
An Optimal Incremental Algorithm for
Minimizing Lateness with Rejection

Samir Khuller1,� and Julián Mestre2,��

1 University of Maryland, College Park, MD 20742, USA
2 Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany

Abstract. This paper re-examines the classical problem of minimizing
maximum lateness which is defined as follows: given a collection of n
jobs with processing times and due dates, in what order should they
be processed on a single machine to minimize maximum lateness? The
lateness of a job is defined as its completion time minus its due date.
This problem can be solved easily by ordering the jobs in non-decreasing
due date order. We now consider the following question: which sub-
set of k jobs should we reject to reduce the maximum lateness by the
largest amount? While this problem can be solved optimally in poly-
nomial time, we show the following surprising result: there is a fixed
permutation of the jobs, such that for all k, if we reject the first k
jobs from this permutation, we derive an optimal solution for the prob-
lem in which we are allowed to reject k jobs. This allows for an in-
cremental solution in which we can keep incrementally rejecting jobs
if we need a solution with lower maximum lateness value. Moreover,
we also develop an optimal O(n log n) time algorithm to find this
permutation.

1 Introduction

Scheduling problems arise in many contexts in computer science and operations
research. Let us begin by defining the problem of scheduling jobs to minimize
maximum lateness. Given a set of jobs A, each having a processing time and a
due date, we want to schedule the jobs on a single machine. A job is considered to
be late if it finishes after its due date, in which case its lateness is the difference
between its finishing time and its due date; if a job finishes on time, its lateness
is 0. Our objective is to find a schedule on a single machine minimizing the
maximum lateness among all jobs.

More formally, let A = {1, . . . , n} be a set of jobs and let pi and di denote the
processing time and due date of job i. Without loss of generality, we can assume
that in an optimal solution the machine is never idle and that the schedule is
non-preemptive. Thus a schedule is specified with a permutation σ on n elements,

� Research supported by NSF grant CCF 0728839.
�� Research supported by an Alexander von Humboldt Fellowship.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 601–610, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

602 S. Khuller and J. Mestre

where σ(j) denotes position of job j ∈ A in our schedule. Then the lateness of
the ith job can be defined as

Li =
∑

j:σ(j)≤σ(i)

pj − di. (1)

Our objective is to find a permutation σ minimizing maxi Li. It is well-known
[6] that scheduling the jobs in non-decreasing due date order yields an optimal
solution.

For the problem of scheduling jobs to minimize maximum lateness with re-
jection, in addition to the n jobs, we are given a budget k. Our objective is to
identify a set of k jobs to reject, so as to minimize the maximum lateness of the
remaining jobs. An incremental solution for the problem is a list of the jobs such
that for any k, the first k jobs in the list form an optimal solution for minimiz-
ing lateness with k rejections. Our main contribution is to show that such a list
always exists and that it can be computed in O(n log n) time. Not only does the
incremental approach let us develop a faster algorithm, it also uncovers some
surprising structural properties of the underlying problem. Moreover, if all due
dates are identical then we need to order the jobs in non-increasing processing
time order, since this is an optimal rejection order, so the problem is at least as
hard as sorting.

Previous Work: Scheduling to minimize maximum lateness with rejection was
studied by Sengupta [11]. In fact, he considered a more general formulation where
each job j has a rejection penalty of ej , and there is a bound on the total penalty
of rejected jobs. In this case Sengupta shows that the problem is actually NP-
complete. However, he also gives a simple dynamic programming solution that
runs in time O(nk + n log n) when all ej = 1, and there is a budget k on the
number of jobs we can reject. This algorithm computes the optimal set of k jobs
to reject, to get the maximum possible reduction in the maximum lateness. Of
course, it may happen that the optimal set of k jobs to reject chosen by the
algorithm is not a subset of the optimal set of k + 1 jobs to reject chosen by the
algorithm.

Other scheduling problems with rejection have been considered as well, both
in the offline setting [3,7,10,1] and in the online setting [4,1]). To the best of
our knowledge, none of these works have considered incremental solutions for
scheduling with rejection.

Related Work on Incremental Algorithms: Perhaps the earliest example of
an incremental algorithm is Gonzalez’s algorithm for the K-center problem [5],
which yields a 2 approximation. Mettu and Plaxton [9] defined the online median
problem and showed that there is a way to choose centers incrementally, such
that selecting the first K centers, gives a constant factor approximation to the
K-median problem. Even though several constant factor approximations were
developed for the basic K-median problem, there is no mechanism to enforce
that the solution using K medians would be a subset of the solution using K ′

medians when K ′ > K. Mettu and Plaxton’s work then led to several subsequent
improvements and simpler proofs [8,2].

An Optimal Incremental Algorithm 603

For the problem of minimizing maximum lateness with rejection, we develop
an optimal solution for the rejection problem and moreover prove that the op-
timal solution can be computed incrementally. As a consequence it follows that
there is an optimal rejection set of i jobs, that is a subset of the an optimal
rejection set of (i+1) jobs. However, in choosing an optimal rejection set of size
i one has to be extremely careful, since there are many optimal solutions and
not all of them have the incremental property.

2 Alternative Problem Formulation and Notation

Before presenting the algorithms, it is convenient to modify the problem formu-
lation slightly. The fact that a job’s lateness (1) is allowed to be negative can
make the analysis cumbersome. A standard way [6] to avoid this issue is to add
a sufficiently large constant to the right hand side of (1) so that the lateness of
every job is always positive.

Mi =
∑

j:σ(j)≤σ(i)

pj +
(

max
h∈A

dh − di

)
. (2)

There is a natural interpretation of measure (2): After the machine finishes
processing job i, the job must be delivered ; only once the job is delivered we
considered the job to be completed. The delivery time of the ith job is given by
si = maxh∈A dh − di. Although our single machine can process only one job at a
time, any number of jobs can be delivered in parallel (see Figure 1.) The objective
is to minimize the makespan of the schedule, that is, the maximum completion
time over all jobs. The two formulations are equivalent since a schedule with
makespan maxh∈A dh + δ under (2) has lateness δ under (1), and vice versa.

Another way to deal with negative lateness is to minimize tardiness, which
is defined as Ti = max {0, Li}. Clearly, if we have an optimal algorithm for
minimizing lateness with rejection, we immediately get an algorithm for mini-
mizing tardiness with rejection: Once the lateness becomes negative we can stop
rejecting jobs for the tardiness objective.

Notation: When talking about a set A, we use A−j and A+ i to denote A\{j}
and A∪{i} respectively. We use p(A) as a shorthand for

∑
j∈A pj . When talking

about a sequence �, we use �(1) and �(|�|) to denote the first and last elements
of � respectively.

For simplicity, from now on we assume that the jobs are given in non-increasing
order of delivery time; that is, we assume that s1 ≥ s2 ≥ . . . ≥ sn. Thus, for
any set of jobs X ⊆ A, we can denote the completion time of job i ∈ X in an
optimal schedule for X with

MX
i = p

(
{j ∈ X | j ≤ i}

)
+ si.

And the makespan of X with

M(X) = max
i∈X

MX
i .

604 S. Khuller and J. Mestre

0 5 10 t

i pi si

1 1 11
2 4 6
3 5 3
4 2 2

Fig. 1. Dark rectangles denote processing times and light rectangles denote delivery
times. Why a greedy choice is not enough: The third job is a greedy choice, but the
only optimal solution when k = 2 is to reject the first and the second jobs.

3 An Incremental Solution

Our goal is to produce an optimal incremental solution for scheduling with re-
jections to minimize lateness. In other words, we want to construct a list of jobs
x1, x2, . . . , xn such that for any k, the set {x1, . . . , xk} is an optimal solution
for minimizing lateness with k rejections. Clearly, the only way to produce such
a solution is to repeatedly remove the job that decreases the lateness of the
remaining jobs the most, we call this a greedy choice.

Definition 1. A job i ∈ A is said to be a greedy choice for a set of jobs A if
M(A − i) ≤ M(A − j) for all j ∈ A.

Interestingly, repeatedly selecting a greedy choice may not lead to an optimal
incremental solution. Consider the example in Figure 1. The third job is a greedy
choice, but for k = 2 the unique optimal solution is to reject the first and the
second jobs. There is still hope, however, since the instance does allow an optimal
incremental solution, namely 〈2, 1, 3, 4〉. To get around this pitfall we need a
notion stronger than greedy choice.

Definition 2. Let A = {1, . . . , n} be a set of jobs. A job i ∈ A is said to be a
strongly greedy choice for A if i is a greedy choice for {j, . . . , n} for all j ≤ i.

Our algorithm, whose pseudo-code is given below, repeatedly identifies a strongly
greedy choice for A, adds it to the list, and removes it from A. It is worth noting
here that the existence of a strongly greedy choice is not obvious. Indeed, in the
next section we show that such a job always exists.

incremental(A)
1 � ← 〈 〉
2 while A
= ∅ do
3 i ← strongly greedy choice for A
4 insert i at the end of �
5 A ← A − i
6 return �

An Optimal Incremental Algorithm 605

4 Analysis

In this section we prove that incremental always finds an optimal incremental
solution for minimizing lateness with rejections. To that end we introduce two
lemmas, whose proofs make use of the following property.

Property 1. Let A = {1, . . . , n} and A′ = {2, . . . , n}. For any set X ⊆ A′ we
have M(A \ X) = max{p1 + s1, M(A′ \ X) + p1}.

Lemma 1 will establish that Line 3 in our algorithm is well defined, and Lemma 2
will show that the choice made there is the right one.

Lemma 1. Every set A of jobs admits a strongly greedy choice.

Proof. By induction on the size of A = {1, . . . , n}. The base case (n = 1) is
trivial. For the inductive step (n > 1), if 1 is a greedy choice then we are done
since 1 is trivially a strongly greedy choice, so let us assume otherwise.

Let A′ = {2, . . . , n}. By induction, there exists a strongly greedy choice i for
A′; thus, we only need to show that i is a greedy choice for A. Since i is a greedy
choice for A′, we have M(A′ − i) ≤ M(A′ − j) for any j > 1. By Property 1, it
follows that M(A − i) ≤ M(A − j) for any j > 1. Furthermore, since 1 is not
a greedy choice for A, we have M(A − 1) > M(A − j) for some j > 1; thus,
M(A − i) < M(A − 1) and we are done. �
Lemma 2. Let i be a strongly greedy choice for A. For any set S ⊆ A − i there
exists j ∈ S such that M(A \ (S − j + i)) ≤ M(A \ S).

Proof. By induction on the size of A and k = |S|. For the base case (k = 1)
we note that i is a greedy choice for A so the lemma holds. For the inductive
step (k > 1) let A = {1, . . . , n} and A′ = {2, . . . , n}. There are a few cases to
consider depending on whether 1 ∈ S or 1 = i.

First, consider the case 1 /∈ S and i
= 1. By Definition 2, i is a strongly greedy
choice for A′. By induction, there exists j ∈ S such that M(A′ \ (S − j + i)) ≤
M(A′ \ S). It follows, by Property 1, that M(A \ (S − j + i)) ≤ M(A \ S).

Second, consider the case 1 ∈ S and i
= 1. Let S′ = S − 1. Notice that
M(A\S) = M(A′ \S′). Again, i is a strongly greedy choice for A′. By inductive
hypothesis on A and S′ there is a job j ∈ S′ such that M(A′ \ (S′ − j + i)) ≤
M(A′ \ S′). Thus, it follows that M(A \ (S − j + i)) ≤ M(A \ S).

Third, consider the case i = 1. Let j be the smallest job in S. We will argue
that M(A \ (S − j + 1)) ≤ M(A \ S). Let t be the leftmost job attaining the
makespan of M(A − j). If t < j then M(A − j) = MA

t and M(A \ S) = MA
t ;

furthermore, since 1 is a greedy choice, we have M(A−1) ≤ M(A−j) = M(A\S).
Otherwise, if t > j, we have M(A − j) = MA

t − pj . Since M(A − 1) ≥ MA
t − p1,

this implies p1 ≥ pj. Clearly, the finishing time of all jobs other than j cannot
increase since p1 ≥ pj . We only need to show that the finishing time of j is at
most M(A \ S). Let X = {2, . . . , j − 1} be the set of jobs scheduled before j.

M
A\(S−j+1)
j = p(X) + pj + sj ≤ p(X) + p1 + sj−1 = M

A\S
j−1 ≤ M(A \ S).

We have exhausted all possible cases, so the lemma follows. �

606 S. Khuller and J. Mestre

Theorem 1. The procedure incremental outputs an optimal incremental so-
lution.

Proof. First we note that the algorithm actually outputs a solution since, by
Lemma 1, Line 3 is well defined. Let A = {1, . . . , n} be the input of incremen-

tal and 〈x1, . . . , xn〉 be its output. We prove that {x1, . . . , xk} is an optimal
solution with k rejections by induction on k and n. The base case, where k = 1
and n ∈ Z+, is trivial since x1 is a greedy choice for A.

For the inductive step, let S be an optimal solution with k rejections for A.
By Lemma 2, we can assume without loss of generality that x1 ∈ S. Therefore,
S − x1 is an optimal solution with k − 1 rejections for A − x1. We can think of
x2, . . . xn as the output of increment(A−x1). Thus, by induction, 〈x2, . . . , xk〉
is an optimal solution with k − 1 rejections for A − x1. It follows that x1, . . . , xk

is an optimal solution with k rejections for A. �

5 Implementation

So far we have focused on the correctness of incremental and have not dis-
cussed its running time. Although it is not difficult implement incremental

to run in O(n3) time, in this section we outline two variations of it that lead
to faster running times. The first algorithm is based on divide and conquer and
runs in O(n2) time. The second algorithm resembles insertion sort and runs in
O(n log n) time. The reason for including the description of the slower algorithm
is two-fold: First, its implementation details are more straightforward than the
faster algorithm; second, its quadratic running time is a worst-case bound and
it should perform better in practice.

In each case, to prove that the algorithms produce an optimal incremental
solution we argue that their output coincides with incremental. It should
be noted right away that incremental is underspecified, since there could be
many strongly greedy choices to select from in Line 3. However, every possible
execution produces a valid incremental solution. From now on, when we say “the
output of algorithm X is the same as incremental” we mean there exists an
execution of incremental whose output is the same as that of algorithm X.

5.1 Divide and Conquer

Consider the following divide and conquer algorithm. Let A = {1, . . . , n} be our
input instance. First, we find the smallest greedy choice for A, denote this job by
i. Second, we identify the smallest job j attaining the maximum lateness in A−i.
If j > i then i is a strongly greedy choice (this will be proven later) in which
case, i must come first followed by an incremental solution for A − i. Otherwise
j < i, in this case we make two recursive calls on {1, . . . , j} and {j + 1, . . . , n}.
To merge the solutions returned by the two calls, take the leading job from the
second solution, followed by the jobs from the first solution (in order), followed
by the remaining jobs from the second sequence (also in order). The pseudo-code
for this procedure is given below.

An Optimal Incremental Algorithm 607

divide-and-conquer(A = {1, . . . , n})
1 i ← min{p | p is a greedy choice of A}
2 j ← min{p | p has maximum lateness in A − i}
3 if j > i
4 � ← divide-and-conquer(A − i)
5 insert i to the front of �
6 else
7 � ← divide-and-conquer({j + 1, . . . , n})
8 �′ ← divide-and-conquer({1, . . . , j})
9 insert �′ after the first element of �

10 return �

Theorem 2. The procedure divide-and-conquer can be implemented to run
in O(n2) time and returns an optimal incremental solution for minimizing late-
ness with rejections.

Proof. Let T (n) be the running time of the algorithm on an instance with n jobs.
It can be shown that finding the leftmost greedy choice, splitting the instance
for the recursive calls, and the merging can be done in O(n) time. Therefore,
the running time obeys the recursion T (n) = T (n1) + T (n2) + O(n) for some
n1 + n2 = n. If we had control over how the instance is split we could choose
n1 = n2 = n

2 to get a running time of O(n log n). Of course, we do not have
control over this and in the worst case we have n1 = 1 and n2 = n − 1, which
yields a running time of T (n) = O(n2).

To prove the correctness of the algorithm, let us show by induction on n that
the output of divide-and-conquer is the same as incremental. The base
case (n = 1) is obvious. For the inductive step (n > 1), if j > i then we claim
that i is strongly greedy, in which case both algorithms place i first and then
process A − i, which by inductive hypothesis we can assume to be the same.
Let i∗ be the leftmost strongly greedy choice for A and assume, for the sake
of contradiction, that i < i∗. This means that there exists h < i such that for
A′ = {h, . . . n} we have M(A′ − i∗) < M(A′ − i). Note, however, that

M(A − i∗) = max
{
M(A \ A′), p(A \ A′) + M(A′ − i∗)

}

equals
M(A − i) = max

{
M(A \ A′), p(A \ A′) + M(A′ − i)

}
.

This mean that M(A \ A′) = M(A − i) contradicting the fact that j is the
leftmost job with maximum lateness in A − i.

Consider the case when j < i. Let i∗ be a strongly greedy choice for A.
Clearly the makespan of A − i∗ is attained by j and i∗ ≥ i > j. Now consider
what happens in the execution of incremental(A) after processing i∗. For all
h > j in A− i∗ we have MA−i∗

h ≤ MA−i∗

j . Since the finishing time of j in A− i∗

is larger than that of jobs h > j, the next job to be removed by incremental

must be less or equal than j. This is true until all jobs in {1, . . . , j} are removed:

608 S. Khuller and J. Mestre

Suppose the algorithm has removed so far the jobs X ⊂ {1, . . . , j} and let j′ be
the largest indexed job in {1, . . . , j} \ X , then

M
(A−i∗)\X
j′ = MA−i∗

j − p(X) − sj + sj′ ≥ MA−i∗

h − p(X) = M
(A−i∗)\X
h

This mean that after removing i∗, incremental removes all jobs in {1, . . . , j}
before removing any jobs from {j + 1, . . . , n} − i∗. By inductive hypothesis the
recursive calls in Lines 7 and 8 find the optimal orderings for {1, . . . , j} and
{j + 1, . . . , n} respectively, which are then combined accordingly in Line 9. �

5.2 Fast Incremental

In order to further improve the running time, we introduce an interesting prop-
erty about the structure of incremental solutions.

Lemma 3. Let A = {1, . . . , n} be a set of jobs and B = {j, . . . , n} be any suffix
of A. Then the order induced on B by the solution output by incremental(A)
and the order of the solution output by incremental(B) are the same.

Proof. As we already mentioned at the beginning of the section, the lemma state-
ment does not imply that every execution of incremental(A) and
incremental(B) will coincide; rather, we mean that for every execution of
the former, there is an execution of the latter in which the orderings coincide,
and vice versa.

By induction on n. Suppose that i is chosen by incremental(A) as a strongly
greedy choice for A. If i ∈ A\B then it does not affect incremental(B), and by
inductive hypothesis on A− i and B their output is the same. Otherwise, i must
also be a strongly greedy choice for B, so both algorithms agree on their first
decision and by inductive hypothesis on A − i and B − i the rest of the output
also coincides. Conversely, suppose i is chosen by incremental(B) as strongly
greedy choice for B. Let i∗ be the leftmost greedy choice of A. If i∗ ∈ A \ B, we
let incremental(A) use this job, by inductive hypothesis on A − i∗ and B the
rest of the output coincides. Otherwise, i∗ ∈ B for A, in which case we claim
that i is also a strongly greedy choice for A and by inductive hypothesis the
lemma follows. Consider any suffix A′ of A, by definition i∗ is a greedy choice
for A′, furthermore

M(A′ − i∗) = max {M(A′ \ B), p(A′ \ B) + M(B − i∗)} .

Similarly,

M(A′ − i) = max {M(A′ \ B), p(A′ \ B) + M(B − i)}

However, since i is a (strongly) greedy choice for B we have M(B − i) ≤ M(B −
i∗). Thus, it follows that i is a greedy choice for A′; that is, M(A′ − i) ≤
M(A′ − i∗). �

An Optimal Incremental Algorithm 609

It is worth noting that a similar statement about the prefixes of A is not true,
and it is ultimately the reason why we cannot modify divide-and-conquer

to run in O(n log n) time. Nevertheless, a scheme similar to insertion sort does
achieve this running time. The underlying idea is very simple: Process jobs from
right to left, maintaining an incremental solution for the jobs processed thus far.

fast-incremental(A = {1, . . . , n})
1 � ← 〈 〉
2 for i ← n down to 1 do
3 let j ∈ {1, . . . , |�| + 1} be the smallest index such that i

is a greedy choice for {i, �(j), . . . , �(|�|)}
4 insert i to the left of the jth position in �
5 return �

Theorem 3. The procedure fast-incremental can be implemented to run in
O(n log n) time and outputs an optimal incremental solution.

Proof. Let us first argue the correctness of fast-incremental and then discuss
the details behind its implementation. Consider the k + 1st iteration of fast-

incremental where we are trying to insert i = n − k into � and |�| = k, and
denote by �′ the ordering after i is inserted. Let us show by induction on k that �′

is an incremental solution for {i, . . . , n}. For the base case (k = 0) there is nothing
to show. For the inductive step (k > 0), by Lemma 3 it suffices to prove that i is
inserted in � to the left of the jth element (or at the end if j = k+1) where j is the
smallest index such that i is a strongly greedy choice for {i, �(j), . . . , �(k)}, which
happens if and only if i is a greedy choice for that set.

To argue the O(n log n) running time we show that Line 3 of the k + 1st
iteration can be carried out in O(log k) time. As a warm-up we first discuss
a slower O(k) time implementation. For the given sequence �, define μj to be
the makespan of {�(j), . . . , �(k)}, that is, μj = M({�(j), . . . , �(k)}) and μk+1 =
μk+2 = 0. The following easy-to-prove property is the basis for our implementa-
tion of Line 3.

Property 2. Job i is a greedy choice for the set {i, �(j), . . . , �(k)} if and only if
μj ≤ max{μj+1, si} + pi.

Thus, provided with the μ-values we can find the correct position where to insert
i in O(k) time. Although computing the μ-values from scratch could take as much
as O(k2) time, we can update the values from the previous iteration in just O(k)
time: If i is to be inserted to the left of the jth position in the sequence then we
set μ′

h = max{si, μh} + pi = μh + pi for 1 ≤ h < j, μ′
j = max{si, μj} + pi, and

μ′
h+1 = μh for j ≤ h ≤ k.
To improve upon this, we need to keep track of the differences of the μ-values

instead of the μ-values themselves. Let δj = μj −μj+1 for 1 ≤ j ≤ k, where μk+1
is taken to be 0. To find out where to insert i first we identify the smallest j′ such
that μj′ < si. Observe that j′ fulfills the condition of Property 2; thus, we only
need to check whether there exists j′′ < j′ for which the same condition holds.

610 S. Khuller and J. Mestre

For j′′ = j′ − 1 we can check directly. For j′′ ≤ j′ − 2, since μj′′+1 ≥ μj′−1 ≥ si,
the condition of Property 2 is the equivalent to μj′′ − μj′′+1 ≤ pi, in which case
j′′ is the smallest index such that δj′′ ≤ pi and j′′ ≤ j′ − 2, if there is any.

All these tests can be performed in O(log k) time if we maintain an augmented
balanced binary tree whose leaves are the values δ1, . . . , δk, where each internal
node keeps track of the sum of the δ-values, and the minimum δ-value in its
subtree. When inserting i to the left of the jth position, the effect of setting
μ′

h = μh + pi for all 1 ≤ h < j, μ′
j = max{si, μj+1} + pi, and μ′

h+1 = μ′
h for

all j ≤ h ≤ k can be easily achieved by inserting a new value δ′j = μ′
j − μ′

j+1
and setting δ′j−1 = μ′

j−1 − μ′
j . The remaining values are left unchanged since

δ′h = μ′
h − μ′

h+1 = μh + pi − μh − pi = δh for h ≤ j − 2 and δ′h = μ′
h − μ′

h+1 =
μh−1 − μh−2 = δh−1 for h > j . Thus, in each iteration, the tree can be updated
in O(log k) time as well. �

Acknowledgements. We would like to thank the anonymous referees for helpful
suggestions.

References

1. Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., Stougie, L.: Multi-
processor scheduling with rejection. SIAM J. Discrete Math. 13(1), 64–78 (2000)

2. Chrobak, M., Kenyon, C., Noga, J., Young, N.E.: Oblivious medians via online
bidding. In: Proceedings of the 13th Latin American Symposium on Theoretical
Informatics, pp. 311–322 (2006)

3. Engels, D.W., Karger, D.R., Kolliopoulos, S.G., Sengupta, S., Uma, R.N., Wein,
J.: Techniques for scheduling with rejection. J. Algorithms 49(1), 175–191 (2003)

4. Epstein, L., Noga, J., Woeginger, G.J.: On-line scheduling of unit time jobs with
rejection: minimizing the total completion time. Operations Research Letters 30(6),
415–420 (2002)

5. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theo-
retical Computer Science 38, 293–306 (1985)

6. Hall, L.A.: Approximation Algorithms for NP-Hard Problems, ch. 2. PWS Pub-
lishing Company (1997)

7. Hoogeveen, H., Skutella, M., Woeginger, G.J.: Preemptive scheduling with rejec-
tion. Mathematical Programming 94(2-3), 361–374 (2003)

8. Lin, G., Nagarajan, C., Rajaraman, R., Williamson, D.P.: A general approach for
incremental approximation and hierarchical clustering. In: Proceedings of the 17th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1147–1156 (2006)

9. Mettu, R.R., Plaxton, C.G.: The online median problem. SIAM Journal on Com-
puting 32(3), 816–832 (2003)

10. Seiden, S.S.: Preemptive multiprocessor scheduling with rejection. Theor. Comput.
Sci. 262(1), 437–458 (2001)

11. Sengupta, S.: Algorithms and approximation schemes for minimum late-
ness/tardiness scheduling with rejection. In: Proceedings of the 15th International
Workshop on Algorithms and Data Structures, pp. 79–90 (2003)

	An Optimal Incremental Algorithm for Minimizing Lateness with Rejection
	Introduction
	Alternative Problem Formulation and Notation
	An Incremental Solution
	Analysis
	Implementation
	Divide and Conquer
	Fast Incremental

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

