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Abstract. A truthful mechanism consists of an algorithm augmented with a suit-
able payment function which guarantees that “players” cannot improve their util-
ities by “cheating”. Mechanism design approaches are particularly appealing for
designing “protocols” that cannot be manipulated by rational players.

We present new constructions of so called mechanisms with verification intro-
duced by Nisan and Ronen [STOC 1999]. We first show how to obtain mecha-
nisms that, for single-parameter domains, are resistant to coalitions of colluding
agents even in the case in which compensation among members of the coali-
tion is allowed (i.e., n-truthful mechanisms). Based on this technique we derive
a class of exact truthful mechanisms with verification for arbitrary bounded do-
mains. This class of problems includes most of the problems studied in the al-
gorithmic mechanism design literature and for which exact solutions cannot be
obtained with truthful mechanisms without verification. This result improves over
all known previous constructions of exact mechanisms with verification.

1 Introduction

A large body of the literature studies ways to incorporate economic and game-theoretic
considerations in the design of algorithms and protocols. One of the most studied and
acknowledged paradigms is mechanism design (see, e.g., [1, 4, 7, 12, 13, 16]). Distrib-
uted computations over the Internet often involve self-interested parties (referred to as
selfish agents) which may manipulate the protocol by misreporting a fundamental piece
of information they hold (their own type). The protocol runs some algorithm which, be-
cause of the misreported information, is no longer guaranteed to return a “globally opti-
mal” solution (optimality is naturally expressed as a function of agents’ types) [13, 16].
Since agents can manipulate the algorithm by misreporting their types, one augments
the algorithms with carefully designed payment functions which make it disadvanta-
geous for an agent to do so. A mechanism consists of an algorithm (also termed social
choice function) and a payment rule which associates a payment to every agent. Each
agent derives a utility which depends on the solution computed by the algorithm, on
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the type of the agent, and on the payment that the agent receives from the mechanism
(the solution and the payment depend on the reported types). A mechanism is truthful if
truthtelling is a dominant strategy for all agents. That is, the utility of any agent is max-
imized when this agent reports her type truthfully, no matter which strategy the other
agents follow. An even stronger solution concept is that of c-truthful mechanism [9]
which requires that no coalition of up to c agents can increase the utility of its members
even when compensations (or side payments) among them occur.

The construction of a truthful mechanism is a challenging problem since the mecha-
nism must fix the “rules” in advance without knowing the types of the agents. The only
available information is that each agent’s type belongs to some domain which depends
on the problem and agents can only report types in that domain. Intuitively speaking,
constructing truthful mechanisms for richer domains is more difficult because there are
more ways in which an agent can cheat the mechanism.

In their seminal work on algorithmic game theory, Nisan and Ronen [13] suggested
a rather innovative paradigm called mechanisms with verification. They showed that
these mechanisms can overcome the main limitations of the “classical” approach which
cannot guarantee exact (or even approximate solutions) for some interesting problems.
Intuitively speaking, these mechanisms can optimize only certain global cost functions.
Suppose that each agent i has a type ti which, for every feasible solution x, specifies
a cost ti(x) associated to this solution. The only known general technique for design-
ing truthful mechanisms are the classical Vickrey-Clarke-Groves (VCG) mechanisms
[5, 10, 23]; these mechanisms optimize only utilitarian problems, that is, global cost
functions of the form ∑

i

αi · ti(x) (1)

where each αi is some nonnegative constant. Moreover, the celebrated Robert’s The-
orem [20] states that these are the only global cost functions that can be optimized,
i.e., for which there exists an exact truthful mechanism, when agents’ domains are un-
restricted. Furthermore, no positive result on the construction of “classical” c-truthful
mechanisms is known, even for simple domains.

This work presents new constructions of mechanisms with verification which guar-
antee c-truthful mechanisms for certain domains or exact solutions for a much more
general class of global cost functions. Before discussing these and prior results in de-
tail, we describe informally the main idea of mechanisms with verification:

Mechanisms with verification. Nisan and Ronen [13] introduced mechanisms with ver-
ification for a task scheduling problem in which each agent corresponds to a machine
of type ti. Tasks needs to be allocated to the machines, and each task allocation x re-
sults in a completion time ti(x) for a machine of type ti. The key observation, made by
Nisan and Ronen [13], is that machine i cannot release its tasks before ti(x) time steps.
Therefore, if agent i reports a type bi and a solution x is implemented, the mechanism
is able to detect that bi is not the true type of machine i if bi(x) < ti(x).

Mechanisms with verification are based on this idea and apply to the following gen-
eral framework (see Section 1.2 for a formal definition). For every feasible solution x,
an agent of type ti has a cost ti(x) associated to this solution. This cost is the time that
this agent must spend for implementing solution x (artificial delays can be introduced
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at no cost since an agent can use the idle time for other purposes).1 Agent i is caught
lying if her reported type bi and the computed solution x are such that bi(x) < ti(x).
Agents who are caught lying receive no payment.

In contrast, the classical approach in mechanism design is to provide always each
agent with a payment that depends only on the reported types. In order to distinguish
these mechanisms from mechanisms with verification, in the sequel we use the term
mechanisms without verification.

1.1 Our Contribution and Related Work

We study the existence of truthful (or even c-truthful) mechanisms with verification
that guarantee exact solutions for problems in which the objective is to minimize some
global cost function of interest. Intuitively speaking, our basic question is whether one
can augment an optimal algorithm with a suitable payment function in order to guaran-
tee that no agent (or even coalitions of colluding agents) can benefit from misreporting
their types (i.e., part of the input of the algorithm). We consider a rather general class of
objective functions in which the global cost of a solution depends on the various costs
that the agents associate to that solution; Naturally, the overall cost cannot decrease if
the cost of one agent increases (see Section 2 for a formal definition). The contribution
of this work is twofold:

– We provide a sufficient condition for which an algorithm can be turned into a c-
truthful mechanism with verification, for any c ≥ 1. This result applies to the class
of single-parameter bounded domains (see Section 3 for a formal definition).

– We then show how to obtain optimal truthful mechanisms with verification for the
much more general case of arbitrary bounded domains, i.e., the mechanism needs
only an upper bound on the agents’ costs (see Section 1.2). Despite the fact that
these domains are extremely rich, we provide exact truthful mechanisms with veri-
fication for every problem in which the global cost function is of the form

Cost(t1(x), . . . , tn(x)) (2)

where ti(x) is the cost that agent i associates to solution x and the above function
is naturally nondecreasing in its arguments.

The conditions for obtaining these mechanisms are stated in terms of algorithmic prop-
erties so that the design of the entire mechanism reduces to the design of an algorithm
that fulfills these conditions. All our mechanisms satisfy also the voluntary participa-
tion condition saying that truthful agents have always a nonnegative utility.

The result on single-parameter bounded domains is the first technique for obtain-
ing c-truthful mechanisms, for c > 1, without restricting to a particular class of global
cost functions and it might be of some independent interest. For instance, certain non-
utilitarian graph problems studied in [19] have single-parameter domains and thus are

1 Nisan and Ronen [13] considered the case in which an agent introducing an artificial delay to
her computations will pay this augmented cost. This is one of the differences between mecha-
nisms with verification we consider and those in [13]. See [18] for a discussion.
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the right candidate for studying exact n-truthful mechanisms based on our construc-
tions (namely Theorems 4 and 5). Interestingly enough, the only way to guarantee
c-truthfulness without verification, for c ≥ 2, is to run a (useless) mechanism which
returns always the same fixed solution [9, 21].

The result on arbitrary bounded domains improves significantly over the best known
constructions of mechanisms with verification. In particular, [22] shows exact mecha-
nisms for cost functions like (2) in the case of finite domains, i.e., there is a finite set
of possible types that each agent can report to the mechanism. Exact n-truthful mecha-
nisms with verification for a subclass of the cost functions in (2) are presented in [18]:
For instance, it cannot give exact mechanisms for global cost functions of the form
of the form maxi ti(x). These so called min-max problems received a lot of attention
in the algorithmic mechanism design literature [4, 8, 11, 12, 13]. These works prove
that there is no exact or even r-approximate mechanism without verification, for some
r > 1; results apply also to finite domains and to mechanisms without verification that
run in exponential time and/or use randomization [12].

We instead show exact mechanisms with verification for any global cost function of
the form (2) without assuming finite domains like in [22] (see Definition 2 and The-
orem 6). Indeed, we only need to consider an (arbitrarily large) upper bound on the
agents’ costs, which turns out to be reasonable in practice. These arbitrary bounded
domains are, in general, infinite because there are infinitely many types that an agent
can report. Since the “cycle-monotonicity” approach adopted in all recent constructions
[2, 3, 22] cannot deal with infinite domains, we use a totally different idea which is to
turn c-truthful mechanisms for single-parameter domains into truthful mechanisms for
arbitrary domains (see Section 4). The result of Theorem 6 is “tight” in the sense that
one cannot relax any of the assumptions without introducing additional conditions (see
Theorems 7 and 8). Finally, an explicit formula for the payments guarantees that the
entire mechanism runs in polynomial-time if the algorithm is polynomial-time and the
domain is finite (Corollary 1).

In this work we do not consider frugality issues, that is, how much the mechanism
pays the agents. The optimality of the payments is an important issue in general since
even truthful mechanisms must have large payments for rather simple problems [6].
Our positive results pose another interesting question that is to design computationally-
efficient algorithms satisfying the conditions required by our methods.

Roadmap. Preliminary definitions are given in Section 1.2. In Section 2 we introduce
the class of optimal algorithms leading to (c-)truthful mechanisms. Mechanisms for
single-parameter domains are given in Section 3, while those for arbitrary domains are
presented in Section 4. Due to lack of space some of the proofs are sketched or missing.
The interested reader may refer to the full version of the paper [17].

1.2 Preliminaries

We have a finite set O of feasible alternative solutions (or outcomes). Without loss of
generality, we assume that O = {1, . . . , a}, where a = |O|, and sometimes write x ≤ y
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to denote the fact that outcome x precedes outcome y in this fixed order. There are n
selfish agents, each of them having a so called type

ti : O → R
+

which associates a monetary cost to every feasible outcome. If an agent i receives a
payment equal to ri and an outcome x is selected, then her utility is equal to

ri − ti(x). (3)

Each type ti belongs to a so called domain Di which consists of all admissible types,
that is, a subset of all functions u : O → R. The type ti is private knowledge, that is, it is
known to agent i only. Everything else, including each domain Di, is public knowledge.
Hence, each agent i can misreport her type to any other element bi in the domain Di.
We sometimes call such bi the bid or reported type of agent i. We let D being the cross
product of all agents domains, that is, D contains all bid vectors b = (b1, . . . , bn) with
bi in Di. An algorithm A is a function

A : D → O

which maps all agents (reported) types b into a feasible outcome x = A(b).2 A mech-
anism is a pair (A, p), where A is an algorithm and p = (p1, . . . , pn) is a vector of
suitable payment functions, one for each agent, where each payment function

pi : D → R

associates some amount of money to agent i. We say that D is a bounded domain if
there exists � such that bi(x) belongs to the interval [0, �], for all outcomes x, for all bi

in Di, and for all agents i. Unless we make further assumptions on the domain D, we
have (algorithms over) arbitrary bounded domains. Throughout the paper we consider
only type vectors t in the domain D and we denote by ti the type corresponding to
agent i.

We say that an agent i is truthtelling if she reports her type, that is, the bid bi coin-
cides with her type ti. Given an algorithm A and bids b = (b1, . . . , bi, . . . , bn), we say
that agent i is caught lying by the verification if the following inequality holds:

ti(A(b)) > bi(A(b)).

A mechanism (A, p) is a mechanism with verification if, on input bids b, every agent
that is caught lying does not receive any payment, while every other agent i receives her
associated payment pi(b). Hence, the utility of an agent i whose type is ti is equal to

Utilityi(b) :=
{

pi(b) − ti(A(b)) if i is not caught lying,
0 − ti(A(b)) otherwise.

On the contrary, we say that (A, p) is a mechanism without verification if every agent
receives always her associated payment pi(b).

2 In the game theory literature A is often referred to as social choice function.
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For any two type vectors t and b, we say that a coalition C can misreport t to b if
the vector b is obtained by changing the type of some of the agents in C, i.e., ti = bi

for every agent i not in the coalition C. For any two type vectors t and b, we say that
verification does not catch t misreported to b if ti(A(b)) ≤ bi(A(b)) for every agent i.
Conversely, we say that verification catches t misreported to b if ti(A(b)) > bi(A(b))
for some agent i.

Mechanisms (with verification) which are resistant to coalitions of c ≥ 1 colluding
agents that can exchange side payments satisfy the following definition.

Definition 1 (c-truthfulness [9]). A mechanism (with verification) is c-truthful if, for
any coalition of size at most c and any bid of agents not in the coalition, the sum of the
utilities of the agents in the coalition is maximized when all agents in the coalition are
truthtelling.

Mechanisms (with verification) satisfying the definition above only for c = 1 are called
truthful mechanisms (with verification).

Since the above condition must hold for all possible bids of agents outside the coali-
tion under consideration, one can restrict the analysis to the case in which these agents
are actually truthtelling. Thus the following known fact holds:

Fact 1. A mechanism (with verification) is c-truthful if and only if, for any coalition C
of size at most c and for any two type vectors t and b such that C can misreport t to b,
the corresponding agents’ utilities satisfy

∑

i∈C

Utilityi(t) ≥
∑

i∈C

Utilityi(b). (4)

Throughout the paper we make use of the following standard notation. Given a type
vector v = (v1, . . . , vn), we let v−i being the vector of length n − 1 obtained by
removing vi from v, i.e., the vector (v1, . . . , vi−1, vi+1, . . . , vn). We also let (w,v−i)
be the vector (v1, . . . , vi−1, w, vi+1, . . . , vn), which is obtained by replacing the i-th
entry of v with w.

2 A Class of Optimal Algorithms

We focus on algorithms which minimize some global cost function of interest. Our ul-
timate goal is to derive a general technique to augment these algorithms with a suitable
payment function so that the resulting mechanism with verification is truthful or even
n-truthful (i.e., resistant to any coalition of colluding agents).

Towards this end, we consider algorithms that satisfy the following:

Definition 2 (exact algorithm with fixed tie breaking rule). Let Cost : O × D → R

be a function of the form

Cost(x, t) = Cost(t1(x), . . . , tn(x)),

which is monotone non-decreasing in each ti(x). We say that an algorithm A is an exact
algorithm if there exists O′ ⊆ O such that, for all type vectors t, it holds that

A(t) ∈ arg minx∈O′ {Cost(x, t)} .
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Further, we say that A uses a fixed tie breaking rule if, for any two type vectors t and
b, Cost(A(t), t) = Cost(A(b), t) implies that the outcomes A(t) and A(b) in the
outcome set O satisfy: A(t) ≤ A(b).3 We say that A is an exact algorithm with fixed
tie breaking rule if it is an exact algorithm and it uses a fixed tie breaking rule.

Note that the definition of exact algorithm requires only the algorithm being optimal
with respect to an arbitrarily fixed subset of solutions. Of course all positive results
apply to algorithms that are optimal with respect to all solutions, i.e., the case O′ =
O. Observe also that the class of exact algorithm with fixed tie breaking rules strictly
generalizes the class of algorithms that admit VCG-based truthful mechanisms (without
verification) [15] and that optimizes utilitarian cost functions, that is, functions of the
form (1).

3 Collusion-Resistant Mechanisms for Single-Parameter Agents

In this section we consider the case of single-parameter agents (see e.g. [9]). Here, each
outcome partitions the agents into two sets: those that are selected and those that are
not selected. The value ti(x) depends uniquely on the fact that i is selected in x or not
and it is completely specified by a parameter ti, which is a real number such that

ti(x) =
{

ti if i is selected in x,
0 if i is not selected in x.

(5)

Whether i is selected in x is publicly known, for every outcome x, and thus each agent
can only specify (and misreport) the parameter ti. We assume single-parameter bounded
domains, that is, each parameter ti belongs to the interval [0, �].

In the sequel we will provide sufficient conditions for the existence of c-truthful
mechanisms, for any given c ≤ n.

3.1 Sufficient Conditions for c-Truthfulness

We begin with a necessary condition. Observe that in order to have truthful mechanisms
for single-parameter agents (even when using verification [2]) the algorithm must select
agents “monotonically”:

Definition 3 (monotone). We say that algorithm A is monotone if the following holds.
Having fixed the bids of all agents but i, agent i is selected if bidding a cost less than
a threshold value b⊕i , and is not selected if bidding a cost more than a threshold value
b⊕i . In particular, for every b ∈ D and for every i, there exists a value b⊕i which
depends only on b−i and such that (i) i is selected in A(bi,b−i) for bi < b⊕i and (ii)
i is not selected in A(bi,b−i) for bi > b⊕i .

From Definition 3 we can easily obtain the following:

Fact 2. If algorithm A is monotone and i is selected in A(b), then bi ≤ b⊕i . Moreover,
if i is not selected in A(b) then bi ≥ b⊕i . Hence, for bounded domains the threshold
values of Definition 3 are in the interval [0, �].

3 Recall that we identify solutions with integers and thus fix an arbitrary order of them.
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From (5) we immediately get the following:

Fact 3. For single-parameter agents, it holds that verification does not catch t misre-
ported to b if and only if ti ≤ bi for all i that is selected in A(b).

We next give a rather technical sufficient condition for c-truthfulness on single-parameter
bounded domains. Below we show that, in the case of exact algorithms, this leads to a
simpler condition for n-truthfulness on these domains.

Definition 4 (c-resistant). We say that b is c-different from t if these two type vectors
differ for at most c agents’ types. A monotone algorithm A is c-resistant if, for every b
which is c-different from t and such that verification does not catch t misreported to b,
it holds that t⊕i ≤ b⊕i for all i that is not selected in A(b).

Theorem 4. Every c-resistant algorithm A admits a c-truthful mechanism with verifi-
cation for single-parameter bounded domains.

Proof. We define the payment functions as follows:

pi(b) :=
{

� − b⊕i if i is not selected in A(b)
� otherwise

(6)

where � := c · �.
Let us consider an arbitrary coalition C of size at most c and any two type vectors t

and b such that C can misreport t to b. Because of Fact 1, it suffices to prove (4). Either
verification does not catch t misreported to b or verification catches t misreported to
b. We consider the two cases separately.

If verification catches t misreported to b, then we have at least one agent j ∈ C
which does not receive any payment for b. Moreover, the payment received by every
other agent i in the coalition is at most �. Hence, we have

∑

i∈C

Utilityi(b) ≤ (c − 1)� = c� − �.

We next show that the utility of every truthtelling agent is at least � − �. Indeed, the
definition of pi() implies that Utilityi(t) is either � − t⊕i if i is not selected in A(t), or
� − ti if i is selected in A(t). Fact 2 says that t⊕i ≤ � and, if i is selected in A(t), then
ti ≤ t⊕i . Hence, Utilityi(t) ≥ � − �. From this and from our choice of �, we obtain

∑

i∈C

Utilityi(t) ≥ c(� − �) = c� − c� = c� − �.

The two inequalities above clearly imply (4).
If verification does not catch t misreported to b then we can show that for any i ∈ C

it holds
Utilityi(t) ≥ Utilityi(b),

which clearly implies (4). There are four possible cases:
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Case 1 (i is selected in A(t) and i is selected in A(b)). In this case nothing changes
for i. Indeed, by the definition of pi(), we have Utilityi(t) = �− ti = Utilityi(b).

Case 2 (i is not selected in A(t) and i is selected in A(b)). Fact 2 implies that t⊕i ≤ ti.
This and the definition of pi() imply Utilityi(t) = � − t⊕i ≥ � − ti = Utilityi(b).

Case 3 (i is not selected in A(t) and i is not selected in A(b)). Since A is c-resistant,
we have that t⊕i ≤ b⊕i . This and the definition of pi() imply Utilityi(t) = �−t⊕i ≥
� − b⊕i = Utilityi(b).

Case 4 (i is selected in A(t) and i is not selected in A(b)). Since i is selected in A(t),
Fact 2 implies ti ≤ t⊕i . Since i is not selected in A(b) and as A is c-resistant, we
have that t⊕i ≤ b⊕i , thus implying ti ≤ b⊕i . This and the definition of pi() imply
Utilityi(t) = � − ti ≥ � − b⊕i = Utilityi(b).

This concludes the proof. ��

We next “specialize” the above result for the class of exact algorithm with fixed tie
breaking rule and obtain a more easy-to-handle sufficient condition for obtaining n-
truthful mechanisms with verification.

Definition 5 (threshold-monotone). A monotone algorithm A is threshold-monotone
if, for every t and every b obtained by increasing one agent entry of t, the inequality
t⊕i ≤ b⊕i holds for all i, where t⊕i and b⊕i are the threshold values of Definition 3.

By showing that every threshold-monotone exact algorithm with fixed tie breaking rule
is n-resistant from Theorem 4 we obtain another sufficient condition for n-truthful
mechanisms. We believe this result might be useful in that the threshold-monotone con-
dition might be simpler to exhibit.

Theorem 5. Every threshold-monotone exact algorithm with fixed tie breaking rule ad-
mits an n-truthful mechanism with verification for single-parameter bounded domains.

4 Truthful Mechanisms for Arbitrary Bounded Domains

In this section we derive truthful mechanisms for any exact algorithm with fixed tie
breaking rule over arbitrary bounded domains. The main idea is to regard each agent as
a coalition of (virtual) single-parameter agents.

4.1 Arbitrary Domains as Coalitions of Single-Parameter Agents

We call every agent whose domain is an arbitrary bounded domain a multidimensional
agent. Since there are a alternative outcomes, and n multidimensional agents, we sim-
ply consider n coalitions C1, . . . , Cn, where each coalition Ci consists of a (virtual)
single-parameter agents that correspond to the multidimensional agent i. (These are
actually “known” coalitions which we use only for the purpose of defining the pay-
ments and analyzing the resulting mechanism.) This “new game” has N = n · |O|
single-parameter agents and a alternative outcomes. For each outcome x, we have a
unique single-parameter agent per coalition being selected: denoted by 1(i), . . . , |O|(i)
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the agents in coalition Ci, we have agent x(i) being selected in x, and every other agent
in Ci being not selected in x; this holds for all coalitions above. We choose the para-
meter of the (virtual) single-parameter agents in the coalition Ci so that the cost for an
agent x(i) selected is equal to the cost of the multidimensional agent i when outcome
x is selected. That is, for all i and all outcomes x, the parameter tx(i) of agent x(i) is
equal to ti(x).

Observe that any type bi in the domain of the multidimensional agent i can be seen
as a vector

bi := (bi
1, . . . , b

i
a),

with bi
x = bi(x) for every alternative outcome x. In particular, bi is the vector of the

parameters of the a agents in Ci, that is, bi
x is the parameter of agent x(i). Consider an

exact algorithm with fixed tie breaking rule B over the multidimensional agents, and
fix the bids b−i of all agents but i. Then the resulting single player function B(bi,b−i)
can be seen as another exact algorithm with fixed tie breaking rule A(bi) whose domain
(input) is restricted to the domains of the a = |O| single-parameter agents in Ci.

4.2 The Mechanism and Its Analysis

It turns out that every single player function B(bi,b−i) as above is a-resistant. Based
on this fact, we can apply the techniques developed for single-parameter agents and
define the following class of mechanisms:

Definition 6 (threshold-based mechanism). For any exact algorithm with fixed tie
breaking rule B we consider its single player function, depending on b−i, as A(bi) :=
B(bi,b−i). In this case, the single player function A has Ci as the set of virtual single-
parameter agents. We define payment functions qi(bi,b−i) :=

∑
j∈Ci

pj(bi) where
each pi() is the payment function of Theorem 4 when applied to A above and to the
single-parameter agents in Ci. The resulting mechanism with verification (B, q) is
called threshold-based mechanism.

In the sequel we prove that every threshold-based mechanism is truthful for multidi-
mensional agents. In order to prove this result, we first observe that the threshold-based
mechanism needs only be resistant to the “known” coalitions defined above (recall that
we have one virtual single-parameter agent per solution and thus coalitions are of size
at most |O|):

Lemma 1. If every single player function A of B is |O|-resistant with respect to its
virtual single-parameter agents, then the threshold-based mechanism is truthful for the
multidimensional agents.

PROOF SKETCH. We observe that the utility of a multidimensional agent i is the sum
of the utilities of all single-parameter agents in the coalition Ci. Therefore, if (B, q)
was not truthful, then the mechanism (A, p) would not be a-truthful, thus contradicting
Theorem 5. �

Theorem 6. Every exact algorithm with fixed tie breaking rule admits a truthful mech-
anism with verification over any arbitrary bounded domain.
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PROOF SKETCH. It is possible to show that every single player function A of B is
threshold-monotone. But then every single player function is a-resistant (see discussion
above Theorem 5). The theorem thus follows from Lemma 1. �

We next observe that one cannot extend the result of Theorem 6 by relaxing the defin-
ition of exact algorithm with fixed tie breaking rule. Indeed, the “non-decreasing cost
function”, the “fixed tie breaking rule” and the “optimality” assumptions are neces-
sary in order to guarantee the existence of exact truthful mechanisms with verification
without introducing other conditions. The optimality condition is necessary as we ob-
tain exact mechanisms. As for the other two assumptions we can prove the next two
theorems.

Theorem 7. For any cost function that is not monotone nondecreasing there exists a
bounded domain such that no algorithm that minimizes such a cost function admits a
truthful mechanism with verification.

We next remove the fixed tie breaking rule from our assumptions and show that there
exists an exact algorithm not admitting truthful mechanisms with verification.

Theorem 8. There exists a bounded domain and a monotone cost function such that
the following holds. There exists an exact algorithm (not using a fixed tie breaking rule)
which does not admit any truthful mechanism with verification.

We conclude this section by observing that the mechanisms presented here have a fur-
ther advantage of giving an explicit formula for the payments (see Equation 6 and Defin-
ition 6). In particular, this improves over the construction in [22] since it gives efficient
mechanisms for the case of arbitrary finite domains. The idea is to perform a binary
search to determine the threshold values of Definition 3. For threshold-based mecha-
nisms the running time is polynomial in the size of the input t, where each ti is a vector
of |O| values, one for each outcome. Such an “explicit” representation of the input is in
general necessary, as implied by communication complexity lower bounds for certain
instances of combinatorial auction [14] which fall into the class of finite domains.

Corollary 1. Every polynomial-time exact algorithm with fixed tie breaking rule over
an arbitrary finite domain admits a polynomial-time truthful mechanism with verifi-
cation. For finite single-parameter domains, every polynomial-time c-resistant exact
algorithm with fixed tie breaking rule admits a polynomial-time c-truthful mechanism
with verification.
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LNCS, vol. 3142, pp. 171–182. Springer, Heidelberg (2004)



Collusion-Resistant Mechanisms with Verification Yielding Optimal Solutions 719

3. Auletta, V., De Prisco, R., Penna, P., Persiano, G., Ventre, C.: New constructions of mecha-
nisms with verification. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 596–607. Springer, Heidelberg (2006)

4. Christodoulou, G., Koutsoupias, E., Vidali, A.: A lower bound for scheduling mechanisms.
In: Proc. of SODA, pp. 1163–1170 (2007)

5. Clarke, E.H.: Multipart Pricing of Public Goods. Public Choice, 17–33 (1971)
6. Elkind, E., Sahai, A., Steiglitz, K.: Frugality in path auctions. In: Proc. of SODA, pp. 701–

709 (2004)
7. Feigenbaum, J., Papadimitriou, C.H., Sami, R., Shenker, S.: A bgp-based mechanism for

lowest-cost routing. Distributed Computing 18(1), 61–72 (2005)
8. Gamzu, I.: Improved lower bounds for non-utilitarian truthfulness. In: Kaklamanis, C.,

Skutella, M. (eds.) WAOA 2007. LNCS, vol. 4927, pp. 15–26. Springer, Heidelberg (2008)
9. Goldberg, A.V., Hartline, J.D.: Collusion-resistant mechanisms for single-parameter agents.

In: Proc. of SODA, pp. 620–629 (2005)
10. Groves, T.: Incentive in Teams. Econometrica 41, 617–631 (1973)
11. Koutsoupias, E., Vidali, A.: A lower bound of 1 + φ for truthful scheduling mechanisms.
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