(2), 225–267 (1996)

6. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. J. ACM 43(4), 685–722 (1996)

7. Raynal, M., Travers, C.: In search of the holy grail: Looking for the weakest failure
detector for wait-free set agreement. In: Shvartsman, M.M.A.A. (ed.) OPODIS
2006. LNCS, vol. 4305, pp. 3–19. Springer, Heidelberg (2006)

8. Guerraoui, R., Herlihy, M., Kouznetsov, P., Lynch, N., Newport, C.: On the weakest
failure detector ever. In: PODC 2007: Proceedings of the twenty-sixth annual ACM
symposium on Principles of distributed computing, pp. 235–243. ACM, New York
(2007)

120 C. Delporte-Gallet et al.

9. Chen, W., Zhang, J., Chen, Y., Liu, X.: Weakening failure detectors for k -set
agreement via the partition approach. In: Pelc, A. (ed.) DISC 2007. LNCS,
vol. 4731, pp. 123–138. Springer, Heidelberg (2007)

10. Zieliński, P.: Anti-Omega: the weakest failure detector for set agreement. In: PODC
2008: Proceedings of the twenty-seventh annual ACM symposium on Principles of
distributed computing (2008)

11. Zieliński, P.: Anti-Omega: the weakest failure detector for set-agreement. Technical
report, UCAM-CL-TR-694 (2007)

12. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: Shared memory vs message
passing. Technical report, LPD-REPORT-2003-001 (2003)

13. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: Sharing is harder than agreeing.
In: PODC 2008: Proceedings of the twenty-seventh annual ACM symposium on
Principles of distributed computing (2008)

14. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing
systems. J. ACM 42(1), 124–142 (1995)

15. Guerraoui, R.: Indulgent algorithms. In: PODC 2000: Proceedings of the nineteenth
annual ACM symposium on Principles of distributed computing (2000)

16. Zieliński, P.: Automatic classification of eventual failure detectors. In: Pelc, A. (ed.)
DISC 2007. LNCS, vol. 4731, pp. 465–479. Springer, Heidelberg (2007)

17. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R. (Almost) all objects are uni-
versal in message passing systems. In: Fraigniaud, P. (ed.) DISC 2005. LNCS,
vol. 3724. Springer, Heidelberg (2005)

Local Maps: New Insights into Mobile Agent

Algorithms

Bilel Derbel�

Laboratoire d’Informatique Fondamentale de Lille (LIFL),
Université des Sciences et Technologies de Lille, France

bilel.derbel@lifl.fr

Abstract. We address the problem of computing with mobile agents
having small local maps. Several trade-offs concerning the radius of the
local maps, the number of agents, the time complexity and the number
of agent moves are proven. Our results are based on a generic simula-
tion scheme allowing to transform any message passing algorithm into a
mobile agent one. For instance, we show that using a near linear (resp.
sublinear) number of agents having local maps of polylogarithmic (resp.
sublinear) radius allows us to obtain a polylogarithmic (resp. sublinear)
ratio between the time complexity of a message passing algorithm and
its mobile agent counterpart. As a fundamental application, we show
that there exists a universal algorithm that computes, from scratch, any
global labeling function of any graph using n mobile agents knowing
their o(nε)-neighborhood (resp. without any neighborhood knowledge)

in eO(D) time (resp. eO(∆ + D) expected time)1, where n, D, ∆ are re-
spectively the size, the diameter, the maximum degree of the graph and
ε is an arbitrary small constant. For the leader election problem (resp.

BFS tree construction), we obtain eO(D) time algorithms under the ad-
ditional restriction of using mobile agents having only logO(1) n (resp.
eO(n)) memory bits.

To the extent of our knowledge, the impact of local maps on mobile
agent algorithms has not been studied in previous works. Our results
prove that small local maps can have a strong global impact on the
power of computing with mobile agents. Thus, we believe that the local
map concept is likely to play an important role to a better understanding
of the locality nature of mobile agent algorithms.

Keywords: Mobile agents, local maps, time complexity.

1 Introduction

Motivation and Goals. In a mobile agent algorithm, we are given a set of
mobile entities equipped with a memory and able to move from a node to another
in the network in order to perform some computations. To evaluate the efficiency
� Supported by the DOLPHIN INRIA project team.
1

eO(f)
def
= f · (log n)O(1).

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 121–136, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

122 B. Derbel

of a mobile agent algorithm, the most common complexity measures are time,
number of agents, number of agent moves, and memory size of the agents. The
main motivation of this paper is to understand the relationship of these classical
complexity measures, especially the time complexity, to the initial local view
complexity measure.

For an intuitive definition of the initial local view of a mobile agent, and to
show how it can interfere with the way of solving a distributed problem, let us
consider the following example. Take a non-anonymous static graph that models
a set of pairwise connected locations where some robots (i.e., mobile agents) are
scattered. The robots can move from one location to a neighboring one. They
can communicate by leaving a message in the location where they pass. Suppose
that initially each robot is given a map of its surrounding locations and they
have to agree on some location to meet, i.e., elect a location. It is clear that if
initially the robots know the entire location map (that is the common graph),
then they can choose the location having the smallest name to meet there. The
time needed to gather the robots is then dominated by the time needed to
reach that elected location. Suppose now that initially each robot is given only
an incomplete or a restricted map of its environment, for example a map of
only the closest locations. First, it is not straightforward how the information
provided by the local maps can help the robots to meet. Second, assuming that
the information given by the local maps does so, it is not obvious that the robots
can meet as fast as if they know the whole environment.

Roughly speaking, the initial local view of a mobile agent measures how small
is the local map given to it initially. More precisely, it measures the radius of
the initial map given to the agent. The purpose of this paper is to show that
small local maps have a strong global impact. In particular, our aim is to show
how local maps can help designing efficient mobile agent solutions.

Methodology and results. We tackle this problem independently of both
the distributed task and the underlying network. For that purpose, we adopt a
“simulation” based approach that allows us to transform any message passing
algorithm into a mobile agent one. In fact, the initial local view of a mobile
agent can be interpreted from a message passing perspective as the amount of
knowledge that a node may have about its neighborhood. Since many distributed
problems have been shown to have efficient local solutions in the message passing
setting, providing a generic and efficient simulation method will also lead to
design efficient local solutions using mobile agents.

Following this intuitive approach, we develop a generic scheme that allows us
to simulate message passing algorithms in the mobile agent model (see model
details in Section 2). Our scheme is based on a partition of the graph into a
set of clusters. Roughly speaking, each cluster is controlled by some agents that
simulate the message passing algorithm in that cluster while collaborating with
the other agents in neighboring clusters. The computations inside a cluster are
almost for free, only computing at the border of a cluster costs high. One should
remark that the idea of using clustered representations is not new in distributed
computing and it has already been proved to be extremely useful to solve many

Local Maps: New Insights into Mobile Agent Algorithms 123

distributed problems, e.g., [1, 2, 3, 13, 33]. In this paper, we carefully combine
several related techniques concerning sparse partitions [5, 13], small dominating
sets [27], efficient synchronizers [2, 29] and balanced tree structures [9] to derive
an efficient simulation scheme that deals with mobile agent specific issues.

Using partitions optimizing either the number of clusters, the radius of clus-
ters, or the inter-connexion between clusters, we obtain trade-offs concerning the
complexity of our simulation scheme. For instance, we show that using O(n1+1/�)
mobile agents, a message passing algorithm with time complexity τ can be simu-
lated in τ̃ time such that τ̃/τ = �O(1) (n is the size of the graph, � is an integer). If
the number of agents is fixed to be k < n, then we obtain a time ratio of at most
O(n/

√
k). The latter results hold when the initial local view of agents is �O(1)

and O(n/
√
k) respectively. Trade-offs concerning the number of agent moves are

also given. The most interesting corollaries are obtained for � = Θ(log n) or
k = o(n), where our results show that using near linear (resp. sublinear) number
of agents having local maps of polylogarithmic (resp. sublinear) radius allows to
obtain a polylogarithmic (resp. sublinear) time ratio.

Since our simulation scheme is based on some partitions with particular prop-
erties, one major difficulty to apply our scheme is to construct these partitions
distributively and to initialize the mobile agents from scratch. We describe effi-
cient distributed initialization techniques to cope with these issues. In particular,
we show that the cost of initializing the agents from scratch can be made negligi-
ble in comparison to the cost of the simulation itself. Our initialization technique
is based on an adaptation of a distributed decomposition algorithm described
in [13] and allowing us to gain a log factor in the size of the spanners constructed
in [13] which could be of independent interest.

Based on the latter results, we derive a universal distributed algorithm that
computes in Õ(D) time any labeling function on any graph using in every node
one mobile agent knowing its o(nε)-neighborhood, ε > 0 is any arbitrary small
constant and D is the diameter of the graph. Using mobile agents with no initial
information at all, the time complexity of our algorithm becomes Õ(∆ + D)
in expectation (∆ is the maximum degree of the graph). These results suggest
that from a time complexity point of view mobile agents having small initial
knowledge could be as powerful as message passing.

Finally, we investigate the time complexity of computing two fundamental
distributed problems with limited memory agents: the leader election and the
Breadth First Spanning (BFS) tree. Using n mobile agents knowing their nε-
neighborhood, and having respectively logO(1) n and Õ(n) memory bits, we ob-
tain Õ(D) time algorithms for both problems.

Overview of related works. To the extent of our knowledge, the relation
between the initial local view as defined in this paper and the complexity of
mobile agent algorithms has not been studied in previous works. However, one
can find many seemingly related concepts.

The concept of limited visibility (see e.g., [14, 15, 21, 22, 35]) is perhaps the
most closely related to the issues addressed in this paper. Roughly speaking, a
robot is said to have a limited visibility if it can sense its surrounding up to a

124 B. Derbel

fixed distance, i.e., it can look and see the positions of other robots in a ball of
a fixed radius at any time of the execution of the algorithm. It is a fact that
the computation models used to study limited visibility agents are different from
ours. Moreover, the problems studied therein are in general different from the
labeling problems addressed in this paper.

Another related concept, called oracles (or advice), araised recently for some
specific problems, e.g., broadcast / wake-up [17], tree exploration [18], color-
ing [16], graph searching [31]. The concept of oracles is tightly related to the
concept of labeling schemes (see e.g., [19, 23, 24, 25]). These concepts may apply
for the mobile agent model as well as for the message passing model. Informally
speaking, an oracle with respect to a given problem P is an algorithm that, given
a graph, outputs a labeling of nodes in such a way solving P by a distributed
algorithm can be done efficiently. The challenges in that context are (i) to design
an oracle minimizing the number of bits used for the labeling of nodes, and (ii)
to come out with a distributed algorithm that, using the information provided
by the oracle (the labels), solves P efficiently. Although studying oracles helps
understanding the locality of a given problem, the issues addressed by oracles
are different from those studied in this paper in many ways. In fact, paraphras-
ing the discussion made in the introduction of [26], we can say that oracles “are
centralized, in the sense that they are based on a sequential algorithm which
given a description of the entire graph outputs the entire set of node labels2.
Hence, while the resulting short labels reflect local knowledge and can be used
locally, their generation process is centralized and global”.

Many other local issues concerning specific mobile agent problems have been
extensively studied over the last few years (e.g., graph exploration [10], decon-
tamination [15], election [7], etc). Few of them have considered the impact of
the initial local knowledge on the complexity of mobile agent algorithms.

In this paper, we are addressing the problem of solving any labeling task, on
any network, in a fully distributed way, provided that some local maps are known.
One should remark that the existing approaches were not concerned with the
three previous issues. More generally, our interest in the local map concept stems
mainly from the fact that it allows to bring a new approach to understand the
locality nature of mobile agent algorithms and to think classical mobile agents
problems in a different way.

From a message passing perspective, the impact of local knowledge on solving
distributed tasks has been intensively studied over the last years. For instance,
the results presented in [4] show that broadcasting in a network, where each node
knows its ρ-neighborhood, can be done using Θ(min

{
m,n1+O(1)/ρ

}
) messages,

where m (resp. n) is the number of links (resp. nodes) in the network. Reviewing
all the existing results on the locality of message passing algorithms is beyond the
scope of this paper. The reader is referred to [28, 30, 34] and the pointers there
for further details concerning the particularly rich state-of-the-art concerning the
locality of distributed message passing algorithms. One should keep in mind that

2 Exceptions exist for labeling schemes but they are problem specific or topology
specific, e.g., [26].

Local Maps: New Insights into Mobile Agent Algorithms 125

the simulation technique presented in this paper is a tool to answer the question:
how powerful small local maps could be when designing mobile agent algorithms?
Although our results allow to give an answer to “how powerful mobile agent
algorithms could be compared to message passing ones?”, our primary goal is to
study the impact of local maps from a pure mobile agent perspective.

Only few works have studied the relationship between mobile agent algorithms
and message passing algorithms. In [6, 8], a simulation based approach provides
equivalence results between tasks that can be computed with messages and those
that can be computed with mobile agents. Roughly speaking, the research con-
cern there is on determining what tasks can be computed by mobile agents and
under what conditions, but not at what cost. More recently, it is shown in [11]
how to simulate message passing algorithms with mobile agents under failures
with a polynomial overhead in the number of moves per agent (for simulating
one message sending). In [20, 32], the authors showed how mobile agents (from a
system engineering point of view) can define a navigational programming style
for distributed parallel computing which is competitive in many points compared
to classical message passing and shared memory systems.

Outline. In Section 2, we define the notations and the distributed models. In
Section 3, we describe two basic and independent simulation techniques. In Sec-
tion 4, we describe and analyze our generic simulation scheme. In Section 5, we
show how to couple our simulation scheme with some clustered representations.
In Section 6, efficient initialization techniques are described. In section 7, we
apply our results to compute any function of a given graph, then to compute a
leader and a BFS tree using agents having limited memory.

2 Definitions and Models

We model a network by a connected undirected graph G = (V,E) where V is
the set of nodes and E is the set of edges. A labeled graph is a graph where
nodes and edges are assigned labels. We denote by n, m, ∆, and D respectively
the number of nodes (n = |V |), the number of edges (m = |E|), the maximum
degree, and the diameter of G. Each node v of G is given a unique integer
identifier of at most O(log n) bits. The ports, that is the incident links, of a
node v have distinct identifiers taken from 1 to degv, where degv is the degree
of v. The size n of the graph G is known. We define the radius of a subgraph
H of G as follows: Rad(H) = minu∈H {maxv∈H {dG(u, v)}}, where dG(u, v) is
the distance between the nodes u and v in G. Given a set of nodes C of G,
we denote G[C] the subgraph of G induced by the nodes of C. Given a set C
containing some sets of nodes, we denote Rad(C) = maxC∈C {Rad(C)} where
Rad(C) = Rad(G[C]). We denote GC = (VC , EC) the graph induced by C, i.e.,
there is an edge between two nodes in GC if their corresponding sets are neighbors
in G. We denote by Gt the graph obtained by adding an edge between every
two nodes at distance at most t in G. For the sake of simplicity, we will write
nε instead of nO(1/

√
log n). In fact, nO(1/

√
log n) = o(nε) for any arbitrary small

constant ε > 0. Also, we will use the Õ notation (Õ(f) def= f · (logn)O(1)) and

126 B. Derbel

omit precising some polylogarithmic overheads when they can be easily deduced
from the context. In the next paragraphs, we detail the two distributed models
we will be concerned with.

The message passing model. In this model, each node of a graph G is an
autonomous entity of computation that can communicate with its neighbors by
sending and receiving messages. The output of a message passing algorithm is
given by the final labeling of the graph. In the remainder, we write MsA to
denote a message passing algorithm running on a graph G. We concentrate on
message passing algorithms that detect the local termination. More precisely,
this assumption requires that each node can detect that it will not make no more
computations. Actually, our termination assumption is made only for the sake
of simplicity and clarity, but fundamentally, it does not affect our results as we
will point in Remark 1. We assume the classical synchronous message passing
model [34]. In other words, we assume that there exists a global clock generating
the same pulses for all nodes. At each pulse a node can process some messages,
do some local computations and send messages to its neighbors. A message sent
at a given pulse arrives before the next pulse. We denote by Time(MsA) the time
complexity of algorithm MsA, that is the number of pulses from the beginning of
the algorithm up to its termination, and Message(MsA) the message complexity
of the algorithm, that is the total number of messages exchanged by nodes.

As we will precise later, our mobile agent model is however asynchronous.
This allows us to consider the most general scenarios in term of synchrony.

The mobile agent model. In this model, a mobile agent is a computation entity
which is able to move from a node to another to perform computations. We assume
that a mobile agent is equipped with an internal memory of unlimited capacity.
Each node has a whiteboard of unlimited capacity where agents can write and read
information in a mutual exclusion manner. When an agent arrives at a node v, it
is able to distinguish the edge from which it has arrived to v among all other edges
of v. We assume that the output result computed by a mobile agent algorithm is
encoded by mean of the whiteboards of the nodes. In other words, the output is a
labeling of the graph. Let us remark that our assumptions concerning the memory
are introduced in order to focus on the high level locality issues. However, we will
take a special care to derive algorithms using small memory agents.

We consider the fully asynchronous mobile agent model. More precisely, the
mobile agent algorithms that we will describe do not exploit any assumptions
on time such as the existence of a global clock or an upper bound on the agent
delay to do some actions, etc.

In the following, we denote by AgA a mobile agent algorithm computing some
labeling of a graph G. We say that a node is in a final state if its whiteboard
will not be changed by any mobile agent. We say that a mobile agent algorithm
terminates, if the algorithm ends up with all nodes in a final state. The number
of agents used by algorithm AgA is denoted by Size(AgA). The total number of
agent moves from the beginning of the algorithm up to its termination is denoted
Cost(AgA). The time complexity of algorithm AgA, denoted by Time(AgA), is

Local Maps: New Insights into Mobile Agent Algorithms 127

defined as the total number of time units from the beginning of the algorithm up
to its termination, assuming that an agent move induces a delay of one time unit
and that the computations done by agents are time negligible. The time units
are introduced only for the pure sake of analysis. We emphasis on the fact that
time units in the latter definition are with regard to a pure theoretical external
clock which is not available to agents in any way.

Now, let us define the initial local view complexity measure. Let A be the set
of mobile agents used by algorithm AgA. For every mobile agent A ∈ A, we call
hA the homebase of agent A if at the beginning of the algorithm, agent A is at
node hA. We say that an agent A ∈ A has an initial local view HA, if at the
beginning of the algorithm agent A knows a labeled connected subgraph HA of
G containing its homebase hA. The initial local view of algorithm AgA, denoted
ILV(AgA), is then defined by ILV(AgA) = maxA∈A {Rad(HA)}. In the
remainder, given a message passing (resp. mobile agent) algorithm MsA (resp.
AgA) solving a problem P , we will term time ratio: Time(AgA)/Time(MsA).

3 Basic Techniques

First, suppose that we have only one mobile agent knowing the whole graph
G, i.e., its initial local view is D. Then, any global labeling function of G can
be computed in O(n) time as follows: First, the agent computes a copy of the
output labeling locally at his homebase. Second, the agent explores the graph in
order to assign the final state of each node. According to our model assumptions,
only the graph exploration is time consuming. Exploring a known graph can be
done in O(n) time, using a depth first traversal for example. Thus, any labeling
function can be computed by one agent knowing the whole graph in O(n) time.

Since the time complexity of the previous technique depends only on the
time needed to traverse the graph and mark the final states of nodes, one may
ask whether we can go faster by allowing more than one agent. The answer is
positive. In fact, an efficient graph structure was given in [9] in order to explore a
graph searching for black holes. That data structure represents the graph using
a forest of k trees (spanning the whole graph), each tree has at most O(n/k)
nodes. Thus, using k mobile agents, the agents can mark the nodes of the graph
in parallel using the “balanced tree” structure of [9]. Hence, we can prove:

Theorem 1. Given an integer parameter k � 1, any labeling function of G can
be computed by an asynchronous mobile agent algorithm AgA such that:

ILV(AgA) D

Size(AgA) k
Time(AgA) O(n/k + D)
Cost(AgA) O(n + k ·D)

Now, suppose that each node is assigned a mobile agent having no initial lo-
cal view. Suppose we want to simulate a given message passing algorithm MsA.
Then, a simple idea is to make each agent Au in node u simulate the instructions

128 B. Derbel

that algorithm MsA would have done at node u. Let us first consider the
following simple technique. (i) Using the whiteboard of u, agent Au creates
degu receive-buffers corresponding to the ports of u. Each receive-buffer is iden-
tified by its corresponding port. (ii) To simulate a send instruction of a message
from node u to a node v, agent Au stores the message in its internal memory.
Then, it crosses the edge connecting u to node v. Once at node v, it writes the
message in the corresponding receive-buffer of the whiteboard of v. After that,
the agent goes back to u. (iii) To simulate a local computation instruction, agent
Au makes the same local computation using the whiteboard of u.

Clearly, the previous technique is correct when algorithm MsA is asyn-
chronous. However, it may fail when the algorithm is synchronous. Furthermore,
it may fail even if we assume that the mobile agent model is synchronous. A
solution that solves the problems due to synchrony is to use a synchronizer-
α like algorithm [2, 29] in order to “synchronize” an agent Au with the other
agents in the neighborhood of u. More precisely, in order to simulate the send
instructions of a given pulse p, each agent Au proceeds in two stages. At the
first stage, agent Au simulates the send instructions as explained before. At the
second stage, the agent moves to each node v in its neighborhood and it writes a
special <IamSafe in p> message in the corresponding receive buffer of v saying
that it has finished simulating the instructions of pulse p. When the agent Au

learns that all the agents in its neighborhood are also safe, then it can proceed
with pulse p + 1 and so on. Clearly, simulating one pulse is at most O(∆) time
consuming, and requires the agents to move O(m) times. Using degu + 1 agents
per node, one can see that the time ratio can be reduced to O(1).

The previous techniques are resumed by the following theorem:

Theorem 2. Any synchronous message passing algorithm MsA can be simu-
lated by an asynchronous mobile agent algorithm AgA such that:

ILV(AgA) 0
Size(AgA) n O(m)
Time(AgA) O(∆ · Time(MsA)) O(Time(MsA))
Cost(AgA) O(m · Time(MsA))

4 A Generic Simulation Scheme

The idea of our generic scheme is to combine the previous basic techniques with
a clustered representation of the graph. In this section, we will consider the
following assumption:

H(C): We are given a precomputed partition C of the graph G into disjoint
regions. Each region C has a distinguished node rC called the center and
a precomputed spanning tree TC rooted at the center. At node rC , there
is a mobile agent called the master, together with some other agents
called workers. Each master knows a labeled copy of the neighborhood of
its region. In particular, he knows the edges leading to different regions.

Local Maps: New Insights into Mobile Agent Algorithms 129

Input: a graph G with H(C) satisfied; a message passing algorithm MsA.
Output: algorithm AgA in a region C.

1. For each pulse p in algorithm MsA, the master agent of a region C simulates the
instructions of pulse p for all nodes in C (locally in rC):
(a) For every node in C, the master creates a collection of receive-buffers in the

whiteboard of rC .
(b) To simulate a send instruction from node u ∈ C to node v ∈ C, the master

writes the message in the corresponding receive-buffer created in rC .
(c) If some nodes in C send some messages in algorithm MsA to some other nodes

belonging to a region C′ �= C, then the master concatenates those messages
into only one message. Then, one worker is chosen to deliver that message to
rC′ . The worker returns to rC once its job finished.

(d) If a node u ∈ C makes some computations in algorithm MsA, then the master
of C makes the same computations using the witheboard of rC .

(e) Once the master finishes simulating the sending of messages of pulse p, it
synchronizes with other masters in neighboring region: the workers move to
neighboring regions and deliver a special <IamSafe (C, p)> message.

(f) Once the master is safe and learns that all the neighboring masters are safe,
then it proceeds with the next pulse p + 1.

2. Once a master and its workers have finished simulating the instructions of algo-
rithm MsA in C:

(a) They inform other masters in neighboring regions that the simulation is ter-
minated for region C by delivering an <IamDone C > message.

(b) They continue synchronizing with a neighboring master in region C′ until an
<IamDone C′ > message is delivered by that master.

(c) They mark every node in C with its final state computed in Step 1. (Once an
<IamDone> message is delivered by each neighboring master).

Fig. 1. High level description of the simulation scheme

Distributed methods to cope with assumption H(C) will be presented later
in sections 5 and 6. For now, we concentrate on describing and analyzing our
generic simulation scheme under the hypothesis H(C).

Provided that H(C) is true, any synchronous message passing algorithm MsA

can be simulated by the generic scheme described in Fig. 1. There are two key
points in our scheme: (i) The messages sent by nodes in a region C to nodes in a
region C′ (C �= C′) are concatenated into only one message MC→C′ (Step 1.c).
The message MC→C′ is delivered to the master in center node rC′ by one worker
at once, thus avoiding to deliver the messages one by one. (ii) The pulses of
algorithm MsA are simulated using a combination of a synchronizer-γ like algo-
rithm and a synchronizer-α like algorithm [2, 29]. In fact, the master synchronizes
the nodes in its region by itself (This is made possible since the master knows
the entire topology of its region). Then the master synchronizes its region with
neighboring ones.

Clearly, the simulation of a send instruction between two nodes not in the
same region dominates the overall time complexity per pulse. The concatenation
mechanism allows to deliver the messages exchanged by nodes in a region C and

130 B. Derbel

nodes in a different region C′ at once. Therefore, assuming that each master
agent has as many workers as neighboring regions, it takes at most 2Rad(C) +
2Rad(C′)+1 time to simulate all the send instructions of a given pulse. Thus, by
using at most |C| master agents plus 2 |EC | workers, each pulse can be simulated
in O(Rad(C)) time. As for the cost complexity, one can see that simulating each
pulse requires the workers to deliver the messages of the original algorithm and
to synchronize with neighboring masters. Thus, the cost complexity is O(Rad(C)·
|EC |) per pulse.

After finishing the simulation of the pulses of algorithm MsA, the nodes must
be marked with their final states (Step 2.c). This step has also a time and a cost
complexity. In the following, we denote by τ(C) the maximum time needed for
each master agent (and its workers) to mark the whiteboards of nodes in its
region with their final states. We also denote by η(C) the cost complexity of
marking the nodes with their final states, that is the total number of moves that
all agents make in order to mark the whiteboards of all nodes in the graph. The
analysis of τ(C) and η(C) is delayed to section 5.
Lemma 1. Assuming H(C), any synchronous message passing algorithm MsA

can be simulated by an asynchronous mobile agent algorithm AgA such that:

ILV(AgA) Rad(C)
Size(AgA) O(|C| + |EC |)
Time(AgA) O(Rad(C) · Time(MsA)) + τ(C)
Cost(AgA) O (Rad(C) · |EC | · Time(MsA)) + η(C)

Remark 1. Since we have assumed the local termination detection property in
our message passing model, a master can detect when to execute Step 2. Never-
theless, suppose that we have a message passing algorithm that does not detect
the local termination, e.g., at least one node can not say whether it has finished
the computations. Then, we can modify our simulation scheme so that, at each
round a master and its workers mark the nodes in their region with the labels
computed by the message passing algorithm, instead of waiting until the end
of the simulation. Thus, at each round, the labeling of nodes will be the same
as in the message passing algorithm. Of course, this is achieved at the price of
increasing the time and the cost complexities. Roughly speaking, the overhead
is order of τ(C) (time) and η(C) (cost) at each round. This can be shown to be
negligible compared to the complexity of the simulation itself.

5 Generic Trade-Offs

Sparse decompositions (see, e.g., [5]) allow to represent a graph by a set of clus-
ters with a good compromise between the radius of the clusters and the number
of inter-cluster edges. Many distributed constructions of sparse decompositions
exist in the literature. In this paper, we use an adaptation of a distributed al-
gorithm that appeared in [13] and obtain the following key Lemma. We remark
that the sparseness of the partition stated in our lemma is better than the one

Local Maps: New Insights into Mobile Agent Algorithms 131

of [13] by a log k factor. Due to lack of space, our distributed construction and
its analysis will appear in the full version of this paper (see also [12]). We also
remark that partitions with slightly better properties exists (see [5]) but con-
structing them distributively is time consuming.

Lemma 2. In the message passing model, there exists a deterministic (resp.
randomized) distributed algorithm that given an n-node graph G and an integer
parameter k, constructs a partition structure C such that Rad(C) = O (kc) and
|EC | = O(n1+1/k) in kc · nε time (resp. O(kc · logn) expected time) where c is a
constant (c = log2 5).

By applying Theorem 2 in the context of the sparse partition algorithm given by
Lemma 2, one can derive a preprocessing mobile agent algorithm constructing
the required partition. In the following, we will denote by Pre Part such an
algorithm. Bounding τ(C) and η(C) in Lemma 1 is easy when using O(n) agents.
Thus, one can prove the following:

Theorem 3. Given an integer parameter k, any graph G can be preprocessed by
an asynchronous mobile agent algorithm Pre Part such that after the prepro-
cessing phase, any synchronous message passing algorithm MsA can be simulated
by an asynchronous mobile agent algorithm AgA satisfying:

ILV(Pre Part) 0
Size(Pre Part) n
Time(Pre Part) kc∆ nε

E (Time(Pre Part)) kc∆ log n

ILV(AgA) O(kc)
Size(AgA) O(n1+1/k)
Time(AgA) O(kc · Time(MsA))
Cost(AgA) O

(
kc n1+1/k · Time(MsA)

)
Now, we want to fix the number of agents used by our simulation scheme to be
a parameter k < n. For that purpose, we use a graph structure based on small
dominating sets. A ρ-dominating set S of G is a set of nodes satisfying: ∀v ∈ V ,
∃s ∈ S such that dG(v, s) � ρ. Given a ρ-dominating set of G, a partition of G
can be obtained by clustering the nodes of the graph around the nodes of the
dominating set. Based on [27], we have:

Lemma 3 ([27]). In the message passing model, there exists a deterministic
distributed algorithm that given an n-node graph G and a parameter ρ (< n)
constructs a partition structure C such that Rad(C) = O(ρ) and |C| = O(n/ρ) in
O(ρ · log∗ n) time.

Applying Theorem 2 to the partition given by Lemma 3 allows us to derive a
preprocessing algorithm called Pre Dom to construct the required partition.
However, coupling algorithm Pre Dom with Lemma 1 is less straightforward.
First, we choose ρ = n/

√
k to obtain a number of at most k agents. Then, we

apply Theorem 1 inside each region of the partition to efficiently bound τ(C)
and η(C) in Lemma 1 because using a trivial traversal to mark the final states of
nodes will dominate the complexity of the simulation itself. More precisely, we
use

√
k masters with

√
k workers each, and a “balanced tree” structure inside

each O(n/
√
k)-radius region. Thus, we can prove:

132 B. Derbel

Theorem 4. Given an integer parameter k < n, any graph G can be prepro-
cessed by an asynchronous mobile agent algorithm Pre Dom such that after the
preprocessing phase, any synchronous message passing algorithm MsA can be
simulated by an asynchronous mobile agent algorithm AgA satisfying:

ILV(Pre Dom) 0
Size(Pre Dom) n

Time(Pre Dom) O
(
∆ · n/

√
k · log∗ n

)
ILV(AgA) O

(
n/

√
k
)

Size(AgA) k

Time(AgA) O
(
n/

√
k · Time(MsA)

)
Cost(AgA) O

(
n

√
k · Time(MsA)

)
6 Efficient Distributed Initialization of Agents

In the previous section, we did not care about how the agents are initialized
distributively after the preprocessing phase, i.e., how the masters and the workers
are initialized distributively. In the following, we will argue that the complexity
of initializing the agents is negligible compared to the preprocessing itself.

Suppose that initially we have one agent per node. After the preprocessing
of Theorem 3 or 4, each mobile agent can say whether it is a center of a region
or not. Thus, it is easy to initialize the master agents: Each mobile agent who
identifies its homebase as the center of a region becomes master in that region. A
trivial solution to initialize the workers would be to allow a master to create as
many workers as needed. In the following, we will not make such an assumption.

A first idea to initialize the workers is to let an agent whose homebase is
not a center of a region be a worker in its region. This idea will work in the
case of Theorem 4. In fact, the ρ-dominating set algorithm of [27] also allows
to partition the graph into regions having at least n/ρ nodes (This non trivial
property is proved in [27]). Hence, if each agent in a non-center node becomes
worker and joins his master (at distance ρ = n/

√
k), then each master will have

the required number of workers. Hence, the complexity of initializing the agents
is negligible compared to the preprocessing of Theorem 4.

The same idea will not work for Theorem 3 since the number of required
workers could be Θ(n1+1/k). One could think that if initially there are Θ(n1/k)
mobile agents per node, then the previous initialization technique would hold.
This is not true since the maximum degree of the graph GC , where C is the par-
tition constructed in Lemma 2, is not bounded by O(n1/k). Hence, the question
is: assuming that we have Θ(n1/k) agent per node, how can we initialize the
workers needed for Theorem 3 efficiently?

We use the algorithm of Lemma 2 to answer the previous question. The general
idea is to construct the partition of Lemma 2 and at the same time to choose
some preferred edges connecting the clusters, which will help to initialize the
workers. Assuming that we have Θ(n1/k) agents per node and using the set of
these preferred edges, we are able to show that the workers are initialized in
kO(1) time (and cost) after the preprocessing of Theorem 3, which is negligible
(see [12] for a complete proof).

Local Maps: New Insights into Mobile Agent Algorithms 133

7 Fundamental Applications

7.1 On Computing Any Labeling of a Graph

We remark that any labeling function of G can be computed by a message
passing algorithm in O(D) time in the message passing model (by collecting
the topology of G at one node, computing the labeling locally and broadcasting
the result). Moreover, if a task can be computed by a deterministic message
passing algorithm in t time, then all the information used by each node is in
its t-neighborhood. Thus, if we have a mobile agent per node, and if the mobile
agents know the O(t)-neighborhood of their homebases, then each mobile agent
can construct in O(1) time a labeled copy of its O(t)-neighborhood where the
labels assigned to nodes and edges of that neighborhood copy correspond to the
final labeling computed by the message passing algorithm.

For k = logn, we have n1/k = O(1). Hence, we can derive an efficient algo-
rithm for computing any labeling of a graph using O(1) agents per node. Actu-
ally, the following theorem provides a stronger result that holds when initially
there is exactly one agent per node:

Theorem 5. Given any graph G with one mobile agent assigned to each node,
any labeling function of G can be computed by a deterministic (resp. randomized)
asynchronous mobile agent algorithm Det AgA (resp. Rand AgA) satisfying:

ILV(Det AgA) 0 nε

Time(Det AgA) nε ·∆ + Õ(D) Õ(D)

ILV(Rand AgA) 0

E(Time(Rand AgA)) Õ(∆ + D)

Remark 2. Note that for any graph G, there exists a labeling function of G that
can not be computed by n mobile agents having no initial local views in time
better than Ω(D) or Ω(m/n).

7.2 On Computing with Small Memory Agents

In previous sections, we have assumed that the agents are equipped with un-
limited memory in our simulation scheme. Actually, only the workers need to
have enough internal memory. In fact, a worker has to (i) store the concate-
nated messages (and the synchronization messages), (ii) store the route used to
go from a center node to another one, and (iii) store the information needed to
mark nodes with their final labeling. Thus, by denoting b the maximum size (in
bits) of a message of the simulated algorithm and � the maximum size (in bits)
of the output labels, we can show that for k = logn in Theorem 3 the required
memory size per agent is at most Õ(max {mb, �}) bits. Thus, assuming that � is
small compared to mb, the memory size needed by a worker is dominated by the
size of the concatenated messages. Nevertheless, we remark that if a node in the
original message passing algorithm sends the same message to all its neighbors
then a worker can store only one message for that node in its internal memory,
i.e., it does not need to store the same message many times. More generally,
the memory size can be drastically improved for algorithms having particular

134 B. Derbel

behaviors. For instance, consider a message passing algorithm such that, at each
round, a node (i) sends the same message M1 to a bounded number of neigh-
bors and (ii) sends the same message M2 to the other neighbors. Then, it is
not difficult to see that we can modify our concatenation mechanism so that the
memory size needed by a worker is at most Õ(n · b) bits. In particular, we can
prove:

Theorem 6. For any n-node graph G, a BFS tree with respect to a given node
can be computed in Õ(D) time by using n mobile agents with nε initial local view
and Õ(n) memory bits.

Theorem 7. For any n-node graph G, a leader can be computed in Õ(D) time
by using n mobile agents with nε initial local view and logO(1) n memory bits.

References

1. Afek, Y., Ricklin, M.: Sparser: a paradigm for running distributed algorithms.
Journal of Algorithms 14, 316–328 (1993)

2. Awerbuch, B.: Complexity of network synchronization. Journal of the ACM 32,
804–823 (1985)

3. Awerbuch, B., Goldberg, A.V., Luby, M., Poltkin, S.A.: Network decomposition
and locality in distributed computation. In: 30th Symposium on Foundations of
Computer Science (FOCS), pp. 364–369 (1989)

4. Awerbuch, B., Goldreich, O., Vainish, R., Peleg, D.: A trade-off between informa-
tion and communication in broadcast protocols. Journal of the ACM 37, 238–256
(1990)

5. Awerbuch, B., Peleg, D.: Sparse partitions. In: 31st Symposium on Foundations of
Computer Science (FOCS), pp. 503–513 (1990)

6. Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Can we elect if we cannot
compare? In: 15th ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA), pp. 324–332 (2003)

7. Barriere, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Rendezvous and Election
of Mobile Agents: Impact of Sense of Direction. Theory of Computing Systems
(ToCS) 40, 143–162 (2007)

8. Chalopin, J., Godard, E., Métivier, Y., Ossamy, R.: Mobile agent algorithms ver-
sus message passing algorithms. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006.
LNCS, vol. 4305, pp. 187–201. Springer, Heidelberg (2006)

9. Cooper, C., Klasing, R., Radzik, T.: Searching for black-hole faults in a network
using multiple agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS,
vol. 4305, pp. 320–332. Springer, Heidelberg (2006)

10. Das, S., Flocchini, P., Nayak, A., Santoro, N.: Distributed exploration of an un-
known graph. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499,
pp. 99–114. Springer, Heidelberg (2005)

11. Das, S., Flocchini, P., Santoro, N., Yamashita, M.: Fault-tolerant simulation of
message-passing algorithms by mobile agents. In: Prencipe, G., Zaks, S. (eds.)
SIROCCO 2007. LNCS, vol. 4474, pp. 289–303. Springer, Heidelberg (2007)

Local Maps: New Insights into Mobile Agent Algorithms 135

12. Derbel, B.: Local maps: New insights into mobile agent algorithms, Tech. Report
RR-6511, INRIA - LIFL - USTL (April 2008), http://hal.inria.fr/

13. Derbel, B., Gavoille, C.: Fast deterministic distributed algorithms for sparse span-
ners. In: Flocchini, P., sieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp.
100–114. Springer, Heidelberg (2006)

14. Flocchini, P., Nayak, A., Schulz, A.: Decontamination of arbitrary networks using
a team of mobile agents with limited visibility. In: 6th IEEE/ACIS International
Conference on Computer and Information Science, pp. 469–474 (2007)

15. Flocchini, P., Santoro, N.: Distributed security algorithms by mobile agents. In:
8th Conference on Distributed Computing and Networking, pp. 1–14 (2006)

16. Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed computing with ad-
vice: Information sensitivity of graph coloring. In: Arge, L., Cachin, C., Jurdziński,
T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 231–242. Springer, Hei-
delberg (2007)

17. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Oracle size: a new measure of difficulty for
communication tasks. In: 25th Symposium on Principles of Distributed Computing
(PODC), pp. 179–187 (2006)

18. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Tree exploration with an oracle. In: Královič,
R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 24–37. Springer, Heidel-
berg (2006)

19. Fraigniaud, P., Korman, A., Lebhar, E.: Local mst computation with short advice.
In: 19th Symp. on Parallel Algo. and Arch (SPAA), pp. 154–160 (2007)

20. Fukuda, M., Bic, L.F., Dillencourt, M.B., Cahill, J.M.: Messages versus messengers
in distributed programming. Journal of Parallel and Distributed Computing 57,
188–211 (1999)

21. Isler, V., Kannan, S., Khanna, S.: Randomized pursuit-evasion with limited visi-
bility. In: 15th Symp. on Discrete algorithms (SODA), pp. 1053–1063 (2004)

22. Kazazakis, G.D., Argyros, A.A.: Fast positioning of limited-visibility guards for the
inspection of 2d workspaces. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 2843–2848 (2002)

23. Korman, A.: General compact labeling schemes for dynamic trees. Distributed
Computing 20, 179–193 (2007)

24. Korman, A., Kutten, S.: Labeling schemes with queries. In: Prencipe, G., Zaks, S.
(eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 109–123. Springer, Heidelberg (2007)

25. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. In: 24th Symp. on
Principles of distributed computing (PODC), pp. 9–18 (2005)

26. Korman, A., Peleg, D., Rodeh, Y.: Labeling schemes for dynamic tree networks.
In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 76–87. Springer,
Heidelberg (2002)

27. Kutten, S., Peleg, D.: Fast distributed construction of small k-dominating sets and
applications. Journal of Algorithms 28, 40–66 (1998)

28. Linial, N.: Locality in distributed graphs algorithms. SIAM Journal on Comput-
ing 21, 193–201 (1992)

29. Moran, S., Snir, S.: Simple and efficient network decomposition and synchroniza-
tion. Theoretical Computer Science 243, 217–241 (2000)

30. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM Journal on Com-
puting 24, 1259–1277 (1995)

31. Nisse, N., Soguet, D.: Graph searching with advice. In: Prencipe, G., Zaks, S. (eds.)
SIROCCO 2007. LNCS, vol. 4474, pp. 51–65. Springer, Heidelberg (2007)

http://hal.inria.fr/

136 B. Derbel

32. Pan, L., Bic, L.F., Dillencourt, M.B., Huseynov, J.J., Lai, M.K.: Distributed par-
allel computing using navigational programming. Journal of Parallel Program-
ming 32, 1–37 (2004)

33. Panconesi, A., Srinivasan, A.: On the complexity of distributed network decompo-
sition. J. Algo. 20, 356–374 (1996)

34. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Mono-
graphs on Discrete Mathematics and Applications (2000)

35. Souissi, S., Défago, X., Yamashita, M.: Using eventually consistent compasses to
gather oblivious mobile robots with limited visibility. In: 8th Symposium on Sta-
bilization, Safety, and Security of Distributed Systems, pp. 484–500 (2006)

r3: Resilient Random Regular Graphs

S. Dimitrov1,�, P. Krishnan2, C. Mallows2, J. Meloche2, and S. Yajnik2

1 Dept. of Ind. and Op. Eng., Univ. of Michigan, Ann Arbor, MI 48109
sdimitro@umich.edu

2 Avaya Labs, 233 Mt. Airy Rd., Basking Ridge, NJ 07920
{pk,colinm,jmeloche,shalini}@avaya.com

Abstract. Efficiently building and maintaining resilient regular graphs
is important for many applications. Such graphs must be easy to build
and maintain in the presence of node additions and deletions. They must
also have high resilience (connectivity). Typically, algorithms use offline
techniques to build regular graphs with strict bounds on resilience and
such techniques are not designed to maintain these properties in the
presence of online additions, deletions and failures. On the other hand,
random regular graphs are easy to construct and maintain, and provide
good properties with high probability, but without strict guarantees. In
this paper, we introduce a new class of graphs that we call r3 (resilient
random regular) graphs and present a technique to create and maintain
r3 graphs. The r3 graphs meld the desirable properties of random reg-
ular graphs and regular graphs with strict structural properties: they
are efficient to create and maintain, and additionally, are highly con-
nected (i.e., 1 + d/2-node and d-edge connected in the worst case). We
present the graph building and maintenance techniques, present proofs
for graph connectedness, and various properties of r3 graphs. We believe
that r3 graphs will be useful in many communication applications.

1 Introduction

Regular graphs [1], i.e., graphs with fixed degree at each node, have been studied
as candidates in several computing and networking scenarios. Examples include
overlay, multicast and peer-to-peer network design [2,3] and optical networks [4].
In most problems in these domains, the graph captures the topology of the net-
work and this topology changes as nodes and edges arrive and leave the network.
Building and maintaining such evolving graphs [5,6] efficiently is currently of
great research interest. Additionally, in most system contexts, it is highly de-
sirable that the graphs be resilient to node and edge failures. In this paper, we
study the problem of building regular graphs that are provably highly resilient. In
particular, we desire graph connectivity even with several node and edge failures.

A number of algorithms presented in the literature use offline techniques
to construct d regular graphs (i.e., regular graphs of degree d at each node)
with guaranteed bounds on resilience [7,8,9,10,11]. All these techniques are not

� Portions of this work were done when the author was visiting Avaya Labs Research.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 137–151, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

138 S. Dimitrov et al.

designed to maintain the required properties in the presence of joins and leaves
of the graph nodes and edges, and are not suitable for evolving graphs. In par-
ticular, using these techniques for evolving graphs incurs large number of edge
cuts and rejoins for each node addition or deletion to maintain connectivity
properties. Additionally, some of these techniques [9,10] require a large number
of computations to explore the solution space and provide strict bounds on the
resilience.

Randomized algorithms can be effectively used to solve problems very ef-
ficiently while providing good guarantees either in the average case, or with
provably high probability [12,13]. Random graphs are typically good candi-
dates for distributed design. In particular, Pandurangan et al [3] present a ran-
domized graph building scheme for low diameter peer-to-peer networks with a
bounded degree. However, their scheme focuses on building low-diameter con-
nected graphs and not on guarantees on the resilience of the resulting network
to node and edge failures, which is the main focus of our paper.

Random regular graphs [14] are fixed degree graphs built using a random-
ized approach. Such random d regular graphs have interesting properties like
d-connectivity with very high probability (specifically, asymptotically almost
surely), but not in the worst case. As an example, the Araneola multicast over-
lays [2] are built using random regular graphs and rely on the connectedness
of random regular graphs to ensure that the multicast overlay is resilient with
a high probability. There are, however, no strict guarantees on the resilience of
such graphs.

In this paper, we concentrate on the problem of constructing resilient regular
graphs. The main contribution of our paper is a simple and efficient construction
technique for regular graphs. We call the resulting graphs r3 (resilient random
regular) graphs. The r3 graphs are easy to build and maintain in the presence
of node arrivals and departures. The graph building is done using constrained
random choices as each node is added to the graph, providing efficiency. We show
that the resulting graph is 1 + d/2-node and d edge-connected resulting in very
high guaranteed resilience. Intuitively, the algorithm melds the best properties
of random graph building with structured maintenance to achieve efficiency as
well as guarantees on resilience. We also describe other interesting properties
of r3 graphs that relate to their efficient construction and maintenance.

The rest of the paper is organized as follows. Section 2 explains the algo-
rithm for building r3 graphs. Section 3 proves the guarantees on the connectiv-
ity properties of these graphs in the presence of edge and node removals. The
theoretical proofs are also supported by simulation results given in the latter
half of the section. Section 4 gives the algorithm for deletion and introduces the
concept of “natal nodes” in the graph. Section 5 describes some properties of
natal nodes in the r3 graphs and supports them with simulations and numerical
calculations. Section 6 concludes with a discussion of our results and some open
problems.

r3: Resilient Random Regular Graphs 139

2 Construction

We start with some preliminaries. The degree of a node v in a graph is the
number of edges incident on node v. A d regular graph is a graph in which every
node has the same degree d. If a d regular graph g has |g| = n nodes, the number
of edges must be nd/2, so that at least one of n, d must be even. The theory
is simpler when d is even, so let us assume that d is even, and d ≥ 4 (the case
d = 2 is trivial). A graph is connected if there is a path between every pair of
nodes in the graph. A graph is said to be k-node (k-edge) connected if there does
not exist a set of k− 1 nodes (edges) whose removal disconnects the graph. The
graphs we consider in this paper are labeled. However, we do not distinguish
among different labellings if the graphs are isomorphic.

For the purposes of this paper, resilience of a graph is a measure of how large
k is, given that the graph is k-node connected. The typical cost in constructing
and maintaining graphs includes communication costs to discover appropriate
nodes/edges, and the cost for breaking and creating edges. Since communication
cost is very specific to the system implementation, in this paper, we compute
efficiency based on the graph operations (i.e., node and edge creation/deletion).
However, we do provide information on structural properties of the graphs as
they relate to communication costs. In Appendix B we provide more informa-
tion about key algorithms presented in the paper, including discussion of some
implementation issues.

2.1 r2 and r3 Graphs

Our starting point is the following algorithm for growing regular graphs:

Algorithm A. (adding a node). Given a d-regular graph g with n nodes, choose
a set of d vertices (v1, v2, . . . , vd) such that each of the edges (v2i−1, v2i) is
present in g. Delete these edges, and insert new edges connecting each of (v1, v2,
. . . , vd) to a new node. The result is a regular graph with n+ 1 nodes. Figure 1
illustrates algorithm A: Graph g2 is obtained by adding node x to graph g1,
and graph g4 is obtained by adding node y to graph g3. Note that algorithm A
incurs O(d) edge deletions and additions for each node addition; specifically, a
node addition involves d/2 edge deletions and d edge additions.

Starting with an arbitrary d-regular graph g0, repeated application of algo-
rithm A will generate an infinite set of d-regular graphs that we name G(g0).
Some graphs may be in more than one such set. An atomic graph g is a graph

(d) Graph g 4

y

(b) Graph g 2

x

(a) Graph g 1 (c) Graph g 3

Fig. 1. Some 4-regular graphs

140 S. Dimitrov et al.

that is in only one set, namely G(g). The complete graph Kd+1 on d + 1 nodes
is atomic. In Figure 1, graphs g1 and g3 are atomic, g2 ∈ G(g1) and g4 ∈ G(g3).
We look more closely at atomic graphs in Section 2.2.

Our main interest is in the set G(Kd+1), which we call r2 (resilient regular)
graphs and denote by Gd. For the graphs in Figure 1, graphs g1, g2 ∈ G4, and
g3, g4 /∈ G4. Note that algorithm A does not specify how the edges to delete are
chosen when a new node joins the graph. We denote by r3 (resilient random
regular) or random r2 those graphs that are generated by algorithm A when the
edges to delete are chosen randomly.

There are several methods for random edge selection for algorithm A. For ex-
ample, one method is an iterative procedure that keeps a list of all eligible edges
(i.e., edges that are node-disjoint with currently chosen edges), chooses an edge
randomly from this list, and removes all edges that become ineligible because of
this choice. We use this random selection procedure for our simulation and prob-
abilistic results presented in this paper. Clearly, the randomization can be done
in several other ways. Two other possibilities include (a) iteratively selecting an
eligible node at random followed by an eligible edge incident at this node, or (b)
choosing a random d/2 matching from all possible matchings. It is easy to verify
that the edge selection probabilities under the three methods outlined above are
not always the same. While adjustments can be made [15] to ensure that the
edge selection probabilities are the same, the joint edge selection probabilities
may vary. Furthermore, some of these random procedures can be more easily
approximated with a distributed approach than others. Computation for small
n, d suggests that none of these randomization rules make the n-node elements
of Gd equally likely. Also, if nodes are repeatedly added using algorithm A and
deleted (using the algorithm for node deletion presented in Section 4), the prob-
ability distribution over the n-node elements of Gd does not tend to the uniform
distribution.

Our worst case connection properties shown in Section 3 are for all r2 graphs
(and hence, for r3 graphs also). Our simulation results in this paper are for
r3 graphs.

2.2 Characterizing Atomic Graphs

While atomic graphs are not central to the main discussion in this paper (namely,
efficient construction and resiliency of r2 and r3 graphs), understanding atomic
graphs is useful in understanding the construction of such graphs. We discuss
atomic graphs here.

Lemma 1. For each d, there is an infinite number of atomic graphs.

Proof. For n = k(d+1) (k ≥ 2) we can construct an atomic graph with n vertices
by taking a k-cycle and replacing each node by a copy of Kd+1 with one edge
removed.

For any graph g, let g′ denote the complementary graph. Graph g′ has edges
exactly where g does not. If g is regular with degree d, g′ is regular with degree

r3: Resilient Random Regular Graphs 141

d′ = n − 1 − d. In the following discussions, d is even and d ≥ 4. We show the
following result; the proof appears in Appendix A.

Lemma 2. For any regular graph g with n ≥ d + 4 nodes, if g′ is bipartite (so
n is necessarily even), then g is an atomic graph.

3 Connectivity

A major emphasis in this paper is efficiently building regular graphs that are
highly connected. Clearly, d regular graphs can at best be d-node connected.
However, some d regular graphs are not even 2-node connected (e.g., graph g4

in Figure 1(d)).
An important property for our application is that the r2 graphs that are gen-

erated by algorithm A (and in particular, the r3 graphs) have good connectivity
properties in the worst-case. Let e(g) denote the edge-connectivity and n(g) de-
note the node connectivity of a graph g. Our two main results of this section are:

Theorem. (Edge Connectivity: Theorem 1) For g ∈ G(g0) we have e(g) ≥ e(g0).
Hence, for g ∈ Gd, e(g) ≥ e(Kd+1) = d.

Theorem. (Node Connectivity: Theorem 2) For g ∈ Gd, n(g) ≥ 1 + d/2.

We now prove these results in the rest of this section.
If S and T are disjoint sets of nodes in a graph g, we use the notation cg(S, T)

to denote the number of edges in g between S and T , which we refer to as cross
edges. We define a lineage of g as a sequence of graphs g0, . . ., gn starting from
the atomic graph g0 and ending with gn = g that results from a construction
of g. We first show that the number of cross edges between two sets of nodes
that partition a graph never decreases as nodes are added to the graph.

Lemma 3. If g is formed by adding one node v to ĝ and if S and T form a
partition of g then cg(S, T) ≥ cĝ(S ∩ ĝ, T ∩ ĝ).

Proof. An edge e ∈ ĝ going from s ∈ S ∩ ĝ to t ∈ T ∩ ĝ is either left unchanged
by the construction of g or is replaced by two edges, one going from s to v and
the other from v to t, exactly one of which is a cross edge between S and T .
Thus, the construction of g cannot decrease the number of cross edges between
S and T .

Lemma 4. If g ∈ Gd can be partitioned as S +T , then cg(S, T) ≥ x(1 + d− x),
where x = min{d/2, |S|, |T |}.

Proof. Let g0 = Kd+1, . . ., gn = g be a lineage of g. Starting with gn, we go back
through the ancestors until one is found such that min(|S ∩ gi|, |T ∩ gi|) = x.
There will be such an i because |g0| = d + 1. At this point, at least one of
the two partition elements S ∩ gi or T ∩ gi has exactly x elements. Because

142 S. Dimitrov et al.

that component can have at most x(x − 1) internal connections it must have
xd− x(x − 1) = x(1 + d− x) external ones. Using Lemma 3 we can write

cg(S, T) = cgn(S ∩ gn, T ∩ gn)
≥ cgn−1(S ∩ gn−1, T ∩ gn−1)

...
≥ cgi(S ∩ gi, T ∩ gi) = x(1 + d− x).

Theorem 1. If g ∈ G(g0) then e(g) ≥ e(g0). Hence, for g ∈ Gd, e(g) ≥
e(Kd+1) = d.

Proof. The first part of the theorem follows from Lemma 3. For any partition
g = S +T , g ∈ Gd, with |g| > d, |S| > 0 and |T | > 0, x = min{d/2, |S|, |T |} ≥ 1.
Because x(1+d−x) is minimized at x = 1 over the range {1, . . . , d/2}, Lemma 4
implies that cg(S, T) ≥ 1(1 + d− 1) = d.

We now prove one of the main results of our paper: that graphs in Gd are
highly node-connected; i.e., removing even d/2 nodes in such a graph maintains
connectivity.

Theorem 2. If g ∈ Gd then g is at least 1 + d/2 node connected.

Proof. The result is trivial if |g| = d + 1. Assume |g| > d + 1. Let M be a cut
set of size n that could disconnect the remaining nodes: There is a a partition
g = S + M + T such that cg(S, T) = 0, |S| > 0, |T | > 0 and |M | = n. Let the
nodes in the cut set be a1, . . ., an. Given a partition M = MS + MT , we can
define

ui =

{
connections between ai and T + MT if ai ∈ MS

connections between ai and S + MS if ai ∈ MT

and u = max1≤i≤n ui. We now construct a partition M = MS + MT for which
u ≤ d/2. We start with MS = M and MT = φ and iteratively move the nodes ai

(illustrated in Figure 2) from MS to MT whenever ui > d/2. Moving node ai

from MS to MT will reduce ui to something no larger than d/2. In addition, uj

T

MS Tai
M

S

Fig. 2. If ui > d/2 = 2, ai moves from MS to MT

r3: Resilient Random Regular Graphs 143

for aj ∈ MT will not increase. The iteration stops when ui ≤ d/2 for all ai ∈ MS

and at that point, u = max1≤i≤n ui ≤ d/2.
Consider now the edges out of any of the nodes ai for which u = ui and

assume without loss of generality that ai ∈ MS. Because u = ui, T + MT must
have at least u nodes. On the other hand, the remaining d − u ≥ u edges out
of ai must connect to nodes in S + MS and we conclude that both S +MS and
T + MT must have at least u nodes.

Clearly, the number of cross edges,
∑

1≤i≤n ui ≤ nu. Using Lemma 4 along
with the observation that f(u) = u(1 + d − u) is an increasing function for
u ≤ d/2, we get

cg(S + MS , T + MT) ≥ u(1 + d− u).

Hence,
nu ≥

∑
1≤i≤n

ui ≥ cg(S + MS, T + MT) ≥ u(1 + d− u),

which implies n ≥ 1 + d− u > d/2.

3.1 Tightness of Theorems 1 and 2

We now show that the bounds of Theorems 1 and 2 are tight. As far as edge
connectivity is concerned, it is clear that g ∈ Gd is not d + 1 edge connected
because the set of d edges originating at a node constitutes a cut set. As for
node connectivity, consider three sets S, T and M , where S and T each have
d/2 nodes and M has 1 + d/2 nodes. The graph g has the node set S ∪ T ∪M ,
and the adjacency matrix as in Figure 3a, where 1 is the matrix with all 1’s,
I is the identity matrix, and 0 is the matrix with all 0’s (the dimensions of
the matrices are obvious from the context). It is easy to verify that graph g
can be generated from Kd+1 using algorithm A. The rows and the columns of
this adjacency matrix are easily seen to add up to d and the set of nodes M is
critical to the connectivity between S and T . The graph corresponding to this
construction with d = 4 is displayed in Figure 3b.

S M T

S 1-I 1 0
M 1 0 1
T 0 1 1-I

(a) Adjacency
Matrix

TS

M

(b) Graph for d = 4

Fig. 3. Adjacency matrix for a (1 + d/2) node connected graph in Gd, and a graph
corresponding to d = 4

144 S. Dimitrov et al.

3.2 Simulation Results

As discussed earlier, our construction is particularly attractive because it guar-
antees 1 + d/2 node-connectivity and in addition, the connectivity property is
independent of the random selections. Note that a regular graph picked uni-
formly at random from the set of all regular graphs is known to have desirable
connectivity properties with high probability a.a.s. [14], but not in the worst
case. In particular, a regular graph picked at random is likely to be d-node con-
nected provided that the selection was made with uniform probabilities. Whether
some constrained random selection scheme (like algorithm A) enjoys the same
asymptotic properties is not obvious.

To investigate how r3 graphs perform in practice, we conducted a simulation
study. As indicated in Section 2.1, for our simulations, node addition was per-
formed by deleting edges selected uniformly at random. The simulation consisted
of generating independent r3 graphs, with degrees ranging from d ≤ 50 and sizes
ranging from n = d+2 to 4d. For each graph, we computed the node connectiv-
ity using network flow techniques with MAXFLOW [16]. In most of the cases,
the resulting graph is d-connected and in a few cases, it is slightly deficient with
a connectivity of d − 1. In our simulations, we never observed a connectivity of
d − 2 or lower, although it is clearly possible as we have shown in Section 3.1.
Most of the deficiencies we observed were for graphs of size d+ 2. Less than 1%
of graphs of size greater than d + 5 were observed to be deficient.

4 Deletion

The connectivity properties of the graph make the graph resilient to transient
node and edge failures, i.e., even with a set of nodes and edges failing, the
graph still remains connected. However, if a node or an edge leaves the graph
permanently, the graph needs to be repaired, such that it retains its connectivity
properties. The following subsections discuss algorithms for graceful node and
edge deletions. These algorithms ensure that the graph resiliency properties are
retained in the presence of interleaved additions and deletions.

4.1 Node Deletion and Natal Nodes

One can imagine the following simple deletion algorithm that is an inverse of
algorithm A.

Algorithm D′: A node v0 of a graph g in Gd can be deleted if the neighbors of v0

can be written in order as (v1, v2, . . . , vd) with each edge (v2i−1, v2i) absent in g.
The node v0 and the edges (vi, v0) are deleted, and edges (v2i−1, v2i) are inserted.

For atomic graphs, no node can be deleted. Using algorithm D′, for some
graphs, some nodes can be deleted in more than one way. For example, in the
graph M9.4.10 (i.e., the tenth in Meringer’s list of n = 9, d = 4 graphs [17] shown
in Figure 4), which is in G4, the 7-th node can be deleted in two ways. One way
of deletion gives M8.4.4 which is in G4, while the other gives M8.4.2 which is not

r3: Resilient Random Regular Graphs 145

4
6

9
2

5

1

3

8

8

3

7
5

1

2

4
9

6=
=

3

4

5

8

2

1

6
9

1

3

4

5

8

2 6

9

M 8.4.2

M 9.4.10

M 8.4.4
2

3

4

8
1

5

9

6

X Y

Fig. 4. Two ways of deleting node 7 from graph M9.4.10 by Algorithm D′

in G4 (in fact, it is atomic). The bold lines in Figure 4 (i.e., edges (3,4) and (5,9)
in X and (3,9) and (4,5) in Y) indicate the newly added edges.

Recall that our node connectivity results are valid only for graphs in Gd. To
preserve the desired connectivity properties, we need to allow only deletions that
exactly reverse the effect of previous additions. To achieve this, we describe our
node deletion algorithm D below.

Algorithm D. We require that whenever a node is added (by algorithm A), a
record is kept of the edges that were deleted to insert this node, so that these
edges can be reinstated when this node is deleted. A node may be deleted only
when it is still connected to the nodes it was first connected to (when it joined
the graph). We term such nodes natal. Note that two adjacent nodes cannot both
be natal. If a non-natal node needs to be deleted, it can first swap neighbors in
the graph with a natal node and then remove itself from the graph.

Clearly, deleting a node requires O(d) edge removals and additions; specif-
ically, deleting a natal node requires d edge removals and d/2 edge additions,
and deleting a non-natal node requires 2d edge removals and 3d/2 edge addi-
tions. From a graph point of view, the interesting metrics related to finding a
natal node are the number of and distance to natal nodes. Natal nodes and their
properties are studied in more detail in Section 5.

4.2 Edge Removal

In some network situations (e.g., overlays), a node A may change its preference on
keeping another node B as its neighbor. This effectively translates to “removing”
edge AB. This can be achieved conceptually by deleting a natal node C and
reinserting it while ensuring that node C chooses edge AB during insertion. (In
most cases, this can be efficiently implemented without going through the full
deletion and reinsertion process.) A similar procedure can be used for bringing a
node X “closer” to node Y by connecting them both to a natal node. The more
general problem of associating costs with edges and, in particular, disallowing
certain edges (associating infinite costs with edges) is a subject of future study.

5 Properties of Natal Nodes

The distribution of natal nodes in the graph is a key factor that determines the
ease of implementing the deletion algorithm in a distributed way. The number

146 S. Dimitrov et al.

0 500 1000 1500 2000 2500 3000

0
20

0
40

0
60

0
80

0
10

00
12

00

number of nodes

nu
m

be
r

of
 n

at
al

 n
od

es

Degree 2, 4, 10, and 50 from top to bottom

(a) Number of natals

average distance to closest natal node

D
en

si
ty

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

0
2

4
6

8

(b) Distance to natal

Fig. 5. Number of natals and distance to the closest natal

of natal nodes in the graph and the distance of each node to a closest natal node
determine the complexity of the implementation. In this section, we aim to show
that in an r3 graph, there are a large number of natal nodes in the graph and
that most non-natal nodes have a natal neighbor nearby.

5.1 Simulation Results

We evaluated through simulations, the number of natal nodes and the average
distance to the closest natal node. The simulation consisted of generating in-
dependent r3 graphs, with degree d upto 50 and sizes ranging from n = 5 to
n = 3000. For each graph, we counted the number of natal nodes and the average
distance to the closest natal node. The averaging is performed over nodes that
are not natal and accordingly, the smallest distance to the closest natal node
is 1. The results of the simulations are shown in Figure 5.

The plot in Figure 5a shows the number of natal nodes as a function of the
number of nodes n in the graph. The plot shows only the values corresponding
to d=2, 4, 10 and 50 for clarity. The graph demonstrates the linear relationship
between the number of natal nodes and n for the four values of d. The points
in the plot cluster along lines that have slopes very close to 1/(d+ 1). We show
below in Section 5.2 for d = 2, 4 that the expected number of natal nodes is
exactly n/(d+1). The graph in Figure 5b is a histogram of the average distance
to the closest natal node for all values of n and d. When n = d + 1, there is
exactly one natal node and all the other nodes are at distance one from it, which
is the reason for the small bump over 1 in the histogram. The hump at 1.22 is
caused by the graphs of degree d = 2. The distribution has an average of 1.34
with a standard deviation of 0.06.

5.2 Expected Number of Natal Nodes

Simulation results given in the Section 5.1 show that there are a large number
of natal nodes in the graph and with a high probability a node will have a natal

r3: Resilient Random Regular Graphs 147

node in its neighbor set. The simulations can be supported by numerical results
on the expected value of natal nodes for small values of d. The results for d = 2
and d = 4 are given below.

Case d = 2. In the case d = 2 there is only one atomic graph, namely K3,
and so only one family of graphs, which contains only cycles. We choose to label
one of the nodes in K3 as natal. Suppose a cycle Cn contains Wn natal nodes,
and a new node is added in a random position. If the deleted edge has a natal
end-point (it cannot have two) then the number of natal nodes is unchanged;
otherwise it increases by 1. So we have the Markov recurrence

P (Wn+1 = Wn) =
2Wn

n
,

P (Wn+1 = Wn + 1) = 1 − 2Wn

n
.

Computing the conditional expectation of Wn+1 given Wn, we get the recurrence
E(Wn+1) = ((n − 2)/n)E(Wn) + 1. Since W3 = 1, it follows that for n ≥ 3,
E(Wn) = n/3. A similar approach shows that for n ≥ 4, V ar(Wn) = 2n/45 [18].

Case d = 4. In this case there are some simple exact results. We consider only
the family G(K5). In our discussion in this section, gn is an n node graph with
d = 4. The number of edges in a regular graph with n nodes is 2n. The number
of disjoint pairs of edges is n(2n− 7).

Lemma 5. If a node is natal in a graph gn, the probability that it remains natal
in gn+1 is (n − 4)/n.

Proof. Suppose node i is natal. The number of disjoint pairs of edges, one of
which has a node i as an end-point, is 4(2n−7). So the probability that node i is
not affected when the next node is added is (n−4)(2n−7)/n(2n−7) = (n−4)/n.

We number the nodes in K5 as 1, 2, 3, 4, 5 and we choose to label node 5 as
being natal.

Theorem 3. For all n ≥ 5, the expected number of natal nodes in gn is n/5.

Proof. For j = 5, 6, ..., n, the probability that the jth node is natal in gn is

Pj(n) =
(j − 4)

j
.
(j − 3)
(j + 1)

.
(j − 2)
(j + 2)

...
(n − 5)
(n − 1)

=
(j − 1)(4)

(n− 1)(4)

where a(h) = a!/(a − h)!. So the expected number of natal nodes is

E(natal nodes) =
n∑

j=5

Pj(n) =
n(5)

5(n − 1)(4)
=

n

5
.

148 S. Dimitrov et al.

6 Conclusion

In this paper, we have introduced a new class of random regular graphs (r3 graphs)
that are efficient to construct and maintain in an evolutionary way and are highly
resilient (connected). We have described algorithms to add and delete nodes from
such graphs, while retaining resilience properties. We have shown properties of
the graphs, including number and distance to specific types of nodes (natal nodes)
that are important for efficiency of the node deletion algorithms. Our simulation
results show that, in practice, when constructing the graphs randomly, the connec-
tivity of r3 graphs exceeds our proven tight bound of d/2+1 for node connectivity.

Some analytical open problems remain, including tight analytical bounds for
the expected number and variance of natal nodes for d > 4. The use of r3 graphs
in a specific system context (namely, overlay networks), and its interaction with
routing and multicast protocols is currently under investigation.

References

1. Harary, F.: Graph Theory. Addison-Wesley Publishing Company, Inc, Reading
(1969)

2. Melamed, R., Keidar, I.: Araneola: A scalable reliable multicast system for dynamic
environment. In: 3rd IEEE International Symposium on Network Computing and
Applications (IEEE NCA), pp. 5–14 (September 2004)

3. Pandurangan, G., Raghavan, P., Upfal, E.: Building low-diameter peer-to-peer net-
works. IEEE Journal on Selected Areas in Communications 21(6), 995–1002 (2003)

4. Haque, A., Aneja, Y.P., Bandyopadhyay, S., Jaekel, A., Sengupta, A.: Some studies
on the logical topology design of large multi-hop optical networks. In: Proc. of
OptiComm 2001: Optical Networking and Comm, pp. 227–241 (August 2001)

5. Bui-Xuan, B., Ferreira, A., Jarry, A.: Evolving graphs and least cost journeys in dy-
namic networks. In: Proc. of WiOpt 2003 – Modeling and Optimization in Mobile,
Ad-Hoc and Wireless Networks, Sophia Antipolis, pp. 141–150 (March 2003)

6. Gaertler, M., Wagner, D.: A hybrid model for drawing dynamic and evolving
graphs. In: Algorithmic Aspects of Large and Complex Networks (2006)

7. Harary, F.: The maximum connectivity of a graph. Proc Natl Acad Sci U S A. 48(7),
1142–1146 (1962)

8. Doty, L.L.: A large class of maximally tough graphs. OR Spectrum 13(3), 147–151
(1991)

9. Hou, X., Wang, T.: An algorithm to construct k-regular k connected graphs with
maximum k-diameter. Graphs and Combinatorics 19, 111–119 (2003)

10. Hou, X., Wang, T.: On generalized k-diameter of k-regular k-connected graphs.
Taiwanese Journal of Mathematics 8(4), 739–745 (2004)

11. Angskun, T., Bosilca, G., Dongarra, J.: Binomial graph: A scalable and fault-
tolerant logical network topology. In: The Fifth International Symposium on Par-
allel and Distributed Processing and Applications, pp. 471–482 (2007)

12. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

13. Mahlmann, P., Schindelhauer, C.: Peer-to-peer networks based on random trans-
formations of connected regular undirected graphs. In: SPAA 2005: Proceedings of
the 17th annual ACM symposium on Parallelism in algorithms and architectures,
pp. 155–164. ACM Press, New York (2005)

r3: Resilient Random Regular Graphs 149

14. Wormald, N.: Models of random regular graphs. Surveys in Combinatorics, 239–298
(1999)

15. Cochran, W.: Sampling Techniques. Wiley, Chichester (1977)
16. Boykov, Y., Kolmogorov, V.: Maxflow - software for computing mincut/maxflow

in a graph, http://www.adastral.ucl.ac.uk/∼vladkolm/software.html
17. Meringer, M.: Regular graphs (website),

http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html

18. Mallows, C., Shepp, L.: The necklace process. Journal of Applied Probabilty 45 (to
appear, 2008)

A Characterizing Atomic Graphs

In this section, we present the proof of Lemma 2. Recall that g′ is the comple-
mentary graph of g and d is even.

Proof. (of Lemma 2) Graph g is atomic iff for each node A, then for every way
of labeling the nodes adjacent to A as B1, B2, ..., Bd, at least one of the edges
(B1, B2), (B3, B4),... is present in g, so there is no way to remove node A. In
terms of g′, for each node A in g′, the nodes B1, ..., Bd are those that are non-
adjacent to A; if g is atomic, then for every way of labeling these nodes, at least
one of the pairs (B1, B2), (B3, B4)... must fail to represent an edge in g′.

If g′ is bipartite, each node can be colored white or black such that in g′,
only edges that connect nodes of different colors are present. Since g′ is regular,
the number of white nodes must be n/2. Pick any node A; w.l.o.g. assume A is
white. There are d′ nodes adjacent to A in g′, and all are black. The d nodes
B1, B2, ...Bd include (n/2 − 1) white nodes and (n/2 − d′) blacks. Note that
(n/2 − 1) = (n/2 − d′) + (d′ − 1) and (d′ − 1) ≥ 3 (because n ≥ d + 4).

So for every way of labeling the nodes B1, ..., Bd there must be at least one
pair (B2i−1, B2i) with both members of the pair white, i.e. not joined in g′, i.e.
joined in g. So A cannot be removed.

It is necessary that d+4 ≤ n ≤ 2d+2. The case n = 2d+2 is not very interesting
because g is then two disjoint Kd+1 graphs.

B Discussion of Algorithms A and D

In Section 2.1 we provided an abstract description of how algorithm A adds a
node to a graph g, and in Section 4.1 we presented algorithm D, the inverse of
algorithm A, to delete a node from a graph g. Below, we elaborate on a particular
implementation of algorithms A and D.

B.1 Discussion of Algorithm A

Assume that a node j is being added to graph g which has more than d + 1 nodes
(otherwise node j connects to all nodes in graph g). Let I be some subset of
nodes in the graph g; we refer to I as the introduction set. Let S be the current

http://www.adastral.ucl.ac.uk/~vladkolm/software.html
http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html

150 S. Dimitrov et al.

list of neighbors of j; at the start, S = φ, and at the end of the procedure, |S| = d.
Initially, node j makes contact with one node i in the introduction set I. Node i
chooses a random time-to-live (TTL) greater than zero. It sends a message to a
randomly selected neighbor with request to add node j, and includes the chosen
TTL in the message. Whenever a node in graph g receives a message to add
node j and the TTL is greater than 1, the node forwards the message to one of
its neighbors selected uniformly at random and decrements the TTL by 1. Once
the TTL counter hits 1, the message is forwarded to a neighbor v1 /∈ S. Such a
neighbor exists because |S| < d and every node has d neighbors. Node v1 now
selects a neighbor v2 /∈ S, and nodes v1 and v2 are added to (ordered) list S. The
procedure is repeated until S has d elements. When |S| = d, break every edge
(v2k−1, v2k) and add edges (v2k−1, j) and (v2k, j) to g. A possible pseudo-code
for the above implementation of algorithm A when TTL is 1 appears in Figure 6
and uses additional notation from Definition 1.

The set of edges, N (j), that were broken when j was added to g must be stored
in the graph since the edges in N (j) will have to be restored when deleting node j
using algorithm D. Standard reliable data storage techniques need to be used.
For example, when storing N (j) we may not want to store the entire information
in node j since a failure of node j leads to our inability to rebuild the graph.
One way to get around this issue is to build in redundancy into the storage
of N (j). Furthermore, any appropriate locking granularity may be used when
implementing the algorithm.

B.2 Discussion of Algorithm D

Assume that a node j is being removed from graph g. If j is natal, we know
from Section 4.1 that the nodes that are neighbors of node j are the same as
the nodes in N (j). Therefore, we can simply restore all of the broken edges as
defined in N (j) and delete node j from the graph. However, if j is not a natal
node, j finds a natal node, η, in the graph and swaps positions. During a swap,
the two nodes exchange neighbor sets and their sets N of initially broken edges,
and the neighbors of these nodes also update their neighbor lists to reflect the
swap. After a swap, node j is a natal node and can be deleted as one.

Finding a natal node reduces to the problem of node j broadcasting in graph g.
As we have seen in Section 5.1, on average a node is no more than two nodes
away from a natal node. Therefore, almost every node in the graph has a natal
node either as its neighbor or as its neighbors’ neighbor. Using this observation,
finding a natal node will require node j asking first its neighbors if any one
of them is a natal node, then its neighbors’ neighbor, etc. until a natal node if
found. The broadcasts can be limited using TTL values. In particular, broadcasts
with increasing TTL values can expand the search for a natal node if one has
not yet been found. As with the node addition process, any appropriate locking
granularity can be used. A possible pseudo-code for the above implementation
of algorithm D and some of its helper procedures appears in Figure 6 and uses
notation from Definition 1. The procedure SWAP NODES is simply the swap
process described earlier.

r3: Resilient Random Regular Graphs 151

Definition 1. MSG.send(M ,i,j,[T]) denotes a node i sending message M to
node j with an optional time-to-live T . MSG.receive(M ,i,j) denotes a node j
receiving message M from node i. In both cases, a message is never forwarded to
a node that the message has already traversed. NEIGHBORS(i) denotes nodes
directly connected to node i. CONNECT(i, j)/BREAK(i, j) denote procedures to
form/break the link between nodes i and j.

Algorithm A Algorithm D

MSG.send (Add, j, i ∈ I) if (j is natal) then
s =a random node selected by node i REMOVE NATAL(j)
Ordered list S = NULL end
while (|S| < d) do else

S = S
S

s η = FIND NATAL(j)
s = s′ : s′ ∈ NEIGHBORS(s), s′ /∈ S SWAP NODES(j, η)

end REMOVE NATAL(j)
for (k = 0; k < d/2; k + +) do end

BREAK(S [2 · k], S [2 · k + 1])
CONNECT(j, S [2 · k])
CONNECT(j, S [2 · k + 1])

end

Procedure FIND NATAL Procedure REMOVE NATAL

Natal found = FALSE for (η ∈ NEIGHBORS(j)) do
asynchronous event E = BREAK(j, η)

MSG.receive(Looking for Natal, ν, j, T) end
E =⇒ Natal found = TRUE for (link ∈ N (j)) do
T = 0 (Time to Live) CONNECT (link[0], link[1])
while (NOT Natal found) do end

T + + DELETE(j)
for (η ∈ NEIGHBORS(j)) do
MSG.send(Looking for natal, j, η, T)

end
Wait some time in anticipation of event E

end
return ν

Fig. 6. Algorithms A, D and helper procedures. The algorithms are presented from a
system (graph)-wide perspective and can be interpreted for each node in the graph.

Online, Dynamic, and Distributed Embeddings

of Approximate Ultrametrics

Michael Dinitz�

Computer Science Department, Carnegie Mellon University, Pittsburgh,
PA 15213, USA

mdinitz@cs.cmu.edu

Abstract. The theoretical computer science community has tradition-
ally used embeddings of finite metrics as a tool in designing approxima-
tion algorithms. Recently, however, there has been considerable interest
in using metric embeddings in the context of networks to allow network
nodes to have more knowledge of the pairwise distances between other
nodes in the network. There has also been evidence that natural net-
work metrics like latency and bandwidth have some nice structure, and
in particular come close to satisfying an ε-three point condition or an ε-
four point condition. This empirical observation has motivated the study
of these special metrics, including strong results about embeddings into
trees and ultrametrics. Unfortunately all of the current embeddings re-
quire complete knowledge about the network up front, and so are less
useful in real networks which change frequently. We give the first met-
ric embeddings which have both low distortion and require only small
changes in the structure of the embedding when the network changes.
In particular, we give an embedding of semimetrics satisfying an ε-three
point condition into ultrametrics with distortion (1 + ε)log n+4 and the
property that any new node requires only O(n1/3) amortized edge swaps,
where we use the number of edge swaps as a measure of “structural
change”. This notion of structural change naturally leads to small up-
date messages in a distributed implementation in which every node has a
copy of the embedding. The natural offline embedding has only (1+ε)log n

distortion but can require Ω(n) amortized edge swaps per node addition.
This online embedding also leads to a natural dynamic algorithm that
can handle node removals as well as insertions.

1 Introduction

Many network applications, including content distribution networks and peer-
to-peer overlays, can achieve better performance if they have some knowledge of
network latencies, bandwidths, hop distances, or some other notion of distance
between nodes in the network. Obviously the application could estimate these

� This work was supported in part by an NSF Graduate Research Fellowship and
an ARCS Scholarship, and was partially done while the author was an intern at
Microsoft Research-Silicon Valley.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 152–166, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Online, Dynamic, and Distributed Embeddings of Approximate Ultrametrics 153

distances by an on-demand measurement, but they get even more benefit from
an instantaneous estimate that does not require recurring measurements. Many
solutions have been proposed for this problem, most of which involve measuring
either a random or a carefully chosen subset of pairwise distances and then
embedding into a low-dimension coordinate space, e.g. a Euclidean space [6, 7, 9,
10, 12]. Because of this methodology, the problem of giving good approximations
of network latencies is sometimes referred to as the network coordinate problem.

We take our inspiration from the work of Abraham et al. [1] who tried to
use embeddings into tree metrics instead of into Euclidean space. Through ex-
perimental measurements they discovered that many networks have latencies
that “locally” look like trees, and in particular satisfy an ε-four point condition
that they invented. They gave an embedding into a single tree which has small
distortion for small ε and allows instantaneous distance measurements like in
the coordinate case, but also due to its tree structure has a natural notion of
hierarchy and clustering that corresponds to an intuitive model of the Internet.
However, their embedding was mainly of theoretical interest, since in practice it
required having global knowledge of the complete network and complete recom-
putation whenever the network changed. Since real networks change regularly
and do not normally allow a global viewpoint, the applicability of their tree
embedding was unclear.

In this paper we take a first step towards a practical tree embedding for
network distances. We define an ε-three point condition (as opposed to the four
point condition of [1]) and show that there are good embeddings into ultrametrics
when ε is small. Since ultrametrics are a special case of tree metrics this is also a
tree embedding, but they have the extra property that they can be represented by
spanning trees, so no Steiner nodes are required. They also satisfy a“bottleneck”
condition which allows ultrametrics to represent bandwidths (actually 1 over the
bandwidth) particularly well. We do not want to assume a static network like
in previous work, so we give an online embedding which works no matter what
order nodes in the network arrive (but assumes that nodes never leave) and a
dynamic embedding which extends the online embedding to handle the case of
nodes leaving.

In this paper we allow our online embedding to change the already-embedded
points when a new one arrives, unlike the traditional model of online algorithms
which does not allow change. However, an important part of this work is mini-
mizing that change, and in fact trading it off with the distortion. We try to mini-
mize the “structural change” of the embedding, where we measure the structural
change by the number of edges in the disjoint union of the tree before a node
insertion and the tree after a node insertion. We show that there is a tradeoff
between distortion and structural change: the offline algorithm that minimizes
distortion has large structural change, while by slightly relaxing the distortion
requirement we can decrease the structural change by a polynomial amount. This
immediately results in a bound on the communication complexity of a distributed
algorithm that sends update messages across an underlying routing fabric.

154 M. Dinitz

Aside from the original practical motivation, we believe that our embedding is
also of theoretical interest. Designing online embeddings is a very natural prob-
lem, but has proven surprisingly difficult to solve. In fact, there is basically no
previous work on embeddings in any model of computation other than the stan-
dard offline full information model, even while online, dynamic, and streaming
algorithms are becoming more important and prevalent. While in many cases it
is easy to see that it is basically impossible to give an online embedding that
doesn’t change the embedding of previous points at all, we hope that this paper
will begin the study of online embeddings that minimize structural change, or
at least tradeoff structural change for extra distortion.

1.1 Definitions and Results

A semimetric is a pair (V, d) where d : V ×V → R≥0 is a distance function with
three properties that hold for all x, y ∈ V . First, d(x, y) ≥ 0. Second, d(x, y) = 0
if and only if x = y. Lastly, d(x, y) = d(y, x). Note that we are not assuming
a metric space, so we do not assume the triangle inequality. Instead, through-
out this paper we assume that the underlying semimetric is approximately an
ultrametric, in the following sense.

Definition 1 (ε-three point condition). A semimetric (V, d) satisfies the ε-
three point condition if d(x, y) ≤ (1 + ε)max{d(x, z), d(y, z)} for all x, y, z ∈
V . We let 3PC(ε) denote the class of semimetrics satisfying the ε-three point
condition.

Ultrametrics are exactly the metrics that satisfy the 0-three point condition,
i.e. ULT = 3PC(0) where ULT is the set of all ultrametrics. So for any given
semimetric, the smallest ε for which it satisfies the ε-three point condition is
a measure of how “close” it is to being an ultrametric. Clearly every metric
satisfies the 1-three point condition, since by the triangle inequality d(x, y) ≤
d(x, z) + d(y, z) ≤ 2 max{d(x, z), d(y, z)}. Thus when the semimetric actually
satisfies the triangle inequality, we know that it is in 3PC(1).

This definition is in contrast to the ε-four point condition defined in [1], which
is a condition on the lengths of matchings on four points rather than the lengths
of edges on three points. In particular, a metric (V, d) satisfies the ε-four point
condition if d(w, z) + d(x, y) ≤ d(w, y) + d(x, z) + 2εmin{d(w, x), d(y, z)} for all
x, y, z, w ∈ V such that d(w, x) + d(y, z) ≤ d(w, y) + d(x, z) ≤ d(w, z) + d(x, y).
This definition also has the property that all metrics satisfy the 1-four point
condition, but instead of being related to ultrametrics it is related to trees, in
that tree metrics are exactly the metrics satisfying the 0-four point condition.

While ultrametrics are just semimetrics in 3PC(0), we will represent them as
trees over the point set. Given a tree T = (V,E) with weights w : E → R≥0, for
x, y ∈ V let P (x, y) denote the set of edges on the unique path in T between x
and y. Define dT : V × V → R≥0 by dT (x, y) = maxe∈P (x,y) w(e). It is easy to
see that (V, dT) is an ultrametric, and that every ultrametric can be represented
in this way. We say that (V, dT) is the ultrametric induced by T .

Online, Dynamic, and Distributed Embeddings of Approximate Ultrametrics 155

Since these are the only embeddings we will use, we define the contraction, ex-
pansion, and distortion of an embedding in the obvious ways. Given a semimetric
(V, d) and a tree T on V , the expansion of the embedding is maxu,v∈(V

2)
dT (u,v)
d(u,v) ,

the contraction of the embedding is maxu,v∈(V
2)

d(u,v)
dT (u,v) , and the distortion is the

product of the expansion and the contraction.
In this paper we want to solve embedding problems online, when vertices

arrive one at a time and we want a good embedding at every step. An online
ultrametric embedding is simply an algorithm that maintains a tree (and thus
an induced ultrametric) on the vertices that have arrived, and outputs a new
spanning tree when a new node arrives. There are two measures of the quality
of an online embedding: its distortion and its update cost. An online embedding
has distortion at most c if every tree that it outputs has distortion at most c
relative to the distances between the nodes that have already arrived.

The update cost of the algorithm is the average number of edges in the tree
that have to be changed when a node arrives. Let A(ε) be an online ultrametric
embedding, and suppose that it is run on a semimetric (V, d) ∈ 3PC(ε) where
the order in which the nodes arrive is given by π. Let Ti = (Vi, Ei) be the tree
given by the A after the ith node arrives. Then cost(A(ε), V, d, π) =

∑|V |
i=1 |Ei \

Ei−1|/|V |. We define the overall update cost of A(ε) to be its worst case cost
over semimetrics satisfying the ε-three point condition and ordering of the nodes
of the semimetric, i.e. sup(V,d)∈3PC(ε),π:[n]→V cost(A, v, d, π).

Now we can state our main result in the online framework. All logs are base
2 unless otherwise noted.

Theorem 1. For any ε ≥ 0 there is an online ultrametric embedding algorithm
for 3PC(ε) which has distortion at most (1 + ε)�log n�+4 and update cost at most
n1/3, where n is the number of points in the semimetric.

The dynamic setting is similar to the online setting, except that nodes can also
leave after they arrive. The cost is defined similarly, as the average number of
edges changed by an operation, where now an operation can be either an arrival
or a departure. We modify our online algorithm to handle departures, giving a
similar theorem.

Theorem 2. For any ε ≥ 0 there is a dynamic ultrametric embedding for 3PC(ε)
which has distortion at most (1 + ε)�log n�+5 (where n is the number of nodes
currently in the system) and update cost at most O(n1/3

max) (where nmax is the
maximum number of nodes that are ever in the system at one time).

Note that this notion of update cost is essentially the communication complexity
of the natural distributed implementation. In particular, suppose that every
node in a network has a copy of the tree (and thus the embedding). When a
new node arrives, it obtains a copy of the tree from some neighbor, and then
runs an algorithm to determine what the new embedding should be. The update
cost is just the expected size of the update message which must be sent across
the network to inform all nodes of the new embedding, so the communication

156 M. Dinitz

complexity of the algorithm is at most O(tnmax) times the update cost where t
is the number of operations (since for each operation we have to send an update
to every node in the system). We describe this application in more detail in the
full version, but the main result is the following upper bound.

Theorem 3. There is a distributed dynamic ultrametric embedding algorithm
for 3PC(ε) that allows every node to estimate the distance between any two nodes
up to a distortion of (1 + ε)�log n�+5 while only using space O(n) at each node
and communication complexity O(tn4/3

max) in the dynamic arrival model.

1.2 Related Work

Our work is heavily influenced by the work of Abraham et al. [1], who gave an
embedding of metrics satisfying the related ε-four point condition into tree met-
rics. While our techniques are not the same (since we focus on ultrametrics), the
motivation (network latency prediction) is, and part of the original motivation for
this work was an attempt to make a distributed version of the algorithm of [1].

This work also fits into the “local vs. global” framework developed by [3] and
continued in [5]. These papers consider embeddings from one space into a class
of spaces where it is assumed that all subsets of the original metric of size at
most some k embed well into the target class. It is easy to see that a semimetric
satisfies the ε-three point condition if and only if every subset of size 3 embeds
into an ultrametric with distortion at most (1 + ε). They essentially solve the
offline problem for ultrametrics by showing that if every subset of size k embeds
into an ultrametric with distortion at most 1 + ε then the entire space embeds
into an ultrametric with distortion at most (1 + ε)O(logk n). The case of k = 3
is special, though, since it is the smallest value for which it is true that if every
subset of size k embeds isometrically into an ultrametric then the entire space
can be embedded isometrically into an ultrametric. Thus it is the most important
case, and we tailor our algorithms to it.

We also note that the definitions of the ε-three point condition given by Abra-
ham et al. [1] and our definition of the ε-four point condition are closely related
to the notion of δ-hyperbolicity defined by Gromov in his seminal paper on
hyperbolic groups [8]. In particular, his notion of hyperbolicity is an additive
version of our notions. While we do not use any of the results or techniques of
[8] directly, the methods and results are somewhat similar.

Finally, while there has been extensive work in the theoretical computer sci-
ence community on metric embeddings, none of it has been concerned with
models of computation other than the standard offline case. This seems to be a
glaring omission, and this work is the first to provide positive results. We hope
that it will be the first in a line of work examining metric embeddings in other
models, especially online, dynamic, and streaming computation.

2 Online Embedding

We begin with the following lemma, which is an easy corollary of [3, Theorem
4.2]. We will use it throughout to bound the contraction of our embeddings.

Online, Dynamic, and Distributed Embeddings of Approximate Ultrametrics 157

Lemma 1. Let (V, d) be a semimetric in 3PC(ε). Then for any spanning tree T
on V and nodes u, v ∈ V , d(u, v) ≤ (1 + ε)�log n�dT (u, v)

This immediately implies that the minimum spanning tree is a good embedding:

Theorem 4. Let T be a minimum spanning tree of the semimetric (V, d) ∈
3PC(ε). Then dT (u, v) ≤ d(u, v) ≤ (1 + ε)�log n�dT (u, v) for all u, v ∈ V

Proof. We know from Lemma 1 that d(u, v) ≤ (1 + ε)�log n�dT (u, v), so it just
remains to prove that dT (u, v) ≤ d(u, v). Let e be the maximum length edge on
the path between u and v in T , and let � be its length. If � > d(u, v), then the
spanning tree obtained by adding the edge {u, v} and removing e is smaller than
T , which is a contradiction since T is a minimum spanning tree. Thus � ≤ d(u, v),
and so by definition dT (u, v) ≤ d(u, v). ��

It is actually easy to see that this is basically the same embedding used by [3],
and furthermore that by replacing the metric distance with the Gromov product
(as defined in [8]) and min/max with max/min we recover the embedding of
hyperbolic spaces given in [8].

While the MST is a good embedding from the standpoint of distortion, com-
puting and maintaining it requires possibly changing many edges on every up-
date. For example, consider the metric on {x1, . . . , xn} that has d(xi, xj) = 1−iδ
for i > j, where δ is extremely small. If the nodes show up in the network in
the order x1, x2, . . . , xn, then after xi enters the system the MST is just the star
rooted at xi. So to maintain the MST we have to get rid of every edge from the
old star and add every edge in the new one, thus requiring Ω(n) average edge
changes per update.

One thing to note about this example is that it is not necessary to maintain
the MST. Instead of relocating the center of the star to the new node every time,
if that new node just adds one edge to the first node then the induced ultrametric
only expands distances by a small amount. This suggests that maybe it is enough
to just add the smallest edge incident on v when v arrives. Unfortunately this
is not sufficient, as it is easy to construct semimetrics in 3PC(ε) for which this
algorithm has distortion (1+ε)Ω(n). So maintaining the MST has good distortion
but large update cost, while just adding the smallest edge has small update cost
but large distortion. Can these be balanced out, giving small distortion and small
update cost? In this section we show that, to a certain extent, they can.

We define the k-threshold algorithm as follows. We maintain a spanning tree
T of the vertices currently in the system. When a node u enters the system,
examine the edges from u to every other node in increasing order of distance.
When examining {u, v} we test whether dT (u, v) > (1 + ε)kd(u, v), and if so we
add {u, v} to T and remove the largest edge on the cycle that it induces. If not,
then do not add {u, v} to T . A formal definition of this algorithm is given in
Algorithm 1.

This algorithm has the useful property that the embedded distance between
two nodes never increases. More formally, consider a single step of the algorithm,
in which it considers the edge {u, v} and either adds it or does not. Let T be the

158 M. Dinitz

Input: Weighted tree T = (V, E, w : E → R≥0), new vertex u, distances
d : u × V → R≥0

Output: Weighted tree T ′ = (V ∪ {u}, E′, w′)
Sort V so that d(u, v1) ≤ d(u, v2) ≤ . . . ≤ d(u, vn);
Let V ′ = V ∪ {u}, let E′ = E ∪ {{u, v1}}, and set w({u, v1}) = d(u, v1);
for i = 2 to n do

Let e be the edge of maximum weight on the path between u and vi in
T ′ = (V ′, E′);
if w(e) > (1 + ε)kd(u, vi) then

E′ ← E′ \ {e} ∪ {{u, vi}};
w({u, vi}) = d(u, vi);

end

end
return T ′ = (V ′, E′, w)

Algorithm 1. k-threshold algorithm

tree before and T ′ the tree after this decision (note that both T and T ′ share
the same node set V).

Lemma 2. dT ′(x, y) ≤ dT (x, y) for all nodes x, y ∈ V

Proof. If the algorithm does not add {u, v} then T = T ′, so dT (x, y) = dT ′(x, y).
If it adds {u, v} then it removes the largest edge on the path in T between u
and v, say {w, z} (without loss of generality we assume that the path from u to
v in T goes through w before z). Clearly d(w, z) > (1 + ε)kd(u, v) or else the
algorithm would not have added {u, v}. If the path in T between x and y does
not go through {w, z} then it is the same as the path between x and y in T ′, so
dT (x, y) = dT ′(x, y). If the path does go through {w, z} then the path from u
to w is unchanged, every edge on the path in T ′ from w to z has length at most
d(w, z), and the path from z to v is unchanged. Thus dT ′(x, y) ≤ dT (x, y). ��

Given this lemma, the following theorem is immediate.

Theorem 5. After adding n nodes, the k-threshold algorithm results in an em-
bedding into an ultrametric with distortion at most (1 + ε)k+�log n�

Proof. We know from Lemma 1 that the contraction is at most (1 + ε)�log n�,
so we just need to show that the expansion is at most (1 + ε)k. Let u and v be
any two vertices, and without loss of generality let u enter the system after v.
Then when u enters the system it chooses to either add the edge to v or not,
but in either case immediately after that decision the expansion of {u, v} is at
most (1 + ε)k. Lemma 2 implies that this distance never increases, and thus the
expansion is always at most (1 + ε)k. ��

The hope is that by paying the extra (1 + ε)k in distortion we get to decrease
the number of edges added. Our main theorems are that this works for small k,
specifically for k equal to 2 and 4.

Online, Dynamic, and Distributed Embeddings of Approximate Ultrametrics 159

Theorem 6. The 2-threshold algorithm has update cost at most n1/2

Theorem 7. The 4-threshold algorithm has update cost at most n1/3

We believe that this pattern continues for larger k, so that the k-threshold al-
gorithm would have update cost n2/(k+2). Unfortunately our techniques do not
seem strong enough to show this, since they depend on carefully considering the
local structure of the embedding around any newly inserted node, where the
definition of “local” increases with k. This type of analysis becomes infeasible
for larger k, so a more general proof technique is required. However, the cases of
small k are actually the most interesting, in that they provide the most “bang-
for-the-buck”: if our conjecture is true, then when k gets larger the same increase
in distortion provides a much smaller decrease in update cost.

The following lemma about the operation of the k threshold algorithm will
be very useful, as it gives us a necessary condition for an edge to be added that
depends not just on the current tree but on all of the edges that have been
inserted by the algorithm.

Lemma 3. Suppose that u arrives at time t, and let v be any other node that
is already in the system. Suppose there exists a sequence u = u0, u1, . . . , uk = v
of nodes with the following three properties:

1. The edge {u, u1} is considered by the k-threshold algorithm before {u, v}
2. d(ui, ui+1) ≤ (1 + ε)kd(u, v)
3. If {ui, ui+1} has never been inserted by the algorithm, then d(ui, ui+1) ≤

d(u, v)

Then the k-threshold algorithm will not add the edge {u, v}

Proof. For any two nodes x and y, let x ∼ y denote the path between them
in the algorithm’s tree just before it considers {u, v}. We know from the first
property that d(u, u1) ≤ d(u, v), and so when {u, v} is considered the maximum
edge on u ∼ u1 is at most (1 + ε)kd(u, u1) ≤ (1 + ε)kd(u, v). Fix i, and suppose
that {ui, ui+1} was already inserted by the algorithm. Then when it was inserted
the maximum edge on the path between ui and ui+1 was just that edge, which
had length d(ui, ui+1). So by Lemma 2, the maximum edge of ui ∼ ui+1 is at
most d(ui, ui+1), which by the second property is at most (1 + ε)kd(u, v). On
the other hand, suppose that {ui, ui+1} was not inserted by the algorithm. Then
when it was considered the path between ui and ui+1 had maximum edge at most
(1+ ε)kd(ui, ui+1), and so by Lemma 2 and the third property we know that the
maximum edge of ui ∼ ui+1 is at most (1 + ε)kd(ui, ui+1) ≤ (1 + ε)kd(u, v).

So for all i ∈ {0, . . . , k − 1}, the path ui ∼ ui+1 has maximum edge at most
(1 + ε)kd(u, v). Since u ∼ v is a subset of u ∼ u1 ∼ . . . ∼ uk, this implies that
u ∼ v has maximum edge at most (1 + ε)kd(u, v), so the k-threshold algorithm
will not add the edge {u, v}. ��

160 M. Dinitz

2.1 2-Threshold

We now prove Theorem 6. Let Gt be the “all-graph” consisting of every edge ever
inserted into the tree by the 2-threshold algorithm before the tth node arrives.
In order to prove Theorem 6 we will use the following lemma, which states that
nodes which are close to each other in Gt have smaller expansion than one would
expect.

Lemma 4. Let u and v be any two nodes. If there is some t0 such that there is
a path of length 2 between u and v in Gt0 , then for all t ≥ t0 the expansion of
{u, v} in the induced ultrametric is at most (1 + ε)

Proof. Let u − w − v be a path of length two in Gt. We want to show that
max{d(u,w), d(w, v)} ≤ (1+ ε)d(u, v), since this along with Lemma 2 will imply
that the the largest edge on the path between u and v in Gt has length at most
(1+ ε)d(u, v). If d(u, v) ≥ d(u,w), then d(w, v) ≤ (1+ ε)max{d(u,w), d(u, v)} =
(1 + ε)d(u, v), which would prove the lemma. Similarly, if d(u, v) ≥ d(w, v) then
d(u,w) ≤ (1+ε)max{d(w, v), d(u, v)} = (1+ε)d(u, v), again proving the lemma.
So without loss of generality we assume that d(u,w) > d(u, v) and d(w, v) >
d(u, v). Together with the ε-three point condition this implies that d(u,w) ≤
(1 + ε)d(w, v) and d(w, v) ≤ (1 + ε)d(u,w). We will now derive a contradiction
from these assumptions, which proves the lemma since it implies that either
d(u, v) ≥ d(u,w) or d(u, v) ≥ d(w, v).

Suppose that u is the last node of the three to enter the system. Then the
sequence u, v, w satisfies the properties of Lemma 3, so the algorithm would not
add {u,w}, giving a contradiction since we assumed that {u,w} was in Gt. If v
is the last of the three to arrive, then v, u, w satisfies the properties of Lemma
3, so {v, w} would not have been added, giving a contradiction. If w is the last
node of the three to be added, then we can assume by symmetry that {u,w}
was considered by the algorithm before {w, v}, in which case w, u, v satisfies the
properties of Lemma 3, so {w, v} would not have been added. Thus no matter
which of the three arrives last we get a contradiction, proving the lemma. ��

We will also need to relate the girth of a graph to its sparsity, for which we will
use the following simple result that can be easily derived from [4, Theorem 3.7]
and was stated in [2] and [11]. Recall that the girth of a graph is the length of
the smallest cycle.

Lemma 5. If a graph G has girth at least 2k + 1, then the number of edges in
G is at most n1+ 1

k

Now we can use a simple girth argument to prove Theorem 6.

Proof of Theorem 6. Suppose that Gn+1 (which is the final graph of all edges
ever inserted by the algorithm) has a cycle of length h ≤ 4 consisting of the
nodes x1, x2, . . . , x4, where x1 is the last of the h nodes on the cycle to have
entered the system. Without loss of generality, assume that {x1, x2} is considered
by the algorithm before {x1, xh}. Let e be the largest edge on the cycle other

Online, Dynamic, and Distributed Embeddings of Approximate Ultrametrics 161

than {x1, xh} and {x1, x2}. In the case of h = 4, Lemma 4 implies that e ≤
(1 + ε)h−3d(x2, xh), and if h = 3 then this is true by definition since then e =
{x2, xh}. But now we know from the ε-three point condition that this is at most
(1 + ε)h−2 max{d(x1, x2), d(x1, xh)} = (1 + ε)h−2d(x1, xh) ≤ (1 + ε)2d(x1, xh).
Thus every edge on the cycle is at most (1 + ε)2d(x1, xh), so applying Lemma 3
to x1, x2, . . . , xh implies that {x1, xh} would not be added by the algorithm, and
therefore would not be in Gn+1. Thus Gn+1 has girth at least 5, so by Lemma 5
we have that the number of edges added by the algorithm is at most n3/2, and
thus the 2-threshold algorithm has update cost at most n1/2. ��

2.2 4-Threshold

In order to prove Theorem 7 we will prove a generalization of Lemma 4 for the
4-threshold algorithm. The proof follows the same outline as the proof of Lemma
4: first we show a series of sufficient conditions, and the assuming them all to be
false we derive a contradiction with the operation of the algorithm. In one case
this technique is insufficient, and instead we have to assume that not only are
the sufficient conditions false, but so is the lemma, and then this is sufficient to
derive a contradiction.

Lemma 6. Let u and v be any two nodes, and let h ≤ 4. Then if there is some
t0 such that there is a path of length h between u and v in Gt0 , then for all t ≥ t0
the expansion of {u, v} in the induced ultrametric is at most (1 + ε)h−1

Proof. The case of h = 1 is obvious, since a path of length 1 is just an edge and
Lemma 2 implies that the embedded distance from then on does not increase.
The case of h = 2 is basically the same as Lemma 4, just with k = 4 instead of
k = 2. Since the proof is basically the same, we defer it to the full version.

For the case of h = 3, consider a path u− x− y− v in Gt. As before, we want
to show that max{d(u, x), d(x, y), d(y, v)} ≤ (1 + ε)2d(u, v), since along with
Lemma 2 this will prove the lemma. Due to symmetry, we can assume without
loss of generality that d(u, x) ≥ d(v, y). So there are two cases, corresponding
to whether the maximum edge on the path is {u, x} or whether it is {x, y}. In
either case the theorem is trivially true if the maximum edge is at most d(u, v),
so without loss of generality we will assume that it is greater that d(u, v).

Suppose that {u, x} is the maximum edge on the path. Then we know from
the h = 2 case that d(u, x) ≤ (1 + ε)d(u, y) ≤ (1 + ε)2 max{d(u, v), d(v, y)}. If
d(u, v) ≥ d(v, y) then this proves the lemma, so without loss of generality we can
assume that d(u, v) < d(v, y), which implies that d(u, x) ≤ (1 + ε)2d(v, y). Now
by using Lemma 3 we can derive a contradiction by finding an edge in Gt that
the algorithm would not have added. If u is the last node of u, x, y, v to enter
the system, then the sequence u, v, y, x satisfies the properties of Lemma 3, so
the edge {u, x} would not have been added. If x is the last of the four to enter
then we can apply Lemma 3 to the sequence x, y, v, u, so again the edge {u, x}
would not have been added. If v is the last of the four to enter then we can
apply Lemma 3 to the sequence v, u, x, y, so the edge {v, y} would not have been

162 M. Dinitz

added. Finally, if y is the last of the four to arrive then if {x, y} is considered
before {y, v} then applying Lemma 3 to the sequence y, x, u, v contradicts the
addition of the edge {y, v}, and if {y, v} is considered before {x, y} then applying
Lemma 3 to the sequence y, v, u, x contradicts the addition of the edge {x, y}.
Thus no matter which of the four nodes enters last we can find an edge in Gt

that the algorithm would not have added.
The second case is that {x, y} is the largest of the three edges. In this case we

want to prove that d(x, y) ≤ (1 + ε)2d(u, v). We know from the h = 2 case that
d(x, y) ≤ (1+ε)d(u, y) ≤ (1+ε)2 max{d(u, v), d(y, v)}, which implies that we are
finished if d(u, v) ≥ d(y, v), and thus without loss of generality d(y, v) > d(u, v)
and d(x, y) ≤ (1 + ε)2d(y, v). Similarly, we know that d(x, y) ≤ (1 + ε)d(v, x) ≤
(1 + ε)2 max{d(u, v), d(u, x)}, so without loss of generality d(u, x) > d(u, v) and
d(x, y) ≤ (1 + ε)2d(u, x). So all three of the edges are larger than d(u, v), and
they are all within a (1 + ε)2 factor of each other. Thus no matter which of the
four nodes enters last there is a sequence to which we can apply Lemma 3 in
order to find an edge in Gt which the algorithm wouldn’t add. If the last node
is u then the sequence is u, v, y, x and the edge is {u, x}, if the last node is x
then the sequence is x, u, v, y and the edge is {x, y}, if the last node is y then
the sequence is y, v, u, x and the edge is {x, y}, and if the last node is v then
the sequence is v, u, x, y and the edge is {v, y}. Thus we have a contradiction in
every case, which proves the lemma for h = 3.

For the h = 4 case, consider a path u − x − z − y − v of length 4 in Gt.
We want to show that max{d(u, x), d(x, z), d(z, y), d(y, w)} ≤ (1+ ε)3d(u, v). By
symmetry there are only two cases: either d(u, x) is the maximum or d(x, z) is
the maximum. Let e be the length of this maximum edge. The lemma is clearly
true if e ≤ d(u, v), so in both cases we can assume that the maximum edge is at
least d(u, v). We also know from the h = 3 case that e ≤ (1 + ε)2d(u, y) ≤ (1 +
ε)3 max{d(u, v), d(y, v)}, so if d(u, v) ≥ d(y, v) then the lemma is true. So without
loss of generality we can assume that d(y, v) > d(u, v) and e ≤ (1 + ε)3d(y, v).

We start with the case when the maximum edge is {x, z}, i.e. e = d(x, z).
Then from the h = 3 case we know that d(x, z) ≤ (1 + ε)2d(x, v) ≤ (1 +
ε)3 max{d(u, x), d(u, v)}. If d(u, v) ≥ d(u, x) we are finished, so without loss of
generality we can assume that d(u, x) > d(u, v) and d(x, z) ≤ (1+ε)3d(u, x). Now
no matter which of the five vertices enters last, we can derive a contradiction
using Lemma 3. This is because all of d(u, x), d(x, z), d(v, y) are greater than
d(u, v) (which is the only edge in the cycle not in Gt) and are all within a
(1+ ε)3 factor of each other. d(z, y) is not necessarily larger than d(u, v) or close
to the other edges, but it’s enough that it is smaller than d(x, z) since that means
that it is not too large and if it is very small then we will not have to use it
to derive a contradiction. So if u enters last then the {u, x} edge would not be
added, if x or z enters last then the {x, z} edge wouldn’t be added, if v enters last
then the {y, v} edge would not be added, and if y enters last whichever of {z, y}
and {y, v} is considered second would not be added. These are all contradictions,
which finishes the case of e = d(x, z).

Online, Dynamic, and Distributed Embeddings of Approximate Ultrametrics 163

The final case, when the maximum edge is {u, x}, is slightly more complicated
because now it is not obvious that z has to be incident to a large edge, which
we need in order to derive the type of contradictions that we have been using.
If d(x, y) ≤ d(v, y), though, then this isn’t a problem and we can easily derive
the same kind of contradictions using Lemma 3: if u or x enters the system last
among u, x, y, v (note the exclusion of z) then the {u, x} edge will not be added,
and if v or y enters the system last of the four then then {v, y} edge will not be
added. This is because both d(x, y) and d(u, v) are at most d(v, y), which is at
most d(u, x), and e = d(u, x) ≤ (1 + ε)3d(v, y).

So without loss of generality we assume that d(x, y) > d(v, y). We still get
an immediate contradiction if the last of the five nodes to enter is not z since
we still have that d(u, v) < d(v, y) ≤ d(u, x) and d(y, v) ≤ (1 + ε)3d(u, x) and
d(x, z), d(y, z) ≤ d(u, x). This implies that if it is u or x which arrives last then
we can apply Lemma 3 to the sequence u, v, y, z, x (or its reverse) to get that
{u, x} will not be added. If it is v then the sequence v, u, x, z, y implies that
{v, y} will not be added, and if it y then the same around-the-cycle sequence
construction implies that whichever of {y, z} and {y, v} is larger will not be
added.

Thus the only difficult case is when z is the last of the five to arrive. Note
that we are trying to prove that d(u, x) ≤ (1+ ε)3d(u, v), so we will assume that
d(u, x) > (1 + ε)3d(u, v) and derive a contradiction. If d(v, y) < d(u, x)/(1 + ε)2

then the ε-three point condition and the fact that d(v, y) > d(u, v) imply that
d(u, y) < d(u, x)/(1 + ε). Now the ε-three point condition implies that d(x, y) ≥
d(u, x)/(1+ε), which in turn implies that max{d(x, z), d(z, y)} ≥ d(u, x)/(1+ε)2.
But now we have our contradiction, since this means that whichever of the two
edges incident on z is considered second is at most (1 + ε)2 times smaller than
d(u, x) and thus is also larger than d(u, v), and so will not be added.

So finally we are left with the case that d(v, y) ≥ d(u, x)/(1 + ε)2. Recall that
d(x, y) > d(v, y), so d(x, y) > d(u, x)/(1 + ε)2 and thus max{d(x, z), d(z, y)} ≥
d(u, x)/(1 + ε)3 > d(u, v). So we again have the contradiction that whichever
of the two edges incident on z is considered second will not be added by the
algorithm. ��

With this lemma in hand we can now prove Theorem 7:

Proof of Theorem 7. Suppose that Gn+1 has a cycle of length h ≤ 6 consisting of
the nodes x1, x2, . . . , xh, where x1 is the last of the h nodes on the cycle to have
entered the system. Without loss of generality, assume that {x1, x2} is considered
by the algorithm before {x1, xh}. Let e be the largest edge on the cycle other
than {x1, xh} and {x1, x2}. Lemma 6 implies that e ≤ (1 + ε)h−3d(x2, xh) ≤
(1 + ε)h−2 max{d(x1, x2), d(x1, xh)} = (1 + ε)h−2d(x1, xh) ≤ (1 + ε)4d(x1, xh).
Thus every edge on the cycle is at most (1 + ε)4d(x1, xh), so applying Lemma 3
to x1, x2, . . . , xh implies that {x1, xh} would not be added by the algorithm, and
therefore would not be in Gn+1. Thus Gn+1 has girth at least 7, so by Lemma 5
we have that the number of edges added by the algorithm is at most n4/3, and
thus the 4-threshold algorithm has cost at most n1/3. ��

164 M. Dinitz

A natural question is whether our analysis of the girth is tight. We show in the
full version that it is: for any k (and thus in particular for k = 2 and k = 4)
and any ε ≥ 0, there is a semimetric in 3PC(ε) and an ordering of the points
such that the graph of all edges inserted by the k-threshold algorithm results
in a cycle of length k + 3. Obviously we would like to also show that not only
is the girth analysis tight, but so is the update cost analysis that we use it for.
Unfortunately we are not able to do this, but for good reason. We conjecture
that the graph of edges inserted by the k-threshold algorithm has girth at least
k + 3 for all even integer k, and if this is true then proving the matching lower
bound would solve the celebrated Erdös girth conjecture.

3 Dynamic Embedding

The algorithms in the previous section work in the online setting, when nodes
enter the system one at a time and then never leave. While slightly more re-
alistic than the standard offline setting, this still does not model real networks
particularly well since it does not handle the removal of nodes, which happens
all the time in reality. What we would really like is a dynamic embedding that
can handle both insertions and removals with the same kind of guarantees that
we obtained in Theorems 6 and 7. Fortunately it turns out that insertions are
the difficult case, and removals are easy to handle by just allowing Steiner nodes
in the embedding.

Our removal algorithm is as follows. We say that a node in the embedding
is active if it is currently in the system and inactive if it is not. Nodes can
change from being active to being inactive, but not from being inactive to active.
Suppose that u leaves the system. Let a be the number of active nodes after u
leaves, and let b be the number of inactive nodes. If a ≤ α(a + b) (for some
parameter 0 < α < 1 to be specified later) then remove all inactive nodes and
let T be a minimum spanning tree on the active nodes. We call this a cleanup
step. Otherwise do nothing, in which case u stays in the current tree as an
inactive (i.e. Steiner) node. When a new node u enters the system we use the k-
threshold algorithm to insert it, i.e. we consider the distances from u to the other
active nodes in non-decreasing order and perform an edge swap if the current
expansion is greater than (1 + ε)k. We call this the k-dynamic algorithm.

It is easy to see that Lemma 4 basically hold in this setting; it just needs to be
changed to only hold for paths for which both of the endpoints are active. The
proof of the lemma still goes through since for a path u−x− v in which u and v
are active, when the path was created x had to be active as well (since when an
edge is formed its endpoints are active, so no matter which of the three nodes
arrives last x must be active). Thus Theorem 6 still holds since when a cycle is
formed in the Gt by the addition of a node u, clearly the two nodes adjacent to
u in the cycle must be active so the modified version of Lemma 4 applies.

It is slightly more complicated to see that Lemma 6 still holds with the same
change, that its guarantee only applies to paths where the endpoints are both
active. The arguments have to be made much more carefully because we can

Online, Dynamic, and Distributed Embeddings of Approximate Ultrametrics 165

only use smaller cases (e.g. depending on the h = 3 case when proving the h = 4
case) when we are guaranteed that both endpoints of the subpath that we are
applying it to are active. We also cannot assume that any distance involving an
inactive node is expanded by only (1 + ε)k, so property 3 of Lemma 3 has to
be changed so that if {ui, ui+1} has never been inserted by the algorithm then
d(ui, ui+1) ≤ d(u, v) and ui and ui+1 are both active. Due to the similarity with
the proof of Lemma 6, we defer the proof to the full version.

We now show that this algorithm has small distortion in terms of the number
of nodes actually in the system. Setting α = 1

2 gives a reasonable tradeoff, so
that is what we will do. Due to space constraints we defer the proofs of theorems
in this section to the full version, but we note that combining Theorems 8 and
9 for k = 4 gives us Theorem 2.

Theorem 8. Suppose that at time t there are n nodes in the system and T is
the tree that the k-dynamic algorithm is currently maintaining. Then for all x, y
in the system, d(x,y)

(1+ε)�log n�+1 ≤ dT (x, y) ≤ (1 + ε)kdT (x, y)

Define the cost of an operation to be the number of edge insertions that it
requires, so the cost of an insertion is the same as in the online case and the cost
of a removal is 0 if it does not result in a cleanup and the a− 1 if it does (recall
that a is the number of active nodes).

Theorem 9. The amortized cost of an operation in the k-dynamic algorithm
(for k = 2 or 4) is at most O(n2/(k+2)

max), where nmax is the largest number of
nodes that are ever in the system at one time.

4 Conclusion and Open Questions

We have shown that when a semimetric satisfies an ε-three point condition (or
equivalently has the property that every subset of size three embeds into an
ultrametric with distortion at most 1 + ε) it is possible to embed it online into a
single ultrametric in a way that has both small distortion and small “structural
change”. We measure structural change by the number of edges that have to be
added to the tree representing the ultrametric, which in a distributed setting
is a natural goal since it results in small update messages when the network
changes. Furthermore, a trivial example shows that the best offline embedding
might require very large structural change, while we get a polynomial reduction
in the structural change by losing only a constant factor in the distortion.

The obvious open question is whether the k-threshold algorithm is good for
all values of k. In particular, if the analog of Lemma 6 holds for all k then the
Θ(log n) threshold algorithm would have update cost at most O(1) and distortion
only (1+ε)O(log n). We believe that this is true, but our techniques do not extend
past k = 4. In particular, the proof of Lemma 6 proceeds via case analysis, and
when k gets large there are just too many cases. Nevertheless, we conjecture
that for even k the graph of all edges ever inserted by the k-threshold algorithm
has girth at least k + 3, and thus has update cost at most n

2
k+2 .

166 M. Dinitz

Acknowledgements. We would like to thank Dahlia Malkhi for pointing out this
line of research and for many helpful discussions.

References

1. Abraham, I., Balakrishnan, M., Kuhn, F., Malkhi, D., Ramasubramanian, V., Tal-
war, K.: Reconstructing approximate tree metrics. In: PODC 2007: Proceedings of
the twenty-sixth annual ACM Symposium on Principles of Distributed Computing,
pp. 43–52. ACM, New York (2007)

2. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete Comput. Geom. 9(1), 81–100 (1993)

3. Arora, S., Lovász, L., Newman, I., Rabani, Y., Rabinovich, Y., Vempala, S.: Local
versus global properties of metric spaces. In: SODA 2006: Proceedings of the sev-
enteenth annual ACM-SIAM Symposium on Discrete Algorithm, pp. 41–50. ACM,
New York (2006)

4. Bollobás, B.: Extremal graph theory. London Mathematical Society Monographs,
vol. 11. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London
(1978)

5. Charikar, M., Makarychev, K., Makarychev, Y.: Local global tradeoffs in metric
embeddings. In: FOCS 2007: Proceedings of the forty-eighth annual IEEE Sympo-
sium on Foundations of Computer Science, pp. 713–723 (2007)

6. Costa, M., Castro, M., Rowstron, A., Key, P.: Pic: Practical internet coordinates
for distance estimation. In: ICDCS 2004: Proceedings of the 24th International
Conference on Distributed Computing Systems (ICDCS 2004), Washington, DC,
USA, pp. 178–187. IEEE Computer Society, Los Alamitos (2004)

7. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: a decentralized network
coordinate system. SIGCOMM Comput. Commun. Rev. 34(4), 15–26 (2004)

8. Gromov, M.: Hyperbolic groups. In: Essays in group theory. Math. Sci. Res. Inst.
Publ, vol. 8, pp. 75–263. Springer, New York (1987)

9. Lim, H., Hou, J.C., Choi, C.-H.: Constructing internet coordinate system based
on delay measurement. In: IMC 2003: Proceedings of the 3rd ACM SIGCOMM
Conference on Internet Measurement, pp. 129–142. ACM, New York (2003)

10. Tang, L., Crovella, M.: Virtual landmarks for the internet. In: IMC 2003: Pro-
ceedings of the 3rd ACM SIGCOMM Conference on Internet Measurement, pp.
143–152. ACM, New York (2003)

11. Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52(1), 1–24 (2005)
12. wei Lehman, L., Lerman, S.: Pcoord: Network position estimation using peer-to-

peer measurements. In: NCA 2004: Proceedings of the Network Computing and
Applications, Third IEEE International Symposium on (NCA 2004), Washington,
DC, USA, pp. 15–24. IEEE Computer Society, Los Alamitos (2004)

Constant-Space Localized Byzantine Consensus

Danny Dolev� and Ezra N. Hoch

School of Engineering and Computer Science,
The Hebrew University of Jerusalem, Israel

{dolev,ezraho}@cs.huji.ac.il

Abstract. Adding Byzantine tolerance to large scale distributed sys-
tems is considered non-practical. The time, message and space require-
ments are very high. Recently, researches have investigated the broadcast
problem in the presence of a f�-local Byzantine adversary. The local ad-
versary cannot control more than f� neighbors of any given node. This
paper proves sufficient conditions as to when the synchronous Byzantine
consensus problem can be solved in the presence of a f�-local adversary.

Moreover, we show that for a family of graphs, the Byzantine consen-
sus problem can be solved using a relatively small number of messages,
and with time complexity proportional to the diameter of the network.
Specifically, for a family of bounded-degree graphs with logarithmic di-
ameter, O(log n) time and O(n log n) messages. Furthermore, our pro-
posed solution requires constant memory space at each node.

1 Introduction

Fault tolerance of a distributed system is highly desirable, and has been the
subject of intensive research. Byzantine faults have been used to model the most
general and severe failures. Classic Byzantine-tolerant research has concentrated
on an “all mighty” adversary, which can choose up to f “pawns” from the n
available nodes (usually, f < n

3). These Byzantine nodes have unlimited compu-
tational power and can behave arbitrarily, even colluding to “bring the system
down”. Much has been published relating to this model (for example, [11], [12],
[2]), and many lower bounds have been proven.

One of the major drawbacks to the classic Byzantine adversarial model is its
heavy performance cost. The running time required to reach agreement is linear
in f (which usually means it is also linear in n), and the message complexity is
typically at least O(n2) (when f = O(n), see [7]). This drawback stems from the
“global” nature of the classic Byzantine consensus problem - i.e., the Byzantine
adversary has no restrictions on the spread of faulty nodes. Thus, the communi-
cation graph must have high connectivity (see [6] for exact bounds) - which leads
to a high message load. Moreover, the global nature of the adversary requires
every node to agree with every other node, leading to linear termination time
and to a high out degree for each node (at least 2f + 1 outgoing connections,

� Supported in part by ISF.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 167–181, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

168 D. Dolev and E.N. Hoch

see [6]). Such algorithms cannot scale; thus - as computer networks grow - it
becomes infeasible to address global Byzantine adversaries.

To overcome this limitation, some research has assumed computationally-
bounded adversaries, for example [5]. Alternatively, recent work has considered
a f�-local Byzantine adversary. The f�-local adversary is restricted in the nodes it
can control. For every node p, the adversary can control at most f� neighboring
nodes of p. We call this stronger model “local” and the classic model “global”.
[10] has considered the Byzantine broadcast problem, which consists of all non-
Byzantine nodes accepting a message sent by a given node. [13] classifies the
graphs in which the broadcast problem can be solved, in the presence of a f�-local
adversary. In the current work we consider the Byzantine consensus problem,
which consists of all non-Byzantine nodes agreeing on the same output value,
which must be in the range of the input values of the non-Byzantine nodes.
Sufficient conditions are given to classify graphs on which the problem can be
solved, in the presence of a f�-local adversary.

Solving the Byzantine consensus problem when facing a global adversary re-
quires O(n) memory space. When considering a local adversary, the memory
space requirements can be reduced. This raises the question of possible tradeoff
between fault tolerance and memory space requirement, which has been previ-
ously investigated in the area of self-stabilizing (see [3], [8], [9]). The current
work provides a new tradeoff: for a family of graphs, consensus can be solved
using constant memory space, provided that the Byzantine adversary is f�-local.

Contribution: This work solves the Byzantine consensus problem in the local
adversary model. For a large range of networks (a family of graphs with constant
degree and logarithmic diameter), Byzantine consensus is solved within O(log n)
rounds and with message complexity of O(n·logn), while requiring O(1) space at
each node1. These results improve exponentially upon the classic setting which
requires linear time, O(n2) messages, and (at least) linear space for reaching a
consensus. We also present two additional results which are of special interest
while using constant memory: first, we show a means of retaining identities in
a local area of the network (see Section 4.1); second, we present a technique for
waiting logn rounds using O(1) memory space at each node (see Section 4.2).

2 Model and Problem Definition

Consider a synchronous distributed network of n nodes, {p0, . . . , pn−1} = P ,
represented by an undirected graph G = (E, V), where V = P and (p, p′) ∈ E
if p, p′ are connected. Let Γ (p) be the set of neighbors of p, including p. The
communication network is assumed to be synchronous, and communication is
done via message passing; each communication link is bi-directional.

Byzantine nodes have unlimited computational power and can communicate
among themselves. The Byzantine adversary may control some portion of the
nodes; however, the adversary is limited in that each node may not have more
1 Formally, we show that each node uses space polynomial in its degree; for constant

degree it is O(1).

Constant-Space Localized Byzantine Consensus 169

than f� Byzantine neighbors, where f� is a system-wide constant. Formally, a
subset S ⊂ P is f�-local if for any node p ∈ P it holds that |S

⋂
Γ (p)| ≤ f�. A

Byzantine adversary is said to be f�-local if (in any run) the set of Byzantine
nodes is f�-local.

2.1 Problem Definition

The following is a formal definition of the Byzantine consensus problem, followed
by a memory-bounded variant of it.

Definition 1. The Byzantine consensus problem consists of the following:
Each node p has an input value vp from an ordered set V; all nodes agree on
the same output V ∈ V within a finite number of rounds (agreement), such that
vp ≤ V ≤ vq for some correct nodes p, q (validity).

The goal of the current work is to show that for f�-local adversaries, efficient
deterministic solutions to the Byzantine consensus problem exist; efficient with
respect to running time, message complexity and space complexity. A node p’s
memory space depends solely on the local network topology - i.e. p’s degree or
the degree of p’s neighbors.

Denote by �-MaxDeg(p) the maximal degree of all nodes that are up to �
hops away from p. Notice that 0-MaxDeg(p) = |Γ (p)|.
Definition 2. The �-hop local Byzantine consensus problem is the Byzantine
consensus problem with the additional constraint that each correct node p can
use memory space that is polynomially bounded by �-MaxDeg(p).

Informally, the above definition states that a node cannot “know” about all the
nodes in the system, even though it can access all its local neighbors. That is,
consensus must be reached with “local knowledge” only.

Remark 1. Definition 2 can be replaced by a requirement that the out degree
of each node as well as the memory space are constant. We choose the above
definition instead, as it generalizes the constant-space requirement.

3 Byzantine Consensus

In this section sufficient conditions for solving the Byzantine consensus problem
for a f�-local adversary are presented. First we discuss solving the Byzantine
consensus problem in a network that is fully connected. We later give some
definitions that allow us to specify sufficient conditions to ensure that Byzantine
consensus can be solved in networks that are not fully connected.

3.1 Fully Connected Byzantine Consensus

We now define ByzCon, which solves the Byzantine consensus problem in a fully
connected network. Take any Byzantine agreement2 algorithm (for example, see
2 Byzantine agreement is sometimes called Byzantine broadcast. This problem consists

of a single leader broadcasting some value v using point-to-point channels.

170 D. Dolev and E.N. Hoch

[14]), and denote it by BA. ByzCon executes n instance of BA, one for each
node p’s input value, thus agreeing on the input value vp. As a result, all correct
nodes have an agreed vector of n input values (notice that this vector may
contain “⊥” values when BA happens to return such a value for a Byzantine
node). The output value of ByzCon is the median of the values of that vector,
where “⊥” is considered as the lowest value.

Claim. ByzCon solves the Byzantine consensus problem in a fully-connected
network.

Definition 3. Given an algorithm A and a set of nodes S ⊂ P, Valid(A, S)
= true if the set S upholds the connectivity requirements of A. Faulty(A, S)
denotes the maximal number of faulty nodes that A can “sustain” when executed
on S (for example, Faulty(BA, S) = � |S|−1

3).
In a similar manner, Time(A, S) is the maximal number of rounds it takes

A to terminate when executed on S, and Msg(A, S) is the maximal number of
messages sent during the execution of A on S.

Notice that for all S: Valid(ByzCon, S)= Valid(BA, S), Faulty(ByzCon,
S)= Faulty(BA, S), Time(ByzCon, S) = Time(BA, S) Msg(ByzCon, S) =
|S| ·Msg(BA, S). That is, ByzCon’s connectivity requirements, fault tolerance
ratio and running time, are the same as in the Byzantine agreement algorithm
of [14]; i.e., ByzCon requires a fully connected graph among the nodes partici-
pating in ByzCon and it supports up to a third of them being Byzantine.

3.2 Sparsely Connected Byzantine Consensus

Consider a given algorithm that solves the Byzantine consensus problem when
executed on a set of nodes S. ByzCon, defined in the previous section, requires
S to be fully-connected. The following discussion assumes ByzCon’s existence
and correctness.

The following definitions hold with respect to any f�-local adversary.

Definition 4. Given a subset S ⊂ P, denote by f�-Byz(S) the maximal number
of nodes from S that may be Byzantine for a f�-local adversary.

Definition 5. A non-empty subset S, ∅ �= S ⊂ P, is a f�-decision group if
Valid(ByzCon, S) = true and Faulty(ByzCon, S) ≥ f�-Byz(S).

When considering ByzCon as constructed in Section 3.1, the above definition
states that S must be fully connected, and |S| > 3 · f�. Since 0-local adversaries
are of no interest, the minimal size of S satisfies, |S| ≥ 4.

Definition 6. A non-empty subset S′ ⊆ S of a f�-decision group is a f�-common
source if f�-Byz(S′) + |S − S′| ≤ Faulty(ByzCon, S).

Claim. If S′ ⊆ S is a common source and all correct nodes in S′ have the same
initial value, ν, then the output value of ByzCon when executed on S, is ν.

Constant-Space Localized Byzantine Consensus 171

Proof. Denote by W the set of correct nodes in S′ and by Y the set of all
nodes in S that are not in W ; i.e., Y := S − W . Since S′ is a common source,
|Y | ≤ Faulty(ByzCon, S). Assume by way of contradiction that all nodes in W
have the same initial value ν, and the output of ByzCon (when executed on S)
is not ν; denote this execution by R. If all the nodes in Y are Byzantine and they
simulate their part of R, then it holds that all correct nodes in S have the same
initial value ν, the number of Byzantine nodes is less than Faulty(ByzCon, S),
and yet the output is not ν. In other words, the “validity” of ByzCon does not
hold. Therefore, if all nodes in W = S −Y are correct and have the same initial
value ν, that must be the output value of ByzCon when executed on S. ��

Definition 7. Two subsets S1, S2 ⊂ P are f�-connected if S1, S2 are f�-decision
groups, and if S1 ∩ S2 is a f�-common source for both S1 and S2.

Definition 8. A list C = S1, S2, . . . , Sl is a f�-value-chain between S1 and Sl

if the subsets Si, Si+1 are f�-connected, for all 1 ≤ i ≤ l − 1. The length of the
value-chain C is l − 1.

Definition 9. Let G be a set of f�-decision groups, i.e., G ⊆ 2P . G is an f�-
entwined structure if for any two subsets g, g′ ∈ G there is a f�-value-chain
C = g1, g2, . . . , gl ∈ G between g, g′. The distance between g, g′ is the minimal
length among all f�-value-chains between g, g′.

Definition 10. The diameter D of an f�-entwined structure G is the maximal
distance between any two f�-decision groups g, g′ ∈ G.

Definition 11. An f�-entwined structure G is said to cover graph G if for any
node p in G there is a subset g ∈ G such that p ∈ g. Formally:

⋃
g∈G{g} = P.

Remark 2. All entwined structures in the rest of this paper are assumed to cover
their respective graphs. We will therefore sometimes say “an entwined structure
G” instead of “an entwined structure G that covers graph G”.

Some of the above definitions were parameterized by f�. When f� is clear from
the context, we will remove the prefix f�. (i.e., “decision group” instead of “f�-
decision group”).

Definition 12. Let G be a graph. Denote by Φ(G) the maximal value f� s.t.
there is a f�-entwined structure that covers G.

The following theorem states the first result of the paper.

Theorem 1. The Byzantine consensus problem can be solved on graph G for
any Φ(G)-local adversary.

Section 3.3 contains the algorithm LocalByzCon that given a f�-entwined
structure G, solves the Byzantine consensus problem for any f�-local adversary.
Section 3.4 proves the correctness of LocalByzCon, thus completing the proof
of Theorem 1.

172 D. Dolev and E.N. Hoch

Algorithm LocalByzCon /* executed at node p */
/* BCi is an instance of ByzCon */

Initialization:

1. set vp := p’s initial value;
2. set Outputp := ∅; /* Gp := {g ∈ G|p ∈ g} */
3. for all gi ∈ Gp start executing BCi with initial value vp;

For ∆max · (2D + 1) rounds: /* ∆max := maxi{Time(ByzCon, gi)} */

1. execute a single round of each BCi that p participates in;
2. for each BCi that terminated in the current round with value V :

set Outputp := Outputp

⋃
{V };

3. for each BCi that terminated in the current round:
start executing BCi with initial value min{Outputp};

Return value:
return output as min{Outputp};

Fig. 1. Solving the Byzantine consensus problem for a f�-local adversary

3.3 Algorithm LocalByzCon

Figure 1 introduces the algorithm LocalByzCon that solves the Byzantine
consensus problem for f�-local adversaries, given an f�-entwined structure G. The
main idea behind LocalByzCon is to execute ByzCon locally in each decision
group. Each node takes the minimal agreement value among the decision groups
it participated in. The fact that any two decision groups in G have a value-chain
between them ensures that the minimal agreement value among the different
invocations of ByzCon will propagate throughout G. Since G covers G, all nodes
will eventually receive the same minimal value.

Consider G to be a f�-entwined structure, and g1, g2, . . . , gm ∈ G to be all the
decision groups (of P) in G. For a node p, Gp is the set of all decision groups
that p is a member of; that is, Gp := {g ∈ G|p ∈ g}. Each node p participates in
repeated concurrent executions of ByzCon instances, where for each gi ∈ Gp,
node p will execute a ByzCon instance, and once that instance terminates p will
execute another instance, etc. For each gi ∈ Gp denote by BC1

i the first execution
of ByzCon by all nodes in gi; BC2

i denotes the second instance executed by all
nodes in gi, and so on.

According to Definition 1 all nodes participating in ByzCon terminate within
some finite time ∆. Furthermore, each node can wait until ∆ rounds elapse and
terminate, thus achieving simultaneous termination. Therefore, in LocalByz-

Con, all nodes that participate in BCj
i terminate it at the same round and start

executing BCj+1
i together at the following round.

3.4 Correctness Proof

For every gi ∈ G denote by ri(1) the round at which the first consecutive in-
stance of ByzCon executed on gi has terminated. Denote by r(1) := max{ri(1)}.
Let Outputrp denote the value of Outputp at the end of round r. Notice that
Outputrp ⊆ Outputr+1

p for all correct p and all r. Denote Outputr :=
⋃
{Outputrp},

Constant-Space Localized Byzantine Consensus 173

the union of all Outputp (for correct p) at the end of some round r. Using this
notation, Outputr(1) represents all the values in any Outputp (for correct p) af-
ter at least one instance of ByzCon has terminated for each g ∈ G. Consider
some instance of ByzCon that terminates after round r(1): it must be (at least)
a second execution of that instance, thus all correct nodes that participated
in it had their input values chosen from Outputr(1). Thus, due to validity, the
output value is in the range of [min{Outputr(1)},max{Outputr(1)}]. Hence, we
conclude that min{Outputr} ≥ min{Outputr(1)} for any r ≥ r(1). Denote by
vmin := min{Outputr(1)}; clearly no correct node p will hold a lower value (in
Outputp) for any r ≥ r(1).

Lemma 1. If a correct node p has min{Outputrp} = vmin then it will never have
a lower value in Outputp for any round r′ ≥ r.

Lemma 2. At round r(1), there exists gi ∈ G such that for every correct node
p ∈ gi it holds that min{Outputp} = vmin.

Proof. By definition, vmin ∈ Output
r(1)
p . Thus, vmin was the output of some BCi

instance (on decision group gi) at some round r ≤ r(1). Consider the nodes in
gi, they have all added vmin to their Outputp. Thus, vmin ∈ Output

r(1)
p and by

definition it is the lowest value in Outputp at round r(1). Thus, at round r(1),
all correct nodes in gi have min{Outputp} = vmin. ��

Lemma 3. If LocalByzCon has been executed for at least ∆max · (2D + 1)
rounds, then all correct nodes have min{Outputp} = vmin.

Proof. Divide the execution of LocalByzCon into “stages” of ∆max rounds
each. Clearly there are at least 2D + 1 stages, and in each stage each BCi is
started at least once. From the above lemma, for some decision group gi, all
correct nodes p ∈ gi have min{Outputp} = vmin at the end of the first stage.

Let g′ be some decision group, and let gi = g1, g2, . . . , gl = g′ be a value-chain
between gi and g′; there exists such a value-chain because G is an entwined
structure, and its length is ≤ D.

Consider the second stage. Since g1, g2 are connected, and since all nodes in
g1 have the same initial value (vmin) during the entire stage 2, then in g1 ∩g2 all
nodes have vmin as their initial value during stage 2. Since g1 ∩ g2 is a common
source of g2, it holds that instance BC2 that is started in stage 2 is executed with
all nodes in g1 ∩ g2 having initial value vmin. Thus, when BC2 terminates (no
later than the end of stage 3), it terminates with the value vmin, thus all nodes
in g2 also have vmin ∈ Outputp. By Lemma 1, all nodes in g2 choose vmin as
their initial value for any instance of ByzCon started during stage 4 and above.
Repeating this line of proof leads to the conclusion that after an additional 2D
stages all correct nodes in g′ have vmin ∈ Outputp.

Since any decision group g′ has a value-chain of no more than D length to
gi, we have that after 2D + 1 stages, all correct nodes in all decision groups
have vmin ∈ Outputp. Since G covers G, each correct node is a member of some
decision group, thus all correct nodes in G have vmin ∈ Outputp. Since vmin is
the lowest possible value, min{Outputp} = vmin for all p ∈ P . ��

174 D. Dolev and E.N. Hoch

Remark 3. Consider the value-chain g1, g2, . . . , gl in the proof above. The proof
bounds the time (in rounds) it takes vmin to “propagate” from g1 to gl. The given
bound (2 · l · ∆max) is not tight. In fact, instead of assuming 2 · ∆max rounds
for each “hop along the chain”, one can accumulate 2 ·Time(ByzCon, gi) when
moving from gi−1 to gi. Thus, define Timedist(g, g′) to be the shortest such sum
on any value-chain between g, g′, and D

time
as the maximal Timedist(g, g′) on

any g, g′ ∈ G; and we can conclude that it is enough to run LocalByzCon for
D

time
rounds. Notice that this analysis it tight up to a factor of 2.

Lemma 4. Given an f�-entwined structure G that covers G, LocalByzCon

solves the Byzantine consensus problem, for a f�-local adversary.

Proof. From the above lemmas, after ∆max · (2D + 1) rounds, all correct nodes
terminate with the same value, vmin. Notice that vmin is the output of some
ByzCon instance. Thus, there are two correct nodes p, q such that vp ≤ vmin ≤
vq. Therefore, both “agreement” and “validity” hold. ��

3.5 Complexity Analysis

The time complexity of LocalByzCon is (2D + 1) · ∆max. In other words, let
gmax be the largest decision group in G, that is gmax := argmaxgi∈G{|gi|}; using
this terminology we have that, Time(LocalByzCon,P) = (2D + 1) ·O(gmax).

Similarly, the message complexity of LocalByzCon per round is the sum
of all messages of all ByzCon instances each round, which is bounded by∑

gi
|gi|3 ≤ |G| · |gmax|3. Thus, Msg(LocalByzCon,P) ≤ (2D + 1) · |G| ·

O(|gmax|4) (messages per round times rounds).

4 Constant-Space Byzantine Consensus

Section 3 proves a sufficient condition for solving the Byzantine consensus prob-
lem on a given graph G for a f�-local adversary. The current section gives a
sufficient condition for solving the �-hop local Byzantine consensus problem.

Definition 13. An f�-entwined structure G is called �-hop local if for every
g ∈ G, � bounds the distance between any two nodes in g.

For ByzCon constructed in Section 3.1, any entwined structure G is 1-hop local,
since for every decision group g ∈ G, it holds that Valid(ByzCon, g) =true, thus
g is fully connected. However, the following discussion holds for any algorithm
that solves the Byzantine consensus problem, even if it does not require decision
groups to be fully connected.

Definition 14. An f�-entwined structure G is called �-lightweight if G is �-hop
local and for every p ∈ P, |Gp| and |g| (for all g ∈ Gp) are polynomial in |Γ (p)|.

Definition 15. Let G be a graph. Denote by �-Ψ(G) the maximal value f� s.t.
there is a f�-entwined structure that is �-lightweight and covers G.

Constant-Space Localized Byzantine Consensus 175

The following theorem states the second contribution of this paper.

Theorem 2. The �-hop local Byzantine consensus problem can be solved on
graph G for any [�-Ψ(G)]-local adversary.

By Theorem 1, any f�-entwined structure G that covers graph G can be used
to solve the Byzantine consensus problem on G, for a f�-local adversary. To
prove Theorem 2 we show that when LocalByzCon is executed using an �-
lightweight f�-entwined structure, each node p’s space requirements are poly-
nomial in �-MaxDeg(p). There are 3 points to consider: first, we show that
the memory footprint of the different ByzCon instances that p participates in
is “small”. Second, ByzCon assumes unique identifiers, which usually require
logn space. We need to create identifiers that are locally unique (thus requiring
space that is independent of n), such that ByzCon can be executed properly
on each decision group. Third, the main loop of LocalByzCon requires to
count at least up to D, which requires logD bits, possibly requiring space that
is dependent on n.

The second point is discussed in Section 4.1 and the third in Section 4.2.
To solve the first point notice that G is �-lightweight, thus each node partici-
pates in no more than poly(|Γ (p)|) ByzCon instances concurrently, and each
such instance contains poly(|Γ (p)|) nodes. Assuming that the identifiers used
by ByzCon require at most polylog(�-MaxDeg(p)) bits (see Section 4.1), p re-
quires at most poly(�-MaxDeg(p)) space to execute the ByzCon instances of
LocalByzCon.

4.1 Locally Unique Identifiers

Consider the algorithm LocalByzCon in Figure 1 and an �-lightweight en-
twined structure G. Different nodes communicate only within decision groups,
i.e., node p sends or receives messages from node q only if p, q ∈ g for some
g ∈ G. Thus, the identifiers used can be locally unique.

To achieve this goal, node p numbers each node q in each decision group
g ∈ Gp, sequentially. Notice that the same node q might “receive” different
numbers in different decision groups that p participates in. Thus, we can define
Num(p, g, q) to be the number p assigns to q for the decision group g ∈ Gp. Notice
that for an �-lightweight entwined structure, Num(p, ∗, ∗) requires polynomial
space in |Γ (p)|. Each node z holds Num(p, g, ∗) for all g ∈ Gz

⋂
Gp, along with a

mapping between Num(p, g, q) and Num(z, g, q). The memory footprint of this
mapping is again polynomial in |Γ (z)| (for �-lightweight entwined structures).

In addition, each node p numbers the decision groups it is a member of: let
Indx(p, g) be the “number” of g ∈ Gp according to p’s numbering. Any node
z (such that Gp

⋂
Gz �= φ) holds a mapping between Indx(p, g) and Indx(z, g),

for all g ∈ Gp

⋂
Gz. Notice that Indx(p, ∗) is polynomial in |Γ (p)|, and the

mapping requires memory space of size polynomial in max{|Γ (p)|, |Γ (z)|}. For
�-lightweight entwined structures, the distance between p and z is ≤ �, thus
max{|Γ (p)|, |Γ (z)|} ≤ �-MaxDeg(p), resulting in a memory space footprint (of
all the above structures) that is polynomial in �-MaxDeg(p) for any node p.

176 D. Dolev and E.N. Hoch

When node p wants to send node q’s identifier to z regarding decision group g
(notice that p, q, z ∈ g and g ∈ Gp,Gq,Gz), it sends “(Num(p, g, q), Indx(p, g))”
and node z uses its mapping to calculate Indx(z, g), from which node z can
discern what g is, and use its Num mapping to calculate Num(z, g, q). Therefore,
nodes can identify any node in their decision groups and can communicate these
identities among themselves. Thus, “identities” can be uniquely used locally,
with a low memory footprint. i.e., the required memory space is polynomial in
�-MaxDeg(p). Notice that the above structures are constructed before executing
LocalByzCon, once the system designer knows the structure of G.

4.2 Memory-Efficient Termination Detection

LocalByzCon as given in Figure 1 loops for ∆max ·(2D+1) rounds. Therefore,
for D that depends on n, the counter of the loop will require too much memory.
From the analysis of the execution of LocalByzCon it is clear that any node
terminating after it ran for more than ∆max · (2D + 1) rounds, terminates with
the same value. Thus, it is only important that all nodes eventually terminate,
and that they do so after at least ∆max · (2D + 1) rounds; how can this be done
without counting rounds? The following is an example of a solution requiring
constant memory, using a simpler model.

Consider a synchronous network without any Byzantine nodes, where each
node p has poly(|Γ (p)|) memory. Given that D (the diameter of the network) is
not constant, how can one count until D in such a network? Mark two nodes
u, v as “special” nodes, such that the distance between u and v is D (clearly
there exist u, v that satisfy this condition). When the algorithm starts, u floods
the network with a “start” message. When v receives this message, it floods the
network with an “end” message. When any node receives the “end” message, it
knows that at least D rounds have passed, and it can therefore terminate.

Using the above example, we come back to our setting of entwined structures
and f�-local Byzantine adversaries: consider two “special” decision groups g1, g2

from G, such that the Timedist between g1 and g2 is D
time

(see Remark 3). Each
node p, in addition to its initial value vp, has two more initial values v1

p, v
2
p which

are both set to “1”. All nodes in g1 set v1
p :=“0”. Instead of executing a single

LocalByzCon, each node executes 3 copies of LocalByzCon: one on vp, one
on v1

p (denoted LocalByzCon1) and one on v2
p (denoted LocalByzCon2).

Only nodes in g2 perform the following rule: once g2’s output in LocalByzCon1

is “0”, set v2
p := “0”. Lastly, all nodes terminate one repetition after Outputp of

LocalByzCon2 contains “0”.
The analysis of this addition is simple: the value “0” in LocalByzCon1 prop-

agates throughout the network until it reaches g2. Once it reaches g2, the value
“0” of LocalByzCon2 propagates throughout the network, causing all nodes to
terminate. Notice that before g2 updates its input value of LocalByzCon2, no
correct node will have a value of “0” for LocalByzCon2. Lastly, notice that at
least 1

2Dtime
rounds must pass before g2 changes the input value to the third Lo-

calByzCon (see Remark 3). Thus, if the second and third LocalByzCon are

Constant-Space Localized Byzantine Consensus 177

executed “at half speed” (every round, the nodes wait one round), then all correct
nodes terminate not before D

time
rounds pass, and no later than 2D

time
rounds.

The above schema requires the same memory space as the “original” Lo-

calByzCon (i.e. independent of n), up to a constant factor, while providing
termination detection, as required.

The decision groups g1, g2 must be selected prior to LocalByzCon’s execu-
tion. An alternative option is to select g1 using some leader election algorithm,
and then use an MST algorithm to find g2. However, in addition to Byzantine
tolerance, these algorithms’ memory requirements must not depend on n, which
means that global identifiers cannot be used. There is a plethora of research
regarding leader election / spanning trees and their relation to memory space
(see [1], [3], [4], [15]). However, as far as we know, there are no lower or upper
bounds regarding the exact model this work operates in (e.g. local identities,
but no global identities). Thus, it is an open question whether it is required to
choose g1, g2 a priori, or if they can be chosen at runtime.

4.3 Complexity Analysis

Consider graphGwith maximal degree dmax, and an �-lightweight entwined struc-
ture G (with diameter D) that covers G. Denote gmax := argmaxgi∈G{|gi|}, since
G is �-lightweight, gmax is polynomial in dmax, and |G| = n · poly(dmax). There-
fore, by Section 3.5, LocalByzCon’s time complexity is O(D) · poly(dmax), and
its message complexity is O(D) · n · poly(dmax).

From the above, if G’s maximal degree is independent of n, and if D =
O(log n), then the running time of LocalByzCon is O(log n) and its mes-
sage complexity is O(n log n), while using O(1) space. (Section 5 shows entwined
structures that reach these values). This achieves an exponential improvement
on the time and message complexity of Byzantine consensus in the “global”
model, which are O(n) and O(n2) respectively. 3

5 Constructing 1-Lightweight Entwined Structures

In this section we present a family of graphs for which 1-lightweight entwined
structures exist. The family of graphs is given in a constructive way: for each
graph G′ = (V ′, E′) (where |V ′| = n′) and for any value of f� (f� << n′)
we construct a graph G = (V,E) (|V | = n) with a 1-lightweight f�-entwined
structure G. Our construction achieves |G| = O(n) and |g| is small for all g ∈ G,
thus ensuring that G is indeed 1-lightweight. Furthermore, G’s diameter and
maximal degree are a function of those of G′s, thus ensuring that for G′ with
bounded degree and logarithmic diameter, G has similar properties.

First we show how to construct an entwined structure, given a graph with
“ring topology”. Then we show how “to combine” two graphs with ring topolo-
gies. Lastly, for every graph G′, we create a graph G that “blows up” each node p

3 In fact, known algorithms that use the transformation in [6] to operate in not-fully-
connected graphs might even require O(n3) messages.

178 D. Dolev and E.N. Hoch

1p

2p

0p

2np

1np

Fig. 2. p0’s neighbors in an extended ring
topology of order 2

1p

2p

0p

2np

1np

3p 4p 5p
6p

7p

0g

...

ip

ig
ip k

Fig. 3. g0 for f� = 1 and k = 3(f� + 1) = 6

in G′ to be a ring (containing O(|Γ (p)|) nodes), and then combines the different
rings of G′.

5.1 A Simple “Ring” Entwined Structure

This section presents a simple construction of an entwined structure G for a ring
topology network. The constructed G has |gmax| constant (independent of n),
but a diameter of O(n).

Definition 16. A graph G = (V,E) is said to have an extended ring topol-
ogy of order k, if E =

⋃
pi∈V

⋃
1≤j≤k{(pi, pi+j)} (addition is done modulo n).

Informally, an extended ring topology of order k means that each node is con-
nected to the k neighbors “ahead” of it in the ring; since G is bi-directional,
each node is also connected to the k neighbors “behind” it (see Figure 2 for an
example). Notice that a “regular” ring topology is actually an extended ring
topology of order 1.

Consider a graph G = (V,E) with extended ring topology of order k = 3 ·
(f� + 1). Define G as follows: gi := {pi, pi+1, pi+2, . . . , pi+k} (see Figure 3).

Claim. Any g ∈ G is af�-decision group.

Claim. For any i, gi and gi+1 are f�-connected.

Lemma 5. G is an f�-entwined structure with diameter at most n, and |g| =
3 · f� + 4 for any g ∈ G.

Proof. By definition of gi ∈ G, |gi| = k + 1 = 3 · f� + 4. Let gi, gj ∈ G be some
decision groups. 0 ≤ i, j ≤ n− 1 and either i ≥ j or j ≥ i. Assume w.l.o.g. that
j ≥ i. Consider the list C := gi, gi+1, . . . , gj. By the previous claim, gi and gi+1

are f�-connected, and therefore C is a value chain. Thus, there exists a f�-value
chain between any two decision groups in G of length at most n. Thus, G is an
f�-entwined structure with diameter at most n. ��

Constant-Space Localized Byzantine Consensus 179

a a a ... a a

b b b ... b b

a

b

0

0

1

1

2

2

k- 1

k- 1

k

k

g'1

a a a ... a a

b b b ... b b

a

b

0

0

1

1

2

2

k- 1

k- 1

k

k

g'2

a a a ... a a

b b b ... b b

a

b

0

0

1

1

2

2

k- 1

k- 1

k

k

g'k

Fig. 4. The original decision groups a, b and the constructed decision groups g′
1, g

′
2 and

g′
k

5.2 Connecting Rings Together

Consider two extended ring topology graphs G1, G2 and their respective f�-
entwined structures G1,G2 (as built in the previous subsection). Let a ∈ G1

and b ∈ G2 be 2 decision groups that are fully connected and are of the same
size, e.g. |a| = |b| = k + 1.

Mark by ai the nodes in a and by bi the nodes in b (for 0 ≤ i ≤ k). Define
g′j := {aj , aj+1, . . . , ak, b0, . . . , bj−1} for 1 ≤ j ≤ k; see Figure 4 for an example.
Add edges such that each g′j is fully connected. Notice that |g′j| = k+1 and that
for 1 ≤ j < k, it holds that g′j and g′j+1 are f�-connected. In addition a and g′0
are f�-connected, as well as b and g′k.

Take G′ = G1

⋃
G2

⋃
{g′j}. G′ is a f�-entwined structure over the graph that is

the union of G1, G2 with edges that are induced by the different g′js. Notice that
the diameter of G′ is the diameter of G1 plus the diameter of G2 plus k + 1 (the
length of the distance between a and b). Furthermore, |G′| = |G1| + |G2| + k. In
addition every node p ∈ a

⋃
b participates in no more than k additional decision

groups.

5.3 General Entwined Structure Construction

Let G′ be any graph on n′ nodes, and let dv be the degree of node v; denote
dmax := maxv∈G′dv. Consider a graph Gv per node v with dv · k nodes, such
that Gv has an extended ring topology of order k. Consider the “ring” entwined
structure constructed in the previous sections Gv with decision groups denoted
as g1(v), g2(v), · · ·. Notice that gi(v)∩ gi+k(v) = φ (see Figure 5). For each node
v ∈ G′, consider the list of its neighbors Γ (v) = v1, v2, . . . , vdv , and define a
function N(u, v) that returns the index of v as a neighbor of u; i.e., N(v, vi) = i.

Using the operation defined in the previous subsection: for any edge (u, v)
in G′, “connect” the rings in the following way: gN(u,v)∗k(u) with gN(v,u)∗k(v).
That is, let v be the ith neighbor of u (N(u, v) = i or ui = v), and u be the jth
neighbor of v (N(v, u) = j, vj = u) (see Figure 6); the following two decision
groups are to be combined: gi∗k(u) with gj∗k(v). Denote the new decision groups
created due to each such “connection” as Gu,v.

Consider G to be the union of all Gv (both nodes and edges), and let G be
the union of the entwined structures. That is, G = (

⋃
v∈G′ Gv) ∪ (

⋃
u,v∈G′ Gu,v).

Claim. Let g ∈ Gv and g′ ∈ Gu such that (v, u) is an edge in G′, then there is a
f�-value-chain between g and g′ of length ≤ (dmax + 1) · k.

180 D. Dolev and E.N. Hoch

v

v

u

v u1
2

3

2

v u1

u

g (u)
k

g (u)
2k

Fig. 5. A graph with 5 nodes, and node
u’s “ring” Gu and 2 decision groups
gk(u), g2k(u)

v u1

v u2

...

...

...

...

g (v)
2k

g (u)k

Fig. 6. v, u connecting, combining
g2k(v), gk(u)

Claim. G is a f�-entwined structure with diameter D ≤ DG′ · (dmax + 1) · k+ 2k,
where DG′ is the diameter of G′.

Theorem 3. G is a 1-lightweight f�-entwined structure.

5.4 Analysis

The above construction shows that for any graph G′ there is a graph G and
an f�-entwined structure G (covering G) s.t. the diameter of G is linear in the
diameter of G′, the maximal degree of G′, and in k. Thus, by taking G′ to be
any graph with constant degree and logarithmic diameter, we have that the
diameter of G is O(DG′ · k). In other words, D = O(k · logn); by taking k to be
constant as well (this means that the graph G has a constant degree), we have
that D = O(logn). Therefore, the above construction produces graphs and their
respective entwined structures, such that the diameter is logarithmic and the
degree is constant, fulfilling the promise of Section 4.3.

6 Conclusion and Future Work

A sufficient condition for solving Byzantine consensus in the presence of a local-
ized Byzantine adversary was given. Furthermore, for a family of graphs it was
shown how to solve the Byzantine consensus problem using memory space that
is constant (independent of the size of the network).

We consider few points for future research: first, find tighter bounds for when
Byzantine consensus can be solved on a graph G. Second, allow for dynamic
changes in the system, such as nodes joining or leaving or even constructing the
entwined structure on-the-fly. Third, adapt the entwined structure-construction
such that if some portion of the network does not uphold the required Byzantine-
to-correct threshold, then the rest of the network may still reach consensus.
Lastly, it would be interesting to find other constructions of entwined structures
and see what additional types of graphs can solve Byzantine consensus.

Constant-Space Localized Byzantine Consensus 181

Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments.

References

1. Afek, Y., Stupp, G.: Optimal time-space tradeoff for shared memory leader election.
J. Algorithms 25(1), 95–117 (1997)

2. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Ad-
vanced Topics. John Wiley & Sons, Chichester (2004)

3. Beauquier, J., Gradinariu, M., Johnen, C.: Memory space requirements for self-
stabilizing leader election protocols. In: PODC 1999: Proceedings of the eighteenth
annual ACM symposium on Principles of distributed computing, pp. 199–207.
ACM, New York (1999)

4. Beauquier, J., Gradinariu, M., Johnen, C.: Randomized self-stabilizing and space
optimal leader election under arbitrary scheduler on rings. Distributed Comput-
ing 20(1), 75–93 (2007)

5. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst. 20(4), 398–461 (2002)

6. Dolev, D.: The byzantine generals strike again. Journal of Algorithms 3, 14–30
(1982)

7. Dolev, D., Reischuk, R.: Bounds on information exchange for byzantine agreement.
J. ACM 32(1), 191–204 (1985)

8. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
9. Dolev, S., Gouda, M.G., Schneider, M.: Memory requirements for silent stabiliza-

tion. In: PODC 1996: Proceedings of the fifteenth annual ACM symposium on
Principles of distributed computing, pp. 27–34. ACM, New York (1996)

10. Koo, C.-Y.: Broadcast in radio networks tolerating byzantine adversarial behav-
ior. In: PODC 2004: Proceedings of the twenty-third annual ACM symposium on
Principles of distributed computing, pp. 275–282. ACM, New York (2004)

11. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems 4(3), 301–382 (1982)

12. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
13. Pelc, A., Peleg, D.: Broadcasting with locally bounded byzantine faults. Inf. Pro-

cess. Lett. 93(3), 109–115 (2005)
14. Toueg, S., Perry, K.J., Srikanth, T.K.: Fast distributed agreement. SIAM Journal

on Computing 16(3), 445–457 (1987)
15. Yamashita, M., Kameda, T.: Computing on anonymous networks. i. characterizing

the solvable cases. Parallel and Distributed Systems, IEEE Transactions 7(1), 69–
89 (1996)

Optimistic Erasure-Coded Distributed Storage�

Partha Dutta1, Rachid Guerraoui2, and Ron R. Levy2

1 IBM India Research Lab, Bangalore, India
2 EPFL IC, Lausanne, Switzerland

Abstract. We study erasure-coded atomic register implementations in
an asynchronous crash-recovery model. Erasure coding provides a cheap
and space-efficient way to tolerate failures in a distributed system. This pa-
per presents ORCAS, Optimistic eRasure-Coded Atomic Storage, which
consists of two separate implementations, ORCAS-A and ORCAS-B. In
terms of storage space used, ORCAS-A is more efficient in systems where
we expect large number of concurrent writes, whereas, ORCAS-B is more
suitable if not many writes are invoked concurrently. Compared to replica-
tion based implementations, both ORCAS implementations significantly
save on the storage space. The implementations are optimistic in the sense
that the used storage is lower in synchronous periods, which are considered
common in practice, as compared to asynchronous periods. Indirectly, we
show that tolerating asynchronous periods does not increase storage over-
head during synchronous periods.

1 Introduction

1.1 Motivation

Preventing data loss in storage devices is one of the most critical requirements in
any storage system. Enterprise storage systems in particular have multiple levels
of redundancy built in for fault tolerance. The cost of a specialized centralized
storage server is very high and yet it does not offer protection against unforseen
consequences such as fires and floods. Distributed storage systems based on com-
modity hardware, as alternatives to their centralized counterparts, have gained
in popularity since they are cheaper, can be more reliable and offer better scal-
ability. However, implementing such systems is more complicated due to their
very distributed nature.

Most existing distributed storage systems rely on data replication to provide
fault tolerance [15]. Recently however, it has been argued that erasure coding
is a better alternative to data replication since it reduces the cost of ensuring
fault tolerance [7, 8]. In erasure-coded storage systems, instead of keeping an
identical version of a data V on each server, V is encoded into n fragments such
that V can be reconstructed from any set of at least k fragments (called k-of-n
encoding), where the size of each fragment is roughly |V |/k. A different encoded

� Part of this work was done when Partha Dutta and Ron R. Levy were at Bell Labs
Research, India.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 182–196, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Optimistic Erasure-Coded Distributed Storage 183

fragment is stored on each of the n servers, and ideally such a system can tolerate
the failure of f = n− k servers.

The main advantage of erasure-coded storage over replicated storage is its
storage usage, i.e., less storage space is used to provide fault tolerance. For in-
stance, it is well-known that a replicated storage system with 4 servers can
tolerate at most 1 failure in an asynchronous environment. If each server has a
storage capacity of 1 TB, the total capacity of the replicated storage system is
still 1 TB. In this case the storage overhead (total capacity/useable capacity)
is 4, i.e. only 1/4 of the total capacity is available. Erasure coding allows the
reduction of this overhead to 2 in an asynchronous system, i.e., makes 2 TB
useable. In a synchronous system (with 4 servers and at most 1 failure), it is
even possible to further reduce this overhead and make 3 TB available to the
user. Clearly, the synchronous erasure-coded storage is more desirable in terms
of storage usage. Unfortunately, synchrony assumptions are often not realistic
in practice. Even if we expect the system to be synchronous most of the time, it
is good practice to tolerate asynchronous periods. The idea underlying our con-
tribution is the common practice of designing distributed systems that can cope
with worst case conditions (e.g., asynchrony and failures) but are optimized for
best case situations (e.g., synchrony and no failures) that are considered common
in practice.

1.2 Contributions

In this paper we investigate one of the fundamental building blocks of a fault-
tolerant distributed storage − multi-writer multi-reader atomic register imple-
mentations [3, 13, 15]. An atomic register is a distributed data-structure that
can be concurrently accessed by multiple processes and yet provide an “illusion”
of a sequential register. (A sequential register is a data-structure that is accessed
by a single process with read and write operations, where a read always returns
the last value written.) We consider implementations over a set of n server pro-
cesses in an asynchronous crash-recovery message-passing system where (1) each
process may crash and recover but has access to a stable storage, (2) in a run,
at most f out of n servers are faulty (i.e., eventually crash and never recover),
and (3) channels are fair-lossy.

We present two wait-free atomic register implementations ORCAS-A and
ORCAS-B (Optimistic eRasure-Coded Atomic Storage). Our implementations
are the first wait-free atomic register implementations in a crash-recovery model
that have an “optimistic” (stable) storage usage. Suppose that all possible write
values are of a fixed size ∆.1 Then in both of our implementations, during syn-
chronous periods with q alive (non-crashed) servers and when there is no write
operation in progress, the stable storage used at every alive server is ∆

q−f , whereas
during asynchronous periods when there is no write operation in progress, the
storage used is ∆

n−2f at all but f servers (in ORCAS-A, at most f servers may use

1 Through out the paper we assume that, other than the write value and its encoded
fragments, all other values (e.g., timestamp) at a server are of negligible size.

184 P. Dutta, R. Guerraoui, and R.R. Levy

∆). However, the two implementations differ in their storage usage when there
is a write in progress. In ORCAS-A, when one or more writes are in progress,
the storage used at a server can be ∆, but even in the worst-case the storage
used is never higher than ∆. In contrast, if there are w concurrent writes in
progress in ORCAS-B then, in the worst-case, the storage used at a server can
be w∆

n−2f . Thus in terms of storage space used, ORCAS-A is more efficient in sys-
tems where we expect large number of concurrent writes, whereas, ORCAS-B
is more suitable if not many writes are invoked concurrently. We also show how
the number of messages exchanged in ORCAS-A can be significantly reduced by
weakening the termination condition of the read from wait-free to Finite Write
(FW) termination [1].2

Both ORCAS implementations are based on a simple but effective idea. The
write first “gauges” the number of alive servers in the system by sending a
message to all servers and counting the number of replies received during a
short waiting period. Depending on the number of replies, the write decides how
to erasure code its value. Additionally, to limit the communication overhead, the
ORCAS implementations ensure that the write value or the encoded fragments
are sent to the servers in only one of the phases of a write; later, the servers can
locally compute the final encoded fragments on receiving a small message that
specifies how the value needs to be encoded (but the message does not contain
the final encoded fragments).

In particular, in ORCAS-A, the write sends the unencoded write value to all
servers and waits for replies. If it receives replies from q servers, the write sends
a message to the servers that requests them to locally encode the received value
with (q − f)-of-n encoding. (Note that q ≥ n− f because at most f servers can
be faulty.) Roughly speaking, a subsequent read can contact at least q−f of the
servers that reply to the write, and (1) either the read receives an unencoded
value from one of those servers, or (2) it receives q − f encoded fragments. In
both cases, as the write does a (q − f)-of-n encoding, the read can reconstruct
the written value. Note that, as q − f ≥ n − 2f , in the worst-case ORCAS-A
does a (n − 2f)-of-n encoding, and in synchronous periods with q alive servers,
it does a (q − f)-of-n encoding.

On the other hand, ORCAS-B, like previous erasure-coded atomic register
implementations, never sends an unencoded write value to the servers. Ideally,
to obtain the same storage usage as ORCAS-A, in a write of ORCAS-B we would
like to send an (n− 2f)-of-n encoded fragment to each server, and on receiving
replies from q servers, request the servers to keep a (q−f)-of-n encoded fragment.
However, in general, it is not possible to extract a particular fragment of a (q−f)-
of-n encoding from a single fragment of a (n−2f)-of-n encoding. Thus with this
naive approach, either a write would need to send another set of fragments to
the servers or the servers would need to exchange their fragments, resulting
in significant increase in communication overhead. We solve this problem in
ORCAS-B by a novel approach of storing multiple, much smaller fragments at

2 A similar idea was earlier used in [10] where the read satisfied obstruction-free ter-
mination.

Optimistic Erasure-Coded Distributed Storage 185

each server (instead of a single large one). Suppose the write estimates that there
are q alive servers. Then it encodes the value with x-of-nz encoding, where x is
any common multiple of n−2f and q− f , and z = x

n−2f , and sends z fragments
to each server. If the write receives replies from q servers, then it requests each
server to trim its stored fragments in the next phase, i.e., retain any y = x

q−f out
of its z fragments and delete the rest. Roughly speaking, since a read can miss
at most f servers that replied to the write, if a subsequent read sees a trimmed
server then it will eventually receive y fragments from at least q − f servers,
and if the read does not see a trimmed server, then it will receive z fragments
from at least n− 2f servers. In both cases, it receives y(q − f) = z(n− 2f) = x
fragments, and therefore, can reconstruct the written value. The advantage of
our approach over the naive approach is that, our approach has the same storage
usage as latter, but has lower communication overhead.

The detailed presentation of our algorithms can be found in [6]. Due to space
limitations, this paper focusses on ORCAS-A. Also in [6], we show lower bounds
on storage space usage in atomic register implementation in synchronous and
asynchronous systems, for a specific class of implementations (that include both
ORCAS-A and ORCAS-B, and the implementation in [7]). Roughly speaking,
we show that implementations − (1) which at the end of a write store equal
number of encoded fragments in the stable storage of the servers, and (2) do not
use different encoding schemes in the same operation − cannot have a stable
storage usage better than ORCAS-A (and ORCAS-B) in either synchronous or
asynchronous periods.

1.3 Related Work

Recently there has been lot of work on erasure-coded distributed storage [2, 5,
7, 8, 10, 11]. We discuss below three representative papers that are close to our
work.

Frolund et al. [7] describe an erasure-coded distributed storage (called FAB)
in the same system model as this paper, i.e., an asynchronous crash-recovery
model. The primary algorithm in FAB implements an atomic register. Servers
have stable-storage and keep a log containing old versions of the data, which
is periodically garbage collected. The main difference with our approach is that
in FAB the stable storage is not used optimistically. In particular, ORCAS-B
has the same storage overhead as FAB during asynchronous periods (even when
writes are in progress) but performs better during synchronous periods. Another
difference is that FAB provides strict linearizability, which ensures that partial
write operations appear to take effect before the crash or not at all. The price
that is paid by FAB is to give up wait-freedom: concurrent operations may abort.
ORCAS-B ensures that write operations are at worst completed upon recovery of
the writer and guarantees wait-freedom: all operations invoked by correct clients
eventually terminate despite the concurrent invocations of other clients.

Aguilera et al. [2] present an erasure-coded storage (that we call AJX) for
synchronous systems that is optimized for f << n. AJX provides the same
low storage overhead as ORCAS during failure-free synchronous periods, and

186 P. Dutta, R. Guerraoui, and R.R. Levy

performs better than ORCAS when there are failures. However, AJX provides
consistency guarantees of only a regular register and puts a limit on the maxi-
mum number of client failures. Also, wait-freedom is not ensured since concurrent
writes may abort.

Cachin et al. [5] propose a wait-free atomic register implementation for the
byzantine model. It uses a reliable broadcast like primitive to disseminate the data
fragments to all servers, thus guaranteeing that if one server receives a fragment,
then all do. The storage required at the servers when there is no write in progress
is ∆

n−f . At first glance, one might be tempted to compare our implementations
with a crash-failure restriction of the algorithm in [5], and conclude that our im-
plementations have worse storage requirements in asynchronous periods (∆

n−2f).
However, one of the implications of our lower bounds in [6] is that there is no obvi-
ous translation of the algorithm in [5] to a crash-recoverymodel while maintaining
the same storage usage. (We discuss this comparison further in [6].)

2 Model and Definitions

Processes. We consider an asynchronous message passing model, without any
assumptions on communication delay or relative process speeds. For presenta-
tion simplicity, we assume the existence of a global clock. This clock however is
inaccessible to the servers and clients.

The set of servers is denoted by S and |S| = n. The jth server is denoted
by sj , 1 ≤ j ≤ n. The set of clients is denoted by C and it is bounded in size.
Clients know all servers in S, but the set of clients is unknown to the servers. A
client or a server is also called a process.

Every process executes a deterministic algorithm assigned to it, unless it
crashes. (The process does not behave maliciously.) If it crashes, the process
simply stops its execution, unless it possibly recovers, in which case the process
executes a recovery procedure which is part of the algorithm assigned to it. (Note
that in this case we assume that the process is aware that it had crashed and
recovered.) A process is faulty if there is a time after which the process crashes
and never recovers. A non-faulty process is also called a correct process. The set
of faulty processes in a run is not known in advance. In particular, any number
of clients can fail in a run. However, there is an known upper bound f ≥ 1 on the
number of faulty servers in a run. We also assume f < n/2 which is necessary
to implement a register in asynchronous model.

Every process has a volatile storage and a stable storage (e.g., hard disk). If
a process crashes and recovers, the content of its volatile storage is lost but the
content of its stable storage is unaffected. Whenever a process updates one of
its variables, it does so in its volatile storage by default. If the process decides
to store information in its stable storage, it uses a specific operation store: we
also say that the process logs the information. The process retrieves the logged
information using the operation retrieve.

Fair-lossy channels. We assume that any pair of processes, say pi and pj ,
communicate using fair-lossy channels [4, 14], which satisfies the following three

Optimistic Erasure-Coded Distributed Storage 187

properties: (1) If pj receives a message m from pi at time t then pi sent m to
pj at time t, (2) if pi sends a message m to pj a finite number of times, then pj

receives the message a finite number of times, and (3) if pi sends a message m
to pj an infinite number of times and pj is correct, then pj receives m from pi

an infinite number of times.
On top of the fair-lossy channels we can implement more useful stubborn

communication procedures (s-send and s-receive) which are used to send and
receive messages reliably [4]. In addition to the first two properties of fair-lossy
channels, stubborn procedures satisfy the following third property: If pi s-sends
a message m to a correct process pj at some time t, and pi does not crash after
time t, then pj eventually s-receives m. We would like to note that stubborn
primitives can be implemented without using stable storage [4].

Registers. A sequential register is a data structure accessed by a single process
that provides two operations: write(v), which stores v in the register and returns
ok, and read(), which returns the last value stored in the register. (We assume
that the initial value of the register is ⊥, which is not a valid input value for a
write operation.) An atomic register is a distributed data-structure that can be
concurrently accessed by multiple processes and yet provide an “illusion” of a
sequential register to the accessing processes [13, 14]. An algorithm implements
an atomic register if all runs of the algorithm satisfy the atomicity and termina-
tion properties. We follow the definition of atomicity for a crash-recovery model
given in [9], which in turn extends the definition given in [12]. We recall the
definition in [6].

We use the following two termination conditions in this paper. (1) An imple-
mentation satisfies wait-free termination (for clients) if for every run where at
most f of the servers are faulty (and any number of clients are faulty), every
operation invoked by a correct client completes. (2) An implementation satis-
fies Finite-Write (FW) termination [1] if for every run where at most f of the
servers are faulty (and any number of clients are faulty), every write invocation
by a correct client is complete, and moreover, either every read invocation by a
correct client is complete, or infinitely many writes are invoked in the run. (Note
that wait-free termination implies FW-termination.)

Erasure coding. A k-of-n erasure coding [17] is defined by the following two
primitives:

- encode(V, k, n) which returns a vector [V [1], . . . , V [n]], where V [i] denotes
ith encoded fragment. (For presentation simplicity, we will assume that encode
returns a set of n encoded fragments of V , where each fragment is tagged by its
fragment number.)

- decode(X, k, n) which given a set X of at least k fragments of V (that were
generated by encode(V, k, n)), returns V .

For our algorithms, we make no assumption on the specific implementation
of the primitives except the following one: each fragment in a k-of-n encoding of
V is roughly of size |V |/k.

188 P. Dutta, R. Guerraoui, and R.R. Levy

In the next two sections, we present two algorithms that implement erasure-
coded, multi-writer multi-reader, atomic registers in a crash-recovery model,
ORCAS-A and ORCAS-B. Both implementations have low storage overhead
when no write operation is in progress. The implementations differ in the storage
overhead during a write, and in their message sizes.

3 ORCAS-A

We now present our first implementation which we call ORCAS-A. (The pseu-
docode is given in Figures 1 and 2.) The implementation is inspired by the well-
known atomic register implementations in [3, 15]. Also, the registration process
of a read at the servers is inspired by the listeners communication pattern in [16].
The first two phases of the write function are similar to that in [3, 15]− they
store the unencoded values at n − f (a majority) of servers with an appropri-
ate timestamp. Additionally in ORCAS-A, depending on the number of servers
from which the write receives a reply, it selects an encoding r-of-n. Then, the
write performs another round trip where it requests the servers to encode the
value using r-of-n encoding and retain the fragment corresponding to its server
id. The crucial parts of the implementation are choosing an encoding r-of-n
and the condition for waiting for fragments at a read, such that, any read can
recover the written value without blocking permanently. We now describe the
implementation in more detail.

3.1 Description

Local variables. The clients maintain the following local variables: (1) ts: part
of the timestamp of the current write operation, and (2) wid, rid: the identifiers
of write and read operations, respectively, which are used to distinguish between
messages from different operations of the same client, and (3) a timer Tc whose
timeout duration is set to the round-trip time for contacting the servers in syn-
chronous periods. The pair [ts, wid] form the timestamp for the current write.
The local variables at a server sj are as follows: (1) Aj : its share of the value
stored in the register, which can either be the unencoded value or the jth en-
coded fragment, (2) τ, δ: the ts and the wid, respectively, associated with the
value in Aj , and (3) ρ: the encoding associated with the value in Aj , namely,
Aj is the jth fragment of a ρ-of-n encoding of some value. (In particular, ρ = 1
implies that Aj contains an unencoded value.)

Write operation. The write operation consists of three phases, where each
phase is a round-trip of communication from the client to the servers. The first
phase is used to compute the timestamp for the servers, the second phase to
write the unencoded value at the servers, and the final phase is used to encode
the value at the servers. On invoking a write(V), the client first increments
and logs its wid. This helps in distinguishing messages from different operations
of the same server even across a crash-recovery. It also logs ts = 0 so as to
detect an incomplete write across a crash-recovery. Next, the client sends get ts

Optimistic Erasure-Coded Distributed Storage 189

1: function initialization:
2: ts, wid, rid ← 0; r ← 1; Tc ← timer() {at every client}
3: Aj ← ⊥; τ, δ ← 0; ρ ← 1 {at every server sj}

4: function write (V) at client ci

5: wid ← wid + 1; ts ← 0
6: store(wid, ts)
7: repeat
8: send(〈get ts, wid〉, S)
9: until s-receive 〈ts ack, ∗, wid〉 from n − f servers
10: ts ← 1+ max{tsj : s-received 〈ts ack, tsj , wid〉}
11: store(ts, V)
12: trigger(Tc)
13: repeat
14: send(〈write, ts, wid, 0, V 〉, S)
15: until s-receive 〈w ack, ts, wid, 0〉 from n − f servers and expired(Tc)
16: r ← (number of servers from which s-received 〈w ack, ts, wid, 0〉 messages) −f
17: if r > 1 then
18: repeat
19: S′ ← set of servers from which s-received 〈w ack, ts, wid, 0〉 until now
20: send (〈encode, ts, wid, r〉, S′)
21: until s-receive 〈enc ack, ts, wid, r〉 from n − f servers
22: return(ok)

23: upon receive 〈get ts, wid〉 from client ci at server sj do
24: s-send(〈ts ack, τ, wid〉, {ci})

25: upon receive 〈write, ts′, wid′, rid′, V ′〉 from client ci at server sj do
26: if rid′ > 0 then
27: R ← R \ {[rid′, ∗, ∗, i]}
28: if V ′ �= ⊥ then
29: if [ts′, wid′] >lex [τ, δ] then
30: τ ← ts′; δ ← wid′; ρ ← 1; Aj ← V ′

31: store(τ, δ, ρ, Aj)
32: for all [rid, ts, id, l] ∈ R do
33: s-send(〈r ack, rid, ts′, wid′, 1, V ′〉, {cl})
34: s-send(〈w ack, ts′, wid′, rid′〉, {ci})

35: upon receive 〈encode, ts′, wid′, r′〉 from client ci at server sj do
36: if [ts′, id′] = [τ, δ] then

37: Aj ← jth fragment of encode(Aj , r′, n)
38: ρ ← r′

39: store(ρ, Aj)
40: s-send(〈enc ack, ts′, wid′, r′〉, {ci})

41: upon recovery() at server sj do
42: [τ, δ, ρ, Aj] ← retrieve()

43: upon recovery() at client ci do
44: [rid, ts, wid, r, V] ← retrieve()
45: if ts �= 0 then
46: repeat
47: send(〈write, ts, wid, 0, V 〉, S)
48: until s-receive 〈w ack, ts, wid, 0〉 from n − f servers

Fig. 1. ORCAS-A: initialization, write and recovery procedures

messages to all servers and waits until it receives ts from at least n− f servers.
(The notation send(m,X) is a shorthand for the following: for every processes
p ∈ X , send the message m to p. It is not an atomic operation.) To overcome
the effect of the fair-lossy channels, a client encloses the sending of its messages
to the servers in a repeat-until loop, and the servers reply back using the s-send
primitive. On receiving the ts from at least n − f servers, the client increments

190 P. Dutta, R. Guerraoui, and R.R. Levy

1: function read() at client ci

2: rid ← rid + 1; Γ ← 0; M ← ∅; once ← false
3: store(rid)
4: repeat
5: send(〈read, rid〉, S)
6: M ← {msg = 〈r ack, rid, ∗, ∗, ∗, ∗〉 : s-received msg}
7: TS ←maxlex{[ts, id] : 〈r ack, rid, ts, id, ∗, ∗〉 ∈ M}
8: if (M contains messages from at least n − f servers) and (once = false) then
9: Γ ← TS; once ← true
10: if TS = [0, 0] then return(⊥)
11: until (once = true) and (∃ r′, ts′, id′ such that ([ts′, id′] ≥lex Γ) and

(|{Aj : 〈r ack, rid, ts′, id′, r′, Aj〉 ∈ M}| ≥ r′))
12: A ← set of Aj satisfying the condition in line 11
13: if r′ = 1 then
14: V ← any Aj in A; V ′ ← V
15: else
16: V ← decode(A, r′, n); V ′ ← ⊥
17: repeat
18: send(〈write, ts′, id′, rid, V ′〉, S)
19: until s-receive 〈w ack, ts′, id′, rid〉 from n − f servers
20: return(V)

21: upon receive 〈read, rid〉 from client ci at server sj do
22: if R does not contain any [rid, ∗, ∗, i] then
23: R ← R ∪ [rid, τ, δ, i]
24: s-send(〈r ack, rid, τ, δ, ρ, Aj〉, {ci})

Fig. 2. ORCAS-A: read procedure

by one the maximum ts received, to obtain the ts for this write. It then logs ts
and V so that in case of a crash during the write, the client can complete the
write upon recovery. Next, it starts its timer, and sends a write message with the
timestamp [ts, wid] and the value V , to the servers. (To distinguish this message
from the write message sent by a read operation, the message also contains a
rid field which is set to 0.) A server on receiving a write message with a higher
timestamp than its current timestamp [τ, wid], updates Aj , τ and δ to V , ts and
wid of the message, respectively. It also updates the encoding ρ to 1 (to denote
that the contents of Aj is unencoded), and logs the updated variables. (The
server also sends some message to the readers which we will discuss later.) The
client waits until it receives w ack messages from at least n− f servers, and the
timer expires. (Waiting for the timer to expire ensures that the client receives a
reply from all non-crashed processes in synchronous periods.)

Next, the client select the encoding for the write to be r = q− f , where q is the
number of w ack messages received by the client. Note r ≥ 1 because q ≥ n − f
and f < n/2. Then the client sends an encode message to all servers which have
replied to the write message. A server sj on receiving this message encodes it value
Aj using r-of-n encoding, and retains only the jth fragment in Aj . It also updates
its encoding ρ to r, logs Aj and ρ, and replies to the client. The client returns from
the write on receiving n−f replies. (Note that the encode phase is skipped if r = 1,
because 1-of-n encoding is same as not encoding the value at all.)

Read operation. The read operation consists of two phases. The first phase
gathers enough fragments to reconstruct a written value, and the second phase

Optimistic Erasure-Coded Distributed Storage 191

writes back the value at the servers to ensure that any subsequent reader does
not read an older value.

On invoking a read, the client increments and logs its rid. It then sends a
read message to the servers. On receiving a read message, a server registers
the read3 by appending it to a local list R with the following parameters: the
rid of the read message, and the timestamp [τ, δ] at the server when the read
message was received. (The client de-registers in the second phase of the read:
line 27, Figure 1.) The server then replies with its current value of Aj and its
associated timestamp and encoding. In addition, whenever the server receives
a new write message with a higher timestamp, it forwards it to its registered
readers. The client on the other hand, first chooses a timestamp Γ which is
greater than or equal to the timestamp seen at n − f processes,4 and then
waits for enough fragments to reconstruct a written value that has an associated
timestamp greater than or equal to Γ : the condition in line 11 of Figure 2 simply
requires that (1) the client receives r ack from at least n−f servers, and (2) there
is an encoding r′ and timestamp [ts′, id′] such that the client has received at least
r′ fragments of the associated value, and [ts′, id′] is greater than or equal to Γ .
In [6], we show that this condition is eventually satisfied for every read whose
invoking client does not crash.

The second phase of a read is very similar to the second phase of a write
except for the following case. If the read selects a value in the first phase that
was encoded by the corresponding write (r′ > 1), then the read does not need to
write back the value to the servers because the write has already completed its
second phase. In this case, the second phase of the read is only used to deregister
the read at the servers.

Recovery Procedures. The recovery procedure at a server is straightforward:
it retrieves all the logged values. The client, in addition to retrieving the logged
values, also completes any incomplete write. (Note than, even if the last write
invocation, before the crash at a client, is complete, ts can be greater than 0. In
this case, the recovery procedure tries to rewrite the same value with the same
timestamp. It is easy to see that this attempt to rewrite the value is harmless.)

3.2 Correctness

The proof of the atomicity of ORCAS-A is similar to the implementations in [3,
15]. The only non-trivial argument in the proof of wait-free termination is proving
that the waiting condition in line 11 in Figure 2 eventually becomes true in every
run where the client does not crash after invoking the read. In this section, we
give an intuition for this proof by considering a simple case where a (possibly
incomplete) write is followed by a read, and there are no other operations.

Suppose there is a write(V) that is followed by a read(). We claim that the
read() can always reconstruct V or the initial value of the register, and it can

3 When there is no ambiguity, we also say that the server registers the client.
4 The Γ selected in this way is higher than or equal to the timestamp of all preceding

writes because two server sets of size n − f always has a non-empty intersection.

192 P. Dutta, R. Guerraoui, and R.R. Levy

always reconstruct V if the write is complete. The write() operation has two
phases that modify the state of the servers: the write phase and the encode
phase. Suppose that during the write phase, the writer receives replies from q
servers (denoted by set Q) such that q ≥ n − f > f . If the writer fails without
completing this phase, the read() can return the initial value of the register,
which does not violate atomicity. In the encode phase, an r-of-n encode message
is sent to all servers, where r = q − f ≥ n − 2f > 0. If the writer crashes, this
message reaches an arbitrary subset of servers. Subsequently, the read() contacts
a set R containing at least n− f servers. We denote the intersection of the read
and write sets, by U , i.e. U = Q ∩ R, and it follows that |U | ≥ q − f = r > 0.
There are two cases:

Case 1: There is at least one server in U which still has the unencoded value
V . The read can thus directly obtain V from this server.

Case 2: All the servers in U have received the encode message and encoded V .
Since |U | ≥ r and an r-of-n erasure code was used, there are enough fragments
for the read to reconstruct V .

However, we must also consider the case where the read() is concurrent with
multiple writes. If there is a series of consecutive writes, the write procedure
ensures that all values are eventually encoded. If the read is slow, it could receive
an encoded fragment of a different write from each server, making it impossible
for the read to reconstruct any value. But the reader registration ensures that
the servers will send all new fragments to the reader until the reader is able to
reconstruct some written value. A detailed proof of wait-freedom is given in [6].

3.3 Algorithm Complexity

In this section we discuss the theoretical performance of ORCAS-A.

Timing guarantees. For timing guarantees we consider periods of a run where
links are timely, local computation time is negligible, at least n − f servers are
alive, and no process crashes or recovers. It is easy to show that a write opera-
tion completes in three round-trips (i.e., six communication steps), as compared
to two round-trips in the implementation of [15]. (We discuss this comparison
further in Section 5.) Also it is straightforward to show that a read can complete
in two round-trips if there is no write in progress. In [6], we show that even
in the presence of concurrent writes, the read registration ensures that a read
operation terminates within five communication steps.

Messages. Except the r ack messages, the number of messages used by an
operation is linear in the number of servers. In [6], we show how to circumvent
the reader registration by slightly weakening the termination condition of the
read. Message sizes in ORCAS-A are as large as those in the replication based
register implementations of [3, 15]: the first phase of the write in ORCAS-A
sends the unencoded value to all servers.

Worst-case bound on storage. Suppose that all possible write values are of
a fixed size ∆, and the size of variables, other than those containing a value of a

Optimistic Erasure-Coded Distributed Storage 193

write operation or an encoded fragment of such a value, is negligible. Consider
a partial run pr that has no incomplete write invocation. (An invocation that
has no matching return event in the partial run is called incomplete.) The r
computed in line 16 of Figure 1 of every write is at least n − 2f . Thus, every
encoded fragment is at most of size ∆/(n − 2f). Since, there are no incomplete
write invocation in pr, and every write encodes the value at n−f processes before
it returns, the size of (stable) storage at n − f servers is at most ∆/(n − 2f)
at the end of pr. In addition, note that the size of the storage at all servers
is always bounded by ∆. This is in contrast to the implementation in [7] and
ORCAS-B implementation that we describe later, where the worst-case storage
size is dependent on the maximum number of concurrent writes.

Bound on storage in synchronous periods. Consider a partial run pr which
has no incomplete write invocation. Let wr be the write with the highest times-
tamp in pr. Let t be the time when wr was invoked. Now, assume that (1) the
links were timely in pr from time t onwards, and (2) at least n − f servers are
alive at time t, and no process crashes or recovers from time t onwards. Let
q ≥ n − f be the set of servers that are alive at time t. Then, it is easy to see
that the r computed in line 16 of Figure 1 is q − f in wr, and hence, the size of
storage at all alive servers is at most ∆/(q − f) at the end of pr. It also follows
that, if pr is a synchronous failure-free partial run, then the size of storage at all
servers is at most ∆/(n− f) at the end of pr.

FW-termination. Consider the case in the above implementation when a client
invokes a read, registers at all the servers, and then crashes. If a server does not
crash, its s-send module will send the r ack message to the client forever. Since,
these messages are of large sizes, it may significantly increase the load on the
system. Following [1], we show in [6] that if we slightly weaken the waif-free
termination condition of the read to Finite-Write (FW) termination, then such
messages are not required.

4 ORCAS-B

Although the ORCAS-A implementation saves storage space in synchronous pe-
riods, it has two important drawbacks because it sends the unencoded values to
the servers in the first phase of the write. First, it uses larger messages compared
to implementations which never send any unencoded values to the servers. Sec-
ond, if a client crashes before sending an encode message during a write, servers
are left with an unencoded value in the stable storage.5 In this section, we present
our second implementation, ORCAS-B, which like most erasure-coded register
implementations, never sends an unencoded value to the servers.

Due to lack of space, we discuss only those parts of ORCAS-B that signifi-
cantly differ from ORCAS-A. (The pseudocode is presented in [6].) The crucial

5 In practice, the second case might not cause a significant overhead because any
subsequent complete write will erase such unencoded values.

194 P. Dutta, R. Guerraoui, and R.R. Levy

difference between ORCAS-A and ORCAS-B is how the write value is encoded
during a write and how it is reconstructed during a read. In ORCAS-B, the write
consists of three phases. The first phase finds a suitable timestamp for the write,
and tries to guess the number of alive servers, say r′. The write then encodes
the value such that the following three conditions holds. (1) If the second phase
of the write succeeds in contacting only n − f servers (a worst-case scenario),
a subsequent read can reconstruct the value. (2) If the second phase succeeds
in contacting r′ servers (the optimistic case), then in the third phase, the write
can “trim” (i.e., reduce the size of) the stored encoded value at the servers, and
still a subsequent read can reconstruct the value. (3) The size of the stored en-
coded value at a server should be equal to the size of a fragment in (n−2f)-of-n
encoding in the first case, and (r′ − f)-of-n encoding in the second case. The
motivation behind these three conditions is to have the same optimistic storage
requirements as in ORCAS-A.

It is not difficult to see that if the write uses a (n − 2f)-of-n encoding, then
a server cannot locally extract its trimmed fragment in the third phase from
the encoded fragment it receives in the second phase, without making extra
assumptions about n or the erasure coding algorithm. Thus with (n − 2f)-of-
n encoding in the second phase, in the third phase of the write, either the
write needs to send the trimmed fragment to each server, or the servers need
to exchange their (second-phase) fragments. In ORCAS-B we avoid this issue
by simply storing multiple fragments at a server, while still satisfying the three
conditions above.

We define the following variables: (1) r = r′ − f , (2) x be the lcm (least
common multiple) or r and n−2f , (3) z = x/(n−2f), and (4) y = x/r. Now the
second phase of the write encodes the value using x-of-(nz) encoding. It then tries
to store z fragments at each server. If the write succeed in storing the fragments
at r′ servers, then in the next phase, it sends a trim message that requests the
servers to retain y out of its z fragments (and delete the remaining fragments).
Now it is easy to verify the above three conditions. If the second phase of the
write stores the fragments at n − f servers, a subsequent read can access at
least n− 2f of those servers, and thus receive at least (n− 2f)z = x fragments.
On the other hand, if the stored fragments at some server are trimmed, then
at least r′ servers have at least y fragments, and therefore a subsequent read
receives y fragments from at least r′ − f = r servers; i.e., ry = x fragments in
total. In both cases, since the write has used x-of-(nz) encoding, the read can
reconstruct the value. To see that the third condition is satisfied, notice that the
total size of z stored fragments at a server after the second phase of the write is
z(∆/x) = ∆/(n− 2f). After trimming, the size of the stored fragments become
y(∆/x) = ∆/(r′ − f).

Another significant difference between ORCAS-A and ORCAS-B is the con-
dition for deleting an old value at a server. In ORCAS-A, whenever a server
receives an unencoded value with a higher timestamp, the old fragment or the
old unencoded value is overwritten. However in ORCAS-B, if the server receives
fragments with a timestamp ts that is higher than its current timestamp, the

Optimistic Erasure-Coded Distributed Storage 195

server adds the fragments to a set L of received fragments. Subsequently, if it
receives a trim message (i.e., a message from the third phase of a write) with
timestamp ts, it deletes all fragments in L with a lower timestamp. Also, the
server sends the whole set L in its r ack reply messages to a read. (Thus the trim
message also acts as a garbage collection message.) This modification is neces-
sary in ORCAS-B because, until a sufficient number of encoded fragments are
stored at the servers, the newly written value is not recoverable from the stored
data obtained from any set of servers. The trim message acts as a confirmation
that enough fragments of the new value have been stored. A similar garbage
collection mechanism is also present in the implementation in [7]. On the other
hand, since a server in ORCAS-A receives an unencoded value first, it can di-
rectly overwrite values with lower timestamps. An important consequence of this
modification is that the worst-case storage size of ORCAS-B (and the implemen-
tation in [7]) is proportional to the number of concurrent writes, whereas, the
storage requirement in ORCAS-A is never worse than that in replication (i.e.,
storing the unencoded value at all servers). We show the wait-free termination
property of ORCAS-B in [6].

5 Discussion and Future Work

There are two related disadvantages of ORCAS-A when compared to most repli-
cation based implementations. The write needs three phases to complete as
compared to two phases in the latter. Also, the write needs four stable storage
accesses (in its critical path) as compared to two such accesses in replication
based implementations. Both disadvantages primarily result from the last phase
that is used for encoding the value at the servers, and which can be removed if
we slightly relax the requirement on the storage space. ORCAS-A ensures that
the stable storage is encoded whenever there is no write in progress. Instead, if
we require that the stable storage is eventually encoded whenever there is no
write in progress, then (with some minor modifications in ORCAS-A) the write
operation can return without waiting for the last phase. The last phase can then
be executed “lazily” by the client. (The two disadvantages and the above dis-
cussion hold for ORCAS-B as well.) On a similar note, in ORCAS-A, if a read
selects a value in the first phase that is already encoded at some server, then it
can return after the first phase, and lazily complete the second phase (which in
this case is used only for deregistering at the servers, and not for writing back
the value). It follows that, a read that has no concurrent write in ORCAS-A can
return after the first phase.

An important open problem is to study storage lower bounds on register im-
plementations in a crash-recovery model. In particular, it would be interesting
to study if our lower bounds (that are presented in [6]) hold when some of the
underlying assumptions are removed. Another interesting direction for investi-
gation can be implementations that tolerate both process crash-recovery with
fair-lossy channels and malicious processes.

196 P. Dutta, R. Guerraoui, and R.R. Levy

References

1. Abraham, I., Chockler, G., Keidar, I., Malkhi, D.: Byzantine disk paxos: optimal
resilience with byzantine shared memory. Distributed Computing 18(5), 387–408
(2006)

2. Aguilera, M.K., Janakiraman, R., Xu, L.: Using erasure codes efficiently for stor-
age in a distributed system. In: Proceedings of the International Conference on
Dependable Systems and Networks (DSN), pp. 336–345 (2005)

3. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in a message passing
system. Journal of the ACM 42(1), 124–142 (1995)

4. Boichat, R., Guerraoui, R.: Reliable and total order broadcast in the crash-recovery
model. Journal of Parallel and Distributed Computing 65(4), 397–413 (2005)

5. Cachin, C., Tessaro, S.: Optimal resilience for erasure-coded byzantine distributed
storage. In: Proceedings of the International Conference on Dependable Systems
and Networks (DSN), pp. 115–124 (2006)

6. Dutta, P., Guerraoui, R., Levy, R.R.: Optimistic erasure-coded distributed storage.
Technical report, EPFL-IC-LPD, Lausanne, Switzerland (2008)

7. Frolund, S., Merchant, A., Saito, Y., Spence, S., Veitch, A.: A decentralized algo-
rithm for erasure-coded virtual disks. In: Proceedings of the International Confer-
ence on Dependable Systems and Networks (DSN), pp. 125–134 (2004)

8. Goodson, G.R., Wylie, J.J., Ganger, G.R., Reiter, M.K.: Efficient byzantine-
tolerant erasure-coded storage. In: Proceedings of the International Conference
on Dependable Systems and Networks (DSN) (2004)

9. Guerraoui, R., Levy, R.R., Pochon, B., Pugh, J.: The collective memory of amnesic
processes. ACM Transactions on Algorithms 4(1) (2008)

10. Hendricks, J., Ganger, G.R., Reiter, M.K.: Low-overhead byzantine fault-tolerant
storage. In: Proceedings of the 21st ACM Symposium on Operating Systems Prin-
ciples (SOSP), pp. 73–86 (2007)

11. Hendricks, J., Ganger, G.R., Reiter, M.K.: Verifying distributed erasure-coded
data. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Princi-
ples of Distributed Computing (PODC), pp. 139–146 (2007)

12. Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems 13(1), 124–149 (1991)

13. Lamport, L.: On interprocess communication - part i: Basic formalism, part ii:
Algorithms. DEC SRC Report, 8 (1985); Also in Distributed Computing, 1, pp.
77-101 (1986)

14. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo
(1996)

15. Lynch, N.A., Shvartsman, A.A.: Robust emulation of shared memory using dy-
namic quorum-acknowledged broadcasts. In: Proceedings of the International Sym-
posium on Fault-Tolerant Computing Systems (FTCS) (1997)

16. Martin, J.-P., Alvisi, L., Dahlin, M.: Minimal byzantine storage. In: Proceedings
of the International Symposium on Distributed Computing (DISC), pp. 311–325
(2002)

17. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. SIAM Journal
of Applied Mathematics 8, 300–304 (1960)

On the Emulation of Finite-Buffered Output

Queued Switches Using Combined Input-Output
Queuing

Mahmoud Elhaddad and Rami Melhem

University of Pittsburgh
Department of Computer Science
Pittsburgh, Pennsylvania, 15260
{elhaddad,melhem}@cs.pitt.edu

Abstract. We study the emulation of Output Queuing (OQ) using
Combined Input-Output Queuing (CIOQ) switches in the setting where
the emulated OQ switch and the CIOQ switch have buffer capacity B ≥ 1
packets at every output. We analyze the resource requirements of CIOQ
policies in terms of the required fabric speedup and the additional buffer
capacity needed at the CIOQ inputs.

For the family of work-conserving scheduling algorithms, we find that
whereas every greedy CIOQ policy is valid for OQ emulation at speedup
B, no CIOQ policy is valid at speedup s < 3

√
B − 2 when preemption is

allowed. We also find that CCF in particular is not valid at any speedup
s < B. We then introduce a CIOQ policy, CEH, that is valid at speedup
s ≥

p

2(B − 1). Under CEH, the buffer occupancy at any input never

exceeds 1 +
j

B−1
s−1

k

.

For non-preemptive scheduling algorithms, we characterize a trade-off
between the CIOQ speedup and the input buffer occupancy. Specifically,
we show that for any greedy policy that is valid at speedup s > 2, the

input buffer occupancy cannot exceed 1 +
l

B−1
s−2

m

. We also show that

at speedup 2, a greedy variant of the CCF policy requires input buffer
capacity of only B packets for the emulation of non-preemptive OQ al-
gorithms with PIFO service disciplines.

1 Introduction

In most Internet switches (routers), each switch output is equipped with a packet
buffer, and employs an output scheduling algorithm to resolve contention among
packets attempting to access the attached link. A switch output can transmit
one packet at a time from the buffer, this packet then departs the switch. In
addition to a service discipline that determines the packet transmission order,
the output scheduling algorithm defines a drop policy (also known as the buffer
management policy) to deal with buffer overflow events. The most commonly
used algorithm is FIFO/Drop Tail where an incoming packet is dropped only
if there is no space to store it in the appropriate output buffer, and packets in

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 197–211, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

198 M. Elhaddad and R. Melhem

the buffer are served in FIFO order. A switch’s inputs may also be equipped
with buffers to hold the incoming packets until they can be delivered to the
proper outputs, across the switch fabric. In this paper, we consider the setting
where packets arrive online, and all switch links have equal speed (capacity).
Each output can transmit one packet per time step, and there is at most one
new arrival at each switch input per step.

Performance analysis of output scheduling algorithms in the above setting,
for example [1,2], often assume that switches are of the Output Queuing (OQ)
type. In an OQ switch, at each time step all newly arriving packets are switched
to their respective outputs, where they are stored awaiting transmission. This
switch architecture allows modeling packet networks as networks of queues where
each switch output is accurately represented by a single-server queue controlled
by an instance of the output scheduling algorithm, independently of other switch
ports. However, a well-known limitation of output queuing is that in a switch
with N ports, the switch must have an internal fabric speed that is N times the
speed (capacity) of a link [3]: N packets destined to some output may arrive
at the same time step at different inputs. The switch fabric must then be able
to simultaneously transfer the N packets to that output port (i.e., at N time
the speed of the switch links). This limits the applicability of output queuing
in current switches where scalability, in terms of link speed and the number of
ports, is a primary design objective.

To avoid the fabric speed as a scalability bottleneck, most packet switches
today use Combined Input-Output Queuing (CIOQ): At each time step, up to s
(s " N) packets can be switched from any input port to their respective outputs,
and up to s packets can be switched to any output port, so that the switch’s
fabric may operate at a speedup of only s, relative to the speed of the links. CIOQ
switches require packet buffers at the input ports, and a policy (the CIOQ policy)
to arbitrate access to the switch fabric among packets stored at the inputs.
Contention for access to the switch fabric among packets destined to different
outputs complicates the analysis of scheduling algorithms in CIOQ switches.

A question that naturally arises is whether packet loss, throughput, and delay
guarantees (possibly, per-session guarantees) provided by any output scheduling
algorithm in a network of OQ switches carry over to networks of CIOQ switches.
This is indeed the case if replacing each OQ switch with a CIOQ switch does
not change the sequence of packet departures from any of the switch’s outputs,
which is the motivation for studying OQ switch emulation using CIOQ.

1.1 The OQ Emulation Problem

OQ emulation is defined informally as follows: A CIOQ switch with N input/
output ports emulates an OQ switch of the same size if for any output schedul-
ing algorithm employed by the OQ switch (henceforth, OQ algorithm) and any
sequence of packet arrivals, the sequence of packet departures from each CIOQ
switch output is identical to the sequence of departures from the correspond-
ing OQ output. The CIOQ switch can emulate the OQ switch if, given its fabric
speedup, the CIOQ policy transfers incoming packets to their respective outputs

On the Emulation of Finite-Buffered Output Queued Switches 199

through the fabric in time to meet their departure times from the emulated
switch. If this is the case for every arrival sequence, irrespective of the switch
size and the capacity of the output buffers, we say that the CIOQ policy is
valid for the emulation of the OQ algorithm. A CIOQ policy may be valid for
the emulation of a given OQ algorithm under explicitly stated restrictions. In
particular, it may be valid only in the infinite-buffers setting, in which the out-
put buffers in the OQ switch (and the CIOQ switch) are considered to be of
unlimited capacity. A CIOQ policy is valid for the emulation of a family of OQ
algorithms if it is valid for the emulation of every algorithm in that family. A
formal definition of validity is introduced in Section 2.2.

The OQ emulation problem was proposed by Chuang et al. [3], where the ob-
jective is to identify CIOQ policies that are valid, in the infinite-buffers setting,
for the emulation of a family of OQ algorithms of practical interest, while impos-
ing minimal requirements on the fabric speedup. In the OQ emulation problem,
neither the CIOQ policy nor the emulated OQ algorithm has knowledge of future
arrivals, and no statistical assumptions about the sequence of packet arrivals are
made.

In the infinite-buffers setting, the drop policy is never exercised and, as such,
the OQ algorithm can be defined by its service discipline. In that setting, Chuang
et al. [3] introduced Critical Cells First (CCF),1 a CIOQ policy that is valid at
speedup 2 for the emulation of the family of Push-In-First-Out (PIFO) service
disciplines, which includes many well-known disciplines such as FIFO (FCFS),
Strict Priority, and Weighted Fair Queuing.2 They also showed, using FIFO as
an example, that no CIOQ policy is valid for the emulation of all PIFO service
disciplines at speedup < 2 − 1/N . Similar results were obtained simultaneously
and independently by Stoica and Zhang [4].

In this work, we investigate CIOQ policies for the emulation of OQ switches
with fixed buffer capacity B > 0 at every output. Our interest in this setting
is motivated by the emergence of technological constraints on buffer capacity in
high-speed electronic and optical switches, which may limit B to a few dozen
packets [5,6].

Before summarizing our results we describe the framework within which OQ
emulation is set [3,7,8]: To emulate a given OQ algorithm, the CIOQ switch
maintains, at all time, complete information about the internal state of the OQ
algorithm and the configuration (content) of the emulated switch buffers. This
information is leveraged so that:

(i) The CIOQ policy can move the packets presently at the inputs to the output
side in time for departure.

(ii) The output ports dequeue and transmit each packet that reaches its depar-
ture time.

1 The terms “packets” and “cells” are used interchangeably throughout the paper.
2 In a PIFO service discipline, a packet arriving to an output queue can be inserted

at any queue location. In each time step, the packet at the head of the queue, if any,
departs from the switch.

200 M. Elhaddad and R. Melhem

At any time, a packet that is dropped by the emulated OQ algorithm is immedi-
ately discarded from the CIOQ buffer where it resides. To implement this frame-
work, the CIOQ switch maintains a model of the OQ switch’s output buffers,
which is controlled by the OQ algorithm. In every time step, the CIOQ switch
updates the model with any new arrivals and observes the algorithm’s decisions.
Note that this emulation framework applies to randomized as well as determinis-
tic algorithms: Given an arrival sequence, the CIOQ switch emulates the sample
path taken by the randomized algorithm.

1.2 Our Results

We evaluate CIOQ policies in terms of the CIOQ speedup required for the em-
ulation of work-conserving OQ algorithms, and the additional buffer capacity
needed to prevent buffer overflow events at the CIOQ inputs.The CIOQ switch
is assumed to have buffer capacity B at every output (the same output buffer
capacity as the OQ switch). To find the buffer capacity needed at each input,
we adopt a CIOQ switch model where the buffer capacity at the inputs is infi-
nite, and bound the maximum buffer occupancy, over all arrival sequences, for
the CIOQ policy under consideration. The bounds depend only on the switch
parameters such as the speedup and the output buffer capacity.

A CIOQ policy is said to be (s, b)-valid for the emulation of a given OQ
algorithm if it is valid for the emulation of the algorithm at speedup s and,
at that speedup, the buffer occupancy at any CIOQ input does not exceed b.
For the family of work-conserving OQ algorithms, we find that whereas every
greedy CIOQ policy is valid for the emulation of any algorithm at speedup B, no
CIOQ policy is valid for the emulation of all algorithms at speedup s < 3

√
B − 2,

when preemption is allowed. We also show, using FIFO/Drop Front [9,10] as
example, that CCF is not valid for the emulation of preemptive PIFO algorithms
at any speedup s < B. We then introduce a greedy CIOQ policy, CEH, that is
valid for the emulation of all work-conserving OQ algorithms at speedup s ≥⌊√

2(B − 1)
⌋
. Under CEH, the buffer occupancy at any input never exceeds

1 +
⌊

B−1
s−1

⌋
. Beside ensuring that packets meet their departure time from the

emulated OQ switch, CEH transfers packets destined to the same output in their
order of arrival, whenever possible. This prevents the buildup of excessively large
queues at the inputs.

For the family of non-preemptive OQ algorithms, which may drop packets only
by rejecting them upon arrival to an OQ switch’s buffer, we characterize a trade-
off between the CIOQ speedup and the input buffer occupancy. Specifically, we
show that for any greedy policy3 that is valid at speedup s > 2, the input buffer
occupancy cannot exceed 1 +

⌈
B−1
s−2

⌉
. We also show that a greedy variant of the

CCF policy is (2, B)-valid for the emulation of non-preemptive OQ algorithms
with PIFO service disciplines.
3 A greedy policy is one that transfers a maximal set of packets from the inputs to

the outputs in every time step.

On the Emulation of Finite-Buffered Output Queued Switches 201

Although FIFO/Drop Tail is the most well-known algorithm, many algorithms
of practical and theoretical interest use preemptive drop policies. In addition
to Drop Front, preemptive policies include Nearest-To-Go [1], which resolves
contention in favor of the packets with nearest destination, Strict Priority, and
Random Drop, which chooses the packets to drop at random among those in the
buffer.

The reason that there is no CIOQ policy capable of OQ emulation at constant
CIOQ speedup is that when preemption is allowed all packets buffered at some
CIOQ input port may immediately become needed at the corresponding outputs
for departure. Thus, the CIOQ speedup must be at least equal to the maximum
input buffer occupancy (over all possible arrival sequences). Although we obtain
the lower bound using FIFO/Drop Front, similar examples can be constructed
for OQ algorithms using the above-mentioned preemptive drop policies.

1.3 Related Work

Whereas OQ emulation in the infinite-buffers setting has been studied exten-
sively, only few studies investigated the emulation of OQ switch with finite
buffers. A simulation-based study in [6], suggests that under light traffic condi-
tions, a CIOQ switch with speedup 2 and an input buffer capacity of 2 packets
exhibits a loss behavior similar to that of an OQ switch with small output buffers
employing the FIFO/Drop Tail scheduling algorithm. This motivated our inves-
tigation of whether a similar result can be obtained for any OQ algorithm and
under all traffic patterns.

Kesselman and Rosén [7] showed that CCF is (2, 2B)-valid for the emula-
tion of the FIFO/Drop Tail algorithm. It is straightforward to show that this
result applies to all OQ algorithms combining a PIFO service discipline and a
non-preemptive drop policy. The greedy variant of CCF, we describe here im-
proves the maximum input buffer occupancy to B at the same computational
complexity. Such savings could be of practical significance in all-optical switches.

Attiya, Hay, and Keslassy [8] proposed CIOQ policies for a relaxed version of
the emulation problem: For any arrival sequence, each packet that successfully
departs the OQ switch must depart the CIOQ switch within a bounded delay.
They introduce a frame-based CIOQ policy that observes the packets departing
from the OQ switch in each time frame, and transfers them from the input
to the output in the following frame. The proposed CIOQ policy guarantees a
relative packet delay and maximum buffer occupancy at most twice the output
buffer capacity (2B), at speedup 2. Remarkably, the result holds for any OQ
algorithms, even for those with preemptive drop policies. The reason is that
even if all packets buffered at some CIOQ input depart simultaneously from the
emulated OQ switch, the CIOQ policy can spread their transfer to the output
side over a time frame duration (B time steps) without violating the relative
delay guarantee. Although the throughput of a CIOQ switch using the frame-
based policy is identical to the throughput of the emulated OQ switch and the
relative packet delay is small, exact guarantees (e.g., throughput) obtained for a
multihop network of OQ switches do not carry over to networks of CIOQ switches

202 M. Elhaddad and R. Melhem

because of permitted delay. Composing approximate bounds over multiple hops
leads to loose bounds where the error increases with the number of hops [11]. As
a result, in this work we choose to investigate the cost of exact OQ emulation.

Finally, we should note that Minkenberg [12] studied the emulation of OQ
switches with finite buffers, and reported a result that appears to contradict
the results in this paper and in [7]. The result states that no CIOQ policy that
does not starve some input queue can be work-conserving at any speedup < N
(the size of the switch). Thus, no policy can emulate an OQ switch employing a
work-conserving scheduling algorithm. The result is obtained by constructing an
example where the number of packets present in the CIOQ switch and destined
to the same output can exceed the output buffer capacity. This is in contrast to
the framework considered here and in [7,8], where the CIOQ switch immediately
discards any packet that is dropped by the OQ algorithm.

2 Preliminaries

Consider an OQ switch with N input/output ports equipped with buffer capacity
B ≥ 1 packets at every output, and a CIOQ switch of the same size and out-
put buffer capacity. Our goal is to identify CIOQ policies that enable the CIOQ
switch to emulate the OQ switch. In this section, we give a precise characteri-
zation of such policies and introduce notation and definitions used throughout
the remainder of the paper.

A switch’s input and output ports are labeled I1, . . . , IN and O1, . . . , ON ,
respectively. Given the foreseen technological limitations on buffer capacity and
the demand for switch scalability (hundreds of ports), we assume N # B. Time
proceeds in discrete steps indexed by the natural numbers. A time step is divided
into three phases: the arrival, switching, and departure phases, in that order.
During the arrival phase, arriving packets are received at the input ports (at most
one per port), whereas in the switching phase, the switch may transfer packets
from the input side to the output side across its fabric. Finally, in the departure
phase each output port can transmit one packet along the attached link.

A sequence of packet arrivals σ is a non-empty finite set of triplets 〈I, τ, p〉,
each representing the arrival of a packet p at input I and time step τ .

2.1 OQ Algorithms

In an OQ switch, the fabric provides a dedicated point-to-point channel between
each input and output. This enables the switch to simultaneously transfer up to
N packets to each output port. Given that at most N packets arrive during a
time step, all packets are transferred to their respective outputs in the switching
phase immediately following their arrival.

At the output ports, each packet received from the input side is stored in the
output buffer awaiting departure, or is dropped if no buffer space is available to
store it. The output scheduling algorithm decides the departure order of packets
in the buffer, and which packets are dropped in the case of overflow. For brevity,

On the Emulation of Finite-Buffered Output Queued Switches 203

an output scheduling algorithm employed in an OQ switch is henceforth called
an OQ algorithm.

Each output port in the OQ switch independently executes a copy of the
OQ algorithm. Let σ be the arrival sequence. At any time, the configuration
of an output buffer is the set of packets stored in the output’s buffer. At the
start of the departure phase of each time step t, the algorithm takes the current
output configuration, and the history of packet arrivals and packet drops up
to t as input, and decides which packets to drop, if any, and which packet to
transmit during the departure phase. These decisions, along with any additional
information (e.g., packets’ queue positions in the case of FIFO-based algorithm),
is called the state of the OQ algorithm at time t. Note that the OQ algorithm
does not necessarily arrange the packets in the buffer into a queue. It may, for
example, randomly choose a packet to transmit in each step.

The sequence of packet departures given arrival sequence σ is represented by
a set DB

σ . Each element in the set is a triplet 〈O, τ, p〉 denoting the departure of
packet p from port O at time τ .

Within the OQ emulation framework described in Section 1.1, the CIOQ
switch “simulates” a complete step (all three phases) of the OQ switch at the
start of each CIOQ switching phase. This allows the CIOQ to keep track of the
OQ algorithm’s decisions. The CIOQ switch emulates the OQ switch if for every
arrival sequence σ, the sequence of departures from the CIOQ switch ports is the
same as the departure sequence from the emulated OQ switch, that is DB

σ . This
is the case if and only if, given the CIOQ speedup, the CIOQ policy transfers
each packet from the input to its output in time for departure.

2.2 CIOQ Policies

Suppose σ is the arrival sequence at the CIOQ switch. At the start of the switch-
ing phase of every time step t, a CIOQ policy, π, maps the current input con-
figuration (the set of packets stored at the inputs) and the current state of the
OQ algorithm at each of the emulated OQ outputs to a subset of the packets
available at the input ports. Packets in this subset are moved to the outputs
across the CIOQ fabric during the switching phase. The choice of the packets to
move to the output in a given step is deterministic and is subject to the speedup
constraint: Given a fabric speedup s ≥ 1, the policy must choose the packets to
transfer so that at most s packets are moved from each input, and at most s
packets are moved to each output in a given step.

A CIOQ policy that enables the CIOQ to emulate a given OQ algorithm is
called a valid policy for the emulation of the algorithm.

Definition 1 (Valid CIOQ Policy). A CIOQ policy is valid for (the emula-
tion of) a given OQ algorithm if, for any switch size N , output buffer capacity
B ≥ 1, and for every arrival sequence, it transfers the packets through the CIOQ
fabric so that for every time step t, any packet that would depart from the emu-
lated OQ switch during t is transferred to the corresponding CIOQ output before
t’s departure phase. A CIOQ policy is valid for a family of OQ algorithms if it
is valid for every algorithm in that family.

204 M. Elhaddad and R. Melhem

A CIOQ policy may be valid for the emulation of an algorithm only under some
restrictions. For example, only in the infinite-buffers setting where the output
buffer capacity is considered unlimited.

For a given OQ algorithm, switch parameters, and arrival sequence, a valid
policy is said to meet the OQ departure time of every packet. Valid policies for
the emulation of a particular OQ algorithm (or a family thereof) may differ in
the buffer capacity requirements at the CIOQ inputs and the required CIOQ
speedup. A CIOQ policy that is valid at speedup s, and for which the input
buffer occupancy does not exceed b under any arrival sequence, is called an
(s, b)-valid CIOQ policy.4

We focus our attention on CIOQ policies that are greedy. A greedy policy
transfers a maximal set of packets to the output in every time step. As a re-
sult, for every non-greedy CIOQ policy π and CIOQ speedup s, one can define
a greedy policy π′, that, at every time step transfers a super-set of the pack-
ets transferred by π. Obviously, if π is valid (for the emulation of some OQ
algorithm) at speedup s, then π′ is also valid at the same speedup.

The following definitions lead to a formal characterization of greedy policies,
and are used in subsequent sections:

Definition 2 (Input Blocking). A packet p at a CIOQ input port I is input
blocked during a time step t if, during t’s switching phase, the CIOQ policy
transfers s packets from I to the output side, and these packets do not include p.

Definition 3 (Output Blocking). A packet buffered at some input port and
destined to output port O is output blocked during time step t if, during t’s
switching phase the CIOQ policy transfers s packets to output O, and these
packets do not include p.

Definition 4 (Greedy CIOQ Policy). A CIOQ policy is greedy if at every
time step, every packet buffered at an input port is either transferred to the
output, is input blocked, or is output blocked.

2.3 Families of OQ Algorithms

The objective of the OQ emulation problem is to identify CIOQ policies that are
valid for the emulation of all OQ algorithms, at minimum CIOQ speedup and
input buffer capacity requirements. Toward this end, we seek upper and lower
bounds on the resource requirements of greedy CIOQ policies for the emulation
of families of work-conserving algorithms.

Because in the OQ switch an output buffer can accept at most B packets in
a time step, a speedup of B is sufficient for the emulation of all work-conserving
algorithms.

Proposition 1. Every greedy CIOQ policy is (B, 1)-valid for the emulation of
all work-conserving OQ algorithms.
4 It is easy to see that an (s, b)-valid policy is also (s′, b′)-valid for all (s′, b′) where

s′ ≥ s and b′ ≥ b, if at speedup s′ it transfers at each time step a super-set of the
packets it would transfer at speedup s.

On the Emulation of Finite-Buffered Output Queued Switches 205

Such speedup requirement is feasible only when B is very small (e.g., up to
5), but would be prohibitive even in high-speed packet switches with limited
buffering capacity.

To obtain lower bounds on the resource requirements of greedy CIOQ policies,
we consider subsets of work-conserving algorithms that include well-known and
widely-used ones. Namely, the family of algorithms with non-preemptive drop
policies (non-preemptive algorithms) and the family of algorithms with PIFO
service disciplines (PIFO algorithms).

The drop policy of an OQ algorithm is non-preemptive if an incoming packet
may be dropped upon arrival to the OQ switch, but may not be dropped once
admitted to the output buffer. Otherwise, the drop policy is preemptive. Non-
preemptive drop policies are collectively referred to as “Drop Tail.” These poli-
cies differ in how the tie is broken when the number of arrivals destined to an
output port in a given time step exceeds the space available in that output’s
buffer. Possible tie-breaking rules include randomly choosing the “victim” pack-
ets among those arrivals, and tie-breaking based on input port numbers, or based
on information in the packets’ headers.

A PIFO service discipline arranges the packets in the output buffer into a
queue, where:

(P1) At each time step, the packet at the head of the output queue departs the
OQ switch.

(P2) An arriving packet is inserted at some arbitrary position (defined by the
service discipline) in the output queue.

(P3) For each pair of packets p, q in the output queue, if p precedes q relative to
the head of the queue at some time t, then this order is preserved at every
subsequent step where both packets remain in the buffer.

In the absence of further packet arrivals to the output port, the position of any
packet in the queue determines the time it departs from the OQ switch. We refer
to this as the projected departure time of the packet at time t.

In the next section we investigate the speedup and input buffer capacity re-
quired by greedy CIOQ policies for the emulation of non-preemptive OQ schedul-
ing algorithms. Emulation of preemptive OQ algorithms is considered in the
following section.

3 OQ Emulation of Non-preemptive Scheduling
Algorithms

In this section, we study the emulation of non-preemptive OQ scheduling algo-
rithms. First, we characterize a trade-off between speedup and the maximum
input buffer occupancy. The trade-off applies to all greedy CIOQ policies that
are valid at speedup s > 2. Then, we describe a greedy variant of the CCF policy
introduced in [3] and show that this variant is (2, B)-valid for the emulation of
non-preemptive PIFO OQ algorithms.

206 M. Elhaddad and R. Melhem

3.1 The Speedup — Buffer Capacity Trade-Off

Theorem 1. Let π be a greedy CIOQ policy that is valid for the emulation of
a non-preemptive OQ algorithm A at speedup s > 2 in the finite-buffers setting.
Then, at speedup s the buffer occupancy at each of the CIOQ switch’s inputs
does not exceed 1 +

⌈
B−1
s−2

⌉
.

Proof. To reach contradiction, suppose that there is a CIOQ input Ii, i ∈
{1, . . . , N}, with buffer occupancy exceeding 1 +

⌈
B−1
s−2

⌉
at some time step. Let

t be the earliest such step and consider the following claim (proof omitted)

Claim. Let p be the earliest arriving packet among those in Ii’s buffer just after
the arrival phase of time step t, and let t−x be p’s arrival time. Then the greedy
CIOQ policy transfers at least x + B + 1 packets to p’s output port during the
interval [t− x, t).

Let Oj , j ∈ {1, . . . , N}, be p’s output port. Neither p nor the first x+B packets
transferred to Oj during [t− x, t) are dropped by the non-preemptive OQ algo-
rithm. Otherwise, these packets would have been dropped by the CIOQ upon
arrival. That is, without being buffered for a complete time step at the input (as
in p’s case) or being transferred to the output. Since the emulated OQ output
serves at most x packets during [t − x, t) and the arrival sequence is the same
for both the CIOQ and the emulated OQ switch, the emulated OQ output cor-
responding to Oj would hold more than B packets at the beginning of time step
t, which contradicts the fact that the output buffer capacity of the emulated OQ
switch is B packets. ��

3.2 The Critical Cells First CIOQ Policy

In this section, we review the CCF CIOQ policy of [3] and introduce its greedy
variant, G-CCF. We show that G-CCF is (2, B)-valid for the emulation of non-
preemptive PIFO algorithms. In contrast to this result, we show in the next
section that G-CCF is not valid for OQ emulation at any speedup less than B
when preemption is allowed.

CCF and G-CCF consist of two components: Management of input buffers,
and the selection of packets to transfer to the output in every step. We begin by
describing the buffer management component, which is common to both policies,
then specify packet selection, starting with G-CCF.

Input Buffer Management: Under both CCF and G-CCF, the input buffer
is organized as a queue that permits insertion of packets at arbitrary locations
and the removal of packets at arbitrary locations. Consider an arbitrary packet
p and let t be its arrival time. Further, let l be the output cushion of p —
the number of packets at p’s output that have earlier projected departure time
than p (as calculated after t’s arrival phase). Packet p is inserted into the input

On the Emulation of Finite-Buffered Output Queued Switches 207

queue at position l + 1 (from the head of the queue). If the queue has less than
l packets, the arriving packet is inserted at the end of the queue.

Packet Selection in G-CCF: To choose the set of packets to transfer to
the output, in each time step G-CCF computes a many-to-many pairwise-stable
matching (details below) of input ports to output ports. For this, G-CCF uses
the Gale-Shapley Deferred Acceptance algorithm [13] (a.k.a. the stable marriage
algorithm), as adapted by Roth to the many-to-many setting [14].

Given a CIOQ speedup s ≥ 1, each port participates with a quota of s packets
in the many-to-many matching. That is, up to s packets at each input port are
transferred to the output side and up to s packets are transferred to an output
port. Matching is based on the preferences of the inputs and outputs. The output
preference is represented by a list of packets and the respective inputs arranged
in increasing order of the projected OQ departure time. The input preference is a
list of the packets queued at the input (and their respective outputs) arranged in
the same order as the input queue. A port prefers to be matched with ports that
appear earlier in its preference list. In the following pseudo-code, an outstanding
request for a packet is a request that the corresponding input has not already
rejected.
Deferred-Acceptance-Algorithm

while there are outputs with unfilled quota and outstanding requests
do

Each such output requests its preferred packets from the inputs to
fulfill its quota

Each input grants the requests it prefers without exceeding its quota

Note that in the second step of the while loop, an input may cancel previous
grants to accept more preferred requests.

Per the definition pairwise stability [15], a matching is pairwise-stable given
the G-CCF preference lists if at every time step t, for every packet p buffered at
some input at the beginning of the switching phase, either:

– p is transferred to the corresponding output during t,
– s packets with earlier projected OQ departure times are transferred to p’s

output during t, or
– s packets ahead of p in its input queue are transferred to their corresponding

outputs during t.

It follows that G-CCF is a greedy CIOQ policy (cf. Definition 4).5

Packet Selection in CCF: CCF computes s one-to-one stable matchings in
every time step by repeatedly invoking the (one-to-one) Deferred Acceptance
algorithm [13]. The one-to-one algorithm uses the same input and output pref-
erence lists as G-CCF. Each output can request at most 1 packet, and each input
can grant at most 1 packet in an iteration of the while loop.
5 A pairwise stable matching is guaranteed to exist at every time step since the input

and output ports have substitutable preferences. See [14].

208 M. Elhaddad and R. Melhem

Though the resulting matchings are individually stable in the one-to-one sense,
one can construct an example where the iterative matching procedure violates
the definition of a greedy CIOQ policy by failing to transfer a maximal set of
packets in a given time step. The reason is that in each invocation of the one-to-
one Deferred Acceptance algorithm where the algorithm fails to match a given
output to an input, the output’s quota is effectively decreased by 1.

OQ Emulation Using G-CCF

Kesselman and Rosén proved that CCF is (2, 2B)-valid for the emulation of the
FIFO/Drop Tail algorithm. The result also holds for any non-preemptive PIFO
algorithms. Here, we give a similar result for G-CCF that lowers the input buffer
capacity capacity required to B packets.

Theorem 2. For any output buffer capacity B > 0, G-CCF is a (2, B)-valid
CIOQ policy for the emulation of any non-preemptive PIFO OQ algorithms.

4 OQ Emulation with Preemption Allowed

In this section we show that no greedy CIOQ policy is valid for the emulation
of all OQ algorithms at speedup s ≤ 3

√
B − 2 when preemption is allowed, and

that G-CCF is not valid at any speedup s < B under the same conditions.

Theorem 3. No greedy CIOQ policy is valid for the emulation of all PIFO
scheduling algorithms at any speedup s ≤ 3

√
B − 2 when preemption is allowed

in the emulated OQ algorithm, and the output buffer capacity is B.

The proof of Theorem 3 proceeds by constructing an example where N ≥ 2B2.
It uses FIFO/Drop Front, which is a PIFO OQ scheduling algorithm. The
Drop Front policy has been proposed for the objective of minimizing the queuing
delays incurred by successfully delivered packets [9], but has also been shown to
improve TCP throughput compared to Drop Tail [10].

Next we show that when preemption is allowed, G-CCF (hence CCF) is in not
valid for the emulation of all PIFO OQ algorithms at any s < B. To reach this
result, we demonstrate using an example that G-CCF fails to emulate a variant
of the FIFO/Drop Front OQ scheduling algorithm that recognizes two different
classes of packets: a low-delay class, denoted as class L, and a bulk data transfer
class denoted as class T . We refer to this variant as 2-class FIFO/Drop Front.
The proof exploits the fact that G-CCF favors packets with earlier projected
OQ departure times in every time step, and the fact that “investing” in such
packets may be futile if preemption is allowed.

In 2-class FIFO/Drop Front, each traffic class has a fixed allocation (a parti-
tion) of the emulated OQ buffer capacity. We specify the buffer allocations by a
pair (BL, BT) where BL +BT = B. At any time, the number of class-L packets
present in the buffer does not exceed BL, and similarly for class-T . An incoming
packet is inserted into the proper buffer partition based on its class. Each of the
two partitions is a FIFO buffer, where Drop Front is used to resolve overflow

On the Emulation of Finite-Buffered Output Queued Switches 209

events. In each time step, a class-T packet is served if and only if no class-L
packets are present in the L-partition.

Theorem 4. If preemption is allowed, G-CCF is not valid for the emulation of
PIFO OQ scheduling algorithms at any s < B.

In constructing the example, we exploit the fact that whenever possible, CCF
transfers packets to each output in the order of their projected OQ departure
times. As a consequence of preemption, some packets (the T -packets in our
example) remain output blocked for an extended period of time, Thus allowing
the occupancy of corresponding input buffers to build up. In the next section,
we consider mitigating this buffer buildup at the inputs by ordering the output
preference lists based on the time of packet arrival.

5 The CCF-EAF Hybrid CIOQ Policy

Early Arrivals First (EAF) is a CIOQ policy where every newly arrived packet
is inserted at the head of the corresponding input queue. To choose the packets
to transfer to the output in a given time step, EAF computes a many-to-many
stable matching of input to output ports in the same way as G-CCF. However,
unlike G-CCF, each output’s preference list is a list of the packets buffered at the
inputs and destined to that output, arranged in order of non-increasing arrival
time, with ties broken based on port numbers (hence the name of the policy).

It is easy to see that also unlike CCF and G-CCF, EAF is not prone to input
buffer buildup when preemption is allowed. However, it is obvious that EAF would
fail to emulate a scheduling algorithm where a later arrival to the switch may have
an earlier departure time; for example, the OQ scheduling algorithms based on the
Last-In-First-Out service discipline and the Drop Front packet drop policy.

5.1 The CEH CIOQ Policy

Now we propose and investigate the performance of a greedy policy, CEH, which
is a hybrid of CCF and EAF. Under CEH, new arrivals to the CIOQ switch are
inserted at the head of the corresponding input buffer. Given CIOQ speedup
s ≥ 2, CEH chooses the packets to transfer from the input to the output by
sequentially computing two pairwise stable matchings using the Deferred Ac-
ceptance algorithm (Section 3.2).

The first is a matching computed using the input and output CCF preference
lists. In this matching, every output has a quota of 1 and every input has a quota
of s. That is, whereas the number of packets participating in the stable matching
destined to any given output does not exceed 1, an input may participate in the
matching with up to s packets.

The quotas for the second matching are calculated as follows: Suppose some
port P (an input or output port) participates in the first matching with U(P)
packets. Then, in the second matching its quota is s−U(P) packets. The second
matching is computed using the EAF preference lists described above.

210 M. Elhaddad and R. Melhem

The following lemma asserts that CEH is indeed a greedy policy.

Lemma 1. At every time step t, for every packet p buffered at one of the inputs
at the beginning of the arrival phase, either:

(i) p is transferred to the corresponding output, say O,
(ii) There exists a packet with earlier OQ departure time and s−1 packets with

earlier arrival times that are transferred to output O, or
(iii) Exactly s packets ahead of p in its input queue are transferred to their

corresponding outputs.

5.2 Performance of CEH

Theorem 5. At any speedup s ≥ max{2,
⌈√

2(B − 1)
⌉
}, CEH is (s, 1 + B−1

s−1)-
valid for the emulation of all work-conserving OQ algorithms.

Proof. Suppose s ≥ 2 and consider a packet p that is not dropped by the OQ
scheduling algorithm. Suppose the packet arrives at time t and departs the OQ
switch at time t′ > t.

Upon arrival, at most B − 1 packets with earlier arrival times than p and
destined to the same output are buffered at the CIOQ’s inputs. This is because
at most B packets with a common destination can simultaneously exist in the
CIOQ switch. Obviously, the number of packets buffered at the input and have
earlier arrival times than p does not increase in subsequent time steps.

At time t, p is at the head of the input queue. At any step τ ∈ [t, t′), p is not
transferred to the output only if at least s− 1 packets at the input with earlier
arrival times than p participate in the second stable matching. These packets
are then transferred to the output during τ . In every step p remains buffered at
the input, the number of packets ahead of it in the input queue increases by at
most 1. Thus, the number of packets ahead of p in its input buffer increases by
one packet at most

⌊
B−1
s−1

⌋
times.

During t′, p cannot be output blocked since it has the earliest departure time
among packets destined to its output. It follows that p is moved to the output
if during t′ if it is not input blocked. This is the case if s >

⌊
B−1
s−1

⌋
. That is, if

s ≥
⌈√

2(B − 1)
⌉
. Thus CEH is valid at any speedup s ≥

⌈√
2(B − 1)

⌉
.

Observe that the number of packets ahead of any packet in an input queue
is incremented at most

⌊
B−1
s−1

⌋
times, irrespective of whether it is eventually

dropped or transferred to the output. Thus, the buffer occupancy at any input
port never exceeds 1 +

⌊
B−1
s−1

⌋
. ��

Notice that the proof allows for newly arriving packets to preempt packets al-
ready in the switch buffers. It also doesn’t make any restrictions on changes to
the service order induced by new arrivals or by packet drops.

On the Emulation of Finite-Buffered Output Queued Switches 211

6 Concluding Remarks

In this paper we investigated CIOQ policies for the emulation of finite-buffered
OQ switches employing a work-conserving (OQ) scheduling algorithm. We showed
that when preemption is allowed no CIOQ policy can emulate all PIFO OQ algo-
rithms at constant speedup. We proposed a CIOQ policy, CEH, that can emulate
any work conserving OQ algorithm at speedup O(

√
B) (the output buffer capac-

ity). Such speedup may be feasible in high-speed switches, which are expected to
have a small number of buffers. One possible avenue for future research is closing
the gap between the O(3

√
B) speedup lower bound and the O(

√
B) upper bound.

References

1. Aiello, W., Ostrovesky, R., Kushilevitz, E., Rosén, A.: Dynamic routing on net-
works with fixed-size buffers. In: Symposium On Discrete Algorithms (SODA)
(2003)

2. Harchol-Balter, M., Wolfe, D.: Bounding delays in packet-routing networks. In:
The 27th Annual ACM Symposium on Theory of Computing (STOC) (May 1995)

3. Chuang, S.T., Goel, A., McKeown, N., Prabhakar, B.: Matching output queuing
with a combined input output queued switch. IEEE Journal on Selected Areas in
Communications 17(6), 1030–1039 (1999)

4. Stoica, I., Zhang, H.: Exact emulation of an output queueing switch by a combined
input output. In: International Workshop on Quality of Service (1998)

5. Enachescu, M., Ganjali, Y., Goel, A., McKewon, N., Roughgarden, T.: Routers
with very small buffers. In: IEEE Infocom. (2006)

6. Beheshti, N., Ganjali, Y., Rajaduray, R., Blumenthal, D., McKeown, N.: Buffer
sizing in all-optical packet switches. In: Optical Fiber Communication (2006)

7. Kesselman, A., Rosen, A.: Scheduling policies for CIOQ switches. Journal of Algo-
rithms 60(1), 60–83 (2006)

8. Attiya, H., Hay, D., Keslassy, I.: Packet-mode emulation of output-queued switches.
In: ACM symposium on on parallel algorithms and architectures (January 2006)

9. Yin, N., Hluchyj, M., Mansfield, M.: Implication of dropping packets from the front
of a queue. IEEE Trans. Communications (January 1993)

10. Lakshman, T., Neidhardt, A., Ott, T.: The drop from front strategy in TCP and
in TCP over ATM. In: INFOCOM. (January 1996)

11. Le Boudec, J., Thiran, P.: Network Calculus: A theory of deterministic queues for
the Internet, vol. 2050. Springer, Heidelberg (2002)

12. Minkenberg, C.: Work-conservingness of CIOQ packet switches with limited output
buffers. Communications Letters, IEEE 6(10), 452–454 (2002)

13. Gale, D., Shapley, L.: College admissions and the stability of marriage. The Amer-
ican Mathematical Monthly (January 1962)

14. Roth, A.: Stability and polarization of interests in job matching. Econometrica
(January 1984)

15. Sotomayor, M.: Three remarks on the many-to-many stable matching problem.
Mathematical Social Sciences (January 1999)

On Radio Broadcasting in Random Geometric

Graphs�

Robert Elsässer1, Leszek G ↪asieniec2, and Thomas Sauerwald3

1 Institute for Computer Science, University of Paderborn,
33102 Paderborn, Germany

elsa@upb.de
2 Department of Computer Science, University of Liverpool, Liverpool, L69 3BX, UK

leszek@csc.liv.ac.uk
3 Paderborn Institute for Scientific Computation, University of Paderborn,

33102 Paderborn, Germany
sauerwal@upb.de

Abstract. One of the most frequently studied problems in the context
of information dissemination in communication networks is the broad-
casting problem. In this paper we consider radio broadcasting in random
geometric graphs, in which n nodes are placed uniformly at random in
[0,

√
n]2, and there is a (directed) edge from a node u to a node v in the

corresponding graph iff the distance between u and v is smaller than the
transmission radius assigned to u. Throughout this paper we consider
the distributed case, i.e., each node is only aware (apart from n) of its
own coordinates and its own transmission radius, and we assume that
the transmission radii of the nodes vary according to a power law dis-
tribution. First, we consider the model in which any node is assigned a
transmission radius r > rmin according to a probability density function
ρ(r) ∼ r−α (more precisely, ρ(r) = (α − 1)rα−1

min r−α), where α ∈ (1, 3)
and rmin > δ

√
log n with δ being a large constant. For this case, we de-

velop a simple radio broadcasting algorithm which has the running time
O(log log n), with high probability, and show that this result is asymp-
totically optimal. Then, we consider the model in which any node is
assigned a transmission radius r > c according to the probability density
function ρ(r) = (α − 1)cα−1r−α, where α is drawn from the same range
as before and c is a constant. Since this graph is usually not strongly
connected, we assume that the message which has to be spread to all
nodes of the graph is placed initially in one of the nodes of the giant
component. We show that there exists a fully distributed randomized al-
gorithm which disseminates the message in O(D(log log n)2) steps, with
high probability, where D denotes the diameter of the giant component
of the graph.

Our results imply that by setting the transmission radii of the nodes
according to a power law distribution, one can design energy efficient ra-
dio networks with low average transmission radius, in which broadcasting
can be performed exponentially faster than in the (extensively studied)
case where all nodes have the same transmission power.

� Partly supported by the Royal Society IJP 2007/R1 “Geometric Sensor Networks
with Random Topology”.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 212–226, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Radio Broadcasting in Random Geometric Graphs 213

1 Introduction

In view of recent technological developments in wireless/mobile communication
the abstract model of packet radio networks became very popular and received
a lot of attention in the algorithms community [2,5,9,12]. Most of the work
on time efficient radio broadcasting done so far is devoted to radio networks
with an arbitrary (in fact the worst case) topology. Our main intention is to
derive efficient distributed algorithms for radio broadcasting in random geometric
graphs, which are often used to model wireless communication networks.

1.1 Models and Motivation

A radio network is modeled by a directed graph G = (V, E), where V represents
the set of nodes of the network, and E contains ordered pairs of distinct nodes
such that (v, w) ∈ V × V iff node v can directly send a message to node w. The
total number of neighbors connected to a node by (in-)coming edges forms its
(in-)degree. The size of the network is the number of nodes n = |V |. The set of
nodes directly reachable from a node v ∈ V is the range of v.

One of the radio network properties is that a message transmitted by a node
is always sent to all nodes within its range. The communication in the network is
synchronous and it consists of a sequence of (communication) steps. During one
step, each node v either transmits or listens. If v transmits, then the transmitted
message reaches each of its neighbors by the end of this step. However, a node w
in the range of v successfully receives this message iff in this step w is listening
and v is the only transmitting node which has w in its range. If node w is
in the range of a transmitting node but is not listening, or is in the range of
more than one transmitting node, then a collision (conflict) occurs and w does
not retrieve any message in this step. In fact coping with collisions is one of
the main challenges in efficient radio communication. A commonly used tool to
handle this problem in radio networks with unknown topology is the concept of
selected families of transmission sets [5,7,9,19].

The running time of an algorithm is the number of communication steps
required to complete the considered communication task. Thus, any internal
computation within individual nodes is neglected. In this paper we are mainly
interested in the running time of distributed broadcasting algorithms using ra-
dio communication protocol. In the broadcasting problem it is assumed that a
message is placed in one of the nodes of a radio network, and the goal is to
spread this message to all nodes of the network using radio communication. In
this paper we assume that each node knows its own position ((x, y) coordinates),
its transmission radius, and the number of nodes in the network. However, the
location of the other nodes or their transmission radii are not known.

It is of our particular interest to analyze radio communication in ad hoc sen-
sor networks. Ad hoc sensor networks are often modeled by the so called G(n, r)
random geometric graph model (e.g. [18,26,28]), i.e., n vertices with radius r are

214 R. Elsässer, L. G ↪asieniec, and T. Sauerwald

placed within [0,
√

n]2 uniformly at random1, and two nodes are connected by
an edge in the resulting graph iff their Euclidean distance is smaller than r. This
simple model of radio network is applicable to wireless networks where similar
stations are randomly distributed in a flat region without large obstacles. In such
a terrain, the signal of a transmitter reaches receivers at the same distance in all
directions.

In this paper we consider radio broadcasting in two different types of random
geometric networks. Due to simplicity reasons, we assume that n points are dis-
tributed uniformly at random within [0,

√
n]2, however, the radii of the nodes

may vary according to a power law distribution, i.e., a node is assigned a trans-
mission radius larger than some value r with probability proportional to r1−α,
where α ∈ (1, 3) is a fixed constant. Similar graph models are known to have
improved fault tolerance [22] and (as we show in this paper) these networks al-
low very fast broadcasting, in fact exponentially faster than G(n, r) graphs with
polylogarithmic transmission radii, while maintaining almost the same average
energy consumption parameters as the corresponding G(n, r) model. We should
note that the graphs considered in this paper are not necessarily undirected,
since a node u with large radius may contain some node v with smaller radius
in its range, and thus u might fall outside the range of v. A precise definition of
the graph models considered in this paper can be found in Section 1.3.

1.2 Related Work

The broadcasting problem has attracted a great deal of attention in the context
of radio networks with an arbitrary topology. For networks with linearly bounded
labels, in which the nodes do not possess any global knowledge about the topol-
ogy of the network, the trivial O(n2) upper bound on deterministic broadcasting
was first improved by Chlebus et al. [6] to O(n11/6). The subsequent improve-
ments included an Õ(n5/3) time algorithm proposed by De Marco and Pelc [12],
an O(n3/2) time algorithm proposed by Chlebus et al. [5], and an O(n log2 n)
time algorithm developed by Chrobak et al. [7]. Clementi et al. [9] presented
a deterministic broadcasting algorithm for ad-hoc radio networks which works
in time Õ(DΔ), where D is the diameter of the network (the number of edges
on the longest shortest path) and Δ is the maximum in-degree of a node. The
O(n log2 n) and Õ(DΔ) algorithms, presented in [7] and [9], respectively, can eas-
ily be adapted for polynomially bounded node labels. Brusci and Del Pinto [2]
showed that for any deterministic broadcasting algorithm A in ad-hoc radio net-
works, there are networks on which A requires Ω(n log n) time. Later, Czumaj
and Rytter proposed a randomized algorithm which achieves with high proba-
bility linear broadcasting time on arbitrary networks [10]. Under the assumption
that the network diameter is known, they presented a broadcasting algorithm
which has a running time of O(D log(n/D) + log2 n). Independently, Kowalski
and Pelc introduced a similar algorithm with the same running time [24].

1 In the general model the vertices are placed in [0, 1]d for some d > 0, however, in
this paper we only consider placement of n points on the plane [0,

√
n]2.

On Radio Broadcasting in Random Geometric Graphs 215

In the model where the network topology is known to all nodes in advance
Gaber and Mansour [17] proposed a centralized broadcasting procedure complet-
ing the task in time O(D + log5 n). Elkin and Kortsarz improved this bound to
D+O(log4 n) in general graphs and to D+O(log3 n) in planar graphs [14]. G ↪asie-
niec et al. proposed an alternative solution with times D + O(log3 n) and O(D)
respectively [20]. Very recently, the constructive upper bounds w.r.t. broad-
casting in general graphs have been improved to D + O(log3 n/ log log n) and
O(D + log2 n) in [8] and [25], respectively. Note that computing an optimal
(radio) broadcast schedule for an arbitrary network is NP-hard [4,31].

In [15] the authors considered radio broadcasting in the traditional Erdős-
Rényi random graph model. In this model, given a set of n nodes a graph Gn,p is
constructed by letting any two pair of vertices be connected with probability p,
independently. They presented centralized as well as fully distributed procedures
for the broadcasting problem in such graphs, and showed that these algorithms
are asymptotically optimal. In [1] Berenbrink et al. considered efficient radio
broadcasting algorithms w.r.t. running time and energy consumption in these
types of random graphs.

In [13] Dessmark and Pelc analyzed radio broadcasting in geometric networks.
They showed that if each node knows its neighbors, then broadcasting can be
performed in O(D) steps. If each node knows only its own position, then broad-
casting can be performed in O(n) steps, and, if the nodes are not able to detect
collisions, this result cannot be improved.

In [16] Emek et al. considered the broadcasting problem in geometric graphs
in which each node has the same transmission radius (UDG model). They deter-
mined the broadcasting time depending on the diameter D and the granularity
g, which is the inverse of the minimum distance between any two nodes. First,
it was shown that if the nodes other than the source are initially idle and can-
not transmit until they hear a message for the first time, then broadcasting can
be accomplished in time O(Dg). For the case, in which all nodes may transmit
messages from the beginning, an optimal broadcasting algorithm with running
time O(min{D + g2, D log g}) was presented.

Radio communication in the G(n, r) model has been analyzed by Lotker and
Navarra in [27]. In order to cope with radio broadcasting or gossiping on the
G(n, r) graph, these problems have first been solved on the grid. Then, Lotker
and Navarra emulated the corresponding grid protocol on the G(n, r) model, and
obtained asymptotically optimal algorithms for the broadcasting and gossiping
problem. That is, if r = Ω(

√
log n), then the time needed to spread a message is

O(D), with high probability, where D = Θ(
√

n/r) is the diameter of the graph,
with probability 1 − o(1).

Recently, Czumaj and Wang considered radio gossiping under different locality
assumptions in the G(n, r) graph and generalized the results mentioned before
[11]. However, these algorithms cannot be extended to random geometric graphs
in which the distribution of the transmission radii varies according to some (e.g.
power law) distribution.

216 R. Elsässer, L. G ↪asieniec, and T. Sauerwald

1.3 Our Results

In this paper, we consider distributed radio broadcasting algorithms in random
geometric graphs in which the transmitting radii of the nodes vary according to a
power law distribution. More precisely, we consider the following graph models:

1. Let n vertices be placed uniformly at random within [0,
√

n]2. In this case,
a node is assigned transmission radius r > rmin according to the probability
density function ρ(r) = (α−1)rα−1

min r−α, independently, where α ∈ (1, 3) is a
constant and rmin > δ

√
log n with δ being a (large) constant. In the resulting

graph G≥rmin a node v is in the range of a node u if the Euclidean distance
between u and v is smaller than the radius of u. The choice of δ implies that
the graph is strongly connected with very high probability2 (e.g. [29]).

2. Let n vertices be placed uniformly at random within [0,
√

n]2. Here, a node
is assigned radius r > c according to the probability density function ρ(r) =
(α−1)cα−1r−α, independently, where c is some (large) constant. The ranges
of the nodes in the resulting graph G≥c are defined by the same rules as in
the previous model.

Throughout this paper we assume full synchronization, i.e., all nodes share a
global clock. In the first model, the graph is (strongly) connected w.v.h.p. [29].
In the second model, the graph has a strongly connected giant component con-
taining Θ(n) vertices, w.v.h.p. [30]. We develop for the graph model G≥rmin an ef-
ficient randomized broadcasting algorithm3 which is able to distribute a message,
placed initially in one of the nodes of the graph, to all nodes within O(log log n)
steps. Concerning the G≥c model, we show that any message placed initially
in one of the nodes of the giant component of the graph can be distributed to
all nodes within O(D(G≥c)(log log n)2) steps, w.v.h.p., where D(G≥c) denotes
the diameter of the giant component of the graph. Notice that the nodes of the
giant component can reach any node in the graph within O(D) steps, w.v.h.p.
(cf. Section 3).

A main implication of our results is that by setting the transmission radii in
a set of nodes placed uniformly at random in the plane according to a power law
distribution, we obtain a radio network which supports very fast broadcasting
by keeping the energy consumption almost as low as in a G(n, r) graph with
the same average transmission radius. More precisely, in a graph G(n, r) with
r = logc′ n, where c′ > 1/2, a message is broadcasted to all nodes of the graph
within Θ̃(

√
n) steps, w.h.p., where Θ̃ is the Θ-function omitting polylogarithmic

terms [13]. The total energy consumption needed for transmission during the
broadcasting process is Θ̃(n). In the G≥rmin graph with rmin = logc′ n, where
c′ > 1/2, a message can be broadcasted within Θ(log log n) steps, w.h.p., while
the total energy consumption and the average transmission radius remain almost
the same as in the corresponding G(n, r) graph.
2 When we write “with very high probability” or “w.v.h.p.”, we mean with probability

1 − o(n−1).
3 The running time of this algorithm is guaranteed with high probability. “With high

probability” or “w.h.p.” means with probability 1 − o(1).

On Radio Broadcasting in Random Geometric Graphs 217

2 Broadcasting in G≥rmin

In this section, we consider the geometric random graph model G≥rmin = (V, E)
defined in the previous section. In this graph, a vertex u has an outgoing edge
to a vertex v in G≥rmin iff the corresponding Euclidean distance is smaller than
the radius assigned to u. We assume that rmin ≥ δ

√
log n, where δ is a large

constant. Then, G≥rmin is connected with very high probability [30]. In the
rest of the paper S((x, y), (x′, y′)) denotes the rectangle delimited by the points
(x, y), (x, y′), (x′, y), and (x′, y′), where 0 ≤ x ≤ x′ ≤ √

n and 0 ≤ y ≤ y′ ≤ √
n.

The distance between two nodes (x, y) and (x′, y′) means the Euclidean distance
between them and is denoted by dist((x, y), (x′, y′)). The number of hops from
a node u to a node v represents the length of a shortest path from u to v in the
resulting graph. The set of points in [0,

√
n]2 lying within the transmission radius

of at least one of the nodes of some subset S ⊆ V is called the area covered by
S. In the sequel (x0, y0) represents the node in which the message which has to
be spread to all nodes is placed at time 0.

In order to show that a message can efficiently be spread to all nodes of such
a graph, we first state the following proposition.

Proposition 1. In a graph G≥rmin (or G≥c) there are Ω(n/rα−1) nodes with
radius at least r, with probability 1 − o(n−2), for any r ≥ rmin (or r ≥ c).

Proof. We know that in this graph a node has been assigned radius r according
to the probability density function ρ(r) = (α − 1)rminr−α, independently of
all other nodes. This implies that a node has radius larger than some r with
probability

∫ ∞
r

(α − 1)rα−1
min x−αdx = rα−1

min r−(α−1). Hence, using the Chernoff
bounds [3,21] we conclude that there are less than εn/rα−1 nodes, which have
radius at least r, with probability at most

n∑
i=n−εn/rα−1

(n

i

)(
1 −

(rmin

r

)α−1
)i (rmin

r

)(α−1)(n−i)

≤
(

1 − (rmin/r)α−1

1 − ε/rα−1

)n(1−ε/rα−1) (
(rmin/r)α−1

ε/rα−1

)nε/rα−1

(1)

=
(

1 − rα−1
min − ε

rα−1 − ε

)n(1−ε/rα−1) (
rα−1
min

ε

)nε/rα−1

which equals o(n−2) whenever rmin = Ω(1) and ε is small enough. ��

Proposition 1 implies that in a graph G≥rmin there are Ω(1) nodes with radius
at least 2

√
n, with probability 1 − o(n−2). We should note that in the case of

G≥c we may replace Ω by Θ in the statement of Proposition 1.
Now we consider broadcasting in the G≥rmin graph. Here, we only consider the

case rmin < 2logε n, where ε may be any constant smaller than 1, and show that
for these graphs broadcasting can be performed in time O(D(G≥rmin)), w.h.p.,
where D(G≥rmin) denotes the diameter of the graph. The same results can also

218 R. Elsässer, L. G ↪asieniec, and T. Sauerwald

be shown for any G≥rmin with rmin = no(1), however, the case rmin > 2logε n

for any ε < 1 would require an elaborate case analysis which is omitted in this
extended abstract.

Now we concentrate on a lower bound on the diameter of G≥rmin .

Theorem 1. If rmin < 2logε n for some constant ε < 1, then the diameter of
G≥rmin is Ω(log log n), w.v.h.p.

The proof of this theorem is omitted due to space limitations. Intuitively, with
some constant probability a node v with radius rv can only reach nodes with
radius at most r

Θ(1)
v , and hence, there is a node with radius rmin which needs at

least Ω(log log n) hops to reach a node with radius Θ(
√

n), w.v.h.p.
Now we show that there exists an optimal distributed broadcasting algorithm

in G≥rmin . The idea behind the algorithm is that, with sufficient probability,
each node u has an edge to a node v with a somewhat larger radius. Among the
several such nodes v, one can be selected by having all such nodes v reply with
a probability inversely proportional to their expected number, after which the
chosen node can replace u and repeat the procedure. Then, after O(log log n)
steps, the broadcast message reaches a node with an edge to every other node.
A precise description of the algorithm is given in the next two paragraphs.

Let (x0, y0) denote the vertex which has the broadcast message at the be-
ginning and assume that its radius r0 is smaller than log3 n. In the first round
this node transmits the message, and its transmission range r0, together with a
control bit set to 1. The succeeding rounds consist of several steps. In the second
round the informed nodes which have their radii in the range [3r0, 6r0] transmit
in each odd step with probability 1/(rα−1

min r3−α
0) a control bit set to 0. If in some

odd step (x0, y0) receives the control bit, i.e., exactly one of the informed nodes
with the properties described above was transmitting, then (x0, y0) sends in the
next (even) step a control bit set to 1. In the next even step the node that sent
the control bit, received by (x0, y0) three steps before, transmits the message
and its transmission range r1, together with the control bit set to 1.

Generally, in some round i > 1 we consider two cases. If the radius ri−2

of the node (xi−2, yi−2) is smaller than log4/ε n, where ε < 6 − 2α is some
constant, then in each odd step of this round, the nodes which received the
message in the last step of round i − 1 from the node (xi−2, yi−2) and have
their radius in the range [3ri−2, 6ri−2] transmit with probability 1/(rα−1

min r3−α
i−2)

a control bit set to 0. If ri−2 > log4/ε n, then the nodes which received the
message in the last step of round i− 1 from the node (xi−2, yi−2) and have their
radius in the range [r(4−ε)/(2(α−1))

i−2 , 2r
(4−ε)/(2(α−1))
i−2] transmit with probability

1/(rε/2
i−2r

α−1
min) the control bit set to 0. In both cases if in some odd step the

node (xi−2, yi−2) receives the control bit, i.e., only one of the nodes in its range
with the properties described above has sent a message in the most recent step,
then (xi−2, yi−2) transmits in the next (even) step the control bit set to 1. In
the following even step, the single node which transmitted the control bit three
steps before transmists the message and its transmission range ri−1, together

On Radio Broadcasting in Random Geometric Graphs 219

with the control bit set to 1. This transmitting node is denoted after this step
by (xi−1, yi−1), and round i + 1 begins.

Theorem 2. Let G≥rmin be the graph defined at the beginning of this section,
where rmin ≥ δ

√
log n. Furthermore, let a message be placed in one of the nodes of

G≥rmin . Then, the randomized distributed radio broadcasting algorithm described
above spreads the message to all nodes of G≥rmin in O(log log n) steps, w.h.p.

Proof. In order to show that the algorithm described above informs a node with
radius 2

√
n within O(log log n) rounds, w.h.p., we first prove that any node with

some radius r ∈ [δ
√

log n, log4/ε n] reaches Θ(rα−1
min r3−α) nodes which have their

radii in [3r, 6r], w.v.h.p. As in the proof of Proposition 1, we can show that a node
has its radius in the range [3r, 6r] with probability

∫ 6r

3r
(α−1)rminx

−αdx = (6α−1−
3α−1)/18α−1 · rminr−(α−1), independently. Applying now the Chernoff bounds
[3,21] we obtain that with probability 1−o(n−2) there are Θ(nrα−1

min r−(α−1)) nodes
which have their radii in the range [3r, 6r]. These nodes fall into the range of a
fixed node with radius r with probability πr2/n, independently. Hence, the Cher-
noff bounds imply that there are Θ(rα−1

min r3−α) nodes in the range of a fixed node
with radius r, w.v.h.p., whenever δ is large enough.

Next we show that any node with radius r ≥ log4/ε n reaches Θ(rε/2rα−1
min)

nodes which have their radii in [r(4−ε)/(2(α−1)), 2r(4−ε)/(2(α−1))], w.v.h.p. As be-
fore, we conclude that there are Θ(nrα−1

min r−(4−ε)/2) nodes which have their radii
in the range [r(4−ε)/(2(α−1)), 2r(4−ε)/(2(α−1))], w.v.h.p. Since any node falls into
the range of a fixed node with radius r with probability πr2/n (we ignore border
effects), independently, applying the Chernoff bounds we obtain that there are
Θ(rα−1

min rε/2) nodes in the range of a fixed node with radius r, w.v.h.p. Combin-
ing the results of the previous two paragraphs, we conclude that the diameter of
G≥rmin is O(log log n).

In order to conclude the proof, let Xi,j be a random variable which is 1 if in
the jth odd step of the ith round only one node transmits the control bit set to
0, and 0 otherwise. Furthermore, let Ai,j denote the event that E[Xi,j] = Θ(1).
Then, due to the choice of the nodes, Pr[Xi,j |Ai,j] = Θ(1) for any i, j. We denote
by Yl a random variable which is 1 if exactly one node transmits the control bit
set to 0 in the lth odd step (the odd steps are now counted over the whole
time period), and Al is the event that E[Xl] = Θ(1). We are looking now for
some T such that Pr[

∑T
l=1 Yl ≥ φ · D(G≥rmin)| ∪T

i=1 Al] = 1 − o(1/D(G≥rmin)),
where D(G≥rmin) is the diameter of G≥rmin and φ is some (large) constant. Since
Pr[Yl = 1|Al] = Ω(1), independently, we can use the Chernoff bounds [3,21],
and obtain that T = Θ(log log n). Since Al occurs with very high probability,
applying the Union bound over O(log log n) steps we obtain that a node with
radius at least 2

√
n gets the message within O(log log n) steps, w.h.p. Such a node

node transmits the message alone in a time step with constant probability. This
implies that within additional O(log log n) steps all nodes receive the message,
w.h.p., and the theorem follows. ��
Applying similar arguments as in the previous proof, one can show that if the al-
gorithm presented above is run for O(log n) steps, one can disseminate a message

220 R. Elsässer, L. G ↪asieniec, and T. Sauerwald

to all nodes of G≥rmin with very high probability (instead of probability 1−o(1)).
Using the so called echo procedure from [23], we can derandomize the algorithm
described in the proof of Theorem 2 (as well as the algorithm described in Theo-
rem 5), and obtain the same results as before. The result of Theorem 2 can also
be extended to random geometric graphs obtained from a homogeneous Pois-
son point process with some intensity which exceeds the connectivity threshold
value. Please refer to [30] for details.

3 Broadcasting in G≥c

In this section we consider the G≥c model defined in the introduction. Due to the
choice of c, this graph is not necessarily strongly connected, however, it contains
a strongly connected giant component of size Θ(n), w.v.h.p. [30]. Then, we can
state the following theorem.

Theorem 3. If q2 = 1/(3 − α), then the diameter of the giant component in
G≥c is O(log2q2 n), w.v.h.p.

Proof. In this proof we only show (due to simplicity reasons) that for any (slow-
growing) function f(n) ∈ [ω(1), O(log log n)] the diameter of the giant compo-
nent of G≥c is O(f(n) log2q2 n). To simplify the analysis, let the graph G≥c be
constructed in two steps. First, construct a graph G′

c by placing the nodes with
radius r ≤ f2/5(n) logq2 n in [0,

√
n]2, uniformly at random. In a second step,

place the remaining nodes and obtain the graph G≥c.
Let u be a node of G′

c, and let v be another node which is f(n) log2q2 n hops
away from u in G′

c (whenever such a node exists). Furthermore, let P (u, v) =
(u, u1, u2, . . . , uf(n) log2q2 n−1, v) denote a shortest path between u and v in G′

c.
We show in the following that the nodes u1, . . . , uf(n) log2q2 n−1 cover an area of
Ω(f(n) log2q2 n).

Assume for simplicity that
√

n is an integer, c is even, and c/2 divides
√

n.
Let C(i, j) denote the square S((ic/2, jc/2), ((i + 1)c/2, (j + 1)c/2)). Now we
show that any such square contains at most two nodes which lie on P (u, v). Let
us assume that there is some square C(i, j) which contains three nodes us1 , us2 ,
and us3 lying on P (u, v). Since the diameter of C(i, j) is

√
2c/2 < c every node

in this square reaches any other node within C(i, j). Then, us1 has us2 and us3

in its range, and P ′(u, v) = (u, . . . us1 , us3 , us3+1, . . . , v) is a valid path from u
to v. Since |P ′(u, v)| < |P (u, v)|, P (u, v) cannot be a shortest path from u to v,
which contradicts our assumption. Summarizing, the nodes of P (u, v) cover an
area of at least f(n) log2q2 nc2/8.

According to Proposition 1 there are Ω(n/(f2/5(n) logq2 n)α−1) with radius
larger than f2/5(n) logq2 n, with probability 1 − o(n−2). Given that there are
Ω(n/(f2/5(n) logq2 n)α−1) nodes with radius larger than f2/5(n) logq2 n in G≥c,
the area covered by P (u, v) contains no node having radius r > f2/5(n) logq2 n
with probability(

1 − Ω(f(n) log2q2 n)
n

)Ω

„
n

(f2/5(n) logq2 n)α−1

«
≤ o(e−Ω(5

√
f(n) log n)) ≤ o(n−3).

On Radio Broadcasting in Random Geometric Graphs 221

Therefore, there is some node with radius r > f2/5(n) logq2 n placed in the area
covered by P (u, v) with probability 1 − o(n−3). This implies that u reaches a
node which has radius larger than f2/5(n) logq2 n in O(f(n) log2q2 n) steps, with
probability 1− o(n−3). Applying now the Union bound over all nodes of G′

c, we
conclude that all nodes, which are connected to some other node via f(n) log2q2 n
hops, can reach a node with radius larger than f2/5(n) logq2 n in O(f(n) log2q2 n)
steps, with probability 1 − o(n−2). If for some node w isn’t any node w′ at
f(n) log2q2 n hops from w in G′

c, but w is in the giant component of G≥c, then w
must reach a node with radius r > f2/5(n) logq2 n in O(f(n) log2q2 n) hops. This
holds since w reaches every node in its strong component in G′

c within less than
O(f(n) log2q2 n) hops, and this component joins the giant component of G≥c via
a node of G≥c \ G′

c. According to the definition of G′
c, a node of G≥c \ G′

c has
radius larger than f2/5(n) logq2 n.

Now we show that in the range of any node which has radius r>f2/5(n) logq2 n
there is at least one node with radius larger than

f1/5(n) logq2 n · (r/(f1/5(n) logq2 n))1+(3−α)/(α−1),

with probability 1 − o(n−2). Given that there are Ω(n/rα−1) nodes which have
radii larger than r, there is no node with a radius larger than f1/5(n) logq2 n ·
(r/(f1/5(n) logq2 n))1+(3−α)/(α−1) in the range of a node having radius r with
probability

(
1 − πr2

n

)Ω

0
BBBB@ n0
B@f1/5(n) logq2 n

r

f1/5(n) logq2 n

!1+ 3−α
α−1

1
CA

α−1

1
CCCCA

≤ e−ω(log n) = o(n−3).

We conclude by applying the Union bound over all nodes with radius larger than
f2/5(n) logq2 n. Iterating this procedure O(log n) times we obtain that one can
reach a node with radius 2

√
n within O(log n) additional hops.

Summarizing, any node of the giant component reaches within O(f(n) log2q2 n)
hops a node with radius 2

√
n, w.v.h.p., and the theorem follows. ��

We might ask whether the upper bound given in Theorem 3 is asymptotically
tight. A related open question was formulated in [30] about the second largest
component in G≥c, namely whether the second largest component of the tradi-
tional G(n, r) model with r = c is of size Θ(log2 n). Concerning the diameter of
the giant component in G≥c we can only prove a lower bound of Ω(log n).

Theorem 4. The diameter of the giant component of G≥c is Ω(log n), w.v.h.p.

The proof of this theorem uses similar techniques as Theorem 3. Due to lack of
space, we do not prove Theorem 4 here.

The results of Theorems 3 and 4 can be extended to further random geometric
graph models. Consider for example the graph G≥c, in which we enlarge the
radius of a node in any strongly connected component so that the graph becomes

222 R. Elsässer, L. G ↪asieniec, and T. Sauerwald

G≥c

t = 1 O(D(G≥c))
s = 1 1024(c log log n)2

v = (x′, y′)
s′ ← (s − 1) − ((s − 1) mod 256c2)

i′ − 1 ← s′
256c2

mod 2 log log n

i − 1 ← 1
2 log log n

· (s′
256c2

− (i′ − 1))

j ← �(x′ mod (4ci′+1))/(ci′/4)�
j′ ← �(y′ mod (4ci′+1))/(ci′/4)�

r′(v) ∈ [ci′ , ci′+1] j = � s−1
16c

� mod 16c j′ = (s−1) mod 16c

v 1
ci

Fig. 1. Algorithm used in the proof of Theorem 5. Here r′(v) denotes the transmission
radius of node v.

strongly connected. Another model is the extension of the point Poisson process
on [0,

√
n]2 with intensity c, whereas the radii are distributed as in the G≥c

model. In all these models it is possible to broadcast any message, placed initially
in one of the nodes of the giant component, to all nodes of the graph within
O(log2/(3−α) n) steps, w.v.h.p.

Before we start with the analysis of radio broadcasting in G≥c we first give
a high level description of our broadcasting algorithm. The algorithm consists
of two main phases. In the first phase (cf. Figure 1) the goal is to let the mes-
sage generated at a source node reach a node with radius larger than c2 log log n,
w.v.h.p. In the second phase the message reaches a node with radius 2

√
n,

w.v.h.p. The second phase performs similarly to the algorithm presented for
G≥rmin , and thus, we omit the analysis of this phase in the paper. For the first
phase, we show that the message traverses a shortest path from the source of the
message to a node with radius larger than c2 log log n, w.v.h.p. In order to ensure
that each node on this path transmits the message to the next node on the path,
the algorithm consists of O(D(G≥c)) phases, and each phase is executed over
O((log log n)2 time steps. During these time steps, each informed node of radius
r, where r ∈ [c, c2 log log n], transmits at least once with some probability in the
range [r3−α/c, cr3−α]. By ensuring that interferences can only occur if several
nodes lying in the same square Ii′,j,j′ (see Figure 2) transmit at the same time,
one can show that the message will traverse the shortest path mentioned above
within O(D(G≥c)) phases, w.v.h.p.

Formaly, the distributed algorithm that guarantees the running time given
in the theorem below consists of O(D(G≥c)) initial rounds. In each round we
have 1024(c log log n)2 steps. In step 256c2(2(i − 1) log log n + (i′ − 1)) + 16cj +
j′ + 1 with 1 ≤ i, i′ ≤ 2 log log n and 0 ≤ j, j′ ≤ 16c − 1 any informed node

On Radio Broadcasting in Random Geometric Graphs 223

I0,0
2

I16c−1,16c−1
2

I0,0
2

I0,0
2

I
0,0
1

I
0,1
1

I
0,0
1 I

0,0
1

I
0,0
1 I

0,0
1

I
0,1
1

I
0,1
1I

0,1
1

I
0,1
1

I
0,0
1

I
0,1
1

I
0,1
1

j

I
0,0
1

I
0,0
1

j′

I0,0
2

i′

I
0,1
1

Fig. 2. The nodes with radius in the range [ci′ , ci′+1] placed in the squares denoted by

Ij,j′
i′ transmit in step 256c2(2(i− 1) log log n + (i′ − 1)) + 16cj + j′ + 1 with probability

1/ci. The two planes consisting of the squares I∗,∗
1 and I∗,∗

2 , respectively, are both
embedded into [0,

√
n]2 and contain the same set of points. Here, we have drawn two

parallel planes for a better visualization.

(x′, y′) with radius r′ ∈ [ci′ , ci′+1] and j =
(x′ mod (4ci′+1))/(ci′/4)�, j′ =

(y′ mod (4ci′+1))/(ci′/4)� transmits with probability 1/ci (cf. Figure 1). For a
pseudo code of these O(D(G≥c)) initial rounds see Figure 1.

After these O(D(G≥c)) initial rounds we reach a node with a radius in the
range [c2 log log n, 2c2 log log n], and then we apply a similar procedure as in The-
orem 2. We only consider the first phase, which requires O(D(G≥c)(log log n)2)
steps. The second phase requires only O(log n) steps.

Now we state the main theorem of this section.

Theorem 5. Let G≥c be the graph defined at the beginning of this section, where
c is a large constant. Furthermore, let a message be placed in one of the nodes of
the giant component of G≥c. Then, the randomized distributed radio broadcasting
algorithm described above spreads the message to all nodes of G≥c (even to nodes
outside of the giant component) in O(D(G≥c)(log log n)2) steps, w.v.h.p., where
D(G≥c) denotes the diameter of the giant component of G≥c.

Proof. We show that within O(D(G≥c)(log log n)2) steps any (x, y) receives the
message, w.v.h.p. Obviously, two nodes (x1, y1) and (x2, y2) with radii r1, r2 ∈
[ci′ , ci′+1], where i′ ≤ 2 log log n, cannot produce an interference at any node
whenever
(x1 mod (4ci′+1))/(ci′/4)� �=
(x2 mod (4ci′+1))/(ci′/4)� or
(y1

mod (4ci′+1))/(ci′/4)��=
(y2 mod (4ci′+1))/(ci′/4)�. Let now P=(v0, v1, . . . , vk)

224 R. Elsässer, L. G ↪asieniec, and T. Sauerwald

be a shortest path from (x0, y0) = v0 to (x, y) = vk. We know that an informed
node transmits at most 2 log log n times in a round, each time with a different
probability. Let tq,i,l denote the time step in the lth round, in which vq transmits
with probability 1/ci. Furthermore, denote by Xq,i,l a random variable which is
1 if the message reaches vq+1 in step tq,i,l and 0 otherwise. Now, vq can produce
an interference with at most O(c(3−α)i′ + log n) other nodes, with probability
1− o(n−2), where the radius rq of vq is in the range [ci′ , ci′+1]. Thus, there is at
least one i such that Pr[Xq,i,l = 1 | vq is informed before round l] = Ω(1). Let
Yl = Xq,i,l, with q = maxq′{vq′ is informed before round l}, and let i be chosen
such that Pr[Xq,i,l = 1] = Ω(1). Then, Pr[Yl = 1] = Ω(1), independently. As in
the proof of Theorem 2 we can show that there is some T = O(|P |+ log n) such
that Pr[

∑T
l=1 Yl ≥ |P |] = 1−o(n−2). Since each round consists of O((log log n)2)

steps, (x, y) becomes informed within O((|P | + log n)(log log n)2) steps, with
probability 1 − o(n−2). Applying now the Union bound over all nodes of the
graph, we obtain that within O(D(G≥c)(log log n)2) steps a node with radius in
the range [c2 log log n, 2c2 log log n] receives the message. If now c is large enough,
using the same arguments as in the proof of Theorem 2 we conclude that within
additional O(log n) steps the message reaches any node of the graph, w.v.h.p.

��

As in the case of Theorem 2, the result of Theorem 5 can also be extended to
random geometric graphs obtained from a homogeneous Poisson process with a
corresponding intensity.

We know that a message, placed on one of the nodes of a G(n, r) graph, can be
spread to all other nodes within Θ̃(

√
n) steps [13,30], v.w.h.p., where r = logc′ n

with c′ ≥ 1/2 and Θ̃ is the Θ-fuction omitting polylogarithmic terms. The total
energy consumption needed for transmission during the broadcasting process in
the network is bounded by Θ̃(n). However, if we consider our results for α being a
constant in the range (2, 3), then we may perform broadcasting in time Θ̃(log n),
and the total energy consumption needed for transmissions is still bounded by
Θ̃(n). Moreover, the average transmission radius is asymptotically the same as
in the corresponding G(n, r) graph. Thus, our results imply that if we are given
n radio transmitters, and we are allowed to set the transmission radius of each of
these devices before they are placed uniformly at random in [0,

√
n]2, then we are

able to design a radio network, which supports broadcasting in (poly)logarithmic
time and keeps the energy consumption in the network very low. Furthermore,
our results can also be extended to the case when the transmission radii of the
nodes vary in time, independently, according to a power law distribution with
some exponent α ∈ (1, 3).

4 Conclusion

As described in the introduction, our main intention was to derive efficient algo-
rithms for radio broadcasting in wireless networks which are modeled by random
geometric graphs containing nodes with different transmission radii. The results

On Radio Broadcasting in Random Geometric Graphs 225

presented here can only be viewed as a first step in this direction, and there are
still several interesting open problems in this field which are worth to be ana-
lyzed. In the case of the G≥c model for example there is still a gap of logΘ(1) n
between the upper and lower bound w.r.t. the diameter of the giant component
of the graph, and it would be of great interest to close this gap. Another open
problem is whether it is possible to broadcast a piece of information in Gc within
O(D(G≥c)) steps.

References

1. Berenbrink, P., Cooper, C., Hu, Z.: Energy efficient randomised communication in
unknown adhoc networks. In: Proc. of 19th SPAA 2007, pp. 250–259 (2007)

2. Brusci, D., Pinto, M.D.: Lower bounds for the broadcast problem in mobile radio
networks. Distributed Computing 10(3), 129–135 (1997)

3. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Ann. Math. Stat. 23, 493–507 (1952)

4. Chlamtac, I., Kutten, S.: On broadcasting in radio networks - problem analysis and
protocol design. IEEE Transactions on Communications 33(12), 1240–1246 (1985)

5. Chlebus, B., Ga̧sieniec, L., Östlin, A., Robson, J.: Deterministic radio broadcasting.
In: Welzl, E., Montanari, U., Rolim, J. (eds.) ICALP 2000. LNCS, vol. 1853, pp.
717–728. Springer, Heidelberg (2000)

6. Chlebus, B., G ↪asieniec, L., Gibbons, A., Pelc, A., Rytter, W.: Deterministic broad-
casting in ad hoc radio networks. Distributed Computing 15(1), 27–38 (2002)

7. Chrobak, M., G ↪asieniec, L., Rytter, W.: Fast broadcasting and gossiping in radio
networks. Journal of Algorithms 43(2), 177–189 (2002)

8. Cicalese, F., Manne, F., Xin, Q.: Faster centralized communication in radio net-
works. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 339–348. Springer,
Heidelberg (2006)

9. Clementi, A., Monti, A., Silvestri, R.: Distributed broadcast in radio networks with
unknown topology. Theoretical Computer Science 302, 337–364 (2003)

10. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown
topology. Journal of Algorithms 60(2), 115–143 (2006)

11. Czumaj, A., Wang, X.: Fast messgae dissemination in random geometric ad-hoc
radio networks. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 220–231.
Springer, Heidelberg (2007)

12. De Marco, G., Pelc, A.: Faster broadcasting in unknown radio networks. Informa-
tion Processing Letters 79(2), 53–56 (2001)

13. Dessmark, A., Pelc, A.: Broadcasting in geometric radio networks. Journal of Dis-
crete Algorithms 5, 187–201 (2007)

14. Elkin, M., Kortsarz, G.: An improved algorithm for radio broadcast. ACM Trans-
actions on Algorithms 3(1) (2007)

15. Elsässer, R., G ↪asieniec, L.: Radio communication in random graphs. Journal of
Computer and Systems Sciences 72, 490–506 (2006)

16. Emek, Y., G ↪asieniec, L., Kantor, E., Pelc, A., Peleg, D., Su, C.: Broadcasting in
udg radio networks with unknown topology. In: Proc. of PODC 2007, pp. 195–204
(2007)

17. Gaber, I., Mansour, Y.: Centralized broadcast in multihop radio networks. Journal
of Algorithms 46(1), 1–20 (2003)

226 R. Elsässer, L. G ↪asieniec, and T. Sauerwald

18. Ganesan, D., Govindan, R., Shenker, S., Estrin, D.: Highly resilient, energy-efficient
multipath routing in wireless sensor networks. ACM SIGMOBILE Mobile Comput-
ing and Communication Review 5(4), 11–25 (2001)

19. G ↪asieniec, L., Pagourtzis, A., Potapov, I., Radzik, T.: Deterministic communication
in radio networks with large labels. Algorithmica 47(1), 97–117 (2007)

20. G ↪asieniec, L., Peleg, D., Xin, Q.: Faster communication in known topology radio
networks. Distributed Computing 19(4), 289–300 (2007)

21. Hagerup, T., Rüb, C.: A guided tour of Chernoff bounds. Information Processing
Letters 36(6), 305–308 (1990)

22. Ishizuka, M., Aida, M.: Achieving power-law placement in wireless sensor networks.
In: Proc. of ISADS 2005, pp. 661–666 (2005)

23. Kowalski, D., Pelc, A.: Time of deterministic broadcasting in radio networks with
local knowledge. SIAM Journal on Computing 33, 870–891 (2004)

24. Kowalski, D., Pelc, A.: Broadcasting in undirected ad hoc radio networks. Dis-
tributed Computing 18(1), 43–57 (2005)

25. Kowalski, D., Pelc, A.: Optimal deterministic broadcasting in known topology radio
networks. Distributed Computing 19(3), 183–195 (2007)

26. Krishnamachari, B., Wicker, S., Bejar, R., Pearlman, M.: Critical density thresh-
olds in distributed wireless networks. In: Communications, Information and Net-
work Security. Kluwer Academic Publishers, Dordrecht (2002)

27. Lotker, Z., Navarra, A.: Managing random sensor networks by means of grid em-
ulation. In: Boavida, F., Plagemann, T., Stiller, B., Westphal, C., Monteiro, E.
(eds.) NETWORKING 2006. LNCS, vol. 3976, pp. 856–867. Springer, Heidelberg
(2006)

28. Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.: Coverage prob-
lems in wireless ad-hoc sensor networks. In: Proc. of INFOCOM 2001, vol. 3, pp.
1380–1387 (2001)

29. Muthukrishnan, S., Pandurangan, G.: The bin-covering technique for thresholding
geometric graph properties. In: Proc. of 16th SODA 2005, pp. 989–998 (2005)

30. Penrose, M.: Random Geometric Graphs. Oxford Studies in Probability (2003)
31. Sen, A., Huson, M.L.: A new model for scheduling packet radio networks. In: Proc.

of INFOCOM 1996, pp. 1116–1124 (1996)

Ping Pong in Dangerous Graphs:

Optimal Black Hole Search with Pure Tokens

Paola Flocchini1, David Ilcinkas2, and Nicola Santoro3

1 SITE, University of Ottawa, Canada
flocchin@site.uottawa.ca

2 CNRS, Université de Bordeaux, France
david.ilcinkas@labri.fr

3 School of Computer Science, Carleton University, Canada
santoro@scs.carleton.ca

Abstract. We prove that, for the black hole search problem, the pure
token model is computationally as powerful as the whiteboard model;
furthermore the complexity is exactly the same. More precisely, we prove
that a team of two asynchronous agents, each endowed with a single iden-
tical pebble (that can be placed only on nodes, and with no more than
one pebble per node) can locate the black hole in an arbitrary network
of known topology; this can be done with Θ(n log n) moves, where n is
the number of nodes, even when the links are not FIFO.

Keywords: distributed computing, graph exploration, mobile agents,
autonomous robots, dangerous graphs.

1 Introduction

1.1 The Framework

Black Hole Search (Bhs) is the distributed problem in a networked system (mod-
eled as a simple edge-labelled graph G) of determining the location of a black
hole (Bh): a site where any incoming agent is destroyed without leaving any
detectable trace. The problem has to be solved by a team of identical system
agents injected into G from a safe site (the homebase). The team operates in
presence of an adversary that chooses e.g., the edge labels, the location of the
black hole, the delays, etc. The problem is solved if at least one agent survives
and all surviving agents know the location of the black hole (e.g., see [15]).

The practical interest of Bhs derives from the fact that a black hole can model
several types of faults, both hardware and software, and security threats arising
in networked systems supporting code mobility. For example, the crash failure of
a site in an asynchronous network turns such a site into a black hole; similarly,
the presence at a site of a malicious process (e.g., a virus) that thrashes any
incoming message (e.g., by classifying it as spam) also renders that site a black
hole. Clearly, in presence of such a harmful host, the first step must be to to
determine and report its location.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 227–241, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

228 P. Flocchini, D. Ilcinkas, and N. Santoro

From a theoretical point of view, the natural interest in the computational
and complexity aspects of this distributed problem is amplified by the fact that
it opens a new dimension in the classical graph exploration problem. In fact, the
black hole can be located only after all the nodes of the network but one have
been visited and are found to be safe; in this exploration process some agents
may disappear in the black hole. In other words, while the existing wide body of
literature on graph exploration (e.g., see [1, 2, 8, 9, 16, 17]) assumes that the graph
is safe, Bhs opens the research problems of the exploration of dangerous graphs.

Indeed Bhs has been studied in several settings, under a variety of assump-
tions on the power of the adversary and on the capabilities of the agents; e.g.,
on the level of synchronization of the agents; on whether or not the links are
FIFO; on the type of mechanisms available for inter agent communication and
coordination; on whether or not the agents have a map of the graph. In these
investigations, the research concern has been to determine under what condi-
tions and at what cost mobile agents can successfully accomplish this task. The
main complexity measures are the size of the team (i.e., the number of agents
employed) and the number of moves performed by the agents; sometimes also
time complexity is considered.

In this paper we are interested in the weakest settings that still make the
problem solvable. Thus we will make no assumptions on timing or delays, and
focus on the asynchronous setting. Indeed, while the research has also focused
on the synchronous case [5, 6, 7, 18, 19] where all agents are synchronized and
delays are unitary, the main body of the investigations has concentrated on the
asynchronous one (e.g., [4, 10, 11, 12, 13]).

1.2 The Quest and Its Difficulties

In the asynchronous setting, the majority of the investigations operate in the
whiteboard model: every node provides a shared space for the arriving agents
to read and write (in fair mutual exclusion). The whiteboard model is very
powerful: it endows the agents not only with direct and explicit communication
capabilities, but also with the means to overcome severe network limitations; in
particular, it allows the software designer to assume FIFO links (even when not
supported by the system). Additionally, whiteboards allow to break symmetry
among identical agents. Indeed, whiteboards (and even stronger inter-agent co-
ordination mechanisms) are supported by most existing mobile agent platforms
[3]. The theoretical quest, on the contrary, has been for the weakest interaction
mechanism allowing the problem to be solved.

A weaker and less demanding interaction mechanism is the one assumed by
the token model, used in the early investigations on (safe) graph exploration;
it is provided by identical pebbles (that can be placed on nodes, picked up and
carried by the agents) without any other form of marking or communication
(e.g., [2]).

The research quest is to determine if pebbles are computationally as powerful
as whiteboards with regards to Bhs. The importance of this quest goes beyond

Ping Pong in Dangerous Graphs 229

the specific problem, as it would shed some light on the relative computational
power of these two interaction mechanisms.

Two results have been established so far in this quest. In [10] it has been
shown that ∆ + 1 agents1 without a map (the minimum team size under these
conditions), each endowed with an identical pebble, can locate the black hole
with a (very high but) polynomial number of moves. In [13] it has been shown
that two agents with a map (the minimum team size under these conditions),
each endowed with a constant number of pebbles, can locate the black hole in
a ring network with Θ(n log n) moves, where n denotes the number of nodes in
the network.

Although they indicate that Bhs can be solved using pebbles instead of white-
boards, these results do not prove yet the computational equivalence for Bhs of
these two inter-agent coordination mechanisms. There are two main reasons for
this. The first main reason is that both results assume FIFO links; note that
the whiteboard model allows to work assuming FIFO links, but does not re-
quire them. Hence, the class of networks for which the results of [10, 13] apply
is smaller than that covered with whiteboards; also such an assumption is a
powerful computational help to any solution protocol. The second and equally
important reason is that these results are not established within the “pure” to-
ken model used in the traditional exploration problem. In fact, in [10, 13] the
agents are allowed to place pebbles not only on nodes but also on links (e.g.,
to indicate on which link it is departing); this gives immediately to a single to-
ken the computational power of O(log∆) bits of information. In [13], where the
network considered is only a ring, each agent has available several tokens, and
multiple tokens can be placed at the exact same place (node or link) to store
more than one bit of information.

1.3 Our Results

In this paper, we provide the first proof that indeed the pure token model is
computationally as powerful as the whiteboard model for Bhs.

The context we examine is the one of agents with a map in an arbitrary
graph. For this context we prove that: A team of two asynchronous agents, each
endowed with a single identical pebble (that can be placed only on nodes, and
at no more than one pebble per node) and a map of the graph can locate the
black hole with Θ(n log n) moves, even if the links are not FIFO.

In other words, for networks of known topology, using pure tokens it is possible
to obtain exactly the same optimal bounds for team size and number of moves
as using whiteboards.

Note that our result implies as a corollary an optimal solution for the white-
board model using only a single bit of shared memory per node; the existing
solution [11] requires a whiteboard of O(log n) bits at each node.

Our results are obtained using a new and (surprisingly) simple technique
called ping pong. In its bare form, this technique solves the problem but with

1 ∆ denotes the maximun node degree in G.

230 P. Flocchini, D. Ilcinkas, and N. Santoro

O(n2) moves. To obtain the optimal bound, the technique is enhanced by inte-
grating it with additional mechanisms, exploiting two ideas developed in previous
investigations: “split work” [12], and “distance counting” [13]. The mechanisms
that we have developed use a variety of novel not-trivial techniques, and are
the first to overcome the severe limitation imposed by the lack of the FIFO as-
sumption (available instead in all previous investigations with whiteboards or
tokens).

The paper is organized as follows. We first present our techniques, prove their
properties and analyze their complexity in the case of ring networks (Section 3).
Then, in Section 4, we show how to modify and enhance those techniques so to
obtain the same bounds also in the case of arbitrary graphs.

Due to space limitations, some proofs and the code of the algorithms are
omitted; the interested reader can find them in [14].

2 Terminology and Definitions

Let G = (V,E) be a simple biconnected2 graph with n = |V | nodes. At each
node x, there is a distinct label from a totally ordered set associated to each of
its incident links. We shall denote by (G, λ) the resulting edge-labelled graph.

Operating in (G, λ) is a team of identical autonomous mobile agents (or
robots). All agents enter the system from the same node, called homebase.
The agents have computing capabilities, computational storage (polynomially
bounded by the size of the graph), and a map of (G, λ) with the indication of
the homebase; they can move from node to neighbouring node, and obey the
same set of behavioral rules (the algorithm). Every agent has a pebble; all peb-
bles are identical. A pebble can be carried, put down at a node if no other pebble
is already there, and picked up from a node by an agent without pebbles.

When an agent enters a node, it can see if there is a pebble dropped there; it
might be however unable to see other agents there or to determine whether they
are carrying a pebble with them.

The system is asynchronous in the sense that (i) each agent can enter the
system at an arbitrary time; (ii) traveling to a node other than the black hole
takes a finite but otherwise unpredictable amount of time; and (iii) an agent
might be idle at a node for a finite but unpredictable amount of time. The
basic computational step of an agent (executed either when the agent arrives
to a node, or upon wake-up) is to look for the presence of a pebble, drop or
pick up the pebble if wanted, and leave the node through some chosen port (or
terminate). The whole computational step is performed in local mutual exclusion
as an atomic action, i.e. as if it took no time to execute it. Links are not FIFO:
two agents moving on the same link in the same direction at the same time might
arrive at destination in an arbitrary order.

To simplify the model, we can assume without loss of generality that the
transition between two states of the agent at a node plus the corresponding
move are instantaneous. In other words, the waiting due to asynchrony only
2 Note that biconnectivity is necessary for Bhs to be solvable [11].

Ping Pong in Dangerous Graphs 231

occurs after the move of the agent. Furthermore we can assume that also the
actions of agents at different nodes occur at different instants.

A black hole is a node that destroys any incoming agent; no observable trace
of such a destruction will be evident to the other agents. The location of the
black hole is unknown to the agents. The Black Hole Search problem is to find
the location of the black hole. More precisely, the problem is solved if at least
one agent survives, and all surviving agents know the location of the black hole.

The two measures of complexity of a solution protocol are the number of
agents used to locate the black hole and the total number of moves performed
by the agents.

3 Black Hole Search in Rings

3.1 Preliminaries

Without loss of generality, we can assume that the clockwise direction is the
same for both agents: for example, the direction implied by the link with the
smallest label at the homebase. In the following, going right (resp. left) means
going in the clockwise (resp. counterclockwise) direction. An agent exploring to
the right (resp. left) is said to be a right (resp. left) agent. Using this definition,
an agent changes role if it was a left agent and becomes a right agent or vice
versa. For i ≥ 0, the node at distance i to the right, resp. to the left, of the home
base will be called node i, resp. node -i. Hence node i and i − n represent the
same node, for 0 ≤ i ≤ n.

In the algorithm the agents obey the two following metarules:

1. An agent always ensures that a pebble is lying at u before traversing an
unknown edge {u, v} from u to v (i.e. an edge that it does not know to be safe).
2. An agent never traverses an unknown edge {u, v} from u to v if a pebble lies
at u and the pebble was not dropped there by this agent.

These metarules imply that the two agents never enter the black hole from
the same edge. Moreover, each agent keeps track of its progress by storing the
number of the most-right, resp. most-left, node in a variable Last Right, resp.
Last Left, used to detect termination: when only one node remains unexplored,
this node is the black hole and the agent can stop.

A (right) agent is said to traverse an edge {u, v} from u to v using cautious walk
if it has one pebble, it drops it at u, traverses the edge (in state Explore-Right),
comes back to u (in state Pick-Up-Right), retrieves the pebble and goes again
to v (in state Ping-Right). A (left) agent is said to traverse an edge {u, v} from
u to v using double cautious walk if it has one pebble and the other is at u, it
goes to v (in state Explore-Left) carrying one pebble, the other pebble staying
at u, drops the pebble at node v, comes back to u (in state Pick-Up-Left),
retrieves the other pebble and goes again to v (in state Ping-Left). We will see
later that double cautious walk is employed only by left agents. Note that these
two cautious explorations obey the first metarule.

232 P. Flocchini, D. Ilcinkas, and N. Santoro

3.2 The Algorithm

Our algorithm is based on a novel coordination and interaction technique for
agents using simple tokens, Ping-Pong. The idea at the basis of this technique
is the following: one agent explores the “right” side and one the “left” side (the
side assigned to an agent changes dynamically, due to the non-FIFO nature of
the links). However, only one agent at a time is allowed to explore; the agent
willing to do so must first “steal” the pebble of the other, and then can proceed to
explore its allowed side. When an agent discovers that its pebble has been stolen,
it goes to find it and steal the other pebble as well. This generate a “ping-pong”
movements of the agents on the ring. The actual Ping-Pong technique based
on this idea must however take into account the non-FIFO nature of the links,
which creates a large variety of additional situations and scenarios (e.g., an agent
moving to steal the pebble of the other, might “jump over” the other agent).

Algorithm EnhancedPingPong is divided in two phases, each one further di-
vided into stages. The first phase is the Ping-Pong technique. The second phase,
whose function is to ensure that the costs are kept low, in some cases may not
be executed at all. Inside a phase, a stage is a maximal period during which no
agent changes role.

In the first phase, exploration to the right is always done using cautious walk,
while exploration to the left is always done using double cautious walk (i.e.,
after stealing a pebble). Note that, since an agent exploring to the right uses one
pebble and an agent exploring to the left uses two pebbles, the agents cannot
make progress simultaneously in two different directions because there are only
two pebbles in total. This also implies that while an agent is exploring new nodes
it knows all the nodes that have already been explored, as well as the position
of the only unexplored node where the other agent possibly died. This prevents
the agents from exploring the same node and thus from dying in the black hole
from two different directions.

Phase 1. Initially both agents explore to the right. Since links are not FIFO,
an agent may pass the other and take the lead without any of the two noticing
it. Nevertheless, it eventually happens that one agent L finds the pebble of the
other agent R, say at node p (at the latest it happens when one agent locates
or dies in the black hole). When this happens L drops its pebble at node p− 1
(if its pebble is not already there) and steals R’s pebble. Having control on the
two pebbles, L starts to explore left using double cautious walk. The stage has
now an even number. When/if R comes back to p to retrieve its pebble, it does
not find it. It then goes left in state Pong-Right until it finds a pebble. Agent
R does eventually find a pebble because at the beginning of the stage there is
a pebble at its left (at node p− 1), and Agent L never removes a pebble before
putting the other pebble further to the left. At this point R retrieves the pebble
and goes right again in state Ping-Right and explores to the right. When/if
L realizes that one of its pebble has been stolen, it changes role (and the stage
changes) and explores to the right using its remaining pebble. At this point, both
agents explore to the right. Again, one agent will find and steal the pebble of

Ping Pong in Dangerous Graphs 233

the other. To ensure progress in exploration, a right agent puts down its pebble
only when it reaches the last visited node to the right it knows (using its variable
Last Right). Consequently the stealing at the end of an odd stage always occurs
at least one node further to the right from two stages before. Hence the algorithm
of Phase 1 is in fact correct by itself but the number of moves can be Θ(n2) in
the worst case (one explored node every O(n) moves). To decrease the worst
case number of moves to O(n logn), the agents switch to Phase 2 as soon as at
least two nodes have been explored to the right.

Phase 2. Phase 2 uses the halving technique, based on an idea of [12], but
highly complicated by the absence of whiteboards and by the lack of FIFO.
The idea is to regularly divide the workload (the unexplored part) in two.
One agent has the left half to explore (using variable Goal Left), while the
second agent explores the right half (using variable Goal Right). These ex-
plorations are performed concurrently by using (simple) cautious walk (for a
right agent, in states Halving-Explore-Right, Halving-Pick-Up-Right and
Halving-Ping-Right). After finite time, exactly one agent finishes its part and
joins the other in exploring the other part, changing role and thus changing
the stage number. At some point, one agent A will see the other agent’s peb-
ble. A steals the pebble and moves it by one position to indicate a change of
stage to the second agent B. It then computes the new workload, divide it
into two parts (using the function Update Goal Left or Update Goal Right),
and goes and explores its newly assigned part, changing role again by switching
to state Halving-From-Left-To-Right or Halving-From-Right-To-Left. This
can happen several times (if B remains blocked by the asynchronous adversary
or if it is dead in the black hole). When/if agent B comes back to retrieve its
pebble, it does not find it. It further goes back to retrieve its pebble in state
Halving-Pong-Right (if it is a right agent). The number of moves it has to per-
form to find the pebble indicates how many halvings (pair of stages) it misses.
Knowing that, it can compute what is the current unexplored part and what is
its current workload. It then starts to explore its part. Since there are at most
O(log n) stages of O(n) moves each, this leads to a total number of moves of
O(n log n).

The algorithm starts with a few stages of Phase 1 because Phase 2 needs some
safe nodes to put the pebble that is used as a message to indicate the current
partition of the workload.

Several other technical details and precautions have to be taken because of
asynchrony and lack of FIFO. Due to space restrictions, the code describing all
the details of the state transitions can be found in [14].

3.3 Correctness and Complexity

As explained before the algorithm consists of up to two phases. The first one cor-
responds to the case where both agents are in one of the eight states Ping-Right,
Ping-Left, Explore-Right, Explore-Left, Pick-Up-Right, Pick-Up-Left,
Pong-Right, Put-Pebble-Right. If this is not the case, we say that the algo-
rithm is in its second phase. (Note that this phase may not exist in all possible

234 P. Flocchini, D. Ilcinkas, and N. Santoro

executions.) An agent is said to be a right, resp. left, agent if its state ends with
-Right, resp. -Left. Using this definition, an agent changes role if it was a left
agent and becomes a right agent or vice versa. Finally, inside a phase, a stage is
a maximal period during which no agent changes role.

For the purpose of the proofs of the main theorems, we will use the three
following properties.

Property. P(p), with p ∈ {0, 1}: There is a left agent L and a right agent R. The
agent L is waiting at node p−1, where one pebble is located. Agent L is carrying
the other pebble and is in state Ping-Left. Moreover, its variable Last Right
has value p. Agent R, empty-handed, is in one of the following situations:

- it is dead in the black hole located at node p + 1;
- it is at node p + 1 in state Explore-Right and its variable Last Right has
value p;
- it is already back from node p + 1 at node p in state Pick-Up-Right and its
variable Last Right has value p + 1.

Moreover, the termination condition of agent L is not satisfied, and in the
last two cases, the value Last Left is the same for each agent.

Property. P ′
L(p, q), with p ≥ 2, q ≤ 0 and p− q < n− 2: There is a left agent L

and a right agent R. There exists some k ≥ 0, with p− k− 1 > q, such that L is
waiting at node p−k−1 where one pebble is located. Agent L is carrying the other
pebble and is in state Halving-From-Right-To-Left. Moreover, its variable
Last Right, resp. Last Left, has value p, resp. q. Its variable Goal Left has
value Update Goal Left(p, q, 1). (Its variable Goal Right has value Goal Left+
n− 1.) Agent R, empty-handed, is in one of the following situations:

- it is dead in the black hole located at node p + 1; - it is waiting at p + 1 in
state Explore-Right and its variable Last Right has value p;
- it is already back from node p + 1 at node p in state Pick-Up-Right and its
variable Last Right has value p + 1;
- it is waiting at node p + 1 in state Halving-Explore-Right and its variable
Last Right has value p;
- it is already back from node p+ 1 at node p in state Halving-Pick-Up-Right
and its variable Last Right has value p + 1;
- it is waiting at node p−i, 1 ≤ i ≤ k, in state Halving-Pong-Right, its variable
Last Right has value p + 1 and its variable Counter has value i− 1.

Moreover, in the second and third cases, the value Goal Left of Agent L
is equal to Update Goal Left (p, q′, k + 1), where q′ is the value Last Left
of Agent R. In the last three cases, the value Goal Left of Agent L is equal to
Update Goal Left(p, q′, k+1−Counter), where q′ equals Goal Left of Agent R.

Property. P ′
R(p, q), with p ≥ 2, q ≤ 0 and p − q < n − 2: There is a left agent

L and a right agent R. There exists some k ≥ 0, with q + k + 1 < p, such that
R is waiting at node q + k + 1 where one pebble is located. Agent R is carry-
ing the other pebble and is in state Halving-From-Left-To-Right. Moreover, its

Ping Pong in Dangerous Graphs 235

variable Last Left, resp. Last Right, has value q, resp. p. Its variable Goal Right
has value Update Goal Right(p, q, 1). (Its variable Goal Left has value
Goal Right−n+1.) Agent L, empty-handed, is in one of the following situations:

- it is dead in the black hole located at node q − 1;
- it is waiting at q−1 in state Halving-Explore-Left and its variable Last Left
has value q;
- it is already back from node q − 1 at node q in state Halving-Pick-Up-Left
and its variable Last Left has value q − 1;
- it is waiting at node q + i, for some 1 ≤ i ≤ k in state Halving-Pong-Left, its
variable Last Left has value q − 1 and its variable Counter has value i − 1.

Moreover, in the last three cases, the value Goal Right of Agent R is equal to
Update Goal Right (p′, q, k+ 1− Counter), where p′ is Goal Right of Agent L.

Lemma 1. Consider a n-node ring containing a homebase and a black hole,
and two agents running Algorithm EnhancedPingPong from the homebase. After
finite time, one of the following situations occurs:

- Stage 2 of Phase 1 begins and Property P(p) holds for some p ∈ {0, 1};
- Phase 2 begins and Property P ′

L(p, 0) holds for some integer p such that 2 ≤
p ≤ n − 2;
- all agents of the non-empty set of surviving agents have terminated and located
the black hole.

Moreover, at that time, each edge has been traversed at most a constant number
of times since the beginning of the algorithm.

Lemma 2. Consider a n-node ring containing a homebase and a black hole, and
two agents running Algorithm EnhancedPingPong from the homebase. Assume
that at some time t a Phase-1 stage of even number i begins and that Property
P(p) holds for some p ∈ {0, 1}. Then at some time t′ > t one of the following
situations occurs:

- Stage i+2 of Phase 1 begins and Property P(p′) holds for some integer p′ such
that p < p′ ≤ 1 (thus p′ = 1);
- Phase 2 begins and Property P ′

L(p′, q) holds for some integers p′ and q such
that p′ ≥ 2, q ≤ 0 and p′ − q < n − 2;
- all agents of the non-empty set of surviving agents have terminated and located
the black hole.

Moreover, each edge has been traversed at most a constant number of times
between times t and t′.

Lemma 3. Consider a n-node ring containing a homebase and a black hole, and
two agents running Algorithm EnhancedPingPong from the homebase. Assume
that at some time t a Phase-2 stage of odd number i begins and that either
Property P ′

L(p, q) or Property P ′
R(p, q) holds for some integers p and q such that

p ≥ 2, q ≤ 0 and p − q < n − 2. Then at some time t′ > t one of the following
situations occurs:

236 P. Flocchini, D. Ilcinkas, and N. Santoro

- Stage i + 2 of Phase 2 begins and either Property P ′
L(p′, q′) or Property

P ′
R(p′, q′) holds for some integers p′ and q′ such that p′ ≥ p, q′ ≤ q and

n− (p′ − q′ + 1) ≤ �n(p−q+1)
2 �;

- all agents of the non-empty set of surviving agents have terminated and located
the black hole.

Moreover, each edge has been traversed at most a constant number of times
between times t and t′.

Theorem 1. Algorithm EnhancedPingPong is correct. More precisely, consider
a n-node ring containing a homebase and a black hole, and two agents running
Algorithm EnhancedPingPong from the home base. After finite time, there re-
mains at least one surviving agent and all surviving agents have terminated and
located the black hole.

Proof. From Lemmas 1 and 2, we know that the first phase contains at most five
stages, each one ending after finite time. Furthermore we know that after finite
time, either the algorithm terminates correctly, or Property P ′

L(p, q) or P ′
R(p, q)

holds, for some integers p and q such that q ≤ 0 < p and 0 < p−q < n−2. From
Lemma 3, we know that a stage of Phase 2 ends after finite time. We also know
that if the algorithm does not terminate after two stages i, i+1 in Phase 2, then
Property P ′

L(p′, q′) or P ′
R(p′, q′) holds, for some integers p′ and q′ such that the

positive value p′ − q′ is stricty less than p − q. Hence, after finite time, neither
PL(p, q) nor P ′

R(p, q) can be satisfied and the algorithm terminates correctly.

Theorem 2. The total number of moves performed by two agents running Al-
gorithm EnhancedPingPong in a n-node ring is at most O(n logn).

Proof. From Lemmas 1 and 2, there are at most five stages in Phase 1 and for
each of them the number of edge traversals performed by each agent is at most
O(n). From Lemma 3, there are at most O(log n) stages in Phase 2 because
the unexplored part is basically halved every two stages. From the same lemma,
we have that for each Phase-2 stage the number of edge traversals performed by
each agent is at most O(n). Hence, overall, the total number of moves performed
by two agents running Algorithm EnhancedPingPong in a n-node ring is at most
O(n log n).

The optimality of the algorithm follows from the fact that, in a ring, the problem
cannot be solved with less agents or (asymptotically) less moves [12], and clearly
not with less pebbles.

4 Black Hole Search in Arbitrary Graphs

4.1 Preliminaries

In this section, both agents are provided with a map of the network containing
all edge labels and a mark showing the position of the homebase in this network.

Ping Pong in Dangerous Graphs 237

Thus, each node of the map can be uniquely identified (for example by a list of
edge labels leading to it from the homebase). Therefore, each agent is able to
know where it lies at any point of the execution of the algorithm. It also knows
where each edge incident to its position leads.

The algorithm GeneralizedEnhancedPingPong we propose for arbitrary net-
works is an adaptation of the algorithm EnhancedPingPong that we described
for rings. To be able to apply EnhancedPingPong in a general graph, each agent
will maintain a partial mapping between the node numbers used in the algorithm
and the actual nodes in the network (or its map), such that at any point in time
an agent knows what means “go left” and “go right”.

During the execution of the algorithm, each agent maintains two walks WR

and WL, defined as two sequences (r0, r1, . . . , rP) and (l0, l1, . . . , lQ) of nodes of
the network. The nodes r0 and l0 correspond to the homebase. Since WR and
WL are walks, we have that {ri, ri+1} and {lj, lj+1} are edges of the graph, for
all 0 ≤ i < P and 0 ≤ j < Q.

From these two walks, we define recursively function σ as follows. First σ(0) =
0. Assume that σ is defined for all j such that 0 ≤ j ≤ i, for some i ≥ 0.
Then if there exists an element rK in WR such that rK �∈ {rσ(0), rσ(1), . . . , rσ(i)}
but for all k < K, rk ∈ {rσ(0), rσ(1), . . . , rσ(i)}, then σ(i + 1) = K, otherwise
σ(i + 1) is not defined. Similarly, assume that σ is defined for all j such that
i ≤ j ≤ 0, for some i ≤ 0. Then if there exists an element lK in WL such that
lK �∈ {lσ(0), lσ(1), . . . , lσ(i)} but for all k < K, lk ∈ {lσ(0), lσ(1), . . . , lσ(i)}, then
σ(i − 1) = K, otherwise σ(i − 1) is not defined.

Let us assume that an agent lies at some node i. If i ≥ 0 (i.e., the agent
is at the homebase or somewhere in the explored part to the right) going one
step right from node i means following the sub-walk (rσ(i), rσ(i)+1, . . . , rσ(i+1))
of WR. Going left from node i + 1 to node i means following this sub-walk in
reverse order. Similarly, if i ≤ 0 (i.e., the agent is at the homebase or in the
explored part to the left) going one step left from node i means following the
sub-walk (lσ(i), lσ(i)+1, . . . , lσ(i−1)) of WL. Going right from node i− 1 to node i
means following this sub-walk in reverse order.

4.2 The Algorithm

We now describe the definitions of the walks WR and WL throughout the algo-
rithm. First of all, node v0 denotes the homebase. Node v1 is the neighbor of
node v0 reachable by the smallest edge label while node v−1 is the neighbor of
node v0 reachable by the largest edge label.

At the beginning of the algorithm, let TR be a tree spanning all nodes except
for node v−1 and containing the edge {v0, v1}. Let WR be a DFS traversal of TR

starting from node v0 by the edge {v0, v1}. Let WL be (v0, v−1). Clearly, nodes
v−1, v0 and v1 are the nodes -1, 0 and 1.

Assume that the stage changes from an odd number to an even number in
Phase 1. Let p and q be the values Last Right and Last Left of the left agent.
Then the new walk WR consists of the first σ(p+1)+1 elements of the old WR,
that is the sequence (r0, r1, . . . , rσ(p+1)). In addition, let TL be a tree spanning

238 P. Flocchini, D. Ilcinkas, and N. Santoro

all nodes except for node p + 1. Let SL be a DFS traversal of TL starting from
node q − 1. Then the new walk WL is the concatenation of the old WL and of
the sequence SL. The left agent does these updates of the walks when changing
role. The other agent does these updates when it finds out that its pebble has
been stolen. More precisely, it updates its walks just before switching to state
Pong-Right. Note that both agents agree on the new definition of the walks
because they use the same values for p and for q (cf. Property P(p)).

Similarly assume that the stage changes from an even number to an odd
number in Phase 1. Let p and q be the values Last Right− 1 and Last Left of
the right agent. Then the new walk WL consists of the first σ(q−1)+1 elements
of the old WL, that is the sequence (l0, l1, . . . , lσ(q−1)). In addition, let TR be
a tree spanning all nodes except node q − 1. Let SR be a DFS traversal of TR

starting at node p + 1. Then the new walk WR is the concatenation of the old
WR and of the sequence SR. The rigth agent does these updates of the walks
when it retrieves a pebble, just before switching from state Pong-Right to state
Ping-Right. The other agent does these updates when it finds out that its pebble
has been stolen. More precisely, it updates its walks just before changing role.
Note that again both agents agree on the new definition of the walks because
they use the same values for p and for q.

The walks are also updated at the beginning of each Phase-2 stage of odd
number i. More precisely this is done by an agent each time and just after it
updates its knowledge of the unexplored part and its goals. Assume w.l.o.g. that
the stage is now i because a right agent became a left agent. Let p, q and g
be the values, respectively, of Last Right, Last Left and Goal Right just after
the update of the goals. Let {Vex, Vuex} be a partition of the nodes of the graph
such that Vex is the set of nodes {q, q+1, . . . , p− 1, p}. From Lemma 5.2 in [11],
Vuex can be partitioned into VR and VL such that |VR| = p − g, the node p + 1
is in VR, and the graphs GR and GL induced by, respectively, Vex ∪ VR and
Vex ∪ VL are connected. Let TR and TL be spanning trees of GR and GL. Let
SR be a DFS traversal of TR starting at node p + 1. Similarly let SL be a DFS
traversal of TL starting at node q. Finally, let W ′

R, resp. W ′
L, consists of the first

σ(p+1), resp. σ(q), elements of WR, resp. WL. Then the new walks WR and WL

are respectively the concatenation of W ′
R and SR and the concatenation of W ′

L

and SL. Note that both agents agree on the new definition of the walks because
they use the same values for p, q and g (cf. Properties P ′

R(p, q) and P ′
L(p, q)).

In some cases, it is possible to use (safe) shortcuts to decrease the number
of moves. Indeed, always following the walks WR and WL to go right and left
may lead to a total of n log2 n moves. The algorithm is modified as follows.
During Phase 2, each agent maintains an additional variable Last Seen Pebble
that basically memorizes the last place where the agent has seen the other peb-
ble. When an agent finishes a half and switches to state Halving-Ping-Left,
resp. Halving-Ping-Right, it goes directly to node Last Seen Pebble and if
there are no pebbles at this node, it then goes directly to node Last Left, resp.
Last Right. This is done by traversing only nodes that are known to be safe.

Ping Pong in Dangerous Graphs 239

4.3 Correctness and Complexity

Theorem 3. Algorithm GeneralizedEnhancedPingPong is correct. More pre-
cisely, consider a n-node graph containing a homebase and a black hole, and
two agents running Algorithm GeneralizedEnhancedPingPong from the home-
base. After finite time, at least one agent survives and all surviving agents have
terminated and located the black hole.

Proof. As noticed in the description of the algorithm in the previous subsection,
the two agents agree on the definition of the walks and thus of the node numbers.
Moreover, one can easily check that the function σ defining the node numbers
always gives the same number to the same node as soon as this node has been
explored by at least one agent. Indeed, if a node i ≥ 0 is explored, then the initial
part (r0, r1, . . . , rσ(i)) of WR is kept unchanged forever. A similar property holds
for i ≤ 0. Finally note that a node of the graph has at most one pre-image by σ.

To summarize, Algorithm GeneralizedEnhancedPingPong behaves exactly
the same as Algorithm EnhancedPingPong. The only difference is that traversing
an edge in the ring may correspond to the traversals of (finitely) many edges in
an arbitrary graph. Nevertheless, since Algorithm EnhancedPingPong is correct,
Algorithm GeneralizedEnhancedPingPong is correct as well.

Theorem 4. The total number of moves performed by two agents running Algo-
rithm GeneralizedEnhancedPingPong in a n-node graph is at most O(n logn).

Proof. In this proof we call the number of edge traversals performed by an agent
going from node i to node i + 1 (−n < i < n− 1) the length of the virtual edge
{i, i+ 1}. We now bound the total number of moves performed by each agent in
each phase.

As in the case of the ring, the first phase consists of at most five stages.
Moreover, each update of the walks increases their length by at most 2n because
the path appended to a walk is a DFS traversal of a tree. Hence, the sum of
all the lengths of the virtual edges traversed in the first phase is at most 10n.
From Lemmas 1 and 2, each edge of the network has been traversed at most
a constant number of times during Phase 1. Hence, the total number of moves
performed by two agents running Algorithm GeneralizedEnhancedPingPong is
at most O(n logn) in the first phase.

From the lemmas 1, 2 and 3, either Property P ′
R(p, q) or Property P ′

L(p, q))
holds, for some integers p and q, at the beginning of a Phase-2 stage of odd
number. Let pi and qi be the two integers corresponding to the stage 2i+1 of the
second phase, for 0 ≤ i ≤ s. Note that s is at most O(log n). Let ps+1, resp. qs+1,
be the right, resp. left, neighbor of the black hole. By definition of the properties
and from the lemmas, we have that qs+1 ≤ · · · ≤ q0 ≤ 0 ≤ p0 ≤ · · · ≤ ps+1.
Since the walks WR and WL are updated when and only when the goals are
updated, and since a walk is always extended by a DFS traversal of a tree, we
obtain that the sum of all the lengths of the virtual edges from node pi to pi+1,
and from node qi to qi+1, is at most O(n), for 0 ≤ i ≤ s. Moreover, from the
previous paragraph, the sum of all the lengths of the virtual edges from node q0
to p0 is at most O(n).

240 P. Flocchini, D. Ilcinkas, and N. Santoro

Consider a stage 2i+ 1 of the second phase, for 0 ≤ i ≤ s. Let A be the agent
that started the stage by changing role and let B the other agent. Without loss
of generality, assume that A is a left agent. The total number of moves performed
by A in this stage is at most O(n) because A first goes directly (by a shortest
safe path) to the beginning qi of its workload, thus in at most n moves, and
then stays in the final part of WL that corresponds to the DFS traversal of a
tree to explore its assigned workload, which incurs at most O(n) moves (from
Lemma 3). If it succeeds to explore its half, then it goes directly to the node
where it left the other pebble (thanks to the variable Last Seen Pebble). If the
pebble is not there anymore, it further goes directly to node pi and starts to
explore the right half. Hence, in any case, for the same reasons as before, A
performs at most O(n) moves in stage 2i + 2. Concerning B, if it retrieves its
pebble in stage 2i + 1 or 2i + 2, it will perform at most O(n) moves in these
two stages, without counting the moves dones in state Halving-Pong-Right.
Indeed, again, exploring a half or going directly to the beginning of it costs at
most a linear number of moves.

It remains to bound the number of moves done while in one of the states
Halving-Pong-Right or Halving-Pong-Left. This is done globally over the
whole second phase. Each edge traversed in one of these two states may cost
up to O(n) moves. However, there are at most O(log n) such traversals because
any of them corresponds to an update of the workloads, which happens only a
logarithmic number of times in the entire algorithm.

One can now conclude that the total number of moves performed by two
agents running Algorithm GeneralizedEnhancedPingPong in a n-node graph is
at most O(n logn).

The optimality of the algorithm follows from the fact that, in an arbitrary graph,
BHS cannot be solved with less agents or (asymptotically) less moves [11], and
clearly not with less pebbles.

Acknowledgment. This work was done during the stay of David Ilcinkas at
the University of Ottawa, as a postdoctoral fellow. Paola Flocchini was partially
supported by the University Research Chair of the University of Ottawa. This
work was supported in part by the Natural Sciences and Engineering Research
Council of Canada under Discovery grants.

References

1. Albers, S., Henzinger, M.: Exploring unknown environments. In: 29th ACM Sym-
posium on Theory of Computing (STOC), pp. 416–425 (1997)

2. Bender, M.A., Fernández, A., Ron, D., Sahai, A., Vadhan, S.P.: The power of a peb-
ble: Exploring and mapping directed graphs. Information and Computation 176(1),
1–21 (2002)

3. Cao, J., Das, S. (eds.): Mobile Agents in Networking and Distributed Computing.
John Wiley, Chichester (2008)

Ping Pong in Dangerous Graphs 241

4. Chalopin, J., Das, S., Santoro, N.: Rendezvous of mobile agents in unknown graphs
with faulty links. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 108–122.
Springer, Heidelberg (2007)

5. Cooper, C., Klasing, R., Radzik, T.: Searching for black-hole faults in a network
using multiple agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS,
vol. 4305, pp. 320–332. Springer, Heidelberg (2006)

6. Czyzowicz, J., Kowalski, D., Markou, E., Pelc, A.: Complexity of searching for a
black hole. Fundamenta Informaticae 71(2-3), 229–242 (2006)

7. Czyzowicz, J., Kowalski, D., Markou, E., Pelc, A.: Searching for a black hole in
synchronous tree networks. Combinatorics, Probability & Computing 16, 595–619
(2007)

8. Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction of
unknown graphs by multiple agents. Theoretical Computer Science 385(1-3), 34–
48 (2007)

9. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. Graph The-
ory 32(3), 265–297 (1999)

10. Dobrev, S., Flocchini, P., Kralovic, R., Santoro, N.: Exploring a dangerous un-
known graph using tokens. In: 5th IFIP Int. Conf. on Theoretical Computer Science
(TCS), pp. 131–150 (2006)

11. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole in
arbitrary networks: optimal mobile agents protocol. Distributed Computing 19(1),
1–19 (2006)

12. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole
in an anonymous ring. Algorithmica 48, 67–90 (2007)

13. Dobrev, S., Kralovic, R., Santoro, N., Shi, W.: Black hole search in asynchronous
rings using tokens. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC
2006. LNCS, vol. 3998, pp. 139–150. Springer, Heidelberg (2006)

14. Flocchini, P., Ilcinkas, D., Santoro, N.: Optimal black hole search with pure tokens,
http://www.scs.carleton.ca/-santoro/Reports/PingPong.pdf

15. Flocchini, P., Santoro, N.: Distributed Security Algorithms For Mobile Agents. In:
3, ch. 5 (2008)

16. Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective tree exploration.
Networks 48(3), 166–177 (2006)

17. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a
finite automaton. Theoretical Computer Science 345(2-3), 331–344 (2005)

18. Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Approximation bounds for black
hole search problems. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.)
OPODIS 2005. LNCS, vol. 3974, pp. 261–274. Springer, Heidelberg (2005)

19. Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Hardness and approximation
results for black hole search in arbitrary networks. Theoretical Computer Sci-
ence 384(2-3), 201–221 (2007)

http://www.scs.carleton.ca/-santoro/Reports/PingPong.pdf

Deterministic Rendezvous in Trees

with Little Memory

Pierre Fraigniaud1,� and Andrzej Pelc2,��

1 CNRS and University Paris Diderot
2 Département d’informatique, Université du Québec en Outaouais

Abstract. We study the size of memory of mobile agents that permits to
solve deterministically the rendezvous problem, i.e., the task of meeting at
some node, for two identical agents moving from node to node along the
edges of an unknown anonymous connected graph. The rendezvous prob-
lem is unsolvable in the class of arbitrary connected graphs, as witnessed
by the example of the cycle. Hence we restrict attention to rendezvous in
trees, where rendezvous is feasible if and only if the initial positions of
the agents are not symmetric. We prove that the minimum memory size
guaranteeing rendezvous in all trees of size at most n is Θ(log n) bits. The
upper bound is provided by an algorithm for abstract state machines ac-
complishing rendezvous in all trees, and using O(log n) bits of memory in
trees of size at most n. The lower bound is a consequence of the need to
distinguish between up to n− 1 links incident to a node. Thus, in the sec-
ond part of the paper, we focus on the potential existence of pairs of finite
agents (i.e., finite automata) capable of accomplishing rendezvous in all
bounded degree trees. We show that, as opposed to what has been proved
for the graph exploration problem, there are no finite agents capable of
accomplishing rendezvous in all bounded degree trees.

1 Introduction

Two identical mobile agents initially located in two nodes of a network, modeled
as an undirected connected graph, have to meet at some node of the graph.
This task is known in the literature as the rendezvous problem in graphs [4]. In
this paper we study the size of the memory of the agents permitting to solve
the rendezvous problem deterministically. Throughout the paper we consider
only deterministic rendezvous. If nodes of the graph are labeled then agents can
use the protocol to meet at a predetermined node and the rendezvous problem
reduces to graph exploration. However, in many applications, when rendezvous
is needed in an unknown environment, such unique labeling of nodes may not be
available, nodes may refrain from revealing their labels to agents due to security
� This work was done during this author’s visit at the Research Chair in Distributed

Computing of the Université du Québec en Outaouais. Additional supports from
Action COST 295 ”DYNAMO”.

�� Supported in part by NSERC discovery grant and by the Research Chair in Dis-
tributed Computing of the Université du Québec en Outaouais.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 242–256, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Deterministic Rendezvous in Trees with Little Memory 243

reasons, or limited sensory capabilities of the agents may prevent them from
perceiving such labels. Hence it is important to design rendezvous algorithms
for agents operating in anonymous graphs, i.e., graphs without unique labeling
of nodes. Clearly, the agents have to be able to locally distinguish ports at a node
since, otherwise, an agent may even be unable to visit all neighbors of a node
of degree 3 (after visiting the second neighbor, the agent cannot distinguish the
port leading to the first visited neighbor from the port leading to the unvisited
one). Consequently, agents initially located at two nodes of degree 3 might never
be able to meet. Hence we make a natural assumption that all ports at a node are
locally labeled 1, ..., d, where d is the degree of the node. No coherence between
those local labelings is assumed, and we do not assume any a priori knowledge
of the topology of the graph, or of its size.

The above described rendezvous problem is unsolvable in the class of arbitrary
connected graphs, as witnessed by the example of the (oriented) cycle in which
a pair of identical agents can never meet, regardless of their initial positions.
Hence we restrict attention to rendezvous in trees. For this class of networks,
rendezvous is feasible if and only if the initial positions of the agents are not
symmetric (we mean here symmetry with respect to local orientation of ports at
each node, see the precise definition in the next subsection).

1.1 The Model and Terminology

We consider trees whose nodes are unlabeled, and edges incident to a node v
have distinct labels 1, . . . , d, where d is the degree of v. Thus every undirected
edge {u, v} has two labels, which are called its port numbers at u and at v. Port
numbering is local, i.e., there is no relation between port numbers at u and at v.
A pair of nodes u, v of a tree is called symmetric if there exists an automorphism
of the tree preserving port numbering, that carries one node on the other. More
precisely, u and v are symmetric if there exists a bijection f : V → V , where V
is the set of nodes of the tree, such that:

1. for any w,w′ ∈ V , w is adjacent to w′ if and only if f(w) is adjacent to
f(w′);

2. for any w,w′ ∈ V , the port number corresponding to edge {w,w′} at node
w is equal to the port number corresponding to edge {f(w), f(w′)} at node
f(w);

3. f(u) = v.

We consider mobile agents traveling in trees with locally labeled ports. The
tree and its size are a priori unknown to the agents. We first define precisely an
individual agent. An agent is an abstract state machine A = (S, π, λ, s0), where
S is a set of states among which there is a specified state s0 called the initial
state, π : S × N2 → S, and λ : S → N. Initially the agent is at some node u0 in
the initial state s0 ∈ S. The agent performs actions in rounds measured by its
internal clock. Each action can be either a move to an adjacent node or a null
move resulting in remaining in the currently occupied node. State s0 determines
a natural number λ(s0). If λ(s0) = 0 then the agent makes a null move (i.e.,

244 P. Fraigniaud and A. Pelc

remains at u0). If λ(s0) > 0 then the agent leaves u0 by port λ(s0). When
incoming to a node v in state s ∈ S, the behavior of the agent is as follows. It
reads the number i of the port through which it entered v and the degree d of v.
The pair (i, d) ∈ N2 is an input symbol that causes the transition from state s to
state s′ = π(s, (i, d)). If the previous move of the agent was null, (i.e., the agent
stayed at node v in state s) then the pair (0, d) ∈ N2 is the input symbol read
by the agent, that causes the transition from state s to state s′ = π(s, (0, d)).
In both cases s′ determines an integer λ(s′), which is either 0, in which case the
agent makes a null move, or a positive integer indicating a port number by which
the agent leaves v. The agent continues moving in this way, possibly infinitely.
A state s ∈ S is called final if λ(s) = 0 and π(s, (i, j)) = s, for all integers i, j.
Thus, after entering a final state, the agent never changes the state and never
moves.

Since we consider the rendezvous problem for identical agents, we assume that
agents are copies A and A′ of the same abstract state machine A, starting at
two distinct nodes vA and vA′ , called the initial positions. We will refer to such
identical machines as a pair of agents. It is assumed that the internal clocks of
a pair of agents tick at the same rate. The clock of each agent starts when the
agent starts executing its actions. Agents start from their initial position with
delay θ ≥ 0, controled by an adversary. This means that the later agent starts
executing its actions θ rounds after the first agent. Agents do not know which
of them is first and what is the value of θ.

Initial positions forming a symmetric pair of nodes are crucial for our consid-
erations. Indeed, it is easy to see that if the initial position is not a symmetric
pair then there exists a pair of agents that can meet in a given tree, for any delay
θ, and if the initial position is symmetric then meeting is impossible for any pair
of agents, for θ = 0. The argument is as follows. A tree has either a central
node or a central edge. If the tree has a central node, then no initial position is
symmetric (recall that symmetry is considered with respect to port labelings),
and a pair of agents equipped with suitable memory can meet in this central
node, regardless of the initial position. If the tree has a central edge, then for
non-symmetric initial positions one of the endpoints of the central edge can be
distinguished from the other, and agents will meet there. Finally, for a symmet-
ric initial position in a tree with a central edge, simultaneously starting agents
will never meet, as all their actions will be symmetric with respect to the central
edge. Note that in the latter case agents could still meet “accidentally” , e.g.,
if the delay θ is large enough and the program of the agents causes exploration
of the entire tree; in this case the first agent will join the later one before the
later starts moving. Since we are interested in rendezvous protocols that cause
meeting of the agents for any delay θ, successful meeting can be guaranteed only
for non-symmetric initial positions.

We assume that when the agents meet, i.e., when there is a round in which
they are in the same node of the tree, they perceive this fact and stop. Hence
we adopt the following definitions of two variations of the rendezvous task.

Deterministic Rendezvous in Trees with Little Memory 245

– Rendezvous without termination: If the initial positions are not sym-
metric then, in some round, both agents are in the same node of the tree
and enter a final state srv (rendezvous).

– Rendezvous with termination: If the initial positions are not symmetric
then, in some round, both agents are in the same node of the tree and enter
a final state srv, else, i.e., if the initial positions are symmetric,
• either in no round agents are in the same node of the tree and both

agents eventually enter the final state sno rv (no rendezvous)
• or in some round agents are in the same node of the tree and enter a

final state srv.

Note that our positive result (the algorithm) will concern the stronger task of
rendezvous with termination, and our impossibility result will hold even for the
weaker task of rendezvous without termination. The difference between the two
variations of rendezvous is the following. For rendezvous without termination it is
not specified what happens if agents never meet: in this case they may wander in
the tree indefinitely. For rendezvous with termination agents either eventually
meet (one of the agents may join later the other that first stopped), or each
of them stops in the final state sno rv (in different nodes, possibly in different
rounds), i.e., they detect that rendezvous is impossible. Moreover, false alarms
are excluded: an agent cannot stop in state sno rv and still be accidentally joined
later by the other agent. As mentioned previously, meeting of agents starting
from symmetric initial positions is possible only for positive delay θ.

1.2 Our Results

We study memory requirements of the agents for the feasibility of the rendezvous
task in trees of size at most n, measured by the number of states used by the
agents in such an environment, or, alternatively, by the number of memory bits
required to encode these states.

The obvious lower bound on this memory size for rendezvous is Ω(log n) bits.
Indeed, if two identical agents A and A′ use less than logn bits in trees of size
at most 2n+1, then they use less than n states in such trees. As a consequence,
the function λ has less than n different outputs in trees of size at most 2n + 1.
Consider the tree T with 2n+1 nodes, consisting of two nodes u and v of degree
n, both linked to a common node w, and to n− 1 leaves. Since λ has less than n
different outputs, there exists p ∈ {1, . . . , n} that not belong to the outputs of λ.
Label the port numbers of {u,w} at u, and of {w, v} at v, by p. Place A and A′

at u and v, respectively. It follows that A will never traverse {u,w}, and v will
never traverse {v, w}, and therefore A and A′ will never meet, although u and v
are not symmetric positions (in view of different port numbers at w). Our main
positive result says that this lower bound can be achieved. More precisely, we
show that there exists a pair of identical agents accomplishing rendezvous with
termination in all trees, and using, for any integer n, O(log n) bits of memory in
trees of size at most n. Our proof is constructive, i.e., we describe the protocol
followed by the agents to achieve rendezvous with termination.

246 P. Fraigniaud and A. Pelc

Table 1. Space complexities of Exploration and Rendezvous in trees using abstract
state machines

Trees Bounded degree trees

Exploration without termination Ω(log n) O(1)
with termination O(log n) [22] Ω(log log log n) [18]

Rendezvous without termination Ω(log n) Ω(log log n) [This paper]
with termination O(log n) [This paper]

We then consider the problem of the existence of a pair of finite agents (i.e.,
finite state machines using O(1) states) capable of accomplishing rendezvous
in trees. Due to the above lower bound Ω(logn) on memory size, finite agents
achieving rendezvous in the class of all trees cannot exist. However, the lower
bound is due to the potential presence of nodes of large degree, and a pair of
finite agents could potentially accomplish rendezvous in all trees of bounded de-
gree. Hence we reformulate the problem by asking about the existence of finite
agents for bounded degree trees, i.e., a pair of finite agents capable of accom-
plishing rendezvous in all such trees. We show that the answer to this question
is negative, even for the less demanding task of rendezvous without termination.
In fact, we show that, for any pair of identical finite agents, there is a line on
which these agents cannot accomplish rendezvous, even without termination. As
a function of the size of the trees, our impossibility result indicates a lower bound
Ω(log logn) bits on the memory size for rendezvous in bounded degree trees of
at most n nodes.

The latter result should be contrasted with the related task of tree exploration,
consisting in traversing all edges of the tree by a single agent. See Table 1.
Exploration without termination can be accomplished by a single agent that
leaves a degree-d node by port (i mod d)+1 if it entered it by port i. Hence, while
there exists a finite agent exploring all trees of bounded degree, there are no finite
agents that can accomplish rendezvous in all trees of this class (even without
termination). Thus, as a consequence, rendezvous without termination is a more
memory demanding task than exploration without termination. On the other
hand, it was shown in [22] that exploration with termination (even with return
to the starting node) can be done using logarithmic memory (which is optimal).
Our positive result shows that memory of logarithmic size is also sufficient for
rendezvous with termination, hence (using the measure of required memory)
rendezvous with termination is not harder than exploration with termination.

1.3 Related Work

The rendezvous problem has been introduced in [28]. The large body of literature
on rendezvous (see the book [4] for a complete discussion and more references)
can be divided into two classes: studies considering the geometric scenario (ren-
dezvous in an interval of the real line, see, e.g., [11,12,21], or in the plane, see, e.g.,
[9,10]), and those discussing rendezvous in graphs, e.g., [2,5]. Most of the papers,
e.g., [2,3,7,11,23] consider the probabilistic scenario: inputs and/or rendezvous

Deterministic Rendezvous in Trees with Little Memory 247

strategies are random. In [23] randomized rendezvous strategies are applied to
study self-stabilized token management schemes. Randomized rendezvous strate-
gies use random walks in graphs, which have been widely studied and applied
also, e.g., in graph traversing [1], on-line algorithms [14] and estimating volumes
of convex bodies [19]. Tradeoffs between the expected time of rendezvous and
the memory requirements of the agents can be found in [25] A natural extension
of the rendezvous problem is that of gathering [20,23,27,29], when more than 2
agents have to meet in one location.

Deterministic rendezvous with anonymous agents working in unlabeled graphs
but equipped with tokens used to mark nodes was considered, e.g., in [26]. In [30]
the authors considered rendezvous of many agents with unique labels. Determin-
istic rendezvous of two agents with unique labels was discussed in [16,17,24]. To
the best of our knowledge, deterministic rendezvous of identical agents that have
no possibility of marking nodes has never been studied before.

The impact of memory size on the feasibility of the related task of tree ex-
ploration, for trees with unlabeled nodes, has been studied in [18,22]. In [18] the
authors showed that no agent can explore with termination all trees of bounded
degree and that memory of size O(log2 n) is enough to explore all trees of size
n and return to the starting node. In [22] it was shown that the latter task can
be accomplished by an agent with memory of size O(log n).

2 Rendezvous with Logarithmic Memory

This section is devoted to our main positive result, that is the design of a
logspace algorithm enabling two agents to achieve rendezvous in all trees.
As we mentioned in Section 1.2, this result is optimal, as no pair of agents can
accomplish rendezvous (even without termination) in all trees, using less than
logn− 1 bits of memory in trees of size at most n.

Theorem 1. There is a pair of identical agents accomplishing rendezvous with
termination in all trees, and using, for any integer n, O(log n) bits of memory
in trees of size at most n.

To establish the result, we describe an agent A such that two copies A and A′

of agent A will rendezvous in any tree T = (V,E) for any pair (vA, vA′) ∈ V ×V
of non symmetric starting positions. More specifically, T has a port-labeling
associated to it, and if vA and vA′ are not in the same port-label-preserving
automorphism class in T , then A and A′ will eventually meet, both terminating
in the state srv. Otherwise, both A and A′ will eventually terminate in the same
state sno rv if they indeed do not meet, or srv if they happen to meet. The result
holds for any delay θ imposed by the adversary between the starting times of A
and A′. We show that, if T has at most n nodes, then A requires only a memory
of size O(log n) bits.

We start by describing agent A. Figure 1 describes the skeleton of the protocol
performed by A. A basic exception rule is that, whenever meeting occurs, the
agent terminates in state srv. Now, the protocol executed by A is decomposed
into two phases called the bounding phase and the searching phase.

248 P. Fraigniaud and A. Pelc

Begin
/* Exception */
Whenever meeting the other agent do terminate in state srv.
/* Bounding phase */
Compute an upper bound m on the size of T ;
Compute the maximum degree ∆ of T ;
/* Searching phase */
Stay idle for 2m steps;
For i = 1 to m do

Traverse T partially to compute label λi;
Execute 2λi traversals of T of length m;
Stay idle for 2m steps;

/* Termination */
If meeting occurs then terminate in state srv

else terminate in state sno rv;
End

Fig. 1. Protocol of agent A

– The role of the bounding phase is to find an upper bound m on the number
of nodes in T . A key property of this phase is that this upper bound does not
depend on the starting position of A but only on T . The maximum degree
∆ of T is also computed during the bounding phase.

– The role of the searching phase is to achieve rendezvous, whenever possible. It
begins with A staying idle for 2m steps. Then the searching is decomposed
in m sub-phases. In each sub-phase, agent A first performs some partial
exploration of T and computes a label λ. It then performs 2λ traversals of
T of length m, and finally remains idle for 2m steps before entering the
next sub-phase. A key property of the searching phase is that the labels
λi, i = 1, . . . ,m, that are computed during the sub-phases depend on the
starting position of A in a way insuring the following: if the copies of A start
from two non symmetric positions vA and vA′ , then there is a subphase i
such that the label λi computed for position vA is different from the label λ′

i

computed for position vA′ . We will show that the two copies of A will meet
during sub-phase i.

We describe in detail the two phases in the following two subsections. The proof
of Theorem 1 will follow in Section 2.3.

2.1 Bounding Phase

As said in Section 1.3, it was shown in [22] that there is an agent that can ac-
complish exploration of any tree, starting from any node of the tree, so that, in
trees of size at most n, this agent uses a memory of size O(log n) bits. Moreover,
when the exploration is achieved, the agent returns to its starting position. We
use this result as a black box for the description of agent A. More precisely, we
denote by e&r(v) (for explore-and-return) the protocol from [22] consisting in

Deterministic Rendezvous in Trees with Little Memory 249

starting from node v, exploring T , and returning to v. This task is accomplished
in polynomial time (i.e., polynomial number of steps). However, the exact ex-
ecution time of e&r(v) depends on v. The objective of the bounding phase is
therefore to perform e&r(v) from every node v of T , in order to set m as the
maximum execution time of e&r(v) among all nodes v ∈ V .

We describe how to perform e&r from every node of T using O(log n) bits of
memory in trees of size at most n. Let α and β be two positive constants such
that the protocol e&r performs in at most nα + β steps in trees of at most n
nodes. We recall the standard notion of basic walk. A basic walk of length 2k, for
k ≥ 0, executed by agent A starting at node vA consists in, first, leaving node vA

by port 1, and, then, whenever entering a degree-d node by the port numbered p,
leaving that node by the port numbered (p mod d)+1. Then, after k edges have
been traversed, A starts moving backward by leaving the current node via the
same port as the one used to enter the node, and executing the reverse strategy:
whenever entering a degree-d node by the port numbered p, A leaves that node
by the port numbered p − 1 if p > 1, and by port number d if p = 1. A basic
walk of length 2k can be executed by an agent with O(log k) bits of memory,
this memory being mostly used to encode a counter for counting up to k.

During the bounding phase, agent A, starting at vA, first calls e&r(vA).
This results in exploring the whole tree T and returning to vA. This allows
A to compute the maximum degree ∆ of T . Let n0 be the number of steps
performed by e&r(vA). Since all nodes of T were visited, we have n0 ≥ |V |.
A uses the bound n0 to perform a basic walk of length 2n0 interleaved with
calls to e&r. More precisely, after each of the n0 first steps of the basic walk,
A executes e&r(v) where v is the current node. By doing so, A eventually
computes m = maxv∈V nv where nv is the number of steps performed by e&r(v).
Once n0 steps of the basic walk have been performed, A completes the walk by
performing n0 steps backwards, to return to vA. This completes the description
of the bounding phase. The following lemma summarizes the main properties
satisfied by the bounding phase (due to lack of space, the proofs of all lemmas
are omitted).

Lemma 1. The bounding phase can be executed by an agent with O(log n) bits
of memory in trees of size at most n. At the end of the bounding phase, agent A
has computed the maximum degree ∆ of T , and an upper bound m ≤ |V |α + β
on the number of nodes in T . This latter bound is independent of the starting
position vA of A.

Although the upper bound m = maxv∈V nv does not depend on vA, note that
the number of steps used by A to compute this bound is 2n0 +

∑
i=1,...,n0

ni

where, for 1 ≤ i ≤ n0, ni denotes the number of steps performed by e&r when
called at the ith node of the basic walk of length 2n0 performed by A. This sum
depends on vA for at least two reasons. First, n0 depends on vA, and, second,
the ordered sequence of nodes visited by the basic walk depends on the starting
node of the walk. Nevertheless, when A completes the bounding phase, it is back
at vA, and it knows a universal upper bound m on the number of nodes in T
(universal in the sense that it does not depend on vA).

250 P. Fraigniaud and A. Pelc

2.2 Searching Phase

The searching phase is decomposed into a succession of m sub-phases, each of
them beginning with the computation of a label (see Figure 1). The label λi is
obtained by A in the ith sub-phase, 1 ≤ i ≤ m, by performing a basic walk
of length 2i, visiting nodes u0, u1, . . . , ui−1, ui, ui−1, . . . , u1, u0 where u0 = vA.
The label λi is set according to the port number pi by which the agent enters
the node ui reached after i steps of the walk (i.e., the node where A reverses
the walk and starts going backwards to vA), and according to the degree of the
previous node ui−1 visited before moving to ui. More precisely:

λi = (deg(ui−1) − 1)∆ + (pi − 1)

where ∆ is the maximum degree of T . We have λi ∈ [0, ∆2 − 1] ⊆ [0, n2 − 1].
Once λi has been obtained, A performs λi basic walks of length 2m, for a total
number of 2λim steps. After that, A remains idle at vA for 2m steps.

Lemma 2. The searching phase can be executed by an agent with O(log n) bits
of memory in a tree of size at most n.

2.3 Proof of Theorem 1

Let us consider two copies A and A′ of agent A. By Lemmas 1 and 2, they have
the specified memory size. We prove that A and A′ accomplish rendezvous with
termination.

First, we make an observation about the delay between the times when A
and A′ enter their searching phase. Assume, w.l.o.g., that A enters the searching
phase at time t while A′ enters the searching phase at time t′ = t + δ, where
δ ≥ 0. This delay δ can be caused by various reasons. One is a possible difference
θ between the starting times of the two agents (the original delay imposed by the
adversary). Another is the completion time of the bounding phase (cf. the remark
in the last paragraph of Section 2.1). Nevertheless, we prove that δ cannot be
too large unless the two agents meet.

Lemma 3. If δ > m then A and A′ meet before A has even started the first
sub-phase of its searching phase.

By Lemma 3, we can assume that 0 ≤ δ ≤ m, A entering the searching phase at
time t while A′ enters the searching phase at time t′ = t+δ. During their search-
ing phase, A and A′ will eventually compute two sequences of labels: λ1, . . . , λm

and λ′
1, . . . , λ

′
m, respectively, unless they meet earlier. We make a crucial obser-

vation about these two sequences:

Lemma 4. The two sequences λ1, . . . , λm and λ′
1, . . . , λ

′
m are identical if and

only if the two initial positions vA and vA′ are symmetric.

We are now ready to prove the theorem. Let λ1, . . . , λm and λ′
1, . . . , λ

′
m be the

two sequences of labels computed by A and A′, respectively. If they are identical,

Deterministic Rendezvous in Trees with Little Memory 251

then, by Lemma 4, vA and vA′ are symmetric, and if the two agents have not
met at the end of their searching phase, then they both terminate at their initial
position in state sno rv. Assume now that the two sequences are not identical.
Let i be the smallest index for which they differ. We claim that A and A′ meet
during their ith sub-phase (if they have not met before). To establish this claim,
note that, since λj = λ′

j for all j < i, the delay between the times A and A′

enter their ith sub-phase is identical to the delay δ between the times A and A′

enter their searching phase. We have assumed, w.l.o.g., that A is ahead of A′,
i.e., A enters its ith sub-phase at time t before A′ enters its ith sub-phase at
time t′ = t + δ, with 0 ≤ δ ≤ m.

During its ith sub-phase, agent A is performing its 2λi traversals during the
time interval

Iactive = [t + 2i, t + 2i + 2λim],

and is idle during the time interval

Iidle = [t + 2i + 2λim, t + 2i + 2(λi + 1)m].

Similarly, during its ith sub-phase, agent A′ is performing its 2λ′
i traversals

during the time interval

I ′active = [t + δ + 2i, t + 2i + 2λ′
im],

and is idle during the time interval

I ′idle = [t + 2i + δ + 2λ′
im, t + 2i + δ + 2(λ′

i + 1)m].

We consider two cases:

– If λ′
i ≥ λi + 1 then |Iidle ∩ I ′active| ≥ 2m(λ′

i −λi) + δ ≥ 2m since δ ≥ 0. Thus
A remains idle during a time-interval during which A′ has time to perform
a full traversal of T . Hence A′ will meet A.

– If λ′
i ≤ λi − 1 then |I ′idle ∩ Iactive| ≥ 2m(λi − λ′

i)− δ ≥ m since δ ≤ m. Thus
A′ remains idle during a time-interval during which A has time to perform
a full traversal of T . Hence A will meet A′.

Hence in both cases, A and A′ meet, which completes the proof of Theorem 1. ��

3 The Limited Power of Finite Agents

The lower bound Ω(log n) bits for agents accomplishing rendezvous in all trees
of size at most n is caused by the need for the agents to distinguish potentially
up to n− 1 port numbers of a node of degree n− 1. We thus raise the question
of whether there exist finite agents (i.e., agents with memory of size O(1)) that
could accomplish rendezvous in all bounded degree trees. The main result of
this section is a negative answer to this question: for any pair of identical finite
agents, there is a bounded degree tree on which these agents cannot accomplish
rendezvous. In fact, the result holds even for the class of lines, and even if one
does not require termination.

252 P. Fraigniaud and A. Pelc

Theorem 2. For any pair of identical finite agents, there is a line on which
these agents cannot accomplish rendezvous, even without termination.

The rest of the section is dedicated to the proof of Theorem 2. For proving the
theorem, note that we can restrict ourselves to lines whose edges are properly
colored 1 and 2, so that the port numbers at the two extremities of an edge
colored i are set to i. In this setting, the transition function of an agent in a line
is π : S × {1, 2} → S that describes the transition that occurs when an agent
enters a node of degree d ∈ {1, 2} in state s ∈ S. In this situation, the agent
changes its state to state s′ = π(s, d), and performs the action λ(s′). The fact
that one does not need to specify the incoming port number is a consequence of
the edge-coloring, which implies that whenever an agent leaves a node by port
i, it enters the next node by port i too.

Let us fix two identical agents A and A′, with finite state set S, and transition
function π. Let π′ : S → S be the transition function applied at nodes of degree 2
of the edge-colored line, i.e., π′(s) = π(s, 2) for any s ∈ S. To π′ is associated its
transition digraph, whose nodes are the states in S, and there is an arc from s
to s′ if and only if s′ = π′(s). This digraph is composed of a certain number of
connected components, say r, each of them of a similar shape, that is a circuit
with inward trees rooted at the nodes of the circuit. Let C1, . . . , Cr be the r
circuits corresponding to the r connected components of the transition digraph,
and let γ be the least common multiple of the number of arcs of these circuits,
i.e., γ = lcm(|C1|, . . . , |Cr|). We prove that there is a line of length proportional
to 2γ + |S| in which A and A′ do not rendezvous.

First, observe that if A and A′ cannot go at arbitrarily large distance from
their starting positions, say they go at maximum distance D, then they cannot
rendezvous in a line of length 4D + 4. Indeed, if the initial positions are two
nodes at distance 2D + 1, and at distance at least D + 1 from the extremities
of the line, then the ranges of activity of the two agents are disjoint, and thus
they cannot meet (one edge is added at one extremity of the line to break the
symmetry of the initial configuration).

Thus from now on, we assume that both agents can go at arbitrarily large
distance from their starting positions.

For the purpose of establishing our result, place the two agents A and A′

on two adjacent nodes vA and vA′ of an infinite line (whose edges are properly
colored). Let e = {vA, vA′} be the edge linking these two nodes.

– Let t0 be large enough so that A is at distance at least 2γ + |S| from its
starting position after t0 steps.

Since t0 > |S|, agent A at time t0 is in some state si ∈ Ci for some i ∈
{1, . . . , r}. In fact, since |Ci| divides γ, agent A has fully executed Ci at least
twice.

We define the notion of extreme position for a circuitC. Let s, π′(s), . . . , π′(k)(s)
be a circuit, with s = π′(k)(s). Assume that agent A starts in state s from node
u0 at distance at least k + 1 from both extremities of the line. After having
performed C exactly once, i.e., after k steps, agent A is at some node uk, back in

Deterministic Rendezvous in Trees with Little Memory 253

state s. Let u0, u1, u2, . . . , uk be the k + 1 non necessarily distinct nodes visited
by A while executing C. The extreme position for C starting in state s is the
node uj satisfying dist(u0, uj) = dist(u0, uk) + dist(uk, uj) and dist(u0, uj) =
max0≤�≤k dist(u0, u�). Let ui be the extreme position for Ci starting in si, and
let us define the following parameters:

– τ is the first time step among the |Ci| steps after step t0 at which A reaches
ui.

– x is the distance of agent A at time τ from its original position, i.e., x =
dist(ui, vA);

– τ ′ = τ + 2γ;
– x′ is the distance of agent A′ at time τ ′ from its original position vA′ .

Note that, by symmetry of the port labeling, and from the fact that A and
A′ are identical and operate in an infinite line, the two agents are on the two
different sides of edge e at time τ . Note also that, between times τ and τ ′,
agent A′ keeps on going further away from its original position, by repeating the
sequence of actions determined by the circuit Ci. Hence x′ �= x. Actually, we
have x′ > x. We can therefore consider the following construction.

Initial configuration of the agents. Let L be the properly 2-edge-colored line of
length x+x′ +1, formed by x edges, followed by one edge called e, and followed
by x′ edges. The two agents A and A′ are placed at the two extremities vA and
vA′ of e, the same way they were placed at the two extremities of e in the infinite
line used to define x and x′.

Since x �= x′, the initial positions of agents are not symmetric. Nevertheless,
we prove that the two agents never meet in L, and thus rendezvous, even without
termination, is not accomplished. The adversary imposes no delay between the
starting times of the agents, i.e., they both start acting simultaneously from
their respective initial positions.

One ingredient used for proving that the two agents do not rendezvous is the
following general result, that we state as a lemma for further reference.

Parity Lemma. Consider two (not necessarily identical) agents initially at odd
distance in a tree T , that start acting simultaneously in T . Let t ≥ 1. Assume
that one agent stays idle q times in the time interval [1, t], while the other one
stays idle q′ times in the same time interval. If |q − q′| is even, then the two
agents are at odd distance at step t.

The Parity Lemma enables to establish the following.

Lemma 5. The two agents A and A′ do not meet during the first τ steps.

At step τ , the behavior of the two agents becomes different. Indeed, agent A is
reaching one extremity of L, while A′ is visiting a degree-2 node.

We analyze the states of the two agents when they reach extremities of L dur-
ing the execution of their protocol. Assume that agent A reaches the extremities
of L at least k ≥ 1 times. Let σj be the state of agent A when it reaches any of
the two extremities of L for the jth time, 1 ≤ j ≤ k.

254 P. Fraigniaud and A. Pelc

Lemma 6. Agent A′ reaches the extremities of L at least k times. Moreover, if
σ′

j is the state of agent A′ when it reaches any of the two extremities of L for
the jth time, 1 ≤ j ≤ k, then σ′

j = σj .

After time τ the walks of the agents can be decomposed in two different types of
subwalks. A traversal period for an agent is the subwalk between two consecutive
hits of two different extremities of L by this agent. A bouncing period for an
agent is a subwalk (possibly empty) performed between two consecutive traversal
periods. Roughly, a bouncing period for an agent is a walk during which the
agent starts from one extremity of L and repeats bouncing (i.e., leaving and
going back) that extremity until it eventually starts the next traversal period.

Globally, an agent starts from its original position, performs some initial steps
(τ for A, and τ ′ for A′), and then alternates between bouncing periods and
traversal periods. These periods are not synchronous between the two agents
because there is a delay of 2γ between them. Nevertheless, by Lemma 6, if one
agent bounces at one extremity of L during its kth bouncing period, then the
other agent bounces at the other extremity of L during its kth bouncing period.
Similarly, if one agent traverses L during its kth traversal period, then the other
agent traverses L in the opposite direction during its kth traversal period. In
fact, Lemma 6 guarantees that the two agents perform symmetric actions with
a delay of 2γ, alternating bouncing at the two different extremities of L, and
traversing L in two opposite directions.

The following lemma holds, by establishing that whenever one agent is in a
bouncing period, the two agents are far apart.

Lemma 7. The two agents A and A′ do not meet whenever one of them is in
a bouncing period.

The following lemma holds, by using the fact that γ is the least common multiple
of the circuit lengths in the transition digraph of the agents, and by applying
the Parity Lemma.

Lemma 8. The two agents A and A′ do not meet when both of them are in a
traversal period.

Proof of Theorem 2. The two agents start an initial period that lasts τ steps. By
Lemma 5 they do not meet during this period. Then the two agents alternate
between bouncing periods and traversal periods. By Lemma 7, they do not meet
when one of the two agents is in a bouncing period. When the two agents are in
a traversal period, Lemma 8 guarantees that they do not meet. Hence the two
agents never meet, in spite of starting from non-symmetric positions, and thus
they do not rendezvous in L. ��

Remark. By construction of the line L and the setting of γ in the proof of
Theorem 2, we get that L is of length O(|S||S|). Therefore, rendezvous in all
bounded degree trees of size at most n requires agents with memory of size at
least Ω(log logn) bits.

Deterministic Rendezvous in Trees with Little Memory 255

4 Conclusion

Table 1 summarizes the contributions of this paper concerning the memory size
required for the rendezvous problem, in comparison with previous contributions
concerning the memory size required for the exploration problem. A natural
extension of this paper would be to investigate the gathering problem, in which
a set of k ≥ 2 agents scattered in a network have to gather at a same node. In
particular, it would be interesting to check whether this problem can be solved
by agents with O(log n) bits of memory, in trees of size at most n.

References

1. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks,
universal traversal sequences, and the complexity of maze problems. In: Proc. 20th
Annual Symposium on Foundations of Computer Science (FOCS 1979), pp. 218–
223 (1979)

2. Alpern, S.: The rendezvous search problem. SIAM J. on Control and Optimiza-
tion 33, 673–683 (1995)

3. Alpern, S.: Rendezvous search on labelled networks. Naval Reaserch Logistics 49,
256–274 (2002)

4. Alpern, S., Gal, S.: The theory of search games and rendezvous. Int. Series in Oper-
ations research and Management Science. Kluwer Academic Publisher, Dordrecht
(2002)

5. Alpern, J., Baston, V., Essegaier, S.: Rendezvous search on a graph. Journal of
Applied Probability 36, 223–231 (1999)

6. Alpern, S., Gal, S.: Rendezvous search on the line with distinguishable players.
SIAM J. on Control and Optimization 33, 1270–1276 (1995)

7. Anderson, E., Weber, R.: The rendezvous problem on discrete locations. Journal
of Applied Probability 28, 839–851 (1990)

8. Anderson, E., Essegaier, S.: Rendezvous search on the line with indistinguishable
players. SIAM J. on Control and Optimization 33, 1637–1642 (1995)

9. Anderson, E., Fekete, S.: Asymmetric rendezvous on the plane. In: Proc. 14th
Annual ACM Symp. on Computational Geometry (1998)

10. Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Operations Re-
search 49, 107–118 (2001)

11. Baston, V., Gal, S.: Rendezvous on the line when the players’ initial distance is
given by an unknown probability distribution. SIAM J. on Control and Optimiza-
tion 36, 1880–1889 (1998)

12. Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points.
Naval Reaserch Logistics 48, 722–731 (2001)

13. Cook, S.A., McKenzie, P.: Problems complete for deterministic logarithmic space.
Journal of Algorithms 8(5), 385–394 (1987)

14. Coppersmith, D., Doyle, P., Raghavan, P., Snir, M.: Random walks on weighted
graphs, and applications to on-line algorithms. In: Proc. 22nd Annual ACM Sym-
posium on Theory of Computing (STOC 1990), pp. 369–378 (1990)

15. Coppersmith, D., Tetali, P., Winkler, P.: Collisions among random walks on a
graph. SIAM J. on Discrete Math. 6, 363–374 (1993)

256 P. Fraigniaud and A. Pelc

16. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asyn-
chronous deterministic rendezvous in graphs. Theoretical Computer Science 355,
315–326 (2006)

17. Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in
graphs. Algorithmica 46, 69–96 (2006)

18. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little mem-
ory. Journal of Algorithms 51, 38–63 (2004)

19. Dyer, M., Frieze, A., Kannan, R.: A random polynomial time algorithm for es-
timating volumes of convex bodies. In: Proc. 21st Annual ACM Symposium on
Theory of Computing (STOC 1989), pp. 375–381 (1989)

20. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
oblivious robots with limited visibility. In: Ferreira, A., Reichel, H. (eds.) STACS
2001. LNCS, vol. 2010, pp. 247–258. Springer, Heidelberg (2001)

21. Gal, S.: Rendezvous search on the line. Operations Research 47, 974–976 (1999)
22. Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic

memory. In: Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2007), pp. 585–594 (2007)

23. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self
stabilizing mutual exclusion. In: Proc. 9th Annual ACM Symposium on Principles
of Distributed Computing (PODC 1990), pp. 119–131 (1990)

24. Kowalski, D., Malinowski, A.: How to meet in anonymous network. In: Flocchini,
P., Gasieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 44–58. Springer,
Heidelberg (2006)

25. Kranakis, E., Krizanc, D., Morin, P.: Randomized Rendez-Vous with Limited Mem-
ory. In: Proc. 8th Latin American Theoretical INformatics (LATIN) (2008)

26. Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a
ring. In: Proc. 23rd International Conference on Distributed Computing Systems
(ICDCS 2003), pp. 592–599 (2003)

27. Lim, W., Alpern, S.: Minimax rendezvous on the line. SIAM J. on Control and
Optimization 34, 1650–1665 (1996)

28. Schelling, T.: The strategy of conflict. Oxford University Press, Oxford (1960)
29. Thomas, L.: Finding your kids when they are lost. Journal on Operational Res.

Soc. 43, 637–639 (1992)
30. Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In:

Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp.
610–621. Springer, Heidelberg (1996)

Broadcasting in UDG Radio Networks with

Missing and Inaccurate Information

Emanuele G. Fusco1 and Andrzej Pelc2,�

1 Computer Science Department, Sapienza, University of Rome, 00198 Rome, Italy
fusco@di.uniroma1.it

2 Département d’informatique, Université du Québec en Outaouais,
Gatineau, Québec J8X 3X7, Canada

pelc@uqo.ca

Abstract. We study broadcasting time in radio networks, modeled as
unit disk graphs (UDG). Emek et al. showed that broadcasting time
depends on two parameters of the UDG network, namely, its diameter
D (in hops) and its granularity g. The latter is the inverse of the den-
sity d of the network which is the minimum Euclidean distance between
any two stations. They proved that the minimum broadcasting time is
Θ

`

min
˘

D + g2, D log g
¯´

, assuming that each node knows the density
of the network and knows exactly its own position in the plane.

In many situations these assumptions are unrealistic. Does removing
them influence broadcasting time? The aim of this paper is to answer this
question, hence we assume that density is unknown and nodes perceive
their position with some unknown error margin ε. It turns out that this
combination of missing and inaccurate information substantially changes
the problem: the main new challenge becomes fast broadcasting in sparse
networks (with constant density), when optimal time is O(D). Neverthe-
less, under our very weak scenario, we construct a broadcasting algorithm
that maintains optimal time O

`

min
˘

D + g2, D log g
¯´

for all networks
with at least 2 nodes, of diameter D and granularity g, if each node per-
ceives its position with error margin ε = αd, for any (unknown) constant
α < 1/2. Rather surprisingly, the minimum time of an algorithm stop-
ping if the source is alone, turns out to be Θ(D + g2). Thus, the mere
stopping requirement for the special case of the lonely source causes an
exponential increase in broadcasting time, for networks of any density
and any small diameter. Finally, broadcasting is impossible if ε ≥ d/2.

1 Introduction

The model and the problem. A radio network consists of stations with trans-
mitting and receiving capabilities. Stations have synchronized clocks showing the
round number. In a given round each station can act either as a transmitter or as
a receiver. The network is modeled as an undirected graph called a unit disk graph

� Partially supported by NSERC discovery grant and by the Research Chair in Dis-
tributed Computing at the Université du Québec en Outaouais.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 257–273, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

258 E.G. Fusco and A. Pelc

(UDG) whose nodes are the stations. These nodes are represented as points in
the plane. Two nodes are joined by an edge if their Euclidean distance is at most
1. Such nodes are called neighbors. It is assumed that transmitters of all stations
have equal power which enables them to transmit at Euclidean distance 1. We
also assume that the terrain is flat and without large obstacles. Hence an edge
between two nodes indicates that transmissions of one of them can reach the
other, i.e., they can communicate directly. We refer to radio networks modeled
by unit disk graphs as UDG radio networks.

A node acting as a transmitter in a given round sends a message delivered
to all of its neighbors in the same round. An important distinction from the
receiver’s point of view is between a message being just delivered and being
heard, i.e., received successfully by a node. A node acting as a receiver in a given
round hears a message, if and only if, a message from exactly one of its neighbors
is delivered in this round. If two neighbors v and v′ of u transmit simultaneously
in a given round, none of the delivered messages is heard by u in this round. In
this case we say that a collision occurred at u. It is assumed that the effect of a
collision is the same as that of no message being delivered in this round, i.e., a
node cannot distinguish a collision from silence.

The network topology is assumed to be unknown, namely, each node is un-
aware of the coordinates of any other node including its neighbors. Likewise,
nodes do not know any bound on the size of the network or on its diameter.
Such networks are often called ad hoc networks.

We consider broadcasting, which is one of the basic communication primitives.
One distinguished node, called the source, has a message which has to be trans-
mitted to all other nodes. Remote nodes get the source message via intermediate
nodes, along paths in the network. We assume that all stations are awake since
round 1, and may transmit control messages even before they heard the source
message. In order for the broadcasting to be feasible, we assume that the unit
disc graph underlying the UDG radio network is connected.

The above described scenario was adopted in [1] (under the name of the
spontaneous wake up model) with two additional assumptions. It was assumed
that the nodes are aware of (a linear lower bound on) the density d of the
network, which is the minimum Euclidean distance between any two nodes, and
that each node knows its exact position in the plane, i.e., is aware of the exact
values of its Euclidean coordinates in a global coordinate system.

Each of these two assumptions may be difficult to satisfy in practical appli-
cations. If nodes of a wireless network, e.g., sensors equipped with transmitters,
are dynamically added to a network at unknown times and locations, it may
be difficult or impossible to estimate the density of the network at any given
time. On the other hand, reading Euclidean coordinates of a position, e.g., using
a GPS, seems to be inherently prone to inaccuracies. Hence it is important to
determine to what extent these two additional assumptions influence the time of
broadcasting, and in particular, whether optimal broadcasting time changes if
these two assumptions are removed. Establishing this influence and constructing

Broadcasting in UDG Radio Networks 259

optimal algorithms that do not use the additional assumptions is the goal of the
present paper.

We work in the above described model from [1] modified by removing the
assumptions of density knowledge and of availability of exact positions of nodes.
Instead, if the real position of a node is (x, y), we assume that this node perceives
its position as being (x′, y′), where (x′, y′) is chosen by an adversary. The distance
between (x, y) and (x′, y′) is bounded by the error margin ε, a positive real
parameter of the model. The point (x′, y′), is called the perceived position of the
node v = (x, y) and is denoted by P (v). It should be stressed that we do not
assume the knowledge of ε either. All other characteristics of the model are as
mentioned before, and as in [1]. In particular, the topology, size and diameter of
the network are unknown to nodes. We consider only distributed deterministic
broadcasting. Thus decisions made by a node on whether to transmit or to receive
in a given round, and what message to transmit, if any, are based exclusively on
its perceived position and on the messages it heard so far. The execution time of
a broadcasting algorithm in a given radio network is the smallest round number
after which all nodes of the network have heard the source message and no other
messages are sent.

Our definition of time of a broadcasting algorithm is slightly different from
that in [1] and the same as, e.g., in [2]. In [1], time was defined simply as the
smallest round number t after which all nodes of the network have heard the
source message. Hence the messages could be subsequently sent indefinitely by
various nodes without any possibility of stopping and the algorithm would be
still considered correct and running in a given time t. The difference between
these two definitions is negligible, if parameters of the network (the density
and the diameter) are known to nodes. In this case the time of informing all
nodes can be precomputed and the source can send a stopping message after
this time, without changing broadcasting complexity. However, if the density
is unknown, the difference between an algorithm that stops and one that does
not is not trivial, and so is the difference between the two above definitions of
execution time. We will see in the sequel that the requirement of total silence
after the end of the algorithm is crucially used in our lower bound on time. We
consider the restriction to broadcasting algorithms that stop and the definition
of time requiring silence after the last round to be more natural and useful:
algorithms that do not stop require an external “help”, e.g., user’s intervention,
to be implemented and thus cannot be considered to be autonomous algorithms.
Hence we use this definition rather than that from [1]. However, it follows from
our result that the algorithm from [1] can be converted to a stopping algorithm
and it will have the same time complexity according to our more demanding
definition. In view of this, we refer to the time of the algorithm in [1], without
distinguishing between the two definitions.

It was proved in [1] that the optimal broadcasting time (with each node know-
ing the density and its own exact position) is Θ

(
min

{
D + g2, D log g

})
, where

D is the diameter of the network (in the number of hops), and g is the inverse
of the density, called the granularity of the network. The aim of the present

260 E.G. Fusco and A. Pelc

paper is to establish whether this optimal broadcasting time changes when the
additional assumptions are removed.

Our results. It turns out that the combination of missing and inaccurate in-
formation (unknown density and unknown error in perceiving positions) sub-
stantially changes the problem with respect to the easier scenario from [1]. The
main challenge in our setting becomes fast broadcasting in sparse networks (with
constant density), when optimal time is O(D). (This was an easy task in the
previous scenario.) One new difficulty comes from the fact that with unknown
constant density d and unknown error margin ε possibly close to d/2, nodes with
arbitrarily close perceived positions may be unable to communicate with each
other. This invalidates election techniques used in [1]. The second new difficulty
is the stopping problem combined with ignorance of network parameters, in par-
ticular of the density and of the diameter. Not knowing these parameters makes
it impossible to predict when the entire algorithm or its particular procedures
will finish. Thus simple time-out conditions used in [1] are no more available and
special care must be taken to explicitly stop the algorithm at the proper time.

Nevertheless, under our very weak scenario, we construct a broadcasting al-
gorithm that maintains optimal time O

(
min

{
D + g2, D log g

})
for all networks

with at least 2 nodes, of diameter D and granularity g = 1/d, assuming that
each node perceives its position with error margin ε = αd, for any unknown
constant α < 1

2 . Rather surprisingly, the minimum time of an algorithm working
correctly for all networks, and hence stopping if the source is alone, turns out to
be Θ(D + g2). Thus, the mere stopping requirement for the special case of the
lonely source causes an exponential increase in broadcasting time, for networks
of any density and any small diameter, e.g., polylogarithmic in g. Finally, we ob-
serve that bounding the error margin below d/2 is necessary: indeed, if ε ≥ d/2,
then broadcasting turns out to be impossible in many networks. Due to lack of
space, proofs are omitted.

Related work. Algorithmic aspects of radio communication were mostly stud-
ied for arbitrary graphs, either assuming complete knowledge of the network or
assuming only limited information about the topology, available to nodes. The
present paper belongs to the second area.

The first paper to study deterministic broadcasting in radio networks, assum-
ing complete knowledge of the topology, was [3]. The authors also defined the
graph model of radio networks subsequently used in many other papers. In [4],
an O(D log2 n)-time broadcasting algorithm was proposed for all n-node net-
works of diameter D. This time complexity was then improved in a sequence
of papers [5, 6, 7], culminating with the O(D + log2 n) algorithm from [8]. The
latter complexity is optimal in view of the lower bound Ω(log2 n) from [9].

Investigation of deterministic distributed broadcasting in radio networks,
whose nodes have only local knowledge of the topology, was initiated in [10].
Several authors [2, 11, 12, 13, 14, 15, 16] studied deterministic broadcasting in
radio networks assuming that nodes know only their own label. Such networks
are called ad hoc. In [2] the authors gave a broadcasting algorithm working in

Broadcasting in UDG Radio Networks 261

time O(n) for all symmetric n-node networks, assuming that nodes can transmit
spontaneously, before getting the source message. A matching lower bound Ω(n)
for symmetric networks was proved in [16]. In [2, 12, 13, 15] arbitrary directed
graphs were considered. The currently fastest deterministic broadcasting algo-
rithms working for arbitrary ad hoc networks have running times O(n log2 D)
[15] and O(n log n log logn) [17]. In [14] an Ω(n logD) lower bound was proved.
Randomized broadcasting in radio networks was studied in [10, 15, 18].

Another model of radio networks is based on geometry. Stations are repre-
sented as points in the plane and the graph modeling the network is no more
arbitrary. It may be a unit disk graph, or one of its generalizations. Broadcasting
in such geometric radio networks was considered, e.g., in [1, 19, 20, 21]. Deter-
ministic broadcasting in geometric radio networks with restricted knowledge of
topology was studied in [19]. In the model corresponding to our present scenario,
the authors showed a broadcasting algorithm which works in time linear in the
number of nodes, assuming that nodes are labeled by consecutive integers. In a
recent paper [1] the authors considered broadcasting in radio networks modeled
by unit disk graphs. Some of their results were discussed above. Other papers
studied tasks other than broadcasting (e.g., the maximum independent set prob-
lem [22] or the coloring problem [23]) in radio networks modeled by unit disk
graphs and their generalizations.

2 Terminology and Preliminaries

We may assume that the (unknown) density d of the network is at most 1,
otherwise all nodes would be isolated. The granularity of the network is g = 1/d.
We assume that the error margin ε on the perception of node positions is at most
αd, for some (unknown) constant α < 1/2; this implies ε < 1/2. First observe
that bounding ε below d/2 is necessary.

Proposition 1. For error margin ε ≥ d/2 there exists a 4-node UDG radio
network of density d in which broadcasting is impossible.

Algorithms in [1] are based on three types of grids, composed of atomic squares
with generic name boxes. The first grid is composed of tiles, of side length d/

√
2,

the second of blocks, of side length 1/
√

2 and the third one of 5-blocks, of side
length 5/

√
2. Grids are aligned with coordinate axes. Tiles are small enough to

contain at most one node. Blocks have diameter 1, hence all nodes in a block
are able to communicate. 5-blocks are used to avoid collisions.

In our setting a node can decide if it is in a region only based on its perceived
position. We say that a node inhabits a given box if its perceived position belongs
to this box. Two boxes are potentially reachable from one another, if they can be
inhabited by a pair of nodes with real positions at distance at most 1. Two boxes
are reachable from one another, if they are inhabited by such a pair of nodes. If d
can be as large as 1, any constant side length of a box is too large to ensure the
property that nodes which inhabit the same box have real positions at distance
at most 1, and hence that they can communicate. Indeed, let d = 1 and let � be

262 E.G. Fusco and A. Pelc

an arbitrary constant. Take ε such that 1/2 > ε > (1−�)/2 and consider a pair of
nodes u and v at distance δ where 1 < δ < �+2ε. The distance between perceived
positions of nodes u and v can be as small as δ−2ε < �, hence they may inhabit a
box of side length �/

√
2, but be unable to communicate. It follows that we cannot

partition the plane into boxes guaranteeing full communication within a box.
This is the reason of designing separate algorithms for d below some threshold,
when such a communication is possible, and for d above this threshold, when full
communication within a box will not be needed. Let ∆ =

(√
2 − 1

)
/
(
2
√

2 + 2
)
.

We take 2∆ as the threshold for d. A network is sparse if d ≥ 2∆ and dense
otherwise.

Both in the algorithm for sparse networks and in algorithms for dense networks
we will heavily use the concept of multiplexing of procedures. By multiplexing
we mean that the execution of a procedure, described as a sequence of consec-
utive steps, will be interleaved with the execution of other procedures needed
to complete the task. In general, only one step of each procedure is executed
in a round robin fashion, unless explicitly stated. Divisions in blocks and (as
we will see in the next section) assignment of colors are used to interleave the
execution of the same task in different rounds (depending on colors, on blocks
or on a combination of both) in order to avoid collisions. Multiplexing will also
be used on a higher level, in order to interleave the execution of different al-
gorithms developed below. Indeed, as we are unaware of the value of d, we are
unable to determine in advance if the network is sparse or dense, thus we have
to run concurrently the algorithms for dense and sparse networks. This allows
us to always complete the task in optimal time, by stopping slower algorithms
after completion of the one that is the best for a given network.

3 Broadcasting in Sparse Networks

In this section we describe Algorithm Color&Transmit, working correctly for
sparse networks. We call block a box with side length 1. Blocks are used to build
a grid in the same fashion as mentioned in Sect. 2. Another grid is composed of
5-blocks, i.e., boxes of side length 5. Nodes which inhabit a block must have real
position within distance ε < 1/2 from the block. It follows that any transmission
made by a node inhabiting the central block of a 5-block can only be heard by
nodes which inhabit the 5-block.

In sparse networks, γ =
⌈

π√
3
·
√

2+1√
2−1

·
(
2 +

√
2−1√
2+1

)2
⌉

is an upper bound on the

number of nodes which can inhabit a block (we use π/
√

12 as the upper bound
on the ratio of the sum of areas of pairwise disjoint circles of radius ∆ in a
square of side length 2 + 2∆ to the area of this square). We reserve a total of
25γ distinct colors. Nodes in block Bi of a 5-block, 1 ≤ i ≤ 25, can be colored
with colors from set Ci, where |Ci| = γ and sets Ci are pairwise disjoint.

In our algorithm we will use a grid refinement process in order to perform
various tasks. Nodes participating in grid refinement are selected among inhabi-
tants of a box. As it is impossible to guarantee full communication in a box with
any constant side length, we use a distinguished node, called witness, which

Broadcasting in UDG Radio Networks 263

coordinates the process and determines the set of participants, depending on
the condition whether they are able to communicate with the witness or not.

The grid refinement process proceeds in phases. In the first phase, the whole
box is divided in 4 square tiles, numbered from 1 to 4 proceeding left to right, top
to bottom. In successive phases, the side length of tiles is halved, thus quadru-
pling the number of tiles in the grid. Tiles are allotted rounds in a round robin
fashion. A participating node with perceived position in the i-th tile, transmits
during rounds allotted to its tile. Rounds allotted to the witness are interleaved
with those of the tiles. If only one participating node inhabits a tile, its transmis-
sions will be heard by the witness (which thus learns the perceived position of the
participating node). The witness sends a confirmation to the node immediately
after. If more than one participating node inhabits a tile, transmissions collide,
thus the witness hears silence and does not send any confirmation. At the end of
each phase, it may be needed to check if the grid refinement has correctly termi-
nated. If needed, such a check is performed as follows. First, one distinguished
node u within communication range of the witness must be provided (such a
node will be always explicitly defined whenever needed). Once node u is fixed, it
transmits together with all participating nodes that did not receive a confirma-
tion during the current phase. The witness is thus able to distinguish whether
the process is completed or not; if it hears the message from u, this means that
the grid is fine enough to have at most one participating node in each tile and
the process is complete. Otherwise, the grid is further refined by halving the side
length of tiles, and a new phase begins. Notice that only a constant number of
phases are needed to complete the process because ε ≤ αd, for some constant
α < 1/2, and hence the distance between perceived positions of distinct nodes
is lower-bounded by a positive constant. Upon completion of grid refinement,
the witness and all participating nodes know the complete set of participants
(participating nodes learn it through confirmations of the witness).

Now we are able to describe Algorithm Color&Transmit. Broadcasting is
based on a coloring of nodes in the network. The coloring algorithm defines a
spanning tree of the network, whose height is in O(D). The parent and child
relations will always refer to this tree. The coloring satisfies the following condi-
tions: for every pair (v1, v2) of nodes having the same color, the set of children of
v1 in the spanning tree does not contain any neighbor of v2 (i.e., v2 is at distance
greater than 1 from any children of v1). Moreover, the parent of v1 (respectively
v2) is not adjacent to v2 (respectively v1). Siblings in the spanning tree have
different colors and each node has a color different from the one of its parent.
Notice that we do not enforce to assign different colors to neighbors in the graph.

Once a coloring satisfying the above conditions is available, it is possible to
ensure that transmissions from a parent (child) reach all its children (its parent)
without collisions, by allotting distinguished rounds to nodes of different colors.
The bounded height of the spanning tree ensures termination of broadcasting in
time O(D), provided that the total number of colors is bounded by a constant.

Procedure. Assign-Color [Input: a pair of blocks Bi, Bj in a 5-block, and a
color c in Ci.]

264 E.G. Fusco and A. Pelc

The procedure assigns, in constant time, colors from set Cj to those nodes
in Bj that are yet uncolored and have a neighbor with color c in block Bi,
respecting the coloring conditions.

We say that a node is out of the tree if it does not know its parent. During
the coloring process we maintain the invariant that nodes with the same color
do not share neighbors out of the tree.

In the first round of Procedure Assign-Color, all nodes with color c in block
Bi transmit. Next, out of the tree neighbors of each node w with color c in block
Bi, inhabiting block Bj , start a grid refinement process with w as a witness.
(Thus, many grid refinement processes may be simultaneously active.) Node w
becomes the parent of participants of the grid refinement process. In order to
check termination of each grid refinement process, we need one more distin-
guished node u: this node is the parent of the corresponding node w. Notice
that each node w has a different parent, as siblings do not get the same color.
Consider two nodes, w and w′, with color c in block Bi. Let p be the parent of
w and p′ be the parent of w′. The coloring must satisfy that w is not a neighbor
of p′, thus transmissions made by p and p′ cannot collide at w. In constant time,
all children of w, inhabiting block Bj (and w itself) know the full list L of per-
ceived positions of children of w inhabiting block Bj . (Recall that children of w
inhabiting block Bj may be unable to hear each other directly, so they rely on
w to learn the list L.)

Subroutine. Conflict-Detection [Input: a quadruple (Bi, Bj , c, c
′) where Bi

and Bj are blocks and c ∈ Ci, c′ ∈ Cj are colors.]
The subroutine allows each node v in block Bj seeking color c′, whose parent

w in block Bi has color c, to distinguish among three possible outcomes: node v
can either win color c′, lose it, or make a draw on it. All nodes seeking color c′

are called competitors.

Subroutine Conflict-Detection works in 4 consecutive rounds (the usual in-
terleaving of procedures is not respected for subroutine Conflict-Detection as
interleaving different runs of the subroutine could cause unexpected behavior.
As the number of rounds used by Subroutine Conflict-Detection is 4, the
whole execution can be allotted a segment of 4 consecutive rounds, increasing
the delay in the execution of other procedures by a constant factor only.). In
the first round of Subroutine Conflict-Detection each node v that has not yet
lost color c′ transmits, claiming color c′. In the second round, all parents w of
competing nodes transmit. At the same time, all non-competing nodes that did
not hear any claim for color c′ in the previous round transmit. If a competitor v
heard the message from its parent w in the second round, no node v′ sharing a
non-competing neighbor with v is competing for color c′.

In the third round, all nodes w in Bi with color c transmit together with all
non-competing nodes which know about a previous winner of color c′. If node v
heard the message from its parent w in the third round, it means that none of
its non-competing neighbors knows about a previous winner.

Node v wins color c′, if it heard the message from its parent w in the second
and third rounds. Node v loses color c′, if it did not hear the message from its

Broadcasting in UDG Radio Networks 265

parent w in the third round (color c′ was already won by a node sharing a non-
competing neighbor with v). Node v makes a draw on color c′, if it did not hear
its parent w in the second round, but heard it in the third round.

Notice that children of v will be selected among out of the tree nodes, and
thus are non-competing. Parents of nodes competing with v during the same
execution of Procedure Assign-Color, have the same color as the parent of v.
It follows that they cannot be adjacent to v, as v would have been an out of the
tree node when they were assigned a color, and thus either they or the parent
of v would have lost the color.

In round 4, each competitor v announces the result: win, lose or draw, inform-
ing all its non-competing neighbors in case of victory and at least its parent w
in other cases. ♣

Once the list L is known to a parent w with color c in block Bi, the first node
v in lexicographic order of perceived positions in the list L starts competing for
the first available color c′ ∈ Cj (a color is available if the parent does not know
about a previous winner). This is done by calling Subroutine Conflict-Dete-
ction. If v wins, Procedure Assign-Color removes v from the list L and color c′

from available colors for all remaining nodes in L. Then, the first node in list L
starts competing for the first available color. If v loses, Procedure Assign-Color
removes color c′ from available colors for all nodes in L and v starts competing
for the next available color. If v makes a draw, it still needs to compete for
color c′. When a draw occurs, nodes are in conflict ; conflicts are resolved by
Subroutine Conflict-Resolution.

Each competing node participating in Subroutine Conflict-Resolution will
either win or lose the color it was competing for. Multiple runs of Subroutine
Conflict-Resolution can be executed at the same time with the same block
arguments, if more than one parent w is present in block Bi. Resolution of
conflicts is achieved by ensuring that each of the conflicting nodes becomes the
only competitor in a run of Procedure Conflict-Detection, within constant
time from the first draw. The latter is enough to ensure there is no draw.

This result is achieved by using a grid refinement process that delays successive
executions of Subroutine Conflict-Detection by increasing amounts of time,
as described below.

Subroutine. Conflict-Resolution [Input: a quadruple (Bi, Bj , u, v), where
u ∈ Bi, v ∈ Bj and u is the parent of v.]

Subroutine Conflict-Resolution proceeds in consecutive phases. Consider
phase i for a conflicting node v. Let pi(v) be the number of the tile inhabited by
node v in the i-th grid of the grid refinement process of block Bj . Clearly 1 ≤
pi(v) ≤ 4i. Let Sv be the time when node v started participating in Procedure
Conflict-Resolution. In step Sv +wi +4i+1 + pi+1(v), where wi =

∑i
j=1 2 · 4i

and w0 = 0, node v starts participating in Procedure Conflict-Detection for
the (i + 1)-th time. If the outcome of this procedure for node v is a draw, the
grid is further refined and a new phase begins. ♣

266 E.G. Fusco and A. Pelc

After resolution of a conflict, node v either wins or loses color c′. The actions of
Procedure Assign-Color were already described in both these cases. �

Lemma 1. Subroutine Conflict-Resolution ends in constant time.

In order to complete Algorithm Color&Transmit, we need to describe how to
initialize the whole process starting from the source s. s is precolored with the
first color available for the block it inhabits. Using a grid refinement process, s
can elect a distinguished node in its neighborhood in constant time and assign
it a color. (If there is no neighbor of the source, i.e., the source is the only node
in the network, the source transmits only once.) This distinguished node allows
the source to check the correct termination of the grid refinement process. From
now on, using Procedure Assign-Color, the whole network can be colored with
25γ colors. Notice that the time taken to assign a color to a node is constant.
Once a node is colored, all its neighbors are colored after a constant time. It
follows that the coloring ends in time O(D) and thus the height of the induced
spanning tree is in O(D). After getting the source message, a node waits until
the first round assigned to its color and transmits the message, informing all
its children. Confirmation messages are sent back to the source along this tree,
starting from the leaves, again using colors to avoid collisions on parent nodes.
Each transmission is delayed by a constant time only, and the whole process is
completed in time O(D). Confirmation will be used in the main algorithms.

Theorem 1. There exists a deterministic algorithm that completes broadcast in
time O(D) in any UDG radio network of unknown diameter D and unknown
density d ≥ 2∆.

4 Broadcasting in Dense Networks

In this section we assume d < 2∆. We call ∆-block a box with side length
(1 − 2∆) /

√
2. ∆-blocks are used to build a grid in the same fashion as before.

One more grid is composed of 5∆-blocks , i.e., boxes of side length (1 − 2∆) 5/
√

2.
Under the current assumption on d, the distance between the actual positions
of two nodes in a ∆-block is < 1.

Lemma 2. If ε < ∆, transmissions made by nodes inhabiting the central ∆-
block of a 5∆-block can only reach nodes inhabiting the 5∆-block.

It follows that there are 24 ∆-blocks potentially reachable from any ∆-block.

An O
(
D + g2

)
-time algorithm. The algorithm Elect&Transmit proposed in

[1] is based both on the perfect knowledge of positions and on the knowledge of
the density of the network. This algorithm elects a pair of adjacent nodes called
ambassadors for each pair of neighboring blocks in a preprocessing phase of time
complexity O(g2). When d is known, multiplexing allows each node to transmit
alone and reveal its position, in 25g2 rounds. Then knowledge acquired by each

Broadcasting in UDG Radio Networks 267

node is spread (in the same fashion) to all its neighbors. As the time taken to
complete transmissions in each block is identical and known in advance when d is
known, this is enough to elect a pair of ambassadors for each pair of neighboring
blocks, e.g., by choosing the first pair in lexicographic order. Once the pairs of
ambassadors are defined, broadcasting can be completed in time O(D).

In our setting d is unknown and we only have inaccurate knowledge of po-
sitions, hence it is impossible to use algorithm Elect&Transmit from [1]. In
what follows, we provide a new algorithm working in time O

(
D + g2

)
, called

Algorithm Dense-1. Recall, from Sect. 3, the description of the grid refinement
process. Taking advantage of full communication within a ∆-block, we can mimic
the grid refinement process in dense networks without having a predefined wit-
ness, as the role of the witness can be played by the first node that is able to
transmit alone. Indeed, such a node is heard by all participants in the ∆-block;
its perceived position is then appended to all the subsequent messages sent dur-
ing the execution of the process, thus informing it of its role of witness as soon as
a second node is able to transmit alone. In any ∆-block containing at least two
nodes the grid refinement process ends in time O(g2) (the second node transmit-
ting alone is used to check termination). Nodes that are alone in their ∆-block,
would be involved in the grid refinement process forever, unless external help
allows them to stop. (In our algorithm such help will be, of course, provided.)

In [1] the authors developed a procedure called Conquer. This procedure elects
a pair of neighboring nodes in two blocks in time O (log g). The input of Proce-
dure Conquer consists of two blocks, B1 and B2, and a node b1 in B1. Procedure
Conquer can either be successful or unsuccessful, depending on whether a pair
of adjacent nodes exists in the two blocks or not. Termination of Procedure Con-
quer was based on the assumption that d is known. Nodes elected by procedure
Conquer can be used as ambassadors to spread information from one block to
another, but in our setting we need to take additional care in order to guarantee
termination. Logarithmic time is achieved in Procedure Conquer thanks to the
ability of electing a neighbor of a given node c in a region R (of diameter at most
1) in time O (log g). This is based on procedure Echo from [24], which can be used
to perform elections of a node in a set in logarithmic time, using a halving pro-
cess which exponentially decreases the area of the region where the node can be
elected. The knowledge of d allows the node c to precompute the duration of an
unsuccessful election (i.e., an attempt to elect a node from the empty set). In our
setting this is impossible, thus we need to avoid involving nodes in unsuccessful
halving processes while electing ambassadors for neighboring ∆-blocks.

In our algorithm, election of ambassadors is performed using Procedure Safe-
-Conquer. Procedure Safe-Conquer uses an additional distinguished node with
respect to Procedure Conquer, that allows to test whether an election based on
halving would be successful or not, before attempting it. The procedure elects
a pair (u, v) of adjacent nodes such that u ∈ B1 and v ∈ B2, in time O(log g),
whenever such a pair exists; otherwise it stops in constant time. Now we describe
Algorithm Dense-1.

268 E.G. Fusco and A. Pelc

In the first round, the source transmits alone. The source will not transmit
any other message unless it hears a message from another node, allowing the
protocol to end in time 1 when the whole network consists only of the source.

Starting from round 2, all ∆-blocks start the grid refinement process. Let B
be a ∆-block in which the process ends, and let a and b be the first two nodes
that transmitted alone in B. For any such block, Procedure Safe-Conquer is
applied using as parameters B,B′, a, and b, for every ∆-block B′ potentially
reachable from B (there are at most 24 such ∆-blocks).

As soon as the source s hears a message (which happens after time O
(
g2
)

in
networks with more than one node), it starts participating in two tasks. The first
task is the grid refinement in its own ∆-block. The second task is the election of
a node b among those informed during the first round, based on halving. This
election is performed for each of the 25 ∆-blocks potentially reachable from the
source, including its own ∆-block (using multiplexing). Election is successful in
one of these ∆-blocks and it is completed in time O(log g). Let S be the ∆-
block inhabited by s. As soon as node b is elected, Procedure Safe-Conquer is
applied using as parameters S, T, s and b, for any of the 24 ∆-blocks T potentially
reachable from S.

For any ∆-block with at least 2 nodes (and for the ∆-block inhabited by the
source), election of all ambassadors is completed in time O

(
g2 + log g

)
= O

(
g2
)
.

Whenever a pair of ambassadors (u, v) for a pair of blocks (B,B′) is elected, if
B′ is a ∆-block where grid refinement is still running, node v verifies if it is
alone in B′. This is done by reserving a round where each node in B′, except
v, transmits together with u. If v can hear u, it is alone in B′ and it stops
executing grid refinement, otherwise other nodes are present and grid refinement
will eventually terminate. It follows that after O

(
g2
)

time, the only ∆-blocks
that are still running grid refinement are those ∆-blocks containing only one
node that have no neighbors in ∆-blocks with 2 or more nodes. For any such
∆-block B, the election of ambassadors for the 24 pairs of blocks (B,B′), where
B′ is potentially reachable from B, can be completed in constant time using
Procedure Safe-Conquer. In each case, the parameters of this procedure will be
B, B′, the unique node u inhabiting B, and the node v that first informed u.

The source message is then passed through ambassadors. Let (u, v) be a pair
of ambassadors for ∆-blocks B,B′. If v is newly informed by u, it informs B′

and informs u that B′ has been newly informed by B. In this case we say that
(u, v) is the informing couple of B′. Otherwise v does not transmit. A ∆-block is
a leaf if it does not newly inform any other ∆-block. Confirmation of broadcast
completion proceeds from leaf ∆-blocks to the source, again using ambassadors.

Theorem 2. There exists a deterministic algorithm that completes broadcast
in time O

(
D + g2

)
in any UDG radio network of unknown diameter D and

unknown density d = 1/g < 2∆.

An O (D log g)-time algorithm. In order to broadcast in time O (D log g) we
restrict attention to networks with at least two nodes. In Sect. 6 we show that
this restriction is necessary.

Broadcasting in UDG Radio Networks 269

Algorithm Dense-2, is designed for networks of size at least 2 and works in
time O (D log g). In such networks, we are guaranteed that there exists a node
b adjacent to the source s, thus we can elect such a node b in logarithmic time
in the same fashion as we did in Algorithm Dense-1, without waiting for the
source to receive any message. Procedure Safe-Conquer is then used to elect
pairs of ambassadors for any pair of ∆-blocks (B,B′), where B is inhabited by
the source and B′ is reachable from B. In general, fix a ∆-block B1 not reachable
from B. Consider the informing couple (u, v) of ambassadors for B1. Nodes u
and v are then used as parameters of Procedure Safe-Conquer for any ∆-block
B2 potentially reachable from B1.

Election of ambassadors and spreading of the source message proceeds by a
wave originating from the ∆-block inhabited by the source. Confirmation is done
as previously. Since each election takes time O (log g), broadcasting is completed
in time O (D log g).

Theorem 3. There exists a deterministic algorithm that completes broadcast in
time O (D log g) in any UDG radio network with at least two nodes, unknown
diameter D and unknown density d = 1/g < 2∆.

5 The Main Algorithms

Algorithms Dense-1 and Dense-2 developed for dense networks, may fail on
a sparse network, as the assumption of having full communication inside a ∆-
block may not hold. On the other hand, Algorithm Color&Transmit, developed
for sparse networks, can fail on dense networks, as it can run out of colors when
there are more than γ nodes in a block. In order to develop an algorithm that
is suitable for all networks, we multiplex the execution of algorithms conceived
for dense and for sparse networks, and use confirmation in order to stop the
execution of the slower ones after the completion of the fastest. (Such stopping
is crucial because grid refinement for dense networks could run forever on sparse
networks.) The only nodes sending confirmation to the source in algorithms for
dense networks are ambassadors. We need to ensure that whenever an algorithm
for dense networks fails, at least one of the ambassadors becomes aware of the
error, thus not sending confirmation back to the source. On the other hand, in
algorithm Color&Transmit all nodes send confirmation, and thus failures are
readily detected.

Procedure. Error-Detection [Input: a ∆-block B.]
Let (u, v) be the informing couple of B. (If B is the ∆-block inhabited by

the source s, the informing couple is replaced by the pair (b, s), where b is the
elected neighbor of s.) The procedure flags an error whenever a node at distance
(in hops) at most 2 from v is not informed.

In the first round, v transmits together with all uninformed nodes. Let x be
an informed node adjacent to v. x hears v in the first round, if and only if, it
has no neighbors that are not informed. In the second round of the procedure,
u transmits together with all neighbors of v that did not hear v in the previous

270 E.G. Fusco and A. Pelc

round. The ambassador v flags an error (and does not send confirmation), if it
does not hear u in the second round. �

Procedure Error-Detection is called by algorithms Dense-1 and Dense-2 in
any ∆-block B as soon as the following two conditions are satisfied: (1) con-
firmation from all ∆-blocks newly informed by B was obtained; (2) if B1 is a
∆-block reachable from B and B2 is a ∆-block reachable from B1, then B2 was
informed.

Lemma 3. Let A be either Algorithm Dense-1 or Dense-2. If A fails to inform
all nodes, then A does not provide confirmation to the source. If A is executed
in a dense network, then A provides confirmation to the source.

We propose two main algorithms: Algorithm Universal Broadcast that works
for all networks, and Algorithm Company-Aware Broadcast that works for all
networks of size at least 2. Algorithm Universal Broadcast consists of multi-
plexing Algorithm Color&Transmit with Algorithm Dense-1, while Algorithm
Company-Aware Broadcast consists of multiplexing algorithms Color&Tran-
smit, Dense-1, and Dense-2.

The running time of Algorithm Universal Broadcast is O
(
D + g2

)
. Indeed,

if confirmation is provided to the source by Algorithm Dense-1, the source can
stop the execution of Algorithm Color&Transmit, in time O(D), using the al-
ready elected ambassadors to spread the stopping message to the whole network.
On the other hand, if confirmation is provided to the source by Algorithm Co-
lor&Transmit, the execution of Algorithm Dense-1 can be stopped, again in
time O(D), using the already defined coloring to avoid collisions while spreading
the stopping message from the source to the whole network. Algorithm Univer-
sal Broadcast is successful on any network, and its running time is bounded
by the minimum between the running time of Algorithm Color&Transmit and
Algorithm Dense-1, thus it is always O

(
D + g2

)
. If the network contains only

the source, the source will never receive any confirmation. Nevertheless, nei-
ther Algorithm Color&Transmit nor Algorithm Dense-1 would use the source
to transmit more than once in this case, thus allowing the combined algorithm
to end in constant time. Hence we have the following result, which is proved
optimal in Sect. 6.

Theorem 4. There exists a deterministic algorithm that completes broadcast
in time O

(
D + g2

)
in any UDG radio network of unknown diameter D and

unknown density d = 1/g.

If we neglect networks with only one node, Algorithm Company-Aware Bro-
adcast can be used. Stopping slower component algorithms by the fastest is
done as previously, guaranteeing time O

(
min

{
D + g2, D log g

})
. However, Al-

gorithm Company-Aware Broadcast runs forever on a network containing the
source only, hence it is not correct for all networks. Since the lower bound
Ω
(
min

{
D + g2, D log g

})
from [1] also holds in our case, Algorithm Company-A-

ware Broadcast is optimal whenever it is correct. Hence we have the following
result.

Broadcasting in UDG Radio Networks 271

Theorem 5. The optimal time of a broadcasting algorithm working correctly
on all UDG radio networks with at least two nodes, unknown diameter D and
unknown density d = 1/g, is Θ

(
min

(
D + g2, D log g

))
.

6 Lower Bound on Universal Broadcasting Time

We now establish optimal time of a broadcasting algorithm working correctly for
all networks. In particular, this algorithm must stop after some fixed time when
the source is the only node in the network. We show that this forces a lower
bound Ω(g2) on broadcasting time for some networks of constant diameter, and
from there we derive the lower bound Ω(D + g2) on broadcasting time for the
class of UDG radio networks with unknown diameter D and unknown density
d. This matches the time O(D + g2) of Algorithm Universal Broadcast from
Sect. 5, thus establishing Θ(D + g2) as optimal broadcasting time for the class
of arbitrary networks.

Consider two squares: A with corners (3
5 ,−

1
10), (3

5 ,
1
10), (4

5 ,−
1
10), (4

5 ,
1
10) and

B with corners (6
5 ,−

1
10), (6

5 ,
1
10), (7

5 ,−
1
10), (7

5 ,
1
10). For any positive constant d,

consider a d-grid inside each of those squares, defined as the set of points in
A (respectively, in B), including the lower-left corner and forming a grid with
square side d. Let S be the d-grid in A, and T the d-grid in B. Note that, for any
d, the size σ(d) of both sets S and T is the same and it is Ω(g2). For any S′ ⊆ S
and any T ′ ⊆ T define a UDG radio network N(S′, T ′) whose set of stations is
{(0, 0)} ∪ S′ ∪ T ′ and whose source is the point (0, 0). Let N be the class of all
networks N(S′, T ′), for all d = 1/g, where g is an integer greater than 4, and
for all S′ ⊆ S and T ′ ⊆ T . Note that networks of the class N have a simple
structure: they are composed of two cliques, one on the set {(0, 0)}∪S′ and the
other on the set T ′, with all possible edges between sets S′ and T ′. A network
obtained for a given d has density d and diameter 2.

Theorem 6. For any broadcasting algorithm A working correctly on all net-
works of the class N , and for every g > 4, there exists a network of density
d = 1/g in the class N , for which the algorithm A uses time Ω(g2).

It is easy to generalize the above lower bound to UDG radio networks of arbitrary
diameter D and density d. Instead of networks of the class N that consist of a
source (0, 0) and d-grids in squares A and B, we take the source (0, 0) followed
by D − 1 squares of side 1/5, arranged in a line with distances 3/5 between
consecutive square centers. In each of the squares we insert d-grids as before.
It is easy to see that the Ω(g2) lower bound can be proved as above, while the
diameter D is a trivial lower bound on broadcasting time. Hence we get the
following corollary, which holds even for error margin 0.

Corollary 1. For any broadcasting algorithm A working correctly on all UDG
radio networks, there exist networks of diameter D and density d = 1/g, for
arbitrary D and g, for which algorithm A uses time Ω(D + g2).

272 E.G. Fusco and A. Pelc

Theorem 4 and Corollary 1 imply:

Corollary 2. The optimal time of a broadcasting algorithm working correctly on
all UDG radio networks with unknown diameter D and unknown density d = 1/g
is Θ(D + g2).

References

1. Emek, Y., Gasieniec, L., Kantor, E., Pelc, A., Peleg, D., Su, C.: Broadcasting in
UDG radio networks with unknown topology. In: PODC, pp. 195–204 (2007)

2. Chlebus, B.S., Gasieniec, L., Gibbons, A., Pelc, A., Rytter, W.: Deterministic
broadcasting in ad hoc radio networks. Dist. Computing 15(1), 27–38 (2002)

3. Chlamtac, I., Kutten, S.: On broadcasting in radio networks - problem analysis
and protocol design. IEEE Trans. on Communications 33, 1240–1246 (1985)

4. Chlamtac, I., Weinstein, O.: The wave expansion approach to broadcasting in mul-
tihop radio networks. IEEE Trans. on Communications 39, 426–433 (1991)

5. Gaber, I., Mansour, Y.: Centralized broadcast in multihop radio networks. J. Al-
gorithms 46(1), 1–20 (2003)

6. Elkin, M., Kortsarz, G.: Improved schedule for radio broadcast. In: SODA, pp.
222–231 (2005)

7. Gasieniec, L., Peleg, D., Xin, Q.: Faster communication in known topology radio
networks. In: PODC, pp. 129–137 (2005)

8. Kowalski, D.R., Pelc, A.: Optimal deterministic broadcasting in known topology
radio networks. Dist. Computing 19(3), 185–195 (2007)

9. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast. J.
Comput. Syst. Sci. 43(2), 290–298 (1991)

10. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in
multi-hop radio networks: An exponential gap between determinism and random-
ization. J. Comput. Syst. Sci. 45(1), 104–126 (1992)

11. Bruschi, D., Pinto, M.D.: Lower bounds for the broadcast problem in mobile radio
networks. Distrib. Comput. 10(3), 129–135 (1997)

12. Chlebus, B.S., Gasieniec, L., Östlin, A., Robson, J.M.: Deterministic radio broad-
casting. In: ICALP, pp. 717–728 (2000)

13. Chrobak, M., Gasieniec, L., Rytter, W.: Fast broadcasting and gossiping in radio
networks. In: FOCS, pp. 575–581 (2000)

14. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes,
and broadcasting on unknown radio networks. In: SODA, pp. 709–718 (2001)

15. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown
topology. In: FOCS, pp. 492–501 (2003)

16. Kowalski, D.R., Pelc, A.: Time complexity of radio broadcasting: adaptiveness
vs. obliviousness and randomization vs. determinism. Theor. Comput. Sci. 333(3),
355–371 (2005)

17. Marco, G.D.: Distributed broadcast in unknown radio networks. In: SODA, pp.
208–217 (2008)

18. Kushilevitz, E., Mansour, Y.: An omega(log (/d)) lower bound for broadcast in
radio networks. SIAM J. Comput. 27(3), 702–712 (1998)

19. Dessmark, A., Pelc, A.: Broadcasting in geometric radio networks. J. Discrete
Algorithms 5(1), 187–201 (2007)

Broadcasting in UDG Radio Networks 273

20. Diks, K., Kranakis, E., Krizanc, D., Pelc, A.: The impact of information on broad-
casting time in linear radio networks. Theor. Comput. Sci. 287(2), 449–471 (2002)

21. Sen, A., Huson, M.L.: A new model for scheduling packet radio networks. In:
INFOCOM, pp. 1116–1124 (1996)

22. Moscibroda, T., Wattenhofer, R.: Maximal independent sets in radio networks. In:
PODC, pp. 148–157 (2005)

23. Moscibroda, T., Wattenhofer, R.: Coloring unstructured radio networks. In: SPAA,
pp. 39–48 (2005)

24. Kowalski, D.R., Pelc, A.: Time of deterministic broadcasting in radio networks
with local knowledge. SIAM J. Comput. 33(4), 870–891 (2004)

Efficient Broadcasting in Known Geometric Radio
Networks with Non-uniform Ranges�

Leszek Gąsieniec1, Dariusz R. Kowalski1, Andrzej Lingas2, and Martin Wahlen2

1 Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK
{L.A.Gasieniec,D.Kowalski}@liverpool.ac.uk

2 Department of Computer Science, Lund University, 22100 Lund, Sweden
{Andrzej.Lingas,Martin.Wahlen}@cs.lth.se

Abstract. We study here deterministic broadcasting in geometric radio networks
(GRN) whose nodes have complete knowledge of the network. Nodes of a GRN
are deployed in the Euclidean plane (R2) and each of them can transmit within
some range r assigned to it. We adopt model in which ranges of nodes are non-
uniform and they are drawn from the predefined interval 0 ≤ rmin ≤ rmax. All
our results are in the conflict-embodied model where a receiving node must be in
the range of exactly one transmitting node in order to receive the message.

We derive several lower and upper bounds on the time of deterministic broad-
casting in GRNs in terms of the number of nodes n, a distribution of nodes ranges,
and the eccentricity D of the source node (i.e., the maximum length of a shortest
directed path from the source node to another node in the network). In particular:

(1) We show that D +Ω(log(n−D)) rounds are required to accomplish broad-
casting in some GRN where each node has the transmission range set either
to 1 or to 0. We also prove that the bound D + Ω(log(n − D)) is almost
tight providing a broadcasting procedure that works in this type of GRN in
time D + O(log n).

(2) In GRNs with a wider choice of positive node ranges from rmin, ..., rmax,
we show that broadcasting requires D + Ω(min{log rmax

rmin
, log(n − D)})

rounds and that it can be accomplished in O(D log2 rmax
rmin

) rounds subsum-

ing the best currently known upper bound O(D(rmax
rmin

)4) provided in [15].

(3) We also study the problem of simulation of minimum energy broadcasting
in arbitrary GRNs. We show that energy optimal broadcasting that can be
completed in h rounds in a conflict-free model may require up to h/2 ad-
ditional rounds in the conflict-embodied model. This lower bound should
be seen as a separation result between conflict-free and conflict-embodied
geometric radio networks. Finally, we also prove that any h-hop broad-
casting algorithm with the energy consumption E in a GRN can be simu-
lated within O(h log ψ) rounds in the conflict-embodied model using energy
O(E), where ψ is the ratio between the largest and the shortest Euclidean
distance between a pair of nodes in the network.

� Research supported in part by VR grant 621-2005-4085 and The Royal Society International
Joint Project, IJP - 2006/R2.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 274–288, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Efficient Broadcasting in Known Geometric Radio Networks 275

1 Introduction

Wireless networks, including general radio and more specialized sensor networks, are
amongst the most popular and challenging types of multi-hop networks [33]. They con-
sist of a system of nodes without any wired infrastructure. Each node is assigned its
transmission range, i.e., it can transmit solely to the nodes located within its trans-
mission range. The range of a node depends on the energy supplied to it. We shall
assume here the standard geometric setting where the nodes correspond to points in
the Euclidean plane and the range of a node is bounded by the αth root of the energy
assigned to it, where α ≥ 2 is a given constant. In synchronous networks, consid-
ered here, network nodes communicate in synchronous rounds, also known as time
steps. In each round, every node acts either as a transmitter or as a receiver, i.e., nodes
cannot transmit and receive messages simultaneously. A node acting as a transmit-
ter sends a message to all its neighbors, i.e., all nodes within its transmission range.
Note here that the set of message recipients cannot be chosen arbitrarily. Also the
message sent by a node v and addressed (as one of the co-recipients) to a node w
is delivered reliably only if v is a unique transmitting neighbor of w during the cur-
rent round. Otherwise, due to the potential collisions between several messages the
node w may receive no message during this round. We consider (and compare our
results in) two previously studied GRN models. In the first conflict-free model used
extensively, e.g., in construction of energy efficient broadcasting trees, see [3, 11], one
assumes that collisions caused by simultaneous transmissions do not affect success-
ful message deliveries. The second (more realistic) conflict-embodied model was pro-
posed in [7] and later widely used in the context of arbitrary unknown [4, 5, 8, 9, 10,
13, 14, 30] and known [1, 16, 24, 28] radio networks. Recent developments in the field
include work on energy efficient broadcasting [23] as well as broadcasting in unknown
GRNs [17, 18, 20] with limited density of nodes. Other related problems considered
in the context of GRNs include computing maximal independent sets [31] and asyn-
chronous wake up [32]. An interesting study on communication in quasi unit disk
graphs that motivated further work on GRNs with non-uniform ranges can be found
in [6, 29].

One of the most commonly studied communication problems in networks is broad-
casting, i.e., the problem of distributing a broadcast message from a distinguished
source node to all remaining nodes. The broadcasting problem in geometric ad-hoc
wireless networks has been studied in the conflict-embodied model in a number of pa-
pers including [36, 37]. Scheduling of an optimal broadcasting is known to be NP-hard
even for geometric networks [37]. The authors of [15] presented several lower and up-
per bounds on the number of rounds necessary to accomplish broadcasting in geometric
ad-hoc wireless networks in terms of the number of nodes, the eccentricity of the source
node, and the so called radius of knowledge.

Ad hoc wireless networks are usually powered by very limited electricity resources,
e.g., batteries. Therefore low power consumption has become a crucial issue in the
design of communication algorithms for these networks. In particular, the problem of
minimum-energy broadcasting in ad hoc wireless networks has gained a lot of attention

276 L. Gąsieniec et al.

recently [2, 11, 12, 19, 27, 34]. It consists in finding an assignment of the energy to
the nodes of the network such that (1) the graph induced by the resulting node ranges
includes a spanning tree rooted at the source node containing the message to broadcast;
(2) the total energy assigned is minimized. Note that if the depth of the spanning tree
is bounded by h and it is not required that a receiving node is in the range of exactly
one transmitting node then the message from the source node can reach all nodes in
h rounds (hops). A special variant of the minimum energy broadcasting problem is
minimum energy h-hop broadcasting where the spanning tree is additionally required
to be of depth at most h.

The problem of minimum energy broadcasting is known to be NP-hard both in its
general graph version [22] and in its geometric version [11]. Geometric minimum
energy h-hop broadcasting is known to be solvable for h = 2 in polynomial time
and to admit a polynomial-time approximation scheme for any fixed h > 2 [3]. Re-
cently, several further algorithmic, approximation and complexity results on the prob-
lem of minimum energy broadcasting and multicasting in geometric ad-hoc wireless
networks have been reported [2, 3, 11, 12, 19, 27, 34, 35]. Surprisingly, all these results
are typically obtained under the simplified transmission-reception model discarding
transmission-reception conflicts, i.e., in the conflict-free model. This situation contrasts
with the literature on minimum time broadcasting and multi-casting where the afore-
mentioned conflicts are very much taken into account by using the conflict-embodied
model, see [1, 7, 8, 15, 17, 23, 24, 28].

1.1 Our Contribution

In the first part of our paper, we derive lower and upper bounds on the time of deter-
ministic broadcasting in GRN in the conflict-embodied model in terms of the number
of nodes n and the eccentricity D of the source node (i.e., the maximum length of a
shortest directed path from the source node to another node in the network). In par-
ticular, we show that D + Ω(log(n − D)) rounds are required to accomplish broad-
casting in some GRNs where each node has either range 1 (with full routing capacity)
or range 0 (understood as terminal nodes). We complement this result showing that
broadcasting in such GRNs can be always implemented in time D + O(log n) rounds.
Furthermore, we prove that in a GRN with positive ranges drawn from the interval
[rmin, rmax], broadcasting requires time D+Ω(min{log rmax

rmin
, logn}), and can be ac-

complished in O(D log2 rmax

rmin
) steps which improves the best previously known upper

bound O(D(rmax

rmin
)4), due to Dessmark and Pelc [15].

In the second part, we study the problem of simulation of minimum energy broad-
casting in GRNs in the conflict-embodied model. In particular, we show that an energy
optimal h-hop broadcasting in a GRN may require up to h/2 additional rounds in this
model. We also show that any h-hop broadcasting in a GRN using energy E can be sim-
ulated within O(h logψ) rounds in the conflict-embodied model using energy O(E),
where ψ is the ratio between the largest and the shortest distance between a pair of
nodes in the network.

Efficient Broadcasting in Known Geometric Radio Networks 277

2 New Results on Broadcasting in GRN with Non-uniform Ranges

2.1 The Lower Bound

We say that a node with the transmission range r located at position (x, y) ∈ R2 defines
a disk of radius r and the center (x, y). Let D1, D2, ...,Dk be a sequence of disks of
radii 1 such that the center of disk Di is at ((i−1)

2k , 0).

Lemma 1. For a fixed k and any pair i, j ∈ {1, 2, ..., k}, s.t., j > i+1, the subsequence
Di+1, ...,Dj−1 has a non-empty intersection above the X-axis outside all the remaining
disks.

Proof. Note that Di+1 and Dj−1 have a non-empty intersection I above the X-axis
outside Di and Dj , hence outside of all Dq, where q /∈ {i+1, ..., j−1}, see Figure 1. It
is sufficient to observe that I must be included in any Dq′ , for q′ ∈ {i+2, ..., j−2}. ��

(0,0) (k-1/2k,0) X-axis

Y-axis

set P

Fig. 1. Disks D1, D2, ...,Dk

Consider again the sequence D1, D2, ...,Dk. In each face of the arrangement defined by
perimeters of exactly four disks and located above the X-axis insert a single point. Let
P be the set of the inserted points. Note that |P | = Θ(k2).

Lemma 2. Assume that the centers of the disks D1, D2, ...,Dk are already informed,
i.e., they contain the source message. Assume also that none of the points in P is in-
formed yet and the range of each point in P is set to zero. In this case distribution of
the source message to all points in P requires at least log3 k rounds.

Proof. We prove by induction on j − i, where i, j ∈ {1, ..., k} and i < j, that at
least log3(j − i + 1) conflict-free rounds are required to distribute the message from
the centers of the disks Di, ...,Dj , to the points in P outside the disks Dq , for all q /∈
{i, ..., j}. Let Pi,j be the set of all such points. The inductive assumption is true for
j − i ≤ 2. Suppose j − i > 2. By Lemma 1 and the definition of Pi,j , there exists a
point in Pi,j that belongs to the intersection of the disks Di, ...,Dj . Hence, there must

278 L. Gąsieniec et al.

be a round in which only one of the centers of the disks Di, ...,Dj , say of the disk Dj′ ,
transmits. We may assume, w.l.o.g., that j− j′ ≥ j′− i. It follows that the subsequence
Dj′+1, ...,Dj includes at least (j − i + 1)/3 disks. Recall that Pj′+1,j denotes the
subset of Pi,j covered by the disks Dj′+1, ...,Dj . By the inductive assumption, at least
log3(j − j′ + 1) rounds are needed to inform the points in Pj′+1,j . Hence, totally
1 + log3(j− j′ + 1) ≥ 1 + log3((j− i+ 1)/3) ≥ log3(j− i+ 1) rounds are necessary
to inform Pi,j . ��

Theorem 1. For any integers n > D + 1 ≥ 0, there exists a GRN with n nodes,
the (source node) eccentricity D and the node ranges in {0, 1}, in which broadcasting
requires D + Ω(log(n−D)) rounds in the conflict-embodied model.

Proof. Let k = �
√
n−D + 1/

√
6 . The network comprises k nodes (with unit trans-

mission ranges forming disks D1,...,Dk) located on the X-axis in points pi = (i−1
2k , 0),

for i = 1, .., k. This is accompanied by Θ(k2) nodes (with ranges set to 0) located in
the set P and some extra D − 1 nodes (with unit ranges) located on the vertical line
x = k−1

4k such that the top point on this line is below X-axis and exactly at distance 1
from both p1 and pk. The remaining D − 2 points are placed one by one, separated by
the unit distance, towards the lower end of the vertical line. The lowest point on the line
acts as the source node. Note that the eccentricity of the network is D.

By the Euler’s formula for planar graphs (expressing the relation n − m + f = 2,
where n refers to the number of vertices, m is the number of edges and f is the number
of faces in a planar embedding of the graph) the cardinality of P can be bounded by 6k2

since two unit disks can intersect in at most two points (in order to generate exactly n
nodes, we may have to duplicate some of the nodes in P and move them slightly apart).
By the construction, the centers p1, .., pk of the disks D1,...,Dk are at the distance
D − 1 from the source node and they require at least D − 1 conflict-free rounds to be
informed. Also when the top node on the vertical line transmits it informs all centers
p1, .., pk. Since all nodes in P are out of reach for the top node on the vertical line
after this node transmits, by Lemma 2, at least log3 k additional rounds are required to
inform the points in P. ��

Further we generalize the lower bounds from Lemma 2 and Theorem 1 to include the
case where all node ranges are positive. We adopt a configuration composed of the set
P and the collection of k disks D1,...,Dk. In this configuration we replace the unit
disks Di by their k large counterparts with the radius rmax and the nodes with the
range zero in P by Θ(k2) small disks with the radius rmin > 0. We also prune the
location of large and small disks so that each small disk is entirely contained in face of
arrangements formed by perimeters of exactly four large disks.

Theorem 2. There is a constant c > 0 such that for any integers D ≥ 4 and n ≥
D − 2 + (2 rmin

crmax
− rmin

2

(crmax)2)−1, where rmax > rmin > 0, there exists a GRN
with n nodes, the (source node) eccentricity D and the node ranges in [rmin, rmax], in
which broadcasting requires D+Ω(min{log rmax

rmin
, log(n−D)}) rounds in the conflict-

embodied model.

Proof. We may assume, w.l.o.g., that rmax = 1 (radii of disks can be scaled down
to achieve this assumption). We first prove the lower bound Ω(min{log rmax

rmin
, log(n −

Efficient Broadcasting in Known Geometric Radio Networks 279

D)}). Consider the sequence D1,D2, . . . ,Dk of disks of the radius rmax as defined
in Lemma 1, where k is to be set later. In the arrangement small disks can be fit into
faces formed by perimeters of four different large disks of the radius r = rmax. By
an immediate trigonometric argument one can argue that the radius of small disks is at

least as large as crmax(1 −
√

1 − 1
k2), for some positive constant c.

Now we solve the equation rmin = crmax(1 −
√

1 − 1
k2), and set k to the largest

integer not exceeding the minimum of
√
n −D + 2 and the value of the solution, both

divided by
√

6, i.e.,

k = �min{
√
n−D + 2, (2

rmin

crmax
− rmin

2

c2r2
max

)−
1
2 }/

√
6 .

Further, we assume that the centers of the disks D1, D2, ...,Dk are informed nodes of
range r = rmax. Note that by the definition of k, we can place in each of the at most 6k2

faces of the arrangement formed by the intersections of four disks (over the horizontal
line induced by the centers of the disks), a node of range rmin so the whole disk of radii
rmin around it is entirely contained in the face. Analogously to the proof of Lemma 1
one can show that at least log3 k conflict-free rounds are required to inform the nodes
with the smaller range rmin. Also by the specification of n and k and straightforward
calculations, we obtain log3 k = Ω(min{log rmax

rmin
, log(n −D)}).

Using an analogous argument as in the proof of Theorem 1 we extend the lower
bound Ω(min{log rmax

rmin
, log(n − D)}) to D + Ω(min{log rmax

rmin
, log(n − D)}) for

networks with the eccentricity D. ��

2.2 The Upper Bounds

In this section we present broadcasting algorithms for GRNs with two types of ranges.
First we consider the (extreme) model with ranges of size 0 and 1. Later we provide an
efficient solution to broadcasting in the model with arbitrary non-uniform ranges.

The main idea of the first algorithm is to split the broadcasting process into two
stages. During the first stage we focus on the communication in a sub-network with
bidirectional edges, i.e., based on nodes with transmission ranges set to 1. We show
that our algorithm accomplishes broadcasting in this sub-network in optimal (in view
of the lower bound) time D+O(logn). Note that nodes with the transmission ranges set
to 0 take only passive part in the broadcasting process, i.e., the source message is routed
only at nodes with the transmission range set to 1. Thus after the first stage each node
with the transmission range 0 is within the neighborhood of some (and possibly many)
informed node with the transmission range 1. Thus in the second stage we focus solely
on transmissions towards the nodes with ranges set to 0. We show that this process lasts
O(log n) steps.

We start presentation of our broadcasting procedure from its second stage due to
the similarity of the reasoning used in this stage to the proof of the lower bound from
the previous section. Note, that if the informed nodes (with the transmission range 1)
are placed on a horizontal line there is simple logarithmic (in a number of uninformed
nodes) broadcasting mechanism. And indeed, if there is an informed node that covers

280 L. Gąsieniec et al.

a constant fraction of the uninformed nodes we perform broadcasting from this node
reducing the number of uninformed nodes by a constant fraction in a single round.
Otherwise, we can always pick some central informed node v whose range, and in
particular, an independent transmission from it separates uninformed targets belonging
to ranges to the left and to the right of v in a balanced way. In other words, the numbers
of uninformed nodes in ranges located to the left and to the right of v differ only be a
constant fraction. Thus after the transmission from v further communication to the left
of v and to its right can be performed independently in parallel. We show that similar
reasoning can be also applied in more general 2-dimensional case reflecting our needs.

For a positive real c, we denote by M(c) a rectilinear grid which divides the 2-
dimensional space into square shaped regions, called cells, of size c × c. The point
(0, 0)is shared by corners of four adjacent cells with indices [0, 0], [−1, 0], [0,−1] and
[−1,−1]. We also consider an ordinary partition P (c) = P (c, 1)∪P (c, 2)∪ ..P (c, 25)
of cells in M(c) where two cells of M(c) belong to the same P (c, i), for some i =
1, .., 25, if and only if the indices of their rows and columns in M(c) are equal modulo
5 respectively.

Lemma 3. The informed nodes in any cell A of the rectilinear grid M(1√
2
) can inform

all uninformed nodes within their unit ranges in time O(log n).

Proof. Let K = {v1, ..., vk} be the set of informed nodes in A. Note that all other
nodes in A can be informed by any node from K instantly. Thus we must consider only
the 20 cells (addressed later as B cells) around A whose nodes are potentially reachable
directly from the set K. We assume, w.l.o.g., that k ≥ 3 (otherwise two communication
rounds suffice) and K forms a minimal covering set ([25]) defined as for each vi ∈ K
there is an uninformed node ui which is in the range of vi and outside the ranges of the
other nodes in K. Note that K can be always pruned greedily to possess the minimal
covering set property. Further, it is also convenient to assume, w.l.o.g., that for i < j
the X-coordinate of ui is not greater than that of uj .

For i = 1, ..., k, let Bi be the region of B which is within the range of vi and outside
the ranges of the remaining vertices in K. Due to the property of unit disk graphs no
range of any informer in K can split the range of another informer in two or more parts
within any cell B from the neighborhood of A. In consequence, the regions Bi are
one-connected and have the same horizontal order as the nodes ui.

Now our broadcasting procedure is as in the aforementioned linear case. If there is
a node vi in K whose range contains at least one fourth of the uninformed nodes in
B then we perform broadcasting from this node and remove it from K. Otherwise, we
can always find a node vj such that there are at least one fourth of uninformed nodes in
B on one side of the range of vj as well as on its other side. Thus indeed we can first
perform broadcasting from vj and later apply our procedure recursively in parallel to
inform independently the nodes to the left and to the right of the range of vj . ��
Lemma 4. Let G be a known GRN with n nodes equipped with ranges 0 or 1, where
all nodes with the range 1 are already informed. The not yet informed nodes with the
range 0 can be informed in O(log n) rounds.

Proof. Consider the rectilinear grid M(1√
2
) and its ordinary partition P (1√

2
). For any

pair of nodes located in two different cells of any P (1√
2
, i) their ranges are disjoint.

Efficient Broadcasting in Known Geometric Radio Networks 281

Therefore, we can apply Lemma 3 first to all cells in P (1√
2
, 1), further to all cells in

P (1√
2
, 2), etc, to inform all not yet informed nodes in G. The whole process takes time

25 · O(log n) = O(log n) and the thesis of the lemma follows. ��

This completes the description and analysis of the second stage in the broadcasting
procedure. In what follows we provide an optimal solution to the broadcasting task
considered in the first stage.

Lemma 5. Let G be a known GRN with n nodes equipped with ranges 0 or 1 and the
(source) eccentricity D. All nodes of range 1 can be informed in D +O(log n) rounds.

Proof. Consider the maximal subgraph H of a given GRN network G induced by nodes
with the transmission range 1. The subgraph H forms a unit disk graph in which all
edges in H are bidirectional. Let T be a gathering-broadcasting spanning tree of H as
defined in [24], that is, T is a BFS spanning tree of H rooted at the source node and
satisfying the following properties:

(1) The nodes of T are ranked. All leaves obtain rank 1. Consider any internal node v ∈
T where the ranks of all its children are already established and ρ is the maximal
rank among its children. The rank of v is set to ρ if ρ is attributed to a unique child
of v, otherwise (there is more than one child with the rank ρ) the node v obtains
rank ρ + 1. (Note that the largest rank in a tree of size n is bounded by logn [21]).

(2) For any four nodes v, w, v′ and w′ with the same rank in T such that v and w are
located at the same BFS level and v and w are parents of v′ and w′ respectively,
there are no crossing edges (v, w′) and (w, v′) in G. (In other words, simultaneous
radio transmissions from v and w cause no conflict at v′ and at w′, and vice versa).

A gathering-broadcasting spanning tree can be constructed in time polynomial in the
number of nodes in the graph, for details see [24].

The second important component of our radio broadcasting algorithm is a procedure
that manages to propagate the broadcast message from one side of a bipartite unit disk
graph (UDG for short) to another in constant time. More precisely, let H ′ = (V1, V2, E ′)
be a bipartite subgraph of H , where sets V1 and V2 form a partition of nodes in H ′.
Assume that all nodes in V1 are already informed (possess the source message). The
goal is to inform all nodes in V2 in constant time using radio transmissions along the
edges in E ′. A procedure with required property can be found, e.g., in [15] (version for
UDGs). We refer to it as BiB(H ′). Finally β stands for the (constant) upper bound on the
number of rounds required by the procedure BiB over all possible bipartite subgraphs
H ′ of H .

We are now ready to present a broadcasting schedule for the whole graph H . Each
node transmits at most β + 1 times. The rounds when a node v transmits are defined
as follows. If v is in the lowest layer of T then it does not transmit at all. Otherwise,
let Li be the layer at which v is located in T , ρ = ρv be its rank in T , and Hi,ρ be
the subgraph of H induced by nodes in Li with the rank ρ and their neighbors in Li+1

with ranks smaller than ρ. Let ξv ⊆ {1, . . . , β} be the set of rounds in which node
v transmits during execution of the procedure BiB(Hi,ρ). This execution is considered

282 L. Gąsieniec et al.

only for the purpose of computing sets ξ and it does not form a part of the constructed
broadcasting schedule. The actual set of rounds in the broadcast schedule during which
the node v transmits is defined as follows{

(i + 1) + 3 · [(β + 1) · (log n− ρ) + x] : x ∈ {0} ∪ ξv

}
. (1)

The sets of transmission rounds satisfy two important properties:

(a) if during a round two nodes in the same layer transmit simultaneously, they must
have the same rank. This property is enforced by the product (β + 1)(logn− ρ) in
Equation 1;

(b) if during a round two nodes from different layers transmit simultaneously, they
must be located in layers at distance at least 3. This property is guaranteed by the
presence of factor 3 in Equation 1.

It remains to prove, by induction on the layer number i, that each node w in layer Li

receives the broadcast message prior to its first transmission round, that is, before round
(i + 1) + 3 · [(β + 1) · (logn − ρw)].

A node in the first layer clearly receives the message in round 1 < 2 + 3 · [(β +
1) · (logn − ρ)]. Assume now that all nodes in layers Li, for 1 ≤ i < D, receive
the broadcast message prior to their first transmission rounds. We show that the same
property holds for all nodes in Li+1. Consider a node w ∈ Li+1 and one of its neighbors
v ∈ Li of rank ρ = ρv ≥ ρw (there must be at least one such node v, e.g., the parent of
w in the gathering-broadcasting spanning tree). By the inductive assumption, all nodes
in Li of rank ρ receive the broadcast message before round (i + 1) + 3 · [(β + 1) ·
(logn − ρ)].

In case ρv > ρw consider the set of transmission rounds defined by BiB(Hi,ρ). In
this case the node w receives the broadcast message from one of its neighbors v with
rank ρ in layer Li in graph H in some round (i+1)+3 · [(β+1) ·(log n−ρ)+x] based
on the layer index i, the rank ρ and some 1 ≤ x ≤ β. There are no conflicts caused by
transmissions coming from other nodes in Li with different ranks (property (a)). Also
transmissions from other layers are too distant (property (b)). Thus the node w must be
informed by some of its neighbors v at level Li with rank ρ due to broadcasting ability
of the procedure BiB. Finally, by the inequality ρ = ρv > ρw, we obtain (i + 1) + 3 ·
[(β + 1) · (logn− ρ) + x] < (i + 2) + 3 · [(β + 1) · (logn− ρw)] for any 0 ≤ x ≤ β.
Otherwise (i.e., ρ = ρv = ρw), and this happens when v is the parent of w, the node w
receives the broadcast message in round (i+1)+3 · [(β+1) · (logn−ρ)], since during
this time every node in Li with this rank transmits for the first time. Note that there are
no conflicts at w, i.e., the broadcast message reaches w safely. This is due to the fact
that at level Li only nodes with rank ρ transmit during this time (property (a)) and there
are no crossing edges outside of the tree property (1)). Moreover the transmissions at
other levels do not interfere since these layers must be at distance 3 or larger (property
(b)). The inductive proof is completed. The thesis of the theorem follows from

(i+1)+3 ·[(β+1)·(logn−ρ)] = D+O(logn) . ��

Efficient Broadcasting in Known Geometric Radio Networks 283

By combining Lemmas 4 and 5, we obtain:

Theorem 3. Let G be a known GRN with n nodes equipped with ranges 0 or 1. Broad-
casting in G can be accomplished in D + O(log n) rounds in the conflict-embodied
model.

We are ready to prove that there exists an efficient broadcasting algorithm for GRNs
with arbitrary non-uniform ranges that requires O(D log2 rmax

rmin
) rounds, where the

ranges of nodes are drawn from the segment [rmin, rmax].

Theorem 4. Let G be a known GRN with n nodes equipped with ranges taken from the
segment [rmin, rmax] and the eccentricity D. Broadcasting in G can be accomplished
in O(D log2 rmax

rmin
) rounds in the conflict-embodied model.

Proof. The broadcast schedule proceeds in D phases that correspond to D layers in the
network defined with respect to the source node in the broadcasting process. Each phase
h, for h = 0, .., D − 1, consists of two parts (1) and (2). During part (1) the informers
from the layer h transmit to their neighbours in the layer h+1. On the conclusion of this
part, for each cell of M(rmin√

2
) containing nodes from the layer h+ 1, at least one node

gets the broadcast message. During part (2) all other nodes in the layer h + 1 receive
the broadcast message.

During part (1) in each cell of M(rmin√
2

) containing nodes from the BFS level h + 1
we determine one (arbitrary) node called the leader of the cell. We also consider an-
other grid M(rmax√

2
) and the associated ordinary partitions P (rmin√

2
) and P (rmax√

2
).

Recall that transmissions coming from different cells in any set P (rmax√
2
, i) do not con-

flict one another. Part (1) proceeds in 25 stages where during stage i informed nodes
in P (rmax√

2
, i) transmit the broadcast message to the leaders in all reachable cells in

M(rmin√
2

). Note that nodes in each cell A belonging to P (rmax√
2
, i) can reach leaders in

at most O((rmax

rmin
)2) cells of M(rmin√

2
). It follows that one can select (via minimal cov-

ering set, see the proof of Lemma 3) at most O((rmax

rmin
)2) nodes in A that are directly

connected with the leaders of cells in M(rmin√
2

). Thus part (1) reduces to broadcast-

ing in a bipartite graph of size O((rmax

rmin
)2). It is well known, see [8], that this can be

done in an arbitrary bipartite n-node graph in time O(log2 n), thus in our case in time
O(log2 rmax

rmin
).

During part (2) all yet uninformed nodes in the layer h + 1 receive the broadcast
message. Part (2) proceeds in log rmax

rmin
stages. The stage j = 0, .., log rmax

rmin
− 1 uses

the grid M(2jrmin√
2

) and the associated ordinary partition P (2jrmin√
2

). In each cell A of

M(2jrmin√
2

) we get a superleader among the leaders (with ranges in [2jrmin, 2j+1rmin])
in all cells of M(rmin√

2
) that are included in A. In consecutive steps i = 1, ..., 25 the

superleader of any cell A of M(2jrmin√
2

) included in P (2jrmin√
2

, i) transmits to all un-
informed nodes in A. These transmissions are conflict free due to the structure of the
ordinary partition P (2jrmin√

2
) and sufficient due to the size of ranges of the superleaders.

Since each stage finishes in 25 steps, the whole Part (2) is executed in time O(log rmax

rmin
).
��

284 L. Gąsieniec et al.

3 Time Bounds on Energy Efficient Broadcasting in GRN

In this section we consider energy efficient broadcasting where the energy used by a
transmitter is proportional to its range raised to the power α ≥ 2. We consider and com-
pare our results in the conflict-free and conflict-embodied geometric radio networks. It
is assumed that in both models during single execution of a minimum energy h−hop
broadcasting procedure each node of GRN transmits at most once (i.e., the range of
each node contributes to the total energy consumption at most once).

3.1 The Lower Bounds

We show that for any hop number h > 1, there is a GRN for which an energy optimal
h-hop broadcasting requires at least h/2 additional rounds.

Theorem 5. There is a sequence of GRNs {Nh}h>1, for which energy optimal h-hop
broadcasting in the conflict-free model requires 1.5h rounds in the conflict-embodied
model.

Proof. Assume first that h = 2. Apart from the source point s, consider two additional
points s1 and s2 located above s on the perimeter of the unit disk D centered at s.
More precisely the points s1 and s2 are symmetrically located on two sides of the Y -
axis that goes through the source point s, where the distance between s1 and s2 is 0.2.
Let δ = 0.106. Also let D1 and D2 be two disks of radius δ centered at s1 and s2,
respectively. In each of regions D1 ∩ D2 and D1 \ D2,D2 \ D1 insert a point as far as
possible from the source s. The new inserted points in the three regions are named s3

and t1, t2 respectively, see Figures 2(a) and 2(b). The configuration of six points has
the following three properties: (1) it has an axis of symmetry that contains the segment
(s, s3); (2) all points belong to a π/12-angular slice of a disc with the radius 1 + δ,
centered at s; (3) all points (excepts the source itself) are at distance at least one from s.
In this configuration there is exactly one range assignment that leads to energy optimal
two-hop broadcasting. One can prove that the range of s must be set to 1 and the ranges
of s1 and s2 must be set to δ, where the total energy consumption is 1 + 2δα. Because
of the conflict in the point s3 the two-hop broadcasting requires three rounds in the
conflict-embodied model, i.e., we need two separate rounds for transmissions from s1

and s2. This proves the theorem for h = 2.
We now generalize the idea of the proof for the 6-point configuration to encompass

all cases with h > 2. In the recursive construction, we use the following invariant on h.

The invariant: All points lay symmetrically above the source on two sides of the Y -
axis containing the source. All points belong to a π/12-angular slice of a disc with the
radius 1−δh

1−δ , centered at s and they (apart from s) are located at distance at least 1 from
the source s. Moreover the points require at least 1.5h rounds in conflict-embodied
model to simulate h-hop broadcasting with the minimum energy consumption in the
conflict-free model.

Let Ni denote such a configuration for 2 ≤ i < h hops where for the completeness of
the proof a network N1 comprises a node s with the transmission range 1 and a node
t located on the same X-axis as s at distance 1 from s. Recall that N2 satisfies the

Efficient Broadcasting in Known Geometric Radio Networks 285

s
s1s2 s3

t1t2

(a) (b)

s3 s1s2

N2(s3)
N2(s1)N2(s2)

s

(c)

Fig. 2. The sequence of networks Nh: h = 2 (a,b) and h > 2 (c)

invariant for h = 2. We start the construction of Nh on the basis of N2 in which points
t1 and t2 are removed. Let Nh−1(s1) denote a copy of the configuration Nh−1 that is
scaled down by the multiplicative factor δ. The configuration Nh−1(s1) is aligned with
N2 (reduced by t1 and t2) such that the source point in Nh−1(s1) corresponds with
the point s1 in N2 and the vertical line containing point s1 is the axis of symmetry
of Nh−1(s1). Similarly let Nh−1(s2) be the second copy of Nh−1 embedded in the
analogous way but with respect to the point s2 (instead of s1). Finally, we scale down
the configuration Nh−2 by the factor δ2 and place in the analogous way but this time
with respect to the point s3, see Figure 2(c).

Note that due to the scaling process controlled by the inductive assumption in relation
to Nh−1(s1), Nh−1(s2), Nh−2(s3), all points in Nh lay above point s symmetrically
on both sides of the vertical line containing s and s3, their distance from the source s

is at least 1 but at most 1 + δ · 1−δh−1

1−δ = 1−δh

1−δ , and the angle of the slice is π/12. The
unique assignment of ranges in minimum energy h-hop broadcasting for the resulting
configuration Nh is determined as follows. The source node s has the range 1 and the
remaining nodes have respectively scaled down ranges by the multiplicative factor δ in

286 L. Gąsieniec et al.

Nh−1(s1) and Nh−1(s2) and the factor δ2 in Nh−2(s3). Firstly, the optimal energy Eh

for h-hop broadcast is at most 1 + 2δαEh−1 + δ2αEh−2 < 1 + 2δα +
∑h−1

j=2 (3δα)j ,
where Ei denotes the optimal energy for i-hop broadcast in the configuration Ni, for
i ≤ h (the inductive proof is straightforward). It follows that the source s must have
the range 1 to transmit in a schedule with the energy Eh (if it informs any other node
in Nh, it requires energy at least (1 + δ/4)α > 1 + δ/2 > 1 + 2δα +

∑h−1
j=2 (3δα)j).

Secondly, a distance between two points within two different configurations among
Nh−1(s1), Nh−1(s2) and Nh−2(s3) is at least δ + δ2. It follows that if any node in one
of these configurations informs a node in another configuration (except for the nodes
s1, s2 informing node s3) the informer would have to use extra energy of size at least
(δ + δ2)α > δα(1 + 2δ) > δα + 10δ2α. This however, supplemented with energy 1
used by the source and at least δα energy used by one of the nodes from {s1, s2} (at
least one of them must transmit, since the range of the source is 1) would give the total
energy larger than 1 + 2δα +

∑h−1
j=2 (3δα)j > Eh.

Now we argue that simulation of h-hop broadcasting with energy Eh requires at least
1.5h rounds in the conflict-embodied model. In the first round, the source delivers the
message to nodes s1, s2. In the second round, either both s1, s2 transmit, or only one
of them, say, w.l.o.g., s1, does. In the first case, none of the nodes in the configuration
Nh−2(s3) is informed, and thus an extra 1 + 1.5(h − 2) rounds are necessary by the
fact that the node s3 needs to be informed and by the invariant for h − 2, which gives
3 + 1.5(h− 2) = 1.5h rounds in total. In the latter case, an extra 1.5(h− 1) rounds are
necessary to inform all nodes in Nh−1(s2), which gives in total 2 + 1.5(h− 1) ≥ 1.5h
rounds. ��

3.2 The Upper Bound

The following upper bound can be seen as a generalization of Theorem 4 with respect
to minimum energy h-hop broadcasting. Let ψ be the ratio between the largest and the
shortest distance between a pair of nodes in the network.

Theorem 6. Any h-hop broadcasting with energy E in a geometric radio network, can
be simulated in conflict-embodied model in O(h logψ) rounds and energy O(E).

Proof. Consider a configuration of points on the plane, and h-hop broadcasting with
energy E performed by them in the conflict-free model. First note that the ratio rmax

rmin
,

where rmax, rmin are the maximum and the minimum ranges respectively in h-hop
broadcasting, is at most ψ. This is because there is no benefit for nodes to transmit
within smaller range than the minimum pairwise euclidean distance between points (no
point receives the message), and similarly there is no need to transmit with ratio larger
than the greatest pairwise distance between nodes (no additional point gets informed).
Therefore, having the range assignment for the h-hop broadcasting with energy E (it
corresponds to some GRN), we run the same broadcasting algorithm in the conflict-
embodied model as presented in the proof of Theorem 4. It completes broadcasting
in time O(h log rmax

rmin
) ≤ O(h logψ). It remains to prove that the total energy used is

O(E). Indeed, each node v transmits only constant number of times, specifically: during
execution of the constant-time procedure LR-BiB corresponding to the range of node v
in the phase corresponding to the layer containing the node v. ��

Efficient Broadcasting in Known Geometric Radio Networks 287

References

1. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast. Journal of
Computer and System Sciences 43, 290–298 (1991)

2. Ambühl, C.: An optimal bound for the MST algorithm to compute energy efficient broadcast
trees in wireless networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung,
M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1139–1150. Springer, Heidelberg (2005)

3. Ambühl, C., Clementi, A.E.F., Di Ianni, M., Lev-Tov, N., Monti, A., Peleg, D., Rossi, G., Sil-
vestri, R.: Efficient Algorithms for Low-Energy Bounded-Hop Broadcast in Ad-Hoc Wire-
less Networks. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 418–427.
Springer, Heidelberg (2004)

4. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time complexity of broadcast in radio net-
works: an exponential gap between determinism and randomization. J. of Computer and
System Sciences 45, 104–126 (1992)

5. Bruschi, D., Del Pinto, M.: Lower bounds for the broadcast problem in mobile radio net-
works. Distributed Computing 10, 129–135 (1997)

6. Chen, J., Jiang, A., Kanj, I.A., Xia, G., Zhang, F.: Separability and Topology Control of
Quasi Unit Disk Graphs. In: Proc. 26th IEEE International Conference on Computer Com-
munications INFOCOM 2007, pp. 2225–2233 (2007)

7. Chlamtac, I., Kutten, S.: On broadcasting in radio networks - problem analysis and protocol
design. IEEE Transactions on Communication 33, 1240–1246 (1985)

8. Chlamtac, I., Weinstein, O.: The wave expansion approach to broadcasting in multihop radio
networks. IEEE Transactions on Communication 39, 426–433 (1991)

9. Chlebus, B.S., Gąsieniec, L., Gibbons, A.M., Pelc, A., Rytter, W.: Deterministic broadcasting
in unknown radio networks. Distributed Computing 15, 27–38 (2002)

10. Chlebus, B.S., Gąsieniec, L., Östlin, A., Robson, J.M.: Deterministic radio broadcasting.
In: Welzl, E., Montanari, U., Rolim, J. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 717–728.
Springer, Heidelberg (2000)

11. Clementi, A.E.F., Crescenzi, P., Penna, P., Rossi, G., Vocca, P.: On the complexity of comput-
ing minimum energy consumption broadcast subgraphs. In: Ferreira, A., Reichel, H. (eds.)
STACS 2001. LNCS, vol. 2010, pp. 121–131. Springer, Heidelberg (2001)

12. Clementi, A.E.F., Huiban, G., Penna, P., Rossi, G., Verhoeven, Y.C.: Some Recent Theoret-
ical Advances and Open Questions on Energy Consumption in Ad-Hoc Wireless Networks.
In: Proc. 3rd Workshop on Approximation and Randomization Algorithms in Communica-
tion Networks ARACNE 2002, pp. 23–38 (2002)

13. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes, and broad-
casting on unknown radio networks. In: Proc. 12th Ann. ACM-SIAM Symp. on Discrete
Algorithms, SODA 2001, pp. 709–718 (2001)

14. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown topology.
In: Proc. 44th Symp. on Foundations of Computer Science, FOCS 2003, pp. 492–501 (2003)

15. Dessmark, A., Pelc, A.: Broadcasting in geometric radio networks. J. of Discrete Algo-
rithms 5(1), 187–201 (2007)

16. Elkin, M., Kortsarz, G.: An improved algorithm for radio broadcast. ACM Trans. on Algo-
rithms 3(1), 1–21 (2007)

17. Emek, Y., Gąsieniec, L., Kantor, E., Pelc, A., Peleg, D., Su, C.: Broadcasting in UDG radio
networks with unknown topology. In: Proc. 26th Annual ACM Symposium on Principles of
Distributed Computing PODC 2007, pp. 195–204 (2007)

18. Emek, Y., Kantor, E., Peleg, D.: On the effect of the deployment setting on broadcasting
in Euclidean radio networks. In: Proc. 27th Annual ACM Symposium on Principles of Dis-
tributed Computing PODC 2008 (to appear, 2008)

288 L. Gąsieniec et al.

19. Flammini, M., Klasing, R., Navarra, A., Perennes, S.: Improved approximation results for
the minimum energy broadcasting problem. In: Proc. Joint Work. on Foundations of Mobile
Computing DIALM-POMC 2004, pp. 85–91. ACM Press, New York (2004)

20. Fusco, E., Pelc, A.: Broadcasting in UDG radio networks with missing and inaccurate infor-
mation. In: Proc. 22nd International Symposium on Distributed Computing, DISC 2008 (to
appear, 2008)

21. Gaber, I., Mansour, Y.: Centralized broadcast in multihop radio networks. Journal of Algo-
rithms 46, 1–20 (2003)

22. Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, New York (1979)

23. Gąsieniec, L., Kantor, E., Kowalski, D.R., Peleg, D., Su, C.: Energy and Time Efficient
Broadcasting in Known Topology Radio Networks. In: Pelc, A. (ed.) DISC 2007. LNCS,
vol. 4731, pp. 253–267. Springer, Heidelberg (2007)

24. Gąsieniec, L., Peleg, D., Xin, Q.: Faster communication in known topology radio networks.
Distributed Computing 19(4), 289–300 (2007)

25. Gąsieniec, L., Potapov, I., Xin, Q.: Time efficient centralized gossiping in radio networks.
Theoretical Computer Science 383(1), 45–58 (2007)

26. Kirousis, L.M., Kranakis, E., Krizanc, D., Pelc, A.: Power Consumption in Packet Radio
Networks. Theoretical Computer Science 243, 289–305 (2000)

27. Klasing, R., Navarra, A., Papadopoulos, A., Perennes, S.: Adaptive broadcast consumption
(ABC), a new heuristic and new bounds for the minimum energy broadcast routing prob-
lem. In: Mitrou, N.M., Kontovasilis, K., Rouskas, G.N., Iliadis, I., Merakos, L. (eds.) NET-
WORKING 2004. LNCS, vol. 3042, pp. 866–877. Springer, Heidelberg (2004)

28. Kowalski, D.R., Pelc, A.: Optimal deterministic broadcasting in known topology radio net-
works. Distributed Computing 19(3), 185–195 (2007)

29. Kuhn, F., Zollinger, A.: Ad-hoc networks beyond unit disk graphs. In: Proc. DIALM-POMC
Joint Workshop on Foundations of Mobile Computing 2003, pp. 69–78 (2003)

30. Kushilevitz, E., Mansour, Y.: An Ω (D log(N/D)) lower bound for broadcast in radio net-
works. SIAM J. on Computing 27, 702–712 (1998)

31. Moscibroda, T., Wattenhofer, R.: Maximal independent sets in radio networks. In: Proc. 24th
ACM Symp. on Principles of Distributed Computing PODC 2005, pp. 148–157 (2005)

32. Moscibroda, T., Wattenhofer, R.: Coloring unstructured radio networks. In: Proc. 17th ACM
Symp. on Parallel Algorithms SPAA 2005, pp. 39–48 (2005)

33. Lauer, G.S.: Packet radio routing. In: Streenstrup, M. (ed.) Routing in communication net-
works, ch. 11, pp. 351–396. Prentice-Hall, Englewood Cliffs (1995)

34. Navarra, A.: Tighter bounds for the minimum energy broadcasting problem. In: Proc. 3rd
International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless
Networks WiOpt 2005, pp. 313–322. IEEE CS, Los Alamitos (2005)

35. Peleg, D.: Recent Advances on Approximation Algorithms for Minimum Energy Range As-
signment Problems in Ad-Hoc Wireless Networks. In: Erlebach, T. (ed.) CAAN 2006. LNCS,
vol. 4235, pp. 1–4. Springer, Heidelberg (2006)

36. Ravishankar, K., Singh, S.: Broadcasting on [0,L]. Discrete Applied Mathematics 53, 299–
319 (1994)

37. Sen, A., Huson, M.L.: A new model for Scheduling Packet Radio Networks. In: Proc. 15th
Annual Joint Conference of the IEEE Computer and Communication Societies INFOCOM
1996, pp. 1116–1124 (1996)

On the Robustness of (Semi) Fast Quorum-Based
Implementations of Atomic Shared Memory�

Chryssis Georgiou1,��, Nicolas C. Nicolaou2, and Alexander A. Shvartsman2,3

1 Department of Computer Science, University of Cyprus, Nicosia, Cyprus
2 Department of Computer Science and Engineering, University of Connecticut, Storrs, USA

3 Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA

Abstract. This paper studies a trade-off between fault-tolerance and latency in
implementations of atomic read/write objects in message-passing systems. In par-
ticular, considering fast or semifast quorum-based implementations, that is, im-
plementations where all or respectively most read and write operations complete
in a single communication round-trip, it is shown that such implementations are
not robust due to the fact that they necessarily require a quorum system with a
common intersection between its quorums.

To trade speed for fault-tolerance, the notion of weak-semifast implementa-
tions is introduced. Here more than a single complete slow (two round-trip) read
operation is allowed for each write operation (semifast implementations allow
only one such slow read). A quorum-based algorithm is given next and it is
formally shown that it constitutes a weak-semifast implementation of atomic reg-
isters. The algorithm uses the notion of Quorum Views to facilitate the character-
ization of all possible object timestamp distributions that a read operation may
witness during its first communication round-trip. Noteworthy is that the algo-
rithm allows fast read operations even if they are concurrent with other read and
write operations. Finally, experimental results were gathered by simulating the
algorithm using the NS-2 network simulator. The results show that under realis-
tic conditions, less than 13% of read operations are slow, thus the overwhelming
majority of operations take a single communication round-trip.

1 Introduction

Motivation and Prior Work. Atomic (linearizable) read/write memory is one of the
fundamental abstractions in distributed computing. Fault-tolerant implementations of
atomic objects in message-passing systems allow processes to share information with
precise consistency guarantees in the presence of asynchrony and failures. A seminal
implementation of atomic memory of Attiya et al. [1] gives a single-writer, multiple
reader (SWMR) solution where each data object is replicated at n message-passing
nodes. In that solution, memory access operations are guaranteed to terminate as long
as the number of crashed nodes is less than n/2, i.e., the solution tolerates crashes of any
minority of the nodes. The write protocol involves a single round-trip communication

� This work is supported in part by the NSF Grants 9988304, 0121277, and 0311368.
�� The work of this author is supported in part by research funds at the University of Cyprus.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 289–304, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

290 C. Georgiou, N.C. Nicolaou, and A.A. Shvartsman

stage, while the read protocol involves two round-trip stages, where the second stage
essentially performs the write of the value obtained in the first stage. Following this
development, a folklore belief developed that in messaging-passing atomic memory
implementations “atomic reads must write.”

However, recent work by Dutta et al. [3] established that if the number of readers
R is appropriately constrained with respect to the number of replicas S and the maxi-
mum number of crash-failures t in the system (R < S

t −2), then single communication
round-trip implementations of reads are possible. Such an implementation given in [3]
is called fast. Subsequently, Georgiou et al. [9] relaxed the constraint in [3], and pro-
posed semifast implementations with unbounded number of readers, where under real-
istic conditions most reads need only a single communication round-trip to complete.
Their approach groups collections of readers into virtual nodes. Semifast behavior of
their algorithm is preserved as long as the number of virtual nodes is appropriately
restricted under S

t − 2.
Quorum systems are well-known mathematical tools that provide means for achiev-

ing coordination between processors in distributed systems [6, 11, 21, 22]. Given that
the approach of Attiya et al. [1] is readily generalized from majorities to quorums (e.g.,
[20]), and that the algorithms in [3] and [9] rely on intersections in specific sets of
responding servers, one may ask: Can we characterize the conditions enabling fast im-
plementations in a general quorum-based framework?

This is what we establish in this work. We consider quorum-based implementations
of atomic memory, and investigate the properties needed to achieve fast and semifast
atomic memory implementations. Interestingly, when examining unconstrained — in
terms of quorum construction and reader participation — quorum-based implemen-
tations, we discover that a common intersection among all quorum sets is necessary.
This renders such implementations non-fault-tolerant, since the common intersection
introduces a single point of failure. Then a natural question arises: Was a common in-
tersection implied in [3] and [9]? The answer is “no”, because (a) the constraint on the
number of readers in [3] or virtual nodes in [9], and (b) the knowledge of the number
of failures t, has the implication that the intersections of the replying sets of servers is
guaranteed to consist of non-faulty processors. So, our new findings introduce comple-
mentary knowledge: One cannot have fast or semifast implementations without common
intersection unless one imposes additional constraints on the system.

Based on this new understanding, we posed the question of whether one can avoid
restrictions, such as the constraint on the number of readers or the common intersection
among quorum sets, and still obtain practical and robust implementations. We show
that this is indeed possible if some speed is traded for robustness. We introduce weak-
semifast implementations that allow a greater proportion of slow reads, and develop a
new algorithm that uses a predicate tool, called quorum views, also defined in this paper.
We simulate our algorithm using the NS-2 simulator and we gather experimental results
that demonstrate the practicality of our algorithm.

Related Work. Previous works extended the approach in [1] and used quorums to pro-
vide atomicity in the multiple writer multiple reader (MWMR) model [4, 5, 13, 20].
The work in [5] (similar to [1]) shows that the read operations must write to as
many replicas as the maximum number of failures allowed. A dynamic atomic memory

On the Robustness of (Semi) Fast Quorum-Based Implementations 291

implementation using reconfigurable quorums is given in [18], where the sets of
object replicas can arbitrarily change over time as processes join and leave the system.
Refinements of the dynamic algorithm further improved its performance in practical
implementations [7, 8, 12]. When the set of replicas is not being reconfigured, the read
and write protocols involve two communication round-trips. Retargeting this work to
ad-hoc mobile networks, Dolev et al. [2] formulated the GeoQuorums approach where
replicas are implemented by stationary focal points that in turn are implemented by
mobile nodes; here quorums are composed of focal points. Interestingly, in this work
some reads involve a single communication round-trip when it is confirmed that the
corresponding write operation has completed.

A recent work by Guerraoui and Vukolić [15] presented a powerful notion of Re-
fined Quorum Systems (RQS), where quorum members are classified in three categories,
called quorum classes, according to their intersection size with other quorums; the first
class contains quorums of large intersection, the second of smaller intersection, and
the third class corresponds to traditional quorums. The authors specify the properties
that the members of each quorum class must possess and use RQSs to develop an ef-
ficient Byzantine-resilient SWMR atomic object implementation and a solution to the
consensus problem. In synchronous failure-free runs their implementation allows single
communication round-trip (fast) operations. That was an improvement over a previous
result from the same authors, [14], that provided bounds and imposed system restric-
tions to achieve robust safe and regular storage implementations in the presence of
Byzantine failures. In that work they showed that two communication round-trips are
necessary for each read operation in both safe and regular implementations even though
more than 2t+2b+1 servers are used, where t the maximum number of crash and b the
maximum number of byzantine failures. Our work complements the work in [15] by
specifying the exact properties that a general quorum system must possess in order to
achieve single round-trip operations under crash failures and asynchrony. Furthermore
we do not use quorum formation constraints such as the categories mentioned above,
rather we deal with the usual quorum systems. In our implementations we only rely on
client side prediction tools we call Quorum Views.

Malkhi and Reiter in [21] studied constructions that improve fault-tolerance of quo-
rum systems for byzantine failures. They organized their constructions according to the
properties quorum sets satisfy and the degree of fault-tolerance they achieve. Using such
constructions they provided safe and regular ([16]) read/write register implementations.
Regularity was also studied for the MWMR model in [23]; the authors presented reg-
ular implementations with single round trip operations. Peleg and Wool in [22], inves-
tigated different families of quorum systems and presented their performance in terms
of process load, quorum availability (failure tolerance) and message complexity (quo-
rum size). A quorum construction was then proposed that achieves high performance in
comparison with prior constructions.

Our Contributions. In this paper we study the properties of quorum systems that enable
communication-efficient quorum-based implementations of atomic read/write registers.
In particular, we study the efficiency of general quorum constructions deployed in im-
plementations with unconstrained number of readers. We say that an atomic SWMR
implementation is fast if all the read and write operations complete in a single

292 C. Georgiou, N.C. Nicolaou, and A.A. Shvartsman

communication round-trip. A semifast implementation as defined in [9] allows one
complete slow read operation for each write, while the rest of read and write opera-
tions are required to be fast. In this paper we say that an implementation is not robust if
it has a single point of failure. We consider implementations that use quorum systems
Q = {Qi}, where for any two quorum sets in Q we have Qi ∩ Qj �= ∅. The contribu-
tions presented in this paper are as follows.

1. We show that fast quorum-based implementations that allow arbitrary number of
readers must use certain quorum systems that necessarily render the implementations
not robust. In particular we prove that a quorum-based fast implementation is possible
if and only if the following property is satisfied by Q:

⋂
Q∈Q Q �= ∅.

In other words, there must be a common intersection among all quorum sets of Q.
Since a single failure in the common intersection disables the quorum system, we con-
clude that robust fast quorum-based implementations are impossible.

2. We then pose the natural question whether semifast ([9]) quorum-based implemen-
tations can be robust. We give a negative answer to this question as well: we show
that robust semifast quorum-based implementations are also impossible. In particular
we show that a certain property of the semifast definition ([9], Property 3) is violated
when using quorum systems without a common intersection. This property states that
only a single complete read operation is required to perform a second communication
round-trip for every write operation. We prove that requiring a single complete slow
read is impossible to satisfy using quorum-based implementations without a common
intersection.

3. Consequently we seek implementations that enable fast reads, but permit multiple
slow reads per write. We call such implementations weak-semifast. As a tool used in
our development, we introduce the notion of Quorum Views that is used to characterize
every possible timestamp distribution that a read operation may witness in a quorum
set during its first communication round-trip. A quorum view may provide “sufficient”
information on whether or not a write operation is complete. If so, then the read oper-
ation can be “fast.” Otherwise the reader performs a second communication round-trip
and the read operation is “slow.” We define quorum views and we present an algorithm,
called SLIQ (Semifast Like Implementation for Quorum systems), that makes use of
the latter idea and we prove its correctness. The algorithm departs from the classic ap-
proach that implements all reads as slow, and also from the approach that allows fast
reads after the completion of the write operation. In our algorithm fast reads are allowed
even in the case of concurrent read and write operations.

4. We simulate our algorithm using the NS-2 network simulator and we observe that
in common cases only less than 13% of the read operations need to perform a second
communication round-trip, thus the overwhelming number of operations are fast.

Paper Organization. In Section 2 we present our model assumptions and definitions.
In Section 3 we present the quorum system properties that are necessary to achieve
fast and semifast quorum-based implementations and we show their non-robustness.
The notion of quorum views and algorithm SLIQ are presented in Section 4 along with
the algorithm’s correctness. The results of our simulations are depicted in Section 5. We

On the Robustness of (Semi) Fast Quorum-Based Implementations 293

conclude in Section 6. For full proofs and additional discussion we refer the reader
to [10].

2 Model and Definitions

We consider implementations for the single writer, multiple reader (SWMR) in the
asynchronous message-passing model. Our system consists of three distinct sets of pro-
cesses: a distinguished process w is the writer, the set of R readers with unique ids
from the set R = {r1, . . . , rR}, and the set of S servers (where the object replicas are
maintained) with unique ids from the set S = {s1, . . . , sS}.

A quorum system is a collection of sets of processes, known as quorums, such that
every pair of such sets intersects. We define a quorum system Q over the set of servers S
as follows: Q = {Qi : Qi ⊆ S} such that for any two quorums Qi, Qj ∈ Q, Qi∩Qj �=
∅. We assume that every process in the system is aware of Q.

Our distributed system is modeled in terms of I/O automata [17, 19] where Ap rep-
resents the automaton A assigned to process p. Our system is composed of four kinds of
automata: the writer Writerw, servers Serversi , readers Readerri , and Channelp,q.
Automata Channelp,q and Channelq,p are assumed to implement a reliable commu-
nication channels between processes p ∈ {w} ∪ R and processes q ∈ S. Each I/O
automaton Ap consists of a set of states states(Ap) that includes the initial state(s)
of Ap, and a signature sig(Ap) that specifies input, output, and internal actions that
can be performed by Ap. For an action α, the tuple 〈state, α, state′〉 represents the
transition of Ap from state state to state′ as the result of α. Such a tuple is also
called a step, of Ap. An execution fragment ϕ of Ap is a finite or an infinite sequence
state0, α1, state1, α2, . . . , αr, stater, . . . of alternating states and actions of Ap such
that every statek, αk+1, statek+1 is a step of Ap. If an execution fragment begins with
an initial state of Ap then it is called an execution. We say that an execution fragment ϕ′

of Ap, extends a finite execution fragment ϕ of Ap if the first state of ϕ′ is equal to the
last state of ϕ. The concatenation of of ϕ and ϕ′ is the result of the extension of ϕ by ϕ′

where the duplicate occurrence of the last state of ϕ is eliminated. Such concatenation
yields an execution fragment of Ap.

A process p crashes at any step 〈statek, αk+1, statek+1〉 in an execution ξ, if this
is the last step of Ap in ξ. A process p is faulty in an execution ξ if p crashes in ξ;
otherwise p is correct. A quorum Q ∈ Q is non-faulty if ∀p ∈ Q, p is correct; otherwise
Q is faulty. We assume that any subset of readers, the writer, and all but one quorum in
quorum system Q may be faulty at any execution.

2.1 Atomicity

Our goal is to implement a read/write atomic object in a message passing system by
replicating the value of the object among the servers in the system. Each replica consists
of a value v and an associated timestamp ts.

The client at process p may request a read operation ρ on the atomic register x by
performing a readx,p action if p ∈ R. Similarly the client requests a write operation
ω(∗) by performing write(∗)x,p if process p is the writer. The step that includes the
read or write action is called invocation step and the step that contains a read-ack(∗)x,p

294 C. Georgiou, N.C. Nicolaou, and A.A. Shvartsman

or a write-ackx,p action is called a response step. An operation π is incomplete in an
execution ξ, if ξ contains the invocation step of π but does not contain the associated
response step for π; otherwise we say that π is complete. We assume that the requests of
a client are well-formed meaning that the client does not request a read or write action
on an object x, before receiving a read-ack or write-ack from a previously invoked
action on x. From this point onward we assume a single register object. By composing
multiple single register implementations, one may obtain the complete atomic shared-
memory [17].

In an execution we say that an operation (read or write) π1 precedes another opera-
tion π2, or π2 succeeds π1, if the response step for π1 precedes the invocation step of
π2; this is denoted by π1 → π2. Two operations are concurrent if neither precedes the
other.

Correctness of an implementation of an atomic object is defined in terms of the ter-
mination and atomicity properties. The termination property requires that any operation
invoked by a correct process eventually completes, provided that the failures obey our
failure model. Atomicity is defined as follows [17]: Consider the set Π of all complete
operations in any well-formed execution. Then there exists an irreflexive partial order-
ing ≺ on operations in Π , satisfying the following: (1) For any operation π ∈ Π , there
are finitely many operations π′ such that π′ ≺ π. (2) If operation π1 precedes the oper-
ation π2 in Π , then it cannot be the case that π2 ≺ π1. (3) If π is a write operation and
π′ is any operation in Π , then either π ≺ π′ or π′ ≺ π. (4) The value returned by a read
operation is the value written by the last preceding write operation according to ≺ (or
⊥ if there is no such write).

2.2 Fast, Semifast and Weak-Semifast Implementations

We use the definition of fast implementation given by Dutta et al. [3], in particular
we say that a read or write operation is fast if it completes in a single communication
round-trip (or round for short). A fast implementation contains only fast operations in
any execution. We define a communication round as follows:

Definition 1. A process p performs a communication round during operation π if all of
the following hold:

(1) p sends read or write messages for π to a subset of processes,
(2) any process p′ that receives a message from p for operation π, replies to the message
with a read or write acknowledgment respectively before receiving any other message1,
(3) when process p receives enough replies for π it responds to the client.

The results of [3] show that in fast implementations the number of readers must be con-
strained with respect to the number of servers. To relax such constraints, [9] proposed
semifast implementations where some read operations are allowed to perform two com-
munication rounds. The definition of semifast implementations is given below, where
R(ρ) denotes the unique write operation that wrote the value returned by ρ:

1 Intuitively this property is used to stress the fact that processes do not need to wait for other
messages before replying to p.

On the Robustness of (Semi) Fast Quorum-Based Implementations 295

Definition 2. An implementation I of an atomic object is semifast if the following are
satisfied:

P1. Every write operation is fast.
P2. Any complete read operation performs one or two communication rounds between
the invocation and response.
P3. For any execution ξ of I , if ρ1 is a two-round read operation, then any read opera-
tion ρ2 with R(ρ1) = R(ρ2), such that ρ1 → ρ2 or ρ2 → ρ1, must be fast.
P4. There exists an execution ξ of I that contains at least one write operation ω and
at least one read operation ρ1 with R(ρ1) = ω, such that all read operations ρ with
R(ρ) = ω (including ρ1) are fast.

We define a new class of implementations that we call weak-semifast implementations.
This class is defined in terms of properties P1, P2, and P4 of the semifast implemen-
tations, and it does not include property P3. In other words, weak-semifast implemen-
tations allow multiple “slow” complete read operations for every write operation in
contrast with property P3 that allows a single such read operation. Thus the two classes
are distinct.

Given that any subset of readers and the writer may crash, then termination is guaran-
teed only if no operation waits for replies from any reader or writer processes. Moreover
our failure assumptions on the quorum system imply that no operation can wait for more
than a single quorum to reply. Finally, as shown in [3, 9], fast and semifast implemen-
tations require that server processes cannot wait for more messages before replying to
a read or write operation. Notice that since weak-semifast implementations share the
same communication scheme in terms of communication rounds as the semifast imple-
mentations, they also follow the rules presented in this paragraph.

2.3 Quorum-Based Algorithms

The results in the next two sections pertain to atomic register implementations that have
the following characteristics: (1) they use a quorum system to group the object replicas,
(2) participants are aware of the quorum system construction and the operation protocol
and (3) in every execution there is at least one non-faulty quorum.

Characteristic (3) describes the failure model of the algorithms we consider. Observe
that: (i) according to the pairwise intersection property of quorums it suffices to obtain
replies from a single quorum, and (ii) according to (3) only a single quorum may be
alive in any execution of the algorithm, and thus waiting for more than one quorum
before replying may affect operation termination. Thus we assume that any operation
waits for exactly one quorum to reply.

3 Quorum Properties and Fast/Semifast Impossibility

A process p, that invokes an operation π, is said to contact a subset of servers G ⊆ S,
denoted by cnt(G)p,π , if for every server si ∈ G: (a) si receives the messages sent
by p within the operation π, (b) si replies to p, and (c) p receives the reply from
si. If cnt(G)p,π and additionally no other server (i.e., si /∈ G) receives any message

296 C. Georgiou, N.C. Nicolaou, and A.A. Shvartsman

from p within the operation π then we say that p strictly contacts G, and is denoted
by scnt(G)p,π. Let maxTS denote the maximum timestamp that a read operation ρi

witnesses after cnt(G)∗,ρi or scnt(G)∗,ρi , for some G ⊆ S, during its first round.
Below we discuss our results regarding quorum-based fast and semifast implemen-

tations. More detailed analysis can be found in [10].

Fast Implementations. We now state the quorum property that is both necessary and
sufficient to obtain fast quorum-based implementations.

Theorem 1. A fast quorum-based implementation I of a read/write atomic register is
possible iff the underlying quorum system Q satisfies:

⋂
Q∈Q

Q �= ∅.

Proof (Sketch). We prove the two directions of the theorem separately. We first show
that if we want fast implementations it is necessary to have common intersection, and
then we show that having a common intersection it is sufficient to build fast
implementations.

The first part of the proof relies on an execution construction. The construction in-
volves an execution ξ0 that contains a complete write operation which scnt(Qi)∗,ω and
a series of executions ξ1, . . . , ξn−2 (n = |Q|). Starting from ξ0 we extend each exe-
cution ξi with i + 2 read operations such that each of them strictly contacts a different
quorum. Using an induction on the number of read operations, it can be shown that
atomicity is preserved only if the last read operation, say ρk in the execution ξk−2, may
witness the maximum timestamp. Assuming that ρk scnt(Qz)∗,ρk

and the maximum
timestamp is introduced only in a quorum intersection Qinter then ρk may witness the
maximum timestamp only if Qinter ∩Qz �= ∅. Generalizing to the full quorum system
the common intersection follows.

The fact that the common intersection is sufficient for fast implementations follows
from a trivial implementation: each read/write operation contacts (only) the servers
in the common intersection and returns the maximum timestamp observed in the first
communication round. Notice here that according to our failure model, all the servers
of the common intersection must remain alive during the execution. Thus atomicity is
not violated since every read/write operation will gather all the servers in the common
intersection and furthermore all operations complete in a single communication round.

Theorem 1 leads to the following result.

Theorem 2. Fast quorum-based implementations are not robust.

Proof. Theorem 1 requires a common intersection between the quorum sets of the quo-
rum system Q. If any member node si of the common intersection fails, then all quorum
members of the quorum system are faulty since ∀Q ∈ Q, si ∈ Q. Hence it follows that
the quorum system Q fails. Therefore the quorum system suffers from a single point of
failure and as a sequel it is not robust. As a result, any implementation that relies on
such a quorum system is also not robust.

Semifast implementations. Since fast implementations are not possible if common
intersection property is not satisfied by the quorum system, a natural question arise

On the Robustness of (Semi) Fast Quorum-Based Implementations 297

Qi

QjQz

Fig. 1. Intersections of three quorums Qi, Qj , Qz

whether robust semifast implementations can be achieved. We show that robust semifast
implementations are also impossible if the common intersection between the quorums
is not preserved. We use the properties of the semifast implementations as presented in
Definition 2.

We first prove a lemma that specifies when a read operation is necessary to perform
a second communication round. The lemma is general and algorithm-independent.

Lemma 1. A read operation ρ from a reader r that scnt(Qi)r,ρ, Qi ∈ Q cannot be

fast if ∃s ∈ Qi : s.ts < maxTS and ∃Q ⊂ Q s.t. Qi ∩
(⋂

q∈Q q
)

�= ∅ and

∀s ∈ Qi ∩
(⋂

q∈Q q
)

, s.ts = maxTS.

We can then derive the following result.

Theorem 3. No quorum-based semifast implementation is possible if
⋂

Q∈Q Q = ∅.

Proof (Sketch). The proof is build upon execution constructions that exploit a basic
quorum system similar to the one presented in Figure 1 with no common intersec-
tion. Based on that figure, consider an execution that contains a write operation ω
and three read operations ρ1, ρ2 and ρ3. Assume that the write is incomplete and
scnt(Qj ∩ Qi)w,ω. Moreover the ρ1 operation scnt(Qi)∗,ρ1 during its first commu-
nication round. According to Lemma 1, ρ1 needs to perform a second communication
round and suppose it scnt(Qi ∩ Qj)∗,ρ1 before the first communication round of ρ2.
Thus when ρ2 is executed, and scnt(Qj)∗,ρ2 , observes that ρ1 performed a second
communication round but it cannot distinguish whether ρ1 is completed or not. Here is
where the key idea of the proof lies: if ρ2 is fast (s.t. Property 3 of the semifast definition
holds), then if ρ3 scnt(Qz)∗,ρ3 , ρ3 will not witness the maximum timestamp and thus
will return an older value violating atomicity. So to preserve atomicity ρ2 has to pro-
ceed to a second communication round. Since, however, ρ2 cannot distinguish between
a complete second communication round of ρ1 that scnt(Qi)∗,ρ1 and the incomplete
second communication round of ρ1 that scnt(Qi ∩ Qj)∗,ρ1 , then ρ1 and ρ2 may not
be concurrent but yet be both slow. That however violates Property 3 of the semifast
definition.

We conclude that robust quorum-based semifast implementations are not possible.

298 C. Georgiou, N.C. Nicolaou, and A.A. Shvartsman

Corollary 1. Semifast quorum-based implementations are not robust.

Remark 1. Observe that the robustness of fast quorum-based implementations can be
improved by the following techniques: (i) relaxing the failure model and requiring more
than a single quorum to reply at any read/write operation, and (ii) impose restrictions
on the number of reader participants and on the construction of the quorum system
they deploy. This however will negatively affect the performance of the quorum system
and will introduce strong assumptions for its maintenance, making eventually the use
of quorums impractical. Thus in this work we avoid making such assumptions and we
prefer to trade operation performance for higher fault-tolerance and applicability.

The following example help us visualize the application of the second technique
presented in the above remark. Assume the following setting under [3]: S =
{1, 2, 3, 4, 5}, R = 2 and t = 1. Any operation may receive replies from S − t servers
and from one of the sets: Q1 = {1, 2, 3, 4}, Q2 = {1, 3, 4, 5}, Q3 = {1, 2, 4, 5}, Q4 =
{1, 2, 3, 5}, Q5 = {2, 3, 4, 5}. Observe that the intersection of any three sets contains
two servers (t+ 1). Since there are two readers and one writer then a written value may
be disseminated by contacting at most three different sets in the worst case (a different
set per read/write operation). So restricting the number of readers allows the concen-
tration of the common intersection between a subset of quorum sets, which serves as a
“hot spot” to ensure consistency between the operations.

4 Weak-Semifast Implementations

In the previous section we have established that no robust fast or semifast quorum-based
implementations are possible. We therefore now consider weak-semifast implementa-
tions. In this section we introduce the notion of Quorum Views that describe certain
knowledge that a read operation may witness during its first communication round. We
then present an algorithm, called SLIQ, for atomic registers, and we reason, based on
the knowledge in quorum views, about read operations needing to perform one or two
communication rounds to complete. We deviate from the restrictive quorums properties
presented in Section 3 and we allow our implementation to use an arbitrary quorum
system construction.

4.1 Quorum Views

A quorum view refers to the distribution of the maximum timestamp that a read op-
eration ρi witnesses after its first communication round. Consider that the read opera-
tion ρi strictly contacts quorum Qi during its first communication round, denoted by
scnt(Qi)∗,ρi . Each member s ∈ Qi replies with a timestamp s.ts to ρi. We define
quorum views in terms of the following three possible cases for ρi:

1. [qV iew(1)] ∀s ∈ Qi : s.ts = maxTS,

2. [qV iew(2)] ∀Qj ∈ Q, i �= j, ∃A ⊆ Qi ∩ Qj , s.t. A �= ∅ and ∀s ∈ A : s.ts <
maxTS,

On the Robustness of (Semi) Fast Quorum-Based Implementations 299

Qz

QiQj

Qz

QiQj

Qz

QiQj

Qz

QiQj

2(a) 2(b) 2(c) 2(d)

Fig. 2. (a) qV iew(1), (b) qV iew(2), (c) qV iew(3) with incomplete write, (d) qV iew(3) with
complete write

3. [qV iew(3)] ∃s′ ∈ Qi : s′.ts < maxTS and ∃Qj ∈ Q, i �= j s.t. ∀s ∈ Qi ∩Qj :
s.ts = maxTS.

Analyzing these three types of quorum views we can derive conclusions on the state
of the write operation (complete or incomplete) that tries to propagate a value with
the maxTS in the system. Figure 2 illustrates those quorum views assuming that the
read operation ρ, scnt(Qi)∗,ρ. The dark nodes maintain the maximum timestamp of the
system and white nodes or “empty” quorums maintain an older timestamp. Recall that
it follows from our failure model that no operation (read or write) can wait for more
than one quorum to reply. Thus having a full quorum reporting the same maxTS, as
seen in Fig. 2(a), implies the possible completion of the write operation (in the case of
Figure 2(a) the complete write operation strictly contacts Qi).

Observe that if a full quorum contains maxTS then the members of any intersection
of that quorum contain maxTS. So witnessing a subset of members of each intersec-
tion of Qi (as seen in Fig. 2(b) the representation of qV iew(2)) to maintain an older
timestamp, implies directly that the write operation which propagates maxTS is not
yet complete.

Finally, qV iew(3), provides insufficient information regarding the state of the write
operation. Observe Figures 2(c) and 2(d). In the former an incomplete write operation
propagates the maxTS in the dark nodes and in the latter it completes by receiving
replies from Qz . Notice that if a read operation ρ strictly contacts Qi (i.e., scnt(Qi)∗,ρ)
in the two executions, it won’t be able to distinguish 2(c) from 2(d). So, more formally,
if an operation witnesses some intersection Qi ∩ Qz that contains maxTS in all of its
members, then a write operation might: (i) have been completed and contacted Qz or
(ii) be incomplete and contacted a subset of servers B such that Qi ∩ Qz ⊆ B and
∀Qj ∈ Q, Qj �⊆ B.

4.2 Algorithm SLIQ

Our implementation includes, automaton Writerw that handles the write operations for
the writer process w, automaton Readerri that handles the reading for each ri ∈ R,
and automaton Serversi that handles the read and write requests on the atomic register
for each si ∈ S. These automata use reliable asynchronous process-to-process channels
Channelp,q to communicate.

300 C. Georgiou, N.C. Nicolaou, and A.A. Shvartsman

Algorithm Description. Due to space limitations we only provide a high level descrip-
tion of our algorithm. A more technical description and formal specification can be
found in [10].

Writer. The write protocol involves the propagation of a write message to all the
servers. Once the writer receives replies from a full quorum it increments its timestamp
and the operation completes.

Readers. The read protocol also requires that a reader propagates a read message to all
the servers. Once the reader receives replies from a full quorum it examines the maxi-
mum timestamp (maxTS) distribution within that quorum, which in turn characterizes
a quorum view. If the view is either qV iew(1) or qV iew(2) then the reader terminates
in the first communication round and returns maxTS or maxTS − 1 respectively. If
the view is qV iew(3) then the reader proceeds to the second communication round
where it propagates the maximum timestamp to a full quorum in a similar manner as
the writer. Once the reader gets replies from a full quorum, the operation completes,
returning maxTS.

Servers. The servers maintain a passive role; they just receive messages, update their
replica value according to the message contents and reply to those messages.

Algorithm Correctness. We prove that algorithm SLIQ follows its specifications and
preserves atomicity; specifically we show that each atomicity property of Section 2.1
holds for any execution of the algorithm. The main theorem is the following:

Theorem 4. Algorithm SLIQ implements a SWMR atomic read/write register.

Proof (Sketch). Let tsp(π) to denote the timestamp of the read or write operation π
from a process p, after the completion event of π. Summarizing the atomicity properties
we want to show: (i) The timestamp at each process is monotonically increasing, (ii)
If a read operation ρ succeeds a write operation ω then ts∗(ρ) ≥ tsw(ω) and, (iii) If
ρ1 and ρ2 are two read operations such that ρ1 → ρ2 then ts∗(ρ2) ≥ ts∗(ρ1). The
monotonicity on the timestamps (property (i)) for every process can be easily derived
from the algorithm. For property (ii) we can observe that since the write operation
is completed then ρ will witness a timestamp ts greater or equal to tsw(ω). If ts >
tsw(ω) then ts∗(ρ) ≥ tsw(ω) since ts∗(ρ) = ts or ts∗(ρ) = ts − 1. If ts = tsw(ω)
then ρ will witness either qV iew(1) or qV iew(3). In either case ts∗(ρ) = ts. Finally
for property (iii) we investigate all the possible quorum views. We need to show that
if ρ1 is fast then ts∗(ρ2) is at least equal to ts∗(ρ1). Notice that ρ1 is fast only if a
qV iew(1) or qV iew(2) is observed. If qV iew(1) is witnessed by ρ1 then ρ2 witnesses
an intersection with timestamps greater or equal to ts∗(ρ1). If qV iew(2) is witnessed
by ρ1 then a timestamp ts = ts∗(ρ1) + 1 has already introduced in the system and thus
the write operation that wrote a timestamp equal to ts∗(ρ1) is already completed. Thus,
by Property (ii) ρ2 returns ts∗(ρ2) ≥ ts∗(ρ1), and hence property (iii) follows.

Note that it is straightforward to verify that SLIQ belongs in the class of weak-semifast
implementations (that is, it satisfies properties P1, P2 and P4 of Definition 2).

On the Robustness of (Semi) Fast Quorum-Based Implementations 301

5 Simulation Results

To practically evaluate our findings, we simulated our algorithm using the the NS-2
network simulator. The detailed testbed and discussion regarding the simulation appears
in [10]. According to our setting, only the messages between the invoking processes and
the servers, and the replies from the servers are delivered (no messages are exchanged
between any servers or among the invoking processes).

We have evaluated our approach over multiple quorum systems (majorities Qm, ma-
trix quorums Qx and crumbling walls Qc), but due to space limitations we only present
here some of the plots we obtained exploiting crumbling walls (see [22]). The quorum
system is generated apriori and is distributed to each participant node via an exter-
nal service (out of the scope of this work). No dynamic quorums are assumed, so the
configuration of the quorum system remains the same throughout the execution of the
simulation. We model server failures by choosing the non-faulty quorum and allowing
any server that is not a member of that quorum to fail by crashing. Note that the non-
faulty quorum is not known to any of the participants. The positive time parameter cInt
is used, to model the failure frequency or reliability of every server si.

We use the positive time parameters rInt and wInt (both greater than 1 sec) to
model the time intervals between any two successive read operations and any two suc-
cessive write operations respectively. We considered three simulation scenarios corre-
sponding to the following parameters: (i) rInt < wInt: this models frequent reads and
infrequent writes, (ii) rInt = wInt: this models evenly spaced reads and writes, (iii)
rInt > wInt: this models infrequent reads and frequent writes.

Furthermore for each one of the above scenarios we consider two settings:

(a) Stochastic setting: the read/write intervals vary randomly within [0 . . . rInt] and
[0 . . . wInt] respectively.

(b) Fixed setting: the read/write intervals are fixed to the value of rInt and wInt re-
spectively.

We can summarize our simulations testbed for each class of quorums and for the
settings presented above, as follows:

(1) Simple Runs: (Qc, Qx, Qm) |S| = 25 (Qc, Qx) or |S| = 10 (Qm), cInt = 0
(failure check for every reply) and |R| ∈ [10, 20, 40, 80]. Here we want to demonstrate
the performance of the algorithm under similar environments (quorum,failures) but with
different read load.

(2) Quorum Diversity Runs: (Qc, Qx) |S| ∈ [11, 25, 49] (Qc) and |S| ∈ [11, 25, 49]
(Qx), cInt = 0 and |R| ∈ [10, 20, 40, 80]. These runs demonstrate the performance
of the algorithm in different quorum systems with varying quorum membership. Each
quorum is tested in variable read load.

(3) Failure Diversity Runs: (Qc, Qx) |S| = 25, cInt ∈ [10 . . . 50] with steps of 10
and |R| ∈ [10, 20, 40, 80]. These runs tested the durability of the algorithm to failures.
Notice that the smaller the crash interval the faster we diverge to the non-faulty quorum.
As the crash interval becomes bigger, less servers fail and thus more quorums “survive”
in the quorum system. For this class of runs we tested both the cases when the servers
get the crash interval randomly from [0 . . . cInt] and [10 . . . 10 + cInt].

302 C. Georgiou, N.C. Nicolaou, and A.A. Shvartsman

 10
 20

 30
 40

 50
 60

 70
 80 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

%-2comm

randInt data plot

"randInt.all.crumpling.data.0" using 3:4:10

#Readers

RInt

%-2comm

 10
 20

 30
 40

 50
 60

 70
 80 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

%-2comm

fixInt data plot

"fixInt.all.crumpling.data.0" using 3:4:10

#Readers

RInt

%-2comm

Setting a: Stochastic simulations Setting b: Fixed interval simulations

Fig. 3. Simple runs using Crumbling Walls

Figure 3 illustrates the results obtained when we assumed simple runs and exploiting
crumbling walls quorum. The Z axis presents the percentage of the read operations that
performed two communication rounds, the X axis corresponds to the number of reader
participants and the Y axis represents time and in particular the rInt interval. In the
stochastic environment (Figure 3.a) we observe that the percentage of slow reads drops
as the number of readers increases, regardless of the value of rInt. This behavior can
be explained from the fact that the concurrency between the operations is minimized
and thus the maximum timestamp is propagated (by both the writer and the readers)
to enough servers that favor the fast behavior. Since the convergence point is similar
regardless the number of readers, then increasing the readers, increases the number of
fast reads and decreases the percentage of slow reads. Similar behavior is observed
in the fixed interval environment (Figure 3.b) whenever there is no strict concurrency
between the reads and the writes. The worst case is observed at the point where all
operations are invoked concurrently.

Our results (including the ones given in [10]) reveal that in realistic cases (i.e.
stochastic settings), the percentage of two communication round reads does not ex-
ceed 13%. The only case that requires more than 85% of the reads to be slow is the
worst case scenario were the read and write intervals are fixed to the same value. Notice
however that this scenario is unlikely to appear in practical settings. Comparing our
results with the ones obtained in [9] one can observe that the difference in the random
scenarios does not exceed 6%.

6 Conclusions

In this paper we have shown that no robust fast or semifast quorum-based implemen-
tations of atomic read/write objects are possible in the presence of crashes. We thus
introduced the notion of weak-semifast implementations, reasoned that this notion is
meaningful, and showed that robust weak-semifast quorum-based implementations ex-
ist. As a tool, we introduced the notion of a Quorum View that we used in the design and
analysis of our robust algorithm. We formally proved the correctness of the algorithm

On the Robustness of (Semi) Fast Quorum-Based Implementations 303

and we obtained simulation results that demonstrate that under realistic conditions the
overwhelming number of read operations are fast.

The algorithm does not explicitly provide any guarantees on the relative frequency
of slow and fast read operations. Thus it would be interesting to examine ways to re-
duce the number of slow operations either by imposing a supplemental communication
scheme or by using a special form of quorum systems. An interesting direction is to
investigate whether combining quorum views with refined quorum systems [15] can
lead to more efficient implementations. In another direction, dynamic membership of
quorum systems can also further improve the flexibility and fault tolerance of quorum-
based implementations. Given the results in [4, 18] a quorum reconfiguration requires
some communication overhead. So a natural question arises regarding the communi-
cation efficiency of such dynamic systems and their impact on the performance of a
weak-semifast implementation.

References

1. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message passing systems.
Journal of the ACM 42(1), 124–142 (1996)

2. Dolev, S., Gilbert, S., Lynch, N., Shvartsman, A., Welch, J.: Geoquorums: Implementing
atomic memory in mobile ad hoc networks. In: Proceedings of the 17th International Sym-
posium on Distributed Computing (DISC), pp. 306–320 (2003)

3. Dutta, P., Guerraoui, R., Levy, R.R., Chakraborty, A.: How fast can a distributed atomic read
be? In: Proceedings of the 23rd ACM Symposium on Principles of Distributed Computing
(PODC), pp. 236–245 (2004)

4. Englert, B., Shvartsman, A.A.: Graceful quorum reconfiguration in a robust emulation of
shared memory. In: Proceedings of 20th International Conference on Distributed Computing
Systems (ICDCS), pp. 454–463 (2000)

5. Fan, R., Lynch, N.: Efficient replication of large data objects. In: Proceedings of the 17th
International Symposium on Distributed Computing (DISC), pp. 75–91 (2003)

6. Garcia-Molina, H., Barbara, D.: How to assign votes in a distributed system. Journal of the
ACM 32(4), 841–860 (1985)

7. Georgiou, C., Musial, P.M., Shvartsman, A.A.: Developing a consistent domain-oriented dis-
tributed object service. In: Proceedings of the 4th IEEE International Symposium on Net-
work Computing and Applications (NCA), pp. 149–158 (2005)

8. Georgiou, C., Musial, P.M., Shvartsman, A.A.: Long-lived RAMBO: Trading knowledge for
communication. Theoretical Computer Science 383(1), 59–85 (2007)

9. Georgiou, C., Nicolaou, N., Shvartsman, A.: Fault-tolerant semifast implementations for
atomic read/write registers. Journal of Parallel and Distributed Computing (accepted, 2008);
A preliminary version appears in SPAA 2006, pp. 281–290 (2006)

10. Georgiou, C., Nicolaou, N., Shvartsman, A.: On the robustness of (semi) fast quorum-based
implementations of atomic shared memory(2008),
http://www.cse.uconn.edu/∼ncn03001/pubs/TRs/GNS08.pdf

11. Gifford, D.K.: Weighted voting for replicated data. In: Proceedings of the 7th ACM Sympo-
sium on Operating Systems Principles (SOSP), pp. 150–162 (1979)

12. Gilbert, S., Lynch, N., Shvartsman, A.: RAMBO II: Rapidly reconfigurable atomic memory
for dynamic networks. In: Proceedings of the 2003 International Conference on Dependable
Systems and Networks (DSN), pp. 259–268 (2003)

http://www.cse.uconn.edu/~ncn03001/pubs/TRs/GNS08.pdf

304 C. Georgiou, N.C. Nicolaou, and A.A. Shvartsman

13. Gramoli, V., Anceaume, E., Virgillito, A.: SQUARE: scalable quorum-based atomic mem-
ory with local reconfiguration. In: Proceedings of the 2007 ACM Symposium on Applied
Computing (SAC), pp. 574–579 (2007)

14. Guerraoui, R., Vukolić, M.: How fast can a very robust read be? In: Proceedings of the 25th
ACM Symposium on Principles of Distributed Computing (PODC), pp. 248–257 (2006)

15. Guerraoui, R., Vukolić, M.: Refined quorum systems. In: Proceedings of the 26th ACM
Symposium on Principles of Distributed Computing (PODC), pp. 119–128 (2007)

16. Lamport, L.: On interprocess communication, part I: Basic formalism. Distributed Comput-
ing 1(2), 77–85 (1986)

17. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers, San Francisco (1996)
18. Lynch, N., Shvartsman, A.: RAMBO: A reconfigurable atomic memory service for dynamic

networks. In: Proceedings of the 16th International Symposium on Distributed Computing
(DISC), pp. 173–190 (2002)

19. Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI-Quarterly, 219–246
(1989)

20. Lynch, N.A., Shvartsman, A.A.: Robust emulation of shared memory using dynamic
quorum-acknowledged broadcasts. In: Proceedings of the 27th International Symposium on
Fault-Tolerant Computing (FTCS), pp. 272–281 (1997)

21. Malkhi, D., Reiter, M.: Byzantine quorum systems. Distributed Computing 11(4), 203–213
(1998)

22. Peleg, D., Wool, A.: Crumbling walls: A class of high availability quorum systems. In: Pro-
ceedings of the 14th ACM Symposium on Principles of Distributed Computing (PODC), pp.
120–129 (1995)

23. Shao, C., Pierce, E., Welch, J.L.: Multi-writer consistency conditions for shared memory
objects. In: Proceedings of the 17th International Symposium on Distributed Computing
(DISC), pp. 106–120 (2003)

Permissiveness in Transactional Memories�

Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh

EPFL, Switzerland

Abstract. We introduce the notion of permissiveness in transactional
memories (TM). Intuitively, a TM is permissive if it never aborts a trans-
action when it need not. More specifically, a TM is permissive with re-
spect to a safety property p if the TM accepts every history that satisfies
p. Permissiveness, like safety and liveness, can be used as a metric to
compare TMs. We illustrate that it is impractical to achieve permissive-
ness deterministically, and then show how randomization can be used
to achieve permissiveness efficiently. We introduce Adaptive Validation
STM (AVSTM), which is probabilistically permissive with respect to
opacity; that is, every opaque history is accepted by AVSTM with pos-
itive probability. Moreover, AVSTM guarantees lock freedom. Owing to
its permissiveness, AVSTM outperforms other STMs by up to 40% in
read dominated workloads in high contention scenarios. But, in low con-
tention scenarios, the book-keeping done by AVSTM to achieve permis-
siveness makes AVSTM, on average, 20-30% worse than existing STMs.

1 Introduction

Transactional memory (TM) tries to maximize concurrency in an implementa-
tion while providing the illusion of sequentiality to the programmer. It holds the
promise to exploit the computational power of modern multi-processor archi-
tectures within the security afforded by a simple, non-concurrent programming
model. A transaction is an atomic program that can commit its actions to mem-
ory, or abort without changing the memory. An abort can be caused by the
programmer (say, if some exception is raised), or by the TM itself, if there is
a risk to violate the correctness of the memory. Typically, this correctness is
expressed by some form of serialization for transactions; that is, a transaction
can commit only if the state of the memory could have been generated by some
sequential execution of the transactions so far.

At first glance, one would expect from a TM that it never aborts a transaction
when it need not, i.e., when there is no risk of violating correctness. It turns
out, however, that proposed TMs have certain scenarios where a transaction is
aborted even if it could have committed without violating correctness. In other
words, these TMs do not enable the maximal amount of possible concurrency
among a set of transactions. This observation naturally raises the question of
whether one can devise an ideal, maximal TM, which never aborts a transaction
unless necessary for correctness. We call such a TM permissive.
� This research was supported by the Swiss National Science Foundation.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 305–319, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

306 R. Guerraoui, T.A. Henzinger, and V. Singh

In this paper, we formalize the notion of permissiveness and discuss why the
existing TM implementations are not permissive. We argue that permissiveness
is expensive to achieve in a deterministic TM. We then present a randomized
permissive TM. We show in particular that using randomization in choosing the
serialization point of every transaction creates an efficient permissive STM.

Formally, a deterministic TM is an online algorithm that is given a sequence
of statements and decides for each statement, based on the statements so far,
whether or not to accept the statement. A deterministic TM is permissive with
respect to a given safety property (e.g., serializability) if every history (finite
sequence of statements) that satisfies the safety property is accepted by the TM.
In Section 2, we show that existing TMs, like TL2 [1], WSTM [3], and DSTM [9],
are not permissive with respect to serializability or opacity, a strong form of
serializability that arguably corresponds to what should be expected from a
TM [7,9]. Opacity captures the practical notion in TM that transactions execute
serially, and even aborting transactions do not view inconsistent state. To our
knowledge, the only deterministic TM permissive with respect to serializability
or opacity occurs in our recent work [5]. This TM is built using the notion of
conflict graphs [10]. But the conflict graph changes globally with every statement.
Capturing this change incurs a high cost per statement, and the feasibility of a
practical deterministic permissive TM remains questionable.

For randomized TMs, it is natural to consider weaker, probabilistic notions
of permissiveness. Formally, a randomized TM is an online algorithm that is
given a sequence of statements and decides for each statement, based on a ran-
dom coin toss, whether to serialize the transaction at the current statement,
and based on the statements so far, whether or not to accept the statement.
We say that a randomized TM is permissive with respect to a safety property
if every history that satisfies the safety property is accepted by the TM with
probability 1. Moreover, we say that a randomized TM is probabilistically per-
missive with respect to a safety property if every history that satisfies the safety
property is accepted by the TM with positive probability. We do not know of
any existing randomized TM that is permissive, or probabilistically permissive,
with respect to serializability or opacity. We present Adaptive Validation STM
(AVSTM), which can be configured to be probabilistically permissive for strict
serializability (SS-AVSTM) or opacity (OP-AVSTM). AVSTM uses randomiza-
tion to determine an ordering (serialization) point during the life-time of each
transaction. We have designed AVSTM in such a manner that it guarantees lock
freedom; that is, infinitely many transactions commit in every infinite history
produced by AVSTM.

Typically, the efficiency of a TM is measured by the number of transactions
that commit per time unit. So, in theory, putting the book-keeping aside, a more
permissive TM should also be more efficient, as it aborts less often. We evaluate
this claim in practice by implementing an AVSTM prototype and comparing its
performance to existing TMs. Our evaluation on a multi-processor architecture
(4 processor dual-core running Linux) shows that, indeed, AVSTM outperforms
existing TMs (such as DSTM, WSTM, TL2) by upto 40% in high-contention

Permissiveness in Transactional Memories 307

scenarios, where many processes are accessing a small set of variables. In low-
contention scenarios, AVSTM does not outperform the most efficient TMs, and
suffers performance by 20-30%. This is due to the amount of book-keeping used
by AVSTM, which turns out to be more expensive than a few unnecessary aborts
in low-contention scenarios. We present a simple scheme to compose TL2 with
AVSTM obtaining the advantages of both algorithms. In short, the processes run
by default TL2 and dynamically switch to AVSTM when contention increases.

Related work. Many STMs [1,3,8,9,11] have been proposed in the literature.
Most of these guarantee opacity, but none of them is opacity-permissive. Exist-
ing STMs guarantee different levels of liveness. DSTM [9] guarantees obstruction
freedom. Many contention managers [6,12] have been proposed to boost obstruc-
tion freedom. But, in our knowledge, there is no contention manager that boosts
obstruction freedom to yield lock freedom. WSTM [3] guarantees lock freedom.

2 Framework

We formalize the notion of safety and permissiveness in transactional memories.

Preliminaries. Let V be a set {1, . . . , k} of k variables. Let C = {commit} ∪
{abort} ∪ ({read,write} × V) be the set of commands on the variables in V . For
our formalism, we treat these commands as atomic. Let P = {1, . . . , n} be the
set of processes. Let Σ = C × P be a finite set of statements. A history h ∈ Σ∗

is a finite sequence of statements. Given a history h, we define the projection
h|p of h on process p ∈ P as the longest subsequence h′ of h such that every
statement in h′ is in C × {p}. Given a projection h|p = σ0 . . . σm of a history h,
a statement σi is finishing in h|p if it is a commit or an abort. A statement σi is
initiating in h|p if it is the first statement in h|p, or the previous statement σi−1

is a finishing statement.
Given a projection h|p of a history h on process p, a consecutive subsequence

x = σ0 . . . σm of h|p is a transaction of process p in h if (i) σ0 is initiating in h|p,
and (ii) σm is either finishing in h|p, or σm is the last statement in h|p, and (iii)
no other statement in x is finishing in h|p. The transaction x is committing in h
if σm is a commit statement. Given a history h and two transactions x and y in
h (possibly of different processes), we say that x <h y if the finishing statement
of x occurs before the initiating statement of y in h. A history h is sequential if
for every pair (x, y) of transactions in h, either x <h y or y <h x.

We define a function com : Σ∗ → Σ∗ such that for all histories h ∈ Σ∗, the
history com(h) is the longest subsequence h′ of h such that every statement in h′

is part of a committing transaction in h. Thus, com(h) consists of all statements
of all committing transactions in h. A statement σ = ((read, v), p) in x is a global
read of the variable v if there is no write to v before σ in x.

Safety properties. Strict serializability [10] is a commonly used correctness
criterion for concurrent systems and, in particular, for transactional systems.
In the scope of STMs, a stronger notion of correctness, referred to as opacity

308 R. Guerraoui, T.A. Henzinger, and V. Singh

has been suggested [7,9] to avoid unexpected side effects, like infinite loops, or
array bound violations due to inconsistent state seen by aborting transactions.
Opacity requires that a history is strictly serializable, and that the aborting
transactions do not see inconsistent values. Transactional memories use direct
update semantics (every transaction modifies the shared variables in place and
restores them in case of abort), or deferred update semantics (every transaction
modifies a local copy, and changes the shared copy upon a commit). We define
the notion of a conflict under the deferred update semantics. A statement σ1 of
transaction x and a statement σ2 of transaction y (x �= y) conflict in a history
h if (i) σ1 is a global read of variable v and σ2 is a commit and y writes to v, or
(ii) σ1 and σ2 are both commits, and x and y write to v. Note that the definition
of a conflict would be different with direct update semantics.

A history h = σ0 . . . σm is strictly equivalent to a history h′ if (i) h|p = h′|p
for all processes p ∈ P , and (ii) for every pair σi, σj of statements in h, if σi and
σj conflict and i < j, then σi occurs before σj in h′, and (iii) for every pair x, y
of transactions in h, if x <h y then it is not the case that y <h′ x. A history
h ∈ Σ∗ is strictly serializable if there exists a sequential history h′ such that
h′ is strictly equivalent to com(h). Furthermore, we define that a history h is
opaque if there exists a sequential history h′ such that h′ is strictly equivalent to
h. (Note that h may contain unfinished transactions.) We note that if a history
h is opaque, then h is strictly serializable.

We define the safety property strict serializability πss ⊆ Σ∗ as the set of all
strictly serializable histories, and the safety property opacity πop ⊆ Σ∗ as the
set of all opaque histories.

Transactional memories. We model transactional memories as transition sys-
tems, that consist of a set of states, an initial state, an alphabet of statements,
and a transition relation between the states.

We define a TM A = 〈Q, qinit , Σ, δ〉, where Q is a set of states, qinit is the
initial state, Σ is the set of statements, and δ ⊆ Q×Σ×Γ ×Q is the transition
relation, where Γ = (0, 1] represents the probability of a transition. For all
q ∈ Q and σ ∈ Σ, if there are m outgoing transitions (q, σ, γi, q

′) ∈ δ with
1 ≤ i ≤ m, then we have

∑
i γi = 1. A transition relation δ is deterministic if

for all q ∈ Q and σ ∈ Σ, if (q, σ, γ1, q1) ∈ δ and (q, σ, γ2, q2) ∈ δ, then q1 = q2
and γ1 = γ2. Given a TM A, a sequence q0 . . . qm of states is a run of A for a
history h = σ0 . . . σm if (i) q0 = qinit , and (ii) for all i such that 0 ≤ i ≤ m, we
have (qi, σi, γi, qi+1) ∈ δ where γ is positive. The outcome of a TM captures the
probability of the histories accepted by the TM. The outcome OA of the TM
A is a function OA : Σ∗ → [0, 1]. Given a history h and a TM A, the outcome
OA(h) = γ if there exists a set ρ1, . . . , ρm of runs for h with probabilities γ1 . . . γm

such that
∑

0≤i≤m γi = γ.

Safety and permissiveness of TM. We formalize the safety and permissive-
ness properties of TM, assuming that the commands in Σ occur atomically. A
TM A is π-safe for a safety property π ⊆ Σ∗, if for every history h ∈ Σ∗ such
that OA(h) > 0, the history h ∈ π. In other words, a TM is safe with respect

Permissiveness in Transactional Memories 309

to a property if the outcome of the TM is positive only for histories that satisfy
the property.

A TM A is π-permissive if for every history h ∈ π, we have OA(com(h)) = 1.
A TM A is probabilistically π-permissive if for every history h ∈ π, we have
OA(com(h)) > 0. Note that a deterministic TM is probabilistically permissive
with respect to a property π if and only if it is permissive with respect to π.
On the other hand, a randomized TM may not be π-permissive, while being
probabilistically π-permissive.

We now show an example why the existing STMs are not permissive. Consider
the history h = ((write, v1), p1), ((read, v1), p2), ((write, v2), p2) (commit, p1),
(commit, p2). The history h is opaque, but its outcome is 0 for STMs like DSTM,
TL2, and WSTM. In fact, it is easy to see that any TM that checks at the time
of commit that the current values of the read variables are equal to the values
read earlier (that is, validates the read set), cannot be permissive with respect
to opacity. On the other hand, most of the existing TMs, for reasons of good
overall performance, do exploit such a validation strategy to ensure safety. We
now give algorithms that guarantee permissiveness in STMs.

3 Permissive Transactional Memories

We start with motivating the notion of permissiveness in TMs. TMs are online
algorithms. That is, a TM decides whether to accept a statement or abort the
corresponding transaction, only based on the statements seen so far. Let h be
the history seen by the TM so far. Let x be the unfinished transaction of the
process p in history h, and h′ = h · (c, p). A TM A may decide to abort the
transaction x in three scenarios:

– Correctness. The history h′ is not opaque. In this case, any TM safe with
respect to opacity needs to abort x. Thus, even a opacity-permissive TM
aborts x.

– Performance. The history h′ is opaque, but A is not sure whether h · (c, p)
is opaque. For efficiency, A decides to abort x and retry it. In this case, a
permissive TM will find out that h′ is opaque, and thus not abort x. It is
crucial for a permissive TM to efficiently compute, given that h is opaque,
whether h′ is opaque or not.

– Priority. The history h′ is opaque, but the unfinished transaction y of some
process p′ �= p has to abort in every history extension of h′. The TM A
prioritizes p′ and hence aborts x, so that y retains the possibility to commit.
In this case, we argue that as a TM does not know the future input after h,
even after the TM aborts x, it is possible that due to conflicts, the TM has to
abort y too. We believe that the idea of permissiveness can well be integrated
with the notion of prioritizing certain processes, by making a process wait
(rather than abort) for the commit of another process with higher priority.

Thus, the key to an efficient permissive TM for a given safety property lies
in minimizing the cost of book-keeping required to check on the fly, whether the
history produced by the TM satisfies the property.

310 R. Guerraoui, T.A. Henzinger, and V. Singh

3.1 A Deterministic Permissive Transactional Memory

In recent work [5], we described transactional memory specifications for strict
serializability and opacity. The algorithm to obtain these specifications is based
on the idea of conflicts graphs [10]. We refer to this algorithm as Spec in this
paper. Spec assumes that the commands read,write, commit, and abort execute
atomically. Our assumption is justified as we only analyze Spec, and do not build
a deterministic permissive TM implementation from it.

The central idea of Spec [5] is the prohibited read and write sets, which allow
us to remove finished transactions from the conflict graph. This keeps the conflict
graph finite. Spec can be configured to obtain specifications for strict serializ-
ability or opacity. As the algorithm provides TM specifications for strict serializ-
ability (resp. opacity), it has outcome 1 for all and only those histories which are
safe with respect to strict serializability (resp. opacity). In other words, we get a
TM which is safe and permissive with respect to strict serializability or opacity.

The cost of the read operation in Spec for n processes is O(n2). In a practical
scenario, most of the statements are reads, which in existing TMs, have a cost
of O(n). Some highly performance oriented TMs, like TL2, just require O(1) for
a read statement. So, we believe that the high cost of a read operation in Spec
makes it a poor choice for a practical implementation. Hence, we do not create
a TM implementation from Spec. We open the question whether there exists a
deterministic permissive TM where the read operation is at most linear in the
number of processes. Here, we now describe a randomized STM, called Adaptive
Validation STM (AVSTM), which is probabilistically permissive w.r.t. opacity,
and at the same time, performs well practically. The algorithm derives its name
from the fact that transactions adaptively validate themselves. All transactions
maintain a possible interval to serialize themselves, and at the time of commit,
randomly choose a serialization point within that interval.

3.2 A Randomized Permissive Transactional Memory

Algorithm 1 shows the algorithm for AVSTM, which can be used for either
strict serializability (SS-AVSTM) or opacity (OP-AVSTM). We do not assume
that the commands in Σ are atomic in AVSTM. Only the reads and writes of
global variables, and the CAS operation are treated as atomic. This allows us
to use AVSTM as a real TM implementation, which we discuss in Section 3.5.
The idea of AVSTM is to randomly choose, at the time of commit, a possible
serialization point for every transaction. In principle, this allows transactions
to probabilistically commit in the past, or in the future. For example, if two
transactions x and y access the same variable, where x writes and y reads – even
if x commits, y may commit afterwards if the transaction x chooses a serialization
point in the future.

We first describe the variables and functions used in AVSTM. The function
rs : P → 2V is the read set and ws : P → 2V is the write set of the processes.
The function rv : V → N gives the read version number and wv : V → N gives
the write version number of the variables. The function Global : V → N is the
global valuation of V , and Local : P ×V → N is the process-local valuation of V .

Permissiveness in Transactional Memories 311

Moreover, the functions min ser point : P → N and max ser point : P → N
denote the minimum and maximum possible serialization points for the processes
respectively. The function ser point : P → N represents the tentatively chosen
serialization point for the processes. AVSTM uses a variable commit num ∈ N
that represents the sequence number of the commit being performed, and a
variable owner ∈ P ∪ {⊥} that denotes the process which owns the current
commit. When no process is committing, then the owner is ⊥. The commit
sequence number and the owner process are treated as an atomic pair so that they
can be atomically manipulated. For the implementation, we encode commit num
and owner within the same variable as commit num · (n + 1) + i, where n is the
number of processes, and i = 0 if owner =⊥ and i = owner otherwise. Also,
every process uses a local variable lcn ∈ N. The read set and write set of all
processes are initially empty. Version numbers of all variables and serialization
points of all processes are initially set to 0. When a transaction is started by
process p, the variable commit num is first read into the local variable lcn. Then,
lcn is written into ser point(p) and min ser point(p), and max ser point(p)
is initialized to infinity. We now give an informal description of the algorithm.

– Upon read of variable v by process p: If v is in the write set of the process,
then p returns the local value of v. Otherwise, the global value of v is copied
as the local value of v for p. The value ser point(p) is set to the maximum
of the write version of v and the previous value of ser point(p). If some
process p′ is committing a transaction that writes to v, then p first helps p′

to commit. Then, v is added to the read set of p. If the global value of v
has not changed during this read operation, then the value read is returned.
Otherwise, the read is performed again. To ensure opacity, p also needs to
check whether it has a positive interval to commit.

– Upon write of variable v with value val by process p: The variable v is added
to the write set. The local value of v in process p is set to val. The value
ser point(p) is set to the maximum of its previous value, the write version
of v and the read version of v.

– Upon commit of a transaction by process p: For a read only transaction,
committing a transaction simply requires to set the read set to empty. Oth-
erwise, the process p first aims to gain ownership of the commit. Until then,
it helps other processes which are committing. p increments ser point(p)
to ensure that for every variable v in the write set, ser point(p) ≥ rv(v). If
there is no positive interval to commit, then the unfinished transaction of p
is aborted. Once p obtains ownership of the commit (owner = p), the process
p starts the helpCommit for itself. The commit of p may also be helped by
other processes. Finally, the read and write sets of p are reset to empty.

– Upon abort of a transaction by process p: The read and write sets are reset
to empty.

The procedure helpCommit (lcn, p) is shown in Algorithm 2. It allows a pro-
cess to help a process p in committing a transaction as follows. First of all, the
read version of all variables in rs(p) is incremented to the ser point(p). Then,
the write version of all variables in ws(p) is also incremented to ser point(p).

312 R. Guerraoui, T.A. Henzinger, and V. Singh

Then, the global value of these variables is updated. Then, the maximum serial-
ization point of all processes whose read set intersects with the write set of p is
set to ser point(p). Similarly, the minimum serialization point of all processes
whose write set intersects with the write set of p is set to ser point(p). Last
of all, the commit is made unowned (owner set to ⊥). We note that the version
numbers increase monotonically. Also the epoch based storage management en-
sures that a pointer to a memory location is not freed if any process holds a
reference to the location. Thus none of the CAS operations in AVSTM suffer
from the ABA problem. We now analyze the safety, liveness, and permissiveness
of AVSTM.

3.3 Safety and Permissiveness of AVSTM

We note that the order of statements in the read and helpCommit procedure is
essential for the safety and permissiveness of AVSTM. Upon a read of a vari-
able v, the value of v is read (line 3) before the version number of v is read (line
4). Also, the read is successful only if the global value of v observed at the end of
the read procedure (line 10) is same as the one read at the beginning of the read
procedure (line 3). In the procedure helpCommit, for the variables being written,
the write version number is updated (line 18) before the value of the variable is
updated (line 19). Moreover, if the variable read by a process p is being written
by some process p′, then p first helps p′ to commit. Together, this ensures that
the version number read in line 4 of the read procedure corresponds exactly to
that of the value read in line 3.

We prove the following properties of OP-AVSTM: safety and probabilistic
permissiveness with respect to opacity. Similar proofs can be obtained for SS-
AVSTM with respect to strict serializability. We also give an example of how
OP-AVSTM works on a given opaque history.

Theorem 1. OP-AVSTM is safe with respect to opacity.

Proof. The procedure helpCommit allows many processes to commit a transac-
tion for a particular process. But, the values and version numbers are committed
exactly once, as the version numbers increase monotonically. Thus, the CAS does
not suffer from the ABA problem. Also, the transaction x of process p commits
only if it has a positive interval at the time of commit. For the sake of opacity, it
is also ensured that when a variable is read, then the transaction has a positive
interval to commit. A transaction x of process p successfully reads a variable only
if max ser point > min ser point. Note The order of operations ensures that if
a newer value of a variable is read, then its corresponding version number is also
read. When a transaction x of a process p starts, the variable min ser point and
ser point are set to the serialization point of the last committed transaction.
This ensures that for non-overlapping transactions x and y, if y finishes before
x starts, then x serializes after y. Moreover, the transaction x of process p can
commit only if max ser point > min ser point at the time of commit. Also,
for every variable v ∈ rs(p), when v is read by transaction x, the write version
wv(v) < min ser point. Moreover, after v is read, no transaction that writes to

Permissiveness in Transactional Memories 313

Algorithm 1. OP-AVSTM (SS-AVSTM obtained by removing line marked OP)
Upon read of variable v by process p

if v ∈ ws(p) then return Local(p, v)
do forever

Local (p, v) := Global(v)
local write version := wv(v)
ser point(p) := max(ser point(p),local write version)
〈lcn, p′〉 := 〈commit num, owner〉
if p′ �=⊥ and v ∈ ws(p′) then helpCommit(lcn, p′)
if max(min ser point(p),ser point(p)) ≥ max ser point(p) then abort (OP)
if Local(p, v) = Global(v) then break

rs(p) := rs(p) ∪ {v}
return Local (p, v)

Upon write of variable v with value val by process p
local write version := wv(v)
local read version := rv(v)
ser point(p) := max(ser point(p), local write version, local read version)
ws(p) := ws(p) ∪ {v}
Local (p, v) := val

Upon commit by process p
if ws(p) = ∅ then rs(p) := ∅; return
do forever

〈lcn, p′〉 := 〈commit num, owner〉
while p′ �=⊥ do

helpCommit(lcn, p′)
〈lcn, p′〉 := 〈commit num, owner〉

for each variable v ∈ ws(p) do
ser point(p) := max(ser point(p), rv(v))

ser point(p) := max(min ser point(p), ser point(p))
if ser point(p) ≥ max ser point(p) then abort
ser point(p) := a random number between ser point(p) and max ser point(p)
new cp := lcn + 1
if CAS(〈commit num, owner〉, 〈lcn,⊥〉, 〈new cp, p〉) = 〈lcn,⊥〉 then break

helpCommit(new cp, p)
rs(p) := ∅; ws(p) := ∅

Upon abort by process p
rs(p) := ∅; ws(p) := ∅

v commits with a serialization point less than max ser point. Similarly, the vari-
ables in ws(p) have not been written later than min ser point. Thus, the trans-
action x sees a state of the variables, consistent in the interval min ser point
to max ser point. As this holds for every committing, aborting, and unfinished
transaction of every process, opacity is guaranteed by OP-AVSTM. ��

Theorem 2. OP-AVSTM is probabilistically permissive with respect to opacity.

314 R. Guerraoui, T.A. Henzinger, and V. Singh

Algorithm 2. helpCommit (lcn, p)
local ser := ser point(p)
local read set := rs(p)
local write set := ws(p)
if 〈lcn, p〉 �= 〈commit num, owner〉 then return
for each variable v ∈ local read set

local read version := rv(v)
if local read version < local ser then

CAS(rv(v),local read version, local ser)
for each variable v ∈ local write set

local write version := wv(v)
local read version := rv(v)
old val := Global(v)
new val := Local (p, v)
if 〈lcn, p〉 �= 〈commit num, owner〉 then return
if local read version < local ser then

CAS(rv(v),local read version, local ser)
if local write version < local ser then

CAS(wv(v), local write version, local ser)
CAS(Global(v), old val, new val)

for all processes p′ �= p do
for each variable v ∈ rs(p′) ∩ ws(p) do
local max := max ser point(p′)
if local ser < local max then

CAS(max ser point(p′), local max, local ser)
for each variable v ∈ ws(p′) ∩ ws(p) do
local min := min ser point(p′)
if local ser > local min then
CAS(min ser point(p′), local min, local ser)

CAS(〈commit num, owner〉, 〈lcn, p〉, 〈lcn,⊥〉)

Proof sketch. For any opaque history h, every transaction serializes at some point
within its lifetime. We can thus mark the serialization point of every transaction
in h. As the length of h is finite, there is positive probability that every trans-
action in h chooses the required serialization point in OP-AVSTM. Hence, h is
accepted by OP-AVSTM with positive probability. ��

Example of probabilistic permissiveness of OP-AVSTM. Consider an
opaque history h = ((write, v1), p1), ((write, v2), p2), ((read, v1), p2) (commit,
p1), (commit, p2). First, the process p1 writes to v1. Then, the process p2 writes to
v2. Then p2 reads the variable v1. When p1 commits, let the chosen serialization
point be c. The write version of v1 is seen as the initial value 0 by p2 as p2

reads before p1 updates the write version number of v1 to c. In this case, it is
ensured that the maximum serialization point of p2 is also set to c. Now, when p2

commits, it can choose a serialization point less than c and successfully commit.
Even if the commands in Σ are not considered to be atomic, a similar argument
can be made about the probabilistic permissiveness of AVSTM.

Permissiveness in Transactional Memories 315

3.4 Liveness of AVSTM

Different notions of liveness have been proposed for transactional memories. A
TM is obstruction free if for every infinite history h produced by the TM, if
some process p ∈ P takes infinitely many steps in isolation in h, then p commits
infinitely often. A TM is lock free if every infinite history h produced by the TM
contains infinitely many commits. A TM is wait free if every infinite history h
produced by the TM contains infinitely many commits for every process p ∈ P .

Theorem 3. The algorithm AVSTM is lock free.

Proof. We prove the theorem by contradiction. Let there exist a time t after which
no process commits a transaction. We first note that no operation in AVSTM
is blocking. Thus, every process, when scheduled, executes a statement of the
algorithm. Also, transactions are of finite size. We note that a process can loop
in the read or commit operation only if some other process performs a successful
commit. So, if there is no commit of any transaction after time t, then there must
be an infinite number of aborts of transactions after t. A transaction aborts only
if it cannot find an interval to commit. As the maximum serialization point is
initially ∞ when a transaction starts, the only way that a transaction does not
find an interval to commit is when the maximum serialization point is set to a
finite value. This occurs only within the procedure helpCommit . We also note
that the maximum serialization point is changed in the procedure helpCommit
at most k times, where k is the number of variables. Moreover, the procedure
helpCommit for a particular transaction can be executed at most once by every
process. Thus, there exists a time t′ ≥ t such that the maximum serialization
point of any process does not change after t′. Thus, there is no abort after t′.
This contradicts our assumption. Hence, AVSTM guarantees lock freedom. ��

4 Implementation and Experiments

To evaluate the practical importance of the notion of permissiveness, we imple-
mented AVSTM within the LibLTX package [3]. The LibLTX package includes
an implementation of DSTM with the Polka contention manager (which typically
gives best performance results to DSTM [12]) and WSTM [3]. We also imple-
mented an STM based on TL2 [1] within the LibLTX package. We integrated
the storage management of AVSTM with the epoch-based garbage collector [2],
where a memory pointer is not freed if any process holds a reference to it. This
allows the simple use of CAS in the procedure helpCommit , without causing any
ABA problem. We compare the performance of AVSTM configured for opacity,
with DSTM, WSTM, and TL2 in high contention scenarios, that is, when many
processes are accessing a small set of shared variables. We experimented on a
quad dual-core (8 processors) 2.8 GHz server with 16 GB RAM. Executing a
large number of processes on a small number of processors creates a practical
scenario, where a process holding a lock may get descheduled, and the liveness
property of lock freedom becomes critical for performance. We use two different

316 R. Guerraoui, T.A. Henzinger, and V. Singh

 0

 20

 40

 60

 80

 100

 120

 140

1 10 20 30 40 50

E
xe

c.
 ti

m
e

pe
r

su
cc

es
sf

ul
 tx

Number of processes

WSTM
DSTM

TL2
AVSTM

(a) Skip list of size 4; 90% reads

 0

 20

 40

 60

 80

 100

 120

 140

1 10 20 30 40 50

E
xe

c.
 ti

m
e

pe
r

su
cc

es
sf

ul
 tx

Number of processes

WSTM
DSTM

TL2
AVSTM

(b) Skip list of size 4; 10% reads

 0

 20

 40

 60

 80

 100

 120

 140

1 10 20 30 40 50

E
xe

c.
 ti

m
e

pe
r

su
cc

es
sf

ul
 tx

Number of processes

WSTM
DSTM

TL2
AVSTM

(c) Red-black tree of size 4; 90% reads

 0

 20

 40

 60

 80

 100

 120

 140

1 10 20 30 40 50

E
xe

c.
 ti

m
e

pe
r

su
cc

es
sf

ul
 tx

Number of processes

WSTM
DSTM

TL2
AVSTM

(d) Red-black tree of size 4; 10% reads

Fig. 1. Performance results on benchmarks in high contention. The execution time is
measured in micro-seconds.

benchmarks: skip lists and red-black trees. For both of these benchmarks, we
experiment with a data size of 4 items, and with two different types of work-
loads, one is read dominated with 90% reads, and other is write dominated with
10% reads. The results (Figure 1) show that AVSTM always outperforms DSTM
and WSTM by upto 40% in high contention scenarios. Also, in our experiments,
AVSTM outperforms TL2 in high contention when the workload is read domi-
nated. We admit that the official implementation of TL2 will perform better than
our version of TL2, but our experiments do show that AVSTM is comparable to
the existing TM algorithms in the literature. We also note that AVSTM is lock
free while TL2 is not. TL2 performs better than AVSTM in high contention when
the workload is write dominated. This, we believe, has an interesting theoretical
explanation. When the workload is write dominated, even AVSTM has to abort
very often in order to be safe. This gives TL2 an advantage over AVSTM as TL2
uses a simpler invalidation scheme. On the other hand, when the workload is
read dominated, AVSTM has to abort less often than TL2. This is because TL2
aborts many opaque histories, whereas the book-keeping of AVSTM helps it to
avoid some redundant aborts.

Permissiveness in Transactional Memories 317

 0

 20

 40

 60

 80

 100

 120

 140

1 10 20 30 40 50

E
xe

c.
 ti

m
e

pe
r

su
cc

es
sf

ul
 tx

Number of processes

WSTM
DSTM

TL2
AVSTM

(a) Skip list of size 1024; 90% reads

 0

 20

 40

 60

 80

 100

 120

 140

1 10 20 30 40 50

E
xe

c.
 ti

m
e

pe
r

su
cc

es
sf

ul
 tx

Number of processes

WSTM
DSTM

TL2
AVSTM

(b) Skip list of size 1024; 10% reads

 0

 20

 40

 60

 80

 100

 120

 140

1 10 20 30 40 50

E
xe

c.
 ti

m
e

pe
r

su
cc

es
sf

ul
 tx

Number of processes

WSTM
DSTM

TL2
AVSTM

(c) Red-black tree of size 1024; 90% reads

 0

 20

 40

 60

 80

 100

 120

 140

1 10 20 30 40 50

E
xe

c.
 ti

m
e

pe
r

su
cc

es
sf

ul
 tx

Number of processes

WSTM
DSTM

TL2
AVSTM

(d) Red-black tree of size 1024; 10% reads

Fig. 2. Performance results on benchmarks in low contention. The execution time is
measured in micro-seconds.

Permissiveness in AVSTM does come with a price. As we saw in the algo-
rithm for AVSTM, different processes access the global data concurrently. Thus,
AVSTM incurs high overhead due to poor cache performance. To evaluate this
overhead, we evaluate the performance of different STMs in a low contention
scenario of 1024 data items. The results are shown in Figure 2. We find that
although AVSTM is not as good as other TMs, it does not yet pay an over-
whelming penalty for the book-keeping needed to achieve permissiveness. On
average, AVSTM performs 20-30% worse than existing TM algorithms. We now
discuss how AVSTM can be used as a fallback mechanism with TL2 to boost
performance and progress guarantees in high contention scenarios.

Combining AVSTM with TL2

Our experiments gave us a clue on how we can make the best use of AVSTM,
which has excellent performance in high contention scenarios. AVSTM also gives
the progress guarantee of lock freedom. On the other hand, AVSTM is not a good
performer in low contention scenarios. We propose to use AVSTM as a fallback
mechanism, that is, it be combined with other STMs to get good performance

318 R. Guerraoui, T.A. Henzinger, and V. Singh

and guaranteed progress when high contention brings both performance and
progress at risk. We discuss here, as an example, how AVSTM can be combined
with TL2.

A TM that is running in low contention uses the TL2 mode. A process that
faces a series of aborts changes the mode from TL2 to AVSTM. Now, other
processes which are not in the final phase of committing (once the locks have
been acquired and the read set has been validated) can safely change their mode
to AVSTM by observing the change of mode, for example, during the validation
phase in the commit. A process which is in the final phase of commit has to be
dealt with properly. When a process p1 running in AVSTM mode tries to access
a variable which is locked in TL2 mode by process p2, following cases may occur:

– If the process p1 observes that the process p2 is not yet in the final phase of
commit (by reading a flag for example), then p1 can safely assume that p2

will not write to the variable.
– If the process p1 observes that p2 is in the final phase of commit, then p1

helps p2 to commit. For this to work properly, processes running in TL2
mode should commit using a compare and swap (CAS). As the write set is
generally small, this introduces negligible overhead.

5 Concluding Remarks

We presented a notion of permissiveness in TMs. As liveness guarantees are hard
to provide in TMs, we believe that permissiveness can be an interesting, comple-
mentary metric while evaluating TMs theoretically. We discussed the high
performance cost of a deterministic permissive STM due to the overhead of book-
keeping. We presented a randomized STM, AVSTM, that is probabilistically
permissive for strict serializability and opacity. The randomization allows proba-
bilistic decisions, and hence lowers the cost. We showed the practical importance
of permissiveness by experiments that demonstrate how AVSTM outperforms ex-
isting STMs in high-contention scenarios. We also provided a strategy to use the
randomized permissive STM in combination with TL2 to boost performance and
progress guarantees.

Future work. We look ahead to prove a lower bound on the time complexity of
an opacity-permissive deterministic TM, supporting the intuition that a practical
deterministic TM cannot be opacity-permissive. We also plan to extend the
formalism of permissiveness to quantify the amount of permissiveness of a TM.
For example, a TM is k-permissive (where 0 ≤ k ≤ 1) with respect to opacity
if on every opaque history, the ratio of unnecessarily aborting transactions to
the total number of transactions is at most k. This allows us to compare even
non-permissive TMs by their degree of permissiveness. Also, as in other STM
formalizations [4,5,13], we assumed the atomicity of individual commands (read,
write, commit). Generally, the commit is not atomic and it would be interesting
to revisit the notion of permissiveness with a finer grained model in mind.

Permissiveness in Transactional Memories 319

References

1. Dice, D., Shalev, O., Shavit, N.: Transactional locking ii. In: DISC, pp. 194–208.
Springer, Heidelberg (2006)

2. Fraser, K.: Practical Lock Freedom. PhD thesis, Computer Laboratory, University
of Cambridge (2003)

3. Fraser, K., Harris, T.: Concurrent programming without locks. ACM Trans. Com-
put. Syst. (2007)

4. Guerraoui, R., Henzinger, T.A., Jobstmann, B., Singh, V.: Model checking trans-
actional memories. In: PLDI, pp. 372–382. ACM Press, New York (2008)

5. Guerraoui, R., Henzinger, T.A., Singh, V.: Nondeterminism and completeness in
transactional memories. In: CONCUR. Springer, Heidelberg (2008)

6. Guerraoui, R., Herlihy, M., Kapa�lka, M., Pochon, B.: Robust contention manage-
ment in software transactional memory. In: SCOOL (October 2005)

7. Guerraoui, R., Kapa�lka, M.: On the correctness of transactional memory. In:
PPoPP. ACM Press, New York (2008)

8. Harris, T., Fraser, K.: Language support for lightweight transactions. In: OOPSLA,
pp. 388–402 (2003)

9. Herlihy, M., Luchangco, V., Moir, M., Scherer, W.N.: Software transactional mem-
ory for dynamic-sized data structures. In: PODC, pp. 92–101. ACM Press, New
York (2003)

10. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM,
631–653 (1979)

11. Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation.
In: DISC, pp. 284–298. Springer, Heidelberg (2006)

12. Scherer, W.N., Scott, M.L.: Advanced contention management for dynamic soft-
ware transactional memory. In: PODC, pp. 240–248. ACM Press, New York (2005)

13. Scott, M.L.: Sequential specification of transactional memory semantics. In: ACM
SIGPLAN WTC (2006)

The Synchronization Power of Coalesced Memory

Accesses

Phuong Hoai Ha1, Philippas Tsigas2, and Otto J. Anshus1

1 University of Tromsø, Department of Computer Science, Faculty of Science,
NO-9037 Tromsø, Norway
{phuong,otto}@cs.uit.no

2 Chalmers University of Technology, Department of Computer Science and
Engineering, SE-412 96 Göteborg, Sweden

tsigas@chalmers.se

Abstract. Multicore processor architectures have established themselves
as the new generation of processor architectures. As part of the one core to
many cores evolution, memory access mechanisms have advanced rapidly.
Several new memory access mechanisms have been implemented in many
modern commodity multicore processors. Memory access mechanisms, by
devising how processing cores access the shared memory, directly influence
the synchronization capabilities of the multicore processors. Therefore, it
is crucial to investigate the synchronization power of these new memory
access mechanisms.

This paper investigates the synchronization power of coalesced mem-
ory accesses, a family of memory access mechanisms introduced in recent
large multicore architectures like the CUDA graphics processors. We first
design three memory access models to capture the fundamental features
of the new memory access mechanisms. Subsequently, we prove the ex-
act synchronization power of these models in terms of their consensus
numbers. These tight results show that the coalesced memory access
mechanisms can facilitate strong synchronization between the threads
of multicore processors, without the need of synchronization primitives
other than reads and writes. In the case of the contemporary CUDA pro-
cessors, our results imply that the coalesced memory access mechanisms
have consensus numbers up to sixteen.

1 Introduction

One of the fastest evolving multicore architectures is the graphics processor one.
The computational power of graphics processors (GPUs) doubles every ten
months, surpassing the Moore’s Law for traditional microprocessors [13]. Unlike
previous GPU architectures, which are single-instruction multiple-data (SIMD),
recent GPU architectures (e.g. Compute Unified Device Architecture (CUDA) [2])
are single-program multiple-data (SPMD). The latter consists of multiple SIMD
multiprocessors of which each, at the same time, can execute a different instruc-
tion. This extends the set of applications on GPUs, which are no longer restricted

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 320–334, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Synchronization Power of Coalesced Memory Accesses 321

to follow the SIMD-programming model. Consequently, GPUs are emerging as
powerful computational co-processors for general-purpose computations.

Along with their advances in computational power, GPUs memory access
mechanisms have also evolved rapidly. Several new memory access mechanisms
have been implemented in current commodity graphics/media processors like
the Compute Unified Device Architecture (CUDA) [2] and Cell BE architecture
[1]. For instance, in CUDA, single-word write instructions can write to words of
different size and their size (in bytes) is no longer restricted to be a power of two
[2]. Another advanced memory access mechanism implemented in CUDA is the
coalesced global memory access mechanism. The simultaneous global memory
accesses by each thread of a SIMD multiprocessor, during the execution of a
single read/write instruction, are coalesced into a single aligned memory access
if the simultaneous accesses follow the coalescence constraint [2]. The access coa-
lescence takes place even if some of the threads do not actually access memory. It
is well-known that memory access mechanisms, by devising how processing cores
access the shared memory, directly influence the synchronization capabilities of
multicore processors. Therefore, it is crucial to investigate the synchronization
power of the new memory access mechanisms.

Research on the synchronization power of memory access operations (or ob-
jects) in conventional architectures has received a great amount of attention in
the literature. The synchronization power of memory access objects/mechanisms
is conventionally determined by their consensus-solving ability, namely their
consensus number [10]. The consensus number of an object type is either the
maximum number of processes for which the consensus problem can be solved
using only objects of this type and registers, or infinity if such a maximum does
not exist. For hard real-time systems, it has been shown that any object with
consensus number n is universal1 for any numbers of processes running on n
processors [14]. For systems that allow processes to simultaneously access m ob-
jects of type T in one atomic operation (or multi-object operation), upper and
lower bounds on the consensus number of the multi-object called type T m have
been provided for the base type T with consensus number greater than or equal
to two [4,11,16]. In the case of registers (which have consensus number one), the
m-register assignment, which allows processes to write to m arbitrary registers
atomically, has been proven to have consensus number (2m− 2), for m > 1 [10].

Note that the aforementioned CUDA coalesced memory accesses are neither
the atomic m-register assignment [10] nor the multi-object types [4,11,16]. They
are not the atomic m-register assignment since they do not allow processes to
atomically write to m arbitrary memory words; instead, processes can atomically
write to m memory words only if the m memory words are located within an
aligned size-bounded memory portion (i.e. memory alignment restriction) (cf.
Section 2). The CUDA coalesced memory accesses are not the multi-object type
since their base object type T is the conventional memory word, which has
consensus number less than two.

1 An object is universal in a system of n processes iff it has a consensus number not
lower than n.

322 P.H. Ha, P. Tsigas, and O.J. Anshus

This paper investigates the consensus number of the new memory access mech-
anisms implemented in current graphics processor architectures. We first design
three new memory access models to capture the fundamental features of the
new memory access mechanisms. Subsequently we prove the exact synchroniza-
tion power of these models in terms of their respective consensus number. These
tight results show that the new memory access mechanisms can facilitate strong
synchronization between the threads of multicore processors, without the need
of synchronization primitives other than reads and writes.

We first design a new memory access model, the svword model where svword
stands for the size-varying word access, the first of the two aforementioned ad-
vanced memory access mechanisms implemented in CUDA. Unlike single-word
assignments in conventional processor architectures, the new single-word assign-
ments can write to words of size b (in bytes), where b can vary from 1 to an up-
per bound B and b is no longer restricted to be a power of 2 (e.g. type float3 in
[2]). By carefully choosing b for the single-word assignments, we can partly over-
lap the bytes written by two assignments, namely each of the two assignments
has some byte(s) that is not overwritten by the other overlapping assignment (cf.
Figure 1(a) for an illustration). Note that words of different size must be aligned
from the address base of the memory. This memory alignment constraint pre-
vents single-word assignments in conventional architectures from partly overlap-
ping each other since the word-size is restricted to be a power of two. On the other
hand, since the new single-word assignment can write to a subset of bytes of a big
word (e.g. up to 16 bytes) and leave the other bytes of the word intact, the size of
values to be written becomes a significant factor. The assignment can atomically
write B values of size 1 (instead of just one value of size B) to B consecutive mem-
ory locations. The observation has motivated us to develop the svword model.

Inspired by the coalesced memory accesses, the second of the aforementioned
advanced memory access mechanisms, we design two other models, the aiword
and asvword models, to capture the fundamental features of the mechanism.
The mechanism coalesces simultaneous read/write instructions by each thread
of a SIMD multiprocessor into a single aligned memory access even if some of
the threads do not actually access memory [2]. This allows each SIMD multi-
processor (or process) to atomically write to an arbitrary subset of the aligned
memory units that can be written by a single coalesced memory access. We gen-
erally model this mechanism as an aligned-inconsecutive-word access, aiword, in
which the memory is aligned to A-unit words and a single-word assignment can
write to an arbitrary non-empty subset of the A units of a word. Note that the
single-aiword assignment is not the atomic m-register assignment [10] due to the
memory alignment restriction2. Our third model, asvword, is an extension of the
second model aiword in which aiword’s A memory units are now replaced by A
svwords of the same size b. This model is inspired by the fact that the read/write
instructions of different coalesced global memory accesses can access words of
different size [2].

2 In this paper, we use term “single” in single-*word assignment when we want to
emphasize that the assignment is not the multiple assignment [10].

The Synchronization Power of Coalesced Memory Accesses 323

The contributions of this paper can be summarized as follows:
• We develop a general memory access model, the svword model, to capture

the fundamental features of the size-varying word accesses. In this model,
a single-word assignment can write to a word comprised of b consecutive
memory units, where b can be any integer between 1 and an upper bound B.
We prove that the single-svword assignment has consensus number 3, ∀B ≥ 5,
and that consensus number 3 is also the upper bound of consensus numbers
of the single-svword assignment ∀B ≥ 2. We also introduce a technique to
minimize the size of (proposal) values in consensus algorithms, which allows
a single-word assignment to write many values atomically and handle the
consensus problem for several processes (cf. Section 3).

• We develop a general memory access model, the aiword model, to capture the
fundamental features of the coalesced memory accesses. The second model is
an aligned-inconsecutive-word access model in which the memory is aligned
to A-unit words and a single-word assignment can write to an arbitrary
non-empty subset of the A units of a word. We present a wait-free consensus
algorithm for N = �A+1

2 � processes using only single-aiword assignments and
subsequently prove that the single-aiword assignment has consensus number
exactly N = �A+1

2 � (cf. Section 4).
• We develop a general memory access model, asvword, to capture the fun-

damental features of the combination of the size-varying word accesses and
the coalesced memory accesses. The third model is an extension of the sec-
ond model aiword in which aiword’s A units are A svwords of the same size
b, b ∈ {1, B} (cf. Section 5). We prove that the consensus number of the
single-asvword assignment is exactly N , where

N =

⎧⎨⎩
AB
2 , if A = 2tB, t ∈ N∗ (positive integers)

(A−B)B
2 + 1, if A = (2t + 1)B, t ∈ N∗

�A+1
2 �, if B = tA, t ∈ N∗

(1)

In the case of the contemporary CUDA processors (with compute capability
up to 1.1) in which A = 16 and B = 2, the consensus number of the asvword
model is sixteen.

The rest of this paper is organized as follows. Section 2 presents the three new
memory access models. Sections 3, 4 and 5 present the exact consensus numbers
of the first, second and third models, respectively.

Due to space limitations, we present here only intuitions behind the consensus
number results. Complete proofs of the results can be found in the full version
of this paper [9].

2 Models

Before describing the details of each of the three new memory access models, we
present the common properties of all these three models. The shared memory

324 P.H. Ha, P. Tsigas, and O.J. Anshus

in the three new models is sequentially consistent [3,12], which is weaker than
the linearizable one [5] assumed in most of the previous research on the syn-
chronization power of the conventional memory access models [10]. Processes
are asynchronous. The new models use the conventional 1-dimensional mem-
ory address space. In these models, one memory unit is a minimum number of
consecutive bytes/bits which a basic read/write operation can atomically read
from/write to (without overwriting other unintended bytes/bits). These memory
models address individual memory units. Memory is organized so that a group
of n consecutive memory units called word can be stored or retrieved in a single
basic write or read operation, respectively, and n is called word size. Words of
size n must always start at addresses that are multiples of n, which is called
alignment restriction as defined in the conventional computer architecture.

The first model is a size-varying-word access model (svword) in which a single
read/write operation can atomically read from/write to a word consisting of b
consecutive memory units, where b can be any integer between 1 and an upper
bound B and is called svword size. The upper bound B is the maximum number
of consecutive units which a basic read/write operation can atomically read
from/write to. Svwords of size b must always start at addresses that are multiples
of b due to the memory alignment restriction. We denote b-svword to be an
svword consisting of b units, b-svwrite to be a b-svword assignment and b-svread
to be a b-svword read operation. Reading a unit U is denoted by 1-svread(U) or
just by U for short. This model is inspired by the CUDA graphics processor
architecture in which basic read/write operations can atomically read from/write
to words of different size (cf. types float1, float2, float3 and float4 in [2], Section
4.3.1.1). Figure 1(a) illustrates how 2-svwrite, 3-svwrite and 5-svwrite can partly
overlap their units with addresses from 14 to 20, with respect to the memory
alignment restriction.

The second model is an aligned-inconsecutive-word access model (aiword) in
which the memory is aligned to A-unit words and a single read/write operation
can atomically read from/write to an arbitrary non-empty subset of the A units
of a word, where A is a constant. Aiwords must always start at addresses that
are multiples of A due to the memory alignment restriction. We denote A-aiword
to be an aiword consisting of A units, A-aiwrite to be an A-aiword assignment
and A-airead to be an A-aiword read operation. Reading only one unit U (using
airead) is denoted by U for short. In the aiword model, an aiwrite operation ex-
ecuted by a process cannot atomically write to units located in different aiwords
due to the memory alignment restriction.

Figure 1(b) illustrates the aiword model with A = 8 in which the aiword con-
sists of eight consecutive units with addresses from 8 to 15. Unlike in the svword
model, the assignment in the aiword model can atomically write to inconsecutive
units of the eight units: aiwrite1 atomically writes to four units 8, 11, 13 and 15;
aiwrite2 writes to three units 12, 13 and 15.

This model is inspired by the coalesced global memory accesses in the CUDA
architecture [2]. The CUDA architecture can be generalized to an abstract model

The Synchronization Power of Coalesced Memory Accesses 325

14 15 16 17 18 19 20
2-svwrite

5-svwrite

Units

3-svwrite

(a) The first model svword

... 10 11 12 13 14 15 ...98

aiword

Units

aiwrite2

aiwrite1

(b) The second model aiword

0 1 2 3 4 5 6 7

...
t0 t1 t2 t3 t4 t5 t6 t7t0 t1 t2 t3 t4 t5 t6 t7

8 9 10 11 12 13 14 15 ...

SIMD core 2

ThreadsThreads

SIMD core 1

aiword aiword

Memory locations

(c) The coalesced memory access

Fig. 1. Illustrations for the first model, size-varying-word access (svword), the second
model, aligned-inconsecutive-word access (aiword) and the coalesced memory access

of a MIMD3 chip with multiple SIMD cores sharing memory. Each core can
process A threads simultaneously in a SIMD manner, but different cores can
simultaneously execute different instructions. The instance of a program that is
being sequentially executed by one SIMD core is called process. Namely, each
process consists of A parallel threads that are running in SIMD manner. The
process accesses the shared memory using the CUDA memory access models.
In CUDA, the simultaneous global memory accesses by each thread of a SIMD
core during the execution of a single read/write instruction can be coalesced
into a single aligned memory access. The coalescence happens even if some of
the threads do not actually access memory (cf. [2], Figure 5-1). This allows a
SIMD core (or a process consisting of A parallel threads running in a SIMD man-
ner) to atomically access multiple memory locations that are not at consecutive
addresses.

Figure 1(c) illustrates the coalesced memory access, where A = 8. The left
SIMD core can write atomically to four memory locations 0, 3, 5 and 7 by letting
only four of its eight threads, t0, t3, t5 and t7, simultaneously execute a write
operation (i.e. divergent threads). The right SIMD core can write atomically to
its own memory location 1 and shared memory locations 3, 5 and 7 by letting only
four threads t1, t3, t5 and t7 simultaneously execute a write operation. Note that
the CUDA architecture allows threads from different SIMD cores to communicate
through the global shared memory [7].

The third model is a coalesced memory access model (asvword), an extension of
the second model aiword in which aiword’s A units are now replaced by A svwords
of the same size b, b ∈ [1, B]. Namely, the second model aiword is a special case
of the third model asvword where B = 1. This model is inspired by the fact

3 MIMD: Multiple-Instruction-Multiple-Data.

326 P.H. Ha, P. Tsigas, and O.J. Anshus

t0 t1 t2 t3 t4 t5 t6 t7 t0 t1 t2 t3 t4 t5 t6 t7

t0 t1 t2 t3 t4 t5 t6 t7 t0 t1 t2 t3 t4 t5 t6 t7

1514131211109876543210

0 1 2 3 4 5 6 7

Threads

SIMD core 1

Threads

SIMD core 3

Threads

SIMD core 2

Threads

SIMD core 4

b=1

b=2

8x1-asvword 8x1-asvword

8x2-asvword

Fig. 2. An illustration for the asvword model

that in CUDA the read/write instructions of different coalesced global memory
accesses can access words of different size. Let Axb-asvword be the asvword that is
composed of A svwords of which each consists of b memory units. Axb-asvwords
whose size is A ·b must always start at addresses that are multiples of A ·b due to
the memory alignment restriction. We denote Axb-asvwrite to be an Axb-asvword
assignment and Axb-asvread to be an Axb-asvword read operation. Reading only
one unit U (using Ax1-asvread) is denoted by U for short. Due to the memory
alignment restriction, an Axb-asvwrite operation cannot atomically write to b-
svwords located in different Axb-asvwords. Since in reality A and B are a power
of 2, in this model we assume that either B = k ·A, k ∈ N∗ (in the case of B ≥ A)
or A = k · B, k ∈ N∗ (in the case of B < A). (At the moment, CUDA supports
the atomic coalesced memory access to only words of size 4 and 8 bytes (i.e. only
svwords consisting of 1 and 2 units in our definition), cf. Section 5.1.2.1 in [2]).
For the sake of simplicity, we assume that b ∈ {1, B} holds. A more general
model with b = 2c, c = 0, 1, · · · , log2 B, can be established from this model.
Since both Ax1-asvwords and AxB-asvwords are aligned from the address base
of the memory space, any AxB-asvword can be aligned with B Ax1-asvwords as
shown in Figure 2.

Figure 2 illustrates the asvword model in which each dash-dotted rectan-
gle/square represents an svword and each red/solid rectangle represents an asv-
word composed of eight svwords (i.e. A = 8). The two rows show the memory
alignment corresponding to the size b of svwords, where b is 1 or 2 (i.e. B = 2),
on the same sixteen consecutive memory units with addresses from 0 to 15. An
asvwrite operation can atomically write to some or all of the eight svwords of an
asvword. Unlike the aiwrite assignment in the second model, which can atomi-
cally write to at most 8 units (or A units), the asvwrite assignment in the third
model can atomically write to 16 units (or A·B units) using a single 8x2-asvwrite
operation (i.e. write to the whole set of eight 2-svwords, cf. row b = 2). For an

The Synchronization Power of Coalesced Memory Accesses 327

8x1-asvword on row b = 1, there are two methods to update it atomically using
the asvwrite operation: i) writing to the whole set of eight 1-svwords using a
single 8x1-asvwrite (cf. SIMD core 1) or ii) writing to a subset consisting of four
2-svwords using a single 8x2-asvwrite (cf. SIMD core 2). However, if only one
of the eight units of an 8x1-asvword (e.g. unit 14) needs to be updated and the
other units (e.g. unit 15) must remain untouched, the only possible method is
to write to the unit using a single 8x1-asvwrite (cf. SIMD core 3). The other
method, which writes to one 2-svword using a single 8x2-asvwrite, will have to
overwrite another unit that is required to stay untouched (cf. SIMD core 4).

Terminology. This paper uses the conventional terminology from bivalency argu-
ments [8,10,15]. The configuration of an algorithm at a moment in its execution
consists of the state of every shared object and the internal state of every process.
A configuration is univalent if all executions continuing from this configuration
yield the same consensus value and multivalent otherwise. A configuration is
critical if the next operation opi by any process pi will carry the algorithm from
a multivalent to a univalent configuration. The operations opi are called critical
operations. The critical value of a process is the value that would get decided if
that process takes the next step after the critical configuration.

3 Consensus Number of the Svword Model

Before proving the consensus number of the single-svword assignment, we present
the essential features of any wait-free consensus algorithm ALG for N processes
using only single-*word assignments and registers, where *word can be svword,
aiword or asvword. It has been proven that such an algorithm must have a critical
configuration, C0, and the next assignment opi (i.e. the critical operation) by
each process pi must write to the same object O [10]. The object O consists of
memory units.

Lemma 1. The critical assignment opi by each process pi must atomically write to

• a “single-writer” unit (or 1W-unit for short) ui written only by pi and
• “two-writer” units (or 2W-units for short) ui,j written only by two processes

pi and pj, where pj’s critical value is different from pi’s, ∀j �= i.

Proof. The proof is similar to the bivalency argument of Theorem 13 in [10]. �	

In this section, we first present a wait-free consensus algorithm for 3 processes
using only the single-svword assignment with B ≥ 5 and registers. Then, we
prove that we cannot construct any wait-free consensus algorithms for more than
3 processes using only the single-svword assignment and registers regardless of
how large B is.

The new wait-free consensus algorithm SVW Consensus is presented in
Algorithm 1. The main idea of the algorithm is to utilize the size-variation fea-
ture of the svwrite operation. Since b-svwrite can atomically write b values of

328 P.H. Ha, P. Tsigas, and O.J. Anshus

Algorithm 1. SVW Consensus(bufi: proposal) invoked by process pi, i ∈
{0, 1, 2}
PROPOSAL[0, 1, 2]: contains proposals of 3 processes. PROPOSAL[i] is only written by process
pi but can be read by all processes.
WR1 = set {u0, u1, u2} of units: initialized to Init and used in the first phase. WR1[0] and WR1[2]
are 1W-units written only by p0 and p1, respectively. WR1[1] is a 2W-unit written by both processes
WR2 = set {v0, · · · , v4} of units: initialized to Init and used in the second phase. WR2[0], WR2[2]
and WR2[4] are 1W-units written only by p0, p2 and p1, respectively. WR2[1] and WR2[3] are
2W-units written by pairs {p0, p2} and {p2, p1}, respectively.

Input: process pi’s proposal value, bufi.
Output: the value upon which all 3 processes (will) agree.
1V: PROPOSAL[i] ← bufi; // Declare pi’s proposal

// Phase 1: Achieve an agreement between p0 and p1.
2V: if i = 0 or i = 1 then
3V: first ← SVW FirstAgreement(i);
4V: end if

// Phase II: Achieve an agreement between all three processes.
5V: winner ← SVW SecondAgreement(i, firstref); // firstref is the reference to first

6V: return PROPOSAL[winner]

Algorithm 2. SVW FirstAgreement(i: bit) invoked by process pi, i ∈
{0, 1}
Output: the preceding process of {p0, p1}
1SF: if i = 0 then
2SF: SVWrite({WR1 [0], WR1[1]}, {Lower, Lower}); // atomically write to 2 units
3SF: else
4SF: SVWrite({WR1 [1], WR1[2]}, {Higher, Higher}); // i = 1
5SF: end if
6SF: if WR1[(¬i) ∗ 2] =⊥ then
7SF: return i; // The other process hasn’t written its value
8SF: else if (WR1[1] = Higher and i = 0) or (WR[1] = Lower and i = 1) then
9SF: return i; // The other process comes later and overwrites pi’s value in WR1[1]
10SF: else
11SF: return (¬i);
12SF: end if

size 1 unit (instead of just one value of size b units) to b consecutive memory
units, keeping the size of values to be atomically written as small as 1 unit will
maximize the number of processes for which b-svwrite, together with registers,
can solve the consensus problem. Unlike the seminal wait-free consensus algo-
rithm using the m-word assignment by Herlihy [10], which requires the word size
to be large enough to accommodate a proposal value, the new algorithm stores
proposal values in shared memory and uses only two bits (or one unit) to de-
termine the preceding order between two processes. This allows a single-svword
assignment to write atomically up to B (or B

2 if units are single bits) ordering-
related values. The new algorithm utilizes process unique identifiers, which are
an implicit assumption in Herlihy’s consensus model [6].

The SVW Consensus algorithm has two phases. In the first phase, two pro-
cesses p0 and p1 will achieve an agreement on their proposal values (cf. Al-
gorithm 2). The agreed value, PROPOSAL[first], is the proposal value of the
preceding process, whose SVWrite (lines 2SF and 4SF) precedes that of the
other process (lines 6SF-11SF).

The Synchronization Power of Coalesced Memory Accesses 329

Algorithm 3. SVW SecondAgreement(i: index; firstref : reference) in-
voked by process pi, i ∈ {0, 1, 2}
1SS: if i = 0 then
2SS: SVWrite({WR2[0], WR2[1]}, {Lower, Lower});
3SS: else if i = 1 then
4SS: SVWrite({WR2[3], WR2[4]}, {Lower, Lower});
5SS: else
6SS: SVWrite({WR2[1], WR2[2], WR2[3]}, {Higher, Higher, Higher});
7SS: end if
8SS: if ((WR2[0] �=⊥ or WR2[4] �=⊥) and WR2[2] =⊥) or // The predicates are checked in the

writing order.
(WR2[0] �=⊥ and WR2[1] = Higher) or
(WR2[4] �=⊥ and WR2[3] = Higher) then

9SS: return first; // p2 is preceded by either p0 or p1. first is obtained by dereferencing
firstref .

10SS: else
11SS: return 2;
12SS: end if

Due to the memory alignment restriction, in order to be able to allocate mem-
ory for the WR1 variable (cf. Algorithm 1) on which p0’s and p1’s SVWrites can
partly overlap, p0’s and p1’s SVWrites are chosen as 2-svwrite and 3-svwrite,
respectively. The WR1 variable is located in a memory region consisting of 4
consecutive units {u0, u1, u2, u3} of which u0 is at an address multiple of 2 and
u1 at an address multiple of 3. This memory allocation allows p0 and p1 to write
atomically to the first two units {u0, u1} and the last 3 units {u1, u2, u3}, respec-
tively (cf. Figure 3(a)). The WR1 variable is the set {u0, u1, u2} (cf. the solid
squares in Figure 3(a)), namely p1 ignores u3 (cf. line 4SF in Algorithm 2).

Subsequently, the agreed value will be used as the critical value of both p0

and p1 in the second phase in order to achieve an agreement with the other
process p2 (cf. Algorithm 3). Let pfirst be the preceding process of p0 and p1 in
the first phase. The second phase returns pfirst’s proposal value if either p0 or
p1 precedes p2 (line 9SS) and returns p2’s proposal value otherwise.

Units written by processes’ SVWrite are illustrated in Figure 3(b). In order
to be able to allocate memory for the WR2 variable, process p0’s, p1’s and p2’s
SVWrites are chosen as 2-svwrite, 3-svwrite and 5-svwrite, respectively. The
WR2 variable is located in a memory region consisting of 7 consecutive units
{u0, · · · , u6} of which u0 is at an address multiple of 2, u4 at an address multiple
of 3 and u1 at an address multiple of 5. Since 2, 3 and 5 are prime numbers,
we always can find such a memory region. For instance, if the memory address
space starts from the unit with index 0, the memory region from unit 14 to
unit 20 can be used for WR2 (cf. Figure 1(a)). This memory allocation allows
p0, p1 and p2 to write atomically to the first two units {u0, u1}, the last three
units {u4, u5, u6} and the five middle units {u1, · · · , u5}, respectively. The WR2

variable is the set {u0, u1, u2, u5, u6} (cf. the solid squares in Figure 3(b)).

Lemma 2. The SVW SecondAgreement procedure returns index 2 if p2

precedes both p0 and p1. Otherwise, it returns index first.

330 P.H. Ha, P. Tsigas, and O.J. Anshus

Lemma 3. The SVW Consensus algorithm is wait-free and solves the con-
sensus problem for 3 processes.

Proof. It is obvious from the pseudocode in Algorithms 1, 2 and 3 that the
SVW Consensus algorithm is wait-free.

From Lemma 2, the SVW Consensus algorithm returns the same values
for all invoking processes. The value is either PROPOSAL[2] (if p2 precedes
both p0 and p1) or PROPOSAL[first], first ∈ {0, 1} (otherwise). �	

Lemma 4. The single-svword assignment has consensus number at least 3,
∀B ≥ 5.

Lemma 5. The single-svword assignment has consensus number at most 3,
∀B ≥ 2.

Proof. (Intuition; the full proof is in [9]) We prove the lemma by contradiction.
Assume that there is a wait-free consensus algorithm ALG for four processes
p, q, r and t. At the critical configuration of the algorithm, we can always divide
the set of the four processes into two non-empty subsets S and S̄ where S consists
of at most two processes with the same critical value called V and S̄ consists
of processes with critical values different from V (If three of the four processes
have the same critical value, the other process is chosen as S). Since the svwrite
operation writes to consecutive memory units in the conventional 1-dimensional
memory address space, let [kf , kl] be the range of consecutive units to which
a process k ∈ {p, q, r, t} atomically writes using its critical operation opk (cf.
Lemma 1). For any pair of processes {h, k}, where h and k belong to different
subsets S and S̄, [hf , hl] and [kf , kl] must partly overlap (due to the second

0 1 2 3

p0

p1

WR1

(a) SVW 1stAgreement.

0 1 2 3 4 65WR2

p0 p1

p2

(b) SVW 2ndAgreement.

...

pf pl

ur uqup,r up,q

rf qfrl ql

up

(c) S = {p}, S̄ = {q, r, t}

...

pf pl

ur uqup,r up,q

rf rl

up ut,q

qf ql

tf tl

(d) S = {p, t}, S̄ = {q, r}

Fig. 3. Illustrations for the SVW FirstAgreement, SVW SecondAgreement

and Lemma 5

The Synchronization Power of Coalesced Memory Accesses 331

requirement of Lemma 1) and none of them are completely covered by ranges
[vf , vl] of the other processes v (due to the first requirements of Lemma 1).

Figures 3(c) and 3(d) illustrate the proof when S consists of one and two
processes, respectively. In Figure 3(c), the range [tf , tl] of process t cannot partly
overlap with that of process p without completely covering (or being covered by)
the range of process r or q. In Figure 3(d), t and r belong to different subsets S
and S̄, respectively, but their ranges cannot partly overlap. �	

Theorem 1. The single-svword assignment has consensus number 3 when B ≥
5 and three is the upper bound of consensus numbers of single-svword assign-
ments ∀B ≥ 2.

4 Consensus Number of the Aiword Model

In this section, we prove that the single-aiword assignment (or aiwrite for short)
has consensus number exactly �A+1

2 �. First, we prove that the aiwrite operation
has consensus number at least �A+1

2 �. We prove this by presenting a wait-free con-
sensus algorithm AIW Consensus for N = �A+1

2 � processes (cf. Algorithm 4)
using only the aiwrite operation and registers. Subsequently, we prove that there
is no wait-free consensus algorithm for N + 1 processes using only the aiwrite
operation and registers.

The main idea of the AIW Consensus algorithm is to gradually extend
the set S of processes agreeing on the same value by one at a time. This is to
minimize the number of 1W- and 2W-units that must be written atomically by
the aiword operation (cf. Lemma 9). The algorithm consists of N rounds and
a process pi, i ∈ [1, N], participates from round ri to round rN . A process pi

leaves a round rj , j ≥ i, and enters the next round rj+1 when it reads the value
upon which all processes in the round rj (will) agree. A round rj starts with the
first process that enters the round, and ends when all j processes pi, 1 ≤ i ≤ j,
have left the round. At the end of a round rj , the set S consists of j processes
pi, 1 ≤ i ≤ j.

Lemma 6. All correct processes4 pi agree on the same value in round rj , where
1 ≤ i ≤ j ≤ N .

With the assumption that AIWrite can atomically write to pj ’s units at line
2I and pi’s units at line 11I, it follows directly from Lemma 6 that all the N
processes will achieve an agreement in round rN .

Lemma 7. The AIW Consensus algorithm is wait-free and can solve the con-
sensus problem for N = �A+1

2 � processes.

Proof. (Intuition; the full proof is in [9]) The time complexity for a process using
AIW Consensus to achieve an agreement among N processes is O(N2) due

4 A correct process is a process that does not crash.

332 P.H. Ha, P. Tsigas, and O.J. Anshus

Algorithm 4. AIW Consensus(bufi: proposal) invoked by process pi, i ∈
[1, N]
Ar[i]: pi’s agreed value in round r;
Ur

i,j : the 2W-unit written only by processes pi and pj in round r. Ur
i : the 1W-unit written only by

process pi in round r;

Input: process pi’s proposal value, bufi.
Output: the value upon which all N processes (will) agree.

// pi starts from round i

1I: Ai[i] ← bufi; // Initialized pi’s agreed value for round i

2I: AIWrite({Ui
i , Ui

i,1, · · · , Ui
i,i−1}, {Higher, Higher, · · · , Higher}) // Atomic assignment

3I: for k = 1 to (i − 1) do

4I: if Ui
k �=⊥ and Ui

i,k = Higher then

5I: Ai[i] ← Ai[k]; // Update pi’s agreed value to the set S’s agreed value
6I: break;
7I: end if
8I: end for

// Participate rounds from (i + 1) to N
9I: for j = i + 1 to N do
10I: Aj [i] ← Aj−1[i]; // Initialized pi’s agreed value for round j

11I: AIWrite({Uj
i , Uj

j,i}, {Lower, Lower}; // Atomic assignment

12I: if Uj
j �=⊥ and Uj

j,i = Lower then

13I: WinnerIsJ ← true; // Check if pj precedes pk, ∀k < j.

14I: for k = 1 to j − 1 do

15I: if Uj
k �=⊥ and Uj

j,k = Higher then

16I: WinnerIsJ ← false; // pk precedes pj ;

17I: break;
18I: end if
19I: end for
20I: if WinnerIsJ = true then
21I: Aj [i] ← Aj [j]; // pj precedes pk, ∀k < j,⇒ pj ’s value is the agreed value in round j.

22I: end if
23I: end if
24I: end for
25I: return AN [i];

to the for-loops at lines 9I and 14I. Therefore, the AIW Consensus algorithm
is wait-free.

From Lemma 6, the AIW Consensus algorithm can solve the consensus
problem for N = �A+1

2 � processes if AIWrite can atomically write to pj ’s units
at line 2I and pi’s units at line 11I. Indeed, since N = �A+1

2 �, an A-unit aiword (or
A-aiword for short) can accommodate both (N − 1) 2W-units UN

N,i, 1 ≤ i < N,

and N 1W-units UN
k , 1 ≤ k ≤ N, used in round rN . Since the single-aiword

assignment AIWrite can atomically write to an arbitrary subset of the A units
of an aiword and leave the other units untouched, each process pk, 1 ≤ k ≤ N
can atomically write to only5 its 1W and 2W units. �	

Lemma 8. The single-aiword assignment has consensus number at least �A+1
2 �.

Lemma 9. The single-aiword assignment has consensus number at most �A+1
2 �.

Proof. (Intuition; the full proof is in [9]) We prove this lemma by contradiction.
Assume that there is a wait-free consensus algorithm ALG for N processes where
5 “Only” here means to leave other units untouched.

The Synchronization Power of Coalesced Memory Accesses 333

N ≥ �A+1
2 �+1. At the critical configuration of the ALG algorithm, we divide N

processes into two subsets S and S̄ where S consists of processes with the same
critical value called V and S̄ consists of processes with critical values different
from V . Let |S| and |S̄| to be the sizes of the subsets, we have |S| + |S̄| = N .
Due to the memory alignment restriction, all the 1W-units and 2W-units used by
critical assignments in the ALG algorithm must be located in the same A-aiword
called AI. Let M be the number of the 1W-/2W-units, we have M ≤ A.

Since ALG is a wait-free consensus algorithm for N processes, it follows from
Lemma 1 that there are N 1W-units and |S| · |S̄| 2W-units, i.e. M = N + |S| · |S̄|.
Since 1 ≤ |S| ≤ (N−1),M ≥ (2N−1). SinceN ≥ �A+1

2 �+1due to the hypothesis,
M ≥ (A + 1) must hold. This contradicts the requirement M ≤ A. �	

Theorem 2. The single-aiword assignment has consensus number exactly�A+1
2 �.

5 Consensus Number of the Asvword Model

The intuition behind the higher consensus number of the asvword model com-
pared with the aiword model (cf. Equation (1)) is that process pN in Algorithm
4 can atomically write to A ·B units using AxB-asvwrite instead of only A units
using A-aiwrite. To prevent pN from overwriting unintended units (as illustrated
by SIMD core 4 in Figure 2), each B-svword located in Al, 1 ≤ l ≤ B, contains
either 1W-units or 2W-units but not both as illustrated in Figure 4, where B-
svwords labeled “1W” contain only 1W-units and B-svwords labeled “2W” con-
tain only 2W-units. This allows pN to atomically write to only B-svwords with
2W-units UN

N,i (and keep 1W-unit UN
i , i �= N, untouched) using AxB-asvwrite.

For each process pi, i �= N , its 1W-unit UN
i and 2W-unit UN

N,i are located in
two B-svwords labeled ”1W” and ”2W”, respectively, that belong to the same
Al. This allows pi to atomically write to only its two units using Ax1-asvwrite.
A complete proof of the exact consensus number can be found in the full version
of this paper [9].

... 2W+2W1W 1W1W 1W 2W 2W 1W 1W 2W2W

A1 ABB svword

A B asvword

Fig. 4. An illustration for grouping units in the asvword model

Acknowledgements. The authors wish to thank the anonymous reviewers for
their helpful and thorough comments on the earlier version of this paper. Phuong
Ha’s and Otto Anshus’s work was supported by the Norwegian Research Coun-
cil (grant numbers 159936/V30 and 155550/420). Philippas Tsigas’s work was
supported by the Swedish Research Council (VR) (grant number 37252706).

334 P.H. Ha, P. Tsigas, and O.J. Anshus

References

1. Cell Broadband Engine Architecture, version 1.01. IBM, Sony and Toshiba Corpo-
rations (2006)

2. NVIDIA CUDA Compute Unified Device Architecture, Programming Guide, ver-
sion 1.1. NVIDIA Corporation (2007)

3. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial.
Computer 29(12), 66–76 (1996)

4. Afek, Y., Merritt, M., Taubenfeld, G.: The power of multi-objects (extended ab-
stract). In: PODC 1996: Proceedings of the fifteenth annual ACM symposium on
Principles of distributed computing, pp. 213–222 (1996)

5. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. John Wiley and Sons, Inc., Chichester (2004)

6. Buhrman, H., Panconesi, A., Silvestri, R., Vitanyi, P.: On the importance of having
an identity or, is consensus really universal? Distrib. Comput. 18(3), 167–176 (2006)

7. Castano, I., Micikevicius, P.: Personal communication. NVIDIA (2008)
8. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus

with one faulty process. J. ACM 32(2), 374–382 (1985)
9. Ha, P.H., Tsigas, P., Anshus, O.J.: The synchronization power of coalesced memory

accesses. Technical report CS:2008-68, University of Tromsø, Norway (2008)
10. Herlihy, M.: Wait-free synchronization. ACM Transaction on Programming and

Systems 11(1), 124–149 (1991)
11. Jayanti, P., Khanna, S.: On the power of multi-objects. In: Mavronicolas, M. (ed.)

WDAG 1997. LNCS, vol. 1320, pp. 320–332. Springer, Heidelberg (1997)
12. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-

tiprocess progranm. IEEE Trans. Comput. 28(9), 690–691 (1979)
13. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E.,

Purcell, T.J.: A survey of general-purpose computation on graphics hardware. Com-
puter Graphics Forum 26(1), 80–113 (2007)

14. Ramamurthy, S., Moir, M., Anderson, J.H.: Real-time object sharing with mini-
mal system support. In: Proc. of Symp. on Principles of Distributed Computing
(PODC), pp. 233–242 (1996)

15. Ruppert, E.: Determining consensus numbers. In: Proc. of Symp. on Principles of
Distributed Computing (PODC), pp. 93–99 (1997)

16. Ruppert, E.: Consensus numbers of multi-objects. In: Proc. of Symp. on Principles
of Distributed Computing (PODC), pp. 211–217 (1998)

Optimizing Threshold Protocols in Adversarial

Structures

Maurice Herlihy1, Flavio P. Junqueira2, Keith Marzullo3,
and Lucia Draque Penso1

1 Brown University
2 Yahoo! Research Barcelona

3 UC San Diego

Abstract. Many replication protocols are using a threshold model in
which failures are independent and identically distributed (IID). In this
model, one assumes that no more than t out of n components can fail. In
many real systems, however, failures are not IID, and a straightforward
application of threshold protocols yields suboptimal results.

Here, we examine the problem of optimally transforming threshold
protocols into survivor-set protocols tolerating dependent failures. In
particular, we are interested in threshold protocols where the number
of components n and the number of failures t are related by n > k · t,
where k is a positive integer constant k. We develop an optimal trans-
formation that translates any such threshold protocol to a survivor-set
dependent failure model, and hence, to adversarial structures. Our trans-
formation does not require authentication, self-verification or encryption.
We characterize equivalence classes of adversarial structures, regarding
solvability, using certain hierarchical properties based on set intersection.

1 Introduction

Many replication protocols are expressed in terms of a threshold model in which
failures are independent and identically distributed (IID). In this model, one
assumes that no more than t out of n components can fail [21]. Lower bounds
for problems are often stated in this model. For instance, it is widely known
that consensus in a synchronous system with Byzantine failures requires n > 3t
processors without digital signatures [19].

In many real systems, however, failures are not necessarily IID, and a straight-
forward application of threshold protocols yields suboptimal results. Junqueira
and Marzullo [13,14,15,17] have developed an alternative dependent failure model
that captures the behavior of systems where failures are not necessarily IID. This
model replaces thresholds with survivor sets, the unique collection of minimal
sets of correct processors in any execution. The survivor set model is strictly
more powerful than the threshold model: thresholds can be expressed in terms
of survivor sets, but not vice-versa. Survivor sets also encapsulate two distinct
abstractions: the availability of quorum systems and the failure patterns of ad-
versarial structures. Hence, survivor sets provide at same time both a structure
to use with protocols and an expressive way of describing failure patterns.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 335–349, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

336 M. Herlihy et al.

Junqueira and Marzullo rederive some classic lower bounds for consensus in
this model, and develop protocols optimal with respect to these bounds. They
demonstrate that there are cases in which it is possible to solve consensus using
survivor sets, but not using threshold protocols.

In this paper we investigate how to optimally transform threshold protocols
into survivor-set protocols. We focus on threshold protocols where the number
of components n and the number of failures t are related by n > k ·t, where k is a
positive integer constant k. We make two main contributions. First, to translate
such threshold protocols to a survivor set dependent failure model, we provide an
optimal transformation which does not require authentication, self-verification or
encryption. Then we characterize equivalence classes of adversarial structures,
regarding solvability, in terms of certain hierarchical properties based on set
intersection.

Discovering automaticallyByzantine consensus protocols has recently attracted
lots of attention [24], as well as making smart usage of dependent failure models
such as adversarial structures [9]. Furthermore, less general transformations for
asymmetric dependent failure models, focusing on a restricted set of both prob-
lems and assumptions, have lately been an object of study by Warns, Freiling and
Hasselbring [23].

2 System Model

A system is a set of processors Π = {p1, p2, · · · , pn} that communicate by ex-
changing messages. Each processor is capable of executing multiple automata,
as in the model described by Attiya and Welch for simulations [1]. The set of
automata of a system is {sm1, sm2, · · · , smm}, where each automaton smi has a
state, code, and an identity which is used by other automata to send messages to
smi. An automaton is deterministic, in that its current state is determined only
from its initial state and the sequence of messages it has received. We model an
automaton as a state machine [22]. Furthermore, there is a quasi-reliable channel
between every pair of automata. A quasi-reliable channel guarantees that if a
correct automaton smi sends a message m to a correct automaton smj , then m
is eventually received by smj [6,8].

We assume that processors fail arbitrarily, though results also apply to benign
failures. A faulty processor can crash, modify the content of messages arbitrarily,
omit to send or receive messages, and behave in malicious ways. It is important
to observe that the failure of a processor implies the failure of all automata in
it. Thus, if a processor is arbitrarily faulty, then all of the automata running
at that processor can exhibit arbitrary behavior. The converse is also true: if a
processor is correct, then all automata running in it are also correct.

We do not assume a threshold on the number of processor failures. Instead,
we characterize failure scenarios by providing the survivor set system, the unique
collection of all minimal sets of correct processors, each set containing all correct
processors of some execution [13,14,15,16]. Informally, elements of a survivor set
system, called survivor sets, generalize subsets of size n− t under the threshold

Optimizing Threshold Protocols in Adversarial Structures 337

model, where n is the total number of processor and t is again a threshold on
the number of processor failures. Such elements are the bijective complement of
elements belonging to fail-prone systems [14] and can describe a general adver-
sarial structure [12] that comprises quorums [20]. Let φ be an execution from
the set of all possible executions Φ for the protocol, and Correct(φ) the set of
automata which never fail in φ, that is, which always remain correct in φ. More
formally, we define a survivor set as follows:

Definition 1. A subset S ⊆ Π is a survivor set if and only if: 1) ∃φ ∈ Φ,
Correct(φ) = S; 2) ∀φ ∈ Φ, pi ∈ S, Correct(φ) �⊂ S/pi.

Henceforth, we refer to the survivor set system as the collection of survivor sets
of Π as SΠ . Note that it is unique given a fail-prone system [14], that is, an
exact configuration of possible failures. The inverse is also true.

A survivor set system is equivalent to a core system, and one defines uniquely
the other. Informally, a core is a subset of processors that generalizes subsets
of size t + 1 in the threshold model, where t is a threshold on the number of
processor failures. Thus, in every execution of the system, there is at least one
automaton in every core that is correct. From the set of cores, one can obtain the
survivor set system by creating all minimal subsets of processors that intersect
every core. More formally, we define cores as follows:

Definition 2. A subset C ⊆ Π is a core if and only if: 1) ∀φ ∈ Φ, Correct(φ)∩
C �= ∅; 2) ∀pi ∈ C, ∃φ ∈ Φ such that C/pi ∩ Correct(φ) = ∅.

Henceforth, we refer to the set of cores of Π as CΠ . Along with Π , both collec-
tions of sets constitute a system profile. We use the notation 〈Π,SΠ , CΠ〉 to refer
to a system profile. Note that either SΠ or CΠ is sufficient to define a system
profile as one can uniquely be obtained from the other, just as the fail-prone
system representing the adversarial structure. We provide both for convenience.
Additionally, we assume that for a system 〈Π,CΠ , SΠ〉 there is no processor
pi ∈ Π in every survivor set of SΠ , i.e., there is no automaton that never fails.
The solution to many problems in distributed computing would be trivial if we
assume such reliable processors.

It is important to observe that in this paper we focus on the transformation
of threshold algorithms to dependent-failure algorithms, so we run automata
of threshold algorithms on processors, and we model the failures of processors
with cores and survivor sets. Cores and survivor sets, however, can also model
failures of other common abstractions such as processes, or even automata. Thus,
we constrain cores and survivor sets to processors only for clarity of presentation.

Equivalence. We now present a formal argument showing the equivalence be-
tween cores and survivor sets. A survivor set system and its respective core
system can be generated from each other (without extra knowledge, such as
about the set of executions), which also implies that they convey the very same
information.

Let Π be some finite set, such as the set of processors. Let S ⊆ 2Π (repre-
senting the survivor set system) be such that S �⊆ T and T �⊆ S for all S, T ∈ S

338 M. Herlihy et al.

with S �= T . Let C ⊆ 2Π (representing the core system) be the set of all subsets
of Π which intersect all elements of S and are minimal with respect to inclusion
subject to this property.

Similarly, let S′ ⊆ 2Π be the set of all subsets of Π which intersect all elements
of C and are minimal with respect to inclusion subject to this property. Let
C′ ⊆ 2Π be the set of all subsets of Π which intersect all elements of S′ and are
minimal with respect to inclusion subject to this property.

Theorem 1. S = S′, C = C′.

Proof. First, we prove that S ⊆ S′. Therefore, let S ∈ S. By the definition of C,
the set S intersects all elements of C. Let p ∈ S. Since no set in S\{S} is a subset
of S, there is a set Cp ∈ C with Cp ⊆ Π \ (S \ {p}). Since Cp does not intersect
S \ {p}, the set S intersects all elements of C and is minimal with respect to
inclusion subject to this property, i.e. S ∈ S′ and hence S ⊆ S′. Next, we prove
that S′ ⊆ S. Therefore, we assume the existence of some S′ ∈ S′ \ S. Since
S ⊆ S′, no set in S is contained in S′. This implies the existence of a set C′ ∈ C
with C′ ⊆ Π \ S′. Since C′ does not intersect S′, we obtain the contradiction
S′ �∈ S′ which completes the proof that S = S′. By analogy, C = C′. �

Examples. We now present two examples to motivate the use of survivor set
systems. The first example illustrates the advantage of our approach when the
probability of failure of distinct processors is not the same. In the second exam-
ple, we look at a system in which failures of processors are partially correlated.
In the following examples, we use target degree of reliability to denote the max-
imum probability acceptable for the failure probability of a subset of processors.
That is, if the target degree of reliability is r, and the failure probability of a
subset of processors is x, then x is negligible if only if x ≤ r.

Example 1. Consider a system with five processors Π={p1, p2, p3, p4, p5}, where:

P (p1 is faulty in an execution) = P (p2 is faulty in an execution) =
= P (p3 is faulty in an execution) = 0.01

P (p4 is faulty in an execution) = P (p5 is faulty in an execution) = 0.001

This means that p1, p2, and p3 are not as reliable as p4 and p5. Assuming both
that these processors fail independently, and that target degree of reliability for
this system is 0.0001, we can then infer the following survivor set system and
core system:

SΠ={{p1, p4, p5}, {p2, p4, p5}, {p3, p4, p5}, {p1, p2, p3, p4}, {p1, p2, p3, p5}}
CΠ={{p1, p2, p3}, {p1, p4}, {p1, p5}, {p2, p4}, {p2, p5}, {p3, p4}, {p3, p5}, {p4, p5}}

This system satisfies Byzantine Intersection and Byzantine Partition [15], two
equivalent properties necessary and sufficient to solve consensus in a synchronous
system with arbitrarily faulty processors.

Optimizing Threshold Protocols in Adversarial Structures 339

Example 2. Consider a system with six processors {p1, p2, p3, p4, p5, p6}, where:

– All processors have the same probability x of failure in an execution, 0 <
x < 1;

– There are two distinct groups: A = {p1, p2, p3} and B = {p4, p5, p6};
– Let φ ∈ Φ: 1 > P (pi ∈ A is faulty in φ | pj ∈ B is faulty in φ) = P (pi ∈

A is faulty in φ) = x, i �= j;
– Let φ ∈ Φ: 1 > P (pi ∈ Ψ is faulty in φ | pj ∈ Ψ is faulty in φ) > P (pi ∈

Ψ is faulty in φ) = x, i �= j and Ψ ∈ {A,B};
– Let φ ∈ Φ: 1 > P (pi ∈ Ψ is faulty in φ | pj , pk ∈ Ψ are faulty in φ) < x2,

i �= j, k and Ψ ∈ {A,B};

Assuming that the target degree of reliability for this system is x2, we can
infer the survivor set system and core system:

SΠ = {{p1, p2, p3, p4}, {p1, p2, p3, p5}, {p1, p2, p3, p6}, {p1, p4, p5, p6},
{p2, p4, p5, p6}, {p3, p4, p5, p6}}

CΠ = {{p1, p2, p3}, {p4, p5, p6}, {p1, p4}, {p1, p5}, {p1, p6}, {p2, p4}, {p2, p5},
{p2, p6}, {p3, p4}, {p3, p5}, {p3, p6}}

Consider an implementation of a fault-tolerant state machine that tolerates
arbitrary failures, such as the one described by Castro and Liskov [4]. To make
failures independent, one can use opportunistic n-version programming, as pro-
posed by Castro et al in [5]. If only two implementations are available, then one
could analyze the failure behavior of these implementations. If the properties
of these two implementations satisfy those described above, then such a system
can be used to solve the given problem, since one can be used in group A and
the other in group B. Note that if there is a high probability that all processors
executing the same implementation fail together, then this construction is not
useful.

It is important to observe that our dependent failure model does not violate
classic impossibility results, such as the minimum degree of replication necessary
to solve consensus with arbitrary failures [19]. We observe, however, that under
realistic assumptions [10,11], our approach is able, in several instances, to refine
those impossibility results.

3 Replication with Cores and Survivor Sets

Junqueira and Marzullo [15] show two equivalent properties on replication that
are necessary and sufficient to solve consensus assuming arbitrary process fail-
ures under the core and survivor set systems model. These properties, called
Byzantine Partition and Byzantine Intersection, generalize the bound on repli-
cation based on a threshold n > 3t, where n is the number of processors in
a system and t is a threshold on the number of processor failures. Based on
these properties, we stated two parameterized properties (α, β)-Partition and

340 M. Herlihy et al.

(α, β)-Intersection, for integers α, β and α > β ≥ 1, that generalizes a bound of
the form n > �αt/β . An example of such a bound in the literature is the lower
bound for primary-backup with receive-omission failures, which is n > �3t/2 [3].

Here, we concentrate on the cases in which β = 1 and α = k ≥ 2, which
is equivalent in the threshold model to a replication requirement of n > k · t
for k ≥ 2. This replication bound implies that if one constructs k subsets of
the processes, then at least one of them will contain at least n − t processes.
Generalized to an expression on cores, we have:

Property 1. k-Partition
For every partition A = {A1, A2, · · · , Ak} of Π , at least one of the sets Ai

contains a core.

In the following sections, we use the equivalent (k, 1)-intersection property, which
we call from this point on k-Intersection. This is a property of survivor sets
rather than cores, and we use it with both our optimal automatic translation
protocol and the definition of equivalence classes of adversarial structures. Let
〈Π,CΠ , SΠ〉 be a system profile such that there is no core in CΠ of size one.
Then:

Property 2. k-Intersection
For every {S1, S2, · · · , Sk} ∈ SΠ , ∩iSi �= ∅.

Relating to adversary structures. Non-threshold protocols were also considered
in the context of secure multi-party computation with adversary structures [12].
Adversary structures and survivor set systems differ in three fundamental ways.
First, survivor set systems are sets of correct processors, whereas adversary struc-
tures contain sets of faulty processors, such as with fail-prone systems. Recall
that fail-prone systems are the unique complement of survivor set systems. Sec-
ond, adversary structures can represent more than one failure mode, e.g., crash
failures and arbitrary failures. Each failure mode is described with sets of pos-
sibly faulty processors (processors are referred to as players in this literature).
Third, all sets of possibly faulty players are given. Using all possible sets of
players that can deviate from the correct protocol behavior as opposed to only
maximal sets as with fail-prone systems (or minimal sets of correct processors,
as with survivor set systems) gives one more expressiveness in modeling system
failures. Using survivor sets, however, is sufficient for establishing bounds on
processor replication. Moreover, these bounds hold even for a more expressive
model such as adversary structures. This is because we use properties about the
intersections of sets of correct processors. If the intersection property holds for
some minimal sets of processors A1, A2, ..., Am then it holds for the sets of
processes A′

1 ⊃ A1, A′
2 ⊃ A2, ..., A′

m ⊃ Am. Hence, one only has to consider the
minimal sets of correct processors in these intersection properties [17].

4 Constructing Protocols

In this section, we present ways to build protocols for our dependent failure
model out of protocols designed for the threshold model. By assumption, protocol

Optimizing Threshold Protocols in Adversarial Structures 341

Λt requires n > k · t replication for some positive integer value of k and some
threshold on the number of failures t > 0. Let At be the set of automata in which
Λt runs. The main idea is to allow a processor to run more than one automaton
of Λt. At first glance, this may appear to be a fruitless approach, since automata
executing at the same processor fail together. That is, if a processor pi is faulty,
so are all of automata of Λt that pi executes. By choosing where and how to
replicate automata, however, one can increase replication enough without also
increasing t so that the replication requirement n > k · t is met.

Our goal is to provide a method for constructing a protocol Λcs for the core
and survivor set systems model based on protocol Λt. More specifically, given a
system profile 〈Π,CΠ , SΠ〉 satisfying k-Intersection, we provide a set Acs and a
mapping ψ(Acs) of these automata to processors.

First, we describe a procedure to determine a value of n and to assign au-
tomata of Λt to processors, such that in no execution more that t automata of
Λt fail, for some value of t under the constraint that n > k · t. Consider a sys-
tem profile 〈Π,CΠ , SΠ〉. Let li be the fraction of automata of At that processor
pi ∈ Π executes, where 0 ≤ li < 1. Moreover, in each execution, the fraction of
correct automata is as follows:

n− t

n
>

(k · t− t)
k · t =

k − 1
k

These observations lead us to the following set of constraints:∑
pi∈Π

li = 1

∀s ∈ SΠ :
∑
pi∈s

li >
k − 1
k

(1)

These equations imply that every automaton is executed by exactly one pro-
cessor, and in no execution there are more than �n/k faulty automata. If we
solve this system of linear equations, and choose a large enough value of n such
that n · li is an integer for every i, then we have a solution for our problem. We
can then simply choose the smallest value of n for which this condition holds.
That is:

min
n

{∀li : n · li is an integer} (2)

Let 〈Π,CΠ , SΠ〉 be a system profile and L be a set of values li, 0 ≤ li < 1,
with a value li for each processor of Π . We say that L is a valid solution for
〈Π,CΠ , SΠ〉 and degree of replication k if these values satisfy Constraints 1
for 〈Π,CΠ , SΠ〉 and k. The following theorem states that there being a valid
solution is sufficient for a system profile 〈Π,CΠ , SΠ〉 to satisfy k-Intersection.

Theorem 2. Let 〈Π,CΠ , SΠ〉 be a system profile and k be a degree of repli-
cation. There is a valid solution L for 〈Π,CΠ , SΠ〉 and k only if 〈Π,CΠ , SΠ〉
satisfies k-Intersection.

342 M. Herlihy et al.

Proof. We prove this theorem by contradiction. Suppose that there is a system
with profile 〈Π,CΠ , SΠ〉 that does not satisfy k-Intersection and there is a valid
array of values li for 〈Π,CΠ , SΠ〉 and k. From the first assumption, there is a
subset {S1, S2, · · · , Sk} in SΠ such that ∩iSi = ∅. From the second assumption
we have the following:

∀i ∈ {1, · · · , k} :
∑

pj∈Si

lj >
k − 1
k

Summing together these k equations, we have the following:⎛⎝ ∑
pi∈S1

li

⎞⎠+

⎛⎝ ∑
pi∈S2

li

⎞⎠+ · · · +

⎛⎝ ∑
pi∈Sk

li

⎞⎠ > (k − 1) (3)

Since no processor is in all k survivor sets by assumption and k ≥ 2 we also
have that:⎛⎝ ∑

pi∈S1

li

⎞⎠+

⎛⎝ ∑
pi∈S2

li

⎞⎠+ · · · +

⎛⎝ ∑
pi∈Sk

li

⎞⎠ ≤
∑

pi∈Π

li ≤ 1 ≤ (k − 1) (4)

Equations 3 and 4, however, cannot both hold, giving us our contradiction.

Using the value of n provided by (2), we can determine the set of automata
At. Assuming a valid solution L, we make Acs ← At and build ψ(Acs) as follows:

∀sm ∈ Acs :
ψ(Acs) ← [ψ(Acs) | smi → pj] , (pj ∈ Π) ∧ (|(ψ(Acs))−1(pj)| ≤ n · lj)

The following theorem states that in every execution of Λcs there are at most
t faulty automata, where t = n − �k·(n+1)−n

k .

Theorem 3. Let 〈Π,CΠ , SΠ〉 be a system profile and k a degree of replication.
Given a valid solution L for 〈Π,CΠ , SΠ〉 and k, there are at most t faulty au-
tomata in any execution φ ∈ Φ of the protocol Λcs, for t = n − �k·(n+1)−n

k .

Proof. We first show that in every execution, there are at least n − t correct
automata, for some value of t. By assumption, for every execution φ ∈ Φ there is
at least one survivor set S ∈ SΠ containing only correct processors. Given thatL
is a valid solution, we have:∑

S

n · li = n ·
∑
S

li >
n · (k − 1)

k
≥
⌊
n · (k − 1)

k
+ 1
⌋

(5)

It also must be the case that for all S ∈ SΠ , the sum of t and
∑

S n · li = is
greater or equal to n. Otherwise, there is at least one execution in which there
are more than t faulty automata. Expressed more formally,

Optimizing Threshold Protocols in Adversarial Structures 343

∀S ∈ SΠ : n ·
∑
S

li + t ≥ n

⇒ ∀S ∈ SΠ : t ≥ n− n ·
∑
S

li (6)

⇒ t ≥ n − min
S∈SΠ

{n ·
∑
S

li} (7)

By equation 5, we have that the value of the previous sum is bounded from
below by

⌊
k·(n+1)−n

k

⌋
. That is:

min
S

{n ·
∑
S

li} ≥
⌊
k · (n + 1) − n

k

⌋
(8)

If we then choose t as:

t = n−
⌊
k · (n + 1) − n

k

⌋
(9)

We have:

∀S ∈ SΠ : n − n ·
∑
S

li ≤ n −
⌊
k · (n + 1) − n

k

⌋
= t (10)

From Equation 10, we conclude that there is no execution in which more that
t automata fail, where t is given by Equation 9.

With this construction, automata behave as in the original protocol, sending and
receiving messages from each other. The only difference is that some automata
may run in the same processor, and consequently these automata fail together.
From the previous theorem, however, our construction provides a threshold on
the number of faulty automata that does not violate the replication requirement
for protocol Λt, thereby guaranteeing the correct execution of Λcs .

A problem is that, in some instances, even if a system profile satisfies k-
Intersection, for some value of k, there is no valid solution for 〈Π,CΠ , SΠ〉 and
k. We show this with the following theorem, and explain in the sequence how to
circumvent optimally this impossibility result.

Theorem 4. For every value of k > 1, there is a system profile 〈Π,CΠ , SΠ〉
satisfying k-Intersection such that there is no valid solution L for 〈Π,CΠ , SΠ〉
and k.

Proof. The case k = 2 follows directly from Theorem 3.1 in [7]. We show that it
holds for k ≥ 3.

We construct a system profile 〈Π,CΠ , SΠ〉 for which the proposition holds.
Suppose that |Π | = (k − 1) · k. Now, partition Π into k − 1 disjoint sets A =
(A1, A2, · · · , Ak−1), each of size k, and let CΠ be as follows:

CΠ = {A1, A2, · · · , Ak−1} ∪ {{pi, pj} | pi ∈ Ax, pj ∈ Ay , x �= y} (11)

344 M. Herlihy et al.

From this set of cores, we can build the set of survivor sets as follows:

SΠ = {Ax ∪ {pi} | pi ∈ Ay, x �= y} (12)

This system clearly satisfies k-partition, since any partition of Π into k subsets
will result in at least one subset containing either all of some Ax or two automata
from different subsets Ax and Ay . We now show that there is no set of values li,
one for each processor pi ∈ Π , satisfying equations in 1.

The set of linear equations for our system is as follows. For each Ax and
p ∈ Ax: ⎛⎝ ∑

Ay∈A/{Ax}

∑
pi∈Ay

li

⎞⎠+ lp >
k − 1
k

(13)

From 13, there are k · (k − 1) equations, where each li appears on the left
side of exactly k · (k − 2) + 1 = (k − 1)2 equations. Summing up each side these
equations, we get:

(k − 1)2 · (l1 + l2 + · · · + l|Π|) > k · (k − 1) · k − 1
k

⇒ (k − 1)2 · (l1 + l2 + · · · + l|Π|) > (k − 1)2

⇒ (l1 + l2 + · · · + l|Π|) > 1 (14)
(15)

We conclude that the first equation of Constraints 1 cannot be fulfilled as we
wanted to show.

To illustrate this construction, consider the system profile of Example 1. Recall
that in that system there are five processors. There is one core that contains
three processors, and all of other cores are of size two. Given k = 3, we have the
following solution for this system:

– l1 = 1
7 , l2 = 1

7 , l3 = 1
7 , l4 = 2

7 , l5 = 2
7 ;

– We choose n = 7.
– Let At = {sm1, sm2, sm3, sm4, sm5, sm6, sm7}. A possible mapping ψ(Acs)

is as follows: {sm1 → p1, sm2 → p2, sm3 → p3, sm4 → p4, sm5 → p4, sm6 →
p5, sm7 → p5};

– t = n− �k·(n+1)−n
k = 7 − 5 = 2;

In example 2, however, there is no solution satisfying the set of constraints 1.
This example is actually the case presented in the proof of Theorem 4 for k = 3.

However, to circumvent the impossibility result, it suffices to replicate au-
tomata in such a way that it guarantees that there is enough replicas to emulate
a threshold environment, and to deliver messages atomically to the replicas of
an automaton, assuming the automata are deterministic. This is equivalent to
implementing a replicated state machine using atomic broadcast (such as in [4]
for k ≥ 3, Paxos [18] otherwise). Having byzantine-tolerant state machine repli-
cation in a timely manner [4,18,22] is in fact equivalent to having byzantine
consensus [2,15].

Optimizing Threshold Protocols in Adversarial Structures 345

Constants:
k: Degree of replication
At: Set of automata identifiers of Λt

Global variables: all initially empty
Acs: Set of automata identifiers of Λcs
ψ(Acs): Acs → Π
Rep: Π → 2At

Label : Acs → 2SΠ

Procedure Bin
Input:
S ⊂ SΠ : A set of survivor sets
w ∈ (At)

∗: A sequence of automata id’s

Main:
Let {B1, B2, . . . , Bk+1} be a set of initially empty bins
Label ← [Label | w ◦ v1 �→ B1, w ◦ v2 �→ B2, . . . , w ◦ vk+1 �→ Bk+1]
Populate B1, B2, . . . , Bk+1 as follows:

For every S ∈ S: S is in exactly k bins Bi

For each bin Bi: (Bi �= ∅) ∧ (Bi �= S)
For each bin Bi

if ∃pl ∈ Π such that ∀S ∈ Bi, p ∈ Bi

Let wi = jw′, where vj ∈ At and w′ ∈ (At)
∗

If vj �∈ Rep(pl)
id ← generate-id(vj , pl)
Acs ← Acs ∪ {id}
ψ(Acs) ←

[
ψ(Acs) | id �→ pl

]
Rep ← [Rep | pl �→ (Rep(pl) ∪ {vj})]

else Bin(Bi, wi)
Return

Fig. 1. How to place automata in processors optimally

Figure 1 shows how to optimally place automata in processors, so that our
transformation remains optimal not only with respect to (maximal) failure tol-
erance, but also to (minimal) automata set size and (minimal) k-intersection
between survivor sets of automata.

To place automata in processors, we use a procedure that recursively splits
the set of survivor sets until it reaches a subset S that mutually intersect. At
this point, a processor in the intersection is chosen to execute one of the replicas
for an automaton in Acs. Note that this processor is correct whenever one of
the survivor sets in S contains only correct automata. From the definition of a
survivor set, for each survivor set s in S, there is at least one execution in which
s contains only correct automata.

The procedure in Figure 1 creates k + 1 bins. It first splits the set of survivor
sets into k + 1 bins such that each survivor set is in exactly k bins. As each
survivor set is a minimal set of automata that, for some run, do not fail, any
set of failures will result in k bins that contain a survivor set that does not

346 M. Herlihy et al.

fail. If there is a processor that is in all of the survivor sets of bin Bi, then
a replica of the automaton can be run on that processor and the procedure
stops splitting bin Bi. If not, then the procedure is recursively invoked with the
set of survivor sets associated with bin Bi. Eventually, this recursive procedure
terminates, assuming that the initial set of survivor sets satisfy k-Intersection
(see Theorem 5 below).

We can label each bin constructed recursively by a sequence of automaton
identifiers, e.g. [a1a1a2], indicating a bin that was created from B1 on the first
call, having originated k + 1 bins under B1. The first bin of this second level
was split again, and the label refers to the second bin from this second split.
Once a processor p is in each survivor set associated with some bin B with label
[ai . . .], we associate a replica for automaton ai is associated with p. Note that
this construction may repeatedly assign ai to p while recursively constructing
Λcs . Only one copy of ai needs to run on p, though. As an example, we consider
the survivor set system of Example 2 in the following:

Example 3. Let S1 = {p1, p2, p3, p4}, S2 = {p1, p2, p3, p5}, S3 = {p1, p2, p3, p6},
S4 = {p1, p4, p5, p6}, S5 = {p2, p4, p5, p6}, S6 = {p3, p4, p5, p6}.
B1 = {S1,S2, S3, S4, S5}: Implements automaton v1

B11 = {S1, S2, S3}: p1 is in the intersection
B12 = {S1,S3, S4, S5}

B121 = {S1, S3, S5}: p2 is in the intersection
B122 = {S1, S3, S4}: p1 is in the intersection
B123 = {S1, S4, S5}: p4 is in the intersection
B124 = {S3, S4, S5}: p6 is in the intersection

B13 = {S1, S2, S4, S5}
B131 = {S1, S2, S5}: p2 is in the intersection
B132 = {S1, S2, S4}: p1 is in the intersection
B133 = {S1, S4, S5}: p4 is in the intersection
B134 = {S2, S4, S5}: p5 is in the intersection

B14 = {S2, S3, S4, S5}
B141 = {S2, S3, S5}: p2 is in the intersection
B142 = {S2, S3, S4}: p1 is in the intersection
B143 = {S3, S4, S5}: p6 is in the intersection
B144 = {S2, S4, S5}: p5 is in the intersection

B2 = {S1, S2, S3, S5, S6}: Implements automaton v2

B21 = {S1, S2, S3}: p1 is in the intersection
B22 = {S1, S3, S5, S6}

B221 = {S1, S3, S5}: p2 is in the intersection
B222 = {S1, S3, S6}: p3 is in the intersection
B223 = {S1, S5, S6}: p4 is in the intersection
B224 = {S3, S5, S6}: p6 is in the intersection

B23 = {S1, S2, S5, S6}
B231 = {S1, S2, S5}: p2 is in the intersection
B232 = {S1, S2, S6}: p3 is in the intersection

Optimizing Threshold Protocols in Adversarial Structures 347

B233 = {S1, S5, S6}: p4 is in the intersection
B234 = {S2, S5, S6}: p5 is in the intersection

B24 = {S2, S3, S5, S6}
B241 = {S2, S3, S5}: p2 is in the intersection
B242 = {S2, S3, S6}: p3 is in the intersection
B243 = {S3, S5, S6}: p6 is in the intersection
B244 = {S2, S5, S6}: p5 is in the intersection

B3 = {S1, S3, S4, S6}: Implements automaton v3

B31 = {S1, S4, S6}: p4 is in the intersection
B32 = {S1, S3, S4}: p1 is in the intersection
B33 = {S1, S3, S6}: p3 is in the intersection
B34 = {S3, S4, S6}: p6 is in the intersection

B4 = {S2, S4, S5, S6}: p5 is in the intersection; Implements automaton v4

This construction resembles a set of trees, one for each automaton. In fact, we
can use these trees to recursively vote on values. For example, with a distributed
register, when reading its value from a set of automata, we can read the values
of each of the corresponding automaton replicas and vote recursively using its
tree. Also, as we mentioned previously, if we have an atomic broadcast object
available, then we can use this object to vote on messages of the different replicas
of an automaton to generate one single sequence of messages to each replica
(automata in principle is not aware of replication).

Theorem 5. Let 〈Π,CΠ , SΠ〉 be a system profile and k > 1 a degree of replica-
tion. The transformation terminates only if 〈Π,CΠ , SΠ〉 satisfies k-Intersection.

Proof. We prove this theorem by contradiction. Let 〈Π,CΠ , SΠ〉 be a system
profile that does not satisfy k-Intersection, and that the bin procedure from
Figure 3 that places automata in processors executes successfully. For such a
system, there is a set {S1, S2, · · · , Sk} ⊆ SΠ such that ∩iSi = ∅. If |SΠ | < k,
then the procedure from Figure 1 fails because in placing every survivor set
in exactly k bins, we finish with at least one containing k survivor sets. More
specifically, we have that the every survivor set in SΠ must be in exactly k bins.
This gives us (|SΠ | − 1) · (k + 1) valid positions for placing the survivor sets,
but we need (|SΠ | · k), and (|SΠ | − 1) · (k + 1) < (|SΠ | · k) for |SΠ | < k. This
violates the rules for populating the bins. Thus, SΠ must be such that |SΠ | ≥ k.
In splitting a subset S of SΠ of size k′ ≥ k into k + 1 bins following the rules
for populating these bins, we have that for every combination C of k survivor
sets in S, there is a bin Bi such that all survivor sets in C are in Bi. To see
this, we observe that every k combinations of k + 1 elements must intersect in
at least one element. With simple induction on the size of S, we can show that
there is a call to the procedure from Figure 1 with arguments S and w, such that
|S| = k and {S1, S2, · · · , Sk} ⊆ S. In this call, we have that each bin Bi must
have exactly k − 1 survivor sets, by the rules of the procedure for populating,
and these survivor sets do not intersect in any element by assumption. The
subsequent calls to the procedure from Figure 1 for each Bi are such that the

348 M. Herlihy et al.

argument S = Bi and |S| < k. This case, however, corresponds to the first case
we analyzed. The execution of the procedure from Figure 1 fails, contradicting
our initial assumption.

5 Equivalence Classes of Adversarial Structures

To end, we would like to point out that, directly from previous section, the
hierarchy of k-intersection properties defines then, under given constraints and
assumptions, equivalence classes of adversarial structures regarding solvability.

Corollary 1. A protocol requiring n > kt replication is solvable for a system
profile 〈Π,CΠ , SΠ〉 if and only if 〈Π,CΠ , SΠ〉 satisfies k-intersection.

6 Conclusions

We introduced a Byzantine-resilient transformation that translates any threshold
protocol to work in a dependent failure model. We also defined equivalence classes
of adversarial structures, regarding solvability, by making use of a particular set
of hierarchical properties based on set intersection.

The importance of our results is both theoretical and practical. As we trans-
form algorithms from the threshold model into algorithms of a dependent failure
model, we are showing the equivalence of these two models, under the constraints
of our theorems and constructions. In practice, one of the potential advantages
of such a translation is being able to execute with fewer than n automata, thus
saving compute power. Two important practical questions are how efficient the
transformed algorithms are and if there are more efficient transformations.

References

1. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. McGraw-Hill, New York (1998)

2. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asyn-
chronous computations. In: Proceedings of the Twenty-Fifth ACM Symposium on
Theory of Computing (STOC 1993), pp. 91–100. ACM Press, New York (1993)

3. Budhiraja, N., Marzullo, K., Schneider, F., Toueg, S.: Optimal primary-backup
protocols. In: Proceedings of the Sixth International Workshop on Distributed
Algorithms (WDAG 1997), pp. 362–378 (November 1992)

4. Castro, M., Liskov, B.: Practical byzantine fault-tolerance and proactive recovery.
ACM Transactions on Computer Systems 20, 398–461 (2002)

5. Castro, M., Rodrigues, R., Liskov, B.: BASE: Using abstraction to improve fault
tolerance. ACM Transactions on Computer Systems 21, 236–269 (2003)

6. Ekwall, R., Urban, P., Schiper, A.: Robust TCP connections for fault tolerant
computing. In: Proceedings of the Ninth IEEE International Conference on Parallel
and Distributed Systems, pp. 501–508. ACM Press, New York (2002)

7. Garcia-Molina, H., Barbara, D.: How to assign votes in a distributed system. Jour-
nal of the ACM 32(4), 841–860 (1985)

Optimizing Threshold Protocols in Adversarial Structures 349

8. Guerraoui, R., Rodrigues, L.: Introduction to Reliable Distributed Programming.
Springer, Heidelberg (2006)

9. Guerraoui, R., Vukolic, M.: Refined quorum systems. In: Proceedings of the
Twenty-Sixth ACM Symposium on Principles of Distributed Computing (PODC
2007), pp. 119–128. Springer, Heidelberg (2007)

10. Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems 13(1), 124–149 (1991)

11. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
Journal of the ACM 46(6), 858–923 (1999)

12. Hirt, M., Maurer, U.: Complete characterization of adversaries tolerable in secure
multi-party computation. In: Proceedings of the Sixteenth Annual ACM Sympo-
sium on Principles of Distributed Computing (PODC 1997), pp. 25–34 (August
1997)

13. Junqueira, F.: Coping with Dependent Failures in Distributed Systems. Number
0737 in CS2003. Ph.D. Thesis, UC San Diego (September 2002)

14. Junqueira, F., Marzullo, K.: Designing algorithms for dependent process failures.
Future Directions in Distributed Computing 2584, 24–28 (2003)

15. Junqueira, F., Marzullo, K.: Synchronous consensus for dependent process failures.
In: Proceedings of the Conference on Distributed Computing Systems (ICDCS
2003), pp. 274–283. Springer, Heidelberg (2003)

16. Junqueira, F., Marzullo, K.: Replication predicates for dependent-failures algo-
rithms. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648,
pp. 617–632. Springer, Heidelberg (2005)

17. Junqueira, F., Marzullo, K.: A framework for the design of dependent-failure algo-
rithms. Concurrency and Computation: Practice and Experience 19(17), 2255–2269
(2007)

18. Lamport, L.: Fast Paxos. Distributed Computing 19, 79–103 (2006)
19. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans-

actions on Programming Languages and Systems 4(3), 382–401 (1982)
20. Malkhi, D., Reiter, M.: Byzantine quorum systems. Distributed Computing 11(4)

(October/June 1998)
21. Neumann, P.G.: Computer Related Risks. ACM Press, New York (1995)
22. Schneider, F.: Implementing fault-tolerant services using the state-machine ap-

proach: a tutorial. ACM Computing Surveys 22(4), 299–319 (1990)
23. Warns, T., Freiling, F.C., Hasselbring, W.: Consensus using structural failure mod-

els. In: Proceedings of the 25th IEEE Symposium on Reliable Distributed Systems
(SRDS 2006), pp. 212–224. Springer, Heidelberg (2006)

24. Zieliński, P.: Automatic verification and discovery of Byzantine consensus proto-
cols. In: The 37th Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN 2007), pp. 25–28. IEEE Computer Society, Los Alamitos
(2007)

Hopscotch Hashing

Maurice Herlihy1, Nir Shavit2,3, and Moran Tzafrir3

1 Brown University, Providence, RI
2 Sun Microsystems, Burlington, MA
3 Tel-Aviv University, Tel-Aviv, Israel

Abstract. We present a new class of resizable sequential and concur-
rent hash map algorithms directed at both uni-processor and multicore
machines. The new hopscotch algorithms are based on a novel hopscotch
multi-phased probing and displacement technique that has the flavors of
chaining, cuckoo hashing, and linear probing, all put together, yet avoids
the limitations and overheads of these former approaches. The resulting
algorithms provide tables with very low synchronization overheads and
high cache hit ratios.

In a series of benchmarks on a state-of-the-art 64-way Niagara II mul-
ticore machine, a concurrent version of hopscotch proves to be highly
scalable, delivering in some cases 2 or even 3 times the throughput of to-
day’s most efficient concurrent hash algorithm, Lea’s ConcurrentHashMap
from java.concurr.util. Moreover, in tests on both Intel and Sun uni-
processor machines, a sequential version of hopscotch consistently out-
performs the most effective sequential hash table algorithms including
cuckoo hashing and bounded linear probing.

The most interesting feature of the new class of hopscotch algorithms
is that they continue to deliver good performance when the hash table
is more than 90% full, increasing their advantage over other algorithms
as the table density grows.

1 Introduction

Hash tables are one of the most widely used data structures in computer science.
They are also one of the most thoroughly researched, because any improvement
in their performance can benefit millions of applications and systems.

A typical resizable hash table is a continuously resized array of buckets, each
holding an expected constant number of elements, and thus requiring an expected
constant time for add(), remove(), and contains() method calls [1]. Typical usage
patterns for hash tables have an overwhelming fraction of contains() calls [2], and
so optimizing this operation has been a target of many hash table algorithms.

This paper introduces hopscotch hashing, a new class of open addressed resiz-
able hash tables that are directed at today’s cache-sensitive machines.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 350–364, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Hopscotch Hashing 351

1.1 Background

Chained hashing [3] is closed address hash table scheme consisting of an array
of buckets each of which holds a linked list of items. Though closed addressing is
superior to other approaches in terms of the time to find an item, its use of dy-
namic memory allocation and the indirection makes for poor cache performance
[4]. It is even less appealing for a concurrent environment as dynamic memory
allocation typically requires a thread-safe memory manager or garbage collector,
adding overhead in a concurrent environment.

Linear probing [3] is an open-addressed hash scheme in which items are kept
in a contiguous array, each entry of which is a bucket for one item. A new
item is inserted by hashing the item to an array bucket, and scanning forward
from that bucket until an empty bucket is found. Because the array is accessed
sequentially, it has good cache locality, as each cache line holds multiple array
entries. Unfortunately, linear probing has inherent limitations: because every
contains() call searches linearly for the key, performance degrades as the table
fills up (when the table is 90% full, the expected number of locations to be
searched until a free one is found is about 50 [3]), and clustering of keys may
cause a large variance in performance. After a period of use, a phenomenon
called contamination [5], caused by deleted items, degrades the efficiency of
unsuccessful contains() calls.

Cuckoo hashing [4] is an open-addressed hashing technique that unlike linear
probing requires only a deterministic constant number of steps to locate an item.
Cuckoo hashing uses two hash functions. A new item x is inserted by hashing
the item to two array indexes. If either slot is empty, x is added there. If both
are full, one of the occupants is displaced by the new item. The displaced item is
then re-inserted using its other hash function, possibly displacing another item,
and so on. If the chain of displacements grows too long, the table is resized. A
disadvantage of cuckoo hashing is the need to access sequences of unrelated loca-
tions on different cache lines. A bigger disadvantage is that Cuckoo hashing tends
to perform poorly when the table is more than 50% full because displacement
sequences become too long, and the table needs to be resized.

Lea’s algorithm [6] from java.util.concurrent, the JavaTM Concurrency Package,
is probably the most efficient known concurrent resizable hashing algorithm. It is
a closed address hash algorithm that uses a small number of high-level locks rather
than a lock per bucket. Shalev and Shavit [7] present another high-performance
lock-free closed address resizable scheme. Purcell and Harris [8] were the first to
suggest a nonresizable open-addressed concurrent hash table based on linear prob-
ing. A concurrent version of cuckoo hashing can be found in [9].

2 The Hopscotch Hashing Approach

Hopscotch hashing algorithms are open addressed algorithms that combine el-
ements of cuckoo hashing, linear probing, and chaining, in a novel way. Let us
begin by describing a simple variation of the hopscotch approach, later to be
refined as we present our actual implementations.

352 M. Herlihy, N. Shavit, and M. Tzafrir

The hash table is an array of buckets. The key characteristic of the hopscotch
approach is the notion of a neighborhood of buckets around any given items
bucket. This neighborhood has the property that the cost of finding the desired
item in any of the buckets in the neighborhood is the same or very close to
the cost of finding it in the bucket itself. Hopscotch hashing algorithms will then
attempt to bring an item into its neighborhood, possibly at the cost of displacing
other items.

Here is how our simple algorithm works. There is a single hash function h. The
item hashed to an entry will always be found either in that entry, or in one of
the next H − 1 neighboring entries, where H is a constant (H could for example
be 32, the standard machine word size). In other words, the neighborhood is a
“virtual” bucket that has fixed size and overlaps with the next H − 1 buckets.
Each entry includes a hop-information word, an H-bit bitmap that indicates
which of the next H − 1 entries contain items that hashed to the current entry’s
virtual bucket. In this way, an item can be found quickly by looking at the
word to see which entries belong to the bucket, and then scanning through the
constant number of entries (on most machines this requires at most two loads
of cache lines).

Here is how to add item x where h(x) = i:

– Starting at i, use linear probing to find an empty entry at index j.
– If the empty entry’s index j is within H − 1 of i, place x there and return.
– Otherwise, j is too far from i. To create an empty entry closer to i, find an

item y whose hash value lies between i and j, but within H − 1 of j, and
whose entry lies below j. Displacing y to j creates a new empty slot closer
to i. Repeat. If no such item exists, or if the bucket already i contains H
items, resize and rehash the table.

In other words, the idea is that hopscotch “moves the empty slot towards the
desired bucket” instead of leaving it where it was found as in linear probing, or
moving an item out of the desired bucket and only then trying to find it a new
place as in cuckoo hashing. The cuckoo hashing sequence of displacements can be
cyclic, so implementations typically abort and resize if the chain of displacements
becomes too long. As a result, cuckoo hashing works best when the table is less
than 50% full. In hopscotch hashing, by contrast, the sequence of displacements
cannot be cyclic: either the empty slot moves closer to the new item’s hash value,
or no such move is possible. As a result, hopscotch hashing supports significantly
higher loads (see Section 5). Moreover, unlike in cuckoo hashing, the chances of
a successful displacement do not depend on the hash function h, so it can be a
simple function that is easily shown to be close to universal.

The hopscotch neighborhood is a virtual bucket with multiple items, but
unlike in chaining these items have great locality since typically items can be
located in adjacent memory locations and even in the same cache lines. Items
are inserted in constant expected time as in linear probing, but without fear of
clustering and contamination.

Hopscotch Hashing 353

x y z w

to add v to
location 6

location 6’s
hop info

location 10’s
hop info

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

(a)

1 0 1 0 0 1 0 0
location 8’s
hop info

0 1 0 0

xy z w

can add v to
location 6

location 6’s
hop info

location 10’s
hop info

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

(b)

0 0 1 1 0 0 0 1
location 8’s
hop info

0 0 0 1

Fig. 1. The blank entries are empty, all others contain items. Here, H is 4. In part (a),
we add item v with hash value 6. A linear probe finds entry 13 is empty. Because 13 is
more than 4 entries away from 6, we look for an earlier entry to swap with 13. The first
place to look is H − 1 = 3 entries before, at entry 10. That entry’s hop information
bit-map indicates that w at entry 11 can be displaced to 13, which we do. Entry 11 is
still too far from entry 6, so we examine entry 8. The hop information bit-map indicates
that z at entry 9 can be moved to entry 11. Finally, x at entry is moved to entry 9.
Part (b) shows the table state just before adding v.

Finally, notice that in our simple algorithm, if more than a constant number of
items are hashed by h into a given bucket, the table needs to be resized. Luckily,
for a universal hash function h, the probability of this type of resize happening
for a given H is Θ(1/H !). 1 Figure 1 shows an example execution of the simple
hopscotch algorithm.

The concurrent version of the simple hopscotch algorithm maps a bucket
to each lock. This lock controls access to all table entries that hold items of
that bucket. The contains() calls are obstruction-free [10], while the add() and
remove() acquire the bucket lock before applying modifications to the data.

In the next section we describe in detail a cache aware version of the hopscotch
approach.

1 In our implementation, as we describe in the next section, we can actually use a
pointer scheme in the hop-information word instead of the easier to explain bitmap,
and so buckets can actually grow H dynamically.

354 M. Herlihy, N. Shavit, and M. Tzafrir

3 A Hopscotch Hashing Algorithm

We now present the more complex algorithm in the hopscotch class, the one used
in our benchmarked implementations. The high level ideas behind this algorithm,
in both the sequential and concurrent case, are as follows.

The table consists of segments of buckets, and in the concurrent case each
segment is protected by a lock in a manner similar to that used in [6]. Instead
of a bitmap representation of the hop-information word. We represent keys in
each “virtual” bucket as a linked list, starting at the key’s original bucket, and
distributed throughout other buckets reachable via a sequence of pointers from
the original one. Each pointer can point a distance hop range to the next item.

The add() method in Figure 3 first tries to add it to some free bucket in its
original bucket’s cache line (line 8). If that fails, it probes linearly to find an
empty slot within hop range of the key’s original bucket, and then points to it
from the last bucket in key’s virtual bucket, that is, the last bucket in the list
of buckets originating in the key’s original bucket. If it could not find such an
empty bucket (line 18), it applies a sequence of hopscotch displacements, trying
to displace the free-bucket to reside within hop range of the original bucket of

1 template <typename tKey, typename tData, typename tHash, typename tEqual,

2 tKey empty key, tData empty data, typename tLock>

3 class ConcurrentHopscotchHashMap {

4 static const short null delta = SHRT MIN;

5 //inner classes
6 struct Bucket{short volatile first delta ; short volatile next delta ;

7 tKey volatile key ; tData volatile data ;};

8 struct Segment { tLock lock ; Bucket∗ table ;

9 int volatile timestamp; int volatile count;

10 Bucket∗ last bucket ;};

11 // fields
12 const int segment shift ;

13 const int segment mask;

14 Segment∗ const segments;

15 int bucket mask;

16 const int cache mask;

17 const bool is cacheline alignment ;

18 cont int hop range;

19 public :

20 ConcurrentHopscotchHashMap(int initial capacity , int concurrency level ,

21 int cache line size , bool is optimize cacheline , int hop range);

22 virtual ˜ConcurrentHopscotchHashMap();

23 virtual bool contains(const tKey key);

24 virtual tData get(const tKey key);

25 virtual tData add(const tKey key, const tData data);

26 virtual tData remove(const tKey key);

27 };

Fig. 2. The hopscotch class

Hopscotch Hashing 355

1 virtual tData add(const tKey key, const tData data) {

2 const int hash (tHash ::Calc(key));

3 Segment& segment (getSegment(hash));

4 Bucket∗ const start bucket (getBucket(segment, hash));

5 segment. lock . aquire ();

6 if (contains(key)) {segment. lock. release (); return keys data;}

7 Bucket∗ free bucket=freeBucketInCacheline(segment, start bucket);

8 if (null != free bucket) {

9 addKeyBeginingList(start bucket , free bucket , hash, key, data);

10 ++(segment. count);

11 segment. lock . release ();

12 return null ;

13 }

14 free bucket=nearestFreeBucket(segment, start bucket);

15 if (null != free bucket) {

16 int free dist =(free bucket − start bucket);

17 if (free dist > hop range || free dist < − hop range)

18 free bucket=displaceFreeRange(segment, start bucket , free bucket);

19 if (null != free bucket) {

20 addKeyEndList(start bucket, free max bucket, hash, key, data, last bucket);

21 ++(segment. count);

22 segment. lock . release ();

23 return null ;

24 }

25 }

26 segment. lock . release ();

27 resize ();

28 return add(key, data);

29 }

Fig. 3. add() pseudo-code

the key. If such a sequence of displacements cannot be performed then the table
is resized.

The remove() method in Figure 4 removes a key and tries to optimize the cache
line alignment of keys belonging to the neighborhood of the emptied bucket. The
idea is to find a key that will, once moved into the emptied bucket, reside in its
associated bucket’s cache line, thus improving cache performance. In the con-
current version of remove(), while traversing the bucket’s list, the method locks
segments as it proceeds. The remove() operations will modify the timestamp
field, since concurrent contains() calls need to be failed by concurrent removes.

Notice that it may be the case that once a key x is removed, the preceding key
pointing to the x in its associated bucket’s list, may find that the item following
x in the bucket’s list is outside its hop range. In this case, the remove will find
the last item y in the list belonging to x’s bucket and displace it to x’s empty
bucket. The new empty bucket of the removal of x will thus be the bucket of the
displaced y.

356 M. Herlihy, N. Shavit, and M. Tzafrir

1 virtual tData remove(const tKey key) {

2 const int hash (tHash ::Calc(key));

3 Segment& segment (getSegment(hash));

4 Bucket∗ const start bucket (getBucket(segment,hash));

5 Bucket∗ last bucket (null);

6 Bucket∗ curr bucket (start bucket);

7 segment. lock . aquire ();

8 short next delta (curr bucket−> first delta);

9 do {

10 if (null delta ==next delta) {segment. lock. release (); return null ;}

11

12 curr bucket += next delta;

13 if (tEqual :: IsEqual(key, curr bucket−> key)) {

14 tData const found key data(curr bucket−> data);

15 removeKey(segment, start bucket, curr bucket , last bucket , hash);

16 if (is cacheline alignment) cacheLineAlignment(segment, curr bucket);

17 segment. lock . release ();

18 return found key data;

19 }

20 last bucket = curr bucket;

21 next delta = curr bucket−> next delta;

22 } while(true);

23 return null ;

24 }

Fig. 4. remove() pseudo-code

1 virtual bool contains(const tKey key) {

2 const int hash (tHash ::Calc(key));

3 Segment& segment (getSegment(hash));

4 Bucket∗ curr bucket (getBucket(segment, hash));

5 int start timestamp ;

6 do {

7 start timestamp = segment. timestamp[hash & timestamp mask];

8 short next delta (curr bucket−> first delta);

9 while (null delta != next delta) {

10 curr bucket += next delta;

11 if (tEqual :: IsEqual(key, curr bucket−> key))

12 return true ;

13 next delta = curr bucket−> next delta;

14 }

15 } while(start timestamp != segment. timestamp[hash & timestamp mask]);

16 return false ;

17 }

Fig. 5. contains() pseudo-code

Hopscotch Hashing 357

To optimize the key’s cache-line alignment (line 16), for each of the buckets
in the cache line of the empty bucket, the method traverses the associated lists
and moves the last item in the list into the empty bucket. This process can be
performed recursively.

The contains() method appears in Figure 5. It traverses the buckets key list,
and if a key is not found (line 15) there are two possible cases: (i) the key does
not exist or (ii) a concurrent remove() (detected via a changed timestamp in
the associated segment) caused the contains() to miss the key, in which case the
method looks for the key again.

4 Analysis

Unsuccessful add() and remove() methods are linearized respectively at the points
where their internal contains() method calls are successful in finding the key (for
add()) or unsuccessful (for remove()). A successful add() is linearized when it
adds the new bucket to the list of buckets that hashed to the same place, either
updating by next delta or first delta , depending on whether the bucket is in
the cache line. A successful remove() is linearized when it overwrites the key from
the table entry. A successful contains() is linearized when it finds the desired key
in the array entry. An unsuccessful contains() is linearized when it reached the
end of the list, and found the timestamp unchanged.

The add() and remove() methods use lockqs. They are deadlock-free but not
livelock-free. The contains() method is obstruction-free.

We next analyze the complexity of the sequential and concurrent versions of
the hopscotch algorithm. The most important property of a hash table is its
expected constant time performance. We will assume that the hash function h
is universal and follow the standard practice of modeling the hash function as
a uniform distribution over keys [1]. As before, the constant H is the maximal
number of keys a bucket can hold, n is the number of keys in the table, m is the
table size, and α = n/m is the density or load factor of the table.

Lemma 1. The expected number of items in a bucket is

f(m,n) = 1 +
1
4
((1 +

2
m

)n − 2
n

m
) ≈ 1 +

e2α − 1 − 2α
4

Proof. The expected number of items in a hopscotch bucket is the same as the
expected number of items in a chained-hashing bucket. The result follows from
Theorem 15 in Chapter 6.4 of [3].

In hopscotch hashing, as in chained hashing, in the common case there are very
few items in a bucket.

Lemma 2. The maximal expected number of items in a bucket is constant.

Proof. Again, following Knuth [3], the function f(m,n) is increasing, and the
maximal value for n, the number of items, is m, so that the function’s value
tends to approximately 2.1.

358 M. Herlihy, N. Shavit, and M. Tzafrir

This implies that that typically there is very little work to be performed when
searching for an item in a bucket.

Lemma 3. Calls to remove() and contains() complete in constant expected time
when running in isolation.

Proof. A complete proof will appear in the final paper. Suppose that there r
threads calling remove(), a threads calling add(), and c threads calling contains().
Since the number of segments n is at least the number of threads, (a+c+r) <= n.
The probability of having at least one segment with remove() and contains()
assigned to it is n

(
nc−1nanr−1

nn

)
= 1

n . By Lemma 2, each iteration in contains()
takes at most a constant expected number of steps. The expected number of
iteration is:

1 +
∑ i

ni
=

k(1+k)
2

1−nk

1−n

= 1 +
k(1 + k)(1 − n)

2(1 − nk)

= 1 +
k(1 + k)(1 − n)

2(1 − n)
∑

1tnk−1−t

= 1 +
k(1 + k)

2
∑

1tnk−1−t

→ 1

It is known that the worst case number of items in a bucket, even when using a
universal hash function, is not constant [3]. So what are the chances of a resize ()
due to overflow? It turns out that chances are low.

Lemma 4. The probability of having more then H keys in a bucket is 1/H !.

Proof. The probability of having H keys in a bucket is equal to the probability
of having a chain of length H in chained hashing. From section 3.3.10 of [5] it
follows that

Pr{H items in bucket} =
(n

H

) (m − 1)n−H

mn

=
n!

H !(n−H)!
(m − 1)n−H

mn

=
1
H !

n(n − 1) . . . (n −H + 1)
(m− 1)n−H

mn−HmH

≤ 1
H !

The last inequality follows by substituting m for n, where m is a monotonically
increasing function’s maximal value.

With uniform hashing, the probability of resizing due to having more than H =
32 items in a bucket is 1/32!.

Hopscotch Hashing 359

Lemma 5. The probability of probing for an empty slot, with length bigger then
H is αH−1.

The result follows from Theorem 11.6 of [1]. For α = 0.8, Pr(H = 32) ≈
0.000990, Pr(H = 64) ≈ 7.846377 · 10−7, and for α = 0.9 Pr(H = 128) ≈
1.390084 · 10−6, Pr(H = 256) ≈ 7.846377 · 10−7. This is true for universal hash
functions. The experimental results show that using the displacement-algorithm
the probability of failing to find an empty slot in range H is smaller. For exam-
ple, for α = 0.8 and H = 32, no resize occurred. The analysis of the probably to
fail to find an empty slot in range H , when using the displacement algorithm is
left for the full paper.

Lemma 6. Calls to add() complete within expected constant time.

Proof. From Knuth [3] for an open-address hash table that is α = n/m <
1 full, the expected number of entries until an open slot is found is at most
1
2

(
1 + 1

(1−α)

2
)

which is constant. Thus, the expected number of displacements,
which is bounded by the number of entries tested until an open slot is found is
at most constant.

For example, if the hash table is 50% full, the expected number of entries tested
until an open slot is found is at most 1/2(1+(1/(1−0.5))2) = 2.5 and when it is
90% full, the expected number of entries tested is 1/2(1 + (1/(1 − 0.9))2) = 50.
In the full paper we will show that:

Lemma 7. Calls to resize () complete within O(n) time.

5 Performance Evaluation

This section compares the performance of hopscotch hashing to the most effective
prior algorithms in both concurrent (multicore) and sequential (uniprocessor)
settings. We use micro-benchmarks similar to those used by recent papers in the
area [4,7], but with significantly higher table densities (up to 99%).

We sampled each test point 10 times, and plotted the average. To make sure
that the table does not fit into a cache-line, we use a table size of approxi-
mately 223 items. Each test used the same set of keys for all the hash-maps. All
tested hash-maps were implemented using C++, and were compiled using the
same compiler and settings. Closed-address hash-maps, like chained-hashing,
dynamically allocate list nodes, in contrast with open-address hash-maps like
linear-probing. To ensure that memory-management costs do not skew our num-
bers, we show results for the closed-address hash-maps both with the mtmalloc
multi-threaded malloc library, and with pre-allocated memory.

In all algorithms, each bucket encompasses pointers to the key and data (satel-
lite key and data). This scheme is thus a general hash-map.

360 M. Herlihy, N. Shavit, and M. Tzafrir

Fig. 6. Concurrent performance under high-loads

Fig. 7. Concurrent Benchmark: unsuccessful contains() throughput and cache-miss
counts

5.1 Concurrent Hash-Maps on Multicores

We compared, on a 64-way Sun UltraSPARCTM T2 multicore machine, two ver-
sions of the concurrent hopscotch hashing to the Lock-based Chained algorithm of
Lea [6]: Chained PRE is the pre-allocated memory version, and Chained MTM
is the mtmalloc library version, and the New Hopscotch algorithm: a variant
of hopscotch that uses a an 16bit representation of the pointers in the hop-
information word, providing an effectively unbounded range of 32767 locations.

Hopscotch Hashing 361

Fig. 8. Sequential high-load benchmark

To neutralize any effects of the choice of locks, all lock-based concurrent algo-
rithms use the same locks, one per memory segment.The number of segments is
the concurrency level (number of threads). We also use the same hash function
for all the algorithms (except Cuckoo-Hashing).

Figure 6 illustrates how the algorithms scale under high loads and a table
density of 90%. As can be seen, hopscotch is about twice as fast as Chained PRE
and more than three times as fast as Chained MTM.

Figure 7 compares the performance of the hash table’s unsuccessful contains()
calls which are more trying for all algorithms than successful ones. As can be
seen, the hopscotch algorithm retains its advantage when only contains() opera-
tions are counted, implying that the difference in performance among the various
algorithms is not due to any effect of the locking policy. The lower graphs explain
the results: hopscotch suffers fewer cache misses per operation than the other
algorithms. The benefit of using an open addressed table is further exemplified
by the gap it opens from the chained algorithm once memory allocation costs
are not discounted. Though we do not show it, the advantage in performance
continues even as the table density reaches 99%, though with a smaller gap.

5.2 Sequential Hash-Maps

We selected the most effective known sequential hash-maps.

– Linear-Probing: we used an optimized version [3], that stores the maximal
probe length in each bucket.

362 M. Herlihy, N. Shavit, and M. Tzafrir

– Chained : We used an optimized version of [3] that stores the first element of
each linked-list directly in the hash table.

– Cuckoo: Thanks to the kindness of the authors of [4], we obtained the original
cuckoo hash map code.

– New Hopscotch: we used the sequential version. Hopscotch D is a variant of
hopscotch algorithm, that displaces keys to improve cache-line alignment.
We contrast it with Hopscotch ND that does not perform displacements to
allow cache-line alignment.

We ran a series of benchmarks on two different uniprocessor architectures. A
single core of a Sun UltraSPARCTM T1 running at 1.20GHz, and an IntelR

CoreTM Duo CPU 3.50GHz.
The graphs in this section show throughput as function of the average table

density. Tests cover high loads, extremely high table density, and contains()
throughput. First, we contaminated the tables (e.g ran a long sequence of add()
and calls). This preparation is important for a realistic analysis of open-address
hash tables such as hopscotch or linear probing [3].

As can be seen, the performance of all the hash-maps diminishes with density.
Nevertheless, the results show that the overhead associated with hopscotch’s
key-cache alignment and displacement does not diminish relative performance at
high loads. As in the concurrent case, to ensure that memory allocation overhead

Fig. 9. Sequential extremely high table density benchmark under 60% load

Hopscotch Hashing 363

Fig. 10. Sequential contains() throughput with related cache miss counts below

does not distort the results, we use neutralized versions of the dynamic memory
algorithms where all memory needed is preallocated.

Figure 9 shows the extremely high table density benchmark. As table density
increases, so does the average number of keys per bucket, implying both longer
CPU time for all hash-map operations, and the likelihood of more cache misses.
As expected, cuckoo hashing does not carry beyond 50% table densities due to
cycles in the displacement sequences. The open-addressed linear-probing does
poorly compared to hopscotch. Note that the Hopscotch D overhead of ensur-
ing key’s cache-line alignment and displacement proved beneficial even in this
extreme setting.

Figure 10 shows the throughput of the unsuccessful contains() method calls,
a measure dominated by memory access times. The lower graphs show how
performance is completely correlated with cache miss rates and how the cache-
line alignment of the hopscotch algorithm serves to allow it to dominate the other
algorithms. Perhaps quite amazingly, hopscotch delivers less than one cache miss
on average on the Intel architecture!

Acknowledgments

We thank Dave Dice and Doug Lea for their help throughout the writing of this
paper.

364 M. Herlihy, N. Shavit, and M. Tzafrir

References

1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

2. Lea, D.: Personal communication (January 2003)
3. Knuth, D.E.: The art of computer programming. In: Fundamental algorithms, 3rd

edn. Addison Wesley Longman Publishing Co., Inc., Redwood City (1997)
4. Pagh, R., Rodler, F.F.: Cuckoo hashing. Journal of Algorithms 51(2), 122–144

(2004)
5. Gonnet, G.H., Baeza-Yates, R.: Handbook of algorithms and data structures: in

Pascal and C, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston
(1991)

6. Lea, D.: Hash table util.concurrent.concurrenthashmap in java.util.concurrent the
Java Concurrency Package, http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/

-jsr166/-src/main/java/util/concurrent/

7. Shalev, O., Shavit, N.: Split-ordered lists: Lock-free extensible hash tables. Journal
of the ACM 53(3), 379–405 (2006)

8. Purcell, C., Harris, T.: Non-blocking hashtables with open addressing. In: Fraig-
niaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 108–121. Springer, Heidelberg
(2005)

9. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann, NY (2008)

10. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: Double-
ended queues as an example. In: ICDCS 2003: Proceedings of the 23rd International
Conference on Distributed Computing Systems, p. 522. IEEE Computer Society,
Washington (2003)

http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/-jsr166/-src/main/java/util/concurrent/
http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/-jsr166/-src/main/java/util/concurrent/

Computing Lightweight Spanners Locally

Iyad A. Kanj1,�, Ljubomir Perković1, and Ge Xia2

1 School of Computing, DePaul University, 243 S. Wabash Ave., Chicago, IL 60604
2 Department of Computer Science, Lafayette College, Easton, PA 18042

Abstract. We consider the problem of computing bounded-degree
lightweight plane spanners of unit disk graphs in the local distributed
model of computation. We are motivated by the hypothesis that such
subgraphs can provide the underlying network topology for efficient uni-
casting and multicasting in wireless distributed systems. We present the
first local distributed algorithm that computes a bounded-degree plane
lightweight spanner of a given unit disk graph. The upper bounds on
the degree, the stretch factor, and the weight of the spanner, are very
small. For example, our results imply a local distributed algorithm that
computes a plane spanner of a given unit disk graph U , whose degree is
at most 14, stretch factor at most 8.81, and weight at most 8.81 times
the weight of a Euclidean Minimum Spanning Tree of V (U).

We show a wider application of our techniques by giving an O(n log n)
time centralized algorithm that constructs bounded-degree plane
lightweight spanners of unit disk graphs (which include Euclidean graphs),
with the best upper bounds on the spanner degree, stretch factor, and
weight.

1 Introduction

Efficiency, fault tolerance, scalability, and robustness are central goals in dis-
tributed computing. This is especially true for emerging wireless distributed
systems such as ad-hoc, mesh, ubiquitous, and sensor networks. Efficiency is crit-
ical because wireless devices have typically very limited power. Fault tolerance
is required because wireless communication is prone to many errors. Scalability
is important because, in practice, wireless systems are often very large. Robust-
ness is necessary to deal with the devices’ mobility and the dynamic nature of
wireless networks.

Most of the above goals can be achieved, to some extent, with algorithms de-
veloped under the local distributed computational model, as defined by Linial [15]
and Peleg [16]. Assuming that the distributed system is modeled as a graph, a
distributed algorithm is said to be k-local if, “intuitively”, the computation at
each point of the graph depends solely on the information about the points at

� The corresponding author. Email: ikanj@cs.depaul.edu. Supported in part by a De-
Paul University Competitive Research Grant.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 365–378, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

366 I.A. Kanj, L. Perković, and G. Xia

distance (number of edges) at most k from the point (i.e., within k hops from
the point). This notion can be formalized as follows [15,16,18]: a distributed
algorithm is k-local if it runs in at most k synchronous communication rounds
for some integer parameter k > 0. An algorithm is called local if it is k-local
for some integer constant k. Efficient local distributed algorithms are naturally
fault-tolerant and robust because faults and changes can be handled locally by
such algorithms. These algorithms are also scalable because the computation
performed by a device is not affected by the total size of the network. Therefore,
it is natural to study what problems can or cannot be solved under this model,
as did Kuhn, Moscibroda, and Wattenhofer in [12].

We focus our attention in this paper on developing efficient local algorithms
for fundamental problems in emerging distributed systems technologies, such as
wireless ad-hoc and sensor networks. For these applications, the network is often
modeled as a unit disk graph (UDG) in the Euclidean plane: the points of the
UDG correspond to the mobile wireless devices, and its edges connect pairs of
points whose corresponding devices are in each other’s transmission range equal
to one unit.

The fundamental problem under consideration in this paper is the construc-
tion of lightweight spanners of a UDG U . The weight of each edge in U is defined
to be its Euclidean distance, and the weight of a subgraph of U is the sum of
the weights of its edges. It is well-known that a connected UDG contains a Eu-
clidean Minimum Spanning Tree (EMST) of its point-set. A spanning subgraph
of U is said to have low weight, or to be lightweight, if its weight is at most
c · wt(EMST) for some constant c. A subgraph H of U is said to be a spanner
of U if there exists a constant ρ such that: for every two points A,B ∈ U , the
weight of a shortest path between A and B in H is at most ρ times the weight
of a shortest path between A and B in U . The constant ρ is called the stretch
factor of H (with respect to U). Lightweight spanners of UDGs are fundamental
to wireless distributed systems because they represent topologies that can be
used for efficient unicasting and broadcasting. Lightweight spanners are also im-
portant in computational geometry, and much of the early work on lightweight
spanners was done from that perspective under the centralized model of com-
putation [1,2,5,6,7,8,13]. Additional requirements on spanners that have been
considered are planarity and bounded degree [2,8,9,14,17]. These requirements
are usually motivated by applications in wireless and sensor networks, whose de-
vices have limited resources. For example, the planarity of the topology is often
a requirement for efficient routing (see [3,9,11,14,17]).

The specific problem we are thus considering is the design of algorithms (in
particular, local distributed algorithms) that construct bounded-degree plane
lightweight spanners of unit disk graphs. Levcopoulos and Lingas [13] developed
the first centralized algorithm for this problem on Euclidean graphs (i.e., the
complete graph on n points in the plane), which are a special case of UDGs.
Their O(n log n) time algorithm, given a rational λ > 2, produces a plane span-
ner with stretch factor (λ−1)·Cdel and total weight (1+ 2

λ−2)·wt(EMST), where

Computing Lightweight Spanners Locally 367

the constant Cdel ≈ 2.42 is the stretch factor of the Delaunay subgraph of the
Euclidean graph. Althöfer et al. [1] gave a polynomial time greedy algorithm that
constructs a lightweight plane spanner of a Euclidean graph having the same up-
per bound on the stretch factor and weight as the algorithm by Levcopoulos and
Lingas [13]. The degree of the lightweight spanner in both [13] and [1], however,
may be unbounded: it is not possible to bound the degree without worsening the
stretch factor or the weight. A more recent O(n log n) time algorithm by Bose,
Gudmundsson, and Smid [2] for Euclidean graphs, succeeded in bounding the
degree of the plane spanner by 27 but at a large cost: the stretch factor of the
obtained plane spanner is approximately 10.02, and its weight is O(wt(EMST)),
where the hidden constant in the asymptotic notation is undetermined.

Our contribution with regard to this problem is a centralized algorithm for
unit disk graphs, which include Euclidean graphs, that improves the above
algorithms. We design a centralized algorithm that, for any integer constant
∆ ≥ 14 and constant λ > 2, constructs a plane spanner of a unit disk graph
(or a Euclidean graph) having degree at most ∆, stretch factor (λ − 1) · (1 +
2π(∆ cos π

∆)−1) ·Cdel, and weight at most (1+ 2
λ−2) ·wt(EMST) (Theorem 3.1).

We can compare our algorithm with the algorithm by Bose, Gudmundsson, and
Smid [2] if we let ∆ = 14 and λ ≈ 2.475 in Theorem 3.1: we obtain an O(n log n)
time algorithm that, given a unit disk graph (or a Euclidean graph) on n points,
computes a plane spanner of the given graph having degree at most 14, stretch
factor at most 5.22, and weight at most 5.22 · wt(EMST).

We consider next the problem of computing bounded-degree plane lightweight
spanners of unit disk graphs using a local distributed algorithm. To the best of
our knowledge, the only distributed algorithm for this problem is the algorithm
in [4]. While the distributed algorithm in [4] solves the problem for a general-
ization of unit disk graphs, called quasi-unit ball graphs, in higher dimensional
Euclidean spaces, the algorithm is not local (it runs in a poly-logarithmic num-
ber of rounds), and the weight and the degree of the spanner are only bounded
asymptotically. We note that distributed algorithms for computing lightweight
spanners of general graphs have been extensively considered in the literature; see
for example [16] for a survey on some of these results. In this paper we show that
(Theorem 4.2): for any integer constant ∆ ≥ 14 and constant λ > 2, there exists
a k-local distributed algorithm, where k = �(8/π) · (λ + 1)2 , that computes a
plane spanner of a given unit disk graph containing a EMST on its point-set,
of degree at most ∆, weight at most (1 + 2

λ−2) · wt(EMST), and stretch factor
(λ − 1)4 · (1 + 2π(∆ cos π

∆)−1) · Cdel. This is the first local algorithm for this
problem. If we set ∆ = 14 and λ ≈ 2.256, we obtain a k-local algorithm with k
at most 26, that computes a plane spanner of degree at most 14, stretch factor
at most 8.81, and weight at most 8.81 ·wt(EMST), of the given unit disk graph.

The remainder of this paper is organized as follows. We cover the preliminaries
in Section 2. In Section 3 we present the centralized algorithm, and in Section 4
we present the local distributed algorithm. In Section 5 we give some further
comparisons between our algorithm and the previous ones.

368 I.A. Kanj, L. Perković, and G. Xia

2 Preliminaries

Given a set of points S in the plane, the Euclidean graph E on S is defined to
be the complete graph whose point-set is S. The unit disk graph U on S is the
subgraph of E with the same point-set as E, and such that AB is an edge of
U if and only if |AB| ≤ 1, where |AB| is the Euclidean length of edge AB. We
assume in this paper that the unit disk graph U is connected. We define the
weight of an edge AB to be the Euclidean distance between points A and B,
that is wt(AB) = |AB|. For a subgraph H ⊆ E, we denote by V (H) and E(H)
the set of vertices and the set of edges of H , respectively, and by wt(H) the sum
of the weights of all the edges in H , that is, wt(H) =

∑
XY ∈E(H) wt(XY). The

length of a path P (resp. cycle C) in a subgraph H ⊆ E, denoted |P | (resp. |C|),
is the number of edges in P (resp. C). A point B is said to be a k-neighbor of
A in a subgraph H ⊆ E, if there exists a path P from A to B in H satisfying
|P | ≤ k.

Each of the synchronous communication rounds in a local distributed algo-
rithm consists of two phases: phase 1, in which every point receives messages sent
to it in the preceding phase, and phase 2, in which every point sends messages to
its neighbors. The local computation in a round occurs between the two phases.
Since our focus is on wireless systems, we will assume that a message broadcast
by a point in U will be received by all its neighbors.

The local distributed algorithm we develop in this paper constructs a sub-
graph of U and takes two steps. In the first step, all points learn about their
k-hop neighbors using a local distributed algorithm. In the second step, each
point runs a local computation to make a decision on what incident edges to
select in the final spanner (no messages are exchanged in this step). A k-local
k-neighborhood algorithm is a k-local algorithm in which each point learns about
the coordinates of its k-hop neighbors. A basic k-local k-neighborhood algorithm
runs as follows. In the first round, every point broadcasts its ID and coordinates
to its neighbors in U . In the remaining k− 1 rounds, every point broadcasts the
ID and coordinates of every point it learned about in the previous round.

Let G be a plane graph and let T be a spanning tree of G. Call an edge
e ∈ E(T) a tree edge and an edge e ∈ E(G) − T a non-tree edge. Every non-tree
edge induces a unique cycle in the graph T + e called the fundamental cycle of
e. Since T is embedded in the plane, we can talk about the fundamental region
of e, which is the closed region in the plane enclosed by the fundamental cycle
of e (other than the outer face of T + e).

Definition 2.1. Define a relationship � on the set E(G) as follows. For every
edge e, e � e. For two edges e and e′ in E(G), e � e′ if and only if e is contained
in the fundamental region of e′.

It is not difficult to verify that � is a partial order relation on E(G), and hence
(E(G),�) is a partially ordered set (POSET). Note that any two distinct tree
edges are not comparable by �, and that every tree edge is a minimal element
in (E(G),�). Therefore, we can topologically sort the edges in E(G) to form a

Computing Lightweight Spanners Locally 369

list L = 〈e1, . . . , er〉, in which no non-tree edge appears before a tree edge, and
such that if ei � ej then ei does not appear after ej in L.

Lemma 2.1. Let ei be a non-tree edge. Then there exists a unique face Fi in G
such that every edge ej of Fi satisfies ej � ei.

Proof. Let Fi be the face of G containing ei and residing in the fundamental
region of ei, and let ej be an edge on Fi. Since ej is on Fi, ej is contained in the
fundamental region of ei. By the definition of �, we have ej � ei. This shows
the existence of such a face Fi.

To prove the uniqueness of Fi, suppose that there is another distinct face F ′
i

with the above properties. Since every edge ej on F ′
i satisfies ej � ei, every edge

on F ′
i is contained in the fundamental region of ei, and hence the whole face

F ′
i is contained in the fundamental region of ei. This means that there are two

distinct faces containing ei that are enclosed within the fundamental cycle of ei.
This contradicts the planarity of G.

We will call the unique face associated with a non-tree edge ei, described in
Lemma 2.1, the fundamental face of ei.

The following result is a consequence of the proof of Theorem 2 in [1]. A
similar, but less general result, was also proved earlier by Levcopoulos and Lin-
gas [13]. A different proof can also be found in [10].

Theorem 2.1. ([1])

(i) Let G be a connected weighted planar graph with nonnegative weights satis-
fying the following property: for every cycle C in G and every edge e ∈ C,
wt(C) ≥ λ ·wt(e) for some constant λ > 2. Then wt(G) ≤ (1+ 2

λ−2) ·wt(T),
where T is a MST of G.

(ii) Let G be a connected weighted plane graph with nonnegative weights, and let
T be a spanning tree in G. Let λ > 2 be a constant. Suppose that for every
edge e ∈ E(G) − T we have wt(Fe) ≥ λ · wt(e), where Fe is the boundary
cycle of the fundamental face of e in G. Then wt(G) ≤ (1 + 2

λ−2) · wt(T).

3 The Centralized Algorithm

In this section we present a centralized algorithm that constructs a bounded-
degree plane lightweight spanner of U .

Kanj and Perlović [9] gave an O(n log n) time centralized algorithm that, given
a Euclidean graph E on a set of n points in the plane, and an integer parameter
∆ ≥ 14, constructs a plane spanner G′ of E containing a EMST of V (E), of
degree at most ∆, and of stretch factor ρ = (1 + 2π(∆ cos π

∆)−1) · Cdel, where
Cdel ≈ 2.42 is the stretch factor of the Delaunay subgraph of E. This result can
be extended to unit disk graphs:

Lemma 3.1. For any ∆ ≥ 14, the subgraph G′
U of the spanner G′ described

in [9], consisting of those edges in G′ of weight at most 1, is a plane spanner

370 I.A. Kanj, L. Perković, and G. Xia

of the unit disk graph U on V (E) of degree at most ∆, and of stretch factor
ρ = (1 + 2π(∆ cos π

∆)−1) · Cdel (with respect to U). Moreover, G′
U contains a

EMST of V (U).

Proof. We need to verify that the subgraph G′
U of G′ obtained by removing

every edge of weight greater than 1 from G′, is also a spanner of the unit disk
graph U satisfying the same properties that G′ satisfies with respect to Euclidean
graph E.

It was shown in [9] that the spanner G′ satisfies the property that, for every
edge AB ∈ E that is not in G′, there exists a path PAB from A to B in G′

of weight at most ρ · wt(AB), and such that AB has maximum weight among
all edges on PAB (see Theorem 2.10 in [9]). Since the unit disk graph U is the
subgraph of E consisting precisely of those edges in E of weight at most 1, by
discarding from G′ every edge of weight greater than 1, we obtain a subgraph
G′

U of U that is plane and of degree at most ∆. Since U is connected, U contains
a EMST of V (U), and hence every edge in the EMST has weight at most 1.
Since G′ contains a EMST of V (U), it follows from the preceding statement,
and from the definition of G′

U , that G′
U contains a EMST of V (U) as well. If

an edge AB ∈ U is not in G′, from the properties of the spanner G′ described
above, there exists a path PAB in G′ whose weight is at most ρ ·wt(AB), and on
which AB is the edge of maximum weight. From the definition of G′

U , the path
PAB is also in G′

U . It follows that the same algorithm described in [9] computes
a plane spanner G′

U of the unit disk graph U , of degree at most ∆, and of stretch
factor (1 + 2π(∆ cos π

∆)−1) · Cdel, for any integer parameter ∆ ≥ 14. ��
The spanner G′

U , however, may not be of light weight. Therefore, we need to
discard edges from G′

U so that the resulting subgraph is of light weight, while at
the same time not affecting the stretch factor of G′

U by much. To do so, since G′
U

is a plane graph containing a EMST of V (U), we would like to employ part (ii)
of Theorem 2.1. However, there is one technical problem: the fundamental faces
of G′

U may not satisfy the condition in part (ii) of Theorem 2.1, namely that
the weight of every fundamental face Fe of a non-EMST edge e in G′

U satisfies
wt(Fe) ≥ λ · wt(e) (λ > 2 is a constant). We will show next how to prune the
set of edges in G′

U so that this condition is satisfied.
Let T be a EMST of V (U) contained in G′

U . As described in Section 2, we
can order the non-tree edges in G′

U with respect to the partial order � described
in Definition 2.1. Let L′ = 〈e1, e2, . . . , es〉 be the sequence of non-tree edges in
G′

U sorted in a non-decreasing order with respect to the partial order �. Note
that, by the definition of the partial order �, if we add the edges in L′ to T
in the respective order they appear in L′, once an edge ei is added to form a
fundamental face in the partially-grown graph, this fundamental face will remain
a face in the resulting graph after all the edges in L′ have been added to T . That
is, the face will not be affected (i.e., changed/split) by the addition of any later
edge in this sequence.

Given a constant λ > 2, to construct the desired lightweight spanner G, we
first initialize G to the EMST T . We consider the non-tree edges of G′

U in the
order that they appear in L′. Inductively, suppose that we have processed the

Computing Lightweight Spanners Locally 371

edges e1, . . . , ei−1 in L′. To process edge ei, let Fi be the fundamental face of
ei in G + ei. If wt(Fi) > λ · wt(ei), we add ei to G; otherwise, ei is not added
to G. This completes the description of the construction process. Let G be the
resulting graph at the end of the construction process.

Lemma 3.2. Given the set of n points V (E) in the plane, the graph G can be
constructed in O(n logn) time.

Proof. We first describe how to compute the sequence L′.
The bounded-degree plane spanner G′ of E can be constructed in O(n log n)

time [9], and obviously so can G′
U . Since every point in G′

U has bounded degree,
and since G′

U is a geometric plane graph, in O(1) time we can compute a rotation
system for the points in G′

U (for example, for every point in G′
U , we can list

its incident edges in clockwise order). Moreover, since G′
U has O(n) edges, the

EMST T contained in G′
U can be computed in O(n log n) time by a standard

MST algorithm. Now using the rotation system of G′
U , we can traverse the edges

on the boundary face of G′
U . As we traverse these edges, we remove them from

the graph and push the non-tree (with respect to T) edges into a stack; we
also remove any isolated points resulting from this process. Note that the non-
tree edges on the outer face of G′

U are the maximal edges with respect to the
ordering �. We repeat this process until G′

U is empty, and at that point, the
stack contains the sequence of non-tree edges, sorted according to the partial
order �; this stack constitutes the list L′. Clearly, this process can be carried
out in O(n) time.

After computing L′, we initialize G to the EMST T . As we consider the
edges in L′, when we add an edge e in L′ to form a fundamental face Fe in
G+ e, we need to check whether the fundamental face Fe satisfies the condition
wt(Fe) > λ · wt(e). To do so, we need to traverse the edges on Fe. If e is not
subsequently added to G, we might need to traverse some edges on Fe multiple
times when we later consider edges that are larger than e in the ordering �. To
avoid this problem, we can do the following. If we decide to add an edge to G,
we add this edge and mark it as a “real” edge of G. On the other hand, if e is
not to be added to G, we still add e to G but we mark it as a “virtual” edge of
G, and assign it a weight equal to the weight of its fundamental face. The graph
G will consist of the tree T plus the set of edges that were marked as real edges.
This way each edge in G is traversed at most twice (as every edge appears in at
most two faces), and the running time is kept O(n).

It follows that G can be constructed in O(n log n) time, and the proof is
complete. ��

Theorem 3.1. For any integer parameter ∆ ≥ 14 and any constant λ > 2, the
subgraph G of the unit disk graph U constructed above is a plane spanner of U
containing a EMST of V (U), whose degree is at most ∆, whose stretch factor is
(λ − 1) · ρ, where ρ = (1 + 2π(∆ cos π

∆)−1) · Cdel, and whose weight is at most
(1 + 2

λ−2) · wt(EMST). Moreover, G can be constructed in O(n log n) time.

372 I.A. Kanj, L. Perković, and G. Xia

Proof. The planarity and degree bound of G follow from the fact that G is
a subgraph of G′

U . By construction, G contains a EMST of V (U), and every
fundamental face Fe of a non-tree edge e in G satisfies wt(Fe) ≥ λ · wt(e).
Therefore, by part (ii) of Theorem 2.1, we have wt(G) ≤ (1 + 2

λ−2) ·wt(EMST).
Since by Lemma 3.2 G can be constructed in O(n log n) time, it suffices to show
that the stretch factor of G with respect to U is (λ− 1) · ρ.

Note that G′
U has stretch factor ρ with respect to U . If an edge ei is in G′

U

but not in G, then by the construction of G, when the edge ei is considered, the
fundamental face Fi of ei in G+ei satisfies wt(Fi) ≤ λ·wt(ei) (otherwise, the edge
ei would have been added). Therefore, when edge ei was considered, G contained
a path between the endpoints of ei whose weight is at most (λ− 1) ·wt(ei). This
path will remain in G after all edges in L′ have been considered. Therefore,
every edge in E(G′

U)−E(G) is stretched by a factor at most λ−1. Since G′
U has

stretch factor ρ with respect to U , it follows that the stretch factor of G with
respect to U is (λ− 1) · ρ. This completes the proof. ��

Note that since a Euclidean graph is a unit disk graph with radius equal to ∞,
the above theorem holds for Euclidean graphs as well.

4 The Local Distributed Algorithm

In this section we present a local distributed algorithm that constructs a bounded-
degree plane lightweight spanner of U .

The same paper by Kanj and Perlović [9], described above, presents a 3-local
distributed algorithm that, given a unit disk graph U and an integer parameter
∆ ≥ 14, constructs a plane spanner G′ of U containing a EMST of V (U), of
degree at most ∆ and stretch factor ρ = (1 + 2π(∆ cos π

∆)−1) · Cdel. Again, G′

might not be of light weight, and we need to discard edges from G′ so that the
obtained subgraph is of light weight. Ultimately, we would like to be able to apply
Theorem 2.1. However, a serious problem, which was not present previously in
the centralized model, poses itself here in the local model: the removal of the
edges from the spanner by different points in the graph needs to be coordinated.
This problem was overcome in the centralized model by using a global ordering
among the edges of the spanner. Clearly, no local distributed algorithm is capable
of computing the global partial order described in Definition 2.1. To coordinate
the removal of edges, we use an idea that at its core sits a clustering technique.

Fix an infinite rectilinear tiling T of the plane whose tiles are � × � squares,
for some positive constant � to be determined later. Assume, without loss of
generality, that one of the tiles in T has its bottom-left corner coinciding with
the origin (0, 0), and that this fact is known to the points in U . Note that
this assumption is justifiable in practice because an absolute reference system
usually exists (a coordinates system, for example). Therefore, any point in U
can determine (using simple arithmetic operations) which tile of T it resides in.
We start with the following simple fact whose proof is easy to verify.

Computing Lightweight Spanners Locally 373

Fact 4.1. Let C be a cycle of weight at most �. The orthogonal projection 1 of
C on any straight line has weight at most �/2.

Let TI be the translation with vector (0, 0) (the identity translation), TH the
translation of vector (�/2, 0) (horizontal translation), TV the translation of vec-
tor (0, �/2) (vertical translation), and TD the translation of vector (�/2, �/2)
(diagonal translation). We have the following simple lemma.

Lemma 4.1. Let C be any cycle of weight at most �. There exists a translation
T in {TI , TH , TV , TD} such that the translate of C, T (C), resides in a single tile
of T .

Proof. (Sketch) If C resides within a single tile of T then clearly translation TI

serves the purpose. If C resides within exactly two horizontal (resp. vertical)
tiles of T , then these two tiles must be adjacent, and it is easy to verify using
Fact 4.1 that translation TH (resp. TV) serves the purpose. Finally, if C resides
within more than two tiles of T , then again, using Fact 4.1, it can be easily
verified that translation TD serves the purpose. ��

Even though a cycle of weight � may not reside within a single tile of T ,
Lemma 4.1 shows that by affecting some translation T in {TI , TH , TV , TD}, the
translate of C under T will reside in a single tile. For each translation T in
{TI , TH , TV , TD}, the points in G whose translates under T reside in a single
tile will form a separate cluster. Then, these points will coordinate the detec-
tion and removal of the low-weight cycles residing in the cluster by applying a
centralized algorithm to the cluster. Since the clusters do not overlap, and since
each cluster works as a centralized unit, this maintains the stretch factor under
control, while ensuring the removal of every low weight cycle. The centralized
algorithm that we apply to each cluster is the standard greedy algorithm that
has been extensively used (see for example [1]) to compute lightweight spanners.
Given a graph H and a parameter α > 1, this greedy algorithm sorts the edges
in H in a non-decreasing order of their weight, and starts adding these edges
to an empty graph in the sorted order. The algorithm adds an edge AB to the
growing graph if and only if no path between A and B whose weight is at most
α ·wt(AB) exists in the growing graph. We will call this algorithm Centralized
Greedy. The following properties about this greedy algorithm are known:

Fact 4.2. Let H be a subgraph of the Euclidean graph E, and let α > 1 be a
constant. Let H ′ be the subgraph of H constructed by the algorithm Centralized
Greedy when applied to H with parameter α. Then:

(i) H ′ is a spanner of H with stretch factor α.
(ii) H ′ contains a MST of H.
(iii) For any cycle C in H ′ and any edge e on C, wt(C) > (1 + α) · wt(e).

1 By the orthogonal projection of C on a given line we mean the set of points that are
the orthogonal projections of the points in C on the given line. Note that, by the
continuity of the curve C, this set of points is a straight line segment.

374 I.A. Kanj, L. Perković, and G. Xia

Lemma 4.2. Let t0 be a tile in T , and let Ut0 be the subgraph of U induced by
all the points of U residing in tile t0. If A and B are two points in the same
connected component of Ut0 , then A and B are (�(8/π) · (�+1)2)-hop neighbors
in U (i.e., A and B are at most �(8/π) · (� + 1)2 hops away from one another
in U).

Proof. Let Pmin = (A = p0, p1, . . . , px = B) be a path between A and B in t0 of
minimum length. Let Di, for i = 0, . . . , x, be the disk centered at pi and of radius
1/2, and observe that all the disks Di are contained within a bounding square-
box B of dimensions (�+ 1) × (� + 1), whose center coincides with the center of
t0. Observe also that the disks Di, for even i, are mutually disjoint; that is, the
points pi, for even i, form an independent set in U (otherwise, Pmin would not
be a minimal-length path between A and B). Therefore, the area of the region
R, denoted a, determined by the union of the disks Di, for even i, is the sum
of the areas determined by these individual disks. The value of a is precisely
(π/4) · �x/2�. Since the region R is contained in the bounding box B of area
(�+1)×(�+1), we have a ≤ (�+1)2. Consequently, (π/4)·�x/2� ≤ (�+1)2. Solving
for the integer x in the previous equation we obtain x ≤ �(8/π) · (� + 1)2 . This
shows that the length of the path Pmin, which is x, is bounded by �(8/π)·(�+1)2 ,
and the proof is complete. ��

We now present the local distributed algorithm formally and prove that it con-
structs the desired lightweight spanner. The input to the algorithm is the spanner
G′ of U constructed in [9], and a constant λ > 2. We set � = λ in the above tiling
T . We assume that each point in U has computed its (�(8/π) · (λ + 1)2)-hop
neighbors in U by applying the k-local k-neighborhood algorithm described in
Section 2, where k = �(8/π) · (λ + 1)2 . By Lemma 4.2, this ensures that every
point knows all the points in its connected component residing with it in the
same tile under any translation.2 After that, for every round j ∈ {I,H, V,D},
each point p ∈ U executes the following algorithm Local-LightSpanner:

(i) p applies translation Tj to compute its virtual coordinates under Tj ; Sup-
pose that the translate of p under Tj, Tj(p), resides in tile t0 ∈ T ;

(ii) p determines the set Sj(p) of all the points in the resulting subgraph of G′

(prior to round j) whose translates under Tj reside in the same connected
component as Tj(p) in tile t0;

(iii) p applies the algorithm Centralized Greedy to the subgraph Hj(p) of
the resulting graph of G′ induced by Sj(p) with parameter α = λ− 1; if p
decides to remove an edge (p, q) from Hj(p) then p removes (p, q) from its
adjacency list in G′;

Note that since all the points whose translate reside in a single tile apply the
same algorithm to the same subgraph during any round j, if a point p decides
to remove an edge (p, q), then point q must reach the same decision of removing
edge (p, q).
2 Note that the subgraph of G′ induced by the set of points in a single tile may not

be connected.

Computing Lightweight Spanners Locally 375

Let G be the subgraph of G′ consisting of the set of remaining edges in G′

after each point p ∈ G′ applies the algorithm Local-LightSpanner.

Theorem 4.1. The subgraph G of G′ is a spanner of U containing a EMST
of V (U), with stretch factor ρ · (λ − 1)4, and satisfying wt(G′) ≤ (1 + 2

λ−2) ·
wt(EMST), where ρ is the stretch factor of G′.

Proof. We first show that G is of light weight. To do so, we need to show that G
satisfies the conditions of part (i) in Theorem 2.1. We show first that G contains
a EMST of V (U).

Since G′ contains a EMST of V (U), it suffices to show that after each round of
the algorithm Local-LightSpanner, the resulting graph still contains a EMST
of V (U). Fix a round j ∈ {I,H, V,D}, and let G′+ be the graph resulting from
G′ just before the execution of round j, and G′− that resulting from G′ after
the execution of round j. Assume inductively that G′+ contains a EMST of
V (U). Note that any edge removed from G′+ in round j must have its translate
contained within a single tile in T . Let t0 be a tile in T . In round j, each point
p whose translate Tj(p) is in t0, applies the algorithm Centralized Greedy
to the subgraph of G′+, Hj(p), induced by the set of vertices Sj(p) defined in
the algorithm Local-LightSpanner. By part (ii) of Fact 4.2, this algorithm
computes a spanner for Hj(p) containing a“local” EMST τ0 of Hj(p). It is easy
to see that an edge e in a EMST of G′+ whose translate Tj(e) is in Hj(p), its
translate Tj(e) is either an edge of τ0, or is contained in a cycle whose edges
other than e have the same weight as e and are in τ0. Otherwise, by adding
Tj(e) to τ0, we create a cycle on which Tj(e) is the edge of maximum weight
(if not, Tj(e) could replace an edge of τ0 of larger weight than e, contradicting
the minimality of τ0), and this means that Tj(e) would be the edge of maximum
weight on some cycle of G′; since a translation is an isometric transformation—
and hence preserves length, this contradicts the fact that e is an edge in a EMST
of G′+. Therefore, if an edge in a EMST of G′+ is removed during round j, then
G′− will still contain a path between the endpoints of e all of whose edges have
the same weight as e. Consequently, G′− will still contain a EMST of V (U). It
follows that G contains a EMST of V (U).

Now we show that for every cycle C in G, and for every edge e on C, we have
wt(C) ≥ λ · wt(C). Suppose not, and let cycle C and edge e ∈ C be a counter
example. Since every edge in U has weight at most 1, and wt(C) < λ · wt(e), it
follows that wt(C) < λ, and by Lemma 4.1, there exists a round j in which the
translate of C resides in a single tile t0 of T . By part (iii) of Fact 4.2, after the
application of the algorithm Centralized Greedy to the connected component
κ containing the translate of C in tile t0 in round j, no cycle of weight smaller or
equals to (1+α) ·wt(e) = (1+λ−1) ·wt(e) = λ ·wt(e) in the inverse translation
of κ remains; in particular, the cycle C will no longer be present in the resulting
graph. This is a contradiction. It follows that G satisfies the conditions of part
(i) in Theorem 2.1, and wt(G) ≤ (1 + 2

λ−2) · wt(EMST).
Finally, it remains to show that the stretch factor of G, with respect to U ,

is at most ρ · (λ − 1)4. Since G′ has stretch factor ρ, it suffices to show that
after each round of the algorithm Local-LightSpanner, the stretch factor of

376 I.A. Kanj, L. Perković, and G. Xia

the resulting graph increases from the previous round by a multiplicative factor
of at most (λ − 1). Fix a round j ∈ {I,H, V,D}, and let G′+ and G′− be as
above. Suppose that an edge e is removed by the algorithm in round j. Then
the translate of e in round j must reside in a single tile t0 of T . Since by part (i)
of Fact 4.2 the algorithm Centralized Greedy has stretch factor α = λ − 1,
and since a translation is an isometric transformation, a path of weight at most
(λ− 1) ·wt(e) remains between the endpoints of e in G′−. Therefore, the stretch
factor of G′− with respect to G′+ increases by a multiplicative factor of at most
(λ− 1) during round j. This completes the proof. ��

We conclude with the following theorem:

Theorem 4.2. Let U be a connected unit disk graph, ∆ ≥ 14 be an integer con-
stant, and λ > 2 be a constant. Then there exists a k-local distributed algorithm
with k = �(8/π) · (λ + 1)2 , that computes a plane spanner of U containing a
EMST of V (U), of degree at most ∆, weight at most (1+ 2

λ−2) ·wt(EMST), and
stretch factor (λ− 1)4 · (1 + 2π(∆ cos π

∆)−1) · Cdel, where Cdel ≈ 2.42.

5 Conclusion

We have developed in this paper a robust, scalable, and efficient algorithm
for a fundamental communication problem—constructing efficient topologies
for broadcasting and unicasting—in systems modeled as unit disk graphs. The
bounds on the parameters of the algorithm and the constructed topology are
small, and suggest that the algorithm and the topology are practical, as the
following discussion shows.

In table 1, we compare the centralized Euclidean graph lightweight spanner
algorithms LL92 by Levcopoulos and Lingas [13], ADDJS93 by Althöfer et al. [1],
and BGS05 by Bose, Gudmundsson, and Smid [2] with our centralized algorithm
KPX08 and our local distributed algorithm KPXLoc08, both developed to com-
pute lightweight spanners of the more general unit disk graphs. The table gives
the bounds on the stretch factor, the weight factor (the constant c∗ such that
the weight of the spanner is at most c∗ · wt(EMST)), the maximum degree and
the running time. Note that the first two algorithms (LL92 and ADDJS93) do
not guarantee an upper bound on the degree of the spanner. Our algorithms

Table 1. A comparison of lightweight spanner algorithms given the constant λ > 2
and the maximum degree bound ∆; the following notations are used: ρ∗ = (λ−1) ·Cdel,
c∗ = (1 + 2

λ−2
), and a∗ = 1 + 2π(∆ cos π

∆
)−1

Algorithm LL92 [13] ADDJS93 [1] BGS05 [2] KPX08 KPXLoc08

Stretch factor ρ∗ ρ∗ 10.02 a∗ · ρ∗ a∗ · (λ − 1)3 · ρ∗

Weight factor c∗ c∗ O(1) c∗ c∗

Max. degree ∞ ∞ 27 ∆ ∆

Running time O(n log n) O(n2 log n) O(n log n) O(n log n) N/A

Computing Lightweight Spanners Locally 377

Table 2. Comparison between algorithm BGS05 [2] and our algorithms KPX08 and
KPXLoc08 for different values of ∆

∆ = 14 27

BGS05 N/A ρ∗ = 10.02, c∗ = O(1)

KPX08 ρ∗, c∗ = 5.22 ρ∗, c∗ = 4.63

KPXLoc08 ρ∗, c∗ = 8.81 ρ∗, c∗ = 8.08

match their bounds on the weight factor to provide a maximum degree bound at
a small multiplicative cost in the stretch factor (a∗ for our centralized algorithm
and (λ− 1)3 · a∗ for our local distributed algorithm). For example, for a degree
bound of 14, our upper bound on the stretch factor increases (with respect to [13]
and [1]) by a multiplicative constant of 1.47 for the centralized algorithm, and of
2.92 (corresponding to λ = 2.256) for the local distributed algorithm. For larger
values of ∆, the multiplicative factors are even smaller.

In table 2 we use some concrete values for ∆ and λ in order to compare our
algorithms with the algorithm BGS05 by Bose, Gudmundsson, and Smid [2].
Their algorithm only guarantees a maximum degree bound of 27. The listed
bounds for stretch factor ρ∗ and weight factor c∗ for ∆ = 27 are obtained by
setting λ = 2.551 in KPX08 and λ = 2.282 in KPXLoc08. The bounds for stretch
factor ρ∗ and weight factor c∗ when ∆ = 14 are obtained by setting λ = 2.475
in KPX08 and λ = 2.256 in KPXLoc08.

References

1. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)

2. Bose, P., Gudmundsson, J., Smid, M.: Constructing plane spanners of bounded
degree and low weight. Algorithmica 42(3-4), 249–264 (2005)

3. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery
in ad hoc wireless networks. wireless networks 7(6), 609–616 (2001)

4. Damian, M., Pandit, S., Pemmaraju, S.: Local approximation schemes for topology
control. In: Proceedings of PODC, pp. 208–217 (2006)

5. Das, G., Heffernan, P., Narasimhan, G.: Optimally sparse spanners in 3-
dimensional euclidean space. In: Proceedings of SoCG, pp. 53–62 (1993)

6. Das, G., Narasimhan, G.: A fast algorithm for constructing sparse euclidean span-
ners. In: Proceedings of SoCG, pp. 132–139 (1994)

7. Das, G., Narasimhan, G., Salowe, J.: A new way to weigh malnourished euclidean
graphs. In: Proceedings of SODA, pp. 215–222 (1995)

8. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Fast greedy algorithms for
constructing sparse geometric spanners. SIAM J. Comput. 31(5), 1479–1500 (2002)

9. Kanj, I., Perković, L.: On geometric spanners of euclidean and unit disk graphs.
In: Proceedings of STACS (2008)

10. Kanj, I., Perkovic, L., Xia, G.: Computing lightweight spanning subgraphs locally.
Technical report # 08-002,
http://www.cdm.depaul.edu/research/Pages/TechnicalReports.aspx

http://www.cdm.depaul.edu/research/Pages/TechnicalReports.aspx

378 I.A. Kanj, L. Perković, and G. Xia

11. Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In:
Proceeding of CCCG, vol. 11, pp. 51–54 (2005)

12. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In:
Proceedings of PODC, pp. 300–309 (2004)

13. Levcopoulos, C., Lingas, A.: There are planar graphs almost as good as the com-
plete graphs and almost as cheap as minimum spanning trees. Algorithmica 8(3),
251–256 (1992)

14. Li, X.-Y., Calinescu, G., Wan, P.-J., Wang, Y.: Localized delaunay triangulation
with application in ad hoc wireless networks. IEEE Trans. on Parallel and Dis-
tributed Systems. 14(10), 1035–1047 (2003)

15. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–
201 (1992)

16. Peleg, D.: Distributed computing: A Locality-Sensitive Approach. SIAM Mono-
graphs on Discrete Mathematis and Applications (2000)

17. Wang, Y., Li, X.-Y.: Localized construction of bounded degree and planar spanner
for wireless ad hoc networks. MONET 11(2), 161–175 (2006)

18. Wattenhofer, R.: Sensor networks: distributed algorithms reloaded - or revolutions?
In: Proceedings of SIROCCO, pp. 24–28 (2006)

Dynamic Routing and Location Services in

Metrics of Low Doubling Dimension

(Extended Abstract)�

Goran Konjevod, Andréa W. Richa, and Donglin Xia

Arizona State University, Tempe AZ 85287, USA
{goran,aricha,dxia}@asu.edu

Abstract. We consider dynamic compact routing in metrics of low dou-
bling dimension. Given a set of nodes V in a metric space with nodes join-
ing, leaving and moving, we show how to maintain a set of links E that
allows compact routing on the graph G(V, E). Given a constant ε ∈ (0, 1)
and a dynamic node set V with normalized diameter ∆ in a metric of dou-
bling dimension α ∈ O(loglog ∆), we achieve a dynamic graph G(V, E)
with maximum degree 2O(α) log2 ∆, and an optimal (9 + ε)-stretch com-
pact name-independent routing scheme on G with (1/ε)O(α) log4 ∆-bit
storage at each node. Moreover, the amortized number of messages for
a node joining, leaving and moving is polylogarithmic in the normalized
diameter ∆; and the cost (total distance traversed by all messages gener-
ated) of a node move operation is proportional to the distance the node
has traveled times a polylog factor. (We can also show similar bounds
for a (1 + ε)-stretch compact dynamic labeled routing scheme.)

One important application of our scheme is that it also provides a node
location scheme for mobile ad-hoc networks with the same characteristics
as our name-independent scheme above, namely optimal (9 + ε) stretch
for lookup, polylogarithmic storage overhead (and degree) at the nodes,
and locality-sensitive node move/join/leave operations. We also show
how to extend our dynamic compact routing scheme to address the more
general problem of devising locality-sensitive Distributed Hash Tables
(DHTs) in dynamic networks of low doubling dimension. Our proposed
DHT scheme also has optimal (9 + ε) stretch, polylogarithmic storage
overhead (and degree) at the nodes, locality-sensitive publish/unpublish
and node move/join/leave operations.

1 Introduction

A routing scheme on the graph G = (V,E) is a distributed algorithm running at
each node that allows any source node to send packets to any destination node
along the links in E. A routing scheme on a metric space (M,d) builds a graph
G = (V,E) whose vertices correspond to points of M by distributedly selecting
the edges (u, v) to be in E (the length of an edge (u, v) is given by d(u, v)), and
routes packets along the selected edges in E. The stretch of a routing path is
� Work supported in part by NSF grant 0830791.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 379–393, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

380 G. Konjevod, A.W. Richa, and D. Xia

its length divided by the metric distance of its two endpoints. The stretch of a
routing scheme is the maximum stretch of a routing path. The space requirement
of a scheme is the maximum size of a routing table at any node. We call a routing
scheme compact if the routing table and packet header size are both polylog(|V |).

We differentiate between labeled and name-independent routing. Labeled rout-
ing allows the scheme designer to label the nodes with additional routing infor-
mation. In name-independent routing, the scheme must use solely the (arbitrary)
original naming.

Compact routing research has recently focused on graphs of low doubling di-
mension [2, 7, 11, 12, 14, 19, 20, 22] (the doubling dimension of a metric space
is the minimum α such that any ball of radius r can be covered by at most
2α balls of radius r/2). That is both due to lower bounds known for general
graphs [3], and the fact that low doubling dimension seems to be a characteristic
shared by many networks of interest, such as Internet-like networks. All of the
existing schemes are static, i.e., they assume that the network is fixed. More-
over, with the exception of [20], they all assume a centralized pre-configuration
procedure for building the routing tables. None of the previous work generalizes
in a straightforward fashion to a dynamic metric scenario.

In this paper we finally cross the bridge from static to dynamic (optimal stretch)
compact routing schemes, thus widening the applicability of such schemes to more
realistic dynamic scenarios. We describe the first fully dynamic name-independent
compact routing scheme with optimal-stretch in metrics of low doubling dimen-
sion. More precisely, our distributed scheme works on a dynamic set of nodes V
in a metric of low doubling dimension α = O(log log∆), and uses routing tables,
label and packet headers of size polylogarithmic in the network size and the nor-
malized diameter. The number of messages, amortized per operation, grows as a
polylogarithmic function of the network size and the normalized diameter. The
supported operations are node-join, leave and move. Finally, the move operation
is locality-sensitive, in that the cost of the movement of a node is proportional to
the distance the node last moved. In the full version of this paper [13], we also de-
scribe an optimal (1 + ε)-stretch dynamic labeled compact routing scheme with
similar bounds as our name-independent scheme.

1.1 Distributed Hash Tables and Mobile Node Location

One important application of dynamic compact routing in metrics is the design of
dynamic Distributed Hash Tables (DHTs) [4, 10, 16, 17, 18, 21] in highly-scalable
peer-to-peer systems. A DHT (also known as object or service location scheme)
is a dictionary data structure implemented in a distributed way, thus allowing
efficient object location (lookup) in the network, where an object may be some
data item (e.g. file), node, or service. Object location is a major challenge for
fully decentralized dynamic peer-to-peer systems, with applications that range
from file sharing, to database query and indexing, to node location in mobile
ad-hoc networks. A typical DHT builds a low-degree overlay network on the set
of participant peers (nodes), and implements the required operations by routing
messages through the resulting overlay topology. Although each peer maintains

Dynamic Routing and Location Services in Metrics 381

only a few physical links, the goal is to form an efficient and versatile overlay
network which can be used for object location.

A full-fledged DHT should support insertion and deletion of objects (by means
of publish and unpublish operations), allow nodes to join and leave the overlay
network, balance the load across participants, and be resilient to failures. A DHT
is said to be locality-aware or locality-sensitive if the cost of its lookup operation
is proportional to the distance between the node initiating the operation and
the closest copy of the object in the network (multiple copies of the same object
may exist and be located at different nodes). Moreover, we say that a DHT also
has locality-sensitive (un)publish if the cost of this operation is proportional to
distance between initiating node and closest copy of the object residing at a
different node, times a polylogarithmic factor. We call the maximum ratio of the
lookup cost to the shortest path distance between the requesting node and the
closest object copy the stretch of the DHT scheme. For scalability and fairness,
it is important to keep the node degree and the storage overhead in a DHT low,
in general polylogarithmic in the network parameters.

Designing DHTs on a network where each node publishes its own name as
an object reduces to compact name-independent routing on the shortest-path
metric induced by the network: the dynamic graph G maintained by the routing
scheme will correspond to the DHT overlay network.

Hence, an immediate application of our dynamic compact routing scheme is
that of locating nodes in mobile ad-hoc networks, given our locality-sensitive
protocols for adapting to node movement in the network, as well as node join
and leave operations. From a rigorous theoretical point-of-view, this problem
had only been studied for limited classes of close-to-uniform node distributions
[1, 8]. Thus, our results imply the existence of constant stretch, polylogarithmic
degree and storage space node location schemes in mobile ad-hoc networks which
adapt near-optimally to node move/join/leave operations in all networks of low
doubling dimension.

Our compact routing scheme also generalizes to DHTs where nodes may hold
multiple (copies of) objects and where the network may contain duplicate copies
of any object. We also achieve constant stretch, polylogarithmic degree and stor-
age space, and locality-sensitive node move/join/leave and publish/unpublish
operations. No DHT with constant stretch has been known before for networks
of low doubling dimension.

2 Our Contributions

In the following statements, ε ∈ (0, 1) is an arbitrary constant and (M,d) is
a metric of doubling dimension α. We use Vt to denote the node set at time
t (if clear from context, we omit the parameter t). Let ∆t be the normalized
diameter of Vt at time t, i.e. ∆t = maxu,v∈Vt d(u, v)/minu,v∈Vt d(u, v). Let ∆ be
the maximum normalized diameter over all time, i.e., ∆ = maxt ∆t. We assume
α = O(log log∆) although our protocols still work correctly for arbitrary α (if
α = ω(log log∆), we no longer meet the polylogarithmic requirements for storage
and packet header size). We assume that each node knows its point in the metric

382 G. Konjevod, A.W. Richa, and D. Xia

and the distance function d(·, ·), and that a point in a metric can be described
by O(α log∆) bits (Note that a ∆ diameter area contais at most ∆O(α) points).

In all of our schemes, we maintain a hierarchical data structure with O(log∆)
levels. In our analysis, we assume that we do not have concurrent updates,
i.e., that at any point in time at most one update operation, due to a node
joining/leaving or moving within the network, is being performed. We guarantee
that (i) for each movement of node u, the move protocol at u is executed at a
single level; and (ii) a level k move protocol will only be executed at u if u has
moved by a distance at least 2k from the point where the last move protocol at
level no less than k was executed at u.

Theorem 1. We maintain a graph G = (V,E) over the metric (M,d) with de-
gree 2O(α) log2 ∆ and achieve a (9+ε)-stretch name-independent routing scheme
on G with (1/ε)O(α) log4 ∆-bit storage per node. Each node move protocol at level
k uses (1/ε)O(α) log4 ∆ · k2 amortized number messages, each traversing a dis-
tance of O(2k/ε) in G. In particular, it uses (1/ε)O(α) log6 ∆ amortized number
of messages for a node to join, or to leave.

Note that stretch 9 is asymptotically optimal for name-independent routing
schemes in low doubling dimension (the lower bound in [11] also extends to
metric routing). A unique feature of our name-independent routing scheme is
that it does not rely on an underlying labeled scheme—as did basically all of the
previous name-independent routing schemes [2, 11, 12, 14].

Another new ingredient in this scheme is an explicit scale-control procedure
which adapts to the dynamic variations in network size and diameter. We per-
form a scale-control procedure every time the number of nodes in the network is
squared or square-rooted or the normalized diameter of the network changes by
at least a constant factor. The amortized number of messages exchanged at each
scale-control procedure is at most a constant with the exception of the case when
the normalized diameter grows by more than a constant factor, in which case
the amortized number of messages is polylogarithmic on the current normalized
diameter. Thus, it follows that the results in Theorems 1 and 2 still hold if we
take ∆ to be the current normalized diameter of the network, rather than the
maximum diameter over time.

Location services. As discussed in the introduction, our dynamic name-
independent compact routing scheme provides an efficient node location service
for mobile ad-hoc networks: this location service has stretch (9 + ε), polylog-
arithmic degree and storage, and uses locality-sensitive node move/join/leave
operations. It works in mobile ad-hoc networks whose shortest-path metric is of
low doubling dimension. The performance guarantees match those in Theorem 1.

DHT. We use our dynamic name-independent routing scheme to provide efficient
dynamic DHTs, as per the theorem below. The same notation is assumed as
before, and additionally, q denotes the maximum number of objects at any node.

Theorem 2. We maintain a graph G = (V,E) with degree 2O(α) log2 ∆ and
achieve a (9 + ε)-stretch DHT on G with (1/ε)O(α) log2 ∆((1/ε)O(α) log2 ∆ + q)-
bit storage per node, (1/ε)O(α) log3 ∆ ·(log2 ∆+q) amortized number of messages

Dynamic Routing and Location Services in Metrics 383

to publish an object, and (1/ε)O(α) log2 ∆ number of messages to unpublish an
object. Each node-move protocol at level k uses ((1/ε)O(α) log2 ∆(log2 ∆ + q) ·
k2 amortized number of messages, each message crossing distance O(2k/ε). In
particular, it takes ((1/ε)O(α) log4 ∆(log2 ∆ + q) amortized number of messages
for a node to join, or to leave. In addition, when multiple copies of an object may
exist, a node publishes an object only up to a level k such that another copy of
the object already exists in the network within distance (1/ε)O(α)2k of the node.

Our results rely on a data structure, which we call skeletal trees, that appears
more suitable for the storage of dynamic information (such as routing loca-
tion information) than prior search trees which resulted from standard network
decompositions (such as search trees that directly mimic a hierarchical r-net
decomposition of the network [2, 11, 12, 14, 19]).

2.1 Related Work

More general than our problem is the problem of designing compact routing
schemes on a graph G(V,E). Hence all compact routing schemes for graphs
whose induced shortest-path metric is of low doubling dimension also apply to
our problem. The basic idea of maintaining a hierarchy of r-nets and searching
for routing information hierarchically is similar to static routing schemes [2, 7,
11, 12, 14, 19, 22]. However, our scheme not only efficiently adapts to dynamic
changes in the node set, but does so while still achieving optimal stretch factors
and polylogarithmic storage, label and packet header size (note however that
the best-known static schemes are scale-free, i.e. independent of the normalized
diameter, while ours is not). Note that our lower bound result in [11] also ex-
tends to metric routing and so excludes name-independent compact routing with
stretch better than 9 in low doubling metrics.

Korman and Peleg [15] considers dynamic routing schemes in general graphs,
where the topology of the underlying graph is fixed and the weights on edges
may change. Their result indicates that the amortized message complexity of
these dynamic updates depends on the local density of the graph. Note routing
schemes in general graphs are not compact [3].

As discuseed in the introduction, the work on DHTs [4, 10, 16] is in fact closely
related to name-independent routing in metrics. There is no known DHT for net-
works of low doubling dimension which also achieves constant stretch. PRR [16]
and LAND [4], at the forefront of DHT schemes for growth-bounded metrics (a
subset of low doubling dimension metrics), fail either in maintaining constant
stretch (even if just in expectation), or in maintaining polylogarithmic memory
overhead when applied to networks of low doubling dimension. In fact, the ex-
pected stretch of PRR can be Ω(nlog 1.5) and LAND may require linear space at
some nodes (See the full paper [13] for counter-examples). Moreover no straight-
forward extension of these schemes would yield a constant-stretch DHT with the
desired properties in low doubling dimension. Hildrum, Krauthgamer, and Ku-
biatowicz [10] provide a (1 + ε)-stretch DHT scheme with storage depending on
local network-growth rate rather than a global bounded growth rate. However,
there exist doubling metrics with unbounded growth rates, such as a clique.

384 G. Konjevod, A.W. Richa, and D. Xia

Awerbuch and Peleg [5], in one of the first papers on the subject, show how
to keep track of mobile users in a distributed network. These results are related
to the later DHT work, but differ in several important aspects. They work with
general graphs, and thus cannot bound stretch below O(log2 n). They treat mo-
bile users in a static network. They only limit total memory usage, and do not
offer per-node bounds. Finally, their results, as ours, are scale-dependent. The
mobile node location schemes in [1, 8] address a more current scenario for mobile
node location: They consider the problem of locating mobile nodes in a mobile
ad-hoc wireless network scenario, albeit for much more restrictive classes of node
distributions. The work in [8] also addresses concurrent updates.

3 Preliminaries

Given a dynamic set of nodes V in a metric space (M,d) of doubling dimension α,
we define a virtual graph G′ = (V ′, E′), and a host mapping φ : V ′ → V that as-
sociates each virtual vertex in V ′ to a host node in V . This virtual graph will give
us the necessary data structures to achieve the results outlined in Theorems 1
and 2. Thus it is natural to define the link set E = {(φ(x), φ(y)) | ∀(x, y) ∈ E′},
and therefore the dynamic graph G = (V,E).

The elements of the metric space M are called points. To avoid confusion
between the dynamic graph G = (V,E) and the virtual graph G′ = (V ′, E′), the
elements of V and E are called nodes and links respectively, while the elements
of V ′ and E′ are called vertices and edges respectively. Each vertex x ∈ V ′ (resp.,
each node u ∈ V) corresponds to a point pnt(x) (resp., pnt(u)) in M .

For any point x ∈ M and r > 0, Bx(r) denotes the ball of radius r around
x, i.e. Bx(r) = {y ∈ M | d(x, y) ≤ r}. In the following, we give the definition of
an (X, r)-net, on which our hierarchical data structures are based. Intuitively,
an (X, r)-net is an r-net drawn from points in M but which is only required to
cover points in a subset X ⊆ M . Hence an r-net is an (M, r)-net.

Definition 3 ((X, r)-net). For any r > 1 and X ⊆ M , a set Y ⊆ M is an
(X, r)-net if (i) the distance of any pair of points y, y′ ∈ Y is at least r, i.e.
d(y, y′) ≥ r; and (ii) for any point x ∈ X there exists y ∈ Y within distance of
r, i.e. |Y ∩Bx(r)| ≥ 1.

We also refer to an (X, r)-net as an r-net covering X . The following is a well-
known property of r-nets, which also extends to (X, r)-nets.

Lemma 1 ([9]). Let Y be an (X, r)-net. For any point x in the metric space

M and r′ ≥ r, we have |Y ∩Bx(r′)| ≤
(

4r′
r

)α

.

We use a distributed hash function to represent each node name which uses
O(α log∆t) bits at any time t—the amortized cost of updating this hash func-
tion when necessary is considered in Section 8. (Note that at each time, we have

Dynamic Routing and Location Services in Metrics 385

log|Vt| = O(α log∆t) because of the α doubling dimension.) We provide node
join/leave/move protocols for nodes joining/leaving/moving within the metric.
For a node to join the network, it must have some (arbitrary) bootstrap node
it can connect to in the network. We assume that a node leaves the network
gracefully, that is, it always performs the node-leave protocol before leaving. If
sudden node departures are common (e.g., systems with high node failures), we
can still achieve the same performance bounds with an extra polylogarithmic
factor in the degree and storage space at each node, if each node also stores a
copy of its routing table at each of its neighbors.

3.1 Virtual Graph

The virtual graph G′ consists of two hierarchies of 2i-nets: the parent hierarchy
X = ∪h

i=0Xi and the cluster header hierarchy Y = ∪h
i=0Yi, where � = �log∆�.

Let the parent set Xi be a 2i-net, for each i ∈ [�]2, and X0 = V . Let the cluster
header set Yi be a 2i-net covering Xi, for each i ∈ [�]. Actually we abuse the
notation slightly; when we say that, for example, Xi is a 2i-net, we mean that its
point set pnt(Xi) ⊆ M is a 2i-net. Note that we treat two vertices from different
levels of Xi or Yi, or from X and Y respectively, as different vertices, even if
their corresponding points in M are identical.

We define three kinds of edge relationships as follows. For each node u ∈ V
and each i ∈ [�], let pi(u) ∈ Xi denote the parent of u at level i, which is
selected by our dynamic protocols and initially has d(pi(u), u) ≤ 2i. For each
cluster header y ∈ Yi and i ∈ [�], let N(y) = Xi ∩By(2i/ε) be the neighborhood
set of y. Since Yi is a 2i-net covering Xi, for i ∈ [�], let hi : Xi → Yi be the
header mapping that maps each x ∈ Xi to a cluster header y = hi(x) ∈ Yi

that covers x, i.e. d(y, x) ≤ 2i. Thus we define edge sets: the parent edges E′
p =

{(pi(u), pi−1(u)) | ∀u ∈ V, ∀i ∈ [�]}, and the cluster edges E′
c = {(y, x) | ∀y ∈

Y, ∀x ∈ N(y)}. Note that edges (hi(x), x) ∈ E′
c, for all x ∈ Xi and i ∈ [�].

For each cluster header y ∈ Yi and i ∈ [�], we organize the node set {u ∈
V | pi(u) ∈ N(y)} to store routing information using a virtual tree CT (y), called
cluster tree. The cluster tree rooted at y consists of root y, edges (y, x) and sub-
trees T (x), called descendant trees, for all x ∈ N(y). A descendant tree T (x), for
each x ∈ Xi and i ∈ [�], consists of a copy of path 〈pi(u) = x, pi−1(u), · · · , p0(u)〉
for each node u ∈ V s.t. x = pi(u); for any nodes u and v with pi(u) = pi(v) = x,
and for each j ≤ i, the vertices pj(u) and pj(v) are merged into one vertex in
T (x) iff pk(u) = pk(v) for all j ≤ k ≤ i. We treat any two distinct vertices u
and v in the descendant tree T (x) as distinct vertices of T (x) even if they corre-
spond to the same node in X — note that the virtual subgraph (X,E′

p), where
E′

p = {(pi(u), pi−1(u)) | ∀u ∈ V, ∀i ∈ [�]}, may not even be a tree. The only node
we directly associate with the original corresponding node in X is the root node
x of T (x).

Thus we have V ′=(X∪Y)
⋃

∪x∈XV (T (x)), and E′=(E′
p∪E′

c)
⋃

∪x∈XE(T (x)).

1 For any integer k ≥ 0, let [k] denote the set {0, 1, · · · , k}.

386 G. Konjevod, A.W. Richa, and D. Xia

3.2 General Idea

The (9+ ε)-stretch routing algorihtm works on the virtual graph G′ which main-
tains a parent hierarchy of Xi (a 2i-net) as similar as in [11] and a cluster header
hierarchy of Yi covering Xi. For each cluster header y ∈ Yi and i ∈ [�], a search
tree ST (y) rooted at y is maintained to provide a query on the routing infor-
mation of nodes in By(2i/ε) with delay cost of 2 · 2i/ε. Given the name of the
destination node v, the routing algorithm searches the routing information of
the destination in search trees ST (y) along the parents pi(u) of the source node
u, for i = 0, 1, · · · , where y = h(pi(u)) is the cluster header of pi(u). Whenever
it finds the routing information of the destination, the algorithm delivers the
message down to the destination with the information on the search trees that
contain the destination. The key idea of the dynamic protocols in Section 4,
which maintain the virtual graph G′ and the hosting mapping φ, is that we
maintain a net structure for the subgraph (X,E′

p), rather than a tree struc-
ture as in [11]. In Section 5, we introduce a novel dynamic tree structure, called
skeletal tree, as our search tree. The main idea behind the skeletal tree is that
it recursively keeps large (in terms of number of nodes) branches of a standard
search tree and omits all the small branches. This makes a skeletal tree less
sensitive to changes in the network topology. In addition, we also show how a
simple locality-sensitive load-balancing procedure can be used to efficiently and
distributedly (re-)balance our dynamic storage structure.

4 Dynamic Protocols

In this section, we describe the protocols that dynamically maintain the virtual
graph (V ′, E′) and the host mapping φ when a node joins, leaves, or moves . We
focus on the node join/leave/move protocols for the subgraph (X ∪ Y,E′

p ∪ E′
c)

and its host mapping, while briefly describing how to also dynamically maintain
each descendant tree. All of the algorithms are described in more detail (wihout
the corresponding descendant trees updates) in the boxes below.

Node Join Protocol (Algorithm 1). When a new node u joins V , for each k ∈ [�],
we either assign an existing vertex x ∈ Xk as pk(u) if ∃x ∈ Xk ∩Bu(2k), or add
a new vertex as pk(u) using the subprocedure AddNewParent(u, k), which also
associates or adds a cluster header y for pk(u).

Node Leave Protocol (Algorithm 2). When an existing node u leaves V , for each
k ∈ [�] with u as the host of pk(u), we either update the host of pk(u) to be v
using subprocedure UpdateHost(u, k, v) if ∃v �= u ∈ V s.t. pk(v) = pk(u), or
delete pk(u) using the subprocedure DeleteParent(u, k).

Node Move Protocol (Algorithm 3). When a node moves, let i be the maximal
index s.t. d(pj(u), u) > 2j+1, ∀j ∈ [i]. Algorithm 3 presents a move operation
of u at level i. For level k from i down to 0, the algorithm decouples the old
parent vertex pk(u), and assigns a new parent vertex pk(u) within Bu(2k). Note
that the for loop of Algorithm 3 is the exact combination of the for loops of
Algorithms 1 and 2.

Dynamic Routing and Location Services in Metrics 387

Thus we have the following Invariant (See the full paper [13] for the proof):

Invariant 4. 1. For any x ∈ X∪Y , pnt(x) will never change during the course
of the protocol, although its host φ(x) may be updated over time.

2. The host φ(x), ∀x ∈ Xi and ∀i ∈ [�], is a node u s.t. pi(u) = x. The host
φ(y), ∀y ∈ Yi and ∀i ∈ [�], is φ(x), where x ∈ Xi is a node that minimizes
d(x, y).

3. Whenever a node u updates pi(u) due to the movement of u, we have d(pi(u), u)
> 2i+1 before the update and d(pi(u), u) ≤ 2i after the update.

4. d(u, pi(u)) ≤ 5 · 2i, for all u ∈ V and i ∈ [�].

We can extend Algorithms 1, 2 and 3 in order to also maintain the descendant
tree T (x), ∀x ∈ Xi and ∀i ∈ [�], which simply consists of a copy of path 〈pi(u) =
x, pi−1(u), · · · , p0(u)〉 for each node u ∈ V s.t. x = pi(u), with some of the
subpaths possibly merged as explained above. In addition, we guarantee that for
each vertex z ∈ T (x) at level j, the host φ(z) is one of the nodes u such that z
is a copy of pj(u).

Algorithm 1. Anewnodeu joinsV
for k = � downto 0 do1:

if ∃x ∈ Xk ∩Bu(2k) then2:

Set pk(u) = x
else AddNewParent(u, k)3:

Procedure AddNewParent(u, k)1:

begin2:

Add a new vertex x with3:

pnt(x) = pnt(u) into Xk, and
set φ(x) = u
Set pk(u) = x and add x to4:

N(y) for all y ∈ Yk ∩Bx(2k/ε)
if ∃y ∈ Yk ∩Bx(2k) then5:

Set hk(x) = y6:

if d(x, y) ≤ d(pk(v), y),7:

where v = φ(y) then
Update φ(y) = φ(x)

else8:

Add a new vertex y with9:

pnt(y) = pnt(u) into Yk,
and set φ(y) = u
Set N(y) = Xk ∩By(2k/ε),10:

and hk(x) = y

end11:

Algorithm 2. A node u leaves V

for k = � downto 0 do1:

if φ(pk(u)) = u then2:

if ∃v �= u ∈ V s.t.3:

pk(v) = pk(u) then
UpdateHost(u, k, v)4:

else DeleteParent(u, k)5:

Procedure UpdateHost(u, k, v)1:

begin2:

Set φ(pk(u)) = v3:

Set φ(y) = v, ∀y ∈ Yk with4:

φ(y) = u
end5:

Procedure DeleteParent(u, k)1:

begin2:

Remove x = pk(u) from Xk3:

for all y ∈ Yk ∩Bx(2k/ε) do4:

Remove x from N(y)5:

if N(y) = ∅ then6:

Remove y from Yk

else if φ(y) = u then7:

Set φ(y) = φ(z), where8:

z ∈ N(y) that
minimizes d(z, y)

end9:

388 G. Konjevod, A.W. Richa, and D. Xia

Algorithm 3. A node u moves at level i
Let i be the maximal index s.t. d(pj(u), u) > 2j+1, ∀j ∈ [i]1:

for k = i downto 0 do2:

if φ(pk(u)) = u then3:

if ∃v �= u ∈ V s.t. pk(v) = pk(u) then4:

UpdateHost(u, k, v)5:

else DeleteParent(u, k)6:

if ∃x ∈ Xk ∩Bu(2k) then Set pk(u) = x7:

else AddNewParent(u, k)8:

5 Search Trees

In order to efficiently search for nodes within CT (y), we maintain a search tree
for each cluster tree CT (y), ∀y ∈ Y . It might be natural to use the cluster trees
themselves as search trees in a static network. However, in order to make the
search relatively insensitive to frequent changes in the network, we maintain
a search tree on a subgraph of its corresponding cluster tree. Intuitively, the
subgraph, called skeletal tree, contains cluster tree branches of large cardinality
but omits small branches.

Definition 5 (Skeletal Tree). Given a cluster tree CT (y), for y ∈ Yi and
i ∈ [�], let CTy(x) denote the subtree rooted at x of CT (y), and let sy(x) denote
the number of leaves in the subtree CTy(x), for each x ∈ CT (y). The skeletal
tree of CT (y), denoted ST (y), is the subgraph of CT (y) including (i) the root
y; and (ii) any edge (x, z) of CT (y), where x ∈ ST (y) and z is a child of x in
CT (y), and sy(z)/sy(x) ≥ 1

b·(i+1) , for b =
(

4
ε

)α. We denote the subtree of ST (y)
rooted at x by STy(x), for any vertex x ∈ ST (y).

Note that the degree of CT (y) is at most b, and its height is i. Thus we have:

Lemma 2. Given any y ∈ Yi and i ∈ [�], the ratio of the number of leaves in
the skeletal tree ST (y) to the number of leaves in the cluster tree CT (y) is at
least (1 − 1

i+1)i > e−1 ≈ 1/2.7.

For each cluster tree CT (y), ∀y ∈ Y , we maintain a search tree on its skeletal
tree ST (y). For each vertex x ∈ ST (y), let Rangey(x) be the minimal interval
that contains all keys stored in STy(x). Then the interval of the root vertex,
Rangey(y), is the whole range of the key space, while for any vertex x ∈ ST (y),
the family {Rangey(z) | z is a child of x} is a partition of Rangey(x). A key k
together with its associated data is inserted into the leaf z of ST (y) such that
k ∈ Rangey(z) along the path from the root y to the leaf z. Let each leaf z of
ST (y) keep its stored keys in a sorted list, denoted Listy(z). Fix any x ∈ ST (y).
We can enumerate keys in Listy(x) by enumerating keys in each list Listy(z),
for all leaves z in STy(x) in a preorder traversal of the subtree.

Dynamic Routing and Location Services in Metrics 389

Given a key k, the search procedure on a search tree ST (y), ∀y ∈ Yi and
∀i ∈ [�], searches along the path from the root to a leaf such that any vertex x
on the path has k ∈ Rangey(x), and returns to the root with the data for k or
with the “not-found” message. It takes 2i messages and 2i+1(1/ε+ O(1)) delay.

As the structure of a search tree changes due to the network changes, we want
to ensure that the load on nodes stays balanced. In addition, if some node’s
load becomes too heavy due to newly inserted keys, we also want to trigger
load balancing across regions with heavy load. The following lemma gives a load
balancing procedure and its performance (the proof occurs in the full paper [13]):

Lemma 3 (Load Balancing). Given a subtree STy(x) with height k of any
search tree ST (y), for y ∈ Y and x ∈ ST (y), there is a load balancing procedure
on STy(x) for keys in Listy(x) that rearranges them in STy(x) so that every leaf
stores an equal number of keys. This takes O(k|Listy(x)|) messages.

Now we consider when to trigger the load-balancing procedure. For each cluster
tree CT (y), ∀y ∈ Y , we maintain a counter ty(x) for each vertex x in the search
tree ST (y): (i) initially ty(x) is set to zero; (ii) whenever a key inserted in the
search tree ST (y) is stored in the subtree STy(x), ty(x) is increased by one;
(iii) when ty(x) reaches s(x), i.e. the number of leaves of T (x), load-balancing
is executed on the subtree STy(x) for the keys in Listy(x), and ty(z) is reset to
zero for all vertices z ∈ STy(x).

5.1 Dynamic Maintenance of Search Trees

Consider the dynamic maintenance of a cluster tree CT (y) for a cluster header
y ∈ Yi and i ∈ [�]. When a node u joins, or moves, the number of leaves of
each subtree CTy(z), ∀z ∈ CT (y), that now contains a copy of the new p0(u)
is increased by 1. This might result in the addition of the branch STy(z) to the
skeletal tree ST (y) at z’s parent x if sy(z)/sy(x) ≥ 1

b·(i+1) and x ∈ ST (y). In
that case, we perform load balancing on the updated subtree STy(x) for the list
Listy(x), which takes k · |Listy(x)| messages, where k is the height of STy(x),
i.e. x ∈ Xk.

When a node u leaves or moves, the number of leaves of each subtree CTy(z),
∀z ∈ CT (y), that loses the copy of p0(u) is decreased by 1, which might result in
the removal of the branch STy(z) from the skeletal tree ST (y) at z’s parent x.
However, we remove the branch STy(z), only if sy(z)/sy(x) < 1

2b·(i+1) , instead
of sy(z)/sy(x) < 1

b·(i+1) . This helps avoid repeated addition and removal of the
same branch with only several nodes joining and leaving. We perform a load-
balancing procedure on the updated subtree STy(x) for the old list Listy(x),
which takes k · |Listy(x)| messages, where k is the height of STy(x), i.e. x ∈ Xk.

The cost of dynamic maintenance is discribed in the following lemma, whose
proof occurs in the full paper [13].

Lemma 4. Given that each node publishes at most q pairs of (key, data), for
each search tree ST (y), ∀y ∈ Yi and i ∈ [�], each leaf stores at most (1/ε)O(α) ·
i2 + O(q) pairs. It takes (1/ε)O(α)i3 · (i2 + q) amortized messages for a node

390 G. Konjevod, A.W. Richa, and D. Xia

joining, or leaving, and (1/ε)O(α)i(i2 + q) · k2 amortized message for a move
operation at level k.

6 Name-Independent Routing

We color each vertex x in X , using a color function c : X → [20α] such that no
two siblings in X share a color, where we say two vertices x, x′ ∈ Xi, ∀i ∈ [�−1],
are sibling if ∃z ∈ Xi+1 s.t. edges (z, x) and (z, x′) are in E′

p. Note that the
number of siblings of any vertex in X is at most 20α by Lemma 1 and Invariant 4.
Thus we can always find a valid color for a newly added vertex.

We maintain a search tree ST (y) for each cluster tree CT (y), ∀y ∈ Y . Let
each node publishes its own name as the key, and store the ID of pi(u) and colors
〈c(pi(u)), c(pi−1(u)), · · · , c(pi−log(1/ε)(u))〉 as the data for the search tree ST (y),
for all y ∈ Yi such that pi(u) ∈ N(y) and for all i ∈ [�]. The ID of pi(u) takes
O(α log(1/ε)) bits, since pi(u) ∈ N(y) and |N(y)| = (1/ε)O(α).

The improved name-independent routing scheme is presented in Algorithm 4.
While it shares the high-level structure of the name-independent routing algo-
rithm in [11], it differs considerably from that algorithm since it does not rely
on an underlying labeled routing scheme. Instead, once we get the color data
of v at level i, we are only able to go down to pi−log(1/ε)(v). Then we recur-
sively get the color data of v at level i − log(1/ε) by querying the search tree
ST (hi−log(1/ε)(pi−log(1/ε)(v))) and go down log(1/ε) levels further.

We can use a similar flavor argument as in [11] to prove the (9 + ε) stretch of
our scheme; Lemma 4 gives the storage and message complexity. Hence we have
the result in Theorem 1.

Algorithm 4. A name-independent routing from u to v, given the key,
i.e. v’s name

for i = 0 to � do1:

y ← hi(pi(u))2:

Go to y, and search on the search tree ST (y) for the key3:

if the data 〈c(pi(v)), c(pi−1(v)), · · · , c(pi−log(1/ε)(v))〉 for the key is found4:

then
Go to pi(v); and break5:

while true do6:

Go down to pi−log(1/ε)(v) from pi(v) using the color data7:

if we reach p0(v) then terminate the algorithm8:

i ← i − log(1/ε)9:

Search on the search tree ST (hi(pi(v))) for the key10:

7 DHT

Our DHT scheme uses the same underlying virtual graph and host mapping as
our name-independent routing scheme, and each node publishes an object with

Dynamic Routing and Location Services in Metrics 391

the object ID as the key and the same routing data as for the name-indepedent
routing scheme. The lookup algorithm is also the same as the routing algorithm
in Algorithm 4. In addition, when multiple copies of an object may exist, we
provide the locality-sensitive publish in the following subsection. Thus we achieve
the results in Theorem 2.

7.1 A Locality Sensitive Pulbish for DHTs

We consider a scenario where multiple copies of an object may exist along the
network. We want to reduce the duplicated information published for each object
while still guaranteeing (9 + ε)-stretch lookup.

The publish algorithm is given in Algrithm 5. For an object at a node u, we
stop publishing at a level j such that there is a search tree ST (y), for some
y ∈ Yj with pj(u) ∈ N(y), that stores an existing entry for the object. For level
i = 0 up to j − 1, we still publish it at all search trees ST (y), ∀y ∈ Yi s.t.
pi(u) ∈ N(y).

Algorithm 5. Publish an object at node u

for i = 0 to � do1:

for each y ∈ Yi s.t. pi(u) ∈ N(y) do2:

if there is an existing entry for the object in the search tree ST (y) then3:

Mark that the object at u is duplicated; and terminate the algorithm4:

Publish the object at the search tree ST (y) with the object ID as the key,5:

and the routing data to u as the data

Note that by the above Algorithm, a search tree contains at most one entry
for each object, no matter how many nodes within the search tree publish the
object. When a node u unpublishes the object at a search tree, it checks whether
there is another node v that stopped publishing the same object at the same
search tree. If it is the case, we notice node v to resume the publish as given in
Algorithm 5. Now we improve the publish algorithm to guarantee (9+ ε)-stretch
lookup. If the if condition at Line 3 of Algorithm 5 is satisfied, we continue
publishing additional log(c/ε) levels as in Line 5, and making these entries as
secondary, where c > 16 is a constant. Thus we have the following lemma (See
the full paper [13] for the proof).

Lemma 5. For any node u ∈ V , any object held at u, and any level j ∈ [�+ 1],
there exists a node v ∈ Bu(2j) that publishes the object at level j.

By a similar argument of our name-independent routing scheme, we guarantee
that the lookup stretch is at most 9 + O(ε). The additional secondary entries
result in at most a constant factor more on the storage of each node.

392 G. Konjevod, A.W. Richa, and D. Xia

8 Scale-Control Procedure

In this section, we provide a scale-control procedure to adapt our schemes to
dynamic network size and diameter. First we discuss how to adapt our schemes
to dynamic changes in the number of nodes in the network. Note that the original
node name might be expressed in logn bits, where n is the total number of
distinct nodes over all time. However the number nt of nodes at the current
time t may be much less than n. We use a universal hash function to hash each
original node name into a value represented by c lognt bits, where c > 2 is a
constant. Carter and Wegman [6] provide such a universal hash function, which
is represented by O(log nt) bits. Whenever the number of nodes in the network
is squared or square-rooted, we update the hash function so that the number of
bits for each hash value increases or decreases by c bits.

Second, we discuss how to adapt our schemes to dynamic changes in the
network diameter. We update the hierarchical level � according to the changes
in the network diameter.

Invariant 6. We preserve two invariants: (i) N(h�(x)) = X�, ∀x ∈ X�; and (ii)
|X�−log 1

ε
| > 1.

Whenever we insert a new vertex into X�, we check whether Invariant 6 (i)
is preserved. The invariant is not preserved iff the diameter increases to 2�/ε.
We recursively define the parent set X�+i ⊆ X�+i−1 to be a 2�+i-net covering
X�+i−1, for i = 1 up to a value j s.t. |X�+j | = 1 (Note that j = log 1

ε + O(1)).
Meanwhile, we add cluster header sets Y�+i = X�+i for i = 1, · · · , j, the cluster
tree and the search tree for each newly added cluster header. Then we update
� = � + j. Note that by Lemma 4, (1/ε)O(α)�6 amortized messages per node in
the current network suffice for the operation.

Whenever we delete a vertex in X�−log 1
ε
, we check whether Invariant 6 (ii) is

preserved. If not, we drop all X�−k and Y�−k for k = 0, · · · , log 1
ε −1, and update

� = � − log 1
ε . Note that a constant amortized number of messages per node in

the current network suffice for the operation.

9 Future Work

There are a number of directions that should be investigated further. Here we
just mention a few. One direction is the control of hot-spot nodes in the case
where the bandwidth of each link is limited. For example, roots of search trees
may suffer from congestion. Second, in this paper, we only consider one topology
change at a time. Can our routing schemes be improved to deal with multiple
concurrent changes of the topology? Finally, it would be interesting to generalize
the compact routing problems to scenarios where not only the node set but the
metric itself may be dynamic (in our scenario we assume that the metric is
static, as for example if we were using an Euclidean metric), e.g. for shortest-
path metrics in dynamic graphs. This seems to be a very challenging task and
might open the way for finding dynamic compact routing schemes in graphs.

Dynamic Routing and Location Services in Metrics 393

References

1. Abraham, I., Dolev, D., Malkhi, D.: LLS: a locality aware location service for
mobile ad hoc networks. In: Proc. 2004 DIALM-POMC (2004)

2. Abraham, I., Gavoille, C., Goldberg, A.V., Malkhi, D.: Routing in networks with
low doubling dimension. In: Proc. 26th ICDCS, p. 75 (2006)

3. Abraham, I., Gavoille, C., Malkhi, D.: On space-stretch trade-offs: Lower bounds.
In: Proc. 18th SPAA, pp. 207–216 (2006)

4. Abraham, I., Malkhi, D., Dobzinski, O.: Land: stretch (1 + ε) locality-aware net-
works for DHTs. In: Proc. 15th SODA, pp. 550–559 (2004)

5. Awerbuch, B., Peleg, D.: Online tracking of mobile users. J. ACM 42(5), 1021–1058
(1995)

6. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. J. Comp. Sys.
Sci. 18(2), 143–154 (1979)

7. Chan, H.T.-H., Gupta, A., Maggs, B.M., Zhou, S.: On hierarchical routing in dou-
bling metrics. In: Proc. 16th SODA, pp. 762–771 (2005)

8. Flury, R., Wattenhofer, R.: MLS: an efficient location service for mobile ad hoc
networks. In: Proc. 7th MobiHoc, pp. 226–237 (2006)

9. Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals and low-
distortion embeddings. In: Proc. 44th FOCS, pp. 534–543 (2003)

10. Hildrum, K., Krauthgamer, R., Kubiatowicz, J.: Object location in realistic net-
works. In: Proc. 16th SPAA, pp. 25–35 (2004)

11. Konjevod, G., Richa, A.W., Xia, D.: Optimal-stretch name-independent compact
routing in doubling metrics. In: Proc. 25th PODC, pp. 198–207 (2006)

12. Konjevod, G., Richa, A.W., Xia, D.: Optimal scale-free compact routing schemes
in networks of low doubling dimension. In: Proc. 18th SODA, pp. 939–948 (2007)

13. Konjevod, G., Richa, A.W., Xia, D.: Dynamic routing and location services in
metrics of low doubling dimension. Technical report, ASU (2008),
http://thrackle.eas.asu.edu/users/goran/papers/dynamic-routing.pdf

14. Konjevod, G., Richa, A.W., Xia, D., Yu, H.: Compact routing with slack in low
doubling dimension. In: Proc. 26th PODC, pp. 71–80 (2007)

15. Korman, A., Peleg, D.: Dynamic routing schemes for general graphs. In: Proc. 33rd
ICALP, pp. 619–630 (2006)

16. Plaxton, C.G., Rajaraman, R., Richa, A.W.: Accessing nearby copies of replicated
objects in a distributed environment. In: Proc. 9th SPAA, pp. 311–320 (1997)

17. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable Content-
Addressable network. In: Proc. 2001 SIGCOMM, pp. 161–172 (2001)

18. Rowstron, A., Druschel, P.: Pastry: scalable, decentraized object location and rout-
ing for large-scale peer-to-peer systems. In: Proc. 18th Middleware (2001)

19. Slivkins, A.: Distance estimation and object location via rings of neighbors. In:
Proc. 24th PODC, pp. 41–50 (2005)

20. Slivkins, A.: Towards fast decentralized construction of locality-aware overlay net-
works. In: Proc. 26th PODC, pp. 89–98 (2007)

21. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able peer-to-peer lookup service for internet applications. In: Proc. 2001 SIG-
COMM, pp. 149–160 (2001)

22. Talwar, K.: Bypassing the embedding: algorithms for low dimensional metrics. In:
Proc. 36th STOC, pp. 281–290 (2004)

http://thrackle.eas.asu.edu/users/goran/papers/dynamic-routing.pdf

Leveraging Linial’s Locality Limit

Christoph Lenzen and Roger Wattenhofer

Computer Engineering and Networks Laboratory (TIK)
ETH Zurich, 8092 Zurich, Switzerland

{lenzen,wattenhofer}@tik.ee.ethz.ch
www.dcg.ethz.ch

Abstract. In this paper we extend the lower bound technique by Linial
for local coloring and maximal independent sets. We show that con-
stant approximations to maximum independent sets on a ring require at
least log-star time. More generally, the product of approximation qual-
ity and running time cannot be less than log-star. Using a generalized
ring topology, we gain identical lower bounds for approximations to min-
imum dominating sets. Since our generalized ring topology is contained
in a number of geometric graphs such as the unit disk graph, our bounds
directly apply as lower bounds for quite a few algorithmic problems in
wireless networking.

Having in mind these and other results about local approximations
of maximum independent sets and minimum dominating sets, one might
think that the former are always at least as difficult to obtain as the lat-
ter. Conversely, we show that graphs exist, where a maximum indepen-
dent set can be determined without any communication, while finding
even an approximation to a minimum dominating set is as hard as in
general graphs.

1 Introduction

The recent hype about multi-hop wireless networks such as ad hoc, mesh, or
sensor networks has sparked an unprecedented interest in distributed network
algorithms, from inside the distributed computing community, and probably
even more from outside. In the last decade reams of new distributed network
algorithms have been proposed. One common theme of these algorithms is lo-
cality: As large networks demand fast and failure resistant algorithms, nodes
should be able to make decisions solely by communicating to neighboring nodes
a bounded number of times. The main challenge is to design local algorithms
which can provide global guarantees. In the center of attention are classic graph
optimization problems such as minimum dominating sets (MDS) and connected
dominating sets, as they provide, e.g., energy-efficient backbone solutions for a
variety of applications.

This abundance of distributed network algorithms is not matched by an
equally rich knowledge about lower bounds and impossibility results. Indeed,
on the lower bound side of locality research there are to the best of our knowl-
edge only two results. One is a technique by Kuhn et al. [13] which proved that

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 394–407, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Leveraging Linial’s Locality Limit 395

many classic graph optimization problems including vertex cover, matching, or
MDS cannot be polylogarithmically approximated in less than

√
log n/ log log n

time. However, the proof requires quite a peculiar “fractal” graph family barely
occuring in real world problems, and certainly not in the world of wireless net-
works. The other is a nifty lower bound by Linial [12] who proved that computing
a 3-coloring or a maximal independent set (MIS) even on a ring topology can-
not be done in constant time. Indeed, using an indistinguishibility argument,
Linial shows that at least Ω(log∗ n) time is necessary on a ring with n nodes.
Linial’s lower bound is extremely weak compared to the one due to Kuhn et al.,
conversely the ring is a topology that may appear in virtually any network. In
fact Linial’s limit also holds on a simple list, hence prohibiting constant time
solutions to the above problems on almost any graph families of practical use.

However, to the theorist’s annoyance, Linial’s bound only holds for 3-coloring
and maximal independent set, leaving important problems as MDS or maximum
indepent set (MaxIS) approximations aside. In fact, the MDS approximation
problem on Linial’s ring topology offers a trivial solution: Simply take every
node and you have a 3-approximation!

The first issue we address in this paper is whether one can extend Linial’s
lower bound towards approximation covering and packing problems such as MDS
or MaxIS, such that the lower bound still holds in natural geometric graphs
existing in wireless multi-hop networks. The weakest geometric graph model is
the unit disk graph (UDG). Our lower bounds hold in UDGs, and henceforth
in all generalizations thereof, e.g. quasi unit disk graphs, unit ball graphs, and
growth-bounded graphs.

We will prove that constant approximations of the MDS problem on a quite
simple family of UDG’s cannot be obtained in o(log∗ n) time. To the best of
our knowledge, this is the first nontrivial lower bound for this problem hold-
ing in UDG’s. More generally, if we allow for an O(f(n))-approximation of the
MDS problem in O(g(n)) time, the product f(n) · g(n) cannot be in o(log∗ n).
Strengthening Linial’s results with respect to MIS, the same bounds are proved
for the MaxIS problem on the ring.1 Like Linial’s limit our results apply to a
very general computational model, where nodes can gather all information about
nodes that are at most k hops away in k rounds, and may perform arbitrary lo-
cal computations. In addition, all bounds still apply when allowing non-uniform
algorithms, i.e., nodes to be aware of the size of the graph.

Finally we answer the question if the local complexities of both problems are
in principle related to each other. In growth-bounded graphs the MIS problem
is as least as hard as approximating a MDS, as a MIS is always a constant factor
MDS approximation. The same order holds for all other known results. However,
as is shown in the last part of the paper, this is not true in general. We will utilize
a simple construction to generate a graph family for which an exact solution to
the MaxIS problem is trivial, but MDS and approximations thereof stay as hard
as in general graphs.

1 Note that—as for 3-coloring—this result trivially generalizes to simple lists, since in
this case most of the nodes observe the same topology as on a ring.

396 C. Lenzen and R. Wattenhofer

2 Related Work

Local algorithms have been a recurring research theme since the 80’s [4, 9, 10,
11,12]. Lately many contributions in this area have been motivated by demands
of wireless ad hoc and sensor networks. The classical minimum dominating set
and maximum independent set type problems are subject to quite a few basic
protocols in such distributed systems. Energy consumption and communication
capacities are directly affected by the quality of the given solutions. As commu-
nication ranges are limited in the systems in consideration, often the family of
bounded growth graphs (or subfamilies thereof, e.g. unit disk graphs) are exam-
ined. Under this assumption the problems seem to be closely related, as a MIS
becomes both a constant MDS and MaxIS approximation.

As a first highlight Luby [10] managed to compute a MIS in O(logn) time,
where n is the number of nodes. The algorithm works on general graphs, how-
ever, in general graphs a MIS is neither a MDS nor a MaxIS approximation. It
took until the beginning of the current century for the first distributed MDS
algorithm non-trivial in both time and approximation to be published [7]. It
yields a O(log∆) approximation in O(logn log∆) time, where n is the number
of nodes and ∆ is the largest node degree. Kuhn et al. followed with the first
constant time algorithm providing a non-trivial approximation ratio [6]. This
result has been improved [5] to the currently best result for general graphs: A
MDS can be approximated up to a factor of O

(
∆1/

√
k log∆

)
in O(k) time.

For a long time the only known lower bound for local algorithms had been
Linial’s Ω(log∗ n) bound on 3-coloring and MIS on the ring. Later Kuhn et al. [13]
opposed the positive results by showing that in general graphs local algorithms
cannot compute a polylogarithmic approximation of several optimization prob-
lems, including MDS, in less than Ω

(√
logn/ log logn

)
time. Independent of and

concurrent to our own results, Czygrinow et al. [15] proved the same lower bound
on MaxIS approximations we show, but using a different argument. In the same
work they present a randomized algorithm achieving an (1 − ε)-approximation
in O(1/ε) time for any ε > 0, showing that in contrast to Lineal’s bound ran-
domization does help.

Since the graphs used in the lower bound proof in [13] are complex and most
unlikely to occur in practice, researchers started studying geometric graph classes
like unit disk graphs (UDG’s) or bounded growth graphs, which are regarded
as abstractions of realistic wireless network topologies. Close-to-optimum deter-
ministic respectively randomized MIS/MDS/MaxIS algorithms were presented
by [3] and [8]. Recently, Schneider et al. [1] devised an algorithm computing a
MIS on bounded growth graphs within O(log∗ n) time. Our lower bounds show
this bound to be tight also with respect to MDS or MaxIS approximations in
bounded growth graphs, as a MIS yields constant approximations to both in this
graph family. In other words, locally approximating a MDS or MaxIS in bounded
growth graphs is not simpler than the special case of ascertaining a MIS.

Restricting the scope further, one can study UDG’s with the nodes given
global position information. In this setting even Linial’s lower bound can be

Leveraging Linial’s Locality Limit 397

beaten (e.g., in [14] a PTAS for the MDS problem is given), as the positions can
be used to partition the problem into efficiently solvable local instances. Thus,
the main difficulty when approximating MDS or MaxIS in UDG’s is to break
the symmetry of the problem, which is reflected in Linial’s Limit.

3 Model and Notation

We model a network as a simple undirected graph G = (V,E), where nodes
represent processors and edges represent bidirectional communication links. Ba-
sically we use Linial’s classic synchronous message passing model, where in one
communication round each node of the network graph can send a message to
each of its direct neighbors. We allow those messages to be of arbitrary size. How-
ever, at the beginning a node v ∈ V is only equipped with information about
its communication channels and a unique identifier of O(log n) size, which for
simplicity we will refer to as v as well. Thus, a node can gather knowledge
about node identifiers and edges between nodes at most k hops away in k com-
munication rounds. Each processor may perform arbitrary local computations.
Thus in this model an algorithm running in at most k rounds can be expressed
as a function of the topology and identifiers of the (inclusive) k-neighborhood
N+

k (v) := {w ∈ V |w is in at most k hops distance of v} of each node v to a re-
sult c(v). For an algorithm to be correct, it is required that combining the choices
c(v) of all v ∈ V yields a feasible global solution of the considered problem.

We modify this standard model by dropping the assumption of uniformity,
i.e., we allow nodes to know the size n := |V | of the graph. Though we need
this in our proofs of the claimed lower bounds, we aquire even stronger results.
We will solely consider symmetric graphs, in the sense that an embedding exists
where for any to nodes v, w ∈ V and any k ∈ IN, the k-neighborhood N+

k (v)
is identical up to translation and rotation to N+

k (w). Hence an Algorithm A
running in at most k rounds on a node v ∈ V will be a function from N+

k (v),
its topology, and n to the set of possible decisions c(v), independent of wether
nodes can gather any local geometric information. This implies that our bounds
also hold, e.g., when we assume an Euclidean embedding of the graph where
nodes can determine the exact distance an edge bridges. As discussed in the
related work section, with global positition information better solutions become
possible.

Definition 1 (Local f-approximations of MaxIS). Given a graph G =
(V,E), an independent set (IS) of G is a set I ⊆ V such that for all v, w ∈ I
we have {v, w} �∈ E. A maximal independent set (MIS) is an independent set
M so that no set S ⊃ M can be an IS. A maximum independent set (MaxIS)
is an IS of maximum cardinality. Let f be a function from IN to [1,∞) ⊂ IR. A
local f -approximation algorithm for the MaxIS problem computes for each node
v ∈ V a choice c(v) ∈ {0, 1} such that I := {v ∈ V | c(v) = 1} is an IS and for
any graph G the inequality f(n)|I| ≥ |M | holds, where M is an arbitrary MIS
of G.

398 C. Lenzen and R. Wattenhofer

Definition 2 (Local f-approximations of MDS). Given a graph G =
(V,E), a dominating set (DS) of G is a set D ⊆ V such that for each v ∈ V \D
a d ∈ D exists with {v, d} ∈ E. A minimum dominating set (MDS) is a DS
of minimum cardinality. Let f be a function from IN to [1,∞) ⊂ IR. A local
f -approximation algorithm for the MDS problem computes for each node v ∈ V
a choice c(v) ∈ {0, 1} such that D := {v ∈ V | c(v) = 1} is a DS and for any
graph G the inequality |D| ≤ f(n)|M | holds, where M is an arbitrary MDS of G.

Definition 3 (Local 3-coloring). A valid 3-coloring of a graph G = (V,E) is
a function c : V → {r, g, b} such that c(v) �= c(w) for all {v, w} ∈ E.

Definition 4 (Unit Disk Graph (UDG)). A Unit Disk Graph (UDG) is a
graph UDG(ι) = (V,E), defined by an injective function ι : V → IR2, where
E = {{v, w} ∈ V × V | 0 < ‖ι(v) − ι(w)‖IR2 ≤ 1}.
Definition 5 (Rn and Rk

n). Define the ring with n nodes as Rn := (Vn, En),
where Vn := {v1, . . . , vn} and En := {{v1, v2}, . . . , {vn−1, vn}, {vn, v1}}. Thus
Rn is simply a circle consisting of n nodes. Denote by Rk

n :=
(
Vn, E

k
n

)
the k-ring

with n nodes, i.e., Rn extended by all edges {vi, vj} with vj ∈ N+
k (vi)\ {vi} with

respect to Rn (see Figure 1).

Proposition 6. Rk
n can be realized as UDG.

Proof. Place all nodes equidistantly on a circle of radius 1
2

(
sin
(

lπ
n

))−1
, as illus-

trated by Figure 1.

Fig. 1. R3
16. Realized as UDG k is controlled by the scaling.

Leveraging Linial’s Locality Limit 399

4 Proofs of the Bounds

For brevity, in the subsequent analysis the term algorithm will refer to determin-
istic, local algorithms in the sense of the model described in the previous section.
We show the claimed lower bounds by means of a reduction of local 3-coloring
of the ring. For this problem Linial [12] proved the following bound:

Theorem 7 (Lower bound for local 3-coloring of the ring). There is no
deterministic local algorithm 3-coloring the ring Rn requiring less than 1

2 (log∗ n−
1) communication rounds.

Proof. The proof in [9] applies, as it also holds when we assume the nodes to
know the size of the network n.

Naor proved an analogous result for randomized algorithms [2]. We will need the
following notion:

Definition 8 (σ(n)-alternating algorithm). Suppose A is an algorithm op-
erating on Rn which assigns each node vi ∈ Vn a value c(vi) ∈ {0, 1}. We
call A σ(n)-alternating, if the length k of any monochromatic sequence c(vi) =
c(vi+1) = . . . = c(vi+k), indices taken modulo n, is smaller than σ(n).

If a σ(n)-alternating algorithm is given, one can easily obtain a 3-coloring of the
ring Rn in O(σ(n)) time:

Lemma 9 (3-coloring the marked ring). Given a σ(n)-alternating algo-
rithm A running in O(σ(n)) rounds, a 3-coloring of the ring can be computed in
O(σ(n)) rounds.

Proof. Recall that we identify nodes with their identifier, thus we can compare
two nodes v, w ∈ Rn. We define the following algorithm for 3-coloring the ring
Rn nodewise for each node v ∈ Vn:

1. Run A. Let d(v) ∈ {0, 1} denote the result of this run.
2. Find a pair of neighboring nodes {w1, w2} with d(w1) �= d(w2) which is

closest to v. If v ∈ {w1, w2}, set c(v) := b, if d(v) = 0, and c(v) := r
otherwise. Else denote by δ the distance to the closer node in {w1, w2},
w.l.o.g. w1, and set c(v) := c(w1) if δ ∈ 2IN and c(v) := c(w2) else.

3. If v has a neighbor w with c(v) = c(w) and v > w, set c(v) := g.
4. If v has a neighbor w with c(v) = c(w) = g and v > w, set c(v) to the color

none of the neighbors of v has.
5. Return c(v).

Clearly, the running time of this algorithm is in O(σ(n)), as by assumption not
more than σ(n) consecutive nodes take the same decision d(v) when running A.

We now show that it yields a valid 3-coloring of Rn. In step 2 at most one
of the neighbors of any node v ∈ Vn may take the same choice, as each node
chooses different from one of its neighbors. In step 3 from each pair of neighbors
with the same color one chooses g. Thus only neighbors both colored with g may
remain. These will be resolved in step 4, as nodes to the right and left of a pair
colored by g both must have a different color than g. ��

400 C. Lenzen and R. Wattenhofer

Fig. 2. An element of Sn displayed as part of a labeling of the ring. A “ ? ” indicates that
the identifier or output of the corresponding node is unspecified respectively unknown.
Independent of the identifiers left of v1 and right of vg(n)+2σ(n) all nodes vi from vg(n)+1

to vg(n)+σ(n) will compute c(vi) = 0.

To establish our lower bounds, we construct σ(n)-alternating algorithms out of
assumed approximation algorithms for MaxIS and MDS, respectively.

Lemma 10 (Modified MaxIS approximation). Suppose an f -approxima-
tion algorithm A for the MaxIS problem on the ring Rn running in at most
g(n) ≥ 1 rounds is given, where we have f(n)g(n) ∈ o(log∗ n). Then an o(log∗ n)-
alternating algorithm A′ requiring o(log∗ n) communication rounds exists.

Proof. As stated in the last section, we identify nodes with their identifiers. Thus,
the input of A when executed on Rn is a sequence of identifiers (v1, . . . , vn),
where no identifier occurs twice. Recall that for a single node vi ∈ Vn, i ∈
{1, . . . , n}, we can express the output c(vi) of A as a function of n and the
subsequence of identifiers

(
vi−g(n), . . . , vi, . . . , vi+g(n)

)
, where indices are taken

modulo n. Set σ(n) := 10f(n)g(n) and define

Sn :=
{(

v1, . . . , vσ(n)+2g(n)

)
| ∀i ∈ {g(n) + 1, . . . , σ(n) + g(n)} : c(vi) = 0} , (1)

i.e., exactly the set of sequences preventing that A is σ(n)-alternating (see also
Figure 2). Note that due to the preceeding observations Sn is well defined, al-
though the choices of the leading and trailing g(n) many nodes may depend on
further identifiers.

For n fixed we construct a sequence of identifiers for Rn. Initially we choose
an arbitrary subsequence s ∈ Sn and assign the identifiers of s to v1, . . . , v|s|.
Now suppose we already assigned labels to the nodes v1, . . . , vj . If there exists
a sequence s ∈ Sn that can be appended to v1, . . . , vj without duplicating an
identifier, we do so. If no further sequence fits, we add n− j arbitrary identifiers
not yet present in v1, . . . , vj to complete the labeling (v1, . . . , vn) of Rn. Observe
that each sequence from Sn added implies that at least σ(n) additional nodes
will compute c(v) = 0 when A is run on the constructed labeling.

Assume for contradiction, that for arbitrarily large n it is possible to label
Rn as described in the preceding paragraph, with at least n − n

5f(n) identifiers
stemming from sequences out of Sn. By construction at least

σ(n)n
σ(n) + 2g(n)

− n

5f(n)
(2)

Leveraging Linial’s Locality Limit 401

many nodes compute c(v) = 0 when A is passed such a labeling as input. Thus
we have

|I| ≤ n−
(

σ(n)n
σ(n) + 2g(n)

− n

5f(n)

)
≤ 2n

5f(n)
, (3)

where I = {v ∈ Vn | c(v) = 1} denotes the resulting independent set. Since
the size of a MaxIS of Rn is

⌊
n
2

⌋
, this contradicts the assumption that A is an

f -approximation algorithm to the MaxIS problem on Rn.
Thus, an n0 ∈ IN must exist, such that for all n ≥ n0 we may choose a

maximal set of disjoint sequences {s1, . . . , sjn} ⊂ Sn such that∣∣∣∣∣Id(n) \
(

jn⋃
i=1

si

)∣∣∣∣∣ ≥ n

5f(n)
, (4)

where Id(n) is the set of admissible identifiers for nodes on Rn. In other words,
at least n

5f(n) identifiers remain which cannot form a further sequence from
Sn. W.l.o.g. we may restrict Id(n) such that |Id(n)| = n, as A must yield
correct results for any admissible set of identifiers. Hence, by setting n′ :=
max{n0, 5f(n)n}, we can define an injective relabeling function rn : Id(n) →
Id(n′) such that no sequence s ∈ Sn′ is completely contained in the image of rn.

The algorithm A′ claimed to exist now consists of redefining all identifiers by
rn and simulating a run of A on the modified instance, where instead of n the
algorithm is given n′ as the number of nodes. As g(n) ≤ g(n)f(n) ∈ o(log∗ n),
the running time g(n′) of A′ is certainly in o(log∗ n) as well. Since A computes an
IS, no two consecutive nodes are assigned c(v) = 1.2 By definition no sequence
from Sn′ is contained completely in the image of rn, hence at most σ(n′) − 1 ∈
O(f(n′)g(n′)) ⊂ o(log∗ n′) = o(log∗ n) consecutive nodes compute c(v) = 0.
Thus A′ is o(log∗ n)-alternating as desired. ��
We will need a similar result for the MDS approximation problem. In a ring
topology choosing every node is a trivial, yet constant MDS approximation.
Hence we will resort to the slightly more complex topology of Rk

n, which still is
present in UDG’s.

Lemma 11 (Modified MDS approximation). Assume an f -approximation
algorithm A for the MDS problem on UDG’s running in at most g(n) ≥ 1 rounds
is given, where f(n)g(n) ∈ o(log∗ n). Then an o(log∗ n)-alternating algorithm A′

requiring o(log∗ n) communication rounds exists.

Proof. We will extend the proof of Lemma 10. In a simple ring topology choosing
all nodes is a constant MDS approximation. This is not true in Rk

n. Set σk(n) :=
max{f(n), k}g(n) and define

Sk
n :=

{(
v1, . . . , vσk(n)+2kg(n)

)
| ∀i ∈ {kg(n) + 1, . . . , σk(n) + kg(n)} : c(vi) = 1 on Rk

n

}
, (5)

2 Independence is a local property, which is only affected by the input of A at a node
v and its neighbors, i.e., the identifiers of the g(n) + 1-neighborhood of v, and n.
Since any subsequence of identifiers (vi−g(n)−1, . . . , vi, . . . , vi+g(n)+1) ⊂ Id(n′) may
occur on Rn′ , the output of A′ must still form an IS.

402 C. Lenzen and R. Wattenhofer

i.e., the set of sequences of identifiers yielding σk(n) consecutive nodes taking the
decision c(v) = 1 when A is executed on Rk

n, where the choices of the leading and
trailing kg(n) many nodes may also depend on identifiers not in the considered
sequence. As the decision of any node v depends only on identifiers of nodes in
N+

kg(n)(v), Sk
n is well defined.

We make a case decision. The first case is that a k0 ∈ IN exists allowing a
similar relabeling procedure as in Lemma 10. More precisely, k0, n0 ∈ IN exist,
such that for n ≥ n0 at most n

2 identifiers can simultanuously participate in
disjoint sequences from Sk0

n in a valid labeling of Rk0
n . Thus, by setting n′ :=

max{n0, 2n}, we can define A′ to simulate a run of A on Rk0
n′ and return the

computed result. Each simulated round of A will require k0 communication
rounds, thus the running time of A′ is bounded by k0g(n′) ∈ o(log∗ n). At most
2k0 consecutive nodes will compute c(v) = 0, as A determines a DS, and by
definition of Sk0

n′ at most σk0(n′) − 1 ∈ O(f(n′)g(n′)) ⊂ o(log∗ n′) = o(log∗ n)
consecutive nodes take the decision c(v) = 1.

The second case is that no pair k0, n0 ∈ IN as assumed in the first case exists.
Similar to the proof of Lemma 10, we construct a labeling of Rk

n with at least
n
2 many identifiers stemming from sequences in Sk

n . Running A on this instance
will yield at least

σk(n)n
2(σk(n) + 2kg(n))

≥ n

6
∈ Ω(n) (6)

many nodes choosing c(v) = 1. On the other hand, varying k, we get minimum
dominating sets with O

(
n
k

)
many nodes. Define nk to be the minimum n, such

that it is possible to construct labelings of Rk
n with n

2 identifiers from sequences
in Sk

n . Since A is an f -approximation algorithm to the MDS problem on Rk
n, we

conclude
f(nk) ∈ Ω(k) . (7)

We choose k(n) minimum such that n′ := 2n < nk(n), allowing to define a
injective relabeling function rn : Id(n) → Idk(n)(n′), such that no element of
Sk(n)

n′ lies completely in the image of rn. Here Id(n) and Idk(n) denote the sets
of admissible identifiers of Rn and Rk

n, respectively, where w.l.o.g. we assume
|Id(n)| = |Idk(n)| = n. We define A′ to be the algorithm operating on Rn, but
returning the result of a simulated run of A on R

k(n)
n′ , where we relabel all nodes

v ∈ Rn by rn(v). By definition of k(n) we have nk(n)−1 ≤ n′. Together with (7)
this yields

k(n) = (k(n) − 1) + 1 ∈ O(f(nk(n)−1) + 1) = O(f(n′)) = O(f(n)) , (8)

since f grows asymptotically sublinear. Hence we can estimate the running time
of A′ by k(n)g(n′) ∈ O(f(n)g(n)), using that g grows asymptotically sublinear
as well.

Since the simulated run of A yields a dominating set, at worst 2k(n) ∈
O(f(n)) ⊆ O(f(n)g(n)) many consecutive nodes may compute c(v) = 0. By
the definitions of Sk

n and rn at most sk(n)(n′) − 1 < max{f(n′), k(n)}g(n′) ∈
O(f(n)g(n)) consecutive nodes may take the decision c(v) = 1. Thus A′ is
o(log∗ n)-alternating, as claimed. ��

Leveraging Linial’s Locality Limit 403

The two main theorems follow immediately from the preceding statements.

Theorem 12 (Lower bound on MaxIS approximations). No f -approxi-
mation algorithm to the MaxIS problem on the ring Rn running in at most
g(n) ≥ 1 communication rounds with f(n)g(n) ∈ o(log∗ n) exists.

Proof. Assuming the contrary, we can combine Lemma 10 and Lemma 9 to
construct an algorithm contradicting Theorem 7.

Theorem 13 (Lower bound on MDS approximations on UDG’s). No
f -approximation algorithm to the MDS problem on UDG’s running in at most
g(n) ≥ 1 time with f(n)g(n) ∈ o(log∗ n) exists.

Proof. Assuming the contrary, we can combine Lemma 11 and Lemma 9 to
construct an algorithm contradicting Theorem 7.

Note that g(n) ≥ 1 is just a formal restriction. If g(n) = 0 for infinitely many n,
the approximation ratio f must be trivial, i.e., f(n) �∈ o(n).

5 MaxIS Graphs

In this section we address the question wether the difficulties of MaxIS and
MDS approximations are related in general. As shown in Theorem 12, on a ring
topology one cannot compute a constant MaxIS approximation in constant time.
Conversely, for MDS this is trivially possible by taking all nodes to be in the DS.
On UDG’s3 a MaxIS, or even any maximal independent set, is a constant MDS
approximation, since the number of independent neighbors of a node is bounded
by a constant. Schneider et al. [1] showed how a maximal independent set can be
computed on UDG’s in O(log∗ n) time. As direct consequence of Theorem 7 this
bound is tight, as a maximal independent set on a ring allows for a 3-coloring
in a single round. Moreover, Theorem 13 shows this bound to be tight also with
respect to MDS approximations on UDG’s.

In the light of these results one might expect that approximating MaxIS is
always at least as difficult as approximating MDS. On the contrary, we will now
present an example showing that finding a MaxIS can be trivial (see Lemma 15),
while computing a MDS remains as hard as in general graphs (see Lemma 16).
Towards this end, we construct a family of graphs for which an exact solution
for the MaxIS problem can be given without any communication and without
knowing the problem size n. Conversely, MDS approximation on general graphs
reduces to MDS approximation on this graph family. Kuhn et al. [13] showed that
this problem cannot be approximated well in less than Ω

(√
log n/ log log n

)
time. The graph class examined is constructed for this special purpose, being of
no practical relevance. Indeed, the solution to the MaxIS problem will already
be encoded in the local topology of the graph. The main impact is that the
(local) complexities of MDS and MaxIS type problems depend strongly on the
considered types of graphs.
3 More generally, on bounded growth graphs.

404 C. Lenzen and R. Wattenhofer

Definition 14 (MaxIS Graphs). Given an arbitrary graph G = (V,E), we
construct a new graph H = (VH , EH) from G. We define VH := V1∪V2∪V3∪V4,
where the Vi, i ∈ {1, 2, 3, 4}, are four disjoint copies of V . Denote by vi ∈ Vi the
nodes that are copies of a node v ∈ V . The edge set connects all nodes v1 ∈ V1

and v2 ∈ V2 to all wi that are copies of some w ∈ N+
1 (v), i.e.,

EH :=
{
{vi, wj} |w ∈ N+

1 (v), i ∈ {1, 2}, j ∈ {1, 2, 3, 4}, vi �= wj

}
. (9)

Thus, the subgraphs induced by V1 and V2 are copies of G, and each v3 ∈ V3

(and v4 ∈ V4, respectively) is connected exactly to both copies of N+
1 (v) in V1

Fig. 3. Overview of the structure of a MaxIS Graph H constructed out of some graph
G = (V, E). The displayed vertices and egdes form the subgraph S of H induced by
the copies of two nodes v, w ∈ V , where {v, w} ∈ E. This subgraph is the complete
graph without any edges between two nodes both in V3∪V4. Thus the degree of a node
in V1 ∪ V2 with respect to S equals the one of a node in V1 ∪ V2 plus three.

Leveraging Linial’s Locality Limit 405

and V2. An illustration is given in Figure 3. Any graph that can be constructed
in this way is a MaxIS Graph.

We will proof our statements by giving a simple criterion allowing to compute a
MaxIS on this class of graphs in zero rounds, and a local reduction of the general
MDS approximation problem to MaxIS Graphs.

Lemma 15 (Local computation of a MaxIS on MaxIS Graphs). The
set {v ∈ V | |N+

1 (v)|mod 2 = 1} is a MaxIS for any MaxIS Graph. It can be
determined locally, without communication.

Proof. We use the notation of Definition 14. The set of nodes I := V3 ∪ V4

is independent by construction. A node vi ∈ Vi, i ∈ {3, 4}, has 2|N+
1 (v)|

many neighbors in V1 ∪ V2, hence |N+
1 (vi)| is odd. On the other hand, for a

node vi ∈ Vi, i ∈ {1, 2}, we have |N+
1 (vi)| = 4|N+

1 (v)|, which is even. Thus
I = {v ∈ V | |N+

1 (v)|mod 2 = 1} holds. Moreover, since the sequence of nodes
(v1, v3, v2, v4) forms a cycle, at most two of them may participate in an IS, thus
I is a MaxIS.

As nodes know the number of their neighbors, each node can determine wether
it is in I or not without any communication. ��

Lemma 16 (Reduction of MDS to MDS on MaxIS Graphs). We use the
notation of Definition 14. Given an f -approximation algorithm A to the MDS
problem on MaxIS Graphs running in g(n) time, we can define the following
algorithm A′ operating on an arbitrary graph G:

1. Simulate a run of A on the MaxIS Graph H constructed from G.
2. Return for each node v ∈ V c(v) = 1 if A computed c(vi) = 1 for some

i ∈ {1, 2, 3, 4}, and c(v) = 0 else.

Algorithm A′ is an f(4n)-approximation algorithm to the MDS problem running
in g(4n) rounds. Up to constants it is as efficient as the original one, i.e., it is
an O(f(n)) approximation running in O(g(n)) time.

Proof. Since A computes a MDS of H , Algorithm A′ will return a MDS of G: If
v1 ∈ V1 is covered by wi ∈ Vi for some i ∈ {1, 2, 3, 4}, w will cover v in G. Thus
A′ works correctly.

If M is a MDS of G, the copy M1 := {m1 |m ∈ M} is a MDS of H . Conversely,
any node v1 ∈ V1 can only be covered by copies of nodes w ∈ N+

1 (v), hence the
sizes of minimum dominating sets of G and H coincede. Thus, if A is an f(n)-
approximation algorithm to the MDS problem on MaxIS Graphs, A′ will be an
f(4n)-approximation algorithm to the MDS problem on general graphs. Since
any MDS approximation algorithm will trivially reach at least an approximation
ratio of n, A′ is an O(f(n))-approximation.

Having the nodes of G simulate a run of A on H does not require any additional
communication rounds. As we have no restrictions to message sizes, we can simply
append the information which edge in H is used to all communications, while each
node v ∈ V simulates vi, i ∈ {1, 2, 3, 4}. This is a simple task, as the neighbour-
hood of each vi is determined solely by N+

1 (v), and we have no restrictions to local

406 C. Lenzen and R. Wattenhofer

computations. Hence, if A runs in g(n) time, A′ will require at most g(4n) time
to complete. As the diameter of any graph is bounded by the number of nodes n,
any algorithm in our computational model can be realized using at most n com-
munication rounds. Thus A′ needs at worst O(g(n)) rounds to complete. ��

Finally we conclude that the local complexities of the MaxIS and MDS approx-
imation problems are incomparable.

Theorem 17. Assume an f1-approximation algorithm to the MaxIS problem
and an f2-approximation algorithm to the MDS problem, both on a family of
graphs F , are given. Denote by g1(n) ≥ 1 and g2(n) ≥ 1 bounds for their running
times. Furthermore assume the products p1(n) := f1(n) · g1(n) and p2(n) :=
f2(n) · g2(n) are minimum, i.e., the algorithms are optimum in this sense. Then
neither p1 ∈ O(p2) nor p2 ∈ O(p1) holds independent of F .

Proof. The lower bound of Kuhn et al. [13] and Lemma 16 show that on MaxIS
Graphs we have p2 ∈ Ω

(√
log n/ log log n

)
, while Lemma 15 yields p1 ∈ O(1).

Conversely, for a ring topology we trivially have p2 ∈ O(1), while Theorem 12
gives p1 �∈ o(log∗ n), implying p1 �∈ O(1) = O(p2). ��

6 Conclusion

In this paper we extended Linial’s lower bound to the well-known MDS and
MaxIS problems on UDG’s. The product between running time and approxima-
tion quality of any deterministic local algorithm for these problems cannot be
in o(log∗ n).

In a couple of graph classes, especially geometric graphs, a MIS is a special case
of the MDS approximation problem. Consequently one might believe that coming
up with a distributed algorithm for MIS is harder, or at least not simpler, than
for MDS. In the second part of the paper we showed that this is not always true.
The constructed MaxIS graphs demonstrate that the two problems are generally
incomparable: In this graph class a MaxIS can be “computed” locally without
any communication, while any MDS approximation algorithm on MaxIS graphs
could be used to solve the problem on general graphs. Adding one more tessera
to the picture, the extension of Linial’s lower bound to the MaxIS approximation
problem holds on virtually any graph class.

We hope that our findings will help to get a better understanding of dis-
tributed algorithms, eventually permitting a classification of local problems re-
flecting their complexity.

References

1. Schneider, J., Wattenhofer, R.: A Log-Star Distributed Maximal Independent Set
Algorithm for Growth-Bounded Graphs. In: Proc. Twenty-Seventh Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing (2008)

2. Naor, M.: A Lower Bound on Probabilistic Algorithms for Distributive Ring Col-
oring. SIAM Journal on Discrete Mathematics 4(3), 409–412 (1991)

Leveraging Linial’s Locality Limit 407

3. Kuhn, F., Moscibroda, T., Wattenhofer, R.: On the Locality of Bounded Growth.
In: Proc. 24th ACM Symposium on the Principles of Distributed Computing (2005)

4. Cole, R., Vishkin, U.: Deterministic Coin Tossing with Applications to Optimal
Parallel List Ranking. Information and Control 70(1), 32–53 (1986)

5. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The Price of Being Near-Sighted. In:
Proc. 17th ACM-SIAM Symposium on Discrete Algorithms (2006)

6. Kuhn, F., Wattenhofer, R.: Constant-Time Distributed Dominating Set Approx-
imation. In: Proc. 22nd ACM Symposium on the Principles of Distributed Com-
puting (2003)

7. Jia, L., Rajaraman, R., Suel, T.: An Efficient Distributed Algorithm for Construct-
ing Small Dominating Sets. Distributed Computing 15(4), 193–205 (2002)

8. Gfeller, B., Vicari, E.: A Randomized Distributed Algorithm for the Maximal In-
dependent Set Problem in Growth-Bounded Graphs. In: Proc. 26th annual ACM
symposium on Principles of distributed computing (2007)

9. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, USA (2000)

10. Luby, M.: A Simple Parallel Algorithm for the Maximal Independent Set Problem.
SIAM J. Comput. 15(4), 1036–1055 (1986)

11. Naor, M., Stockmeyer, L.: What Can Be Computed Locally? SIAM J. Com-
put. 24(6), 1259–1277 (1995)

12. Linial, N.: Locality in Distributed Graph Algorithms. SIAM J. Comput. 21(1),
193–201 (1992)

13. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What Cannot Be Computed Locally.
In: Proc. 23rd annual ACM symposium on Principles of distributed computing
(2004)

14. Wiese, A., Kranakis, E.: Local PTAS for Independent Set and Vertex Cover in
Location Aware Unit Disk Graphs. In: Proc. 4th IEEE/ACM International Con-
ference on Distributed Computing in Sensor Systems (2008)

15. Czygrinow, A., Hańćkowiak, M., Wawrzyniak, W.: Fast distributed approxima-
tions in planar graphs. In: Proc. 22nd International Symposium on Distributed
Computing (2008)

Continuous Consensus with Failures and Recoveries

Tal Mizrahi and Yoram Moses

Department of Electrical Engineering, Technion, Haifa 32000 Israel
deweastern@yahoo.com, moses@ee.technion.ac.il

Abstract. A continuous consensus (CC) protocol maintains for each process i
at each time k an up-to-date core Mi[k] of information about the past, so that the
cores at all processes are guaranteed to be identical. This is a generalization of
simultaneous consensus that provides processes with the ability to perform simul-
taneously coordinated actions, and saves the need to compute multiple instances
of simultaneous consensus at any given time. For an indefinite ongoing service
of this type, it is somewhat unreasonable to assume a bound on the number of
processes that ever fail. Moreover, over time, we can expect failed processes to
be corrected. A failure assumption called (m,t) interval-bounded failures, closely
related to the window of vulnerability model of Castro and Liskov, is considered
for this type of service. The assumption is that in any given interval of m rounds,
at most t processes can display faulty behavior.

This paper presents an efficient CC protocol for the (m,t) bound in the crash
and sending omissions failure models. A matching lower bound proof shows that
the protocol is optimal in all runs (and not just in the worst case): For each and
every behavior of the adversary, and at each time instant m, the core that our pro-
tocol maintains at time m is a superset of the core maintained by any other correct
CC protocol under the same adversary. The lower bound is a significant general-
ization of previous proofs for common knowledge, and it applies to continuous
consensus in a wide class of benign failure models, including the general omis-
sions model, for which no similar proof existed.

Keywords: Agreement problem, Consensus, Continuous Consensus, Distributed
algorithm, Early decision, Common Knowledge, Lower bound, Modularity, Pro-
cess crash failure, Omission failures, Process recovery, Round-based computation
model, Simultaneity, Synchronous message-passing system.

1 Introduction

Fault-tolerant systems often require a means by which independent processes or pro-
cessors can arrive at an exact mutual agreement of some kind. As a result, reaching
consensus is one of the most fundamental problems in fault-tolerant distributed com-
puting, dating back to the seminal work of Pease, Shostak, and Lamport [17]. In the
first consensus algorithms, decisions were reached in the same round of communica-
tion by all correct processes. It was soon discovered, however, that allowing decisions
to be made in different rounds (“eventual agreement”) at different sites gives rise to
simpler protocols in which the processes can often decide much faster than they would
if we insist that decisions be simultaneous [5]. There are cases in which eventual agree-
ment often suffices: In recording the outcomes of transactions, for example. In other

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 408–422, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Continuous Consensus with Failures and Recoveries 409

cases, however, a simultaneous decision or action is often required or beneficial: E.g.,
when one distributed algorithm ends and another one begins, and the two may interfere
with each other if executed concurrently. Similarly, many synchronous algorithms as-
sume that the starting round is the same at all sites. Finally, there are cases in which
the responses in a given round to external requests at different sites for, say resource
allocation, must be consistent. A familiar application that assists in many of these is the
Firing Squad problem [1, 4].

Motivated by [5, 9], the problem of reaching simultaneous consensus was shown in
[7, 13] to require the correct processes to attain common knowledge about the existence
of particular initial values. By computing common knowledge efficiently in the crash
failure model, they designed protocols for simultaneous consensus that are optimal in
all runs, and not just in the worst case: In every execution, they decided as fast as any
correct protocol could, given the same behavior of the adversary.1 Finally, they also ob-
served that computing facts that are common knowledge, in essentially the same manner,
can solve other simultaneous coordination problems such as the firing squad problem.
While [7] considered crash failures, [13] extended the analysis of common knowledge to
omission failure models. They designed an efficient protocol for computing all facts that
are common knowledge at a given point, and used this to derive optimal protocols for a
wide class of simultaneous choice problems. More recently, this work was further gen-
eralized in [11], where a general service called Continuous Consensus (CC) that serves
to support simultaneous coordination was defined.2 It is described as follows.

Suppose that we are interested in maintaining a simultaneously consistent view re-
garding a set of events E in the system. These are application-dependent, but will typi-
cally record inputs that processes receive at various times, values that certain variables
have at a given time, and faulty behavior in the form of failed or inconsistent message
deliveries. A (uniform)3 continuous consensus protocol maintains at all times k ≥ 0 a
core Mi[k] of events of E at every site i. In every run of this protocol the following
properties are required to hold, for all processes i and j.

Accuracy: All events in Mi[k] occurred in the run.
Consistency: Mi[k] = Mj[k] at all times k.
Completeness: If e occurs at a process j at a point at which j is nonfaulty, then e ∈

Mi[k] must hold at some time k.

The continuous consensus problem generalizes many problems having to do with si-
multaneous coordination. Using the core of a CC primitive, processes can indepen-
dently choose compatible actions in the same round. Thus, the firing squad problem [4]

1 We think of the adversary as determining the pattern of initial votes and the pattern in which
failures occur, in each given execution of the protocol. The performance of a protocol P can
be compared to that of P′ by looking at respective runs in which the adversary behaves in the
same way.

2 A different problem, by the same name, was independently defined by Dolev and Rajsbaum.
Sometimes called Long-lived consensus, it concerns maintaining consensus on a single bit in
a self-stabilizing fashion [6].

3 In [11] we defined both non-uniform and a uniform variants of continuous consensus. In the
(m,t) model processes can fail and recover repeatedly, so we focus on the uniform variant, in
which all processes maintain the same core at all times.

410 T. Mizrahi and Y. Moses

can immediately be implemented, but so can, say, consistent resource allocation, mu-
tual exclusion, etc. In a world in which distributed systems increasingly interact with
an outside world, a CC protocol facilitates the system’s ability to present a consistent
view to the world.

The consensus problem has rightfully attracted considerable attention in the last
thirty years, since it is a basic primitive without which many other tasks are unattain-
able. Continuous consensus offers a strict generalization of (simultaneous) consensus:
While consensus is concerned with agreeing on a single bit, continuous consensus al-
lows decisions to be taken based on a broader picture involving a number of events of
interest. In particular, it provides the processes with Byzantine Agreement regarding
the values of all relevant external inputs that do or do not arrive at the various processes
(where relevance is determined by E). It thus eliminates the need for initiating a sepa-
rate instance of a consensus protocols for each of the facts of interest, and provides the
same benefits at a lower cost.

Popular failure assumptions bound the overall number of failures that may occur
during the execution of a protocol [17]. Clearly, if the adversary can cause all of the
processes to fail (by crashing, say) then the best protocols cannot be expected to achieve
much. Typically, a process is considered faulty in a given run if it ever displays incorrect
behavior during the course of the run. Such assumptions are reasonable for applications
that are short-lived. For applications such as continuous consensus, however, which is
an ongoing service that should operate indefinitely, expecting (or assuming) that certain
processes remain correct throughout the lifetime of the system may be overly optimistic.
Conversely, it would also be natural to expect various failed processes to be repaired
over time, and thus resume correct participation in the protocol. In such a setting, it
is more reasonable to consider bounds on the number and/or types of failures that can
occur over limited intervals of time. Indeed, Castro and Liskov designed a protocol
for state-machine replication in an Byzantine environment that is correct provided that
no more than n/3 processes fail during an execution-dependent period that they call
a window of vulnerability [2]. We follow a similar path in this paper, and consider
continuous consensus in omissive settings under the (m,t)-interval bound assumption
(called the (m,t) model for short), which states that there is no m-round interval in which
more than t processes display faulty behavior. The contributions of this paper are:

– The (m, t)-interval bounded omission failure model is introduced.
– A continuous consensus protocol mt-CC for the (m, t) model whenever t < m is

presented.
– mt-CC is shown to be optimal in all runs for this model: For any CC protocol P and

any given behavior of the adversary, the core maintained by mt-CC at each time k
is a superset of the core maintained by P under the same conditions.

– The lower bound used in proving the optimality of mt-CC is the first one tackling
the possibility of process recoveries in a simultaneous agreement problem. All pre-
vious lower bounds for simultaneous consensus and continuous consensus in the
presence of crash or omission failures make essential use of the fact that failures
accumulate monotonically over time [7, 11, 12, 13] The new lower bound proof in
this paper overcomes this hurdle.

– The main lemmas in the lower bound apply to a large class of benign failure models,
including the general omissions model studied in [13].

Continuous Consensus with Failures and Recoveries 411

2 Model and Preliminary Definitions

Our treatment of the continuous consensus problem will be driven by a knowledge-
based analysis. A general approach to modeling knowledge in distributed systems was
initiated in [9] and given a detailed foundation in [8] (most relevant to the current paper
are Chapters 4 and 6). For ease of exposition, our definitions will be tailored to the
proofs for continuous consensus in our setting.

The Communication Network. We consider a synchronous network with n ≥ 2 possibly
unreliable processes, denoted by P = {1,2, . . . ,n}. Each pair of processes is connected
by a two-way communication link. Processes correctly identify the sender of every
message they receive. They share a discrete global clock that starts out at time 0 and
advances by increments of one. Communication in the system proceeds in a sequence
of rounds, with round k + 1 taking place between time k and time k + 1. Each process
starts in some initial state at time 0. Then, in every following round, the process first
sends a set of messages to other processes, and then receives messages sent to it by
other processes during the same round. In addition, a process may also receive requests
for service from clients external to the system (think, for example, of deposits and
withdrawals at branches of a bank), or input from sensors with information about the
world outside of the system (e.g., smoke detectors). Finally, the process may perform
local computations based on the messages it has received. The history of an infinite
execution of such a network will be called a run.

Modeling the Environment: Inputs and Failures. A protocol is designed to satisfy a
specification when executed within a given setting, which determines the aspects of the
execution that are not controlled by the protocol. In our framework the setting can be
described in terms of a set of adversaries that control the two central aspects of any
given run: inputs and failures.

Inputs. Every process starts out in an initial local state from some set Σi, and can receive
an external input in any given round k (this input is considered as arriving at time k).
The initial local state of each process can be thought of as its external input at time 0. We
represent the external inputs in an infinite execution as follows. Define a set V = P×N
of process-time nodes (or nodes, for short). We shall use a node (i,k) ∈ V to refer to
process i at time k. We denote by V(k) the set P×{k} ⊂ V of all nodes (i,k), and if
k ≤ � then we define V[k, �] = P×{k,k + 1, . . . , �} = V(k)∪·· ·∪V(�).

An (external) input assignment is a function ζ associating with every node (i,0) at
time 0 an initial state from Σi and with each node (i,k) with k > 0 an input from a set
of possible inputs, which is denoted by I. (The set I typically contains a special symbol
⊥, corresponding to a “null” external input.) An input model consists of a set Ξ of input
assignments. For the purpose of the analysis in this paper, we will focus on input models
in which the inputs at different nodes of V are not correlated. An input model Ξ is said
to be independent if for every ζ,ζ′ ∈ Ξ and every set T ⊆ V, we are guaranteed that
ζT ∈ Ξ, where ζT is the input assignment that coincides with ζ on T and with ζ′ on
V \T . In the classical consensus problem, for example, Σi = {0,1} and I = {⊥}. The
input model consists of all possible input assignments based on these Σi and on I, and
is clearly independent.

412 T. Mizrahi and Y. Moses

Fig. 1. A communication graph G
ϕ and i’s subgraph G

ϕ(i,k)

Benign failures and recoveries. The second aspect of a run that is determined by the
adversary has to do with the type of failures possible, and the patterns in which they can
occur. When focusing on benign failures, as in this paper, any message that is delivered
is sent according to the protocol.

A failure pattern for benign failures is a function ϕ : V → 2P. Intuitively, a failure
pattern determines which channels are blocked (due to failure) in any given round. More
concretely, ϕ(i,k) is the set of processes to which messages sent by i in round k+1 will
not be delivered.4 Equivalently, a message sent by i to j in round k+1 will be delivered
iff j /∈ ϕ(i,k). We denote by ©.." the failure-free pattern satisfying that ©.." (v) = /0 for all
v ∈ V.

We identify a failure pattern ϕ with a communication graph,5 denoted by Gϕ, de-
tailing the active channels in an execution. We define the graph Gϕ = (V,Eϕ), where
Eϕ = {〈(i,k),(j,k +1)〉 : j /∈ ϕ(i,k)}. Notice that ϕ uniquely determines Gϕ and vice-
versa. For a node v = (i,k) ∈ V, we denote by Gϕ(i,k) (or Gϕ(v)) the subgraph of Gϕ

generated by v and all nodes w ∈ V such that there is a directed path from w to v in Gϕ.
This subgraph captures the potential “causal past” of v under ϕ: all nodes by which v
can be affected via communication, either directly or indirectly. An illustration of a
graph Gϕ(i,k) is depicted in Figure 1. Given a set of nodes S ⊆ V, we denote by Gϕ(S)
the subgraph of Gϕ obtained by taking the union of the graphs Gϕ(v), for v ∈ S.

A (benign) failure model for synchronous systems is a set Φ of failure patterns ϕ.
Intuitively we can view a benign failure model as one in which failures affect message
deliveries. Any message that is delivered is one that was sent according to the protocol.
The standard benign models, including t-bounded crash failures, sending omissions,
receiving omissions, or general omissions [13] are easily modeled in this fashion. The
same applies to models that bound the number of undelivered messages per round (e.g.,
[3, 18]).

4 Note that a failure pattern can model process failures as well as communication failures. If
i ∈ ϕ(i,k) then i “does not receive its own message” in round k + 1. This corresponds to a
loss of i’s local memory, and captures the recovery from a process crash. It allows a distinc-
tion between recovery from a local process crash and reconnection following disconnected
operation.

5 Communication graphs were first used, informally, in the anasysis of consensus by Merritt
[10]. They were formalized in [8, 13]. Our modelling is taken from the latter. Similar modelling
was more recently used in the Heard-Of model of Charron-Bost and Schipper [3].

Continuous Consensus with Failures and Recoveries 413

The (m,t) interval-bounded failure model. For the purpose of this paper, it is convenient
to consider a process i ∈ P as being faulty at (i,k) according to ϕ if ϕ(i,k) �= /0 (i.e., if
one or more of i’s outgoing channels is blocked in round k + 1). We say that i ∈ P is
faulty according to ϕ in the interval V[k,k + m− 1] if i is faulty at (i,k′) for some k′

satisfying k ≤ k′ ≤ k + m−1. The (m,t) interval-bounded failure model is captured by
the set OM(m,t) of all failure patterns ϕ such that, for every k ≥ 0, no more than t
processes are faulty according to ϕ in V[k,k+m−1]. The standard (sending) omissions
failure model is then captured by OM(∞, t) =

T

m≥1 OM(m, t).

Environments and Protocols. We shall design protocols for continuous consensus with
respect to an environment that is specified by a pair ∆ = Φ×Ξ, where Φ = OM(m, t)
and Ξ is an independent input model. Each element (ϕ,ζ) of the environment ∆ we
call an adversary. A protocol for process i is a deterministic function Pi from the local
state of a process to local actions and an assignment of at most one message to each
of its outgoing links. Its local state at time k + 1 consists of its local variables after the
local actions at time k are performed, its external input at (i,k + 1), and the messages
delivered to it in round k + 1 on its incoming channels.6

A joint protocol (or just protocol for short) is a tuple P = {Pi}i∈P. For a given adver-
sary (ϕ,ζ) ∈ Φ×Ξ, a protocol P determines a unique run r = P(ϕ,ζ) : V → L×M×P,
which assigns a local state to each node (i,k) in the unique manner consistent with P,
ϕ and ζ: initial states and external inputs are determined by ζ, protocol P determines
local states and outgoing messages, and ϕ determines which of the sent messages on
incoming channels produces a delivered message.

3 Continuous Consensus and Common Knowledge

Knowledge theory, and specifically the notion of common knowledge, are central to
the study of simultaneously coordinated actions. This connection has been developed
and described in [7, 8, 11, 13, 15, 16]. In particular, [11] showed that in a continuous
consensus protocol, the contents of the core at a given time k are guaranteed to be
common knowledge. In this section we will review this connection, in a manner that will
be light on details and focus on the elements needed for our analysis of CC protocols.
In particular, we will make use of a very lean logical language in which the only modal
construct is common knowledge. For a more complete exposition of knowledge theory
see [8].

We are interested in studying CC in an environment ∆ = (Φ,Ξ) in which Ξ is an
independent input model. We say that Ξ is non-degenerate at a node (i,k) ∈ V if there
are ζ,ζ′ ∈ Ξ such that ζ(i,k) �= ζ′(i,k). A CC application needs to collect information
only about non-degenerate nodes, since on the remaining nodes the external input is
fixed a priori. We will consider a set of primitive events E w.r.t. Ξ each of the form
e = 〈α, i,k〉 where α ∈ Ξ and Ξ non-degenerate at (i,k). The event e = 〈α, i,k〉 is said
to occur in run r = P(ϕ,ζ) exactly if ζ(i,k) = α. The core will be assumed to consist of
a set of such primitive events.

6 To model local crashes, we would replace the local variables in i’s local state at time k by λ if
i ∈ ϕ(i,k +1).

414 T. Mizrahi and Y. Moses

Knowledge is analyzed within the context of a system R = R (P,∆) consisting of the
set of runs r(P,ϕ,ζ) of a protocol P in ∆. A pair (r,k) where r is a run and k is a time
is called a point. Process i’s local state at (i,k) in r is denoted by ri(k). We say that i
cannot distinguish (r,k) from (r′,k) if ri(k) = r′i(k). We consider knowledge formulas
to be true or false at a given point (r,k) in the context of a system R . In the standard
definition [8], process i knows a fact A at (r,k) if A holds at all points that i cannot
distinguish from (r,k).

For every e ∈ E , we denote by C(e) the fact that e is common knowledge, which
intuitively means that everybody knows e, everybody knows that everybody knows e,
and so on ad infinitum. We define common knowledge formally in the following way,
which can be shown to capture this intuition in a precise sense. We define a reachability
relation ∼ among points of R to be the least relation satisfying:

1. if ri(k) = r′i(k) then (r,k) ∼ (r′,k), and
2. if, for some r′′ ∈ R , both (r,k) ∼ (r′′,k) and (r′′,k) ∼ (r′,k), then (r,k) ∼ (r′,k).

In other words, define the similarity graph over R to be an undirected graph whose
nodes are the points of R , and where two points are connected by an edge if there is
a process that cannot distinguish between them. Then (r,k) ∼ (r′,k) if both points are
in the same connected component of the similarity graph over R . Notice that ∼ is an
equivalence relation, since connected components define a partition on the nodes of an
undirected graph. We denote by (R ,r,k) |= C(e) the fact that e is common knowledge
to the processes at time k in r. We formally define:

(R ,r,k) |= C(e) if event e occurs in every r′ ∈ R satisfying (r,k) ∼ (r′,k).

We can formally prove that the events in the core of a CC protocol must be common
knowledge:

Theorem 1 ([7, 11]). Let P be a CC protocol for ∆, and let R = R (P,∆). For all runs
r ∈ R , times k ≥ 0 and events e ∈ E , we have:

If e ∈ Mr
i [k] then (R ,r,k) |= C(e).

4 Lower Bounds for CC in Benign Failure Models

We can show that an event at a node (i,k) cannot be in the the core of a CC protocol
at time � if we prove that the event is not common knowledge by time �. It turns out
that the failure models and failure patterns play a central role in forcing events not to
be common knowledge. By working with these directly, we avoid some unnecessary
notational clutter.

Given a failure model Φ, we define the similarity relation ≈ on Φ×N to be the least
relation satisfying:

1. if Gϕ(i,k) = Gϕ′
(i,k) holds for some process i ∈ P, then (ϕ,k) ≈ (ϕ′,k), and

2. if, for some ϕ′′ ∈ Φ, both (ϕ,k) ≈ (ϕ′′,k) and (ϕ′′,k) ≈ (ϕ′,k), then (ϕ,k) ≈ (ϕ′,k).

Continuous Consensus with Failures and Recoveries 415

As in the case of ∼, the ≈ relation is an equivalence relation, because condition (1) is
reflexive and symmetric, while condition (2) is symmetric and guarantees transitivity.

We say that process i is shut out in round k + 1 by ϕ (equivalently, (i,k) is shut out
by ϕ), if ϕ(i,k) ⊇ P \ {i}. Intuitively, this means that no process receives a message
from i in round k +1. We say that a node (i,k) is hidden by ϕ at time � if (ϕ, �) ≈ (ψ, �)
for some pattern ψ in which i is shut out rounds k + 1, . . . , �. If a node is hidden by the
failure pattern, then its contents cannot be common knowledge, no matter what protocol
is being used, as formalized by the following theorem:

Theorem 2. Let R = R (P,∆), where ∆ = Φ×Ξ and Ξ is independent, let e = (α, i,k)
be a primitive event and let r = P(ϕ,ζ) ∈ R . If (i,k) is hidden by ϕ at � then (R ,r, �) �|=
C(e).

A major tool in our impossibility results is the notion of a covered set of nodes. In-
tuitively, a covered set S at a given point satisfies three main properties. (i) it is not
common knowledge that even on node of s is faulty, as there is a reachable point in
which all nodes if S are nonfaulty. (ii) for every node in s, its contents are not common
knowledge, in the sense that there is a reachable point in which this node is silent. (iii)
Finally, the reachable points in (i) and (ii) all agree with the current point on the nodes
not in S. Formally, we proceed as follows.

Definition 1 (Covered Nodes). Let S ⊂ V, and denote S̄� = V[0, �] \ S. We say that
S is covered by ϕ at time � (w.r.t. Φ) if

– for every node (i,k)=v ∈ S there exist ϕv such that (a) (ϕ, �)≈ (ϕv, �), (b) Gϕ(S̄�)=
Gϕv(S̄�), and (c) i is shut out in rounds k + 1, . . . , � of ϕv. Moreover,

– there exists ϕ′ ∈ Φ such that (d) (ϕ, �) ≈ (ϕ′, �), (e) Gϕ(S̄�) = Gϕ′
(S̄�), and

(f) ϕ′(v) = /0 for all nodes v ∈ S.

The fact that ≈ is an equivalence relation immediately yields

Lemma 1. Fix Φ and let S ⊆ V. If (ϕ, �) ≈ (ϕ′, �) and Gϕ(S̄�) = Gϕ′
(S̄�) then S is

covered by ϕ at � iff S is covered by ϕ′ at �.

One set that is guaranteed to be covered at time � is V(�):

Lemma 2. V(�) is covered by ϕ at �, for every failure pattern ϕ and �≥ 0.

Proof. Denote V(�) by S. Choose ϕ = ϕv for each v = (j, �) ∈ S to satisfy clauses (a),
(b) and (c) of the definition for v ∈ S. The clauses are immediate for ϕv. To complete
the claim we need to show that S is covered by ϕ at �: Define ϕ′ for clauses (d), (e) and
(f) to be the pattern obtained from ϕ by setting ϕ′(j, �) = /0 for every j ∈ P. �

Monotonicity. Our “lower bound” proofs take the form of proving impossibility of com-
mon knowledge under various circumstances. To make the results in this section widely
applicable, we state and prove results with respect to classes of failure models rather
than just to the (m,t) model. We shall focus on models with the property that reducing
the set of blocked edges in a failure pattern yields a legal failure pattern. Formally, we
say that ψ improves on ϕ, and write ψ , ϕ, if ψ(v) ⊆ ϕ(v) for every v ∈ V. (Notice that

416 T. Mizrahi and Y. Moses

the fault-free failure pattern ©.." satisfies ©.." , ϕ for all patterns ϕ.) It is easy to check
that ψ , ϕ iff Gϕ is a subgraph of Gψ. A failure model Φ is monotonically closed (or
monotone, for short) if for every pattern ψ that improves on a pattern in Φ is itself in ϕ.
Formally, ϕ ∈ Φ and ψ , ϕ implies ψ ∈ Φ. Clearly, if Φ is monotonically closed, then
©.." ∈ Φ. Observe that OM(m,t) is monotonically closed.

Single Stalling. In many failure models, a crucial obstacle to consensus is caused by
executions in which a single process is shut out in every round. This will also underly
the following development, where we show essentially that for a broad class of failure
models, the adversary’s ability to fail an arbitrary process per round will keep any events
from entering the CC core. We call this single stalling. To capture this formally for
general failure models, we make the following definitions.

We say that two patterns ϕ and ϕ′ agree on a set of nodes T ⊆V if Gϕ(T) = Gϕ′
(T).

Notice that this neither implies or is implied by having ϕ(v) = ϕ′(v) for all v ∈ T . This
notion of agreement depends on the nodes with directed paths into nodes v ∈ T , while
ϕ(v) specifies the outgoing edges from v. In a precise sense, though, the execution of a
given protocol P on failure pattern ϕ can be shown to be indistinguishable at the nodes
of T from its execution on ϕ′. This is closely related to the the structure underlying the
proof of Theorem 2.

Definition 2 (Single stalling). Let Φ be a monotone failure model. Fix Φ, let ϕ ∈ Φ,
and let W ⊂ V. We say that Gϕ(W) admits single stalling in [k, �] (w.r.t. Φ) if, for every
sequence σ = pk+1, . . . , p� of processes (possibly with repetitions), there exists a pattern
ϕσ ∈ Φ agreeing with ϕ on W such that both (a) (ϕ, �) ≈ (ϕσ, �), and (b) each process
p j in σ is shut out in round j of in ϕσ, for all j = k + 1, . . . , �.

The heart of our lower bound proof comes in the following lemma. Roughly speaking,
it states that if a set of nodes S containing the block V[k +1, �] of nodes from time k +1
to � are all covered, and it is consistent with the information stored in the complement
set S̄� that the node (j,k) could be shut out, then (j,k) can be added to the set of covered
nodes. to the set of covered nodes. This allows to prove incrementally that the nodes
at and after the critical time c = c(ϕ) that are not in the critical set are all covered.
Formally, we now show the following:

Lemma 3. Fix a monotone failure model Φ. Let k < � and assume that the set S ⊇
V[k + 1, �] is covered by ϕ at �. Let T = S∪{(j,k)}, and let ψ be the pattern obtained
from ϕ by shutting out (j,k). If ψ ∈ Φ and Gψ(T̄�) admits single stalling in [k + 1, �],
then T is hidden by ϕ at �.

The proof of Lemma 3 appears in the Appendix. Based on Lemma 3, we obtain:

Lemma 4. Let k < �. If S = V[k + 1, �] is covered by ϕ at � and Gϕ(S̄�) admits single
stalling in [k, �], then V[k, �] is covered by ϕ at �.

A new lower-bound construction. Previous lower bounds on common knowledge in the
presence of failures, including the ones for CC protocols in [11], are all based on the
fixed-point construction of Moses and Tuttle [13] and, for uniform consensus, on its
extension by Neiger and Tuttle [16]. Their construction applies to crash and sending

Continuous Consensus with Failures and Recoveries 417

omissions, and it (as well as earlier proofs in [7]) depends in an essential way on the
fact that faultiness in these models is forever. Somewhat in the spirit of the “Heard-
of” model of [3], our generic lower bound results in Lemmas 2–4 are oblivious of the
notion of process failures per-se. Lemmas 3 and 4 are the basis of our new a fixed-
point construction for general monotone failure models that subsumes the construction
in [13].

5 A Continuous Consensus Protocol for the (m, t) Model

The purpose of this section is to present mt-CC, a CC protocol for OM(m, t) that is effi-
cient and optimal in runs. The protocol makes use of instances of the UniConCon pro-
tocol (UCC) presented in [11]. This is an optimal (uniform) CC protocol for OM(∞, t)
with the following properties: Beyond storing the relevant events in E—which are ap-
plication dependent—UCC uses O(logk) new bits of storage and performs O(n) com-
putation in each round k. In addition, in every round k+1 each process i sends everyone
a message specifying the set fi[k] of processes it knows are faulty at time k, as well as
any new information about events e ∈ E that it has obtained in the latest round. The fail-
ure information in every message requires min{O(n),O(| fi[k]| logn)} bits. Our analysis
will not need further details about UCC beyond these facts.

The intuition behind our protocol is based on the following observation. The adver-
sary’s ability to cause failures in the OM(m,t) model in a given round depends only
on the failures that the culprit caused in the m-round interval ending with this round.
In a precise sense, the (crucial) impact of the adversary’s actions on the core at time �
depends only on the previous cores and the failures that occur in the last m rounds.
Consequently, our strategy is to invoke a new instance of UCC in every round, and keep
it running for m rounds. Each instance takes into account only failures that occur after
it is invoked. For times � ≤ m, the core M̂[�] coincides with the one computed by the
UCC initiated at time 0. For later times � > m, the core M̂[�] is obtained by taking the
union of M̂[�− 1] and the core M[�]�−m obtained by the UCC instance invoked at time
�−m.7

The mt-CC protocol shown in Figure 2 presents the mt-CC protocol for CC in OM(m,
t). It accepts m and t < n as parameters. We denote by M[k]s the core computed by
UCCs(t) at time k. The message sending operations in the instances UCCs are sup-
pressed, replaced by the message µ sent by mt-CC. More formally, UCCs is an instance
of UCC that is invoked at time s, in which only failures that occur from round s+ 1 on
are counted. It is initiated with no failure information. Incoming failure information for
UCCs is simulated based on the incoming messages µ, where only failures that occur in
rounds s + 1 . . . ,s + m are taken into account. Similarly, maintaining the events in the
core is handled by mt-CC. Based on the structure of UCC it is straightforward to show:

Lemma 5. Let ϕ,ϕ′ ∈ OM(m,t) be failure patterns, such that no process fails in the
first s rounds of ϕ′, and the same channels are blocked in both patterns from round s+1
on. Let r be a run of UCC0 with adversary (ϕ′,ζ), and let r′ be a run with adversary
(ϕ,ζ) in which UCCs is invoked at time s. Then Mx[s+ m]s = M′

x[s+ m] for all x ∈ P.

7 In fact, the UCC instance computes the subset of nodes of V[0, �] that determines its core, and
the core M[�]�−m consists of the events that occur at the nodes of this subset.

418 T. Mizrahi and Y. Moses

mt-CCx % Executed by x, on parameters m and t

0 M̂x[0] ← /0
1 invoke an instance of UCC0

for every round k ≥ 1 do
2 send µ = 〈failure-info,new-events〉 to all
3 s ← max(0,k−m)
4 receive incoming messages;
5 simulate a round of UCCs, . . . ,UCCk−1;
6 M̂x[k] ← (M̂x[k−1]∪Mx[k]s)
7 invoke an instance of UCCk

endfor

Fig. 2. Process x’s computation in mt-CC

The failure-info component of the message µ on line 2 consists of a list of the
processes j that x knows have displayed faulty behavior in the last m rounds, and for
each such j the latest round number (mod m) in which x knows j to have been faulty.
In mt-CC at most m instances of UCCk need to be active at any given time. As we show
in the full paper, simple accounting mod m suffices for x to be able to construct the
incoming (simulated) messages for each active instance, based on the failure-info
components of incoming messages. The failure component in mt-CC message is thus of
size min{O(n logm),O(| fi[k]| · lognm)} bits, where now fi[k] is the number of processes
known by i to have failed after round k − m. The new-events component in mt-CC

messages is the same as in a single instance of UCC in the standard sending omissions
model OM(∞,t).

While mt-CC appears to be rather straightforward, the use of a uniform CC protocol
to construct it, and the way in which the results of the different instances are combined
is rather subtle. The real technical challenge, which brought about the new lower bound
techniques in Section 4, is proving that it is optimal in all runs. We now consider the
properties of mt-CC. Our first result is an upper bound, which is proved in Section B of
the appendix:

Lemma 6. The mt-CC(m,t) is a CC protocol for m > t. When m ≤ t it satisfies Accu-
racy and Consistency.

Based on the lower bound in Section 4 we then prove that mt-CC is optimal for m > t.
Moreover, the results of Santoro and Widmayer can be used to show that no CC protocol
exists for m ≤ t (this also easily follows from our lower bounds). Nevertheless, mt-CC

is optimal among the protocols that satisfy accuracy and consistency for m ≤ t. The
optimality property implies that, essentially, mt-CC is as complete as possible for m ≤ t.

Being based on the cores computed by instances of UCC, the core at time � in a run
of mt-CC is the set of events that take place at a particular set T ⊂ V[0, �]. Moreover,
since UCCs in OM(m,t) is equivalent to UCC in the standard sending omissions model
(by Lemma 5) the set A has the same structure as derived in the Moses and Tuttle con-
struction. Let c denote the maximal time in nodes of T . To prove that mt-CC is optimal,
we show that all nodes that are at and after the critical time c = c(ϕ, �) and are not in A
are covered. Formally, we apply Lemma 4 to mt-CC in the OM(m, t) model to obtain:

Continuous Consensus with Failures and Recoveries 419

Lemma 7. Let r be a run of mt-CC(m, t) with failure pattern ϕ, and assume that M̂[�]
is generated by the set of nodes A ⊆ V[0, �]. If c is the maximal time of any node in A,
then S = (V[c, �]\A) is covered by ϕ at �.

In the OM(m,t) model, if a process fails to deliver a message in round k, it is faulty.
Hence, all nodes of V[0, �− 1] that do not appear in the causal past of A belong to
faulty processes. We can use Lemma 7 to silence them at a reachable point using the
covered nodes in the same way as in the proof on Lemma 3. Once we do this, all nodes
from before time � that do not appear in the view Gϕ(A) are eliminated from the graph.
Formally, we can show:

Lemma 8. Let r be a run of mt-CC(m, t) and let � and A be as in Lemma 7. Then all
nodes in V[0, �]\A are hidden by ϕ at � in OM(m,t).

Lemma 8 provides the final ingredient for the optimality proof for mt-CC: Lemma 6
guarantees that mt-CC solves continuous consensus. Lemma 8 states that all nodes not
in the core view Gϕ(A) of mt-CC are hidden given the current failure pattern, for all
protocols. Theorem 2 states that an event at a hidden node cannot be common knowl-
edge, which by Theorem 1 implies that it cannot be contained in the common core under
any protocol whatsoever. It follows that, for each and every adversary all times �, the
core provided by mt-CC is a superset of the core that any other correct CC protocol can
construct. We obtain:

Theorem 3. Let m > t ≥ 0, and let ∆ = OM(m, t)× Ξ where Ξ is independent. Then
mt-CC(m,t) is optimal in all runs in ∆.

We can also show that mt-CC provides optimal behavior for m ≤ t; it is accurate, con-
sistent and maximal. Indeed, for t ≥ m > 1, there are runs of mt-CC in which nontrivial
events enter the core. However, the completeness property is not achievable in some of
the runs. Using Lemmas 4 and 3 we can show:

Lemma 9. Let 0 < m ≤ t, and let ∆ = OM(m,t)×Ξ where Ξ is independent. Let r be
a run of a CC protocol with failure pattern ϕ ∈ OM(m,t) in which no more than one
process fails per round in rounds 1, . . . , �. Then the core at time � is necessarily empty.

By Lemma 9, as well as from the results of Santoro and Widmayer in [18], it follows that
Continuous consensus is not solvable in OM(m, t) for 1 ≤ m ≤ t. Lemma 9 implies that
if m = t = 1 then the core is necessarily empty at all times. However, whenever m > 1
there are runs in which the core is not empty. In these cases, Lemma 6 guarantees that
mt-CC is Accurate and Consistent. In fact, it is as close to a CC protocol as one could
hope for:

Theorem 4. For all m ≤ t, the mt-CC protocol is optimal in all runs among the proto-
cols that satisfy the Accuracy and Consistency properties of CC.

6 Conclusions

Continuous consensus (CC) is a powerful primitive in synchronous distributed systems.
Being an ongoing activity, the classical t-bounded failure model in which failures can

420 T. Mizrahi and Y. Moses

only accumulate and recoveries are not considered is not satisfactory. This paper con-
siders the CC problem in an (m,t) omission failure model. mt-CC, an efficient protocol
for CC in such models is presented, and is shown to be a optimal in all runs: It main-
tains the largest core at all times, in each and every run (i.e., against each behavior of
the adversary). We remark that while this paper focused on optimally fast CC protocols,
it is an interesting open problem how to trade speed against message complexity in CC
protocols.

The lower bound proof makes essential use of the theory of knowledge in distributed
systems. Using a new technique the lower bound manages to sidestep previous depen-
dence on the stability of faultiness in order to apply to models with failures and re-
coveries, such as the (m,t) omission model. It gives rise to a lower-bound construction
generalizing that of Moses and Tuttle [13] in the standard sending omissions model.
The fact that mt-CC is optimal in all runs proves that, in fact, the construction com-
pletely characterizes what is common knowledge (and what can appear in a CC core)
in OM(m,t). The new construction applies to monotone failure models in general. It
thus strictly generalizes the MT construction and applies to many other failure models,
including the elusive general omissions failure model [13] in which a faulty process can
fail to send and to receive messages. Models that bound the number of messages lost
are also monotone, as are ones in which there are different reliability guarantees for dif-
ferent subsets of the processes (say central servers vs. plain workstations). We believe
that a slight variation on this construction can be used to solve a twenty-year old open
problem regarding optimum simultaneous consensus in the general omissions model.
Finally, in future work we plan to show that, with slight modifications, the new lower
bound proof is also applicable to topologies in which the communication network is not
a complete graph.

References

1. Burns, J.E., Lynch, N.A.: The byzantine firing squad problem. Technical Report
MIT/LCS/TM-275 (1985)

2. Castro, M., Liskov, B.: Proactive recovery in a Byzantine-fault-tolerant system. In: Proc. 4th
OSDI: Symp. Op. Sys. Design and Implementation, pp. 273–288 (2000)

3. Charron-Bost, B., Schiper, A.: The Heard-Of Model: Unifying all Benign Failures. EPFL
LSR-REPORT-2006-004 (2006)

4. Coan, B.A., Dolev, D., Dwork, C., Stockmeyer, L.J.: The distributed firing squad problem.
SIAM J. Comput. 18(5), 990–1012 (1989)

5. Dolev, D., Reischuk, R., Strong, H.R.: Eventual is earlier than immediate. In: Proc. 23rd
IEEE Symp. on Foundations of Computer Science, pp. 196–203 (1982)

6. Dolev, S., Rajsbaum, S.: Stability of long-lived consensus. J. Comput. Syst. Sci. 67(1), 26–45
(2003)

7. Dwork, C., Moses, Y.: Knowledge and common knowledge in a Byzantine environment:
crash failures. Information and Computation 88(2), 156–186 (1990)

8. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press,
Cambridge (1995) (revised 2003)

9. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed environment.
Journal of the ACM 37(3), 549–587 (1990)

Continuous Consensus with Failures and Recoveries 421

10. Merritt, M.J.: Unpublished notes on the Dolev-Strong lower bound for Byzantine Agreement
(1984)

11. Mizrahi, T., Moses, Y.: Continuous consensus via common knowledge. Distributed Comput-
ing 20(5), 305–321 (2008)

12. Moses, Y., Raynal, M.: Revisiting Simultaneous Consensus with Crash Failures. Tech Report
1885, 17 pages, IRISA, Université de Rennes 1, France (2008),
http://hal.inria.fr/inria-00260643/en/

13. Moses, Y., Tuttle, M.R.: Programming simultaneous actions using common knowledge. Al-
gorithmica 3, 121–169 (1988)

14. Mostéfaoui, A., Rajsbaum, S., Raynal, M.: Synchronous condition-based consensus. Dis-
tributed Computing 18(5), 325–343 (2006)

15. Neiger, G., Bazzi, R.A.: Using knowledge to optimally achieve coordination in distributed
systems. Theor. Comput. Sci. 220(1), 31–65 (1999)

16. Neiger, G., Tuttle, M.R.: Common knowledge and consistent simultaneous coordination.
Distributed Computing 6(3), 181–192 (1993)

17. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. Journal
of the ACM 27(2), 228–234 (1980)

18. Santoro, N., Widmayer, P.: Time is not a healer. In: Proc. 6th Symp. Theo. Asp. Comp. Sci
(STACS), pp. 304–313 (1989)

A Lower Bound Proof

This section contains the proof of our central lower bound claim.

Proof of Lemma 3: Let k, �, ϕ, ψ, S and T = S∪{(j,k)} satisfy the conditions of the
lemma. Since S is covered by ϕ at �, we have that (ϕ, �) ≈ (ϕ′, �) where ϕ′ agrees with
ϕ on S̄�, and in which all nodes of S are correct in ϕ′. For ease of exposition we assume
w.l.o.g. that all nodes of S are correct in ϕ.

Denote by ϕm the pattern that agrees with ϕ on V \{(j,k)}, where ϕm(j,k)=ϕ(j,k)∪
{1, . . . ,m}. In particular, we vacuously have ϕ0 = ϕ. Observe that ϕ , ϕm , ψ holds
for all m. We prove by induction on m that (ϕ, �) ≈ (ϕm, �). The claim trivially holds
for m = 0. Let m = h + 1 > 0 and assume inductively that the claim holds for h. Thus,
(ϕ, �) ≈ (ϕh, �). By Lemma 1 it follows that S = V [k + 1, �] is covered at ϕh. Denote
w = (h+1,k+1). Clearly, w ∈ S. Let ϕw be a failure pattern such that (ϕh, �)≈ (ϕw, �),
Gϕh(S̄�) = Gϕw(S̄�), and h+1 is shut out in rounds k+1, . . . , � of ϕw. Let ϕ′

w be a failure
pattern that is obtained from ϕw by dropping the edge 〈(j,k),(h + 1,k + 1)〉. We first
claim that ϕ′

w ∈ Φ. Denote by ϕ̂ pattern that agrees with ϕ on T̄�, in which w is shut out
in round k + 1, and h + 1 is shut out in rounds k + 2 through �. The lemma’s statement
ensures that ϕ̂ ∈ Φ for every pattern ϕ̂ ∈ Φ that agrees with ϕ on T̄�, in which (j,k) is
shut out (in round k + 1) and exactly one node is shut out in rounds k + 2 through �.
Since ϕ′

w , ϕ̂, we have by monotonicity of Φ that ϕ′
w ∈ Φ, as claimed.

For every process i �= h + 1 we have that Gϕw(i, �) = Gϕ′
w(i, �), since Gϕw and Gϕ′

w

differ only on the incoming edges of w = (h + 1,k + 1). Since h + 1 is shut out from
time k + 1 to �, the node w appears neither in Gϕw(i, �) nor in Gϕ′

w(i, �). It follows that
(ϕw, �) ≈ (ϕ′

w, �). By transitivity of ≈ we have that (ϕ, �) ≈ (ϕ′
w, �), which by Lemma 1

implies that S is covered by ϕ′
w. The pattern that agrees with ϕ′

w on S in which the nodes
of S are correct is ϕh+1. The fact that S is covered by ϕ′

w at � implies that (ϕ′
w, �) ≈

http://hal.inria.fr/inria-00260643/en/

422 T. Mizrahi and Y. Moses

(ϕh+1, �), and again by transitivity of ≈ we have that (ϕ, �) ≈ (ϕh+1, �), completing the
inductive proof. We thus obtain that (ϕ, �) ≈ (ϕn, �). Moreover, since S is covered at �
by ϕn, the pattern ϕu that is guaranteed with respect to ϕn by clause (a) of the definition
of hidden for u = (j,k + 1) satisfies Gϕu(S̄�) = Gϕ(S̄�) and has j shut out in rounds
k + 1, . . . ,n. It follows that ϕu satisfies all three conditions (a), (b) and (c) necessary to
establish the first part of the definition of T = S∪{(j,k)} being covered by ϕ at time �,
as required.

The second part of the proof that T is covered by ϕ at � follows the same steps.
In this case, however, we define patterns ϕ̂m(j,k) = ϕ(j,k) \ {1, . . . ,m} and rather
than blocking edges from (j,k) in round k + 1, we incrementally add such edges. A
completely analogous inductive proof produces a pattern ψ′ such that (ϕ, �) ≈ (ψ′, �),
Gϕ(T̄�) = Gψ′

(T̄�), and ϕ′(j,k) = /0. By Lemma 1 we obtain that ψ′ covers S at �. The
pattern ϕ′ guaranteed with respect to ψ′ and S satisfies that (ϕ′, �) ≈ (ψ′, �) ≈ (ϕ, �),
that Gϕ′

(T̄�) = Gψ′
(T̄�) = Gϕ(T̄�), and that ϕ′(j,k) = ψ′(j,k) = /0 and ϕ′(v) = /0 for ev-

ery v ∈ S. We thus have that ϕ′ satisfies conditions (d), (e) and (f) completing the proof
that T = S∪{(j,k)} is covered by ϕ at time �. �

B Upper Bound Proof

Proof of Lemma 6: In order to prove that mt-CC is a CC protocol, we have to show
that Accuracy, Consistency and Completeness hold. We note that UCC satisfies these
properties, as shown in [11].

Initially, M̂x[0] = /0 and is thus vacuously accurate. By line 4 of mt-CC, the core
M̂x[k + 1] is constructed by extending M̂x[k] with events from Mx[k]s, computed by
UCCs. Since UCCs satisfies Accuracy, the resulting core M̂x[k + 1] is accurate, as re-
quired.

For Consistency, let r be the run of mt-CC(m,t) with adversary (ϕ,ζ), let k ≥ 1, and
let M̂x[k] denote the core computed by mt-CC at time k in r. We proceed by induction on
k. For k = 0, by line 0 of mt-CC we have M̂x[k] = M̂z[k] = /0. Now assume the inductive
hypothesis holds for k − 1, i.e., that M̂x[k − 1] = M̂z[k − 1]. By line 4 of mt-CC we
have M̂x[k] = M̂x[k − 1]∪ Mx[k]s. By Lemma 5, we have that Mx[k]s = Mz[k]s. Since
M̂x[k− 1] = M̂z[k − 1] by the inductive hypothesis, we have that M̂x[k − 1]∪Mx[k]s =
M̂z[k−1]∪Mz[k]s, and thus M̂x[k] = M̂z[k]. Thus, Consistency holds for mt-CC.

Finally, for Completeness, recall that UCC(t) guarantees that e ∈ M[s + t + 1] for
every event e ∈ E that is known to a nonfaulty process j at time s. By Lemma 5, if m > t
then Mx[s + m]s = M′

x[s + m] where M′
x is obtained by UCC in a run r′ with adversary

(ϕ′
s,ζ) as defined in that lemma. Since all messages delivered in r are delivered in r′, it

follows that if j knows e at time s in r it knows e at j in r′ as well. Since e ∈ M′
x[s+t +1]

and M′
x[s+ t + 1] ⊆ M′

x[s+ m], it follows by Lemma 5 that e ∈ Mx[s+ m]s. By line 4 of
mt-CC we have that e ∈ M̂x[s+ m], as desired. �

No Double Discount:
Condition-Based Simultaneity Yields Limited Gain

Yoram Moses1 and Michel Raynal2

1 Department of Electrical Engineering, Technion, Haifa, 32000 Israel
2 IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
moses@ee.technion.ac.il, raynal@irisa.fr

Abstract. Assuming that each process proposes a value, the consensus problem
requires the non-faulty processes to agree on the same value that, moreover, must
be one of the proposed values. Solutions to the consensus problem in synchronous
systems are based on the round-based model, namely, the processes progress in
synchronous rounds. The well-known worst-case lower bound for consensus in
the synchronous setting is t+1 rounds, where t is an a priori bound on the number
of failures. Simultaneous consensus is a variant of consensus in which the non-
faulty processes are required to decide in the exact same round, in addition to
the deciding on the same value. Dwork and Moses showed that, in a synchronous
system prone to t process crashes, the earliest round at which a common decision
can be simultaneously obtained is (t+1)−W where t is a bound on the number
of faulty processes and W is a non-negative integer determined by the actual fail-
ure pattern F . In the condition-based approach consensus the consensus require-
ment is relaxed by assuming that the input vectors (consisting of the proposed
initial values) are restricted to belong to a predetermined set C. Initially consid-
ered as a means to achieve solvability for consensus in the asynchronous setting,
condition-based consensus was shown by Mostéfaoui, Rajsbaum and Raynal to
allow solutions with better worst-case behavior. They defined a hierarchy of sets
of conditions Ct

t ⊂ · · · ⊂ Cd
t ⊂ · · · ⊂ C0

t (where the set C0
t contains the condition

made up of all possible input vectors). It has been shown that t + 1− d is a tight
lower bound on the minimal number of rounds for synchronous condition-based
consensus with a condition in Cd

t .
This paper considers condition-based simultaneous consensus in the synchro-

nous model. It first presents a simple algorithm in which processes decide simul-
taneously at the end of the round RSt,d,F = (t + 1) − max(W,d). The paper
then shows that RSt,d,F is a lower bound for simultaneous condition-based con-
sensus. A consequence of the analysis is that the algorithm presented is optimal
in each and every run, and not just in the worst case: For every choice of failure
pattern by the adversary (and every input configuration), the algorithm reaches
simultaneous agreement as fast as any correct algorithm could do under the same
conditions. This shows that, contrary to what could be hoped, when considering
condition-based consensus with simultaneous decision, we can benefit from the
best of both actual worlds (either the failure world when RSt,d,F = (t+1)−W ,
or the condition world when RSt,d,F = d + 1), but we cannot benefit from the
sum of savings offered by both. Only the best discount applies.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 423–437, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

424 Y. Moses and M. Raynal

1 Introduction

The consensus problem. Fault-tolerant systems often require a means by which pro-
cesses or processors can arrive at an exact mutual agreement of some kind [14]. If
the processes defining a computation have never to agree, that computation is actually
made up of a set of independent computations, and consequently is not an inherently
distributed computation. The agreement requirement is captured by the consensus prob-
lem that is one of the most important problems of fault-tolerant distributed computing.
It actually occurs every time entities (usually called agents, processes -the word we use
in the following-, nodes, sensors, etc.) have to agree. The consensus problem is surpris-
ingly simple to state: Each process is assumed to propose a value, and all the processes
that are not faulty have to agree/decide (termination), on the same value (agreement),
that has to be one of the proposed values (validity). The failure model considered in this
paper is the process crash model.

While consensus is impossible to solve in pure asynchronous systems despite even
a single process crash [4] (“pure asynchronous systems” means systems in which there
is no upper bound on process speed and message transfer delay), it can be solved in
synchronous systems (i.e., systems where there are such upper bounds) whatever the
number n of processes and the number t of process crashes (t < n).

An important measure for a consensus algorithm is the time it takes for the non-
faulty processes to decide. As a computation in a synchronous system can be abstracted
as a sequence of rounds, the time complexity of a synchronous consensus algorithm is
measured in terms of the minimal number of rounds (Rt) that a process participates in
before deciding, in the worst case scenario. It has been shown (see, e.g., in [8]) that
Rt = t + 1. Moreover, this bound is tight: There exist algorithms where no process
ever executes more than Rt rounds (e.g., [15]); these algorithms are thus optimal with
respect to the worst-case bound.

Early decision. While t + 1 rounds are needed in the worst case scenario, the major
part of the executions have few failures or are even failure-free. So, an important issue
is to be able to design early deciding algorithms, i.e., algorithms in which the processes
decide “as early as possible” in good scenarios. Let f , 0 ≤ f ≤ t, be the actual number
of process crashes in an execution. It has been shown that the lower bound on the
number of rounds is then Rt,f = min(f +2, t+1) (e.g., [1,8]). As before, this bound is
tight: Algorithms in which no process ever executes more than Rt,f rounds exist (e.g.,
see [1,15]).

Condition-based approach and the hierarchy of synchronous conditions. The condition-
based approach was originally introduced to circumvent the impossibility of solving
consensus in an asynchronous system prone to crash failures [12]. It consists in re-
stricting the set of input vectors of values that can be proposed (such a set is called a
condition). A main result associated with this approach is the following [12]: A condi-
tion C allows to solve consensus in an asynchronous system prone to up to x process
crashes iff it is x-legal (roughly speaking, a condition is x-legal if each of its input vec-
tors contains a particular value more than x times, and the Hamming distance between
two vectors from which different values can be decided is greater than x). There is a
strong connection between the condition-based approach and error-correcting codes [5].

No Double Discount: Condition-Based Simultaneity Yields Limited Gain 425

While the condition-based approach is useful to extend computability of consensus
in asynchronous systems, it was also shown in [13] to allow for faster agreement in
synchronous systems. More precisely, let us consider a synchronous system where up
to t processes can crash, and let Cd

t be the set of all d-legal conditions. Ct
t ⊂ · · · ⊂ Cd

t ⊂
· · · ⊂ C0

t . For every condition C ∈ Cd
t , it is shown in [13] that synchronous consensus

can be solved uniformly for all input vectors I ∈ C in one round when d = t, and in
t + 1 − d rounds when 0 ≤ d ≤ t. It is also shown that t + 1 − d is a tight worst-case
lower bound.

Simultaneous decision. Consensus is a data agreement property, namely, that the pro-
cesses must agree on the same value. Depending on the actual failure pattern, and the
way this pattern is perceived by the processes, it is possible for several processes to
decide in distinct rounds. The simultaneous (decision) consensus problem aims at elim-
inating this uncertainty. It requires that the processes decide on the same value (data
agreement), during the very same round (time agreement).

Many “classical” consensus algorithms where all the processes that do not crash de-
cide systematically at the end of the round Rt = t + 1 ensure simultaneous decision.
Simultaneous consensus was considered in [2], where it was shown that simultaneous
decisions can be performed in anywhere between 2 and t+ 1 rounds, depending on the
failure pattern. Indeed, for every failure pattern F there is a measure called the waste,
denoted by W (F), such that decisions can be performed in RSt,F = t+1−W rounds,
and no earlier. W (F) represents the number of rounds “wasted” by the adversary rel-
ative to the worst case bound of t + 1 rounds. Interestingly, the greatest values of W
are obtained when many processes crash early. If at most one process crashes in each
round, then W = 0 and simultaneous decision cannot be performed before the end
of round t + 1. At first glance, this may appear counter-intuitive. Actually it is not;
roughly speaking, it is a consequence of the fact that once many processes crash, the
adversary’s options for the remaining rounds become more restricted. Simultaneous de-
cision requires common knowledge about proposed input values, which becomes easier
to attain as the uncertainty about past and future failures is reduced. Algorithms that
solve simultaneous consensus optimally—requiring precisely t + 1 − W (F) for every
run and each failure pattern F—are described in [2,7,9,11].

Content of the paper. This paper investigates the simultaneous decision requirement in
the context of the condition-based approach. Let C ∈ Cd

t (thus, C is d-legal). On the
one hand, we have from [13] that simultaneous consensus can be guaranteed in round
t + 1 − d. On the other hand, since a solution for unrestricted simultaneous consensus
is still correct under any condition C, the existing solution from [2,9,11] can be used
to guarantee simultaneous agreement in t + 1 −W rounds. This paper investigates the
interaction between conditioning and simultaneity. For a positive result, it shows that
the simultaneity requirement allows a seamless combination of the two solutions. Es-
sentially, it is possible to simulate both types of protocols and decide (without violating
agreement!) in the round in which the first of the two algorithms decides. This solves
condition-based simultaneous consensus in t+1−max{W,d} rounds. On the negative
side, it shows that, in a precise sense, this is the best possible. For natural d-legal con-
ditions, the algorithm presented here is optimal in a very strong sense, inherited from
the optimal solutions for simultaneous consensus: For each and every input vector and

426 Y. Moses and M. Raynal

failure pattern, the algorithm decides as soon as any other simultaneous consensus al-
gorithm for C would decide. So the algorithm is optimal in every case and not just in
the worst case run. The main technical challenge is in the lower-bound proof, which
is based on a knowledge-based analysis, using the connection between simultaneous
agreement and common knowledge [2,3,6].

2 Computation Model, Conditions and Problem Specification

2.1 Computation Model

Round-based synchronous system. The system model consists of a finite set of pro-
cesses, namely, Π = {p1, . . . , pn}, that communicate and synchronize by sending and
receiving messages through channels. (Sometimes we also use p and q to denote pro-
cesses.) Every pair of processes is connected by a bi-directional reliable channel (which
means that there is no creation, alteration, loss or duplication of messages).

The system is round-based synchronous. This means that each execution consists of
a sequence of rounds. Those are identified by the successive integers 1, 2, etc. For the
processes, the current round number appears as a global variable r that they can read,
and whose progress is managed by the underlying system. A round is made up of three
consecutive phases:

– A send phase in which each process sends the same message to all the processes
(including itself).

– A receive phase in which each process receives messages. The fundamental prop-
erty of the synchronous model lies in the fact that a message sent by a process pi to
a process pj at round r, is received by pj at the very same round r.

– A computation phase during which each process processes the messages it received
during that round and executes local computation.

Process failure model. A process is faulty during an execution if its behavior deviates
from that prescribed by its algorithm, otherwise it is correct. We consider here the crash
failure model, namely, a faulty process stops its execution prematurely. After it has
crashed, a process does nothing. If a process crashes in the middle of a sending phase,
only a subset of the messages it was supposed to send might actually be received.

As already indicated, the model parameter t (1 ≤ t < n) denotes an upper bound on
the number of processes that can crash in a run. A failure pattern F is a list of at most t
triples 〈q, kq, Bq〉. A triple 〈q, kq, Bq〉 states that the process q crashes while executing
the round kq (hence, it sends no messages after round kq), while the set Bq denotes the
set of processes that do not receive the message sent by q during the round kq .

2.2 The Condition-Based Approach

Notation. Let V be the set of values that can be proposed, with |V| ≥ 2. An input
configuration is an assignment I : Π → V of an initial value vi ∈ V to each process pi.
An input vector is a size n vector corresponding to an input configuration. A condition
is a set of input vectors.

No Double Discount: Condition-Based Simultaneity Yields Limited Gain 427

Let ⊥ denote a default value such that ⊥ /∈ V and ∀a ∈ V , ⊥ < a. We usually
denote by I an input vector (all its entries are in V), and by J a vector that may have
some entries equal to ⊥. Such a vector J is called a view. The number of occurrences
of a value a ∈ V ∪{⊥} in the vector J is denoted #a(J). Given two vectors I1 and I2,
dist(I1, I2) denotes their Hamming distance.

Definition 1 (x-legal). [5,12] A condition C is x-legal if there exists a function H :
C -→ V with the following properties: (1) ∀I ∈ C: #H(I)(I) > x, and (2) ∀I1, I2 ∈
C: H(I1) �= H(I2) ⇒ dist(I1, I2) > x.

This means that the value extracted from I by H() appears “often enough” in I (more
than x times), and two vectors from which different values are extracted by H() are “far
enough apart” in terms of Hamming distance.

Example 1. Intuitively, a condition selects a proposed value to become the decided
value, namely, the value selected from an input vector I is H(I). The max-value con-
dition Mx is shown in in [12] to be x-legal. Using max(I) to refer to the greatest value
in I , the condition Mx is defined by:

Mx = {I : #max(I)(I) > x}.

A straightforward consequence of the definition of x-legal conditions is that the sets Cd
t

form a strict hierarchy, as captured by:

Theorem 1. [12] The set Cx+1
t of (x + 1)-legal conditions strictly contains the set Cx

t

of (x)-legal conditions. Thus, Ct
t ⊂ · · · ⊂ Cd

t ⊂ · · · ⊂ C0
t .

A main result of [12] is the characterization of the largest set of conditions that allow to
solve consensus in an asynchronous system:

Theorem 2. [12] If C is x-legal then consensus can be solved under C in an asyn-
chronous system prone to up to x process crashes. Conversely, there exists an (x − 1)-
legal condition C′ for which consensus is unsolvable in the presence of x process
crashes.

2.3 The Condition-Based Simultaneous (cb-s) Consensus Problem

The problem has been informally stated in the introduction: Every process pi proposes
a value vi (called its initial value). Assuming that the vector of proposed values belongs
to a predetermined condition C, the processes have to decide, during the very same
round, on the same value, is required to be one of the proposed values. This can be
stated as a set of four properties that any algorithm solving the problem has to satisfy.

– Decision. Every correct process decides.
– Validity. A decided value is a proposed value.
– Data agreement. No two processes decide different values.
– Simultaneous decision. No two processes decide during distinct rounds.

428 Y. Moses and M. Raynal

3 An Optimal Condition-Based Simultaneous Consensus
Algorithm

This section presents a simple condition-based simultaneous consensus algorithm in
which the processes decide at the end of the round RSt,d,F = (t + 1) − max(W,d). It
will be shown in Section 4 that RSt,d,F is the smallest number of rounds for condition-
based simultaneous consensus.

The proposed algorithm is built modularly. It combines two base algorithms. One
is a condition-based algorithm that, when instantiated with a d-legal condition C (i.e.,
C ∈ Cd

t , with 0 ≤ d ≤ t, and the input vector I belongs to C) directs the processes
to decide simultaneously at the end of round t + 1 − d. The second is a simultaneous
(non-condition-based) consensus algorithm that directs the processes to decide at the
end of the round t + 1 − W . These base algorithms are first presented.

In general, obtaining a consensus algorithm based on running two consensus algo-
rithms is a subtle matter. In our case, the fact that both guarantee simultaneous decisions
simplifies this task. As a consequence, the combination of the two algorithms yields a
cb-s consensus algorithm in which the processes simultaneously decide at the end of
round RSt,d,F = (t + 1) − max(W,d).

3.1 A Simple Condition-Based Simultaneous Consensus Algorithm

It is convenient to consider partial input vectors, which specify some of the initial val-
ues, and contain ⊥ instead of the missing values. We write J ≤ I if I is “more infor-
mative” than J . Namely, if (i) every location containing ⊥ in I contains ⊥ in J as well,
and (ii) if I and J agree on all locations that are not ⊥ in J . One property of x-legal
conditions that is very useful for solving condition-based consensus is captured by the
following lemma:

Lemma 1. [13] Let C be an x-legal condition. If I1, I2 ∈ C, #⊥(J) ≤ x, J ≤ I1
and J ≤ I2, then H(I1) = H(I2).

Given Lemma 1, any subset of n − x values in an input vector I determine the value
of H(I). It is thus possible to extend H to partial input vectors that contain any number
k ≥ n−x values. Since fewer values suffice, it turns out that condition-based consensus
admits faster algorithms in the synchronous round model than (unconditional) consen-
sus. Indeed, Mostéfaoui et al. in [13] present a condition-based consensus algorithm
for the synchronous round model that, when applied with respect to a condition in Cd

t ,
guarantees that all non-faulty processes decide in the first t + 1 − d rounds. Their al-
gorithm, however, does not guarantee simultaneous decision.1 The algorithm of [13] can

1 The algorithm described in [13] works whether the input vector is in the condition or not.
When the input vector I belongs to the condition C, a process decides in two rounds if f ≤ d,
and in at most t + 1 − d rounds when f > d. When I is not in the condition a process
decides in at most t + 1 rounds. The condition-based protocols developed in the current paper
are guaranteed to be correct only if I belongs to a condition of the proper class. They do not
degrade gracefully when the input vector is arbitrary.

No Double Discount: Condition-Based Simultaneity Yields Limited Gain 429

operation COND PROPOSE(vi, t, d,H): % code for pi %
(101) Vi ← [⊥, . . . ,⊥]; v condi ← ⊥; v nocondi ← ⊥;
(102) when r = 1
(103) begin round
(104) send (vi) to all;
(105) for each vj received do Vi[j] ← vj end for;
(106) if (#⊥(Vi) ≤ d) then v condi ← H(Vi) end if;
(107) v nocondi ← max(all the vj received during r)
(108) end round;
(109) when r = 2, 3, . . . do
(110) begin round
(111) send (v condi, v nocondi) to all;
(112) v condi ← max(all the v condj received during r);
(113) v nocondi ← max(all the v tmfj received during r);
(114) if

`

r = (t + 1) − d
´

then
(115) if (v condi �= ⊥) then return (v condi) else return (v nocondi) end if
(116) end if
(117) end round.

Fig. 1. COND PROPOSE: A synchronous condition-based simultaneous consensus algorithm

be adapted so that decisions are performed simultaneously in round t+1−d, essentially
by delaying all decisions until this round. The adapted algorithm Cond is presented in
Figure 1 and it satisfies these properties. By the analysis in [13], we have:

Theorem 3. The COND PROPOSE algorithm presented in Figure 1 solves the condition-
based consensus problem. Moreover, the processes decide in (t + 1) − d rounds.

For completeness, COND PROPOSE is presented in the next section, which can be
skipped in a first reading.

The COND PROPOSE algorithm. Each process pi uses three local variables.

– Vi is an array whose aim is to contain pi’s local view of the input vector. Initialized
to [⊥, . . . ,⊥], it contains at most t entries equal to ⊥ at the end of the first round
(line 105).

– v condi (initialized to ⊥) is destined to contain the value H(I) that the condition
C associates with the input vector I (line 106). As the condition C is d-legal, H(I)
can be computed from H(Vi) only when the local view Vi of pi has at most d entries
equal to ⊥. Thus, the value of H can be computed at this point.

– v nocondi (initialized to ⊥) is destined to contain the value to be decided when
no value can be decided from the condition because there are too many failures
during the first round (more than d processes crash). When this occurs, a process
will decide the greatest proposed value it has ever seen.

430 Y. Moses and M. Raynal

The behavior of a process pi is simple. During the first round (lines 102–108), pi

determines its local view Vi of the input vector I , computes v condi if it sees not too
many failures (i.e., at most d crashes), and computes v nocondi in case the condition
is useless because there are more than d crashes. Then, from the second round until
round t+1−d, the processes use the flood set strategy to exchange their current values
v condi and v nocondi, and keep the greatest ones of each. At the end of the round
t+ 1− d, a process pi decides on the value in v condi if that value is not ⊥; otherwise,
it decides on the value in v nocondi (which is then different from ⊥).

3.2 An Optimal Algorithm for (Unconditional) Simultaneous Consensus

The second basic algorithm that we shall use is taken from our paper [9], which is in
turn based on [2,7]. It optimally solves the simultaneous consensus problem: For every
failure pattern F and input vector I , it decides as soon as any other algorithm can decide
on (F, I). Before describing the algorithm, we need a few definitions.

Preliminary definitions. For simplicity we assume that each process sends a message
to all the processes in each round. As a consenquence, process failures can be easily
detected, and this detection is done as soon as possible. Moreover, for every algorithm
P , a run ρ determines to a unique pair (I, F) consisting of its input vector and failure
pattern; we write ρ = P (I, F) in this case.

Definition 2 (Failure discovery). With respect to a failure pattern F , the failure of a
process q is discovered in round r if r is the first round in which there is a process p
that (1) does not receive a round r message from q, and (2) p survives (i.e., completes
without crashing) round r. Process q has detectably crashed in F by round r if its
failure is discovered no later than in round r.

Definition 3 (Waste). Fix a failure pattern F . Define by C(r) the set of processes
whose failure is discovered in F by round r. In particular, C(0) = 0. We define the
Waste inherent in F to be W (F) = maxr≥0(C(r) − r).

Since C(0) = 0 and C(r) ≤ t − r, it immediately follows that 0 ≤ W (F) ≤ t − 1
holds for all failure patterns F .

The SIM PROPOSE algorithm described below is a simultaneous consensus algo-
rithm that is optimal in all runs:

Theorem 4. [2] Let t < n − 1. The SIM PROPOSE algorithm of Figure 2 solves sim-
lultaneous consensus. In every run, it reaches is reached in round RSt,F = t+ 1−W .
Moreover, no simultaneous consensus algorithm can ever decide in fewer than t + 1 −
W (F) in a run with failure pattern F .

As in the condition-based case, we now present for the sake of completeness the al-
gorithm called SIM PROPOSE, taken from [7,9], which will be our concrete optimal
unconditional simultaneous consensus algorithm. For more details and a proof of opti-
mality, see [9].

No Double Discount: Condition-Based Simultaneity Yields Limited Gain 431

The SIM PROPOSE algorithm

The Horizon notion. The algorithm is based on the notion of a horizon of the previous
round that each process computes in every round. Very roughly speaking, the horizon
is a current best estimate for when initial values will become common knowledge, so
that decisions can be based on them. The horizon is updated to be the minimal value
of t + 1 − |f ′

i(r − 1)|, where the latter term f ′
i(r − 1) refers roughly to the number

of processes that, according to i’s knowledge at the end of round r, were definitely
discovered by the end of round r − 1. (For this and the finer points of SIM PROPOSE,
See [9].)

Local variables. Each process pi manages the following local variables. Some variables
are presented as belonging to an array. This is only for notational convenience, as such
array variables can be implemented as simple variables.

– esti contains, at the end of r, pi’s current estimate of the decision value. Its initial
value is vi, the value proposed by pi.

– fi[r] denotes the set of processes from which pi has not received a message during
the round r. (So, this variable is the best current estimate that pi can have of the
processes that have crashed.)
Let fi[r] = Π \ fi[r] (i.e., the set of processes from which pi has received a round
r message).

– f ′
i [r − 1] is a value computed by pi during the round r, but that refers to crashes

that occurred up to the round r − 1 (included), hence the notation. It is the value⋃
pj∈fi[r] fj [r − 1], which means that f ′

i [r − 1] is the set of processes that were
known as crashed at the end of the round r−1 by at least one of the processes from
which pi has received a round r message. This value is computed by pi during the
round r. As a process pi receives its own messages, we have fi[r− 1] ⊆ f ′

i [r− 1].
– bhi[r] represents the best (smallest) horizon value known by pi at round r. It is pi’s

best estimate of the smallest round for a simultaneous decision. Initially, bhi[0] =
hi(0) = t + 1.

Process behavior. Each process pi not crashed at the beginning of r sends to all the
processes a message containing its current estimate of the decision value (esti), and the
set fi[r − 1] of processes it currently knows as faulty. After it has received the round
r messages, pi computes the new value of esti and the value of bhi[r]. The new value
of esti is the smallest of the estimates values it has seen so far. As far as the value of
bhi[r] is concerned, we have the following.

– The computation of bhi[r] has to take into account hi(r). This is required to benefit
from the fact that there is a clean round y such that r ≤ y ≤ hi(r). A clean
round is one in which all processes hear from the exact set of processes. When this
clean round will be executed, any two processes pi and pj that execute it will have
esti = estj , and (as they will receive messages from the same set of processes)
will be such that f ′

i [r − 1] = f ′
j [r − 1]. It follows that, we will have hi(y) =

hj(y), thereby creating correct “seeds” for determining the smallest round for a
simultaneous decision. This allows the processes to determine rounds at which they
can simultaneously decide.

432 Y. Moses and M. Raynal

algorithm SIM PROPOSE(vi, t): % code for pi %
(201) esti ← vi; bhi[0] ← t + 1; fi[0] ← ∅; decidedi ← false; % initialization %
(202) when r = 1, 2, . . . do % r: round number %
(203) begin round
(204) send (esti, fi[r − 1]) to all; % including pi itself %
(205) let f ′

i [r − 1] = the union of the fj [r − 1] sets received during r;
(206) let fi[r] = the set of proc. from which pi has not received a message during r;
(207) esti ← min(all the estj received during r);
(208) let hi(r) = (r − 1) + (t + 1 − |f ′

i [r − 1]|);
(209) bhi[r] ← min

(
bhi[r − 1], hi(r)

)
;

(210) if r = bhi[r] then decidedi ← true; return (esti) end if
(211) end round.

Fig. 2. SIM PROPOSE: Optimal simultaneous consensus despite up to t crash failures

– As we are looking for the first round where a simultaneous decision is possible,
bhi[r] has to be set to min

(
hi(0), hi(1), . . . , hi(r)

)
, i.e., bhi[r] = min

(
bhi[r −

1], hi(r)
)
.

Finally, according to the previous discussion, the algorithm directs a process pi to de-
cide at the end of the first round r that is equal to the best horizon currently known by
pi, i.e., when r = bhi[r].

The resulting algorithm is presented in Figure 2, where hi(r) (see line 208) is ex-
pressed as a function of r − 1 to emphasize the fact that it could be computed at the
end of the round r − 1 by an external omniscient observer. The local boolean variable
decidedi is used only to prove the optimality of the combined algorithm (see Section 4).
Its suppression does not alter the algorithm.

3.3 An Optimal Condition-Based Simultaneous Consensus Algorithm

We now show how the two simultaneous consensus algorithms presented in Figures 1
and 2 can be combined to give a correct simultaneous consensus algorithm that decides
as soon as either one does. In fact, a similar combination can be done in general for
simultaneous consensus algorithms. The issue of parallel execution of consensus algo-
rithms without the simultaneity property is much more subtle is not always possible.

Running simultaneous consensus algorithms in parallel. Suppose that A and B are
two algorithms for simultaneous consensus, whose decision round is determined by
conditions ψA and ψB , respectively. Define A&B to be the algorithm that runs both A
and B in parallel, but changes the decision rule in the following way:

– When algorithm A’s decision rule (ψA) is satisfied, then decision is performed
according to A, provided that a decision has not been performed in previous rounds.

– When algorithm B’s decision rule (ψB) is satisfied, if A’s rule is not satisfied, and
no decision has been performed in previous rounds, then decision is performed
according to B.

No Double Discount: Condition-Based Simultaneity Yields Limited Gain 433

Thus, A&B decides as soon as the first of A and B decides. Ties are broken by accept-
ing A’s decision in case both algorithms happen to decide in the same round. As result,
the agreement property, as well as all other properties of simultaneous consensus, is
properly maintained.

For completeness, we describe the changes to the algorithms in Figures 1 and 2 that
yield a properly combined algorithm:

1. The r-th round, 1 ≤ r ≤ t + 1 − d, of the combined algorithm is a simple merge
of the r-th round of both algorithms. This means that the message sent by pi at
round r now piggybacks v condi, v nocondi, esti and fi[r − 1] (a closer look at
the base algorithms shows that their variables v nocondi and esti play the same
role. Consequently, only of them has to be kept in the combined algorithm).

2. The lines 114–116 of the algorithm in Figure 1, and the line 210 of the algorithm
in Figure 2 are replaced by the following lines:

if (r = bhi[r]) ∨ (r = t + 1 − d) then
if (r = bhi[r]) then decidedi ← true; return (esti)

else if (v condi �= ⊥) then return (v condi)
else return (v nocondi) end if

end if.

We immediately obtain:

Theorem 5. Let t < n − 1. The algorithm obtained by the combined execution (as
described in the previous items) of the algorithms described in Figures 1 and 2 solves
the condition-based simultaneous consensus problem. In a run with failure pattern F ,
decision is reached in round t + 1 − max(W (F), d).

4 Optimality: t + 1 − max(W, d) Is a Lower Bound

This section proves that the algorithm described in Section 3.3 (COND SIM PROPOSE

in the following) is optimal, namely, in a synchronous system prone to up to t process
crashes (with t < n − 1), there is no deterministic algorithm that can ever solve the
condition-based simultaneous consensus problem in fewer than (t + 1) − max(W,d)
rounds. The proof relies on a knowledge-based analysis using notions introduced in
[2,7,9]. Due to space limitations, only the main lemmas and theorems are stated. The
reader can consult [10] for the full details of the proof. We start with some intuition and
background.

4.1 Similarity Graphs and Common Knowledge

Our lower bound is based on the well-known connection between simultaneous agree-
ment and common knowledge [2,11]. This connection implies that it is possible to si-
multaneously decide on a value v ∈ V only once it becomes common knowledge that
one of the initial values of the current input vector is v:

434 Y. Moses and M. Raynal

Proposition 1 ([2]). If P solves condition-based simultaneous consensus for condition
C, then whenever the nonfaulty processes decide v, it is common knowledge that v
appears in the input vector.

Given Proposition 1, if we are able to show that no value is commonly known to be an
initial value in round r of a run ρ, then decision is not possible in this round. We will
use this in order to prove lower bounds on when decisions can be performed in a cb-s
consensus protocol. Rather than develop the logic of knowledge in detail here, we will
use a simple graph-theoretic interpretation of common knowledge in our setting.

The local state of process pi at the end of round r of an algorithm P is identified
with the state of pi’s memory - its variables and their values.

Definition 4 (Similarity Graph). Fix a round r. We say that runs ρ and ρ′ are indis-
tinguishable to p after round r, denoted by ρ ∼p ρ′ if p has survived round r in both
runs, and p’s local state at the end of round r is the same in both runs. For a given
algorithm P , we define sG(r) = (V,E), where V are the runs of P , and {ρ, ρ′} ∈ E iff
ρ ∼p ρ′ holds for some process p.

The similarity graph sG(r) has the property that the existence of an initial value of v
is common knowledge in round r of a run ρ if and only if every run in ρ’s connected
component in sG(r) contains v at least as one of its initial values. We write ρ ≈ ρ′ if ρ
and ρ′ are in the same connected component of sG(r). In other words, ρ, r ≈ ρ′ holds
if there is a sequence of runs and processes such that ρ = ρ0 ∼p0 ρ1 ∼p1 · · · ∼k−1

ρk = ρ′.
A well-known corollary of Proposition 1 is captured by:

Lemma 2 ([2]). Fix r and let ρ = P (I, F) and ρ′ = P (Iv̄, F
′) be runs of a determin-

istic algorithm P that satisfies the requirements of simultaneous consensus. If v does

not appear in Iv̄ and ρ
r≈ ρ′ then If some non-faulty process decides on value v in

round r of ρ and ρ ≈ ρ′, then the nonfaulty processes cannot decide v in round r of ρ.

We say that a round r is premature in a run ρ = P (I, F) if r < t + 1 − W (F). It was
shown in [2] showed that before round t + 1 − W , the only fact about failures that is
common knowledge is that r < t + 1 −W . It is not common knowledge that even one
failure has occurred. More formally,

Lemma 3 ([2,9]). Let P be a deterministic protocol, and denote ρ = P (I, F) and

ρ′ = P (I, F ′). If round r is premature in both F and F ′, then ρ
r≈ ρ′.

The proof of this lemma in [9] depends only on the fact that the set of runs in sG(r)
contains all runs ρ̂ = P (I, F̂) with failure patterns F̂ containing no more than t crashes.
It thus applies to the condition-based case, and indeed will serve us in the proof of
optimality. Before we complete the proof, we need to revisit conditions.

4.2 Properties of Conditions

Consider a condition C = {0n, 1n} ∈ Cn−1
t containing only two extreme initial config-

urations: All zeros and all ones. Clearly, consensus can be solved for C with no rounds

No Double Discount: Condition-Based Simultaneity Yields Limited Gain 435

of communication. Observe that C is x-legal for every 0 ≤ x ≤ n. It follows that
we have no hope of basing a nontrivial lower-bound on the notion of x-legality; the
property of being x-legal is useful mainly for proving upper bounds as demonstrated
in Theorem 3. The property of being x-legal imposes a requirement that input vectors
need to be sufficiently distant from each other. We now define a property of conditions
called k-coverable, which goes in the opposite direction and stipulates that the input
vectors in a condition be sufficiently Hamming close.

Definition 5 (k-graph of C). Given a condition C and a natural number k, the k-graph
over C is Gk[C] = (C,Ek) where Ek = {{I, I ′} : dist(I, I ′) ≤ k}.

Thus, two vectors of C are neighbors in Gk[C] exactly if they disagree on the values of at
most k processes. We now use the k-graph to define a closeness property on conditions:

Definition 6 (y-coverability). The condition C is k-coverable if for every value v ∈ V
and input vector I ∈ C there is an input vector Iv̄ ∈ C such that (i) v does not appear
in Iv̄ , and (ii) I and Iv̄ are in the same connected component of Gk[C].

A natural question is how the properties of being x-legal and of being k-coverable are
related. It is straightforward to show:

Lemma 4. If C is x-legal then it is not x-coverable.

Definition 7 (x-tight). A condition C is x-tight if it is both x-legal and (x + 1)-
coverable.

It has been shown by [13] that the max-value condition Mx = {I : #max(I)(I) > x}
is x-legal. In fact, we can extend this result to show:

Lemma 5. The max-value condition Mx is x-tight.

By Lemma 5, Mx is x-tight, for every value of x. It follows that every class in the Cd
t

hierarchy contains a d-tight condition. In the sequel, we shall prove a lower bound using
the y-coverability property, and obtain results that are optimal in all runs for conditions
that are x-tight.

4.3 Proving the Bounds

The crux of our lower bound proof is based on the following lemma, whose proof will
be outlined and which can be found in [10].

Lemma 6. Fix a protocol P and let ρ = P (I, F) and ρ′ = P (I ′, F ′) be two runs with
input configurations I, I ′, respectively. Let r ≥ 0 and assume that r is premature in
both ρ and ρ′. Denote the Hamming distance dist(I, I ′) = k. If k ≤ t + 1 − r, then

ρ
r≈ ρ′.

Proof. The fact that dist(I, I ′) = k implies that I and I ′ differ on a set of values
vi1 ,. . . ,vik

. Consider the failure pattern F̂ in which pi1 , . . . , pik
are crashed and silent

from the outset, while no other processes fail in F̂ . Observe that W (F̂) = k − 1, and
t + 1 − Waste(F̂) = t + 2 − k. The assumption that k ≤ t + 1 − r implies that

436 Y. Moses and M. Raynal

r ≤ t+1−k < t+2−k = t+1−W (F̂). Thus, r is premature in both ρ1 = P (I, F̂)
and in ρ2 = P (I ′, F̂). Observe that every process has the same local state at the end of
all rounds (and in particular at the end of round r) of both ρ1 and ρ2. Since t < n − 1
at least one of the non-crashed processes is non-faulty, and so ρ1

r≈ ρ2. Moreover, By

Lemma 3 we have that ρ
r≈ ρ1 and that ρ2

r≈ ρ′. By transitivity of
r≈ we obtain that

ρ
r≈ ρ′, as desired. �Lemma 6

Given Lemma 6, we can now conclude that decision is impossible any faster than is
obtained in our “optimal” algorithm:

Lemma 7. Fix a protocol P and a y-coverable condition C, let ρ = P (I, F) be a run
of P and let r < min{t+ 1−W (F), y + 1}. Then no value v can be decided on at the
end of round r in ρ.

Proof. Let P , C, y, ρ = P (I, F) and r satisfy the conditions of the lemma. Assume
by way of contradiction that v is common knowledge at the end of round r. Since
C is y-coverable, there is a vector Iv̄ ∈ C such that v does not appear in Iv̄ , while
I and Iv̄ are in the same connected component of Gy[C]. Thus, there is a finite path
I = I1, I2, . . . Ik = Iv̄ in Gy [C] connecting I with Iv̄ . Define ρj = P (Ij , F) for
j = 1, . . . , k. We prove by induction on j ≤ k that ρ and ρj are in the same connected
component of sG(r). The case j = 1 is trivial since ρj = ρ. The inductive step follows
immediately by Lemma 6, since all runs in the sequence have the same failure pattern F ,
which has a fixed waste. Since ρk = P (Ik, F) does not have an initial value of v, it
follows by Lemma 2 that v cannot be decided on at the end of round r of ρ. The claim
follows. �Lemma 7

We now immediately conclude:

Theorem 6. For every x-tight condition C, the COND SIM PROPOSE algorithm is op-
timal for cb-s consensus in every run. I. e., for every cb-s consensus protocol P for C,
every I ∈ C and every failure pattern F , if ρ = P (I, F) decides in round r, then
COND SIM PROPOSE decides on (I, F) either in round r or in an earlier round.

5 Conclusion

This paper focused on simultaneous decision in the condition-based consensus setting.
It has presented two results. The first is a condition-based consensus algorithm in which
processes decide simultaneously at the end of the round RSt,d,F = (t+1)−max(W,d)
where W ≥ 0 is a value that depends on the actual failure pattern, and d depends on the
position of the condition C (the algorithm is instantiated with) in the hierarchy of legal
conditions. The second result is a proof that RSt,d,F is a lower bound on the number
of rounds of the simultaneous condition-based consensus problem. This bound shows
that we can benefit from the best world provided by the actual run (failure world when
RSt,d,F = (t + 1) −W or condition world when RSt,d,F = (t + 1) − d), but that the
two benefits do not compound. There is no double discount.

Acknowledgements. We thank the anonymous referees of the PC for comments that
improved the presentation of this paper.

No Double Discount: Condition-Based Simultaneity Yields Limited Gain 437

References

1. Dolev, D., Reischuk, R., Strong, R.: Early Stopping in Byzantine Agreement. Journal of the
ACM 37(4), 720–741 (1990)

2. Dwork, C., Moses, Y.: Knowledge and Common Knowledge in a Byzantine Environment:
Crash Failures. Information and Computation 88(2), 156–186 (1990)

3. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press,
Cambridge (2003)

4. Fischer, M.J., Lynch, N., Paterson, M.S.: Impossibility of Distributed Consensus with One
Faulty Process. Journal of the ACM 32(2), 374–382 (1985)

5. Friedman, R., Mostéfaoui, A., Rajsbaum, S., Raynal, M.: Asynchronous Agreement and its
Relation with Error-Correcting Codes. IEEE Trans. on Computers 56(7), 865–876 (2007)

6. Halpern, J.Y., Moses, Y.: Knowledge and Common Knowledge in a Distributed Environment.
Journal of the ACM 37(3), 549–587 (1990)

7. Mizrahi, T., Moses, Y.: Continuous Consensus via Common Knowledge. Distributed Com-
puting 20(5), 305–321 (2008)

8. Moses, Y., Rajsbaum, S.: A Layered Analysis of Consensus. SIAM Journal of Comput-
ing 31(4), 989–1021 (2002)

9. Moses, Y., Raynal, M.: Revisiting Simultaneous Consensus with Crash Failures. Tech Report
1885, IRISA, Université de Rennes 1, France, 17 pages (2008)

10. Moses, Y., Raynal, M.: No Double Discount: Condition-based Simultaneity Yields Limited
Gain. Tech Report 1898, IRISA, Université de Rennes 1, France, 20 pages (2008)

11. Moses, Y., Tuttle, M.R.: Programming Simultaneous Actions Using Common Knowledge.
Algorithmica 3, 121–169 (1988)

12. Mostéfaoui, A., Rajsbaum, S., Raynal, M.: Conditions on Input Vectors for Consensus Solv-
ability in Asynchronous Distributed Systems. Journal of the ACM 50(6), 922–954 (2003)

13. Mostéfaoui, A., Rajsbaum, S., Raynal, M.: Synchronous Condition-Based Consensus. Dist.
Computing 18(5), 325–343 (2006)

14. Pease, L., Shostak, R., Lamport, L.: Reaching Agreement in Presence of Faults. Journal of
the ACM 27(2), 228–234 (1980)

15. Raynal, M.: Consensus in Synchronous Systems: a Concise Guided Tour. In: roc. 9th IEEE
Pacific Rim Int’l Symposium on Dependable Computing (PRDC 2002), pp. 221–228. IEEE
Computer Press, Los Alamitos (2002)

Bosco: One-Step Byzantine Asynchronous

Consensus�

Yee Jiun Song and Robbert van Renesse

Cornell University, Ithaca, NY 14850, USA

Abstract. Asynchronous Byzantine consensus algorithms are an impor-
tant primitive for building Byzantine fault-tolerant systems. Algorithms
for Byzantine consensus typically require at least two communication
steps for decision; in many systems, this imposes a significant perfor-
mance overhead. In this paper, we show that it is possible to design
Byzantine fault-tolerant consensus algorithms that decide in one mes-
sage latency under contention-free scenarios and still provide strong con-
sistency guarantees when contention occurs. We define two variants of
one-step asynchronous Byzantine consensus and show a lower bound on
the number of processors needed for each. We present a Byzantine con-
sensus algorithm, Bosco, for asynchronous networks that meets these
bounds, even in the face of a strong network adversary.

1 Introduction

Informally, the consensus problem is the task of getting a set of processors to
agree on a common value. This simple primitive can be used to implement atomic
broadcast, replicated state machines, and view synchrony, thus making consensus
an important building block in distributed systems.

Many variants of the consensus problem have been proposed. The differences
between them lie mainly in the failure assumptions and the synchronicity as-
sumptions. In this paper, we are concerned with Byzantine consensus in an
asynchronous environment, i.e., faulty processors can behave in an arbitrary
manner and there are no assumptions about the relative speed of processors nor
about the timely delivery of messages.

Consensus algorithms allow processors to converge on a value by exchanging
messages. Previous results have shown that algorithms that solve asynchronous
Byzantine consensus must have correct executions that require at least two com-
munication steps even in the absence of faults [1], where a single communication
step is defined as a period of time where each processor can i) send messages;
ii) receive messages; and iii) do local computations, in that order. However, this

� The authors were supported by AFRL award FA8750-06-2-0060 (CASTOR), NSF
award 0424422 (TRUST), AFOSR award FA9550-06-1-0244 (AF-TRUST), DHS
award 2006-CS-001-000001 (I3P), as well as by ISF, ISOC, CCR, and Intel Cor-
poration. The views and conclusions herein are those of the authors.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 438–450, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Bosco: One-Step Byzantine Asynchronous Consensus 439

does not mean that such algorithms must always take two or more communica-
tion steps. We show that when there is no contention, it is possible for processors
to decide a value in one communication step.

One-step decisions can improve performance for applications where contention
is rare. Consider a replicated state machine: if a client broadcasts its operation
to all machines, and there is no contention with other clients, then all correct
machines propose the same operation and can respond to the client immediately.
Thus an operation completes in just two message latencies, the same as for a
Remote Procedure Call to an unreplicated service.

Previously such one-step asynchronous consensus algorithms have been pro-
posed for crash failure assumptions [2,3,4,5,6,7]; Friedman et al. proposed a
common coin-based one-step consensus algorithm that tolerates Byzantine fail-
ures and terminates with probability 1 but requires that the network scheduler
has no knowledge of the common coin oracle [8]. In this paper, we consider
one-step algorithms for Byzantine asynchronous consensus in the presence of a
strong network adversary. We define two different notions of one-step Byzantine
asynchronous algorithms and prove a lower bound for the number of processors
that are required for each. Next we show that the lower bounds are tight by
extending the work presented in [2] to handle Byzantine failures, resulting in
Bosco, an algorithm that meets these bounds.

The rest of the paper is organized as follows: Section 2 defines the model and
the Byzantine consensus problem; Section 3 proves lower bounds for the two
versions of one-step Byzantine consensus; Section 4 describes Bosco, a one-step
consensus algorithm; Section 5 discusses some properties of Bosco; Section 6
presents a brief survey of some related work; finally, Section 7 concludes.

2 The Byzantine Consensus Problem

The Byzantine consensus problem was first posed in [9], albeit for a synchronous
environment. In this paper we focus on an asynchronous environment.

In this problem, there is a set of n processors P = {p, q, ...} each of which have
an initial value, 0 or 1. An unknown subset T of P contains faulty processors.
These faulty processors may exhibit arbitrary (aka Byzantine) behavior, and
may collude maliciously. Processors in P − T are correct and behave according
to some protocol. Processors communicate with each other by sending messages
via a network. The network is assumed to be fully asynchronous but reliable, that
is, messages may be arbitrarily delayed but between two correct processors, will
be eventually be delivered. Links between processors are private so a Byzantine
processor cannot forge a message from a correct processor.

In addition, we assume a strong network adversary. By this, we mean that the
network is controlled by an adversary that, with full knowledge of the contents
of messages, may choose to arbitrarily delay messages as long as between any
two correct processes, messages are eventually delivered.

440 Y.J. Song and R. van Renesse

The goal of a Byzantine consensus protocol is to allow all correct processors
to eventually decide some value. Specifically, a protocol that solves Byzantine
consensus must satisfy:

Definition 1. Agreement. If two correct processors decide, then they decide the
same value. Also, if a correct processor decides more than once, it decides the
same value each time.

Definition 2. Unanimity. If all correct processors have the same initial value
v, then a correct processor that decides must decide v.

Definition 3. Validity. If a correct processor decides v, then v was the initial
value of some processor.

Definition 4. Termination. All correct processors must eventually decide.

Note that algorithms that satisfy all of the above requirements are not possible
in asynchronous environments when even a single crash failure must be toler-
ated [10]. In practice, algorithms circumvent this limitation by assuming some
limitation in the extent of asynchrony in the system, or by relaxing the Termina-
tion property to a probabilistic one where all correct processors terminate with
probability 1.

Unanimity requires that the outcome be predetermined when the initial values
of all correct processors are unanimous. A one-step algorithm takes advantage
of such favorable initial conditions to allow correct processors to decide in one
communication step.

We define two notions of one-step protocols:

Definition 5. Strongly one-step. If all correct processors have the same initial
value v, a strongly one-step Byzantine consensus algorithm allows all correct
processors to decide v in one communication step.

Definition 6. Weakly one-step. If there are no faulty processors in the system
and all processors have the same initial value v, a weakly one-step Byzantine
consensus algorithm allows all correct processors to decide v in one communica-
tion step.

While both can decide in one step, strongly one-step algorithms make fewer as-
sumptions about the required conditions and in particular cannot be slowed down
by Byzantine failures when all correct processors have the same initial value.
Strongly one-step algorithms optimize for the case where some processors may
be faulty, but there is no contention among correct processors, and weakly one-
step algorithms optimize for cases that are both contention-free and failure-free.

3 Lower Bounds

We show that a Byzantine consensus algorithm that tolerates t Byzantine fail-
ures among n processors requires n > 7t to be strongly one-step and n > 5t to be

Bosco: One-Step Byzantine Asynchronous Consensus 441

weakly one-step.1 These results are for the best case scenario in which each
correct processor broadcasts its initial value to all other processors in the first
communication step and thus they hold for any algorithm.

3.1 Lower Bound for Strongly One-Step Byzantine Consensus

Lemma 1. A strongly one-step Byzantine consensus algorithm must allow a
correct processor to decide v after receiving the same initial value v from n− 2t
processors.

Proof. Assume otherwise, that there exists a run in which a strongly one-step
Byzantine algorithmA does not allow a correct processor p to decide v after receiv-
ing the same initial value v from n− 2t processors. Since A is a strongly one-step
algorithm, the fact that processor p does not decide after the first round implies
that some correct processor q has an initial value v′, v′ �= v. Now consider a sec-
ond run, in which all correct processors do have the same initial value v. Without
blocking, p can wait for messages from at most n − t processors. Among these, t
can be Byzantine and send arbitrary initial values. This means that processor p is
only guaranteed to receive n− 2t messages indicating that n− 2t processors have
the initial value v. Given that A is a strongly one-step algorithm, p must decide
v at this point. However, from the point of view of p, this second run is indistin-
guishable from the first run. This is a contradiction. ��

Theorem 1. Any strongly one-step Byzantine consensus protocol that tolerates
t failures requires at least 7t + 1 processors.

Proof. Assume that there exists a strongly one-step Byzantine consensus algo-
rithm A that tolerates up to t Byzantine faults and requires only 7t processors.
We divide the processors into three groups: G0 and G1 each contain 3t proces-
sors, of which the correct processors have initial values 0 and 1 respectively; G∗
contain the remaining t processors.

Now consider the following configurations C0 and C1. In C0, t of the processors
in G1 are Byzantine, and processors in G∗ have the initial value 0. Assume that
Byzantine processors act as if they are correct processors with initial value 0
when communicating with processors in G∗, and initial value 1 when communi-
cating with processors not in G∗. Now consider that a correct processor p0 ∈ G∗
collects messages from n − t processors in the first communication step. Given
that the network adversary controls the order of message delivery, p0 can be
made to receive messages from all processors in G0 and G∗, and the t Byzantine
processors in G1. p0 thus receives n − 2t messages indicating that the n − 2t
senders have initial value 0. By Lemma 1, p0 must decide 0 after that first com-
munication step. In order to satisfy Agreement, A must ensure that any correct
processor that ever decides in C0 decides 0. We say that C0 is 0-valent.

In C1, t of the processors in G0 are Byzantine, and processors in G∗ have
the initial value 1. In addition, Byzantine processors act as if they are correct
1 These results are for threshold quorum systems, but may be generalized to use

arbitrary quorum systems.

442 Y.J. Song and R. van Renesse

processors with initial value 1 when communicating with processors from G∗
and initial value 0 when communicating with processors not in G∗. A correct
processor p1 ∈ G∗ collects messages from n− t in the first communication step.
Suppose that the network adversary chooses to deliver messages from G1 and
G∗, as well as from the t Byzantine processors. Now p1 collects n− 2t messages
indicating that n−2t senders have initial value 1. By Lemma 1, p1 must decide 1
after the first communication step. In order to satisfy Agreement, A must ensure
that any correct processor that ever decides in C1 decides 1. We say that C1 is
1-valent.

Further assume that for both configurations, messages from any processor in
G∗ to any processor not in G∗ are arbitrarily delayed such that in any asyn-
chronous round, when a processor that is not in G∗ awaits n − t messages, it
receives messages from every processor that is not in G∗. Now, any correct pro-
cess q0 /∈ G∗ executing A in C0 will be communicating with 3t processors that
behave as if they are correct processors with initial value 0 and 3t processors that
behave as if they are correct processors with initial value 1. As we have shown
above, C0 is a 0-valent configuration, so A must ensure that q0 decides 0, if it
ever decides. Similarly, a correct processor q1 /∈ G∗ executing A in C1 will also be
communicating with 3t processors that behave as if they are correct processors
with initial value 0 and 3t processors that behave as if they are correct proces-
sors with initial value 1. However, since we have shown that C1 is a 1-valent
configuration, A must ensure that q1 decides 1, even though it sees exactly the
same inputs as q0. This is a contradiction. ��

3.2 Lower Bound for Weakly One-Step Byzantine Consensus

We now show the corresponding lower bound for weakly one-step algorithms.
The lower bound for weakly one-step algorithms happens to be identical to that
for two-step algorithms. The bound for two-step algorithms was shown in [11].
We show a corresponding bound for weakly one-step algorithm for completeness,
but note that this is not a new result.

We weaken the requirement on Lemma 1 as follows:

Lemma 2. A weakly one-step Byzantine consensus algorithm must allow a pro-
cessor to decide v after learning that n− t processors have the same initial value v.

Proof. A processor can only wait for messages from n − t processors without
risking having to wait indefinitely. Since a weakly one-step Byzantine consensus
algorithm must decide in one communication step if all correct processors have
the same initial value and there are no Byzantine processors, it must decide if
all of the n− t messages claim the same initial value. ��

Theorem 2. A weakly one-step Byzantine consensus protocol that tolerates t
failures requires at least 5t + 1 processors.

Proof. We provide only a sketch of the proof since it is similar to that of The-
orem 1. Proof by contradiction. Assume that a Byzantine consensus algorithm

Bosco: One-Step Byzantine Asynchronous Consensus 443

A is weakly one-step and requires only 5t processors. We divide the 5t pro-
cessors into three groups, G0, G1, and G∗, containing 2t, 2t, and t processors
respectively. All correct processors in G0 have the initial value 0 and all correct
processors in G1 have the initial value 1.

As in the proof of Theorem 1, we construct two configurations C0 and C1. In
C0, processors in G∗ have the initial value 0 and t processors in G1 are Byzantine.
Correspondingly, in C1, processors in G∗ have the initial value 1 and t processors
in G0 are Byzantine. These Byzantine processors behave as they do in the proof
of Theorem 1. It is thus possible for processors in G∗ to decide 0 and 1 in C0

and C1 respectively. Therefore, correct processors in G0 and G1 must not decide
any value other than 0 and 1 respectively. However, if all messages from any
processor in G∗ to any processor not in G∗ are delayed, then correct processors
in C0 and C1 see exactly the same inputs. This is a contradiction. ��

4 Bosco

We now present Bosco (Byzantine One-Step COnsensus), an algorithm that
meets the bounds presented in the previous section. To the best of our knowledge,
Bosco is the first strongly one-step algorithm that solves asynchronous Byzantine
consensus with optimal resilience. The idea behind Bosco is simple, and resembles
the one presented in [2]. We simply extend the results of [2] to handle Byzantine
failures. The Bosco algorithm is shown in Algorithm 1.

Algorithm 1. Bosco: a one-step asynchronous Byzantine consensus algo-
rithm
Input: vp

broadcast 〈VOTE, vp〉 to all processors1

wait until n − t VOTE messages have been received2

if more than n+3t
2

VOTE messages contain the same value v then3

DECIDE(v)4

if more than n−t
2

VOTE messages contain the same value v,5

and there is only one such value v then6

vp ← v7

Underlying-Consensus(vp)8

Bosco is an asynchronous Byzantine consensus algorithm that satisfies Agree-
ment, Unanimity, Validity, and Termination. Bosco requires n > 3t, where n
is the number of processors in the system, and t is the maximum number of
Byzantine failures that can be tolerated, in order to provide these correctness
properties. In addition, Bosco is weakly one-step when n > 5t and strongly
one-step when n > 7t.

The main idea behind Bosco is that if all processors have the same initial
value, then given enough processors in the system, a correct processor is able to
observe sufficient information to safely decide in the first communication round.
Additional mechanisms ensure that if such an early decision ever happens, all

444 Y.J. Song and R. van Renesse

correct processors must either i) early decide the same value; or ii) set their local
estimates to the value that has been decided.

When the algorithm starts, each processor p receives an input value vp, that
is the value that the processor is trying to get decided and the value that it
will use for its local estimate. Each processor broadcasts this initial value in a
VOTE message, and then waits for VOTE messages from n − t processors (likely
including itself). Since at most t processors can fail, votes from n− t processors
will eventually be delivered to each correct processor.

Among the votes that are collected, each processor checks two thresholds: if
more than n+3t

2 of the votes are for some value v, then a processor decides v; if
more than n−t

2 of the votes are for some value v, then a processor sets its local
estimate to v. Each processor then invokes Underlying-Consensus, a protocol
that solves asynchronous Byzantine consensus (satisfies Agreement, Unanimity,
Validity, and Termination), but is not necessarily one-step.

We first prove that Bosco satisfies Agreement, Unanimity, Validity, and Ter-
mination, when n > 3t.

Lemma 3. If two correct processors p and q decide values v and v′ in line 4,
then v = v′.

Proof. Assume otherwise, that two correct processors p and q decide values v
and v′ in line 4 such that v �= v′. p and q must have collected more than n+3t

2
votes for v and v′ each. Since there are only n processors in the system, these
two sets of votes share more than 3t

2 common senders. Given that only t of these
senders can be Byzantine, more of t

2 of these senders are correct processors.
Since a correct processor must send the same vote to all processors (in line 1),
v = v′. This is a contradiction. ��

Lemma 4. If a correct processor p decides a value v in line 4, then any correct
processor q must set its local estimate to v in line 6.

Proof. Assume otherwise, that a correct processor p decides a value v in line 4,
and a correct processor q does not set its local estimate to v in line 6. Since
processor p decides in line 4, it must have collected more than n+3t

2 votes for v
in line 2. Since processor q does not set its local estimate to v in line 6, it must
have collected no more than n−t

2 votes for v, or collected more than n−t
2 votes

for some value v′, v′ �= v. For the first case, consider that since there are only
n processors in the system, processor q must have collected votes from at least
n − 2t of the senders that processor p collected from. Among these, more than
n+t
2 sent a vote for v to q. Since at most t of these processors can be Byzantine,

processor q must have received more than n−t
2 votes for v. This is a contradiction.

For the second case, if q collects more than n−t
2 votes for some value v′, v′ �= v,

then more than t of these senders must be among those that sent a vote for v to
processor q. This is a contradiction, since, no more than t of the processors in
the system can be Byzantine. ��

Bosco: One-Step Byzantine Asynchronous Consensus 445

Theorem 3. Bosco satisfies Agreement.

Proof. There are two cases to consider. In the first case, no processor collects suf-
ficient votes containing the same value to decide in line 4. This means that all de-
cisions occur in Underlying-Consensus. Since Underlying-Consensus satisfies
Agreement, Bosco satisfies Agreement. In the second case, some correct processor
p decides some value v in line 4. By Lemma 3, any other processor that decides
in line 4 must decide the same value. By Lemma 4, all correct processors must
change their local estimates to v in line 6. Therefore, all correct processors will
invoke Underlying-Consensus with the value v. Since Underlying-Consensus
satisfies Unanimity, all correct processors that decide in Underlying-Consensus
must also decide v. ��

Theorem 4. Bosco satisfies Unanimity.

Proof. Proof by contradiction. Suppose a processor p decides v′, but all correct
processors have the same initial value v, v′ �= v. Since only t Byzantine processors
can broadcast vote messages that contain v �= v′, no correct processor can collect
sufficient votes to either decide in line 4 or to set its local estimate in line 6.
Therefore, in order for a processor to decide v, Underlying-Consensus must
allow correct processors to decide v even though all correct processors start
Underlying-Consensus with the initial value v′. This is a contradiction since
Underlying-Consensus satisfies Unanimity. ��

Theorem 5. Bosco satisfies Validity.

Proof. If a processor decides v in line 4, more than n+3t
2 processors voted v and

more than n+t
2 of these processors are correct and had initial value v. Similarly,

if a processor sets its local estimate to v in line 6, more than n−t
2 processors

voted v and more than n−3t
2 of these processors are correct and had initial value

v. Combined with the fact that Underlying-Consensus satisfies Validity, Bosco
satisfies Validity. ��

Note that satisfying Validity in general in a consensus protocol is non-trivial,
particularly if the range of initial values is large. A thorough examination of
the hardness of satisfying Validity is beyond the scope of this paper; we simply
assume that Underlying-Consensus satisfies Validity for the range of initial
values that it allows.

Theorem 6. Bosco satisfies Termination.

Proof. Since each processor awaits messages from n − t processors in line 2, and
there can only be t failures, line 2 is guaranteed not to block forever. Each proces-
sor will therefore invoke the underlying consensus protocol at some point. There-
fore, Bosco inherits the Termination property of Underlying-Consensus. ��

Next, we show that Bosco offers strongly and weakly one-step properties when
n > 7t and n > 5t respectively.

446 Y.J. Song and R. van Renesse

Theorem 7. Bosco is Strongly One-Step if n > 7t.

Proof. Assume that all correct processors have the same initial value v. Now
consider any correct processor that collects n − t votes in line 2. At most t of
these votes can be from Byzantine processors and contain values other than v.
Therefore, all correct processors must obtain at least n − 2t votes for v. Since
n > 7t, 2n− 4t > n + 3t. This means that n − 2t > n+3t

2 . Therefore, all correct
processors will collect sufficient votes and decide in line 4. ��

Theorem 8. Bosco is Weakly One-Step if n > 5t.

Proof. Assume that there are no failures in the system and that all processors
have the same initial value v. Then any correct processor must collect n− t votes
that contain v in line 2. Given that n > 5t, 2n − 2t > n + 3t. This means that
n − t > n+3t

2 . Therefore, all correct processors will collect sufficient votes and
decide in line 4. ��

5 Discussion

One important feature of Bosco, from which it draws its simplicity, is its depen-
dence on an underlying consensus protocol that it invokes as a subroutine. This
allows the specification of Bosco to be free of complicated mechanisms typically
found in consensus protocols to ensure correctness. While it is clear that any
Byzantine fault-tolerant consensus protocol that provides Agreement, Unanim-
ity, Validity, and Termination can be used for the subroutine in Bosco, the FLP
impossibility result [10] states that such a protocol cannot actually exist! Two
common approaches have been used to sidestep the FLP result: assuming par-
tial synchrony or relaxing the termination property to a probabilistic termination
property. Thankfully, such algorithms can be used as subroutines to Bosco, re-
sulting in one-step algorithms that either require partial synchrony assumptions,
or provide probabilistic termination properties (or both). An example of an al-
gorithm that can be used as a subroutine in Bosco is the Ben-Or algorithm [12].
Algorithms that do not provide validity, such as PBFT [13], cannot be used by
Bosco.

While abstracting away the underlying consensus protocol simplifies the speci-
fication and correctness proof of Bosco, for practical purposes it may be advanta-
geous to unroll the subroutine. This potentially allows piggybacking of messages
and improves the efficiency of implementations. As an example, Algorithm 2
shows RS-Bosco, a randomized strongly one-step version of Bosco which does
not depend on any underlying consensus protocol. RS-Bosco is strongly one-step
and requires that n > 7t. It does not satisfy Termination as defined in section 2,
but instead provides Probabilistic Termination:

Definition 7. Probabilistic Termination. All correct processors decide with prob-
ability 1.

Bosco: One-Step Byzantine Asynchronous Consensus 447

Algorithm 2. RS-Bosco: a randomized strongly one-step asynchronous
Byzantine consensus algorithm
Initialization1

xp ← vp2

rp ← 03

Round rp4

Broadcast 〈VOTE, rp, xp〉 to all processors5

Collect n − t 〈VOTE, rp, ∗〉 messages6

if more than n+3t
2

VOTE msgs contain v then7

DECIDE(v)8

if more than n−t
2

VOTE msgs contain v then9

Broadcast 〈CANDIDATE, rp, v〉10

else11

Broadcast 〈CANDIDATE, rp,⊥〉12

end13

Collect n − t 〈CANDIDATE, rp, ∗〉 messages14

if at least t + 1 msgs are NOT of the form 〈CANDIDATE, rp, xp〉 then15

xp ←RANDOM() // pick randomly from {0,1}16

rp ← rp + 117

For brevity, the proof of correctness of RS-Bosco is omitted. We note that RS-
Bosco suffers from two limitations as currently constructed. First, RS-Bosco
solves only binary consensus. Second, RS-Bosco uses a local coin to randomly
update local estimates when a threshold of identical votes cannot be obtained.
This mechanism is similar to that in the Ben-Or algorithm and causes the algo-
rithm to require an exponential number of rounds for decision when contention
is present. We believe that these limitations can be overcome in practical imple-
mentations, but a thorough discussion is beyond the scope of this paper.

6 Related Work

One-step consensus algorithms for crash failures have previously been studied.
Brasileiro et al. [2] proposed a general technique for converting any crash-tolerant
consensus algorithm into a crash-tolerant consensus algorithm that terminates
in one communication step if all correct processors have the same initial value.
Bosco is an extension of the ideas presented in that work to handle Byzantine
failures. The key difference between handling crashed failures and Byzantine
failures is that when Byzantine failures need to be tolerated, equivocation must
be handled correctly.

A simple and elegant crash-tolerant consensus algorithm of the same fla-
vor, One-Third-Rule, appears in [4]. This work has been extended to handle
Byzantine faults by considering transmission faults where messages can be cor-
rupted in addition to being dropped [14]. The algorithms in [4,14] differ from the

448 Y.J. Song and R. van Renesse

algorithms we have presented because they use a different failure model, where
failures are attributed to message transmissions, rather than to processors.

Friedman et al. [8] proposed a weakly one-step algorithm that tolerates Byzan-
tine faults and terminates with probability 1 but does not tolerate a strong net-
work adversary. In particular, their protocol is dependent on a common coin
oracle and assumes that the network adversary has no access to this common
coin; a strong network adversary with access to the common coin can prevent
termination. In comparison, Bosco does not explicitly depend on any oracles,
although the subroutine invoked by Bosco may have such dependencies. With a
judicious choice of the consensus subroutine, Bosco can tolerate a strong network
adversary that can arbitrarily re-order messages and collude with Byzantine pro-
cessors. In particular, RS-Bosco does not require any oracles and tolerates strong
network adversaries.

Zielinski [15] presents a framework for expressing various consensus proto-
cols using an abstraction called Optimistically Terminating Consensus (OTC).
Among the algorithms constructed by Zielinski are two Byzantine consensus al-
gorithms with one-step characteristics that require n > 5t and n > 3t. The
first of these algorithms is a weakly one-step algorithm that requires partial
synchrony; the second algorithm, while appearing to violate the lower bounds
we have shown in this paper, is neither weakly nor strongly one-step because
processors can only decide in the first communication step when, in addition to
the system being failure-free and contention-free, all processors are fast enough
that the timeout mechanism in the algorithm is not triggered.

Many techniques have been proposed to improve the performance and reduce
the overhead of providing Byzantine fault tolerance. Abd-El-Malek et al. [16]
proposed the optimistic use of quorums rather than agreement protocols to ob-
tain higher throughput. However, in the face of contention, optimistic quorum
systems perform poorly. HQ combines the use of quorums and consensus tech-
niques to provide high performance during normal operation and minimize over-
head during periods of contention [17]. Probabilistic techniques have also been
proposed to reduce the overhead of using quorum systems to provide Byzantine
fault-tolerance [18,19]. Hendricks et al. [20] proposed the use of erasure coding
to minimize the overhead of a Byzantine fault-tolerant storage system. Zyzzyva,
another recently proposed Byzantine fault-tolerant system, uses optimistic spec-
ulation to decrease the latency observed by clients [21]. In comparison, the one-
step Byzantine consensus algorithms presented in this paper aims to improve
performance by exploiting contention-free and failure-free situations to provide
decisions in one communication step.

Lamport [5] presents lower bounds for the number of message delays and the
number of processors needed for several kinds of asynchronous non-Byzantine
consensus algorithm in; in particular, Fast Learning algorithms are one-step
algorithms for non-Byzantine settings. A one-step version of Paxos [22], Fast
Paxos, is presented in [3,6]. Fast Paxos tolerates only crash failures, although [6]
alludes to the possibility of a Byzantine fault-tolerant version of Fast Paxos.

Bosco: One-Step Byzantine Asynchronous Consensus 449

7 Conclusion

Byzantine fault tolerance has drawn significant interest from both academia and
the industry recently. While Byzantine fault tolerance aims to provide resilience
against arbitrary failures, in many applications, failures and contention are not
the norm. This paper explores optimization opportunities in contention-free and
failure-free situations.

Overall, this paper makes three contributions: 1) we provide two definitions of
one-step asynchronous Byzantine consensus algorithms that provide low latency
performance in favorable conditions while guaranteeing strong consistency when
failures and contention occur; 2) we prove lower bounds in the number of proces-
sors required for such algorithms; and 3) we present Bosco, a one-step algorithm
for Byzantine asynchronous consensus that meets these bounds.

References

1. Keidar, I., Rajsbaum, S.: On the cost of fault-tolerant consensus when there are
no faults. SIGACT News 32(2), 45–63 (2001)

2. Brasileiro, F.V., Greve, F., Mostéfaoui, A., Raynal, M.: Consensus in one commu-
nication step. In: Proc. of the 6th International Conference on Parallel Computing
Technologies, pp. 42–50. Springer, London (2001)

3. Boichat, R., Dutta, P., Frolund, S., Guerraoui, R.: Reconstructing Paxos. ACM
SIGACT News 34 (2003)

4. Charron-Bost, B., Schiper, A.: The Heard-Of model: Unifying all benign failures.
Technical Report LSR-REPORT-2006-004, EPFL (2006)

5. Lamport, L.: Lower bounds for asynchronous consensus. Technical Report MSR-
TR-2004-72, Microsoft Research (2004)

6. Lamport, L.: Fast Paxos. Distributed Computing 19(2), 79–103 (2006)
7. Dobre, D., Suri, N.: One-step consensus with zero-degradation. In: DSN 2006:

Proceedings of the International Conference on Dependable Systems and Networks,
pp. 137–146. IEEE Computer Society, Washington (2006)

8. Friedman, R., Mostefaoui, A., Raynal, M.: Simple and efficient oracle-based con-
sensus protocols for asynchronous Byzantine systems. IEEE Transactions on De-
pendable and Secure Computing 2(1), 46–56 (2005)

9. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems 4(3), 382–401 (1982)

10. Fischer, M., Lynch, N., Patterson, M.: Impossibility of distributed consensus with
one faulty process. J. ACM 32(2), 374–382 (1985)

11. Martin, J.P., Alvisi, L.: Fast Byzantine consensus. In: Proceedings of the Interna-
tional Conference on Dependable Systems and Networks, pp. 402–411 (June 2005)

12. Ben-Or, M.: Another advantage of free choice: Completely asynchronous agreement
protocols. In: Proc. of the 2nd ACM Symp. on Principles of Distributed Computing,
Montreal, Quebec, ACM SIGOPS-SIGACT, pp. 27–30 (August 1983)

13. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: Proc. of the 3rd
Symposium on Operating Systems Design and Implementation (OSDI), New Or-
leans, LA (February 1999)

450 Y.J. Song and R. van Renesse

14. Biely, M., Widder, J., Charron-Bost, B., Gaillard, A., Hutle, M., Schiper, A.: Toler-
ating corrupted communication. In: PODC 2007: Proceedings of the twenty-sixth
annual ACM symposium on Principles of Distributed Computing, pp. 244–253.
ACM, New York (2007)

15. Zielinski, P.: Optimistically terminating consensus: All asynchronous consensus
protocols in one framework. In: ISPDC ’06: Proceedings of the Proceedings of The
Fifth International Symposium on Parallel and Distributed Computing, Washing-
ton, DC, pp. 24–33. IEEE Computer Society Press, Los Alamitos (2006)

16. Abd-El-Malek, M., Ganger, G.R., Goodson, G.R., Reiter, M.K., Wylie, J.J.:
Fault-scalable Byzantine fault-tolerant services. SIGOPS Operating Systems Re-
view 39(5), 59–74 (2005)

17. Cowling, J., Myers, D., Liskov, B., Rodrigues, R., Shrira, L.: HQ replication: a
hybrid quorum protocol for Byzantine fault tolerance. In: OSDI 2006: Proceedings
of the 7th symposium on Operating Systems Design and Implementation, pp. 177–
190. USENIX Association, Berkeley (2006)

18. Merideth, M.G., Reiter, M.K.: Probabilistic opaque quorum systems. In: Pelc, A.
(ed.) DISC 2007. LNCS, vol. 4731, pp. 403–419. Springer, Heidelberg (2007)

19. Malkhi, D., Reiter, M.K., Wool, A., Wright, R.N.: Probabilistic quorum systems.
Information and Computation 170(2), 184–206 (2001)

20. Hendricks, J., Ganger, G.R., Reiter, M.K.: Low-overhead Byzantine fault-tolerant
storage. In: Proc. of twenty-first ACM SIGOPS Symposium on Operating Systems
Principles, pp. 73–86. ACM, New York (2007)

21. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative
Byzantine fault tolerance. In: Proc. of twenty-first ACM SIGOPS symposium on
Operating Systems Principles, pp. 45–58. ACM, New York (2007)

22. Lamport, L.: The part-time parliament. Trans. on Computer Systems 16(2), 133–
169 (1998)

A Limit to the Power of Multiple Nucleation in

Self-assembly

Aaron D. Sterling�

Department of Computer Science, Iowa State University, Ames, IA 50014, USA
sterling@cs.iastate.edu

Abstract. Majumder, Reif and Sahu presented in [7] a model of re-
versible, error-permitting tile self-assembly, and showed that restricted
classes of tile assembly systems achieved equilibrium in (expected) poly-
nomial time. One open question they asked was how the model would
change if it permitted multiple nucleation, i.e., independent groups of
tiles growing before attaching to the original seed assembly. This pa-
per provides a partial answer, by proving that no tile assembly model
can use multiple nucleation to achieve speedup from polynomial time
to constant time without sacrificing computational power: if a tile as-
sembly system T uses multiple nucleation to tile a surface in constant
time (independent of the size of the surface), then T is unable to solve
computational problems that have low complexity in the (single-seeded)
Winfree-Rothemund Tile Assembly Model. The proof technique defines
a new model of distributed computing that simulates tile assembly, so
a tile assembly model can be described as a distributed computing model.

Keywords: self-assembly, multiple nucleation, locally checkable labeling.

1 Introduction

1.1 Overview

Nature is replete with examples of the self-assembly of individual parts into a
more complex whole, such as the development from zygote to fetus, or, more
simply, the replication of DNA itself. In his Ph.D. thesis in 1998, Winfree pro-
posed a formal mathematical model to reason algorithmically about processes of
self-assembly [15]. Winfree connected the experimental work of Seeman [12] (who
had built “DNA tiles,” molecules with unmatched DNA base pairs protruding in
four directions, so they could be approximated by squares with different “glues”
on each side) to a notion of tiling the integer plane developed by Wang in the
1960s [14]. Rothemund, in his own Ph.D. thesis, extended Winfree’s original Tile
Assembly Model [10].

Informally speaking, Winfree effectivized Wang tiling, by requiring a tiling of
the plane to start with an individual seed tile or a connected, finite seed assembly.
� This research was supported in part by National Science Foundation Grants 0652569

and 0728806.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 451–465, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

452 A.D. Sterling

Tiles would then accrete one at a time to the seed assembly, growing a seed
supertile. A tile assembly system is a finite set of differently defined tile types. Tile
types are characterized by the names of the “glues” they carry on each of their
four sides, and the binding strength each glue can exert. We assume that when
the tiles interact “in solution,” there are infinitely many tiles of each tile type.
Tile assembly proceeds in discrete stages. At each stage s, from all possibilities
of tile attachment at all possible locations (as determined by the glues of the
tile types and the binding requirements of the system overall), one tile will bind.
If more than one tile type can bind at stage s, a tile type and location will be
chosen uniformly at random. Winfree proved that his Tile Assembly Model is
Turing universal, so it is a robust model of computation.

The standard Winfree-Rothemund tile assembly model is error-free and irre-
versible—tiles always bind correctly, and, once a tile binds, it can never unbind.
Adleman et al. were the first to define a notion of time complexity for tile as-
sembly, using a one-dimensional error-permitting, reversible model, where tiles
would assemble in a line with some error probability, then be scrambled, and fall
back to the line [1]. Adleman et al. proved bounds on how long it would take
such models to achieve equilibrium. Majumder, Reif and Sahu have recently pre-
sented a two-dimensional stochastic model for self-assembly [7], and have shown
that some tiling problems in their model correspond to rapidly mixing Markov
chains—Markov chains that reach stationary distribution in time polynomial in
the state space. The tile assembly model in [7], like the standard model, allows
only for a single seed assembly, and one of the open problems in [7] was how the
model might change if it allowed multiple nucleation, i.e., if multiple supertiles
could build independently before attaching to a growing seed supertile.

The main result of this paper provides a time complexity lower bound for
tile assembly models that permit multiple nucleation: there is no way to use
multiple nucleation to achieve a speedup to tiling a surface in constant time
(time independent of the size of the surface) without sacrificing computational
power. This result holds for tile assembly models that are reversible, irreversible,
error-permitting or error-free. In fact, a speedup to constant time is impossible,
even if we relax the model to allow that, at each step s, there is a positive
probability for every available location that a tile will bind there (instead of
requiring that exactly one tile bind per stage).

Our method of proof appears novel: given a tile assembly model and a tile as-
sembly system T in that model, we construct a distributed network of processors
that can simulate the behavior of T as it assembles on a surface. Our result then
follows from the theorem by Naor and Stockmeyer that locally checkable labeling
(LCL) problems have no local solution in constant time [8]. This is true for both
deterministic and randomized algorithms, so no constant-time tile assembly sys-
tem exists that solves an LCL problem with a positive probability of success. We
consider one LCL problem in specific, the weak c-coloring problem, and demon-
strate a tile set of only seven tile types that solves the weak c-coloring problem
in the Winfree-Rothemund Tile Assembly Model, even though weak c-coloring
is impossible to achieve in constant time by multiple nucleation, regardless of
the rate of convergence to equilibrium.

A Limit to the Power of Multiple Nucleation in Self-assembly 453

1.2 Background

In the standard Tile Assembly Model, one tile is added per stage, so the primary
complexity measure is not one of time, but of how much information a tile set
needs in order to solve a particular problem. Several researchers [1] [3] [4] [11] [13]
have investigated the tile complexity (the minimum number of distinct tile types
required for assembly) of finite shapes, and sets of “scale-equivalent” shapes
(essentially a Z × Z analogue of the Euclidean notion of similar figures). For
example, it is now known that the number of tile types required to assemble a
square of size n × n (for n any natural number) is Ω(log n/ log logn) [11]. Or,
if T is the set of all discrete equilateral triangles, the asymptotically optimal
relationship between triangle size and number of tiles required to assemble that
triangle, is closely related to the Kolmogorov Complexity of a program that
outputs the triangle as a list of coordinates [13].

Despite these advances in understanding of the complexity of assembling fi-
nite, bounded shapes, the self-assembly of infinite structures is not as well un-
derstood. In particular, there are few lower bounds or impossibility results on
what infinite structures can be self-assembled in the Tile Assembly Model. The
first such impossibility result appeared in [6], when Lathrop, Lutz and Summers
showed that no finite tile set can assemble the discrete Sierpinski Triangle by
placing a tile only on the coordinates of the shape itself. (By contrast, Winfree
had shown that just seven tile types are required to tile the first quadrant of the
integer plane with tiles of one color on the coordinates of the discrete Sierpinski
Triangle, and tiles of another color on the coordinates of the complement [15].)
Recently, Patitz and Summers have extended this initial impossibility result to
other discrete fractals [9], and Lathrop et al. [5] have demonstrated sets in Z×Z
that are Turing decidable but cannot be self-assembled in Winfree’s sense.

To date, there has been no work comparing the strengths of different tile
assembly models with respect to infinite (nor to finite but arbitrarily large)
structures. Since self-assembly is an asynchronous process in which each point
has only local knowledge, it is natural to consider whether the techniques of
distributed computing might be useful for comparing models and proving im-
possibility results in nanoscale self-assembly. This paper is an initial attempt in
that direction.

Aggarwal et al. in [3] proposed a generalization of the standard Tile Assem-
bly Model, which they called the q-Tile Assembly Model. This model permitted
multiple nucleation: tiles did not need to bind immediately to the seed supertile.
Instead, they could form independent supertiles of size up to some constant q
before then attaching to the seed supertile. While the main question considered
in [3] was tile complexity, we can also ask whether multiple nucleation would al-
low an improvement in time complexity. Intuitively, Does starting from multiple
points allow us to build things strictly faster than starting from a single point?

As mentioned above, Majumder, Reif and Sahu recently presented a stochas-
tic, error-permitting tile assembly model, and calculated the rate of convergence
to equilibrium for several tile assembly systems [7]. The model in [7] permitted
only a single seed assembly, and addition of one tile to the seed supertile at each

454 A.D. Sterling

stage. Majumder, Reif and Sahu left as an open question how the model might
be extended to permit the presence and binding of multiple supertiles.

Therefore, we can rephrase the “intuitive” question above as follows: Can we
tile a surface of size n×n in a constant number of stages, by randomly selecting
nucleation points on the surface, building supertiles of size q or smaller from
those points in ≤ q stages, and then allowing ≤ r additional stages for tiles
to fall off and be replaced if the edges of the supertiles contain tiles that bind
incorrectly? (The assembly achieves equilibrium in constant time because q and
r do not depend on n.)

The main result of this paper is that the answer is: Not without losing signif-
icant computational power.

Section 2 of this paper describes the “standard” Winfree-Rothemund Tile
Assembly Model, and then considers generalizations of the standard model that
permit multiple nucleation. Section 3 reviews the distributed computing results
of Naor and Stockmeyer needed to prove the impossibility result. In Section 4 we
present our main result. Section 5 concludes the paper and suggests directions
for future research.

2 Description of Tile Assembly Models

2.1 The Winfree-Rothemund Tile Assembly Model

Winfree’s objective in defining the Tile Assembly Model was to provide a useful
mathematical abstraction of DNA tiles combining in solution in a random, non-
deterministic, asynchronous manner [15]. Rothemund [10], and Rothemund and
Winfree [11], extended the original definition of the model. For a comprehensive
introduction to tile assembly, we refer the reader to [10]. In our presentation
here, we follow [6], which gives equal status to finite and infinite tile assemblies.
Throughout this paper, we will consider only two-dimensional tile assemblies.

Intuitively, a tile of type t is a unit square that can be placed with its center
on a point in the integer lattice. A tile has a unique orientation; it can be
translated, but not rotated. We identify the side of a tile with the direction (or
unit vector) one must travel from the center to cross that side. The literature
often refers to west, north, east and south sides, starting at the leftmost side
and proceeding clockwise. Each side −→u ∈ U2 (where U2 is the set of unit vectors
in two coordinates) of a tile is covered with a “glue” that has color colt(−→u) and
strength strt(−→u). Figure 1 shows how a tile is represented graphically.

If tiles of types t and t′ are placed adjacent to each other (i.e., with their
centers at −→m and −→m + −→u , where −→m ∈ Z2 and −→u ∈ U2) then they will bind
with strength strt(−→u) · �t(−→u) = t′(−−→u)�, where �φ� is the Boolean value of the
statement φ. Note that this definition of binding implies that if the glues of the
adjacent sides do not have the same color or strength, then their binding strength
is 0. Later, we will permit pairs of glues to have negative binding strength, to
model error occurrence and correction.

A Limit to the Power of Multiple Nucleation in Self-assembly 455

Fig. 1. An example tile with explanation

One parameter in a tile assembly model is the minimum binding strength
required for tiles to bind “stably.” This parameter is usually termed temperature
and denoted by τ , where τ ∈ N.

As we consider only two-dimensional tile assemblies, we limit ourselves to
working in Z2 = Z × Z. U2 is the set of all unit vectors in Z2.

A binding function on an (undirected) graph G = (V,E) is a function β :
E −→ N. If β is a binding function on a graph G = (V,E) and C = (C0, C1) is
a cut of G, then the binding strength of β on C is

βC = {β(e) | e ∈ E, {e} ∩ C0 �= ∅, and {e} ∩ C1 �= ∅} .

The binding strength of β on G is then β(G) = min{βC | C is a cut of G}. Intu-
itively, the binding function captures the strength with which any two neighbors
are bound together, and the binding strength of the graph is the minimum
strength of bonds that would have to be severed in order to separate the graph
into two pieces.

A binding graph is an ordered triple G = (V,E, β) where (V,E) is a graph
and β is a binding function on (V,E). If τ ∈ N, a binding graph G = (V,E, β)
is τ-stable if β(V,E) ≥ τ .

Recall that a grid graph is a graph G = (V,E) where V ⊆ Z × Z and every
edge {−→m,−→n } ∈ E has the property that −→m −−→n ∈ U2.

Definition 1. A tile type over a (finite) alphabet Σ is a function t : U2 −→
Σ∗ × N. We write t = (colt, strt), where colt : U2 −→ Σ∗, and strt : U2 −→ N
are defined by t(−→u) = (colt(−→u), strt(−→u)) for all −→u ∈ U2.

Definition 2. If T is a set of tile types, a T -configuration is a partial function
α : Z2 		
 T .

456 A.D. Sterling

Definition 3. The binding graph of a T -configuration α : Z2 		
 T is the
binding graph Gα = (V,E, β), where (V,E) is the grid graph given by

V = dom(α),
E =

{
{−→m,−→n } ∈ [V]2 | −→m −−→n ∈ U2, colα(−→m)(

−→n − −→m) = colα(−→n)(
−→m −−→n), and

strα(−→m)(
−→n −−→m) > 0

}
,

and the binding function β : E −→ Z+ is given by β({−→m,−→n }) = strα(−→m)(
−→n −−→m)

for all {−→m,−→n } ∈ E.

Definition 4. For T a set of tile types, a T -configuration α is stable if its
binding graph Gα is τ-stable. A τ -T -assembly is a T -configuration that is τ-
stable. We write Aτ

T for the set of all τ-T -assemblies.

Definition 5. Let α and α′ be T -configurations.

1. α is a subconfiguration of α′, and we write α , α′, if dom(α) ⊆ dom(α′)
and, for all −→m ∈ dom(α), α(−→m) = α′(−→m).

2. α′ is a single-tile extension of α if α , α′ and dom(α′) � dom(α) is a
singleton set. In this case, we write α′ = α + (−→m -→ t), where {−→m} =
dom(α′) � dom(α) and t = α′(−→m).

3. The notation α
1−→

τ,T
α′ means that α, α′ ∈ Aτ

T and α′ is a single-tile extension

of α.

Definition 6. Let α ∈ Aτ
T .

1. For each t ∈ T , the τ -t-frontier of α is the set

∂τ
Tα =

{−→m ∈ Z2 �dom(α)
∣∣∣ ∑
−→u ∈U2

strt(−→u) · �α(−→m +−→u)(−−→u) = t(−→u)� ≥ τ
}

.

2. The τ -frontier of α is the set

∂τα =
⋃
t∈T

∂τ
t α .

Definition 7. A τ -T -assembly sequence is a sequence −→α = (αi | 0 ≤ i < k) in
Aτ

T , where k ∈ Z+ ∪ {∞} and, for each i with 1 ≤ i + 1 < k, αi
1−→

τ,T
αi+1.

Definition 8. The result of a τ-T -assembly sequence −→α = (αi | 0 ≤ i < k)
is the unique T -configuration α = res(−→α) satisfying: dom(α) = ∪0≤i<kdom(αi)
and αi , α for each 0 ≤ i < k.

Definition 9. Let α, α′ ∈ Aτ
T . A τ -T -assembly sequence from α to α′ is a τ-T -

assembly sequence −→α = (αi | 0 ≤ i < k) such that α0 = α and res(−→α) = α′. We
write α −→

τ,T
α′ to indicate that there exists a τ-T -assembly from α to α′.

Definition 10. An assembly α ∈ Aτ
T is terminal if ∂τα = ∅.

A Limit to the Power of Multiple Nucleation in Self-assembly 457

Intuitively, a configuration is a set of tiles that have been placed in the plane,
and the configuration is stable if the binding strength at every possible cut is at
least as high as the temperature of the system. Informally, an assembly sequence
is a sequence of single-tile additions to the frontier of the assembly constructed
at the previous stage. Assembly sequences can be finite or infinite in length. We
are now ready to present a definition of a tile assembly system.

Definition 11. Write Aτ
T for the set of configurations, stable at temperature τ ,

of tiles whose tile types are in T . A tile assembly system is an ordered triple
T = (T, σ, τ) where T is a finite set of tile types, σ ∈ Aτ

T is the seed assembly,
and τ ∈ N is the temperature. We require dom(σ) to be finite.

Definition 12. Let T = (T, σ, τ) be a tile assembly system.

1. Then the set of assemblies produced by T is

A[T] =
{
α ∈ Aτ

T

∣∣σ −→
τ,T

α
}

,

where “σ −→
τ,T

α” means that tile configuration α can be obtained from seed

assembly σ by a legal addition of tiles (as formalized in Appendix A).
2. The set of terminal assemblies produced by T is

A�[T] = {α ∈ A[T] | α is terminal} ,

where “terminal” describes a configuration to which no tiles can be legally
added.

If we view tile assembly as the programming of matter, the following analogy
is useful: the seed assembly is the input to the computation; the tile types are
the legal (nondeterministic) steps the computation can take; the temperature is
the primary inference rule of the system; and the terminal assemblies are the
possible outputs.

We are, of course, interested in being able to prove that a certain tile assem-
bly system always achieves a certain output. In [13], Soloveichik and Winfree
presented a strong technique for this: local determinism.

Informally, an assembly sequence −→α is locally deterministic if (1) each tile
added in −→α binds with the minimum strength required for binding; (2) if there
is a tile of type t0 at location −→m in the result of α, and t0 and the immediate
“OUT-neighbors” of t0 are deleted from the result of α, then no other tile type
in T can legally bind at −→m; the result of α is terminal.

Definition 13 (Soloveichik and Winfree [13]). A τ-T -assembly sequence
−→α = (αi | 0 ≤ i ≤ k) with result α is locally deterministic if it has the following
three properties.

1. For all −→m ∈ dom(α) − dom(α0),∑
−→u ∈IN

−→α (−→m)

strαiα(−→m)
(−→m,−→u) = τ .

458 A.D. Sterling

2. For all −→m ∈ dom(α) − dom(α0) and all t ∈ T − {α(−→m)}, −→m /∈ ∂τ
t (−→α \−→m).

3. ∂τα = ∅.

Definition 14 (Soloveichik and Winfree [13]). A tile assembly system T is
locally deterministic if there exists a locally deterministic τ-T -assembly sequence
α = (αi | 0 ≤ i < k) with α0 = σ.

Local determinism is important because of the following result.

Theorem 1 (Soloveichik and Winfree [13]). If T is locally deterministic,
then T has a unique terminal assembly.

2.2 Generalizations of the Winfree-Rothemund Tile Assembly
Model

We will consider three generalizations of the standard tile assembly model: (1)
multiple nucleation; (2) assembly in which glues bind incorrectly according to
some error probability; and (3) negative glue strengths, allowing incorrectly
bound tiles to be released from the assembly so it is possible for a correctly-
binding tile to attach in that space. We move from an irreversible tiling model,
in which tiles are placed in an error-free manner and can never be removed, to a
reversible tiling model, in which a terminal assembly is defined by equilibrium,
not by the disappearance of a frontier to which tiles can be legally added.

Aggarwal et al. in [3] formulated and studied a model that permitted multiple
nucleation, which they called the q-tile or multiple tile model. Essentially, they
allowed supertiles to form, independent of the seed, up to size bounded by a
constant q. Then the independent supertile would have to bind to the growing
seeed supertile. Legal supertiles were defined recursively: each tile type was a
legal supertile, and any two supertiles whose combined size was ≤ q could form
a legal supertile if the binding strength at their adjacent frontiers was at least
the temperature of the system.

Models of reversible tiling have been considered in [15] and [1], and more re-
cently in [7], which contains a summary of previous work in the area. Majumder,
Reif and Sahu in [7] introduced the concept of bond pair equilibrium, as follows.

Definition 15 (Majumder, Reif and Sahu [7]). Suppose α is a finite config-
uration that contains m different tile types t1, . . . , tm, with γi the relative fraction
of tiles of type ti (so

∑
γi = 1).

1. Define aij to be the fraction of ti tiles bonded to the east to a tj tile.
2. Define bik to be the fraction of ti tiles bonded to the north to a tk tile.
3. Define pij to be the fraction of ti tiles bonded to the west to a tj tile.
4. Define qik to be the fraction of ti tiles bonded to the south to a tk tile.
5. Aij = γiaij. Bik = γibik.

Definition 16 (Majumder, Reif and Sahu [7]). A configuration α in an
error-permitting, reversible tile assembly system has achieved bond pair equilib-
rium when, for every tile type ti in α, the (expected value of the) number of pairs
(Aij , Bkj) is invariant over time steps.

A Limit to the Power of Multiple Nucleation in Self-assembly 459

Informally, bond pair equilibrium is achieved when, if the configuration is consid-
ered as a whole, the quantity of each distinct bond interaction does not change over
time. If we assume the system has a property of bond independence—the bond on
one side of a tile does not affect the binding on the other three sides—then bond
pair equilibrium is a sufficient condition for thermodynamic equilibrium.

Theorem 2 (Majumder, Reif and Sahu [7]). Bond pair equilibrium and
bond independence implies strong (thermodynamic) equilibrium.

This theorem provides justification for us to replace the notion of terminal as-
sembly with the notion of assembly that has achieved bond pair equilibrium, if
we relax the Winfree-Rothemund Tile Assembly Model to include the possiblity
of error in binding, and the reversibility of tile assembly.

Majumder, Reif and Sahu studied the rate of convergence of several tile as-
sembly systems in a model that only permitted addition of one tile at a given
time step. They defined the notion of a Markov Chain that corresponds to an as-
sembly system, and demonstrated several tile assembly systems whose Markov
chains were rapidly mixing, i.e., they reached stationary distribution in time
polynomial in the state space.

In what follows, we will see that a speedup to constant time is impossible with-
out losing computational power, even if we add multiple nucleation to a model
of reversible tile assembly. First, though, we review the distributed computing
impossibility results that imply this.

3 Distributed Computing Results of Naor and
Stockmeyer

In a well known distributed computing paper, Naor and Stockmeyer investigated
whether “locally checkable labeling” problems could be solved over a network of
processors in an entirely local manner, where a local solution means a solution
arrived at “within time (or distance) independent of the size of the network” [8].
One locally checkable labeling problem Naor and Stockmeyer considered was the
weak c-coloring problem.

Definition 17 (Naor and Stockmeyer [8]). For c ∈ N, a weak c-coloring of
a graph is an assignment of numbers from {1, . . . , c} (the possible “colors”) to
the vertices of the graph such that for every non-isolated vertex v there is at least
one neighbor w such that v and w receive different colors. Given a graph G, the
weak c-coloring problem for G is to weak c-color the nodes of G.

In the context of tiling, to solve the weak c-coloring problem for an n×n surface
means tiling the surface so each tile has at least one neighbor (to the north,
south, east or west) of a different color. In the next section, we will present
a simple solution to the weak c-coloring problem in the Winfree-Rothemund
Tile Assembly Model. By contrast, Naor and Stockmeyer showed that no local,
constant-time algorithm can solve the weak c-coloring problem for grid graphs.

460 A.D. Sterling

Theorem 3 (Naor and Stockmeyer [8]). For any c and t, there is no local
algorithm with time bound t that solves the weak c-coloring problem for the class
of finite square grid graphs over the integer lattice.

This theorem is a consequence of Theorem 6.3 in [8]. The original result is a
stronger statement.

A second theorem from the same paper says that randomization does not
help. As before, the original result is stronger than the formulation I provide
here.

Theorem 4 (Naor and Stockmeyer [8]). Fix a class G of graphs closed under
disjoint union. If there is a randomized local algorithm P with time bound t that
solves the weak c-coloring problem for G with error probability ε for some ε < 1,
then there is a deterministic local algorithm A with time bound t that solves the
weak c-coloring problem for G.

4 Proof of Main Result

In order to apply the theorems of Naor and Stockmeyer to the realm of tile
assembly, we build a distributed network of processors that simulates assembly
of tile assembly system T in tile assembly model M. We accomplish this by
defining a class of tile assembly models that generalize the standard model and
permit multiple nucleation; and we show that for any tileset defined in that class
of models, there is a system of distributed processors that simulates the assembly
behavior of that tileset.

Theorem 5. For any (reversible or irreversible) tile assembly model M that per-
mits multiple nucleation, and any tile set T in M, there is a model of distributed
computing N that simulates the assembly of T on a surface of size n2, using n2

processors laid out in a grid graph, and constant-size message complexity.

Proof. Fix a tile assembly model M with the following properties:

1. The binding function β of M assigns a real number to each pair of glue
types. This assignment can be positive, zero or negative.

2. The definition of the binding function β and the definition of each tile type
ti induces a function

β̂ : T × ({glue colors of T, glue strengths of T } ∪ {∅})4 −→ [0, 1] ,

such that for any T -configuration α and any location −→m at stage s,

β̂
[
α(−→m), α(−→m + (1, 0)), α(−→m + (−1, 0)), α(−→m + (0, 1)), α(−→m + (0,−1))

]
is the probability that the tile at location −→m will remain in that location
at the end of stage s. (In words, β̂ is a function from a tile type and each
possible set of glues—including no glue—adjacent to that tile type, to a
probability that the tile will remain in that location at the end of the stage.)
Note that in a model of irreversible tiling, if there is a tile in location −→m that
is part of configuration α, then we can drop the part of β̂ that depends on
the tile’s neighbors, and β̂[α(−→m)] always takes the value 1.

A Limit to the Power of Multiple Nucleation in Self-assembly 461

3. M can allow multiple nucleation. In addition to the placement of the seed
assembly at the first stage of assembly, there is some probability π such
that (at the first stage of assembly only) a tile is placed on each location of
the surface in question with probability π, determined uniformly at random.
(Note that if π = 0, then M does not allow multiple nucleation.)

4. At each stage s of assembly, there is a probability πs,−→m for each location −→m
in the frontier of each supertile that a tile will be placed there. In particular,
it is possible to place more than one tile per stage. Tiles that are placed in
stage s do not interact with one another (with either positive or negative
binding strength) until stage s + 1.

For example, if we want M to be the standard Winfree-Rothemund Tile Assem-
bly Model, we set all values of β to 0 or a positive integer, all values of β̂ to 1,
π = 0, and the values of πs,−→m sufficiently small for all stages s and locations −→m
that, with high probability, at most one tile appears per stage. Then we count
time steps only when a tile is added to the existing configuration.

We simulate assembly sequences of T on an n × n surface by a network of
processors N whose network graph is an n × n grid graph. Each processor will
simulate the presence or absence of a tile in the same location on the n × n
tiling surface. Processors do not have unique ID’s, and do not know their own
coordinates. Each processor pi ∈ N is of the following form.

Processor pi

Four input message buffers: inbufi,n, inbufi,s, inbufi,e and inbufi,w.
Four output message buffers: outbufi,n, outbufi,s, outbufi,e and outbufi,w.
A color variable: COLORi, a variable that can take a value from {1, . . . , c},

where c is a global constant.
A local state: Each processor is in one of |T |+1 different local states q during

a given execution stage s. There is one stage qk to simulate each tile type
tk ∈ T , and an additional stage QUIET, to simulate the absence of a tile
from the surface location that pi is simulating.

A state transition function: This function takes the current processor state
and the messages received in the current round, and (deterministically or
probabilistically, depending on M) directs what state the processor will
adopt in the next round.

The messages processors send on the network are of form 〈glue type, glue
strength〉. The input message buffers of processor pi simulate the glue types of
the edges the tile at pi’s location is adjacent to. The output message buffers of
pi simulate the glues on the edges of the tile pi is simulating. The purpose of
COLORi is to simulate the color of the tile placed at the location simulated by pi.

All processors in N are hardcoded with the same state transition function,
which is determined from the definition of β̂ in M, in the natural way: if, in
round r of the algorithm execution, pi is in state qk, a simulation of tk ∈ T , and
hears messages that simulate glue types g1, . . . , g4, then at the end of round r,
if β̂(tk, g1, g2, g3, g4) = γ, then with probability γ the transition function directs
pi to remain in state qk, and with probability 1 − γ to enter state QUIET.

462 A.D. Sterling

To simulate the process of tile assembly, we run the following distributed
algorithm on N .

Algorithm execution proceeds in synchronized rounds. Before execution be-
gins, all processors start in state QUIET. In round r = 0, (through the interven-
tion of an omniscient operator) each processor in the locations corresponding to
the seed assembly enters the stage to simulate the tile type at that location in
the seed assembly.

Also in round r = 0, each processor not simulating part of the seed assembly
“wakes up” (enters a state other than QUIET) with probability π. If a proces-
sor wakes up, it enters state q �= QUIET, chosen uniformly at random. For any
round r > 0, each processor runs either Algorithm 1 or Algorithm 2, depending
on whether it is in state QUIET.

The interaction between tiles in M is completely defined by the glues of a
tile’s immediate neighbors, as specified in the function β̂, and the processors of
N simulate that behavior with Algorithm 2. Since the processors of N simulate

Algorithm 1. For pi in state QUIET at round r

if r = 0 then
wake up with probability π, and cease execution for this round.

end if
if r > 0 then

Read the four input buffers.
if no messages were received then

cease execution for the round
else

let q0 be the state change (probabilistically) indicated by the value of β̂ for
a location that has adjacent glue types that are simulated by the messages
received this round.
Send the messages indicated by state q0.
Set the value of COLORi according to q0.
Enter state q0 and cease execution for this round.

end if
end if

Algorithm 2. For pi in state q �= QUIET (at any round)
Read the four input buffers.
if no messages were received then

Send the messages indicated by state q and cease execution for this round.
else

Let q0 be the state change directed by the function β̂ applied to the glue types
simulated by the messages received this round. {Note that q0 will either equal q
or QUIET, and q0 might be chosen probabilistically.}
Send the messages indicated by state q0.
Set the value of COLORi according to q0.
Enter state q0 and cease execution for this round.

end if

A Limit to the Power of Multiple Nucleation in Self-assembly 463

Fig. 2. The tileset T ∗ used in the proof of Lemma 2

empty spaces with Algorithm 1, by a straightforward induction argument, N
can simulate all possible T -assembly sequences, and the theorem is proved.

Combining Theorem 5 and the impossibility results of Naor and Stockmeyer, we
obtain our main result, as follows.

Theorem 6 (Main Result). Any (multiply nucleating) tileset that tiles a sur-
face in constant time is unable to solve the weak c-coloring problem, even though the
weak c-coloring problem has a low-complexity solution in the Winfree-Rothemund
Tile Assembly Model.

We break down the proof of this theorem into the following two lemmas.

Lemma 1. Let T and M be such that, for all n sufficiently large, the expected
time T takes to assemble on an n × n is some constant k, independent of n.
Then T does not weak c-color the surface.

Proof. Suppose M is an irreversible tiling model. If T can weak c-color surfaces
in constant time, then there is a deterministic algorithm for the distributed
network N that weak c-colors N locally, and in constant time. By Theorem 3
that is impossible.

So assume M is a reversible tiling model, and when T assembles, it weak
c-colors the tiling surface, and achieves bond pair equilibrium in constant time.
Then there is a local probabilistic algorithm for N that weak c-colors N in con-
stant time, with positive probability of success. By Theorem 4 that is impossible
as well. Therefore, no T exists that weak c-colors surfaces in constant time.

464 A.D. Sterling

Lemma 2. There is a tileset in the Winfree-Rothemund model that weak c-
colors the first quadrant.

Proof. Figure 2 exhibits a tileset T ∗ that assembles into a weak c-coloring of
the first quadrant, starting from an individual seed tile placed at the origin.
One can verify by inspection that T ∗ is locally deterministic, so it will always
produce the same terminal assembly. All assembly sequences generated by T ∗

produce a checkerboard pattern in which a monochromatic “+” configuration
never appears. Hence, it solves the weak c-coloring problem for the entire first
quadrant, and also for all n× n squares, for any n.

The main result of the paper follows immediately from Lemmas 1 and 2.

5 Conclusion

In this paper, we showed that no tile assembly model can use multiple nucleation
to solve locally checkable labeling problems in constant time, even though the
Winfree-Rothemund Tile Assembly Model can solve a locally checkable labeling
problem using just seven tile types. This was the first application of a distributed
computing impossibility result to the field of nanoscale self-assembly.

There are still many open questions regarding multiple nucleation. Aggarwal
et al. asked in [3] whether multiple nucleation might reduce the tile complexity of
finite shapes. The answer is not known. Furthermore, we can ask for what class
of computational problems does there exist some function f such that we could
tile an n×n square in time O(1) < O(f) < O(n2), and “solve” the problem with
“acceptable” probability of error, in a tile assembly model that permits multiple
nucleation. Finally, we hope that this is just the start of a conversation between
researchers in distributed computing and biomolecular computation.

Acknowledgements

I am grateful to Soma Chaudhuri, Dave Doty, Jim Lathrop and Jack Lutz for
helpful discussions on earlier versions of this paper.

References

1. Adleman, L., Cheng, Q., Goel, A., Huang, M.D.: Running time and program-size
for self-assembled squares. In: Proceedings of the 33rd Annual ACM Symposium
on the Theory of Computing, pp. 740–748 (2001)

2. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and
Advanced Topics, 2nd edn. Series on Parallel and Distributed Computing. Wiley,
Chichester (2004)

3. Aggarwal, G., Goldwasser, M., Kao, M.-Y., Schweller, R.: Complexities for Gener-
alized Models of Self-Assembly. In: Proceedings of the fifteenth annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 880–889 (2004)

A Limit to the Power of Multiple Nucleation in Self-assembly 465

4. Cheng, Q., de Espanes, P.M.: Resolving two open problems in the self-assembly of
squares. Technical Report 793, University of Southern California (2003)

5. Lathrop, J., Lutz, J., Patitz, M., Summers, S.: Computability and complexity in
self-assembly. In: Logic and Theory of Algorithms: Proceedings of the Fourth Con-
ference on Computability in Europe (to appear, 2008)

6. Lathrop, J., Lutz, J., Summers, S.: Strict self-assembly of discrete Sierpinski tri-
angles. In: Computation and Logic in the Real World: Proceedings of the Third
Conference on Computability in Europe, pp. 455–464. Springer, Heidelberg (2007)

7. Majumder, U., Reif, J., Sahu, S.: Stochastic Analysis of Reversible Self-Assembly.
In: Computational and Theoretical Nanoscience (to appear, 2008)

8. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM Journal of Com-
puting 24(6), 1259–1277 (1995)

9. Patitz, M., Summers, S.: Self-assembly of discrete self-similar fractals. In: Pro-
ceedings of the Seventh International Conference on Unconventional Computation,
Springer, Heidelberg (to appear, 2008)

10. Rothemund, P.W.K.: Theory and Experiments in Algorithmic Self-Assembly.
Ph.D. thesis, University of Southern California, Los Angeles (2001)

11. Rothemund, P., Winfree, E.: The program-size complexity of self-assembled
squares. In: Proceedings of the 32nd Annual ACM Symposium on Theory of Com-
puting, pp. 459–468 (2000)

12. Seeman, N.: Denovo design of sequences for nucleic-acid structural-engineering.
Journal of Biomolecular Structure and Dynamics 8(3), 573–581 (1990)

13. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM Journal
of Computing 36(6), 1544–1569 (2007)

14. Wang, H.: Proving theorems by pattern recognition II. Bell Systems Technical
Journal 40, 1–41 (1961)

15. Winfree, E.: Algorithmic Self-Assembly of DNA. Ph.D. thesis, California Institute
of Technology, Pasadena (1998)

Using Bounded Model Checking to Verify

Consensus Algorithms

Tatsuhiro Tsuchiya1,� and André Schiper2,��

1 Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
t-tutiya@ist.osaka-u.ac.jp

2 École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
Andre.Schiper@epfl.ch

Abstract. This paper presents an approach to automatic verification of
asynchronous round-based consensus algorithms. We use model check-
ing, a widely practiced verification method; but its application to asyn-
chronous distributed algorithms is difficult because the state space of
these algorithms is often infinite. The proposed approach addresses this
difficulty by reducing the verification problem to small model checking
problems that involve only single phases of algorithm execution. Because
a phase consists of a finite number of rounds, bounded model checking,
a technique using satisfiability solving, can be effectively used to solve
these problems. The proposed approach allows us to model check some
consensus algorithms up to around 10 processes.

1 Introduction

Model checking, a method for formally verifying state transition systems, has
now become popular, because it allows the fully automatic analysis of designs.
This paper presents an approach to model checking of asynchronous consensus
algorithms. Consensus is central to the construction of fault-tolerant distributed
systems. For example, atomic broadcast, which is at the core of state machine
replication, can be implemented as a sequence of consensus instances [1]. Other
services, such as view synchrony and membership, can also be constructed us-
ing consensus [2,3]. Because of the importance, much research has been being
devoted to developing new algorithms for this problem.

Model checking of asynchronous consensus algorithms is difficult, because
these algorithms usually induce an infinite state space, making model checking
infeasible. Sources of infinite state spaces include unbounded round numbers and
unbounded message channels. In our previous work [4], we succeeded in model
checking several asynchronous consensus algorithms by adopting a round-based
computation model, called the Heard-Of (HO) model [5], and by devising a finite
abstraction of unbounded round numbers. The scalability, however, still needs

� Supported in part by the Grant-in-Aid from MEXT of Japan (no. 20700026).
�� Research funded by the Swiss National Science Foundation under grant number

200021-111701 and Hasler Foundation under grant number 2070.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 466–480, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Using Bounded Model Checking to Verify Consensus Algorithms 467

to be addressed, because the system size that can be model checked is rather
small, typically three or four processes.

This paper presents a different approach, which divides the verification prob-
lem into several problems that can be solved by model checking. Importantly,
these model checking problems can be solved by only analyzing single phases of
the execution of the consensus algorithm. Because of this, the time and memory
space required for verification can be significantly reduced, resulting in increasing
the size of systems that can be verified.

Related Work: The TLA specifications of some Paxos algorithms [6,7] were de-
bugged with the aid of TLC, the TLA model checker. The models that were model
checked consisted of two or three processes and a small number of rounds [8]. In
[9], automatic discovery of consensus algorithms was performed using a procedure
that determines if a given decision rule satisfies the safety properties of a single
phase. This procedure cannot be used for liveness verification or to verify an en-
tire consensus algorithm. In [10], a synchronous consensus algorithm was model
checked for three processes. Studies on model checking of shared memory-based
randomized consensus algorithms can be found in [11,12].

Roadmap: Sect. 2 describes the HO model and the consensus problem. Sect. 3
and Sect. 4 describe our proposed model checking techniques for verification
of safety and liveness, respectively. Sect. 5 sketches automatic procedures for
validating two important assumptions used in the safety and liveness verification.
A detailed description can be found in our technical report [13]. Sect. 6 shows
the results of case studies. Sect. 7 concludes the paper.

2 Consensus in the Heard-of Model

The HO model [5] is a communication-closed round model that generalizes
the asynchronous round model by Dwork et al. [14] with some features of [15]
and [16]. Let Π = {1, 2, · · · , n} be the set of processes. An algorithm proceeds
in phases, each of which consists of k (≥ 1) rounds.1 An algorithm comprises, for
each process p and each round r, a sending function Sr

p and a transition function
T r

p . In each round r, every process p sends messages according to Sr
p(sp), where

sp is the state of p. Then, p makes a state transition according to T r
p (Msg, sp),

where Msg is the collection of all messages that p has received in round r.
In the HO model both synchrony degree and faults are represented in the

form of transmission faults. We denote by HO(p, r) (⊆ Π) the set of processes
from which p receives a message in round r: HO(p, r) is the “heard of” set of p
in round r. A transmission fault is a situation where q �∈ HO(p, r) while q sent
(or was supposed to send) a message to p in round r. Transmission faults can
occur if messages missed a round due to the asynchrony of communication and
processing, or if a process or a link is faulty.

1 In [1] and [17], a round is decomposed in phases. “Round” and “phase” are swapped
here to use the classical terminology [14].

468 T. Tsuchiya and A. Schiper

Algorithm 1. The LastVoting (Paxos) algorithm [5]
1: Initialization:
2: xp ∈ V al, initially the proposed value of p
3: votep ∈ V al ∪ {?}, initially ?
4: commitp a Boolean, initially false
5: readyp a Boolean, initially false
6: tsp ∈ N, initially 0

7: Round r = 4φ − 3 :
8: Sr

p :

9: send 〈xp , tsp〉 to Coord(p,φ)
10: T r

p :

11: if p = Coord(p, φ) and
number of 〈ν, θ〉 received > n/2 then

12: let θ be the largest θ from 〈ν, θ〉 received

13: votep := one ν such that 〈ν, θ〉 is received
14: commitp := true

15: Round r = 4φ − 2 :
16: Sr

p :

17: if p = Coord(p, φ) and commitp then
18: send 〈votep〉 to all processes
19: T r

p :

20: if received 〈v〉 from Coord(p, φ) then
21: xp := v ; tsp := φ

22: Round r = 4φ − 1 :
23: Sr

p :

24: if tsp = φ then
25: send 〈ack〉 to Coord(p,φ)
26: T r

p :

27: if p = Coord(p, φ) and
number of 〈ack〉 received > n/2 then

28: readyp := true

29: Round r = 4φ :
30: Sr

p :

31: if p = Coord(p, φ) and readyp then
32: send 〈votep〉 to all processes
33: T r

p :

34: if received 〈v〉 from Coord(p,φ) then
35: decide(v)
36: if p = Coord(p, φ) then
37: readyp := false
38: commitp := false

Consensus is the problem of getting all processes to agree on the same deci-
sion. Each process is assumed to have a proposed value at the beginning and is
required to eventually decide on a value proposed by some process. In the HO
model, consensus is specified by the following three conditions:

Integrity. Any decision value is the proposed value of some process.
Agreement. No two processes decide differently.
Termination. All processes eventually decide.

Note that in the HO model the termination property requires all processes to
decide. Discussion of the reason for this specification can be found in [5,18].
For most consensus algorithms, integrity is trivially satisfied; thus we limit our
discussion to the verification of agreement and termination.

This computation model can naturally be extended to represent coordinator-
based algorithms. Let Coord(p, φ) denote the coordinator process of process
p in phase φ. The sending function and the state transition function are now
represented as Sr

p(sp, Coord(p, φ)) and T r
p (Msg, sp, Coord(p, φ)), where φ is the

phase that round r belongs to. LastVoting (Algorithm 1) is an example of a
coordinator-based consensus algorithm [5]. This algorithm can be viewed as an
HO model-version of Paxos [17]. It is also close to the ♦S consensus algorithm [1].

Since there is no deterministic consensus algorithm in a pure asynchronous
system, some synchrony condition must be assumed to solve the problem. In
the HO model such a condition is represented as a predicate over the collections
of HO sets (HO(p, r))p∈Π,r>0 and of coordinators (Coord(p, φ))p∈Π,φ>0 . For
example, the following predicate specifies a sufficient condition for the LastVoting
algorithm to solve consensus:

Using Bounded Model Checking to Verify Consensus Algorithms 469

∃φ0 > 0, ∃co ∈ Π, ∀p ∈ Π :
co = Coord(p, φ0) ∧ |HO(co, 4φ0 − 3)| > n/2 ∧ |HO(co, 4φ0 − 1)| > n/2
∧ co ∈HO(p, 4φ0 − 2) ∧ co ∈HO(p, 4φ0)

(1)

In words, phase φ0 is a synchronous phase where: all processes agree on the same
coordinator co; co can hear from a majority of processes in the first and third
rounds of that phase; and every process can hear from co in the second and fourth
rounds. If such a phase φ0 occurs, then all processes will make a decision at the
end of this phase. This condition is required only for termination. Agreement
can never be violated no matter how bad the HO set is. For simplicity, in the
paper we limit our discussion to verification of such algorithms — algorithms
that are always safe, even in completely asynchronous runs.

3 Verification of Agreement

Our reasoning consists of two levels. Sect. 3.1 presents the phase-level reasoning,
which shows that agreement verification can be accomplished by examining only
single phases of algorithm execution. Sect. 3.2 then describes how model checking
can be used to analyze the single phases at the round level.

3.1 Phase Level Analysis

At the upper-level of our reasoning, we perform a phase-wise analysis, rather
than round-wise. We define a configuration as a (n + 1)-tuple consisting of the
states of the n processes and the phase number. Let C be the set of all possible
configurations; that is, C = S1 × · · · × Sn × N+ where Sp is a set of states
of a process p and N+ is a set of positive integers. Given a configuration c =
(s1, · · · , sn, φ) ∈ C, we denote by φ(c) the phase number φ of c. It should be
noted that the state of a process is a value assignment to the variables of the
process. Hence any set of configurations can be represented by a predicate over
the process variables of all processes and φ; that is, the predicate represents a
set of configurations for which it evaluates to true. We therefore use the notions
of a set of configurations and of such a predicate interchangeably.

Let V al be the set of values that may be proposed. We define a ternary relation
R ⊆ C × 2V al × C as follows: (c, d, c′) ∈ R iff the system can transit from the
configuration c at the beginning of phase φ(c) to the next configuration c′ at the
beginning of the next phase φ(c′) while deciding the values in d during phase
φ(c). By definition φ(c) + 1 = φ(c′) if (c, d, c′) ∈ R.

Let Init be the set of the configurations that can occur at the beginning of
phase 1. We define a run as an infinite sequencec1d1c2d2 · · · (ci ∈ C, di ⊆ V al)
such that c1 ∈ Init and (ci, di, ci+1) ∈ R for all i ≥ 1. We let Run denote the
set of all runs. Let Reachable be a set of all configurations that can occur in a
run; that is, Reachable = {c | ∃c1d1c2d2 · · · ∈ Run, ∃i ≥ 1 : c = ci}. We say that
a configuration c is reachable iff c ∈ Reachable. Agreement holds iff:

∀c1d1c2d2 · · · ∈ Run :
∣∣∣ ⋃

i>0

di

∣∣∣ ≤ 1 (2)

470 T. Tsuchiya and A. Schiper

The key feature of our verification approach is that it can determine whether
(2) holds or not without exploring all runs. In doing this, the notion of univalence
plays a crucial role. A configuration is said to be univalent if there is only one
value that can be decided from this configuration [19]. If the configuration is
univalent and v is the only value that can be decided, then the configuration
is said to be v-valent. Formally, a configuration ci is v-valent iff

⋃
j≥i dj = ∅

or
⋃

j≥i dj = {v} holds for every sequence cidici+1di+1 · · · such that ∀j ≥ i :
(cj , dj , cj+1) ∈ R.

In the proposed verification approach, we assume that some property, rep-
resented by U(v) and Inv, holds on the algorithm under verification. U(v) is
shown below. The assumption for Inv will be described later. Indeed, we will
have to validate U(v) and Inv.

Assumption 1 (U(v)). For any v ∈ V al, U(v) is a set of configurations such
that if c ∈ U(v)∩Reachable, then c is v-valent. In other words, any configuration
in U(v) is either (i) reachable and v-valent or (ii) unreachable.

Example 1. Like many other consensus algorithms, LastVoting uses a majority
quorum of processes to “lock” a decision value. A reachable configuration is v-
valent if a majority of processes have the same estimate v for the decision value
and have greater timestamps than the other processes. Thus we have:

U(v) := ∃Q ⊆ Π : (|Q| > n/2 ∧ ∀p ∈ Q : (xp = v ∧ ∀q ∈ Π\Q : tsp > tsq))

Theorem 1. Agreement holds if:

∀c ∈ Reachable : ∀(c, d, c′) ∈ R : (d = ∅ ∨ ∃v ∈ V al : (d = {v} ∧ c′ ∈ U(v))) (3)

Proof. We show that for any c1d1c2d2 · · · ∈ Run, (3) implies that for any l ≥ 1,
either (i)

⋃
0<i≤l di = ∅ or (ii) for some v ∈ V al,

⋃
0<i≤l di = {v} and cl ∈ U(v),

meaning that (2) holds. The proof is by induction on l. Base case: (3) implies
that either d1 = ∅ or d1 = {v} ∧ c2 ∈ U(v) for some v ∈ V al. Inductive step:
Suppose that the above (i) or (ii) holds for some l ≥ 1. If (i) holds for l, then
dl+1 = ∅ or dl+1 = {v} ∧ cl+1 ∈ U(v) for some v ∈ V al. Hence (i) or (ii) holds
for l + 1. If (ii) holds for l, then dl+1 = ∅ or dl+1 = {v} since cl ∈ U(v). Also
cl+1 ∈ U(v) because cl is v-valent. Thus (ii) also holds for l + 1. �

It should be noted that Formula (3) only refers to individual phase-level transi-
tions from Reachable, rather than to runs. This property is critical for reducing
the verification problem to a model checking problem of single phases. However,
directly checking this formula would do little good, because roughly speaking,
obtaining Reachable is as hard as examining all runs.

The key here is that Reachable can be substituted by its over-approximation.
An over-approximation of the set of reachable states is usually referred to as
an invariant. That is, a set of configurations is an invariant iff it contains all
reachable configurations. We assume that an invariant Inv is available; that is,
Inv ⊆ Reachable (Assumption 2).

Using Bounded Model Checking to Verify Consensus Algorithms 471

Example 2. It is easy to see that for LastVoting, the following predicate is always
true at the beginning of every phase φ:

Inv := ∀p ∈ Π : (commitp = false ∧ readyp = false∧ tsp < φ)

Theorem 2. Agreement holds if:

∀c ∈ Inv : ∀(c, d, c′) ∈ R : (d = ∅ ∨ ∃v ∈ V al : (d = {v} ∧ c′ ∈ U(v))) (4)

Proof. Because Reachable ⊆ Inv, (4) implies (3). By Theorem 1, (3) implies
agreement. �

This theorem leads directly to the following verification steps:

Step A1: Check if (4) holds or not.
Step A2: If (4) holds, then agreement holds. Otherwise, further analysis is

needed because in this case (i) the consensus algorithm is incorrect or (ii) U(v)
or Inv are too small or too large, respectively.

3.2 Model Checking of Single Phases

This section shows how model checking can be used to determine if (4) holds or
not. Since our problem involves only single phases, we only need to consider k
consecutive state transitions of the consensus algorithm, where k is the number
of rounds per phase (see Sect. 2).

The behavior of the system in a single phase, say phase Φ, can be represented
as a tuple (c1ho1dv1c2ho2dv2 · · · ckhokdvkck+1, Coord), where

– ci (1 ≤ i ≤ k) is the configuration at the beginning of the i-th round of the
phase, i.e., round k ∗ (Φ− 1)+ i, while ck+1 corresponds to the first round of
the next phase. Hence Φ = φ(c1) = φ(c2) = · · · = φ(ck) and Φ+1 = φ(ck+1).

– hoi = (HO(1, k(Φ − 1) + i)), · · · , HO(n, k(Φ − 1) + i))) is a collection of n
HO sets – one per process – in the i-th round.

– dvi = (dvi
1, · · · , dvi

n), where dvi
p ∈ V al ∪ {?} for any p ∈ Π , is the collection

of values decided by each process in the i-th round. If a process p does not
decide in the round, then dvi

p =?.
– Coord = (Coord(1, Φ), · · · , Coord(n, Φ)) is a collection of n coordinators –

one per process – in phase Φ.

We call such a tuple a one-phase execution iff it is consistent with the given
consensus algorithm.2 By definition, (c, d, c′) ∈ R iff there is a one-phase ex-
ecution (c1ho1dv1 · · · ckhokdvkck+1, Coord) such that c = c1, c′ = ck+1, and
d =

(⋃
p∈Π,1≤i≤k{dvi

p}
)
\{?}. Let X denote the set of all one-phase execu-

tions that start with a configuration in Inv; that is, a one-phase execution
(c1ho1dv1 · · · ck hokdvkck+1, Coord) is in X iff c1 ∈ Inv.
2 Here whether c1 is reachable or not is irrelevant. In other words, a one-phase exe-

cution specifies how the system would behave in a phase, provided that the phase
begins with c1.

472 T. Tsuchiya and A. Schiper

Our model checking problem is described as follows: Given (i) an algorithm
to be verified, (ii) U(v), and (iii) Inv, determine if the following condition holds
for all (c1ho1dv1 · · · ckhokdvkck+1, Coord) ∈ X :

d = ∅ ∨ ∃v ∈ V al : (d = {v} ∧ ck+1 ∈ U(v)) (5)

where d =
(⋃

p∈Π,1≤i≤k{dvi
p}
)
\{?}.

Clearly (4) holds iff (5) holds for all one-phase executions in X .
This model checking problem is unique in that it only concerns exactly k

consecutive transitions. Because of this, bounded model checking [20] can be
most effectively used to solve this problem. As the name suggests, bounded
model checking searches state transitions of bounded length. This restriction
allows the model checking problem to be reduced to the satisfiability problem
for a set of constraints in some logic. In our case the constraints are boolean
combinations of linear (in)equalities and boolean expressions with integer and
boolean variables. The variables involved in the constraints are:

– Variables that represent the values of the process variables at each config-
uration ci (1 ≤ i ≤ k + 1). If the process variable is boolean, so is the
corresponding representing variable; otherwise the representing variable is
integer.

– An integer variable Φ, which represents the phase number; that is, Φ =
φ(c1)=φ(c2)= · · ·=φ(ck).

– Boolean variables hoi
p,q(p, q ∈ Π, 1 ≤ i ≤ k), which represent whether p hears

of q in the i-th round. That is, q ∈ HO(p, k(Φ− 1) + i) iff hoi
p,q = true.

– Integer variables dvi
p(p, q ∈ Π, 1 ≤ i ≤ k), which represent the value that is

decided by p in the i-th round.
– Integer variables Coordp(p ∈ Π), which represent the coordinator of p in

phase Φ.

Example 3. For the LastVoting algorithm, the variables involved in model check-
ing are: xi

p, vote
i
p, ts

i
p (integer) and commitip, readyi

p (boolean) for p ∈ Π, 1 ≤
i ≤ 5; Φ (integer); hoi

p,q (boolean) for p, q ∈ Π, 1 ≤ i ≤ 4; dvi
p (integer) for

p ∈ Π, 1 ≤ i ≤ 4; Coordp (integer) for p ∈ Π .

It should be noted that any one-phase execution is uniquely represented as a
value assignment to these variables. In order to check (5), we proceed as follows.
We consider two set of constraints on the above variables:

– X , which represents all one-phase executions in X . That is, X represents
exactly the value assignments to variables corresponding to a one-phase ex-
ecution in X .

– U , which represents the value assignments to variables that correspond to a
one-phase execution in X that does not meet (5).

X is derived from the consensus algorithm and Inv, while U is derived from
U(v). Note that X and U can only be simultaneously satisfied by a value assign-
ment corresponding to a one-phase execution that (i) belongs to X and (ii) for

Using Bounded Model Checking to Verify Consensus Algorithms 473

which (5) does not hold. Therefore every one-phase execution in X meets (5) iff
X ∪ U is unsatisfiable.

Step A1 and Step A2 can now be replaced with Step B1 and Step B2, respec-
tively.

Step B1: Check the satisfiability of X ∪ U . This check can be done by an off-
the-shelf Satisfiability Modulo Theories (SMT) solver, such as Yices [21].

Step B2: If no satisfying value assignment exists, then every one-phase execu-
tion in X satisfies (5), meaning that (4) holds. As a result, it is guaranteed
that agreement holds. On the other hand if there is a satisfying assignment,
further analysis is needed to obtain a conclusive answer (see Step A2).

We now show how to construct X and U .

Constraints X : X is composed as X := Dom ∪ T 1 ∪ T 2 ∪ · · · ∪ T k ∪ I, where
Dom, T i and I are as follows:

Dom restricts the domains of the variables. We represent the set V al of pos-
sible proposed values by the set of all positive integers and ? by zero. For the
LastVoting algorithm, Dom consists of the following constraints:

– ∀p ∈ Π, ∀i, 1 ≤ i ≤ 5: xi
p > 0 ∧ votei

p ≥ 0 ∧ tsi
p ≥ 0

– Φ > 0
– ∀p ∈ Π, ∀i, 1 ≤ i ≤ 4: dvi

p ≥ 0
– ∀p ∈ Π : 1 ≤ Coordp ≤ n

T i represents the i-th round of the algorithm; T i is satisfiable iff the system’s
states – represented by the variable values at the beginning of the ith and i+1-th
rounds – are consistent with the algorithm under verification. For example:

T 3 := ∀p ∈ Π :⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x3

p = x4
p ∧ vote3

p = vote4
p ∧ ts3

p = ts4
p ∧ commit3p = commit4p

∧ ite(Coordp = p ∧
∨

Q∈Maj

∧
q∈Q

(Coordq = p ∧ ts3
q = Φ ∧ ho3

p,q = true),

ready4
p = true, ready3

p = ready4
p)

∧ dv3
p = 0

where Maj ≡ {Q | Q ⊆ Π, |Q| > n/2}. The first four terms express that process
variables xp, votep, tsp and commitp do not change in the third round. The ite
term3 represents how variable readyp is updated: It specifies that readyp will be
updated to true if p considers itself the coordinator and receives messages from
a majority of processes who consider the coordinator to be p (see lines 24–27 of
Algorithm 1). The last term expresses that no decision is made in this round.

I enforces that c1 ∈ Inv. For example, consider Inv shown in Example 2 that
refers to phase Φ. In this case we have:

I := ∀p ∈ Π : (commit1p = false∧ ready1
p = false∧ ts1

p < Φ)

3 ite(a, b, c) = b if a = true; ite(a, b, c) = c, otherwise.

474 T. Tsuchiya and A. Schiper

Constraints U : The negation of (5) is: d �= ∅ ∧ ∀v ∈ V al : ¬(d = {v} ∧ ck+1 ∈
U(v)) where d =

(⋃
p∈Π,1≤i≤k{dvi

p}
)
\{?}. If v �∈ d, then d �= {v}, which allows

us to replace V al with d:

d �= ∅ ∧ ∀v ∈ d : ¬(d = {v} ∧ ck+1 ∈ U(v)) (6)

U consists of constraints that represent (6). For example, consider U(v) given in
Example 1. Then U consists of the conjunction of the following constraints:

–
∨

p∈Π,1≤i≤k

dvi
p �= 0

– ∀p ∈ Π, ∀i, 1 ≤ i ≤ k :

dvi
p �= 0 −→ ¬

⎛⎝ ∧
q∈Π,1≤j≤k

(
dvj

q = dvi
p

∨ dvj
q = 0

)
∧
∨

Q∈Maj

∧
q∈Q

⎛⎝xk+1
q = dvi

p ∧∧
q′∈Π\Q

tsk+1
q > tsk+1

q′

⎞⎠⎞⎠
Basically, the second constraint means that some process has decided (dvi

p �= 0)
while the configuration is not univalent (¬(...)).

4 Verification of Termination

As stated in Sect. 2, in the context of the HO model, the condition for termination
is specified by a predicate over the collections of HO sets and coordinators. In this
section we consider a condition of the form ∃φ > 0 : P sync(φ), where P sync(φ)
is a predicate over the HO sets and the coordinators in phase φ such that:

– P sync(φ) is invariant under phase changes; that is, for any φ, φ′ > 0, we have
P sync(φ) = P sync(φ′) if the HO sets and the coordinators in phases φ and
φ′ are identical. We henceforth denote P sync(φ) as P sync.

– P sync is not the constant false.

For example, Condition (1) in Sect. 2 is of this form. The verification method
described here determines whether the given algorithm always terminates in a
phase where P sync holds.

Let Rsync ⊆ C × 2Π × C be a ternary relation such that (c, π, c′) ∈ Rsync iff
whenever phase φ(c) meets P sync, a one-phase execution from c to c′ is possible
in which π is the set of processes that decide. Hence termination is satisfied if:4

∀c ∈ Reachable : (∀(c, π, c′) ∈ Rsync : π = Π) (7)

Theorem 3. Termination holds if:

∀c ∈ Inv : (∀(c, π, c′) ∈ Rsync : π = Π) (8)

Proof. Because Reachable ⊆ Inv (Assumption 2), (8) implies (7). �
4 Note that we exclude the exceptional case where no (c, π, c′) ∈ Rsync exists for some

c, because P sync is not the constant false.

Using Bounded Model Checking to Verify Consensus Algorithms 475

Whether (8) holds or not can be determined using bounded model checking,
as was done for agreement verification: Let Xsync be the set of all one-phase
executions that start with a configuration in Inv, and can occur if P sync holds
for the phase. That is, (c1ho1dv1 · · · ckhokdvkck+1, Coord) ∈ Xsync iff:

– c1 ∈ Inv (hence Xsync ⊆ X); and
– P sync holds for the HO sets, ho1, ho2, · · · , hok, and the coordinators, Coord.

Hence (c, π, c′) ∈ Rsync iff there is a one-phase execution (c1ho1dv1 · · · ckhokdvk

ck+1, Coord) ∈ Xsync such that c = c1, c′ = ck+1, and π = {p | ∃i, 1 ≤ i ≤ k :
dvi

p �= ?}.
The problem we want to solve is to determine if the following condition (9)

holds for all (c1ho1dv1 · · · ckhokdvkck+1, Coord) ∈ Xsync:

∀p ∈ Π, ∃i, 1 ≤ i ≤ k : dvi
p �= ? (9)

In words, (9) states that every process decides in some round of a phase where
P sync holds. By definition, (8) holds iff (9) holds for all executions in Xsync.

The problem of deciding whether all one-phase executions in Xsync satisfy (9)
is reduced to the satisfiability problem, as was done in Sect. 3.2. The constraints
to be checked are X ∪ Sync ∪ Term, where:

– Sync represents P sync. Sync consists of constraints over hoi
p and Coordp

(p ∈ Π, 1 ≤ i ≤ k) and is satisfied iff P sync holds for the HO sets and the
coordinators represented by hoi

p and Coordp. As a result, X∪Sync represents
Xsync.

– Term is satisfied by a value assignment corresponding to a one-phase ex-
ecution iff it does not meet (9); that is, some process exists that does
not decide in the execution. Term is composed of only a single constraint∨

p∈Π

∧
1≤i≤k dvi

p = 0.

The constraints X ∪ Sync ∪ Term can be simultaneously satisfied by, and only
by, a value assignment corresponding to a one-phase execution that (i) is in
Xsync and (ii) for which (9) does not hold. Therefore every one-phase execution
in Xsync satisfies (9) iff no satisfying assignment exists. As a result, termination
can be verified as follows:

Step C1: Check the satisfiability of X ∪ Sync ∪ Term.
Step C2: If no satisfying value assignment exists, then every one-phase execu-

tion in Xsync satisfies (9), meaning that (4) holds. It is therefore guaranteed
that termination holds. On the other hand, if the constraints are satisfiable,
then it means that (i) the algorithm is incorrect or (ii) Inv is too large. In
this case further analysis is required to obtain a conclusive answer.

Example 4. Consider condition (1) for termination of LastVoting. We have:

Sync :=
∨

p∈Π

⎛⎜⎜⎜⎜⎝
p = Coord1 = · · · = Coordn

∧
∨

Q∈Maj

∧
q∈Q

ho1
p,q = true ∧

∨
Q∈Maj

∧
q∈Q

ho3
p,q = true

∧
∧

q∈Π

ho2
q,p = true ∧

∧
q∈Π

ho4
q,p = true

⎞⎟⎟⎟⎟⎠

476 T. Tsuchiya and A. Schiper

5 Validating Inv and U(v)

So far we have assumed that U(v) (see Example 1) and Inv (see Example 2)
satisfy Assumption 1, respectively Assumption 2 (see Sect. 3.1). Here we present
automatic procedures for checking that U(v) and Inv indeed satisfy the corre-
sponding assumptions. Because of space limitations, we refer the reader to our
technical report [13] for details.

5.1 Validating Inv

Here we remove Assumption 2; that is, it is not known whether or not Inv is an
invariant.

Theorem 4. Suppose that Inv is a set of configurations. Inv is an invariant if
the following two conditions hold:

Init ⊆ Inv (10)
∀c ∈ Inv : (∀(c, d, c′) ∈ R : c′ ∈ Inv) (11)

Testing (10) can be straightforwardly conducted using satisfiability solving, be-
cause it suffices to simply check if there is a configuration that is in Init but not
in Inv.

Testing whether (11) holds or not can be done by determining if ck+1 ∈ Inv
for all (c1ho1dv1 · · · ckhokdvkck+1, Coord)∈X . This problem can be reduced to
the satisfiability problem of X ∪ I ′

, where I ′
is a constraint set that is satisfied

iff ck+1 �∈ Inv. Thus if there is no satisfying solution, then every one-round
execution in X ends with a configuration in Inv, i.e., (11) holds.

5.2 Validating U(v) with Assumption 2

Here we remove Assumption 1; that is, it is not known that U(v) represents
v-valent configurations. However, we assume that Inv correctly represents an
invariant; that is, Reachable ⊆ Inv (Assumption 2).

Theorem 5. Suppose that v ∈ V al and U(v) is a set of configurations. Any
c ∈ U(v) ∩Reachable is v-valent if:

∀c ∈ Inv : ∀(c, d, c′) ∈ R : c ∈ U(v) −→ d ∈ {∅, {v}} ∧ c′ ∈ U(v) (12)

Again, bounded model checking can be used to check if (12) holds for all v ∈ V al.
The problem to be solved is to determine whether or not for any one-phase ex-
ecution (c1ho1dv1 · · · ckhokdvkck+1, Coord) ∈ X , the following condition holds:

∀v ∈ V al : c1 ∈ U(v) −→ (d = ∅ ∨ d = {v}) ∧ ck+1 ∈ U(v) (13)

where d =
(⋃

p∈Π,1≤i≤k{dvi
p}
)
\{?}.

The problem is reduced to the satisfiability problem of X ∪ V, where V is a
constraint set that is satisfied by a one-phase execution in X iff it does not meet
(13). Therefore if X ∪V is unsatisfiable, then (13) holds for any execution in X ,
ensuring that any c ∈ U(v) ∩Reachable is v-valent.

Using Bounded Model Checking to Verify Consensus Algorithms 477

Algorithm 2. The Hybrid-1(α) algorithm (α ≤ �n/4)
1: Initialization:
2: xp ∈ V al, initially the proposed value of p
3: votep ∈ V al ∪ {?}, initially ?
4: voteToSendp a Boolean, initially false
5: tsp ∈ N, initially 0

6: Round r = 3φ − 2 :
7: Sr

p :

8: send 〈xp , tsp, Coord(p, φ)〉 to all processes
9: T r

p :

10: if (φ = 1) and #〈−,−,−〉 ≥ n − α then
11: if n − α messages received are equal to

〈x,−,−〉 then
12: decide(x)
13: if p = Coord(p, φ) and

#〈−,−, p〉 received > max(n/2, 2α) then
14: if the messages received are all equal to

〈−, 0, p〉 and, except at most α, are
equal to 〈x, 0, p〉 then

15: votep := x
16: else
17: let θ be the largest θ from 〈−, θ, p〉 received

18: votep := one x such that 〈x, θ, p〉 is received
19: voteToSendp := true

20: Round r = 3φ − 1 :
21: Sr

p :

22: if p = Coord(p, φ) and
voteToSendp then

23: send 〈votep〉 to all processes
24: T r

p :

25: if received 〈v〉 from Coord(p,φ) then
26: xp := v ; tsp := φ

27: Round r = 3φ :
28: Sr

p :

29: if tsp = φ then
30: send 〈ack, xp〉 to all processes
31: T r

p :

32: if ∃v s.t.
〈ack, v〉 received > n/2 then

33: decide(v)
34: voteToSendp := false

6 Case Studies

In this section we present the results of applying the proposed approach to two
consensus algorithms:

– LastVoting (Paxos) [5], see Algorithm 1.
– Hybrid-1(α), an improved version of the Fast Paxos algorithm [7], presented

in [22], see Algorithm 2.

For LastVoting, the condition for termination is specified by (1) in Sect. 2,
while U(v) and Inv are given in Examples 1 and 2.

Similarly to LastVoting, Hybrid-1(α) is always safe if α ≤ �n/4 . The condition
for termination is specified in Table 1(a); U(v) and Inv are given in Table 1(b).
Hybrid-1(α) combines a fast phase and an ordinary phase of Fast Paxos into
the same phase. In the first round of Phase 1, if a process has received the

Table 1. Properties for Hybrid-1(α)

(a) Condition for Liveness

∃φ > 0, ∃co ∈ Π,∀p ∈ Π :

j

|HO(p, r)| > max(n/2, 2α) ∧ co = Coord(p, φ)
∧ ∀0 ≤ i ≤ 2 : co ∈ HO(p, 3φ − i)

(b) U(v) and Inv

U(v) :=

j

∃Q ⊆ Π : |Q| ≥ n − α ∧ ∀p ∈ Q : (xp = v) ∧ ∀p ∈ Π\Q : (tsp = 0)
∨ ∃Q ⊆ Π : |Q| > n/2 ∧ ∀p ∈ Q : (xp = v ∧ ∀q ∈ Π\Q : tsp > tsq)

Inv := ∀p ∈ Π : voteToSendp = false ∧ tsp < φ

478 T. Tsuchiya and A. Schiper

Table 2. Execution time (in seconds)

LastVoting Hybrid-1(�n/4�)
n 4 5 6 7 8 9 10 11 4 5 6 7 8 9 10 11

agreement 0.1 0.3 0.6 5.0 10 139 312 11066 0.1 0.8 2.2 57 539 11848 t.o. t.o.
termination 0.0 0.1 0.1 0.5 1.0 3.6 7.6 32 0.0 0.1 0.3 1.1 3.2 13 28 121

U(v) 0.1 0.6 1.7 104 2356 t.o. t.o. t.o. 0.3 2.3 8.2 142 16650 t.o. t.o. t.o.
Inv 0.0 0.1 0.1 0.4 0.9 2.7 5.2 29 0.0 0.1 0.3 0.8 2.7 10 26 92

Table 3. Traditional approach on LastVoting with different model checkers

Model Checker n Time (sec)

NuSMV [23] 4 167
SPIN [24] 3 2922
ALV [25] 3 1921

same estimate from n − α processes, then the process can immediately decide
(line 12). To prevent processes from deciding different values in later rounds
(line 33), if n−α or more processes have the same proposed value, then it must
be guaranteed that no process having a different estimate will be allowed to
update its timestamp. That is, when at least n − α processes have the same
estimate v and the remaining processes have a timestamp equal to zero, the
system must be v-valent. The first term of the U(v) in Table 1(b) states this
formally.

Experiments: The experiments were performed on a Linux workstation with
an Intel Xeon processor 2.2GHz and 4Gbyte memory. We used the Yices [21]
satisfiability solver. For both algorithms, we conducted the four kinds of checks,
namely agreement, termination, U(v), and Inv, up to n = 11. Table 2 shows
the execution time required for these checks. Notation “t.o.” (timeout) indicates
that the check was not completed within 5 hours.

No satisfiable solution was found in any of the checks. Therefore Table 2 shows
that for the two algorithms (i) U(v) and Inv meet Assumption 1 up to n = 8,
Assumption 2 up to n = 11, and (ii) agreement and termination are guaranteed
up to n = 8 and n = 11, respectively.

Traditional approach: For comparison, we evaluated a different approach in
which the whole state space of an algorithm is explored with an existing model
checker. Specifically we verified LastVoting against the agreement property with
three model checkers: NuSMV [23], SPIN [24], and ALV [25].

SMV and SPIN are the two best known model checkers. NuSMV is one of the
latest implementations of SMV. Although SMV and SPIN can only deal with
finite state systems, the abstraction technique proposed in [4] allows one to model
check the whole state space with these model checkers. In model checking with
SPIN we made an extensive optimization to reduce the state space. For example,
we completely removed the information on HO sets from the state space, by

Using Bounded Model Checking to Verify Consensus Algorithms 479

specifying all possible behaviors as non-deterministic ones. This optimization
does not work for SMV because HO sets are already compactly represented
by the data structure used in SMV. ALV is a well known model checker that
can analyze infinite state systems with unbounded integer variables. It does not
require any finite state abstraction, while the same optimization as with SPIN
was performed to avoid explicit representation of HO sets.

Table 3 presents the maximum number of processes that each of the model
checkers was able to handle without running out of memory or time (5 hours)
together with the time needed to model check the largest model. Comparing
Tables 2 and 3 one can clearly see that the proposed approach scales much
better than the approach using existing model checkers. This improvement can
be explained by the fact that our approach can avoid explosive growth of the
search space by limiting it to single phases.

7 Conclusion

We proposed an approach to automatic verification of asynchronous consensus
algorithms. Using the notions of univalence and invariant, we reduced agreement
and termination verification to the problem of model checking only single phases
of the algorithm. This unique property of the model checking problem allowed
us to effectively use bounded model checking. As case studies we applied the
proposed approach to two consensus algorithms and mechanically verified that
they satisfy agreement up to 8 processes and termination up to 11 processes.
Comparing the performance of the traditional model checking approach showed
that the performance improvement was significant.

References

1. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of ACM 43(2), 225–267 (1996)

2. Guerraoui, R., Schiper, A.: The generic consensus service. IEEE Trans. on Software
Engineering 27(1), 29–41 (2001)

3. Schiper, A., Toueg, S.: From set membership to group membership: A separation of
concerns. IEEE Transactions on Dependable and Secure Computing (TDSC) 3(1),
2–12 (2006)

4. Tsuchiya, T., Schiper, A.: Model checking of consensus algorithms. In: Proc. 26th
Symp. on Reliable Distributed Systems (SRDS), Beijing, China, pp. 137–148 (Oc-
tober 2007)

5. Charron-Bost, B., Schiper, A.: The Heard-Of model: Computing in distributed
systems with benign failures. Technical Report LSR-REPORT-2007-001, EPFL
(2007)

6. Gafni, E., Lamport, L.: Disk Paxos. Distributed Computing 16(1), 1–20 (2003)
7. Lamport, L.: Fast Paxos. Distributed Computing 19(2), 79–103 (2006)
8. Lamport, L.: Personal Communication (2006)
9. Zieliński, P.: Automatic verification and discovery of Byzantine consensus pro-

tocols. In: Proc. Int’l Conf. on Dependable Systems and Network (DSN 2007),
Edinburgh, UK, pp. 72–81. IEEE CS Press, Los Alamitos (June 2007)

480 T. Tsuchiya and A. Schiper

10. Hendriks, M.: Model checking the time to reach agreement. In: Pettersson, P., Yi,
W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 98–111. Springer, Heidelberg
(2005)

11. Cheung, L.: Randomized Wait-Free Consensus Using an Atomicity Assumption.
In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS,
vol. 3974, pp. 47–60. Springer, Heidelberg (2005)

12. Kwiatkowska, M.Z., Norman, G., Segala, R.: Automated verification of a random-
ized distributed consensus protocol using Cadence SMV and PRISM. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 194–206. Springer,
Heidelberg (2001)

13. Tsuchiya, T., Schiper, A.: Using bounded model checking to verify consensus al-
gorithms. Technical Report LSR-REPORT-2008-005, EPFL (July 2008)

14. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. Journal of ACM 35(2), 288–323 (1988)

15. Gafni, E.: Round-by-round fault detectors: Unifying synchrony and asynchrony.
In: Proc. 17th ACM Symp. on Principles of Distributed Computing (PODC-17),
pp. 143–152. ACM Press, New York (1998)

16. Santoro, N., Widmayer, P.: Time is not a healer. In: Proceedings of the 6th Annual
Symposium on Theoretical Aspects of Computer Science (STACS 1989), Pader-
born, Germany. LNCS, vol. 346, pp. 304–313. Springer, Heidelberg (1989)

17. Lamport, L.: The part-time parliament. ACM Trans. on Computer Systems 16(2),
133–169 (1998)

18. Charron-Bost, B., Schiper, A.: Harmful dogmas in fault tolerant distributed com-
puting. SIGACT News 38(1), 53–61 (2007)

19. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of ACM 32(2), 374–382 (1985)

20. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfia-
bility solving. Formal Methods in System Design 19(1), 7–34 (2001)

21. Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

22. Charron-Bost, B., Schiper, A.: Improving Fast Paxos: Being optimistic with no
overhead. In: Proc. of 12th Pacific Rim International Symposium on Dependable
Computing (PRDC 2006), Riverside, CA, USA, pp. 287–295. IEEE CS Press, Los
Alamitos (2006)

23. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404.
Springer, Heidelberg (2002)

24. Holzmann, G.J.: The model checker SPIN. IEEE Trans. on Software Engineer-
ing 23(5), 279–295 (1997)

25. Bultan, T., Yavuz-Kahveci, T.: Action language verifier. In: Proc. 16th IEEE Int’l
Conf. on Automated Software Engineering (ASE 2001), San Diego, CA, USA, pp.
382–386 (2001)

Theoretical Bound and Practical Analysis of

Connected Dominating Set in Ad Hoc and
Sensor Networks

Alireza Vahdatpour, Foad Dabiri, Maryam Moazeni, and Majid Sarrafzadeh

Computer Science Department
University of California Los Angeles

{alireza,dabiri,mmoazeni,majid}@cs.ucla.edu

Abstract. Connected dominating set is widely used in wireless ad-hoc
and sensor networks as a routing and topology control backbone to im-
prove the performance and increase the lifetime of the network. Most of
the distributed algorithms for approximating connected dominating set
are based on constructing maximal independent set. The performance
of such algorithms highly depends on the relation between the size of
the maximum independent set (mis(G)) and the size of the minimum
connected dominating set (cds(G)) in the graph G. In this paper, af-
ter observing the properties of such subgraphs, we decrease the previous
ratio of 3.453 to 3.0 by showing that mis(G) ≤ 3 ·mcds(G)+3. Addition-
ally, we prove that this bound is tight and cannot be improved. Finally,
we present practical analysis of constructing connected dominating set
based on maximal independent set in wireless networks. It is shown that
the theoretical bound for unit disk graph is still practically applicable for
general wireless networks.

1 Introduction

Wireless ad-hoc and sensor networks are gaining more interest in a variety of
applications. In addition to applications such as habitat and environment mon-
itoring, these networks are useful in emergency operations such as search and
rescue, crowd control and commando operations [15]. In such wireless networks,
each node communicates with other nodes either directly or through other inter-
mediate nodes. These networks can not have fixed or centralized infrastructure,
since network nodes are not assumed to be fixed in the environment. Although
a wireless ad-hoc network has no physical infrastructure, connected dominating
set can be used as a virtual backbone in the network [19]. A connected domi-
nating set (CDS) of a graph G = (V,E) is a subset S ⊆ V such that each node
in V − S is adjacent to some nodes in S and the communication graph induced
by S is connected. Centralized and distributed construction of dominating set in
sensor networks has been studied widely before, since it has great impact on the
efficiency of routing, power management, and topology control protocols.

The problem of finding a minimum CDS (MCDS) in a graph has been shown to
be NP-hard [2]. Many efforts [1], [6], [7], [18], [19], [20] have been made to design

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 481–495, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

482 A. Vahdatpour et al.

approximations and heuristics for the MCDS in a network. Among distributed
approximation algorithms, which are the most suitable algorithms for ad-hoc
and sensor networks, using the idea of constructing a maximal independent set
and then converting it to a connected graph is a common trend. This approach
has several advantages comparing to centralized and other distributed MCDS
approximation algorithm. Sensor and ad-hoc networks have severe limitation in
processing and communication capabilities, therefore, localized distributed algo-
rithms are the most suitable solutions for issues arising from inefficient energy
consumption in the network. Since every maximal independent set is a dom-
inating set and can be constructed locally, most of the well-known algorithms
usually construct a maximal independent set at the first step and then convert it
to a CDS with a local algorithm. Consequently, the approximation performance
ratio would be determined by two factors: 1) How large a maximal independent
set can be compared to a minimum connected dominating set. 2) How many
vertices are required to connect a maximal independent set. Simple algorithms
are available that construct a connected graph from maximal independent set
by the ratio of 2 [13], [19].

Several studies have been done to find the ratio of number of nodes in MIS
to the size of MCDS in a graph. All the studies assume the graph to be unit
disk graph. A unit disk graph (UDG) is the intersection graph of a family of unit
circles in the Euclidean plane. In such graph, a vertex v is connected to vertex u,
if and only if |uv| ≤ 1, where |uv| represents the Euclidean distance between u
and v. Even assuming the graph to be UDG, finding MCDS has been proven to
be NP-Hard [2]. Using the geometric properties of unit disk graph, [13], [19], [10],
[21], [14] have shown different constant ratios for the relation between number of
nodes in MCDS and MIS subgraphs. The study in [21] showed that in every unit
disk graph: mis(G) ≤ 3.8cds(G) + 1.2. where mis(G) is the size of a maximum
independent set and cds(G) is the size of a minimum connected dominating set in
G. More recently, Funke et. al. [10] decreased the bound to 3.453 ·cds(G)+8.291.
In this paper, we decrease the bound and show that mis(G) ≤ 3 · cds(G) + 3.
Additionally, we analyze the ratio in practical networks, where the network does
not necessarily obey the characteristics of a unit disk graph. Through running
large set of simulation experiments, we observed that although theoretically the
bound is not applicable to a general network where nodes have indeterministic
wireless coverage. Furthermore, we analyze the effect of network density and
connectivity on the construction of connected dominating set and its practical
relation to maximal independent set in wireless networks.

The rest of this paper is organized as follows. Section 2, discusses the appli-
cations and usage of MCDS in sensor and ad-hoc networks. In section 3, related
work and observations that lead to the main results of this paper are presented.
Section 4 presents the main results which includes the proof of the new bound
for the relation between the number of nodes in MCDS and MIS. Section 5 in-
cludes experimental results for practical analysis and observations. Finally, the
last section contains some concluding remarks.

Theoretical Bound and Practical Analysis of Connected Dominating Set 483

2 Applications of Connected Dominating Set in Sensor
and Ad Hoc Networks

Several approaches have been proposed in the literature to maximize the network
lifetime, as solutions to great challenges that energy constraints impose on sensor
and ad-hoc networks. Using connected dominating set as a network backbone for
routing and topology control is one of the most mature approaches that can lead
to efficient energy consumption in the network. In this approach, messages can
be routed from the source to one of its neighbors in the dominating set, along
the CDS to the dominating set member closest to the destination node, and
finally to the destination [12]. Dominating set based routing [7], [20], spine based
routing [5] or backbone based routing [3] are the terms used in the literatures
particularly addressing this routing method.

Furthermore, CDS has been widely used to increase the efficiency of mul-
ticast and broadcast routing. According to [12], [16] broadcast storm problem
occurs when a large number of intermediate nodes unnecessarily forwards a mes-
sage. Therefore, causing several nodes to hear the same message several times,
which causes unwanted energy consumption in the network. In another approach
CDS is applied to increase the number of nodes that can be in the sleep mode,
while the connectivity of the network is maintained and messages can effec-
tively be forwarded throughout the network [17], [20]. In [8] the nodes in dom-
inating set coordinate with one another and use orthogonal spreading codes in
their neighborhoods to improve spatial reuse with code division spread spectrum
techniques.

Recently, Banik and Radhakrishnan [4] discussed that while using MCDS as
backbone for broadcasting minimizes the the total number of transmissions, it
does not guarantee minimum broadcast latency. Hence, they proposed a collision
free broadcast scheduling algorithm among nodes in MCDS to minimize the
broadcast latency.

Different approaches are applied to construct connected dominating set over a
network. Centralized algorithms are not suitable for sensor and ad-hoc networks
since they require one node to perform most of the computation and communica-
tion, which leads to unbalanced energy consumption in the network. In contrast,
a common distributed approach that has been addressed by [13] for the first
time, is to use maximal independent set to form the connected dominating set.
This approach is popular and efficient among distributed CDS algorithms since
distributed construction of maximal independent set in large networks needs few
number of local communications among the nodes. Currently, the best known
approximation algorithm for connected dominating set uses the above approach
[14]. [21], [19], [13] investigated the relation of minimum connected dominating
set and maximal independent set. The common assumption in most of the work
proposing algorithms for constructing MCDS over the network is that a wireless
network can be modeled as a Unit Disk Graph (UDG). Exploiting the geometric
properties of unit disk graphs, introducing effective approximation algorithms for
MCDS is possible. [13] has addressed few simple heuristics for unit disk graphs
that leads to acceptable approximation bounds.

484 A. Vahdatpour et al.

3 Motivation, Observations and Related Work

Table 1 summarizes performance comparison of well known distributed CDS con-
struction algorithms [12]. The best performance of distributed algorithms is
achieved by [14] where it first finds a maximal independent set and then converts
it to a connected dominating set. Finding maximal independent set and convert-
ing it to a dominating set is relatively an easy task in a graph, therefore, most of
distributed algorithms try to efficiently convert the dominating set constructed by
maximal independent set to a connected tree which has the minimum cardinality
from the optimal MCDS. In most of these conversionalgorithms the size of the con-
nected tree is atmost twice of the input dominating set.Hence, the final approxima-
tion ratio of the connecteddominating set is highly depended on the approximation
ratio of the size of maximal independent set to the size of the MCDS.

In [13] authors assumed Unit Disk Graphs (UDG) and showed that in this
type of geometric graphs, the ratio of number of nodes in MIS to the number of
nodes in MCDS is at most 5. In a UDG there is an edge between two vertices
if the distance between them is less than one unit. Since wireless sensor/ad-hoc
networks are usually considered to be consisted of homogeneous nodes with equal
wireless ranges, using UDG for the theoretical model is reasonable. Environment
effects and slight geometric conditions are ignored in UDG, however. Modeling
a wireless network as a UDG, each vertex of MCDS cannot dominate more than
five independent nodes, since no more than five independent nodes can lie in a
unit disk area (Figure 1.a). This immediately results in that the maximum ratio
of nodes in every MIS is not more than five times of the size of the MCDS. [19]
decreased the ratio to 4, by showing that the intersection between the dominating
areas (communication coverage) of each two adjacent nodes does not let every
vertex in MCDS to dominate five independent nodes. Figure 1.b shows part of a
minimum connected dominating set. v and u are two adjacent vertices in MCDS.
It can be seen that Uv lie in a sector of at most 240◦ within the coverage range
of vertex v. It can be easily shown that at most 4 independent nodes can lie in
this area.

Table 1. Performance comparison of previous CDS construction distributed algorithms
[12] (Here, n and m are the number of vertices and edges in the graph. ∆ and H
denote the maximum degree of the vertices in the graph and the harmonic function,
respectively.)

Graph Model Approximation Ratio Time Complexity Message Complexity

[7]-I general 2H(∆) + 1 O((n + |C|)∆) O(n|C| + m + nlog(n))

[7]-II general 2H(∆) O(|C|(∆ + |C|)) O(n|C|)
[19] UDG 8opt + 1 O(n) O(nlog(n))

[1] UDG 192opt + 48 O(n) O(n)

[6] UDG 8opt O(n) O(nlog(n))

[20] general O(n) O(∆3) θ(m)

[14] UDG 6.8opt - -

Theoretical Bound and Practical Analysis of Connected Dominating Set 485

Fig. 1. a) A neighboring area with five independent nodes b) Uv lies in a sector of at
most 240◦

Fig. 2. An example where 8 nodes lie in the neighboring area of two vertices

[21] has extended the observation and proved that the number of nodes in the
MIS is at most 3.8cds(G)+1.2. Using this upper-bound, the approximation ratio
of the algorithms [1], [6], [19] that use MIS to find an approximate connected
dominating set on a network would be 7.6. The key observation in [21] is that
the neighboring area around two adjacent nodes in MCDS cannot have more
than eight independent nodes. Figure 2 depicts an example where eight nodes
lie in the neighboring area of two adjacent nodes in MCDS.

Recently, [10] et al. presented a better bound using Voronoi diagram of the
vertices in the MCDS. Up to now, 3.453 · cds(G) + 8.291 achieved by this paper
is the best bound. In the next section, we will extend UDG properties discussed
before and show that the ratio of number of nodes in MIS to the number of nodes
in MCDS is 3 · cds(G) + 3. The idea behind the proof in the next section is to
apply the previous observation to a number of nodes connected together. It will
be shown that the number of independent nodes in one vertex’s neighboring area
depends on the position and the number of independent nodes in the adjacent
MCDS vertices’ neighboring areas and by generalizing the relation, the minimum
upper bound can be driven.

4 Main Results

In this section, we will present our contribution which is a tight bound on the
approximation ratio between MIS and MCDS.

Definition 1. For any node u ∈ G(V,E), the neighboring set of u, N(u) is
defined to be the set of nodes adjacent to u in G, in other words:

N(u) = {v|euv ∈ E}

486 A. Vahdatpour et al.

Fig. 3. Four small dark areas

Lemma 1. For any u ∈ G:

|N(u) ∩mis(G)| ≤ 5 (1)

where mis(G) is a maximal independent set of graph G.

Proof. If u and v are independent (|uv| > 1), it is depicted in figure 1.a, that
the angle made by connecting vertices v and u to vertex o is greater than 60◦.
Therefore, at most five mutually independent nodes can exist in a unit disk. ��

Lemma 2. Each two adjacent nodes in MCDS cannot have more than 8 inde-
pendent nodes in their neighboring area:

∀u, v ∈ mcds(G), |uv| ≤ 1; |(N(u) ∪N(v)) ∩mis(G)| ≤ 8 (2)

Proof. The complete proof can be found in [21]. However, since the next lemma
is a generalization of this lemma, we will briefly overview the proof scheme
here. Figure 3 depicts two adjacent vertices u and v, and their neighboring area.
Without loss of generality, we assume that |uv| = 1, therefore, N(u) ∪ N(v) is
maximum. First, if two independent nodes lie in the N(u) ∩N(v), according to
lemma 1, N(u)−N(v) and N(v)−N(u) can include at most three independent
nodes, resulting in the total of at most 8 independent nodes in the N(u)∪N(v).

In the second case, assume that only node a0 ∈ mis(G) lies in N(u)∩N(v). In
order to have more than 8 independent nodes in N(u) ∪N(v), four nodes must
lie in both N(v) − N(u) and N(u) − N(v). Lets assume that four independent
nodes (a1, a2, a3, a4) lie in N(u)−N(v). Considering that a6 and a7 are lying in
N(v) − N(u) and the fact that the sector between each two independent nodes
in a circle is at least 60◦ (see lemma 1), a5 and a8 must lie in the dark areas
yd6c6 and xd7c7.

According to the proof available in [21], the maximum euclidian distance
between any point of c3d3y and any point of d6c6y is less than unit. Similarly,
points in c2d2x and c7d7x has the same property accordingly. Therefore the dark
areas in N(v) cannot include independent nodes and hence four nodes cannot
lie in N(v) −N(u) This completes the proof. ��

Definition 2. Semi-exclusive neighboring set: let U be any set of indepen-
dent nodes in G = (V,E), and T be any spanning tree on mcds(G). Assume

Theoretical Bound and Practical Analysis of Connected Dominating Set 487

Fig. 4. Three adjacent vertices in MCDS and their neighboring areas

v1, v2, ..., vT is an arbitrary preorder traversal of T . For any i, 2 ≤ i ≤ |T |, con-
sider Ui = Ni∩U−

�i−1
j=1 N(j) be the subset of nodes in U that are adjacent to vi

but not to any of v1, v2, ..., vi−1. We will call Ui the semi-exclusive neighboring
set of node vi.

Lemma 3. For all i, j ∈ mcds(G), |Ui| = |Uj | = 4 there exists a node k ∈
mcds(G) on the path between i and j, where |Uk| < 3.

Proof. Lets v0, v1, v2, ..., vm be an arbitrary path in the mcds(G) and
N1, N2, ..., Nm and U1, U2, ..., Um be the neighboring and semi-exclusive sets as-
sociated with vertices v1, v2, ..., vm. Suppose that Ui and Uj contain four in-
dependent nodes. We will show that there exists vk, i < k < j such that Uk

contains less than three independent nodes.
Figure 4 shows vertex vi and its three immediate neighbor vertices in mcds(G),

vi−1, vi+1 and vi+2. As seen in Figure 4, since �st ≥ 120◦ and�rx ≤ 240◦, Ni+1∩Ui

will include either three or two independent nodes. In the first case, according
to lemma 1 |Ui+1| ≤ 2 and this satisfies the lemma. In the second case, assume
a0, a1 ∈ Ni+1 ∩ Ui. According to lemma 2, Ui+1 can contain at most three
independent nodes a2, a3 and a4 (otherwise, by putting one independent node
in �rx, |Ni−1 ∪Ni| would be greater than six). It is obvious that ̂a4vi+1a2 > 180◦

(note that ̂a4vi+1a2 is the angle obtained by counterclockwise rotation of
vi+1a2 toward vi+1a4). Assuming |Ui+1| = 3, either one or two of the independent
nodes in it will also be in Ni+2. In the case that |Ni+2 ∩Ui+1| = 2 , Ni+2 has the
same property as of Ni+1 and we can continue the reasoning with the relation
between Ni+3 and Ui+2.

If only one independent node lies in the intersection area (as it is assumed in
figure 4,) since clockwise angle between a2vi+1 and a4vi+1 is less then 180◦,
according to the proof available in [21], independent nodes in Ui+2 have to be
inside the �b2b4 sector area. Since ̂b1vi+1b2 ≤ 180◦, at most three independent
nodes can lie in it. Therefore, when |Ui+2| = 3, the same angular property of
these nodes enforces the same condition on the nodes in Ui+3.

The above reasoning can be extended to all Uh, h > i, while ∀s, i ≤ s < h, Us

contains exactly three independent nodes. This immediately results in the fact
that for all vj , j > i, |Uj| is at most three unless the semi-exclusive neighboring
set of a vertex on the path from vi to vj contains less than three independent
nodes. ��

488 A. Vahdatpour et al.

Fig. 5. Fork subgraph

Fig. 6. Five vertices in the branch location and their neighboring areas

Lemma 4. Assume a preorder traversal of the vertices in mcds(G). The fork
subgraph and dominated independent nodes with the following properties doesn’t
exist:(figure 5, the root for traversal is assumed to be in T1)

– vb is the vertex where paths from vi to vj and vk get separated.
– |Ui| = |Uj | = |Uk| = 4, |Ub| = 2
– For every vertex vh on the path from vb to vi, vj or vk, |Uh| = 3

Proof. Figure 6 depicts vb and its immediate neighbors in mcds(G). Without
loss of generality, assume v̂dvbve = v̂dvbva = v̂avbve = 120◦ (we have shown in
the appendix why this assumption does not cause loss of generality.) Three cases
are possible for two independent nodes in Ub:

First, assume |Ub ∩Ne| = 2 and |Ub ∩Nd| = 0. As an immediate consequence,
the vertices in the path followed by vertex ve has the specification of the vertices
in lemma 3 and for every vh on the path followed from vb, the semi-exclusive
neighboring set Uh contain at most three independent nodes while for all vs on
the path between ve and vh, |Us| = 3. This completes the proof of the lemma,
assuming the first case.

Theoretical Bound and Practical Analysis of Connected Dominating Set 489

In the second case, assume |Ub ∩ Ne| = 2 and |Ub ∩ Nd| = 1. Since the path
followed by vertex ve has the same condition of the previous case, the lemma is
also true in this case.

In the third case, assume |Ub ∩ Ne| = 1 and |Ub ∩ Nd| = 1. We will show
that the location of dark areas in figure 6 is such that either vd or ve has the
properties of the nodes in lemma 3 (the nodes in semi-exclusive set are limited
to a 180◦ sector), and consequently, the path continued from it cannot lead to
a Uk with four dominating independent nodes unless there is a vertex vh on the
path between vb and vk, where Uh contains less than three independent nodes.

As figure 6 depicts, since the total neighboring area is maximum, v̂evbvd =
120◦. Consequently, because of the following geometric properties, the distance
between the points in dark areas pql and msl is less than or equal to a unit.
Hence, only one of them can include an independent node. Since rm = mvb =
vbvd = vdr = 1, therefore rm ‖ mvb ‖ vbvd ‖ vdr. This follows that rm ‖ vdn
and since n̂vdr = 30◦, therefore, m̂rvd = 30◦. Hence, we can conclude that rm

is dividing s̃mvd to two equal sections and �sm = �mvd. Similarly �lm = �vdm =�pl = 30◦ and hence �pm = 60◦. This results in pm = vbp = vbm = 1.
To show that all point in two dark area are closer than a unit to each other, it

remains to prove that ps ≤ 1. According to the assumption, p̂vbvd = ŝvdvb = 90◦

and since pvb = vbvd = svd = 1, consequently, pvbvds is a square and ps = 1,
which completes the claim.

Note that c1 and c2 are two independent nodes in Ud and the c1vdc2 = 60◦.
vdr and vdt are achieved by connecting vd to c1 and c2 respectively. Sector smvdr
and similar sectors are obtained by drawing the unit arc [21] of independent
nodes in Ud.

By the same reasoning, two other pairs of dark areas have the same property,
leading to the fact that either Ue or Ud is limited to a 180◦ sector. This follows the
property of lemma 3 and as it was shown, the path continuing from such vertex
cannot lead to a Uk containing four independent nodes while all the Uh betweens
w and k has three independent nodes in their semi-exclusive neighboring areas
and this completes the proof for lemma 4. ��
Theorem 1. For any unit disk graph G, the size of a maximal independent
set is at most 3cds(G) + 3 where cds(G) is the size of a minimum connected
dominating set.

Proof. Let T be a subgraph induced by a minimum connected dominating set in
the given unit disk graph. Let |T | be the number of vertices in G. We will show
by induction on |T | that there exists at most 3|T |+ 3 independent nodes in the
neighboring area of T. According to lemmas 1 and 2, the claim is true for |T | = 1
and 2. Now, we assume that |T | ≥ 3. Consider the semi-exclusive neighboring
area of a leaf vertex vl in an arbitrary tree that spans all the vertices of T . By
removing vl from the MCDS tree and removing all the independent nodes in
its semi-exclusive area from graph G, by induction hypothesis, the neighbor-
ing area of T ′ = T − vl contains at most 3cds(T ′) + 3 independent vertices.
Next, we consider vl and its semi-exclusive neighboring area Ul. If Ul includes less

490 A. Vahdatpour et al.

Fig. 7. Graph G, with mis(G) = 3 · cds(G) + 2, Note that µ = 180◦ − ε, ε → 0

than three independent vertices, then the proof is complete. In the case that Ul

contains four independent nodes, consider a preorder traversal of T.
According to lemma 3 on the path between vl and the closest predecessor

vertex vj of T that Uj contains four independent nodes, there exists at least a
vertex vk, where Uk includes less than three independent nodes. Assume T ′′ =
T − {vk, vk+1, ..., vl}, according to induction hypothesis, the neighboring area
of T ′′ contains at most 3cds(T ′′) + 3. Now we consider the subtree P rooted
by vj which contains vm, m > j. The number of independent nodes lie in the
exclusive neighboring area of nodes in P is less than 3|P |. This is because node
e is the only vertex in P that its semi-exclusive neighboring set includes four
nodes (more than three nodes), which cannot make counter example since Uj

includes only two independent nodes (vj in P).
Furthermore, according to lemma 4 another branch cannot exist in the subtree

which would lead to a vertex vh containing more than three nodes in its semi-
exclusive neighboring area unless there is a vertex in the branch and on the path
to vh with less than three independent nodes in its semi-exclusive neighboring
area. Consequently, the neighboring area of T = T ′′+P consists less than 3|T |+3
independent nodes and this completes the proof of the theorem. ��

Corollary 1. For approximation algorithms in [19], [6] for the minimum con-
nected dominating set, the performance ratio can be reduced from 7.8 to 6.

4.1 Tightness

Theorem 2. The upper bound 3·cds(G)+C for the size of maximal independent
set in unit disk graph G, where cds(G) is the size of the minimum connected
dominating set and C is a constant, is tight.

Proof. To prove the theorem, we construct an extendable graph topology for
vertices in a MCDS and MIS subgraphs such that for each cds(G) = n, n ∈ N ,
we have:

mis(G) = 3 · cds(G) + C

Consider figure 7, where black vertices represent the nodes in the minimum
connected dominating set and gray nodes are the set of independent vertices in

Theoretical Bound and Practical Analysis of Connected Dominating Set 491

a maximal independent set. Most of the edges that are connecting gray vertices
are not showed for clarity of the figure, however, since the graph is a UDG, if
|uv| ≤ 1 there is an edge between u and v. Vertices in MCDS subgraph are all
on a straight line and ∀i, |vivi+1| = 1. As it is depicted in figure 7, the placement
of the independent vertices in the MIS subgraph is such that N(v1) includes
five independent nodes. For each vertex vi, i > 1, Ui includes three independent
nodes, which results in the factor of 3 for the relation between the size MIS
and the size of MCDS. Lets consider the relation of the semi-exclusive areas
Ui−1, Ui, and Ui+1. As shown in figure 7, assume the sector containing three
independent nodes in Ui−1 is α degree wide (The sector obtained by clockwise
rotation of vi−1ai−1,1 to vi−1ai−1,3). According to lemma 3, the sector in Ui

that can contain independent nodes is β degrees wide , where β is smaller than
α (β = α− 2δ). In addition, according to lemma 1, β should be larger than 120◦

to be capable of containing three independent nodes. To construct a graph that
meets the above relation with cds(G) = n, we define:

δ =
30

n− 1

̂ai,1viai,2 = ̂ai,2viai,3 = 90 − (i− 1)δ − ε

Therefore,

|ai,jai−1,k| > 1,

��
�

2 ≤ i ≤ n
1 ≤ j ≤ 3
1 ≤ k ≤ 3

which are the immediate results of lemmas 3 and 2. Hence, we place two nodes in
each semi-exclusive area on the edges of the mentioned sector and one on the line
connecting MCDS vertices. Consequently, the number of nodes in MIS subgraph
is 3(n − 1) + C, where C is the number of independent nodes in N(v1). Up to
five independent nodes can lie in this unit disk, and consequently mis(G) =
3 · cds(G) + 2 which completes the proof. ��

5 Experimental Analysis

In this section, a practical analysis of the relation between connected dominating
set and maximal independent set in wireless networks is presented. Since finding
MCDS is NP-Hard, finding the size of optimal CDS in reasonable amount of time
is not possible. Here, we will use the linear approximation algorithm introduced
by Guha et. al. [11], which finds a CDS in an arbitrary graph with maximum
cardinality of 2(1 + H(∆)).|OPTmcds|, where ∆ and H denote the maximum
degree and the harmonic function respectively. The algorithm for constructing
MIS is such that in each iteration a random node is selected to be a member of
MIS, which results in the elimination of its neighbors from the list of candidate
MIS members. This process is continued until all nodes in the graph are either
selected or eliminated from being a member of MIS.

492 A. Vahdatpour et al.

Fig. 8. cds(G) and mis(G) vs. the average degree in UDG (Left) and cds(G)
mis(G)

vs. size

of the graph (Right)

To run the experiments, 400 nodes were distributed randomly in a space of
size 100× 100. We controlled the random graph generation phase by setting the
average degree of the nodes in the graphs. It can be seen in figure 8 that as the
average degree of the graph is increasing, the connectivity of the nodes increases
resulting in significant decrease in the size of both mis(G) and cds(G). However,
both sizes maintain the same slope as the connectivity increases.

Figure 8 also compares cds(G)
mis(G) resulted from a general graph and one resulted

from a unit disk graph. While maintaining the size of the space fixed, the size of
the connected graph is increased from 10 to 1500 (resulting in a denser graph).
Here, a general graph is a graph that is structured by vertices with arbitrary
coverage radii. We observe that in the general graph the size of MIS is still
comparable to the size of CDS. While the ratio is approximately constant in
the UDG, the size of MIS and CDS subgraphs of the general graph are getting
closer. Hence, the probability that the ratio does not meet the theoretical bound
of UDG is higher in the denser graph. However, since in both cases cds(G)

mis(G) ≥ 1,
it can practically be assumed that the theoretical bound for unit disk graph is
still practically applicable for wireless networks.

6 Conclusion

Applying protocols and techniques based on minimum connected dominating set
plays an important role in improving the performance and energy consumption
of wireless sensor and ad-hoc networks. A common approach to distributively ap-
proximate MCDS is to construct maximal independent set and then convert it to
a connected tree. In this paper, we decreased the known bound between the size of
maximal independent set and the size of minimum connected dominating set. We
proved that mis(G) ≤ 3 · cds(G) + 3, where mis(G) and cds(G) denote the num-
ber of nodes in MIS and MCDS subgraphs respectively. Also, by proving that this
bound is tight, we show that it cannot improved anymore. The new relation results
in the new approximation ratio of 6 for distributed algorithm proposed by [6], [19].
In addition, we analyzed the behavior of general wireless networks in terms of size

Theoretical Bound and Practical Analysis of Connected Dominating Set 493

of MIS and MCDS subgraphs and concluded that the theoretical bound for unit
disk graph is still practically applicable for wireless networks.

References

1. Alzoubi, K.M., Wan, P.-J., Frieder, O.: Message-optimal connected dominating
sets in mobile ad hoc networks. In: MobiHoc 2002: Proceedings of the 3rd ACM
international symposium on Mobile ad hoc networking & computing, pp. 157–164.
ACM, New York (2002)

2. Clark, C.C.B., Johnson, D.: Unit disk graphs. Descrete Mathmatics 86, 165–177
(1990)

3. Das, R.S.B., Bharghavan, V.: Routing in ad-hoc networks using a virtual backbone.
In: ICCCN 1997, pp. 1–20 (1997)

4. Banik, S.M., Radhakrishnan, S.: Minimizing broadcast latency in ad hoc wire-
less networks. In: ACM-SE 45: Proceedings of the 45th annual southeast regional
conference, pp. 533–534. ACM, New York (2007)

5. Bevan Das, R.S., Bharghavan, V.: Routing in ad-hoc networks using a spine. In:
Internatioal Conference on Computers and Communaation Networks, pp. 376–380
(1997)

6. Cardei, M., Cheng, X., Cheng, X., Du., D.-Z.: Connected domination in multihop
ad hoc wireless networks. In: Proceedings of Sixth International Conference in
Computer Science and Informatics, CSI

7. Das, B., Bharghavan, V.: Routing in ad-hoc networks using minimum connected
dominating sets. In: ICC, pp. 376–380 (1997)

8. De Gaudenzi, T.G.F.L.M., Garde, R.: Ds-CDMA techniques for mobile and per-
sonal satellite communications: An overview. In: IEEE Second Symposium Conom-
munications and Vehicular Technology (1994)

9. Deb, B., Nath, B.: On the node-scheduling approach to topology control in ad hoc
networks. In: MobiHoc 2005: Proceedings of the 6th ACM international symposium
on Mobile ad hoc networking and computing, pp. 14–26. ACM, New York (2005)

10. Funke, S., Kesselman, A., Meyer, U., Segal, M.: A simple improved distributed
algorithm for minimum CDS in unit disk graphs. ACM Transaction on Sensor
Networks 2(3), 444–453 (2006)

11. Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets.
Algorithmica 20(4), 374–387 (1998)

12. Blum, A.T.J., Ding, M., Cheng, X.: Connected dominating set in sensor networs
and manets. In: Du, D.-Z., Pardalos, P. (eds.) Handbook of Combinatorial Opti-
mization, pp. 329–369. Kluwer Academic Publishers, Dordrecht (2004)

13. Marathe, M.V., Breu, H., Hunt III, H.B., Ravi, S.S., Rosenkrantz, D.J.: Simple
heuristics for unit disk graphs. Networks 25, 59–68 (1995)

14. Min, M., Du, H., Jia, X., Huang, C.X., Huang, S.C.-H., Wu, W.: Improving con-
struction for connected dominating set with steiner tree in wireless sensor networks.
J. of Global Optimization 35(1), 111–119 (2006)

15. Mnif, K., Rong, B., Kadoch, M.: Virtual backbone based on mcds for topology
control in wireless ad hoc networks. In: PE-WASUN 2005: Proceedings of the 2nd
ACM international workshop on Performance evaluation of wireless ad hoc, sensor,
and ubiquitous networks, pp. 230–233. ACM, New York (2005)

16. Ni, S.-Y., Tseng, Y.-C., Chen, Y.-S., Sheu, J.-P.: The broadcast storm problem
in a mobile ad hoc network. In: MobiCom 1999: Proceedings of the 5th annual
ACM/IEEE international conference on Mobile computing and networking, pp.
151–162. ACM, New York (1999)

494 A. Vahdatpour et al.

17. Shaikh, J.A., Solano, J., Stojmenovic, I., Wu, J.: New metrics for dominating
set based energy efficient activity scheduling in ad hoc networks. In: LCN 2003:
Proceedings of the 28th Annual IEEE International Conference on Local Com-
puter Networks, Washington, DC, USA, p. 726. IEEE Computer Society Press,
Los Alamitos (2003)

18. Stojmenovic, I., Seddigh, M., Zunic, J.: Dominating sets and neighbor elimination-
based broadcasting algorithms in wireless networks. IEEE Transactions on Parallel
and Distributed Systems 13(1), 14–25 (2002)

19. Wan, P., Alzoubi, K., Frieder, O.: Distributed construction of connected dominat-
ing set in wireless ad hoc networks (2002)

20. Wu, J., Li, H.: On calculating connected dominating set for efficient routing in
ad hoc wireless networks. In: DIALM 1999: Proceedings of the 3rd international
workshop on Discrete algorithms and methods for mobile computing and commu-
nications, pp. 7–14. ACM, New York (1999)

21. Wu, W., Du, H., Jia, X., Li, Y., Huang, S.C.-H.: Minimum connected dominating
sets and maximal independent sets in unit disk graphs. Theoretical Computer
Science 352(1), 1–7 (2006)

Appendix: Proof of Lemma 4 for a Branch Location with
Unknown Angles

In this appendix we provide a proof to show why lemma 4 is still correct in
general cases. To generalize the case, we consider rotating ve and vd in figure 6
for d1 and d2 degrees. Therefore, v̂avbve = 120 + d1

◦ and v̂avbvd = 120 + d2
◦

(See figure 9). d1 and d2 are positive if the rotation is clockwise and are negative
if the rotation is counterclockwise.

Fig. 9. The general case for the branch

Theoretical Bound and Practical Analysis of Connected Dominating Set 495

Note that in figure 9, diameters ol and ch are such that |ac| = |yo| = 1. Also,
f , g, m and n are location of independent nodes lying in exclusive neighboring
sets of ve and vd. Arcs �cvd, 	vdh, �lve and �veo are from the perimeters of unit
arcs containing vd and one of f , g, m or n, respectively. We first prove that the
distance between all the points in rlk and hij is less than a unit by showing
that |hr| = |lj| = 1. First, note that |ac| = |cvd| = |vdvb| = |vba| = 1 and
hence, acvdvb is a parallelogram. Consequently, âvbvd = v̂bvdh. Now by showing
that vbr and vba are on a straight line, we show that ra is a diameter and as
a result, vdh ‖ vbr (since vdh ‖ vba). Now, assume parallelograms vbvemr and
vbvenp. Since 	nm = 60◦ and m̂vevb + v̂bven = 300◦ (onve and lmve are two
unit arcs and
ol = 180◦, therefore 	mn = 60◦), hence �rvbp = r̂vbve + p̂vbve =
360◦− (m̂vevb + v̂bven) = 60◦. Considering that �rve and �vep are both 30◦ before
rotating ve, �rve = 30 − d1

◦ and �pve = 30 + d1
◦. In addition, according to the

fact that �wq = d◦1 (since it is the result of rotating vd), we can conclude that�ar = 180◦. Therefore, vdh is parallel to vbr, and since |vdh| = |vbr| = |vdvb| = 1,
vbvdrh is parallelogram, and hence |rh| = 1.

With similar reasoning (considering ilvevb and showing that it is a parallel-
ogram), we can see that |il| = 1 and hence distance between all the points in
regions krl and ijh are less than one. To show the same condition for other pairs
of dark areas, similar set of proof will apply, resulting in the fact that rotating
ve and vd around vb doesn’t have any effect on the generality of lemma 4.

Brief Announcement: On the Solvability of

Anonymous Partial Grids Exploration
by Mobile Robots

Roberto Baldoni1, François Bonnet2, Alessia Milani3, and Michel Raynal2

1 Università di Roma “La Sapienza”, Italy
2 IRISA, Université de Rennes, France

3 LADyR, GSyC, Universidad Rey Juan Carlos, Spain

Graph exploration by robots. The graph exploration problem consists in
making one or several mobile entities visit each vertex of a connected graph.
The mobile entities are sometimes called agents or robots (in the following we
use the word “robot”). The exploration is perpetual if the robots have to revisit
forever each vertex of the graph. Perpetual exploration is required when robots
have to move to gather continuously evolving information or to look for dynamic
resources (resources whose location changes with time). If nodes and edges have
unique labels, the exploration is relatively easy to achieve.

The graph exploration problem becomes more challenging when the graph is
anonymous (i.e., the vertices, the edges, or both have no label). In such a con-
text, several bounds have been stated. They concern the total duration needed
to complete a visit of the nodes, or the size of the robot memory necessary
to explore a graph (e.g., it has been shown that a robot needs O(D log d) bits
of local memory in order to explore any graph of diameter D and maximum
degree d). Impossibility results for one or more robots with bounded memory
(computationally speaking, a robot is then a finite state automaton) to explore
all graphs have also been stated. The major part of the results on graph ex-
ploration consider that the exploration is made by a single robot. Only very
recently, the exploration of a graph by several robots has received attention also
from a practical side. This is motivated by research for more efficient graph ex-
plorations, fault-tolerance, or the need to overcome impossibilities due to the
limited capabilities of a single robot.

The constrained exploration problem. Considering the case where the graph
is an anonymous partial grid (connected grid with missing vertices/edges), and
where the robots can move synchronously but cannot communicate with each
other, the paper considers the following instance of the graph exploration problem,
denoted the Constrained Perpetual Graph Exploration problem (CPGE). This
problem consists in designing an algorithm executed by each robot that (1) allows
as many robots as possible (let k be this maximal number), (2) to visit infinitely
often all the vertices of the grid, in such a way that no vertex hosts more than
one robot at a time, and each edge is traversed by at most one robot at a time.
These mutual exclusion constraints are intended to abstract the problem of colli-
sion that robots may incur when moving within a short distance from each other

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 496–497, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Brief Announcement: On the Solvability 497

or the necessity for the robots to access resources in mutual exclusion. The de-
signed algorithm has to avoid collisions despite the number of robots located on
the grid and their initial position. On the other hand, complete exploration may
not be ensured if robots are too much.

Results exposed in [2] rest on three parameters, denoted p, q and ρ. The first
parameter p is related to the size of the grid, namely, it is the number of vertices
of the partial connected grid. The second parameter q is related to the structure
of the partial grid. This parameter is defined from a mobility tree (a new notion
introduced in [1]) that can be associate with each partial grid. So, each pair (p, q)
represents a subset of all possible partial grids with p vertices. Finally, the third
parameter ρ is not related to the grid, but captures the power of the robots as far
as the subgrid they can currently see is concerned. More precisely, a robot sees
the part of the grid centered at its current position and covered by a radius ρ.
From an operational point of view, the radius notion allows the robots that are
at most ρ apart one from the other to synchronize their moves without violating
the vertex and edge mutual exclusion constraints.

Bounds on the number of robots. The technical reports [1,2] analyze the
solvability of the CPGE problem with respect to the number of robots k that
can be placed in a partial grid characterized by the pair p and q when considering
a given ρ for robots. They presents the following results.

– Case ρ = 0 [2]. In that case, the CPGE problem cannot be solved (i.e.,
we have k = 0) for any grid such that p > 1 (a grid with more than one
vertex). This means that, whatever the grid, if the robots cannot benefit
from some view of the grid, there is no algorithm run by robots that can
solve the CPGE problem.

– Case ρ = +∞ [1]. In that case, k ≤ p − q is a necessary and sufficient
requirement for solving the CPGE problem. Let us observe that ρ = +∞
means that the robots knows the structure of the grid and the current po-
sition of the robots on that grid. (The initial anonymity assumption of the
vertices and the robots can then easily be overcome.)

– Case ρ = 1 [2]. In that case, assuming a grid with more than one vertex,
k ≤ p− 1 when q = 0, and k ≤ p− q otherwise, are necessary and sufficient
requirements for solving the CPGE problem.

References

1. Baldoni, R., Bonnet, F., Milani, A., Raynal, M.: Anonymous Graph Exploration
without Collision by Mobile Robots. Tech Report #1886, 10 pages. IRISA, Univer-
sité de Rennes 1, France (2008), ftp.irisa.fr/techreports/2008/PI-1886.pdf

2. Baldoni, R., Bonnet, F., Milani, A., Raynal, M.: On the Solvability of Anonymous
Partial Grids Eploration by Mobile Robots. Tech Report #1892, 21 pages. IRISA,
Université de Rennes 1, France (2008),
ftp.irisa.fr/techreports/2008/PI-1892.pdf

ftp.irisa.fr/techreports/2008/PI-1886.pdf
ftp.irisa.fr/techreports/2008/PI-1892.pdf

The Dynamics of Probabilistic Population Protocols�

Brief Announcement

Ioannis Chatzigiannakis1 and Paul G. Spirakis1

Research Academic Computer Technology Institute (CTI), and Department of Computer
Engineering and Informatics (CEID), University of Patras, 26500, Patras, Greece

{ichatz,spirakis}@cti.gr

Abstract. Angluin et al. [1] introduced the notion of “Probabilistic Population
Protocols” (PPP) where extremely limited agents are represented as finite state
machines that interact in pairs under the control of an adversary scheduler. We
provide a very general model that allows to examine the continuous dynamics of
population protocols and we show that it includes the model of [1], under certain
conditions, with respect to the continuous dynamics of the two models.

1 Switching Probabilistic Protocols

The network is modeled as a complete graph G = (V,E) where n = |V |, the set
of vertices that represent nodes and E, the set of edges that represent communication
links between nodes. Each node executes an “agent” (or process) which consists of a
finite set of states K , with k = |K|. Let ni the number of agents that are on state
i ∈ {1, 2, . . . , k}, so n =

∑k
i=1 ni. The configuration of the population at time t is

described as a vector x(t) = (x1(t), . . . , xk(t)) where xi(t) = ni

n .
In the sequel we assume that n → ∞. We are interested, thus, in the evolution of x(t)

as time goes on. We imagine that all agents in the population are infinitely lived and that
they interact forever. Each agent sticks to some state in K for some time interval, and
now and then reviews her state. This depends on x(t) and may result to a change of state
of the agent. Based on this concept, a Switching Population Protocol (SPP) is specified
by the (i) time rate at which agents review their state and (ii) the switching probabilities
of a reviewing agent. The time rate depends on the current, “local”, performance of the
agent’s state and also on the configuration x(t). The switching probabilities defines the
probability that an agent, currently in state qi at a review time, will switch to state qj is
in general a function pij (x(t)), where pi (x) = (pi1 (x) , . . . , pik (x)) is the resulting
distribution over the set K of states in the protocol.

In a large, finite, population n, we assume that the review times of an agent are
the “birth times” of a Poisson process of rate λi (x). At each such time, the agent i
selects a new state according to pi (x). We assume that all such Poisson processes are
independent. Then, the aggregate of review times in the sub-population of agents in
state qi is itself a Poisson process of birth rate xiλi (x). As in the probabilistic model

� This work has been partially supported by the ICT Programme of the European Union under
contract number ICT-2008-215270 (FRONTS).

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 498–499, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Dynamics of Probabilistic Population Protocols 499

of [1] we assume that state switches are independent random variables accross agents.
Then, the rate of the (aggregate) Poisson process of switches from state qi to state qj in
the whole population is just xi(t)λi (x(t)) pij (x(t)).

When n → ∞, we can model the aggregate stochastic processes as deterministic
flows. The outflow from state qi is

∑
j 	=i xjλj (x) pij (x). Then, the rate of change of

xi(t) (i.e. dxi(t)
dt or ẋi(t)) is just

ẋi =
∑
j∈K

xjpji (x)λj (x) − λi (x)xi (1)

for i = 1, . . . , k. We assume here that both λi (x) and pij (x) are Lipschitz continuous
functions in an open domain Σ containing the simplex ∆ where ∆ = {(xi, . . . , xk) :∑K

i=1 xi = 1, xi ≥ 0, ∀i
}

. By the theorem of Picard - Linderlöf (see, e.g., [2] for a

proof), Eq. 1 has a unique solution for any initial state x(0) in ∆ and such a solution
trajectory x(t) is continuous and never leaves ∆.

Theorem 1. Assume that a set of differential equations represent the continuous time
dynamics of PPP as a limit of the discrete model. Then, the continuous time dynamics
of SPP include those of PPP as a special case.

A full version of this paper is available at http://arxiv.org/abs/0807.0140

References

1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks
of passively mobile finite-state sensors. In: 23rd Annual ACM Symposium on Principles of
Distributed Computing (PODC), pp. 290–299. ACM, New York (2004)

2. Hirsch, M., Smale, S.: Differential Equations, Dynamical Systems and Linear Algebra. Aca-
demic Press, London (1974)

A Distributed Algorithm for Computing and

Updating the Process Number of a Forest�

David Coudert, Florian Huc, and Dorian Mazauric

Mascotte, INRIA, I3S, CNRS UMR6070, University of Nice Sophia Antipolis
Sophia Antipolis, France

Treewidth and pathwidth have been introduced by Robertson and Seymour as
part of the graph minor project. Those parameters are very important since many
problems can be solved in polynomial time for graphs with bounded treewidth or
pathwidth. By definition, the treewidth of a tree is one, but its pathwidth might
be up to logn. A linear time centralized algorithms to compute the pathwidth
of a tree has been proposed in [1], but so far no dynamic algorithm exists.

The algorithmic counter part of the notion of pathwidth is the cops and robber
game or node graph searching problem [2]. It consists in finding an invisible and
fast fugitive in a graph using the smallest set of agents. A search strategy in
a graph G can be defined as a serie of the following actions: (i) put an agent
on a node, and (ii) remove an agent from a node if all its neighbors are either
cleared or occupied by an agent. The node is now cleared. The fugitive is caught
when all nodes are cleared. The minimum number of agents needed to clear the
graph is the node search number (ns), and gives the pathwidth (pw) [3]. More
precisely, it has been proved that ns(G) = pw(G) + 1 [4].

Other graph invariants closely related to the notion of pathwidth have been
proposed (see [5] for a recent survey) such as the process number (pn) [6] and the
edge search number (es), but so far it is not known if those parameters are strictly
equivalent to pathwidth. However, we know that pw(G) ≤ pn(G) ≤ pw(G)+1 [6]
and pw(G) ≤ es(G) ≤ pw(G) + 2 [2]. A process strategy can be defined similary
to a search strategy with the extra rule that the fugitive is forced to move at each
round. Therefore, a node is also cleared when all its neighbors are occupied by
an agent (the node is surrounded). For examples, pn(Kn) = n−1 = ns(Kn)−1,
where Kn is a n-clique, and pn(Ck) = ns(Ck) = 3, where Ck is a cycle of length
k ≥ 5. The process number is the minimum number of agents needed.

Here we propose a distributed algorithm to compute those parameters on trees
and to update them in a forest after the addition or deletion of any edge [7]. Only
initial conditions differ from one parameter to another. It is fully distributed,
can be executed in an asynchronous environment and needs the transmission of
only a small amount of information. It uses Theorem 1 which is also true for
other parameters [6] and enforces each parameter to grow by 1, thus implying
that for any tree ns(T), es(T), pw(T), and pn(T) are less than log3(n).

� This work has been supported by the European projects ist fet Aeolus and COST
293 Graal, ARC CARMA, ANR JC OSERA, CRC CORSO, and Région PACA.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 500–501, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Distributed Algorithm for Computing and Updating the Process Number 501

Theorem 1 ([8]). Let Gi, i = 1, 2, 3 be such that ns(Gi) = k > 1. The graph G
obtained by connecting each of the Gi’s to a new node v is such that ns(G) = k+1.

The principle of our algorithm, algoHD, is to perform a hierarchical decompo-
sition of the tree. Each node collects a compact view of the subtree rooted at
each of its soons, computes a compact view of the subtree it forms and sends it
to its father, thus constructing a the hierarchical decomposition. A similar idea
was used in [4] to design an algorithm computing the node search number in
linear time. However their algorithm is centralized and its distributed version
will transmit log logn times more bits than ours. So we obtained,

Lemma 1. Given a n nodes tree T , algoHD computes pn(T), ns(T) or es(T),
in n steps, overall O(n log n) operations, and n− 1 messages of log3 n + 2 bits.

We have extended our algorithm to a fully dynamic algorithm, IncHD, allowing
to add or remove any edge. Each update can be performed in O(D) steps, each
of time complexity O(log n), and using O(D) messages of log3 n + 3 bits, where
D is the diameter of the tree. We have also extended our algorithms to trees and
forests of unknown sizes by using messages of size 2L(t)+ 4 + ε, where ε = 1 for
IncHD, and L(t) ≤ pn(T) ≤ log3 n is the minimum number of bits required to
encode the local view of a subtree.

Finally, we have characterized the trees for which the process number (resp.
edge search number) equals the node search number and so the pathwidth.

Lemma 2. Given a tree T , pn(T) = pw(T) + 1 = p+ 1 (resp. pn(T) = es(T)+
1 = p+1) iff there is a node v such that any components of T−{v} has pathwidth
at most p and there is at least three components with process number (resp. edge
search number) p of which at most two have pathwidth p.

A challenging task is now to give such characterisations for more general classes
of graphs, as well as distributed and dynamic algorithms.

References

1. Skodinis, K.: Construction of linear tree-layouts which are optimal with respect to
vertex separation in linear time. Journal of Algorithms 47(1), 40–59 (2003)

2. Kirousis, M., Papadimitriou, C.: Searching and pebbling. Theoretical Computer
Science 47(2), 205–218 (1986)

3. Kinnersley, N.G.: The vertex separation number of a graph equals its pathwidth.
Information Processing Letters 42(6), 345–350 (1992)

4. Ellis, J., Sudborough, I., Turner, J.: The vertex separation and search number of a
graph. Information and Computation 113(1), 50–79 (1994)

5. Fomin, F.V., Thilikos, D.: An annotated bibliography on guaranteed graph search-
ing. Theoretical Computer Science, Special Issue on Graph Searching (to appear)

6. Coudert, D., Perennes, S., Pham, Q.C., Sereni, J.S.: Rerouting requests in wdm
networks. In: AlgoTel 2005, Presqu’̂ıle de Giens, France, pp. 17–20 (2005)

7. Coudert, D., Huc, F., Mazauric, D.: A distributed algorithm for computing and
updating the process number of a forest. Research Report 6560, INRIA (2008)

8. Parsons, T.D.: Pursuit-evasion in a graph. In: Theory and applications of graphs.
Lecture Notes in Mathematics, vol. 642, pp. 426–441. Springer, Berlin (1978)

BRIEF ANNOUNCMENT:
Corruption Resilient Fountain Codes�

Shlomi Dolev and Nir Tzachar

Department of Computer Science
Ben Gurion University of the Negev, Israel

A new aspect for erasure coding is considered, namely, the possibility that some por-
tion of the arriving packets are corrupted in an undetectable fashion. In practice, the
corrupted packets may be attributed to a portion of the communication paths that are
leading to the receiver and are controlled by an adversary. Alternatively, in case packets
are collected from several sources, the corruption may be attributed to a portion of the
sources that are malicious.

Corruption resistant fountain codes are presented; the codes resemble and extend the
LT and Raptor codes. To overcome the corrupted packets received, our codes use infor-
mation theoretics techniques, rather than cryptographic primitives such as homomor-
phic one-way-(hash) functions. Our schemes overcome adversaries by means of using
slightly more packets than the minimal number required for revealing the encoded mes-
sage, and using a majority over the possible decoded values. We also present a more
efficient randomized decoding scheme. Beyond the obvious use, as a rateless erasure
code, our code has several important applications in the realm of efficient distributed
robust data storage and maintenance.

Fountain codes such as the LT codes can be described by the following succinct encod-
ing algorithm: given a message of lengthn bits, divide the message into k input symbols,
s1, s2, . . . , sk, each of length m = n

k . To generate a packet, choose a random subset of
input symbols and XOR them. The packet is then composed of a bit field, denoting which
symbols were XORed and the result of the XOR, which results in a packet of length k+m.
The choice of the random set of symbols forms the critical part of the encoding algorithm,
defines the number of packets needed to correctly decode the input symbols and enables
linear time decoding using the Belief Propagation decoder (BP-decoder). Unfortunately,
the BP-decoder is very susceptible to attacks; an adversary may easily hamper the de-
coding process by corrupting a small fraction of the received packets.

A different approach to realize rateless codes that is resilient to corruption was re-
cently suggested in [1]. The approach is based on embedding vector subspaces to en-
code and decode messages. Unfortunately, the approach taken in [1] requires packets
to be of non-constant size. In particular, to recover from a corruption of a third of the
received vectors, packet lengths must be in Ω(n), where n is the length of the message,

� Partially supported by Deutsche Telekom, the ICT Programme of the European Union
under contract number FP7-215270 (FRONTS), Rita Altura Trust Chair in Computer
Sciences, and the Lynne and William Frankel Center for Computer Sciences. Emails:
{dolev,tzachar}@cs.bgu.ac.il. An extended version appears as TR#08-12 of the
Dept. of Computer Science, BGU.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 502–503, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

BRIEF ANNOUNCMENT: Corruption Resilient Fountain Codes 503

while our is the first to support shorter messages as well. We use the same encoding
scheme as in [2,3]. Our contribution lies in the decoding schemes. We present several
possible ways to decode a value, where the trade off between the number of packets
which need to be collected and the decoding time is investigated. We assume that the
adversary may corrupt a predetermined fraction of the received messages. For brevity,
we assume the number of corrupted packets is bounded by f , and limit the discussion
to decoding a given symbol, sl, where all symbols may be decoded in parallel, using
the same technique.

• Majority voting. To reconstruct a given message piece, sl, given that at most f faults
occurred, we need to collect 2f + 1 pairwise disjoint sets of packets, such that each set
can successfully decode a possible message (for example, by using the BP-decoder).
From each independent set, Sj , we can reconstruct an s′j as a candidate message piece.
It then follows that the majority of the s′j values is the correct message piece.
• Exhaustive search algorithm. By viewing the set of collected packets as an equa-
tion system and by collecting approximately 2f + k packets, the original symbols are
the only solution to the equation system satisfying at least f + k equations. However,
finding such a maximal solution – a solution which satisfies the maximal number of
equations – is NP-hard. Thus, we suggest to perform an exponential search, testing all
possible values for a given symbol and, for each solution, checking if the solution solves
at least k + f equations. Once the correct solutions is found, the decoding is complete.
Overall, the decoding time is exponential in k.
• Randomized decoding algorithm. We use randomization in order to reduce the de-
coding complexity, given that the adversary may corrupt at most f packets. Assume
that we have collected N packets, such that |N | = g(k) + k + f ≥ k + 2f where
g(x) ≥ f . Each subset of k + ε uncorrupted packets has a very high probability (where
ε << k) of containing a subset of k independent packets. Let this probability be pε. The
algorithm will work as follows: choose a random subset, S ⊂ N , such that |S| = k+ ε.
Check if there exists a subset S′ ⊂ S which contains exactly k independent packets.
If such an S′ exists, solve the associated equation system. If the obtained solution sat-
isfies more than k + f + ε equations out of N then, as before, we are done. Now, let
pk be the probability of choosing a subset of N with no corrupted packets. It follows
that the expected runtime of the algorithm (iteration-wise) is 1

pk·pε
. Setting ε = c log k,

we get that pε > 1 − 1/kc (see [3]). We can then bound pk by exp(−f k+ε
g(k)). Choosing

g(x) > f ·(k+ε)
log b , for a constant b, results in pk > 1/b. The expected runtime of the

decoding algorithm is then b. Such a choice of g(x) is only relevant when the adversary
can corrupt at most a fraction of 1

k of the collected packets and, furthermore, minimizes
the run time at the expense of having to collect many messages (g(x) ≈ kf).

References

1. Koetter, R., Kschischang, F.: Coding for Errors and Erasures in Random Network Coding,
http://aps.arxiv.org/pdf/cs.IT/0703061

2. Luby, M.: LT Codes. FOCS, 271–280 (2002)
3. Shokrollahi, A.: Raptor Codes. IEEE Trans. on Info. Theory 52, 2551–2567 (2006)

http://aps.arxiv.org/pdf/cs.IT/0703061

Brief Announcement: An Early-Stopping

Protocol for Computing Aggregate Functions in
Sensor Networks �

Antonio Fernández Anta1, Miguel A. Mosteiro1,2, and Christopher Thraves3

1 LADyR, GSyC, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
2 Department of Computer Science, Rutgers University, Piscataway, NJ 08854, USA

3 Universite Bordeaux I, LaBRI, domaine Universitaire, 33405 Talence, France

Introduction. Nodes in a Sensor Network can collaborate to process the sensed
data but, due to unreliability, a monitoring strategy can not rely on individual
sensors values. Instead, the network should use aggregated information from
groups of sensor nodes [2,3,7]. The topic of this work is the efficient computation
of aggregate functions in the highly constrained Sensor Network setting, where
node restrictions are modeled as in [4], the random node-deployment is modeled
as a geometric graph, and the resulting topology, node identifiers assignment
and the assignment of input-values to be aggregated is adversarial.

While algebraic aggregate functions are well defined, the implementation of
such computations in Sensor Networks has to deal with various issues that make
even the definition of the problem difficult. First, the input-values at each node
might change over time. Therefore, it is necessary to fix to which time step
correspond those input-values. Second, arbitrary node failures make the design
of protocols challenging. It has been shown [1] that the problem of computing
an aggregate function among all nodes in a network where some nodes join and
leave the network arbitrarily in time is intractable.

Results. The protocol proposed interleaves two algorithms, one following a tree-
based approach and one following a mass-distribution approach. The tree-based
algorithm will provide the correct result with low time and energy complex-
ity in a failure-free setting. If the presence of failures prevents the tree-based
computation from finishing, the mass-distribution algorithm will compute and
disseminate an approximation of the result. The time taken by this algorithm
is larger, but it is only incurred in presence of failures. Hence, the combined
algorithm is early stopping.

� A full version of this work is available at [5]. This research was supported in part by
Comunidad de Madrid grant S-0505/TIC/0285; Spanish MEC grant TIN2005-09198-
C02-01; EU Marie Curie European Reintegration Grant IRG 210021; NSF grants
CCF0621425, CCF 05414009, CCF 0632838; and French ANR Masse de Donnèes
project ALPAGE.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 504–506, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Computing Aggregate Functions in Sensor Networks 505

The efficiency is measured in two dimensions: time and number of transmis-
sions. These metrics are strongly influenced by collisions, especially because no
collision detection mechanisms are available in this setting. In order to reduce
collisions and energy consumption, a two-level hierarchy of nodes is used. The
actual computation is done by a small set of nodes, called delegate nodes, that
collect the sensed input-values from the non-computing nodes, called slug nodes.
This structure has several advantages. First, collisions are reduced since they
can only occur while the delegate nodes collect the sensed input-values from the
slug nodes. After that, delegate nodes are able to communicate in a collision-free
fashion. Second, energy is saved because the slug nodes can idle during the com-
putation. Third, the subnetwork of delegate nodes has constant degree, which
allows to easily build a constant-degree spanning tree. Finally, since the set of
delegate nodes is small, there is a smaller probability that the tree-based algo-
rithm will fail (since only failures of delegate nodes impact on it). Notice that,
in presence of failures, the two-level structure may have to be reconstructed;
fortunately, this can be done fast and locally.

The main contribution of this work is the presentation of a time-optimal
early-stopping protocol that computes the average function in Sensor Networks
under a harsh model of sensor restrictions 1. More precisely, it is shown that,
in a failure-free setting, with high probability, this protocol returns the exact
value and terminates in O(D + ∆) steps, which is also shown to be optimal,
and the overall number of transmissions is in O(n(log n + ∆/ logn + log∆)) in
expectation. On the other hand, in presence of failures, the protocol computes
the average of the input-values of a subset of nodes that depends on the failure
model. More precisely, it is shown that, after the last node fails and w.h.p., the
protocol takes an extra additive factor of O(log(n/ε)/Φ2) in time and an extra
additive factor of O(n log(1/ε)/Φ2) in the expected number of transmissions,
where ε > 0 is the maximum relative error, and Φ is the conductance [6] of the
network of delegates.

References

1. Bawa, M., Garcia-Molina, H., Gionis, A., Motwani, R.: Estimating aggregates on a
peer-to-peer network. Technical report, Stanford Univ., Database group (2003)

2. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms.
IEEE/ACM Transactions on Networking 14(SI), 2508–2530 (2006)

3. Chen, J.-Y., Pandurangan, G., Xu, D.: Robust computation of aggregates in wireless
sensor networks: distributed randomized algorithms and analysis. In: Proc. of the
4th Intl. Symp. on Information Processing in Sensor Networks, p. 46 (2005)

4. Farach-Colton, M., Fernandes, R.J., Mosteiro, M.A.: Bootstrapping a hop-optimal
network in the WSM. ACM Trans. on Algorithms (in press, 2008)

5. Fernández Anta, A., Mosteiro, M.A., Thraves, C.: An early-stopping protocol for
computing aggregate functions in sensor networks. Technical Report 3, LADyR,
GSyC, Universidad Rey Juan Carlos (May 2008)

1 Other aggregate functions can be computed using a protocol for average without
extra cost as described in [3,7].

506 A. Fernández Anta, M.A. Mosteiro, and C. Thraves

6. Jerrum, M., Sinclair, A.: Conductance and the rapid mixing property for markov
chains: the approximation of permanent resolved. In: Proc. of the 20th Ann. ACM
Symp. on Theory of Computing, pp. 235–244 (1988)

7. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate informa-
tion. In: Proc. of the 44th IEEE Ann. Symp. on Foundations of Computer Science,
pp. 482–491 (2003)

Easy Consensus Algorithms
for the Crash-Recovery Model

Felix C. Freiling, Christian Lambertz, and Mila Majster-Cederbaum

Department of Computer Science, University of Mannheim, Germany

Problem Setting. One of the most popular failure models for asynchronous fault-tolerant
distributed systems is called crash-stop, which allows that a certain number of processes
stops executing steps during the computation. Despite its theoretical interest, crash-stop
is not expressive enough to model many realistic scenarios. In practice, processes crash
but their processors reboot and the crashed process is restarted from a recovery point
and rejoins the computation. This behavior is formalized as a failure model called crash-
recovery, in which the processes can crash and recover multiple times.

Crash-recovery is a strict generalization of crash-stop and thus, any impossibility
result for crash-stop also holds in crash-recovery. However, algorithms designed for
crash-stop will not necessarily work in crash-recovery due to the additional behav-
ior. While in crash-stop processes are usually classified into two distinct classes (those
which eventually crash and those which do not), in crash-recovery we have four dis-
tinct classes of processes: (1) always up (processes that never crash), (2) eventually up
(processes that crash at least once but eventually recover and do not crash anymore), (3)
eventually down (processes that crash at least once and eventually do not recover any-
more), and (4) unstable (processes that crash and recover infinitely often). (1) and (2)
are called correct processes, and (3) and (4) incorrect. Since processes usually lose all
state information when they crash, the notion of stable storage was invented to model a
type of expensive persistent storage to access pre-crash data.

We choose the problem of consensus as benchmark problem to study the differences
between crash-stop and crash-recovery. Roughly speaking, consensus requires that pro-
cesses agree on a common value from a set of input values. Consensus is fundamental
to many fault-tolerant problems but has mainly been studied in crash-stop. We use the
failure detector abstraction (FD) to help solve consensus. A FD gives information about
the failures of processes. We look at two classes of FDs: the class of perfect FDs (P)
that tell exactly who has failed, and the class of eventually perfect FDs (♦P) that can
make finitely many mistakes about who has failed.

Contributions. Similarly to Aguilera, Chen and Toueg [1], we study consensus in the
crash-recovery model under varying assumptions. However, our approach is to re-use
existing algorithms from crash-stop in a modular way and to improve the comprehensi-
bility. One main task of our algorithms is to partly emulate a crash-stop system on top
of a crash-recovery system to be able to run a crash-stop consensus algorithm.

Table 1 summarizes the cases we study along three dimensions: (1) the availability
of stable storage (large columns), (2) a process state assumption (rows of the table),
and (3) the availability of FDs (sub-columns within large columns). Impossibility re-
sults are denoted by “×” and solvability by “”. Impossibility results with stronger

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 507–508, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

508 F.C. Freiling, C. Lambertz, and M. Majster-Cederbaum

Table 1. Overview of our results [2]. An arrow depicts a logical implication

assumptions ♦P P ♦P P

no stable storage stable storage

one correct

correct majority

one always up

correct majority
& one always up

more always up
than incorrect

always up majority

×

×

×
×
[1]

[1]

Sect. 4.3

×
×

Sect. 4.1

Theorem 1

×

Theorem 2
×

Lemma 1

[1]

Sect. 4.3

×
Lemma 2

Theorem 1

assumptions imply impossibility for cases with weaker ones, while solvability with
weak assumptions implies solutions with stronger ones (indicated by arrows). The sec-
tion and theorem numbers in the table refer to the relevant parts in the full version of
this work [2].

The case of ♦P and more always up than incorrect processes was proven to be the
weakest for consensus [1] and thus, all weaker process state assumptions are impossible.
We first focus on P and the unavailability of stable storage. We argue that at least one
always up process is necessary (Sect. 4.1) and sufficient (Theorem 1). Then we weaken
P to ♦P and present a modular algorithm for the always up majority of processes case
(Sect. 4.3). We then turn to the case where processes are allowed to use stable storage.
We first prove two impossibility results regarding the presence of correct processes.
The first one arises in the case where we have only ♦P and one always up process
(Lemma 1) and the second in the case where P is available and one correct process
is present (Lemma 2). We then give an algorithm for the remaining case (Theorem 2):
It uses ♦P , a majority of correct processes, and some minimal insight about the used
crash-stop consensus algorithm which needs to be saved on stable storage.

References

1. Aguilera, M.K., Chen, W., Toueg, S.: Failure detection and consensus in the crash recovery
model. Distributed Computing 13(2), 99–125 (2000)

2. Freiling, F.C., Lambertz, C., Majster-Cederbaum, M.: Easy Consensus Algorithms for the
Crash-Recovery Model. Tech. Report, TR-2008-002, Univ. of Mannheim (2008)

Evaluating the Quality of a Network Topology

through Random Walks

A.-M. Kermarrec, E. Le Merrer, B. Sericola, and G. Trédan

IRISA/INRIA - Campus de Beaulieu, 35042 Rennes, France

In this brief announcement we propose a distributed algorithm to assess the
connectivity quality of a network, be it physical or logical. In large complex
networks, some nodes may play a vital role due to their position (e.g. for routing
or network reliability). Assessing global properties of a graph, as importance
of nodes, usually involves lots of communications; doing so while keeping the
overhead low is an open challenge. To that end, centrality notions have been
introduced by researchers (see e.g. [Fre77]) to rank the nodes as a function
of their importance in the topology. Some of these techniques are based on
computing the ratio of shortest-paths that pass through any graph node. This
approach has a limitation as nodes “close” from the shortest-paths do not get
a better score than any other arbitrary ones. To avoid this drawback, physician
Newman proposed a centralized measure of betweenness centrality [New03] based
on random walks: counting for each node the number of visits of a random walk
travelling from a node i to a target node j, and then averaging this value by all
graph source/target pairs. Yet this approach relies on the full knowledge of the
graph for each system node, as the random walk target node should be known by
advance; this is not an option in large-scale networks. We propose a distributed
solution1 that relies on a single random walk travelling in the graph; each node
only needs to be aware of its topological neighbors to forward the walk.

We consider a n node static and connected network, represented as an undi-
rected graph G = (V,E), with n vertices and m edges. Each node i ∈ V , main-
tains its topological neighbors in G, its degree is noted di.

Our approach relies on the local observation, at each node, of the variations
of return times of a random walk on the topology. Intuitively, the more regular
the visits on nodes, the more ”well knitted” the network, as the walk is not
periodically stuck in poorly connected parts of G. The algorithm we propose is
very simple: each graph node logs and computes the standard deviation of the
return times of a permanent unbiased random walk, running on the topology.
An unbiased random walk has a stationary distribution πi, for all i ∈ V , that is
1/n. A biased (or simple) random walk, puts mass on high degree nodes, as πi =
di/2m. We unbias the random walk by using the Metropolis-Hastings method
[SRD+06], in order to capture on nodes passage times that are only dependant
of the connectivity of the graph. Every node i in G joins the detection process
on the first passage of the walk, by creating an array Ξi that logs every return
time. A simple solution to capture irregularity of visits on nodes is to proceed

1 Detailed report can be found at [KMST08].

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 509–511, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

510 A.-M. Kermarrec et al.

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000

of

 n
od

es

values of σ

random
clusterised

(a) (b)

as follows: after the third return, a node i computes the standard deviation σi

of the return times recorded in Ξi (i.e. the time needed for the walk, starting at
i, to return to i).

Figure 1(a) presents σ values resulting on nodes after 5.105 walk steps, on (i)
an Erdös-Rényi random graph (two nodes are connected with proba. p = 2 lnn

n)
usually seen as an “healthy” graph, and (ii) on a barbell graph, consisting of two
distinct cliques connected by only a link, as a model of pathological topology.
n = 1000 in both cases. The thiner the spike, the more homogeneously the σ
values are distributed on the nodes, as a result of our algorithm. The clusterized
graph’s values are concentrated around 4 times the average value for the random
graph, indicating that visits of the walk on the nodes are far more irregular,
due to the topology characteristics. Figure 1(b) plots on a micro network, with
the standard deviation of random walk visits on every node (italic values), the
theoretical values [KMST08] (bold), and the three lowest conductance values for
this graph (over dashed lines). We observe that the importance of nodes in the
topology is effectively correlated to the inverse of their value order: smallest σ
values are effectively related to the smallest conductance values.

Distributed auto-detection of network connectivity issues could be set up, as
on following examples. Once σ values on nodes allow a ranking with respect to
their importance (small σ are most critical nodes), nodes may compare their σ
(e.g. periodical gossip communications), to deduce vital nodes, with respect to
the network topology. Another solution is for nodes to exchange passage times;
suppose nodes a and b, exchange their sets Ξa and Ξb. The ratio ra→b = σ(Ξa∪Ξb)

σ(Ξa)

can be exploited as a distributed cluster detector: if a and b are located in two
different clusters, then the standard deviation of the union of passage dates is
small, so that ra→b is low. On the other side, if nodes a and b are in the same
cluster, the walk is likely to hit both at very close periods, so that ra→b converges
to 1. a and b are thus both able to identify their respective relative position in
a fully decentralized way.

Algorithm time complexity is related to graph cover time, as each node needs
at least three visits to start an estimation process. Cover time upper bound for
biased random walk is known [Fei95]: 4

27n
3 + o(n3), for the degenerated lollipop

graph.

Evaluating the Quality of a Network Topology through Random Walks 511

References

[Fei95] Feige. A tight upper bound on the cover time for random walks on graphs.
RSA 6 (1995)

[Fre77] Freeman, L.C.: A set of measures of centrality based on betweenness. So-
ciometry 40(1), 35–41 (1977)

[KMST08] Kermarrec, A.-M., Le Merrer, E., Sericola, B., Trédan, G.: Rr-6534 inria -
evaluating topology quality through random walks (2008)

[New03] Newman, M.E.J.: A measure of betweenness centrality based on random
walks (September 2003)

[SRD+06] Stutzbach, D., Rejaie, R., Duffield, N., Sen, S., Willinger, W.: On unbiased
sampling for unstructured peer-to-peer networks. In: IMC 2006, pp. 27–40.
ACM, New York (2006)

Brief Announcement: Local-Spin Algorithms for

Abortable Mutual Exclusion and Related
Problems�

Robert Danek and Hyonho Lee

Department of Computer Science
University of Toronto

{rdanek,hlee}@cs.toronto.edu

Introduction. A mutual exclusion (ME) algorithm consists of a trying protocol
(TP) and exit protocol (EP) that surround a critical section (CS) and satisfy the
following properties: mutual exclusion: at most one process is allowed to use the
CS at a given time; lockout freedom: any process that enters the TP eventually
enters the CS; and bounded exit: a process can complete the EP in a bounded
number of its own steps. A First-Come-First-Served (FCFS) ME algorithm [1]
additionally requires processes to enter the CS in roughly the order in which they
start the TP. Once a process has started executing the TP of a ME algorithm,
it has committed itself to entering the CS, since the correctness of the algorithm
may depend on every process properly completing its TP and EP.

Abortable ME [2,3] is a variant of ME in which a process may change its mind
about entering the CS, e.g., because it has been waiting too long. A process can
withdraw its request by performing a bounded section of code, called an abort
protocol (AP).

We discuss novel algorithms for abortable ME and FCFS abortable ME. These
algorithms are local-spin, i.e., they access only local variables while waiting and
perform only a bounded number of remote memory references (RMRs) in the TP,
EP and AP. Using these algorithms, we obtain new local-spin algorithms for two
other additional problems: group mutual exclusion (GME) [4] and k-exclusion [5].

Summary of Results. All our algorithms use only atomic reads and writes. We
call these RW algorithms. Our main result is the first RW local-spin abortable
ME algorithm. It has O(logN) RMR complexity per operation and O(N logN)
(total) space complexity for N processes. It is a surprisingly simple modification
of the RW local-spin ME algorithm of Yang and Anderson [6]: we allow a process
waiting in an unbounded loop in the TP to abort by executing the EP.

We also have a transformation that converts any abortable ME algorithm with
O(T) RMR complexity and O(S) space complexity to an FCFS abortable ME
algorithm that has O(N +T) RMR complexity and O(S+N2) space complexity.
Given an abortable ME algorithm, we add code to the beginning of its TP: a
process p builds a “predecessor” set, which includes all processes that must enter

� Research supported in part by the National Sciences and Engineering Research
Council of Canada.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 512–513, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Brief Announcement: Local-Spin Algorithms 513

the CS before it. Process p then waits for its predecessors to finish the CS, during
which time it can abort. We also add code to the end of the EP and AP: p signals
to other processes that may have p in their predecessor set. This transformation
combined with the modified Yang and Anderson algorithm yields the first RW
local-spin FCFS abortable ME algorithm. It has O(N) RMR complexity and
O(N2) space complexity. This also uses only bounded registers, so it yields a
positive solution to an open problem mentioned by Jayanti [3].

Danek and Hadzilacos [7] presented a number of transformations using only
reads and writes that convert any FCFS abortable ME algorithm that has O(T)
RMR complexity and O(S) space complexity into a local-spin GME algorithm
that has O(N +T) RMR complexity and O(S +N2) space complexity. Together
with our FCFS abortable algorithm, this leads to the first RW local-spin GME
algorithm. It has O(N) RMR complexity and O(N2) space complexity.

Lastly, we convert any abortable ME algorithm that has O(T) RMR com-
plexity and O(S) space complexity to a k-exclusion algorithm that has O(k · T)
RMR complexity and O(k · S) space complexity, but is not fault-tolerant. The
transformation uses k instances of an abortable ME algorithm.

When a process enters the TP of the k-exclusion algorithm, it performs all k
instances of the abortable mutual exclusion algorithm concurrently (for example,
repeatedly performing one step of each in round-robin order) until it enters the CS
of one of the instances. When the process enters the CS of the jth abortable ME
algorithm, it finishes or aborts its execution of all other instances before entering
the CS of the k-exclusion algorithm. When the process finishes the CS of the k-
exclusion algorithm, it performs the EP of the jth abortable ME algorithm.

Applied to our abortable ME algorithm, this yields the first RW local-spin
k-exclusion algorithm. It has O(k · logN) RMR complexity.

Acknowledgments. We thank Faith Ellen and Vassos Hadzilacos for their nu-
merous helpful suggestions during the writing of this paper.

References

1. Lamport, L.: A new Solution of Dijkstra’s Concurrent Programming Problem. Com-
munications of the ACM 17(8), 453–455 (1974)

2. Scott, M.L.: Non-blocking Timeout in Scalable Queue-based Spin Locks. In: The
21st Annual Symposium on Principles of Distributed Computing (July 2002)

3. Jayanti, P.: Adaptive and Efficient Abortable Mutual Exclusion. In: Proceedings of
the 22nd Annual ACM Symposium on Principles of Distributed Computing (July
2003)

4. Joung, Y.J.: Asynchronous group mutual exclusion. Distributed Computing 13(4),
189–206 (2000)

5. Anderson, J.H., Moir, M.: Using local-spin k-exclusion algorithms to improve wait-
free object implementations. Distributed Computing 11(1), 1–20 (1997)

6. Yang, J.H., Anderson, J.H.: A Fast, Scalable Mutual Exclusion Algorithm. Dis-
tributed Computing 9(1), 51–60 (1995)

7. Danek, R., Hadzilacos, V.: Local-spin group mutual exclusion algorithms. In: Guer-
raoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 71–85. Springer, Heidelberg (2004)

Data Failures

Simona Orzan1 and Mohammad Torabi Dashti2

1 TU/e, The Netherlands
2 ETH Zurich, Switzerland

To improve the theoretical understanding of the byzantine model and enable a
modular design of algorithms, we propose to decompose the byzantine behaviour
into a data failure behaviour and a communication failure behaviour. We argue
that the two failure types are orthogonal and we point out how they generate
a range of several new interesting failure models, which are less difficult than
byzantine, but different than the already well understood crash model. Such
intermediate models are relevant and subject to recent studies, e.g. [2].

A formal algorithm model. Let V be a set of variable names. Every process
owns a local variable set D ∈ V ∗, an input buffer ib, modelled as a list of
messages v ←↩ i (value v sent by process i), and an output buffer ob, which is a
list of messages v ↪→ i (value v has to be sent to process i). A local algorithm is
a finite sequence of guarded actions: action ::= g ⇒ in(x, j) | g ⇒ out(v, i) | g ⇒
x := x′ | g ⇒ loop actblock,where actblock ::= action | action; actblock, and g
is a predicate on the variables in D. in(x, j) transforms the current local state
(D, ib+[v ←↩ i], ob) into (D[v/x, i/j], ib− [v ←↩ i], ob), out(v, i) transforms it into
(D, ib, ob + [v -→ i]) and x := x′ into (D[x/x′], ib, ob). We consider, w.l.o.g., all
variables of type Nat.. These specifications generate, sets of traces or possible
runs of the algorithms described. A distributed algorithm for N processes is
a tuple A : 〈A1 . . . AN 〉 with Ai algorithms written in the language above. A
problem is a tuple (x,y, Req), with x and y the input and output vectors, and
Req a list of consistent requirements on x,y expressed as LTL formulae.

Orthogonal failures. We define two types of deviations from the expected
behaviour: a data failure is inserting assignments (g ⇒ x := x′) actions in
an algorithm description; a communication failure is inserting or deleting one
or more g ⇒ in or g ⇒ out actions in an algorithm description. These two
aspects are mutually independent and their combination give rise to interesting
failure models, as discussed further. When both types of failures are considered
simultaneously, the full power of a byzantine model is reached:

Theorem 1 (byzantine decomposition). Any byzantine behaviour can be
simulated by a combination of data and communication failures.

A map of failure models. The crash failure is a communication failure where,
from one point on, all out actions are ignored; the general omission or crash-
recovery failure is a communication failure where some of the in and out actions
are ignored; the muteness failure, as in,e.g. [1] is a communication failure where,
from one point on, all in and out actions are ignored, except actions of the
form out(heartbeat,H) where H implements a failure detector. These are all

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 514–515, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Data Failures 515

concerned with communication failures, but do not consider any form of data
tempering. The new data failure dimmension generates the new models DF,
DCF, DCRF. An overview:

COMMUNICATION ↓ DATA→ no failure edit failure

no failure ideal sync DF

in/out permanently ignored crash DCF

some in/out ignored crash-recovery DCRF

some in/out ignored or/and added random-com BYZ

DF, the pure data failure model. In DF, processes are prone to data fail-
ures, but communication works flawlessly. This allows designing of detection
mechanisms to deal specifically with data corruption.

It is impossible to achieve consensus when processes follow their algorithm,
but may crash. We can show that this impossibility also holds in the complement
model, when all processes are crash-free but their data is succeptible to errors.
Theorem 2 (general impossibility). Let P = (x,y, Req) be a non-trivial
problem, i.e. at least one formula in Req depends on x and/or y. In the DF
model, there exist no terminating distributed algorithm A to solve problem P .
So, also in superseeding models, in particular the byzantine one, problems cannot
be solved without extra assumptions. Indeed, the classical solutions for multi-
party computation problems rely on the famous t < n/3 assumption and several
works on distributed consensus use byzantine failure detectors [1].

Data failure detection in DF. Algorithm design for communication failure
environments essentially relies on failure detectors to enforce some level of syn-
chrony. In DF, we are looking for similar mechanisms that could enforce some
level of data reliability. Options are,e.g., encryption, check-sums, verification
functions. A corruption pattern is a function CP : Ω → 2V mapping time t to
the set of variables that got corrupted until time t in all local memories. A pro-
cess verifier is a function PV : Proc × Ω → 2Proc, with PV (p, t) = {p1 . . . pk}
being a set of processes that own at least one corrupted variable until moment t.
The perfect verifier always returns to p the whole set of corrupted messages or
the whole set of corrupted processes, respectively. Using data failure detection,
the impossibility of Theorem 2 can be circumvented:
Theorem 3 (DC solvable with a verifier and protected variables). In
DF, two-party distributed consensus is solvable in the presence of a perfect mes-
sage verifier and a variable protection mechanism.

References

1. Doudou, A., Garbinato, B., Guerraoui, R.: Encapsulating failure detection: from
crash to byzantine failures. In: Blieberger, J., Strohmeier, A. (eds.) Ada-Europe
2002. LNCS, vol. 2361. Springer, Heidelberg (2002)

2. Widder, J., Gridling, G., Weiss, B., Blanquart, J.-P.: Synchronous consensus with
mortal byzantines. In: Proceedings DSN, pp. 102–112 (2007)

Reliable Broadcast Tolerating Byzantine Faults

in a Message-Bounded Radio Network

Marin Bertier, Anne-Marie Kermarrec, and Guang Tan

IRISA/INRIA-Rennes, France
{Marin.Bertier,Anne-Marie.Kermarrec,Guang.Tan}@irisa.fr

Abstract. We consider the problem of reliable broadcast tolerating
Byzantine faults in a message-bounded radio network. Following the
same model as in [4] and with a different assumption on the message
bounds of nodes, we investigate the possibility of reliable broadcast
given the communication range, message bounds of honest and dishonest
nodes, and the maximum number of dishonest nodes per neighborhood.

1 Introduction

In the considered scenario of sensor network broadcast, there is a base station
serving as message source. The task is to have the correct message delivered from
the base station to all nodes in the network via multi-hop radio communications,
despite some malicious nodes that can alter the message or cause collisions.
Assuming a non-collision setting, Koo [3] first studies this problem and shows
the maximum number of dishonest (bad) nodes per neighborhood, t, that can
be tolerated by a broadcast protocol. In subsequent work [1], Bhandari et al.
further prove that Koo’s bound is a critical threshold. In [4], Koo et al. remove
the non-collision assumption and show that the maximum t in a collision network
remains the same as in a non-collision setting. One of their key assumptions is
that a bad node can cause only a bounded number of collisions. This assumption
allows a simple treatment for a good node to avoid collisions: if a single bad node
can cause at most β collisions, then a good node can simulate a collision-free
transmission by repeatedly sending a message βt + 1 times.

We study a similar problem to that of [4], but with a different assumption on
the message bounds of nodes. We assume that each of the nodes – both good and
bad – has a bound on the total number of messages it can send, including correct,
incorrect, and disruptive messages. This tries to capture the fact that many
network devices are extremely constrained in energy, thus a message budget for
a node to perform a broadcast task is a reasonable assumption. Our aim is to
explore the relations between the three quantities: m, mf , and t, with respect to
the possibility of broadcast. Here m ∈ N is the message bound for a good node,
mf ∈ N is the message bound for a bad node, and t is the maximum number of
bad nodes in a single neighborhood. In particular, we consider the problem from
the following perspective: Given mf and t, how large m should be for reliable
broadcast to be possible? We show that reliable broadcast can be achieved in a

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 516–517, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Reliable Broadcast Tolerating Byzantine Faults 517

much more energy-efficient way than the naive scheme [4] in which every good
node needs to send the message at least tmf + 1 times.

We consider the network model described in [3]. Nodes are located on an in-
finite grid. All nodes have an integer transmission radius r. When no collision
occurs, a message broadcast by a node (x, y) is heard by all nodes within its
neighborhood, which is defined as the square of side length 2r centered at (x, y).
Any single neighborhood contains t < r(2r+1) bad nodes. A bad node can alter
the message and cause collisions. When two nodes i and j perform a local broad-
cast at the same time, their common neighbor nodes can receive an arbitrary
message (or no message at all). mf is assumed to be known in advance by all
nodes. The base station is always correct.

2 Our Results

Let m0 = � 2tmf+1
r(2r+1)−t�. Our first result is the following theorem.

Theorem 1. If m < m0, then reliable broadcast is impossible.

The second result is the following theorem.

Theorem 2. If m ≥ 2m0, then reliable broadcast is achievable.

We have designed a simple protocol to achieve reliable broadcast for m ≥ 2m0.
If nodes are allowed to have heterogeneous message bounds, then the average
message budget of nodes can be substantially reduced. The malicious behavior
under consideration is the replacement of good nodes with bad nodes by the
adversary, subject to the constraint of t and that the bad nodes still have the
same message bound mf .

Theorem 3. If Θ(r3) good nodes have message bound m′ = 2tmf +1
�(r(2r+1)−t)/2�(≤

2m0) and the other good nodes have m = m0, then there exists a protocol that
achieves reliable broadcast on some configuration of m′ and m.

We have constructed a message bound configuration and a simple protocol to
validate this. The result of Theorem 3 should be compared with the scheme
suggested in [4] which requires every good node to have m = 2tmf + 1 message
bound, which is 1

2 [r(2r + 1) − t] times our bound.

References

1. Bhandari, V., Vaidya, N.H.: On reliable broadcast in a radio network. In: Proc. of
ACM Symposium on Principles of Distributed Computing (PODC) (2005)

2. Bhandari, V., Vaidya, N.H.: Reliable broadcast in a wireless grid network with
probabilistic failures. Technical Report, CSL, UIUC (October 2005)

3. Koo, C.-Y.: Broadcast in radio networks tolerating byzantine adversarial behavior.
In: Proc. of ACM Symposium on Principles of Distributed Computing (PODC)
(2004)

4. Koo, C.-Y., Bhandari, V., Katz, J., Vaidya, N.H.: Reliable broadcast in radio net-
works: The bounded collision case. In: Proc. of ACM Symposium on Principles of
Distributed Computing (PODC) (2006)

Brief Announcement: Eventual Leader Election

in the Infinite Arrival Message-Passing System
Model

Sara Tucci-Piergiovanni and Roberto Baldoni

Sapienza Università di Roma, Italy

Emerging distributed systems have a dynamic structure that is self-defined at any
time by entities that autonomously decide to locally run the same distributed ap-
plication. As extreme, a distributed system might thus also cease its existence
when no entity is currently active while at some later moment new entities ar-
rive and connect to each other to form again the system. Therefore the set of en-
tities that over time might form the system is potentially infinite. This infinite
arrival model is the key distinguishing factor between dynamic systems and tra-
ditional distributed systems where, on the contrary, the set of system entities is
fixed since the deployment of application components is controlled and managed.
In this model not only the set of correct processes is not known in advance, but no
finite set containing the set of correct processes is known in advance. This actually
is a higher level of uncertainty to be mastered in dynamic systems. This makes the
study of possible implementations of failure detectors, as Ω, of paramount impor-
tance and at the same time makes the problem of realizing such failure detector far
from being trivial. The uncertainty posed by infinite arrival models brings to two
different issues (1) discovering the finite set of processes currently running and (2)
dealing with a possible infinite set of non-correct processes that may wake up at
any time, covering with their up times the whole computation.

By assuming only temporary partitions, each process can witness its presence
in the system by periodically sending a heartbeat and its identifier, to let other
up processes know it and consider it as part of the system. At first glance, it
may seem that discovering the finite set of processes currently running is the
hard part of the problem, herein solved by assumption, and that among this
set it is possible to eventually select a unique leader following well-known solu-
tions employed in the crash-failure model. However, in the crash-failure model
the objective is to assure that any correct process is eventually able to univo-
cally select one correct process among an initial set containing a finite number
of non-correct processes. By eventually suspecting as crashed those processes
whose heartbeats/messages stops to arrive, all the complexity lies in avoiding
to falsely suspect at least one correct process infinitely often. Solving this issue
means that eventually and permanently at least one correct process will be con-
sidered as alive. If more than one correct process is considered as alive, processes
can be totally and locally ordered at each process sorting their identifiers. By
establishing this total order it is possible to apply at each process a local de-
terministic rule that independently chooses the same process (e.g. the one with

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 518–519, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Brief Announcement: Eventual Leader Election 519

the lowest identifier) as leader. In contrast to this crash-failure model with a
finite set of processes, the infinite arrival model implies that heartbeats may ar-
rive from correct and non-correct processes over the entire computation. A list of
alive processes built by sorting process identifiers will continually include correct
processes and up but non-correct processes since for any identifier assigned to
a correct process, an infinite set of non-correct processes with a lower identifier
or higher identifier (e.g. processes running on nodes with a lower, respectively
higher, IP address) may arrive over the entire computation. Without a selection
of the only set of correct processes, any choice on the flat mixed set may lead to
elect a non-correct leader infinitely often, violating the specification of Ω.

The technical report [1] proposes an implementation of the failure detector in
a message passing system where infinitely many processes may arrive and depart
over time and where the number of processes which may be simultaneously up
is finite and cannot exceed a known bound C. The implementation is composed
by two different algorithms. The first algorithm implements a new lower-level
oracle called HB∗ which provides a list called alive of length C containing pro-
cesses deemed to be up in the system. The alive lists have to eventually and
permanently include correct processes in the first positions. The algorithm im-
plementing HB∗ sorts processes in alive by their age. The age is a sequence
number on heartbeats. A correct process can just getting older and older, i.e.
its age never stops increasing. A non-correct process will reach a finite age and
will turn down. By assuming unknown bounds on message losses and message
delay, there will exist a point of time after which no non-correct process can be
perceived as older than any correct process. Sorting by age is then a way to even-
tually have correct processes in the first positions of the alive lists. The oracle,
however, does not guarantee an eventual total order on correct processes. More-
over, in any run the set of correct processes may be lower than C, and since the
non-correct processes may continually arrive, the alive lists could always include
other C − b non-correct processes. The second algorithm eventually outputs a
unique correct leader in the system and uses the alive lists provided by HB∗.

Actually it uses these lists and employs a mechanism to identify a subset of
correct processes totally ordered. In this algorithm a known lower bound b on the
number of correct processes is used, to let the algorithm safely choose, among
the first b positions of alive lists, the set of leader candidates. Actually, the real
number of correct processes can be greater than b, and different processes may
have different processes in the first b positions. The algorithm will exchange alive
lists and manipulate them by selecting the subset of processes eventually and
permanently among the first b positions in all alive lists. A majority assump-
tion on the number of correct processes w.r.t. the total number of processes
concurrently running makes this selection possible.

Reference

1. Tucci Piergiovanni, S., Baldoni, R.: Eventual Leader Election in the Infinite Arrival
Message-passing System Model. MIDLAB Tech Report #10-08, Sapienza Universitá
di Roma (2008), http://www.dis.uniroma1.it/∼midlab/publications.php

http://www.dis.uniroma1.it/~midlab/publications.php

Author Index

Aguilera, Marcos K. 1
Aiyer, Amitanand S. 16
Alistarh, Dan 32
Alvisi, Lorenzo 16
Anshus, Otto J. 320

Baldoni, Roberto 496, 518
Bazzi, Rida A. 16
Bertier, Marin 516
Bonnet, François 496

Chalopin, Jérémie 47
Chatzigiannakis, Ioannis 498
Chernoy, Viacheslav 63
Clement, Allen 16
Coudert, David 500
Czygrinow, Andrzej 78

Dabiri, Foad 481
Danek, Robert 93, 512
Delporte-Gallet, Carole 109
Derbel, Bilel 121
Dimitrov, Stanko 137
Dinitz, Michael 152
Dolev, Danny 167
Dolev, Shlomi 502
Dutta, Partha 182

Elhaddad, Mahmoud 197
Elsässer, Robert 212

Fauconnier, Hugues 109
Fernández Anta, Antonio 504
Flocchini, Paola 227
Fraigniaud, Pierre 242
Freiling, Felix C. 507
Fusco, Emanuele G. 257

Gafni, Eli 1
G ↪asieniec, Leszek 212, 274
Georgiou, Chryssis 289
Gilbert, Seth 32
Godard, Emmanuel 47
Golab, Wojciech 93
Guerraoui, Rachid 32, 109, 182, 305

Ha, Phuong Hoai 320
Hańćkowiak, Michal 78
Henzinger, Thomas A. 305
Herlihy, Maurice 335, 350
Hoch, Ezra N. 167
Huc, Florian 500

Ilcinkas, David 227

Junqueira, Flavio P. 335

Kanj, Iyad A. 365
Kermarrec, Anne-Marie 509, 516
Konjevod, Goran 379
Kowalski, Dariusz R. 274
Krishnan, P. 137

Lambertz, Christian 507
Lamport, Leslie 1
Lee, Hyonho 512
Le Merrer, Erwan 509
Lenzen, Christoph 394
Levy, Ron R. 182
Lingas, Andrzej 274

Majster-Cederbaum, Mila 507
Mallows, Colin 137
Marzullo, Keith 335
Mazauric, Dorian 500
Melhem, Rami 197
Meloche, Jean 137
Métivier, Yves 47
Milani, Alessia 496
Mizrahi, Tal 408
Moazeni, Maryam 481
Moses, Yoram 408, 423
Mosteiro, Miguel A. 504

Nicolaou, Nicolas C. 289

Orzan, Simona 514

Pelc, Andrzej 242, 257
Penso, Lucia Draque 335
Perković, Ljubomir 365

522 Author Index

Raynal, Michel 423, 496
Richa, Andréa W. 379

Santoro, Nicola 227
Sarrafzadeh, Majid 481
Sauerwald, Thomas 212
Schiper, André 466
Sericola, Bruno 509
Shalom, Mordechai 63
Shavit, Nir 350
Shvartsman, Alexander A. 289
Singh, Vasu 305
Song, Yee Jiun 438
Spirakis, Paul G. 498
Sterling, Aaron D. 451

Tan, Guang 516
Thraves, Christopher 504
Tielmann, Andreas 109
Torabi Dashti, Mohammad 514
Travers, Corentin 32

Trédan, Gilles 509
Tsigas, Philippas 320
Tsuchiya, Tatsuhiro 466
Tucci-Piergiovanni, Sara 518
Tzachar, Nir 502
Tzafrir, Moran 350

Vahdatpour, Alireza 481
van Renesse, Robbert 438

Wahlen, Martin 274
Wattenhofer, Roger 394
Wawrzyniak, Wojciech 78

Xia, Donglin 379
Xia, Ge 365

Yajnik, Shalini 137

Zaks, Shmuel 63

	Title page
	Preface
	Organization
	Table of Contents
	The Mailbox Problem
	Introduction
	Problem Definition
	Algorithms
	The $sussus$ Protocol
	Non-blocking Algorithm with Large Flag Values
	Non-blocking Algorithm with Small Flag Values
	Wait-Free Algorithm with Small Flag Values

	Impossibility
	Bounded-Signaling Problems
	Related Work
	References

	Matrix Signatures: From MACs to Digital Signatures in Distributed Systems
	Introduction
	Related Work
	MACs and Digital Signatures
	Digital Signatures
	Message Authentication Codes
	Discussion

	Model
	Signatures Using MACs
	A Distributed Signature Implementation
	An Illustrative Example: Vector of MACs
	Matrix Signatures
	Protocol Description
	Correctness
	Discussion

	The $n \leq 3f$ Case
	A Stronger Model

	Unique Signatures
	A Unique Signature Implementation
	Complexity of Unique Signature Implementations

	References

	How to Solve Consensusin the Smallest Window of Synchrony
	Introduction
	Related Work
	Model
	The $ASAP$ Consensus Algorithm
	High-Level Overview
	Detailed Description

	Proof of Correctness
	Definitions and Properties
	Termination
	Agreement

	Conclusions and Future Work
	References

	Local Terminations and Distributed Computability in Anonymous Networks
	Introduction
	Definitions
	Examples of Tasks with Different Kinds of Terminations
	Digraphs and Coverings
	Characterization for Weak Local Termination
	A General Algorithm
	Tasks Computable with Weak Local Termination
	Tasks Computable with Local Termination
	References

	A Self-stabilizing Algorithm with Tight Bounds for Mutual Exclusion on a Ring
	Introduction
	Our Contribution
	Dijkstra’s Algorithm
	New Self-stabilizing Algorithm for Mutual Exclusion
	Algorithm $\cal A$
	Lower Bound
	Correctness
	Basic Properties
	Upper Bound Using a Potential Function
	Upper Bound Using Amortized Analysis

	Analysis of Dijkstra’s Algorithm
	Lower Bound
	Extended Properties of Dijkstra’s Algorithm
	Upper Bound Analysis

	Conclusion
	References

	Fast Distributed Approximations in Planar Graphs
	Introduction
	Model of Computations and Notation
	Related Work
	Results
	Organization

	Clustering Algorithm
	Approximating Algorithms
	Maximum-Weight Independent Set
	Maximum Matching
	Minimum Dominating Set

	Lower Bounds and Randomization
	Lower Bounds
	Randomized Algorithms

	References
	Appendix

	Closing the Complexity Gap between FCFS Mutual Exclusion and Mutual Exclusion
	Introduction
	Related Work
	FCFS Algorithm and High-Level Description
	$SpecialSet$ – A Set-Like Data Structure
	Non-adaptive Implementation
	Adaptive Implementation

	Ticket Dispenser
	Adaptive Implementation

	Correctness of FCFS ME Algorithm
	References

	The Weakest Failure Detector for Message Passing Set-Agreement
	Introduction
	Model and Definitions
	Processes and Failure Detectors
	Set-Agreement
	Failure Detector \wfs

	The Sufficient Part
	The Necessary Part
	Comparing \wfs and Anti-Ω
	Comparing \wfs and Σ
	Summary
	References

	Local Maps: New Insights into Mobile Agent Algorithms
	Introduction
	Definitions and Models
	Basic Techniques
	A Generic Simulation Scheme
	Generic Trade-Offs
	Efficient Distributed Initialization of Agents
	Fundamental Applications
	On Computing Any Labeling of a Graph
	On Computing with Small Memory Agents

	References

	r^{3}: Resilient Random Regular Graphs
	Introduction
	Construction
	r^{2} and r^{3} Graphs
	Characterizing Atomic Graphs

	Connectivity
	Tightness of Theorems 1 and 2
	Simulation Results

	Deletion
	Node Deletion and Natal Nodes
	Edge Removal

	Properties of Natal Nodes
	Simulation Results
	Expected Number of Natal Nodes

	Conclusion
	References
	Characterizing Atomic Graphs
	Discussion of Algorithms A and D

	Online, Dynamic, and Distributed Embeddings of Approximate Ultrametrics
	Introduction
	Definitions and Results
	Related Work

	Online Embedding
	2-Threshold
	4-Threshold

	Dynamic Embedding
	Conclusion and Open Questions
	References

	Constant-Space Localized Byzantine Consensus
	Introduction
	Model and Problem Definition
	Problem Definition

	$Byzantine$ Consensus
	Fully Connected $Byzantine$ Consensus
	Sparsely Connected $Byzantine$ Consensus
	Algorithm LocalByzCon
	Correctness Proof
	Complexity Analysis

	Constant-Space $Byzantine$ Consensus
	Locally Unique Identifiers
	Memory-Efficient Termination Detection
	Complexity Analysis

	Constructing 1-Lightweight Entwined Structures
	A Simple “Ring” Entwined Structure
	Connecting Rings Together
	General Entwined Structure Construction
	Analysis

	Conclusion and Future Work
	References

	Optimistic Erasure-Coded Distributed Storage
	Introduction
	Motivation
	Contributions
	Related Work

	Model and Definitions
	ORCAS-A
	Description
	Correctness
	Algorithm Complexity

	ORCAS-B
	Discussion and Future Work
	References

	On the Emulation of Finite-Buffered Output Queued Switches Using Combined Input-Output Queuing
	Introduction
	The OQ Emulation Problem
	Our Results
	Related Work

	Preliminaries
	OQ Algorithms
	CIOQ Policies
	Families of OQ Algorithms

	OQ Emulation of Non-preemptive Scheduling Algorithms
	The Speedup — Buffer Capacity Trade-Off
	The Critical Cells First CIOQ Policy

	OQ Emulation with Preemption Allowed
	The CCF-EAF Hybrid CIOQ Policy
	The CEH CIOQ Policy
	Performance of CEH

	Concluding Remarks
	References

	On Radio Broadcasting in Random Geometric Graphs
	Introduction
	Models and Motivation
	Related Work
	Our Results

	Broadcasting in $G_{\geq r_{\min}}$
	Broadcasting in $G_{\geq c}$
	Conclusion
	References

	On Radio Broadcasting in Random Geometric Graphs
	Introduction
	Models and Motativation
	Related Work
	Our Results

	Broadcasting in $G_{ \geq r_{\min}}$
	 Broadcasting in $G_{ \geq c}$
	Conclusion
	References

	Ping Pong in Dangerous Graphs: Optimal Black Hole Search with Pure Tokens
	Introduction
	The Framework
	The Quest and Its Difficulties
	Our Results

	Terminology and Definitions
	Black Hole Search in Rings
	Preliminaries
	The Algorithm
	Correctness and Complexity

	Black Hole Search in Arbitrary Graphs
	Preliminaries
	The Algorithm
	Correctness and Complexity

	References

	Deterministic Rendezvous in Trees with Little Memory
	Introduction
	The Model and Terminology
	Our Results
	Related Work

	Rendezvous with Logarithmic Memory
	Bounding Phase
	Searching Phase
	Proof of Theorem 1

	The Limited Power of Finite Agents
	Conclusion
	References

	Broadcasting in UDG Radio Networks with Missing and Inaccurate Information
	Introduction
	Terminology and Preliminaries
	Broadcasting in Sparse Networks
	Broadcasting in Dense Networks
	The Main Algorithms
	Lower Bound on Universal Broadcasting Time
	References

	Efficient Broadcasting in Known Geometric Radio Networks with Non-uniform Ranges
	Introduction
	Our Contribution

	New Results on Broadcasting in GRN with Non-uniform Ranges
	The Lower Bound
	The Upper Bounds

	Time Bounds on Energy Efficient Broadcasting in GRN
	The Lower Bounds
	The Upper Bound

	References

	On the Robustness of (Semi) Fast Quorum-Based Implementations of Atomic Shared Memory
	Introduction
	Model and Definitions
	Atomicity
	Fast, Semifast and Weak-Semifast Implementations
	Quorum-Based Algorithms

	Quorum Properties and Fast/Semifast Impossibility
	Weak-Semifast Implementations
	Quorum Views
	Algorithm SLIQ

	Simulation Results
	Conclusions
	References

	Permissiveness in Transactional Memories
	Introduction
	Framework
	Permissive Transactional Memories
	A Deterministic Permissive Transactional Memory
	A Randomized Permissive Transactional Memory
	Safety and Permissiveness of AVSTM
	Liveness of AVSTM

	Implementation and Experiments
	Concluding Remarks
	References

	The Synchronization Power of Coalesced Memory Accesses
	Introduction
	Models
	Consensus Number of the $Svword$ Model
	Consensus Number of the $Aiword$ Model
	Consensus Number of the $Asvword$ Model
	References

	Optimizing Threshold Protocols in Adversarial Structures
	Introduction
	SystemModel
	Replication with Cores and Survivor Sets
	Constructing Protocols
	Equivalence Classes of Adversarial Structures
	Conclusions
	References

	Hopscotch Hashing
	Introduction
	Background

	The Hopscotch Hashing Approach
	A Hopscotch Hashing Algorithm
	Analysis
	Performance Evaluation
	Concurrent Hash-Maps on Multicores
	Sequential Hash-Maps

	References

	Computing Lightweight Spanners Locally
	Introduction
	Preliminaries
	The Centralized Algorithm
	The Local Distributed Algorithm
	Conclusion
	References

	Dynamic Routing and Location Services in Metrics of Low Doubling Dimension
	Introduction
	Distributed Hash Tables and Mobile Node Location

	Our Contributions
	Related Work

	Preliminaries
	Virtual Graph
	General Idea

	Dynamic Protocols
	Search Trees
	Dynamic Maintenance of Search Trees

	Name-Independent Routing
	DHT
	A Locality Sensitive Pulbish for DHTs

	Scale-Control Procedure
	Future Work
	References

	Leveraging Linial’s Locality Limit
	Introduction
	Related Work
	Model and Notation
	Proofs of the Bounds
	MaxIS Graphs
	Conclusion
	References

	Continuous Consensus with Failures and Recoveries
	Introduction
	Model and Preliminary Definitions
	Continuous Consensus and Common Knowledge
	Lower Bounds for CC in Benign Failure Models
	A Continuous Consensus Protocol for the (m, t) Model
	Conclusions
	References
	Lower Bound Proof
	Upper Bound Proof

	No Double Discount: Condition-Based Simultaneity Yields Limited Gain
	Introduction
	Computation Model, Conditions and Problem Specification
	ComputationModel
	The Condition-Based Approach
	The Condition-Based Simultaneous (cb-s) Consensus Problem

	An Optimal Condition-Based Simultaneous Consensus Algorithm
	A Simple Condition-Based Simultaneous Consensus Algorithm
	An Optimal Algorithm for (Unconditional) Simultaneous Consensus
	An Optimal Condition-Based Simultaneous Consensus Algorithm

	Optimality: t + 1 − max(W, d) Is a Lower Bound
	Similarity Graphs and Common Knowledge
	Properties of Conditions
	Proving the Bounds

	Conclusion
	References

	Bosco: One-Step Byzantine Asynchronous Consensus
	Introduction
	The Byzantine Consensus Problem
	Lower Bounds
	Lower Bound for Strongly One-Step Byzantine Consensus
	Lower Bound for Weakly One-Step Byzantine Consensus

	Bosco
	Discussion
	Related Work
	Conclusion
	References

	A Limit to the Power of Multiple Nucleation in Self-assembly
	Introduction
	Overview
	Background

	Description of Tile Assembly Models
	The Winfree-Rothemund Tile Assembly Model
	Generalizations of the Winfree-Rothemund Tile Assembly Model

	Distributed Computing Results of Naor and Stockmeyer
	Proof of Main Result
	Conclusion
	References

	Using Bounded Model Checking to Verify Consensus Algorithms
	Introduction
	Consensus in the Heard-of Model
	Verification of Agreement
	Phase Level Analysis
	Model Checking of Single Phases

	Verification of Termination
	Validating Inv and U(v)
	Validating Inv
	Validating U(v) with Assumption 2

	Case Studies
	Conclusion
	References

	Theoretical Bound and Practical Analysis of Connected Dominating Set in Ad Hoc and Sensor Networks
	Introduction
	Applications of Connected Dominating Set in Sensor and Ad Hoc Networks
	Motivation, Observations and Related Work
	MainResults
	Tightness

	Experimental Analysis
	Conclusion
	References
	Appendix: Proof of Lemma 4 for a Branch Location with Unknown Angles

	Brief Announcement: On the Solvability of Anonymous Partial Grids Exploration by Mobile Robots
	References

	The Dynamics of Probabilistic Population Protocols Brief Announcement
	Switching Probabilistic Protocols
	References

	A Distributed Algorithm for Computing and Updating the Process Number of a Forest
	References

	BRIEF ANNOUNCMENT: Corruption Resilient Fountain Codes
	References

	Brief Announcement: An Early-Stopping Protocol for Computing Aggregate Functions in Sensor Networks
	References

	Easy Consensus Algorithms for the Crash-Recovery Model
	References

	Evaluating the Quality of a Network Topology through Random Walks
	References

	Brief Announcement: Local-Spin Algorithms for Abortable Mutual Exclusion and Related Problems
	References

	Data Failures
	References

	Reliable Broadcast Tolerating Byzantine Faults in a Message-Bounded Radio Network
	Introduction
	OurResults
	References

	Brief Announcement: Eventual Leader Election in the Infinite Arrival Message-Passing System Model
	Reference

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

