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Abstract. In the relay placement problem the input is a set of sensors and
a number r ≥ 1, the communication range of a relay. The objective is to
place a minimum number of relays so that between every pair of sensors
there is a path through sensors and/or relays such that the consecutive
vertices of the path are within distance r if both vertices are relays and
within distance 1 otherwise. We present a 3.11-approximation algorithm,
and show that the problem admits no PTAS, assuming P �= NP.

1 Introduction

A sensor network consists of a large number of low-cost autonomous devices,
called sensors. Communication between the sensors is performed by wireless
radio with very limited range, e.g., via the Bluetooth protocol. To make the
network connected, a number of additional devices, called relays, must be judi-
ciously placed within the sensor field. Relays are typically more advanced and
expensive than sensors. For instance, in addition to a Bluetooth chip, each relay
may be equipped with a WLAN transceiver, enabling communication between
distant relays. The problem we study in this paper is that of placing a minimum
number of relays to ensure the connectivity of a sensor network.

Two models of communication have been considered in the literature
[1,2,3,4,5,6,7,8]. In both models, a sensor and a relay can communicate if the
distance between them as at most 1, and two relays can communicate if the
distance between them is at most r, where r ≥ 1 is a given number. The mod-
els differ in whether direct communication between sensors is allowed. In the
one-tier model two sensors can communicate if the distance between them is at
most 1. In the two-tier model the sensors do not communicate at all, no matter
how close they are. In other words, in the two-tier model the sensors may only
link to relays, but not to other sensors.
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Formally, the input to the relay placement problem is a set of sensors, identi-
fied with their locations in the plane, and a number r ≥ 1, the communication
range of a relay (w.l.o.g. the communication range of a sensor is 1). The objective
in the one-tier relay placement is to place a minimum number of relays so that
between every pair of sensors there exists a path, through sensors and/or relays,
such that the consecutive vertices of the path are within distance r if both ver-
tices are relays, and within distance 1 otherwise. The objective in the two-tier
relay placement is to place a minimum number of relays so that between every
pair of sensors there exists a path through relays only such that the consecutive
vertices of the path are within distance r if both vertices are relays, and within
distance 1 if one of the vertices is a sensor and the other is a relay (going directly
from a sensor to a sensor is forbidden).

The current best approximation ratio of 7 for one-tier relay placement is due
to Lloyd and Xue [5]. For the two-tier version, Lloyd and Xue [5] suggested a
(5 + ε)-approximation algorithm for arbitrary r ≥ 1; Srinivas et al. [6] gave a
(4+ε)-approximation for the case r ≥ 2. In this paper, we present a polynomial-
time 3.11-approximation algorithm for the one-tier relay placement, and show
that it admits no PTAS unless P = NP (assuming that r is part of the input).
In the full version, we will present a PTAS for the two-tier version; the PTAS
works for arbitrary r ≥ 1.

2 Blobs, Clouds, Stabs, Hubs, and Forests

For two points x, y in the plane let |xy| be the Euclidean distance between
them. Let V be a given set of sensors (points in the plane). We form a unit disk
graph G = (V, E) and a disk graph F = (V, F ) where E = {{u, v} : |uv| ≤ 1},
F = {{u, v} : |uv| ≤ 2}; see Fig. 1.

We define a blob to be the union of the unit disks centered at the sensors that
belong to the same connected component of G. We use B to refer to a blob, and
B for the set of all blobs.

Analogously, we define a cloud C ∈ C as the union of the unit disks centered
at the sensors that belong to the connected component of the graph F. The
sensors in a blob can communicate with each other without relays, while the
ones in a cloud might not, even though their disks may overlap. Each cloud

C1

C2

Fig. 1. Dots are sensors in V , solid lines are edges in E and F , and dashed lines
are edges in F only. There are 5 blobs in B (one of them highlighted) and 2 clouds
C1, C2 ∈ C. Arrows are stabs, and small rectangles are hubs. The wide grey line is the
only edge in MStFN(C), which happens to be equal to MSFN(C) here.
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C ∈ C consists of one or more blobs B ∈ B; we use BC to denote the blobs that
form the cloud C.

We define a stab to be a relay with an infinite communication range (r = ∞),
and a hub as a relay without the ability to communicate with the other relays
(thus hubs can enable communication within one cloud, but are of no use in
communicating between clouds). As will be shown, a solution to stab or hub
placement can be used as a step towards a solution for relay placement.

If we are placing stabs, it is necessary and sufficient to have a stab in each
blob to ensure communication between all sensors (to avoid trivialities we assume
there is more than one blob). Thus, stab placement is equivalent to the set cover
problem: the universe is the blobs, and the subsets are sets of blobs that have a
point in common. In the example in Fig. 1 arrows show an optimal solution to
the stab placement problem; 3 stabs are enough.

If we are placing hubs, it is necessary (assuming more than one blob in the
cloud), but not sufficient, to have a hub in each blob to ensure communication
between sensors within one cloud. In fact, hub placement can be interpreted
as a special case of the connected set cover problem [9,10]. In the example in
Fig. 1 small rectangles show an optimal solution to the hub placement problem
for the cloud C = C1; in this particular case, 2 stabs within the cloud C were
sufficient to “pierce” each blob in BC , however, an additional hub is required to
“stitch” the blobs together. The next lemma shows that, in general, the number
of additional hubs needed is less than the number of stabs:

Lemma 1. Given a feasible solution S to stab placement on BC , we can obtain
in polynomial time a feasible solution to hub placement on BC with 2|S| − 1
hubs.

Proof. Let H be the graph, whose nodes are the sensors in the cloud C and the
stabs in S, and whose edges connect two devices if either they are within dis-
tance 1 from each other or if both devices are stabs (i.e., there is an edge between
every pair of the stabs). Switch off communication between the stabs, thus turn-
ing them into hubs. Suppose that this breaks H into k connected components.
There must be a stab in each connected component. Thus, |S| ≥ k.

If k > 1, by the definition of a cloud, there must exist a point where a unit
disk covers at least two sensors from two different connected components of H.
Placing a hub at the point decreases the number of the connected components
by at least 1. Thus, after putting at most k − 1 additional hubs, all connected
components will merge into one. ��

2.1 Steiner Forests and Spanning Forests with Neighbourhoods

Let P be a collection of planar sets; call them neighbourhoods. (In Section 3
the neighbourhoods will be “clusters” of clouds.) For a plane graph G, let
GP = (P, E(G)) be the graph whose vertices are the neighbourhoods and two
neighbourhoods P1, P2 ∈ P are adjacent whenever G has a vertex in P1, a vertex
in P2, and a path between the vertices.
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The Minimum Steiner Forest with Neighbourhoods on P, denoted MStFN(P),
is a minimum-length plane graph G such that GP = (P, E(G)) is connected. The
MStFN is a generalisation of the Steiner tree of a set of points. Note that MStFN
is slightly different from Steiner tree with neighbourhoods (see, e.g., [11]) in that
we are only counting the part of the graph outside P towards its length (since
it is not necessary to connect neighbourhoods beyond their boundaries).

Consider a complete weighted graph whose vertices are the neighbourhoods in
P and whose edge weights are the distances between them. A minimum spanning
tree in the graph is called the Minimum Spanning Forest with Neighbourhoods on
P, denoted MSFN(P). A natural embedding of the edges of the forest is by the
straight-line segments that connect the corresponding neighbourhoods; we will
identify MSFN(P) with the embedding. (As with MStFN, we count the length
of MSFN only outside P.)

We denote by |MStFN(P)| and |MSFN(P)| the total length of the edges of
the forests. It is known that |MSFN(P )| ≤ (2/

√
3)|MStFN(P )| for a point set

P , where 2/
√

3 is the Steiner ratio [12]. The following lemma generalises this to
neighbourhoods.

Lemma 2. For any P, |MSFN(P)| ≤ (2/
√

3)|MStFN(P)|.

Proof. If P is erased, MStFN(P) falls off into a forest, each tree of which is
a minimum Steiner tree on its leaves; its length is within the Steiner ratio of
minimum spanning tree length. ��

3 A 3.11-Approximation Algorithm

In this section we give a 3.11-approximation algorithm for one-tier relay place-
ment. We focus on nontrivial instances with more than one blob.

Note that the number of relays in a solution may be exponential in the size
of the input (number of bits). Our algorithm produces a succinct representation
of the solution, given by a set of points and a set of line segments; the relays are
placed on each point and equally-spaced along each segment.

3.1 Overview

The basic steps of our algorithm are as follows:

1. Compute optimal stabbings for clouds which can be stabbed with few relays.
2. Connect the blobs in each of these clouds, using Lemma 1.
3. Greedily connect all blobs in each of the remaining clouds (“stitching”).
4. Greedily connect clouds into clusters, using 2 additional relays per cloud.
5. Connect the clusters by a spanning forest.

The algorithm constructs a set Ar of “red” relays (for connecting blobs in a
cloud, i.e., relays added in steps 1–3), a set Ag of “green” relays (two per cloud,
added in steps 4–5) and a set Ay of “yellow” relays (outside of sensor range,
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added in step 5). In the analysis, we compare an optimal solution R∗ to our
approximate one by subdividing the former into a set R∗

d of “dark” relays that
are within reach of sensors, and into a set R∗

� of “light” relays that are outside
of sensor range. We compare |R∗

d| with |Ar| + |Ag|, and |R∗
� | with |Ay|, showing

in both cases that the ratio is less than 3.11.

3.2 Clouds with Few Stabs

For any constant k, it is straightforward to check in polynomial time whether
all blobs in a cloud C ∈ C can be stabbed with i < k stabs. (For any subset
of i cells of the arrangement of unit disks centered on the sensors in C, we can
consider placing the relays in the cells and check whether this stabs all blobs.)
Using Lemma 1, we can connect all blobs in such a cloud with at most 2i−1 red
relays. We denote by Ci the set of clouds where the minimum number of stabs
is i, and by Ck+ the set of clouds that need at least k stabs.

3.3 Stitching a Cloud from Ck+

We focus on one cloud C ∈ Ck+. For a point y in the plane, let B(y) = {B ∈ BC :
y ∈ B} be the set of blobs that contain the point; obviously |B(y)| ≤ 5 for any y.
For any subset of blobs T ⊆ BC , define S(T, y) = B(y) \ T to be the set of blobs
not from T containing y, and define V (T) to be the set of sensors that form the
blobs in T.

Within C, we place a set of red relays AC
r = {yj : j = 1, 2, . . .}, as follows:

1. Choose arbitrary B0 ∈ BC .
2. Initialise j ← 1, Tj ← {B0}.
3. While Tj �= BC :

yj ← argmaxy{|S(Tj, y)| : B(y) ∩ Tj �= ∅},

Sj ← S(Tj , yj),
Tj+1 ← Tj ∪ Sj ,

j ← j + 1.

By induction on j, after each iteration, there exists a path through sensors
and/or relays between any pair of sensors in V (Tj). By the definition of a cloud,
there is a line segment of length at most 2 that connects V (Tj) to V (BC \Tj); the
midpoint of the segment is a location y with S(Tj , y) �= ∅. Since each iteration
increases the size of Tj by at least 1, the algorithm terminates in at most |BC |−1
iterations, and |AC

r | ≤ |BC | − 1. The sets Sj form a partition of BC \ {B0}.
We prove the following performance guarantee.

Lemma 3. For each cloud C we have |AC
r | ≤ 37|R∗

d ∩ C|/12 − 1.

Proof. For each B ∈ BC \ {B0}, define the weight w(B) = 1/|Sj|, where Sj is
the unique set for which B ∈ Sj . We also set w(B0) = 1. We have

∑

B∈BC

w(B) = |AC
r | + 1. (1)
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Consider a relay z ∈ R∗
d ∩ C, and find the smallest � with T� ∩ B(z) �= ∅, that

is, � = 1 if B0 ∈ B(z), and otherwise y�−1 is the first relay that pierced a blob
from B(z). Partition the set B(z) into U(z) = T� ∩B(z) and V(z) = B(z) \U(z).
Note that V(z) may be empty, e.g., if y�−1 = z.

First, we show that ∑

B∈U(z)

w(B) ≤ 1.

We need to consider two cases. It may happen that � = 1, which means that
B0 ∈ B(z) and U(z) = {B0}. Then the total weight assigned to the blobs in
U(z) is, by definition, 1. Otherwise � > 1 and U(z) ⊆ S�−1, implying w(B) =
1/|S�−1| ≤ 1/|U(z)| for each B ∈ U(z).

Second, we show that

∑

B∈V(z)

w(B) ≤ 1
|V(z)| +

1
|V(z)| − 1

+ · · · + 1
1
.

Indeed, at iterations j ≥ �, the algorithm is able to consider placing the relay yj

at the location z. Therefore |Sj | ≥ |S(Tj , z)|. Furthermore, S(Tj , z)\S(Tj+1, z) =
B(z) ∩ Sj = V(z) ∩ Sj . Whenever placing the relay yj makes |S(Tj , z)| decrease
by k, exactly k blobs of V(z) get connected to Tj . Each of them is assigned the
weight w(C) ≤ 1/|S(Tj , z)|. Thus,

∑
B∈V(z) w(B) ≤ k1/(k1 + k2 + · · · + kn) +

k2/(k2 + k3 + · · · + kn) + · · · + kn/kn, where k1, k2, . . . , kn are the number of
blobs from V(z) that are pierced at different iterations,

∑
i ki = |V(z)|. The

maximum value of the sum is attained when k1 = k2 = · · · = kn = 1 (i.e., every
time |V(z)| is decreased by 1, and there are |V(z)| summands).

Finally, since |B(z)| ≤ 5, and U(z) �= ∅, we have |V(z)| ≤ 4. Thus,

W (z) =
∑

B∈U(z)

w(B) +
∑

B∈V(z)

w(B) ≤ 1 +
1
4

+
1
3

+
1
2

+
1
1

=
37
12

. (2)

The sets B(z), z ∈ R∗
d ∩ C, form a cover of BC . Therefore, from (1) and (2),

37
12

|R∗
d ∩ C| ≥

∑

z∈R∗
d∩C

W (z) ≥
∑

B∈BC

w(B) = |AC
r | + 1.

��

3.4 Green Relays and Cloud Clusters

At any stage of the algorithm, we say that a set of clouds is interconnected if, with
the current placement of relays, the sensors in the clouds can communicate with
each other. Now, when all clouds have been stitched (so that the sensors within
any one cloud can communicate), we proceed to interconnecting the clouds.
First we greedily form the collection of cloud clusters (interconnected clouds)
as follows. We start by assigning each cloud to its own cluster. Whenever it is
possible to interconnect two clusters by placing one relay within each of the two
clusters, we do so. These two relays are coloured green. After it is no longer
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possible to interconnect 2 clusters by placing just 2 relays, we repeatedly place
4 green relays wherever we can use them to interconnect clouds from 3 different
clusters. Finally, we repeat this for 6 green relays which interconnect 4 clusters.

On average we place 2 green relays every time the number of connected com-
ponents in the communication graph on sensors plus relays decreases by one.

3.5 Interconnecting the Clusters

Now, when the sensors in each cloud and the clouds in each cluster are intercon-
nected, we interconnect the clusters by MSFN. We find MSFN on the clusters
and place relays along edges of the forest. Specifically, for each edge e of the
forest, we place 2 green relays at the endpoints of e, and �|e|/r� yellow relays
every r units starting from one of the endpoints (and when we find MSFN, we
minimise the total number of yellow relays that we need). As with interconnect-
ing clouds into the clusters, when interconnecting the clusters we use 2 green
relays each time the number of connected components of the communication
graph decreases by one. Thus, overall, we use at most 2|C| − 2 green relays.

3.6 Analysis: Red and Green Relays

Recall that for i < k, Ci is the class of clouds that require precisely i relays for
stabbing, and Ck+ is the class of clouds that need at least k relays for stabbing.
An optimal solution R∗ therefore contains at least |R∗

d| ≥ k|Ck+| +
∑k−1

i=1 i|Ci|
dark relays (relays inside clouds, i.e., relays within reach of sensors). Further-
more, |R∗

d ∩ C| ≥ 1 for all C.
Our algorithm places at most 2i − 1 red relays per cloud in Ci, and not more

than 37/12|R∗
d ∩ C| − 1 red relays per cloud in Ck+. Adding a total of 2|C| − 2

green relays used for clouds interconnections, we get

|Ar| + |Ag| ≤
∑

C∈Ck+(37|R∗
d ∩ C|/12 − 1) +

∑k−1
i=1 (2i − 1)|Ci| + 2|C| − 2

≤ 37(|R∗
d| −

∑k−1
i=1 i|Ci|)/12 + |Ck+| +

∑k−1
i=1 (2i + 1)|Ci| − 2

≤ 37|R∗
d|/12 + |Ck+| < (3.084 + 1/k)|R∗

d|.

3.7 Analysis: Yellow Relays

Let R be the communication graph on the optimal set R∗ of relays alone, i.e.,
without sensors taken into account; two relays are connected by an edge in R if
and only if they are within distance r from each other. In R there exists a forest
R′ that makes the clusters interconnected. Let R′ ⊂ R∗ be the relays that are
vertices of R′. We partition R′ into “black” relays R∗

b = R′ ∩ R∗
d and “white”

relays R∗
w = R′ ∩ R∗

� – those inside and outside the clusters, resp.
Two black relays cannot be adjacent in R′: if they are in the same cluster,

the edge between them is redundant; if they are in different clusters, the dis-
tance between them must be larger than r, as otherwise our algorithm would
have placed two green relays to interconnect the clusters into one. By a similar
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reasoning, there cannot be a white relay adjacent to 3 or more black relays in
R′, and there cannot be a pair of adjacent white relays such that each of them
is adjacent to 2 black relays. Finally, the maximum degree of a white relay is 5.
Using these observations, we can prove the following lemma.

Lemma 4. There is a spanning forest with neighbourhoods on cloud clusters
that requires at most (4/

√
3 + 4/5)|R∗

w| < 3.11|R∗
w| yellow relays on its edges.

Proof. Let D be the set of cloud clusters. We partition R′ into edge-disjoint
trees induced by maximal connected subsets of white relays and their adjacent
black relays. It is enough to show that for each such tree T which interconnects
a subset of clusters D′ ⊆ D, there is a spanning forest on D′ such that the
number of yellow relays on its edges is at most 3.11 times the number of white
relays in T . As no pair of black relays is adjacent in R′, these edge-disjoint trees
interconnect all clusters in D. The same holds for the spanning forests, and the
lemma follows.

Trees with only one white relay (and thus exactly two black relays) are trivial:
the spanning forest needs only one edge with one yellow relay (and one green in
each end). Therefore assume that T contains at least two white relays.

We introduce yet another colour. For each white relay with two black neigh-
bours, arbitrarily choose one of the black relays and change it into a “grey” relay.
Let w be the number of white relays, let b be the number of remaining black
relays, and let g be the number of grey relays in T .

First, we clearly have b ≤ w. Second, there is no grey–white–white–grey path,
each white relay is adjacent to another white relay, and the maximum degree of
a white relay is 5 (geometry). Therefore the ratio (b+g)/w is at most 9/5. To see
this, let w2 be the number of white relays with a grey and a black neighbour, let
w1 be the number of white relays with a black neighbour but no grey neighbour,
and let w0 be the number of white relays without a black neighbour. By degree
bound, w2 ≤ 4w1+5w0 = 4w1+5(w−w2−w1); therefore 5w ≥ 6w2+w1. We also
know that w ≥ w2+w1. Therefore (9/5)w ≥ (1/5)(6w2 + w1)+(4/5)(w2 + w1) =
(w2 + w1) + w2 = b + g. (The worst case is a star of 1 + 4 white relays, 5 black
relays and 4 grey relays.)

Now consider the subtree induced by the black and white relays. It has fewer
than b + w edges, and the edge length is at most r. By Lemma 2, there is a
spanning forest on the black relays with total length less than (2/

√
3)(b + w)r;

thus we need fewer than (2/
√

3)(b + w) yellow relays on the edges.
Now each pair of black relays in T is connected. It is enough to connect

each grey relay to the nearest black relay: the distance is at most 2, and one
yellow relay is enough. In summary, the total number of yellow relays is less than
(2/

√
3)(b + w) + g ≤ (2/

√
3 − 1)2w + (14/5)w = (4/

√
3 + 4/5)w < 3.11w. ��

Then it follows that |Ay| < 3.11|R∗
w| ≤ 3.11|R∗

� |. This completes the proof that
the approximation ratio of our algorithm is less than 3.11.
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4 Inapproximability of One-Tier Relay Placement

We have improved the best known approximation ratio for one-tier relay place-
ment from 7 to 3.11. A natural question to pose at this point is whether we could
make the approximation ratio as close to 1 as we wish. In this section, we show
that no PTAS exists, unless P = NP.

Theorem 1. It is NP-hard to approximate one-tier relay placement within fac-
tor 1 + 1/687.

The reduction is from minimum vertex cover in graphs of bounded degree. Let
G = (V, E) be an instance of vertex cover; let Δ ≤ 5 be the maximum degree
of G. We construct an instance I of the relay placement problem which has a
feasible solution with |C| + 2|E| + 1 relays if and only if G has a vertex cover of
size k.

Fig. 2 illustrates the construction. Fig. 2a shows the vertex gadget ; we have
one such gadget for each vertex v ∈ V . Fig. 2b shows the crossover gadget ; we
have one such gadget for each edge e ∈ E. Small dots are sensors in the relay
placement instance; each solid edge has length at most 1. White boxes are good
locations for relays; dashed lines show connections for relays in good locations.

(b)

1

3

← u

← v

(d)

p0

S(e) for each e ∈ ES(0)

(c)(a)

v

Fig. 2. (a) Vertex gadget for v ∈ V . (b) Crossover gadget for {v, u} ∈ E. (c) Reduction
for K5. (d) Normalising a solution, step 1.

We set r = 16(|V | + 1), and we choose |E| + 1 disks of diameter r such that
each pair of these disks is separated by a distance larger than |V |r but at most
poly(|V |). One of the disks is called S(0) and the rest are S(e) for e ∈ E. All
vertex gadgets and one isolated sensor, called p0, are placed within disk S(0).
The crossover gadget for edge e is placed within disk S(e). There are noncrossing
paths of sensors that connect the crossover gadget e = {u, v} ∈ E to the vertex
gadgets u and v; all such paths (tentacles) are separated by a distance at least 3.
Good relay locations and p0 cannot be closer than 1 unit to a disk boundary.

Fig. 2c is a schematic illustration of the overall construction in the case of
G = K5; the figure is highly condensed in x direction. There are 11 disks. Disk
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S(0) contains one isolated sensor and 5 vertex gadgets. Each disk S(e) contains
one crossover gadget. Outside these disks we have only parts of tentacles.

There are 4|E|+1 blobs in I. The isolated sensor p0 forms one blob. For each
edge there are 4 blobs: two tentacles from vertex gadgets to the crossover gadget,
and two isolated sensors in the crossover gadget.

Theorem 1 now follows from the following two lemmata.

Lemma 5. Let C be a vertex cover of G. Then there is a feasible solution to
relay placement problem I with |C| + 2|E| + 1 relays.

Proof. For each v ∈ C, place one relay at the good location of the vertex gadget v.
For each e ∈ E, place two relays at the good locations of the crossover gadget e.
Place one relay at the isolated sensor p0. ��

Lemma 6. Assume that there exists a feasible solution to relay placement prob-
lem I with k + 2|E| + 1 relays. Then G has a vertex cover of size at most k.

Proof. If k ≥ |V |, then the claim is trivial: C = V is a vertex cover of size at
most k. We therefore focus on the case k < |V |.

Let R be a solution with k +2|E|+1 relays. We transform the solution into a
canonical form R′ of the same size and with the following additional constraints:
there is a subset C ⊆ V such that at least one relay is placed at the good relay
location of each vertex gadget v ∈ C; two relays are placed at the good locations
of each crossover gadget; one relay is placed at p0; and there are no other relays.
If R′ is a feasible solution, then C is a vertex cover of G with |C| ≤ k.

Now we show how to construct the canonical form R′. We observe that there
are 2|E| + 1 isolated sensors in I: sensor p0 and two sensors for each crossover
gadget. In the feasible solution R, for each isolated sensor p, we can always
identify one relay within distance 1 from p (if there are several relays, pick one
arbitrarily). These relays are called bound relays. The remaining k < |V | relays
are called free relays.

Step 1. Consider the communication graph formed by the sensors in I and the
relays R. Since each pair of disks S(i), i ∈ {0} ∪ E, is separated by a distance
larger than |V |r, we know that there is no path that extends from one disk to
another and consists of at most k free relays (and possibly one bound relay in
each end). Therefore we can shift each connected set of relays so that it is located
within one disk (see Fig. 2d). While doing so, we do not break any relay–relay
links: all relays within the same disk can communicate with each other. We can
also maintain each relay–blob link intact.

Step 2. Now we have a clique formed by a set of relays within each disk S(i),
there are no other relays, and the network is connected. We move the bound
relay in S(0) so that it is located exactly on p0. For each e ∈ E, we move the
bound relays in S(e) so that they are located exactly on the good relay locations.
Finally, any free relays in S(0) can be moved to a good relay location of a suitable
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vertex gadget. These changes may introduce new relay–blob links but they do
not break any existing relay–blob or relay–relay links.

Step 3. What remains is that some disks S(e), e ∈ E, may contain free relays.
Let x be one of these relays. If x can be removed without breaking connectivity,
we can move x to the good relay location of any vertex gadget. Otherwise x is
adjacent to exactly one blob of sensors, and removing it breaks the network into
two connected components: component A which contains p0, and component B.
Now we simply pick a vertex v ∈ V such that the vertex gadget v contains
sensors from component B, and we move x to the good relay location of this
vertex gadget; this ensures connectivity between p0 and B. ��

Proof of Theorem 1. Let Δ, A, B, C ∈ N, with Δ ≤ 5 and C > B. Assume that
there is a factor α = 1 + (C − B)/(B + ΔA + 1) approximation algorithm A for
relay placement. We show how to use A to solve the following gap-vertex-cover
problem for some 0 < ε < 1/2: given a graph G with An nodes and maximum
degree Δ, decide whether the minimum vertex cover of G is smaller than (B+ε)n
or larger than (C − ε)n.

If n < 2, the claim is trivial. Otherwise we can choose a positive constant ε
such that α − 1 < (C − B − 2ε)/(B + ε + ΔA + 1/n) for any n ≥ 2. Construct
the relay placement instance I as described above.

If minimum vertex cover of G is smaller than (B + ε)n, then by Lemma 5, the
algorithm A returns a solution with at most b = α((B + ε)n + 2|E| + 1) relays.
If minimum vertex cover of G is larger than (C − ε)n, then by Lemma 6, the
algorithm A returns a solution with at least c = (C − ε)n + 2|E| + 1 relays. As
2|E| ≤ ΔAn, we have c − b ≥ (C − ε)n + 2|E| + 1 − α((B + ε)n + 2|E| + 1) ≥
(C − B − 2ε − (α − 1)(B + ε + ΔA + 1/n))n > 0, which shows that we can
solve the gap-vertex-cover problem in polynomial time.

For Δ = 4, A = 152, B = 78, C = 79, and any 0 < ε < 1/2, the gap-vertex-
cover problem is NP-hard [13, Thm. 3]. ��
Remark 1. We remind that throughout this work we assume that radius r is part
of the problem instance. Our proof of Theorem 1 heavily relies on this fact; in our
reduction, r = Θ(|V |). It is an open question whether one-tier relay placement
admits a PTAS for a small, e.g., constant, r.
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