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Abstract. We consider a planning problem that generalizes Alcuin’s
river crossing problem (also known as: The wolf, goat, and cabbage
puzzle) to scenarios with arbitrary conflict graphs. We derive a variety
of combinatorial, structural, algorithmical, and complexity theoretical
results around this problem.
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1 Introduction

Alcuin’s river crossing problem. The Anglo-Saxon monk Alcuin (735–804 A.D.)
was one of the leading scholars of his time. He served as head of Charlemagne’s
Palace School at Aachen, he developed the Carolingian minuscule (a script which
has become the basis of the way the letters of the present Roman alphabet are
written), and he wrote a number of elementary texts on arithmetic, geometry,
and astronomy. His book “Propositiones ad acuendos iuvenes” (Problems to
sharpen the young) is perhaps the oldest collection of mathematical problems
written in Latin. It contains the following well-known problem.

A man had to transport to the far side of a river a wolf, a goat, and a
bundle of cabbages. The only boat he could find was one which would
carry only two of them. For that reason he sought a plan which would
enable them all to get to the far side unhurt. Let him, who is able, say
how it could be possible to transport them safely?

In a safe transportation plan, neither wolf and goat nor goat and cabbage can
be left alone together. Alcuin’s river crossing problem differs significantly from
other mediaeval puzzles, since it is neither geometrical nor arithmetical but
purely combinatorial. Biggs [3] mentions it as one of the oldest combinatorial
puzzles in the history of mathematics. Ascher [1] states that the problem also
shows up in Gaelic, Danish, Russian, Ethiopian, Suaheli, and Zambian folklore.
Borndörfer, Grötschel & Löbel [4] use Alcuin’s problem to provide the reader
with a leisurely introduction into integer programming.

Graph-theoretic model. We consider the following generalization of Alcuin’s
problem to arbitrary graphs G = (V, E). Now the man has to transport a set
V of items/vertices across the river. Two items are connected by an edge in
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E, if they are conflicting and thus cannot be left alone together without hu-
man supervision. The available boat has capacity b ≥ 1, and thus can carry the
man together with any subset of at most b items. A feasible schedule is a finite
sequence of triples (L1, B1, R1), (L2, B2, R2), . . . , (Ls, Bs, Rs) of subsets of the
item set V that satisfies the following conditions (FS1)–(FS3). The odd integer
s is called the length of the schedule.

(FS1) For every k, the sets Lk, Bk, Rk form a partition of V . The sets Lk

and Rk form stable sets in G. The set Bk contains at most b elements.
(FS2) The sequence starts with L1 ∪B1 = V and R1 = ∅, and the sequence

ends with Ls = ∅ and Bs ∪ Rs = V .
(FS3) For even k ≥ 2, we have Bk ∪ Rk = Bk−1 ∪ Rk−1 and Lk = Lk−1.

For odd k ≥ 3, we have Lk ∪ Bk = Lk−1 ∪ Bk−1 and Rk = Rk−1.

Intuitively speaking, the kth triple encodes the kth boat trip: Lk contains the
items on the left bank, Bk the items in the boat, and Rk the items on the right
bank. Odd indices correspond to forward boat trips from left to right, and even
indices correspond to backward trips from right to left. Condition (FS1) states
that the sets Lk and Rk must not contain conflicting item pairs, and that set
Bk must fit into the boat. Condition (FS2) concerns the first boat trip (where
the man has put the first items into the boat) and the final trip (where the
man transports the last items to the right bank). Condition (FS3) says that
whenever the man reaches a bank, he may arbitrarily re-divide the set of items
that currently are on that bank and in the boat.

1. w, c | g → | ∅ 2. w, c | ← ∅ | g

3. w | c → | g 4. w | ← g | c

5. g | w → | c 6. g | ← ∅ | w, c

7. ∅ | g → | w, c

Fig. 1. A solution for Alcuin’s river crossing puzzle. The partitions Lk, Bk, Rk are listed
as Lk | Bk | Rk; the arrows → and ← indicate the current direction of the boat.

We are interested in the smallest possible capacity of a boat for which a graph
G = (V, E) possesses a feasible schedule; this capacity is called the Alcuin number
Alcuin(G) of the graph. In our graph-theoretic model Alcuin’s river crossing
problem corresponds to the path P3 with three vertices w(olf), g(oat), c(abbage)
and two edges [w, g] and [g, c]. Figure 1 lists one possible feasible schedule for a
boat of capacity b = 1. This implies Alcuin(P3) = 1.

A natural problem variant puts a hard constraint on the length of the sched-
ule: Let t ≥ 1 be an odd integer. The smallest possible capacity of a boat for
which G possesses a feasible schedule with at most t boat trips is called the t-trip
constrained Alcuin number Alcuint(G). Of course, Alcuin1(G) = |V | holds for
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any graph G. For our example in Figure 1, it can be seen that Alcuin1(P3) = 3,
that Alcuint(P3) = 2 for t ∈ {3, 5}, and that Alcuint(P3) = 1 for t ≥ 7.

Known results. The idea of generalizing Alcuin’s problem to arbitrary conflict
graphs goes back (at least) to Prisner [13] and Bahls [2]: Prisner introduced it in
2002 in his course on Discrete Mathematics at the University of Maryland, and
Bahls discussed it in 2005 in a talk in the Mathematics Seminar at the University
of North Carolina.

Bahls [2] (and later Lampis & Mitsou [9]) observed that it is NP-hard to
compute the Alcuin number exactly; Lampis & Mitsou [9] also showed that the
Alcuin number is hard to approximate. These negative results follow quite easily
from the close relationship between the Alcuin number and the vertex cover
number; see Lemma 1. The papers [2,9] provide a complete analysis of the Alcuin
number of trees. Finally, Lampis & Mitsou [9] proved that the computation of
the trip constrained Alcuin number Alcuin3(G) is NP-hard.

Our results. We derive a variety of combinatorial and algorithmical results
around the Alcuin number. As a by-product, our results also settle several open
questions from [9].

Our main result is the structural characterization of the Alcuin number in
Section 3. This characterization yields an NP-certificate for the Alcuin number.
It also yields that every feasible schedule (possibly of exponential length) can be
transformed into a feasible schedule of linear length.

The close relationship between the Alcuin number and the vertex cover num-
ber of a graph (see Lemma 1) naturally divides graphs into so-called small-boat
and big-boat graphs. In Section 4 we derive a number of combinatorial lemmas
around the division line between these two classes. All these lemmas fall out quite
easily from our structural characterization. Standard techniques yield that com-
puting the Alcuin number belongs to the class FPT of fixed-parameter tractable
problems; see Section 5.

In Section 6 we discuss the computational hardness of the Alcuin number.
First, we provide a new NP-hardness proof for this problem. Other proofs of
this result are already in the literature [2,9], but we think that our three-line
argument is considerably simpler than all previously published arguments. Sec-
ondly, we establish the NP-hardness of distinguishing small-boat graphs from
big-boat graphs. Thirdly, we prove NP-hardness of computing the t-trip con-
strained Alcuin number Alcuint(G) for every fixed value t ≥ 3.

In Section 7 we finally apply our machinery to chordal graphs, trees, and
planar graphs, for which we get concise descriptions of the division line between
small-boat and big-boat graphs. We also show that the Alcuin number of a
bipartite graph can be determined in polynomial time.

2 Definitions and Preliminaries

We first recall some basic definitions. A set S ⊆ V is a stable set for a graph
G = (V, E), if S does not induce any edges. The stability number α(G) of G
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is the size of a largest stable set in G. A set W ⊆ V is a vertex cover for G if
V − W is stable. The vertex cover number τ(G) of G is the size of a smallest
vertex cover for G. We denote the set of neighbors of a vertex set V ′ ⊆ V by
Γ (V ′).

The Alcuin number of a graph is closely related to its vertex cover number.

Lemma 1. (Prisner [13]; Bahls [2]; Lampis & Mitsou [9])
Every graph G satisfies τ(G) ≤ Alcuin(G) ≤ τ(G) + 1.

Indeed during the first boat trip of any feasible schedule, the man leaves a stable
set L1 on the left bank and transports a vertex cover B1 with the boat. This
implies b ≥ τ(G). And it is straightforward to find a schedule for a boat of
capacity τ(G) + 1: The man permanently keeps a smallest vertex cover W ⊆ V
in the boat, and uses the remaining empty spot to transport the items in V −W
one by one to the other bank.

The following observation follows from the inherent symmetry in conditions
(FS1)–(FS3).

Lemma 2. If (L1, B1, R1), . . . , (Ls, Bs, Rs) is a feasible sched-
ule for a graph G and a boat of capacity b, then also
(Rs, Bs, Ls), (Rs−1, Bs−1, Ls−1), . . . , (R1, B1, L1) is a feasible schedule.

3 A Concise Characterization

The definition of a feasible schedule does not a priori imply that the decision
problem “Given a graph G and a bound A, is Alcuin(G) ≤ A?” is contained
in the class NP: Since the length s of the schedule need not be polynomially
bounded in the size of the graph G, this definition does not give us any obvious
NP-certificate. The following theorem yields such an NP-certificate.

Theorem 1. (Structure theorem)
A graph G = (V, E) possesses a feasible schedule for a boat of capacity b ≥ 1,
if and only if there exist five subsets X1, X2, X3, Y1, Y2 of V that satisfy the
following four conditions.

(i) The three sets X1, X2, X3 are pairwise disjoint. Their union X := X1 ∪
X2 ∪ X3 forms a stable set in G.

(ii) The (not necessarily disjoint) sets Y1, Y2 are non-empty subsets of the set
Y := V − X, which satisfies |Y | ≤ b.

(iii) X1 ∪ Y1 and X2 ∪ Y2 are stable sets in G.
(iv) |Y1| + |Y2| ≥ |X3|.

If these four conditions are satisfied, then there exists a feasible schedule of length
at most 2|V | + 1. This bound 2|V | + 1 is the best possible (for |V | ≥ 3).

As an illustration for Theorem 1, we once again consider Alcuin’s problem with
b = 1; see Figure 1. The corresponding sets in conditions (i)–(iv) then are
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X1 = X2 = ∅, X3 = {w, c}, and Y1 = Y2 = {g}. The rest of this section is
dedicated to the proof of Theorem 1.

For the (only if)-part, we consider a feasible schedule (Lk, Bk, Rk) with 1 ≤
k ≤ s. Without loss of generality we assume that Bk+1 �= Bk for 1 ≤ k ≤ s − 1.
Lemma 1 yields that there exists a vertex cover Y ⊆ V with |Y | = b (which is
not necessarily a vertex cover of minimum size). Then the set X = V − Y is
stable. We branch into three cases.

In the first case, there exists an index k for which Lk ∩Y �= ∅ and Rk ∩Y �= ∅.
We set Y1 = Lk ∩ Y , X1 = Lk ∩ X , and Y2 = Rk ∩ Y , X2 = Rk ∩ X , and
X3 = Bk ∩ X . This construction yields X = X1 ∪ X2 ∪ X3, and obviously
satisfies conditions (i), (ii), (iii). Since

|Y | = b ≥ |Bk ∩ X | + |Bk ∩ Y | = |X3| + (|Y | − |Y1| − |Y2|),

we also derive the inequality |Y1| + |Y2| ≥ |X3| for condition (iv).
In the second case, there exists an index k with 1 < k < s such that Bk = Y .

If index k is odd (and the boat is moving forward), our assumption Bk−1 �=
Bk �= Bk+1 implies that Lk−1 ∩Y �= ∅ and Rk+1 ∩Y �= ∅. We set Y1 = Lk−1 ∩Y ,
X1 = Lk−1∩X , and Y2 = Rk+1∩Y , X2 = Rk+1∩X , and X3 = (Bk−1∪Bk+1)∩X .
Then X1, X2, X3 are pairwise disjoint, and conditions (i), (ii), (iii) are satisfied.
Furthermore,

|Y | = b ≥ |Bk−1 ∩ X | + |Bk−1 ∩ Y | = |Bk−1 ∩ X | + (|Y | − |Y1|)

implies |Bk−1 ∩ X | ≤ |Y1|, and a symmetric argument yields |Bk+1 ∩ X | ≤ |Y2|.
These two inequalities together imply |Y1|+ |Y2| ≥ |X3| for condition (iv). If the
index k is even (and the boat is moving back), we proceed in a similar way with
the roles of k − 1 and k + 1 exchanged.

The third case covers all remaining situations: All k satisfy Lk ∩ Y = ∅ or
Rk ∩Y = ∅, and all k with 1 < k < s satisfy Bk �= Y . We consider two subcases.
In subcase (a) we assume Rs ∩Y �= ∅. We define Y1 = Rs ∩Y and X1 = Rs ∩X ,
and we set Y2 = Y1, X2 = ∅, and X3 = Bs ∩ X . Then conditions (i), (ii), (iii)
are satisfied. Since

|Y | = b ≥ |Bs ∩ X | + |Bs ∩ Y | = |X3| + (|Y | − |Y1|),

also condition (iv) holds. In subcase (b) we assume Rs ∩ Y = ∅. We apply
Lemma 2 to get a symmetric feasible schedule with L1 ∩ Y = ∅. We prove
by induction that this new schedule satisfies Rk ∩ Y �= ∅ for all k ≥ 2. First,
L1 ∩ Y = ∅ implies Y ⊆ B1, and then B2 �= B1 implies R2 ∩ Y �= ∅. In the
induction step for k ≥ 3 we have Rk−1 ∩ Y �= ∅, and hence Lk−1 ∩ Y = ∅. If k is
odd, then Rk = Rk−1 and we are done. If k is even, then Rk ∩Y = ∅ would imply
Bk = Y , a contradiction. This completes the inductive argument. Since the new
schedule has Rs ∩ Y �= ∅, we may proceed as in subcase (a). This completes the
proof of the (only if)-part.

The proof of the (if)-part can be found in the full version of this paper.
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4 Small Boats Versus Big Boats

By Lemma 1 every graph G has either Alcuin(G) = τ(G) or Alcuin(G) =
τ(G)+ 1. In the former case we call G a small-boat graph, and in the latter case
we call G a big-boat graph. Note that for a small-boat graph G with b = τ(G),
the stable set X in Theorem 1 is a maximum size stable set and set Y is a
minimum size vertex cover.

The following three lemmas provide tools for recognizing small-boat graphs.

Lemma 3. Let G = (V, E) be a graph, and let set C ⊆ V induce a subgraph of
G with stability number at most 2. If the graph G−C has at least two non-trivial
connected components, then G is a small-boat graph.

Proof. Let V1 ⊆ V denote the vertex set of a non-trivial connected component
of G − C, and let V2 = V − (V1 ∪ C) be the vertex set of all other components.
Let X be a stable set of maximum size in G.

We set X1 = V1∩X , X2 = V2∩X , and X3 = C∩X ; note that X1∪X2∪X3 = X
and |X3| ≤ 2. Since V1 and V2 both induce edges, V1 − X and V2 − X are non-
empty. We put a single vertex from V2 − X into Y1, and a single vertex from
V1 − X into Y2. This satisfies all conditions of the Structure Theorem 1. �

Lemma 4. Let G = (V, E) be a graph with a minimum vertex cover Y and a
maximum stable set X = V − Y . If Y contains two (not necessarily distinct)
vertices u and v that have at most two common neighbors in X, then G is a
small-boat graph. �

Lemma 5. Let G = (V, E) be a graph that has two distinct stable sets S1, S2 ⊆
V of maximum size (or equivalently: two distinct vertex covers of minimum size).
Then G is a small-boat graph. �

The following lemma allows us to generate a plethora of small-boat and big-boat
graphs.

Lemma 6. Let G = (V, E) be a graph with α(G) = s, let I be a stable set on
q ≥ 1 vertices that is disjoint from V , and let G′ be the graph that results from
G and I by connecting every vertex in V to every vertex in I.

Then G′ is a small-boat graph if s/2 ≤ q ≤ 2s, and a big-boat graph if q ≥
2s + 1. �
The following Corollary 1 follows from Lemma 6. It also illustrates that the
statement of Lemma 6 cannot be extended in any meaningful way to the cases
with 1 ≤ q < s/2: If we join the graph G = Ks,s with stability number s to a
stable set I on q vertices, then the resulting tri-partite graph Kq,s,s is a small-
boat graph. On the other hand, if we join the graph G = Kq,s with stability
number s to a stable set I on q vertices, then the resulting tri-partite graph
Kq,q,s is a big-boat graph.

Corollary 1. Let k ≥ 2 and 1 ≤ n1 ≤ n2 ≤ · · · ≤ nk be positive integers. Then
the complete k-partite graph Kn1,...,nk

is a small-boat graph if nk ≤ 2nk−1, and
it is a big-boat graph otherwise.
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The following observation is a consequence of Lemma 3 (with C = ∅) and the
Structure Theorem 1. It allows us to concentrate our investigations on connected
graphs.

Lemma 7. A disconnected graph G with k ≥ 2 connected components is a big-
boat graph, if and only if k − 1 components are isolated vertices, whereas the
remaining component is a big-boat graph (which might be another isolated vertex).

5 An Algorithmic Result

The following theorem demonstrates that determining the Alcuin number of a
graph belongs to the class FPT of fixed-parameter tractable problems.

Theorem 2. For a given graph G with n vertices and m edges and a given
bound A, we can decide in O(4Amn) time whether Alcuin(G) ≤ A.

Proof. The proof can be found in the full version of this paper. �

6 Hardness Results

The reductions in this section are from the NP-hard Vertex Cover and from
the NP-hard Stable Set problem; see Garey & Johnson [5]. Slightly weaker ver-
sions of the statements in Lemma 8 and 9, and also the restriction of Theorem 4
to three boat trips have been derived by Lampis & Mitsou [9].

The following observation implies that finding the Alcuin number is NP-hard
for planar graphs and for graphs of bounded degree.

Lemma 8. Let G be a graph class that is closed under taking disjoint unions.
If the vertex cover problem is NP-hard for graphs in G, then it is NP-hard to
compute the Alcuin number for graphs in G.

Proof. For a graph G ∈ G, we consider the disjoint union G′ of two independent
copies of G. Then τ(G′) = 2 τ(G), and Lemma 1 yields 2 τ(G) ≤ Alcuin(G′) ≤
2 τ(G) + 1. Hence, we can deduce the vertex cover number τ(G) from
Alcuin(G′). �

The approximability threshold of a minimization problem P is the infimum of all
real numbers R ≥ 1 for which problem P possesses a polynomial time approxi-
mation algorithm with worst case ratio R. The approximability threshold of the
vertex cover problem is known to lie somewhere between 1.36 and 2, and it is
widely conjectured to be exactly 2; see for instance Khot & Regev [8].

Lemma 9. The approximability threshold of the vertex cover problem coincides
with the approximability threshold of the Alcuin number problem.

Proof. First, we show that an approximation algorithm with worst case
ratio R for Vertex Cover implies an approximation algorithm with worst
case ratio R for the Alcuin number problem. For an input graph G, we call
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the approximation algorithm for vertex cover and simply output its approx-
imation of τ(G) as approximation A′ of Alcuin(G). Then Lemma 1 yields
A′ ≤ R · τ(G) ≤ R · Alcuin(G).

Secondly, we show that an approximation algorithm with worst case ratio R
for the Alcuin number problem implies an approximation algorithm with worst
case ratio R+ ε for the Vertex Cover, where ε > 0 can be brought arbitrarily
close to 0. For an input graph G we first check whether τ(G) ≤ R/ε holds.
If it holds, then we compute the value τ(G) exactly in polynomial time; see
Section 5. If it does not hold, then we call the approximation algorithm for the
Alcuin number, and output its approximation of Alcuin(G) as approximation
τ ′ of τ(G). Then Lemma 1 yields τ ′ ≤ R ·Alcuin(G) ≤ R · (τ(G)+1) ≤ (R+ ε)
τ(G). �

Theorem 3. It is NP-hard to decide whether a given graph is a small-boat
graph.

Proof. We show that if small-boat graphs can be recognized in polynomial
time, then there existis a polynomial time algorithm for computing the stability
number of a graph.

Indeed, consider a graph G = (V, E) on n = |V | vertices. For q = 1, . . . , 2n+1,
let Iq be a stable set on q vertices that is disjoint from V , and let Gq be the
graph that results from G and Iq by connecting every vertex in V to every vertex
in Iq. We check for every q whether Gq is small-boat, and we let q∗ denote the
largest index q for which Gq is small-boat. Lemma 6 yields that the stability
number of G equals q∗/2. �

Since the Structure Theorem 1 produces feasible schedules of length at most
2|V | + 1, we have Alcuint(G) = Alcuin(G) for all t ≥ 2|V | + 1. Consequently,
computing the t-trip constrained Alcuin number is NP-hard, if t is part of the
input. The following theorem shows that this problem is NP-hard for every fixed
t ≥ 3.

Theorem 4. Let r ≥ 1 be a fixed integer bound. Then it is NP-hard to decide for
a given graph and a given boat capacity, whether there exists a feasible schedule
that only uses 2r + 1 boat trips.

Proof. The proof can be found in the full version of this paper. �

7 Special Graph Classes

In this section we discuss Alcuin number, small-boat graphs, and big-boat graphs
in several classes of specially structured graphs.

7.1 Chordal Graphs and Trees

A split graph is a graph G = (V, E) whose vertex set can be partitioned into a
clique and a stable set; see Golumbic [6]. An equivalent characterization states
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that a graph is a split graph, if and only if it does not contain C4, C5, and
2K2 (= two independent edges) as induced subgraphs. Chordal graphs are the
graphs in which every cycle of length exceeding three has a chord, that is, an
edge joining two non-consecutive vertices in the cycle; see Golumbic [6]. An
equivalent characterization states that a graph is chordal, if and only if every
minimal vertex separator induces a clique. Note that split graphs and trees are
special cases of chordal graphs.

The following lemma provides a complete charaterization of chordal small-
boat graphs.

Lemma 10. Let G = (V, E) be a connected chordal graph. Then G is a small-
boat graph, if and only if one of the following holds:

(1) G is a split graph with a maximum stable set X and a clique Y = V − X,
such that there exist two (not necessarily distinct) vertices u, v in Y that
have at most two common neighbors in X.

(2) G is not a split graph. �

As a special case, Lemma 10 contains the following classification of trees (which
has already been derived in [2,9]). Stars K1,k with k ≥ 3 leaves are split graphs
that do not satisfy condition (1) of Lemma 10; therefore they are big-boat graphs
(note that this also follows from Lemma 6). All remaining trees T are small-boat
graphs: Either such a tree T has two independent edges (and thus is small-boat),
or it is of the following form: There are vertices a0, . . . , ak and b0, . . . , b� with
k, � ≥ 0, and edges [a0, ai] for all i > 0, and edges [b0, bj] for all j > 0. Then
T is a split graph with clique {a0, b0} that satisfies condition (1); hence T is
small-boat.

7.2 Bipartite Graphs

The proof of the following theorem is centered around submodular functions. We
recall that a function f : 2X → R over a set X is submodular , if f(A) + f(B) ≥
f(A ∪ B) + f(A ∩ B) holds for all A, B ⊆ X ; see for instance Grötschel, Lovász
& Schrijver [7] or Schrijver [14]. Standard examples of submodular functions are
f(A) = c |A| for any real parameter c, and the function f(A) = |Γ (A)| that
assigns to a subset A ⊆ V of vertices the number of neighbors in an underlying
graph. If f(A) is submodular, then also fmin(A) = min{f(B) | B ⊆ A} and
f ′(A) = f(X − A) are submodular. Also the sum of two submodular functions
is submodular. The minimum of a submodular function f can be determined in
polynomial time [7,14].

Theorem 5. For a bipartite graph G = (V, E), the Alcuin number can be com-
puted in polynomial time.

Proof. It is well-known that the stability number and the vertex cover number
of a bipartite graph G can be computed in polynomial time; see for instance
Lovász & Plummer [10]. Hence it is also easy to decide whether G has a unique



The Alcuin Number of a Graph 329

maximum size stable set (for instance, by finding some maximum size stable
set X , and by checking for every x ∈ X whether G − x has a stable set of
cardinality |X |). If G possesses two distinct maximum size stable sets, then
Lemma 5 yields Alcuin(G) = τ(G). Hence, in the light of Theorem 1 the only
interesting situation is the following: The graph G has a unique maximum size
stable set X and a unique minimum size vertex cover Y = V −X . Do there exist
sets X1, X2, X3 and Y1, Y2 that satisfy conditions (i)–(iv)?

Let V = V1 ∪ V2 denote a bipartition of V with E ⊆ V1 × V2. If Y ∩ V1 �= ∅
and Y ∩ V2 �= ∅, then we may choose X1 = X ∩ V1, X2 = X ∩ V2, X3 = ∅, and
Y1 = Y ∩ V1, Y2 = Y ∩ V2. Otherwise Y ⊆ V1 or Y ⊆ V2 holds, and Y is also
stable. Hence, we may concentrate on the case where X = V1 and Y = V2 form
the bipartition. Our problem boils down to identifying the two disjoint sets X1
and X2: Then X3 = X−(X1∪X2) is fixed. By condition (iv), Y1 should be chosen
as large as possible and hence should be equal to Y − Γ (X1); symmetrically we
set Y2 = Y − Γ (X2). Condition (iv) can now be rewritten into

|Γ (X1)| − |X1| + |Γ (X2)| − |X2| ≤ 2|Y | − |X |.

We define a function f : 2X → R by f(X1) = |Γ (X1)| − |X1|, and a function
g : 2X → R by g(X1) = min{f(X2) | X2 ⊆ X − X1}. Since functions f , g, and
their sum f + g are submodular, the minimum of f + g can be determined in
polynomial time. If the corresponding minimum value is at most 2|Y |−|X |, then
Alcuin(G) = τ(G). Otherwise Alcuin(G) = τ(G) + 1. �

7.3 Planar Graphs

Next, let us turn to planar and outer-planar graphs. Outer-planar graphs are
easy to classify: Any outer-planar graph G with τ(G) = 1 is a star, and hence a
small-boat if and only if it has at most two leaves; see Section 7.1. Any outer-
planar graph G with τ(G) ≥ 2 satisfies the conditions of Lemma 4 and thus is
small-boat: Two arbitrary vertices u and v in a minimum vertex cover cannot
have more than two common neighbors, since otherwise K2,3 would occur as a
subgraph. The behavior of general planar graphs is more interesting.

Lemma 11. Every planar graph G = (V, E) with τ(G) ≥ 5 is a small-boat
graph.

Proof. Let Y = {y1, . . . , yt} with t ≥ 5 be a vertex cover of minimum size, and
let X = V −Y denote the corresponding stable set. For y ∈ Y we denote by Γx(y)
the set of neighbors of y in X . If there exist two indices i, j with 1 ≤ i < j ≤ 5
such that Γx(yi)∩Γx(yj) contains at most two vertices, then G is small-boat by
Lemma 4. We will show that no other case can arise.

Suppose for the sake of contradiction that for every two indices i, j with
1 ≤ i < j ≤ 5, the set Γx(yi) ∩ Γx(yj) contains at least three vertices. Then let
a, b, c be three vertices in Γx(y1) ∩ Γx(y2). In any planar embedding of G the
three paths y1−a−y2, y1−b−y2, y1−c−y2 divide the plane into three regions. If
two of y3, y4, y5 would lie in different regions, they could not have three common
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neighbors; a contradiction. Hence y3, y4, y5 all lie in the same region, say in the
region bounded by y1 − a − y2 − b − y1, and hence vertex c is not a neighbor
of y3, y4, y5. An analogous argument yields that for any 1 ≤ i < j ≤ 5, the two
vertices yi and yj have a common neighbor that is not adjacent to the other
three vertices in {y1, y2, y3, y4, y5}. This yields that G contains a subdivision of
K5, the desired contradiction. �

The condition τ(G) ≥ 5 in Lemma 11 cannot be dropped, since there exists a
variety of planar graphs G with τ(G) ≤ 4 that are big-boat. Consider for instance
the following planar graph G: The vertex set contains four vertices y1, y2, y3, y4,
and for every i, j with 1 ≤ i < j ≤ 4 a set Vij of t ≥ 3 vertices. The edge set
connects every vertex in Vij to yi and to yj . It can be verified that G is planar,
that τ(G) = 4, and that Alcuin(G) = 5.

Lemma 11 implies that there is a polynomial time algorithm that decides
whether a planar graph G is small-boat or big-boat: In case G has a vertex cover
of size at most 4 we use Theorem 2 to decide whether Alcuin(G) = τ(G), and
in case G has vertex cover number at least 5 we simply answer YES.

Summarizing, this yields the following (perhaps unexpected) situation: Al-
though it is NP-hard to compute the Alcuin number and the vertex cover num-
ber of a planar graph, we can determine in polynomial time whether these two
values coincide.

8 Conclusions

In this paper we have derived a variety of combinatorial, structural, algorithmi-
cal, and complexity theoretical results around a graph-theoretic generalization
of Alcuin’s river crossing problem.

Our investigations essentially revolved around three algorithmic problems: (1)
Computation of the stability number; (2) Computation of the Alcuin number; (3)
Recognition of small-boat graphs. All three problems are polynomially solvable,
if the input graph has bounded treewidth (the Alcuin number can be computed
along the lines of the standard dynamic programming approach).

Question 1. Does there exist a graph class G, for which computing the stability
number is easy, whereas computing the Alcuin number is hard?

In particular, the case of perfect graphs remains open. A graph is perfect , if for
every induced subgraph the clique number coincides with the chromatic number;
see for instance Golumbic [6]. Trees, split graphs, and chordal graphs are special
cases of perfect graphs.

Question 2. Is there a polynomial time algorithm for computing the Alcuin num-
ber of a perfect graph?

Also the computational complexity of recognizing small-boat graphs remains
unclear.

Question 3. Is the problem of recognizing small-boat graphs contained in NP?
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We have proved that this problem is NP-hard, but there is no reason to assume
that it lies in NP: To demonstrate that a graph is small-boat in a straightforward
way, we have to show that its Alcuin number is small (NP-certificate) and that its
vertex cover number is large (coNP-certificate). This mixture of NP- and coNP-
certificates suggests that the problem might be located in one of the complexity
classes above NP (see for instance Chapter 17 in Papadimitriou’s book [12]); the
complexity class DP might be a reasonable guess.
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