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Preface

This volume contains the 69 papers presented at the 16th Annual European
Symposium on Algorithms (ESA 2008), held in Karlsruhe during September
15-17, 2008, including two papers by the distinguished invited speakers Mark
Overmars and Leslie Valiant.

Since 2002, ESA has consisted of two tracks, with separate program commit-
tees, dealing with design and mathematical analysis of algorithms, the “Design
and Analysis” track, and real-world applications, engineering, and experimen-
tal analysis of algorithms, the “Engineering and Applications” track. Previous
ESAs in the two-track format were held in Rome, Ttaly (2002); Budapest, Hun-
gary (2003); Bergen, Norway (2004); Palma de Mallorca, Spain (2005); Zurich,
Switzerland (2006); and Eilat, Israel (2007). The proceedings of these symposia
were published as Springer’s LNCS volumes 2461, 2832, 3221, 3669, 4168, and
4698 respectively.

Papers were solicited in all areas of algorithmic research, including algorith-
mic aspects of networks, approximation and on-line algorithms, computational
biology, computational finance and algorithmic game theory, computational ge-
ometry, data structures, databases and information retrieval, external-memory
algorithms, streaming algorithms, graph and network algorithms, graph draw-
ing, machine learning, mobile and distributed computing, pattern matching and
data compression, quantum computing, randomized algorithms, and algorithm
libraries. Submissions were especially encouraged in mathematical programming
and operations research, including Combinatorial Optimization, Integer Pro-
gramming, Polyhedral Combinatorics and Network Optimization.

Each extended abstract was submitted to one of the two tracks. The extended
abstracts were typically read by three or four referees each, and evaluated on their
quality, originality, and relevance to the symposium. The Program Committees
of both tracks met in Karlsruhe on May 24-25, 2008. The design and analysis
track selected 51 papers out of 147 submissions. The engineering and applications
track selected 16 out of 53 submissions.

ESA 2008 was sponsored by EATCS (the European Association for Theoret-
ical Computer Science). We appreciate the critical financial support of ALGO
2008 by the DFG (Deutsche Forschungsgemeinschaft), the KIT (Karlsruhe In-
stitute of Technology), and the Computer Science Department of the University
of Karlsruhe. The EATCS sponsorship included an award for the author of the
best paper “Better and Simpler Approximation for the Stable Marriage Prob-
lem,” by Zoltan Kiraly and for the two best student papers, one from the design
and analysis track: “Deterministic Sampling Algorithms for Network Design,” by
Anke van Zuylen, and one from the engineering and applications track: “Time-
Dependent SHARC-Routing,” by Daniel Delling, as selected by the Program
Committees.



VI Preface

ESA 2008 was held along with the Workshop on Algorithms in Bioinformatics
(WABI), the Workshop on Approximation and Online Algorithms (WAOA),
and the Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems (ATMOS), in the context of the combined conference
ALGO 2008.

Throughout the entire process of submission, selection, and compilation of
the papers into these proceedings, we used the EasyChair system, which was very
convenient and freed us from a lot of the technical chores of Program Chairs.
We are grateful to the EasyChair people for letting us use the system and for
their responsiveness to our queries. We also thank Guy Zucker for his assistance
in compiling the proceedings.

July 2008 Dan Halperin
Kurt Mehlhorn
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Flexible Path Planning Using Corridor Maps

Mark Overmars, loannis Karamouzas, and Roland Geraerts

Department of Information and Computing Sciences, Utrecht University
3508 TA Utrecht, the Netherlands

markov@cs.uu.nl

Abstract. Path planning is a central problem in virtual environments
and games. When computer-controlled characters move around in vir-
tual worlds they have to plan their paths to desired locations. These
paths must avoid collisions with the environment and with other moving
characters. Also a chosen path must be natural, meaning that it is the
kind of path a real human being could take. The algorithms for planning
such paths must be able to handle hundreds of characters in real-time
and must be flexible.

The Corridor Map Method (CMM) was recently introduced as a flexible
path planning method in interactive virtual environments and games.
The method is fast and flexible and the resulting paths are reasonable.
However, the paths tend to take unnatural turns when characters get
close to other characters or small obstacles. In this paper we will improve
on the cMM by decoupling collision avoidance with the environment and
local steering behavior. The result is a method that keeps the advantages
of the cMM but has much more natural steering. Also the method allows
for more flexibility in the desired routes of the characters.

1 Introduction

Virtual worlds are nowadays commonly used in computer games, simulations,
city models, and on-line communities like Second Life. Such worlds are often
populated by computer-controlled characters. The characters must move around
in the environment and need to plan their paths to desired locations. These paths
must avoid collisions with the environment and with other moving characters.
Also a chosen path must be natural, meaning that it is the kind of path a real
human being could take. The algorithms for planning such paths must be able
to handle hundreds of characters in real-time and must be flexible to e.g. avoid
local hazards or incorporate animation constraints.

The path planning or motion planning problem had received considerable at-
tention over the past twenty years and many algorithms have been devised to
tackle it. (See [IL2] for an overview.) These algorithms were mainly developed
in the field of robotics, aiming at creating a path for one or a few robots hav-
ing many degrees of freedom. In virtual worlds the requirements though are
completely different. The environment is very complex and even though path
planning normally can be performed in the 2-dimensional footprint of the envi-
ronment, we still need to deal with thousands of polygons. We need to plan the

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 1-[2, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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(a) Corridor map (b) Backbone path (c¢) Resulting path
Fig. 1. The Corridor Map Method in action

motion of hundreds of characters in real-time using only a small percentage of
the CPU time. Per character only a (fraction of a) millisecond per second cpU
time may be spent on path planning. Also paths need not only be collision-free
but they must also be natural. On the positive side, we can represent the char-
acter as a disk, and, hence, have to deal with only two degrees of freedom of
movement.

In conclusion, virtual world applications require algorithms for path planning
that are fast, flexible, and generate natural paths. In practice, currently two
approaches are common. The first is to let designers script most of the motion, for
example using waypoints, and then using potential field approaches (see e.g. [3])
to avoid obstacles and other characters. Such an approach is only possible when
the virtual world is predefined by designers. It is also expensive because of the
manual work involved. In addition, the method is not very flexible. The potential
field approach has the risk of characters getting stuck in local minima and not
reaching their goals. Also, as can be seen from many (recent) games, it leads to
rather unnatural paths, in particular when waypoints get blocked.

The second common approach is the put a grid on the world and using searches
based on A* to create a path through the empty cells. See for example [4]
[5]. This method is guaranteed to find a path if one exists. However, it lacks
flexibility because a single fixed path is returned. In addition, the paths tend
to be unnatural. Also, even though some optimization algorithms exist, when
the grids get large and the motion of many characters must be planned, the
approach can become too slow to be applied in real-time [6].

Recently, the Corridor Map Method (cMM) has been proposed as a new path
planning method in interactive virtual environments and games [7]. The method
is fast and flexible and the quality of resulting paths is reasonable. Globally
speaking the cMM works as follows (see Fig. [[l for an example). In a preprocess-
ing phase a roadmap of paths is computed for the static part of the environment.
Often the medial axis is used for this. With the roadmap, clearance information
is stored, defining collision-free corridors around the roadmap edges. This data
structure is called the corridor map. When a path planning query must be solved
a backbone path is extracted from the roadmap together with a collision-free cor-
ridor around it. We move an attraction point along the backbone path which
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attracts the character in such a way that no collisions occur with the environ-
ment. This leads the character toward the goal. Local motions are controlled by
potential fields inside a corridor, providing the desired flexibility.

Although the cMmM is fast and flexible, the paths tend to take unnatural turns
when characters get close to other characters or small obstacles. In this paper
we will extend the cMM as follows. We separate the corridor map from the
so-called control network. The corridor map is defined as above. The control
network provides a roadmap of paths that can be used to lead the characters
to their goals. When a query must be solved a control path is extracted from
the control network. With the control path we find a corresponding corridor in
the corridor map. We again move an attraction point along the control path but
this is only used to lead the character to the goal. Separate forces are used to
keep the character inside the corridor. Again we use additional forces to steer
the character away from other characters, small obstacles and other hazards. As
we will show, separating the collision-avoiding forces in the corridor from the
attraction forces along the control path, leads to much more natural paths while
hardly increasing the computation time. We initially still use the medial axis
for the control network but we will also show how even more flexibility can be
obtained by using other control networks and paths.

This paper is organized as follows. In Section 2] we provide definitions of corri-
dors and corridor maps and show how such maps can be computed efficiently. In
Section [Blwe briefly review the original approach for using corridors for path plan-
ning. In Section [ we present our improved approach in which we use the medial
axis as a control network to obtain more natural paths. In sectionBlwe provide re-
sults from experiments that show that the resulting paths are considerably better
than those produced by the original cMM. In Section [f] we will indicate how the
approach can be extended using other control networks and control paths. Finally,
in Section [ we provide some conclusions and plans for further research.

2 The Corridor Map

The corridor map is an efficient data structure representing the (walkable) free
space in the environment. It was introduced by Geraerts and Overmars [7] and we
will outline the most important aspects here. As the walkable space is normally
2-dimensional we will define the corridor map in the plane. The obstacles are
the footprints of the original 3-dimensional obstacles in the environment.

The corridor map is a graph whose edges represent collision-free corridors.
Such a corridor consists of a backbone path and a set of disks centered around
this path. More formally, a corridor B = (B|[t], R[t]) is defined as a sequence
of maximum clearance disks with radii R[t] whose center points lie along its
backbone path BJt]. The parameter ¢ is an index ranging between 0 and 1, and
BJt] denotes the coordinates of the center of the disk corresponding to index t.
Together, the backbone paths form the skeleton of the corridor map. See Fig.
for an example of a virtual city, its footprint, and the skeleton defining the
corridor map.
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(a) 3D model (b) Footprint and skeleton

Fig. 2. The McKenna MOUT training site at Fort Benning, Georgia, USA

We will use the corridors to provide the flexibility to handle a broad range
of path planning issues, such as avoiding other characters and computing nat-
ural paths. To approach these issues, we set the following requirements for the
corridor map. First, if a path exists in the free space then a corridor must exist
in the map that leads the character from its start to goal position. Second, the
map includes all cycles that are present in the environment. These cycles pro-
vide short global paths and alternative routes which allow for variation in the
characters’ routes. Third, corridors extracted from the map have a maximum
clearance. Such a corridor provides maximum local flexibility.

These requirements are met by using the Generalized Voronoi Diagram (GvD)
as skeleton for the corridor map [8]. A GVvD is a decomposition of the free space
into regions such that all points p in a region R(p) are closer to a particular
obstacle than to any other obstacle in the environment. Such a region is called
a Voronoi region. The boundaries of the Voronoi regions form the skeleton (i.e.
the underlying graph) of the corridor map. We refer the reader to Fig. for
an example. The boundaries are densely sampled and with each such sampled
point, we store the radius of the maximum clearance disk centered at this point.
A sequence of these disks forms the corridor.

A GvD can be computed efficiently by exploiting graphics hardware. Like
in [9], we compute a 3D distance mesh, consisting of polygons, for each geometric
obstacle present in the footprint of the environment. Each of the meshes is
rendered on the graphics card in a different color. A parallel projection of the
upper envelope of the arrangement of these meshes gives the GvD. The diagram
can be retrieved from the graphics card’s frame buffer and the clearance values
(i.e. distance values) can be found in the Z-buffer. These steps are visualized in
Fig.[Bl The approach is very fast. For example, the corridor map in Fig. [2(b)| was
computed in 0.05 seconds on a modern PC with a NvIDIA GeForce 8800 GTX
graphics card. Note that the computation of the corridor map happens only once
during preprocessing.
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v puf 8]

) Environment ) Frame buffer ) Z-buffer (d) Corridor map

Fig. 3. Construction of the Corridor map using graphics hardware

3 The Original Corridor Map Method

In our original description [7], the corridor map is used as follows to answer
path planning queries. To plan a path for a character, which is modeled by a
disk with radius r, we first compute the shortest backbone path connecting the
start to the goal. After connecting the start and goal positions to the roadmap,
this backbone path is obtained by applying the A* shortest path algorithm on
the skeleton graph. The corresponding corridor is formed by concatenating the
corridors of the edges of the backbone path. See Fig. for an example of a
backbone path.

The backbone path guides the global motions of the character. Its local mo-
tions are controlled by continuously applying one or more forces to the character.
The basic force steers the character toward the goal and keeps the character in-
side the corridor. For this purpose, we create an attraction point o(x) that runs
along the backbone path and attracts the character.

Definition 1 (Attraction point). Let x be the current position of the character
with radius r. The attraction point «(x) is the point B[t] on the backbone path
B having the largest time index t : t € [0 : 1] such that Euclidean distance

(z, B]t]) < RJt] —

The character is attracted to the attraction point with force F,. Let d be the
Euclidean distance between the character’s position x and the attraction point
a(z). Then

a(x) —x ore f — 1 B 1
lat@) — 2l ™" T = Rl —r—a T R -

The scalar f is chosen such that the force will be 0 when the character is po-
sitioned on the attraction point. In addition, f will be co when the character
touches the boundary of the clearance disk. (However, f will never reach oo since
we require that the radii of the disks are strictly larger than r.)

Additional behavior can be incorporated by adding extra forces to F, re-
sulting in a force F. The final path is obtained by iteratively integrating F over
time while updating the velocity, position and attraction point of the character.
In [7], it is proved that the resulting path is smooth (i.e. C''-continuous). An
example of such a path is displayed in Fig.

Folx)=f
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4 The Improved Approach

In the previous section, we used a force function F, which simultaneously steers
the character toward the goal and keeps it inside the corridor. This sometimes
results in rather unnatural motions, in particular when characters also have to
avoid each other. The cause for this is that due to the choice of the attraction
point, the position of the character lies close to the boundary of the clearance
disk, and, hence, the force F, gets very large.

In this section we will show how to avoid this by decoupling F, into two
forces. The boundary force F;, will push the character away from the boundary
of the corridor. The steering force Fy will guide the character toward the goal.
For the latter we again use an attraction point on a path to the goal. However
this path no longer needs to be the same as the backbone path of the corridor.
Hence, from now on we refer to this path as the control path.

To be able to compute the boundary force we need an explicit representation
of the boundary of the corridor.

4.1 Computing an Explicit Corridor Boundary Representation

Up to now we used an implicit description of a corridor, i.e. the corridor is
retrieved from the map as a sequence of disks. However, such a sequential repre-
sentation does not allow for easy/efficient computation of a closest point on the
boundary which is required for computing the boundary force. Hence, we need
an explicit description of the corridor’s boundary (see Fig. .

We can obtain this description by adding information to the corridor map in
the preprocessing phase. For each sampled point on the skeleton we compute the
set of closest points to the obstacles. By exploiting graphics hardware, we can
efficiently compute these closest points. Let B be a sample point on the skeleton.
We determine the position of B in the frame buffer. Next we consider the colors

|
_/

(a) Closest points stored in  (b) Closest points corre- (c) Explicit representation
the corridor map sponding to a corridor of the corridor’s boundary

Fig. 4. Closest points to the obstacles. By concatenating the points with line segments
and circular arcs, we obtain an explicit representation of the corridor’s boundary.
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of the pixels neighboring B. These colors correspond to unique obstacles and the
closest points must lie on these obstacles. Computing these points can then be
achieved by simple geometric calculations.

Fig.shows the corridor map and corresponding closest points of our running
example. Each sample point is linked to exactly two closest points, except for the
vertices of an edge because they have at least two (and at most four) closest points.

To obtain an explicit description of a corridor’s boundary, we need to know
for each point B which closest point is on the left side and which one is on the
right side with respect to the local orientation of the edge at B. This information
can easily be obtained by inspecting the location of the pixels in the frame buffer
relative to this orientation. An example of a corridor, together with its left and
right closest points, is displayed in Fig.

From this information we can efficiently compute the closest boundary point
¢p(x) to any point z in the corridor. First, the sample point B is retrieved whose
corresponding left (or right) boundary point is closest to point . Then the
previous and next sample point are extracted along with their corresponding
boundary points. In case the three boundary points define a line segment on
the outline of the corridor, the closest boundary point ¢p(x) is computed using
simple linear algebra. Otherwise, ¢p(z) lies on an arc. Let a and b denote the
start and the end of the arc, respectively, and 6 = arccos(a — B,z — B). Then
cp(x) = R(0) (a — B) where R(#) represents the 2D rotation matrix.

4.2 The Boundary Force

To ensure that the character remains inside the corridor, a repulsive force F
from the boundary of the corridor toward the character is applied. Since people
prefer to keep a safe distance from walls, streets, buildings, etc. [IOLIT], such a
force is only exerted if the distance between the character and its corresponding
boundary point is below a threshold value. Let d, be the Euclidean distance
between the character’s position x and its corresponding closest point ¢p(z) on
the boundary of the corridor. Let r be the radius of the character and let dgafe
denote the preferred safe distance. Then the force is defined as follows:

b |33—CPEUU;|’ if db—?" < dsafe
r —cp(x
F) = b
0 otherwise.
dsate —dy . .
The scalar ¢, = fe 7 ® is chosen such that the force will become oo

b
when the character and the boundary point touch. By modifying the safe distance
dsate @& wide variety of behaviors can be achieved. A typical value that is also
used in our experiments is to set dsafe = r

! Note that the safe distance should be taken into account upon the extraction of a
corridor. i.e. R[t] > r + dsate. Otherwise, the character will be continuously pushed
from the left to the right side of the corridor and vice versa (dp will always be less
than r 4 dsate and hence, a F, will be exerted on the character at every time step).
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4.3 The Steering Force

The character should also feel the urge to move forward toward its goal position.
Thus, at every time step a steering force Fy is needed to guide the character at
position x toward an attraction point «(z). The force is defined as

alz) —x

Fs = Cs ’
llo(z) — ]

where ¢ specifies the relative strength of the force. This scalar can remain fixed,
or it can vary depending on the distance between the character and the attraction
point, making the character speed up or slow down. In our experimental setting
we used c; = 1.

Having defined the forces that acted upon the character, we calculate its
new position by numerically integrating its acceleration and velocity. We use
an integration scheme that is quite stable and can deal with stiff differential
equations. In our simulations we used Verlet integration with step size At = 0.05
and set the maximum acceleration to 5m/s? in order to keep the error minimal.

5 Experiments

We have implemented the new method to experimentally validate whether it can
generate paths that are smoother than the ones computed by the original cMM.
All the simulations were performed on a Pentium IV 2.4 GHz computer with
1GB memory.

The experiments were conducted for the environment depicted in Fig.[2l This
is a model of the McKenna MOUT (military operations in urban terrain) training
center, hosted at Fort Benning, Georgia, USA. Its corridor map, displayed in Fig.
2(b)l was computed in 0.3 seconds (0.05s for the GvD and clearance, and 0.25s
for the closest points).

In all of the experiments we used the medial axis as the control network of the
new method and defined the attraction points as in the original cMM. Therefore,
the two approaches were only differentiated by the forces used to generate the
character’s motion inside the corridor. In the original cMM the attraction force
F, makes the character both move forward and stay inside the corridor, whereas
in the new approach the two forces (Fs + F}) are used to guide the character
through the corridor.

To evaluate the quality of the paths when avoiding other characters we popu-
lated the environment with a number of static characters (obstacles). We chose
static characters because this makes it easier to compare the results. To avoid
the static characters, an additional collision response force has to be applied
on the character. Thus, both of the methods were enhanced with a simple ob-
stacle avoidance model [7]. At every iteration a repulsive force is exerted from
each obstacle O; : i € [1 : n] that lies inside the clearance disk corresponding to
the attraction point «(x) of the character. This force is monotonically decreasing
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(a) Path generated by the original (b) Path generated by the revised
CMM. method.

Fig. 5. Comparing the paths generated by the original and the revised cMM

with the Euclidean distance d; between the obstacle O; and the character’s
position x. Given the radius r of the character and the radius r; of each obstacle,
the total repulsive force Fops can be computed as

1
obs g Cob@ where Cobs = .
O H di -1, =T

5.1 Results

Fig. Bl shows the paths created by the two methods for an example query (r =
0.75, r; = 1). It must be pointed out that some of the artifacts in the resulting
paths are due to the simple obstacle avoidance method that was used. A more
sophisticated approach would have improved the quality of the paths. However,
our goal was to evaluate the two methods regardless of any specific details.

To quantitatively describe the quality of the resulting motions we measured
the length as well as the average curvature of the paths. Given any three suc-
cessive points on a path we approximated the curvature at the middle point as
k = 1/p, where p is the radius of the circumscribing circle that passes through
each of these three points. By taking the average over all points we were able to
detect poor and irregular paths.

Table [ shows the corresponding statistics for the two paths. As it can be
inferred both by the table and Fig. the original cMM generates a longer
and more erratic path (high-curvature). Due to the way the attraction point
is defined (furthest advanced point for which the character is still enclosed by
the clearance disk), at every integration step the character lies very close to
the boundary of the disk. Thus, an almost infinite attraction force steers the
character, rendering impossible to exhibit smooth motions when other obstacles
and/or entities are present in the environment. The character has to be very
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Table 1. Curvature and path length statistics for the example query, shown in Fig.

Compared Methods
Original CMM Improved Method
Path Length 155.12 150.61
Avg. Curvature 0.27 0.13

close to an obstacle to avoid it, and only at the very last moment, it changes its
direction (i.e. when the repulsive force from the obstacle becomes very strong).
Hence, the resulting motion is far from realistic.

The revised method handles the obstacles more naturally, generating a
smoother path (i.e. the path is shorter with less curvature). As it can be ob-
served in Fig. the oscillations noted in the original method are reduced.
The character is more “relaxed”, in the sense that it is not pulled toward the
attraction point with an infinite force. Therefore, if an obstacle is encountered
the character will start evading soon enough, ensuring a more realistic behavior.

Other queries in the same and other scenes led to similar results. The per-
formance of the two methods was similar (i.e. computing the closest boundary
points and decoupling the attraction force into two separate forces influenced
the running time marginally). Hence, we can conclude that the revised approach
has clear advantages over the original cMM. It is more flexible, it provides better
control over the character’s motion and consequently leads to more believable
paths.

Clearly, the quality of the resulting paths can be further improved by varying
the parameters of the revised model and by using a more elaborate approach
for collisions avoidance, like Helbing’s social force model [12]. For example, more
convincing paths can be obtained, as displayed in Fig. G as follows. We can
increase the safe distance that the character keeps from the boundary of the
corridor (dsafe = 27). In addition, we can apply a repulsive force only for obstacles
that are perceived within the character’s desired direction of motion.

6 Using Alternative Control Paths

Up to now we have used the medial axis as the control network. This works fine in
environments in which there are no wide open spaces. However, it will encourage
the characters to stay in the middle of the corridors which can be unnatural. So
in practice one might want to use alternative control networks and control paths.
Such control networks could be indicated manually by a designer to encourage
certain character behavior. Also they could be computed automatically based
on required behavior. For example we could use the Voronoi-Visibility diagram
as introduced in [I3] that allows for shortcuts when there is enough clearance.
Alternatively we can determine control paths during queries based on perceived
danger or interesting places that characters like to visit.
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Fig. 6. An alternative path is obtained by increasing the safe distance from the bound-
ary of the corridor

Using alternative control paths is possible but leads to a number of complica-
tions. First of all, given such a control path we need to compute the correspond-
ing corridor. The easiest way to achieve this is to retract the control path onto
the medial axis [14]. Using the boundary representation described in Section [
this can be done efficiently.

Secondly, we need a method to choose the location of the attraction point
on the control path. The method described above, in which we pick the furthest
point along the control path for which the character still lies within the clearance
disk, will not be suited anymore when the control path passes close to obstacles.
Different options are possible here. We can use an attraction point that moves
with constant speed (as long as the character does not lag too far behind). We
can also use an attraction point at a particular distance from the character
(that can vary over the control path and will determine how closely the control
path must be followed). Or we can pick the attraction point based on visibility,
although such calculations are relatively expensive. In a future paper we will
explore these possibilities further.

7 Conclusions

In this paper we have presented an improved version of the Corridor Map
Method. The method can be used to plan in real time natural paths for a large
number of characters in complicated environments. It is relatively easy to imple-
ment and is flexible enough to incorporate many additional constraints on the
resulting paths.

We are currently investigating the effect of using alternative control paths on
the behavior of the characters. Also we are studying improved local force models
that create even better paths in environments with many moving characters. We
also want to incorporate the notions of dangerous and interesting regions and we
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want to incorporate small groups of moving characters that stick together. This
all should lead to very efficient and high-quality path planning for individuals,
groups and whole crowds of computer-controlled characters.
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Abstract. We propose a bridging model aimed at capturing the most
basic resource parameters of multi-core architectures. We suggest that
the considerable intellectual effort needed for designing efficient algo-
rithms for such architectures may be most fruitfully pursued as an effort
in designing portable algorithms for such a bridging model. Portable al-
gorithms would contain efficient designs for all reasonable ranges of the
basic resource parameters and input sizes, and would form the basis for
implementation or compilation for particular machines.

1 Introduction

The designer of parallel algorithms for multi-core computers has to face at least
four sources of considerable challenge. First, the underlying computational sub-
strate is much more intricate than it is for conventional sequential computing and
hence the design effort is much more onerous. Second, the resulting algorithms
have to compete with and outperform existing sequential algorithms that are
often much better understood and highly optimized. Third, the ultimate reward
of all this effort is limited, at best a speedup of a constant factor, the number
of processors. Fourth, machines differ, and speedups obtained for one machine
may not translate to speedups on others, so that all the design effort may be
substantially wasted. For all these reasons it is problematic how or whether effi-
cient parallel algorithms will be created and exploited in the foreseeable future,
in spite of the many relevant algorithmic discoveries that have been made by
researchers over the last several decades.

We have argued previously that the general problem of parallel computing
should be approached via two notions [13, 28]. First, it needs to be recognized
as a primary goal to write portable parallel algorithms those that are parameter-
aware and designed to run efficiently on machines with the widest range of
performance parameters. Second, such portable algorithms have to be supported
by a bridging model, one that bridges in a performance-faithful manner what
the hardware executes and what is in the minds of the software writer. It is
this bridging model that defines the necessary performance parameters for the
parameter-aware software.

The originally proposed bridging model was the BSP model [28]. Its main
features are that: (i) it is a computational model, (ii) it incorporates numerical
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parameters that reflect ultimate physical constraints, and (iii) it has as its non-
local primitive barrier synchronization which is powerful and relatively easy to
realize.

In this paper we introduce the Multi-BSP model which extends BSP in two
ways. First, it is a hierarchical model with an arbitrary number of levels that
recognizes the physical realities of multiple memory and cache levels in single
chips, as well as in multi-chip architectures constructed from these. The aim is
to model all levels of an architecture together. An algorithm that is aware of the
relevant parameters at only some of the levels will not be portable in any useful
sense. Second, at each level, Multi-BSP incorporates memory size as a further
parameter. After all, it is the physical limitation on the amount of memory that
can be accessed in a fixed amount of time that creates the need for multiple
levels.

The Multi-BSP model for depth d will be specified by 4d numerical parameters
(p1, 91, L1,m1)(p2, g2, L2, m2)(p3, 93, Lz, m3) - - - (pd, gd, La, ma). It is a depth d
tree with memories/caches at the internal nodes and processors at the leaves.
At each level the four parameters quantify, respectively, the number of subcom-
ponents, the bandwidth, the synchronization cost, and the memory /cache size.

It may be thought that proliferating numerical parameters only further ex-
ponentiates the difficulty of designing parallel algorithms. The main observation
of this paper is that this is not necessarily the case. In particular we show, by
means mostly of well-known ideas, that for problems such as matrix multipli-
cation, fast Fourier transform and sorting, for which optimal algorithms can be
written with the few parameters of the standard BSP model, the same holds also
for an arbitrary number of levels. Our purpose is to persuade that it is feasible
and beneficial to write down the best algorithmic ideas we have in a standard-
ized form that will be compilable to run efficiently on arbitrary machines and
guaranteed to be optimal in a specifiable sense .

In order to elucidate this striking phenomenon, we shall define a parameter-
free notion of an optimal Multi-BSP algorithm with respect to a given algorithm
A to mean the following: (i) It is optimal in computation steps to within additive
lower order terms, (ii) it is optimal in total communication costs to constant mul-
tiplicative factors among distributed (even non-Multi-BSP) algorithms, and (iii)
it is optimal in synchronization costs to within constant multiplicative factors
among Multi-BSP algorithms. Insisting on optimality to a factor of 1 in one of
the measures is significant and distinguishes this work from much of the parallel
algorithms literature. We also note that the multiplicative factors in the other
two measures will be independent of the p, g, L and m parameters, but may
depend on d. Of course, specifying particular constant multipliers for all three
measures would give even stricter notions of optimality, and would be needed
when designing actual portable algorithms.

There have existed several previous models that have substantial commonality
with Multi-BSP. Using memory size as a fourth BSP parameter was proposed
and investigated by Tiskin [27] and by McColl and Tiskin [22]. In a different
direction a variety of hierarchical versions of BSP have been proposed such as
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the D-BSP of de la Torre and Kruskal [9], which has been further investigated
by Bilardi et al. [5, 6]. The D-BSP captures hierarchies in communication while
Multi-BSP seeks also to capture hierarchies in the cache/memory system. In [6]
a cache-oblivious [10] result is proved in this network hierarchical context that,
like our analyses, allows for arbitrary parameters at each level.

In a different direction, numerous models have been proposed for studying
varieties of memory or cache hierarchies both in the sequential [1] and in the
parallel [30] contexts. In Alpern et al. [3] a tree structure of memories akin to
ours is defined. For such hierarchical models in both the sequential and paral-
lel contexts authors have generally taken some uniform cost view of the various
levels, rather than analyzing the effect of arbitrary parameters at each level. Sav-
age [24] has analyzed the communication requirements of a hierarchical memory
model, with arbitrary parameters at each level, using a generalization of the
Hong-Kung [17] pebble model. Very recently, also motivated by multi-core ma-
chines, multi-level cache models have been proposed and analyzed by Blelloch
et al. [7], Chowdhury and Ramachandran [8], and Arge et al., [4]. The analyses
published for these have been for two levels with arbitrary parameters.

In comparison with the previous literature we emphasize that our goal is that
of finding a bridging model that isolates the most fundamental and unevadable
issues of multi-core computing and allows them to be usefully studied in some
detail. The Multi-BSP model reflects the view that fundamentally there are just
two unevadable sources of increasing cost that the physical world imposes at
increasing distances: (i) a cost ¢ for bandwidth, and (ii) a cost L related to la-
tency that must be charged for synchronization and for messages that are too
short. The model is a comprehensive model of computation in that it has mech-
anisms for synchronization as well as for computation and communication. The
suggestion is that these unevadable costs already capture enough complications
that we would be best advised to understand algorithmic issues in this bridg-
ing framework first. Designing algorithms for more detailed performance models
that reflect further details of particular architectures may be regarded as further
refinements.

There are of course several issues relevant to multi-core computing that we do
not explore here. One is the use of multi-core for executing independent tasks,
or code automatically compiled from sequential code, or code compiled from
languages in which parallelism is expressed but not scheduled. This paper is
predicated on the idea that there will be a demand for exploiting multi-core ar-
chitectures beyond what is possible by these means. Another issue not discussed
here is the role of non-homogeneous cores [16, 21].

The main commonality between the previous literature and our algorithmic re-
sults is the observation that certain recursive algorithms are well suited to models
with multiple parameters. We push this observation further by allowing an arbi-
trary number of arbitrary parameter. One can paraphrase our main point as one
that asserts that for computational problems for which parallelism is understand-
able, it is sometimes the case that it is embarrassingly understandable. However,
even for these, programming them to be efficient for all input sizes for even one
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machine is an onerous task. Our suggestion is that with the use of a bridging model
it may be possible for these and other problems to make one big effort once and
for all to write a program that is efficient for all inputs and all machines.

2 The Multi-BSP Model

To define an instance of Multi-BSP we fix d the depth or number of levels, and 4d
further parameters (p1,g1, L1,m1)(p2, g2, L2, m2)(ps, g3, Ls, m3) - -+, (Pds 9d;
Lg,mq). At the i*" level there are a number of components specified by the pa-
rameters (p;, gi, L;, m;) and each containing a number of i — 1! level components,
where:

(i) p; is the number of 5 — 1%¢ level components inside an i*" level component.
If i = 1 then p; is the number of raw processors in this lowest level component.
One computational step of a raw processor on data in level 1 memory is taken
as one basic unit of time.

(ii) g4, the communication bandwidth parameter, is the ratio of the number
of operations that a raw processor can do in a second, to the number of words
that can be transmitted in a second between an i** level component and the
memory of the i + 15¢ level component of which it is a part. A word here is the
amount of data on which a raw processor operation is performed. Note that we
shall assume here that the level 1 memories can keep up with the raw processors,
or in other words that gq if it were defined would have value 1.

(iii) A level 7 superstep is a construct within a level ¢ component that allows
each of its p; level ¢ — 1 components to execute independently until they reach
a barrier. When all p; of them have reached the barrier all its p; level i —
1 components can exchange information with the m; memory of the level i
component. The next level ¢ superstep can then start. L; is the cost charged for
this barrier synchronization for a level 7 superstep. (In this paper we use L1 = 0,
since the subcomponents of a level 1 component have no memories and directly
read from and write to the level 1 memory.)

(iv) m; is the number of words of memory and caches inside an ‘" level
component that is not inside any i — 1°¢ level component.

Finally we have to specify the nature of the communication between a level
1 and the level i + 1 component of which it is a part. The question is whether
concurrent reading or writing (or some other combining operation) is allowed in
either direction. The algorithms in this paper are all exclusive read and exclu-
sive write (EREW), while the lower bounds hold for the strongest concurrent
(CRCW) version.

We note that the parameters of the model imply values for certain other useful
measures. The number of raw processors in a level ¢ component will be P; =
p1 -+ - p;. The number of level i components in a level j component will be Q; ; =
Di+1 - Dj, and the number in the whole system will be Q; ¢ = Qs = pit1 - Da-
The total memory in a level ¢ component will be M; = m;+p;m;_1+p;—1pim;—o+

~-+4po - pi—1pimi. The gap or bandwith parameter that characterizes the cost
of communication from level 1 to outside level i1 is G; = g;+¢;—1+¢gi—2+- -+ 9g1.
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Since the intention is to model the entire system, defining as many levels as
necessary, we assume by convention that Q4 = 1 and that g4 is infinite. The
latter condition reflects the fact that there is no communication analysed off
the level d components. For the same reason it is assumed that for any problem
instance of size n and an algorithm for it, the level d memory is sufficient to
support the computation, and certainly mg > n. In the applications in this
paper mg = O(n) is sufficient.

We make the assumption that for all ¢

m; > Mmi_q (1)

in order to simplify certain analyses. Also, we sometimes invoke the assumption
that for for some constant ¢ > 0

m; Z CMZ‘ (2)

which is true with ¢ = 1/d for conventional caches where any word at one level
has copies at every higher level. We note that in the treatment here we do not
otherwise distinguish between memory and caches.

As far as relationships to other models we note that the depth d = 1 Multi-
BSP with (p1 > 1,91 = 1, L1 = 0,my) is the PRAM [11, 20] model. Of course,
(pr = 1,91 = 1,L1 = 0,my) is the von Neumann model. The BSP model [26]
with parameters (p, g, L) where the basic unit has memory m corresponds to
d=2with (p1 = 1,91 = g,L1 = 0,m1; = m)(p2 = p, g2 = 00, Ly = L, ms). The
difference is that in the basic BSP model communication is allowed horizontally
between units at the same level, while in Multi-BSP such communication would
need to be simulated via memory at a higher level. This (p1 = 1,91 = g, L1 =
0,m1 =m)(p2 = p, g2 = 00, Ly = L, ms) corresponds precisely to the BSPRAM
model of Tiskin [27].

In general, in expressing resource bounds Fi, F5 in terms of the parameters
{pi, gi, Li,m;|1 <i < d} and the input size n, we shall define F; < Fb to mean

~

that for all e > 0, Fy < (14 ¢)F> for all sufficiently large values of n and of m =
min{m;|1 < i < d}. This enables expressions such as (1 + 1/m;), (1 + 1/m}/2)
or (1+1/logm;) to be approximately upper bounded by 1.

Also, we define F} =4 F5 to mean that for some constant ¢q depending possibly
on d but on none of the parameters {p;, g;, L;, m;|1 < i < d} or n, F} < cqF» for
all sufficiently large values of n and m.

Because we can suppress constant multipliers with these notations, in the
discussion where appropriate we shall assume that the various parameters are
appropriate multiples of each other, and sometimes write m;, for example, for
some fixed multiple of itself.

For a Multi-BSP algorithm A* we shall define Comp(A*), Comm(A*), and
Synch(A*) to be the parallel costs of computation, computation, and synchro-
nization respectively on a Multi-BSP machine H in the sense that for any com-
putation of A* on H and along any single critical path in it, at most Comp(A*)
raw processor steps have been executed and at most Comm(A*) communication
charge and at most Synch(A*) synchronization charge has been incurred. (For
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randomized algorithms the same claim holds with high probability.) Note that
all three charges are expressed in terms of the basic unit of time taken by a raw
processor to perform one operation.

To quantify the efficiency of A* we specify a baseline algorithm A of which
A* is the Multi-BSP implementation and for that:

(i) Comp(A) is the total number of computational operations of A divided by
P, the total number of raw processors in H.
(ii) Comm(A) is the minimal communication cost on any distributed implemen-
tation of A with the M; and p; parameters of H. Thus it certainly lower bounds
the best Multi-BSP algorithm on H.
(iii) Synch(A) is the minimal synchronization cost of any Multi-BSP implemen-
tation of A on H.

A Multi-BSP algorithm A* is optimal with respect to algorithm A if
(i) Comp(A*) 3 Comp(A),
(ii) Comm(A*) =g Comm(A), and
(iii) Synch(A*) 24 Synch(A4).

Allowing at each level some efficiency loss in communication and synchroniza-
tion is tolerable for problems for which computational costs dominate asymptot-
ically. It frees the analysis of several concerns, such as whether the input size is
exactly of the right form, such as being an exact multiple of the memory sizes.
Analogous to the role of the polynomial time criterion in sequential comput-
ing, we believe that freeing the algorithm designer from the tedium of certain
well-chosen optimality criteria will encourage the development of practical al-
gorithms. In this instance we permit a constant factor inefficiency at each level
in the communication and synchronization, but not in computation. In all three
measures additive lower order terms that have a vanishing relative contribution
as the input size n and m = min{m;|1 < i < d} grow, are also allowed.

It has been amply demonstrated that the performance of one level parallel
machines can be well modeled by appropriate BSP parameters [14, 15]. The ar-
chitecture of multi-core machines is still evolving. The most appropriate way of
modeling them by Multi-BSP parameters is yet to be determined. Of course, we
can read off some approximations to these parameters from technical specifica-
tions of existing architectures. For example, consider a parallel machine consist-
ing of p Sun Niagara UltraSparc T1 multi-core chips connected to an external
storage device that is large enough to store the input to the problem at hand.
Then the parameters of the chip according to one interpretation of the specifica-
tions and modulo the serious qualifications listed below, would be the following:

Level 1: 1 core has 1 processor with 4 threads plus L1 cache: (p1 = 4,91 =
1,L7 = 3,m; = 8kB).

Level 2: 1 chip has 8 cores plus L2 cache: (p2 = 8,92 = 3,L5 = 23,mg =
3MB).

Level 3: p multi-core chips with external memory mgs accessible via a network
accessible at rate gs : (p3 = p, g3 = oo, L = 108, mg < 128GB).
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Now the qualifications include the following: First, the L*-parameters listed
are certain latency parameters given in the chip specifications, rather than the
cost of a synchronization which is needed in the BSP interpretation. Second, the
caches on the chip are caches with certain cache protocols, rather than memories
where addressing is fully controlled. Third, in the actual chip the lowest level
processors run four threads sharing a processor, and groups of processors share a
common arithmetic unit. Hence, while the relative values shown of the various g
values and the various L* values are meaningful, their absolute values are harder
to pin down.

We note, however, that while we advocate that the proposed bridging model
be faithful to physical realities in terms of numerical parameters, we also be-
lieve that there is room for architects to design systems that are faithful to the
bridging model. For example, if it turns out that the Multi-BSP model is a good
vehicle for the design of parallel algorithms then it would seem reasonable that
architectures should reflect it, by efficiently supporting the associated synchro-
nization operation as well as by allowing more explicit control of the caches.

3 Work-Limited Algorithms

Our proofs of optimality for communication and synchronization all derive from
lower bounds on the number of communication steps required in distributed
algorithms and are direct applications of previous work, particularly of Hong
and Kung [17], Aggarwal and Vitter [2], and Irony, Toledo and Tiskin [18].

Defn. An algorithm A is w(m)-limited if when the algorithm execution is par-
titioned into disjoint sequences S1, ..., Sy of operations each sequence S; using at
most m words of memory for reading and writing, each sequence S; consists of
no more than w(m) operations.

Note that such a memory limitation to m words imposes the twin constraints
that at most m words can be used as data by the algorithm fragment, and at
most m words can be used to pass values computed in this fragment to later
computation steps.

We first consider associative composition AC(n): Here, given a linear array A
of n elements, an associative binary operation ® on these elements, and disjoint
contiguous sublists of A, the object is to compute the composition of each sublist
under ® in some order.

Proposition 1. For any n and m, any algorithm with minimum total operations
for associative composition AC(n) is (m — 1)-limited.

Proof. On sublists of total length m at most m — 1 operations can be performed.(J

Next we consider the problem MM(n x n) of multiplying two n x n matrices by
the standard algorithm, where the additions can be performed in any order.

Proposition 2. For any n and m, the standard matrix multiplication algorithm
MM(n x n) is O(m>/?)-limited.
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Proof. This is proved by Irony, Toledo and Tiskin[18] and follows a closely
related result of Hong and Kung [17]. O

Next we consider FFT(n) the standard algorithm for computing the one-
dimensional Fast Fourier transform on n points.

Proposition 3. For any n and m, the standard fast Fourier transform algorithm
FFT(n) is O(mlogm)-limited.

Proof. This has been shown by Hong and Kung [17] and by Aggarwal and
Vitter[2]. O

Finally we shall consider Sort(n) the problem of sorting where the only operation
allowed that is dependent on the elements to be sorted is pairwise comparison,
and these are the only operations counted.

4 General Lower Bounds

Our lower bound results we derive using the approach of Irony, Toledo and Tiskin
[18]. The communication bounds will be stated for Multi-BSP but, except for
sorting, the lower bound arguments hold more generally for all distributed algo-
rithms with the same hierarchy of memory sizes and costs of communication. In
other words, they hold even if communication happens at arbitrary times.

Lemma 1. Suppose W computational steps are to be performed of a w(m)-limited
algorithm on a Multi-BSP machine. Then the total number of words transmitted
between level j components and the level j + 1 components to which they belong
is at least

M;(W/w(2Mj) — Q;), 3)
and the total number of component supersteps at least
W/w(Mj). (4)

Proof. The lower bound we argue for any distributed algorithm, even if the
data exchanges are regarded as going at arbitrary times rather than bulk syn-
chronized. For each level j component divide the computation into phases, where
each phase ends when the total number of messages sent to or received from level
J + 1 reaches M;. In each phase therefore at most 2M/; words are available, in-
cluding those residing in memory before the start of the phase. Then at most
w(2M;) operations can be performed by each phase. It follows that the total
number of such component phases is at least W/w(2M;). Further, each of these
phases must complete and involve a movement of M; data except possibly the
last phase for each component. Hence the total amount of data movement be-
tween level j and level j + 1 is at least as claimed in (3).
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By the same argument, since in component supersteps at most w(M;) steps
can be performed, at least W/w(M;) component supersteps are needed, which
gives (4). O

Theorem 1. Suppose W(n) operations are to be performed of a w(m)-limited al-
gorithm A on input size n on a depth d Multi-BSP machine. Then the bandwidth
cost over the whole machine is at least

Comm(n,d) Za Y (W(n)/(Quw(2M,)) — 1)Mig; ()
i=1--d—1
and the synchronization cost at least
Synch(n,d) Za Y W(n)Liw1/(Qiw(M,)) (6)
i=1-d—1

Proof. This follows from Lemma 1 by adding the costs over all the levels. Con-
sider the @1 paths from the level 1 components to the level d component in the
tree hierarchy as potential critical paths of the executions. The average load on
these, and hence the worst case also, is as claimed in (5) and (6). O

Corollary 1

AC-Comm(n,d) 74 Z (n/(M;Qq) — 1) M,;g; (7)
i=1--d—1
AC-Synch(n, d) =g Z nliy1/(QiM;) (8)
i=1--d—1
MM-Comm(n x n,d) Za Y. (n®/(Q:M;"?) = 1)M;g; 9)
i=1--d—1
MM-Synch(n x n,d) 7= Z 3Liv1/(QiM 3/2) (10)
i=1--d—1
FFT-Comm(n,d) =g Z (nlog(n)/(Q:M;log M;) — 1)M,g; (11)
i=1--d—1
FFT-Synch(n,d) =4 Z nlog(n)Lit1/(QiM;log M;) (12)
i=1--d—1
Sort-Comm(n, d) Z (nlog(n)/(Q;M;log M;) — 1)M,g; (13)
i=1--d—1
Sort-Synch(n, d) Z nlog(n)L;t1/(QiM;log M;) (14)
—1-d—1

Proof. Applying Theorem 1 directly gives the first six inequalities. The bounds
for sorting follow from an adversarial argument in the style of [2]. O
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5 Optimal Algorithms

We shall describe algorithms that at every level 5 component will execute super-
steps that perform Qg(w(m;)) computational operations on the average, where
Q4 denotes that the multiplicative constant in the lower bound can depend on d
but on none of the other parameters. This is optimal up to constant factors for
communication, even over algorithms that are not constrained to be Multi-BSP,
under assumption (2) which allows us to replace M; by m; in lower bounds.
They will also be optimal up to constant factors for synchronization among
Multi-BSP algorithms, since they communicate as infrequently as possible, only
when communication is unavoidable.

In describing algorithms we shall use the term level j (global) superstep to
refer to all the @; level j components executing a superstep in parallel (but not
necessarily simultaneously.) A level j component superstep will refer to what a
single level j component performs in a level j superstep.

For each of the algorithms described below it is easy to verify that the condi-
tion Comp(A*) 3 Comp(A) of optimality is satisfied, and we shall not comment
on this further.

5.1 Associative Composition

For AC(n) consider the recursive process where each level j component contains
contiguous sequences of total length m;, distributes the task of performing the
required compositions of subsequences of length m;_; of those sequences to its p;
subcomponents, and when it receives the results back it performs up to m;/m;_1
further pairwise ® operations recursively.

The costs of the recursion at one level j component can be divided into (i)
the data movement steps between the level j component and its level j — 1
components, and (ii) the recursive computation of the m;/m,_1 further pairwise
® operations. For (i) since at most m;/m;_1 times in the overall computation a
level 7 — 1 memory has to be filled with information from level j (and one word
returned), the cost of communication at this level is at most

(my/(pymj—1))(mj—1 +1)gj—1 T mjgj—1/p;
and the total cost of synchronization at most
< mjL;/(pjmj—1)

For (ii) we observe that the cost corresponds to the original problem for a
level j superstep component, but for input length m;/m;_q rather than m;. In
other words its costs are AC-Comp(m;/m;_1,7), AC-Comm(m,;/m;_1,7) and
AC-Synch(m;/m;_1,7). Hence,

AC-Comm(m;, j)
< mygi-1/piHmg/(pjmj-1))AC-Comm(my—1, j—1HAC-Comm(m; /m;—1,5)
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and

AC-Synch(my, j) 3 m;L;/(pjmj-1)+ (m;/(pjm;j—1))AC-Synch(m;_1,j — 1)+
AC-Synch(m; /m;1,j)

Expanding the first gives

AC-Comm(m;, j)
Z(mjgj—1/pj+(m;/(pjmj—1))AC-Comm(myy, j=1)) (11 /mj_r+1/m3_; ---)
Sa (mjgj—1/pj + (m;/(pym;—1))AC-Comm(m;1,j — 1)).

Since we can equate the input size n with my, it follows by induction on j that

AC-Comm(n,d) Zq4 Z ng;/Qi. (15)
i=1-d—1

Expanding the second recurrence gives in exactly the same way

AC-Synch(n,d) Za »  nLit1/(Qims). (16)
i=1--d—1

5.2 Matrix Multiplication

For matrix multiplication w(m) = O(m3?2) and in a level j superstep it is
optimal to within constant factors to do w(3m) operations per component having
total memory 3m, by inputting an m'/2 x m!/2 submatrix of each of A and B,
computing the products of these submatrices, and outputting the m sums as
contributions to each of m entries in the appropriate m'/? x m!/2 submatrix of
C = AB.

. 1/2
Hence at level 1 a component superstep consists of an m /

1/2
1 XMy

ma-
trix multiplication. Overall one will need n3/ mf/ * such executions, and hence

n?/(Qq mzls/ 2) level 1 component supersteps where @1 is the total number of level
1 processors.
In general, a level j component superstep consists (within multiplicative con-
1/2 1/2
stant factors) of an m;"~ x m;

J
n3/ m3/? such component supersteps, and hence n®/(Q;m

J
In a level j local superstep there will be m:;/ 2

steps of mjli 21 X mjli 21 matrix multiplications. In addition we will charge to this
level the further mj(m}/ 2 / mjlé 21) = mi/ 2 / mjlf 21 additions needed to combine the
results from the level 7 — 1 local supersteps. For the latter operations we will
use m;/ 2 /mjli 21 successive Associative Composition operations AC(m;, j)) we
analyzed earlier, each such operation performing compositions on various sets of
size m;/z/m;/_zl. Hence using (15) and @; > 1, the total communication cost we
charge at level j is

(n3/(m%2Q)))(gymy + (m}/? fm}/% ) AC-Comm(my, 1))

Za (03 (32 Q)) (gymy + (m) 2 fmi ) Sy 1 96/ Q)
Zandg;/(my2Q;) + (n® /m} ) Y 91/ Qi.

matrix multiplication. Overall one will need
3/2
J

/(m?ﬁ) level j-1 local super-

) global supersteps.
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Hence adding over all levels gives

MM-Comm(n x n,d) 34 Z (n*g:/ Qi) (1/m1/2)
i=l1-d—1 k=i-d—1
San® Y gm;?/Q; (17)
j=lod—1

since by (1) the m; are nondecreasing in j. Assuming (2) this meets the lower
bound (9).
Similarly, the total charge for synchronization at level j is

(n3/(Qym% ) (L1 + (m}/? Jm}/%)AC-Synch(my, 7))
24 (03 (mY?Q)) (L1 + (m 3/2/m}£21> ity Li1/(Qimy)
Za L /(m?Qp) + 3 /m %) Sy List/ Qi

Hence adding over all levels gives

MM-Synch(n x n,d) 24 Z (n®Liv1/Q:) Z (l/mg/Q)

i=1--d—1 k=i--d—1

ZSan’® Z Ly+1m_3/2/Qg (18)

j= —1

since by (1) the m; are nondecreasing in j. Assuming (2) this meets the lower
bound (10).

5.3 Fast Fourier Transform

We consider the FFT problem for input size N = 2% as a straight line program
where each operation corresponds to a node, and an operation at layer k is a
linear combination of the values produced at its two antecedent nodes at level
k — 1. The operation sequence can be represented as a directed acyclic graph
with nodes (i1i2-- -4y, k) where ¢; € {0,1} and k € {0,1,---,u}, and edges
((iviz - - du, k), (iri2 - iy, k + 1) and ((ird2 - iy, k), (i1d2 iy - Gu, b + 1))
where for ¢ € {0,1},i* € {0,1} is the complement, namely ¢ +¢* = 1 mod 2.

Our basic algorithm FFT(m;, z, j) for 2 FFTs on disjoint sets of m;/x points
all initially held in the level 7 memory with the output to be held also at that
level will be performed by doing

(i) mj/m;_1 problems of type FFT(m;_q,1,j — 1), and
(ii) on the m; values so obtained doing FFT(m;,am;_1,j).

In other words (i) will solve each disjoint set of m;/x points by doing m; /(xm;_1)
FFT’s on m;_; points each, and (ii) states that the effect of this is to increase the



A Bridging Model for Multi-core Computing 25

number (and hence reduce the size) of the resulting FFT problems remaining by
a factor of m;_1. Note that after r = logm;/logm,_; iterations of steps (i) and
(ii) together, FFT(m;,x,j) will be called with m; = =z, which requires no op-
erations. Hence if we denote by FFT-Comm(m;, z, j) and FFT-Synch(m;, z, j)
the communication and synchronization costs of this task then

FFT-Comm(m;,z,j) = (m;/(mj—1p;))mj—19j—1 + FFT-Comm(m;_q,1,j—1)]
+ FFT-Comm(m;, xm;_1,j)

and

FET-Synch(my, z,j) = (m;/(m;-1p;))[L; + FFT-Synch(m;_1,1,7 — 1)]
+ FFT-Synch(m;, xm;_1, j).

Expanding the first gives for r = logm;/logm;_; that

FFT-Comm(m;,z, j)
= (mj/(mj-1p;))m;-1gj-1 + FFT-Comm(m;_y,1,j — 1)]

+ (mj/(mj-1p;))[mj-1g-1 + FFT-Comm(m;_1,1,j — 1)]
+ FFT-Comm(m;, z(m;-1)", j),

= r(m;/(mj-1p;))[mj-19;—1+ FFT-Comm(m;_1,1,j — 1)]

(logm;;/ logm;—1)g;-1m;/p;
+(mj IOg mj/(pjmj_l IOg mj_l)) FFT—COIIlHl(’n’lj_17 1,j - 1)]

Now assuming by induction that
FET-Comm(m; 1, 1,5 —1) < 37, p(logm;—1/logmi)gim;—1/Qi ;1

and substituting in the above using Q; j—1p; = Q;,; gives

(logm;/logm;_1)gj—1m;/p;
+ (mjlogm;/(pjm;—1logm; 1)) 32i_1..;_(logmj—1/logmi)gim;—1/Qi ;-1

(logmy;/logm;_1)g;—1m;/p;
+(m; logm; Zi:l--j—Q(l/ logm)gi/Qi,;

= mjlogm; Zi:luj—l(l/logmi)gi/Qid'
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Then for n < my

FFT-Comm(n, 1,d) 24 Z nlog(n)g;/(Qilog m;) (19)
i=1--d—1

Now for synchronization the second recurrence gives by an identical argument

FFT—Synch(n, 1, d) jd Z nlog(n)LH_l/(lel log mz) (20)
i=1--d—1

5.4 Sorting

Sorting by deterministic oversampling and splitting into smaller subsets of about
equal size is known to be achievable using the following idea [12, 23, 26]:

Lemma 2. For numbers N,S,G and t one can find a set of S splitters in any
ordered set X of N elements such that in the ordering on X the number of
elements between two successive splitters is N/S + 2tG by using the following
procedure: Partition X into G sets of N/G elements each, sort each such set,
pick out every t" element from each such sorted list, sort the resulting N/t ele-
ments, and finally pick every N/(tS)™" element of that.

Let Sort(n,z,j) be a procedure for sorting a set Y of size n < m; residing
in level 5 memory that includes a set of x splitters that already split Y into
sets of about equal size. Our recursive step will divide the set into xm;_q /t?
sorted sublists of about equal size at the next stage for ¢t = eV{°8™) where
m = min{m,|1 < i < d}. This is achieved for every sorted sublist of Y by the
method of the above paragraph with N = (m;/x), S = m;_1/t>, G = N/m;_1.
On the assumption that the sublists are of exactly the same length we get the
recurrence

Sort-Comm(m;, x, j)
= (mj/(mj—1p;))(gi—1mj—1 + Sort-Comm(m;_q,0,j — 1))
+ Sort-Comm(my;, xm;_1 /t?, j) + Sort-Comm(m; /t, 0, j).

Since m;/t = o(m;/logm;) the last term will contribute a lower order term
even if implemented by a sorting algorithm in which the communication cost is
proportional to the computation cost (rather than a logarithmic factor cheaper)
and can be ignored, leaving the same recurrence as for FFT-Comm but with
the multiplier mj,l/t2 rather than m;_; in the second term. This will therefore
yield the following solutions analogous to (19) and (20):

Sort-Comm(n, d) Zq Z nlog(n)g;/(Qqlogm;) (21)
i=1-d—1
Sort-Synch(n,d) Za > nlog(n)Lit1/(Qim;logm;). (22)

i=1--d—1
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In fact, the sublists are not of exactly equal length but only within multi-
plicative factors of 1 4 2/¢. This is because the mean of their lengths is N/S =
Nt?/m;_1 while the maximum deviation from this length is 2¢tG = 2Nt/m;_;.
It can be verified that accommodating these variations in the recurrence would
not change the conclusion.
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Abstract. Kinetic data structures provide a framework for comput-
ing combinatorial properties of continuously moving objects. Although
kinetic data structures for many problems have been proposed, some
difficulties remain in devising and implementing them, especially ro-
bustly. One set of difficulties stems from the required update mecha-
nisms used for processing certificate failures—devising efficient update
mechanisms can be difficult, especially for sophisticated problems such
as those in 3D. Another set of difficulties arises due to the strong assump-
tion in the framework that the update mechanism is invoked with a single
event. This assumption requires ordering the events precisely, which is
generally expensive. This assumption also makes it difficult to deal with
simultaneous events that arise due to degeneracies or due to intrinsic
properties of the kinetized algorithms. In this paper, we apply advances
on self-adjusting computation to provide a robust motion simulation
technique that combines kinetic event-based scheduling and the classic
idea of fixed-time sampling. The idea is to divide time into a lattice of
fixed-size intervals, and process events at the resolution of an interval.
We apply the approach to the problem of kinetic maintenance of convex
hulls in 3D, a problem that has been open since 90s. We evaluate the
effectiveness of the proposal experimentally. Using the approach, we are
able to run simulations consisting of tens of thousands of points robustly
and efficiently.

1 Introduction

In many areas of computer science (e.g., graphics, scientific computing), we must
compute with continuously moving objects. For these objects, kinetic data struc-
tures [BGH99] is a framework for computing their properties as they move. A
Kinetic Data Structure (KDS) consists of a data structure that represents the
property of interest being computed, and a proof of that property. The proof is
a set of certificates or comparisons that validate the property in such a way that
as long as the outcomes of the certificates remain the same, the combinatorial
property being computed does not change. To simulate motion, a kinetic data
structure is combined with a motion simulator that monitors the times at which

* Acar, Blelloch, and Tangwongsan are supported in part by a gift from Intel.
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certificates fail, i.e., change value. When a certificate fails, the motion simulator
notifies the data structure representing the property. The data structure then
updates the computed property and the proof, by deleting the certificates that
are no longer valid and by inserting new certificates. To determine the time at
which the certificates fail, it is typically assumed that the points move along
polynomial trajectories of time. When a comparison is performed, the polyno-
mial that represents the comparison is calculated; the roots of this polynomial
at which the sign of the polynomial changes becomes the failure times of the
computed certificate.

Since their introduction [BGH99|, many kinetic data structures have been de-
signed and analyzed. We refer the reader to survey articles [AGET 02} [Gui04] for
references to various kinetic data structures, but many problems, especially in
three-dimensions, remain essentially open [Gui04]. Furthermore, several difficul-
ties remain in making them effective in practice RKGO07,[Rus07].
One set of difficulties stems from the fact that current KDS update mechanisms
strongly depend on the assumption that the update is invoked to repair a single
certificate failure ﬂm This assumption requires a precise ordering of the
roots of the polynomials so that the earliest can always be selected, possibly re-
quiring exact arithmetic. The assumption also makes it particularly difficult to
deal with simultaneous events. Such events can arise naturally due to degenera-
cies in the data, or due to the intrinsic properties of the kinetized algorithnﬂ.

Another set of difficulties concerns the implementation of the algorithms. In
the standard scheme, the data structures need to keep track of what needs to
be updated on a certificate failure, and properly propagate those changes. This
can lead to quite complicated and error-prone code. Furthermore, the scheme
makes no provision for composing code—there is no simple way, for example, to
use one kinetic algorithm as a subroutine for another. Together, this makes it
difficult to implement sophisticated algorithms.

Recent work proposed an alternative approach for kinetizing algo-
rithms using self-adjusting computation [Aca05l, [AHOG]. The
idea is that one implements a static algorithm for the problem, and then runs
it under a general-purpose interpreter that keeps track of dependences in the
code (e.g., some piece of code depends on the value of a certain variable or on
the outcome of a certain test). Now when the variable or test outcome changes,
the code that depends on it is re-run, in turn possibly invalidating old code
and updates, and making new updates. The algorithm that propagates these
changes is called a change propagation algorithm and it is guaranteed to return
the output to the same state as if the static algorithm was run directly on the
modified input. The efficiency of the approach for a particular static algorithm
and class of input/test changes can be analyzed using trace stability, which can
be thought as an edit distance between computations represented as sequences

of operations [ABHT04].

! For example, the standard incremental 3D convex hull algorithm can perform a plane-
side-test between a face and a point twice, once when deleting a face and once when
identifying the conflict between a point and the face.
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The approach can make it significantly simpler to implement kinetic algo-
rithms for a number of reasons: only the static algorithms need to be imple-
mente(ﬂ; algorithms are trivial to compose as static algorithms compose in the
normal way; and simultaneous update of multiple certificates are possible be-
cause the change propagation algorithm can handle any number of changes.
Acar et al. [ABTV06] used the ability to process multiple updates to help deal
with numerical inaccuracy. The observation was that if the roots can be limited
to an interval in time (e.g. using interval arithmetic), then one need only identify
a position in time not covered by any root. It is then safe to move the simula-
tion forward to that position and simultaneously process all certificates before
it. Although the approach using floating-point number arithmetic worked for 2D
examples in that paper, it has proved to be more difficult to find such positions
in time for problems in three dimensions.

In this paper, we propose another approach to advancing time for robust
motion simulation and apply it to a 3D convex hull algorithm. We then evaluate
the approach experimentally. The approach is a hybrid between kinetic event-
based scheduling and classic fixed-time sampling. The idea is to partition time
into a lattice of intervals of fixed size §, and only identify events to the resolution
of an interval. If many roots fall within an interval, they are processed as a batch
without regard to their ordering. As with kinetic event-based scheduling, we
maintain a priority queue, but in our approach, the queue maintains non-empty
intervals each possibly with multiple events. To separate roots to the resolution
of intervals, we use Sturm sequences in a similar way as used for exact separation
of roots [GK99], but the fixed resolution allows us to stop the process early. More
specifically, in exact separation, one finds smaller and smaller intervals (e.g. using
binary search) until all roots fall into separate intervals. In our case, once we
reach the lattice interval, we can stop without further separation. This means
that if events are degenerate and happen at the same time, for example, we need
not determine this potentially expensive fact.

For kinetic 3D convex hulls, we use a static randomized incremental convex
hull algorithm [CS89, [BDH9E, [MRI5] and kinetize it using self-adjusting com-
putation. To ensure that the algorithm responds to kinetic events efficiently, we
make some small changes to the standard incremental 3D convex-hull algorithm.
This makes progress on the problem of kinetic 3D convex hulls, which was iden-
tified in late 1990s [Gui98|. To the best of our knowledge, currently the best way
to compute the 3D kinetic convex hulls is to use the kinetic Delaunay algorithm
of the CGAL package [Boa(7|, which computes the convex hull as a byproduct
of the 3D Delaunay triangulation (of which the convex hull would be a subset).
As shown in our experiment, this existing solution generally requires processing
many more events than necessary for computing convex hulls.

We present experimental results for the the proposed kinetic 3D convex hull
algorithm with the robust motion simulator. Using our implementation, we can
run simulations with tens of thousands of moving points in 3D and test their
accuracy. We can perform robust motion simulation by processing an average

2 In the current system, some annotations are needed to mark changeable values.
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of about two certificate failures per step. The 3D hull algorithm seems to take
(poly) logarithmic time on average to respond to a certificate failure as well
as an integrated event—an insertion or deletion that occurs during a motion
simulation.

2 Robust Motion Simulation on a Lattice

We propose an approach to robust motion simulation that combines event-based
kinetic simulation and the classic idea of fixed-time sampling. The motivation
behind the approach is to avoid ordering the roots of polynomials, because it
requires high-precision exact arithmetic when the roots are close. To achieve
this, we discretize the time axis to form a lattice {k-0 | k € Z1} defined by the
precision parameter §. We then perform motion simulations at the resolution
of the lattice by processing the certificates that fail within an interval of the
lattice simultaneously. This approach requires that the update mechanism used
for revising the computed property be able to handle multiple certificate failures
at once. In this paper, we use self-adjusting computation, where computations
can respond to any change in their data correctly by means of a generic change
propagation algorithm. The correctness of change propagation has been proven
elsewhere, sometimes by providing machine-checked proofs [ABD07, [AABOS].

For robust motion simulations, we will need to perform the following
operations:

— Compute the signs of a polynomial and its derivatives at a given lattice
point.
— Compute the intervals of the lattice that contain the roots of a polynomial.

In our approach, we assume that the coefficients of the polynomials are integers
(up to a scaling factor) and use exact integer arithmetic to compute the signs
of the polynomial and its derivatives. For finding the roots, we use a root solver
described below.

The Root Solver. Our root solver relies on a procedure, which we call a Sturm
query, that returns the number of roots of a square-free polynomial that are
smaller than a given lattice point. To answer such a query, we compute the
Sturm sequence (a.k.a. standard sequence) of the polynomial, which consists of
the intermediary polynomials generated by the Euclid’s algorithm for finding
the greatest common divisor (GCD) of the polynomial and its derivative. The
answer to the query is the difference in the number of alternations in the signs
of the sequence at —oo and at the query point. Using the Sturm query, we can
find the roots of a square-free polynomial by performing a variant of a binary
search ] We can eliminate the square-free assumption by a known technique that
factors the polynomial into square and square-free polynomials.

Motion Simulation. We maintain a priority queue of events (initially empty),
and a global simulation time (initially 0). We start by running the static

3 In practice, we start with an approximation computed by floating-point arithmetic.
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Fig. 1. The lattice (§ = 1) and the events (certificate failures)

algorithm in the self-adjusting framework. This computes a certificate polyno-
mial for each comparison. For each certificate, we find the lattice intervals at
which the sign of the corresponding polynomial changes, and for each such in-
terval, we insert an event into the priority queue. After the initialization, we
simulate motion by advancing the time to the smallest lattice point ¢ such that
the lattice interval [t — d,¢) contains an event. To find the new time ¢ we re-
move from the priority queue all the events contained in the earliest nonempty
interval. We then change the outcome of the removed certificates and perform a
change-propagation at time t. Change propagation updates the output and the
queue by inserting new events and removing invalidated ones. We repeat this
process until there is no more certificate failure. Figure [Il shows a hypothetical
example with § = 1. We perform change propagation at times 1,2,3,5,7. Note
that multiple events are propagated simultaneously at time 2 (events b and c¢),
time 5 (events e and f), and time 7 (events h, i and, x).

When performing change propagation at a given time ¢, we may encounter a
polynomial that is zero at ¢ representing a degeneracy. In this case, we use the
derivatives of the polynomial to determine the sign immediately before t. Using
this approach, we are able to avoid degeneracies throughout the simulation, as
long as the certificate polynomials are not identically zero.

We note that the approach described here is quite different from the approach
suggested by Ali Abam et al. [AAdBY06]. In that approach, root isolation is
avoided by allowing certificate failures to be processed out of order. This can
lead to incorrect transient results and requires care in the design of the kinetic
structures. We do not process certificates out of order but rather as a batch.

3 Algorithm

In the kinetic framework based on self-adjusting computation [ABTV06], we
can use any static algorithm directly. The performance of the approach, how-
ever, depends critically on the cost of the change propagation algorithm when
applied after changes are made to input or predicate values. In particular, when
invoked, the change-propagation algorithm updates the current trace (sequence
of operations together with their data) by removing outdated operations and re-
executing parts of the algorithm that cannot be reused from the current trace.
The performance of change propagation therefore depends on some form of the
edit distance between the execution trace before and after the changes. This
edit distance has been formalized in the definition of trace stability [ABHT04].
In this section, we describe a variant of the randomized incremental convex-hull

algorithm [CS89, BDH9E, [IMRO5], and remark on some of its features that are
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crucial for stability—i.e., that minimize the number of operations that need to
be updated when a certificate fails.

Given S C R3, the convex hull of S, denoted by conv(S), is the smallest convex
polyhedron enclosing all points in S. During the execution of the algorithm on
input S, each face f of the convex hull will be associated with a set X'(f) C S
of points (possibly empty). Each input point p will be given a real number
m(p) € [0,1], called its priority. Each face f will have the priority w(f) :=
min{7(p) : p € X(f)}. We say that a face of the hull is visible from a point if
the point is outside the plane defined by the face.

The algorithm takes as input a set of points S = {p1, pa, ..., pn }, and performs
the following steps:

1. Assign to each p; a random priority w(p;) € [0, 1].

. Initialize H := conv(A4), where Ay is the set of four highest-priority points.
. Pick a center point ¢ inside the convex body H.

. For each f € H, set X(f):={p € S\ H : the ray cp penetrates f}.

. While 3f € H such that X(f) # 0:

(a) Choose the face f* with the highest priority, and let p* € X(f) be the
point with the highest priority.

(b) Delete all faces on H visible from p*. This creates a cavity in the convex
hull whose boundary is defined by horizon edges that are incident to
both deleted and live faces.

(¢c) Update H by creating new faces each of which consists of p* and a
horizon edge to fill up the cavity. Set X(f) := {p* € S\ H : the ray cp?‘k>
penetrates f} for each new faces f.

T = W N

In our implementation, we maintain a priority queue of faces ordered by pri-
orities of the faces. We also store at each face the point in X'(f) with priority
m(f). This allows us to perform step 5(a) efficiently.

Even though the algorithm presented above is fairly standard, certain key
elements of this implementation appear to be crucial for stability—without them,
the algorithm would be unstable. For stability, we want the edit distance between
the traces to be small. Towards this goal, the algorithm should always insert
points in the same order—even when new points are added or old points deleted.
We ensure this by assigning a random priority to every input point. The use of
random priorities makes it easy to handle new points, and obviates the need to
explicitly remember the insertion order.

For better stability, we also want the insertion of a point p to visit faces of the
convex hull in the same order every time. While the presented algorithm cannot
guarantee this, we use the following heuristic to enhance stability. The point-
to-face assignment with respect to a center point ¢ ensures that the insertion
of p* always starts excavating at the same face, increasing the likelihood that
the faces are visited in the same order. Note that the choice of the center point
is arbitrary, with the only requirement that the center point has to lie in the
convex hull. Our implementation takes ¢ to be the centroid of the tetrahedron
formed by Aj4.
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4 Implementation

Our implementation consists of three main components: 1) the self-adjusting-
computation library, 2) the incremental 3D convex-hull algorithm, and 3) the
motion simulator. Previous work provided an implementation of the
self-adjusting computation library. The library requires that the user adds some
notations to their static algorithms to mark what values can change and what
needs to be memoized. These notations are used by the system to track the
dependences and know when to reuse subcomputations.

In our experiments, we use both the original static 3D convex-hull algorithm
and the self-adjusting version with the annotations added. The static version
uses exact arithmetic predicates to determine the outcomes of comparisons pre-
cisely (we use the static version for checking the robustness of the simulation).
The self-adjusting version uses the root solver to find the roots of the polyno-
mial certificates, and inserts them into the event queue of the motion simulator.
We implement a motion simulator as described in Section [2I Given a precision
parameter § and a bound M; on the simulation time, the simulator uses an
event scheduler to perform a motion simulation on the lattice with precision 0
until M; is reached. We model the points with an initial location traveling at
constant speed in a fixed direction. For each coordinate, we use By and B, bits
to represent the initial location and the velocity respectively; By and B, can be
assigned to arbitrary positive natural numbers.

5 Experiments

We describe an experimental evaluation of our kinetic 3D convex-hull algorithm.
The evaluation investigates the effectiveness of our approach according to a
number of metrics proposed in the previous work [BGH99], i.e., responsiveness,
efficiency, locality, and compactness. Following that, we report timing results for
the integrated dynamic and kinetic experiments.

Experimental Setup. All of the experiments were performed on a 2.66Ghz
dual-core Xeon machine, with 8 GB of memory, running Ubuntu Linux 7.10.
We compiled the applications with the MLton compiler [MLl, Wee(6] with the
option “~runtime ram-slop 0.75,” directing the run-time system to allocate
at most 75% of system memory. Our timings measure the wall-clock time (in
seconds).

Input Generation. In our experiments, we pick the initial positions of the
points on each axis to fit into 20 bits, i.e., By = 20, and the velocity along each
axis to fit into 8 bits, i.e, B, = 8. We pick both the initial locations and the
velocities uniformly randomly from the cube [—1.0,1.0]3. We perform motion
simulations on lattice defined by § = 2719, with a maximum time of M, = 2%7.
With this setting, we process an average of about two certificates simultaneously.

Checking for robustness. We check that our algorithm simulates motion ro-
bustly by comparing it to our exact static algorithm after each event in the
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Fig. 4. Kinetic and static runs

kinetic simulation. When the inputs are large (more than 1000 points), we check
the output at randomly selected events (with varying probabilities between 1
and 20%) to save time.

Baseline Comparison. To assess the efficiency of the static version of our
algorithm, we compare it to CGAL 3.3’s implementation of the incremental
convex-hull algorithm. Figure [2] shows the timings for our static algorithm and
for the CGAL implementation with the Homogeneous<double> kernel. Inputs
to the algorithms are generated by sampling from the same distribution; the
reported numbers averaged over three runs. Our implementation is about 30%
slower than CGAL’s. Implementation details or our use of a high-level, garbage-
collected language may be causing this difference.

We also want to compare our kinetic implementation with an existing kinetic
implementation capable of computing 3D convex hulls. Since there is no direct
implementation for kinetic 3D convex hulls, we compare our implementation
with CGAL’s kinetic 3D Delaunay-triangulation implementation, which com-
putes the convex hull as part of the triangulation. Figure [3 shows the timings
for our algorithm and for CGAL’s implementation of kinetic 3D Delaunay (us-
ing the Exact_simulation_traits traits).These experiments are run until the
event queue is empty. As expected, the experiments show that kinetic Delaunay
processes many more events than necessary for computing convex hulls.

Kinetic motion simulation. To perform a motion simulation, we first run
our kinetic algorithm on the given input at time ¢ = 0, which we refer to as
the initial run. This computes the certificates and inserts them into the priority
queue of the motion scheduler. Figuredillustrates the running time for the initial
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run of the kinetic algorithm compared to that of our static algorithm which
does not create certificates. Timings show a factor of about 15 gap between the
kinetic algorithm (using Sturm sequences) and the static algorithm that uses
exact arithmetic. The static algorithm runs by a factor of 6 slower when it uses
exact arithmetic compared to using floating-point arithmetic. These experiments
indicate that the overheads of initializing the kinetic simulations is moderately
high: more than an order of magnitude over the static algorithm with exact
arithmetic and almost two orders of magnitude over the the static algorithm with
floating-point arithmetic. This is due to both the cost of creating certificates and
to the overhead of maintaining the dependence structures used by the change
propagation algorithm.

After completing the initial run, we are ready to perform the motion simu-
lation. One measure of the effectiveness of the motion simulation is the average
time for a kinetic event, calculated as the total time for the simulation divided
by the number of events. Figure [} shows the average times for a kinetic event
when we use our §-precision root solver. These averages are for the first 5 - n
events on an input size of n. The average time per kinetic event appears asymp-
totically bounded by the logarithm of the input size. A kinetic structure is said
to be responsive if the cost per kinetic event is small, usually in the worst case.
Although our experiments do not indicate responsiveness in the worst case, they
do indicate responsiveness in the average case.

One concern with motion simulation with kinetic data structures is that the
overhead of computing the roots can exceed the speedup that we may hope to
obtain by performing efficient updates. This does not appear to be the case in
our system. Figure [0l shows the speedup for a kinetic event, computed as the
time for change propagation divided by the time for a from-scratch execution of
the static algorithm using our solver.

In many cases, we also want to be able to insert and remove points or change
the motion parameters during the motion simulation. This is naturally supported
in our system, because self-adjusting computations can respond to any combi-
nation of changes to their data. We perform the following experiment to study
the effectiveness of our approach at supporting these integrated changes. During
the motion simulation, at every event, the motion function of an input point
is updated from 7(t) to 3r(t). We update these points in the order they ap-
pear in the input, ensuring that every point is updated at least once. From this
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experiment, we report the average time per integrated event, calculated by di-
viding the total time to the number of events. Figure [ shows the average time
per integrated event for different input sizes. The time per integrated event ap-
pears asymptotically bounded by the logarithm of the input size and are similar
to those for kinetic events only. A kinetic structure is said to have good locality
if the number of certificates a point is involved in is small. We note that the
time for a dynamic change is directly affected by the number of certificates it
is involved in. Again, although our experiments do not indicate good locality in
the worst case, they do indicate good locality averaged across points.

In a kinetic simulation, we say that an event is internal if it does not cause
the output to change. Similarly, we say that an event is external if it causes
the output to change. A kinetic algorithm is said to be efficient if the ratio of
interval events to external events is small. Figure [§l shows this ratio in complete
simulations with out algorithm. The ratio can be reasonably large but appears
to grow sublinearly.

Another measure of the effectiveness soF 20 1 fog(n)
of a kinetic motion simulation is com- 50 [ T

pactness, which is a measure of the to- 40
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guarantees that the total number of cer- Fig. 9. Number of certificates

tificates is equal to the number of certifi-

cates created by a from-scratch execution at the current position of the points.
Figure [ shows the total number of certificates created by a from-scratch run of
the algorithm with the initial positions. The number of certificates appears to
be bounded by O(nlogn).

6 Conclusion

We present a technique for robust motion simulation based on a hybrid of kinetic
event scheduling and fixed-time sampling. The idea behind the approach is to
partition the time line into a lattice of intervals and perform motion simulation
at the resolution of an interval by processing the events in the same interval
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altogether, regardless of their relative order. To separate roots to the resolution
of intervals, we use Sturm sequences in a similar way as used for exact separation
of roots in previous work, but the fixed resolution allows us to stop the process
early. The approach critically relies on self-adjusting computation, which enables
processing multiple events simultaneously. Although the hybrid technique using
kinetic-event-scheduling and fixed-time sampling was primarily motivated by
robustness issues, it may also be helpful in situations where explicit motion
prediction is difficult [AGET02].

We apply the approach to the problem of kinetic convex hulls in 3D by kine-
tizing a version of the incremental convex-hull algorithm via self-adjusting com-
putation. We implement the motion simulator and the algorithm and perform an
experimental evaluation. Our experiments show that our algorithm is effective
in practice: we are able to run efficient robust simulations involving thousands
of points. Our experiments also indicate that the data structure can respond to
a kinetic event, as well as an integrated dynamic change (an insertion/deletion
during motion simulation) in logarithmic time in the size of the input. To the
best of our knowledge, this is the first implementation of kinetic 3D convex hulls
that can guarantee robustness and efficiency for reasonably large input sizes.
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Abstract. In this paper, we study the 3D dominance reporting problem
in different models of computations and offer optimal results in the pointer
machine and the external memory models and a near optimal result in the
RAM model; all our results consume linear space. We can answer queries
in O(log n + k) time on a pointer machine, with O(logz n+ k/B) I/Os in
the external memory model and in O((loglogn)? +loglog U + k) time in
the RAM model and in a U x U x U integer grid. These improve the results
of various papers, such as Makris and Tsakalidis (IPL’98), Vengroff and
Vitter (STOC’96) and Nekrich (SOCG’07). Here, n, k and B are the in-
put, output and block size respectively. With a log® n fold increase in the
space complexity these can be turned into orthogonal range reporting al-
gorithms with matching query times, improving the previous orthogonal
range searching results in the pointer machine and RAM models. Using
our 3D results as base cases, we can provide improved orthogonal range
reporting algorithms in R%, d > 4. We use randomization only in the pre-
processing part and our query bounds are all worst case.

1 Introduction

Let P be a set of n points in R?. In the dominance reporting problem we are
given a query point ¢ = (q1,...,q4) and we are asked to find all the points
p = (x1,...,24) € P such that z; < ¢;, 1 < ¢ < d. Dominance reporting is one
of the important problems in the orthogonal range searching area; it emerges
naturally when studying various problems regarding orthogonal objects [I], it is
an important special case of orthogonal range searching (which has been stud-
ied extensively, see [2I8/4J5]) and many times it is used as a basis of various
orthogonal range searching algorithms [GI7Ig].

Previous results. Previously, in the pointer machine model, we were quite close to
the optimal answer. Makris and Tsakalidis [9] had shown it is possible to achieve
the query time of O(lognloglogn+ k) with linear space, improving an old result
from 1987 [I0] (here, n and k are the input size and output size respectively). Also
in the same paper [9], they achieve the query time of O((loglog U)? logloglog U +
kloglogU) in the RAM model and with linear space (for points in a U x U x U
integer grid). Further results in the RAM model include an algorithm with linear
space and query time of O(log’ign + k) [11] assuming integer inputs. However,

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 41-F1, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Table 1. Results on 3D dominance reporting problem. Here, n, k, B are input, output
and block size respectively. The results in RAM assume the input is from a U x U x U
integer grid. Optimal query complexities are marked with a star. The last two rows
assume an external memory model of computation in the RAM model where the input
isona U x U x U integer grid.

Model Space Query complexity Source
pointer machine O(n) O(lognloglogn + k) 8]
pointer machine  O(nlogn) O(logn + k)* [10]
pointer machine O(n) O(logn + k)* this paper

RAM O(n) O((loglog U')*logloglog U + kloglog U) @

RAM O(n) Oipgtn ) [

RAM O(nlogn) O((loglogn)? + loglog U + k) [6]

RAM O(n) O((loglogn)? + loglog U + k) this paper
external memory O(nlogn) O(loggn+k/B)* [8]
external memory O(n) O(loggn+k/B)* this paper

EM & integer grid O(nlogn) O(loglogy U + (loglogn)? + k/B) [13]
EM & integer grid O(nloggn)  O(loglogg U + (loglogn)® +k/B)  this paper

these are not the fastest data structures, since if we allow O(nlogn) space we
can achieve the query time of O((loglogn)? + loglogU + k) [6]. In the external
memory model, there are much fewer results and it is believed that solving such
orthogonal range reporting problems in this model is more difficult than the
main memory model [7]. Currently, the best algorithm in the traditional exter-
nal memory model uses O(nlogn) space and can answer queries with optimal
O(loggn + k/B) I/Os [8[12] (here B is the block size). Very recently, Nekrich
has proposed another algorithm using O(nlogz n) space which can answer rect-
angular point location queries in a U x U grid with O(loglogy U + (loglogn)?)
I/Os [13]. Using this, he provides another dominance reporting algorithm with
O(nlogn) space and O(loglogy U + (loglogn)? + k/B) query I/Os.

Our results. In this paper we solve the 3D dominance reporting problem in
pointer machine and external memory models and match the fast O((loglogn)?+
loglog U + k) query time of Nekrich [6] with a linear space algorithm. In essence,
our techniques allow us to reduce the dominance reporting problem to point
location in planar rectilinear arrangements. For instance, this enables us to use
the new point location data structure of Nekrich [I3] as black box and obtain
another algorithm using O(nlogz n) space and with O(log log U + (loglogn)? +
k/B) query I/Os, assuming the input is a subset of U x U x U integer grid.

A summary of our results in comparison with the previous work is shown in
Table[Il Using our efficient dominance reporting algorithms as base cases we can
obtain new algorithms for orthogonal range reporting in the RAM model. These
improvements have been listed in Table

Unlike some previous algorithms, our methods use many common ideas and
techniques with the other important cases of range searching, namely halfspace
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Table 2. The fastest known orthogonal range reporting algorithms for d > 3. Here,
n, k, B are input, output and block size respectively.

Model Dimension Space Query complexity Source
RAM d=3 O(nlog*n)  O((loglogn)? + loglog U + k) [
RAM d=3 O(nlog®n)  O((loglogn)? 4+ loglogU + k) this paper
RAM d>3 O(nlog™*en) Olog? 3 n/(loglogn)?=> + k) [6]
RAM d>3 O(nlog??**n) O(log? 2 n/(loglogn)?=2 + k) 4]
RAM d>3 O(nlog?tn) O(log®®n/(loglogn)?~® 4 k) this paper
external memory d =3 O(nlog*n) O(loggn+k/B) 8]
external memory d=3 O(nlog®n) O(loggn+k/B) this paper

and simplicial range searching. In fact, an underlying implication of our tech-
niques is that both halfspace range reporting and dominance reporting in 3D can
be attacked within the same framework and using the same array of techniques
and tools. We believe this is one of the important contributions of our paper
since apparently this had eluded the previous researchers. For instance, we use
the shallow cutting lemma provided by Agarwal et al. [I4] for a general class
of surfaces (which is inspired by Matousek’s shallow cutting lemma for halfs-
paces [I5]) and observe that it leads to approximate levels of optimal size. A
concept similar to approximate levels was previously employed by Vengroff and
Vitter [§] and later by Nekrich [6] but only under the name of B-approximate
boundaries and with non-optimal and complicated constructions.

Given this, one might wonder whether other fundamental theorems of half-
space or simplicial range searching such as the shallow partition theorem can
also be proven in this context. We do not investigate these questions and for two
reasons (aside from being outside the scope of this paper). First, as we noted, the
latter challenge has already been undertaken by Agarwal et al. [14] and second,
we show the existence of a novel partition type theorem (it is not a partition
per se and only resembles the partition theorem in “spirit”) for the dominance
reporting problem; unfortunately (or fortunately) our proof technique neither is
inspired nor resembles the original shallow partition theorem. Nonetheless, this
theorem seems to be stronger than an analogous of the shallow partition theo-
rem for the dominance reporting problem since it leads to an optimal external
memory data structure (fortunately). A similar result for the halfspace range
reporting problem has not been obtained yet [16].

As a consequence of our results, we can obtain two orthogonal range reporting
algorithms consuming O(nlog® n) space; one with O((loglogn)? +loglog U + k)
query time in the RAM model and another with O(loggn + k/B) I/Os in the
external memory model. Previously, best results consumed O(nlog* n) space in
both cases. We only use randomization in the preprocessing part and our query
bounds are all worst case.
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2 Preliminaries

For two points A and B in R?, we say A dominates B if and only if all the
coordinates of A are greater than those of B. In this paper, we shall deal with
a special form of geometric ranges that we call a downward corner, which is
uniquely determined by a point A € R? (called apez) and contains all the points
of R? which are dominated by A. Let P be a set of n points in R%. To make the
notation consistent, we will reserve r for downward corners and with an abuse of
notation, sometimes we will use r to refer both to the geometric object and the
subset of P inside the geometric object. We define an approzimate k-level Ly, as
a set of downward corners with the following two properties: (i) any downward
corner r € L must contain at most ¢ k points of P and (ii) any downward corner
r’ which contains at most k& points of P must be contained in a downward corner
r € L. Here, ¢; can be chosen to be an arbitrary constant (by our algorithms).
The size of an approximate level is the number of its downward corners. For a
set S of geometric objects, we will use the shorthand notation of S, to refer to
the subset of S intersecting another geometric object x. Finally, for the sake of
simplicity of description, we assume the input point set and the query points are
in general position; a restriction that can be overcome using standard tricks.

3 Optimal Approximate Levels

We define the level of a point p € R3 to be the number of downward corners of
S which contain p. As with the case of halfspaces, we define the (< k)-level to
be the set of all the vertices the arrangement o7 formed by S with level at most
k. Thus, the (< 0)-level of o/ contains all the vertices of the arrangement that
are not inside any downward corner of S.

One crucial requirement of any optimal lemma on approximate levels is a
linear bound on the size of the (< 0)-level of the arrangement formed by the set
of geometric objects.

Lemma 1. For a set S of n downward corners the size of the (< 0)-level is

O(n).

Proof. Sweep a plane h parallel to the zy plane from z = +00 to z = —co. We
will count the vertices of the (< 0)-level of the arrangement as they appear on
this sweep plane.

The apex A of an element r € S will appear on h when the z-coordinate
of h becomes equal to the z-coordinate of A and it will disappear as soon as
another point ¢’ on h dominates A (in 2D sense). The crucial observation is that
if a point disappears from h it no longer can contribute any new vertices to the
(< 0)-level (Fig.D(a,b,c)). So, at any moment we have an active set of downward
corners on this plane with none dominating another; these points form a chain
on this plane (Fig.[l(d)). Assume a new point ¢;11 appears on this plane. If ¢,y
creates j new vertices then it will have to dominate and remove 2(j — 4) active
points from h (Fig.dlc,e)). A simple charging argument implies that number of
vertices of the (< 0)-level is O(n). O
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Fig. 1. (a) Boxes b1,b2 and b3 already swept (b) Sweep plane discovers by and from
this point b1 can be ignored. (¢) Marks denote the new vertices on the 0-level. (d,e)
View on plane h.

The shallow cutting lemma of Agarwal et al. [I4] operates on a general class
of surfaces and thus accepts a parameter ¢(r) which is the worst case size of
the (< 0)-level of any collection of r surfaces. The above lemma implies in our
problem we have ¢(r) = O(r). Combining this with the theorem of Agarwal et
al. [T4] we obtain the following lemma.

Lemma 2. Given a set S of n downward corners in 3D and a parameter k, one
can build a set B of O (Z) bozes which cover the (< k)-level of the arrangement
formed by S where each box is intersected by O(k) downward corners.

Proof. With slight perturbations we can turn a downward corner into a continu-
ous surface which fits the framework of Agarwal et al. [I4] and use their shallow
cutting lemma with 7 = }'. The fact that the set B can be taken as a set of boxes
follows from the vertical decomposition used by Agarwal et al. [I4]. The source
of randomness is the sampling technique used in the same paper. a

The above shallow cutting result can be used to construct approximate levels.

Lemma 3. There erists approzimate k-levels of size O(}), 1 < k < n, for the
dominance reporting problem.

Proof. Let P be an input set of size n. For a point p € R3, define an upward
corner with apex p to be the subset of R® which dominates p. Let S be the set
of m upward corners determined by points of P as apexes and let & be the
arrangement formed by S. A point reflection with origin can transform & into
an arrangement of n downward corners, A’, and thus we can use Lemma [2] and
build a collection B" of O(}) boxes which cover the (< k)-level of .27’. Perform
the point reflection on elements of B” and let B be the resulting set of boxes. For
every box in b € B, place the vertex with the maximum coordinates, denoted
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with m(b), in a set C. We claim the set of downward corners defined by apexes
in C is an approximate level.

Consider a downward corner r with apex A which contains less than k points
of P. This means that there are less than k upward corners of S which contain A.
The reflection A’ of A by the origin lies in the (< k)-level of &/” and thus there
is a box b € B which contains A. The downward corner defined by m(b) € C
contains r.

On the other hand, Lemma 2] implies every box o' € B’ lies in the (< O(k))-
level of &/’. Thus, every vertex of b € B can dominate at most O(k) vertices
of P. O

Remarks. Agarwal et al. [I4] do not discuss the construction time of their gen-
eral shallow cutting theorem. Unfortunately, to achieve a decent bound on the
construction time we will need to deal with the details of their construction
which we feel would be distracting, despite the fact that for our set of ranges
it is possible to simplify their argument. We postpone the details for the full
version of the paper (simply claim a polynomial bound here) but it can be seen
that we can employ the techniques used by Ramos [I7] and build the cutting
in a gradual fashion (similar to the case for halfspaces) in O(nlogn) expected
time.

4 Solving the Dominance Reporting Problem

To solve the dominance reporting in the RAM and pointer machine we simply
need a linear size data structure with polylogarithmic query time to combine
it with our lemma on approximate levels. For instance, we can either use the
data structure of Makris and Tsakalidis [9] or Eledsbrunner and Chazelle [10].
For the moment assume that we have access to a linear size data structure with
O(log® n + k) query time.

Theorem 1. Given a set of n points P in R3, dominance reporting queries can
be answered in O(logn + k) worst case time in a pointer machine and using
linear space.

Proof. Let A be a data structure consuming linear space which can answer
dominance reporting queries in O(log® n+ k) time. Build an approximate log® n-
level C. For every downward corner r € C implement the data structure A on
the points contained in r and at the end build on extra copy for the whole point
set P.

If k = 2(log?n) then we can use the data structure on P to answer the
query in O(log? n+ k) = O(k) time. Otherwise, one downward corner r in C will
contain ¢. Finding ¢ is known to be equivalent to a point location query in a 2D
orthogonal arrangement [96] and thus can be solved in O(log n) time. Since r will
contain at most log” n points, the query can be answered in O((loglog® n)?+k) =
O((loglogn)? + k) time using the data structure implemented on r. Combining
all these results in a query time of O(logn + k). O
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The exact same idea can be applied in the RAM model, by employing the point
location data structure of [I8] which offers the query time of O((loglogU)?) in
a U x U x U integer grid.

Theorem 2. Given n points in U x U x U integer grid, dominance reporting
queries can be answered in O((loglog U)%+k) worst case time in the RAM model
using linear space.

Reduction to the rank space and predecessor search are common techniques and
tools which have appeared in many places (e.g., see [4] for more references and
details) and they allow us obtain the following results.

Corollary 1. For n points in R?, dominance reporting queries can be answered
in O((loglogn)? + loglogU + k) time using only linear space.

Also, by using standard techniques to reduce orthogonal range reporting queries
to dominance reporting queries (e.g., see [6J8]) we can have the following.

Corollary 2. There exists a data structure capable of answering 3D orthogonal
range reporting queries on a U x U x U grid in O((loglogn)? + loglog U + k)
time, using O(nlog®n) space.

The above can be extended to higher dimensions [4].

Corollary 3. There exists a data structure capable of answering orthogonal
range reporting queries in R? using O(n log?te n) space and with O(logd_g n/
(loglogn)?=° + k) query time.

We also note that any improvements to the data structure for point location in
a planar rectangular subdivision [I8] can be carried over automatically to the
dominance reporting problem and thus all the above corollaries.

Unfortunately, we cannot do the same trick to obtain an optimal algorithm
in the external memory model, since in this model, up to our knowledge, there
is no linear space algorithm with reasonable query time to combine with our
approximate levels. Thus, to get an optimal algorithm in the external memory
model, we need to develop additional tools and ideas. This is done in the next
section.

5 The External Memory Model

We use B to denote the block size in the external memory model. As we claimed
in the introduction, our result on approximate levels can simplify the data struc-
ture of Vengroff and Vitter [12] by building a hierarchy of approximate levels.
Of course, the space consumption would still be more than linear. To reduce the
space complexity, we will need the following lemma.

Lemma 4. Let P C R? be a set of n points such that the level of each point
is at most m for a parameter m. We can find t = O() sets, V1,...,V; C P,
[Vi] = O(m) such that for any downward corner r containing k points there exist
s=0(F) sets Vi, ..., Vi, with |P;\ (U_; Vi,)| = O(m) in which P, = PNr.
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Proof. Let C = {r1,...,r:} be an approximate Cm-level for a constant C' to
be determined later. With a slight abuse of the notation, we will use r; to refer
to both the downward corner r; and the subset of P contained in r;. We claim
r1,..., T are the sets claimed in the lemma. By Lemma [3] we know ¢t = O(" ).
Consider a downward corner r containing k points. According to Lemma [3]
we can find an approximate m-level, C' = {r{,...,1}}, of size t' = O(*) for the

points inside r. By definition, C’ covers the (< m)-level of P, and so every point

of P, is contained in at least one downward corner of C’. Thus, P, = Uf,:l ;. If
we could show that for every r; € C’ there is another downward corner r; € C
which contains r}, then our lemma could be easily solved. Unfortunately this
is not true and in fact, r, may contain {2(n) points of P (although it can only
contain O(m) points of P,). Because of this we aim for a slightly weaker claim.

Let (z,y,z) be the coordinates of the apex A of r and (2/,y’,2’) be the
coordinates of the apex A/ of r;. By Lemma [3l we know each r} contains O(m)
points; assume the constant in the O notation is ¢. Pick C' > ¢. We have four
important cases:

1. A dominates A} (Fig.2(a)): In this case r} contains at most C'm points of P
and is contained in at least one downward corner r; € C. Thus, in this case
T, C 1.

2. Only one coordinate of A is not dominated by that of A (Fig.[2(b)): Without
loss of generality assume it is the z-coordinate (i.e., x < z’,y > 3y’ and
z > 2'). In this case, the point @ = (z,y’,2’) is contained in r and thus
dominates at most C'm points of P which means @ is contained in at least
one downward corner r; € C. Thus, in this case r; Nr C r;.

3. Only one coordinate of A dominates that of A (Fig. Rlc)): This case can
only happen for three elements of C’, once for each coordinate; for instance,
if ' > 2 and 2z’ > z, then r} contains at most C'm points with minimum
y-coordinates in Py.

4. A’ dominates A. This case can only happen if P, contains less than C'm
points.

For every downward corner r, € C’, the first two cases provide us with another
downward corner r; € C such that r, Nr C r;. The other two cases only cover

(a) (b) (c)

Fig. 2. (a) rj is contained inside r. (b) Only the z-coordinate of Aj is greater than
that of A. (¢c) Two coordinates of A} are greater than those of A.
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O(m) points. Thus, we can find at most ¢ downward corners ry,...ry, € C such
that | Py \ (U!_1¢,)| = O(m) with ¢ = O(k/m). 0

Remarks. The closest theorem in the context of the halfspace range searching to
the above lemma is the shallow partition theorem by Matousek [15]; however, the
above lemma does not partition the point set and does not cover all the points
inside the downward corner r. Also, it can be viewed as “output sensitive” in the
sense that the number of sets contained or intersected by r depends on the number
of points, k, contained in r. It has been observed that such dependence on k is a
desirable property [19]. Thus, an interesting question is whether it is possible to
obtain a similar result for halfspace range searching; if so, we can also obtain an
optimal halfspace range searching data structure in the external memory model.

Lemma 5. There is a data structure for a set P of n points in R® which can an-
swer dominance reporting queries with O(logg n+k/B) 1/0s using O(n) space.

Proof. Partition P into subsets Py, ..., P. in the following way: define P; to be
the set of points p € P with level at most Blogg n, remove P; and repeat and
continue this operation until P is partitioned. This construction ensures that
every point p € P; has level at most O(Bloggn) in P.

Assume for every P; we have a data structure which uses O(|P;|) space and
can answer queries with O(logp | P;|+k/B) I/Os. Given a query r, we start from
P, and using the data structure implemented on P; we return all the points of
P; inside r and then move on to the next set P, and continue this until we
reach a point set P; which does not contain any point in r; at this point we
terminate the search. The crucial observation is that if r contains at least one
point from P;;; then it must contain at least Bloggn points from P;_;. This
implies k = (2(iBloggn) and thus the total query complexity will add up to
O((i+1)loggn+k/B) = O(logg n+ k/B). In short, this means that it suffices
to solve the problem for point sets P in which the level of every point is at most
Blogg n. This will be our assumption in the rest of the proof.

Let m = Bloggn. Using Lemma H compute t = O() sets, Vi,..., Vi,
[Vi] = O(m) and store the points of each set V; sequentially. Consider a downward
corner r containing k points. According to Lemma ] there are s = O( ) sets
Viyy .-, Vi, such that | P\ (Ui_; V4,)| = O(m). We can represent the points inside
r using O( * ) pointers to sets V;, and an additional list of O(m) points. This is
our storage scheme for the list of points inside a downward corner r.

To make the data structure, we build a hierarchy of approximate k;-levels
for k; = 2'm,0 < i < O(log(n/B)) and we store the list of points in every
downward corner of the approximate levels using our storage scheme. Every
downward corner in an approximate 2‘m-level has O(2'm) points and thus will
be stored using O(2°) pointers and a list of O(m) points. Since this approximate
level contains O(, ) ranges, the total space consumption for this level will be
O(,) +m). Summing this up over all the approximate levels and including the
space needed to store the sets Vi, ..., V; yields the space complexity of

o (n . nlogg/B)

+ mlog(n/3)> .
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A simple calculation reveals this is always O(n) for all values of B.

To answer the query, we find the smallest ¢ that a downward corner r; of
an approximate 2'm-level contains r. This can be done with O(i + 1) steps of
point location, once for every approximate level up to the i-th one. This will also
ensure that r; contains ©(m2') = O(k) points. The output can be determined
by a linear scan of all the points in rj; however, we have not stored the list of
points of r; directly and thus we must perform O(* ) I/Os to just access the
pointers, O( %) I/Os to access the list of points referenced by these pointers and
finally an additional O(";) I/Os to access the list of points stored at r;. This
amounts to O ((i + 1) loggn + *™) = O(log g n + k/B) 1/Os. O

Combined with the standard reductions (e.g., see [6]), we can obtain the following
corollary.

Corollary 4. There is a data structure for a set of n points in R which that can
answer orthogonal range reporting queries using O(n log? n) space and O(logg n+

k/B) 1/0s.

Using new point location data structure of Nekrich [I3] we can also have the
following result.

Corollary 5. There is a data structure for a set of n points in R3 which that can
answer dominance reporting queries using O(nloggn) space and O(loglogy U +

(loglogn)? + k/B) I1/Os.

The super-linear space complexity of the above corollary stems from the super-
linear requirement of the point location data structure.

Acknowledgements. The author is in debt to Timothy Chan for many great
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of this article.
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Abstract. Let O = {O1,...,0m} be a set of m convex polygons in R?
with a total of n vertices, and let B be another convex k-gon. A placement
of B, any congruent copy of B (without reflection), is called free if B
does not intersect the interior of any polygon in O at this placement. A
placement z of B is called critical if B forms three “distinct” contacts
with O at z. Let ¢(B,0) be the number of free critical placements. A
set of placements of B is called a stabbing set of O if each polygon in O
intersects at least one placement of B in this set.

We develop efficient Monte Carlo algorithms that compute a stabbing
set of size h = O(h™ logm), with high probability, where h* is the size of
the optimal stabbing set of O. We also improve bounds on ¢(B, ) for the
following three cases, namely, (i) B is a line segment and the obstacles
in O are pairwise-disjoint, (ii) B is a line segment and the obstacles in
O may intersect (iii) B is a convex k-gon and the obstacles in O are
disjoint, and use these improved bounds to analyze the running time of
our stabbing-set algorithm.

1 Introduction

Problem statement. Let O = {O1,...,0p} be a set of m convex polygons in R?
with a total of n vertices, and let B be another convex polygon. A placement of
B is any congruent copy of B (without reflection). A set of placements of B is
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called a stabbing set of O if each polygon in O intersects at least one copy of B in
this set. In this paper we study the problem of computing a small-size stabbing
set of O.

Terminology. A placement of B can be represented by three real parameters
(z,y,tan(0/2)) where (z,y) is the position of a reference point o in B, and 0 is
the counterclockwise angle by which B is rotated from some fixed orientation.
The space of all placements of B, known as the configuration space of B, can
thus be identified with R? (a more precise identification would be with R? x S!;
we use the simpler, albeit topologically less accurate identification with R?).

For a given point z € R3, we use B[z] to denote the corresponding placement
(congruent copy) of B. Similarly, for a point p € B or a subset X C B, we use
plz] and X [z] to denote the corresponding point and subset, respectively, in B[z].
A placement z of B is called free if B[z] does not intersect the interior of any
polygon in O, and semifree if B|z] touches the boundary of some polygon(s) in
O but does not intersect the interior of any polygon. Let F(B,9) C R? denote
the set of all free placements of B. For 1 < i < m, let K; C R? denote the set
of placements of B at which it intersects O;. We refer to K; as a c-polygon. Set
K(B,0) ={Ki,..., Ky} If B and the set O are obvious from the context, we
use F and X to denote F(B,O) and K(B, O), respectively. Note that F(B,0) =
cl(R?\ UXK(B,0)), where cl is the closure operator. If {B[z1],..., B[z} is a
stabbing set for O, then each K; contains at least one point in the set Z =
{z1,...,2n}, i.e., Z is a hitting-set for K. Hence, the problem of computing a
small-size stabbing set of O reduces to computing a small-size hitting set of XK.

We use a standard greedy algorithm (see, e.g., [6]) to compute a hitting set
of K. The efficiency of our algorithm depends on the combinatorial complexity
of F, defined below. We consider the following three cases:

(C1) B is a line segment and the polygons in O may intersect.
(C2) B is a line segment and the polygons in O are pairwise disjoint.
(C3) B is a convex k-gon and the polygons in O are pairwise disjoint.

A contact C' is defined to be a pair (s, w) where s is a vertex of B and w is
an edge of O € O, or w is a vertex of O and s is an edge of B. A double contact
is a pair of contacts, and a triple contact is a triple of contacts. A placement
z forms a contact C' = (s,w) if s[z] touches w and Blz] does not intersect the
interior of the polygon O € O containing w. A placement z forms a double
contact {Cy, Ca} if it forms both the contacts C; and Co, and similarly it forms
a triple contact {C1, Co, Cs} if it forms all three of them; we also refer to triple-
contact placements as critical. A double (or triple) contact is realizable if there
is a placement of B at which this contact is formed. We call a double contact
{C1, Cy} degenerate if both the contacts Cy and Cs involve the same polygon of
0. If z forms a degenerate double contact then either a vertex of B[z] touches
a vertex of O or an edge of B[z] is flush with an edge of O. A triple contact is
called degenerate if its three contacts involve at most two polygons of O, i.e.,
if it involves a degenerate double contact. If we decompose 0K; into maximal
connected components so that all placements within a component form the same
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contact(s), then the edges and vertices on JK; correspond to degenerate double
and triple contacts, respectively (more precisely, the vertices are those triple
contacts that involve at most two polygons). A non-degenerate triple contact
(or critical) placement is formed by the intersection of the boundaries of three
distinct c-polygons. Using the fact that each O; is a convex polygon and B is
also a convex polygon, it can be shown (see, e.g., [I1]) that the complexity of F
is proportional to the number of semifree critical placements, which we denote
by ¢(B,0). We use ¢*(B,0) to denote the number of semifree non-degenerate
critical placements. In many cases (B, ) is proportional to ¢*(B,0) but in
some cases ¢*(B,0) can be much smaller. We improve the bounds on ¢(B,0)
for all three cases (C1)—(C3), and on ¢*(B, O) for (C2).

Related work. The general hitting-set problem is NP-hard, and it is believed to be
intractable to obtain an o(logn)-approximation [7]. An O(logn)-approximation
can be achieved by a simple greedy algorithm [16]. The hitting-set problem
remains NP-hard even in a geometric setting [I2/I3], and in some instances
also hard to approximate [4]. However, in many cases polynomial-time algo-
rithms with approximation factors better than O(logn) are known. For exam-
ple, Hochbaum and Maass [9] devise (1 + €)-approximation algorithms (for any
e > 0), for the problem of hitting a set of unit disks by a set of points. For set
systems that typically arise in geometric problems, the approximation factor can
be improved to O(logc¢*), where ¢* is the size of the optimal solution, and in
some settings a constant factor approximation is also possible; see, e.g., [0].

Motivated by motion-planning and related problems in robotics, there is a rich
body of literature on analyzing the complexity of the free space of a variety of
moving systems B (“robots” ), and a considerable amount of the earlier work has
focussed on the cases where B is a line segment or a convex polygon translating
and rotating in a planar polygonal workspace. Cases (C2) and (C3) correspond to
these scenarios. It is beyond the scope of this paper to review all of this work. We
refer the reader to the surveys [SII4I15]. We briefly mention the results that are
directly related to our study. Leven and Sharir [I0] proved that p(B, ) = O(n?)
if B is a line segment and O is a set of pairwise-disjoint polygons with a total
of n vertices. They also give a near-quadratic algorithm to compute F(B, O).
For the case where B is a convex k-gon, Leven and Sharir [I1] proved that
©(B,0) = O(k®>n?Bs(kn)), where B4(t) = As(t)/t, and A(t) is the maximum
length of an (¢, s)-Davenport-Schinzel sequence [I5]; (s (t) is an extremely slowly
growing function of ¢.

Our results. There are two main contributions of this paper. First, we refine the
earlier bounds on ¢(B, 0) so that they also depend on the number m of polygons
in O, and not just on their total number of vertices, since m < n in many cases.
Second, we present a general approach for computing a hitting set, which leads
to faster algorithms for computing stabbing sets.

Specifically, we first prove (in Section[Z), for the case where B is a line segment,
that the complexity of F(B, Q) is O(mna(n)), and that F(B, O) can be computed
in O(mna(n) log? n) randomized expected time. If the polygons in O are pairwise
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disjoint, then ¢(B,0) = O(mn), but ¢*(B,0) = O(m? + n). We then show
that we can compute, in O((m? + n)logmlog?n) randomized expected time,
an implicit representation of F of size O(m? + n), which is sufficient for many
applications (including ours). We then consider case (C3) (Section B]). We show
that ¢(B,0) = O(k*mnfs(kn)) in this case, and that F can be computed in
expected time O(k?mnfg(kn)log(kn)logn).

The subsequent results in this paper depend on the complexity of F. Since we
are mainly interested in bounds that are functions of the number of polygons and
of their total size, we abuse the notation a little, and write ¢(m,n) to denote the
maximum complexity of F for each of the three cases; the maximum is taken over
all m convex polygons with a total of n vertices, and these polygons are disjoint
for cases (C2) and (C3). Similarly we define ¢*(m,n) for the maximum number
of nondegenerate critical placements (in case (C3), the bounds also depend on k).

For a point z € R?, we define its depth to be the number of c-polygons K;
that contain z. We present a randomized algorithm DEPTH THRESHOLD , which,
given an integer [ < m, determines whether the maximum depth of a placement
(with respect to O) is at most [. If not, it returns all critical placements (of depth
at most ). The expected running time of this algorithm is O(13p(m/l,n/l)logn).
For (C2), the procedure runs in expected time O(I3¢*(m/l,n/l)log? n) time.

Finally, we describe algorithms for computing a hitting set of X of size O(h*
logm) where h* is the size of the smallest hitting set of K. Basically, we use the
standard greedy approach, mentioned above, to compute such a hitting set, but
we use more efficient implementations, which exploit the geometric structure of
the problems at hand. The first implementation runs in O(A3p(m/A, n/A)logn)
time, where A is the maximum depth of a placement. The second implementation
is a Monte Carlo algorithm, based on a technique of Aronov and Har-Peled [3] for
approximating the depth in an arrangement. The expected running time of the
second implementation is O(p(m,n)hlogmlogn + mn'*e) time, where h is the
size of the hitting set computed by the algorithm, which is O(h* log m), with high
probability. Finally, we combine the two approaches and obtain a Monte Carlo al-
gorithm whose running time is O(@(m,n) - n° 4+ np(m/n,n/n)lognlog® m), for
any £ > 0, where = min{h'/?,m'/*} and h = O(h*logm), with high proba-
bility. For case (C2), the expected running time can be improved to O(¢*(m,n) -
n+n3p*(m/n,n/n)logn)), for some constant ¢ > 1. We believe that one should
be able to improve the expected running time to O(¢(m, n)log®™ n), but such
a bound remains elusive for now. Because of lack of space many algorithms and
proofs are omitted from this abstract, which can be found in the full version of

this paper [1J.

2 Complexity of I for a Segment

Let B be a line segment of length d, and let O be a set of m convex polygons in
R? with a total of n vertices. We first bound the number of critical placements
when the polygons in O may intersect, and then prove a refined bound when
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the polygons are pairwise disjoint. We omit the algorithms for computing these
placements from this abstract.

The case of intersecting polygons. There are several types of critical placements
of B (see Figure[ll(a)):

(i) A placement where one endpoint of B touches a vertex of one polygon and
the other endpoint touches an edge of another polygon.

(ii) A placement where one endpoint of B touches a vertex of one polygon and
the relative interior of B touches a vertex of another polygon.

(iii) The relative interior of B touches two vertices (of the same or of distinct
polygons) and one endpoint of B touches a polygon edge.

(iv) The relative interior of B touches a vertex of a polygon, and one of its
endpoints touches an intersection point of two edges (of distinct polygons).

(v) One endpoint of B touches an intersection point of two edges (of distinct
polygons), and the other endpoint touches a third edge.

(vi) The relative interior of B touches a vertex of a polygon, and its two endpoints
touch two respective edges (of distinct polygons).

There are O(mn) placements of types (i) and (ii), and O(m? + n) placements
of type (iii).

EE
X <&

Fig. 1. (a) Critical free placements of B; (b) Fu and G¢ intersect at most twice

Consider the placements of types (iv) and (v). Let u be an intersection point
of two polygon boundaries (which lies on the boundary of their union), and let
H denote the hole (i.e., connected component of the complement) of the union
of O which contains u on its boundary. Again, placing an endpoint of B at u
leaves B with one degree of freedom of rotation about u. However, at any such
free placement, B must be fully contained in (the closure of) H. For any polygon
O € O whose boundary contributes to OH, there are at most two critical free
placements of types (iv) and (v) where B swings around u and touches O, and no
other polygon (namely, those which do not show up on 9H) can generate such a
placement. It follows that, for any polygon O € O, the intersection points u that
can form with O critical free placements of type (iv) or (v) are vertices of the
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zone of O in the arrangement A(O \ {O}). Since 0O is convex, the complexity
of the zone is O(na(n)) [2]. Hence the overall number of such placements is
O(mna(n)).

Finally, consider critical free placements of type (vi). Let v be a fixed vertex
of some polygon (not lying inside any other polygon). The placements of B at
which its relative interior touches v can be parametrized in a polar coordinate
system (r,0), where r is the distance of one endpoint a of B from v, and 6 is
the orientation of B, oriented towards a, so that O lies to the right of (the line
supporting) B. The admissible values of (r,#) can be restricted to the rectangle
[0,d] x I, where I is the range of orientations of tangent lines to O at v, for which
O lies to their right. For any polygon Q € O\ {O}, we define a forward function
r = Fo(0) and a backward function r = Gq(6), where F(0) (resp., Go(0)) is
the distance from v to £y N @ (resp., d minus that distance), where £y is the
line at orientation € that passes through v. F(0) (resp., Gg(0)) is defined only
when £y N @ is nonempty, lies ahead (resp., behind) v along ¢y, and its distance
from v is at most d; in all other cases, we set Fo(0) :=d (resp., Gg(#) :=0). It
is clear that the set IF,, of free placements of B when its relative interior hinges
over v, is given in parametric form by

{(r,0) | max Go(f) <r <min Fg(0)}.

That is, F,,, in parametric form, is the sandwich region between the lower enve-
lope of the functions Fg and the upper envelope of the functions Gq. It follows
that the combinatorial complexity of F,, is proportional to the sum of the com-
plexities of the two individual envelopes. A placement of B, where one endpoint
lies either at a vertex of some polygon (including v itself), or at the intersection
point between two edges of distinct polygons, its relative interior touches v, and
the portion of B between these two contacts is free, corresponds to a breakpoint
in one of the envelopes. Arguing as in the analysis of the preceding types of criti-
cal placements, the overall number of such placements, summed over all vertices
v, is O(mna(n)). It follows that the overall number of critical placements of type
(vi) is also O(mna(n)). Putting everything together, we obtain:

Theorem 1. Let B be a line segment and let O be a set of m (possibly intersect-
ing) convex polygons in R? with n vertices in total. The number of free critical
placements of B is O(mna(n)).

The case of pairwise-disjoint polygons. We now prove a refined bound on the
number of free critical placements if the polygons in O are pairwise disjoint.
A trivial construction shows that, even in this case, there can be 2(mn) free
critical placements of types (i) and (ii). However, most of these placements in-
volve contacts with only two distinct polygons, so they are degenerate critical
contacts. As we next show, the number of nondegenerate critical contacts is
smaller. Specifically, we argue that there are only O(m? +n) free nondegenerate
critical placements.

We have already ruled out critical placements of types (i) and (ii) because they
are degenerate, and we rule out placements of type (iv) and (v) because
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they involve intersecting polygons. It thus remains to bound the number of free
critical placements of types (iii) and (vi). There are only O(m? + n) critical place-
ments of type (iii), as argued above. For placements of type (vi), we use the same
scheme as above, fixing the pivot vertex v and considering the system of func-
tions Fg(6), Go(0) in polar coordinates about v. Let £,(8) = ming Fo () and
U, (0) = maxg Gg(0); Let py (resp. v,,) be the number of breakpoints in L, (resp.
U, ). Using the fact that the functions F (and Gg) are pairwise disjoint, we claim
the following:

Lemma 1. Y (py + 1) = O(m? +n).

If we mark the 6-values at which a breakpoint of L, or U, occurs, we partition
the f-range into intervals so that each of £, and U, is attained by (a connected
portion of the graph of) a single function, say Fg and G, respectively. We
claim that Fg and G intersect in at most two points in this interval, i.e., there
are two semifree placements of B such that v lies in the interior of B and the
endpoints of B lie on 9Q and 9Q)’; see Figure[ll(b). Hence, the number of vertices
in the sandwich region between L, and U, is O(u, + v,). Putting everything
together, we obtain:

Theorem 2. Let B be a line segment, and let O be a set of pairwise-disjoint con-
vex polygons with n vertices in total. The number of nondegenerate free critical
placements of B is O(m? + n).

3 Complexity of F for a Convex k-gon

In this section we derive an improved bound on ¢(B, O) for the case where B is
a convex k-gon and O is a set of m pairwise-disjoint convex polygons in R? with
n vertices in total. We assume that the polygons in O are in general position,
as in [IT]. We first prove that the number of degenerate free critical placements
is O(k?mn), and then show that the total number of realizable double contacts
is O(k?mn). By adapting the argument of Leven and Sharir [L1], we then prove
that ¢(B, 0) = O(k*mn3s(kn)). We begin by stating a lemma, which establishes
an upper bound on the number of realizable double contacts when there are only
two obstacles.

Lemma 2. Let B be a convez k-gon, and let Oy and Oy be two disjoint con-
vex polygons with ny and no vertices, respectively, then the number of semifree
degenerate critical placements in F(B, {01, 02}) is O(k*(n1 + n2)).

The following corollary follows immediately from Lemma [2

Corollary 1. Let B be a convex k-gon and let O be a set of m pairwise-disjoint
convez polygons with n vertices in total. The number of degenerate critical place-
ments in F(B,0) is O(k*mn).

Next, we bound the number of realizable double contacts. It is tempting to
prove that a fixed contact C' can realize only O(km) double contacts, but, as
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shown in the full version, a contact may be involved in 2(kn) realizable double
contacts, so we have to rely on a more global counting argument. Note first that
the preceding argument shows that the number of degenerate double contacts
is O(k*mn), so it suffices to consider only nondegenerate double contacts. Since
we assume that the polygons are in general position, the locus of placements
forming a fixed non-degenerate double contact {C1,Co} is a curve in R3. Let
01 and Oz be the two (distinct) polygons involved in {Cy,C2}. Adapting the
argument in [I5] Lemma 8.55], one can show that at least one endpoint of this
curve is a degenerate triple contact, which we denote by z(C4,C2), which is
semifree with respect to O; and O2. We thus charge {C1, Cs} to z(Cq, Cs), and
argue that each nondegenerate triple contact in F(B,{01,0s}) is charged at
most O(1) times. Omitting all further details, we obtain:

Lemma 3. Let B be a convexr k-gon and let O be a set of m pairwise-disjoint

convez polygons with n vertices in total. The number of realizable double contacts
is O(k*mn).

Plugging Corollary [l and Lemma Bl into the proof of Leven and Sharir [I1], we
obtain the main result of this section.

Theorem 3. Let B be a convex k-gon, and let O be a set of m pairwise-disjoint
convex polygons with n vertices in total. Then p(B,0) = O(k*mnfs(kn)).

4 Computing Critical Placements

So far, we have only considered semifree critical placements, but, since we want to
construct a set of stabbing placements of B, we need to consider (and compute)
the set of all (nonfree) critical placements.

Bounding the number of critical placements. Let X = {Ki,..., K} be the
set of c-polygons yielded by B and O, as defined in the Introduction, and let
A(X) denote the 3-dimensional arrangement of K. For a point z € R3 and a
subset § C X, let A(z,G) denote the depth of z with respect to G, i.e., the
number of c-polygons in § containing z in their interior; we use A(z) to denote
A(z,K). Let @;(X) denote the set of vertices of A(X), whose depth is [, and put
@SZ(JC) = Uhgld?h(JC). Set (pl(jc) = @l(JC)\ and (pgl(jc) = ‘@SZ(K”. We now
state a theorem, whose proof is deferred to the full version of this paper.

Theorem 4. (i) Let B be a line segment, let O be a set of m convex polygons
in R? with a total of n vertices, and let X = K(B, ). Then, for any 1 <1< m,
we have p<;(K) = O(mnla(n)). If the polygons in O are pairwise disjoint, then
the number of non-degenerate critical placements in @<;(X) is O(m?l + nl?).

(ii) Let B be a conver k-gon, let O be a set of m pairwise-disjoint polygons in
R? with a total of n vertices, and let X = K(B,0). Then, for any 1 <1 < m,
we have p<;(X) = O(k*mnlBs(kn)).
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The DEPTH THRESHOLD procedure. One of the strategies that we will use for
computing a stabbing set is based on determining whether the maximal depth
in A(X) exceeds a given threshold [. For this we use the DEPTH THRESHOLD
procedure, which, given an integer [ > 1, determines whether DEpTH (X) < [. If
not, it returns a critical placement whose depth is greater than [. Otherwise, it
returns all critical placements of B (which are all the vertices of A(X)). Without
describing the details of this procedure, we claim the following.

Theorem 5. (i) Let B be a line segment, and let O be a set of m convex poly-
gons in R? with a total of n wertices. For a given integer 1 < I < m, the
DEPTH THRESHOLD (I) procedure takes O(mn(logn + la(n))) expected time.
If the polygons in O are pairwise disjoint, the expected running time is O((m21+
nl?)log?n).

(ii) Let B be a convex k-gon and O be a set of m pairwise-disjoint convex
polygons in R? with a total of n vertices. For a given integer 1 < 1 < m, the
DEPTH THRESHOLD (1) procedure takes O(k*mn(logn+13s(kn))) expected time.

5 Computing a Hitting Set

Let X = {Ki,..., K} be the set of c-polygons, for an input collection O of
convex polygons and a line segment or convex polygon B, as above. Our goal is
to compute a small-size hitting set for X, and we do it by applying a standard
greedy technique which proceeds as follows. In the beginning of the ith step we
have a subset K; C XK; initially K; = K. We compute a placement z; € R?
such that A(z;,X;) = DEPTH (X;), and we also compute the set K., C K; of
the c-polygons that contain z;. We add z; to H, and set K;1+1 = K; \ K,,. The
algorithm stops when K; becomes empty. The standard analysis of the greedy
algorithm [6] shows that |H| = O(h*logm), where h* is the size of the smallest
hitting set for K. In fact, the size of H remains O(h*logm), even if at each
step we choose a point z; such that A(z;,K;) > DEpTH (XK;)/2. We describe
three different procedures to implement this greedy algorithm. The first one, a
Las Vegas algorithm, works well when DEPTH (X) is small. The second one, a
Monte Carlo algorithm, works well when A* is small. Finally, we combine the
two approaches to obtain an improved Monte Carlo algorithm. For simplicity,
and due to lack of space, we focus on case (C1): B is a segment and the polygons
in O may intersect.

The Las Vegas algorithm. Tt suffices to find a deepest point in A(XK) that lies
on JK; for some ¢, and that (assuming general position), we may assume it to
lie in the relative interior of some 2-face (the depth of all the points within the
same 2-face is the same). Thus, for each 2-face f of A(X) we choose a sample
point z7. Let Z C R? be the set of these points. We maintain A(z,X;) for each
z € Z, as we run the greedy algorithm, and return z; = argmax.c2 A(z,K;) at
each step, and delete the c-polygons containing z; from X. It will be expensive
to maintain the depth of each point in Z explicitly. We describe a data structure
that maintains the depth of each placement z; in Z implicitly, supports deletion
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of c-polygons and returns a placement of maximum depth. For each c-polygon
K, let Iy = {vj; =0K; NK; | i # j} be a set of regions on 0K;. We compute
A(I;) using Theorem Bl Let D(I7;) be the planar graph that is dual to A(I}).
We choose a representative point z¢ from each face f of A(I}), and use z5 to
denote the node of D(I7;) dual to f. If an edge e of A(I;) lies on 0K,, for some
K, € X, we label the edge e of D(I;) with K, and denote this label by x(e).
We compute a spanning tree T' of D(I;), and then convert T into a path II by
performing a traversal of T', starting from some leaf v; each edge of T appears
twice in IT. The sequence of vertices in IT can be decomposed into intervals, such
that all vertices in each interval either lie in a c-polygon K, or none of them lie
inside K. Let .J, be the subset of those intervals whose vertices lie inside K,.
We represent an interval v, ..., v, by the pair [z,y]. Set J =J,; Ja. For any
vertex vg € IT, we define the weight w(vs) to be the number of intervals [z, y]
in J that contain vy, i.e., intervals satisfying x < s < y. For a subset § C X,
A(vs, G) is the number of intervals in (Jp .qJo that contain vs. We store J
in a segment tree, X, built on the sequence of edges in II. Each node o of X
corresponds to a subpath I, of II. For each o, we maintain the vertex of II, of
the maximum weight. The root of X stores a vertex of IT of the maximum weight.
Once we have computed A(I), J and X' can be constructed in O(k; log k;) time,
where r; is the complexity of A(Ij). We have . r; = O(mnAa(n)), where
A = DEPTH (X). The information in X' can be updated in O(logn) time when
an interval is deleted from J. When the greedy algorithm deletes a c-polygon
K,, we delete all intervals in J, from J and update Y. The total time spent in
updating X' is O(k, log n). Maintaining this structure for each c-polygon K, the
greedy algorithm can be implemented in O(mnAa(n)logn) expected time.

Lemma 4. A hitting set of X of size O(h* logm) can be computed in expected
time O(mnAa(n)logn), where A = DEPTH (K) and where h* is the size of a
smallest hitting set of XK.

A simple Monte Carlo algorithm. Let A = DEpTH (X). If A = O(logm), we use
the above algorithm and compute a hitting set in time O(mna(n)logmlogn).
So assume that A > clogm for some constant ¢ > 1. We use a procedure by
Aronov and Har-Peled [3], which computes a placement whose depth is at least
A/2. Their main algorithm is based on the following observation. Fix an integer
I > A/4. Let § C X be a random subset obtained by choosing each c-polygon
of K with probability p = (¢1lnm)/l, where ¢; is an appropriate constant.
Then the following two conditions hold with high probability, (i) if A > [ then
DEPTH (G) > 3lp/2 = (3¢1/2) Inm, and, ii) if A <[ then DEPTH (§) < 5lp/4 =
(5¢1/4) Inm.

This observation immediately leads to a binary-search procedure for approx-
imating DEPTH (X). Let 7 = (5¢1/4)Inm. In the ith step, for i < [logy(m/
log, m)], we set I; = m/2'. We choose a random subset §; C X using the pa-
rameter [ = [;, and then run the procedure DEPTH THRESHOLD on §; with
parameter 7. If the procedure determines that DEPTH (G;) < 7, then we con-
clude that DEPTH (X) < [;, and we continue with the next iteration. Otherwise,
the algorithm returns a point z € R?® such that A(z,G;) > 7. We need a data
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structure for reporting the set of polygons in O intersected by B[z] for a place-
ment z € R3. As we show in the full version, we can preprocess O into a data
structure of size O(mn'*¢), for any ¢ > 0, so that a convex polygon O; of O can
be deleted in time O(|O;] - n), where |O;]| is the number of vertices of O;, and
so that the set of all k polygons intersecting a query placement B[z] of B can
be reported in time O((1 + ) logn).

Set m; = |9;|, and let n; be the number of vertices in the original polygons
corresponding to the c-polygons in G;. Then the expected running time of the ith
iteration is O(m;n;Ta(n)logn). Since E[m;n;] = O(mnp? 4+ np), the expected
running time of the ith iteration is O((mn/1?)a(n)log® mlogn).

Since the algorithm always stops after at most [log,(m/log, m)] iterations,
the overall expected running time is O(mna(n)logmlogn). Note that if the al-
gorithm stops after ¢ steps, then, with high probability, A € [I;, 2l;]. Hence, the
expected running time of the algorithm is O((mn/A?)a(n)log® mlogn). Plug-
ging this procedure into the greedy algorithm described above, and accounting
for O(mn'*¢) time for preprocessing and reporting the polygons intersecting a
placement z, we get the following lemma.

Lemma 5. There is a Monte Carlo algorithm for computing a hitting set of K
whose size is h = O(h* logm) with probability at least 1 — 1/m°® | and whose
expected running time is O(mnha(n)log mlogn +mn'+e).

An improved Monte Carlo algorithm. We now combine the two algorithms given
above, to obtain a faster algorithm for computing a small-size hitting set of X.
For this we use the data structure mentioned above, which preprocesses O in
O(mn'*¢) time to support deletion.

We now run the greedy algorithm as follows. We begin by running the Monte
Carlo algorithm described above. In the ith iteration, it returns a point z; such
that A(z;,XK;) > DEpPTH (XK;)/2, with high probability. We use the above data
structure to report the set O, of all polygons that intersect the query placement
Blz], or, equivalently, the set X, of the c-polygons that contain z;. We delete
these polygons from the data structure. If |0, | < i*/3 then we switch to the Las
Vegas algorithm described earlier, to compute a hitting set of K;1.

We now analyze the expected running time of the algorithm. The total time
spent in reporting the polygons intersected by the placements B[z1], ..., B[z,
is O(mn!™¢), so it suffices to bound the time spent in computing zi,..., 2.
Suppose that the algorithm switches to the second stage after £ 4+ 1 steps. Then
DePTH (K;) > €/, for 1 <i < &, and, the expected running time of each of the
iterations of the first stage is O((mn/€%/?)a(n) log nlog® m). Hence, the expected
running time of the first stage is O(mn&'/3a(n)log nlog® m). The expected run-
ning time of the second stage is O(mn&'/3a(n)logn) because DEPTH (K¢ i9) <
2¢1/3 . Suppose h is the size of the hitting set computed by the algorithm. Then
¢ < h. Moreover, for 1 < i < &, each z; lies inside at least (£/3)/2 c-polygons
of K;, and all these polygons are distinct. Therefore, £4/3 < 2m. The expected
running time of the overall algorithm is O(mnna(n) log nlog® m~+mn'+¢), where
n = min{m'/* h'/3}. We thus obtain the following.
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Theorem 6. Let B be a line segment, and let O be a set of m (possibly in-
tersecting) convex polygons in R?, with a total of n vertices. A stabbing set
of O of h = O(h*logm) placements of B can be computed, with probability
at least 1 — 1/mPW) | in expected time O(mn(n® + na(n)lognlog® m)), where
n = min{m1/47h1/3}, h* is the smallest size of a hitting set, and ¢ > 0 is an
arbitrarily small constant.

Remark: The expected running time of the above approach is O((m? +n)n® +
(m?n + nn?) log®(n)) for case (C2) and O(k*mn(n® + nBs(kn)lognlog® m)) for
case (C3).
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An Efficient Algorithm for 2D Euclidean
2-Center with Outliers*

Pankaj K. Agarwal and Jeff M. Phillips

Department of Computer Science, Duke University, Durham, NC 27708

Abstract. For a set P of n points in R?, the Euclidean 2-center problem
computes a pair of congruent disks of the minimal radius that cover P.
We extend this to the (2, k)-center problem where we compute the mini-
mal radius pair of congruent disks to cover n — k points of P. We present
a randomized algorithm with O(nk” log®n) expected running time for
the (2, k)-center problem. We also study the (p, k)-center problem in R?
under the £o-metric. We give solutions for p = 4 in O(ko<1)n logn) time
and for p =5 in O(k°Ynlog®n) time.

1 Introduction

Let P be a set of n points in R?. For a pair of integers 0 < k < n and p > 1,
a family of p congruent disks is called a (p, k)-center if the disks cover at least
n — k points of P; (p,0)-center is the standard p-center. The Euclidean (p, k)-
center problems asks for computing a (p, k)-center of P of the smallest radius.
In this paper we study the (2, k)-center problem. We also study the (p, k)-center
problem under the £,,-metric for small values of p and k. Here we wish to cover
all but k points of P by p congruent axis-aligned squares of the smallest side
length. Our goal is to develop algorithms whose running time is n(k log n)o(l).

Related work. There has been extensive work on the p-center problem in algo-
rithms and operations research communities [4[T4JT89]. If p is part of the input,
the problem is NP-hard [22] even for the Euclidean case in R?. The Euclidean 1-
center problem is known to be LP-type [20], and therefore can be solved in linear
time for any fixed dimension. The FEuclidean 2-center problem is not LP-type.
Agarwal and Sharir [3] proposed an O(n?log® n) time algorithm for the 2-center
problem. The running time was improved to O(nlog”® n) by Sharir [24]. The
exponent of the log n factor was subsequently improved in [I5)6]. The best known
deterministic algorithm takes O(n log? nlog? log n) time in the worst case, and
the best known randomized algorithm takes O(nlog? n) expected time.

There is little work on the (p, k)-center problem. Using a framework described
by Matousek [19], the (1, k)-center problem can be solved in O(nlogk + k3n®)

* This work is supported by NSF under grants CNS-05-40347, CFF-06-35000, and
DEB-04-25465, by ARO grants W911NF-04-1-0278 and W911NF-07-1-0376, by an
NIH grant 1P50-GM-08183-01, by a DOE grant OEGP200A070505, and by a grant
from the U.S. Israel Binational Science Foundation.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 64{75] 2008.
© Springer-Verlag Berlin Heidelberg 2008
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time for any ¢ > 0. In general, Matousek shows how to solve this problem
with & outliers in O(nk?) time where d is the inherent number of constraints in
the solution. The bound for the (1, k)-center problem is improved by Chan [7]
to O(nB(n)logn + k*n®) expected time, where 3(-) is a slow-growing inverse-
Ackermann-like function and € > 0.

The p-center problem under f,,-metric is dramatically simpler. Sharir and
Welzl [25] show how to compute the £ p-center in near-linear time for p < 5.
In fact, they show that the rectilinear 2- and 3-center problems are LP-type
problems and can be solved in O(n) time. Also, they show the 1-dimensional
version of the problem is an LP-type problem for any p, with combinatorial
dimension O(p). Thus applying Matousek’s framework [19], the ¢, (p, k)-center
in R? for p < 3, can be found in O(k°Mn) time and in O(k°®)n), for any p, if
the points lie in R!.

Our results. Our main result is a randomized algorithm for the Euclidean
(2, k)-center problem in R? whose expected running time is O(nk” log® n). We
follow the general framework of Sharir and subsequent improvements by Epp-
stein. To handle outliers we first prove, in Section 2, a few structural properties
of levels in an arrangement of unit disks, which are of independent interest.

As in [24T5], our solution breaks the (2, k)-center problem into two cases
depending on the distance between the centers of the optimal disks; (i) the cen-
ters are further apart than the optimal radius, and (ii) they are closer than their
radius. The first subproblem, which we refer to as the well-separated case and de-
scribe in Section 3, takes O(kSn log® n) time in the worst case and uses paramet-
ric search [21]. The second subproblem, which we refer to as the nearly concentric
case and describe in Section 4, takes O(k"n log® n) expected time. Thus we solve
the (2, k)-center problem in O(k"n log® n) expected time. We can solve the nearly
concentric case and hence the (2, k)-center problem in O(k"n'*?) deterministic
time, for any 6 > 0. We present near-linear algorithms for the ¢, (p, k)-center
in R? for p = 4, 5. The £+, (4, k)-center problem takes O(k°nlogn) time, and
the £ (5, k)-center problem takes O(k®™Mnlog® n) time. See the full version [2]
for the description of these results. We have not made an attempt to minimize
the exponent of k. We believe that it can be improved by a more careful analysis.

2 Arrangement of Unit Disks

Let D = {Dy,...,D,} be a set of n unit disks in R?. Let A(D) be the ar-
rangement of D[] A(D) consists of O(n?) vertices, edges, and faces. For a subset
R C D, let I(R) = \pex D denote the intersection of disks in R. Each disk in
R contributes at most one edge in J(R). We refer to J(R) as a unit-disk polygon
and a connected portion of 9J(R) as a unit-disk curve. We introduce the notion

! The arrangement of D is the planar decomposition induced by D; its vertices are the
intersection points of boundaries of two disks, its edges are the maximal portions of
disk boundaries that do not contain a vertex, and its faces are the maximal connected
regions of the plane that do not intersect the boundary of any disk.
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of level in A(D), prove a few structural properties of levels, and describe an
algorithm that will be useful for our overall algorithm.

Levels and their structural properties. For a point 2 € R?, the level of
with respect to D, denoted by A(z, D), is the number of disks in D that do not
contain z. (Our definition of level is different from the more common definition
in which it is defined as the number of disks whose interiors contain x.) All points
lying on an edge or face ¢ of A(D) have the same level, which we denote by A(¢).
For k < n, let Ax(D) (resp. A<k(D)) denote the set of points in R? whose level
is k (resp. at most k); see Fig. [[l By definition, A¢(D) = A<o(D) = I(D).

The boundary of A<y (D) is composed of the edges of A(D). Let v € 0D N
0Dg, for D1, Dy € D, be a vertex of 0A <, (D). We call v conver (resp. concave) if
A<k (D) lies in D1 N Dy (resp. D1 UD>) in a sufficiently small neighborhood of v.
0A<o(D) is composed of convex vertices; see Fig. [[l(a). We define the complexity
of A<k(D) to be the number of edges of A(D) whose levels are at most k. Since
the complexity of A<o(D) is n, the following lemma follows from the result by
Clarkson and Shor [I1] (see also Sharir [23] and Chan [§]).

12 2 1

12 1 2

(a) (b) ()

Fig.1. (a) A(D), shaded region is A<1(D), filled (resp. hollow) vertices are convex
(resp. concave) vertices of A<1(D), covering of A<1(D) edges by six unit-disk curves.
(b) A(I'"), shaded region is A<;(I'"), and the covering of A<i(I'") edges by two
concave chains. (¢) A(I'"), shaded region is A<1(I'"), and the covering of A<1(I"7)
edges by two convex chains.

Lemma 1. [II] For k > 0, the complexity of A<i(D) is O(nk).

Remark 1. The argument by Clarkson and Shor can also be used to prove that
A<i(D) has O(k?) connected components and that it has O(k?) local minima
in (4y)-direction. See also [T9/I0]. These bounds are tight in the worst case; see
Fig.

It is well known that the edges in the <k-level of a line arrangement can be
covered by k + 1 concave chains [I7], as used in [I3I7]. We prove a similar result
for A<(D); it can be covered by O(k) unit-disk curves.

For a disk D;, let 7?' (resp. ;) denote the set of points that lie in or below
(resp. above) D;; dv;" consists of the upper semicircle of dD; plus two vertical
downward rays emanating from the left and right endpoints of the semicircle
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— we refer to these rays as left and right rays. The curve 0v; has a similar
structure. See Fig. [(b). Set I't = {y;" |1 <i<n}and I'" ={y; |1<i<n}.
Each pair of curves 07", 87]* intersect in at most one point. (If we assume that
the left and right rays are not vertical but have very large positive and negative
slopes, respectively, then each pair of boundary curves intersects in exactly one
point.) We define the level of a point with respect to I'*, I'", or 't U '~ in
the same way as with respect to D. A point lies in a disk D; if and only if it lies
in both %* and v, , so we obtain the following inequalities:

max{\(z, "), \(z, ")} < Az, D). (1)

Az, D) < ANz, I UT™) < 2X(z, D). (2)

We cover the edges of A<y (I'") by k+ 1 concave chains as follows. The level
of the (k 4 1)st rightmost left ray is at most k at y = —oo. Let p; be such a
ray, belonging to 7?'. We trace 8'yz-+7 beginning from the point at y = —oco on p;,
as long as 87;' remains in A<, (I'"). We stop when we have reached a vertex
v € A<(I'") at which it leaves A<y (I'"); v is a convex vertex on A<y (I'1).
Suppose v = dv;" NI} Then dA<,(I'") follows ;" immediately to the right
of v, so we switch to BW;T and repeat the same process. It can be checked that we
finally reach y = —oo on a right ray. Since we switch the curve on a convex vertex,
the chain Aj we trace is a concave chain composed of a left ray, followed by a
unit-disk curve 5;", and then followed by a right ray. Let /13', Af A;l' be the
k+1 chains traversed by this procedure. These chains cover all edges of A< ('),
and each edge lies exactly on one chain. Similarly we cover the edges of A< (I"™)
by k+1 convex curves Ay, A7, ..., Ay . Let = ={&5, ..., &5, &5 ..., &, } be the
family of unit-disk curves induced by these convex and concave chains. By (),
= covers all edges of A<y (D). Since a unit circle intersects a unit-disk curve in
at most two points, we conclude the following.

Lemma 2. The edges of A<p(D) can be covered by at most 2k + 2 unit-disk
curves, and a unit circle intersects O(k) edges of A<y (D).

The curves in = may contain edges of A(D) whose levels are greater that k. If
we wish to find a family of unit-disk curves whose union is the set of edges in
A<i(D), we proceed as follows. We add the z-extremal points of each disk as
vertices of A(D), so each edge is now z-monotone and lies in a lower or an upper
semicircle. By (), only O(k) such vertices lie in A<, (D). We call a vertex of
A<k (D) extremal if it is an z-extremal point on a disk or an intersection point of
a lower and an upper semicircle. Lemma Pl implies that there are O(k?) extremal
vertices. For each extremal vertex v we do the following. If there is an edge e of
A<i(D) lying to the right of v, we follow the arc containing e until we reach an
extremal vertex or we leave A<y (D). In the former case we stop. In the latter
case we are at a convex vertex v’ of 0A<y(D), and we switch to the other arc
incident on v’ and continue. These curves have been drawn in Fig. [[a). This
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procedure returns an z-monotone unit-disk curve that lies in A<k (D). It can
be shown that this procedure covers all edges of A<y (D). We thus obtain the
following:

Lemma 3. Let D be a set of n unit disks in R?. Given A<(D), we can compute,
in time O(nk), a family of O(k?) x-monotone unit-disk curves whose union is
the set of edges of A<i(D).

Remark 2. Since A<y (D) can consist of 2(k?) connected components, the O(k?)
bound is tight in the worst case; see Fig.

Emptiness detection of A<;(D). We need a dy-
namic data structure for storing a set D of unit disks
that supports the following two operations:

— (O1) Insert a disk into D or delete a disk from

D;
— (02) For a given k, determine whether
‘ASk(D) 7 0. Fig. 2. Lower  bound.

As described by Sharir [24], J(D) can be main- As<a2(D)  (shaded region)

. . . . 2 . has 4 connected compo-
tained under insertion/deletion in O(log” n) time per

. . nents

update. Matousek [I9] has described a data structure
for solving LP-type problems with violations. Find-
ing the lowest point in J(D) can be formulated as an LP-type problem. Therefore
using the dynamic data structure with Matousek’s algorithm, we can obtain the
following result.

Lemma 4. There exists a dynamic data structure for storing a set of n unit disks
so that (O1) can be performed in O(log® n) time, and (02) takes O (k> log® n) time.

3 Well-Separated Disks

In this section we describe an algorithm for the case in which the two disks
Dy, D5 of the optimal solution are well separated. That is, let ¢; and co be the
centers of Dy and Ds, and let r* be their radius. Then ||cyca|| > r*; see Fig.Bl(a).
Without loss of generality, let us assume that c; lies to the left of cp. Let D;” be
the semidisk lying to the left of the line passing through ¢; in direction normal
to cica. A line £ is called a separator line if D1 N Dy = () and £ separates Dy from
Dy, or D1 N Dy # () and ¢ separates D from the intersection points 9D1 N9 Ds.
We first show that we can quickly compute a set of O(k?) lines that contains a
separator line. Next, we describe a decision algorithm, and then we describe the
algorithm for computing D7 and Dy provided they are well separated.

Computing separator lines. We fix a sufficiently large constant h and choose
aset U= {uy,...,up} C S of directions, where u; = (cos(27i/h),sin(2mi/h)).
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Fig. 3. (a) Let ¢ is a separator line for disks D; and Ds. (b) Two unit disks D; and
D- or radius r* with centers closer than a distance r*.

For a point p € R? and a direction u;, let pl!! be the projection of p in
the direction normal to u;. Let Pl = <p[f], e ,p@) be the sorted sequence of
projections of points in the direction normal to u;. For each pair a,b such that
a+b < k, we choose the interval 65}17 = Li], pELb} and we place O(1) equidistant

points in this interval. See Fig.Bl(a). Let Lmb be the set of (oriented) lines in the

a7

direction normal to u; and passing though these points. Set

L= J L.

1<i<h
a+b<k

We claim that L contains at least one separator line. Intuitively, let v, € U
be the direction closest to ¢ics. Suppose p, and p,_p are the first and the last
points of P in the direction u; that lie inside Dy U Da. Since |P\ (D1 U D3)| < k,
a-+b<k If Di N Dy =0, then let g be the extreme points of D; in direction
c1cs. Otherwise, let ¢ be the first intersection point of D N @Dy in direction
u;. Following the same argument as Sharir [24], one can argue that

(e1 —q,ui) > (Pp—b — Da, i),

where o < 1 is a constant. Hence if at least 2« points are chosen in the interval

55}};7 then one of the lines in L([f]b is a separator line. Omitting all the details,
which are similar to the one in [24], we conclude the following.

Lemma 5. We can compute in O(k*nlogn) time a set L of O(k?) lines that
contains a separator line.

Let Dy, D3 be a (2,k)-center of P, let ¢ € L be a line, and let P~ C P be
the set of points that lie in the left halfspace bounded by ¢. We call Dy, D5 a
(2, k)-center consistent with ¢ if P~ N (Dy U Dg) C Dy, the center of Dy lies to
the left of £, and 0D contains at least one point of P~. We describe a decision
algorithm that determines whether there is a (2, k)-center of unit radius that is
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consistent with ¢. Next, we describe an algorithm for computing a (2, k)-center
consistent with ¢, which will lead to computing an optimal (2, k)-center of P,
provided there is a well-separated optimal (2, k)-center of P.

Decision algorithm. Let ¢ € L be a line. We describe an algorithm for de-
termining whether there is a unit radius (2, k)-center of P that is consistent
with £. Let P~ (resp. P*) be the subset of points in P that lie in the left
(resp. right) halfspace bounded by ¢; set n~ = |P~|, n™ = |P*|. Suppose
D1, Dy is a unit-radius (2, k)-center of P consistent with ¢, and let ¢1,co be
their centers. Then P~ N (D U Dy) € Dy and |P~ N Dy| > n~ — k. For a
subset @ C P, let D(Q) = {D(q) | ¢ € Q} where D(q) is the unit disk cen-
tered at q. Let D= = D(P~) and DT = D(P*). For a point z € R?, let
D = {D € Dt | x € D}. Since dD; contains a point of P~ and at most k
points of P~ do not lie in Dy, ¢; lies on an edge of A<y (D).

We first compute A<y (D) in O(nklogn) time. For each disk D € DT, we
compute the intersection points of D with the edges of A<y (D~). By Lemmal[2
there are O(nk) such intersection points, and these intersection points split each
edge into edgelets. The total number of edgelets is also O(nk). Using Lemma [2]
we can compute all edgelets in time O(nklogn). All points on an edgelet v lie in
the same subset of disks of DT, which we denote by Dj. Let P,;r C Pt be the
set of centers of disks in DI, and let #, = A(y,D~). A unit disk centered at a
point on v contains Pj‘ and all but ., points of P~ If at least ¥’ = k— k., points
of P\ P can be covered by a unit disk, which is equivalent to A<y (D \ D)
being nonempty, then all but k points of P can be covered by two unit disks.

When we move from one edgelet v of A<, (D™) to an adjacent one ' with
o as their common endpoint, then DI = Dj, (if o is a vertex of A<x(D7)),
DY, = DI U{D} (if o € 9D and v C {D}), or DY, = DI \ {D} (if 0 € D and
v C D). We therefore traverse the graph induced by the edgelets of A<y (D) and
maintain nyr in the dynamic data structure described in Section [2] as we visit
the edgelets v of A<y (D ™). At each step we process an edgelet v, insert or delete
a disk into D¥, and test whether A<;(DF) = () where j =k — A(y,D™). If the
answer is yes at any step, we stop. We spend O(k®log® n) time at each step, by
Lemma [l Since the number of edgelets is O(nk), we obtain the following.

Lemma 6. Let P be a set of n points in R?, ¢ a line in L, and 0 < k < n an
integer. We can determine in O(nk*log?n) time whether there is a unit-radius
(2, k)-center of P that is consistent with £.

Optimization algorithm. Let £ be aline in L. Let r* be the smallest radius of a
(2, k)-center of P that is consistent with £. Our goal is to compute a (2, k)-center
of P of radius r* that is consistent with £. We use the parametric search technique
[21] — we simulate the decision algorithm generically at * and use the decision
algorithm to resolve each comparison, which will be of the form: given ry € RT,
is rg < r*? We simulate a parallel version of the decision procedure to reduce
the number of times the decision algorithm is invoked to resolve a comparison.
Note that we need to parallelize only those steps of the simulation that depend
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on r*, i.e., that require comparing a value with r*. Instead of simulating the
entire decision algorithm, as in [I5], we stop the simulation after computing the
edgelets and return the smallest (2, k)-center found so far, i.e., the smallest radius
for which the decision algorithm returned “yes.” Since we stop the simulation
earlier, we do not guarantee that we find the a (2, k)-center of P of radius r*
that is consistent with £. However, as argued by Eppstein [15], this is sufficient
for our purpose.

Let P~, P* be the same as in the decision algorithm. Let D=, DT etc. be
the same as above except that each disk is of radius 7* (recall that we do not
know the value of r*). We simulate the algorithm to compute the edgelets of
A< (D7) as follows. First, we compute the <k order farthest point Voronoi
diagram of P~ in time O(nlogn + nk?) [5]. Let e be an edge of the diagram
with points p and g of P~ as its neighbors, i.e., e is a portion of the bisector of p
and ¢. Then for each point = € e, the disk of radius ||xp|| centered at = contains
at least n~ — k points of P~. We associate an interval 6. = {||xp|| | € e}. By
definition, e corresponds to a vertex of A<y (D) if and only if r* € ¢; namely,
if ||xp|| = r*, for some x € e, then x is a vertex of A< (D~), incident upon the
edges that are portions of 9D(p) and 9D(q). Let X be the sorted sequence of the
endpoints of the intervals. By doing a binary search on X and using the decision
procedure at each step, we can find two consecutive endpoints between which r*
lies. We can now compute all edges e of the Voronoi diagram such that r* € é..
We thus compute all vertices of A<y (D™). Since we do not know r*, we do not
have actual coordinates of the vertices. We represent each vertex as a pair of
points. Similarly, each edge is represented as a point p € P~ indiciating that
e lies in OD(p). Once we have all the edges of A<y (P~ ), we can construct the
graph induced by them and compute O(k?) x-monotone unit-disk curves whose
union is the set of edges in A<y (P~), using Lemma[3l Since this step does not
depend on the value of r*, we need not parallelize it. Let = = {&,...,&.},
u = O(k?), be the set of these curves.

Next, for each disk D € DT and for each & € =, we compute the edges
of & that dD intersects, using a binary search. We perform these O(nk?) bi-
nary searches in parallel and use the decision algorithm at each step. Incor-
porating Cole’s technique [I2] in the binary search we need to invoke the
decision procedure only O(logn) times. For an edge e € A<k(D), let DF € D
be the set of disks whose boundaries intersect e. We sort the disks in DI by
the order in which their boundaries intersect e. By doing this in parallel for all
edges and using a parallel sorting algorithm for each edge, we can perform this
step by invoking the decision algorithm O(logn) times. The total time spent is
O(nk*log®n).

Putting pieces together. We repeat the optimization algorithm for all lines
in L and return the smallest (2, k)-center that is consistent with a line in L.
The argument of Eppstein [I5] implies that if an optimal (2, k)-center of P is
well-separated, then the above algorithm returns an optimal (2, k)-center of P.
Hence, we conclude the following:
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Lemma 7. Let P be a set of n points in R? and 0 < k < n an integer. If an
optimal (2, k)-center of P is well separated, then the (2, k)-center problem for P
can be solved in O(nk®log®n) time.

4 Nearly Concentric Disks

In this section we describe an algorithm for when the two disks D; and Dy of
the optimal solution are not well separated. More specifically, let ¢; and ¢y be
the centers of D7 and Dy and let r* be their radius. Then this section handles
the case where ||ciea| < r*.

First, we find an intersector point z of D; and Dy — a point that lies in
D1 N Dy. We show how z defines a set P of O(n?) possible partitions of P
into two subsets, such that for one partition P; ;, P\ P;; the following holds:
(D1UD2)NP = (D1NP,;)U(DanN(P\ P, ;)). Finally, we show how to search
through the set P in O(k"n'*®) time, deterministically, for any § > 0, or in
O(k"nlog® n) expected time.

Finding an intersector point. Let C be the circumcircle of P N (D1 U Da).
Eppstein [15] shows that we can select O(1) points inside C' such that at least
one, z, lies in D1 N Dy. We can hence prove the following.

Lemma 8. Let P be a set of n points in R?. We can generate in O(nk?®) time
a set Z of O(k3) points such that for any nearly concentric (2, k)-center Dy, Do,
one of the points in Z is their intersector point.

Proof. If the circumcircle of P is not C, then at least one point of PN JC must
not be in Dy U Dy. We remove each point and recurse until we have removed k
points. Matousek [I9] shows that we can keep track of which subsets have already
been evaluated and bounds the size of the recursion tree to O(k?*). Building the
entire recursion tree takes O(nk?) time. Since |P\ C| < k, at least one node in
the recursion tree describes P U C. Generating O(1) possible intersector points
for each node completes the proof.

Let z be an intersector point of D1 and Do, and let p™, p~ be the two rays from
z to the points of 9D1 N JDs. Since Dy and Do are nearly concentric, the angle
between them is at least some constant §. We choose a set U C S* of h = [27/6)]
uniformly distributed directions. For at least one u € U, the line ¢ in direction
u and passing through z separates p* and p~, see Fig. B(b). We fix a pair z,u
in Z x U and compute a (2, k)-center of P, as described below. We repeat this
algorithm for every pair. If D1 and D5 are nearly concentric, then our algorithm
returns an optimal (2, k)-center.

Fixing z and u. For a subset X C P and for an integer ¢t > 0, let r*(X) denote
the minimum radius of a (1, ¢)-center of X. Let PT (resp. P™) be the subset of P
lying above (resp. below) the z-axis; set n* = |P*| and n= = |P~|. Sort Pt =
{pf,... ,pL) in clockwise order and P~ = (p|,...,p,_) in counterclockwise
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order. For 0 < i <n*, 0 <j<n",let ;= {pf,....p},pr,...,p; } and
Qi,j = P\PZJ For 0 S t S ]4}, let
mi ;= max{r'(P;;), 7" " (Qi;)}.

For 0 < t < k, we define an n* x n~ matrix M?* such that M'(i,j) = mzj.

Suppose z is an intersector point of D; and Ds, ¢ separates p* and p~—, and
pT (resp. p~) lies between pf,ptiy (resp. p,,p,, ). Then PN (D1 U Dy) =
(Pap N D1) U (Qqp U D2); see FigB(b). If [P,y \ Di| = t, then 7* = m/ ;. The
problem thus reduces to computing

L

(2, w) = minm!

1,55t

where the minimum is taken over 0 < i <n*, 0<j <n~,and 0 <t < k. For
each t, we compute p(z,u) = min; ; m;j and choose the smallest among them.

Computing p'(z,u). We note two properties of the matrix M* that will help
search for p!(z,u):

— (P1) If #*(P; ;) > v *(Qi ) then m ; < ml, , for i’ > i and j' > j. These
partitions only add points to P; ; and thus cannot decrease r*(P; ;). Similarly,
if r574(Qi ;) > r'(Piy), then ml ; < ml, ;, for i’ <iand j" <j.

— (P2) Given a value r, if 7*(P; ;) > r, then mf, ;, > r for i’ > i and j' > j,
and if 7*(Q; ;) > r, then m}, , > r for i <iand j" <j.

Deterministic solution. We now have the machinery to use a technique of
Frederickson and Johnson [16]. For simplicity, let us assume that n* = n~ =
27+ where T = [logy n] + O(1). The algorithm works in 7 phases. In the begin-
ning of the hth phase we have a collection M, of O(2") submatrices of M*, each
of size (2771 4+1) x (27~ "+ 4 1). Initially My = {M*}. In the hth phase we di-
vide each matrix N € M, into four submatrices each of size (27~ "41)x (27" 41)
that overlap along one row and one column. We call the cell common to all four
submatrices the center cell of N. Let M)} be the resulting set of matrices. Let
C ={(i1,71),-.-, (is,Js)} be the set of center cells of matrices in M;. We com-
pute mz j, foreach 1 <1 < s. We use (P1) to remove the matrices of My, that are
guaranteed not to contain the value p'(2,u). In particular, if mf , = (P, ;)
and there is a matrix N € M}, with the upper-left corner cell (i/,7’) such that
i’ > i and j' > ji, then we can remove N. Similarly if m} ; = r*=(Q; ;) and
there is a matrix N € M), with the lower-right corner cell (¢’, ;') such that " <4,
and j' < j;, we can delete N. It can be proved that after the pruning step if we
have a matrix N in M) such that it spans [a1, as] rows and [b1,bs] columns of
M?, then m! , =7 (Pa, 5,) and m! , =7""(Qa,.p,). This implies that O(n)
cells remain in M}, after the pruning step. We set M), to Mp11.

Finally, it is shown in [I5] that the center cells in € can be connected by
a monotone path in M, which consists of O(n) cells. Since P;; differs from

P;_ ; and P; j_; by one point, we can compute mfl j, forall (i1, j1) € € using an
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algorithm of Agarwal and Matousek [I] in total time O(k*n'*?) for any & > 0.
Agarwal and Matousek’s data structure can maintain the value of the radius
of the smallest enclosing disk under insertions and deletions in O(n®) time per
update. Each step in the path is one update, and then searching through the
O(k?) nodes of the recursion tree of all possible outliers — each requires O(1)
updates — takes O(k®n®) time per cell. Hence, each phase of the algorithm takes
O(K*n'*?) time.

Lemma 9. Given z € Z, w € U, and 0 <t < k, p'(z,u) can be computed in
time O(k*n*%), for any 6 > 0.

Randomized solution. We can slightly improve the dependence on n by using
the dynamic data structure in Section 2] and (P2). As before, in the hth phase,
for some constant ¢ > 1, we maintain a set M}, of at most ¢2” submatrices of M?,
each of side length 27141, and their center cells €. Each submatrix is divided
into four submatrices of side length 27" + 1, forming a set M},. To reduce the
size of M, we choose a random center cell (z, j) from € and evaluate r = m;j in
O(k3n) time. For each other center cell (i, j') € C, mf, ;> r with probability
1/2, and using (P2), we can remove a submatrix from M),. Eppstein [I5] shows
that by repeating this process a constant number of times, we expect to reduce
the size of M), to c2h+1.

On each iteration we use the dynamic data structure described in Section
For O(n) insertions and deletions, it can compare each center cell from € to r
in O(k3nlog®n) time. Thus, finding ;! (z,u) takes expected O(nk?log®n) time.

Lemma 10. Given z € Z, u € U, and 0 < t < k, p'(z,u) can be computed in
expected time O(k3log® n).

Putting pieces together. By repeating either above algorithm for all0 <t < k
and for all pair (z,u) € ZxU, we can compute a (2, k)-center of P that is optimal
if D1 and Dy are nearly concentric. Combining this with Lemma [l we obtain
the main result of the paper.

Theorem 1. Given a set P of n points in R% and an integer k > 0, an optimal
(2, k)-center of P can be computed in O(k"n'**%) (deterministic) time, for any
8> 0 orin O(k"nlog®n) expected time.
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Abstract. The edge asymmetry of a directed, edge-weighted graph is
defined as the maximum ratio of the weight of antiparallel edges in the
graph, and can be used as a measure of the heterogeneity of links in a
data communication network. In this paper we provide a near-tight up-
per bound on the competitive ratio of the Online Steiner Tree problem in
graphs of bounded edge asymmetry «. This problem has applications in
efficient multicasting over networks with non-symmetric links. We show
an improved upper bound of O (min {max {allsgi , alog’igk} ,k‘}) on
the competitive ratio of a simple greedy algorithm, for any request se-
quence of k terminals. The result almost matches the lower bound of
N (min {max {allzgz , log’ﬁ): & } ke }) (where € is an arbitrarily small
constant) due to Faloutsos et al. [8] and Angelopoulos [2].

1 Introduction

The Steiner Tree problem occupies a central place in the area of approximation
and online algorithms. In its standard version, the problem is defined as follows.
Given an undirected graph G' = (V, E) with a weight (cost) function ¢ : £ — RT
on the edges, and a subset of vertices K C V with |K| = k (also called terminals),
the goal is to find a minimum-cost tree which spans all vertices in K. When the
input graph is directed, the input to the problem must specify, in addition to G
and K, a vertex r € V called the root. The problem is then to find a minimum
cost arborescence rooted at r which spans all vertices in K.

In the online version of the problem, the terminals in K are revealed to the
algorithm as a sequence of requests. When a request for terminal u € V' is issued,
and assuming a directed graph, the algorithm must guarantee a directed path
from 7 to u. The input graph G is assumed to be known to the algorithm. Using
the standard framework of competitive analysis (see, e.g., [0]), the objective is
then to design online algorithms of small competitive ratio.

Apart from its theoretical importance, the Steiner tree problem is useful in
modeling efficient multicast communication over a network. The reader is re-
ferred to [I0] for an in-depth study of the relation between Steiner tree problems
and network multicasting.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 76{81, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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The majority of existing research in Steiner trees and its generalizations ap-
plies to undirected graphs. In contrast, actual communication networks contain,
in their majority, links asymmetric in the quality of service they offer; this sit-
uation is even mored prevalent in satellite and radio networks [7]. Motivated by
this observation, Ramanathan [I1] introduced the problem of multicast-tree gen-
eration in the presence of asymmetric links. To this end, he considered several
metrics of network asymmetry, among which the mazimum edge asymmetry is
the most intuitive and easiest to measure in a real network. Formally, the mea-
sure is defined as the maximum ratio of the weights of antiparallel links. More
precisely, let A denote the set of pairs of vertices in V' such that if the pair u,v
is in A, then either (v,u) € E or (u,v) € E (i.e, there is an edge from u to v or
an edge from v to u or both). Then the edge asymmetry is defined as

v

4= {v,u?GA c(u,v)

According to this measure, undirected graphs are the class of graphs of asymme-
try a = 1, whereas directed graphs in which there is at least one pair of vertices
v, u such that (v,u) € E, but (u,v) ¢ E are graphs with unbounded asymmetry
(e = ). Between these extreme cases, graphs of bounded asymmetry can be
useful in modeling networks with a certain degree of link heterogeneity.

The competitive ratio of the online Steiner tree problem in graphs of either
constant, or unbounded asymmetry is tightly bound. For the former class, Imase
and Waxman [9] showed a bound of @(log k), achieved by a simple greedy algo-
rithm, (a result which was extended by Berman and Coulston [5] to the General-
ized Steiner Problem). The performance of the greedy algorithm for online Steiner
Trees and its genereralizations has also been studied by Awerbuch et al. [3] and
Westbrook and Yan [I3]. For the online Steiner Tree in the Euclidean plane, the
best known lower bound on the competitive ratio is £2(log k/ log log k) due to Alon
and Azar [4]. On the other hand, Westbrook and Yan [I2] showed that in directed
graphs (of unbounded asymmetry), the competitive ratio can be bad as §2(k).

Faloutsos et al. [§] were the first to study the online Steiner tree problem
in graphs of bounded asymmetry. They showed that a simple greedy algorithm
(to which we refer to as GREEDY) has competitive ratio O(min{alogk, k}).
The algorithm works by connecting each requested terminal u to the current
arborescence by buying the edges in a least-cost directed path from the cur-
rent arborescence to u. On the negative side, they showed a lower bound of

n (min { alé‘;%l k. k}) on the competitive ratio of every deterministic algorithm.

Angelopoulos [2] (see also [I] for the full version) improved the upper bound on

the competitiveness of GREEDY to O (min {alogolg() ’g“a , k}), and showed a corre-

alogk k175

log log k ° for every constant 0 < € < 1.

sponding lower bound of 2 (min {

It is important to note that when « € (k) the lower bound on the competitive
ratio due to [§] is £2(k), which is obviously tight (using the trivial upper bound
of O(k) for GREEDY). Thus the problem is interesting only when a € o(k).
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In this paper we showll the following near-tight upper bound:

Theorem 1. The competitive ratio of GREEDY for an input graph of asymmetry

. . . log k log k
«a and a request sequence of k terminals is O (mln {max {alog o Vloglog k } , k}) .

The result almost matches the lower bound due to [§] and [2], namely

. log k log k 1—e¢ . . . } B
? (mln {max {aloga 1 Qg logk} kK }) (where € is any arbitrarily small con

stant) In particular it provides a tight bound on the competitive ratio of the
problem for the case where either o € O(k'~¢) (for some constant € € (0,1)) or
a € 2(k). In contrast, [2] is not tight when « is relatively small, e.g., when « is
polylogarithmic in k. Note that a gap still remains for a narrow interval of values
for o, namely when o € w(k'™¢) for all ¢, and also @ € O(k) (for instance when
a = k/f(k), with f(k) polylogarithmic in k). In such a case, the best upper
bound we can guarantee is O(k), whereas the best lower bound is £2(«).

1.1 Preliminaries and Notation

We denote by ¢ = (v,u) and e = (u,v) a pair of antiparallel directed edges.
Let T = (r', V', E’) be an arborescence rooted at r’, we denote by T the graph
(V' E"), with E” = E'U{e : e € E'}. In words, T induces all edges in T as well
as all their antiparallel edges. We denote by pr(u,v) (resp. pT(u)v)) the simple

directed path from u to v using exclusively edges in T' (resp. T) Note that such
paths are uniquely defined (provided that pr(u,v) exists in T').

The cost of a directed path p will be denoted by ¢(p). We denote by ¢(T) the
cost of arborescence T', namely the sum of the cost of the directed edges in T'. We
emphasize that only edges in 7" and none of their antiparallel edges contribute
to ¢(T'). We will always use T to denote the optimal arborescence on input
(G,K), with |K| = k, and OPT = ¢(T*). For any K' C K, we let cgr(K')
denote the cost that GREEDY pays on the subset K’ of the input (in other
words, the contribution of terminals in K’ towards the total cost of GREEDY). For
convenience, we will be using the term “tree” to refer to a (rooted) arborescence.

2 Outline of the Proof of Theorem [I] and Intuition

In order to prove Theorem [II, we first show that it applies to situations in which
the spanning arborescence has a fairly simple structure: in particular, to in-
stances called comb instances in [2] (see Figure [l for an illustration).

Definition 1. Let T’ denote a tree rooted at vertex v’ € V and let K' C K, with
|K'| = k. We call the triplet C = (T', K',r") a comb instance, or simply comb
if the following hold: T’ consists of a directed path P from r' to a certain vertex
vy, which visits vertices vy, ..., v1 in this order (but possibly other vertices too);

! Due to space constraints, several technical proofs are either omitted or only sketched
in this paper.
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(%1 Vg
g;% )
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Fig. 1. The structure of a comb instance

Upr 1 U

there are also disjoint directed paths t; from v; to u;. No other edges are in T'.
Finally the set K’ is precisely the set {uy,...,up}. We call P the backbone of
C, and the paths t; the terminal paths of the comb. The vertex set of C is the set
of vertices in T".

The following is a key theorem in the analysis of GREEDY.

Theorem 2. Given the comb C = (T',K',r’), let z € K' denote the terminal
requested the earliest among all terminals in K'. Then car(K') = car(z) +
O (max {all‘;gglg ) alog’igk, }) e(T").

Given Theorem [2] the main result (Theorem [I]) follows by partitioning the set of
all requests K into a collection of near-disjoint comb-instances, along the lines
of Lemma 3.1 in [2] (we omit the proof). Here, by near-disjoint we require that
every edge in T appears in at most two comb instances.

In order to prove Theorem [Z let 7 denote a permutation of {1,...,%k"} such
that ¢ = wr,,...,ur, is the sequence of the requests in K’ in the order in
which they are requested (hence z = u,, ). Note that we aim towards bounding
car(K'\ tr,). To this end, we will determine an assignment for every terminal
Ur, with 2 < i <k’ to a specific terminal ur, € {tn,,...ur, ,}. We call terminal
Uy, the mate of ur,. Let ¢; denote the directed path in T from Uy, 1O Ug,, also
called the connection path for u,,. It suffices to show that

k/
def N log &/ log K/ ,
C = Z;E_Qc(ql) =0 (max{aloga7aloglogk’ c(T). (1)

Comb instances were identified in [2] as the hard instances for the problem,
and for such instances, a weaker version of Theorem 2] was proved (c.f. Lemma
3.2 in [2]). More precisely, the definition of the comb in [2] requires a strict upper
bound of O(«a) on the number of terminals in the comb: this leads to an upper

bound for cgr(K’ \ ur, ) equal to O( log o )c(T’). The proof of the main

alog log «
result in [2] proceeds then by first extending the result to all subtrees of T* of
O(a) terminals (not necessarily combs), and then by applying it, in a recursive
manner, in a hierarchical partition of 7% in trees of O(«) terminals each. This
process yields an additional multiplicative overhead of log k/log o compared to
the cost incurred by a comb instance of size O(«).
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In this paper we follow a different approach. We allow the combs to contain
an arbitrarily large number of terminals, which may very well be in {2(«). This
allows us to bypass the need for recursion, and thus to save the factor log &/ log a.
Instead, as already mentioned, suffices to decompose T (and K) into a collection
of near-disjoint comb instances. In this more general setting, some of the high-
level proof ideas remain as in [2]: we will still partition the terminals in a comb in
appropriately defined subsets called runs which dictate how to select the proper
mate for each terminal. However, the definition of runs and the assignment of
mates in [2] is not applicable anymore when k' € 2(«): In [2] a connection path
can be as costly as the cost of the backbone (which becomes far too expensive if
the number of terminals in the comb is in {2(k)). Instead, a substantially more
involved assignment is required.

Definition 2. Let C = (T', K',r') be a comb instance. For a terminal u; in the
comb we say that its index is ©. For two terminals u;,u; in the comb with i < j
we say that u; precedes u; in C (denoted by u; < u;). We say that u; is between
w; and wy iff u; < uj < wy. For u; < u; we call the path pr(vj,v;) the segment
of u;, u; and we denote it by s(ui,uj). The interval (u;,u;) is simply the pair of
indices of u;,w; , namely the pair (i,7). A terminal w; is in the interval (4, j) if
u; 2w 2wy (here u; < w; means either u; < w; or w; is identical to uy).

With a slight abuse of notation, we use the term “segment” to refer to both a
path and its cost, when this is clear from context.

3 Proof of Theorem

3.1 Assignment of Terminals to Their Mates

The first step towards bounding the cost of the connection paths for terminals
in the comb is to assign each terminal to a unique mate. This assignment is
determined by Algorithm [II We also seek a partition of terminals as they are
being requested, in particular, every terminal becomes the member of a unique
run (we can think of each run as being assigned a unique integer id, starting with
0 and increasing by 1 every time a new run is initiated). For a terminal u we

denote by run(u) the run to which u is assigned. Define w = min{«, x}, where
log k'

jq 3 3 x L/ —
x is the solution to x® = k', hence = = @(log log k7

we will assume that z is integral.

Let w = ug,,, denote the current request and U; denote the set of the i
previously requested terminals. Every terminal u (with the exception of terminals
in run 0) is characterized by two unique terminals in the set U;, say terminals
ug,up, € U; such that u; < u < wup, and no other terminal in U; is in the
interval (u;,up). We call u; and uy, the immediate successor and predecessor of
u, respectively, at the time of the request to u. After u is revealed, the algorithm
assigns a label to each of the resulting intervals (u;,u) and (u,wp). There are
four types of labels an interval can be assigned, and their semantics is related to
the action at the time u is requested:

). Without loss of generality
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— If the interval (u;, up) has been labeled free, then u will initiate a new run,
say r. We call u the initiator of r (denoted by in(r) = u).

— If the interval (u;,up) has been labeled left then u will be assigned u; as
its mate (i.e its immediate predecessor at the time of request).

— If the interval (u;, us) has been labeled right then u will be assigned uy, as
its mate (i.e. its immediate successor at the time of request).

— A blank label is the default labeling for an interval, if the assignment algo-
rithm does not explicitly assign a label in the set {free, left,right}.

At a high-level, the assignment algorithm works as follows: In the event u
is not between two terminals in U; (i.e., it does not have either a successor or
a predecessor in U;) it will become part of run 0 (lines 1-9): this is a set-up
phase for all remaining runs. Otherwise, let u; and uj; denote the immediate
predecessor/successor of u among terminals in U;, at the time wu is requested.
(Note that t,q. is defined as the terminal of highest index in the comb, among
terminals in U;, whereas w,;, is the terminal of smallest such index).

If the interval (u;, up) is free, then the assignment algorithm invokes algorithm
Free which initiates a new run, say r: the run is associated with a representative,
defined as rep(r) = up, the left-end of the run, defined as I(r) = u; and a segment,
defined by seg(r) = s(ui,up) = s(I(r), rep(r)). The representative of the run is
assigned to be the mate of u. Last, we set the parameter R(u') to be equal to r,
for all u/ between u; and uy, in the comb. The meaning of this assignment is that
future requests for terminals within (u;, uy) should become members of the run
r (unless their R() value changes, in the meantime, due to subsequent requests).

In any other case the assignment algorithm invokes algorithm NonFree which
assigns u to the run r = R(u), and follows a more complicated rule for assigning
a mate and labels: More specifically, if the interval (u;,wy,) is left (resp right)
then the assignment and labeling is performed in lines 2—6 (resp 7-11), and u
is assigned its immediate predecessor (resp. successor) as its mate. The only
remaining possibility is for (u;,up) to be a blank interval (lines 13-23). In this
case, if u is “close” to u; (resp. up) wrt the cost s(uy, u) (resp. s(u,up)), then u is
assigned u; as its mate in lines 13—16 (resp. u is assigned wuy, as its mate in lines
17-20). If w is not close to either terminal then it is assigned the representative
of the run it belongs to as its mate (line 22).

In order to bound the total connection cost C', we will express C' as the sum
of six partial costs, denoted by C1,...Cs (C1,...,C5 apply to terminals in runs
other than run 0). In particular:

— (1 is defined as the cost of connection paths due to edges e such that e be-
longs in some terminal path ¢; in the comb (i.e., the cost of edges antiparallel
to edges of a terminal path).

— (5 is defined as the cost of connection paths due to edges e such that e
belongs in the backbone P (i.e., the cost of edges antiparallel to edges in the
backbone) and which are bought by connection paths established in either
line 3 or line 14 of NonFree (i.e., when the current request is assigned its
immediate predecessor as its mate).
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Input : Request u and the existing assignment of terminals in U;

Output: Assignment of v to an appropriate run and an appropriate mate

if 4 > Umas then

assign u to run 0

mate(u) «— Umaz

label interval (umaz,u) free
end
if © < Umin then

assign u to run 0

mate(u) < Umin

label interval (u, umin) free
end
else

Let uw; and u, be the immediate successor and predecessor of u, among

terminals in U;

if interval (u;,up) is free then
Free(u,u;,up)

end

else
Non-free(u,u;,up)

end

end

Algorithm 1. Assignment of terminals to runs and mates

Initiate a run r with seg(r) = s(ui, un); set rep(r) < up and I(r) «— w,
label (u;,u) and (u,up) blank
Set mate(u) «— up
if s(u,up) < seg(r)/w then
label (u,un) left
end
if s(u;,u) < seg(r)/w then
label (u;,u) right
end
For all v’ € C, with w; < u’ < uy, set R(u') «— r

Algorithm 2. Algorithm Free(u,u;, up,)

Cj5 is defined as the cost of connection paths due to edges e such that e
belongs in the backbone P, and which are bought by connection paths es-
tablished in either line 8 or line 18 of NonFree (i.e., when the current request
is assigned its immediate successor as its mate).

Cy is defined as the cost of connection paths due to edges e such that e
belongs in the backbone P, and which are bought by connection paths es-
tablished in either line 3 of Free or line 22 of NonFree.
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1 Assign u to run r = R(u). Label (ui,u), (u,un) blank
2 if (u;,up) is left then

3 set mate(u) «— w;

4 label (u;,u) free

5 label (u,up) left

6 end

7 if (wi,un) is right then

8 set mate(u) < up,

9 label (u,up) free
10 label (u;,u) right
11 end
12 else

13 if s(ui,u) < seg(r)/w then
14 set mate(u) «— wy

15 label (u;,u) right

16 end

17 else if s(u,un) < seg(r)/w then
18 set mate(u) «— up

19 label (u,un) left
20 end
21 else
22 set mate(u) «— rep(r)
23 end
24 end

Algorithm 3. Algorithm NonFree(u, u;, up)

— Cj5 is defined as the cost due to edges e such that e belongs in some terminal
path ¢; in the comb.
— Cj is defined as the cost of connection paths for terminals in run O.

It can be shown easily that Cg is bounded by O(«) - ¢(T"), hence we will focus
only on terminals in runs> 0 from this point on. Also, since the terminal paths
t; are edge-disjoint, it follows that C5 < ¢(T"). Thus, it remains to bound Cj,

€ [1,4]. We will denote by C;; the contribution of the connection path ¢; for
terminal u,, to the cost Cj;, which means that C; = Zf:l Cji-

3.2 Properties of Runs and Labellings

Property 1. Every terminal u can be the representative and/or the left-end of at
most one run. In addition, for every terminal u, I(run(u)) < u < rep(run(u)).

We say that an interval (u,u) is contained within interval (v,v") (u,u’,v,v" de-
note terminals in the comb) if each of u, v’ is contained within interval (v, v’). We
say that a run r is contained within interval (u,u') if (I(r),rep(r)) is contained
within (u,u’) (and hence from Property [l the same holds for all terminals in 7).
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Last, r is contained within " if (I(r),rep(r)) is contained within (I(r"), rep(r’)).
Note that this implies that seg(r) < seg(r’).

Property 2. Let (u,v) be an interval labeled free at some point in the execution
of the assignment algorithm. Then for every future request ' with u < v’ < v,
u’ will become member of a run 7 which is contained within the interval (u,v).

Property 3. Let terminal u be requested, with immediate predecessor and suc-
cessor at the time of its request u;, up, respectively, and suppose that the interval
(u,upn) becomes left as a result of line 5 of NonFree. Suppose also that there
exists a pair of terminals u,us, in immediate successor/predecessor relation at
the time of one of their requests such that u; < u; < up < ug, and (uy,us) was
labeled free. Then there exists a terminal v with the following properties:

—up <V U

— At the time v is requested no terminal other than wu, has been requested in
the interval (v, up);

— Interval (v, up) becomes left as a result of the execution of either line 5 in
algorithm Free or line 19 in algorithm NonFree.

Lemma 1. For any given run r, at most w terminals in K’ are assigned rep(r)
as their mate in line 22 of algorithm NonFree.

3.3 Bounding the Cost C;
Lemma 2. Cy; < a(w+5) - c(t;), where t; is the terminal path for wuy,.

Proof sketch. Fix a terminal v = ur,: we will bound the number of terminals in
K’ which are assigned v as their mate. There are six possible cases for which a re-
quested terminal u is assigned v as its mate, in particular during executions of the
following lines: line 3 for F'ree(x, %, v); line 8 or line 18 for NonFree(x, *,v); line
3 or line 14 for NonFree(*, v, x); and last, line 22 of NonFree, more specifically
during the call NonFree(u, u;, up) for some terminals u, up, u;, with rep(r) = v.
Here, “*” denotes any arbitrary terminal. One can show that, for fixed v, all in-
vocations will occur at most once, with the exception of line 22 which will be
invoked at most w times (due to Lemma/[I]). The lemma then follows. ]

3.4 Bounding C5; and Cs;

We first show how to bound Cs ;, then the bound for Cs; will follow an almost
identical proof. We say that u., contributes the directed edge e, with e € P when
the connection path g; for u,, includes e. For the remainder of the proof for Cs ;
we will call such edges expensive. Also, let ¢; denote the subpath of g; which
consists of expensive edges only (i.e., the subpath of ¢; which consists of edges
antiparallel to edges in the backbone of the comb), then clearly Co; = ¢(qj). Let
X denote the subset of the set of comb terminals K’ which consists of terminals
with non-zero contribution to C5. Consider the sequence of connection paths
for terminals in X, as such terminals are requested over time. More precisely,
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we can think of all edges in ¢, being “bought”, as the connection path between
the terminal and its mate is established, at the precise moment u,, € X is
requested. In this view, every time an expensive edge is contributed due to
such an assignment, we say that the depth of the edge increases by 1 (initially,
i.e., before any terminals have been requested, all expensive edges have depth
z€ero).

Lemma 3. For u,, € X, all expensive edges in g} have the same depth.

Lemma Bl asserts that it is meaningful to say that terminal u,, € X is of depth §
if right after it is assigned to its mate, and the connection path ¢; is established,
the depth of all expensive edges at the connection path becomes equal to §. Thus
we can partition X into sets X7, Xo ... such that X; consists of all terminals of
depth i. Note that for all ¢ with u,, € X, the paths ¢] are edge-disjoint.

The following is the main technical lemma of this section. The lemma shows
that the contribution of a terminal to Cy decreases exponentially with its depth
(recall that ¢(P) denotes the cost of the backbone P of the comb).

ac(P)
wi—1 -

Lemma 4. For a terminal ur, € X;, with j > 1, Co; <

A similar upper bound can be shown for Cj ;, since terminals which contribute
to C; follow assignments to mates which are symmetric to the assignments for
terminals with contribution to Cs; (even strongly, the « factor does not appear
in the upper bound since connection paths which contribute to C3 ; follow edges
in the backbone, and not their antiparallel edges).

3.5 Towards Bounding Cost Cy4 ;

In this section we establish a lemma which is instrumental in bounding Cy ;. For
a given e € P define the r-depth (or for simplicity depth for the remainder of
this section) of e as the total number of runs r # 0, (i.e., excluding run 0) whose
segment seg(r) includes edge e. Let R denote the set of all runs (again, excluding
run 0) established by the assignment algorithm. We say that every time a new
run 7 is initiated (line 1 of Free), the depth of every edge in seg(r) increases by
1 (before any terminal is requested, all edges in P have zero depth).

Lemma 5. All edges in seg(r) have the same depth after r is established.

Lemma [l asserts that we can partition R into sets Ri, Rg,... such that R;
consists of all runs of depth i. Note that for every two runs r and r’ with
r,r" € Rj, the segments of  and 1’ are disjoint.

c(P)

Lemma 6. For a runr € R;,seg(r) < 1-

Proof sketch. By induction on j. The lemma is trivially true for j = 1. Suppose
the lemma holds for j, we will show that it holds for j + 1. Let r be a run in
Rji1. We will show that r is contained within a run ' of depth j for which it
holds that seg(r) < seg(r’)/w: by induction hypothesis, we will then have that
seg(r) < 61(5 , and the lemma is proved.
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It is easy to see first that there exists a run ' of depth j such that r is
contained within 7/ (similar to the proof of Lemma [); more precisely, I(r') <
I(r) < rep(r) < rep(r’). Recall that at the time right before in(r’') is requested,
the interval (I(r"),rep(r’)) is a free interval. Likewise, at the time right before
in(r) is requested, the interval ((I(r), rep(r)) is a free interval. We thus consider
cases, depending on how the interval (I(r), rep(r)) became free:

Case 1. (I(r),rep(r)) became free as a result of line 4 of NonFree. Then there
exists a terminal v with rep(r) < u =< rep(r’) such that when rep(r) was re-
quested, the interval (I(r),u) was a left interval. From Property [ there must
exist a terminal v such that I(r’) < v < 1(r) and the interval (v, u) became left as
a result of either line 19 of NonFree or line 5 of Free. Let 1"/ denote the run that
v joins, then from the two cases above, we have that the if-condition of line 17 of
NonFree, or line 4 of Free, respectively, holds, hence s(v,u) < seg(r”)/w. Note
that (I(r), rep(r)) is contained within the interval (v, u), thus seg(r) < s(v,u); in
addition from Property 7" is contained within run r/, hence seg(r”) < seg(r’).
Combining the above inequalities we deduce that seg(r) < seg(r')/w.

Case 2. ((I(r),rep(r)) became free as a result of line 9 of NonFree. This case
is very similar to Case 1, in the sense that left intervals are now “replaced” by
right intervals. We also require a property symmetric to Property O

3.6 Adding Up the Individual Contributions

Recall from the discussion in section that the total connection cost C' for
terminals in the comb is expressed as the sum of the partial costs Ci,...Cg,
and that C5 and Cg have only a small asymptotic contribution to C. Also, using
Lemma 2l and given the disjointness of terminal paths, it is easy to show that
Cy < afx+5)-c(T"). We thus need to focus on costs Cs, ... Cy. Recall also that
w is defined as min{«, z}, = is such that ¥ = k" and that y is such that o¥ = k'.

We first show how to bound Cy. Let Z C K’ be the set of terminals contribut-
ing to Cy. Recall that a terminal w € Z which belongs to a run r is assigned as
a mate the representative of the run r. Moreover, the contribution of v to Cy
is at most the segment of the run r, seg(r). Using the notation introduced in
section B, we say that a terminal u € Z belongs in class Z; C Z if and only if
its corresponding run belongs in the class R;. Denote by c4(Z;) the contribution
of terminals in Z; to Z.

From Lemma[Ilwe know that for any fixed run r there are at most w terminals
in Z which contribute to C4 due to line 22 of NonFree, and their total contribu-
tion is bounded by w-seg(r). On the other had, since r has a unique initiator for
a fixed r at most one terminal in Z contributes to cost C4 due to line 3 of Free.
In total, for a given run r at most w+ 1 terminals in run r contribute to Cy, and
their total contribution is bounded by (w+1)-seg(r). For fixed j the segments of
all runs in R; are edge-disjoint, which yields c4(Z;) < (w+1) - ¢(P). Combining
this fact with Lemma B we have ¢4(Z;) < min{(w + 1) - ¢(P), (w + 1) °%) | Z;]}

wi—1
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Since Cy = ) ca(Z;), and there are at most as many runs as terminals in
the comb, it follows that Cy is maximized if |Z;| = w/™!, for all j > 2, which
yields Cy € O(wmax{z,y} - c¢(P)) = O(amax{x,y} - c¢(P)).

For costs Cy and C5 one can show the following bounds, using a similar
argument based on the lemmas of section B4k

Cy = O(max{ax - ¢(P),ay - c¢(P)} and C3 = O(max{x - c(P),y - c(P)}.

Theorem [2 follows by adding C1, ... Cgs and the fact ¢(P) < ¢(T"). O
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Abstract. We present an optimal cache-oblivious algorithm for finding
all intersections between a set of non-intersecting red segments and a
set of non-intersecting blue segments in the plane. Our algorithm uses
O(’3 10/ 5 + T/B) memory transfers, where N is the total number
of segments, M and B are the memory and block transfer sizes of any
two consecutive levels of any multilevel memory hierarchy, and T is the
number of intersections.

1 Introduction

The memory systems of modern computers are becoming increasingly complex;
they consist of a hierarchy of several levels of cache, main memory, and disk. The
access times of different levels of memory often vary by orders of magnitude and,
to amortize the large access times of memory levels far away from the processor,
data is normally transferred between levels in large blocks. Thus, it is important
to design algorithms that are sensitive to the architecture of the memory system
and have a high degree of locality in their memory access patterns.

Building on the two-level external-memory model [I] introduced to model the
large difference between the access times of main memory and disk, the cache-
oblivious model [§] was introduced as a way of obtaining algorithms that are
efficient on all levels of arbitrary memory hierarchies. In this paper, we develop
a cache-oblivious algorithm for the red-blue line segment intersection problem,
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that is, for finding all intersections between a set of non-intersecting red segments
and a set of non-intersecting blue segments in the plane. Our algorithm is optimal
and, to the best of our knowledge, the first efficient cache-oblivious algorithm
for any intersection problem involving non-axis-parallel objects.

External-memory model. In the two-level external-memory model [I], the
memory hierarchy consists of an internal memory big enough to hold M ele-
ments and an arbitrarily large external memory partitioned into blocks of B
consecutive elements. A memory transfer moves one block between internal and
external memory. Computation can occur only on data in internal memory. The
complexity of an algorithm in this model (an ezternal-memory algorithm) is mea-
sured in terms of the number of memory transfers it performs. Aggarwal and
Vitter proved that the number of memory transfers needed to sort N data items
in the external-memory model is Sort(N) = O('; logy, %) M. Subsequently,
a large number of algorithms have been developed in this model; see [I0,2] for
an overview. Below we briefly review results directly related to our work.

In the first paper to consider computational geometry problems in external
memory [9], Goodrich et al. introduced the distribution sweeping technique (a
combination of M/B-way distribution sort and plane sweeping) and showed
how it can be used to solve a large number of geometric problems in the plane
using O(Sort(N) 4+ T'/B) memory transfers, where T is the output size of the
problem (eg., number of intersections). The problems they considered include
the orthogonal line segment intersection problem and other problems involving
axis-parallel objects. Arge et al. developed an algorithm that solves the red-blue
line segment intersection problem using O(Sort(N)+1'/B) memory transfers [4],
which is optimal. The algorithm uses the distribution sweeping technique [9] and
introduces the notion of multi-slabs; if the plane is divided into vertical slabs, a
multi-slab is defined as the union of any number of consecutive slabs. Multi-slabs
are used to efficiently deal with segments spanning a range of consecutive slabs.
The key is that, if there are only \/ M/ B slabs, there are less than M /B multi-
slabs, which allows the distribution of segments into multi-slabs during a plane
sweep using standard M/B-way distribution. Arge et al. also extended their
algorithm to obtain a solution to the general line segment intersection problem
using O(Sort(N + T')) memory transfers [4].

Cache-oblivious model. In the cache-oblivious model [3], the idea is to design
a standard RAM-model algorithm that has not knowledge of the parameters of
the memory hierarchy but analyze it in the external-memory model assuming
that an offline optimal paging strategy performs the memory transfers necessary
to bring accessed elements into memory. Often it is also assumed that M > B?
(the tall-cache assumption). The main advantage of the cache-oblivious model
is that it allows us to reason about a simple two-level memory model but prove
results about an unknown, multi-level memory hierarchy [§].

Frigo et al. [8] developed optimal cache-oblivious sorting algorithms, as well
as algorithms for a number of other fundamental problems. Subsequently, al-
gorithms and data structures for a range of problems have been developed [3].
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Relevant to this paper, Bender et al. [5] developed a cache-oblivious algorithm
that solves the offline planar point location problem using O(Sort(N)) memory
transfers; Brodal and Fagerberg [6] developed a cache-oblivious version of distri-
bution sweeping and showed how to use it to solve the orthogonal line segment
intersection problem, as well as several other problems involving axis-parallel
objects, cache-obliviously using O(Sort(N) + T'/B) memory transfers. To the
best of our knowledge, no cache-oblivious algorithm was previously known for
any intersection problem involving non-azis-parallel objects.

Our results. We present a cache-oblivious algorithm for the red-blue line seg-
ment intersection problem that uses O(Sort(N) + T/ B) memory transfer. This
matches the bound of the external-memory algorithm of [4] and is optimal.

As discussed, the external-memory algorithm for this problem [4] is based
on an extended version of distribution sweeping utilizing multi-slabs. Our new
algorithm borrows ideas from both the external-memory algorithm for the red-
blue line segment intersection problem [4] and the cache-oblivious algorithm for
the orthogonal line-segment intersection problem [6]. In order to obtain a useful
notion of sweeping the plane top-down or bottom-up, we utilize the same to-
tal ordering as in [4] on a set of non-intersecting segments, which arranges the
segments intersected by any vertical line in the same order as the y-coordinates
of their intersections with the line. In the case of axis-parallel objects, such an
ordering is equivalent to the y-ordering of the vertices of the objects; in the
non-axis-parallel case, this ordering is more difficult to obtain [4]. Similar to the
cache-oblivious orthogonal line-segment intersection algorithm [6], we employ
the cache-oblivious distribution sweeping paradigm, which uses two-way merging
rather than \/ M/ B-way distribution. While this eliminates the need for multi-
slabs, which do not seem to have an efficient cache-oblivious counterpart, it also
results in a recursion depth of ©(log, N) rather than ©(log, g N). This implies
that one cannot afford to spend even 1/B memory transfers per line segment at
each level of the recursion. For axis-parallel objects, Brodal and Fagerberg [6]
addressed this problem using the so-called k-merger technique, which was intro-
duced as the central idea in Funnel Sort (ie., cache-oblivious Merge Sort) [§].
This technique allows N elements to be passed through a log, N-level merge
process using only O(Sort(NN)) memory transfers, but generates the output of
each merge process in bursts, each of which has to be consumed by the next
merge process before the next burst is produced. This creates a new challenge,
as a segment may have intersections with all segments in the output stream of
a given merge process and, thus, needs access to the entire output stream to
report these intersections. To overcome this problem, Brodal and Fagerberg [6]
provided a technique to detect, count, and collect intersected segments at each
level of recursion that ensures that the number of additional accesses needed to
report intersections is proportional to the output size.

Our main contribution is the development of non-trivial new methods to ex-
tend the counting technique of Brodal and Fagerberg [6] to the case of non-axis-
parallel line segments. These ideas include a look-ahead method for identifying
certain critical segments ahead of the time they are accessed during a merge,
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as well as an approzrimate counting method needed because exact counting of
intersected segments (as utilized in the case of axis-parallel objects) seems to be
no easier than actually reporting intersections.

2 Vertically Sorting Non-intersecting Segments

In this section, we briefly sketch a cache-oblivious algorithm to vertically sort a
set S of N non-intersecting segments in the plane. Let s; and sy be segments
in S. We say that s, is above s, denoted s; <4 $o, if there exists a vertical
line intersecting s; and s in points (x,y1) and (x,y2), respectively, and y; <
y2. Some segments in S may be incomparable under <4, and the problem of
vertically sorting S is to extend the partial order <4 to a total order <; such
that s; <4 so implies 51 <; so []. We call <; a vertical ordering of the segments.

Our cache-oblivious algorithm for vertically sorting S is an adaptation of the
corresponding external-memory algorithm [4]. The main ingredients are an al-
gorithm for finding the segments immediately above and below every segment
endpoint and an algorithm for topologically sorting the resulting planar st-graph.
The former can be solved using an offline cache-oblivious point location algo-
rithm [5]; for the latter we use a cache-oblivious adaptation of the external-
memory algorithm [7]. Details will appear in the full paper.

Theorem 1. A wvertical ordering of N non-intersecting line segments in the
plane can be computed cache-obliviously using O(Sort(N)) memory transfers and
linear space.

3 Red-Blue Line Segment Intersection

In this section, we give an overview of our algorithm for finding all intersections
between a set R of non-intersecting red segments and a set B of non-intersecting
blue segments. For simplicity we assume that the z- and y-coordinates of all
endpoints are distinct. Sections Fl and [l present the details of our algorithm.

The v/ N-merger. Our algorithm uses the v/N-merger technique [6,]] exten-
sively. A v/ N-merger merges v/ N sorted input streams of length v/N into one
sorted output stream. It is defined recursively in terms of smaller k-mergers. A
k-merger takes k sorted input streams of total length at least k% and produces
a sorted output stream by merging the input streams. The cost of merging k2
elements using a k-merger is O(Sort(k2)), which is O(Sort(N)) for k = /N [68].

A k-merger is a complete binary tree over k/2 leaves with a buffer associated
with each edge. If k = 2, the merger consists of a single node with two input
streams and one output stream; see Fig.[I(a). Otherwise, it consists of v/k+1 v/k-
mergers as shown in Fig.[[[(b); the buffers associated with the edges between the
top merger and the bottom mergers have size k. The merge process is performed
by invoking a FILL operation on the root of the merger. A FILL operation on a
node w fills the output buffer S(u) of u (the buffer between u and its parent) by
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Fig.1. (a) A 2-merger. (b) A k-merger for £ > 2. (c) Slabs and intersection types.

repeatedly removing the minimum element from S(I(w)) or S(r(u)) and placing
it into S(u), where [(u) and r(u) denote the left and right children of u. When
S(l(u)) or S(r(u)) becomes empty, a FILL operation is invoked recursively on the
corresponding child before continuing to fill S(u). The FILL operation returns
when S(u) is full or there are no elements left in any buffer below w. Since the
root’s output buffer has size N, only one FILL operation on the root is required
to place all elements in the input streams into a sorted output stream.

The basic concept in the analysis of a v/ N-merger is that of a base tree, which
is the largest subtree in the recursive definition of a v/N-merger such that the
entire tree plus one block for each of its input and output buffers fit in memory.
The central observation is that, in order to achieve the O(Sort(k?)) merge bound,
a FILL operation on a base tree root can afford to load the whole base tree into
memory and perform O(1) memory transfers per node in the base tree; note that
this means that FILL operations on other nodes of the base tree are free. It also
means that we can associate O(1) auxiliary buffers with each merger node u and
that we can assume that a FILL operation at node u can access the first O(1)
blocks of each auxiliary buffer without any memory transfers. See [6] for details.

Distribution sweeping. To find all intersections between red and blue seg-
ments, we start by dividing the plane into ¢ = v/N vertical slabs oy, .. ., 0y
containing 2v/N segment endpoints each, where N = |R| + |B| is the total
number of segments. We recurse on each slab o; to find the intersections in o;
between segments with at least one endpoint in this slab; these intersections are
shown using white dots in Fig. [Ic). Each of the remaining intersections, shown
as black dots in Fig.[I[¢), involves at least one segment that completely spans the
slab containing the intersection. To find these intersections, we use a v/ N-merger
whose input streams are sorted lists of segments and/or segment endpoints asso-
ciated with slabs o1, ..., 04. We also associate slabs with the nodes of the merger.
The slab o, associated with a node w is the union of the slabs corresponding to
the input streams of u’s subtree. We use (o) and r(o,) to denote its left and
right boundaries, respectively. We call a segment with an endpoint in o, long
wrt. slab oy, if it spans oy(,) (segment b3 in Fig. Pl(a)), and short otherwise
(segments by, by, by in Fig. 2a)). We call an intersection in oy, long-long if it
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involves two long segments wrt. slab o;(,,) (point p3 in Fig.2(a)), and short-long
if it involves a short and a long segment (points p; and ps in Fig. B(a)). Short
and long segments and short-long and long-long intersections in slab o,.(,) are
defined analogously. It is easy to see that every intersection in a slab o; that
involves a segment spanning o; is long-long or short-long at exactly one merger
node. Hence, our goal in merging the streams corresponding to slabs o1,...,0,
is to report all long-long and short-long intersections at each merger node.
Throughout this paper, we only discuss finding, at every merger node u, short-
long and long-long intersections inside oy(,). The intersections in o,.(,) can be
found analogously. Our algorithm finds short-long and long-long intersections
separately and finds each intersection type using several applications of the v/ N-
merger to appropriate input streams associated with slabs o1, ..., 0,. We call one
such application a pass through the merger. In the process of merging the input
streams of the merger, each pass either reports intersections or performs some
preprocessing to allow a subsequent pass to report intersections. As we show
in Sect. [ and Bl O(1) passes are sufficient to report all short-long and long-
long intersections, and each pass uses O(Sort(N)+ T,/ B) memory transfers and
linear space, where Ty is the number of reported intersections. Let N; denote
the number of short segments in slab o;, T; the number of intersections between
these segments, and C(N,T') the complexity of our algorithm on N segments
that have T intersections. Then the complexity of our algorithm is given by the
recurrence C'(N,T) = ZZ\/:A{ C(N;,T;) + O(Sort(N) + T,/B), which solves to
C(N,T) = O(Sort(N) + T/B) because each original segment participates as a
non-spanning segment in at most two slabs on each level of the recursion.

Theorem 2. The red-blue line segment intersection problem can be solved
cache-obliviously using O(Sort(N) + T/B) memory transfers and linear space,
where N is the total number of line segments and T is the number of intersec-
tions.

4 Short-Long Intersections

In this section, we discuss how to find all short-long intersections at all merger
nodes using O(1) passes through the merger. Recall that we focus only on inter-
sections inside oy(,). We call such an intersection between a long red segment r
and a short blue segment b upward if b has at least one endpoint in oy, that is
below r (points pa, ps, ps in Fig. B(b)); otherwise, the intersection is downward
(points py and p4 in Fig. BI(b)). We focus on finding upward short-long intersec-
tions between long red and short blue segments in the remainder of this section.
The other types of short-long intersections can be found analogously. We discuss
first how to find these intersections in the desired number of memory transfers
using linear extra space per merger node. Then we discusses how to reduce the
space bound to O(N) in total.

Our algorithm uses two passes through the v/ N-merger. The first pass asso-
ciates a red list R(u) of size N (big enough to hold all segments in the input
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Fig. 2. (a) Short-long and long-long intersections. (b) Upward and downward inter-
sections. (¢) Detecting long segments involved in upward short-long intersections. (d)
Reporting upward short-long intersections. Dashed segments are not in R(u).

if necessary) with every merger node u and populates it with all red segments
that are long wrt. 0y(,) and are involved in upward short-long intersections at
node u. The second pass uses these red lists to report all upward short-long in-
tersections. Both passes merge segment streams sorted by the vertical segment
ordering from Sect. 2l More precisely, we construct a set R’ containing all red
segments and one zero-length segment per blue segment endpoint and use the
vertical ordering on R’ as a total ordering of red segments and blue segment
endpoints, bottom-up. The rank of a red segment or blue segment endpoint is
its position in this ordering.

Populating red lists. To populate all red lists, we initialize the input streams
of the merger so that the stream corresponding to slab o; stores all red segments
whose right endpoints are in ¢;, as well as all blue segment endpoints in ;. The
entries of the stream are sorted bottom-up (by increasing rank). Now we merge
these streams to produce one sorted output stream, where the output stream of
each merger node u contains all red segments with right endpoints in ¢, and
all blue segment endpoints in o,, again sorted bottom-up. The FILL operation
at a node v is the standard FILL operation of a v/ N-merger, except that, when
placing a red segment r into u’s output stream S(u), we check whether r is
involved in an upward short-long intersection at node w. If it is, we also append
segment r to u’s red list R(u).

To see how this test is performed, consider an upward short-long intersection
between a short blue segment b and a long red segment r. Segment b must have
at least one endpoint in oy, that is below 7 (has lower rank than r). Since
b and r intersect in oy(,), either b’s other endpoint ¢ also lies in oy(,) and is
above r (has higher rank than r), or b intersects one of the slab boundaries of
01wy above r; see Fig.[2(c). Since we merge segments and segment endpoints at
each node u bottom-up, we process (ie., place into S(u)) all short blue segment
endpoints below r before we process r. We call a blue segment processed if we
have processed at least one of its endpoints. A segment b with one endpoint
in 0y, is internal, left-intersecting, or right-intersecting depending on whether
both its endpoints are in oy,), b intersects I(oy(,)) or b intersects 7(oy(,)). Let
p(u) be the highest rank of all endpoints of processed internal blue segments, and
yi(u) the y-coordinate of the highest intersection between [(cy(,)) and processed
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left-intersecting blue segments; y,.(u) is defined analogously for processed right-
intersecting blue segments. By our previous discussion, r has an upward short-
long intersection at u if and only if » has rank less than p(u), intersects I(0y(,))
below y-coordinate y;(u) or intersects r(0y(,)) below y,(u); see Fig. El(c).
Values p(u), yi(u), and y,(u) are easily maintained as the FILL operation at
node u processes blue segment endpoints. When processing a red segment r, it
is easy to test whether it is long wrt. oy(,) and its rank is less than p(u), its
intersection with (y(,)) has y-coordinate less than y;(u) or its intersection with
7(01(uy) has y-coordinate less than y,.(u). If this is the case, r has at least one
upward short-long intersection at u, and we append it to u’s red list R(u).

Reporting short-long intersections. Given the populated red lists, the sec-
ond pass starts out with the input stream of each slab o; containing all blue
segment endpoints in o;, sorted top-down (ie., by decreasing ranks). We merge
these points so that every node u outputs a stream of blue segment endpoints
in oy, sorted top-down. To report all short-long intersections at a node u, the
FILL operation at node u keeps track of the current position in R(u), which is
the segment with minimum rank in R(u) we have inspected during the current
pass. Initially, this is the last segment in R(u). Now when processing an endpoint
P € 0y(y) of a blue segment b, we first scan backwards in R(u) from the current
position to find the segment r with minimum rank in R(u) whose rank is greater
than that of p. Segment r becomes the new current position in R(u). Segment
r is the lowest segment in R(u) that can have an upward intersection with b,
and all segments having such intersections with b form a contiguous sequence in
R(u) starting with r. Therefore, we scan forward from r, reporting intersections
between scanned segments and b until we find the first segment in R(u) that
does not have an upward short-long intersection with b; see Fig. 2(d).

Since every segment placed into R(u) is involved in at least one intersection
and all but O(1) accesses to a segment in R(u) can be charged to reported
intersections, the scanning of red lists adds only O(Ts/B) to the O(Sort(N)) cost
of the merger. The space usage of the algorithm can be reduced to O(N + Ty)
by running the pass populating red lists twice. The first time, we only count
segments that would be placed into each list and then allocate a list of the
appropriate size to each node. The second time, we place segments into the
allocated lists. Using the same technique as in [0], the space can then be reduced
further to O(N). Details will appear in the full paper.

Lemma 1. Short-long intersections can be reported using O(Sort(N) + Ts/B)
memory transfers and linear space.

5 Long-Long Intersections

In this section, we discuss how to find the long-long intersections at all merger
nodes. Again, we focus on finding, at every node u, only long-long intersections
inside slab oy(,). Similar to the short-long case, we first describe our procedure
assuming we can allocate two lists of size N to each node. Later we discuss how
to reduce the space usage to O(N).
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A simple solution using superlinear space. After some preprocessing dis-
cussed later in this section, long-long intersections can be found using one pass
through the v/N-merger. This time, the input stream corresponding to slab o;
contains all segments whose right endpoints are inside ¢; and which intersect
[(0;). The segments are sorted by decreasing y-coordinates of their intersections
with [(o;). The goal of the merge process at a merger node u is to produce an
output stream of all segments with right endpoints in ¢, and which intersect
l(0y). Again, these segments are to be output sorted by decreasing y-coordinates
of their intersections with (o). In the process of producing its output stream,
each merger node u reports all long-long intersections inside o7y(,).

This merge process in itself poses a challenge compared to the short-long case,
as segments in S(r(u)) that intersect both 7(0;(,)) and I(0(,)) may have to be
placed into S(u) in a different order from the one in which they arrive in S(r(u));
see Fig. Bla). Thus, we need to allow segments to “pass each other”, which we
accomplish using two buffers B(u) and R(u) of size N associated with each
node u in the merger. Buffer B(u) is used to temporarily hold blue segments
that need to be overtaken by red segments at u; these segments are sorted by
the y-coordinates of their intersections with [(o, ). Buffer R(u) serves the same
purpose for red segments. Initially, B(u) and R(u) are empty.

To implement the merge process, we also need a “look-ahead” mechanism
that allows each node u to identify the next long segment of each color to be
retrieved from S(r(u)) without actually retrieving it. We discuss below how to
provide such a mechanism. Again, the need for such a mechanism arises because
long red and blue segments may change their order between S(r(u)) and S(u).
If the topmost segment b in S(r(u)) is long and blue, we can decide whether it is
the next segment to be placed into S(u) only if we know whether the next long
red segment r intersects [(c,,) above b; but there may be an arbitrary number of
blue and short red segments between b and r in S(r(u)), and we cannot afford
to scan ahead until we find r in S(r(u)). Look-ahead provides us with r without
the need to scan through S(r(u)).

A FILL operation at node u now reduces to repeatedly identifying the next
segment s to be placed into S(u). This segment is currently in S(I(u)), S(r(u)),
R(u) or B(u) and is the one with the highest intersection with /(o) among the
segments remaining in these streams. Thus, if s belongs to S(I(u)), it must be
the next segment s’ in S(I(u)) because the segments in S(I(u)) are sorted by
their intersections with [(oy(,)) = I(0w). If s belongs to S(r(u)), R(u) or B(u),
it must be the next long red segment r or the next long blue segment b to be
placed into S(u). Note that our look-ahead mechanism provides us with = and
b. To decide which of s, r, and b is the next segment s to be placed into S(u),
it suffices to compare their intersections with I(oy,).

In order to place s into S(u), we need to locate it in S(I(u)), S(r(u)), B(u)
or R(u), remove it, and output it into S(u). If s € S(l(v)), B(u) or R(u), this
is easy because s is the next segment in S(I(u)) or the first segment in B(u)
or R(u). So assume that s is long, wlog. red, and stored in S(r(u)). Then we
retrieve segments from S(r(u)) until we retrieve s. Since the segments in S(r(u))
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Fig. 3. (a) Segments b1, bz, bs, bs arrive before r in S(r(u)) but need to be placed into
S(u) after r. Thus, r must be able to overtake them at u. (b) Implementation of
look-ahead. Bold solid segments are in R:(u), dashed ones are not. Arrows indicate
how every long segment finds the next long segment. (¢) Approximate counting using
sampling. The bold segments are in the sample, the dashed ones are not.

are sorted by their intersections with [(o,.(,)) and red segments do not intersect,
there cannot be any long red segment in S(r(u)) that is retrieved before s. Thus,
all segments retrieved from S(r(u)) before s are blue or short. Short segments
can be discarded because they cannot be involved in any long-long intersections
at uw or any of its ancestors. Long blue segments are appended to B(u) in the
order they are retrieved, which is easily seen to maintain the segments in B(u)
sorted by their intersections with I(0y,))-

So far we have talked only about outputting the segments at each node u in
the correct order. To discuss how to report intersections, we say that a segment
is placed into S(u) directly if it is never placed into R(u) or B(u); otherwise, we
say that it is overtaken by at least one segment. It is not hard to see that every
long-long intersection at a node u involves a segment s placed directly into S(u)
and a segment that is overtaken by s; a segment s placed directly into S(u) has
long-long intersections with exactly those segments of the other color that are
in B(u) or R(u) at the time when s is placed into S(u). Thus, we can augment
the merge process at u to report long-long intersections as follows. Immediately
before placing a long red segment r directly into S(u), we scan B(u) to report
all intersections between r and the segments in B(u). When a long blue segment
b is placed directly into S(u), we scan R(u) instead. Since only segments that
are overtaken (and thus involved in at least one intersection) are placed into
R(u) and B(u) and every scan of R(u) and B(u) reports one intersection per
scanned segment, the manipulation of these buffers at all merger nodes adds
only O(Ts/B) memory transfers to the O(Sort(N)) cost of the merger. Next
we discuss how to implement the look-ahead mechanism using only O(Sort(N))
additional memory transfers, which leads to an O(Sort(N) + Ts/B) cost for
finding all long-long intersections.

Look-ahead. Consider the merge process reporting long-long intersections at a
node u. Given look-ahead at w’s children, it is easy to ensure that every segment
in S(I(u)) or S(r(u)) knows the next segment s" of the same color in S(I(u)) or
S(r(u)), respectively. When placing a long segment s from S(r(u)) into S(u),
however, we need to identify not the next segment of the same color as s in



98 L. Arge, T. Mglhave, and N. Zeh

S(r(u)) but the next long such segment s”. If " is long, then s” = s’. Otherwise,
we say that s’ terminates at node u, as it is not placed into S(u). In this case,
s' comes between s and s” in S(r(u)). Note also that every segment terminates
at exactly one node in the merger.

To allow us to identify segment s”, we preprocess the merger and associate two
lists R;(u) and Bi(u) with every node u. List R¢(u) (resp., B¢(u)) contains all
those long red (resp., blue) segments in S(r(u)) that are immediately preceded by
red (resp., blue) segments that terminate at u. Given these lists, a long segment
s in S(r(u)) that is succeeded by a terminating segment of the same color in
S(r(u)) can identify the next long segment of the same color by retrieving the
next segment from R;(u) or By(u), depending on its color; see Fig. Bl(b). These
lists are easily constructed in O(Sort(N)) memory transfers by merging the blue
and red segments independently; details will appear in the full paper. In order
to ensure that each list uses only as much space as it needs—and, thus, that
all look-ahead lists use only O(NN) space—we run each merge twice. The first
pass counts the number of segments to be placed into each list, the second one
populates the lists after allocating the required space to each list.

During the merge that reports long-long intersections, each list R (u) or By (u)
is scanned exactly once, as the segments in these lists are retrieved in the order
they are stored. Thus, scanning these lists uses O(/N/B) memory transfers.

Linear space via approximate counting of intersected segments. Finally,
we discuss how to reduce the space usage of the merge that finds long-long
intersections to O(N + T). Using the same technique as in [6] again, the space
usage can then be reduced further to O(N). Details appear in the full paper.

To achieve this space reduction, we need to reduce the total size of the red and
blue buffers R(u) and B(u) to O(N +Ts). We observe that R(u) and B(u) never
contain more than ¢;(u) and ¢, (u) segments, respectively, where ¢;(u) and ¢, (u)
denote the maximum number of red (resp., blue) segments intersected by any
long blue (resp., red) segment at u. Hence, it suffices to determine these values
and allocate ¢p(u) space for R(u) and ¢, (u) space for B(u). Since these values
summed over all nodes of the merger do not sum to more than T, this would
ensure that the total space usage of all buffers R(u) and B(u) is at most Ts.
However, it seems difficult to determine ¢,(u) and ¢,(u) exactly without already
using buffers R(u) and B(u). Instead, we compute upper bounds ¢} (u) and ¢].(u)
such that ¢;(u) < ¢(u) < cp(u) + VN and ¢.(u) < c.(u) < e.(u) + /N, which
can be done in linear space. By allocating ¢} (u) space for buffer R(u) and ¢}.(u)
space for buffer B(u), each buffer is big enough and we waste only O(v/N) space
per merger node. Since there are O(v/N) merger nodes, the total space used by
all buffers is therefore O(N + T¥).

We discuss how to compute values ¢, (u), as values ¢ (u) can be computed
similarly. To compute values ¢, (u), we compute a v/ N /2-sample of the long red
segments passing through each node u and determine for every long blue segment
b how many segments in the sample it intersects. If this number is A(b), then b
intersects between v/ N (h(b) — 1)/2 and v/ N(h(b) + 1)/2 long red segments at
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node u. See Fig. Bl(c). We choose ¢} (u) to be the maximum of /N (h(b) + 1)/2
taken over all long blue segments b at node wu.

More precisely, we use two passes through the v/ N-merger after allocating a
sample buffer R (u) of size 2v/N to each node. The first pass merges red segments
by their intersections with left slab boundaries. At a node u, every v/ N /2’th long
segment is placed into R(u). The second pass merges blue segments by their
intersections with left slab boundaries. Before this pass, we set ¢ (u) = 0 for every
node u. During the merge, when we process a long blue segment b, we determine
the number hy(b) of segments in Rs(u) that intersect I(oy,)) below b, as well
as the number h,(b) of segments in R,(u) that intersect r(oyq,)) below r. Let
h(b) = |hy(b) = hi(D)]. If VN (h(b)+1)/2 > ¢, (u), we set ¢, (u) = vV N(h(b)+1)/2.

Since we allocate only O(\/ N) space to each merger node during the approx-
imate counting of intersections, the space usage of this step is linear. Moreover,
we merge red and blue segments once, and it can be shown that the computation
of values h,.(b) and h;(b) for all blue segments b passing through node u requires
two scans of list Rs(u) in total. Hence, this adds O(N/B) to the merge cost, and
we obtain the following lemma, which completes the proof of Theorem

Lemma 2. Long-long intersections can be reported using O(Sort(N) + Ts/B)
memory transfers and linear space.
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Abstract. We prove tight bounds on the complexity of bisectors and
Voronoi diagrams on so-called realistic terrains, under the geodesic dis-
tance. In particular, if n denotes the number of triangles in the terrain,
we show the following two results.

(i) If the triangles of the terrain have bounded slope and the projection
of the set of triangles onto the zy-plane has low density, then the
worst-case complexity of a bisector is ©(n).

(ii) If, in addition, the triangles have similar sizes and the domain of the
terrain is a rectangle of bounded aspect ratio, then the worst-case
complexity of the Voronoi diagram of m point sites is @(n + m+/n).

1 Introduction

Motivation. The Voronoi diagram of a set S of m sites in a metric space is
the decomposition of the space into m cells, one per site, such that the cell
corresponding to a site p € S contains exactly those points for which p is the
closest site. Often the sites are points and the ambient space is a Euclidean space,
but there are many other interesting settings. Voronoi diagrams play a role in
numerous applications and they have been studied extensively—see for example
the book by Okabe et al. [9] or one of the several surveys [IL2L6] dedicated to
Voronoi diagrams. One of the areas where Voronoi diagrams are frequently used
is geographic information systems. A natural setting in this application is where
the sites are points in a mountainous terrain, and the distance between any two
points on the terrain is the geodesic distance. (The geodesic distance between
two points is the length of a shortest path on the terrain connecting them.) This
is the setting of our paper.

A standard way to model a terrain is using a triangulated irreqular network, or
TIN for short: a triangulation of a convex polygonal domain in the xy-plane—
usually the domain is simply a rectangle—where each vertex is given an elevation.
In computational geometry, a TIN is called a polyhedral terrain. Hereafter, the
term terrain refers to a polyhedral terrain.

D. Halperin and K. Mechlhorn (Eds.): ESA 2008, LNCS 5193, pp. 100-L11, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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A fundamental issue in the study of Voronoi diagrams is their combinato-
rial complexity. It is well known that the complexity—that is, the number of
vertices, edges, and cells—of the Voronoi diagram of m sites in the plane un-
der the Euclidean distance is ©(m). This follows easily from the fact that the
Voronoi diagram is a planar subdivision with m faces, whose vertices have de-
gree at least three and whose edges are line segments or half lines. For Voronoi
diagrams on a terrain, things are more complicated. Here, the complexity de-
pends not only on the number of sites but also on the number of triangles in the
terrain. Indeed, a single bisector—the bisector of two sites is the set of points
equidistant from both sites—on a terrain consisting of n triangles can already
have complexity 2(n?) [§] and the Voronoi diagram of m sites can have com-
plexity £2((n + m)n). Fortunately, these high-complexity bisectors and Voronoi
diagrams seem to arise only on carefully constructed, artificial terrains—terrains
in practical applications probably behave much better. Thus the question arises:
how can we formalize the notion of a “well-behaved terrain” and what is the
worst-case complexity of bisectors and Voronoi diagrams on such terrains?

Previous results. These considerations lead Moet et al. [§] to study terrains with
the following properties: (i) the triangles in the terrain have bounded slope;
(ii) the set of terrain triangles has low density; (iii) the domain of the terrain
has bounded aspect ratio; (iv) all terrain triangles have roughly the same size.
(A more formal definition of these properties is given in Section [2l) They call a
terrain with these four properties a realistic terrain. Moet investigates [7] whether
the assumption of bounded slope, density etc. is pragmatic by measuring these
parameters of terrain models of various mountainous regions in the US, which
she concludes indeed have the properties listed above.

Moet et al. prove that the complexity of a single bisector on a realistic terrain
with n triangles is O(ny/n) and can sometimes be 2(n). Moreover, they show
that the complexity of the Voronoi diagram on a realistic terrain is O((n+m)/n),
and can sometimes be 2(n + my/n).

Recently, Schreiber [II] studied the computation of shortest paths on real-
istic terrains (or, more generally, realistic polyhedra). Schreiber computes an
implicit representation of the Voronoi diagram on a realistic terrain in O((n +
m)log(n + m)) time, so that the site closest to a query point can be reported
in O(log(n + m)) time. For some applications it will be sufficient to have such
an implicit representation; for others one needs an explicit representation. The
explicit Voronoi diagram can be constructed in O((n + m)log(n +m) + k) time,
where k is the combinatorial complexity of the Voronoi diagram, by an exten-
sion of Schreiber’s algorithm [I2]. The question now arises: what is the maximum
combinatorial complexity of the Voronoi diagram on a realistic terrain? This is
the question studied by Moet et al. [8[7] and explored further in this paper.

Our results. We improve on the results by Moet et al. [§] and give tight bounds

on the complexity of bisectors and Voronoi diagrams on realistic terrains.
First, we prove that the worst-case complexity of a single bisector on a realistic

terrain is ©(n). We obtain our improved bound by studying the global shape
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of the bisector and showing essentially that it cannot “wiggle” too wildly. More
precisely, we prove that the set of pieces forming the bisector has low density. We
believe that this result is of independent interest. Interestingly, our proof only
requires the terrain to have properties (i) and (ii) listed above; thus it yields not
only a significantly better bound than what was known, but it also applies to a
wider class of terrains.

Second, we show that the worst-case complexity of the Voronoi diagram on a
realistic terrain is @(n + m+y/n). This result is based partially on our improved
bound on the complexity of a bisector and partially on a careful investigation of
the structure of the Voronoi diagram.

2 Preliminaries

Let 7 be a terrain with n triangles. In this section, we denote the vertical
projection of any subset o C 7 to the xy-plane by o. We will use D to denote
the domain of 7', which is a subset of the xy-plane. For simplicity, and because
this is mostly the case in practice, we assume that D is a rectangle; our results
can easily be extended to the case where D is an arbitrary convex region. Notice
that 7 is a triangulation of D.

Next we formally define the parameters that measure how well-behaved a
terrain is.

— The slope of a triangle A in R? is the maximum slope of any line segment
contained in A. For example, a triangle parallel to the zy-plane has slope 0,
while a vertical triangle—a triangle parallel to the z-axis—has infinite slope.
The slope £ of the terrain 7 is the maximum slope of any of its triangles.
Note that a terrain does not contain vertical triangles by definition, so it has
finite slope.

— The density [4] of a set S of objects in the plane is defined as the smallest
number A such that any disk B intersects at most A objects o € S such
that diam(o) > diam(B), where diam(-) denotes the diameter. The density
A of the terrain 7 is the density of the set of edges of 7. In other words,
the density refers to the edges of the triangulation of the domain D that
corresponds to 7.

— The aspect ratio of a rectangle with width w and height h is defined as
max(w/h, h/w). The aspect ratio p of 7 is the aspect ratio of its domain D.

— The scale factor o of T is the ratio between the maximum and the minimum
length of any edge of 7.

Moet et al. [§] define a realistic terrain as a terrain whose slope £, density A,
aspect ratio p, and scale factor o are constants independent of n, and then prove
bounds on the complexity of bisectors and Voronoi diagrams as a function of n
only, with the dependence on £, A, p, and ¢ hidden in the asymptotic notation.
We make this dependence explicit in all our bounds.

For two points p,q € 7, we use dist(p,q) to denote the geodesic distance
between p and ¢. In other words, dist(p, ¢) is the length of a shortest path from
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p to g on 7. Furthermore, we use |pq| to denote the Euclidean distance between
p and ¢. As already observed by Moet et al. [§], the geodesic distance between
two points on a terrain with bounded slope is closely related to the Euclidean
distance between their projections:

Lemma 1. [8] For any two points p,q on a terrain T with slope &, we have
dist(p, q) < /€2 +1- |pql.

A second basic fact that we will use is that shortest paths on a realistic terrain
cross O(y/n) triangles.

Lemma 2. [8] Let 7 be a terrain with slope &, density A, aspect ratio p, and
scale factor o. Then any shortest path on T crosses O(cy/n) terrain edges, where

c=E&Xa \/p.

Finally, we will use the following result, which follows easily from the definition
of density (just charge every intersecting pair (o1, 02) to the object with smaller
diameter). Similar results have been used in previous papers [3L[13] dealing with
low-density scenes.

Lemma 3. Let Sy be a set of ny objects and density \1, and let Sy be a set of
ng objects and density Ao. Then the number of pairs (01,02) € S1 X Sy such that
01 intersects oy is O(Aang + Aing).

There is a natural one-to-one correspondence (obtained by vertical projection)
between points on the terrain 7 and points in the domain D. Hence, we can
view Voronoi diagrams and bisectors as subsets of 7, or as subsets of D. From
now on, we will take the latter view and consider these structures to be subsets
of D. Tt is then also convenient to no longer make an explicit distinction between
geometric entities—points, shortest paths, bisectors, etc.—on the terrain 7 and
their projections to the domain D, and drop the notation o for the projection
of an object o. Thus, for example, when we speak of a shortest path m between
two points s and ¢ on the terrain, we actually refer to the path = that connects
s to t. (When it is important to make the distinction between an object and
its projection, we will explicitly do so.) Moreover, |zy| refers to the Euclidean
distance between points z and y on D, while dist(x,y) refers to the length of a
shortest path between the corresponding points on 7.

The structure of shortest paths on a terrain. A shortest path 7(z,y) between
x,y € T is a polygonal path that stays straight within individual terrain triangles
and unfolds to a straight line segment whenever it crosses a terrain edge away
from a vertex. A shortest path may pass through a terrain vertex (the vertex
has to be non-convex in a technical sense that is not important in this paper).
Two shortest paths 7(z,y) and 7(z, z) emanating from the same point 2 do not
properly cross, nor overlap and then diverge, except possibly at (non-convex)
vertices of 7.

If two sites are equidistant from a terrain vertex, their bisector need not be a
curve; it may contain entire two-dimensional regions. So, in order for bisectors
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and Voronoi diagrams to be properly defined, following previous work [§], we
therefore make the general position assumption that no two sites are equidis-
tant from a terrain vertex. This assumption guarantees that bisectors are 1-
dimensional and that Voronoi cells are regions that cover 7 without overlap,
except at their common boundaries.

Moreover, in this version of the paper, we also add another non-degeneracy
assumption that is not needed for the results presented to hold but that simplifies
the presentation; the assumption is removed in the full version of the paper.
Namely, we assume that each site s is connected to every vertex v of the terrain
by a unique shortest path. Non-degeneracy implies that, for every point z € 7,
all shortest paths between s and x are pairwise non-crossing; they may overlap
but they cannot cross. Now, for any two shortest paths w(s,z) and 7(s,y),
for © # y, there must exist a point z (which might coincide with s) so that
(s, z)N7(s,y) = 7(s, z). Moreover, for any two distinct shortest paths m (s, x)
and ma(s, z) from s to the same point = there must exist a point z # = with a
unique shortest path (s, z) from s so that w1 (s, z) N mwa(s, z) = (s, z) U{z}.

3 The Bisector

Let s and ¢ be two point sites (not necessarily vertices) on a terrain 7. In this
section we study the complexity of the bisector b = b(s,t) of s and t on 7. We
will do the analysis in terms of n, the number of triangles of the terrain, and its
slope & and density A.

The bisector b, by definition, consists of all points p € 7 such that dist(p, s) =
dist(p, t). It partitions 7 into two regions: V(s), the Voronoi cell of s, which
contains the points closer to s, and V(t), the Voronoi cell of t, which contains
the points closer to ¢. Since Voronoi cells are connected, b is a simple curve that
is either closed—this can happen, for instance, when s is the peak of a mountain
and t is at the foot of the mountain—or connects two points on the boundary
of the terrain.

For most points on b, there is a unique shortest path to s and a unique
shortest path to t. For some points, however, there are multiple shortest paths
to s and/or to t. We call such points breakpoints. The number of breakpoints
on b is at most n, because each of them can be attributed to a terrain vertex [10].
The breakpoints partition b into pieces; the intersection of a piece with a terrain
triangle is a line segment or hyperbolic arc [I0]. The complezity of b is now
defined as the number of breakpoints plus the number of times that b crosses a
terrain edge.

We denote the set of all bisector pieces by I'. Moet et al. [§] prove that
on a realistic terrain any piece v € I' can cross only O(y/n) triangles. Since
|I'| < n+1, this implies that the total complexity of the bisector is O(ny/n). To
improve upon this, we take a more global look at the bisector and show that the
set I" has low density. (Here it is important to recall that we view I" as a set of
curves in the zy-plane, that is, as a collection of subsets of D.) The result will
then readily follow from Lemma Bl and the fact that 7 has low density.
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X~top(f)

f
bottom(f)

2

- »
bottom bottom

Fig. 1. Seven fragments and the two blocks defined by them. The rightmost fragment
does not belong to any block.

Let r be a rectangle in the zy-plane, and assume without loss of generality
that r is axis-parallel. We say that a piece v crosses r if v N r has a connected
component with one endpoint on the top edge of r and one endpoint on the
bottom edge of r. We call such a component a fragment of ~. To bound the
density of I', we first show that r cannot be crossed too many times.

We denote the top endpoint of a fragment f by top(f) and its bottom endpoint
by bottom(f). For each piece v that crosses r, we pick one of its fragments, and
we let F' denote the set of all such fragments. Since each fragment f € F' connects
the top edge of r to the bottom edge of r, we can order the fragments from left
to right. We group the fragments from left to right in triples, and we call such
an (ordered) triple a block—see Fig. [l We start by proving a lemma on the
structure of the shortest paths from the endpoints of the fragments in a block
to s and t.

Define the top of a block to be the line segment connecting the top of the
leftmost fragment of the triple to that of its rightmost fragment. Define the
bottom of a block analogously.

Lemma 4. Let (f1, fa, f3) be a block. Then at least one of the three top endpoints
has a shortest path to s ort that intersects the bottom of the block. Similarly, at
least one of the three bottom endpoints has a shortest path to s ort that intersects
the top of the block.

Proof. We will prove the lemma for the top endpoints; the proof for the bottom
endpoints is symmetric.

Fig. 2. One of the paths from the top endpoints must intersect the bottom of the block
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For i € {1,2,3} and q € {s,t}, let m;(¢) denote the shortest path from top(f;)
to q. Let Vi := {top(f1),top(fz2),top(fs)} and Va := {s,t, bottom(f2)}.

Consider a geometric realization of the graph K3 3, where V3 U V5 is the set
of nodes and the arcs are realized as follows—see also Fig. [l The arcs from
nodes in V4 to s and ¢ are given by the shortest paths m;(s) and 7;(t); the arc
from top(f2) to bottom(f2) is given by fo; and for ¢ = 1,3 the arc from top(f;)
to bottom(f2) is given by the concatenation of f; and the segment connecting
bottom(f;) to bottom( f3).

Since K3 3 is non-planar, there must be an intersection between some pair of
arcs. Recall that the fragments f; are all part of the bisector b, which also means
that the points top(f;) lie on b. Hence, the paths m;(s) and m;(t) lie inside V(s)
and V(t), respectively. This implies that the paths m;(s) and m;(t) do not inter-
sect any of the fragments f;, and also that a path m;(s) does not intersect any
path 7;(t) (except possibly at common endpoints). Furthermore, after two short-
est paths m;(s) and 7;(s) meet for the first time, they follow the same subpath, by
our non-degeneracy assumption. Hence, a small perturbation yields paths that are
disjoint (except at s). Similarly, we can enforce that the paths 7;(¢) and 7;(t) are
disjoint except at ¢. Finally, two fragments f;, f; do not intersect each other, by
construction. The only remaining possibility is that one of the paths m;(s) or 7;(t)
intersects one of the segments connecting bottom(f;) to bottom(f2) for ¢ = 1, 3.
In other words, one of these paths intersects the bottom of the block. a

Now define the top width of a block (f1, f2, f3) as the length of the top of the
block, define its bottom width analogously, and define the width of a block as the
maximum of its top and bottom widths. The previous lemma allows us to prove
a lower bound on the width of a block.

Lemma 5. The width of any block (f1, f2, f3) is at least h/\/§2 + 1, where h is
the height of the rectangle r.

Proof. By Lemma Ml one of the top endpoints, say top(f;), has a shortest path
to s or t that intersects the bottom of the block. Similarly, one of the bottom
endpoints, say bottom(f;), has a shortest path to s or ¢ that intersects the top
of the block. We can assume, without loss of generality, that dist(top(f;),s) <
dist(bottom(f;), s). Since top(f;) and bottom(f;) lie on the bisector b, we get

dist(top(fi), t) = dist(top(fi), s) < dist(bottom(f;),s) = dist(bottom(f;),1).

top(f;) shortest path to s or ¢

shortest path to s bottom(f;)

Fig. 3. The width of a block cannot be too small
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Now assume, also without loss of generality, that the shortest path from top(f;)
that crosses the bottom of the block is the shortest path to s, and let the point
where it crosses the bottom be denoted by p—see Fig.[Bl Then we have

dist(top(fi), s) < dist(bottom(f;), s

< )

< dist(bottom(f;), p) + dist(p, s)

< V€2 +1- |bottom(f;)p| + dist(p, s) by Lemma [I]
< V€ + 1+ [bottom(f;)p| + dist(top(fi), s) — b

It follows that |bottom(f;)p| = h//€2 + 1. ]

The previous lemma implies that a rectangle r of small aspect ratio cannot be
crossed by too many bisector pieces.

Lemma 6. The rectangle r is crossed by at most 2 + Gw\/§2 + 1/h bisector
pieces, where h is the height of the rectangle r and w is its width.

Proof. Consider the set of fragments induced by the bisector pieces crossing r,
as defined above. These fragments are grouped into blocks of three, with at
most two fragments not belonging to any block. Hence, we must show that the
number of blocks is at most 2w+/€2 + 1/h. By Lemma [ either the top width
or the bottom width of any block is at least h/\/£2 + 1. Since the width of r
is w, there can be at most w//&2 + 1/h blocks whose top width is at least
at least h/\/€2 4 1. Similarly, there can be at most w+/€2 + 1/h blocks whose
bottom width is at least h/\/£2 + 1, and so the total number of blocks is as
claimed. O

Using Lemma [l we obtain the following theorem. Its proof is very similar to a
low-density proof by De Berg [3], and therefore omitted.

Theorem 1. Let s and t be any two points on a terrain T, let b(s,t) be their
bisector, and let I' be the collection of (projected) bisector pieces obtained by
splitting b(s,t) at breakpoints as defined above. Then I has density O(), where
& is the slope of T.

Combining Theorem [ with Lemma [3] immediately leads to the following result.

Corollary 1. The bisector of two points on a terrain 7 with n triangles has
complezity O((§ + A\)n), where £ is the slope of T and X is its density.

4 The Voronoi Diagram

Let S := {s1,...,8m} be a set of m point sites on a terrain 7 with n triangles,
and let VD(S) denote the Voronoi diagram of S. Each Voronoi edge is a portion
of some bisector b(s;, s;), and the number of Voronoi edges is O(m). (Note that a
Voronoi edge is not necessarily incident to two Voronoi vertices; it can also be a
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closed curve or have one or both endpoints on the boundary of D.) Bounding the
complexity of the Voronoi diagram amounts to bounding the total complexity of
all Voronoi edges. In the previous section we bounded the complexity of a single
bisector as a function of n, and the slope ¢ and density A of 7. The bound on
the complexity of the Voronoi diagram that we will prove in this section also
depends on the aspect ratio p and the scale factor o of 7.

Recall that a bisector b(s;, s;) is partitioned into pieces at breakpoints—points
where the shortest path to s; and/or to s; is not unique—and that the intersec-
tion of such a piece with a terrain triangle is a hyperbolic arc or line segment.
Because a breakpoint on a Voronoi edge that is part of b(s;, s;) can be uniquely
attributed to a vertex lying inside one of the Voronoi cells V(s;) or V(s;), the
total number of breakpoints over all Voronoi edges is O(n) [8]. Hence, the total
complexity of the Voronoi edges is proportional to m + n plus the total number
of intersections between Voronoi edges and terrain edges. The rest of this section
is devoted to bounding the number of intersections between Voronoi edges and
terrain edges.

Consider a breakpoint p on the Voronoi edge generated by b(s;, s;). We call p
a special breakpoint if it has two shortest paths to s; that enclose at least one
hole in V(s;), or two shortest paths to s; that enclose at least one hole in V(s;).
(A hole in V(s;) is formed by one or more other Voronoi cells V(sy) enclosed by
V(s;). As remarked earlier, this can happen for instance if s; is at the foot of a
steep mountain and sy, is at the peak.) Let B be the set of all special breakpoints.
The special breakpoints subdivide the Voronoi edges into subedges. To simplify
the presentation, we augment B with O(m) additional points to ensure that B
contains, for each site s;, at least two points on every component of 9V(s;).

Lemma 7. Let p and q be the endpoints of a subedge v on OV(s;). Then there
exists a shortest path w(p) from p to s; and a shortest path w(q) from q to s;, such
that the region V(7, s;) C V(s;) enclosed by v, w(p) and w(q) is simply connected.
Moreover, there is a choice of shortest paths w(p),7(q) for all subedges ~ that
guarantees that V(v, s;) and V(v',s;) do not overlap for (v,s;) # (', ;).

Proof. Since we augmented B with extra points, p and ¢ cannot coincide. Take
any point r in the interior of v, and draw a shortest path w(r) from r to s;.
Imagine moving r towards p. As we move r continuously, we can also transform
7(r) continuously such that it stays shortest, except when r moves over a break-
point: at that point 7(r) jumps. (More precisely, when r reaches a breakpoint
which, by definition, has more than one shortest path to s;, m(r) coincides with
one of these paths. To be able to continuously deform the path further while
remaining shortest, we have to switch 7(r) to one of the other shortest paths.
This is what we refer to as “jumping” of a shortest path.) Since -« is a subedge,
however, a breakpoint in its interior cannot be a special breakpoint. Hence, 7 ()
does not jump over a hole of V(s;), i.e., the region bounded by the two shortest
paths to the breakpoint is fully contained in V(s;) and is simply connected. The
same argument shows that 7(r) will not jump over a hole when we move 7 to g.
Hence, we can find shortest paths from p and ¢ to s; such that the region V(v, s;)
enclosed by them and + is simply connected.
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Since V(7v,s;) C V(s;), regions belonging to different sites cannot overlap.
We claim that V(v, s;) and V(v/, s;), for different subedges 7,~’, do not overlap
either. Recall from Section [ that the non-degeneracy assumption implies that
shortest paths from s; to points x,y, after diverging for the first time (as seen
from s;), do not meet again (except at x when = = y). Hence, the shortest
paths that bound the regions V(v,s;) form a tree-like structure, which implies
the regions V(7, s;) and V(v s;) for different subedges do not overlap. O

Next we bound the total number of subedges.

Lemma 8. The total number of subedges is O(m).

Proof. The number of edges of the Voronoi diagram is O(m), so to prove the
lemma we must show that the total number of special breakpoints is O(m).
For each special breakpoint p, there is a Voronoi cell V(s;) such that p has
two shortest paths «, 3 to s; so that the loop aU 3 encloses a hole of V(s;).
Because shortest paths do not cross (by the non-degeneracy assumption), two
such cycles can never cross, though they may partially overlap. Thus we obtain
a collection of non-crossing loops, each containing one or more holes (and thus
sites) in its interior. These loops may nest, but each loop contains a different
subset of sites. We can conclude that the overall number of loops—and, hence,
the overall number of special breakpoints—is O(m). O

We are now ready to prove a bound on the number of intersections between
Voronoi edges and terrain edges and, hence, obtain our main result.

Theorem 2. The complezity of the Voronoi diagram of m point sites on a ter-
rain T with n triangles is O(cin—+ cam/n)), where ¢y = 4+ X and co = §2>\0'\/p.
Here &, A\, p, and o denote the slope, density, aspect ratio, and scale factor of T,
respectively.

Proof. We already observed that, up to an additive O(n + m) term, the com-
plexity of the Voronoi diagram is bounded by the total number of intersections
between Voronoi edges and terrain edges.

Let I" denote the set of subedges as defined above. Let v € I' be a subedge
lying on the common boundary of Voronoi cells V(s;) and V(s;). For any terrain
edge intersecting v, at least one of the following two conditions holds: (i) it has
an endpoint inside V(v, s;) or V(7, s;), or (ii) it intersects a shortest path from
an endpoint of y to s; or s;, i.e., the boundary of V(v, s;)UV(, s;). In Fig. [ the
edge e illustrates case (i) and e’ case (ii). Let E7 () denote the set of all terrain
edges for which one of the two cases (i) and (ii) hold. From Lemmas [§ and 2] we
can conclude that

S 1Bz ()] = Ofn + emy/n),

yel’

where ¢ = {Ao/p, because every edge of 7 can contribute at most two to the
count in case (i) and each shortest path contributes at most O(cy/n) edges in
case (ii). Now partition each subedge v into pieces, by adding all the breakpoints
on v; let Eyp(7y) denote the set of these pieces. Since the overall number of
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Fig. 4. Two terrain edges, e and €', intersecting a subedge

breakpoints is O(n), we have 3 p[Evp(v)| = O(n + m). Trivially, the total
number of intersections between Voronoi edges and terrain edges is equal to the
sum, over all v € I', of the number of intersections between pieces in Eyp(7y)
and terrain edges in E7 (7). Moreover, Eyp(7) has density O(§) by Theorem [I]
and E7(v) has density A by definition. Hence, by Lemma [Bl the number of
intersections between pieces in Eyp(v) and terrain edges in E7(v) is

O - [Br(M]+ - [Evp()))-

It follows that the total number of intersections is bounded by

> O |Er(M|+ - [Evp(y)]) = OE(n + emy/n) + A(n +m)),

yel

which gives the claimed bound. O

5 Conclusion

We proved tight bounds on the complexity of bisectors and Voronoi diagrams
on the realistic terrains introduced by Moet et al. [§]. Even though our bounds
are tight, there are still some interesting open questions. In particular, we have
shown that the total number of intersections between bisector pieces and terrain
edges is O(n), but we suspect that this bound is not tight. Improving this bound
will not lead to a better bound on the complexity of the bisector, since the
number of bisector pieces can already be 2(n). Nevertheless, a tight bound on
the number of intersections between a bisector and terrain edges would give
more insight into the global shape of bisectors. Moreover, an O(y/n) bound on
the number of triangle edges crossed by a bisector would immediately imply an
O(n + m+/n) bound on the complexity of the Voronoi diagram-—something that
requires a more involved argument in our current paper.

Another direction for further research is to see under what conditions one can
prove an O(n+m) bound on the complexity of the Voronoi diagram. For this one
would probably also need to make assumptions on how the sites are distributed,
and not only on the properties of the terrain.
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As remarked in the introduction, Moet [7] studied some terrain models for
mountainous regions in the US and found that the values of the four parame-
ters defined in Section [2] are indeed bounded by a constant independent of the
terrain size. Some of these values, however, are still fairly high. Usually this is
caused by only a few triangles in the terrain. Hence, it would be interesting to
obtain bounds that depend on the average slope of the triangles rather than the
maximum slope.
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Abstract. We consider approximate nearest neighbor searching in met-
ric spaces of constant doubling dimension. More formally, we are given
a set S of n points and an error bound € > 0. The objective is to
build a data structure so that given any query point ¢ in the space,
it is possible to efficiently determine a point of S whose distance from
q is within a factor of (1 + ¢) of the distance between ¢ and its nearest
neighbor in S. In this paper we obtain the following space-time trade-
offs. Given a parameter v € [2,1/¢], we show how to construct a data
structure of space ny? (4™ log(1/¢) space that can answer queries in time
O(log(ny))+(1/(e7))° @™ This is the first result that offers space-time
tradeoffs for approximate nearest neighbor queries in doubling spaces. At
one extreme it nearly matches the best result currently known for dou-
bling spaces, and at the other extreme it results in a data structure that
can answer queries in time O(log(n/e)), which matches the best query
times in Euclidean space. Our approach involves a novel generalization
of the AVD data structure from Euclidean space to doubling space.

1 Introduction

Nearest neighbor searching is a fundamental problem in computational geometry
with numerous applications in areas such as pattern recognition, information
retrieval, machine learning, and robotics. The goal is to store a set S of n points
so that, for any query point ¢, we can quickly return its nearest neighbor in S.
As the problem is computationally difficult in most settings, researchers have
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considered a variant in which it suffices to return an approximate answer. Given
an error bound ¢ > 0, a point p € S is said to be an e-approrimate nearest
neighbor (denoted e-NN) of ¢ if its distance from ¢ is at most (1 4 &) times the
distance between ¢ and its nearest neighbor in S.

Approximate nearest neighbor searching has been studied extensively in Eu-
clidean spaces. Recently there has been considerable interest in metric spaces as
well. Data structures for proximity searching in metric spaces have been known
for some time (see, e.g., |6, 10, [18]). Clarkson [§] and later Karger and Ruhl [14]
introduced models designed to capture the sphere packing and local growth prop-
erties of low-dimensional Euclidean spaces. Much of the recent work has focused
on metric spaces of low doubling dimension M, |ﬁ|} The doubling dimension of
a metric space is the minimum value p such that every ball in the space can
be covered by 27 balls of half the radius. This model was applied to various
proximity problems by Krauthgamer, Lee, and co-authors , , , . The
results have been extended by Har-Peled and Mendel [@] and others [B, ].

The results described in these papers on doubling spaces apply in the so called
black-box model, in which points of the space can only be accessed through a
black box that computes the distance between any two points in constant time.
One of the advantages of this approach is that it relies on the barest set of
assumptions, and so it is possible to obtain the conceptually simplest and most
general algorithms. In this model, it is known that given a set of n points in a
metric space of doubling dimension dim, e-approximate nearest neighbor queries
can be answered in time O(logn) + (1/£)°(d™) using a data structure of linear
space [9,[13]. It is also observed in [13] that this result is optimal in the black-box
model, as there is a lower bound of 2(logn) + (1/¢)?(d™) on the query time in
this model irrespective of the space used. (These asymptotic bounds, like ours,
hide multiplicative factors that depend on the doubling dimension, except for
the space bounds of Cole and Gottlieb [9], which are truly O(n), irrespective of
the dimension.)

Unfortunately, this query time compares unfavorably to the fastest query
times known for Euclidean spaces. In Euclidean d-space, it is possible to answer
e-approximate nearest neighbor queries in time O(log(n/c)) and space roughly
O(n/e?) through the use of a data structure called an approzimate Voronoi dia-
gram (or AVD) @, , ] The difference in query time is quite significant, since
in practice factors of the form (1/¢)¢ dominate the query time. It is also shown
in E] that space-time tradeoffs can be achieved. Thus, by limiting consideration
to the purely implicit black-box model, simplicity and generality are achieved at
the expense of efficiency and flexibility.

This raises the important question of whether it is possible to achieve results
for approximate nearest neighbor searching that are comparable to the best re-
sults for Fuclidean space in efficiency and flexibility, but in a model that provides
the generality of metric spaces of low doubling dimension. The aforementioned
lower bound indicates that this is not possible within the black-box model. In
this paper we provide an affirmative answer to this question by strengthening the
model slightly, which we call the weakly explicit model. In particular, we assume
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the doubling space is endowed with a doubling oracle, which, given any ball in
the metric space returns in constant time a covering with a constant number of
balls of half the radius (see Section [I).

Our approach is based on generalizing the AVD data structure to metric
spaces in the weakly explicit model. We obtain the following space-time trade-
offs for approximate nearest neighbor searching in metric spaces of doubling
dimension dim. Given a parameter v € [2,1/¢], we show how to construct AVDs
of ny@(dim) Jog(1/¢) space that can answer e-NN queries in time O(log(ny)) +
(1/(e7))° ™) This is the first result that offers space-time tradeoffs for ap-
proximate nearest neighbor queries in doubling spaces. At one extreme (y =
2), we obtain an AVD of O(nlog(1l/e)) space that answers queries in time
O(logn)+(1/£)9dim). This result nearly matches the best result currently known
for doubling spaces ﬂ@, ], albeit in our stronger model. At the other extreme
(y = 1/¢), we obtain an AVD of n(1/¢)°(d™) space that can answer queries in
time O(log(n/e)). This matches the query times for AVDs in Euclidean spaces,
and overcomes the restrictive lower bound imposed by the black-box model for
doubling spaces.

1.1 Overview of Techniques

In Euclidean space, the AVD is a quadtree-based partitioning of space into con-
stant complexity cells, where each cell stores one or more representatives such
that, given a query point ¢ that lies within a cell, one of the associated repre-
sentatives is an e-NN of ¢. Queries are answered by first locating the cell that
contains the query point and then scanning the list of stored representatives to
find the closest one. The key idea underlying the construction of AVDs in Eu-
clidean space is to partition space into cells, such that each cell enjoys certain
separation properties with respect to the point set S. These separation properties
assert that the region surrounding each cell is simple enough that we can answer
e-NN queries with the help of a small set of representatives. The construction is
based on the box-decomposition tree (or the compressed quadtree), which yields
a hierarchical partitioning of space into fat cells. The construction is bottom-up,
first generating quadtree boxes and then building a tree structure over them.
In metric spaces we do not have the same explicit access to the ambient
space’s structure, and so we need a different approach. While similar in spirit,
our generalization of AVDs to doubling metric spaces differs in the types of cells
generated, the method used to generate these cells, and the separation properties
they satisfy. It will be necessary to relax the AVD’s partitioning of space to
allow for a covering instead. We know of no analogous decomposition structure
to the box-decomposition tree in doubling spaces, and so we have developed a
hybrid construction, which is neither purely top-down nor bottom-up. Roughly
speaking, the cells corresponding to all the nodes in the hierarchy that are in the
vicinity of the point set S are generated right in the beginning. Next, for each
such cell, we identify its children independently. We determine both the cells and
the child-parent relationships between them on the basis of the well-separated
pair decomposition [ﬁ @} of the point set. The resulting data structure is not
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a tree, but a rooted directed acyclic graph, which we call a region-DAG. The
cells associated with the leaves of the region-DAG cover all of space and satisfy
certain separation properties with respect to the point set .S. This feature enables
us to use region-DAGs for constructing AVDs in doubling spaces.

2 Preliminaries

We begin with some definitions. Let (M, d) be a metric space. We let B(x,r)
denote the closed ball of radius r centered at z, i.e., B(z,r) = {y € M : d(z,y) <
r}. For a ball b and any positive real 7, we use nb to denote the ball with the
same center as b and whose radius is 7 times the radius of b, and b to denote the
set of points that are not in b.

The doubling dimension of M, denoted dim(M ), is the minimum value p such
that every ball in M can be covered by 2° balls of half the radius. When there is
no ambiguity, we will write dim instead of dim(M). We say that M is a doubling
space if it has constant doubling dimension.

Throughout this paper, we will assume that the metric space M is doubling.
As mentioned earlier, our constructions will assume the existence of a doubling
oracle, which given any ball b of radius r in M, returns in 20dmA)) time a
set of 20(dm(M)) halls of radius r/2 covering b. Note that the centers of these
balls are not necessarily in the input point set. We view the points (data, query,
and covering-ball centers) as being drawn from some ambient metric space to
which this oracle has access. This motivates our use of the term weakly explicit
to describe this model.

A subset S C M is defined to be an r-net of M if (i) every point of M is
covered by a ball of radius r centered at some point of S and (ii) the pairwise
distance between any two points of S is 2(r). It is well-known that such nets
always exist for any r > 0.

Throughout, we treat n, € and v as asymptotic quantities. The constant factors
hidden by the O(-) notation are independent of n, € and «y, but may depend on
the doubling dimension.

2.1 The Well-Separated Pair Decomposition

We briefly review the notion of well-separated pair decomposition, as our con-
structions rely on it. Let S be a set of n points in the doubling space M. We
say that two sets of points X C S and Y C S are well-separated if there ex-
ist two disjoint balls of radius r covering X and Y respectively, such that the
distance between the centers of these balls is at least or, where o > 2 is a real
parameter called the separation factor. We refer to (X,Y) as a well-separated
pair. In Euclidean space, if we imagine joining the centers of these two balls by a
line segment, the resulting geometric shape resembles a dumbbell. The balls are
the heads of the dumbbell. The length of a dumbbell is defined as the distance
between the centers of the balls.

Let  and y be two points in S. We say that a well-separated pair (X,Y") con-
tains « if x € X UY, and we say that it separates x= and y if (z,y)
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€ (X xY)U (Y x X). These notions can also be applied in a natural way
to the dumbbell associated with a well-separated pair.

A well-separated pair decomposition (WSPD) of S is a set Pg,, = {{X1,Y1},
ooy {X0n, Yy, } } of pairs of subsets of S such that (i) for 1 <i < m, X; and Y; are
well-separated, and (ii) for any distinct points x,y € S, there exists a unique pair
(X;,Y;) that separates x and y. Given any n-point set in constant-dimensional
Euclidean space, Callahan and Kosaraju ﬂﬂ} showed that there exists a WSPD
of linear size. This result was generalized to doubling spaces by Har-Peled and
Mendel ﬂﬁ], who showed that the number of pairs in the WSPD of § is ¢@(dim)p,
and it can be constructed in 2°4iMplogn 4+ @My time. For each pair, their
construction also provides the corresponding dumbbell satisfying the separation
criteria mentioned above. Furthermore, the centers of both the dumbbell heads
are points of S.

The following preliminary lemma will be useful for us. It follows from the
definition of well-separatedness and the triangle inequality.

Lemma 1. Consider the WSPD of S with separation factor o > 16. Consider
the dumbbell for a pair P = (X,Y") in this WSPD. Let x and y denote the centers
of the dumbbell heads, and let £ = d(x,y) be the length of the dumbbell. Then for
any ' € X andy' € Y we have d(x,2") < £/16 and 7¢/8 < d(z',y") < 9¢/8.

3 The Region-DAG

In this section, we describe our construction of the region-DAG, which can be
viewed as a generalization of the box-decomposition tree B] to doubling spaces.
Our AVD construction in doubling spaces described in Section M will rely cru-
cially on this data structure.

Let S be a set of n points in a doubling space (M, d). The region-DAG for
S is a directed acyclic graph in which each node is associated with a region of
space called a cell, which is the difference of two concentric balls, an outer ball
and an (optional) inner ball. If the inner ball exists, its radius is at most half the
radius of the outer ball. If a cell has no inner ball, we call it a simple cell (the
corresponding node is called a simple node), otherwise we call it a doughnut cell
(the corresponding node is called a doughnut node). Throughout this paper, for
a simple node u, we let b, denote the associated cell. The size of a cell (and the
corresponding node) is defined to be the radius of its outer ball. If a cell contains
no points of S, we say that it is empty, otherwise it is nonempty. If there is an
edge from node u to node v, we say that v is a child of u. If a node has no
children, it is called a leaf, otherwise it is an internal node.

Our construction of the region-DAG involves two parameters v > 2 and 3 >
~. These parameters help to control the degree of separation enjoyed by the
leaf cells with respect to the points of S. As we will see later, varying these
parameters enables us to achieve space-time tradeoffs in our AVD constructions.
The key properties satisfied by the region-DAG are given below. We provide
some intuition on how these properties aid in constructing AVDs in doubling
spaces. Property (i) says that there is a node whose associated ball, which is
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called the root ball, contains the point set S close to its center. This property is
useful for answering queries when the query point ¢ lies outside the root ball.
If, however, ¢ lies inside the root ball, then we first find a leaf cell containing
q. Such a leaf cell must exist because, by property (iii), the cell associated with
any internal node is covered by the cells associated with its children. Property
(iv) guarantees that we can find this leaf cell quickly (even though the depth of
the region-DAG can be large). Property (ii) describes the separation properties
satisfied by the leaves, which help in answering queries efficiently.

(i)

(i)

(iii)

There exists a node whose associated cell is a ball b, which is centered at a

point of S and which satisfies S C Lb. (We maintain a pointer to one node

satisfying this property, which is called the root of the region-DAG. The cell

associated with the root is called the root ball.)

There are two kinds of leaves, simple leaves and doughnut leaves, with the

following separation properties. (See Figure[Il)

(a) Let ball b denote the cell associated with a simple leaf. Then either the
ball vb is empty, or it contains one point of S, which is the center of b.

Lo
L b bo
O ©
Empty éifnplo leaf Noncmpty éimplc leaf Doug}hﬁﬁt leaf

Fig. 1. Separation properties of leaf cells

(b) Let bo and b; denote the outer and inner ball, respectively, of the cell
associated with a doughnut leaf. Then SN~ybo C (}3) br. (Note that the
doughnut cell bp \ by is empty.)

The cell associated with an internal node is always simple, and is covered

by the cells associated with its children. More precisely, there are two kinds

of internal nodes, splitting nodes and shrinking nodes, with the following
properties. Let the cell associated with an internal node w be a ball b of

radius 7.

(a) If w is a splitting node, then it has a constant number of children (de-
pending on the doubling dimension). Moreover, each child is simple, and
its size is in [r/64,7/2].

(b) If u is a shrinking node, then it has two children. One of these children
is a doughnut leaf. The outer ball associated with this leaf is b, and the
inner ball associated with it is a ball ', whose radius is at most r/2.
(That is, the doughnut leaf cell is b\ b'.) The cell associated with the
other child is a ball covering V', having radius at most r/2. We refer to
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the child that is a doughnut leaf as the outer child of uw and refer to the
other child as the inner child of u.
(iv) Let b denote the root ball defined in property (i). Given a point g € b, we
can find a leaf cell containing ¢ in O(log(ny)) time.

Tt is clear from property (iii) that the size of a node is always smaller than that
of its parent by a factor of at least two, except for a doughnut leaf, whose size
is the same as that of its parent. It follows that the region-DAG has no cycle.

In Section [3] we will establish the following theorem, which shows that any
set S in doubling space admits a region-DAG of size linear in n, and it can be
constructed efficiently.

Theorem 1. Let v > 2 and 3 > ~ be two real parameters. Given a set S of n
points in doubling space M, there exists a region-DAG of size ny°(d™) log § sat-
1sfying all of the above properties. Furthermore, this structure can be constructed
in time O (nlogn) 4 ny©dim) log? 3.

3.1 Construction

Recall that our construction uses two parametersy > 2 and 8 > ~ that determine
the separation properties of the leaves with respect to the points of S. Before
constructing the region-DAG, we first construct a WSPD for S using 0 = 16. The
number of pairs in the WSPD is O(n) and the time to construct it is O(nlogn).
We associate each pair in this WSPD with several balls as follows. Let =,y € .S
denote the points at the centers of the heads of the dumbbell corresponding to a
pair, and let ¢ = d(z,y) denote the length of this dumbbell. Then the associated
balls are the balls of radius 2°¢ centered at = and y, for all integers i such
that {10g ((116” < i < [log(eeB)], where ¢1,co > 1 are suitable large positive
constants. We will refer to these balls as type-1 balls. We associate a unique
node in the DAG with each distinct type-1 ball. Note that for this purpose, we
treat any two type-1 balls as distinct if they have different centers or radii or
are generated by different pairs in the WSPD. We will refer to these nodes as
type-1 nodes. Since there are O(n) pairs in the WSPD and we generate O(log ()
balls for each pair, the total number of type-1 nodes is O(nlog 3). Since there is
a point of S at the center of each type-1 ball, these nodes are always nonempty.
Besides the type-1 nodes, we will also create some new nodes in the DAG during
the construction, which will always be empty (but not necessarily leaves). We
will call them type-2 nodes.

We process each type-1 node u as follows. Recall that b, denotes the cell
associated with u. We assume that b, is a ball of radius r centered at a point
p € S. Roughly speaking, if all the points of S\ {p} are very far from p, we will
make u a leaf, and if all the points of S N b, are very close to p, we will make
it a shrinking node. Otherwise, if there are points of S at intermediate distances
(i.e., neither too far nor too close), then we will make u a splitting node. Since
it is too time consuming to examine the points of .S for the purpose of these tests,
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Fig. 2. Case where u is a splitting node

we will instead examine certain well-separated pairs containing p, which yield
sufficient information on the position of the points.

We begin by finding the shortest dumbbell P in the WSPD that contains P
and has length at least r/(1643). If P has length at most 2yr, then u is made
into a splitting node. (See Figure Bl) Otherwise, it is clear that there are no
dumbbells containing p of length between r/(163) and 2yr. We then look for
the longest dumbbell P containing p that has length at most r/(1603). If we find
such a dumbbell, then u is made into a shrinking node (See Figure ), otherwise
it is made into a simple leaf. We will establish property (ii.a) for the case when u
is made into a simple leaf. After that we will describe how children are assigned
when w is a shrinking and splitting node, respectively, and establish properties
(ii) and (iii) for these cases.

Fig. 3. Case where u is a shrinking node

u is a leaf. We first consider the case when u is made into a leaf. Recall that
in this case there are no dumbbells containing p of length at most 2vr. By
Lemma [ it follows that the distance between p and any other point of S is at
least (7/8)2~yr. Thus, all the points of S\ {p} lie outside the ball vb,, which
proves that u satisfies property (ii.a).

w s a shrinking node. We next consider the case when v is made into a shrinking
node. Recall that in this case there are no dumbbells containing p that have
length between r/(163) and 2vr. Recall also that we have already found the
longest dumbbell P containing p that has length at most r /(163). We will assign
two children to node u. Before describing these children, we first show that all
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the points of S in vb,, are very close to p. Let ? denote the length of P and let b
denote the ball B(p, 2¢). We claim that SN~b, C b. To prove this claim, let z be
any point of SN~b,,. Since d(p, z) < 7r, it follows from Lemmal[ll that the length
¢ of the dumbbell separating p and z is at most 8yr/7 < 2vr. By our earlier
remarks, there are no dumbbells containing p that have length between r/(160)
and 2vr. Therefore, ¢ < r/(16/3). Since P is the longest dumbbell containing p
that has length at most /(164), it follows that ¢ < (. Again, applying Lemmal[I]
it follows that d(p,z) < 9¢/8 < 9@/8 < 2/. Thus, x € 13, which proves the claim.

We can now describe the two children of u. For one of these children, we create
a new node in the region-DAG whose associated cell is b, \ b’, where ¥’ is the
ball 3b. We make this child a doughnut leaf whose only parent is u. By the claim
above, S N~b, C (é) b, and so (ii.b) holds. Further, since the radius of ¥’ is

260 and ¢ < r/(168), it follows that the radius of b’ does not exceed /8 < /2.
Thus the condition given in (iii.b) for this child is satisfied.

We now describe the other child of u. Let p’ denote the point of S at the
center of that head of dumbbell P that contains p, and let b denote the ball
B(p',2M083617). Assuming that ¢, > 3, it is easy to see that b” is one of the type-
1 balls associated with dumbbell P and so must have a unique corresponding
node in the region-DAG. We make this type-1 node the second child of u. To
establish property (iii.b), we need to show that b” covers b’ and has radius at
most 7/2. Clearly, the radius of b” is at most 64/. Since ¢ < r/(160), it follows
that the radius of b” is at most 3r/8 < r/2. By Lemma [ we have d(p,p’) < £/16.
Using this fact and the triangle inequality, it follows that

b = B(p,26) C B <p’, fG + W) C B(p/,3p0) C V"

This establishes property (iii.b) and completes the description of the processing
required for a shrinking node.

u s a splitting node. Finally, we consider the case when w is made into a splitting
node. Recall that in this case there exists a dumbbell containing p that has length
between r/(165) and 2vyr. In the full version, we show that this fact implies that
node u can be assigned O(1) children, whose associated cells together cover the
ball b, and satisfy certain properties. Some of these children are of type-1 while
the rest are newly created type-2 nodes associated with empty balls. Roughly
speaking, the role of the type-1 children is to cover the parts of b, that lie close
to the points of S and the role of the type-2 children is to cover the parts of by
that remain uncovered. More precisely, we have the following lemma.

Lemma 2. There exists a set By of type-1 balls and a set Bs of type-2 balls such
that (i) the total number of balls of By and B is 20(dim) (i) any ball of By UBs
has radius between r/64 and /2, (iii) the balls of By and Bs together cover by,
and (i) for any ball b € Ba, there are no points of S in the ball 4b.

The nodes corresponding to the balls of By and By are made children of u. From
the above lemma, it is easy to see that property (iii) holds for w.



Space-Time Tradeoffs for Proximity Searching in Doubling Spaces 121

It remains to discuss the processing for the type-2 children of u. Observe that
we cannot make these nodes into leaves because their y-expansion may contain
points of S and so they do not necessarily satisfy property (ii.a). However, by
Lemma [2(iv), we do know that a 4-expansion of any ball in Bs is free of points
of S. To increase this expansion factor to 7, we proceed as follows for each type-
2 child v of u. Let b, denote the ball associated with v, and let ' denote its
radius. Using the doubling oracle, in 2°(d™) time we can find 2°(4™) balls of
radius 7’ /2 which overlap b,. We create type-2 nodes for these balls and make
them all children of v. We apply this procedure recursively to the children of v,
terminating when we finally reach nodes of size r’/2 Mog 71 which are made leaves
of the region-DAG. It is easy to see that v is the root of a subtree with v©(dim)
nodes and [logy]+1 levels. All nodes in this subtree, except at the bottom level,
are splitting nodes, and clearly satisfy property (iii). Applying Lemma 2{(iv) and
noting that the radii of the associated balls decrease by at least a factor of 2 as
we descend this subtree, it is easy to show that the leaves satisfy property (ii.a).

Next we bound the size of the region-DAG.

Lemma 3. The size of the region-DAG for an n-point set is ny°(dim) log 3.

Proof: Recall that the region-DAG has O(nlog 3) type-1 nodes. It is clear from
our discussion above that a shrinking node acquires one child that is not of type-
1 (this child is a doughnut leaf), and a type-1 splitting node acquires O (dim)
descendants that are not of type-1. Therefore, the size of the region-DAG is
ny©dim) Jog 3. O

In the full version, we show that the‘region—DAG for an m-point set can be
constructed in time O (nlogn) 4+ ny© 4™ log? 3, and also satisfies properties (i)
and (iv). This completes the proof of Theorem [

4 Approximate Voronoi Diagrams

In this section we show how to construct approximate Voronoi diagrams in dou-
bling spaces. Let (M, d) be a metric space with constant doubling dimension.
Our main result is as follows.

Theorem 2. Let S be a set of n pointsin M, andlet0 < e < 1/2and2 <y < 1/e
be two real parameters. We can construct an AVD of ny©(dim) log(1/€) space that

allows us to answer e-approzimate nearest neighbor queries in time O (log(ny)) +
(1/(e7))° ™) The time to construct the AVD is n(1/e)° ™) logn.

Given the region-DAG, the proof of this theorem is straightforward by adapting
the ideas used previously for Euclidean AVDs @, ] We sketch the main ideas
briefly. Given the point set S and parameters 0 < ¢ < 1/2 and 2 < v < 1/e,
we construct the region-DAG described in Theorem [Il for 8 = 1/¢. The num-
ber of nodes in the region-DAG is ny?(4™) log(1/¢). Recall that the leaves of this
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structure satisfy certain separation properties with respect to S (region-DAG
property (ii)). These properties enable us to answer queries efficiently with the
help of a sparse set of representatives stored with each leaf. The following lemma
provides a bound on the number of representatives we need to store with each
cell. Given a set X of points and a point g, let NN, (X) be the distance from ¢
to its nearest neighbor in X. We say that a subset R C S is an e-representative
set for a region w (with respect to S) if for any query point ¢ € w, we have
NN, (R) < (1 +)NN,(S).

Lemma 4 (Concentric Ball Lemma). Let 0 < e < 1/2 and vy > 2 be two real
parameters. Let S be a set of points in M. Let by and by be two concentric balls of
radius r and yr, respectively. Then there exist subsets Ry, Ry C S each consisting
of at most (14 1/(e7))° ™) points such that (i) Ry is an e-representative set
for by with respect to S N by, and (ii) Re is an e-representative set for ba with
respect to S N by.

In part (i), the set Ry is formed by choosing an (¢/2)-NN of each point in an
(e7yr/c)-net for by, where ¢ is a suitable constant. Applying the triangle inequal-
ity, it is easy to prove part (i). The proof of part (ii) is analogous. For each leaf
cell u, we can use the above lemma to find an e-representative set R for u with
respect to S. We illustrate this for the case of a doughnut leaf cell u (the case
where wu is a simple leaf is easier and is omitted). Let bp and b; denote the outer
and inner ball, respectively, for u. Recall that u = bo \ by. It follows from region-
DAG property (ii.b) that all the points of S are either outside vbo or inside eb;.
By Lemma (i), there exists an e-representative set Ry of size (1/(e7))°(@™) for
u with respect to S N~ybo, and by Lemma [(ii), there exists an e-representative
set Ry of size O(1) for u with respect to S Neby. Clearly, the set R = Ry U Ry is
an e-representative set of size (1/(g7))° @™ for u with respect to S. We store
the set R with u. The resulting AVD can be used for answering e-NN queries as
follows. Suppose that the query point ¢ lies inside the root ball. By region-DAG
property (iv), we can find a leaf that contains ¢ in O(log(ny)) time. Then we
return the closest representative stored with this leaf cell as the answer. The
total query time is O (log(ny)) + (1/(g7))°@™)_If ¢ lies outside the root ball, a
similar approach works using region-DAG property (i).

Consider next the space used by this AVD. A naive analysis of the space bound
is provided by the product of the number of nodes in the region-DAG and the
maximum number of representatives per cell, which yields a total of n/eo(dim).
We can improve this bound significantly by applying a charging technique similar
to that employed earlier in the Euclidean context [2]. This technique shows that
although for a given cell, (1/(g7))?(d™) representatives may be needed, this
cannot be the case for most of the cells. We omit the details due to lack of space.
Applying this technique we can show that the total number of representatives
summed over all the cells is ny?(@™) log(1/¢), and they can be computed in time
n(1/e)°m™) Jogn. This completes the proof of Theorem
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Abstract. We study the problem of finding a fractional node-
capacitated multiflow of maximum value in an undirected network. Pre-
viously known methods for this problem are based on linear programming
and the ellipsoid method. In this paper we apply a capacity scaling ap-
proach and develop a purely combinatorial weakly polynomial algorithm
of time complexity O(A(n, m,U) n*log?n logU), where n, m, U are the
number of nodes, the number of edges, and the maximum node capacity,
respectively, and A(n,m,U) denotes the complexity of finding a maxi-
mum integer flow in a digraph with n nodes, m edges, and integer arc
capacities not exceeding U € Z .

1 Introduction

In an undirected graph G, the sets of nodes and edges are denoted by VG and EG,
respectively. When G is a directed graph, we speak of arcs rather than edges and
write AG instead of EG. A similar notation is used for paths, cycles, and etc.
We consider an undirected graph G and a distinguished subset T C VG of
nodes, called terminals. Nodes in VG — T are called inner. A T-path is a path
in G that connects a pair of distinct terminals and has all other (intermediate)
nodes in VG — T. The set of T-paths is denoted by P(G,T). A multiflow is a
function F': P(G,T) — R,. Equivalently, one may think of F as a collection

{(ov, P1),..., (g, Py}, (1.1)

where the P; are T-paths and the «; are non-negative reals, called weights of
paths. Sometimes (e.g., in [[KN9§|) such a multiflow F is called free to emphasize
that all pairs of distinct terminals are allowed to be connected by flows. The value
val (F) of F'is the sum ), F(P).
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For a subset A of a set X, the incidence vector of A in R¥X is denoted by x4,
i.e., xA(e) is 1 for e € A and 0 for e € X — A (usually X is clear from the
context).

Let ¢: VG — Z4 be a nonnegative integer function of node capacities. For a
multiflow F, define the function (¥ on VG by

(= (F(P)-X"": PeP(GT)).

We say that F is c-feasible if (" < c.
This paper deals with the following problem:

(P) Given G,T,c as above, find a c-feasible multiflow F whose value val (F') is
mMazimum.

It is known that this problem has a half-integer optimal primal and
dual solutions [Vaz0I]. Also (P) is solvable in polynomial time by use of the
ellipsoid method [Pap07]. However, no efficient combinatorial algorithm for (P)
has been known so far.

We present a combinatorial algorithm that solves (P) via capacity scaling. Our
approach relies on earlier results of Ibaraki, Karzanov, and Nagamochi [IKN9S]
concerning an edge-capacitated analog of (P). As a result, the time complexity of
our algorithm for (P) is O(A(n, m,U) n?log?n logU). Hereinafter n, m, U de-
note the number of nodes, the number of edges, and the maximum capacity,
respectively, and A(n,m,U) stands for the complexity of finding a max-
imum integer flow in a digraph with n nodes, m edges, and integer
arc capacities not exceeding U € Z;. In particular, applying the al-
gorithm of Goldberg and Rao [GROS|, problem (P) can be solved in
O(n?mmin(n?/3,m'/?)log(n?/m)log® nlog® U) time.

The paper is organized as follows. Section [2] contains backgrounds. An outline
of the algorithm and a sketch of a proof of its correctness are given in Section [Bl
Section [ estimates the time complexity of the algorithm.

2 Preliminaries

Let A be a subset of nodes of a graph (or a digraph). We denote by v(A) the
set of edges of the graph (or arcs of the digraph) with both endpoints in A,
and by 6(A) the set of edges (or arcs) with exactly one endpoint in A. Also in
case of a digraph, §™(A) (resp. §°"*(A)) denotes the set of arcs that enter A
(resp. leave A). When A is a singleton {v}, we use the abbreviated notation
5(v), 6™ (v), and §°"(v).

Clearly (P) is a linear program, with variables F'(P) associated to T-paths P.
To state its dual program, we call a function 7: VG — Ry a (fractional) cover if
7(V P) > 1 holds for each T-path P. (As usual, for a function f on a set X and
a subset X’ C X, f(X') denotes )y, f(x); so 7(VP) means ) .y p7(v).)
By the c-value of a cover m we mean the inner product cm := " i c(v)m(v).

Then the program dual of (P) is:

(C) Find a cover m whose c-value cm is minimum.
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We will use standard definitions and some facts about flows and multiflows
(for details, see, e.g., [Schr03]). Let G be a digraph with distinguished subsets
ST C VG, SNT = (. The nodes in S (resp. T) are regarded as sources
(resp. sinks), and the other nodes are called inner. A function f: AG — Ry
is an S-T flow if (i) f(6™(s)) = 0 for any source s; (ii) f(6°"%(t)) = 0 for
any sink ¢; (iii) f(6™(v)) = f(6°"(v)) for any inner node v. The value of f is
val (f) =32 (f(6°"(s)) : s € 5).

Given arc capacities ¢: AG — Ry, aflow f is c-feasible if f < c. The maz-flow
problem is:

(MF) Given G, S, T, c as above, find a c-feasible flow f of maximum value val (f).

Theorem 1 (Goldberg, Rao [GR98|). For arbitrary integer arc capac-
ities mot exceeding U € Zi, an integer mazximum flow can be found in
O(mmin(m'/?,n2/3) log(n?/m)logU) time.

Next, we will also deal with an analog of (MF) for node capacitated networks.
For a flow f and a node v € VG, define the value of flow through v as

Flv] = max (f(6™ (v)), f(6°"(v))) -

Then for node capacities ¢ : VG — Ry, function f is said to be c-feasible if
flv] < e(v) for all v € VG.

There are well-known facts about the node-capacitated max-flow problem. A
set A C VG is called an S-T' separator if each (directed) ST path meets A.

Fact 1 (a version of Menger theorem). For c¢: VG — Z, one has
max val (f) = min ¢(4),

where the mazimum is taken over all integer c-feasible (node-capacitated) S-T
flows f, and the minimum over all S-T separators A.

Suppose that a c-feasible S—T' flow f is not maximum. Then one can increase
val (f) by use of a standard construction. More precisely, consider a sequence

R:('1107@171)17@27--.70,[71)[), (21)

where vg € S, vy € T, v; e VG (1 <i <), a; € AG (1 <i <1). Also, for each
1 <4 <[ either a; = (v;i—1,v;) (then a; is said to be forward) or a; = (vi,v;—1)
(then a; is said to be backward). An occurrence of node v; in R is called increasing
if either ¢ =0, or i =, or 0 < ¢ <[ and both a; and a;; are forward.

Then R is called f-augmenting if the following conditions hold:

if v; is increasing then flv;] < c(v;),

if a; is backward then f(a;) > 0,

all arcs in R are distinct,

each node occurs in R at most twice, moreover, if v; = v; for 0 <7 < j <1
then neither v; nor v; is increasing.

Ll e
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Note that since no arc with positive flow enters a source and no arc with
positive flow leaves a sink, the arcs a; and a; are forward.

Fact 2. Forc: VG — Z4, let f be an integer c-feasible node-capacitated flow
and R an f-augmenting sequence. Define

fla)+1 ifais a forward arc,
f'(a) =< fla) =1 ifa is a backward arc,

f(a) otherwise.

Then f" is an integer c-feasible flow of value val (f) + 1.

Fact 3. A c-feasible node-capacitated flow f admits an f-augmenting se-
quence R if and only if val(f) is not maximum. Moreover, in O(m) time, one
can find either an f-augmenting sequence or an S-T separator A such that

c(A) = val(f).

Finally, some important facts and tools that will be extensively used throughout
the paper are borrowed from the theory of edge- and arc-capacitated multiflows.
Typically problems on such multiflows are somewhat “simpler” than their node-
capacitated counterparts.

Let G be a graph (or a digraph), and T = {t1,...,tx} € VG be a set of
terminals. For a multifiow F': P(G,T) — R, define the function ¢ on EG by

¢"=> " (F(P)-x"": PeP(G.T)).

In case of a digraph G, the term EP in this definition is replaced by AP.
Let, in addition, G be endowed with edge (resp. arc) capacities ¢. A multi-
flow F is c-feasible if €¥ < c. The problem is:

(MMF) Given G,T,c as above, find a c-feasible (edge- or arc-capacitated) mul-
tiflow F whose value val (F) is mazimum.

The function c is said to be inner Eulerian if ¢ is integer-valued and ¢(6(v))
is even, in the undirected case (resp. c(6™(v)) = ¢(6°%*(v)), in the directed case)
for each inner node v € VG —T.

Consider a collection Q@ = {Q1,...,Qx} of pairwise disjoint subsets of VG
such that ¢; € Q; for i = 1,..., k. Following terminology in [Bab07], the sets Q;
are called islands, and Q an island collection.

Theorem 2 (Lovasz [Lov76], Cherkassky [CheTT]). In the undirected case
of (MMF) with inner Eulerian capacities, one has

max val (F') = ; minz c(0(Q)),
teT

where the mazimum is taken over all integer c-feasible multiflows F, and the
mianimum over all island collections Q@ = {Q |t € T'}.
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Remark 1. When G is a digraph and c is inner Fulerian, a similar max-min
relation also takes place. This is due to Lomonosov (unpublished manuscript,

1978); see also [Fr89).

In the undirected case of (MMF), given a multiflow F, an island collection
{Q; |t €T} is called F-tight if ¢¥'(8(t)) = ¢(6(Q¢)) holds for all t € T. The
following is immediate from Theorem 21

Corollary 1. A multiflow F' is maximum if and only if there exists an F'-tight
island collection.

Theorem 3 (Ibaraki, Karzanov, Nagamochi [IKN98]). In the undirected
case of (MMF) with inner Eulerian capacities, a mazimum integer multiflow
can be found in O(A(n,m,U)log|T|) time. In the directed case of (MMF)
with inner Eulerian capacities, a mazximum integer multiflow can be found in
O(A(n,m,U)log |T| +n?m) time. In both cases, the mazimum value of a multi-
flow and an optimal island collection can be found in O(A(n,m,U)log|T|) time.

We will also use the following corollary of that result.

Corollary 2. In the undirected case of (MMF) with inner Eulerian edge capac-
ities, the function & for some mazimum integer multiflow F can be constructed
in O(A(n,m,U)log|T|) time. Also, by spending additional O(mnlog|T|) time,
one can turn F into a path packing (of the form (I1])).

Remark 2. Strictly speaking, the time bounds figured in Theorem [3 are valid
under some assumption concerning A(n,m,U); see [[KN98] for details. Fortu-
nately, this assumption is satisfied for reasonable maz-flow algorithms, in par-
ticular, for the algorithm of Goldberg and Rao [GRYS).

3 Algorithm Outline

3.1 Scaling Step

The general scheme of our approach for solving (P) resembles that of Ford and
Fulkerson’s capacity scaling algorithm [FF62]. Namely, let ¢o: VG — Z, be the
original node capacities. We assume that ¢y is even for all nodes and construct
an integer-valued maximum cy-feasible multiflow. Clearly, this is equivalent to
constructing a half-integral multiflow for arbitrary integer capacities.

The algorithm performs O(log U) scaling steps. Each such step takes the previ-
ous even-valued capacity function ¢ and the corresponding maximum c-feasible
integer multiflow F'. Initially ¢ := 0 and F' := 0. On each scaling step unit
is added to capacities of some nodes (namely, to those having 1 at the corre-
sponding position in the binary representation of ¢p) and then all capacities are
multiplied by 2, thus producing an even-valued function ¢’: VG — Z.. Then a
maximum c¢/-feasible integer multiflow F” is computed. To this aim, the current
function F' is replaced by 2F" and a certain augmenting path approach is applied.
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The process stops when ¢ = ¢y, and the last c-feasible multiflow F' is the answer.
So O(log U) scaling steps are needed to compute this F.

Our algorithm does not store F explicitly as a path packing. Instead, it
maintains certain edge capacities w: FG — Z4. For v € VG — T, put
wlv] :== Jw(8(v)), and for v € T, put wlv] := w(é(v)). Define w[T] := J 3=, p w[t].
The function w obeys the following conditions:

(3.1) w is inner Eulerian,
(3.2) wlv] <c¢(v) for all v € VG,

(3.3) there exists an integer edge-capacitated w-feasible multiflow in G of value
w[T7.

Note that (32) implies that any multiflow constructed from w by @B3) is
c-feasible.

Scaling step first puts w := 2w and then applies a number of augmentation
steps that increase w[T']. When augmentation steps are complete, w[T] is equal
to the value of a maximum ¢’-feasible node-capacitated multiflow. The following
lemma bounds the number of augmentation steps that are needed to turn 2F
into a maximum ¢'-feasible multiflow (call the latter F’).

Lemma 1. val(F’) —val(2F) < 2n.

When the scaling steps are complete, the final function w is converted (with
the help of Theorem []) into the desired multiflow in the path-packing form, in
O(A(n,m,U)logn + mnlogn) time.

3.2 Augmentation Step

Consider the current node capacities ¢ and edge capacities w (obeying (Bl
B3)). The core of the algorithm is an augmentation procedure that either up-
dates w to increase w[T] by 1 (while maintaining BI)-B3)) or detects that
w[T] is equal to the value of a maximum c-feasible multiflow.

In our approach we are forced to strengthen problem (P) by imposing certain
conditions on T-paths. For an island collection Q@ = {Q1,...,Qx}, a T-path P
is called Q-feasible if |[EP N6(Q;)| <1 for i =1,...,k (in particular, P meets
exactly two islands). Accordingly, we say that a c-feasible multiflow F is (Q, ¢)-
feasible if each path P in the support supp (F) := {P | F(P) # 0} of F is O-
feasible.

The needed strengthening of (P) is the following problem (which turns into (P)
when the island collection is formed by single terminals):

(QP) Given Q as above, find a (Q, ¢)-feasible multiflow F' whose value val (F)

s mazximum.

Let us say that a function 7: VG — Ry is a Q-cover if m(V P) > 1 holds
for any Q-feasible T-path P. Then, similar to the duality of (P) and (C), the
program dual of (QP) is:

(QC) Find a Q-cover ™ whose c-value cm is minimum.
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The augmentation step grows an island collection Q in G and consists of a
sequence of extension steps. These steps deal with the refined problem (QP)
rather than (P). The process starts with the trivial collection: Q; := {t;} for
1=1,...,k. Also two additional invariants concerning w are maintained.

Firstly, the algorithm handles w-feasible multiflows F' of value w[T] that con-
sist of Q-feasible paths, and the collection Q is required to be F-tight. In terms
of w, this turns into the following condition:

(3.4) wlt;]] =w(6(Q;)) for all 1 < i < k.

Secondly, let v(c) (resp. v(Q,c¢)) denote the value of a maximum c-feasible
(resp. (Q, ¢)-feasible) multiflow in G. The algorithm ensures that problem (QP)
remains equivalent, in a sense, to (P):

(3.5) if w[T] = v(Q,¢) and if, moreover, there exists a half-integral Q-cover 7
obeying v(Q, ¢) = e, then w[T] = v(c).

Each extension step either (i) updates the current function w so as to increase
w[T] by 1 while maintaining BI)-@3), or (ii) updates both w and Q while
preserving w[T], increasing some island and non-decreasing the other ones, and

maintaining (3I)-B3), (), BI). In case (i), the current augmentation step
completes, and in case (ii), the algorithm proceeds with a next extension step.

3.3 Extension Step

A sketch of performing an extension step is as follows. In order to increase w|T7,
the algorithm tries to find a sort of “augmenting path” P for w. This path
connects a pair of (possibly coinciding) terminals. Also P may contain terminals
as intermediate nodes and need not be node- or edge-simple. Each edge of P
is marked as either “positive” or “negative”. The first and the last edges of P
are always positive. (The function w will be updated by increasing by 1 on the
positive edges and decreasing by 1 on the negative ones.)

Unfortunately some additional constraints that we have to impose on P do
not seem to be easily expressible in terms of graph G. For this reason, P will be
obtained as a projection of an augmenting sequence (as in (21)) in a specially
designed partially doubly covering digraph G (constructed from G and Q). This
digraph was introduced in for solving the uncapacitated version of (P)
and is close to the notion of doubly covering digraph that was used in [Kar94] to
study the edge-capacitated min-cost multiflow problem. The precise definition
of G will be given later.

The following three cases can occur:

— Case (A): no augmenting sequence in G exists; then the current scaling
step completes;

— Case (B): an augmenting sequence exists and, in a sense, can be “fully
applied” to w; then the current function w updates with increasing w(T7,
and the current augmentation step completes;
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Fig. 1. Constructing the partially doubly covering digraph G

— Case (C): an augmenting sequence exists but cannot be “fully applied”
to w; then the function w updates with preserving w|[T], some island in Q
increases, and the current extension step completes.

Now we define the partially doubly covering digraph G formally. Put QQ =
QR(Q):=0Q1U...UQk and Z = Z(Q) := VG — Q; the elements of Q and Z are
referred to as island and central nodes, respectively. Each node v € @ is split
into a pair v', v* of nodes in G. Each node v € Z corresponds to a unique node
in G; we identify the latter node in G with v. Each edge {u,v} € v(Z) generates
a pair of arcs (u,v), (v,u) in G. Each edge {u,v} € y(Q;), 1 <i < k, generates
four arcs (u’,v7), (v/,u’) in G, j = 1,2. Each edge {u,v} € EG with u € Q and
v € Z generates arcs (u',v) and (v, u?) in G. Bach edge {u,v} € EG withu € Q;
and v € Q;, i # j, generates arcs (u',v?), (v!,u?) in G. Finally, G is trimmed:
all arcs entering nodes in 7 and all arcs leaving nodes in T2 are deleted. (We
define A? := {vi |ve A} for any set A C @).) An example is depicted in Fig. [l

We assign capacities ¢ to the nodes of G by

(3.6) €(v) := c(v) for all v € Z, and ¢(v") :=¢(v?) := Lc(v) for all v € Q.

Since the capacities ¢ are even, ¢ is integer-valued. R

We need some notation that relates objects in graphs G and G. Each arc a
in G corresponds to the uniquely defined edge {2(a) in G. Next, let @ be an
arbitrary integer T'-T2 flow in G. Then, » generates an inner Eulerian function
¢ :=2(p) on EG by ¢(e) := > (d(a) : 2(a) =e). R

As mentioned earlier, the algorithm deals with augmenting sequences in G
rather than G. More precisely, the function w is lifted to an integer c-feasible
T'T? flow & in G of value w[T] that obeys w = 2(&). This transformation is
not straightforward and will be described in the full version of the paper. The
algorithm seeks for an @-augmenting sequence in G. If the latter does not exist,
then Case (A) applies, the scaling step completes.
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Lemma 2. If& admits no augmenting sequence then w[T] = v(c).

Proof. According to FactBlthere exists a 7T beparator A of E-capacity equal
to val (@) = w[T]. Construct the function 7: VG — {0, },1} as follows:
[AN{v}] ifveZ,
m(v) =4 A 1,2 ~
5 [An{vtv?} ] ifveq.

We claim that « is a Q-cover. Suppose, for a contradiction, that there is a
Q-admissible T-path P in G such that 7(VP) < % Lift P to a directed TLT2

path P in G. Since P meets A, it follows that m(VP) >}, therefore 7(V P) =

Hence, all central nodes of P do not belong to A and there is a unique 1sland
node of P belonging to A. Consider the reversed path P~!. Its image Plin@G
does not contain nodes from A, which is a contradiction.

From m¢ = ¢(A) = w|[T] and [B3) it follows that w[T] = v(c), as needed.

Now let R be an W-augmenting sequence in G. We introduce the notion of “partial
application” of R as follows. First of all we construct another digraph G from G
by merging, for each i = 1,...,k, nodes t! and t? back into node t;. Also we add
an auxiliary terminal ¢y with no incident arcs. Note that the above contractions
do not remove any arcs since there are no arcs between nodes ¢} and t7. Nodes
T := T U {to} are regarded as terminals in G. The arcs of G are identified
with the corresponding arcs of G and we regard @ as a capacity function in G.
For each 1 <i<kandj=12 put Q to be the image of QJ in G, that is,

—{t]} U {t:}. Also put Q; := QUQ;.

The sequence R in G induces a sequence R = (v, a1, v1,as, ..., a;,v;) of nodes
and arcs in G. For ¢ = 1,...,l, consider the first ¢ arcs AR; := {a1,...,a;}
of R. Suppose we are going to increase @ by 1 on the forward arcs in AR;
and simultaneously decrease by 1 on the backward arcs. This may result in arc
capacities that are not inner Eulerian. To overcome this difficulty, we add an
auxiliary arc (v;,to) of capacity 1 unless 7 > 0 and v; € T. The resulting digraph
(resp. capacities function) obtained from G (resp. from @) is denoted by G;
(resp. w;). It is easy to check that w; is inner Eulerian (w.r.t. T').

By taking trivial islands {t;}, j = 0,...,k, one can see that the maximum
value of an w;-feasible integer multiflow in G; does not exceed w[T] + 1. If the
latter is exactly w[T]+ 1, we call index i good; otherwise i is called bad. One can
prove the following:

Lemma 3. Index 0 is good.

The algorithm examines index [ by applying the algorithm of Ibaraki, Karzanov,
and Nagamochi, see Theorem [Bl First suppose that [ is good; this corresponds
to Case (B). There exists an integer w;-feasible multiflow F in G; = G of value

w[T] + 1. The algorithm applies Theorem 2 to construct ¢ and updates w by
taking the projection w := 2(¢F). Thus, w[T] increases by 1. Invariants (B.1])
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and (2) follow from the construction of @, ¢ and Fact @ Invariant (Z3) follows
from the existence of F.

Finally, suppose that [ is bad; this corresponds to Case (C). Consider the
sequence of graphs Gy, ..., G and the corresponding sequence of capacity func-
tions wo, . . .,w;. Our aim is to find an index j such that j is good whereas j+1 is
bad. To make this quickly, the algorithm performs a binary search over the range
{0,...,1}. At each step it maintains a pair of indices (57,57), j= < jT such that
j~ is good while j* is bad (initially j~ := 0, j* :=1). Put i :== [1(j~ +j7)],
consider graph G;, capacities w;, and solve (MMF) for this pair. If ¢ is good,
put j~ := i; otherwise put j := 4. This process converges to a required pair
(4,7 + 1) after O(logn) maximum multiflow computations.

Then, function w and collection Q are updated as follows. Let F'; denote an
integer wj-feasible multifiow in G; of value w[T] + 1. One can easily see that
val (F;) = w[T] + 1 implies that F'; saturates all terminals T', i.e. £ (§(¢;)) =
wj(é(ti)) for all 0 S 7 S k.

We shall use the following statement:

Lemma 4. There ezist, and can be found in O(A(n,m,U)logn) time, a ter-
minal to € T and a set Ay C VG obeying the following properties (in G;):

1. AgNT = {t,},

2. Qq C Aa,

3. QzN Ay =0 forall 3 # o,

4. Uy S Aa - Q}x;

5. EF (57 (Aa) = (674 (Aa)) = w5 (57 (1))
6. gFj (6(Aq)) = wj(ém(Aa)) = wj((‘iln(ta)).

Applying Lemma [l the algorithm finds ¢, and set A,. Note that from Prop-
erty (4) in the above Lemma [l and the construction of G; it follows that v; ¢ T,
so arc (vj,to) is present in Gj.

The rest of the extension step consists of two phases. Firstly, one needs to
update function w to make it consistent with the upcoming extension of islands.
This is achieved as follows.

Consider graph G; and contract the set VG; — Ay — {to} into a new node w.
Denote the resulting graph by H. It is endowed with inner Eulerian arc capaci-
ties wj. Nodes {tq,to, w} are regarded as terminals in H.

From Lemma Hlit follows that £ (§(A,)) = w;(6(As)) in H. Hence, graph H
also admits an integer multiflow that saturates all its terminals. Moreover, the
latter multiflow can only contain t,—w, w—t,, and t,—ty paths and, hence, may
be represented by a collection {g¢;, gs, g5}, where g; is an integer t,—w flow,
go is an integer w-t, flow, and g5 is an integer t,to flow. These flows obey
91 + 92 + 95 < w; and val(gy) + val(g,) + val(g3) = w;(6(ta)). Moreover,
val (g5) = 1.

To compute gy, g5, g5 as above, the algorithm finds a maximum integer ¢,—
{w,to} flow g; + g5 (in O(A(n,m,U) time) and then decomposes it into g
and g5. Since val (g3) = 1, the latter decomposition takes O(m) time. Next, the
algorithm puts ¢, := w; — (g; + g3)-
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Consider an inner Eulerian function w’: AG — Z defined by

91(a) + g2(a) if a € y(4q),
W'(a):=140 if a = (v, to),
wjl(a) otherwise.

Replacing w; by w’ eliminates the auxiliary t,—ty component of F';, therefore
w' = €7 for some integer multifiow F' in G of value w([T]. Put o’ := 2(w').

Lemma 5. Function w’ is inner Eulerian and obeys w'[v] < c(v) for all v €

VG.

This completes the description of the first phase.

Now let us proceed with the second phase and explain how the island collec-
tion Q is updated. Let A, be the image of A, in G (i.e. 4y := Ay —Q,UQ4).
Contract the set VG — A, into a new node z and denote the resulting graph
by H. Consider the digraph H obtained by replacing each edge {u,v} of H
with a pair of oppositely directed arcs (u,v) and (v,u). Function w’ induces arc
capacities in H by W' (u,v) = W' (v,u) = W' ({u,v}).

Existence of the multiflow Q(F/) in G implies that there is an integer w’-
feasible t,—2 flow h in H of value w(6(ta)) = w(6(z)). The algorithm con-
structs h by applying a max-flow algorithm. Additionally, it adjusts h to en-
sure that supp (h) is acyclic (e.g. with the help of an O(mlogn)-time algorithm

from [ST83]).

Since val (g3) = 1, there exists (and can be found in O(m) time) a t,—to path L
in H (and, hence, in G;) such that X < g5. By Property (4) from Lemma [
one has v; ¢ Q;, hence L contains at least one central node. We follow L from
to to tp and denote the first central node on this path by ¢. Put Ly to be the
ﬁ—image of the t,—q prefix of L.

We call a node x € A, — Q reachable if there exists a path in H from z
to ¢ consisting of arcs in supp (h). Add all reachable nodes to @, and denote
the resulting set by Q7. Put Q" := Q — {Q.} U{QL}.

Lemma 6. There exists an integer w'-feasible multiflow F' in G of value w[T)
such that each path P € supp (F') is both Q-feasible and Q’-feasible.

Lemma 7. Suppose that 7 is a half-integral Q'-cover obeying w'[T| = we. Then
T = v(c).

The island extension completes by putting w := w’ and Q := Q’. Lemma [5]
Lemma [6] and Lemma [ imply that the above change of w and Q preserves

invariants BI)-@3) and E4)-B3H).

4 Running Time

The algorithm totally performs O(log U) scaling steps; each of the latter con-
sists of O(n) augmentation steps (by Lemma [I). Each augmentation step is a
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sequence of at most O(n) extension steps. To bound the complexity of a single
extension step note the following. It takes A(n,m,U) time to construct graph G
and flow @. The existence of an augmenting sequence is checked in O(m) time.
Next, O(A(n, m,U)logn) time is sufficient to check if the augmenting sequence
is fully applicable. If it is not the case, the binary search is performed. The
later executes O(logn) checks, each requires solving (MMF). Next, islands Q
are extended and function w is updated, this takes O(A(n,m,U)logn) time.
Finally, transforming w into the desired multiflow in path packing form takes
O(A(n,m,U)logn + mnlogn) time.
Summing up the above estimates one concludes as follows:

Theorem 4. Problem (P) can be solved in O(A(n,m,U) n?log®n logU) time.
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Abstract. A level graph is a directed acyclic graph with a level assign-
ment for each node. Such graphs play a prominent role in graph draw-
ing. They express strict dependencies and occur in many areas, e.g., in
scheduling problems and program inheritance structures.

In this paper we extend level graphs to cyclic level graphs. Such graphs
occur as repeating processes in cyclic scheduling, visual data mining, life
sciences, and VLSI. We provide a complete study of strongly connected
cyclic level graphs. In particular, we present a linear time algorithm
for the planarity testing and embedding problem, and we characterize
forbidden subgraphs. Our results generalize earlier work on level graphs.

1 Introduction

Cyeclic level planar graphs receive their motivation from two sources: level planar
graphs and recurrent hierarchies. A level graph is a directed acyclic graph with
a level assignment for each node. Nodes on the same level are placed at different
positions on a horizontal line and edges are drawn downwards from the upper
to the lower end node. The challenging problems on level graphs are planarity
testing and embedding algorithms in linear time and a characterization in terms
of forbidden subgraphs. This parallels the situation for planar graphs, where
nowadays there are many O(|V) testing and embedding algorithms [3L8l[12] and
the famous Kuratowski graphs [I1]: Each graph is planar if it does not contain
a subgraph that is homeomorphic to the complete graph with 5 nodes K5 or
the complete bipartite graph K33 with 3 nodes in each set. Level planarity
has been studied intensively in recent years [4[6]. Jiinger and Leipert [9] finally
established a linear time algorithm for the level planarity testing and embedding
problem. Healy et al. [7] gave a complete set of seven level non-planarity patterns
for hierarchies. Fowler and Kobourov [5] added two more forbidden graphs for
a complete set for arbitrary level graphs. Bachmaier et al. [I] extended level
planarity to radial level planarity. There the levels are concentric circles and the
edges are directed from inner to outer circles.

Recurrent hierarchies were introduced by Sugiyama et al. [I5] more than 25
years ago. A recurrent hierarchy is a level graph with additional edges from the
last to the first level. Here two drawings are natural: The first is a 2D drawing,
where the levels are rays from a common center, and are sorted counterclock-
wise by their number, see Fig. All nodes of one level are placed at different

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 136-[47, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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positions on their ray and an edge e = (u,v) is drawn as a monotone coun-
terclockwise curve from u to v wrapping around the center at most once. The
second is a 3D drawing on a cylinder, see Fig. A planar recurrent hierarchy
is shown on the cover of the book by Kaufmann and Wagner [I0]. There it is
stated that recurrent hierarchies are “unfortunately |...] still not well studied”.

The standard method to visualize directed graphs is the Sugiyama algo-
rithm [I5], which eliminates all cycles in the graph. This may be acceptable
in many applications. But there are areas in which it is important that the cy-
cles are preserved and represented as cycles, e. g., visual data mining, or chemical
reactions in the life sciences [I4]. Important applications can further be found in
the layout of regular VLSI circuits [I3]. Recurrent hierarchies are well suited to
visualize such cyclic or regular structures. To enhance the readability of draw-
ings, edge crossings should be avoided and even excluded.

In this paper we improve our earlier result [2] of an O(]V|log|V|) planarity
testing and embedding algorithm on strongly connected cyclic level graphs and
present an optimal linear time algorithm. Moreover, we characterize forbidden
subgraphs for such graphs. This settles the major questions on strongly con-
nected cyclic level graphs.

10

(b) On a cylinder 11—

Fig. 1. Drawings of a cyclic 5-level graph G Fig. 2. (2, 1)-hierarchy of G
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2 Preliminaries

A cyclic k-level graph G = (V(G), E(G), ¢¢) (k > 2) is a directed graph with-
out self-loops with a given surjective level assignment of the nodes ¢g: V —
{1,2,...,k}. For two nodes ug, vg € V(G) let span(ug, va) := ¢a(va)—da(ug)
if pa(ue) < da(ve), and span(ug, va) := ¢a(va) —da(ua)+k otherwise. For an
edge e = (ug,vg) € E(G) we define span(e) := span(ug, vg). For a simple path
or a simple cycle P define span(P) := ZeeE(P) span(e). All paths and cycles in
this paper are directed if not stated otherwise. A graph is strongly connected if
for all ug,ve € V(G) a path from ug to vg exists. A cyclic k-level graph G is a
k-level graph if ¢ (uc) < ¢a(ve) for each edge (ug,vg) € F(G) holds. A draw-
ing is (cyclic) level plane if the edges do not cross except on common endpoints.
A (cyclic) k-level graph is (cyclic) level planar if such a drawing exists. The right
outer face is the face of the 2D drawing containing the center and the left outer
face is the unbounded face (see Fig. . A (cyclic) level planar embedding G
of G consists of two lists N (vg) and N (ve) for each node vg € V(G) which
contain the end nodes of ingoing and outgoing edges, respectively. Both lists are
ordered from left to right. A hierarchy is a level graph G s. t. each node vg with
o (va) # 1 has an ingoing edge.

3 Cyclic Level Non-planarity Patterns

In this section we give a characterization of cyclic level non-planarity patterns
in strongly connected graphs (SCLNP).

Definition 1. A (cyclic) level non-planarity pattern P is a set of (cyclic) level
non-planar graphs with structural similarities. We call a pattern minimal if for
each element of P the removal of one edge makes the graph (cyclic) level planar.
A (cyclic) level graph G matches a pattern P if there exists p € P s.t. p is a
subgraph of G. A set of patterns S is minimal if each pattern in S is minimal.
S is complete if each (cyclic) level non-planar graph matches a pattern in S.

Concerning level non-planarity patterns, Di Battista and Nardelli [4] presented
three patterns for hierarchies (HLNP). This set is complete but not minimal.
Healy et al. [7] gave seven minimal level non-planarity patterns for hierarchies
(MHLNP). This complete set consists of two tree patterns T1 (Fig. and T2
(Fig. (D)), a level non-planar cycle CO (Fig. [3(c)]), and four level planar cycles
with one (C1, Fig. to four (C4, Fig. paths starting from the cycle
(C2 having two subcases). For the formal definition of the patterns see [7]. Note,
that contrary to graph planarity, the partition of all minimal (cyclic) non-level
planar graphs into patterns is somewhat arbitrary. Thus, nobody has treated
the minimal cardinality of a minimal set of patterns.

Fowler and Kobourov [5] showed that the MHLNP set is not complete for
general level graphs and added two more tree patterns, which are not needed for
hierarchies, however. These nine patterns (MLNP) are minimal and complete
for the general case. To formally describe cyclic level non-planarity patterns, we
need the following definition.
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Fig. 3. The cyclic level non-planarity patterns for strongly connected graphs (SCLNP)

Definition 2. Let G be a cyclic k-level graph. Let ¢ € N and | € {1,...,k}.
Suppose that no edge crosses level | (if such an edge e = (ug,ve) ezists, add a
node dg to level 1, remove the edge e and add the edges (ug,dq) and (dg,va)
to the graph). The (¢, l)-hierarchy H of G is a (ck + 1)-level hierarchy. For each
node vg on level | H has c+1 duplicates vi, V41, . .. Vekt1 with v; on level i. Let
weg be a node with ¢pc(wg) # 1 and let I/ = ¢g(we) — L+ 1 if da(weg) > 1 and
I'=¢a(wg) — L+ k+ 1 otherwise. For each such node wg, H has ¢ duplicated
nodes Wy, Wei1/, . . - Wie—1)kr With w; on level i. For each edge e = (ug,vg) and
for each duplicate w; in H with i < ck+1 H contains the edge (w;, Vifspan(e))-

Informally speaking, the (c,l)-hierarchy H of G is obtained by splitting G at
level [ (thus creating a level graph) and duplicating the graph ¢ times one below
the other. We will use the notation v; for a duplicate of vg € V(G) on level ¢ in
H in the following. Figure [l shows a cyclic 5-level graph and Fig. 2 a level plane
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Fig. 4. (1, 1)-hierarchies of cyclic graphs matching exactly one of the SCLNP patterns

drawing of the corresponding (2, 1)-hierarchy. Note that a (c,!)-hierarchy does
not include an embedding.

In a hierarchy, each node v with ¢(v) > 1 has an ingoing edge. In strongly
connected cyclic level graphs each node has an ingoing and outgoing edge. There-
fore, it is not obvious that each of the seven MHLNP patterns can occur in the
cyclic case. But for each of the patterns a strongly connected cyclic level graph
can be constructed. Figures to show (1, 1)-hierarchies of strongly con-
nected cyclic k-level graphs which match exactly one of the MHLNP patterns.
The edges needed for the patterns are drawn as full lines. Obviously each of the
MHLNP patterns is a proof of non-planarity in the cyclic case as well. Therefore,
we define a cyclic version of each of the seven MHLNP patterns:

Definition 3. Let G be a cyclic k-level graph. We say that G matches the
pattern CT1 if there exists ¢ € N s.t. the (¢,1)-hierarchy of G matches T1.
We define the remaining six patterns in an analog way and set SCLNP’ =

{CT1, CT2, CCoO, CC1, CC2, CC3, CCY}.
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Definition 4. Let G be a cyclic k-level graph and ¢ € N\ {0}. A c-cycle is a
simple cycle with span c - k.

Figure shows the (1, 1)-hierarchy of a strongly connected cyclic 2-level graph
which is a 2-cycle. Note that this graph is cyclic level non-planar, but does not
match any pattern of SCLNP’. On the other hand none of the graphs in Fig.
to contains a 2-cycle. Therefore, an eighth cyclic level non-planarity pattern
is needed.

Definition 5. We define CC as the set of all c-cycles in cyclic k-level graphs
with ¢,k € N,c > 1 (Fig.[3(i)}). We set SCLNP = SCLNP’ U{CC}.

Proposition 1. Let G be a cyclic k-level graph. If G matches CC, then G is
cyclic level non-planar.

Note that CC is a minimal pattern, as removing one edge from the cycle leads
to a cyclic level planar graph.

Definition 6. We call a (¢,l)-hierarchy H of a cyclic level graph G strongly
level planar if it is level planar and has a level planar embedding s.t. the first
and last level have the same permutation. We call such an embedding a strongly
level planar embedding.

Proposition 2. Let G be a strongly connected cyclic k-level graph and | €
{1,...k}. G is cyclic level planar if and only if the (1,1)-hierarchy of G is strongly
level planar. Let ¢ € N. If the (¢, 1)-hierarchy of G is (strongly) level non-planar,
then G is cyclic level non-planar.

Definition 7. Let H be a level graph with a fized level planar embedding H and
u, v be two nodes on the same level. We say v < v (u > v) if u lies left (right)
of v in H.

Definition 8. Let U, V., W be three permutations of the same node set. We
define the lexicographical ordering with respect to U on the set of permutations
in the following way: If V. and W are the same permutations, then they are
equal in the ordering. Otherwise there is a leftmost position on which V' and W
have different nodes. Let v and w be the nodes on this position in V and W,
respectively. We define V< W ifv<w inU andV > W ifv>w in U.

Another way to look at this ordering is as follows: The permutation U definies
an ordering on an alphabet. A permutation V' is then smaller than W if the word
it builds is smaller than the word of W in the lexicographical ordering.

Lemma 1. Let G be a strongly connected cyclic k-level graph s.t. G does not
match CC. Let H be the (2,1)-hierarchy of G. Let H be level planar with a fized
level planar embedding H. Then G is cyclic level planar and a cyclic level planar
embedding G of G exists s. t. the permutation of level 1 in G is the same as the
permutation of level k+ 1 in H.

Proof. Assume for contradiction that such an embedding G of G does not exist.
Consider all level planar embeddings of H which have the same permutation of
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Fig. 5. Sketch for the proof of Lemma/l Fig. 6. Rigid (1, 1)-hierarchy

level £+ 1 as H. None of these embeddings has this permutation on level 2k + 1,
too (otherwise G would be cyclic level planar with the same permutation on level
1). Of all these embeddings choose one which has the minimal permutation on
level 2k + 1 in the lexicographical ordering with respect to the ordering of level
k+ 1. We consider this embedding from now on. We show that we can construct
a new embedding with an even smaller permutation on level 2k + 1, which is a
contradiction.

As the permutations of level k+ 1 and 2k + 1 are not the same, there have to
exist two nodes v and v s.t. ug+1 < Vg1 but uogy1 > vort1. W.lo.g. let uog i
and ver41 be a pair of nodes with the wrong orientation that have the maximal
number of nodes between them. See Fig. [l for a sketch in which we omit the
indices indicating the levels.

As G is strongly connected but does not match CC, each node lies on a 1-cycle.
Thus, there have to be paths Q. from w1 to uor41 and @, from vg41 to Vogy1.
As the embedding is level planar, @, and @, cannot be disjoint. Therefore, we
have a path Q; from up+1 to vopy1 and a path @, from vgiq to uggt1. As G
does not match CC, @; and @, cannot be disjoint. Even more than that, there
has to exist a node which lies on all paths from w41 to very1 and on all paths
from vg41 to uggt1 (otherwise the leftmost path from wugi1 to vary1 and the
rightmost path from wvg41 to ugr41 would be disjoint and generate a graph in
CC). Let w;, and x;, be the uppermost and lowest such nodes, respectively, and
@ be one path between them.
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Let R, be the leftmost path from z;, to vor4+1. Let R, be the rightmost path
from x;, to uok+1. We now prove that we can flip all nodes between R, and
R, thus creating a smaller permutation on level 2k + 1 in the lexicographical
ordering and thus a contradiction.

Consider the nodes on the path R, from level Is + 1 to 2k. Assume for contra-
diction that a node y;, on the path has an outgoing edge right to R,,. We follow
this path O downwards. If O ends on R,, then R, was not the rightmost path.
Therefore, it has to reach a node ogxy1 on level 2k + 1 right of usgy1. As O is
disjoint to R, ox+1 has to lie left of vxy1 (we do not know whether og11 < w41
or ok41 > up41 holds). But then o9x41 and vep4q have the wrong orientation
and have more nodes between them than vo41 and usggy1. A contradiction. The
same argument can be used for R, (switching left and right).

Now consider the nodes on the path R, from level Is + 1 to 2k + 1. Assume
for contradiction that a node z;, on the path has an ingoing edge left to R,. We
follow this path I upwards. If I ends on R, below or on z;,, then R, was not the
leftmost path. If I ends on @ \ {z,}, then x;, would not lie on each path from
Ug+1 10O Vogy1. If it ends on the leftmost connection of ux4+1 to wy, above wy,,
then there would be disjoint paths from uj41 to var41 and from viy1 to uok41.
The only remaining possibility is that I reaches the level k + 1 on a node ix41
left of uy1. Due to the path I, i; has to lie right of u; and v;. However, we do
not know whether u; < vy or u; > vy holds.

We now consider the position of io 1. If iox11 > ugky1 and, therefore, igg1 >
Vok41, then ior+1 and very1 have the wrong orientation and more nodes between
them than uok+1 and vopi1. If dop41 lies between wvor41 and wugk41, we consider
the path I’ from 7941 upwards. If I’ reaches R,,, then we have disjoint paths from
Vg1 10 dogt1 and from ixyq1 to vopy1 and thus G matches CC. If I’ reaches R,
first, then I’ would cause a crossing from i1 upwards. The remaining possibility
is that dox+1 < vopt1 < uzgt+1. Now the same path I from i1 to igx4q and from
ik+1 tO iox+1 has to exist. I” cannot be disjoint with Q,, or @, as i; is right of u;
and vy but igyq is left of ug41 and vgy1. Therefore, from isg 1 upwards I has
to reach I or R, first to reach @,. In both cases a crossing from i1 upwards
occurs, which is a contradiction. The same argument can be used to show that
no path from R, upwards exists.

As a consequence, we do not have any outgoing or ingoing edges on R, to the
left between I3 + 1 and 2k + 1. Analogously, we do not have outgoing or ingoing
edges to the right of R, between the same levels. So we can flip the subgraph
between R, and R, and thus create a permutation of level 2k+1 which is smaller
than the given one in the lexicographical ordering with respect to the ordering
of level k+ 1. A contradiction. Thus, G is cyclic level planar with an embedding
G s.t. the permutation of level 1 in G is the permutation of level k+1in H. O

Figure [Ml shows a strongly connected cyclic 5-level graph and Fig. [ an arbitrary
level plane drawing of its (2, 1)-hierarchy. Note that levels 1, 6, and 11 have
three different permutations. According to Lemma [Tl we can fix the embedding
of level 6 and change the permutation of level 11 to the permutation of level 6.
We search for two nodes on level 11 which have the wrong orientation according
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to level 6 and the maximal number of nodes between them. These nodes are
u=1and v =9. We get w =z = 6 and flip the tree below node 6. After that 1
and 2 have the wrong orientation (with w =4 and x = 6) and we flip these two
nodes. Thereafter, levels 6 and 11 have the same permutation. This permutation
is used for the cyclic level plane drawings in Fig. [

Theorem 1. Let G be a strongly connected cyclic k-level graph. G is cyclic level
planar if and only if it does not match a pattern in SCLNP.

Proof. “=" We show the contrapositive. If G matches a pattern of SCLNP’, then
there exists ¢ € N s.t. the (¢, 1)-hierarchy H of G matches an MHLNP pattern.
Therefore, H is level non-planar. According to Proposition Bl G is cyclic level
non-planar then. If G matches the pattern CC, then G is cyclic level non-planar
according to Proposition [

“<” We show the contrapositive. Let G be cyclic level non-planar and let
H be its (2, 1)-hierarchy. If H is level non-planar, then H matches a MHLNP
pattern and, therefore, G matches a SCLNP’ pattern. If H is level planar, then
(the contrapositive of) Lemma [l shows that G matches the pattern CC. O

Note that according to Lemma [I] for each strongly connected cyclic k-level non-
planar graph not matching CC its (2, 1)-hierarchy matches an MHLNP pattern.
Therefore, patterns in SCLNP’ can be limited to 2k + 1 levels.

4 Cyclic Level Planarity Testing and Embedding

In this section we give a simple linear time level planarity testing and embedding
algorithm.

Definition 9. Let G be a cyclic k-level graph and H the (2, 1)-hierarchy of G.
Let H be level planar with embedding H. Let F = (vy, 1,08, 1,-.-,Viy1) be the
permutation of level k+1 in H. The rigid (1, 1)-hierarchy H’ of H consists of the
(1,1)-hierarchy of G and the additional levels 0 and k+ 2. Level 0 has the nodes
dg,d%,...d3"" and level k + 2 the nodes dj o, d3,,,.. ,de‘_é H' contains the
edges (d67 'Uzl)7 (d6+17 'Uzl)) (vllq+17 d;q+2) and (v%chl? d;:&-l2) fO?" each i € {17 RS S} as
well as the edges (dy,d},_ ) and (dg“d;ié).

Note that the rigid (1, 1)-hierarchy H' of H is level planar if and only if it has
an embedding s. t. the levels 1 and £+ 1 have the same permutation F. Then H
is strongly level planar and G cyclic level planar. From Theorem [I] we get the
following idea for a cyclic level planarity testing and embedding algorithm.

Let G = (V(G), E(G), ¢c) be a strongly connected cyclic k-level graph. We
first test whether |E(G)| < 3|V(G)| — 6 holds (otherwise G cannot be (cyclic
level) planar (Euler)). Construct the (2, 1)-hierarchy H of G then. If H is level
non-planar, then G is cyclic level non-planar. Otherwise let H be a level planar
embedding of H. We construct the rigid (1, 1)-hierarchy H' of H and test its level
planarity. If it fails G is cyclic level non-planar. If it does not fail, we transform
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the level planar embedding H’ of H' into a cyclic level planar embedding G of
G in a straight forward way: Let vg € V(G) with ¢g(ve) # 1. Let v, be the
corresponding node in H'. We set N (vg) = Ny, (v) and NJ (ve) = N ().
For a node vg € V(G) with ¢g(vg) = 1 we set N (va) = Ny (vry1) and
N (va) = Ny (v1). In both cases we identify the nodes in H’ with the corre-
sponding nodes in G.

Algorithm 1. cyclicLevelPlanarEmbedding
Input: A strongly connected cyclic k-level graph G = (V(G), E(G), ¢c)
Output: A cyclic level planar embedding G or false
if |[E(G)| > 3|V(G)| — 6 then
return false
Let H be the (2, 1)-hierarchy of G

if —levelPlanar(H ) then
return false

Let 'H be a level planar embedding of H
Let H' be the rigid (1, 1)-hierarchy of H
if —levelPlanar(H') then

return false

© 0 NS Uk W N

10 Let H' be a level planar embedding of H’
11 Construct cyclic level planar embedding G of G from H’
12 return G

Theorem 2. Cyclic level planarity testing and embedding on strongly connected
cyclic level graphs can be achieved by Algorithm [ in linear time.

Proof. The correctness of Algorithm []follows directly from Theorem [l To prove
its time complexity, we consider the construction of the (2, 1)-hierarchy H of G
first. The addition of dummy nodes on level 1 increases the number of nodes and
edges by at most F(G). After that the graph is duplicated: Each node on level
1 has three duplicates, all remaining nodes and all edges have two duplicates.
Therefore, the size of H is linear in the size of G. All steps can easily be done in
linear time. To test the level planarity of H any linear time level planarity testing
and embedding algorithm for hierarchies can be used [4,[9]. The construction of
the (1, 1)-hierarchy is possible in linear time as well. Let w be the number of
nodes on level 1 in this hierarchy. To build the rigid (1, 1)-hierarchy, we add
2(w + 1) nodes and 4w + 2 edges and again use a linear time level planarity
testing and embedding algorithm. The construction of G from H’ can again
easily be done in linear time. a

5 Summary and Open Problems

We have shown that each of the seven MHLNP patterns of Healy et al. [7] are
necessary in the strongly connected cyclic level case. To build a complete set,
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an eighth pattern is needed: a simple cycle wrapping around the center more
than once (CC). This leads to a simple linear time level planarity testing and
embedding algorithm.

As open problems remain finding a linear time planarity testing and embed-
ding algorithm for arbitrary cyclic level graphs, a stronger characterization of
the SCLNP patterns as well as finding patterns for the arbitrary cyclic level case.

TN AR ?7’ ***** \Va

RN A\o ’

(a) Pattern CC2 (b) Pattern CCO using 5 levels in a not
using 4 levels strongly connected graph

Fig. 7. (1, 1)-hierarchies of cyclic 3-level graphs matching one SCLNP pattern

Conjecture 1. Let G be a strongly connected cyclic k-level graph. G is cyclic level
planar if and only if G does not match a pattern in SCLNP with the patterns
in SCLNP’ using at most k + 1 levels.

Figure shows a (1, 1)-hierarchy of a cyclic 3-level graph which matches the
pattern CC2 (case 1) and uses 4 levels. If Conjecture [I] holds, it is not possible
to construct a strongly connected cyclic k-level non-planar graph not matching
CC s.t. all patterns use more than k + 1 levels. Obviously, this is false for not
strongly connected graphs, as the cyclic 3-level graph in Fig. shows. The
only pattern it matches is the pattern CCO using 5 levels. This example can
easily be enlarged s. t. the pattern uses an arbitrary amount of levels.

Conjecture 2. Let G be a (not necessarily strongly connected) cyclic k-level
graph. G is cyclic level planar if and only if there does not exist ¢ € N s.t.
the (¢, 1)-hierarchy matches one of the nine MLNP patterns and G does not
contain an undirected simple cycle wrapping around the center more than once.

Lemma [ is a strong indication for Conjecture [Tt

Lemma 2. Let G be a strongly connected cyclic k-level graph not matching CC.
If G matches an SCLNP’ pattern using less than 2k + 1 and more than k + 2
levels, then it matches another instance of an SCLNP’ pattern.

Proof. Let H be the (2, 1)-hierarchy of G. W.l.o.g. let 1 be the first level of the
pattern in H. Note that H matches the pattern, but the (2, 2)-hierarchy H' of G
does not match it, as the level 1 of G is missing at the top. As more than k + 2
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levels are used by the pattern, the pattern is not completely there from level k
downwards as well. H' has to match another SCLNP’ pattern, as we could use
H' instead of H in Lemma [Il O

Note that Lemma 2l does not make a statement on patterns using 2k + 1 or k+ 2
levels. Nevertheless, we conjecture that the patterns use k + 1 levels at most,
as all strongly connected cyclic level graphs matching a longer pattern seem to
match a shorter pattern or a CC pattern as well.
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Abstract. We study the straight skeleton of polyhedra in 3D. We first
show that the skeleton of voxel-based polyhedra may be constructed by
an algorithm taking constant time per voxel. We also describe a more
complex algorithm for skeletons of voxel polyhedra, which takes time
proportional to the surface-area of the skeleton rather than the volume
of the polyhedron. We also show that any n-vertex axis-parallel polyhe-
dron has a straight skeleton with O(n2) features. We provide algorithms
for constructing the skeleton, which run in O(min(n?logn, klog®® n))
time, where k is the output complexity. Next, we show that the straight
skeleton of a general nonconvex polyhedron has an ambiguity, suggesting
a consistent method to resolve it. We prove that the skeleton of a general
polyhedron has a superquadratic complexity in the worst case. Finally,
we report on an implementation of an algorithm for the general case.

1 Introduction

The straight skeleton is a geometric construction that reduces two-dimensional
shapes—polygons—to one-dimensional sets of segments approximating the same
shape. It is defined in terms of an offset process in which edges move inward, re-
maining straight and meeting at vertices. When a vertex meets an offset edge, the
process continues within the two pieces so formed. The straight segments traced
out by vertices during this process define the skeleton. Introduced by Aichholzer
et al. [1I2], the two-dimensional straight skeleton has since found many appli-
cations, e.g., surface folding [9], offset curve construction [I3], interpolation of
surfaces in three dimensions from cross sections [3], automated interpretation of
geographic data [I5], polygon decomposition [21], etc. The straight skeleton is
more complex to compute than other types of skeleton [6UT3], but its piecewise-
linear form offers many advantages. The best known alternative, the medial
axis [B], consists of both linear and quadratic curve segments.
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It is natural, then, to try to develop algorithms for skeleton construction of
a polyhedron in 3D. The most well-known type of 3D skeleton, the medial axis,
has found applications, e.g., in mesh generation [I7] and surface reconstruc-
tion [4]. Unlike its 2D counterpart, the 3D medial axis can be quite complex,
both combinatorially and geometrically. Thus, we would like an alternative way
to characterize the shape of 3D polyhedra using a simpler type of 2D skeleton.

1.1 Related Prior Work

We are not aware of any prior work on 3D straight skeletons, other than Demaine
et al. [8], who give the basic properties of 3D straight skeletons, but do not study
them in detail w.r.t. their algorithmic, combinatorial, or geometric properties.
Held [16] showed that in the worst case, the complexity of the medial axis of
a convex polyhedron of complexity n is £2(n?), which implies a similar bound
for the 3D straight skeleton. Perhaps the most relevant prior work is on shape
characterization using the 3D medial axis, defined from a 3D polyhedron as the
Voronoi diagram of the set of faces, edges, and vertices of the polyhedron. The
best known upper bound for its combinatorial complexity is O(n*+¢) [1§].
Because of these drawbacks, a number of researchers have studied algorithms
for approximating 3D medial axes. Sherbrooke et al. [20] give an algorithm that
traces out the curved edges of the 3D medial skeleton. Culver et al. [7] use exact
arithmetic to compute a representation of a 3D medial axis. In both cases, the
running time depends on both the combinatorial and geometric complexity of
the medial axis. Foskey et al. [I4] construct an approximate medial axis using a
voxel-based approach that runs in time O(nV'), where n is the number of features
of the input polyhedron and V is the volume of the voxel mesh that contains
it. Sheehy et al. [19] use instead the 3D Delaunay triangulation of a cloud of
points on the surface of the input polyhedron to approximate 3D medial axis.
Likewise, Dey and Zhao [I0] study the 3D medial axis as a subcomplex of the
Voronoi diagram of a sampling of points approximating the input polyhedron.

1.2 Our Results

— We study the straight skeleton of orthogonal polyhedra formed as unions of
voxels. We analyze how the skeleton may intersect each voxel, and describe
a suitable a simple voxel-sweeping algorithm taking constant time per voxel.

— We give a more complex algorithm for skeletons of voxel polyhedra, which,
rather than taking time proportional to the total volume, takes time propor-
tional to the the number of voxels it intersects.

— We show that any n-vertex axis-parallel polyhedron has a skeleton with
O(n?) features. We provide two algorithms for computing it, resulting in a
runtime of O(min(n?logn, k1ogPW n)), where k is the output complexity.

— We discuss the ambiguity in defining skeletons for general polyhedra and
suggest a consistent method for resolving it. We show that for a general
polyhedron, the straight skeleton can have superquadratic complexity. We
also describe an algorithm for computing the skeleton in the general case.
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(a) Vertex  (b) Edge  (c) 2 edges (e) Face (f) Face & edge

4
4

(g) 2 faces  (h) 3 faces (i) Overlapping (j) Overlapping faces (k) Overlapping
edges edge & face

Fig. 1. Cases of straight skeleton within a subvoxel (a-h) or voxel (i-k)

2 Voxel Polyhedra

In this section we consider the case in which the polyhedron is a polycube, that
is, a rectilinear polyhedron all of whose vertices have integer coordinates. The
“cubes” making up the polyhedron are also called voxels. For voxels, and more
generally for orthogonal polyhedra, the straight skeleton is a superset of the L
Voronoi diagram. Due to this relationship, the straight skeleton is significantly
easier to compute for orthogonal inputs than in the general case.

As in the general case, the straight skeleton of a polycube can be modeled
by offsetting the boundary of the polycube inward, and tracing the movement
of the boundary. During this sweep, the boundary forms a moving front whose
features are faces, edges, and vertices. An edge can be either convex or concave,
while a vertex can be convex, concave, or a saddle. In the course of this process,
features may disappear or appear.

The sweep starts at time 0, when the front is the boundary of the polycube.
In the first time unit we process all the voxels adjacent to the boundary. In the
ith round (¢ > 1) we process all the voxels adjacent to voxels processed in the
(i — 1)st round, that have never been processed before. Processing a voxel means
the computation of the piece of the skeleton lying within the voxel. During this
process, the polycube is shrunk, and may be broken into several components.
The process continues for every piece separately until it vanishes.

2.1 A Volume Proportional-Time Algorithm

Theorem 1. The combinatorial complexity of the straight skeleton of a polycube
of volume V' is O(V'). The skeleton can be computed in O(V') time.

Proof. The claims follow from the fact that the complexity of the skeleton within
every voxel (or, more precisely, within every 1/8-voxel), as well as the time
needed to compute it during the sweep, is O(1). Fig. [l illustrates the different
cases. The full details are given in the full version of the paper. O
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(a) (b)

Fig. 2. A polycube of volume V whose skeleton has complexity @ (V)

This algorithm is worst-case optimal, since in the worst case the complexity of
the skeleton of a polycube made of V' voxels is ©(V'). One such example, shown
in Fig.[2(a), is made of a flat layer of cubes (not shown), with a grid of supporting
“legs,” each a single cube. The number of legs is about 1/5 of the total number
of voxels. The skeleton of this object has features within every leg, see Fig. BI(b)
(the bottom of a leg corresponds to the right side of the figure).

2.2 Output-Sensitive Voxel Sweep

The straight skeleton of a polycube, as constructed by the previous algorithm,
contains features within some voxels, but other voxels may not participate in
the skeleton; nevertheless, the algorithm must consider all voxels and pay in its
running time for them. In this section we outline a more efficient algorithm that
computes the straight skeleton in time proportional only to the number of voxels
containing skeleton features, or equivalently, in time proportional to the surface
area of the straight skeleton rather than its volume. Necessarily, we assume
that the input polycube is provided as a space-efficient boundary representation
rather than as a set of voxels, for otherwise simply scanning the input would
take more time than we wish to spend.

Our algorithm consists of an outer loop, in which we advance the moving front
of the polycube boundary one time step at a time, and an inner loop, in which
we capture all features of the straight skeleton formed in that time step. During
the algorithm, we maintain at each step a representation of the moving front, as
a collection of polygons having orthogonal and diagonal edges. As long as each
operation performed in the inner and outer loops of the algorithm can be charged
against straight skeleton output features, the total time will be proportional to
the output size.

In order to avoid the randomization needed for hashing, several steps of our
algorithm will use as a data structure a direct-addressed lookup table, which we
summarize in the following lemma:

Lemma 1. In time proportional to the boundary of an input polycube, we may
witialize a data structure that can repeatedly process a collection of objects, in-
dexed by integers within the range of coordinates of the polycube vertices, and
produce as output a graph, in which the vertices are sets of objects that have
equal indices and the edges are pairs of sets with index values that differ by one.
The time per operation is proportional to the number of objects given as input.
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In each step of the outer loop of the algorithm, we perform the following:

1. Advance each face of the wavefront one unit inward. In this advancement
process, we may detect events in which a wavefront edge shrinks to a point,
forming a straight skeleton vertex. However, events involving pairs of features
that are near in space but far apart on the wavefront may remain undetected.
Thus, after this step, the wavefront may include overlapping pairs of coplanar
oppositely-moving faces.

2. For each plane containing faces of the new wavefront boundary, detect pairs
of faces that overlap within that plane, and find the features in which two
overlapping face edges intersect or in which a vertex of one face lies in the
interior of another face. (Details are provided in the full version of the paper.)

3. In the inner loop of the algorithm, propagate straight skeleton features within
each face of the wavefront from the points detected in the previous step to
the rest of the face. If two faces overlap in a single plane, the previous step
will have found some of the points at which they form skeleton vertices,
but the entire overlap region will form a face of the skeleton. We propagate
outward from the detected intersection points using DFS, voxel by voxel, to
determine the skeleton features contained within the overlap region.

In summary, we have:

Theorem 2. One can compute the straight skeleton of a polycube in time pro-
portional to its surface area.

3 Orthogonal Polyhedra

3.1 Definition

We consider here the more general orthogonal polyhedra, in which all faces are
parallel to two of the coordinate axes. As in the 2D case, we define the straight
skeleton of an orthogonal polyhedron P by a continuous shrinking process in
which a sequence of nested “offset surfaces” are formed, starting from the bound-
ary of the polyhedron, with each face moving inward at a constant speed. At
time ¢ in this process, the offset surface P; for P consists of the set of points at
L distance exactly ¢t from the boundary of P. For almost all values of ¢, P, will
be a polyhedron, but at some time steps P; may have a non-manifold topology,
possibly including flat sheets of surface that do not bound any interior region.
When this happens, the evolution of the surface undergoes sudden discontinuous
changes, as these surfaces vanish at time steps after ¢ in a discontinuous way.
More precisely, we define a degenerate point of P, to be a point p that is on the
boundary of P;, s.t., for some 6, and all € > 0, P4 does not contain any point
within distance ¢ of p.

At each step in the shrinking process, we imagine the surface of P; as decorated
with seams left over when sheets of degenerate points occur. Specifically, suppose
that P contains two disjoint xy-parallel faces at the same z-height; then, as we
shrink P, the corresponding faces of P, may grow toward each other. When they
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meet, they leave a seam between them. Seams can also occur when two parts of
the same nonconvex face grow toward and meet each other. After a seam forms,
it remains on the face of P, on which it formed, orthogonal to the position at
which it originally formed.

We define the straight skeleton of P as the union of three sets: 1. Points that,
for some t, belong to an edge or vertex of P;; 2. Degenerate points for P; for
some t; and 3. Points that, for some ¢, belong to a seam of P;.

3.2 Complexity Bounds

As each face has at least one boundary edge, and each edge has at least one
vertex, we may bound the complexity of the straight skeleton by bounding the
number of its vertices. Each vertex corresponds to an event, that is, a point p
(the location of the vertex), the time ¢ for which p belongs to the boundary of
P;, and the set of features of P;_. near p for small values of ¢ that contribute to
the event. We may classify events into six types.

Concave-vertex events, in which one of the features of P,_. involved in the
event is a concave vertexr: that is, a vertex of P;_. s.t. seven of the eight
quadrants surrounding that vertex lie within P;_.. In such an event, this
vertex must collide against some oppositely-moving feature of P;.

Reflex-reflex events are not concave-vertex events, but these events involve
the collision between two components of boundary of P;_. that prior to the
event are far from each other as measured in geodesic distance around the
boundary, both of which include a reflex edge. These components may either
be a reflex edge, or a vertex that has a reflex edge within its neighborhood.

Reflex-seam events are not either of the above two types, but they involve
the collision between two different components of boundary of P,_., one of
which includes a reflex edge. The other component must be a seam edge or
vertex, because it is not possible for a reflex edge to collide with a convex
edge of P;_. unless both edges are part of a single boundary component.

Seam-seam events in which vertices or edges on two seams, on oppositely
oriented parallel faces of P,_., collide with each other.

Seam-face events in which a seam vertex on one face of P;_. collides with a
point on an oppositely oriented face that does not belong to a seam.

Single-component events in which the boundary points near p in P,_. form
a single connected subset.

Theorem 3. The straight skeleton of an n-vertex orthogonal polyhedron has
complezity O(n?).

Proof. (Sketch) We count the events of each different type. There are O(n)
concave-vertex and seam-face events, while there are O(n?) reflex-reflex, reflex-
seam, and seam-seam events. Single-component events can be charged against
the events of other types. Each event contributes a constant amount of skeletal
features. More details are given in the full version of the paper. O
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3.3 Algorithms

Again, we view the skeleton as generated by a moving surface that changes at
discrete events. It is easy to fully process an event in constant time, so the prob-
lem reduces to determining efficiently the sequence of events, and distinguishing
actual events from false events. To this aim we provide two algorithms.

Theorem 4. There is a constant c, s.t. the skeleton of an n-vertex orthogonal
polyhedron with k skeletal features may be constructed in time O(klog®n).

Proof. Fach event in our classification (except single-component events, which
may be handled by an event queue) is generated by the interaction of two features
of the moving surface P;. To generate these events, ordered by the time at which
they occur, we use a data structure of Eppstein [ITJ12] for maintaining a set of
items and finding the pair of items minimizing some binary function f(x,y)—
the time at which an event is generated by the interaction of items x and y
(400 if there is no interaction). The data structure reduces this problem (with
polylogarithmic overhead) to a simpler problem: maintain a dynamic set X of
items, and answer queries asking for the first interaction between an item =z € X
and a query item y. We need separate first-interaction data structures of this
type for edge-edge, vertex-face, and face-vertex interactions. In the full version
of the paper we provide the implementation details of these data structures. 0O

A simpler algorithm is worst-case (rather than output-sensitive) optimal.

Theorem 5. The straight skeleton of an orthogonal polyhedron with n vertices
and k straight skeleton features may be constructed in time O(n?logn).

Proof. For each pair of objects that may interact (features of the input polyhe-
dron P or of the 2D straight skeletons Sy in each face plane IT), we compute the
time of interaction. We process the pairs of objects by the order of these times;
whenever we process a pair (x,y), we consult an additional data structure to de-
termine whether the pair causes an event or whether the event that they might
have caused has been blocked by some other features of the skeleton.

To test whether an edge-edge pair causes an event, we maintain a binary
search tree for each edge, representing the family of segments into which the line
containing that edge (translated according to the motion of the surface P;) has
been subdivided in the current state of the surface P;. An edge-edge pair causes
an event if the point at which the event would occur currently belongs to line
segments from the lines of both edges, which may be tested in logarithmic time.

To test whether a vertex-face pair causes an event, we check whether the
vertex still exists at the time of the event, and then perform a point location
query to locate the point in Sy at which it would collide with a face belonging
to IT. The collision occurs if the orthogonal distance within II from this point to
the nearest face is smaller than the time at which the collision would occur. We
do not need to check whether other features of the skeleton might have blocked
features of Sy from belonging to the boundary of P, for if they did they would
also have led to an earlier vertex-face event causing the removal of the vertex.
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Thus, each object pair may be tested using either a dynamic binary search
tree or a static point location data structure, in logarithmic time per pair. 0O

4 General Polyhedra

4.1 Ambiguity

Defining the straight skeleton of a general polyhedron is inherently ambiguous,
unlike the cases for convex and orthogonal polyhedra. The ambiguity stems
from the fact that, whereas convex polyhedra are defined uniquely by the planes
supporting their faces, nonconvex polyhedra are defined by both the supporting
planes and a given topology, which is not necessarily unique. Thus, while being
offset, a polyhedron can propagate from a given state into multiple equally valid
topological configurations. (This issue was alluded to in [§].) A simple example
is shown in Fig. Bl(a). The problem is illustrated w.r.t. two boundary pieces—a
wedge, A, and a tabletop, B—that are growing relative to each other. Due to
the angle of the two front planes of A, the growing wedge eventually grows past
the tabletop. The issue is to determine how the wavefronts continue growing.
Possible choices include: (i) The wedge A grows through to the other side of B
when A reaches the edge of B and moves past the edge; (ii) The wedge continues
growing forward, but is blocked from growing downward by clipping it with the
plane defined by the top of the tabletop; (iii) The wedge suddenly projects into
the empty space in front of the table and continues growing out from there. In
fact, all suggestions above cause a contradiction or a noncontinuous propagation
of the wavefront. The actual solution that we chose is to blunt the front end of
the wedge A by clipping it with the plane defined by the side of the tabletop.
A more general example of the ambiguity of the propagation of the skeleton
is shown in Fig. Bl(b). The figure shows a vertex of degree 5, and two possible
topologies during the propagation. This is the so-called weighted-rooftop prob-
lem: Given a base polygon and slopes of walls, all sharing one vertex, determine
the topology of the rooftop of the polygon, which does not always have a unique
solution. In our definition of the skeleton, we define a consistent method for
the initial topology and for establishing topological changes while processing the
algorithm’s events, based on the 2D weighted straight skeleton (see Section [.3)).

FACPPD

Top view Side view Initial topology Our method Another solution
(a) A Simple example (b) A more complex example

Fig. 3. 3D skeleton ambiguity
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4.2 A Combinatorial Lower Bound

Theorem 6. The complezity of a 3D skeleton for a simple polyhedron is
2(n?a?(n)) in the worst case, where a(n) is the inverse of the Ackermann
Sfunction.

Proof.  (Sketch) We use an example (see
Fig. M), in which a sequence of triangular

prisms result in a growing wavefront whose e < ‘% <
complexity is that of the upper envelope of m

n line segments, that is, 2(na(n)) [22]. We < <
attach two such sequences of prisms to the

“floor” and “ceiling” of the polyhedron, ob-

taining two growing wavefronts which pro- Fig- 4 Il.lustrating 3D skeleton
duce 2(n%a?(n)) skeletal features. o complexity

4.3 The Algorithm

Our algorithm is an event-based simulation of the propagation of the bound-
ary of the polyhedron. Events occur whenever four planes, supporting faces of
the polyhedron, meet at one point. At these points the propagating boundary
undergoes topological events. The algorithm consists of the following steps:

1. Collect all possible initial events.
2. While the event queue is not empty:
(a) Retrieve the next event and check its validity. If not valid, go to Step 2.
(b) Create a vertex at the location of the event and connect to it the vertices
participating in the event.
(c) Change the topology of the propagating polyhedron according to actions
in Step 2(b). Set the location of the event to the newly-created vertices.
(d) Create new events for newly-created vertices, edges, and faces and their
neighbors, if needed.

Fig. 5. Changing the initial topology of a vertex of degree > 4 (skeleton in dashed
lines): (a) The original polyhedron. Vertex v has degree 5; (b) The cross-section and
its weighted straight skeleton. Vertex v becomes three new vertices v1,v2, vs; (¢) The
straight skeleton of the polyhedron. Vertex v spawned three skeletal edges; (d) The
propagated polyhedron. Vertices v1,v2, v3 trace their skeletal edges.
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We next describe the different events and how each type is dealt with. The
procedure always terminates since the number of all possible events is bounded
from above by the number of combinations of four propagating faces.

Initial Topology. At the start of the propagation, we need to split each vertex
of degree greater than 3 into several vertices of degree 3 (see Fig.[). This is the
ambiguous situation discussed earlier; it can have several valid solutions. Our
approach is based on cutting the faces surrounding the vertex with one or more
planes (any cutting plane intersecting all faces and parallel to none suffices), and
finding the weighted straight skeleton of the intersection of these faces with the
cutting plane, with the weights determined by the dihedral angles of these faces
with the cutting plane, after an infinitesimally-small propagation. The topology
of this 2D straight skeleton tells us the connectivity to use subsequently, and
always yields a unique valid solution. In the full version of the paper we detail
the application of this method for all types of vertices.

Collecting Fvents. In the full version of the paper we describe how events are
collected, classified as valid or invalid, and handled by the algorithm. In a nut-
shell, each event arises from interactions of features of the wavefront, and gives
rise to potential future events. However, a potential event may be found invalid
already when it is created, or later when it is fetched for processing. Each valid
event results in the creation of features of the skeleton, and in a topological
change in the structure of the propagating polyhedron.

Handling Fvents. Propagating vertices are defined as the intersection of propa-
gating planes. Such a vertex is uniquely defined by exactly three planes, which
also define the three propagating edges adjacent to the vertex. (When an event
creates a vertex of degree greater than 3, we handle it as as in the initial topol-
ogy.) The topology of the polyhedron remains unchanged during the propagation
between events. The possible events are:

1. Edge Event. An edge vanishes as its two endpoints meet, at the meeting
point of the four planes around the edge.

2. Hole Event. A reflex vertex (adjacent to three reflex edges, called a “spike”)
runs into a face. The three planes adjacent to this vertex meet the plane of
the face. After the event, the spike meets the face in a small triangle.

3. Split Event. A ridge vertex (adjacent to one or two reflex edges) runs into
an opposite edge. The faces adjacent to the ridge meet the face adjacent to
the twin of the split edge. This creates a vertex of degree greater than 3,
handled as in the initial topology.

4. Edge-Split event. Two reflex edges cross each other. Every edge is adjacent
to two planes.

5. Vertex event. Two ridges sharing a common reflex edge meet. This is
a special case of the edge event, but it has different effects, and so it is
considered a different event. Vertex events occur when a reflex edge runs
twice into a face, and the two endpoints of this edge meet.
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Data Structures. We use an event queue which holds all possible events sorted
by time, and a set of propagating polyhedra, initialized to the input polyhedron,
after the initialization of topology. The used structure is a generalization of the
SLAV structure in 2D. We provide the details in the full version of the paper.

Running Time. Let n be the total complexity of the polyhedron, r be the number
of reflex vertices (or edges), and k the number of events. For collecting the initial
events, we iterate over all vertices, faces, and edges. Edge events require looking
at each edge’s neighborhood, which is done in O(n) time. Finding hole events
requires considering all pairs of a reflex vertex and a face. This takes O(rn) time.
Computing a split event is bounded within the edges of the common face, but
this can take O(rn) time, and computing edge-split events takes O(r?) time.
The algorithm computes and processes events. For a convex polyhedron, only
edge events are created, each one computed locally in O(1) time. However, for a
general polyhedron, every edge might be split by any ridge and stabbed by any

)

(i)
Object Skeleton Time
Object|Vertices Edges Facets Vertices Edges Faces Cells|(Sec.)

Objects

(a) 12 20 10 8 24 25 10 |0.312
(b) 20 30 12 25 60 46 12 [0.719
(c) 28 42 16 45 104 74 16 |0.567
(d) 20 30 12 16 42 37 12 1 0.188
(e) 20 18 9 (+lhole)| 15 45 56 9 |0.250
(f) 12 18 10 21 48 37 10 |0.484
(g) 16 24 11 6 21 25 11 [0.177
(h) 16 24 11 12 36 33 11 [0.146
(1) 16 24 10 12 32 29 10 [0.172

(j) Statistics and running times

Fig. 6. Sample objects
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spike. In addition, new spikes and ridges can be created when events are pro-
cessed, and they have to be tested against all other features of their propagating
component. Since O(1) vertices and edges are created in every event, every event
can take O(n) time to handle. (The time needed to perform queue operations
per a single event, O(logn), is negligible.) The total time needed for processing
the events is, thus, O(kn). This is also the total running time.

We have implemented the algorithm for computing the straight skeleton of
a general polyhedron in Visual C4++ .NET2005, and experimented with the
software on a 3GHz Athlon 64 processor PC with 1GB of RAM. We used the
CGAL library to perform basic geometric operations. The source code consists
of about 6,500 lines of code. Fig. [0l shows the straight skeletons of a few simple
objects, and the performance of our implementation.

References

1. Aichholzer, O., Aurenhammer, F.: Straight skeletons for general polygonal figures
in the plane. In: Cai, J.-Y., Wong, C.K. (eds.) COCOON 1996. LNCS, vol. 1090,
pp. 117-126. Springer, Heidelberg (1996)

2. Aichholzer, O., Aurenhammer, F., Alberts, D., Géartner, B.: A novel type of skeleton
for polygons. J. of Universal Computer Science 1(12), 752-761 (1995)

3. Barequet, G., Goodrich, M.T., Levi-Steiner, A., Steiner, D.: Contour interpolation
by straight skeletons. Graphical Models 66(4), 245-260 (2004)

4. Bittar, E., Tsingos, N., Gascuel, M.-P.: Automatic reconstruction of unstructured
3D data: Combining a medial axis and implicit surfaces. Computer Graphics Fo-
rum 14(3), 457-468 (1995)

5. Blum, H.: A transformation for extracting new descriptors of shape. In: Wathen-
Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362-380.
MIT Press, Cambridge (1967)

6. Cheng, S.-W., Vigneron, A.: Motorcycle graphs and straight skeletons. In: Proc.
13th Ann. ACM-SIAM Symp. on Discrete Algorithms, pp. 156-165 (January 2002)

7. Culver, T., Keyser, J., Manocha, D.: Accurate computation of the medial axis of a
polyhedron. In: Proc. 5th ACM Symp. on Solid Modeling and Applications, New
York, NY, pp. 179-190 (1999)

8. Demaine, E.D.; Demaine, M.L., Lindy, J.F., Souvaine, D.L.: Hinged dissection of
polypolyhedra. In: Dehne, F., Lépez-Ortiz, A., Sack, J.-R. (eds.) WADS 2005.
LNCS, vol. 3608, pp. 205-217. Springer, Heidelberg (2005)

9. Demaine, E.D., Demaine, M.L., Lubiw, A.: Folding and cutting paper. In: Akiyama,
J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 104-118.
Springer, Heidelberg (2000)

10. Dey, T.K., Zhao, W.: Approximate medial axis as a Voronoi subcomplex.
Computer-Aided Design 36, 195-202 (2004)

11. Eppstein, D.: Dynamic Euclidean minimum spanning trees and extrema of binary
functions. Discrete & Computational Geometry 13, 111-122 (1995)

12. Eppstein, D.: Fast hierarchical clustering and other applications of dynamic closest
pairs. ACM J. Experimental Algorithmics 5(1), 1-23 (2000)

13. Eppstein, D., Erickson, J.: Raising roofs, crashing cycles, and playing pool: Appli-
cations of a data structure for finding pairwise interactions. Discrete & Computa-
tional Geometry 22(4), 569-592 (1999)



160

14.

15.

16.

17.

18.

19.

20.

21.

22.

G. Barequet et al.

Foskey, M., Lin, M.C., Manocha, D.: Efficient computation of a simplified medial
axis. J. of Computing and Information Science in Engineering 3(4), 274-284 (2003)
Haunert, J.-H., Sester, M.: Using the straight skeleton for generalisation in a multi-
ple representation environment. In: ICA Workshop on Generalisation and Multiple
Representation (2004)

Held, M.: On computing Voronoi diagrams of convex polyhedra by means of wave-
front propagation. In: Proc. 6th Canadian Conf. on Computational Geometry, pp.
128-133 (August 1994)

Price, M.A., Armstrong, C.G., Sabin, M.A.: Hexahedral mesh generation by medial
surface subdivision: Part I. Solids with convex edges. Int. J. for Numerical Methods
in Engineering 38(19), 3335-3359 (1995)

Sharir, M.: Almost tight upper bounds for lower envelopes in higher dimensions.
Discrete & Computational Geometry 12, 327-345 (1994)

Sheehy, D.J., Armstrong, C.G., Robinson, D.J.: Shape description by medial sur-
face construction. IEEE Trans. on Visualization and Computer Graphics 2(1), 62—
72 (1996)

Sherbrooke, E.C., Patrikalakis, N.M., Brisson, E.: An algorithm for the medial axis
transform of 3d polyhedral solids. IEEE Trans. on Visualization and Computer
Graphics 2(1), 45-61 (1996)

Tanase, M., Veltkamp, R.C.: Polygon decomposition based on the straight line
skeleton. In: Proc. 19th Ann. ACM Symp. on Computational Geometry, pp. 5867
(June 2003)

Wiernik, A., Sharir, M.: Planar realizations of nonlinear Davenport-Schinzel se-
quences by segments. Discrete & Computational Geometry 3, 15-47 (1988)



Randomized Competitive Analysis for
Two-Server Problems

Wolfgang Bein!, Kazuo Iwama?, and Jun Kawahara?

! Center for the Advanced Study of Algorithms, School of Computer Science,
University of Nevada, Las Vegas, Nevada 89154, USA*
bein@cs.unlv.edu
2 School of Informatics, Kyoto University,

Kyoto 606-8501, Japan
iwama@kuis.kyoto-u.ac.jp, jkawahara@kuis.kyoto-u.ac.jp

Abstract. We prove that there exits a randomized online algorithm for
the 2-server 3-point problem whose expected competitive ratio is at most
1.5897. This is the first nontrivial upper bound for randomized k-server
algorithms in a general metric space whose competitive ratio is well below
the corresponding deterministic lower bound (= 2 in the 2-server case).

1 Introduction

The k-server problem, introduced by Manasse, McGeoch and Sleator [20], is one
of the most fundamental online problems. In this problem the input is given as k
initial server positions and a sequence p1, po, - - - of requests in the Euclidean space,
or more generally in any metric space. For each request p;, the online player has to
select, without any knowledge of future requests, one of the k servers and to move
it to p;. The goal is to minimize the total moving distance of the servers.

The k-server problem is widely considered instructive to the understanding of
online problems in general, yet, there are only scattered results. The most notable
open problem is perhaps the k-server conjecture, which states that the k-server
problem is k-competitive. The conjecture remains open for k > 3, despite years
of effort by many researchers; it is solved for a very few special cases, and remains
open even for 3 servers when the metric space has more than 6-points.

In the randomized case, even less is known. One of the the most daunting
problems in online algorithms is to determine the exact randomized competi-
tiveness of the k-server problem, that is, the minimum competitiveness of any
randomized online algorithm for the server problem. Even in the case k = 2 it is
not known whether its competitiveness is lower than 2, the known value of the
deterministic competitiveness. This is surprising, since it seems intuitive that
randomization should help. It should be noted that generally randomization is
quite powerful for online problems, since it obviously reduces the power of the
adversary (see our paragraph “Related Work” below). Such seems to be the case
for the 2-server problem as well.

* Research of the first author (Bein) done while visiting Kyoto University as Kyoto
University Visiting Professor.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 161-[179, 2008.
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The following example illustrates this intuition. Consider a simple 2-server
problem on the three fixed points a, b and ¢ on a line (See Fig. ). It is easy to
prove a lower bound of 2 for the competitive ratio of any deterministic algorithm:
The adversary always gives a request on the point the server is missing. Thus
for any online algorithm, A4, its total cost is at least n — the number of request.
But it turns out by a simple case analysis that the offline cost is n/2.

Suppose instead that A is randomized. Now if the request comes on b (with
missing server), then A can decide by a coin flip which server (a or ¢) to move.
An (oblivious) adversary knows A’s algorithm completely but does not know the
result of the coin flip and hence cannot determine which point (@ or ¢) has the
server missing in the next step. The adversary would make the next request on
a but this time @ has a server with probability 1/2 and A can reduce its cost.
Without giving details, it is not hard to show that this algorithm A — with the
randomized action for a request to b and a greedy action one for others — has a
competitive ratio of 1.5.

Indeed, one would imagine that it might be quite straightforward to design
randomized algorithms which perform significantly better than deterministic
ones for the 2-server problem. A bit surprisingly, this has not been the case.
Only few special cases have yielded success. Bartal, Chrobak, and Larmore gave
a randomized algorithm for the 2-server problem on the line, whose competitive
ratio is slightly better than 2 (1°2 ~ 1.987) [3]. One other result by Bein et. al. [4]
uses a novel technique, the knowledge state method, to derive a %g competitive
randomized algorithm for the special case of Cross Polytope Spaces. Using similar
techniques a new result for paging (the k-server problem in uniform spaces) was
recently obtained. Bein et al. [5] gave an Hj-competitive randomized algorithm
which requires only O(k) memory for k-paging. (Though the techniques in this
paper are inspired by this work, the knowledge state method is not used here.)
Lund and Reingold showed that if specific three positions are given, then an
optimal randomized algorithm for the 2-server problem over those three points
can be derived in principle by using linear programming [19]. However, they do
not give actual values of its competitive ratio and to this date the problem is
still open even for the 2-server 3-points case.

Our Contribution. In this paper, we prove that the randomized competitive
ratio of the 2-server 3-point problem in a general metric space is at most 1.5897
and also give a strong conjecture that it is at most e/(e — 1) + & ~ 1.5819.

The underlying idea is to find a finite set S of triangles (i.e. three points) such
that if the expected competitive ratio (abbreviated by ECR) for each triangle
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in S is at most ¢, then the ECR for all triangles in any metric space is at most
¢+ 6(S) where §(S) > 1 is a value determined by S. To bound the ECR for each
triangle in S, we apply linear programming. As we consider larger sets, the value
of 6(S5) becomes smaller and approaches 1. Thus the upper bound of the general
ECR also approaches the maximum ECR of triangles in .S and we can obtain
arbitrarily close upper bounds by increasing the size of the computation.

Related Work. As for the (deterministic) k-server conjecture, the current best
upper bound is 2k — 1 given by Koutsoupias and Papadimitriou in 1994 [I§]. The
conjecture is true for k = 2, for the line [7], trees [§], and on fixed k+ 1 or k + 2
points [I7]. It is still open for the 3-server problem on more than six points and
also on the circle [6]. The lower bound is k which is shown in the original paper
[20]. For the randomized case, in addition to the papers mentioned above, Bartal
et al. [2] have an asymptotic lower bound, namely that the competitiveness of any
randomized online algorithm for an arbitrary metric space is £2(log k/ log® log k).
Chrobak et. al. [I0] provided a lower bound of 1 + e~ 2 ~ 1.6065 for the ECR of
the 2-server problem in general spaces. For special cases, see for example, [I5]
for ski-rental problems, [21] for list access problems, and [I2] for paging.

Our result in this paper strongly depends on computer simulations similar
to earlier work based on knowledge states. Indeed, there are several successful
examples of such an approach, which usually consists of two stages; (i) reducing
infinitely many cases of a mathematical proof to finitely many cases (where this
number is still too large for a “standard proof”) and (ii) using computer programs
to prove the finitely many cases. See [IITIIT3IT6I23] for design and analysis of
such algorithms. In particular, for online competitive analysis, Seiden proved
the currently best upper bound, 1.5889, for online bin-packing [22]. Also by this
approach, [I4] obtained an optimal competitive ratio for the online knapsack
problem with resource augmentation by buffer bins.

2  Owur Approach

Since we consider only three fixed points, we can assume without loss of gen-
erality that they are given in the two-dimensional Euclidean space. The three
points are denoted by L, C' and R, furthermore let d(C,L) = 1, d(C, R) = d,
and d(L, R) = dz (see Fig. [2)). Again without loss of generality, we assume that
1 <dy <dy <dy+ 1. The 2-server problem on L, C' and R is denoted by
A(1l,dy,ds), where the two servers are on L and R initially and the input is
given as a sequence o of points € {L,C, R}. A(1,d;,ds) is also used to denote
the triangle itself. The cost of an online algorithm A for the input sequence o is
denoted by ALG 4(c) and the cost of the offline algorithm by OPT (o). Suppose
that for some constant o > 0, E[ALG 4(0)] < r- OPT(0) + a, holds for any
input sequence o. Then we say that the ECR of A is at most 7.

We first consider the case that the three points are on a line and both d; and
ds are integers. In this case, we can design a general online algorithm as follows.
The proof is given in the next section.
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Lemma 1. Let n be a positive integer. Then there exists an online algorithm

1yn__ 1
for A(1,n,n+ 1) whose ECR is at most C,, = (1(—;:2)711’1“1

Note that if triangles A; and A, are different, then “good” algorithms for A,
and As are also different. However, the next lemma says that if A; and A, do
not differ too much, then one can use an algorithm for A; as an algorithm for
Ay with a small sacrifice on the competitive ratio.

Lemma 2. Suppose that there are two triangles Ay = A(1,a1,b1) and Ay =
A(1,az,b2) such that a1 > as and by > by and that the ECR of algorithm A for
Ay is at most r. Then the ECR of A for Ay is at most r - max(®, o).

D.g’ b2

Proof.  Let o = max(y!, Z;) and A, = A(l/a,a1/a,bi/a). Fix an arbitrary
input sequence o and let the optimal offline cost against o be OPTy, OPT, and
OPT, for Ay, As and A, respectively. Since 4, is similar to A; and the length
of each side is 1/a, OPT,, is obviously (1/a)OPT;. Since every side of Ay is at
least as long as the corresponding side of A,, OPT> > OPT,, = (1/a)OPT;.

Let the expected cost of A against o for Ay and As be ALG, and ALGs,
respectively. Note that .4 moves the servers exactly in the same (randomized)
way for Ay and A,. Since each side of As is at most as long as the corresponding
side of Al, ALG2 < ALGl

We have 5372 < () /53Gbr, = max(gh, 1)« Gpgs - 2
Thus we can “approximate” all triangles, whose a-value is at most within some
constant, by a finite set S of triangles as follows: Suppose that the target com-
petitive ratio, i.e. the competitive ratio one wishes to achieve, is rg. Then we
first calculate the minimum integer ng such that rg > "%2 -Cpy+1, where Cpy 41
is the value given in the statement of Lemma [[I We then construct the set S
such that for any two numbers a¢ and b with 1 < a < ng and b < a + 1, there
exist two triangles A; = A(1,a1,b1) and Ay = A(1, a2,b2) in S such that the
following conditions are met:

(i) az < a < aq and by < b < by,

(ii) there exists an algorithm for A; whose ECR is 71, and

(iii) r1 - max(y!, Z;) < rp.
We call such a set an “approximation set”.
Lemma 3. If one can construct an approrimation set S, then there is an online
algorithm whose ECR is at most rg.

Proof. Consider the following algorithm A(a, b) which takes the values a and b
of the triangle A(1, a, b). Note that A(a, b) is an infinite set of different algorithms
from which we select one due to the values of a and b. If a > ng, then we select
the maximum integer n such that ¢ > n. Then A(a,b) uses the algorithm for
A(1,n4+1,n42). Clearly we have a < n+1 and b < n+2. Therefore, by Lemma
2 the ECR of this algorithm for A(1,a,b) is at most (recall that Cj,11 is the
ECR of this algorithm for A(1,n + 1,n + 2) given in Lemma [I))

n+1 n+2 n-+2 no + 2
max(" ) Cna <0 T O < Ono - Cro+1 < 70
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n+2 | (1+711,)n7n-1¢-1
n (1) -1
ically decreases, which implies the inequality second to last.
If a < ng, then we have the two triangles Ay and A satisfying the conditions
(i) to (iii) above. Then we use the algorithm for A; guaranteed by condition (ii).
Its ECR for A(1,a,b) is obviously at most rg by Lemma 2 |

By a simple calculation we have that "IQ -Chy1 = monoton-

3 Three Points on a Line

In order to prove Lemmal [T, we first need a state diagram, called an offset graph,
which shows the value of the work function W (s, o) [9]. Recall that W (s, o) is an
optimal offline cost such that all the requests given by ¢ are served and the final
state after o must be s, where s is one of (L, C), (L, R) and (C, R) in our case.
Fig. Bl shows the offset graph, G9T'T for A(1,n,n + 1). Each state includes a
triple (z,y, z), further explained next. In the figure, the top middle state, denoted
by VLR, is the initial state (recall that our initial server placement is (L, R)). This
state includes (n,0,1), which means that W ((L,C),¢) = n, W((L, R), ) = 0,
and W((C, R),¢) = 1. Those values are correct for the following reason: Since
this is the initial state, we do not have any request yet, or the request sequence is
empty (denoted by ¢). Also since our initial server placement is (L, R), in order

U vig

Fig. 3. Offset graph Fig. 4. State diagram of the algorithm
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to change this placement into (L, C), we can optimally move a server from R
to C, which needs a cost of n. This is why W ((L,C), ¢) = n. Similarly for the
others.

In the figure, V3 is the forth state from the top. The triple in this state shows
the value of the work function for the request sequence CLC, i.e., W((L,C),
CLC), W((L,R),CLC) and W((C, R),CLC'). Note that this request sequence,
CLC, is obtained by concatenating the labels of arrows from the initial state Vg
to V3. For example, Fig. [ shows that W ((L, R), CLC) = 4, which is calculated
from the previous state, Vs, as follows: Namely, server position (L, R) can be
achieved from previous (L, R) (= 2) plus 2 (= the cost of moving a server on
L to C and back to L) or from previous (C,R) (= 3) plus 1 (= the cost of
moving a server on C' to L). Both are 4. From this state V3, there is an arrow
to Veogr by request R. Carrying out a similar calculation, one can see that the
triple should change from (n, 4, 3) to (n+4,4, 3) by this transition. However, the
triple in Vog is (n + 1, 1,0). The reason for this is that we have an offset value,
3, on the arrow from V5 to Vog. Namely, (n 4+ 1,1,0) in Vog is obtained from
(n+4,4,3) by reducing each value by 3. Because of this offset values, we can use
such a finite graph to represent the values of the work function the value of which
can be infinitely large. Thus one can see that (n,0,1) in the initial state Vg
also means (n +4,4,5), (n+ 8,8,9),- - by traversing the cycle Vi, gV1VaVsVer
repeatedly. Although we omit a formal proof, it is not hard to verify that Fig. Bl
is a valid offset graph for A(1,n,n+ 1).

We next introduce another state graph, called the algorithm graph. Fig. H
shows the algorithm graph, GALC | for A(1,n,n+1). Notice that GALC is similar
to GIPT. Each state includes a triple (¢, g2, ¢3) such that ¢; > 0,2 > 0,q3 > 0
and ¢1 + g2 + g3 = 1, which means that the probabilities of placements (C, L),
(L, R) and (C, R) are ¢1, g2 and g3, respectively. (Since the most recent request
must be served, one of the three values is zero. In the figure, therefore, only two
probabilities are given, for example, in S, the probabilities for (L, C')(= p1) and
for (C, R)(=1— p1) are given.) In our specific algorithm G4+ set those values
as follows:

SLC - (1a070)a SLR - (07 1a0)7 SCR = (Oa07 1)a
SZi—l = (pi,O,l —pi) (Z = 1,...,7?,), Sgi = (pi,l —pi,O) (Z = 1,...,71 — 1)
no, (A4,) -1

where p; is ni1 (1t Dyt

We describe how an algorithm graph is converted to the specific algorithm.
Namely we can calculate how to move servers and its average cost as follows:
Suppose for example that the request sequence is C'L. Then we are now in
So, and suppose that the next request is C. The state transition from Sy to
S3 occurs. Suppose that Se has placement-probability pairs (C1,q1), (Ca,q2),
and (Cg,(]g) (01 = (L,O),OQ = (L,R) and 03 = (C, R)) and 53 has (Dl,Tl),
(D2,12), and (D3, rs). We introduce variables z;; (i,7 = 1,2,3) such that x;; is
equal to the probability that the placement before the transition is C; and the
placement after the transition is D;. By an abuse of notation the z;; values can
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be considered as the algorithm itself. The z;; values also allow us to calculate
the average cost of the algorithm as described next.

The average cost for a transition is given by cost = Zle 23:1 x;d(Cy, D;),
where d(C;, D;) is the cost to change the placement from C; to D;. We can
select the values of z;; in such a way that they minimize the above cost under
the condition that 23:1 Tij = Gi, Zle z;; = rj. In the case of three points
on the line, it is straightforward to solve this LP in general. If the servers are
on L and C and the request is R, then the greedy move (C' — R) is optimal. If
the servers are on L and R and the request is C, then the optimal probability
is just a proportional distribution due to d(L,C) and d(C, R). These values x;;
also show the actual moves of the servers. For example, if the servers are on L
and R in S, we move a server in L to C' with probability x23/¢2 and R to C
with probablhty .73‘21/Q2.

From the values of z;;, one can also obtain the expected cost of an algorithm
for each transition, given as follows:

cost(Src, SLr) =n, cost(Scr,Srr) =1, cost(Spr,S1) = np1 +1 —py,
COSt(SQZ',hSQZ'):].—pi (’L':].,...J?J—].)7

cost(S2;, S2i41) =n(piv1 —pi) +1—pis1 (i=1,...,n—1),
cost(S2i—1,5cr) =(n+1p;, (i=1,...,n),

cost(So;, Spr) =np; (i=1,...,n—1),

cost(San—1,5rc) = (n+ 1)(1 — py).

OPT ALG
Gy Gy

We are now ready to prove Lemma 1. Recall that and are the
same graph. With a request sequence o, we can thus associate a same sequence,
A(0), of transitions in GOPT and GALY. The offline cost for A\(o) can be calcu-
lated from GOPT and the average online cost from G2, By comparing these
two costs, we have the ECR for o.

Omitting details we can prove that it suffices to consider only the following
three sequences (cycles) for this purpose:

(1) 517527~o752h71;SCR;SLR (h:17...,n—1)
(2) 517527~-~752h7SLR (h:l,...,n—l)
(3) Sla527' . '752n—1aSLC7SLR'

For sequence (1), the OPT cost is 2h and ALG cost is 2npp, + 2h — 2 Z;L:_ll pj =
2h(C,,. Similarly, for sequence (2), OPT = 2h and ALG < 2h(C), and for sequence
(3) OPT =2n and ALG = 4n — 2 Z;L:lpj = 2nC),. Thus the ECR is at most
C,, for any of these sequences, which proves the lemma. O

4 Construction of the Finite Set of Triangles

For triangle Ay = A(1,a,b) and d > 0, let Ay = A(1,a’, V) be any triangle such
that a —d < a’ < aand b —d < b < b. Then as shown in Sec. 2] the ECR for
Ay, denoted by f(Asz), can be written as

b b
e <max (. )y <max (0 Y rans s,
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Fig. 5. Area 2 Fig. 6. Square [a, b; d] Fig. 7. Set of squares

(The last inequality comes the fact that a < b.) Recall that triangle A(1,a,b)
always satisfies 1 < a < b < a+ 1, which means that (a,b) is in the area {2 shown
in Fig. Bl Consider point (a,b) in this area and the square X of size d, whose
right upper corner is (a,b) (Fig. [B). Such a square is also denoted by [a, b; d].
Then for any triangle whose (a,b)-values are within this square (some portion
of it may be outside §2), its ECR can be bounded by ¢, f(A(1,a,b)), which we
call the competitive ratio of the square X and denote by g(X) or g([a, b;d]).

Consider a finite set of squares Xo, X1,...,X; = [a;,b;;d;], ..., X, with the
following properties (see also Fig. [1):

(1) The right-upper corners of all the squares are in 2.

(2) Xj is the rightmost square, which must be [i,7 + 1, 2] for some i.

(3) The area of {2 between a = 1 and ¢ must be covered by those squares, or
any point (a,b) in {2 such that 1 < a < i must be in some square.

Suppose that all the values of g(X;) for 0 < i < m are at most ro. Then
one can easily see that the set S = Ui:O)m {A(1,ai,b;), A(1,a; — d;, b; — d;)} of
triangles satisfies conditions (i) to (iil) given in Sec. 2, i.e., we have obtained the
algorithm whose competitive ratio is at most rq.

The issue is how to generate those squares efficiently. Note that g(X) becomes
smaller if the size d of the square X becomes smaller. Namely we can subdivide
each square into smaller ones to obtain a better competitive ratio. However, it
is not clever to subdivide all squares evenly since g(X) for a square X of the
same size substantially differs in different positions in (2. Note the phenomenon
especially between positions close to the origin (i.e., both a and b are small)
and those far from the origin (the former is larger). Thus our approach is to
subdivide squares X dynamically, or to divide the one with the largest g(X)
value in each step.

We give an intuitive description of the procedure for generating the squares.
We start with a single square [2,3;2]. Of course, its g-value is poor (indeed be-
comes infinite) and we divide [2,3;2] into four half-sized squares as shown in
Fig. & [1,3;1],[1,2;1],[2,2;1] and [2,3;1] of size one. Simultaneously we intro-
duce square [3,4; 2] of size 2. In general, if the square [i,i+1; 2] of size 2 is divided
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—=0.013 ( 4 5 )
b ~0.0078 3,3
2,3 1]
\ 170 213
\ ~0.013 1.0.0078 ~ 128, 128
[3,4;2]
\ T j ™12 states
I 2,2:1] g-value = 1.560
514 states
0 a g-value = 1.558
Fig. 8. Division of a square Fig. 9. Approximation of a square

and [i + 1,7+ 2;2] of size 2 does not exists yet, we introduce [i + 1,47 + 2;2]. By
this we can always satisfy the condition (2). Thus we have four squares of size
1 (two of them are indeed outside {2) and one square of size 2 at this stage. In
the next step we divide again one of the three squares (inside {2) whose g value
is the worst. Continue this and take the worst g-value as an upper bound of the
competitive ratio.

Thus the squares are becoming progressively smaller (as might the maximum
g-value). An issue regarding the efficiency of the procedure is that the number
of states of the state diagram used by the algorithm for a (small) square (or for
the corresponding triangle) becomes large. This implies a large amount of com-
putation time to solve the LP in order to obtain the algorithm for the square in
question and to obtain its competitive ratio. Consider for example the triangle
(1, 179, 233) (or the square [ 170, 233: 1 ). It turns out that we need 514 states for
the diagram (and a substantial computation time for LP solving. However, note
that we have slightly larger triangle, (1, 37 g) (or the square [g, g; 324])7 which only
needs 12 states to solve the LP (Fig. ). Thus we can save computation time by
using [3, 5; ,3,] instead of [}79, 233; 3. and the g-value of the former (= 1.5606),
which is certainly worse than that of the latter (= 1.5549), is not excessively bad.
Although we do not have an exact relation between the triangle and the number
of states, it is very likely that if the ratio of the three sides of the triangle can be
represented by three small integers then the number of states is also small. In our
procedure, therefore, we do not simply calculate g(X) for a square X, but we try
to find X’ which contains X and has such desirable properties.

Procedure 1 gives the formal description of our procedure. Each square X =
[a, b; d] is represented by p = (a,b,d,r), where r is an upper bound of g(X).
The main procedure SQUAREGENERATION divides the square, whose g value
is the worst, into four half-sized squares and, if necessary, also creates a new
rightmost square of size 2. Then we calculate the g-values of those new squares
by procedure CALCULATECR. However, as described before, we try to find a
“better” square. Suppose that the current square is X = [a, b; d]. Then we want
to find X = [a, E; d] which contains X and a can be represented by g , where both

o and (3 are integers and « is at most 31 (similarly for b). (We have confirmed that
the number of states and the computation time for the LP are reasonably small
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if v is at most this large). To do this we use procedure FINDAPPROXPOINT. Note
that we scan the value of o only from 17 to 31. This is sufficient; for example,
a = 10 can be covered by a = 20 and o = 16 is not needed either since it should
have been calculated previously in the course of subdivision. If g(X' ) is smaller
than the g-value of the original (double-sized) square, then we use that value as
the g-value of X. Otherwise we abandon such an approximation and calculate
9(X) directly.

Now suppose that SQUAREGENERATION has terminated. Then for any p =
(a,b,d,r) in P, it is guaranteed that r < Ry. This means that we have created
the set of squares which satisfy the conditions (1) to (3) previously given. As
mentioned there, we have also created the set of triangles satisfying the condi-
tions of Sec. 2. Thus by Lemma [3 we can conclude:

Theorem 1. There is an online algorithm for the 2-server 3-point problem
whose competitive ratio is at most Ry.

We now give results of our computer experiments: For the whole area {2, the
current upper bound is 1.5897 (recall that the conjecture is 1.5819). The number
N of squares generated is 13285, in which the size m of smallest squares is 1/256
and the size M of largest squares is 2. We also conducted experiments for small
subareas of §2: (1) For [5/4,7/4,1/16]: The upper bound is 1.5784 (better than
the conjecture but this is not a contradiction since our triangles are restricted).
(N, M, m) = (69,1/64,1/128). (2) For [7/4,9/4,1/4]: The upper bound is 1.5825.
(N, M, m) = (555,1/64,1/2048). (3) For [10, 11, 1]: The upper bound is 1.5887.
(N, M,m) = (135,1/16,1/32).

5 Concluding Remarks

There are at least two directions for the future research: The first one is to prove
that the ECR of the 2-server 3-point problem is analytically at most e/(e—1)+-«.
The second one is to extend our current approach (i.e., approximation of infinite
point locations by finite ones) to four and move points. For the latter, we already
have a partial result for the 4-point case where two of the four points are close
(obviously it is similar to the 3-point case), but the generalization does not
appear easy.

(a5, by) (a, b) — d+e, (a,, by)
/ =@ b) & )
(244b,) — x
d (a3, b3) d+e, /1 ______ \. )
\ & d ¥ T o 1
-< d R
2 "™ e’

Fig.10. Lines 9-13 Fig. 11. Line 27 Fig. 12. Lines 40-47
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Procedure 1. SquareGeneration

procedure SquareGeneration(Ro) procedure CalculateCR(a, b, d, )
p—(2,3,2,C2-2/(2 —2) = 0) (ao,bo) < FINDAPPROXPOINT(a, b)
Mark p. > See Fig. [l
P — {p} ro « GETCR FROMLP (ag, bo)
while 3p = (a,b,d,r) such that r > Ry eo < max(a — ao,b — bo)
p « the point in P whose r is maximum. 70 < ro - ao/(a0 —d — €o)
P — P\{p} if 70 <o
Let p = (a,b,d,r) return 7
d' —d/2 else
a1 «—a, by —b ro < GETCR FROMLP (a,b)
as «—a—d', bos —b 7o < 10 - ao /(a0 — d)
az «—a, b3 —b— d return ry
ag«—a—d, by —b—d > See Fig.[I0 end if
for i+— 1to4 end procedure
if (ai,bi) € 2 procedure FindApproxPoint(a,b)
r; «— CALCULATECR(a;, b;, d’,r) > See Fig.
PHPU{(aivbivdlvri)} €min < OQ
end if for ¢ — 31 to 17
end for z— [a-i], y < [b-i]
if p is marked e — max(z/i —a,y/i —b)
p— (a+1,b+1,2,Cot1-a/(a—2)). if € < emin
Mark p’. Unmark p. Emin “— €, Tmin — 1
P—PuU{p} Tmin < T, Ymin < Y
end if end if
end while end for
end procedure return (Tmin/imin, Ymin/imin )

end procedure
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Decompositions and Boundary Coverings of
Non-convex Fat Polyhedra*
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Abstract. We show that any locally-fat (or (a, 3)-covered) polyhedron
with convex fat faces can be decomposed into O(n) tetrahedra, where
n is the number of vertices of the polyhedron. We also show that the
restriction that the faces are fat is necessary: there are locally-fat poly-
hedra with non-fat faces that require £2(n?) pieces in any convex de-
composition. Furthermore, we show that if we want the polyhedra in the
decomposition to be fat themselves, then the worst-case number of tetra-
hedra cannot be bounded as a function of n. Finally, we obtain several
results on the problem where we want to only cover the boundary of the
polyhedron, and not its entire interior.

1 Introduction

Polyhedra and their planar equivalent, polygons, play an important role in many
geometric problems. From an algorithmic point of view, however, general polyhe-
dra are unwieldy to handle directly: several algorithms can only handle convex
polyhedra, preferably of constant complezity. Hence, there has been extensive
research into decomposing polyhedra (or, more generally, arrangements of trian-
gles) into tetrahedra or other constant-complexity convex pieces. The two main
issues in developing decomposition algorithms are (i) to keep the number of
pieces in the decomposition small, and (ii) to compute the decomposition quickly.

In the planar setting the number of pieces is, in fact, not an issue if the pieces
should be triangles: any polygon admits a triangulation, and any triangulation
of a polygon with n vertices has n — 2 triangles. Hence, research focused on
developing fast triangulation algorithms, culminating in Chazelle’s linear-time
triangulation algorithm [I2]. An extensive survey of algorithms for decomposing
polygons and their applications is given by Keil [16].

For 3-dimensional polyhedra, however, the situation is much less rosy. First of
all, not every non-convex polyhedron admits a tetrahedralization: there are poly-
hedra that cannot be decomposed into tetrahedra without using Steiner points.
Moreover, deciding whether a polyhedron admits a tetrahedralization without
Steiner points is NP-complete [I8]. Thus we have to settle for decompositions using
Steiner points. Chazelle [11] has shown that any polyhedron with n vertices can be

* This research was supported by the Netherlands’ Organisation for Scientific Research
(NWO) under project no. 639.023.301.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 173-[[84, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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decomposed into O(n?) tetrahedra, and that this is tight in the worst case: there
are polyhedra with n vertices for which any decomposition uses 2(n?) tetrahedra.
(In fact, the result is even stronger: any convex decomposition—a decomposition
into convex pieces—uses £2(n?) pieces, even if one allows pieces of non-constant
complexity.) Since the complexity of algorithms that need a decomposition de-
pends on the number of pieces in the decomposition, this is rather disappointing.
The polyhedron used in Chazelle’s lower-bound example is quite special, however,
and one may hope that polyhedra arising in practical applications are easier to
handle. This is the topic of our paper: are there types of polyhedra that can be
decomposed into fewer than a quadratic number of pieces?

Erickson [I4] has answered this question affirmatively for so-called local poly-
hedra (see below) by showing that any such 3-dimensional polyhedron P can be
decomposed into O(nlogn) tetrahedra and that this bound is tight. We consider
a different class of polyhedra, namely fat polyhedra.

Types of fatness. Before we can state our results, we first need to give the
definition of fatness that we use. In the study of realistic input models [I0],
many definitions for fatness have been proposed. When the input is convex,
most of these definitions are equivalent up to constants. When the input is not
convex, however, this is not the case: polyhedra that are fat under one definition
may not be fat under a different definition. Therefore we study two different
definitions.

The first definition that we use was introduced by De Berg [5]. For an object
o and a ball B whose center lies inside o, we define B Mo to be the connected
component of BNo that contains the center of B. An object o is locally-y-fat if for
every ball B that has its center inside o and which does not completely contain o,
we have vol(BT10) > v - vol(B), where vol(-) denotes the volume of an object.
We call an object locally fat if it is locally ~-fat for a fixed constant ~y. If we
replace M with N—that is, we do not restrict the intersection to the component
containing the center of B—then we get the definition of fat polyhedra proposed
by Van der Stappen [19]. Note that for convex objects the two definitions are
equivalent. Hence, for convex objects we can omit the adjective “locally” from
the terminology. For non-convex objects the definitions are not equivalent: a
polyhedron that is fat under Van der Stappen’s definition can have skinny pieces,
unlike locally-fat polyhedra.

The second definition is a generalization of the («a, 3)-covered objects intro-
duced by Efrat [I3] to 3-dimensional objects. A simply-connected object P in
R3 is (v, 3)-covered if the following condition is satisfied: for each point p € OP
there is a tetrahedron 7}, C P with one vertex at p that is a-fat and has diam-
eter 3 - diam(P), where OP denotes the boundary of P and diam(P) denotes
the diameter of P. Here a tetrahedron is called a-fat if it is a-fat under the
definition of Van der Stappen. (Equivalently, we could define a tetrahedron to
be a-fat if all its solid angles are at least a.) The tetrahedron T}, is called a good
tetrahedron for p.

As observed by De Berg [B] the class of locally-vy-fat objects is strictly more
general than the class of («, 3)-covered objects: any object that is («, 3)-covered
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for some constants o and § is also locally-y-fat for some constant v (depending
on « and ), but the reverse is not true.

For comparison, let us also give the definition of a local polyhedron P [14].
To this end, define the scale factor at a vertexr v of P as the ratio between the
length of the longest edge incident to v and the minimum distance from v to any
other vertex. The local scale factor of P is now the maximum scale factor at any
vertex. The global scale factor of P is the ratio between the longest and shortest
edge lengths of the whole polyhedron. Finally, P is called a local polyhedron if
its local scale factor is a constant, while its global scale factor is polynomial in
the number of vertices of P. It is easy to see that local polyhedra need not be
fat, while fat polyhedra need not be local.

Our Results. First we study the decomposition of (a, 3)-covered polyhedra and
locally-y-fat polyhedra into tetrahedra. By modifying Chazelle’s polyhedron so
that it becomes (a, 3)-covered, we obtain the following negative result.

— There are (a, 3)-covered (and, hence, locally-fat) polyhedra with n vertices
such that any decomposition into convex pieces uses £2(n?) pieces.

Next we restrict the class of fat polyhedra further by requiring that their faces
should be convex and fat, when considered as planar polygons in the plane
containing them. For this class of polyhedra we obtain a positive result.

— Any locally-fat polyhedron (and, hence, any («, 3)-covered polyhedron) with
n vertices whose faces are convex and fat can be decomposed into O(n)
tetrahedra in O(nlogn) time.

Several applications that need a decomposition or covering of a polyhedron into
tetrahedra would profit if the tetrahedra were fat. In the plane any fat polygon
can be covered by O(n) fat triangles, as shown by Van Kreveld [I7] (for a slightly
different definition of fatness). We show that a similar result is, unfortunately,
not possible in 3-dimensional space.

— There are (a, 3)-covered (and, hence, locally-fat) polyhedra with n vertices
and convex fat faces such that the number of tetrahedra in any covering that
only uses fat tetrahedra cannot be bounded as a function of n.

For some applications—ray shooting is an example—we do not need a decom-
position of the full interior of the given polyhedron P; instead it is sufficient to
have a boundary covering, that is, a set of objects whose union is contained in
P and that together cover the boundary of P. Interestingly, when we consider
boundary coverings there is a distinction between (c, 3)-covered polyhedra and
locally-fat polyhedra:

— The boundary of any («,)-covered polyhedron P, can be covered by
O(n?logn) fat convex constant-complexity polyhedra, and there are (o, 3)-
covered polyhedra that require £2(n?) convex pieces in any boundary covering.
If the faces of the («,()-covered polyhedron are fat, convex and of
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approximately the same size, then the boundary can be covered with only O(n)
convex fat polyhedra. Furthermore, the worst-case number of convex pieces
needed to cover the boundary of a locally-fat polyhedron cannot be bounded
as a function of n.

Finally, we consider boundary coverings using so-called towers [I]—a type of
decomposition that has previously been used for ray-shooting. Unfortunately, we
must relegate most discussion of these results to the full paper for space reasons.

Table [ summarizes our results.

Table 1. Overview of results on decomposing and covering polyhedra. An entry marked
x means that the corresponding decomposition or covering is not always possible. (For
example, since general polyhedra can have arbitrarily sharp vertices, they cannot always
be decomposed into fat tetrahedra.)

decomposition of interior by covering of boundary by
tetrahedra fat tetrahedra fat convex polyhedra  towers

general 6(n?) [l X X unbounded
local O(nlogn) [14] X X unbounded
locally fat 6(n?) unbounded unbounded unbounded
with fat faces O(n) unbounded unbounded unbounded

(a, B)-covered 6(n?) unbounded ~ O(n?logn), 2(n?) o(1)

with fat faces O(n) unbounded O(n?logn) o(1)

Applications. As already mentioned, decomposing polyhedra into tetrahedra or
other convex pieces is an important preprocessing step in many applications.
Below we mention some of these applications, where our results help to get
improved performance when the input polyhedra are fat.

Hachenberger [15] studied the computation of Minkowski sums of non-convex
polyhedra. To obtain a robust and efficient algorithm for this problem, he first
decomposes the polyhedra into convex pieces. Our results imply that this first
step can be done such that the resulting number of pieces is O(n) if the in-
put polyhedra are locally fat with fat faces, while in general this number can
be quadratic.

Another application is in computing depth orders. The best-known algorithm
to compute a depth order for n tetrahedra runs in time O(n*/3+¢) [3]. De Berg and
Gray [7] recently showed that for fat convex polyhedra of constant complexity, this
can be improved to O(n log® n). Our results imply that any constant-complexity
(a, B)-covered polyhedron can be decomposed into constant-complexity fat con-
vex polyhedra. It can be shown that this is sufficient to be able to use the depth-
order algorithm of [7]. Similarly, our results imply that the results from De Berg
and Gray [7] on vertical ray shooting in convex polyhedra extend to constant-
complexity («, 3)-covered polyhedra. Finally, our results on boundary coverings
with towers (in the full paper) imply that we can use the method of Aronov et al. [1]
to answer ray-shooting queries in (v, 3)-covered polyhedra in O((n/\/m)log® n)
time with a structure that uses O(m!*¢) storage, for any n < m < n?. This is in
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contrast to the best-known data structure for arbitrary polyhedra [3], which gives
O(n'*+¢ /m'/*) query time with O(m!*+¢) storage for n < m < n*.

2 Decomposing the Interior

In this section we discuss decomposing the interior of fat non-convex objects into
tetrahedra. We start with decompositions into arbitrary tetrahedra, and then we
consider decompositions into fat tetrahedra.

2.1 Decompositions into Arbitrary Tetrahedra

The upper bound. Let P be a locally-v-fat polyhedron in R? whose faces, when
viewed as polygons in the plane containing the face, are convex and g-fat. We
will prove that P can be decomposed into O(n) tetrahedra in O(nlogn) time.

In our proof, we will need the concept of density. The density [6] of a set
S of objects in R? is defined as the smallest number A such that the following
holds: any ball B C R? is intersected by at most A objects o € S such that
diam(o) > diam(DB).

We also need the following technical lemma. Its proofis standard and therefore
omitted.

Lemma 1. Let P be a convex 3-fat polygon embedded in R® where diam(P) > 1.
Let C and C' be azis-aligned cubes centered at the same point. Let the side length
of C be 1 and the side length of C' be 2+/3/3. If P intersects C, then P' := PNC’

is B'-fat for some B’ = Q(3).

The following lemma shows that the faces of a locally-y-fat polyhedron have low
density if they are fat themselves.

Lemma 2. Let Fp be the set of faces of a locally-y-fat polyhedron P. If the faces
of P are themselves 3-fat and convez, then Fp has density O(1/~3%).

Proof. Without loss of generality, let S be a sphere with unit radius. We wish
to show that the number of faces f € Fp with diam(f) > 1 that intersect S is
O(1/7B?).

Partition the bounding cube of S into eight equal-sized cubes by bisecting
it along each dimension. Consider one of the cubes: call it C'. Also construct
an axis-aligned cube C’ that has side length 2v/. 3/3 and concentric with C'. For
all faces f intersecting C' that have diam(f) > 1, we define f’ := fNC’. By
Lemma [Tl we know that f’ is §’-fat for some ' = 2(0).

Since f’ is a fat convex polygon with a diameter of at least 2v/3/3 — 1, it must
contain a circle ¢ of radius p = #(2v/3/3 —1)/8 [19]. For any such circle c, there
is a face F' of C' such that the projection of ¢ onto F' is an ellipse which has a
minor axis with length at least p/v/2.

We make a grid on each face of C’ where every grid cell has side length p/2.
We call the rectangular prism between two grid cells on opposite faces of C’ a
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Fig. 1. (a) A box. (b) A box b (side view) and the different types of faces assigned to it.

bor—see Figure[[l(a). Each face f’ has an intersection with some box that is the
entire cross-section of the box. We assign each face to such a box.

We now consider the set of faces that can be assigned to any one box b. There
are two types of faces in this set—see Figure[I[b). For example, if b has its long
edges parallel to the x axis, there are the faces that have the interior of P in
the positive = direction and the faces that have the interior in the negative x
direction. We consider one type of face at a time. For each face f;, we place a
sphere s; with radius p/4 so that its center is on f; and in the center of b (that
is, the center is exactly between the long faces of b). Since P is locally-v-fat,

vl(PMs;) > 37 (2)3 = ~7mp®/48. Since we only consider one type of face,
(PMs;)N(PMsj) =0 for any s; # s;. Therefore the number of faces of one type

that can cross one box is 48/(v/3ymp?). The number of faces that can cross one

box is twice that. The number of boxes per direction is 2‘:;32/ 3 = p\4/3 and the

number of directions is 3. Hence, the number of faces that can intersect S is at

most
48 4 184

3. . — )
V3ymp? pv3 o myp?

Since p = 2(f3), this is O(1/v33). |

Since the set Fp of faces of the polyhedron P has density O(1/v3%) = O(1),

there is a BSP for Fp of size O(n) that can be computed in O(nlogn) time [].

The cells of the BSP are convex and contain at most one facet, so we can easily
decompose all cells further into O(n) tetrahedra in total.

2

Theorem 1. Let v and 3 be fized constants. Any locally-y-fat polyhedron with
B-fat convex faces can be partitioned into O(n) tetrahedra in O(nlogn) time,
where n is the number of vertices of the polyhedron.

The lower bound. Next we show that the restriction that the faces of the poly-
hedron are fat is necessary, because there are fat polyhedra with non-fat faces
that need a quadratic number of tetrahedra to be covered.
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The polyhedron known as Chazelle’s polyhedron [I1]—see Figure 2b)—is an
important polyhedron used to construct lower-bound examples. We describe a
slight modification of that polyhedron which makes it («, 3)-covered and retains
the properties needed for the lower bound.

The essential property of Chazelle’s polyhedron is that it contains a region
sandwiched between a set L of line segments defined as follows. Fix a small
positive constant £ > 0. For an integer ¢ with 1 <14 < n, define the line segment
lias b; = {(z,y,2) : 0 <ax<n+1landy =iand z = iz — e} and the line
segment £ as ¢; ;= {(z,y,2) :x =iand 0 <y <n+1 and z = iy}. Next define
L :={{:1<i<n} U {l:1<i<n}

The region X := {(x,y,2): 1 < z,y <nandzy — e < z < 2y} between these
segments has volume ©(en?). Chazelle showed that for any convex object o that
does not intersect any of the segments in L we have vol(o N X) = O(e). These two
facts are enough to show that £2(n?) convex objects are required to cover any poly-
hedron that contains X' but whose interior does not intersect the segments in L.

(a) (b) (0)

Fig. 2. (a) The line segments used in the lower-bound construction (not to scale). (b)
Chazelle’s polyhedron before modification (also not to scale). (¢) Cross-section of the
polyhedron P shown with the cross-section of a good tetrahedron (shaded).

Chazelle turns the set of line segments into a polyhedron by putting a box
around L, and making a slit into the box for each segment, as shown in Fig-
ure 2(b). The resulting polyhedron has each of the segments in L as one of its
edges, and contains the sandwich region Y. Hence, any convex decomposition or
covering of its interior needs £2(n?) pieces.

Chazelle’s polyhedron is not («, §)-covered. We therefore modify it as follows.
First of all, we make the outer box from which the polyhedron is formed a cube
of size 6n? x 6n? x 3n? centered at the origin. Second, we replace the slits by long
triangular prisms—we will call the prisms needles from now on—sticking into the
cube. Thus, for each segment in L, there is a needle that has an edge containing
the segment. We do not completely pierce the cube with the needles, so that
the resulting polyhedron, P, remains simple (that is, topologically equivalent to
a sphere). Note that X' is still contained in P, and that for each segment in L
there is an edge containing it.

Next we argue that P is («, §)-covered. First, consider a point p € 9P on one
of the needles. Assume without loss of generality that the needle is parallel to
the xz-plane. If p is near one of the needles going into the other direction, then
the situation is as in Figure [2(c).



180 M. de Berg and C. Gray

Note that the distance between consecutive needles of the same orientation—
that is, the distance between the small triangles in Figure 2l(c)—is at least 1.
Moreover, we can choose the distance & between the needles of opposite
orientation—that is, the distance between the small triangles and the long needle in
the figure—as small as we like. The same is true for the “width” of the needles—that
is, the size of the small triangles in the figure. Hence, we can make the construction
such that we can always put a good (that is, large and fat) tetrahedron at p.

Next, consider a point p € P that is near one of the places where a needle
“enters” the cube. Note that the segments in L have slopes ranging from 1 to
n, and that any needle passes near the center of the cube—this is true since the
cube has size 6n2 x 6n? x 3n?, while the segments in L all pass at a distance
at most n from the cube’s center. Hence, the needles will intersect the bottom
facet of the cube, and they make an angle of at least 45° with the bottom facet.
This implies that also for points p near the places where these needles enter the
cube, we can place a good tetrahedron.

Finally, it is easy to see that for points p on a cube facet, and for points on a
needle that are not close to a needle of opposite orientation, we can also put a
good tetrahedron. We can conclude with the following theorem.

Theorem 2. There are constants o > 0 and 8 > 0, such that there are (o, 3)-
covered polyhedra for which any convex decomposition consists of §2(n?) convex
pieces, where n is the number of vertices of the polyhedron.

2.2 Decompositions and Coverings with Fat Tetrahedra

When we attempt to partition non-convex polyhedra into fat tetrahedra, or
other fat convex objects, the news is uniformly bad. That is, no matter which
of the realistic input models we use (of those we are studying), the number of
fat convex objects necessary to cover the polyhedron can be made arbitrarily
high. For polyhedra without fatness restrictions, there are many examples which
require an arbitrary number of fat convex objects for partitioning. In fact, for
any constant § > 0 we can even construct a polyhedron that cannot be covered
at all into [-fat convex objects—simply take a polyhedron that has a vertex
whose solid angle is much smaller than 3. It is also not hard to construct, for
any given 3 > 0, a local polyhedron that cannot be covered with g-fat convex
objects. For instance, we can take a pyramid whose base is a unit square and
whose top vertex is at distance € < 3 above the center of the base.

Next we show how to construct, for any given k, an («, 3)-covered polyhedron
of constant complexity and with convex fat faces, which requires 2(k) fat convex
objects to cover it. First we observe that a rectangular box of size 1 x (5/k) x
(B/k) requires §2(k) pB-fat convex objects to cover it. Now consider the («, 3)-
covered polyhedron in Figure Bl The essential feature of the construction in
Figure[lis that from any point p along the long axis of the tube, one cannot see
much outside the tube. Thus any convex object inside P that contains p must
stay mainly within the tube, and the tube basically acts as a rectangular box of
size 1 x (8/k) x (8/k). Hence, §2(k) $-fat tetrahedra are required in any convex
covering of the polyhedron. We obtain the following result.
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(a) (b)
Vv

Fig. 3. (a) An («, 8)-covered polyhedron with fat faces whose interior cannot be covered
by a bounded number of fat tetrahedra. (b) The part of the polyhedron seen by a point
in the center. Note that the polyhedron is constructed so that a good tetrahedron just
fits at the points on the boundary inside the central “tube”.

Theorem 3. There are («, 3)-covered (and, hence, locally-fat) polyhedra with n
vertices and convex fat faces, such that the number of objects used in any covering
by fat convex objects cannot be bounded as a function of n. Furthermore, for any
giwen 3 > 0 there are local polyhedra for which no convex covering with B-fat
tetrahedra exists.

3 Covering the Boundary

In the previous section we have seen that the number of fat convex objects needed
to cover the interior of a fat non-convex polyhedron P cannot be bounded as
a function of n. In this section we show that we can do better if we only wish
to cover the boundary of P. Unfortunately, this only holds when P is («, )-
covered; when P is locally fat, we may still need an arbitrarily large number of
fat convex objects to cover its boundary.

Recall that for each point p on the boundary of an (a, 3)-covered polyhedron
P, there is a good tetrahedron T}, C P with one vertex at p, that is, a tetrahedron
that is a-fat and has diameter (- diam(P). We first observe that we can actually
replace T}, by a canonical tetrahedron, as made precise in the following lemma.

Lemma 3. Let P be an («, 8)-covered polyhedron. There exists a set C of O(1/«)
canonical tetrahedra that are Q2(«)-fat and have diameter 2(8 - diam(P)) with
the following property: for any point p € P, there is a translated copy TI’) of a
canonical tetrahedron that is contained in P and has p as a verter.

Proof. Cover the boundary of the unit sphere S in a grid-like fashion by O(1/«)
triangular surface patches, each of area roughly ca, for a suitably small con-
stant c¢. For each triangular patch, define a canonical tetrahedron that has the
origin as one of its vertices, and that has edges going through the vertices of the
patch. Scale the resulting set of tetrahedra appropriately, thus giving the set C.
Now consider a good tetrahedron p. Place (a suitably scaled copy) of the sphere
S with its center at p. T}, will intersect S in a fat region R of area .. By choosing
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c appropriately we can ensure that R contains one of the triangular patches. This
implies we can select a tetrahedron Tzﬁ from C with the required properties. O

Now we can prove that we can cover the boundary of an («, 3)-covered polyhe-
dron with a bounded number of fat convex objects.

Theorem 4. The boundary of an («, 3)-covered polyhedron with complexity n
can be covered by O(n?logn) convez, fat, constant-complexity polyhedra.

Proof. Let C be the set of canonical tetrahedra defined in Lemma[3l Fix a canon-
ical tetrahedron T € C. Note that when we put a translated copy of T at some
point p € 9P according to Lemma Bl we always put the same vertex, v, at p.
(Namely, the vertex coinciding with the origin before the translation.) For a face
f of P,let f(T) C f be the subset of points p on f such that we can place
T with its designated vertex v at p in such a way that T is contained in P.
The region f(T) is polygonal. We triangulate f(T"), and for each triangle ¢ in
this triangulation, we define a convex polyhedron by taking the union of all the
translated copies of T that have v € t. By doing this for all faces f, we get a
collection Cp of convex polyhedra that together cover J i f (T).

We claim that every convex object o € Cp is fat. This follows from the fact
that T is fat and that T cannot be much smaller than ¢. Indeed, diam(T) =
QB - diam(P)) = Q(8 - diam(t)).

Next, we claim that |Cr| = O(n?logn). This follows directly from the fact
that the complexity of J i f (T') is upper bounded by the complexity of the free
space of T, when it is translated amidst the faces of P. Aronov and Sharir [2]
showed that this free space has complexity O(n? logn).

Finally, we observe that Uzpce U, f(T) = 0P by Lemma [3 In other words,
the convex objects in the set | J, .. Cr together cover the boundary of P. O

Theorem @ implies that the boundary of a constant-complexity («, 3)-covered
polyhedron P can be covered by a constant number of fat objects. Unfortunately,
the number of convex objects used in the boundary covering grows quadratically
in the complexity of P. If P has convex fat faces that are roughly the same size,
then the number of convex fat objects required to cover the boundary reduces
to linear. We summarize this in the following theorem, the proof of which is very
similar to the proof of Theorem[l Tt uses the observation by Van der Stappen [19]
that the free space in such a situation has linear complexity.

Theorem 5. Let P be an («, 3)-covered polyhedron with conver ('-fat faces.
Further, let there be a constant ¢ where, for any two faces fi and fo of P,
diam(f1) < c-diam(f2). Then the boundary of P can be covered by O(n) convet,
fat, constant-complexity polyhedra.

We claim that any covering of the boundary of an («, 3)-covered polyhedron
by fat convex objects requires §2(n?) pieces. To show this, we slightly modify
our version of Chazelle’s polyhedron from the previous section. In particular, we
replace the edges of the needles that contain the segments in the set L by long
and thin rectangular facets. The resulting polyhedron is still («, §)-covered, and
it requires £2(n?) fat convex polyhedra to cover the newly introduced facets.
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Theorem 6. There are constants o > 0 and 3 > 0 such that there are (a, 3)-
covered polyhedra P for which any decomposition of OP into fat convex polyhedra
requires £2(n?) pieces.

The number of fat convex polyhedra necessary to cover the boundary of a polyhe-
dron P that is not («, 3)-covered can not be bounded as a function of n. To see this,
we make a simple modification to the polyhedron of Figure[3l We reduce the gaps
that separate the interior “tube” from the rest of P to some arbitrarily small con-
stant €. This forces any fat convex polyhedron that covers the part of the boundary
of the polyhedron inside the tube to be inside the tube. Now for any k, we can re-
duce the width and height of the tube until its boundary requires more than k fat
convex polyhedra to be covered. This example remains locally fat with fat convex
faces and it is a local polyhedron. Note that P is no longer (¢, 3)-covered: reducing
the gaps that separate the tube from the rest of the polyhedron causes the points
on the boundary inside the tube to no longer have a good tetrahedron.

Theorem 7. For any given k, there exist locally-y-fat polyhedra for some ab-
solute constant v with faces that are B-fat for some absolute constant B which
require at least k fat convex polyhedra to cover their boundaries. These polyhedra
are also local polyhedra.

4 Concluding Remarks

We studied decompositions and boundary coverings of fat polyhedra. Our bounds
on the number of objects needed in the decomposition (or covering) are tight,
except for the bound on the number of convex fat polyhedra needed to cover the
boundary of an (¢, 3)-covered object. In particular, there is still a large gap for
the case that the facets of the polyhedron are also fat. It would be interesting
to get tight bounds for this case.

Acknowledgments

The second author thanks Herman Haverkort, FElena Mumford, and Bettina
Speckmann for conversations regarding this topic.

References

1. Aronov, B., De Berg, M., Gray, C.: Ray shooting and intersection searching amidst
fat convex polyhedra in 3-space. Computational Geometry: Theory and Applica-
tions 41, 68-76 (2008)

2. Aronov, B., Sharir, M.: On translational motion planning of a convex polyhedron
in 3-space. STAM J. Comput. 26, 1785-1803 (1997)

3. De Berg, M.: Ray Shooting, Depth Orders and Hidden Surface Removal. LNCS,
vol. 703. Springer, New York (1993)

4. De Berg, M.: Linear size binary space partitions for uncluttered scenes. Algorith-
mica 28, 353-366 (2000)



184

5.

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

M. de Berg and C. Gray

De Berg, M.: Improved bounds on the union complexity of fat objects. Discr.
Comput. Geom. (to appear) doi:10.1007/s00454-007-9029-7

De Berg, M., Cheong, O., Van Kreveld, M., Overmars, M.: Computational Geom-
etry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)

De Berg, M., Gray, C.: Vertical ray shooting and computing depth orders for fat
objects. SIAM J. Comput. 38(1), 257-275 (2008)

De Berg, M., Gray, C.: Computing the visibility map of fat objects. In: Dehne, F.,
Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 251-262. Springer,
Heidelberg (2007)

De Berg, M., David, H., Katz, M.J., Overmars, M., Van Der Stappen, A.F.,
Vleugels, J.: Guarding scenes against invasive hypercubes. Computational Geom-
etry: Theory and Applications 26, 99-117 (2003)

De Berg, M., Van Der Stappen, A.F., Vleugels, J., Katz, M.J.: Realistic input
models for geometric algorithms. Algorithmica 34, 81-97 (2002)

Chazelle, B.: Convex partitions of polyhedra: a lower bound and worst-case optimal
algorithm. STAM J. Comput. 13, 488-507 (1984)

Chazelle, B.: Triangulating a simple polygon in linear time. Discr. Comput.
Geom. 6, 485-524 (1991)

Efrat, A.: The complexity of the union of («, 3)-covered objects. STAM J. Com-
put. 34, 775-787 (2005)

Erickson, J.: Local polyhedra and geometric graphs. Computational Geometry:
Theory and Applications 31, 101-125 (2005)

Hachenberger, P.: Exact Minkowski sums of polyhedra and exact and efficient
decomposition of polyhedra in convex pieces. In: Arge, L., Hoffmann, M., Welzl,
E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 669-680. Springer, Heidelberg (2007)
Keil, J.M.: Polygon Decomposition. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of
Computational Geometry, pp. 491-518 (2000)

Van Kreveld, M.: On fat partitioning, fat covering, and the union size of polygons.
Comput. Geom. Theory Appl. 9, 197-210 (1998)

Rupert, J., Seidel, R.: On the difficulty of triangulating three-dimensional noncon-
vex polyhedra. Discr. Comput. Geom. 7, 227-253 (1992)

Van Der Stappen, A.F.: Motion planning amidst fat obstacles. Ph.D. thesis, Utrecht
University, Utrecht, the Netherlands (1994)



Approximating Multi-criteria Max-TSP

Markus Bléser, Bodo Manthey, and Oliver Putz

Saarland University, Computer Science
Postfach 151150, 66041 Saarbriicken, Germany
blaeser/manthey@cs.uni-sb.de, oli.putz@gmx.de

Abstract. We present randomized approximation algorithms for multi-
criteria Max-TSP. For Max-STSP with & > 1 objective functions, we
obtain an approximation ratio of ,19 — ¢ for arbitrarily small € > 0. For

Max-ATSP with k£ objective functions, we obtain a ratio of kj—l —e.

1 Multi-criteria Traveling Salesman Problem

1.1 Traveling Salesman Problem

The traveling salesman problem (TSP) is one of the most fundamental problems
in combinatorial optimization. Given a graph, the goal is to find a Hamiltonian
cycle of minimum or maximum weight. We consider finding Hamiltonian cycles
of maximum weight (Max-TSP).

An instance of Max-TSP is a complete graph G = (V| E) with edge weights
w : EF — N. The goal is to find a Hamiltonian cycle of maximum weight. The
weight of a Hamiltonian cycle (or, more general, of a subset of F) is the sum of
the weights of its edges. If G is undirected, we speak of Max-STSP (symmetric
TSP). If G is directed, we have Max-ATSP (asymmetric TSP).

Both Max-STSP and Max-ATSP are NP-hard and APX-hard. Thus, we are in
need of approximation algorithms. The currently best approximation algorithms
for Max-STSP and Max-ATSP achieve approximation ratios of 61/81 and 2/3,
respectively [35].

Cycle covers are an important tool for designing approximation algorithms
for the TSP. A cycle cover of a graph is a set of vertex-disjoint cycles such that
every vertex is part of exactly one cycle. Hamiltonian cycles are special cases of
cycle covers that consist of just one cycle. Thus, the weight of a maximum-weight
cycle cover is an upper bound for the weight of a maximum-weight Hamiltonian
cycle. In contrast to Hamiltonian cycles, cycle covers of maximum weight can be
computed efficiently using matching algorithms [IJ.

1.2 Multi-criteria Optimization

In many optimization problems, there is more than one objective function. Con-
sider buying a car: We might want to buy a cheap, fast car with a good gas
mileage. How do we decide which car suits us best? With multiple criteria in-
volved, there is no natural notion of a best choice. Instead, we have to be content

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 185-[[97] 2008.
© Springer-Verlag Berlin Heidelberg 2008
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with a trade-off. The aim of multi-criteria optimization is to cope with this prob-
lem. To transfer the concept of an optimal solution to multi-criteria optimization
problems, the notion of Pareto curves was introduced (cf. Ehrgott [4]). A Pareto
curve is a set of solutions that can be considered optimal.

More formally, a k-criteria optimization problem consists of instances I, solu-
tions sol(X) for every instance X € I, and k objective functions ws, ..., wy that
map X € [ and Y € sol(X) to N. Throughout this paper, our aim is to maximize
the objective functions. We say that a solution Y € sol(X) dominates another
solution Z € sol(X) if w;(YV,X) > w;(Z,X) for all i € [k] = {1,...,k} and
w; (Y, X) > w;(Z,X) for at least one 4. This means that Y is strictly preferable
to Z. A Pareto curve contains all solutions that are not dominated by another
solution. Unfortunately, Pareto curves cannot be computed efficiently in many
cases: They are often of exponential size, and they are often NP-hard to compute
even for otherwise easy problems. Thus, we have to be content with approximate
Pareto curves.

For simpler notation, let w(Y, X) = (w1 (Y, X), ..., wp(Y, X)). We will omit
the instance X if it is clear from the context. Inequalities are meant component-
wise. A set P C sol(X) of solutions is called an « approxzimate Pareto curve
for X € I if the following holds: For every solution Z € sol(X), there exists
aY € P with w(Y) > aw(Z). We have o < 1, and a 1 approximate Pareto
curve is a Pareto curve. (This is not precisely true if there are several solutions
whose objective values agree. However, in our case this is inconsequential, and
we will not elaborate on this for the sake of clarity.) An algorithm is called an «
approzimation algorithm if, given the instance X, it computes an o approximate
Pareto curve. It is called a randomized « approximation algorithm if its success
probability is at least 1/2. This success probability can be amplified to 1 —27™
by executing the algorithm m times and taking the union of all sets of solutions.
(We can remove dominated solutions from this union, but this is not required
by the definition of an approximate Pareto curve.)

Papadimitriou and Yannakakis [8] showed that (1 — &) approximate Pareto
curves of size polynomial in the instance size and 1/e exist. The technical re-
quirement for the existence is that the objective values of solutions in sol(X) are
bounded from above by 2°(V) for some polynomial p, where N is the size of X.
This is fulfilled in most optimization problems and in particular in our case.

A fully polynomial time approximation scheme (FPTAS) for a multi-criteria
optimization problem computes (1 —¢) approximate Pareto curves in time poly-
nomial in the size of the instance and 1/e for all ¢ > 0. Papadimitriou and
Yannakakis [§] showed that multi-criteria minimum-weight matching admits a
randomized FPTAS, i. e., the algorithm succeeds in computing a (1 — ¢) ap-
proximate Pareto curve with constant probability. This yields also a randomized
FPTAS for the multi-criteria maximum-weight cycle cover problem [7], which
we will use in the following.

Manthey and Ram [6[7] designed randomized approximation algorithms for
several variants of multi-criteria Min-TSP. However, they leave it as an open
problem to design any approximation algorithm for Max-TSP.
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1.3 New Results

We devise the first approximation algorithm for multi-criteria Max-TSP. For k-
criteria Max-STSP, we achieve an approximation ratio of ]1€ — ¢ for arbitrarily
small € > 0. For k-criteria Max-ATSP, we achieve kll — e. Our algorithm is
randomized. Its running-time is polynomial in the input size and 1/ and expo-
nential in the number & of criteria. However, the number of different objective
functions is usually a small constant. The main ingredient for our algorithm
is a decomposition technique for cycle covers and a reduction from k-criteria
instances to (k — 1)-criteria instances.

Due to lack of space, some proofs are omitted. For complete proofs, we refer
to the full version of this paper [2].

2 Outline and Idea

A straight-forward 1/2 approximation for mono-criterion Max-ATSP is the fol-
lowing: First, we compute a maximum-weight cycle cover C. Then we remove
the lightest edge of each cycle, thus losing at most half of C’s weight. In this
way, we obtain a collection of paths. Finally, we add edges to connect the paths
to get a Hamiltonian cycle. For Max-STSP, the same approach yields a 2/3
approximation since the length of every cycle is at least three.

Unfortunately, this does not generalize to multi-criteria Max-TSP for which
“lightest edge” is usually not well defined: If we break an edge that has little
weight with respect to one objective, we might lose a lot of weight with respect to
another objective. Based on this observation, the basic idea behind our algorithm
and its analysis is the following case distinction:

Light-weight edges: If all edges of our cycle cover contribute only little to its
weight, then removing one edge does not decrease the overall weight by too
much. Now we choose the edges to be removed such that no objective loses
too much of its weight.

Heavy-weight edges: If there is one edge that is very heavy with respect to at
least one objective, then we take only this edge from the cycle cover. In this
way, we have enough weight for one objective, and we proceed recursively
on the remaining graph with k£ — 1 objectives.

In this way, the approximation ratio for k-criteria Max-TSP depends on two
questions: First, how well can we decompose a cycle cover consisting solely of
light-weight edges? Second, how well can (k — 1)-criteria Max-TSP be approxi-
mated? We deal with the first question in Section Bl In Sectiondl we present and
analyze our approximation algorithms, which also gives an answer to the second
question. Finally, we give evidence that the analysis of the approximation ratios
is tight and point out some ideas that might lead to better approximation ratios

(Section ).
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3 Decompositions

Let o € (0,1], and let C be a cycle cover. We call a collection P C C' of paths
an a-decomposition of C if w(P) > aw(C) (recall that all inequalities are meant
component-wise). In the following, our aim is to find a-decompositions of cycle
covers consisting solely of light-weight edges, that is, w(e) < aw(C) for alle € C.

Of course, not every cycle cover possesses an a-decomposition for every a. For
instance, a single directed cycle of length two, where each edge has a weight of
1 shows that a = 1/2 is best possible for a single objective function in directed
graphs. On the other hand, by removing the lightest edge of every cycle, we
obtain a 1/2-decomposition.

For undirected graphs and k = 1, @ = 2/3 is optimal: We can find a 2/3-
decomposition by removing the lightest edge of every cycle, and a single cycle
of length three, where each edge weight is 1, shows that this is tight.

More general, we define az € (0,1] to be the maximum number such that
every directed cycle cover C' with w(e) < af - w(C) for all e € C possesses
an ag—decomposition. Analogously, o} € (0,1] is the maximum number such
that every undirected cycle cover C' with w(e) < a} - w(C) possesses an aj-
decomposition. We have af = é and of = g, as we have already argued above.
We also have o > az and ap < of_; as well as az < 04271'

3.1 Existence of Decompositions

In this section, we investigate for which values of « such a-decompositions exist.
In the subsequent section, we show how to actually find good decompositions.
We have already dealt with a¥ and af. Thus, k& > 2 remains to be considered
in the following theorems. In particular, only k > 2 is needed for the analysis of
our algorithms.

Let us first normalize our cycle covers to make the proofs in the following
a bit easier. For directed cycle covers C, we can restrict ourselves to cycles of
length two: If we have a cycle ¢ of length ¢ with edges eq, ..., e we replace it
by [£/2] cycles (ez;—1,e2;) for j =1,...,[£/2]. If £ is odd, then we add a edge
er+1 with w(egr1) = 0 and add the cycle (es, ep41). (Strictly speaking, edges
are 2-tuples of vertices, and we cannot simply reconnect them. What we mean
is that we remove the edges of the cycle and create new edges with the same
names and weights together with appropriate new vertices.) We do this for all
cycles of length at least three and call the resulting cycle cover C’. Now any
a-decomposition P’ of the new cycle cover C’ yields an a-decomposition P of
the original cycle cover C' by removing the newly added edges e;41: In C, we
have to remove at least one edge of the cycle ¢ to obtain a decomposition. In
C’, we have to remove at least |£/2] edges of ¢, thus at least one. Furthermore,
if w(e) < a-w(C) for every e € C, then also w(e) < a-w(C’) for every e € C’
since we kept all edge weights. This also shows w(P) = w(P’).

We are interested in a-decompositions that work for all cycle covers with k
objective functions. Thus in particular, we have to be able to decompose C".
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(1,0) (0,1)
(1,0) (0,1) (1,0) (0,1) (1,0) (0,1)

(1,1)
(a) a§ <1/3. (b) ¥ < 1/2.

Fig. 1. Examples that limit the possibility of decomposition

The consequence is that if every directed cycle cover consisting solely of cycles
of length two possesses an a-decomposition, then all directed cycle covers do so.

For undirected cycle covers, we can restrict ourselves to cycles of length three:
We replace a cycle ¢ = (e1,...,e¢) by /3] cycles (e3j—2,e3j—1,e3;) for 1 <j <
[£/3]. If ¢ is not divisible by three, then we add one or two edges egi1, €042
to form a cycle of length three with the remaining edge(s). Again, every a-
decomposition of the new cycle cover yields an a-decomposition of the original
cycle cover.

The following two theorems are proved using the probabilistic method.

Theorem 1. For all k > 2, we have o > 1/k.

For undirected graphs and k = 2, we do not need the assumption that the weight
of each edge is at most o times the weight of the cycle cover. Lemma [I] below
immediately yields a (1/2—¢) approximation for bi-criteria Max-STSP: First, we
compute a Pareto curve of cycle covers. Second, we decompose each cycle cover
to obtain a collection of paths, which we then connect to form Hamiltonian
cycles. The following lemma can also be generalized to arbitrary & that do not
contain cycles of length at most k.

Lemma 1. For every undirected cycle cover C with edge weights w = (w1, wa),
there exists a collection P C C of paths with w(P) > w(C)/2.

For directed cycle covers, our aim is again to show that the probability of having
not enough weight in one component is less than 1/k. Hoeffding’s inequality
works only for k > 7. We use a different approach, which immediately gives us
the desired result for k£ > 6, and which can be tweaked to work also for small k.

Theorem 2. For all k > 2, we have of > 1/(k+1).

Figure [Ml shows that Theorems [I] and 2] respectively, are tight for k& = 2. Due to
these limitations for & = 2, proving larger values for aj or az does not immedi-
ately yield better approximation ratios (see Section ). However, for larger values
of k, Hoeffding’s inequality yields the existence of £2(1/log k)-decompositions.
Together with a different technique for heavy-weight cycle covers, this might
lead to improved approximation algorithms for larger values of k.

Lemma 2. We have o, af € 2(1/logk).
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3.2 Finding Decompositions

While we know that decompositions exist due to the previous section, we have
to find them efficiently in order to use them in our approximation algorithm. We
present a deterministic algorithm and a faster randomized algorithm for finding
decompositions.

DECOMPOSE (Algorithm[I]) is a deterministic algorithm for finding a decompo-
sition. The idea behind this algorithm is as follows: First, we scale the weights such
that w(C) = 1/a. Then w(e) < 1 for all edges e € C. Second, we normalize all
cycle covers such that they consist solely of cycles of length two (in case of directed
graphs) or three (in case of undirected graphs). Third, we combine very light cy-
cles as long as possible. More precisely, if there are two cycles ¢ and ¢’ such that
w'(c) < 1/2 and w'(¢") < 1/2, we combine them to one cycle ¢ with w'(¢) < 1.
The requirements for an a-decomposition to exist are still fulfilled. Furthermore,
any a-decomposition of €’ immediately yields an a-decomposition of C.

P «— DECOMPOSE(C, w, k, @)
input: cycle cover C, edge weights w, k > 2, w(e) < a-w(C) for all e € C
output: a collection P of paths
1: obtain w’ from w by scaling each component such that w;(C) = 1/« for all 4
2: normalize C' to C" as described in the text such that C’ consists solely of cycles
of length three (undirected) or two (directed)
: while there are cycles ¢ and ¢’ in ¢ with w’(c) < 1/2 and w'(¢’) < 1/2 do
combine ¢ and ¢’ to ¢ with w'(¢) = w'(c) + w'(c’)
replace ¢ and ¢’ by ¢ in C’
try all possible combinations of decompositions
choose one P’ that maximizes min, ez w;(P)
: translate P’ C C’ back to obtain a decomposition P C C
: return P

© PN T W

Algorithm 1. A deterministic algorithm for finding a decomposition

Lemma 3. Let k > 2. Let C be an undirected cycle cover and ws,...,wy be
edge weights such that w(e) < aj - w(C). Then DECOMPOSE(C, w, k, a}) returns
a collection P of paths with w(P) > a} - w(C).

Let C be a directed cycle cover and wy, . .., wy be edge weights such that w(e) <
ad - w(C). Then DECOMPOSE(C,w, k,al) returns a collection P of paths with
w(P) > af - w(C).

Let us also estimate the running-time of DECOMPOSE. The normalization in
lines [I] to Bl can be implemented to run in linear time. Due to the normalization,
the weight of every cycle is at least 1/2 with respect to at least one w}. Thus, we
have at most 2k/a¥ cycles in C' in the undirected case and at most 2k/a¢ cycles
in C” in the directed case. In either case, we have O(k?) cycles. All of these cycles
are of length two or of length three. Thus, we find an optimal decomposition,
which in particular is an o or ozz—decomposition7 in time linear in the input size
and exponential in k.
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P — RANDDECOMPOSE(C, w, k, c)
input: cycle cover C, edge weights w = (w1,...,wg), k > 2, w(e) < a-w(C) for all
ecC
output: a collection P of paths with w(P) > a - w(C)
1: if £ > 6 then
2: repeat
randomly choose one edge of every cycle of C
remove the chosen edges to obtain P
until w(P) > a-w(C)
else
P «— DECOMPOSE(C, w, k, @)

Algorithm 2. A randomized algorithm for finding a decomposition

By exploiting the probabilistic argument of the previous section, we can find
a decomposition much faster with a randomized algorithm. RANDDECOMPOSE
(Algorithm [2]) does this: We choose the edges to be deleted uniformly at random
for every cycle. The probability that we obtain a decomposition as required is
positive and bounded from below by a constant. Furthermore, as the proofs of
Theorems [Il and 2] show, this probability tends to one as k increases. For k > 6,
it is at least approximately 0.7 for undirected cycle covers and at least 1/4 for
directed cycle covers. For k < 6, we just use our deterministic algorithm, which
has linear running-time for constant k. The following lemma follows from the
considerations above.

Lemma 4. Let k > 2. Let C be an undirected cycle cover and wsq,...,wy be
edge weights such that w(e) < aj - w(C). Then RANDDECOMPOSE(C, w, k, a}})
returns a collection P of paths with w(P) > of - w(C).

Let C be a directed cycle cover and wa, . .., wy be edge weights such that w(e) <
ad - w(C). Then RANDDECOMPOSE(C, w, k, a) returns a collection P of paths
with w(P) > ad - w(C).

The expected running-time of RANDDECOMPOSE is O(|CY).

4 Approximation Algorithms

Based on the idea sketched in Section[2] we can now present our approximation
algorithms for multi-criteria Max-ATSP and Max-STSP. However, in particular
for Max-STSP, some additional work has to be done if heavy edges are present.

4.1 Multi-criteria Max-ATSP

We first present our algorithm for Max-ATSP (Algorithm [B]) since it is a bit
easier to analyze.

First of all, we compute a (1 —¢) approximate Pareto curve C of cycle covers.
Then, for every cycle cover C' € C, we decide whether it is a light-weight cycle
cover or a heavy-weight cycle cover (line [[). If C' has only light-weight edges,
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Prsp — MC-MAXATSP(G, w, k, )
input: directed complete graph G = (V, E), k > 1, edge weights w : E — N, ¢ >0
output: approximate Pareto curve Prgp for k-criteria Max-TSP
1: if k =1 then

2: compute a 2/3 approximation Prsp

3: else

4: compute a (1 — ¢) approximate Pareto curve C of cycle covers

5: Prsp — 0

6: for all cycle covers C' € C do

T if w(e) < af-w(C) for all edges e € C then

8: P «— DECOMPOSE(C, w, k)

9: add edges to P to form a Hamiltonian cycle H; add H to Prsp

10: else
11: let e = (u,v) € C be an edge with w(e) £ af - w(C)
12: for all a,b,c,d € V such that Py, ., is legal do
13: for i — 1 to k do
14: obtain G’ from G by contracting the paths of Pg, . 4
15: obtain w’ from w by removing the ith objective
16: Prep < MC-MAXATSP(G',w', k — 1,¢)
17: for all H' € Prgp do
18: form a Hamilton cycle from H' plus P¢ bc.a; add it to Prsp
19: form a Hamilton cycle from H’ plus (u v); add it to Prsp

Algorithm 3. Approximation algorithm for k-criteria Max-ATSP

DS

) Two disjoint paths. (b) With b = c. (¢) Including edge e.

Fig. 2. The three possibilities of Py, . 4. Symmetrically to we also have a = d.
Symmetrically to we also have v = a and u = d.

we decompose it to obtain a collection P of paths. Then we add edges to P to
obtain a Hamiltonian cycle H, which we then add to Prgp.

If C contains a heavy-weight edge, then there exists an edge e = (u,v) and
an ¢ with w;(e) > ay - w;(C). We pick one such edge. Then we iterate over all
possible vertices a, b, ¢, d (including equalities and including u and v). We denote
by Py, .4 the graph with vertices u, v, a, b, ¢, d and edges (a,u), (u,b), (c,v),
and ( ) We call Py, . ; legal if it can be extended to a Hamiltonian cycle:
Py c.q is legal if and only if it consists of one or two vertex-disjoint directed
paths. Figure 2 shows the different possibilities.

For every legal Py, . ;, we contract the paths as follows: We remove all out-
going edges of a and ¢, all incoming edges of b and d, and all edges incident to u
or v. Then we identify a and b as well as ¢ and d. If Py, ., consists of a single
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path, then we remove all vertices except the two endpoints of this path, and we
identify these two endpoints.

In this way, we obtain a slightly smaller instance G’. Then, for every i, we
remove the ith objective to obtain w’, and recurse on G’ with only k—1 objectives
w’. This yields a approximate Pareto curves Plgp of Hamiltonian cycles of G'.
Now consider any H' € Plgp. We expand the contracted paths to obtain H.
Then we construct two tours: First, we just add Py, ., to H, which yields a
Hamiltonian cycle by construction. Second, we observe that no edge in H is
incident to u or v. We add the edge (u,v) to H as well as some more edges
such that we obtain a Hamiltonian cycle. We put the Hamiltonian cycles thus
constructed into Prsp.

We have not yet discussed the success probability. Randomness is needed for
computing the approximate Pareto curves of cycle covers and the recursive calls
of MC-MAXATSP with £ — 1 objectives. Let N be the size of the instance at
hand, and let py (N, 1/¢) is a polynomial that bounds the size of a (1 —¢) approx-
imate Pareto curve from above. Then we need at most N* - py(N, 1/¢) recursive
calls of MC-MAXATSP. In total, the number of calls of randomized algorithms
is bounded by some polynomial g (N, 1/<). We amplify the success probabilities
of these calls such that the probability is at least 1 — . Thus, the prob-

N S 12
by a union bound. Hence, the success probability of the algorithm is at least 1/2.

Instead of DECOMPOSE, we can also use RANDDECOMPOSE. We modify
RANDDECOMPOSE such that the running-time is guaranteed to be polynomial
and that there is only a small probability that RANDDECOMPOSE errs. Further-
more, we have to make the error probabilities of the cycle cover computation
as well as the recursive calls of MC-MAXATSP slightly smaller to maintain an
overall success probability of at least 1/2.

The running-time of MC-MAXATSP is polynomial in the input size and 1/¢,
which can be seen by induction on k: We have a polynomial time approximation
algorithm for £ = 1. For k& > 1, the approximate Pareto curve of cycle covers can
be computed in polynomial time, yielding a polynomial number of cycle covers.
All further computations can also be implemented to run in polynomial time
since MC-MAXATSP for k—1 runs in polynomial time by induction hypothesis.

1
2-qx(N,1/e)
ability that one such call is not successful is at most g (V, 1/¢)

Theorem 3. MC-MAXATSP is a randomized chlrl —e approximation for multi-

criteria Maz-ATSP. Its running-time is polynomial in the input size and 1/¢.

Proof. We have already discussed the error probabilities and the running-time.
Thus, it remains to consider the approximation ratio, and we can assume in
the following, that all randomized computations are successful. We prove the
theorem by induction on k. For k = 1, this follows since mono-criterion Max-
ATSP can be approximated with a factor 2/3 > 1/2.

Now assume that the theorem holds for £ — 1. We have to prove that, for
every Hamiltonian cycle H, there exists a Hamiltonian cycle H € Prgp with
w(H) > (4, —¢)- w(H). Since every Hamiltonian cycle is in particular a cycle

cover, there exists a C' € C with w(C) > (1 —¢) - w(H). Now we distinguish
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two cases. The first case is that C' consists solely of light-weight edges, i. e.,

w(e) < k}rl - w(C), then DECOMPOSE returns a collection P of paths with

w(P) > chlrl ~w(C) > (k}rl —¢) -w(H), which yields a Hamiltonian cycle H with
w(H) > w(P) > (kil —€) -w(H) as claimed.

The second case is that C' contains at least one heavy-weight edge e = (u, v).
Let (a,u), (u,b), (¢,v), and (v,d) be the edges in H that are incident to u or v.
(We may have some equalities among the vertices as shown in Figure Bl) Note
that H does not necessarily contain the edge e. We consider the corresponding
P7 p.c.q and divide the second case into two subcases.

The first subcase is that there is a j € [k] with w;(Ps, . ;) > kil ~wj(H),
i. e., at least a kil fraction of the jth objective is concentrated in Py, . ;. (We
can have j =i or j #i.) Let J C [k] be the set of such j.

We fix one j € J arbitrarily and consider the graph G’ obtained by removing
the jth obJectlve and contracting the paths (a,u,b) and (c,v,d). A fraction of

1— k41-1 = k+1 of the weight of H is left in G’ with respect to all objectives but
those in .J. Thus, G’ contains a Hamiltonian cycle H' with w,(H') > kil we(H)

for all ¢ € [k]\ J. Since (k — 1)-criteria Max-ATSP can be approximated with
a factor of 1 — ¢ by assumption, Plgp contains a Hamiltonian cycle H' with
we(H') > (; —¢) - kﬁl we(H) > (kil —€) -we(H) for all £ € [k]\ J. Together
with Py, . ;, which contributes enough weight to the objectives in J, we obtain
a Hamiltonian cycle H with w(H) > (,1, —€) - w(H), which is as claimed.
The second subcase is that w;(Py, . 4) < kil w;(H) for all j € [k]. Thus, at

least a fraction of lc+1 of the weight of H is outside of P wb,c.d- e consider the
case with the 7th objective removed. Then, with the same argument as in the first
subcase, we obtain a Hamiltonian cycle H' of G’ with we(H') > (1, —¢) cwe(H)
for all ¢ € [k] \ {¢}. To obtain a Hamiltonian cycle of G, we take the edge
e = (u,v) and connect its endpoints appropriately. (For instance, if a,b,c,d
are distinct, then we add the path (a,u,v,d) and the edge (c,b).) This yields
enough weight for the ith objective in order to obtain a Hamiltonian cycle H
with w(H) > (1, —¢) ~w(H) since w;(e) > o1 - w(0) > (1, —e) cw(H).

4.2 Multi-criteria Max-STSP

MC-MAXATSP works of course also for undirected graphs, for which it achieves
an approximation ratio of k}rl — . But we can do better for undirected graphs.

Our algorithm MC-MaXSTSP for undirected graphs (Algorithm @) starts by
computing an approximate Pareto curve of cycle covers just as MC-MAXATSP
did. Then we consider each cycle cover C' separately. If C' consists solely of light-
weight edges, then we can decompose C' using DECOMPOSE. If C' contains one
or more heavy-weight edges, then some more work has to be done than in the
case of directed graphs. The reason is that we cannot simply contract paths —
this would make the new graph G’ (and the edge weights w’) asymmetric.

So assume that a cycle cover C' € C contains a heavy-weight edge e = {u, v}.
Let 7 € [k] be such that w;(e) > w;(C)/k. In a first attempt, we remove the ith
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Prsp — MC-MaXSTSP(G, w, k, )
input: undirected complete graph G = (V,E), k > 2, edge weights w : E — NF,
e>0
output: approximate Pareto curve Prsp for k-criteria Max-TSP
1: compute a (1 — €) approximate Pareto curve C of cycle covers
2: Prsp «— 0
3: if k =2 then

4 for all C € C do

5: P «— DECOMPOSE(C, w, k)

6: add edges to P to form a Hamiltonian cycle H; add H to Prsp

7: else

8 for all cycle covers C' € C do

9: if w(e) < w(C)/k for edges e € C' then

10: P «— DECOMPOSE(C, w, k)

11: add edges to P to form a Hamiltonian cycle H; add H to Prsp
12: else

13: let ¢ € [k] and e = {u,v} € C with w;(e) > w;(C)/k

14: for all ¢ € {0,...,4k}, distinct z1,...,2¢ € V \ {u,v}, and k € [k]

do

15: U«—A{z1,...,z0,u,v}

16: obtain w’ from w by removing the jth objective

17: set w'(f) = 0 for all edges f incident to U

18: PLds « MC-MAXSTSP(G,w', k — 1,¢)

19: for all H € PYJ, do
20: remove all edges f from H with f C U to obtain H’
21: for all Hy such that H' U Hy is a Hamiltonian cycle do
22: add H' U Hy to Prsp

Algorithm 4. Approximation algorithm for k-criteria Max-STSP.

objective to obtain w’. Then we set w'(f) = 0 for all edges f incident to u or
v. We recurse with k — 1 objectives on G with edge weights w’. This yields a
tour H' on G. Now we remove all edges incident to u or v of H' and add new
edges including e. In this way, we get enough weight with respect to objective
i. Unfortunately, there is a problem if there is an objective j and an edge f
incident to u or v such that f contains almost all weight with respect to w;: We
cannot guarantee that this edge f is included in H without further modifying
H'. To cope with this problem, we do the following: In addition to u and v, we
set the weight of all edges incident to the other vertex of f to 0. Then we recurse.
Unfortunately, there may be another objective j’ that now causes problems. To
solve the whole problem, we iterate over all £ = 0,..., 4k and over all additional
vertices x1,...,x¢ # u,v. Let U = {x1,...,2¢,u,v}. We remove one objective
i € [k] to obtain w’, set the weight of all edges incident to U to 0, and recurse
with & — 1 objectives. Although the time needed to do this is exponential in k&,
we maintain polynomial running-time for fixed k.
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As in the case of directed graphs, we can make the success probability of every
randomized computation small enough to maintain a success probability of at
least 1/2.

The base case is now k = 2: In this case, every cycle cover possesses a 1/2
decomposition, and we do not have to care about heavy-weight edges. Overall,
we obtain the following result.

Theorem 4. MC-MAXSTSP is a randomized i — € approximation for
multi-criteria Max-STSP. Its running-time is polynomial in the input size
and 1/e.

5 Remarks

The analysis of the approximation ratios of our algorithms is essentially opti-
mal: Our approach can at best lead to approximation ratios of kic for some
¢ € Z. The reason is as follows: Assume that (k — 1)-criteria Max-TSP can be
approximated with a factor of 7. If we have a k-criteria instance, we have to
set the threshold for heavy-weight edges somewhere. Assume for the moment

that this threshold «j be arbitrary. Then the ratio for k-criteria Max-TSP is

min{ayg, (1 — ay) - 7,—1}. Choosing aj, = T:’jl‘j_l maximizes this ratio. Thus,
if 7,—1 = 1/T for some T, then 7, < T}:’:jrl = T}rl. We conclude that the

denominator of the approximation ratio increases by at least 1 if we go from
k—1to k.

For undirected graphs, we have obtained a ratio of roughly 1/k, which is
optimal since a4 = 1/2 implies ¢ > 0. Similarly, for directed graphs, we have a
ratio of kiIV which is also optimal since af = 1/3 implies ¢ > 1.

Due to the existence of £2(1/log k)-decompositions, we conjecture that both
k-criteria Max-STSP and k-criteria Max-ATSP can in fact be approximated with
factors of (2(1/logk). This, however, requires a different approach or at least a
new technique for heavy-weight edges.
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Abstract. Most data networks nowadays use shortest path protocols
to route the traffic. Given administrative routing lengths for the links of
the network, all data packets are sent along shortest paths with respect
to these lengths from their source to their destination.

In this paper, we present an integer programming algorithm for the
minimum congestion unsplittable shortest path routing problem, which
arises in the operational planning of such networks. Given a capacitated
directed graph and a set of communication demands, the goal is to find
routing lengths that define a unique shortest path for each demand and
minimize the maximum congestion over all links in the resulting routing.
We illustrate the general decomposition approach our algorithm is based
on, present the integer and linear programming models used to solve the
master and the client problem, and discuss the most important imple-
mentational aspects. Finally, we report computational results for various
benchmark problems, which demonstrate the efficiency of our algorithm.

Keywords: Shortest Path Routing, Integer Programming.

1 Introduction

In this paper, we present an integer programming algorithm to optimize the
routing in communication networks based on shortest path routing protocols
such as OSPF [22] or IS-IS [16], which are widely used in the Internet. With
these routing protocols, all end-to-end traffic streams are routed along shortest
paths with respect to some administrative link lengths (or routing weights),
that form the so-called routing metric. Finding a routing metric that induces
a set of globally efficient end-to-end routing paths is a major difficulty in such
networks. The shortest path routing paradigm enforces rather complicated and
subtle interdependencies among the paths that comprise a valid routing. The
routing paths can be controlled only jointly and only indirectly via the link
lengths. In this paper, we consider the unsplittable shortest path routing variant,
where the lengths must be chosen such that the shortest paths are unique and
each traffic stream is sent unsplit via its single shortest path.

One of the most important operational planning tasks in such networks is traf-
fic engineering. Its goal is to improve the service quality in the existing network

D. Halperin and K. Mechlhorn (Eds.): ESA 2008, LNCS 5193, pp. 198204, 2008.
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by (re-)optimizing the routing of the traffic, but leaving the network topology
and hardware configuration unchanged. Mathematically, this can be formulated
as the minimum congestion unsplittable shortest path routing problem (MIN-
CoN-USPR). The problem input consists of a digraph D = (V, A) with arc
capacities ¢, € Z for all a € A, and a set of directed commodities K C V x V
with demand values ds¢ € Z for all (s,t) € K. A feasible solution is an unsplit-
table shortest path routing (USPR) of the commodities, i.e., a metric of link
lengths w, € Z, a € A, that induce a unique shortest (s, t)-path for each com-
modity (s,t) € K. Each commodity’s demand is sent unsplit along its shortest
path. The objective is to minimize the maximum congestion (i.e., the flow to
capacity ratio) over all arcs. The maximum congestion is a good measure and
typically used as a key indicator for the overall network service quality.

Due to their great practical relevance, shortest path routing problems have
been studied quite intensively in the last decade. Ben-Ameur and Gourdin [3],
Brostrom and Holmberg [1314] studied the combinatorial properties of path sets
that correspond to shortest (multi-)path routings and devised linear program-
ming models to find lengths that induce a set of presumed shortest paths (or
prove that no such lengths exist). Bley [5l9], on the other hand, showed that
finding a smallest shortest-path conflict in a set of presumed shortest paths or
the smallest integer lengths inducing these paths is A"P-hard. Bley [6/7] also
proved that MIN-CON-USPR is inapproximable within a factor of Q(|V[*~¢)
for any € > 0, presented examples where the smallest link congestion that can
be obtained with unsplittable shortest path routing exceeds the congestion that
can be obtained with multicommodity flow or unsplittable flow routing by a
factor of £2(|V|?), and proposed polynomial time approximation algorithms for
several special cases of MIN-CON-USPR and related network design problems.
The minimum congestion shortest multi-path routing problem has been shown
to be inapproximable within a factor less than 3/2 by Fortz and Thorup [I§].

Various approaches for the solution of network design and routing problems in
shortest path networks have been proposed. Algorithms using local search, sim-
ulated annealing, or Lagrangian relaxation techniques with the routing lengths
as primary decision variables are presented in [ATOTSIT7IIS], for example. These
length-based methods work well for shortest multi-path routing problems, where
traffic may be split among several equally long shortest paths, but they often
produce only suboptimal solutions for hard unsplittable shortest path routing
problems. As they deliver no or only weak quality guarantees, they cannot guar-
antee to find provenly optimal solutions.

Using mixed integer programming formulations that contain variables for the
routing lengths as well as for the resulting shortest paths and traffic flows, short-
est path routing problems can — in principle — be solved to optimality. Formula-
tions of this type are discussed in [TO[T924)26/29], for example. Unfortunately,
the relation between the shortest paths and the routing length always leads to
quadratic or very large big-M models, which are computationally extremely hard
and not suitable for practical problems.
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In this paper, we present an integer programming algorithm that decomposes
the routing problem into the two tasks of first finding the optimal end-to-end
routing paths and then, secondly, finding a routing metric that induce these
paths. As we will show, this approach permits the solution of real-world prob-
lems. An implementation of this algorithm [ITI9] is used successfully in the plan-
ning of the German national education and research network for several years.
Variants of this decomposition approach for shortest multi-path and shortest
path multicast routing problems are discussed in [T2[20[27I28/29].

The remainder of this paper is organized as follows. In Section 2] we formally
define the problem addressed in this paper and introduce the basic notion and
notation. The overall decomposition algorithm, the integer and linear program-
ming models and sub-algorithms used for the solution of the master and the client
problem, and the most important aspects of our implementation are described
in Section [Bl In Section @l we finally report on numerical results obtained with
this algorithm for numerous real-world and benchmark problems and illustrate
the relevance of optimizing the routing in practice.

2 Notation and Preliminaries

Let D = (V, A) be a directed graph with arc capacities ¢, € Z for all a € A and
let K CV xV be a set of directed commodities with demand values dy; € Z
for all (s,t) € K. A metric w = (w,) € Z* of arc lengths is said to define an
unsplittable shortest path routing (USPR) for the commodities K, if the shortest
(s,t)-path P¥ with respect to w is uniquely determined for each commodity
(s,t) € K. The demand of each commodity is routed unsplit along the respective
shortest path. For a metric w that defines such an USPR, the total flow through

an arc a € A then is
Ja(w) = E dst . (1)
(s,t)eK:acPr (W)

The task in the minimum congestion unsplittable shortest path routing problem
MIN-CON-USPR is to find a metric w € Z4 that defines an USPR for the given
commodity set K and minimizes the maximum congestion L := max{ f,(w)/c, :
a€ A}

Before presenting of our algorithm, we need to introduce some further nota-
tion. We say that a metric w is compatible with a set P of end-to-end routing
paths, if each path P € P is the unique shortest path between its terminals with
respect to w. A metric w is said to be compatible with set of node-arc pairs
F CV x A, if arc a is on a unique shortest path towards ¢ for all (¢,a) € F. If
there exists such a metric, we say that the set F' is a valid unique shortest path
forwarding (USPF), otherwise we call it an (USPF-) conflict. One easily verifies
that a metric is compatible with a path set P if and only if it is compatible with
the set of node-arc pairs I := |Jpp{(t,a) : t is destination of P, a € P}.

Clearly, any subset (including the empty set) of an USPF is an USPF as well.
Hence, the family of all USPF in the digraph D forms an independence system
(or hereditary family) Z C 2V*4. The circuits of this independence system are
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exactly the irreducible conflicts. The family of all irreducible conflicts is denoted
by C C 2V >4,

In general, these set families can be extremely complex and computationally
intractable [9]. Given an arbitrary set F' C V x A, the smallest conflict (with
respect to the number of node-arc pairs) in F' may be arbitrarily large and even
approximating its size within a factor less than 7/6 is N"P-hard. Approximating
the size of the largest valid USPF in F' within a factor less than 8/7 is AP-hard
as well. However, one can decide in polynomial time whether or not a given set
F CV x Ais a valid USPF and, depending on that, either find a compatible
metric or some (not necessarily minimal) irreducible conflict in F', which is the
foundation of the algorithm described in this paper.

3 Integer Programming Algorithm

Similar to Bender’s decomposition, our algorithm decomposes the problem of
finding an optimal shortest path routing into the master problem of finding the
optimal end-to-end paths and the client problem of finding compatible routing
lengths for these paths.

The master problem is formulated as an integer linear program and solved
with a branch-and-cut algorithm. Instead of using routing weight variables, the
underlying formulation contains special inequalities to exclude routing path con-
figurations that are no valid unsplittable shortest path routings. These inequal-
ities are generated dynamically as cutting planes by the client problem during
the execution or the branch-and-cut algorithm.

Given a set of routing paths computed by the master problem’s branch-and-
cut algorithm, the client problem then is to find a metric of routing lengths that
induce exactly these paths. As we will see in Section[3.2] this problem can be for-
mulated and solved as a linear program. If the given paths indeed form a valid
shortest path routing, the solution of this linear program yields a compatible
metric. If the given paths do not form a valid unsplittable shortest path routing,
the client linear program is infeasible. In this case, the given routing paths con-
tain a conflict that must not occur in any admissible shortest path routing. This
conflict, which can be derived from the dual solution of the infeasible client linear
program, then can be turned into an inequality for the master problem, which is
valid for all admissible shortest path routings, but violated by the current rout-
ing. Adding this inequality to the master problem, we then cut off the current
non-admissible routing and proceed with the master branch-and-cut algorithm
to compute another candidate routing.

3.1 Master Problem

There are several ways to formulate the master problem of MiN-CON-USPR
as a mixed integer program. For notational simplicity, we present a variation of
the disaggregated arc-routing formulation used in our algorithm, which contains
additional artificial variables that describe the unique shortest path forwarding
defined by the routing.
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The primary decision variables used in this formulation are the variables x! €
{0,1} for all (s,t) € K and a € A. These variables describe which arcs are
contained in the routing paths. Variable 25! is supposed to be 1 if and only if
arc a is contained in the routing path for commodity (s,t¢). A single variable
L € R represents the maximum congestion that is attained by the routing. The
additional artificial variables y! € {0,1} for all t € V and a € A describe the
forwarding defined by the routing paths. Variable y! is supposed to be 1 if there
is a routing path towards ¢ that contains arc a. With these variables the master
problem of MIN-CON-USPR can be formulated as follows:

min L (2a)
-1 ifv=s
s.t. szt—fof: 1 ifv=t (s,t) e K,veV (2b)
acbdt(v) acéd—(v) 0 else
Z detat < e, L ac A (2¢)
(s,t)eK
st <yt (s,t) e K,ac A (2d)
Z o <1 teV,veV (2e)
a€ét (v)

dova<I0l—1 Cec (26)

(a,t)eC
5t € {0,1} (s,t) e K,ac A (2g)
L>0. (2h)

Subproblem (Zal)-([2d) together with the integrality and non-negativity con-
straints and (L) is a standard arc-routing formulation for the unsplittable
multicommodity flow problem, whose objective is to minimize the congestion L.

Inequalities (2d) force the artificial variables y! to be (at least) 1 for all arcs
a that are contained in some routing path towards destination ¢. Together with
the out-degree constraints (Z€) this ensures that, for each destination ¢ € V', the
routing paths towards ¢ form an anti-arborescence (a reversely oriented tree).
This is clearly necessary for the paths in any valid unsplittable shortest path
routing.

Constraints (1) finally ensure that no integer solution of (@) contains all node-
arc pairs of any (irreducible) USPF-conflict C' € C. As the irreducible conflicts
are exactly the circuits of the independence system formed by all valid unique
shortest path forwarding, this implies that the artificial variables y’, describe a
valid USPF. Consequently, the routing given by any integer feasible solution of
@) is a valid unsplittable shortest path routing. In general, the number of these
conflict constraints f) can be exponentially large. They are separated via the
client problem during the branch-and-cut solution process.

Note that the model contains no explicit constraints forcing the artificial vari-
ables y! to attain only values 0 or 1. These constrains are not necessary. Any
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solution (x,y, L) with z5* € {0,1} for all (s,t) € K and a € A can be easily
turned into an equivalent solution with yf € {0,1} for all t € V and a € A by
setting y¢ := max{z' : s with (s,t) € K} for all ¢ and a.

3.2 Client Problem

Now suppose we are given an integer solution (x,y, L) of formulation (&) or, more
precisely, of a subsystem of (2] containing only some of the conflict constraints
1) so far.

Let F be the presumed unique shortest path forwarding given by this solution,
ie., FF={(t,a):y, =1}. Our goal in the client problem is to find a compatible
metric w for F. However, if the given solution (x,y,L) violates some of the
conflict constraints (21 that have not yet been added to the master formulation,
such a metric does not exist. In this case, the task is to generate one of these
violated inequalities.

The first part of this problem can be solved with linear programming tech-
niques. A number of alternative formulations for this so-called inverse shortest
paths problem (ISP) have been proposed in the literature [3I25]. In the following,
we present the aggregated formulation used in our algorithm together with the
arc-routing formulation for the master problem.

Let F be the given presumed unique shortest path forwarding. For each pair
(t,a) € F, arc a = (u,v) is assumed to be on a unique shortest path from u to ¢.
Hence, the arcs a’ € 6 (u)\{a} must not be on any shortest (u, t)-path. The set of
all implied non shortest path node-arc pairs is F' = U(t)(u’v))eF(éJr(u) \{(u,v)}):
For each pair (¢,a) € F, arc a = (u,v) must not be on a shortest path from u to
t. (Note that we cannot simply assume ' = V x A\ F, because F not necessarily
prescribes the shortest paths between all node pairs. Arcs that are not relevant
for the routing of the given commodities may or may not be on shortest paths.)

Our formulation of the inverse shortest paths problem uses a variable w, € Z
for the length of each arc a € A and a variable v} € R for the potential of each
node v € V with respect to each destination ¢t € V and the metric w. (If r! = 0,
the smallest possible potential 7! of node v is exactly the distance from v to ¢
with respect to the arc lengths w,.) With these variables, the inverse shortest
paths problem for the given forwarding F', can be formulated as follows:

min = Wpyax (3a)

St Wiy — T 1 =0 (t, (u,v)) € F (3b)
Wiy —Th + 75 >1 (t, (u,v)) € F (3¢)
Wiy —Th 75 >0 (t, (u,v)) € (V x A)\ F\ F (3d)

1 < wy < Wiax ac A (3e)

rt e R teV,veV (3f)

We € 7 a€A. (3g)

Constraints (BH),([3d), and (B€) ensure that the lengths w, in any solution of (B)

form a compatible metric for the given forwarding F'. The term w,, ) — rt +rl
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is the difference between the length of the shortest path starting in node wu,
passing through arc (u,v), and ending in node ¢, and the distance from node v
to node t. This difference must be 0 for all arcs (u,v) that are on a shortest path
and strictly greater than 0 for all arcs that must not be on a shortest path, as
expressed in constraints ([BD) and ([Bd). For all remaining arcs it must be non-
negative. Formulation (B]) has a solution if and only if there exist a compatible
metric for the given forwarding F'. Furthermore, there is a compatible metric
with lengths in the range {1,2,..., M} if and only if the optimal solution value
Wmax Oof formulation (@) is less or equal to M.

Note that formulation (B]) is an integer program and may be computationally
hard. In fact, Bley [8] proved that it is already NP-hard to approximate its
optimum value within a factor less than 9/8 in general.

In our algorithm, we solve the linear relaxation of (@) in a first step and scale
and round its optimal fractional solution to an integer feasible solution of (&)
afterwards. It is not difficult to verify that the integer program (B]) has a solution
if and only if its linear relaxation has. Using the rounding scheme proposed by
Ben-Ameur and Gourdin [3], we obtain lengths that exceed the minimal ones
by a factor of at most min (|V|/2, | Ppax|), where Pyax is the longest prescribed
shortest path. For practically relevant network sizes, the weights computed with
this approximate method easily fit into the admissible range of all modern rout-
ing protocols. So, we can safely ignore the integrality constraint in practice.

If the linear relaxation of (@) is infeasible, then the given solution (x,y,L)
of the (incomplete) master formulation is not a valid routing. In this case, the
presumed forwarding F' is no valid unsplittable shortest path forwarding. It
contains at least one (irreducible) conflict C' € C, whose corresponding inequality
1) is violated by the given solution (x,y, L). To find one of these conflicts, we
iteratively try to remove each node-arc pair from F'. In each iteration, we remove
one pair (t,a) from F, update the set F' of implied non-shortest path node-arc
pairs, and solve the corresponding linear relaxation of (). If this linear program
remains infeasible, we remove the pair (¢,a) permanently from F. Otherwise,
we reinsert it into F' and keep it permanently. If no more node-arc pair can be
removed, the remaining set I’ defines an irreducible conflict, whose corresponding
conflict inequality 1) for C' = F is violated by the given solution (x,y,L). In
our implementation, we improved the practical performance of this procedure
significantly by removing initially all those pairs (¢, (u,v)) from F, for which
the dual variables of the corresponding constraint (BH]) and the dual variables
of all constraints ([Bd) implied by (¢, (u,v)) € F are 0. If these constraints are
not active in the infeasible subsystem of (B]), there is at least one (irreducible)
conflict that is not related to the fact that (¢, (u,v)) € F.

Note that this iterative method finds an irreducible conflict inequality (&), but
not necessarily the most violated one. Finding the most violated such inequal-
ity is A"P-hard, even if the given solution of the master problem is integer [9].
Furthermore, note that this approach solves the separation problem over the
conflict inequalities (2I) only for integer solutions (x,y, L). For fractional so-
lutions (x,y, L), the presumed forwarding F is not well-defined. A separation
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heuristic based on an approximate integer programming model of the separation
problem (for shortest multi-path routings), which can be applied for fractional
solutions, has been proposed by Tomaszewski et al. [28]. Also, several subclasses

of (1) can be separated in polynomial time; see [QTTIT3ITZ2RI29].

3.3 Implementation

From the theoretical point of view, the branch-and-cut approach presented above
seems not very attractive. The integrality gap of the integer programming formu-
lation (@) can be very large and the separation of the conflict inequalities (21) is
NP-hard for fractional solutions of (2]). Nevertheless, implemented carefully this
approach works surprisingly well in practice. In the following, we briefly discuss
the most important aspects of our implementation of this algorithm. Further
details, including a description of all used cutting planes and separation algo-
rithms, of the specially tailored branching schemes, and of the problem-specific
primal heuristics, can be found in [9].

In our implementation, the initial formulation of the master problem con-
tains only the arc-routing variables x5!, the congestion variable L, and the flow
conservation and capacity constraints (L) and 2d). All other constraints are
separated. The degree constraints (2€]) are separated by a simple enumerative
algorithm searching through all node pairs t,v € V. The conflict constraints (1)
are separated via the solution of the client problem as described in the previous
section. However, the artificial variables y! involved in these constraints and the
linking constraints (2d)) are not generated explicitly. Instead, we assume

y! = max{zs" : s with (s,t) € K} forallt € V and a € A, (4)

disaggregate each of the inequalities (2e) and &) into an equivalent set of in-
equalities on the arc-routing variables 25! instead of the forwarding variables
yy, and separate over the set of these disaggregated inequalities. This is done by
applying the separation algorithms for the original inequalities to the values y§
defined as in ). If a violated inequality is found, each variable y¢ in this in-
equality is replaced by a variable z5' = argmax{z:' : s with (s,t) € K}, which
yields one of the most violated disaggregated inequalities corresponding to the
violated original inequality.

At each node of the master problem’s branch-and-bound tree we solve the
current LP relaxation and separate violated out-degree constraint and several
other classes of inequalities.

Analogous to the out-degree inequalities (Ze]), which ensure that the rout-
ing paths towards each destination ¢ form an anti-arborescence, we also sep-
arate in-degree inequalities, which ensure that the routing paths emanating
from each source s form an arborescence. With the implicit, artificial variables
25 = max{xs! : t with (s,t) € K} for all s € V and a € A, these inequalities
can be easily formulated as

Z 2z <1 v,seV . (5)
a€d—(v)
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Using the same disaggregation approach as for the out-degree constraints, we
separate the disaggregated version of these inequalities with a simple enumera-
tive algorithm.

Numerous types of valid inequalities can be derived from the so-called Bellman
property (or subpath consistency) of shortest path routings. This property basi-
cally says the following: If both terminals s; and ¢ of a commodity (s1,¢1) € K
are contained in the routing path of another commodity (s2,t2) € K, then the
routing path of commodity (s1,t1) must be a subpath of commodity (ss,2).
Otherwise there is no metric such that the two different (sub-)paths between sq
and t; are both unique shortest paths. In our algorithm, we use the following
three types of inequalities that are implied by the Bellman property:

zst —ait Y @t <1 (s,),(s,v) €K, a€ A, (6)
e€d— (v)

W Y sl (eneKacd, ()
e€s— (v)

e S LALEL) 1§ Z 22 <0 (s,0),(v,t),(s,t) e K,ae A. (8)
ecd (v)

Although in general none of these inequalities is facet-defining for the polytope
associated with (), they all proved to be very useful in practice. In our imple-
mentation, we separate over each of these three classes with a straightforward
enumerative algorithm.

In addition to these inequalities, which describe the valid routing path pat-
terns independent of the given traffic demands and link capacities, our algorithm
also uses cutting planes that are based on the resulting traffic flows and the
link capacities. In practice, induced cover inequalities based on the precedence
constrained knapsacks defined by a single arc capacity constraint (2d) and the
subpath consistency among the paths across that arc proved to be very effective.
Due to the space limitations in this extended abstract, we cannot discuss these
inequalities here. A detailed description of these inequalities and the heuristic
separation methods used in our algorithm is given in [9].

Whenever an integer solution candidate for the (incomplete) master formu-
lation is found, we must solve the client problem to decide whether or not it
defines a valid unsplittable shortest path routing and to find a compatible met-
ric or a violated conflict inequality ). In our implementation, we solve the
client problem not only for the fully integer solutions at the leaves of the mas-
ter problem’s branch-and-bound tree, but also for non-integer solutions arising
within the branch-and-bound tree. In practice, this modification drastically re-
duced the running time of the overall algorithm.

At each node of the master problem’s branch and bound tree, we consider the
potential forwarding F' C V x A defined by the integer and near integer routing
variables. In our implementation, we let F' := {(t,a) : y’, > 0.8}. We solve the
client problem whenever this presumed forwarding differs from the one at the
parent node in the branch-and-bound tree by more than two node-arc pairs, if
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Table 1. Computational results for SNDIib problems

Problem  Nodes Links Demands LP LB  Sol Nodes Gap (%) Time (s)

Atlanta 15 22 210 0.65 0.86 0.86 30 0.0 10.3
Dfn-bwin 10 45 90 0.34 0.69 0.69 89 0.0 26.5
Dfn-gwin 11 21 110 0.50 0.51 0.51 521 0.0 16.3
Di-yuan 11 42 22 0.25 0.62 0.62 33 0.0 1.8
France 25 45 300 0.60 0.71 0.74 76 5.0 10000.0
Germany5b0 50 88 662 0.64 0.64 0.73 56 12.7 10000.0
NewYork 16 49 240 0.44 0.62 0.62 15 0.0 54.9
Nobel-EU 28 41 378 0.44 0.44 0.45 75 0.3 10000.0
Nobel-GER 17 26 121 0.64 0.73 0.73 101 0.0 114.1
Nobel-US 14 21 91 0.48 049 0.49 T 0.0 20.4
Norway 27 51 702 0.54 0.54 0.62 99 14.9 10000.0
PDH 11 34 24 0.34 0.80 0.80 85 0.0 6.37
Polska 12 18 66 0.82 0.93 0.93 2149 0.0 200.2
TA1 24 55 396 0.30 0.93 0.93 11 0.0 289.2

the depth of the current node in the branch-and-bound is 2 for some k € Z,
or if all arc-routing variables are integer. If the linear relaxation of the client
problem (@) is feasible for this forwarding F', the computed link lengths define a
heuristic solution for the MIN-CON-USPR problem, which may improve on the
best known solution. Otherwise, if a violated conflict inequality @) is found,
this inequality may cut off the entire invalid branch at the current node in the
branch-and-bound tree.

4 Results

The presented algorithm has been implemented as part of the network optimiza-
tion library DISCNET [2]. The data structures and algorithms are based on the
standard c++ library and LEDA [I], the linear programs arising in the solution
process are solved with CPLEX 11.0 [21I]. The master problem’s branch-and-cut
framework and all separation procedures are implemented directly in c++.
Table [l shows computational results for a collection of benchmark problems
taken from the Survivable Network Design Library [23]. All computations were
performed on an Intel Pentium 4 machine with 2.66 GHz and 4 GB RAM run-
ning Linux 2.6. The algorithm was run with a total CPU time limit of 10,000
seconds on each problem instance. The underlying networks are bidirectional and
have the same capacity for both directions of all links. The numbers of nodes,
bidirected links and non-zero traffic demands are shown in the first columns of
Table [l Column LP shows the lower bound obtained by solving the initial lin-
ear relaxation of (@) at the root node of the master problem’s branch-and-bound
tree. The columns LB and Sol show the best proven lower bound and the best
solution value found by our algorithm within the given time limit. The remain-
ing columns show the number of explored branch-and-bound nodes, the residual
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optimality gap, and the total CPU time until either optimality was proven or
the time limit was exceeded.

The results show that our algorithm can be used to solve real-world size prob-
lems. All small and medium size instances have been solved optimally within
seconds or minutes. For large problems optimality cannot always be achieved.
Instances with dense networks and lots of potential routing paths for most de-
mand pairs are more difficult than those where the underlying networks are fairly
sparse. For instances with dense networks, lots of violated conflict constraints
are separated during the execution of the algorithms, which often drastically
slows down the solution of the linear relaxation. For the most difficult problems,
only few branch-and-bound nodes could be explored. Yet, even for those prob-
lem that could not be solved to optimality, our algorithm always found better
solutions than length-based heuristic and Lagrangian approaches. Our algorithm
also clearly outperforms all other integer programming approaches presented in
the literature so far, which typically even fail to achieve gaps below 30% for
networks larger than 10 nodes.
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Abstract. We devise the first constant-approximate feasibility test for sporadic
multiprocessor real-time scheduling. We give an algorithm that, given a task sys-
tem and € > 0, correctly decides either that the task system can be scheduled
using the earliest deadline first algorithm on m speed-(2 — 1/m + €) machines,
or that the system is infeasible for m speed-1 machines. The running time of the
algorithm is polynomial in the size of the task system and 1/€. We also provide
an improved bound trading off speed for additional machines.

Our analysis relies on a new concept for counting the workload of an interval,
that might also turn useful for analyzing other types of task systems.

1 Introduction

We study the problem of scheduling recurring processes, or tasks, on a multiprocessor
platform. An instance of the problem is given by a finite set / of tasks, which need to be
executed by the system; each task generates a possibly infinite sequence of jobs. In the
following we denote by n the cardinality of /.

In the periodic version of the problem, a task 7, T € I, is characterized by a quadruple
of positive numbers: an offset o; that represents the time instant when the first job
generated by the task is released, a processing time c¢, a relative deadline D; and a
period T;. Each occurrence of task 7 is represented by a job: the k-th occurrence of
task 7 is released at time o¢ + (k — 1) T, requires at most ¢ units of processor time and
must complete its execution before time o7 + (k— 1)T; + D¢. Note that a task defines an
infinite sequence of jobs, but a given set of tasks generates exactly one job sequence.

In the sporadic case, each task is characterized by a triple (cr, Dz, Tr) where c¢, D¢
have the same meaning as in the periodic case, while 7; denotes the minimum time
interval between successive occurrences of the task. Note that in a sporadic task system
the time instant when the next invocation of a task will be released after the minimal
separation time has elapsed is unknown. Therefore, a given set of tasks can generate
infinitely many sequences of jobs.

The correctness of a hard-real-time system requires that all jobs complete by their
deadlines. A periodic (sporadic) task system is feasible if there is a feasible schedule for
any possible sequence of jobs that is consistent with the period, deadline, and worst-case
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execution time constraints of the task system, and it is schedulable by a given algorithm
if the algorithm finds a feasible schedule for every such sequence of jobs. In the sequel
we focus on preemptive scheduling algorithms that are allowed to interrupt the execution
of a job and resume it later.

Given a scheduling algorithm A, a schedulability test for A is an algorithm that takes
as input a description of a task system and answers whether the system is schedulable
by A or not. A schedulability test is exact if it correctly identifies all schedulable and
unschedulable task systems and it is sufficient if it correctly identifies all unschedulable
task systems, but may give a wrong answer for schedulable task systems. A sufficient
schedulability test that can verify whether a given job set is schedulable is a natural
requirement for a scheduling algorithm that must be used in hard-deadline real-time
applications. In fact, from a practical point of view, there is no difference between a
task system that is not schedulable and one that cannot be proven to be schedulable.

In the case of a single machine, the problem has been widely studied and effective
scheduling algorithms are well understood [SUTT]. In this paper we study scheduling
algorithm for sporadic task systems on parallel machines. The problem is not only in-
teresting from a theoretical point of view but is also relevant in practice. In fact, real-
time multiprocessor systems are becoming common: there are single-chip architectures,
characterized by a small number of processors and large-scale signal-processing sys-
tems with many processing units.

Related work
There is an extensive literature on real-time scheduling. We limit the following discus-
sion to the results that are more relevant to our work.

Single machine scheduling. In the case of a single machine it is known that
the earliest deadline first scheduling algorithm (EDF), which at each instant in time
schedules the available job with the smallest deadline (with ties broken arbitrarily), is
an optimal scheduling algorithm for scheduling a periodic (or sporadic) task system
in the following sense: if it is possible to preemptively schedule a given collection of
independent jobs such that all the jobs meet their deadlines, then the schedule generated
by EDF for this collection of jobs will meet all deadlines as well. Despite this positive
result, we remark that the feasibility test for periodic task systems, although solvable in
exponential time, is strongly co-NP-hard even in special cases [510].

Approximate feasibility tests have been proposed that allow the design of efficient
feasibility tests (e.g. running in polynomial time) while introducing a small error in the
decision process, that is controlled by an accuracy parameter. Such approaches have
been developed for EDF scheduling and for other scheduling algorithms.

Two different paradigms can be used to define approximate feasibility tests: pes-
simistic and optimistic. If a pessimistic feasibility test returns “feasible”, then the task
set is guaranteed to be feasible. If the test returns “infeasible”, the task set is guaranteed
to be infeasible on a slower processor, of computing capacity (1 — €), where € denotes
the approximation guaranteed.

If an optimistic test returns “feasible”, then the task set is guaranteed to be feasible
on a (14 €)-speed processor. If the test returns “infeasible”, the task set is guaranteed
to be infeasible on a unit-speed processor [6]].
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Fully polynomial-time approximation schemes (FPTAS) are known for a single
processor; in fact for any € > 0O there exists a feasibility test that returns an &-
approximation; the running time of the algorithm is polynomial in the number of tasks
and in 1/€ (see for example and references therein).

Finally we observe that, in the case of one processor, the sporadic feasibility problem
is known to reduce to a special case of the periodic problem, where all tasks have offset
0 (i.e. each task releases its first job at time zero).

Multiple machine scheduling. We first observe that in the multiprocessor case the
previous analogy between sporadic and periodic problems is not true.

Regarding the analysis of EDF, it is known [[12] that any feasible task system on
m machines of unit capacity is EDF-schedulable on m machines of speed 2 — 1/m.
This result holds for EDF and other policies and has not been improved since then.
Subsequent work has analyzed the advantage of trading speed for machines [9], while
further work on conditions for the schedulability of EDF has been done by Baker [3]].

Note that the result of [12] does not imply an efficient test for deciding when EDF
(possibly with extra speed) can schedule a sporadic task system. Thus, the main open
problem in order to apply the result of Phillips et al. is the lack of a feasibility test.

The problem has attracted a lot of attention in recent years (see e.g. [4] and refer-
ences therein for a thoroughly presentation). A number of special cases have also been
studied; for example, when for each task the deadline is equal to the period (implicit-
deadline task systems), it has been shown that

Crt Ct
Y, ¥ <m and max

el 1t tel I

<1

gives a necessary and sufficient test for feasibility of the system.
However, not much was known regarding the feasibility of an arbitrary-deadline task
system. A sufficient test in this case is given by

Ct Ct

Yy <m and max . <1,

& min(D¢, Tr) tel min(Dz, T;)
but this test is far from approximating a necessary condition, i.e., it does not provide a
good approximate feasibility test in general (it is not hard to see that there exist feasible
task systems for which ¥ ;c; ¢z/ min(Dz, T;) can be Q(mlogm)).

To the best of our knowledge, no better bound is known. We refer the reader to the

survey [4] for feasibility tests that are known for other special cases.

Our Contribution
We give the first constant-approximate feasibility test for sporadic multiprocessor real-
time scheduling. Namely, we give a test that, given a sporadic multiprocessor instance
I, decides whether it can be scheduled by EDF on m speed-(2 — 1/m + €) machines,
or shows that the instance violates at least one of three basic conditions, which are
necessary for schedulability on m speed-1-machines. In fact we give a slightly stronger
result, allowing to trade some extra speed for extra machines. Note, that in general extra
machines are less powerful than extra speed.

Two of the basic conditions are trivial. The third condition is new and provides
a lower bound on the processing requirement of an interval. We call it the forward
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forced demand. This concept is strong enough to approximately capture the feasibility
of scheduling a sporadic task system on a multiprocessor platform; however it is simple
enough to be approximated in polynomial time up to an arbitrarily small € > 0: in Sec-
tion ] we give an algorithm that checks the third condition in time polynomial in the
input size of I and 1/¢, for any desired error bound € > 0.

2 The Model

An instance is a finite set of tasks 1. Each task 7 € [ is a triple of positive numbers,
namely, a processing time cz, a relative deadline D; and a period or minimal separation
time 7;. Every job j belongs to a task 7;, and has a release date r; > 0. We write
cj:=cj,andD;:=D;j ,and T; :=T;_, and we call d; := r; + D the (absolute) deadline
of j. We assume D, ¢, Ty € N.

A (sporadic) job sequence R of an instance [ is an arbitrary, countable set of jobs, all
belonging to tasks in /, with the following property: Any pair of distinct jobs j and k
belonging to the same task 7 satisfies |[r; — x| > Tx.

A feasible schedule for a job sequence R on m machines is a set of measurable
functions S; : R™ — {0,...,m}, one function for each job j € R, satisfying:

Everything is scheduled: Vj € R:c; =37, \Sj_l(p)|.
Deadlines and release dates are respected: Vj € R: J},_ S71(p) C [rj,d)).
Each machine processes at most one job at a time: Vp € {1,...,m} :Vj £ gE€R:

S (p)nSg(p) =0.
Jobs of the same task are not scheduled in parallel:

m
Vi#geR:t=1=JS " (p)n JS, ' (p)=0.
p=1 p=1

No job is processed by two machines at the same time:

VjieRNp#£qge{l,....m} :Sj_l(p)ﬂSj_l(q) =0.

Preemption and migration of jobs are explicitly allowed.
Given a real number x we denote by x ™ its positive part, that is x* := max (x,0).

3 A Feasibility Test

Definition 1. Consider a job j with release date r;, absolute deadline d;, and process-
ing time c; satisfying dj > rj+c;j (i.e., for its task we have Dy; > c1;). For a non-empty
interval A = [t,t") with dj € A, we call

FGA) = (cj= (=)
the forward forced demand of j in A.

Note that, for a job j and an interval A such that both deadline and release date lie in
the interval (that is, 7j,d; € A), the forward forced demand equals the processing time
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of the job (f(j,A) = ¢;). If ¢z < T; for all tasks 7, then each pair of an interval A and a
task T can have at most one job j; with release date outside the interval (r;, ¢ A) that
has positive forward forced demand (f(jz,A) > 0) in the interval.

Definition 2. For a job sequence R of an instance I the necessary demand NDg(A)
of a non-empty interval A is the sum of the forward forced demands of all jobs with
absolute deadline in A. We use NDg(A,T) to denote the part of the necessary demand
originating only from jobs of task T. We write ND(A) and ND(A, 1) when the sequence
R is clear from the context.

Observe that any algorithm working on any number of speed-1 machines must schedule
in an interval at least the necessary demand of that interval.

We use the notation EDF(,,,, ) to denote the scheduling algorithm EDF executed
on (m+ W) speed-c machines, where ties can be broken arbitrarily.

Definition 3. Given an instance I and a job sequence R. For a point in time t, a task
T, and a scheduling algorithm A, an interval A = [t’ ,1) is called t-A-busy before ¢,
if executing the algorithm A on the sequence R yields for every point in A a positive
remaining processing time for at least one of the jobs of task t.

Observe that the maximal 7-A-busy interval before ¢ is unique, well defined, and starts
with the release date of some job of 7, unless it is empty. Moreover, all demand from
T-jobs released before some maximal 7-A-busy interval A is processed by A strictly
before A.

Theorem 1. Let ¢ > 1. Given an instance I which satisfies c; < Ty and ¢; < D¢ for

all tasks t. If there is some job sequence R which cannot be scheduled by EDF ., ),
then there is an interval A such that NDgr(A)/|A| > (m+u)(c—1)+ 1.

Before giving the formal, slightly involved proof we convey the main intuitions. Know-
ing that EDF,, ; 5 fails, we will inductively construct an interval with high load. The
interval will be composed of several subintervals. To each subinterval we associate a
task such that the subinterval is EDF-busy for that task. Whenever EDF does not pro-
cess a job of that task in the subinterval, it must have all machines busy. In order to
conclude that the load of the whole interval is large, we must establish two things: First,
that the fraction of a subinterval, in which its associated task is processed, is small, i.e.,
in a large part of the subinterval all machines must be busy. Second, everything pro-
cessed in those busy subintervals is part of the necessary demand of the whole interval.

Proof. From now on we assume that R is a job sequence which cannot be scheduled by
EDF(,, 1 ;1.0). and that 7y is the first point in time when EDF,, , , 5 fails a deadline.

We define inductively a finite sequence of pairs, comprised of a time #; and a job j;,
for 1 <i < z. For convenience define A; := [t;,7) and A; := [f;,;_1 ). Also the following
notation for the work that EDF(,,, |, ) does for a job j in a certain measurable subset S
of R* will be helpful: EDF,,, ; 5)(/,S). To shorten we use m' := (m+u)(c —1)+1.

For each pair (1, j;) we define two subsets of the interval A;, namely X; and Y;. The
first subset X; is the set of points in time between #; and #;_; when a job of task 7, is
processed. Due to the way EDF(,,,,, 5) schedules, X; is a finite union of intervals. The
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other subset is its complement in the interval: ¥; := A; \ X;. Further, we set x; := |X;| and
i =Y.
’ Ne|xt,‘ we define two values for each i. They will be interpreted later as certain parts
of the work that EDF(,,,, , ) does or has to do. Let FAIL be the work that EDF(,,, ;)
failed to complete before #y for jobs of task 7;, (so FAIL > 0). We define VT/, = (m+
w)oy;+ ox;and W; := Zizl W, + FAIL.
We will show the following properties for our sequence of intervals:

1. o>t >...>1,.

2. During each Y; all machines are busy.

3. All jobs EDF(,,,, ) schedules during ¥; have a deadline in A;.
4. W;> m/|A,“.

5. ND(4;) > W-..

Property Rlimplies that (m + u)oy; = ¥ jc; EDF (. 5)(/,Y:) for some set J of jobs.

Basis of the induction. As job j; we pick one of the jobs EDF,,, ; ) failed to finish at
1o, though they were due. Among these jobs, the job j; is one of those jobs j with largest
maximal TJ-—EDF(m n “76)-busy interval before 79. We let A| (= A;) be the maximal 7}, -
EDF,,, ;1,5)-busy interval before 9. This also defines 7, as the lower endpoint of this
interval. Clearly, #; < 1, since relative deadlines cannot have zero length.

We have to verify property and @] for (1, j;). If at a certain time 7 in the Tj -
EDF,,; 11,5)-busy interval A} no job of 7;, is processed by EDF(,, ., ), then at that
time all machines must be busy with jobs that have deadlines not later than #y. This
gives the first two properties. For property ] we use that EDF,,, 41,0 failed at 1o for j;:

W) = W; + FAIL
> (m+p)oy +ox; = (m+p)o (|4 —x1) + ox;.
So we get
Wi ox|
>(m4+u)o—(m+u—1 .
Al (m+p)o—(m+u )w

In Ay the EDF(,,, , &) schedule devotes x; units of time on jobs of task 7;, processing
with speed-o. Since the interval A; is maximally 7;, -EDF(,,, , )-busy before 7 and j
is not completed within 7y, we know that all those jobs must be released in the interval,
and have their deadline in the interval.

The busy interval Aystarts with the release date of some job of task 7;,. Therefore

the number of 7;,-jobs with release date and deadline in A; is VAI‘ D’ 1 J , and we
can bound:

ox| < Ci |A1| =Dy, + T, < max( i C/l)

A1 A1 T}, D/l T},
To verify the middle inequality one should distinguish the cases (D, < Tj,) and (D}, >

Tj,) using |A;| > Dj, for the former.
Combining the two bounds we get property [k

LS m+w)(o—1)+1=m.
A
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The inductive step. Assume that the sequence of pairs up to i — 1 satisfies the proper-
ties. We choose the job j; as one having the following two properties:

1. The release date of j; is strictly before ;1.

EDFWH—IJG (]lvUY> >f .]lv i— l)

If no such job can be found, we set z := i — 1 and return the interval A;_; as one
justifying the claim of the theorem. We will show later why this holds true. So assume
such a j; exists. Take A; as the maximal rjt.-EDF(m+u_’G)-busy interval before #;,_;, and
accordingly set #; as its lower endpoint.

Let us show the properties. As the release date of j; is strictly before #;_1, also #; <
t;_1, and we have property[Il The next two properties again follow from the fact that A;
is 7;;-EDF(,, |, &)-busy. Here, take into account for property Bl that j; has a deadline in
A;_1 by induction. B

To prove property[lit suffices to show W; > m/
in W;_| > m'|A;_1| by induction. By definition

oXx;

:(m+u)o—(m+u—l)|A‘|.

]
4l

We want to establish ox; < |A;|. Having this, property Bl follows as above.
For this part we simplify notation by setting 7 := 7;,, T := Ty, ci=cqy and D :=
iji. We distinguish the cases |A,~| > T and |A,~| <T.

Case 1: ‘Ai’ > T. We can bound ox; by the amount of work released by 7 during the
maximal T-EDF(,,, ;; 5)-busy interval A;:

ox; < VA"‘J .c+EDF (ji, A1)
i > T (m+u,0) \JisAi) -

W.lo.g. |A,~| is not an integer multiple of 7. Otherwise, the last released job could not
contribute to the work done in X;. But then, a slightly smaller value replacing ‘A i ’ would
also give a valid bound on what is processed during A;.

Recall that f(j;, A1) == (cj, — (i1 — rj,.)+)+. By choice of j; we know that more
than its forced forward demand is done by EDF(,,,, , 5) in A;_;. Therefore

A

Note that the middle inequality is also true for f(j;,A;—;) = 0. To verify the last in-
equality, assume first that j; is the last job of task 7 released in A;. Then between the

release of j; and the end of A; at most |A;| — T - {ATJJ units of time may pass.
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Now, say j; is not the last job of task 7 released in A;. Remember that j; is not finished
by EDF,,, ;&) Within A;. Therefore all jobs of 7 released later are not processed within

A; at all, because EDF implies FIFO for the jobs of a common task. If there is such
a job released but not started in A;, we can subtract its entire processing time from
the upper bound on ox;. This means to subtract at least as much as when we subtract
EDF ;i 5) (ji»Ai). Thus, we have

ox; < |4 c< |Ai|~C<‘A"
T - r
To finish the case (|A;| > T') plug everything together:

e e |

A |Ai] |Ai]
As T > ¢ we have ox; < |A].

Case 2: |A,~| < T. Assume |A,~| < T. Then only one job of task 7 can be released during
A

, namely j;. The choice of j; gives

i—1
¢ = 0x;+EDF (1 4 5) (JisAi-1) = 0x;i + EDF(; 1 1 6 (ji, U Ys) > oxi+ f(ji,Ai-1)-
s=1

As the release date of j; is in A; we can use #i_1 — rj, < |A;| (indeed we have equality
here) to conclude that

c> G)C,‘-ﬁ-f(ji,Ai,]) :Gxi—ﬁ—c—(ti,] _rji) > oxi+c— ’A,‘ s

which shows 0 > ox; — ‘A,-’ for the case f(ji,Ai—1) > 0. Yet, if f(ji,Ai_1) =0 we
immediately have |A;| > ¢ > 6x;. So we again obtain ox; < |A;], yielding property Bl

The breaking condition. In each step from i — 1 to i the interval is strictly extended
backwards to the release date of at least one job which is released before 7. As there are
finitely many task, and all have positive minimum separation time 7', there are finitely
many such jobs, and we can make only finitely many steps. So at some point the break-
ing condition, namely that there is no job j; with the two required properties, must hold.

If this holds we claim property B to be true, i.e., ND(A;) > W,. In the value W, we
count ox; for each X;, because the whole 7-demand processed in a 7-EDF,,, , 5)-busy
interval is part of the necessary demand of that interval. Also, the demand EDF(,,, ; )
failed to process before 1y is part of the necessary demand of A,. For each Y; part we
count (m + W)oy;, which is by property 2l exactly what is processed in those times by
EDF,,, y1.6)- By property [3 all jobs processed in some Y; have their deadline in the
interval A; and therefore also in A. Finally, there is no job among those processed in
some section ¥; with release date before 7, which has been counted in the term (m +
W)oy; with more than its forced forward demand in A;. The forced forward demand in
the greater interval A, can only be greater, and thus we count for no job more in W, than
inND(A,). O
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We required c; < Tr and ¢; < Dz. Both are easy to test in linear time. In fact, the later
condition is necessary for scheduling any job sequence on any number of machines
with speed 1. The first condition is necessary for scheduling all job sequences on any
number of speed-1 machines.
Now, consider ¢ > 2 — jliﬁ We get m' = (m+ u)(o — 1)+ 1 > m. Then, if an
instance / allows for a job sequence R with an interval A generating a necessary demand
NDg(A) > m|A| as in the theorem, then clearly it cannot be scheduled by any algorithm
on m speed-1 machines. So, all three conditions of the theorem, c¢; < Ty, ¢ < Dy,
and NDg(A) < m|A|, are necessary for scheduling on m speed-1 machines. By the
theorem they are sufficient for scheduling on (m + u) speed-o machines. Therefore,
all that is missing for an approximate feasibility test is a procedure testing whether an
instance / can have a job sequence R with an interval A generating a necessary demand
NDg(A) > m|A|. For this we will provide an FPTAS in the remainder. As this procedure
determines the maximal load only up to an €, we will have to choose o slightly bigger

1+u .
than2 — Ly Inour final theorem.

4 An FPTAS for Load Estimation

The following observation facilitates the test:

Lemma 1. Assume c¢; < Tr and ¢ < Dy for all tasks T of an instance 1. Then, over
all intervals A = [t,t + () of a fixed length { and all job sequences R of I, the maximal
necessary demand from a certain task 7T is

{+Tr—D
NDg: (A", 7) = ek + [er+ £ = D —kTo] whmk% " J
T

Proof. Rewrite ctk+ [cz+0— Dy —kT|" = cck+[ce — (T — (0 — D — (k— 1)T¢))] .
Make 1* + ¢ the deadline of some job j from 7 and t* > T;. Further choose R* such
that all jobs of task 7 released in [t — T¢,7 + £) precede their follower at the minimum
distance Tr. Then the necessary demand NDg+ (A*, 7) is as claimed.

To see that this is maximal, assume any interval A with |[A| = ¢ and any job sequence
R of I with higher necessary demand than the one in the above construction. As c; < Tr,
at most k + 1 jobs can contribute to NDg(A, 7). Compressing the distances between all
contributing jobs cannot diminish the forced forward demand in the interval for any of
those jobs. Now push the compressed sequence of contributing jobs towards the right
until the deadline of the last job coincides with the right boundary of A. This will not
diminish the forced forward demand of any contributing job. Thus, we arrive at a job
sequence and an interval as in the above construction which generate at least as much
forced forward demand as the pair (R,A) with which we started. This contradicts that
NDg(A,7) > ¢tk +[ce+ £ — D — kTz] . O

The construction of the lemma also shows, that the maximal forced forward demand
can be achieved for each task independently. As a consequence we only have to find
the optimal length of an interval. Then we know how much forced forward demand a
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maximal pair of interval and job sequence has. We define for any instance [ satisfying
forall T:c; <T;and c; < Dy

wi=w i RT = RT L w(l) i=wi(l) := Zcfk—i- [ct+{—Dr—kT;]"

el

Lemma[Ilstates that wy(¢) is the maximum forced forward demand of any job sequence
of I in any interval of length /.

The following algorithm finds a length ¢ which approximates the maximum of W%@
by a factor of € in time polynomial in the input size of I and 1/¢. In fact, we devise a
function ¢ which pointwise approximates the load, i.e., V£ € R : (1 —¢) W%@ <o)<
Wy). There is a polynomial size subset of R™, a priori determinable, in which the func-
tion ¢ must achieve its maximum. So, the approximation algorithm is straightforward.

Algorithm 1. Load Estimation(7, €)
For each 7 € I, compute:

threshold(t) := D+ T¢ /¢,
points(7) := {¢ € (0, threshold(7)] : ¢ = g+ Tt + D for some g € N},
points’(7) := {¢ € (0, threshold(7)] : £ = g- T + D1 — ¢ for some ¢ € N}.

Compute POINTS := Uz¢; (points(7) U points’(7) U {threshold(7)}) .

w(l
Output A := max (manepOINTS 2 ) ,2’;:1 g{

Lemma 2. For any instance I Algorithm[ll outputs a A such that (1 —g)A* <A < A*

where 1 = sup, R ND|§<|A>, and has running time polynomial in n and 1 /€.

Proof. We know that A* = sup, W(f). We show that for all £ > 0 the function
we (€ D:\ ¢
o)=Y Tz( )4 D (1— ;) TT
7:threshold(7)>¢ 7:threshold(7) </ T

approximates the load w(¢) /¢ in the following sense:

w(l) w(l)
P

(1-8)" <o) <

Secondly, we will show that we can find the maximum of ¢ by only considering
points in POINTS. The number of points in POINTS is obviously polynomial in the
input, and so is the evaluation of ¢ for each point. This completes the proof.

Recall that

T,—D T,—D +
wf(z):cfv+ ; TJ+[cf+z—DT_V+ ;T TJ.TT}.
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Therefore w; (¢)T; > ¢ (¢ — D¢) and

we(£) N Cr 1_D1 ’
{ T T l
which summed over all tasks 7 yields the upper bound on ¢.
Concerning the lower bound, for ¢ > threshold(t) we have ¢ > D; + 7;? implying

T, . . .
€> '}, . Using again we (0)Tr > c¢(I — Dz) gives € > W:E@.

As the difference between the necessary demand of one task 7 and the approximate
demand (¢ — D) % can at most be the execution time of the task, c;, we can substitute

we(l) = (0—=Dxg)- I

<E€
we(f)
and by rewriting we get
{—D¢ cz wr(£)
. 11— .
¢ o UTE

Again, summing over all tasks gives the claimed lower bound on ¢.
To finish, observe that between two consecutive points £1,¢, € POINTSU {0} we
can write

o) =C1/L+Cr+E(L), VL€ [l,0),

with
ciD
C:= 2 we(l)) — 2 TT !
T:threshold(7)>¢; T:threshold(t)<¢;  *F
Ct
G =
b T,

7:threshold(7) </,

E0:=0/0- ¥ (et l=De=kT]" —[er+—Dr—kTi]")
7:threshold(7)>¢;
where k| := V‘H;;D’ .

By definition of POINTS, the function £ can be written as C/£ + C’ for some con-
stants C,C’; this implies that the same is true for the function ¢ inside each interval
[¢1,£3). Thus, a maximum of ¢ is always attained at an extreme point of such an inter-
val. Also, beyond the maximum of POINTS, the function ¢ equals ¥.oc; (1— 1) - T
Therefore, the overall maximum of ¢ is attained at one of the points in POINTS or
equals X ;¢; ;: , and the algorithm is correct. a

Theorem 2. There exists a feasibility test that, given a task system I, it € N and € > 0,
decides whether I can be scheduled by EDF on (m+ 1) speed-(1+ (m+u’>”(1_8) - mlu )
machines, or I cannot be scheduled at all on m speed-1 machines. The running time is

polynomial in n, m and 1/ €.
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Proof. With the help of Algorithm [Tl we can verify in polynomial time the following
conditions:

(Cl) Forall tasks T € I : ¢; < min(Dr, Ty).

(C2) Thereis A < m, where (1 —&)A* <A <A*and A* = SUPR A ND|2<|A>.

Both are necessary for scheduling / on m speed-1 machines.
Condition (C2) implies that there is no job sequence R and interval A such

NDg(A) > ™. |A]. Choosing 6 > (1 + (m+u’)"(17£) - m}r“) gives (m+u)(c—1)+1>
m ., and the claim follows from Theorem /Il O
(1-¢)

Corollary 1. There exists a feasibility test that, given a task system I and € > 0, decides
whether I can be scheduled by EDF on m speed-(2—1/m+ €) machines, or I cannot be
scheduled at all on m speed-1 machines. Its running time is polynomial in n, m and 1/ ¢.

Acknowledgments. The authors acknowledge Enrico Bini for helpful discussions.
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Abstract. An out-tree T of a directed graph D is a rooted tree subgraph
with all arcs directed outwards from the root. An out-branching is a
spanning out-tree. By ¢(D) and ¢s;(D) we denote the maximum number
of leaves over all out-trees and out-branchings of D, respectively. We give
fixed parameter tractable algorithms for deciding whether £5(D) > k
and whether ¢(D) > k for a digraph D on n vertices, both with time
complexity 20*1°8%) . O This proves the problem for out-branchings
to be in FPT, and improves on the previous complexity of 90 (klog® k) |
n°W for out-trees. To obtain the algorithm for out-branchings, we prove
that when all arcs of D are part of at least one out-branching, ¢s(D) >
¢(D)/3. The second bound we prove states that for strongly connected
digraphs D with minimum in-degree 3, ¢5(D) > ©(y/n), where previously
£s(D) > ©(¥/n) was the best known bound. This bound is tight, and also
holds for the larger class of digraphs with minimum in-degree 3 in which
every arc is part of at least one out-branching.

1 Introduction

Many important graph problems are well-studied on undirected graphs unlike
their generalizations to directed graphs. One reason may be that despite their
practical significance, it is generally harder to obtain similar results for directed
graphs, since many standard tools are not available (see [2]) and thus problem
specific approaches need to be used. MAX-LEAF SPANNING TREE is such a
problem that has received a lot of study, both algorithmically and combinatorial.
This optimization problem is defined as follows: given an undirected graph, find
a spanning tree with maximum number of leaves. In the decision version of this
problem, in addition an integer k is given, and we ask whether a spanning tree
with at least k leaves exists (k-LEAF SPANNING TREE). In this paper we develop
new techniques for solving the directed version of this problem and use these to
find improved algorithms and bounds.

* Supported by the Graduate School “Methods for Discrete Structures” in Berlin,
DFG grant GRK 1408.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 222-£33] 2008.
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For directed graphs or digraphs we use notions that are defined for undirected
graphs, such as paths, trees, connectedness and vertex neighborhoods. These are
defined as expected, where arc directions are ignored. An out-tree of a digraph
D is a tree subgraph where every vertex has in-degree 1 except for one, the
root, which has in-degree 0. An out-branching is a spanning out-tree. A leaf is a
vertex with out-degree 0. In the directed generalization of the problem, one asks
for an out-branching with maximum number of leaves. This problem is called
Max-LEAF OUT-BRANCHING. By ¢(D) and ¢4(D) we denote the maximum
number of leaves over all out-trees and out-branchings of D respectively (when
considering ¢4(D) we assume that D has at least one out-branching). Clearly
(D) > £4(D) holds, but in contrast to undirected graphs, we do not always
have equality here. Therefore, on digraphs, the problem of finding an out-tree
with maximum number of leaves (MAX-LEAF OUT-TREE) is of independent in-
terest. The corresponding decision problems where the question is asked whether
ls(D) > k or whether ¢(D) > k are called k-LEAF OUT-BRANCHING (k-LOB)
and k-LEAF OUT-TREE (k-LOT), respectively. The related problem of find-
ing out-branchings with minimum number of leaves has also been considered
recently [12]. In the first part of this paper we are concerned with algorithmic
questions, and in the second part we study the combinatorial question of finding
lower bounds for ¢(D) and £4(D). Throughout this section n denotes the number
of vertices of the graph under consideration.

The N P-hardness of all problems above follows from the N P-completeness of
k-LEAF SPANNING TREE. Whereas for the undirected problem, MAX-LEAF SPAN-
NING TREE, a 2-approximation is known [I5], the best known approximation result
for MAX-LEAF OUT-BRANCHING is a very recent algorithm with ratio O(v/OPT)
[9]. In the algorithmic part of this work, we are interested in fized parameter tractable
(FPT) algorithms for the decision problems. We choose the desired number of leaves
k as the parameter. Then an algorithm is an FPT algorithm if its time complexity is
bounded by a function of the form f(k)-n°™®) where the parameter function f may
be any computable function only depending on k. See [I] for a recent introduction
to FPT algorithms. The main indicator of the practicality of FPT algorithmsis the
growth rate of the parameter function. For the undirected problem k-LEAF SPAN-
NING TREE many improvements have been made in this area (see e.g. [T0J4]), which
has also has been a large stimulus for research on related combinatorial questions.
The current fastest FPT algorithm has a running time of O*(6.75%) + O(m), with
m being the number of edges [6].

Tackling two open problems posed by Fellows in 2005 [I3], Alon et al. [2]
were the first to show that k-LOT admits an FPT algorithm with parameter
function f(k) € 20(-*108%) Their method yields an FPT algorithm for k-LOB
when restricted to digraph classes where out-trees with k leaves can always be
extended to out-branchings with k leaves, which includes for instance strongly
connected digraphs and acyclic digraphs. This algorithm again has a parameter
function f(k) € 20(K logk) [ [, the same authors improve that function to
20(klog” k) for1 strongly connected graphs, and 20%108%) for acyclic graphs. Note
that even for acyclic digraphs, the problem is N P-hard, which is shown in the
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full version of [I]. The question whether the problem admits an FPT algorithm
for all digraphs remained open, and was posed again in [II2[7].

In this paper we present FPT algorithms for both k-LOT and k-LOB with
parameter function 2°(F1°8k)  This is the first FPT algorithm for k—LOBEL and
improves the complexity of all FPT algorithms for digraphs mentioned above,
except for the algorithm for acyclic digraphs, which has the same complexity.

In another line of research, max-leaf problems have been studied in a purely
combinatorial manner. For instance, for the undirected version, a well-known
(tight) bound states that undirected graphs with minimum degree 3 have a
spanning tree with at least n/4 4+ 2 leaves [I4]. Similar bounds appear in [GS].
For digraphs, it is much harder to obtain tight bounds, or even bounds that are
tight up to a constant factor. Alon et al [I] showed that for strongly connected
digraphs D with minimum in-degree 3, £5(D) > ¢/n/4 — 1 (this improves their
previous bound from [2]). In addition they construct strongly connected digraphs
D with minimum in-degree 3 with ¢,(D) € O(y/n). Considering the gap between
this lower bound and upper bound, it is asked in [I] what the minimum value of
r is such that £5(D) > f(n) € ©(y/n) for all graphs in this class (2 <r < 3).

In this paper we answer this question by showing that for strongly connected
digraphs D with minimum in-degree 3, £s(D) > 411\/” Considering the examples
from [I], we see that this bound is tight (up to a constant factor). Furthermore
we generalize this result by showing that ¢,(D) > f(n) € ©(y/n) holds for the
larger class of digraphs with minimum in-degree 3 in which every arc is part of
an out-branching.

Overview of new techniques: For our algorithms we start with the general
scheme that was introduced in [II2]: starting with an arbitrary out-branching,
small changes are made that increase the number of leaves, until a locally opti-
mal out-branching 7' is obtained. Back arcs of T' are those arcs of D that form
a directed cycle together with a part of T' (we omit the precise definitions used
in [I]). If there are few back arcs, then a path decomposition of D can be con-
structed with small width, which allows for a dynamic programming procedure
to be used. On the other hand, if the number of back arcs is large, an out-tree
with at least k leaves exists. For graph classes like strongly connected digraphs
this then yields an out-branching with at least k leaves.

However, without significant new ideas this scheme does not work for all
digraphs, as is illustrated by the digraph D in Figure[l (a): D has ¢(D) = n — 2,
but the unique out-branching has only one leaf. More importantly, this example
shows that the ratio between £4(D) on one hand, and the number of back arcs
or the pathwidth on the other hand may be arbitrarily bad. But if one takes a
closer look at the arcs of the out-tree, one may observe that they are irrelevant
for the problem we consider; they do not appear in any out-branching. We will
first remove all such arcs, which we call useless arcs. The following question is
then immediate: for digraphs without useless arcs, what is the highest possible
ratio £(D)/ls(D)? Figure [Tl (b) shows an example of a digraph without useless

! In an earlier unpublished technical report [5] we gave a different FPT algorithm for

k-LOB, with parameter function 90 (k¥ logh)
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Fig. 1. Digraphs with ¢(D)/¢s(D) — oo (a), and £(D)/¢s(D) =2 (b)

arcs where £(D)/ls(D) = 2. In the first of the two main bounds of this paper,
we prove that this ratio cannot be much larger; we prove that if D contains no
useless arcs, then ¢(D)/¢s(D) < 3. Since this ratio is bounded by a constant,
and since useless arcs can easily be removed in polynomial time, any algorithm
for k-LOT then easily yields an algorithm for k-LOB with essentially the same
complexity.

Our second algorithmic contribution is that we construct a tree decomposition
instead of a path decomposition (the locally optimal out-branching that we start
with serves as the skeleton for the tree decomposition), and use a better way to
group back arcs. These improvements do not only make the algorithm concep-
tually simpler, but also allow us to decrease the parameter function 20(k10s* k)
for k-LOT from [I] by a logarithmical factor in the exponent to 20(klogk)

The paper is organized as follows. Definitions and preliminary observations
are given in Section 2l In Section Bl and [ we give the FPT algorithm for A-LOT
and k-LOB, respectively. Section @l also contains the proof that ¢(D)/{s(D) < 3
for digraphs without useless arcs. In Section [ we give a lower bound for ¢5(D).

2 Preliminaries

For a digraph D, V(D) denotes the set of vertices and A(D) the set of arcs. Arcs
are 2-tuples (u,v) where u € V(D) is called the tail and v € V(D) the head.
For an arc set B, HD(B) is the set of heads of arcs in B. A digraph D is an
oriented graph if (u,v) € A(D) implies (v,u) € A(D). A dipath in a digraph D
is a sequence of distinct vertices vy, ve, ..., v, such that (v;,v;41) € A(D) for all
1 < i <r—1. This will also be called a (v, v,)-dipath. The digraph consisting
of these vertices and arcs will also be called a dipath. With such a dipath we
associate an order from v to v,, for instance when talking about the first arc of
the path that satisfies some property.

A partial order is a binary relation that is reflexive, antisymmetric and tran-
sitive. A strict partial order is irreflexive and transitive. Partial orders will be
denoted by =, and strict partial orders by <.

For digraphs we will use normal (undirected) tree decompositions. Hence we
define a tree decomposition of a digraph D as a pair (X,U) where U is an
(undirected) tree whose vertices we call nodes, and X = ({X; : i € V(U)}) is a
collection of subsets of V(D) (bags) such that

L Uiev @) Xi = V(D),
2. for each (v, w) € A(D), there exists an ¢ € V(U) such that v,w € X;,
3. for each v € V(D), the set of nodes {i: v € X;} forms a subtree of U.
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The width of a tree decomposition (X,U) equals max;cy (){|Xi| — 1}. For
notational convenience, we will also allow the graph U in a tree decomposition
(X,U) to be directed, in this case it should be understood that we actually
consider the underlying undirected graph of U.

For an out-tree T', the vertices of out-degree at least two are called branch
vertices. Let L(T') denote the set of leaves of T, let BR(T") denote the set of
branch vertices of T, and let Bs(T) be the vertices of T that have a branch
vertex of T' as in-neighbor.

Proposition 1. For out-tree T, |Bs(T)| < 2|L(T)| — 2, |BR(T)| < |L(T)| — 1.

The omitted proofs in this section are straightforward and/or can be found
in [I5]. If there exists a dipath in D from vertex u to vertex v, we say v is
reachable from u (within D). The set of all vertices that are reachable from u
within D is denoted by Rp(u) (including w itself.)

Proposition 2. Let T be an out-tree of a digraph D, with root r. Then D has
an out-branching T’ with root r, that contains T, if and only if Rp(r) = V(D).

Let T' be an out-tree. Then we write u <7 v if v € Rp(u), and u <p v if in
addition v # u. Note that the relation <7 is a partial order on V(T'). This
important observation will be used implicitly throughout the paper.

A digraph H is strongly connected if for all pairs u,v € V(H), a (u,v)-dipath
exists. A strong component is a maximal strongly connected subgraph. A strong
component H of D is an initial strong component if there is no arc (u,v) € A(D)
with uw € V(H), v € V(H).

Let T be an out-branching of D, and let (u,v) € A(D)\A(T), where v is not
the root of T. The I-change for (u,v) is the operation that yields T + (u,v) —
(w,v), where w is the unique in-neighbor of v in T'. We call an out-branching
T 1-optimal if there is no 1-change for an arc of A(D)\A(T') that results in an
out-branching 7" with more leaves. Note that a 1-optimal out-branching can be
found in polynomial time.

Proposition 3. Let T be an out-branching of D, and let (u,v) € A(D)\A(T).

-The 1-change for (u,v) gives again an out-branching of D if and only if v A1 u.
-The 1-change for (u,v) increases |L(T)| if and only if u & L(T) and v & Bs(T).

Proposition 4. Let D be a digraph with a vertex r such that Rp(r) = V(D).
An arc (u,v) of D with Rp(v) # V(D) is not useless if and only if there is a
dipath in D starting at r that ends with (u,v).

3 A Faster FPT Algorithm for k-LOT

We now show how back arcs of an out-tree are grouped, that is, how back arcs
are assigned to vertices of the out-tree. Let T" be an out-tree of D with z € V(T').
Then

BL(2) = {(u,v) € A(D) : v <7 z <7 u}.
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If it is clear what the graphs D and T in question are, the subscript and
superscript will be omitted. When |HD(B(z))| > k for some choice of z, an
out-tree with at least k leaves is easily found.

Proposition 5. Let T be an out-tree of D with [HD(BL(2))| > k for some
2z € V(T). Then D has an out-tree with at least k leaves.

Proof. Start with the out-tree T[Ry(z)], which is rooted at z. For every vertex
in v € Hp(B%(2)), add an arc from some vertex in u € Ry(z) to v (such an arc
exists), making v a leaf. O

Algorithm 1. An FPT algorithm for k-LOT
Input : A digraph D and integer k.

for every initial strong component C' of D do

1 Choose r € V(C'), let D' = D[Rp(r)].

2 Compute a 1-optimal out-branching 7' of D’ with root 7.

3 if |L(T)| > k then Return(YES).

4 if there exists a vertexr z with |[HD(BT,(2))| > k then
Return(YES).

5 Construct a tree decomposition of D’ with width at most 4k — 5.

6 Do dynamic programming on the tree decomposition of D’.

7 if an out-tree with at least k leaves is found then Return(YES).

8 Return(NO)

This yields the correctness of Step @ of the algorithm, which is shown in Al-
gorithm [Il The construction of the tree decomposition of D’ is as follows. For
the tree of the tree decomposition, we simply use the 1-optimal out-branching T’
itself. For a vertex v € V(T') with (u,v) € A(T'), the bag X, of the tree decom-
position is defined as X,, = {u,v} U BS(T) U L(T) U Hp(BF, (v)).(If v is the
root of T', simply omit u.) For verifying that (X,T) with X = {X, : v € V(T)}
is a tree decomposition, the 1-optimality of T and Proposition [3 can be used to
show that for every arc (u,v) € A(D’) the end vertices u, v appear in a common
bag. By the transitivity of <r, it follows that the vertex set B, = {u: v € X,}
induces a connected subgraph of T', for every v € V(7).

Lemma 1. If T is a 1-optimal out-branching of D', then (X,T) as constructed
above is a tree decomposition of D'.

Proposition 6. Let T be an out-branching of a digraph D with |L(T)| < k — 1.
If for all vertices z € V(D) it holds that |[HD(B5(2))| < k — 1, then the tree
decomposition (X, T) as constructed above has width at most 4k — 5.

Proof. This follows simply from |X,| = 2 + |L(T)| + |Bs(T)| + |[Hp(B(u))| <
24+ (k—1)+(2k—4)+ (k—1) =4k —4,since |Bs(T)| <2|L(T")| — 2 (Proposition[]).O
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When a tree decomposition of D’ is given, standard dynamic programming meth-
ods can be used to decide whether D’ has an out-tree with at least k leaves (see
also [BI12]). The time complexity of such a procedure is 208 w) . wwhere
n = |V(D’)| and w is the width of the tree decomposition. Since in our case
w < 4k — 5, and every step of the algorithm other than Step [l can be done in
polynomial time, the complexity of Algorithm [lis 20*1°g%) . nOM) If an out-
tree with k leaves exists, it is part of D[Rp(r)] for some r in an initial strong
component, so YES will be returned. Thus:

Theorem 1. For any digraph D with n = |V (D)|, Algorithm [ solves k-LOT
in time 20(kFlogk) . nO1),

4 A Fast FPT Algorithm for k-LOB

Our algorithm for k-LOB is similar to Algorithm [[l We first check whether an
out-branching exists for D, and if so we may remove all useless arcs to obtain D’.
Then a 1-optimal out-branching T' of D’ is constructed. If [Hp(B%, (2))| > 3k
holds for some vertex z, then an out-tree with at least 3k leaves exists (Propo-
sition Bl). In Theorem [} below we show that this yields the existence of an
out-branching with at least k leaves. On the other hand, if |L(T)| < k and
|[HD(B/(2))| < 3k for all vertices z, the construction from Section [ yields a
tree decomposition with width < 6k — 5 (see also Proposition [@). At this point
we can again apply dynamic programming.

Theorem 2. For any digraph D with n = |V(D)|, k-LOB can be solved in time
20(k10g k) . nO(l).

It remains to prove that if a graph D without useless arcs has ¢(D) > 3k,
then £4(D) > k. The proof of Theorem [3 can be turned into a polynomial time
algorithm that constructs an out-branching, and therefore the algorithm for k-
LOB can be made into a constructive FPT algorithm.

Theorem 3. Let D be a digraph without useless arcs. If £(D) > 3k, then
ts(D) 2 k.

Proof. Let T be an out-tree of D with at least 3k leaves, and let r be the
root of T'. If T' contains at least one vertex v with Rp(v) = V(D), then also
Rp(r) =V (D), so then T can be extended to an out-branching with at least 3k
leaves (Proposition [2]).

Otherwise, choose an arbitrary vertex r’ with Rp(r’) = V(D) (which exists
since there are non-useless arcs, and thus at least one out-branching), and let
P be an (', r)-dipath that contains a minimal number of vertices of L(T'). Let
L(T)NV(P) = {l1,...,ln}, labeled with decreasing labels along P. That is,
if ¢ < j, then [; <p l;. These definitions are illustrated in Figure I (a). We
distinguish two types of vertices I; (i € {1,...,m}):

Type 1: D — [; contains an (x,y)-dipath for some z,y € V(P) with  <p
l; <p y, with no internal vertices in V(P). Type 2: all other vertices [;.
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(b)

Fig. 2. (a) Out-tree T' and (7', r)-dipath P, (b) the out-tree 7" constructed in Case 1

Now we consider three cases: since |L(T")| > 3k, one of the following holds:
(i) |L(T)\V(P)| > k, (ii) the number of type 1 leaves is at least k, or (iii) the
number of type 2 leaves is at least k. In all cases we will find an out-branching
with at least k leaves.

CASE 1: |L(T)\V(P)| > k. We use P and T to construct an out-tree 7" of
D. This is illustrated in Figure[2 (b). For all arcs (u,v) € A(P) with v & V(T)
or v = r, simply add (u,v) to the out-tree. For arcs (u,v) € A(P)\A(T) with
v € V(T)\{r}, do the 1-change for (u,v). Then 7" is again an out-tree with
at least k leaves, with root 7’ such that Rp(r’) = V(D). This is then easily
extended to an out-branching with at least k leaves (Proposition [2]).

4 4 3 3 2

U,p__—‘ao—ao;xao—ao\w =z - . p/
, x,’ \‘ y —> . P
" 4 3 2 1" oL
L=l =L

Fig. 3. Definitions used in Case 2. Numbers indicate Dp,.

CASE 2: The number of type 1 leaves is at least k. The definitions used in this
case are illustrated in Figure[Bl For every v € L(T'), we define the following value:
if r € Rp(v), then consider the (v,r)-dipath of D that contains the minimum
number of L(T')-vertices. Then let Dy, (v) denote number of vertices in L(T') on
this path (including v itself). Note that since we chose P to contain the minimum
number of L(T)-vertices, we have Dy, (I;) = i. In particular, all vertices l; receive
different values for Dy,.

For every type 1 vertex [;, we may consider an (z,y)-dipath P’ in D with
z <p l; <p y and no internal vertices in P. We can verify that P’ contains a
vertex z € L(T)\V(P) with Dy(z) = Dr(l;). Since we assumed there are at
least k type 1 vertices, and all of them receive different labels Dy, this proves
that there are at least k vertices in L(T)\V(P), so by case 1 above, the desired
out-branching exists.

CASE 3: The number of type 2 leaves is at least k. In this case we will use
the fact that D contains no useless arcs. Let [; be a type 2 vertex. Consider the
unique (r,l;)-dipath in T'. Let (¢;, h;) be the last arc of this path that is not
in A(P). Note that h; = I; is possible. Note also that by choice of (t;, h;), we
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have l;41 <p h; <p ;. Since (t;, h;) is not useless and since we observed in the
beginning of this proof that we may assume Rp(h;) # V(D), there is a dipath
P’ in D that starts in 7" and ends with the arc (¢;, h;) (Proposition H). Let x;
be the last vertex on P’ with x; <p h;. Let y; be out-neighbor of z; on P’.
Using these definitions we can show how to construct an out-branching with
at least k leaves. Construct T” as follows, starting with P. For every type 2 vertex
l;, if y; & V(P), then add (z;,y;). If y; € V(P), then instead do the 1-change
for (z;,y;). Since we do this only for type 2 vertices, it can be shown that T” is
an out-tree with root r’ with at least k leaves, which is easily extended to the
desired out-branching (Proposition ). We omit the details. |

5 Lower Bounds for the Number of Leaves

The following lemma can be used for instance to find leafy out-branchings in
digraphs D with minimum in-degree 3 (which is needed to satisfy the third
condition). Its proof is postponed to the end of this section.

Lemma 2. LetT be an out-branching of D, and let P = vy, ...,vp—1 be a dipath
in T where (i) D contains no arcs (v;,v;) with i < j—2, (ii) V(P) contains no
branch vertices of T, and (i) every v; has an in-neighbor in D other than v;_q
or viy1. Then D has an out-tree with at least p/8 leaves in V (P).

Lemma 2lis the key ingredient for our main result of this section. Apart from us-
ing this stronger lemma and a shorter formulation, the proof of the next theorem
is similar to the one used in [I].

Theorem 4. Let D be a digraph on n vertices with at least one out-branching.
If D has minimum in-degree 3, or if D is an oriented graph with minimum
in-degree 2, then (D) > /n.

Proof. Let k = }l\/n Consider a 1-optimal out-branching T' of D. We only have
to consider the case that |L(T')| < k—1, and thus |[BR(T)| < k—2 (Proposition[]).
Consider the set P of all maximal dipaths in T that contain no branch vertices.
Note that every non-branch vertex of T is in exactly one such path, so the paths
in P give a partition of V(T)\BR(T'). It can easily be seen that the number of
paths in P is bounded by |L(T)| + |Br(T)| < 2k — 3.

For every path vg,...,v,—1 in P we may apply Lemma [2k since D either
has minimum in-degree 3 or is an oriented graph with minimum in-degree 2,
every v; has an in-neighbor in D other than v;_; or v;y;. Since T is 1-optimal,
there are no arcs (v;,v;) in D with ¢ < j — 2 (Proposition [B)). Hence if one of
these paths contains at least 8k vertices, the desired out-tree exists (Lemma [2]).
So finally suppose every path in P has less than 8k vertices. This yields n <
8k(2k — 3) + k — 2 < 16k?, a contradiction with our choice of k. Hence in every
case an out-tree with at least }l\/n leaves can be found. |

Combining Theorem @] with Proposition [2] and Theorem Bl respectively, we im-
mediately obtain the following bounds for out-branchings.
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Corollary 1. Let D be a digraph on n vertices that has minimum in-degree 3,
or has minimum in-degree 2 and is an oriented graph.

-If D is strongly connected, then £,(D) > }/n.

-If D contains no useless arcs, then {s(D) > ! \/n.

It remains to prove Lemma 2l For this we will use the following lemma [5].

Lemma 3. Let T be an out-branching of D with root r. Let QQ be a dipath in D
that starts at r. Then making all of the 1-changes for every arc in A(Q)\A(T)
yields again an out-branching of D that contains Q.

Proof of Lemma 2k Let T be an out-branching of a digraph D, and let P be
a dipath in T that satisfies the properties stated in the lemma. Let r be the
root of T'. If v,_; is not a leaf of T', then let v, be the unique out-neighbor of
vp—1 in T'. In this case, we add the arc (r,v,) to D (if it is not already present),
and apply the 1-change for (r,v,) to T'. So in both cases, from now on we may
conveniently assume that Rr(v;) = {v;,...,vp—1}. In the remainder of the proof
we will use this to show that D has an out-branching with at least p/4 leaves
in V(P). From this the statement follows; if we added (r, v,) then removing this
arc from the out-branching will give two out-trees of the original digraph D, of
which at least one has at least p/8 leaves in V(P). If an arc (v;, vj) is present in
A(D)\A(T), then i > j. Arcs of this type are called back arcs. (This is a subset
of the arcs that were called back arcs in Section [II)

We will now iteratively make changes to T' until every v; € V(P) is either
a leaf, or is the tail of a back arc. The property of T" being an out-branching
will be maintained throughout. Changes to T" are made in p — 1 stages. During
stage @ (1 € {1,...,p — 1}), the goal is to make vertex v;,_; a leaf, if this is still
possible. For this we consider a dipath @); that ends in the vertex v;, and make
1-changes based on this path. The changes we make when considering the vertex
v; will only involve arcs that are incident with vertices of P with higher index,
and vertices not in P. So in stages later than stage i, no changes are made to
the arcs incident with v;, for j <. In particular, v;—; will remain a leaf if it is
made a leaf in stage i.

Before we define @);, we observe that the following properties hold for T'. These
properties will be maintained throughout the procedure, and will therefore be
called invariant properties: (1) v; has only out-neighbors in {v1,...,v;41}, for
alli € {0,...,p—1}. (2) Rr(v;) C V(P). (Note that the second property follows
from the first.)

The changes that will be made to T" will consist of adding back arcs and adding
arcs with tail not in P, and removing arcs of the form (v;,v;j41). Figure @ (a)
shows an example of how the out-branching may look after five stages (only the
vertices of P are shown). Note that the invariant still holds even though the set
of reachable vertices may change for a vertex v;.

The operation of stage ¢, and the dipath @; that we use for it is defined
as follows. Let T; denote the out-branching as it is in the beginning of stage
i, so 17 = T. The changes in stage ¢ will yield a new out-branching 7;4;. In
Figure ] an example is shown where T% is constructed from Tg. The dashed
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Fig. 4. Stage 6: constructing 77 from Tg

arcs in Figure @ (b) show the dipath Qg. If v, is already a leaf or a tail of
a back arc in T;, we do nothing, so T;;1 = T;. Otherwise, v; is the only out-
neighbor of v;_1 in 7T; (invariant Property 1). Then we consider a dipath @Q; =
T, Vg(q)> Va(q—1)s - - - » Vo(1) 0 D that ends in v;, and has = € Rr, (v;), constructed
as follows. Let o(1) = i. By our assumption, v; has an in-neighbor u in D that is
not equal to v;_1 or v;41. Since all arcs between vertices in V(P) are back arcs
and R, (v;) C V(P) (invariant Property 2), this vertex w is either not in Ry, (v;)
or it is equal to v; for some j > i+ 2. In the first case, @; = u,v;. In the second
case let 0(2) = j, and continue constructing the path using the same rule: v; has
an in-neighbor that is not in Ry, (v;), or is equal to v; for some [ > j + 2, etc.
This process will terminate with a dipath Q; = z,v,(y),.-.,v,(1), Where
Vy(1) = i, the function o increases in steps of at least 2, and = ¢ Rr,(v;).
It follows that if we make 1-changes for all arcs in );, again an out-branching
is obtained (Lemma [Bl note that we can easily extend @; to start in r), and
vi—1 becomes a leaf. Observe also that the invariant properties are maintained
by these changes. This yields T; ;. We omit the proof that an out-branching T},
constructed in this way contains at least p/4 leaves. O

6 Discussion

It seems that in order to significantly improve the parameter function of FPT
algorithms for these problems further, a different approach is needed, one that is
not based on dynamic programming over a tree decomposition. It is an interest-
ing question whether different, significantly faster FPT algorithms are possible
for these two problems, for instance FPT algorithms with a parameter function
of the form ¢* for some constant c. Such algorithms exist for the undirected
version (with ¢ = 6.75, see [0]). This was also asked in [12].
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Abstract. We address the problem of labeling the nodes of a tree such
that one can determine the identifier of the least common ancestor of
any two nodes by looking only at their labels. This problem has applica-
tion in routing and in distributed computing in peer-to-peer networks. A
labeling scheme using ©(log? n)-bit labels has been previously presented
by Peleg. By engineering this scheme, we obtain a variety of data struc-
tures with the same asymptotic performances. We conduct a thorough
experimental evaluation of all these data structures. Our results clearly
show which variants achieve the best performances in terms of space
usage, construction time, and query time.

1 Introduction

Effective representations of large, geographically dispersed communication net-
works should allow the users to efficiently retrieve information about the network
in a distributed and localized way. Labeling schemes provide an answer to this
problem by assigning labels to the network nodes in such a way that queries
can be computed alone from the labels of the involved nodes, without any extra
information source. The primary goal of a labeling scheme is to minimize the
maximum label length, while keeping queries fast. Adjacency labeling schemes
were first introduced by Breuer and Folkman in [5J6], and further studied in [12].
The interest in informative labeling schemes, however, was revived only more re-
cently, after Peleg showed the feasibility of the design of efficient labeling schemes
capturing distance information [I6]. Since then, upper and lower bounds for la-
beling schemes have been proved on a variety of graph families and for a large
variety of queries, including distance [2[9/TT], tree ancestry [1I3], flow and con-
nectivity [I4]. In spite of a large body of theoretical works, to the best of our
knowledge only few experimental investigations of the efficiency of informative
labeling schemes have been addressed in the literature [9/13].

In this paper we focus on labeling schemes for answering least common ances-
tor queries in trees. Labeling schemes for least common ancestors can be easily
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exploited to answer distance queries and are mainly useful in routing messages
on tree networks, processing queries in XML search engines and distributed
computing in peer-to-peer networks (see, e.g., [BI4I13]). In [I7], Peleg has proved
that for the class of n-node trees there exists a labeling scheme for least common
ancestors using 9(10g2 n)-bit labels, which is also shown to be asymptotically
optimal.

Peleg’s labeling scheme hinges upon two main ingredients: a decomposition of
the tree into paths, and a suitable encoding of information related to such paths
into the node labels. Peleg’s data structure uses an ad hoc path decomposition
as well as an ad hoc label structure. In this paper we first discuss different
path decomposition approaches and different ways of constructing node labels,
with the aim of engineering Peleg’s scheme and obtaining a variety of labeling
schemes for least common ancestors. We then perform a thorough experimental
evaluation of all these variants, also analyzing the effects of structural properties
of the input tree (such as balancing and degree) on their performances. The main
findings of our experiments can be summarized as follows:

— Among different path decompositions, those that generate the smallest num-
ber of paths (with the largest average path length) appear to be preferable
in order to minimize the total size of the data structure.

— A variant of Peleg’s scheme proposed in [7] achieves the best performances
in terms of space usage and construction time.

— Peleg’s scheme, used with a minor variant of the path decomposition origi-
nally proposed in [I7], exhibits the fastest query times.

— All the data structures are very fast in practice. Although node labels have
size O(log® n), only a small fraction of the labels is considered when answer-
ing random queries: typically, no more than a constant number of words per
query is read in all our experiments. However, query times slightly increase
with the instance size due to cache effects.

— Variants of the data structures carefully implemented with respect to align-
ment issues save 20% up to 40% of the space, but increase the query times
approximately by a factor 1.3 on our data sets. The space saving reduces as
the instance size gets larger.

The remainder of this paper is organized as follows. In Section 2] we describe the
data structures being compared, focusing on path decomposition, label structure,
and query algorithms. In Section B we give implementation details and discuss
our experimental framework. The main findings of our experimental study are
presented in Section [l

2 Labeling Schemes for Least Common Ancestors

All the tree labeling schemes that we study in this paper follow the same basic
approach: the tree is decomposed into a set of node disjoint paths, that we
will call solid paths, and information related to the highest node in each path,
called head of the path, is suitably encoded into the node labels. In the following
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we will consider different path decomposition approaches, then we will describe
two possible ways of designing node labels. Different combinations of these two
ingredients yield different labeling schemes: one of them coincides with the tree
labeling scheme for least common ancestors originally proposed by Peleg in [17].

Path Decompositions. Let T be a tree with n nodes rooted at a given node r.
For any node u, we denote its parent and its level in T by p(u) and £(u), respec-
tively. We assume that the root has level 0. We also denote by T, the subtree of
T rooted at u and by |T),| the number of its nodes. In all the decompositions, for
any solid path 7, we denote by head(rw) the node of 7 with smallest level. We
will also say that a solid path 7 is an ancestral solid path of a node u if head(m)
is an ancestor of w.

Decomposition by Large Child. This decomposition hinges upon the distinction
between small and large nodes: a nonroot node v with parent u is called small
if |T,| < |Tul/2, i.e., if its subtree contains at most half the number of nodes
contained in its parents’ subtree. Otherwise, v is called large. It is not difficult
to see that any node has at most one large child: we will consider the edge to
that large child, if any, as a solid edge. Solid edges induce a decomposition of
the tree into solid paths: we remark that the head of any solid path « is always
a small node, while all the other nodes in m must be large. Each node can have
at most [logn] small ancestors, and thus at most [logn] ancestral solid paths
(unless otherwise stated, all logarithms will be to the base 2).

Decomposition by Maximum Child. This is a minor variant of the previous
decomposition, using a relaxed definition of large nodes: a nonroot node v with
parent v is considered a mazimum child of u if |T,| = max,.(y,w)er [Twl|. If two
or more children of u satisfy this condition, ties are broken arbitrarily. The edge
to the maximum child is considered as a solid edge. We note that a large node
is necessarily a maximum child; however, a maximum child exists even when all
the children v of a node u are such that |T,| < |Ty,|/2. All the basic properties
of the decomposition by large child remain valid in this variant.

Decomposition by Rank. In this decomposition, an edge (u, v) is solid if and only
if [log|Ty,|] = [log|Ty|]. It is not difficult to prove that for any node u there
exists at most one child v such that (u,v) is solid (see, e.g., [T0JI5]). This implies
that solid edges univocally partition the tree into disjoint paths. Some of these
paths can consist of a single node: for instance, all the tree leaves are heads of
solid paths of length 0. We remark that for all nodes v belonging to a given path
7, the size of the subtree rooted at v satisfies the inequality 2! < |T,| < 2¢+1,
for some i > 0: we will say that ¢ is the rank of path 7. Since the rank of any
path can be at most [logn], it follows that each node u can have at most [logn]
ancestral solid paths.

Label Structure and Query Algorithms. We present two different ways of
constructing node labels (the two approaches are extensively described in [17]
and [7], respectively). When combined with any of the path decompositions,
both schemes yield labels of size O(log”n). We also describe how information



Engineering Tree Labeling Schemes 237

maintained in the node labels can be used to infer the least common ancestor of
any two nodes.

Peleg’s scheme. The first scheme [I7] is based on a depth-first numbering
of the tree T: as a preprocessing step, each node v is assigned an interval
Int(v) = [DFS(v); DFS(w)], where w is the last descendent of v visited by
the depth-first tour and DF'S(z) denotes the depth-first number of node x. The
label of each node v of the tree is defined as label(v) = < Int(v),list(v) >;
where list(v) contains information related to all the heads (¢, to, ..., ) of solid
paths from the root of T to v: for each head t;, list(v) contains a quadruple
(i, 0(t;), p(t:), sucey(t;)), where suce,(t;) is the unique child of ¢; on the path to
node v. We remark that this is slightly different (and optimized) with respect to
the scheme originally proposed in [17].

We now describe the query algorithm: given two nodes u and v, the algorithm
infers their least common ancestor z = lca(u, v) using only information contained
in label(u) and label(v). By well-known properties of depth-first search, we have
that for every two nodes x and y of T, Int(z) C Int(y) if and only if z is a
descendent of y in T': this fact can be easily exploited to check whether the
least common ancestor z coincides with any of the two input nodes u and wv.
If this is not the case, let (ui,uz,...,up) and (vi,ve,...,v;) be the heads of
solid paths from the root of T' to u and v, respectively: information about these
heads is maintained in the node labels. The algorithm finds the least common
ancestor head h, which is identified by the maximum index i such that u; = v;. If
sucey (h) # suce, (h), then h must be the least common ancestor. Otherwise, the
algorithm takes the node of minimum level between w;41 and v; 41, and returns
its parent as the least common ancestor. We refer to [I7] for a formal proof
of correctness. Here, we limit to remark that both depth-first numbering and
information about successors appear to be crucial in this algorithm.

CFP’s scheme. This scheme [7] avoids the use of depth-first numbers and of
successors. The label of each node v of the tree is now defined as label(v) = <
isHead(v),list(v) >. The Boolean value isHead(v) discriminates whether v is
the head of its solid path or not. As in Peleg’s scheme, list(v) contains informa-
tion related to all the heads (t1,%2,...,t,) of solid paths from the root of T' to
v. In this case, the information for each head is less demanding and list(v) con-
sists just of a sequence of triples: list(v) = [ (t1,£(t1),p(t1)), - - -, (tn, £(tn), p(th)),
(v,€(v),p(v))]; where t; always coincides with the root of T'. The sentinel triple
(v, £(v), p(v)) is not necessary when v is head of its solid path, since ¢, = v.

We now describe the query algorithm. Given any two nodes w and v, let
(u1,u2,...,up) and (v1,ve,...,v;) be the heads of solid paths from the root of
T to u and v, respectively. Similarly to the previous data structure, the algorithm
first identifies the lowest head h which is ancestor of both w and v: let ¢ be such
that h = u; = v;. If neither u nor v coincides with A (in this trivial case it would
be lca(u,v) = h), the algorithm searches the least common ancestor in the
solid path 7 with head h. At this aim, it identifies two candidates ¢, and ¢, and
returns the highest of them. Notice that node ;1 is either the sentinel of list(u)
or the head following u; in list(u): in the former case the candidate ¢, is u itself,
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while in the latter case the candidate is the parent of u;y1. The candidate ¢, is
computed similarly and the algorithm returns the highest level node among ¢,
and ¢,. We refer the interested reader to [7] for a formal proof of correctness. We
remark that this algorithm compensates for the absence of depth-first intervals
and successor information thanks to the use of sentinel triples.

3 Experimental Framework

In this section we describe our experimental framework, discussing implementa-
tion details of the data structures being compared, performance indicators we
consider, test sets, as well as our experimental setup. All implementations have
been realized by the authors in ANSI C. The full package is available over the
Internet at the URL: http://www.dsi.uniromal.it/"caminiti/lca/.

Data Structure Implementation Issues. We implemented six different la-
beling schemes, obtained by combining the three path decompositions (rank,
largeChild, and maxChild) and the two label structures (Peleg and CFP). The
labeling scheme originally proposed in [I7] corresponds to using Peleg’s labels
together with the decomposition by large child. It can be proved that all the ob-
tained labeling schemes guarantee maximum label size ©(log®n) for trees with
n nodes.

Each scheme comes in two variants, depending on alignment issues. In the
word variant, every piece of information maintained in the node labels is stored
at word-aligned addresses: some bytes are therefore used just for padding pur-
poses. The actual sizes of nodes labels may be larger than the size predicted
theoretically, but we expect computations on node labels to be fast. In the bit
variant, everything is 1-bit aligned: this variant guarantees a very compact space
usage, but requires operations for bit arithmetics that might have a negative im-
pact on the running times of operations.

Performance Indicators. Main objectives that we considered to evaluate the
data structures include space usage, construction time, and query time. Space
usage is strictly related to the length of the lists in the node labels, i.e., to
the number of entries in such lists: besides the total size of the data structure
(measured in MB, unless otherwise stated), we have therefore taken into account
also the average and maximum list length. Other structural measures have been
used to study the effect of the different path decompositions on the labeling
schemes: among them, we considered the number of paths in which the tree is
decomposed, the average and maximum length of paths, and the variance of
path lengths.

Test Sets. Problem instances consist both of synthesized, randomly generated
trees and of real test sets. We used two random tree generators with different
characteristics.

Uniformly distributed trees. This generator exploits the existence of a one-to-one

correspondence between labeled rooted trees on n nodes and strings of length
n — 1: it first generates a random codeword of n — 1 integers in the range [1,n]
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and then applies a linear-time decoding algorithm [8] to obtain the tree. The
approach guarantees that, if each integer is chosen uniformly at random in [1, n],
each tree will have the same probability to be generated.

Structured trees. This generator produces structured instances taking into ac-
count constraints on the degree and on the tree balancing. It works recursively
and takes as input four arguments, named n, d, D, and §: n is the number of
nodes of the tree T' to be built; d and D are a lower and an upper bound for
its degree, respectively; ( is the unbalancing factor of T, i.e., a real number in
[0, 1] which indicates how much T must be unbalanced (the larger is 3, the more
unbalanced will be T').

Real test sets. Spanning trees of real networks have been obtained from data pro-
vided on the CAIDA (Cooperative Association for Internet Data Analysis) web
site. Specifically, we exploited the network of Autonomous Systems monitored by
the skitter project. We refer the interested reader to http://www.caida.org/
for detailed information about these datasets.

Experimental Setup. Our experiments have been carried out on a workstation
equipped with two Dual Core Opteron processors with 2.2 GHz clock rate, 6 GB
RAM, 1 MB L2 cache, and 64 KB L1 data/instruction cache. The workstation
runs Linux Debian (Kernel 2.6.8). All programs have been compiled through
the GNU gcc compiler version 3.3.5 with optimization level 03, using the C99
revised standard of the C programming language. Unless stated otherwise, in
our experiments we averaged each data point on 1000 different instances. When
computing running times of query operations, we averaged the time on (at least)
10% random queries.

4 Experimental Results

In this section we summarize our main experimental findings. We performed
experiments using a wide variety of parameter settings and instance families,
always observing the same relative performances of the data structures. Due
to the lack of space, we do not explicitly report results on real data in this
extended abstract: all measurements on these data sets completely confirm the
results obtained on synthetic instances.

Path Decomposition. Our first aim was to analyze the effects of different path
decomposition strategies on the size of node labels. A typical outcome of our
experiments on trees generated uniformly at random is exemplified in Table [II
With respect to all measures, maxChild appears to be slightly preferable than
largeChild and considerably better than rank. Consider first the structural
measures: among the three decompositions, maxChild generates the smallest
number of solid paths. Paths are therefore longer on the average, and their
lengths exhibit a higher variance. On the opposite side, the number of paths
generated by rank is almost twice as large for the parameter setting of this
experiment, and their length is almost twice as small.
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Table 1. Comparison of path decompositions. The results of this experiment are av-
eraged over 500 random trees with n = 107 nodes. Only the word variant of the data
structures is reported.

maxChild largeChild rank

Number of paths 3678739 4172966 6803270
Average path length (and variance) 2.72(73.7) 2.4(61.2) 1.47(7.9)
Maximum path length 15352 15351 6346
Average list length (and variance) for Peleg 5.72(2.16) 5.89(2.32) 12.40(10.58)
Maximum list length for Peleg 15 15 24
Data structure size for Peleg 1179 1203 2199
Average list length (and variance) for CFP  6.36(2.06) 6.47(2.18) 12.7(10.44)2
Maximum list length for CFP 15 15 24
Data structure size for CFP 1033 1045 1761

Additional experiments were aimed at analyzing the effects of structural prop-
erties of the tree on the path decomposition: in all these tests, the relative
ranking among the three strategies was always the same observed on uniformly
distributed trees. The graphical outcome of two such experiments, obtained by
increasing tree unbalancing and maximum degree, is reported in Figure[Il As the
tree becomes more and more unbalanced, the advantages of using the maxChild
decomposition drop: the number of solid paths obtained by largeChild and
rank indeed decreases and, conversely, the average path length increases (see
Figure [Th and Figure [[k). To explain this, let u be any node and let v be the
child of u that is root of the maximum size subtree: the more T}, is unbalanced,
the more |T},| and |T,| are close to each other and the edge (u,v) is likely to be
solid. This reasoning cannot be applied to the maxChild strategy, according to
which any internal node has always a solid child: for this reason curves related
to maxChild exhibit an almost constant trend. Let us now analyze the effect of
increasing the degree. Let T} and T, be two trees generated with the same fixed
unbalancing factor 8 (8 = 0.9 in the right column of Figure [[l) and maximum
degrees D1 < Ds: for all strategies, we expect the number of solid paths in T5
to be larger than the number of solid paths in 77, since a larger degree implies a
larger number of heads (not only among the children, but among all the descen-
dants of each node). This intuition has been confirmed by the experiments with
increasing maximum degree for all the decompositions, and explains the trend
of the curves in Figure [Ib and Figure [Id.

Size Comparison. Our next aim is to evaluate the requirements of Peleg’s
and CFP’s schemes with respect to the space usage. Besides the total size of the
data structure, we measured also the average number of solid heads in the lists
associated to tree nodes (average list length). We performed experiments varying
both structural properties of the input tree and the instance size.

At a first sight, it might appear that the average list length should be inversely
proportional to the average path length: if paths are shorter on the average, the
number of paths in any root-to-leaf path is expected to be larger, and so is
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Fig. 1. Experimental results on structured trees with n = 10° nodes: increasing unbal-
ancing factor 8 (left column, d = 2 = D) and increasing degree (right column, d = D,

B=0.9)

the number of heads in node labels (both for Peleg and CFP). While this was con-
firmed by the experiments on uniformly distributed trees (see Table[I), it is not
necessarily the case on more structured instances: in particular, both the average
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Fig. 2. Size comparison for Peleg’s and CFP’s schemes on uniformly distributed random
trees: average list length and total size, measured in MB

path length (Figure [[d) and the average list length (Figure [If) decrease as the
maximum degree increases. A more refined analysis suggests that the topology of
the tree should also be taken into account, and in particular the average height
of tree nodes should be considered: the deeper a node, the larger the number of
heads above it can be. As far as our generator works, trees with larger degree have
smaller average node height and, according to Figure[I, the effect of such smaller
height appears to dominate on the shorter length of solid paths.

The total size of the data structure is directly proportional to the average
list length, and curves related to these two measures exhibit the same trend
(see Figure [z and Figure [Mh). However, it is worth observing that the data
structure size in the case of CFP is considerably smaller than Peleg’s size, in
spite of a slightly larger average list length. This is also evident from Figure [2]
that reports on results obtained using the maxChild path decomposition on
uniformly distributed random trees with a number of nodes increasing from 103
to 107 (from this point on we will omit the discussion of rank and largeChild,
since maxChild proved to be consistently better in all the tests described so
far). The smaller data structure size in the case of CFP depends on the fact
that the lists are made of triples, instead of quadruples: the smaller list length
in Peleg’s scheme (due to the absence of sentinel triples) is not sufficient to
compensate for the presence of one more information in each element of the
lists. We remark that lists are very short in practice for both schemes: they
contain on the average 3 up to 6 elements for the data sets considered in this
experiment. This value is very close to log;, n, showing that the constant factors
hidden by the asymptotic notation in the theoretical analysis are very small for
the maxChild path decomposition. In Figure 2] we also distinguish between the
bit and word versions of the data structures (there is no such difference with
respect to the average list length): as expected, for both schemes the bit versions
can considerably reduce the space usage. We will analyze further these data later
in this section.

Running Times. According to the theoretical analysis, the construction times
and the query times for the different labeling schemes are asymptotically the
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same. A natural question is whether this is the case also in practice. Our ex-
periments confirmed the theoretical prediction only in part, showing that the
constant factors hidden by the asymptotic notation can be rather different for
Peleg’s and CFP’s schemes. The charts in Figure B for instance, have been ob-
tained on the same data sets used for the test reported in Figure 2} these charts
show that Peleg is slower than CFP when considering initialization time, but
faster when considering query times. The bit versions of the data structures are
always slower than the corresponding word versions.

In order to explain the larger construction time of Peleg’s scheme, notice that
Peleg makes use of a depth-first numbering of the tree, that is instead avoided
by CFP: all the other operations performed by the initialization algorithms (i.e.,
path decomposition and list construction) are instead very similar. We also recall
that Peleg’s data structure is larger than CFP, and the size of a data structure is
clearly a lower bound on its construction time. The larger amount of information
maintained by Peleg in the list of each node is however efficiently exploited in
order to get faster query times: as an example, if one of the two input nodes
is ancestor of the other, the query algorithm used by CFP needs to scan the
beginning of the nodes’ lists, while the depth-first intervals directly provide the
answer in the case of Peleg data structure.

To get a deeper understanding of the query times, we also measured the aver-
age number of list elements scanned by the query algorithms during a sequence
of operations. This number turns out to be very small both for Peleg and for
CFP, as shown by the left chart reported in Figure Bt on the average, slightly
more than 2 elements are considered in each query even on the largest instances.
Peleg considers less elements than CFP, especially for small values of n: on small
trees, two nodes taken uniformly at random have indeed a higher probability to
be one ancestor of the other, and for all these queries Peleg can avoid to scan
the list at all, as we observed above. Quite surprisingly, however, for the largest
values of n the number of scanned list elements remains almost constant for
both data structures: this seems to be in contrast with the fact that the query
times increase (see Figure B]), and suggests that the larger running times may
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chart). Tests are made on uniformly distributed random trees.

be mainly due to cache effects. To investigate this issue, we used the valgrind
profiler to conduct a preliminary experimental analysis of the number of cache
misses incurred by the query algorithms: the outcome of one such experiment,
related to CFP, is reported in the right chart of Figure @l The experiment con-
firms that the total number of cache references does not increase substantially
with n (in agreement with the result on the number of scanned list elements),
while the number of L2 cache read misses increases sharply, thus justifying the
larger query times.

Trading Space for Time. The experimental results discussed up to this point
show that the bit versions of the data structures require more space than the
corresponding word versions, but have larger construction and query times. In
Figure[flwe summarize the space-time tradeoffs, both for Peleg and for CFP. The
charts show that, for all measures, the differences between bit and word versions
tend to decrease as the instance size increases: this depends on the fact that, as
n increases, the value logn becomes progressively closer to the word size specific
of the architecture, and therefore the number of bits wasted by the word versions
becomes smaller. The size of the bit versions ranges approximately from 60%
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up to 80% of the size of the word versions on our data sets. On the other side,
construction and query times of the bit versions are approximately 1.3 times
higher than the word versions for the largest values of n (for small values of n
the ratio is even larger).
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Abstract. In this paper we present GPU-Quicksort, an efficient Quick-
sort algorithm suitable for highly parallel multi-core graphics processors.
Quicksort has previously been considered as an inefficient sorting solu-
tion for graphics processors, but we show that GPU-Quicksort often per-
forms better than the fastest known sorting implementations for graphics
processors, such as radix and bitonic sort. Quicksort can thus be seen
as a viable alternative for sorting large quantities of data on graphics
processors.

1 Introduction

In this paper, we present an efficient parallel algorithmic implementation of
Quicksort, GPU-Quicksort, designed to take advantage of the highly parallel
nature of graphics processors (GPUs) and their limited cache memory. Quicksort
has long been considered as one of the fastest sorting algorithms in practice
for single processor systems, but until now it has not been considered as an
efficient sorting solution for GPUs [I]. We show that GPU-Quicksort presents a
viable sorting alternative and that it can outperform other GPU-based sorting
algorithms such as GPUSort and radix sort, considered by many to be two of
the best GPU-sorting algorithms. GPU-Quicksort is designed to take advantage
of the high bandwidth of GPUs by minimizing the amount of bookkeeping and
inter-thread synchronization needed. It achieves this by using a two-phase design
to keep the inter-thread synchronization low and by steering the threads so
that their memory read operations are performed coalesced. It can also take
advantage of the atomic synchronization primitives found on newer hardware,
when available, to further improve its performance.

The obvious way to parallelize Quicksort is to take advantage of its inherent
parallelism by just assigning a new processor to each new sequence created in
the partitioning step. This means, however, that there will be very little paral-
lelization at the beginning, when the sequences are few and long [2].

Another approach has been to divide each sequence to be sorted into blocks
that can then be dynamically assigned to available processors [3/4]. However, this
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method requires extensive use of the atomic synchronization primitive Fetch-
And-Add (FAA) which makes it too expensive to use on graphics processors.

Since most sorting algorithms are memory bandwidth bound, there is no sur-
prise that there is currently a big interest in sorting on the high bandwidth
GPUs. Purcell et al. [5] have presented an implementation of bitonic merge sort
on GPUs based on an implementation by Kapasi et al. [6]. Kipfer et al. [7Ig]
have shown an improved version of the bitonic sort as well as an odd-even merge
sort. Gref} et al. [9] introduced an approach based on the adaptive bitonic sorting
technique presented by Bilardi et al. [I0]. Govindaraju et al. [T1] implemented
a sorting solution based on the periodic balanced sorting network method by
Dowd et al. [I2] and one based on bitonic sort [13]. They later presented a hy-
brid bitonic-radix sort that used both the CPU and the GPU to be able to sort
vast quantities of data [I4]. Sengupta et al. [I] have presented a radix-sort and
a Quicksort implementation. Recently, Sintorn et al. [I5] presented a sorting
algorithm that combines bucket sort with merge sort.

2 The System Model

The algorithm has been implemented in CUDA, which is NVIDIA’s initiative to
enable general purpose computations on their graphics processors. It consists of
a compiler for a C-based language which can be used to create kernels that can
be executed on the GPU.

General Architecture. The high range graphics processors from NVIDIA that
supports CUDA currently boasts 16 multiprocessors, each multiprocessor con-
sisting of 8 processors that all execute the same instruction on different data
in lock-step. Each multiprocessor supports up to 768 threads and has 16 KiB of
fast local memory.

Scheduling. Threads are logically divided into thread blocks that are assigned to
a specific multiprocessor. Depending on how many registers and how much local
memory the block of threads requires, there could be multiple blocks running
concurrently on a single multiprocessor. If more blocks are needed than there
is room for, on any of the multiprocessors, the leftover blocks will be scheduled
sequentially.

Synchronization. Threads within a thread block can use the multiprocessors
local memory and a special thread barrier-function to communicate with each
other. The barrier-function forces all threads in the same block to synchronize.
Some newer graphics processors support atomic instructions such as Compare-
And-Swap and FAA.

Memory. Data is stored in a large, global memory that supports both gather
and scatter operations. There is no caching available when accessing this mem-
ory, but each thread block can use its own, very fast, shared local memory to
temporarily copy and store data from the global memory and use it as a manual
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cache. By letting each thread access consecutive memory locations, it is possible
to allow read and write operations to coalesce, which will increase performance.

3 The Algorithm

The following subsection gives an overview of GPU-Quicksort. Section will
then go into the algorithm in more detail.

3.1 Overview

The method used by the algorithm is to recursively partition the sequence to be
sorted, i.e. to move all elements that are lower than a specific pivot value to a
position to the left of the pivot and to move all elements with a higher value to
the right of the pivot. This is done until the entire sequence has been sorted.

In each partition iteration a new pivot value is picked and as a result two new
subsequences are created that can be sorted independently. After a while there
will be enough subsequences available that each thread block can be assigned one
of them. But before that point is reached, the thread blocks need to work together
on the same sequences. For this reason, we have divided up the algorithm into
two, albeit rather similar, phases.

First Phase. In the first phase, several thread blocks might be working on
different parts of the same sequence of elements to be sorted. This requires ap-
propriate synchronization between the thread blocks, since the results of the
different blocks need to be merged together to form the two resulting subse-
quences.

Newer graphics processors provide access to atomic primitives that can aid
somewhat in this synchronization, but they are not yet available on the high-end
graphics processors. Because of that, there is still a need to have a thread block
barrier-function between the partition iterations.

The reason for this is that the blocks might be executed sequentially and we
have no way of knowing in which order they will be executed. The only way
to synchronize thread blocks is to wait until all blocks have finished executing.
Then one can assign new subsequences to them. Exiting and reentering the GPU
is not expensive, but it is also not delay-free since parameters need to be copied
from the CPU to the GPU, which means that we want to minimize the number
of times we have to do that.

When there are enough subsequences so that each thread block can be assigned
its own subsequence, we enter the second phase.

Second Phase. In the second phase, each thread block is assigned its own
subsequence of input data, eliminating the need for thread block synchronization.
This means that the second phase can run entirely on the graphics processor.
By using an explicit stack and always recurse on the smallest subsequence, we
minimize the shared memory required for bookkeeping.
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(a) The sequence to be sorted is divided into m equally sized sections

| B | ...... Bn |
(b) Thread blocks are assigned to the sections
tatin lil{li" tm 1. tma tm 1. tma
B, | ------ B
(c) Each thread block goes through its assigned section...
it t [ O t
B, lfui< EI 1< E' [ B lImi< mvn<l O
Tt > m o tmesl OO tmn>
keeping track of the number of elements above and below the pivot
it t [ t
B, wl [T . [ s I S B | mv1<| [ o gmes|
ot S — ™t b | T
(d) Each thread block calculates the cumulative sum of the two types of elements seen
boc (1 L tmtot< | C—21
1,tot> | 'm,tot>

(e) A cumulative sum of each thread blocks total is calculated

------ tmtot<ttnnc tm,tot>+tm, o>

| th oty 1<

(f) Each thread uses the cumulative sums to find out where to write

I E

(h) Block B, fills the gap between the left and right subsequence with the pivot value

Fig. 1. Partitioning a sequence (m thread blocks with n threads each)

Hoare suggested in his paper [16] that it would be more efficient to use another
sorting method when the subsequences are relatively small, since the overhead
of the partitioning gets too large when dealing with small sequences. We decided
to follow that suggestion and sort all subsequences that can fit in the available
local shared memory using an alternative sorting method.

In-place. On conventional SMP systems it is favorable to perform the sorting
in-place, since that gives good cache behavior. But on GPUs, because of their
limited cache memory and the expensive thread synchronization that is required
when hundreds of threads need to communicate with each other, the advantages
of sorting in-place quickly fades away. Here it is better to aim for reads and
writes to be coalesced to increase performance, something that is not possible
on conventional SMP systems. For these reasons it is better, performance-wise,
to use an auxiliary buffer instead of sorting in-place.

So, in each partition iteration, data is read from the primary buffer and the
result is written to the auxiliary buffer. Then the two buffers switch places, with
the primary becoming the auxiliary and vice versa.

Partitioning. The principle of two phase partitioning is outlined in Figure [Tl
The sequence to be partitioned is selected and it is then logically divided into m
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equally sized sections (Step a), where m is the number of thread blocks available.
Each thread block is then assigned a section of the sequence (Step b).

The thread block goes through its assigned data, with all threads in the block
accessing consecutive memory so that the reads can be coalesced. This is impor-
tant, since reads being coalesced will significantly lower the memory access time.

Synchronization. The objective is to partition the sequence, i.e. to move all
elements that are lower than the pivot to a position to the left of the pivot in the
auxiliary buffer and to move the elements with a higher value than the pivot to
the right of the pivot. The problem here is to synchronize this in an efficient way.
How do we make sure that each thread knows where to write in the auxiliary
buffer?

Cumulative Sum. A possible solution is to let each thread read an element
and then synchronize the threads using a barrier function. By calculating a
cumulative sum] of the number of threads that want to write to the left and to
the right of the pivot respectively, each thread would know that x threads with
a lower thread id than its own are going to write to the left of the pivot and that
y threads are going to write to the right of the pivot. Each thread then knows
that it can write its element to either bu f, 11 or buf, _(,4+1), depending on if the
element is higher or lower than the pivot.

A Two-Pass Solution. But calculating a cumulative sum is not free, so to
improve performance we go through the sequence two times. In the first pass each
thread just counts the number of elements it has seen that have value higher (or
lower) than the pivot (Step c¢). Then when the block has finished going through
its assigned data, we use these sums instead to calculate the cumulative sum
(Step d). Now each thread knows how much memory the threads with a lower id
than its own needs in total, turning it into an implicit memory-allocation scheme
that only needs to run once for every thread block, in each iteration.

In the first phase, where we have several thread blocks accessing the same se-
quence, an additional cumulative sum need to be calculated for the total memory
used by each thread block (Step e).

When each thread knows where to store its elements, we go through the data
in a second pass (Step g), storing the elements at their new position in the
auxiliary buffer. As a final step, we store the pivot value at the gap between the
two resulting subsequences (Step h). The pivot value is now at its final position
which is why it doesn’t need to be included in any of the two subsequences.

3.2 Detailed Description

The First Phase The goal of the first phase is to divide the data into a large
enough number of subsequences that can be sorted independently.

Work Assignment. In the ideal case, each subsequence should be of the same
size, but that is often not possible, so it is better to have some extra subsequences

! The terms prefix sum or sum scan are also used in the literature.
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Fig. 2. Pseudocode for the first phase

and let the scheduler balance the workload. Based on that observation, a good way
to partition is to only partition subsequences that are longer than minlength =
n/mazxseq and to stop when we have maxseq number of subsequences.

In the beginning of each iteration, all subsequences that are larger than the
minlength are assigned thread blocks relative to their size. In the first iteration,
the original subsequence will be assigned all available thread blocks. The sub-
sequences are divided so that each thread block gets an equally large section to
sort, as can be seen in Figure [ (Step a and b).

First Pass. When a thread block is executed on the GPU, it will iterate through
all the data in its assigned sequence. Each thread in the block will keep track
of the number of elements that are greater than the pivot and the number
of elements that are smaller than the pivot. The data is read in chunks of T
words, where T is the number of threads in each thread block. The threads read
consecutive words so that the reads coalesce as much as possible.
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Fig. 3. Pseudocode for the second phase

Space Allocation. Once we have gone through all the assigned data, we calcu-
late the cumulative sum of the two arrays. We then use the atomic FAA-function
to calculate the cumulative sum for all blocks that have completed so far. This
information is used to give each thread a place to store its result, as can be seen
in Figure [ (Step c-f).

FAA is as of the time of writing not available on all GPUs. An alternative, if
one wants to run the algorithm on the older, high-end graphics processors, is to
divide the kernel up into two kernels and do the block cumulative sum on the
CPU instead. This would make the code more generic, but also slightly slower
on new hardware.

Second Pass. Using the cumulative sum, each thread knows where to write
elements that are greater or smaller than the pivot. Each block goes through its
assigned data again and writes it to the correct position in the current auxiliary
array. It then fills the gap between the elements that are greater or smaller
than the pivot with the pivot value. We now know that the pivot values are in
their correct final position, so there is no need to sort them anymore. They are
therefore not included in any of the newly created subsequences.

Are We Done? If the subsequences that arise from the partitioning are longer
than minlength, they will be partitioned again in the next iteration, provided
we don’t already have more than maxseq subsequences. If we do have more than
mazseq subsequences, the next phase begins. Otherwise we go through another
iteration. (See Algorithm 1).

The Second Phase. When we have acquired enough independent subsequences,
there is no longer any need for synchronization between blocks. Because of this,
the entire phase two can be run on the GPU entirely. There is however still the
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need for synchronization between threads, which means that we will use the same
method as in phase one to partition the data. That is, we will count the number of
elements that are greater or smaller than the pivot, do a cumulative sum so that
each thread has its own location to write to and then move all elements to their
correct position in the auxiliary buffer.

Stack. To minimize the amount of fast local memory used, there is a very limited
supply of it, we always recurse on the smallest subsequence. By doing that, Hoare
have showed [16] that the maximum recursive depth can never go below log,(n).
We use an explicit stack as suggested by Hoare and implemented by Sedgewick,
always storing the smallest subsequence at the top [17].

Overhead. When a subsequence’s size goes below a certain threshold, we use
an alternative sorting method on it. This was suggested by Hoare since the
overhead of Quicksort gets too big when sorting small sequences of data. When
a subsequence is small enough to be sorted entirely in the fast local memory, we
could use any sorting method that can be made to sort in-place, doesn’t require
much expensive thread synchronization and performs well when the number of
threads approaches the length of the sequence to be sorted.

Theorem 1. The average time complezity for GPU-Quicksort is O(nlog(n)).

Theorem 2. The space complexity for GPU-Quicksort is 2n + ¢, where ¢ is a
constant.

The proofs of the theorems above are simple and are not included in this version
of the paper due to space constraints.

4 Experimental Evaluation

We ran the experiments on a dual-processor dual-core AMD Opteron 1.8GHz
machine. Two different graphics processors were used, the low-end NVIDIA
8600GTS 256MiB with 4 multiprocessors and the high-end NVIDIA 8800GTX
768MiB with 16 multiprocessors. Since the 8800GTX provides no support for
the atomic FAA operation we instead used an implementation of the algorithm
that exits to the CPU for block-synchronization.

We compared GPU-Quicksort to the following state-of-the-art GPU sorting
algorithms:

GPUSort. Uses bitonic merge sort [I3].

Radix-Merge. Uses radix sort to sort blocks that are then merged [I8].

Global Radix. Uses radix sort on the entire sequence [I].

Hybridsort. Uses a bucket sort followed by a merge sort [I5].

STL-Introsort. This is the Introsort implementation found in the C++ Stan-
dard Library. Introsort is based on Quicksort, but switches to heap-sort when
the recursion depth gets too large. Since it is highly dependent on the computer
system and compiler used, we only included it to give a hint as to what could
be gained by sorting on the GPU instead of on the CPU [19].
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Fig. 4. Results on the 8800GTX Fig. 5. Results on the 8600GTS

We could not find an implementation of the Quicksort algorithm used by
Sengupta et al., but they claim in their paper that it took over 2 seconds to sort
4AM uniformly distributed elements on a 8800GTX [1].

We only measured the actual sorting phase, we did not include in the result
the time it took to setup the data structures and to transfer the data on and off
the graphics memory. The reason for this is the different methods used to transfer
data which wouldn’t give a fair comparison between the GPU-based algorithms.
Transfer times are also irrelevant if the data to be sorted are already available
on the GPU. Because of those reasons, this way of measuring has become a
standard in the literature.

On the 8800GTX we used 256 thread blocks, each block having 256 threads.
When a subsequence dropped below 1024 elements in size, we sorted it using
bitonic sort. On the 8600GTS we lowered the amount of thread blocks to 128
since it has fewer multiprocessors. All implementations were compiled with the
-03 optimization flag.

We used different pivot selection schemes for the two phases. In the first phase
we took the average of the minimum and maximum element in the sequence and
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in the second we picked the median of the first, middle and last element as the
pivot, a method suggested by Singleton[20].
The source code of GPU-Quicksort is available for non-commercial use [21].
For benchmarking we used the following distributions which are defined and
motivated in [22]. These are commonly used yardsticks to compare the perfor-
mance of different sorting algorithms. The source of the random uniform values
is the Mersenne Twister [23].

Uniform. Values are picked randomly from 0 — 231

Zero. A constant value is used. The actual value is picked at random.
Bucket. The data set is divided into p blocks, where p € Z*, which are then
each divided into p sections. Section 1 in each block contains randomly selected
values between 0 and 2;1 — 1. Section 2 contains values between 2;1 and 2;2 —1
and so on.

Gaussian. The Gaussian distribution is created by always taking the average
of four randomly picked values from the uniform distribution.

Staggered. The data set is divided into p blocks, where p € Z*. The staggered
distribution is then created by assigning values for block i, where i < [ %], so that

they all lie between ((2i — 1) 2;1) and ((21’)(2;1 —1)). For blocks where i > |} ],

the values all lie between ((2i — p — 2) 2;1) and ((2i —p—1) 2;1 —1).

We decided to use a p value of 128. The results presented in Fig. @ and [l are
based on experiments sorting sequences of integers. We have done experiments
using floats instead, but found no difference in performance.

4.1 Discussion

Quicksort has a worst case scenario complexity of O(n?), but in practice, and on
average when using a random pivot, it tends to be close to O(nlog(n)), which is
the lower bound for comparison sorts. In all our experiments GPU-Quicksort has
shown the best performance or been among the best. There was no distribution
that caused problems to the perfomance of GPU-Quicksort. As can be seen
when comparing the performance on the two GPUs, GPU-Quicksort shows a
speedup of approximately 3 on the higher-end GPU. The higher-end GPU has
a memory bandwidth that is 2.7 times higher and has four times the number
of multiprocessors, indicating that the algorithm is bandwidth bound and not
computation bound, which was the case with the Quicksort in [IJ.

On the CPU, Quicksort is normally seen as a faster algorithm as it can po-
tentially pick better pivot points and doesn’t need an extra check to determine
when the sequence is fully sorted. The time complexity of radix sort is O(n),
but that hides a potentially high constant which is dependent on the key size.
Optimizations are possible to lower this constant, such as constantly checking
if the sequence has been sorted, but that can be expensive when dealing with
longer keys. Quicksort being a comparison sort also means that it is easier to
modify it to handle different key types.

The hybrid approach uses atomic instructions that were only available on
the 8600GTS. We can see that it outperforms both GPU-Quicksort and the
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global radix sort on the uniform distribution. But it loses speed on the staggered
distributions and becomes immensely slow on the zero distribution. The authors
state that the algorithm drops in performance when faced with already sorted
data, so they suggest randomizing the data first, but this wouldn’t affect the
result in the zero distribution.

GPUSort doesn’t increase as much in performance as the other algorithms
when executed on the higher-end GPU. This is an indication that the algorithm
is more computationally bound than the other algorithms. It goes from being
much faster than the slow radix-merge to perform on par with and even a bit
slower than it. The global radix sort showed a 3x speed improvement, as did
GPU-Quicksort.

All algorithms showed about the same performance on the uniform, bucket
and Gaussian distributions. GPUSort always shows the same result independent
of distributions since it is a sorting network, which means it always performs
the same number of operations regardless of the distribution. The staggered
distribution was more interesting. On the low-end GPU the hybrid sorting was
more than twice as slow as on the uniform distribution. GPU-Quicksort also
dropped in speed and started to show the same performance as GPUSort. This
can probably be attributed to the choice of pivot selection which was more
optimized for uniform distributions. The zero distribution, which can be seen
as an already sorted sequence, affected the algorithms to different extent. The
STL reference implementation increased dramatically in performance since its
two-way partitioning function always returned even partitions regardless of the
pivot chosen. GPU-Quicksort shows the best performance as it does a three-way
partitioning and can sort the sequence in O(n) time.

5 Conclusions

In this paper we present GPU-Quicksort, a parallel Quicksort algorithm designed
to take advantage of the high bandwidth of GPUs by minimizing the amount of
bookkeeping and inter-thread synchronization needed. A significant conclusion,
we think, that can be drawn from this work, is that Quicksort is a practical
alternative for sorting large quantities of data on graphics processors.
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Abstract. A Bloom filter is a space efficient structure for storing static
sets, where the space efficiency is gained at the expense of a small prob-
ability of false-positives. A Bloomier filter generalizes a Bloom filter to
compactly store a function with a static support. In this article we give
a simple construction of a Bloomier filter. The construction is linear
in space and requires constant time to evaluate. The creation of our
Bloomier filter takes linear time which is faster than the existing con-
struction. We show how one can improve the space utilization further at
the cost of increasing the time for creating the data structure.

1 Introduction

A Bloom filter is a compact data structure that supports set membership queries
[1]. Given a set S C D where D is a large set and |S| = n, the Bloom filter
requires space O(n) and has the following properties. It can answer membership
queries in O(1) time. However, it has one-sided error: Given z € S, the Bloom
filter will always declare that = belongs to S, but given z € D\S the Bloom
filter will, with high probability, declare that = ¢ S. Bloom filters have found
wide ranging applications [3M4IT4JT6]. There have also been generalizations in
several directions of the Bloom filter [RIT3TTITE]. More recently, Bloom filters
have been generalized to “Bloomier” filters that compactly store functions [6].
In more detail: Given S C D and a function f : S — {0, 1}* a Bloomier filter is a
data structure that supports queries to the function value. It also has one-sided
error: given x € S, it always outputs the correct value f(x) and if z € D\ S with
high probability it outputs ‘L’, a symbol not in the range of f. In [6] the authors
construct a Bloomier filter that requires, O(nlogn) time to create; O(n) space
to store and, O(1) time to evaluate.

In this paper we give an alternate construction of Bloomier filters, which we
believe is simpler than that of [6]. It has similar space and query time complexity.
The creation is slightly faster, O(n) vs. O(nlogn). Changing the value of f(x)
while keeping S the same is slower in the worst case for our method, O(logn) vs.
O(1). For a detailed comparison we direct the reader to the extended version of
this paper (see [7] §6). In §8]we discuss another construction that is very natural
and has a smaller space requirement. However, this algorithm has a creation time
of O(n?) which is too expensive. In ] we discuss how bucketing can be used to
reduce the construction time of this algorithm to nlogo(l) n and make it more
practical. Recent independent results of [II] are related to this construction.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 259-B70] 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Due to space constraints we have omitted our experimental results comparing
our construction to the previous construction. We refer the reader to [7] §7 for
these results.

2 The Construction

2.1 A 1-Bit Bloomier Filter

We begin with the following simplified problem: Given a set S of n elements and
a function f : S — {0,1}, encode f into a space efficient data structure that
allows fast access to the values of f. A simple way to solve this problem is to use
a hash table (with open addressing) which requires O(n) space and O(1) time on
average to evaluate f. If we want worst case O(1) time for function evaluation,
we could try different hash functions until we find one which produces few hash
collisions on the set S. This solution however does not generalize to our ultimate
goal which is to have a compact encoding of the function f : D — {0,1, L},
where f|s = f and f(z) = L with high probability if x ¢ S. Thus if D is much
larger than S, the solution using hash tables is not very attractive as it uses
space proportional to D. To counter-act this one could use the hash table in
conjunction with a Bloom filter for S. This is not the approach we will takdl.
Our approach to solving the simplified problem uses ideas from the creation
of minimal perfect hashes (see [9]). We first map S onto the edges of a random
(undirected) graph G(V, E) constructed as follows. Let V' be a set of vertices with
[V| > ¢|S|, where ¢ > 1 is a constant. Let hy, ha : D — V be two hash functions.
For each = € S, we create an edge e = (h1(z), ha(z)) and let E be the set of edges
formed in this way (so that |E| = |S| = n). If the graph G is not acyclic we try
again with two independent hash functions hf, hj. It is known that if ¢ > 2, then
the expected number of vertices on tree components is |V| + O(1) ([2] Theorem
5.7 ii). Indeed, in [I0] the authors proved that if G(V, E) is a random graph with
|V| = ¢|E| and ¢ > 2, then with probability exp(1/c)\/(c —2)/c the graph is
acyclic. Thus, if ¢ > 2 is fixed then the expected number of iterations till we
find an acyclic graph is O(1). In particular, if ¢ > 2.09 then with probability
at least 1/3 the graph G is acyclic. Thus the expected number of times we will
have to re-generate the graph until we find an acyclic graph is < 3. Once we
have an acyclic graph G, we try to find a function g : V" — {0,1} such that
f(z) = g(hi(z)) + g(h2(x)) (mod 2) for each x € S. One can view this as a
sequence of n equations for the variables g(v), v € V. The fact that G is acyclic
implies that the set of equations can be solved by simple back-substitution in
linear time. We then store the table of values g(v) (€ {0,1}) for each v € V. To
evaluate the function f, given x, we compute hq(z) and ho(x) and add up the
values stored in the table g at these two indices modulo 2. The expected creation
time is O(n), evaluation time is O(1) (two hash function computations and two
memory lookups to the table of values g) and the space utilization is [en] bits.

! The reason this is not optimal is because to achieve error probability €, we will need
to evalute O(log 1/¢) hash functions.
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Next, we generalize this approach to encoding the function f : D — {0,1, 1}
that when restricted to S agrees with f and outside of S it maps to L with high
probability. Here again we will use the same construction of the random acyclic
graph G(V, E) together with a map from S — F via two hash functions hq, hs.
Let m > 2 be an integer and hg : D — Z/mZ be another independent hash
function. We solve for a function g : V' — Z/mZ such that the equations f(x) =
g(h1(x))+ g(ha(z))+hs(z) (mod m) holds for each 2z € S. Again since the graph
G is acyclic these equations can be solved using back-substitution. Note that back-
substitution works even though we are dealing with the ring Z/mZ which is not
a field unless m is prime. To evaluate the function f at x we compute h;(z) for
1 <4 < 3and then compute g(hy(z))+g(he(x))+hs(z) (mod m).Ifthe computed
value is either 0 or 1 we output it otherwise, we output the symbol L. Algorithms
[ and 2 give the steps of the construction in more detail. It is clear that if x € S
then the value output by our algorithm is the correct value f(x). If z ¢ S then the
value of h3(x) is independent of the values of g(hi(x)) and g(ha(z)) and uniform
in the range Z/mZ. Thus Pr,c p\slg(h1(z)) + g(ha(z)) + hs(z) € {0,1}] = 2.

Algorithm 1. Generate Table

Input: A set S C D and a function f: S — {0,1}, ¢ > 2, and an integer m > 2.
Output: Table g and hash functions hq, ha, hs such that Vs € S : g[h1(s)] + g[h2(s)] +
hs(s) = f(s) mod m.
Let V.={0,1,---,[en] — 1}, where n = |S]
repeat
Generate hi,hs : D — V where h; are chosen independently from H — a family of
hash functions; Let E = {(h1(s), h2(s)) : s€ S}.
until G(V, F) is a simple acyclic graph.
Let hs : D — Z/mZ be a third independently chosen hash function from H.
for all T — a connected component of G(V, E) do
Choose a vertex v € T" whose degree is non-zero.
F—{v}; g[v] < 0.
while F' # T do
Let C be the set of nodes in T\ F' adjacent to nodes in F.
for all w = h;(s) € C do
glw] — F(s) — glhs—i(s)] — hs(s) mod m.
end for
F— FuUC.
end while
end for

In summary, we have proved the following:

Proposition 1. Fiz c > 2 and let m > 2 be an integer, the algorithms described
above (Algorithms [l and[2) implement a Bloomier filter for storing the function
f:D —{0,1, 1} and the underlying function f :S — {0,1} with the following
properties:

1. The expected time for creation of the Bloomier filter is O(n).
2. The space used is [cn][logym] bits, where n =|S|.
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3. Computing the value of the Bloomier filter at x € D requires O(1) time (3
hash function computations and 2 memory lookups).

4. Given x € S, it oulputs the correct value of f(x).

5. Given x ¢ S, it outputs L with probability 1 — jl

2.2 General k-Bit Bloomier Filters

It is easy to generalize the results of the previous section to obtain Bloomier
filters with range larger than just the set {0, 1}. Given a function f : S — {0,1}*
it is clear that as long as the range {0,1}* embeds into the ring Z/mZ one
can still use Algorithm [I] without any changes. This translates into the simple
requirement that we take m > 2F. Algorithm [ needs a minor modification,
namely, we check if f = g(hi(z)) + g(h2(z)) + ha(z) (mod m) € {0,1}* and if
so we output f otherwise, we output L. We encapsulate the claims about the
generalization in the following theorem (the proof of which is similar to that of
Proposition [J):

Theorem 1. Fiz c > 2 and let m > 2% be an integer, the algorithms described
above implement a Bloomier filter for storing the function f : D — {0, 1}*U{ L},
and the underlying function f : S — {0, 1}* with the following properties:

1. The expected time for creation of the Bloomier filter is O(n).

2. The space used is [en][logym] bits, where n =|S|.

3. Computing the value of the Bloomier filter at x € D requires O(1) time (3
hash function computations and 2 memory lookups).

4. Given x € S, it outputs the correct value of f(x).

5. Given x ¢ S, it outputs L with probability 1 — ka

Algorithm 2. Query function
Input: Table g, h1,h2 : D — {0,---,[en]| — 1}, hs : D — Z/mZ hash functions and
z€D.
Output: 0,1 or L — the output of the Bloomier filter represented by the table g.
f — gl (@)] + glha(z)] + ha(z) mod m.
if f € {0,1} then
Output f.
else
Output L.
end if

2.3 Mutable Bloomier Filters

In this section we consider the task of handling changes to the function stored in
the Bloomier filter produced by the algorithms in the previous section. We will
only consider changes to the function f : S — {0,1}* where S remains the same
but only the values taken by the function changes. In other words, the support
of the function remains static.
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Consider what happens when f : S — {0,1}* is changed to the function
'S — {0,1}* where f(z) = f'(z) except for a single y € S. In this case
we can change the values stored in the g-table so that we output the value
of " at y. We assume that the edges of the graph G are available (this is
an additional O(nlogn) bits). We begin with the observation that the values
stored at g(v) for vertices v not in the connected component containing the edge
e = (h1(y), ha(y)) remain unaffected. Thus changing f to f’ affects only the g
values of the connected component, C' (say), containing the edge e. Recomputing
the g values corresponding to C would take time O(|C|). How big can the largest
connected component in G get? Our graph G(V, E) built in Algorithm [ is a
sparse random graph with [E| < J|V|. A classical result due to Erdés and Rényi
says that in this case the largest component is almost surelyﬁ O(logn) in size
where n = |E| (see [12] or [2]). Thus updates to the Bloomier filter take O(logn)
time provided we ensure that the largest component in G is small when creating
it. The result from [12] tells us that adding the extra condition while creating G
will not change the expected running time of Algorithm [l We call this modified
algorithm Algorithm [IJ.

Theorem 2. The Bloomier filter constructed using algorithms[l’ and[d can ac-
comodate changes to function values in time O(logn), provided the graph G is
also retained. Moreover, the claims of Theorem [ remain true for algorithms [’

and[2

3 Reducing the Space Utilization

If we are willing to spend more time in the creation phase of the Bloomier filter,
we can further reduce the space utilization of the Bloomier filter. In this section
we show how one can get a Bloomier filter for a function f : S — {0,1}* with

error rate ka using only n(1 + €)[logy m] bits of storage, where n = |S| and
€ > 0 is a constant. In §] we used a random graph generated by hash functions
to systematically generate a set of equations that can be solved efficiently. The
solution to these equations is then stored in a table which in turn encodes the
function f. The main idea to reduce space usage further is to have a table
9[0],g[1],- -+, g[N — 1], where N = (1 4 €)n, and try to solve the following set of

equations over Z/mZ:

> hi(@)glhirs(@)] | +ho(z) = f(x), z €S (1)
1<i<s
for the unknowns g[0], - - - , g[N —1]. Here s > 1 is a fixed integer and hq, hy, - - , hos

are independent hash functions. Since s is fixed, look up of a function value will
only take O(1) hash function evaluations. These equations can be solved provided
the determinant of the sparse matrix corresponding to these equations is a unit
in Z/mZ. The next subsection gives an answer (under suitable conditions) to this
question when m is a prime.

2 This means that the probability that the condition holds is 1 — o(1).



264 D. Charles and K. Chellapilla

3.1 Full Rank Sparse Matrices over a Finite Field

s r(Fp) be the set of full rank n X r matrices over IF,E that have exactly s
non-zero entries in each column. Our aim in this section is to get a lower bound
for §GL ... (F,) (the cardinality of this set). We note the following lemma whose
proof we omit.

Let GL?

Lemma 1. Let M} . (F,) be the matrices overF, where each column has exactly

s non-zero entries. Then M5 ,.(Fp) = ((7)(p — 1)5)T.

S

Before we begin the task of getting a lower bound for the sparse full rank ma-
trices we briefly recall the method of proof for finding §GL,,(F,) — the group of
invertible n x n matrices over IF,. One can build invertible matrices column by
column as follows: Choose any non-zero vector for the first column, there are
p™ — 1 ways of choosing the first column. The second column vector should not
lie in the linear span of the first. Therefore there are p™ —p choices for the second
column vector. Proceeding in this way there are p™ — p? for the j + 1 column.
Thus we have GL,(Fp) =[], <, (" —p" 7).

One can adapt this idea to get a bound on the invertible s-sparse matrices. There
are (7)(p — 1)* ways of choosing the first column. Inductively, suppose we have
chosen the first ¢ columns to be linearly independent, then we have a vector space
Vi C I} of dimension ¢ spanned by the first ¢ columns. One can grow this matrix
to arank i+ 1 matrix by augmenting it by any s-sparse vector w ¢ V;. Thus we are
faced with the task of finding an upper bound on the number of s-sparse vectors
contained in V;. We introduce some notation: suppose w = (wy, wa, -+ ,wy, )" €
IFZ is a vector then we define w@ to be the vector (w,,, w1, -+ ,w,_1)* (a cyclic shift
of w). Note that if w is s-sparse then so is w@. Our approach is to show that under
certain circumstances the vector space spanned by the orbit of a sparse vector un-
der the circular shifts have high dimension and consequently, all the shifts cannot
be contained in V; (unless ¢ = n). It is natural to expect that given a s-sparse vec-
tor w, the vector space W@ spanned by all the circular shifts w, w?, -+ ,w@"
has dimension > n — s. Unfortunately, this is not so: For example, consider w =
(1,0,1,0,1,0) whose cyclic shifts generate a vector space of dimension 2. This mo-
tivates the next lemma.

Lemma 2. Suppose q is a prime number and w € IF;I, s an s-sparse vector with
0 < s < q. Then the orbit {w,w?, .-, w?" '} has cardinality q.

Proof. We have a natural action of the group Z/qZ on the set of cyclic shifts of
w, via a — w?". Suppose we have w? = w? for 0 < i # j < ¢ — 1. Then

i-5) . . o
we ha\_febw®( 7 = w = w?". Since we have a group action this implies that
w2 = . Since ¢ is prime this means that w® = w. But 0 < s < ¢
therefore w? # w and we have a contradiction. O

3 Here p is a prime number and F,, is the finite field with p elements. Any two finite
fields with p elements are isomorphic and the isomorphism is canonical. If the field
has p", r > 1, elements then the isomorphism is not canonical.
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One can show that the vector space spanned by the cyclic shifts of an s-sparse
vector (0 < s < m) has dimension at least n/s. However, this bound is not
sufficient for our purpose. We need the following stronger conditional result
whose proof is available in [7] (see Theorems 8 and 9 in the Appendix of [7]).

Theorem 3. Let w = (wp, -+ ,Wg—1) € F¥, where p is a prime that is a primi-
tive root modulo q (i.e., p generates the cyclic group ]F;) Suppose wy + wy - -+ +
wg—1 # 0 and w; are not all equal, then W@ (the vector space spanned by the

cyclic shifts of w) has dimension q.

Let V; be a vector space of dimension i contained in FJ. We have ;(g) (p—1)°
orbits of size ¢ under the action of Z/qZ on the s-sparse vectors. If s < n then all
the coordinates cannot be identical. Once the s non-zero positions for an s-sparse
vector are chosen there are > (p —1)* — (p — 1)*~! vectors whose coordinates do
not sum to zerdd. Now each of these orbits generates a vector space of rank ¢ by
the above theorem. In each orbit there are at most 7 vectors that can belong to
V;. Consequently, there are at least

L(q s s— :
() -1 -w-1) -0 ®
q\s
s-sparse vectors that do not belong to V;. We have thus proved the following
theorem:

Theorem 4. Let q,p be prime numbers such that p is congruent to a primitive
root modulo q. Then

i@z T1(1(0) -0 - 0-0")0-9).

S
0<i<r—1 q

We note that the bound obtained above is almost tighiﬁ in the case s = 1,
where the 1-sparse matrices are simply diagonal matrices (with non-zero entries)
multiplied by permutation matrices.

3.2 The Algorithm

The outline of the algorithm is as follows. To create the Bloomier filter given
f:S — {0,1}* we consider each element x of S in turn. We generate a random
equation as in () for x and check that the list of equations that we have so far
has full rank. If not, we generate another equation using a different set of 2s
hash functions. At any time, we keep the hash functions that have been used so
far in blocks of 2s hash functions. When generating a new equation we always

4 Indeed, it is not hard to show that the exact number of such vectors is
(-1 ((p—1)*+(=1)*F1)

» .
5 The bound is tight if we use the exact formula for the number of s-sparse vectors
that do not sum to 0 in the derivation.
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start with the first block of hash functions and try subsequent blocks only if the
previous blocks failed to give a full rank system of equations. The results of the
previous section show that the expected number of blocks of hash functions is
bounded (provided the vector space has high dimension). Once we have a full
rank set of equations for all the elements of S, we then proceed to solve the
sparse set of equations. The solution to the equations is then stored in a table.
At look up time, we generate the equations using each block of hash functions
in turn and output the first time an equation generates a value in the range of
f. At first glance it looks like this approach stores f with two-sided error, i.e.,
even when given x € S we might output a wrong value for f(z). However, we
show that the probability of error committed by the procedure on elements of
S can be made so small that, by doing a small number of trials, we can ensure
that we do not err on any element of S.

Algorithm 3. Setup parameters
Input: n > 0 integer given in unary, m > 0 integer, ¢ > 0.
Output: ¢ and p primes, p is a m-bit prime that is a primitive root modulo q.
Let ¢ be the first prime > n(1 +¢).
Factor ¢ — 1 and let g1, - , qx be the (distinct) prime factors of ¢ — 1.
repeat
Choose a random g € F,.
until g% Z 1 mod ¢ for each 1 <1i < k.
Let gi = ¢* mod g for 1 <i<q—1, ged(i,q—1) = 1.
repeat
Choose a random m-bit integer p.
until p = g; for some i, and p is prime.

Analysis of Algorithm [3k It can be shown that Algorithm [3 has an expected
running time of O(n +m®*). We refer the reader to [7] for the details.

Analysis of Algorithm [t The algorithm essentially mimics the proof of The-
orem [l It starts with a rank ¢ matrix and grows the matrix to a rank 7 + 1
matrix by adding an s-sparse row using hash functions in B]ﬁ. Let n = |S| and
suppose, ¢ > n(1+¢€) for a fixed e > 0. Then equation (2]) tells us that in O(1/¢)
iterations we will find that the rank of the matrix increases. In more detail, the
probability that a random s-sparse vector does not lie in V; is at least q;i > €
since ¢ < n and ¢ > n(l + €). Note that this requires rather strong pseudoran-
dom properties from the hash family H. As mentioned in the discussion following
Lemma 4.2 in [6], a family of cryptographically strong hash functions is needed
to ensure that the vectors generated by the hash function from the input behave
as random and independent sparse vectors over the finite field. We will make
this assumption on the hash family H. Checking the rank can be done by Gaus-
sian elimination keeping the resulting matrix at each stage. The inner-loop thus

5 Strictly speaking the row could have < s non-zero entries because a hash function
could map to zero. But this happens with low probability.
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Algorithm 4. Create Table

Input: A set S C D and a function f: S — {0, l}k, two primes p, g, H a hash family,
and s > 2.
Output: Table g, ho a hash function and r blocks of 2s hash functions B;.
M — (0)nxq (a m X q zero matrix).
Let ho be a random hash function from H.
1 — 0.
for all z € S do
t+—1+1;5«0.

repeat
if B; is not defined then
Generate hi,--- , has random hash functions from H.
Bj — {h1, - ,has}.
end if

Let hi,--- , hos be the hash functions in B;.
Mli, hiys(x)] «— hp(z) for 1 <k <s;j«— 75+ 1.
until Rank(M) =1
end for
Let v = (f(x) — ho(x) : © € S)".
Solve the system M x g = v for g = (g[i] : 1 <1 < q)* over Fp.
Return g, ho and B;.

runs in expected O(n?) time and the “for” loop takes O(n?) time on average.
Solving the resulting set of sparse equations can be done in O(n?) time since the
Gaussian elimination has already been completed. The algorithm also generates
r blocks of hash functions, and by the earlier analysis the expected value of r
is O(1/e€). In summary, the expected running time of Algorithm His O(n?®). We
refer the reader to [7] for a discussion on why sparse matrix algorithms cannot
be used in this stage, and also why s = 1 cannot be used here.

Analysis of Algorithm [Bt In this algorithm we try the blocks of hash functions
and output the first “plausible” value of the function (namely, a value in the
range of the function f). If the wrong block, B;, of hash functions was used
then the probability that the resulting function value, y, belongs to the range
{0,1}% is 2:. If the right block B; was used then, of course, we get the correct
value of the function and y = f(x). If x € D\S, then again the probability
that y € {0,1}* is at most rik. Since r and s are O(1) the algorithm requires

O(1) operations over the finite field F,. This requires O(log? p) bit operations
with the usual algorithms for finite field operations, and only O(logploglog p)
bit operations if FFT multiplication is used.

How to get one-sided error: The analysis in the previous paragraph shows
that the probability that we err on any element of S is < ";k . Thus, if p is large
we can construct a ¢ table using Algorithm [] and verify whether we give the
correct value of f for all elements of S. If not, we can use Algorithm [ again to
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Algorithm 5. Query function
Input: Table g, hash functions ho, B;,1 <i <7, x € D.
Output: y € {0,1}* or L.

3 «— 1
while i < r do
Let hi,--- , h2s be the hash functions in B;.

Let y < ho(x) + Z1gjgs hi(x)glhits(z)].
if y € {0,1}* then
Return y.
end if
i— 141
end while
Return 1.

construct another table g. The probability we succeed at any stage is > 1 — ";k ,

and if p is taken large enough that this is > 57 then the expected number of
iterations is < 2. We summarize the properties of the Bloomier filter constructed

in this section below:

Theorem 5. Fiz e > 0 and s > 2 an integer, let S C D, |S| = n and let m, k
be positive integers such that m > k. Given f : S — {0,1}*, the Bloomier filter
constructed, (with parameters e,m and s) by Algorithms[3 and [J], and queried,
using Algorithm [3, has the following properties:

1. The expected time to create the Bloomier filter is O(n3 +m*).

2. The space utilized is [n(1 + €)|m bits.

3. Computing the value of the Bloomier filter at x € D requires O(1) hash
Junction evaluations and O(1) memory look ups.

4. If x € S, it outputs the correct value of f(x).

5. If v ¢ S, it outputs L with probability 1 — 0(12’“_7").

4 Bucketing

The construction in §3]is space efficient but the time to construct the Bloomier
filter is exhorbitant. In this section we show how to mitigate this with bucketing.
To build a Bloomier filter for f : S — {0,1}*, one can choose a hash function
g:S —{0,1,---,b— 1} and then build Bloomier filters for the functions f; :
S; — {0,1}* for i = 0,1,---,b — 1, where S; = ¢g~'(i) and f;(z) = f(z) for
x € S;. The sets | S;| have an expected size of |S]/b and hence results in a speedup
for the construction time. The bucketing also allows one to parallelize of the
construction process, since each of the buckets can in processed independently.
To quantify the time saved by bucketing we need a concentration result for the
size of the buckets produced by the hash function.

Fix a bucket b;, 0 < b; < b and define random variables Xs(fi)7 e 7Xg:"') for
sj € S as follows: Pick a hash function g : S — {0,1,--- ,b— 1} from a family
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of hash functions H and set Xg(f”) = 1if g(s;) = b; and set X‘gfi) = 0 other-
wise. Under the assumption that the random variables X L§§”") are mutually in-

dependent, we obtain using Chernoff bounds that Pr [Z , Xs(j") > (1+40) ISI}

2="% prov1ded 19 > 2¢ — 1. This bound hOldb for any bucket and conbequently7

Pr |:E|j DO ij > (14 6) ISI] <52="%" Thus with probability > 1 — b2~

all the buckets have at most (140)", %1 elements. Suppose we take the number of
buckets b to be Clo ISI for ¢ > 1. Then the probability that all the buckets are of

size < ¢(14 6)log|S| is at least 1 — 2(=cdlog|S|+log|S|—cloglog|5]) which for large
enough S is > 1/2. In other words, the expected number of trials until we find
a hash function ¢ that results in all the buckets being “small” is less than 2.

In the following discussion we adopt the notation from Theorem[Bl We assume
that we have a hash function g that results in all buckets have O(logn) elements.
The time for creation of the Bloomier filter in §3] for each bucket is reduced to
O(log® n+1*). To query the bucketed Bloomier filter, given x, we first compute
the bucket, g(z), and then query the Bloomier filter for that bucket. Thus, query-
ing requires one more hash function evaluation than the non-bucketing version.
Suppose n; is the number of elements of S that belonged to the bucket defined
by b;, then the Bloomier filter for this bucket requires [n;(1 + €)]r bits. The
total number of bits used is > o, [ni(1 +€)]r < 3o, (ni(l+€) +1)r =
n(1+ €)r + br, since ), n; = n. Since the number of buckets is O(n/logn), the
number of bits used is n(1 + €)r + O(rn/logn).

We summarize the properties of the bucketing variant of the construction in
g3 in the following theorem.

Theorem 6. Fiz e >0 and s > 2 an integer, let S C D, |S| = n and let m, k
be positive integers such that m > k. Given f : S — {0,1}*, bucketed using
|S|/clog|S| buckets for a fized ¢ > 1, the Bloomier filter constructed on the
buckets, (with parameters e,m and s) by Algorithms [3 and[f) and queried (on
the buckets), using Algorithm [3, has the following properties:

1. The expected time to create the Bloomier filter is O( log® n +m*)).

2. The space utilized is n(1 + €)m + O(mn/logn) bits.

3. Computing the value of the Bloomier filter at x € D requires O(1) hash
Junction evaluations and O(1) memory look ups.

4. If x € S, it outputs the correct value of f(x).

5

. Ifx ¢ S, it outputs L with probability 1 — O(i2k*m).

logn(
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Abstract. The couple path planning (CPP) problem seeks the motion
paths of the leaves of a multileaf collimator, to optimally reproduce the
prescribed dose in intensity-modulated radiation therapy (IMRT). We
study two versions of the CPP problem, constrained and unconstrained
CPP, based on whether the starting and ending locations of the sought
paths are prespecified. The unconstrained CPP problem models the leaf
sequencing problem in dynamic IMRT delivery, while the set of all con-
strained CPP problem instances, in which all combinations of the start-
ing and ending locations are considered, plays a key role in an emerging
IMRT technique called arc-modulated radiation therapy. We give efficient
algorithms for both the constrained and unconstrained CPP problems,
and for computing the set of all constrained CPP problem instances. Our
results are based on several new ideas and geometric observations, and
substantially improve the solutions based on standard techniques. Imple-
mentation results show that our CPP algorithms run fast and produce
better IMRT treatment plans than current methods.

1 Introduction

In this paper, we study an optimization problem in discrete geometry, called
coupled path planning (CPP). The problem is defined on a uniform grid Ry of
size n X H for some integers n and H such that the length of each grid edge is
one unit. We say that a path on the plane is xy-monotone if it is monotone with
respect to both the x-axis and the y-axis. For an integer ¢ > 0, an zy-monotone
(rectilinear) path p along the edges of R, is said to be c-steep if every vertical
segment of p is of a length at least ¢ (i.e., formed by ¢ or more grid edges)
and every horizontal segment has a unit length. The CPP problem is defined as
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Fig. 1. (a) Ilustrating the CPP problem: p; and p, are two non-crossing c-steep paths
(¢ = 1); the darkened segment shows the vertical section on the i-th column of the
region enclosed by the two paths, whose length corresponds to the amount of actually
delivered radiation. (b) The input (intensity) function f for the CPP problem, defined
on {1,2,...,n}; the darkened segment shows the value of f at the i-th cell, which
specifies the amount of prescribed dose on that cell. (¢) An IM (its 3rd row is described
by the function f in (b)). (d) An MLC. (e) A radiation machine.

follows: Given a non-negative function f defined on the integer set {1,2,...,n}
and positive integers ¢ and A (A < H), find two non-crossing c-steep paths on
Ry, each starting at the bottom boundary and ending at the top boundary of
Ry, such that the two paths, possibly with the bottom and top boundaries of
R, enclose a (rectilinear) region P in R, such that (1) for any column C; of
Ry, the vertical length of the intersection between C; and P approximates the
function value f (i) (i.e., the value of f at ¢) within the given error bound A (see
Figs. M(a)I(b)), and (2) the total sum of errors on P is minimized.

We distinguish two versions of the CPP problem: (1) The unconstrained
CPP, in which the starting and ending locations of the sought paths are not
specified by the input; (2) the constrained CPP, where the starting and ending
locations of the sought paths are given as part of the input.

Application Background. The CPP problems arise in intensity-modulated
radiation therapy (IMRT) [26l27], a modern cancer treatment technique aiming
to deliver prescribed conformal radiation dose to target tumors while sparing
the surrounding normal tissue and critical structures. Effective IMRT treatment
is hinged on the ability to accurately and efficiently deliver prescribed intensity
distributions of radiation, called intensity maps (IMs). An IM is specified by
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an array of non-negative integers on a uniform 2-D grid I, (see Fig.[lc)). (We
should point out that the two 2-D grids I, and R, represent different entities or
objects.) The value in each cell of I, indicates the prescribed intensity level of
radiation to be delivered to the body region corresponding to that cell. One of the
most advanced tools for IM delivery is the multileaf collimator (MLC) [26127],
which consists of many pairs of tungsten alloy leaves of the same rectangular
shape and size (see Fig. [[{d)). The opposite leaves of each pair are aligned to
each other. These leaves, controlled by a computer, can move left and right to
enclose a rectilinear polygonal region called MLC-aperture. During treatment,
the patient is positioned on and secured to the treatment couch (see Fig. [[le))
and radiation beams are crossfired at the tumor from various directions. The
direction of each radiation beam is controlled by rotating the gantry to the
desired angle. The MLC is mounted on the gantry and the cross-section of a
cylindrical radiation beam is shaped by an MLC-aperture to deliver a uniform
dose to (a portion of) an IM. Each row of the IM is delivered by exactly one
MLC leaf pair.

Two IMRT delivery approaches are commonly used, called static and dynamic
IMRT [26127]. In static IMRT, the MLC leaves do not move during irradiation
of a beam, and are repositioned to form another beam shape only when the
radiation is turned off. In dynamic IMRT, the MLC leaves keep moving across
an IM field (normally, all from left to right) while the radiation remains on.
In both approaches, the gantry is fixed when delivering an IM. Once an IM is
delivered, the radiation is turned off and the gantry rotates to another angle
to deliver the next IM, if any. Normally, a treatment session delivers 5 to 9
IMs. A key problem in IMRT delivery, called leaf sequencing, is to determine a
treatment plan for a given IM, i.e., a description of how to position the MLC
leaves and maintain the on/off states of the radiation in order to deliver the IM.
Two key criteria are used to measure the quality of an IMRT treatment plan:
(1) Delivery time (the efficiency): Minimizing the delivery time reduces machine
wear and tear, lowers the treatment costs, and increases the patient throughput.
Short delivery time also reduces the risk of treatment uncertainties. (2) Delivery
error (the accuracy): For various reasons, there is a discrepancy between the
prescribed IM and the actually delivered IM.

The unconstrained CPP problem models the dynamic leaf sequencing problem
(i.e., leaf sequencing in dynamic IMRT delivery). Although an IM is delivered
using many MLC leaf pairs, with each pair delivering one IM row, it suffices (as
shown in [7U16] for Varian MLCs) to consider how to optimally deliver one IM row
with one leaf pair. In the CPP problem, f is the intensity function specifying
one row of a prescribed IM (see Fig. b)), and the two output xy-monotone
paths on R, specify the moving trajectories of the two leaf ends of the MLC
leaf pair, i.e., the leaf end positions (the z-coordinates) at any unit time (the
y-coordinate). Due to the mazimum speed constraint on the MLC leaf motion,
i.e., the leaves cannot move faster than a threshold speed (e.g., 3cm/s for Varian
MLCs), the paths must be c-steep for some ¢ > 0. The vertical length of the
segment on the i-th column of the region in R, enclosed by the two paths equals
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the time duration the i-th cell of the IM row is exposed to irradiation, and is
proportional to the intensity level actually delivered to that cell. To ensure the
treatment quality, the delivered intensity level must be accurate enough (within
an error of A to the prescribed intensity level at each IM cell). The total error
over all columns of R, gives the delivery error incurred to the IM row specified
by f. Thus, the CPP problem seeks to deliver one IM row with the minimum
error using exactly H units of delivery time.

The constrained CPP problem is a key to a newly emerging IMRT delivery
technique called arc-modulated radiation therapy (AMRT) [29], which we have
been developing jointly with Univ. of Maryland School of Medicine. AMRT dif-
fers from the common dynamic IMRT delivery in that both the beam direction
(i.e., gantry angle) and MLC leaves keep moving, with the radiation source re-
mained on. As shown in Sect. 5] the leaf sequencing problem in AMRT delivery
can be solved by considering the set of all constrained CPP problem instances.
More specifically, for all possible combinations of starting and ending leaf pair
positions, we seek the optimal solutions for the corresponding constrained CPP
problem instances (in total, there are O(n*) such instances).

Related Work. Algorithmic research for IMRT problems has been active in sev-

eral areas such as medical physics [ITAT7ITRI23I24I25I28], operations research
BBI6IT5], and computational geometry [QITOTTIT2TIITIZ0/2T]. Most of the algo-

rithms proposed so far were designed for the static leaf sequencing problem, i.e.,
the leaf sequencing problem in static IMRT delivery, and their solutions cannot
be directly applied to the dynamic IMRT delivery due to different delivery con-
straints. Dynamic leaf sequencing (DLS) algorithms were mainly developed by
the medical physics community [AIT4UT722I24125] targeting at the exact delivery
of an input IM with a short delivery time, under the maximum speed constraint.
But, these DLS algorithms all assume that on each IM row, the corresponding
MLC leaves always move from the left boundary of the leftmost non-zero cell to
the right boundary of the rightmost non-zero cell, and hence their output may
not be truly optimal in terms of the delivery time. For example, consider a 1 x n
IM filled with 1’s, and assume that for each time unit, an MLC leaf can move
across at most one IM cell. For the above algorithms, since the MLC leaves must
move from the leftmost to the rightmost of the IM field, the minimum delivery
time is 2(n) time units. However, by fixing the left (resp., right) leaf end to
the leftmost (resp., rightmost) of the IM field, only one time unit is needed for
delivering this IM. For the AMRT delivery, no leaf sequencing algorithm was
known except the heuristic back-and-forth sliding-window method proposed by
Cameron [g].

The CPP problems are somewhat related to the shape rectangularization (SR)
and generalized shape rectangularization (GSR) problems [9], which seek an opti-
mal set of rectangles to exactly, or approximately, “build” an intensity functional
curve. The SR and GSR problems are NP-hard [5I10]. Chen et al. [9] gave a poly-
nomial time (3 -+ ¢)-approximation SR algorithm and a pseudo-polynomial time
dynamic programming algorithm for a key GSR case. Though the CPP problem
can be viewed as finding a set of H rectangles, each corresponding to a row
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section of the region P (see Fig.[I[a)), to approximately build the input curve f,
it differs from the SR and GSR problems in that all CPP rectangles are of the
same height and form a “smooth” increasing sequence, i.e., no left or right edge
can move more than 1 column in any ¢ consecutive rectangles in the sequence.

Summary of Our Results. We present a unified approach, based on inter-
esting geometric observations, for both the unconstrained and constrained CPP
problems, substantially improving the solutions using standard techniques. One
of our key ideas is to formulate these problems as computing shortest paths in a
weighted directed acyclic graph of O(nH A) vertices and O(nH?A?) edges. We
exploit a set of geometric properties, such as certain domination relations among
the vertices, to speed up the shortest path computation, resulting in O(nH A)
time algorithms for both the unconstrained and constrained CPP problems. To
compute the set of all constrained CPP instances, instead of a simple approach
to apply the O(nHA) time constrained CPP algorithm to each of the O(n?)
problem instances (i.e., an O(n® HA) time algorithm), we use a graph transfor-
mation scheme that allows a batch fashion computation of the instances. Further,
we accelerate the shortest path computation by exploiting the Monge property
of the transformed graphs. Consequently, we achieve an O(n*A + n? H A?) time
algorithm for the set of all constrained CPP instances.

Note that in our CPP formulations, we seek to minimize the delivery error
subject to a given amount of delivery time H. It is also useful to consider the dual
problem of minimizing the delivery time subject to a given bound of delivery
error. As shown in Sect. 23] for a given H, our CPP algorithms actually compute,
in O(nHA) time, a sequence of H leaf trajectories (i.e., path pairs), the k-th
(1 <k < H) of which corresponds to the optimal leaf trajectories (i.e., with the
minimum error) for delivering the intensity function f in exactly k time units.
This enables us to compute a tradeoff between the delivery time and delivery
error. Consequently, for any error bound £, in an exponential search manner,
we can determine in O(nH*A) time the minimum delivery time H* required for
delivering f with an error at most £. In applications, one may use this feature
to find a treatment plan with balanced delivery time and delivery error.

We implemented our CPP algorithms and developed new leaf sequencing soft-
wares for common dynamic IMRT delivery as well as for the new AMRT delivery
technique. Experimental results (in Sect. [Bl) on real medical data show that our
CPP-based leaf sequencing software runs very fast and produces better quality
treatment plans than the previously known methods.

2 Unconstrained Coupled Path Planning (UCPP)

2.1 The UCPP Problem Definition and Graph Modeling

We define the height of an zy-monotone path as the difference between the y-
coordinates of its ending and starting points. For two non-crossing c-steep paths
p1 and p, of height H on the grid R, (i.e., both paths start at the bottom and
end at the top of Ry), denote by P(pi,pr) the rectilinear region in R, enclosed
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by p1, pr, and the bottom and top boundaries of R,. Denote by £(i, p1, pr) the
vertical length of the intersection of the i-th column C; of R, with P(pi, p,). Let
L(i,p,pr) = 0if C; N P(py,pe) = 0.

Precisely, the unconstrained coupled path planning (UCPP) problem
is: Given an n x H uniform grid R,, a non-negative function f defined on the
set {1,2,...,n}, and positive integers ¢ and A (A < H), find two non-crossing
paths p; and p, of height H along the edges of R, to minimize the total error
Epr,pr) = >, [€(i,pr.pr) — f(i)], subject to the following constraints: (1) (the
steepness constraint) both p; and p, are c-steep paths, and (2) (the closeness
constraint) [€(i,p1,pr) — f(i)| < Afor each i = 1,2,...,n.

For the UCPP problem, we can assume the two sought optimal c-steep paths
p1 and p, of height H are both increasing going from left to right. This is because
we can vertically “flip” a decreasing path, i.e., by replacing the y-coordinate 3
of each point on the path by H — 3 without changing its z-coordinate (see Fig.
2l(a)2(b)). This makes both paths non-crossing and increasing, with the same
total error without violating the steepness and closeness constraints.

By considering only increasing c-steep paths, the region P(pi, p;) is a rectilin-
ear xy-monotone polygon in R,, and can be uniquely mapped to a sequence of n
vertical bars By, Ba, ..., B, (of unit width each), where the i-th bar B; is the in-
tersection between P(pi, p;) and the i-th column, C, of R,. If C; NP (py, pr) = 0,
then B; is a bar of height 0, aligned with the bottom or top boundary of R,
depending on if C; is to the left or right of P(p1, p:) (see Fig. 2(c)).

The following observations on the vertical bars By, Ba, ..., B, are useful. (1)
Each vertical bar can be encoded as a point («, 3) € Z?, where a (resp., 3) is
the y-coordinate of its bottom (resp., top) edge, with 0 < o < < H. (2) The
closeness constraint implies that for any vertical bar B; = («, 3) (1 < i < n),
|6 —a — f(i)] < A holds. (3) The steepness constraint implies an interesting
relation, called c-dominance, between any two consecutive vertical bars B; =
(o, B) and B;11 = (o, 8). More precisely, the c-dominance relation is defined on
the set S := {(z,y) € Z* | 0 < x <y < H}, and we say that (o', 3') c-dominates
(a, B) if and only if one of the following conditions holds: (i) o’ = a = ' =3 = 0;
(i) =a=0and ' —3>¢ (i) —a>cand ' = 3>¢ (iv) &/ =a =0
and 3 =p=H;(v)d' —a>cand f/=0F=H; (vij o/ =a=p'=8=H.

The above observations allow us to model the UCPP problem as a shortest
path problem on a directed graph G, as follows. G contains n layers of vertices,
Ly, Ls,..., Ly, where the i-th layer L; (1 < i < n) contains the vertices that
represent all vertical bars on the column C; whose lengths differ from f(¢) by
at most A. That is, L; = {(o,3) | 0 < a < < Hand | —a — f(i)] < A}
For each vertex u = («, 3) € L;, we assign to it a weight w(u) = |3 — a — f(i)].
We also add to G two dummy vertices (of zero weight), the source s and sink t.
The edges of G are defined as follows: (1) For any two vertices u = («, ) € L;
and v’ = (o/, ') € Li;1, put a directed edge from u to v’ if (o, ') c-dominates
(o, B); (2) For any vertex v’ = (o/, ') € Ly, put an edge from the source s to
u' if (o, B") e-dominates (0, 0); (3) For any v = (a, 3) € L,,, put an edge from u
to the sink ¢ if (H, H) c-dominates («, [3).
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Fig. 2. (a) Flipping a decreasing path p, to an increasing path p;.. (b) Flipping two
monotone decreasing paths p; and p, to two increasing paths p; and p,.. The flipping
in (a)-(b) affects neither the steepness nor the closeness constraint, and ¢(i,p1, pr) =
£(i, py, pr.) holds for each i, implying that the total error remains the same. (c) The xy-
monotone region enclosed by the two paths p; and p.. in (b) corresponds to a sequence
of n vertical bars B1, Ba, ..., By.

Clearly, G is a directed acyclic graph (DAG) with vertex weights. Each s-
to-t path in G represents a sequence of vertical bars on Ry, which forms an
xy-monotone rectilinear polygon and thus induces a pair of xy-monotone paths.
The way in which the vertices and edges of G are defined guarantees that the
induced pair of paths satisfies the steepness and closeness constraints, and thus
is a feasible solution for the UCPP problem. It is also easy to argue that any
feasible UCPP solution (pj,pr) corresponds to an s-to-t path p in G, and the
total error E(pi, pr) is equal to the weight w(p) of the path p, i.e., the sum of
weights of all vertices in p. Hence we have the following lemma.

Lemma 1. The UCPP problem is feasible if and only if there is a path from s
to t in the DAG G. Moreover, an s-to-t shortest path in G defines an optimal
solution for the UCPP problem.

Note that the DAG G thus defined has O(nH A) vertices and O(nH?A?) edges.
Hence an s-to-t shortest path in G can be computed in O(nH? A?) time straight-
forwardly in a topological sort fashion. In the next subsection, we show how to
exploit the underlying geometric properties of the graph G to speed up the
computation and obtain an O(nH A) time UCPP algorithm.

2.2 Speeding Up the Shortest Path Computation Using Geometry

We compute the single-source shortest paths in the DAG G layer by layer.
For any vertex v of G, define In(v) = {w | (w,v) is an edge of G}. Denote by
length(v) the length of the shortest s-to-v path in G. Since G is vertex-weighted,
to compute length(u) for a vertex u = (a, 3), it suffices to find a vertex w* that
achieves min{length(w) | w € In(u)}. Our key idea for speeding up the compu-
tation is to exploit the geometric relations among the sets In(u) for all vertices
u in the same layer L;.

Consider the i-th vertex layer L; in G (1
(@B |0<a<f<Hand|§-a-—f()

i < n). Recall that L, =

<
< A}. If we view each vertical
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Fig. 3. (a) Ilustrating the geometry of a vertex layer L; of the DAG G. (b)-(d) Hlus-
trating the geometry of a vertex layer L; of the DAG G’ for (b) lstart < i < Tstart, (C)
Tstart < & < lend, and (d) lenda < 7 < Tend, respectively. In each figure, all vertices in
the vertex layer L; (or L}) are mapped to circled points in the 2-D plane; these points
form all the lattice points in a convex polygon (possibly degenerated to a line segment)
marked by the shaded area.

bar (a, 3) € L; as a point in the 2-D plane, then L; consists of all lattice points
in a discrete convex polygon bounded by O(1) discrete edges (see Fig. Bla)).
Recall that the edges of G are defined based on the c-dominance relation among
the vertices in consecutive layers. Fix a vertex u = (a, 8) € L;. It is easy to show
that In(u) = L;—1 N D¢, 8), where D¢(«, ) is the c-dominated set of (a, ),
i.e., the set of all points in S that are c-dominated by (o, 3). (Figs. @)a)Hf)
give examples of the typical c-dominated sets.) Our key observation here is that
the c-dominated set D¢(«, 8) always includes D¢(a — 1, 3), D(«, 8 — 1), and
D¢(a—1,5—1). Thus In(u) always contains In(v), for v = (a — 1, ), (e, B — 1),
and (o — 1,8 — 1). The next lemma quantifies this inclusion relation (proof is
left to the full paper).

Lemma 2. For any vertex u = («, ) € L;, if In(u) # 0, then the following
properties hold:

@a) If v = (e = 1,8) (resp., v = (o, —1), v = («—1,6—1)) € L;, then
In(v) C In(u) and the set In(u) \ In(v) can be enumerated in O(A) time.

@) If vi = (a—1,0) € L; andve = (a, f—1) € L;, then In(vy)UIn(ve) C In(u)
and the set In(u) \ (In(v1)U In(ve)) can be enumerated in O(1) time.

Lemma [2] implies the shortest path computation from s to the vertices in the
layer L; can be sped up by following an appropriate order of the vertices, in a dy-
namic programming fashion. Specifically, we visit (and compute the correspond-
ing paths to) the vertices in L; in the left-to-right and bottom-to-top order; here,
L; is viewed as a discrete convex polygon. Suppose length(u) has been computed
for each vertex u in the previous layer L; ;. For the first vertex of L; visited,
say v, since In(vg) C L;_1, length(vg) can be computed in O(|L;—1|) = O(HA)
time. For each subsequent vertex in L;, say v = (a, 3), there are two possible
cases. Case (I): (a, 8) is on the boundary of L;. By [Zh) of Lemmal2l we can show
that length(v) is computable in O(A) time. Case (II): («, 3) is in the interior
of L;. By ([@b) of Lemma 2] we can show that length(v) is computable in O(1)
time. (Here, we assume it takes O(1) time to report whether In(v) # (), which
can be achieved by performing a breadth-first search in G at the beginning of the



CPP, Region Optimization, and Applications in IMRT 279

H H H
000 H-c B B¥
000 L
528 Bregess fec
oo ogt
2 i o
o-c oo H 0 H 0 o-coa H 0 H 0 H
(b) () (d) (e) ®

Fig. 4. Illustrating the typical types of c-dominated sets. In each figure, all the circled
points form the c-dominated set of the point marked by an asterisk. (a) D°(H, H). (b)
Do, H) (0 < a < H). (c) D°(0, H). (d) D%, 8) (0 < a < B < H). (e) D0, )
(0 < 8 < H). (f) D°(0,0).

algorithm, in O(nHA) time.) Observing that L; has O(H A) vertices and O(H)
of them are on the boundary of L, (see Fig. Bl(a)), the above process computes
length(v) for all v € L; in O(HA) + O(H) x O(A) + O(HA) x O(1) = O(HA)
time. Thus, we can obtain an s-to-t shortest path in G in O(nHA) time. By
Lemma [Tl the result below follows.

Theorem 1. Given a non-negative function f defined on the integers in
{1,2,...,n} and positive integers ¢, H, and A (A < H), the UCPP problem
is solvable in O(nHA) time.

2.3 Extension

The above UCPP algorithm can be extended to computing a sequence of H path
pairs, with the k-th (1 < k < H) being an optimal path pair of height exactly
k in an n x k grid, for approximating the input function f. The main idea is
to replace the sink ¢ in G by a layer L, 1 of H sink vertices t1,ts,...,ty, and
associate with ¢ a vertical bar (k, k) for 1 < k < H. The edges from L,, to L,4+1
are defined by the same c-domination relation. It is easy to show that an s-to-tj
shortest path in this new DAG specifies an optimal path pair of height exactly k.
Using the same technique in this section, we can compute single-source shortest
paths in the new DAG in O(nH A) time.

3 Constrained Coupled Path Planning (CCPP)

In this section, we study the constrained coupled path planning (CCPP)
problem, in which the starting and ending points of the sought paths are pre-
specified. Precisely, we are given positive integers Ilstart, I'start, lend, Tend, and we
require that the sought path p; (resp., p,) starts at (Isart,0) (resp., (Tstart,0))
and ends at (lena, H) (resp., (Tend, H)).

Without loss of generality, we assume lgtart < lond and Tseart < Tend, SO that p
and p, are both zy-monotone increasing paths. (Otherwise, we can transform the
CCPP problem to a new CCPP problem that satisfies this condition: By flipping
(see Figs. 2(a){2(b)) one or both of the optimal paths for this new problem, we
obtain two optimal paths for the original CCPP problem.) In the rest of this
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section, we present our CCPP algorithm for the case with leng > 7start (the
algorithm can be easily adapted to handle the other case with leng < rstart)-

As for the UCPP problem in Sect. 2 the CCPP region P(pi,p,) is an xy-
monotone polygon in R, and is made of a sequence of n vertical bars. Note that
such vertical bars, if viewed as 2-D points, still satisfy the c-dominance relation.
Thus, the problem can be solved in the same spirit as the UCPP algorithm, i.e.,

we can transform it to computing a shortest path in a DAG G’. The DAG G’ has

a source s, a sink ¢, and n layers of vertices, L}, L, ..., L’ which are defined as
follows to satisfy the additional geometric constraints of the CCPP problem:
{(a,8) |la=p=0and | —a— f(i)| < A} if 1 <4 <lgart

{(a,8) | 0=a<f<H-cand |f—a— f(i)] <A} lsart <@ < Tstart
{(a,0) | ce<a<B<H-—cand |f—a— f(i)] <A} if rsart <@ <lend
{(a,0) | c<a<fB=Hand|f—a—f(i)| <A} if lena <7 < Tena
{(a,0) |a=p=Hand | —a— f(i)] < A} if rena <i<mn

As the UCPP problem, the weight of a vertex u = (o, 3) € L, is defined as
w'(u) = |B—a— f(i)] and the edges of G’ are defined based on the c-domination
relation. We can show that a shortest s-to-t path in G’ corresponds to an optimal
CCPP solution. Since G’ has similar geometric properties as stated in Sect.
(see Figs. Bl(b)Bl(d)), the computation can be sped up in the same fashion as in
the UCPP algorithm. Our final CCPP algorithm takes O(nHA) time.

4 Computing the Set of All CCPP Problem Instances

In this section, we discuss our algorithm for computing the set of all CCPP
problem instances. More specifically, given f,n, H, A, and ¢, we solve the CCPP
problem instances on f,n, H, A, ¢, lstart, 'start, lend, and Tenq for all possible com-
binations of lstart, Tstart , lend, and rend. Due to the space limit, we only sketch our
ideas on solving the subset of CCPP instances with lstart < lend < Tstart < Tend-
Since 0 < Ilstart < Tstart < lend < Tend < 7, there are totally N = O(n?)
problem instances, which we denote by 71,75, ...,Zx. As discussed in Sect. 3]
an instance 7y (1 < k < N) corresponds to a shortest path problem on a vertex-
weighted DAG, denoted by G}, of O(nH A) vertices and O(nH?A?) edges. Our
key observation is that we can transform (details left to the full paper) G} to an
edge-weighted DAG, denoted by G, with only O(A) vertices and O(A?) edges.
The vertice set of G, contains a subset of O(1) vertex layers in G}, and each edge
(u,v) of Gy is defined by the shortest path between the u and v in GY. (Note
that although Gy, is of a much smaller size than G, the weights of the edges
of Gy, are costly to compute. Thus, solving a single CCPP problem instance by
transforming G;C to Gk will not lead to a faster CCPP algorithm.)
Our algorithm has two main steps:
(1) Prepare the weights of all edges in G1,Go, ..., and Gy. By exploiting the
properties of the graph transformation, we implicitly compute and store the

weights of all the O(n*A?) edges in a batch fashion, in totally O(n?H A?)
time, such that for any edge, its weight can be obtained in O(1) time.
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(2) Compute a shortest path in each of Gl,éz, .. .,GN. We show that each
Gr (1 <k < N) is a DAG satisfying the Monge property [TI/2/4]. Since the
weight of any edge can be obtained in O(1) time, a shortest path in Gy, takes
only O(A) time to compute.

Our algorithm thus takes O(n?HA? + n*A) time, improving the straight-
forward O(n® HA) time algorithm (i.e., by applying the CCPP algorithm N =
O(n%) times) by a factor of min{nH, "j }.

5 IMRT Applications

We implemented our CPP algorithms using the C programming language and
developed new leaf sequencing softwares for common dynamic IMRT delivery
and the new arc modulated radiation therapy (AMRT) [29]. Due to the space
limit, we only present the application in AMRT.

AMRT is a new dynamic IMRT delivery technique, which we have been devel-
oping jointly with Univ. of Maryland School of Medicine. In an AMRT delivery,
the beam source rotates along an arc path in 3-D, and for every 6 degrees (usu-
ally 0 = 10), a prescribed IM is delivered to the target volume. A key problem
to AMRT delivery, called AMRT leaf sequencing, is to optimally convert a given
set of K IMs into MLC leaf trajectories. We model the AMRT leaf sequencing
problem as a shortest path problem on a layered DAG G, constructed as follows.
The vertices of the i-th (vertical) layer L; (i = 1,2,..., K+1) of G correspond to
all possible leaf pair positions when the beam source is at angle (i — 1) (assume
that the source starts at angle 0). For any two vertices in adjacent layers, put a
left-to-right directed edge, and let its weight be the minimum delivery error of
the corresponding CCPP instance (with the head and tail of the edge specifying
the starting and ending leaf positions, respectively). Also, add to G two dummy
vertices s and ¢, and put O-weight edges from s to Ly and from L k41 to t. Then
computing the weights of all edges in G is essentially computing K sets of all
CCPP problem instances.

We developed an AMRT treatment planning software based on our CPP al-
gorithm in Sect. @] and tested the software using 18 clinical cancer cases with
a wide range of treatment sites. All the tests were done on a Lenovo Thinkpad
T61 laptop with a 2GHz Intel Core 2 Duo processor and 2GB of memory run-
ning Windows XP. On average, the AMRT leaf sequencing can be computed in
5 to 10 minutes using our CPP algorithm. We compared the CPP-based AMRT
plans with AMRT plans based on the back-and-forth sliding-window (BFSW)
method [§] and with the traditional IMRT plans produced by the commercial
Pinnacle treatment planning system.

Comparisons between our CPP-based AMRT plans and the BFSW-based
AMRT plans show that our CPP-based plans have similar tumor coverage but
significantly better healthy structure sparing. For five prostate cases tested, the
amount of undesired dose delivered to the three nearby healthy structures, blad-
der, rectum, and hips, is reduced on average by 25%, 40%, and 50%, respectively.
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This is because using our CPP-based algorithm, we are able to reduce the deliv-
ery time by 40% — 50% through its tradeoff feature. The reduced delivery time in
turn reduces the radiation leakage, resulting in significantly better quality plans.

Comparisons between our CPP-based AMRT plans and IMRT plans produced
by the commercial Pinnacle planning system show that the two types of plans
have comparable tumor coverage and healthy structure sparing. However, our
CPP-based AMRT plans take much shorter delivery time: Delivering CPP-based
AMRT plans on average takes 2 minutes for a prostate case and 4 minutes for a
head-and-neck case, which are 3 to 5 times faster than the delivery of traditional
IMRT plans.
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Abstract. The crossing number problem is to find the smallest number
of edge crossings necessary when drawing a graph into the plane. Even-
though the problem is NP-hard, we are interested in practically efficient
algorithms to solve the problem to provable optimality. In this paper,
we present a novel integer linear programming (ILP) formulation for
the crossing number problem. The former formulation [4] had to trans-
form the crossing number polytope into a higher-dimensional polytope.
The key idea of our approach is to directly consider the natural cross-
ing number polytope and cut it with multiple linear-ordering polytopes.
This leads to a more compact formulation, both in terms of variables
and constraints.

We describe a Branch-and-Cut algorithm, together with a combina-
torial column generation scheme, in order to solve the crossing number
problem to provable optimality. Our experiments show that the new ap-
proach is more effective than the old one, even when considering a heavily
improved version of the former formulation (also presented in this paper).
For the first time, we are able to solve graphs with a crossing number of
up to 37.

1 Introduction

A drawing of a graph G = (V, E) in the plane is a one-to-one mapping of each
vertex to a point in R2, and each edge to a curve between its two endpoints. The
curve is not allowed to contain other vertices than its two endpoints. A crossing
is a common point of two curves, other than their endpoints. We forbid common
points of more than two curves, other than their endpoints. The crossing number
cr(G) is the smallest number of crossings in any drawing of G. The NP-hard
problem of finding cr(G) has been widely studied in the literature — see [20]
for an extensive bibliography — both from the graph theoretic, as well as the
algorithmic point of view.

Recently, Buchheim et al. [4] presented the first exact algorithm to solve this
problem to provable optimality, based on an integer linear programming (ILP)
formulation: The central idea in all these formulations is to have a variable x . r;
for each pair of edges e, f € F, which is 1 if these edges cross, and zero otherwise.

D. Halperin and K. Mechlhorn (Eds.): ESA 2008, LNCS 5193, pp. 284-ad, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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The convex hull of the feasible points of x form the crossing number polytope
Per. Unfortunately, there is no known way to describe P, directly, as already
checking if a given solution Z is feasible — known as the Realizability problem — is
NP-complete [I5IT9]. If each edge is involved in only a single crossing, checking
feasibility becomes simple: we can substitute each crossing by a dummy vertex of
degree 4 and perform any planarity testing algorithm on the transformed graph.
Hence the problem lies in edges e which are involved in multiple crossings, if we
do not know the order of these crossings on e.

The formulation of [4] circumvents this problem by subdividing the graph
such that each edge is replaced by a path of ¢ segments. Then, the formula-
tion considers the simple crossing number instead, i.e., the smallest number of
crossings in any drawing of G under the restriction that each edge-segment is
involved in at most one crossing. Clearly, this solves the traditional crossing
number problem on G if £ is large enough: since the optimal drawing of G might
require all crossings to be on a single edge, we can select ¢ := cr(G), some up-
per bound on the crossing number which may be obtained by a heuristic. Since
cr(G) = O(|E|?) and there are graphs with cr(G) = 2(|E|?), we obtain O(|E|*)
variables. We denote this formulation by Socwm, for subdivision-based optimal
crossing minimization.

The enlarging of the input graph results in far too many variables to handle
the problem efficiently, hence column generation schemes are proposed and com-
pared in [§]: the therein presented combinatorial column generation — a scheme
based on combinatorial and graph-theoretical arguments, rather than on alge-
braic concepts — offers a large improvement compared to traditional approaches
based on reduced costs. Nonetheless, the approach, as presented in [§], was only
suitable for relatively sparse graphs with roughly 70 nodes.

In this paper we present a competing ILP formulation based on linear ordering
of crossings on any edge: we avoid the aforementioned graph expansion and re-
quire only O(|E|?) instead of O(| E|*) variables. We call this formulation OocwM,
for ordering-based optimal crossing minimization. As the number of variables is
still quite large, we furthermore present an efficient corresponding combinatorial
column generation scheme.

From the polyhedral point of view, we can describe the situation as follows:
checking the feasibility of a solution Z is NP-complete and there is no known way
to directly describe the feasible integer points of the polytope P... Hence, the
SocM formulation expands the input and considers the simpler polytope Pgscr
of the simple crossing number problem. In OocM, we instead solve the problem
directly in P, by cutting it with O(]E|) many linear-ordering polytopes.

In the next section, we present the ILP formulation, while Section Bl describes
the resulting Branch-and-Cut-and-Price algorithm and its sub-steps. In Section [
we discuss extensions of OOCM for other types of crossing numbers and present
recent improvements of SOCM which lead to improved performance compared
to the results published in [4l8]. Finally, in Section [f] we compare the improved
SocMm implementation to the novel O0cM implementation by way of experiment.
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2 The OocMm ILP Formulation

It is a well-known fact that the crossing number of any graph is the sum of the
crossing numbers of its biconnected components. Hence we can assume that the
given graph G is at least 2-connected. Furthermore, we can confine ourselves
to simple graphs, i.e., graphs without multi-edges or self-loops. While loops are
irrelevant for the crossing number, we can get rid of multi-edges by introducing
integer edge weights c. The crossing number can be obtained by counting c. - ¢¢
crossings for a crossing between the edges e and f. The need for these weights
is further strengthened by the non-planar core reduction [7]: this preprocessing
scheme shrinks a given 2-connected graph further without changing its crossing
number, but introduces integer edge weights. Hence we will consider (G, c) as
our input.

2.1 Variables and Linear Ordering

First, we orient all edges of G arbitrarily. For notational simplicity we continue
to refer to the resulting graph as G = (V, E). Let E® := {(e1,...,ex) | V1 <
i<j<k:e,e; € ENe; #e;j} be the set of all ordered k-tuples of pairwise
distinct edges. We model the order of the crossings directly via variables:

e,y €10, 1} v{af}e(f), Ve €{0.1} V(e f.g) €B® (1)

A variable z, sy specifies whether or not the edges e and f cross. A variable
Ye.f,g 18 1 if and only if both edges f and g cross e, and the crossing (e, f) is
nearer to e’s source node than the crossing (e, g). We say e is the base of the
variable. The objective function of our ILP is then:

min Z Ce  Cf " Tfe f}
{e.rye(s)

It is known that certain crossing-variables can be fixed to 0 as, e.g., there will
never be crossings between adjacent edges. Any sensible implementation will
ignore such variables.

Linear-Ordering Constraints. We define the set of linear-order (LO) constraints
which ensure a consistent linear ordering over all edges:

Tlef} = Yefrgr  Tleg) = Yefg V(e f, 9) E®
Lt Ye. g+ Yoo 2 Tlefy T Tegy V(e frg
Yef.g T Yeg.r <1 Ve, f.9
Ye,fog T Ye,g.h T Yeoh,f < 2 Ve, f, ) € E< )

We introduce crossing-existence constraints (2)) which connect the x and y vari-
ables by ensuring that the z-vector specifies a crossing if the y-variables do. Vice
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versa, the order-existence constraints ([B)) ensure that if x specifies two cross-
ings on the same edge, the y-vector has to specify their order. The mirror-order
constraints (@) guarantee that two crossings are uniquely ordered if they exist.
Analogously, the cyclic-order constraints (Bl) ensure that the ordering is acyclic.
A solution (7, %) which satisfies the LO-constraints is called LO-feasible. Since
no two edges will ever cross more than once in any optimal solution, we have:

Proposition 1. Let T be any optimal solution to the crossing number problem
of any graph G. There exists an assignment § for the vector y such that (T,7) is
LO-feasible.

Checking feasibility. Let (Z,y) be any integer LO-feasible solution. We replace
each crossing in G by a dummy vertex. Since we know the intended order of
these dummy vertices on each edge from the information in (z,y), the resulting
graph is the (partial) planarization of G, which we denote by G[Z,7y]. We can
check feasibility of (Z, ) by testing G[z, 7] for planarity.

2.2 Kuratowski Constraints and Correctness of OocMm

The final class of constraints required to fully describe the feasible points of our
ILP are the Kuratowski-constraints. They guarantee that a computed integer
LO-feasible solution (Z,§) corresponds to a feasible planarization, i.e., G[Z, ]
is planar: the well-known theorem by Kuratowski [16] states that a graph is
planar if and only if it contains no Kuratowski-subdivision as a subgraph. A
Kuratowski-subdivision results from subdividing the edges of a K5 (complete
graph on 5 nodes) or K3 3 (complete bipartite graph with 3 nodes per partition)
into paths of length at least 1, called Kuratowski-paths. The original nodes not
obtained by the subdivision of the edges are called Kuratowski-nodes.

For any Kuratowski-subdivision K, we require at least one crossing between
the edges of K. Such a subdivision might not be a subgraph of the original
graph G, but might occur only in a partial planarization G|z, §] for some integer
LO-feasible solution (Z, 7).

For SocM we simply use the crossings in such a planarization to “turn off”
Kuratowski-constraints that are only valid if these crossings are selected [4]. The
drawback is that these constraints are specifically tied to certain crossings, say
between the edges e and f;. This unavoidably leads to a multitude of very similar
constraints, where, e.g., f1 is replaced by another edge fs, but f; and fo were
created by the graph enlargement and correspond to the same original edge.

We cannot reuse such a simple approach straight-forwardly for OocMm. But
now the additional effort is compensated for by constraints which correspond
to a whole class of similar Kuratowski-constraints in SocMm. Let (Z,y) be an
integer LO-feasible solution, and let K be a Kuratowski-subdivision in G|z, 7].
We define Zg [z, 7] as the set of crossings induced by (Z, §) whose dummy nodes
form integral parts of K: any {e, f} € Zk[z, 7] either induces a Kuratowski-
node or there exist a segment ¢’ of e, a segment f’ of f, and a Kuratowski-path
which contains (e, f’) as a subpath. We can then define the crossing shadow
(Xk[Z, 7], V[T, 7)) as a pair of sets as follows:
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yK['f’g] e {(e,f,g) € E® | {6, f}7 {evg} € ZK[jvg} NYefg = 1N ﬂ{e’ h’} €
ZK Y. f.h = Yehg = 1}, L.e., a triple (e, f, g) is in Vi [Z, 7], if no other edge
crosses e between f and g. Thus Yk [Z, 7] contains a minimal description of
all crossings and their orderings in K, except for crossings of two edges, both
not involved in multiple crossings; these are collected in the following set:

Xk [z,y] = {{e, f} € Zk[2,9] | Vg € E: {(e, f,9). (e, 9, [), (f,e,9). (f,g.€)} N
Vi[z,y) = 0}, i.e., all singular crossings in K not contained in YVk|[Z, y].

Proposition 2. For each integer LO-feasible solution (Z,y) and each Kuratowski-
subdivision K in G[Z, ] we have: the partial planarization of G only realizing the
crossings (and their order) as defined by the crossing shadow, contains K as a
Kuratowski-subdivision.

Using this crossing shadow, we can define Kuratowski-constraints as

Nz =1 > (A-z)— Y (A-m)  (6)

{e,f}E€CrPairs(K) a€ Xk [Z,y] beVk [Z,7]

for all LO-feasible integer vectors (Z,%) and all Kuratowski-subdivisions K in
G|z, y]. Here and in the sequel, CrPairs(K) denotes all pairs of edges belonging
to different paths pi,ps in K which may cross in order to planarize K (i.e., the
edges corresponding to p; and ps in the underlying K5 or K5 3 are non-adjacent).
Our constraints require at least one crossing on every Kuratowski-subdivision if
it exists; this existence is detected via the crossing shadow.

Lemma 1. Fach optimal solution to the crossing number problem of any graph
G corresponds to a feasible integer solution vector.

Proof. Clearly, any solution to the crossing number problem can be described
by an integer LO-feasible solution (Z, ) by construction, see Proposition [II We
show that this vector does not violate any constraint ([Gl). Assume there is some
(z,7) and K which induces a violated Kuratowski constraint. Then

> Ty <l— > (Il—m)— Y (1-w)

{e,f}€CrPairs(K) a€ Xk (Z,7) beVk [Z,7]

Since we only consider integer solutions, the left-hand side is 0 while the right-
hand side is 1. We thus have:

V{e, f} € CrPairs(K) : wge 5y =0, and (7)

Va € Xk[Z,§] :xa =1 AN VO E VR (Z,9) :yp=1.

But then, due to Proposition B the crossing shadow of (Z,y) w.r.t. K specifies
exactly the crossings which induce a graph G that contains K as a Kuratowski-
subdivision. Due to () we know that there are no further crossings on K which
would lead to a planarization of this non-planar subgraph. This is a contradiction
to the feasibility of the original solution. O
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Lemma 2. Fvery feasible solution to the ILP

min Z ceCiye, ry subject to [@),E), ), ) and all (@)
{e.f1€(5)

corresponds to a feasible solution of the crossing number problem.

Proof. We can interpret any integer LO-feasible solution (Z,y) as a (partial)
planarization G := G[z,y]. Assume the solution vector satisfies all Kuratowski
constraints, but G is non-planar. Then there exists a Kuratowski-subdivision in
G. Let K be such a subdivision with the smallest number of contained dummy
nodes. We construct a crossing shadow (Xk|[Z, 3], Yk [Z, y]) which describes the
precise crossing configuration necessary to identify K. Since K is a non-planar
(minimal) Kuratowski-subdivision, we know that there are no crossings on any
pair of CrPairs(K). But then, (@) is violated for K and (Xk|[Z, 7], Vi (Z,7)), as
the left-hand side sums up to 0 and the right-hand side is 1. O

We therefore obtain:

Theorem 1. FEvery optimal solution of the above ILP yields an optimal solution
of the crossing number problem.

3 Branch-and-Cut-and-Price Algorithm

The presented ILP

min Z ceCye, ry subject to (@), ), ),E) and all (@)
{e.f1€(5)

can be solved by a Branch-and-Cut framework: we start the computation with
a subset of the above constraints and solve the LP-relaxations, i.e., we ignore
the integer properties of the variables. Based on the thereby obtained fractional
solution we start a separation routine to identify violated constraints not in-
cluded in the current model. If we can find any, we add them to our model and
iterate the process, computing the LP relaxation of this, now larger, model. If
we cannot identify any more violated constraints but the solution is still not
integer feasible, we have to resort to branching: we generate two subproblems,
e.g., by fixing a variable to 0 and 1, respectively. Using the LP relaxations for
lower bounds and some constructive heuristics for upper bounds, we can prune
irrelevant subproblems.

Consider any optimal solution for any graph: at least half of the y-variables
will be zero. Most graphs occurring in practice are far from being complete, and
so actually most of the ILP variables will be zero in the optimal solution. Hence
we augment the Branch-and-Cut framework with a column generation scheme,
i.e., we start only with a subset of variables and assume that all other variables
are zero. The task of the scheme is to detect which variables are necessary to
add to the model, in order to guarantee overall optimality of the solution.
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3.1 Upper Bounds and Integer Interpretation

To obtain upper bounds for our problem, we use the efficient planarization heuris-
tic described in [ITJI2]. As the experiments in [§] showed, this heuristic is very
good in practice, often finding the optimal solution. Before the actual ILP com-
putation is started, we use the heuristic to obtain a first upper bound.

During the computation, we compute LO-feasible integer interpretations (&, )
of the current fractional solution (Z, 7). We can then construct G|z, g] and solve
the crossing number problem heuristically on this partial planarization. The
union of the crossings in (Z, ) and the heuristic solution on G[Z, 7] then consti-
tutes a heuristic solution for G.

Since we require the integer solution (Z,7) to be LO-feasible in order to con-
struct the planarization G|z, §], we cannot use a simple rounding scheme on the
y-variables. Our integer interpretation works as follows:

T-variables: We apply a traditional rounding scheme to . The variable T, 1)
is Liff zg¢ sy > 7. Here 7 > 0.5 is a fixed threshold value; in our experiments
we used 7 = 0.7 and 7 = 1 — € (for some very small ¢ > 0) and compute two
probably distinct planarizations for the subsequent steps.

y-variables: Based on T, we can then restrict the set of g-variables that may
be 1. For each edge e, let D, be the set of edges which cross e, according to
Z. We can set Je 4 = 0 for all variables with {f, g} € D.. If |D.| > 2, we
define a complete bidirected weighted graph, using D, as its vertex set. We
choose the weight of an arc (f, g) as e, ,4. Then we solve the linear ordering
problem on this graph, using a straight-forward greedy heuristic [I]. Using
this resulting order, we can decide the values for g ¢4, for all {f, g} C D..

3.2 Initial Constraints and Separation

We start our ILP only with the 0/1 bounds on the xz-variables. Initially, we do
not need to add the LO-constraints ([2),(3]), ), and (Bl for the y-variables, as
these variables do not enter the objective function, cf. Section All required
Kuratowski-constraints (@) will be added during our cutting step.

There is no known efficient method to identify violated Kuratowski-constraints
in a fractional solution, hence we only separate heuristically. We re-use the in-
teger interpretation of fractional solutions as described in the previous section,
and run a linear planarity test on G[Z,g]. State-of-the-art planarity testing al-
gorithms can efficiently (i.e., in linear time) extract a Kuratowski-subdivision
as a certificate for non-planarity. We use the method presented in [10], which
is a significantly modified variant of the planarity testing algorithm of Boyer
and Myrvold [3], to efficiently extract several such certificates in linear time. For
each obtained Kuratowski-subdivision, we then can compute the corresponding
crossing shadow and test whether the resulting Kuratowski-constraint is vio-
lated, adding it to the LP if necessary.
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3.3 Combinatorial Column Generation

Our initial linear program only contains the x-variables. Note that only these vari-
ables enter the objective function: the values of the y-variables do not influence the
solution value as they are only introduced to solve the ordering problems on the
edges. Furthermore, we do not require y-variables if there is only a single crossing
on all edges — then all y-variables are zero. Hence, conceptually, having some so-
lution Z, we only require the y-variables with a base edge e, if there are multiple
edges crossing over e. Since the separation routine does only use integer interpre-
tations of the current solution, we only require the knowledge of the crossing order
if > rem e} Tfe,ry = 2. Let Fe be the set of edges f with ¢, r} = 1. The order of
performing the variable generation prior to the separation routine is critical: we
first obtain a fractional solution and check if the solution can be uniquely inter-
preted as a partial planarization, i.e., if all the variables y. ¢ 4, with {f, g} C Ft,
are contained in the current LP model. If there is at least one such y-variable miss-
ing in the current LP model, we add all required such variables, together with their
corresponding LO-constraints, and resolve our LP model.

Hence, the variable generation takes place before we interpret a fractional
solution as a partial planarization for the separation routine, and before the
bounding heuristic. Therefore, for these steps we guarantee that all necessary
y-variables are in the model, and the solution is LO-feasible.

3.4 Branching on K;5-Constraints

We can use Kleitman’s parity argument for complete graphs with an odd number
of vertices [I3IT4]: if a Ko,,43, n € NT, has an even or odd crossing number, every
possible drawing of Ky, 3 will also have an even or odd number of crossings,
respectively. Since we know that cr(K5) = 1, we have for every Kj-subdivision
that if it is drawn with more than one crossing, it will require at least 3 crossings.

This jump in the crossing number can be used for branching. Most commonly,
we would select a variable z and generate two subproblems with z = 0 and z = 1.
Before we resort to this kind of branching, we check for any Ks-constraint of
the type pTz + ¢Ty > 1, with p and ¢ being the coefficient vectors. We can then
generate two subproblems, one with p”z+¢”y = 1 and one with pTz +¢7y > 3.
Note that, theoretically, we can continue to branch on the latter constraint,
generating p’z + ¢"y = 3 and pTx + ¢qTy > 5, etc.

4 Further Remarks

Extending OocM. The SocMm ILP was extended, e.g., to compute the bimodal
crossing number [5], the minor-monotone and hypergraph crossing numbers [6],
and the simultaneous crossing number [9]. The extensions for the first three
problems can straight-forwardly be formulated within OocwM.

By contrast, extensions for the simultaneous crossing number, as well as po-
tential extensions for the pairwise and the odd crossing number [I§] are not
straight-forward: they require that some edges cross multiple times, maybe even
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an exponential number of times. This states no problem for SOCM, as we can, the-
oretically, subdivide the edges into long enough paths and drop the one-crossing-
per-edge-pair constraint. Anyhow, we cannot model such multiple crossings with
the variables of OoCM.

Improvements to SOcM. The SOCM implementation of our experiments re-
ceived improvements compared to the algorithm presented in [4I8]. Hence, the
results are far better than previously reported. We denote the improved version
of SocM by iSOCM. The modifications include:

— The crossing minimization heuristic (used by both iSocM and OocMm) im-
proved, due to a more time-consuming but stronger post-processing scheme:
in [I1], the strongest post-processing was to remove and reinsert every edge,
after obtaining a first full solution. The current implementation in OGDF [17]
can remove and reinsert all edges after each single edge-insertion step.

— The branching on Kjs-constraints, cf. Section [3.4] is also possible in iSocM.

— The column generation scheme is now fine-tuned: originally, we introduced
a new segment of the original edge e whenever the sum of crossings over the
first segment of e is larger than 1 in the fractional solution. Now, we add this
segment only if the sum is larger than 1 in the rounded solution that is used for
the separation. This idea is then similar to the generation criterion in OocCM.

— As Oocm, iSOCM also uses the new extraction algorithm which finds multiple
Kuratowski-subdivisions in linear time [10].

5 Experiments

The following experiments were conducted on an AMD Opteron 2.4 GHz with
2GB of RAM per process. SOCM, iSOcM, and O0OCM are implemented in the
open-source library OGDF [I7], using ABACUS as a B&C framework and CPLEX
9.0 as LP solver. We applied a time limit of 30 minutes for each instance. The
machine and the overall experimental setting is thus identical to the experiments
reported in [4I8], which yielded the currently best known published results.

To compare the performance of both formulations, we chose the well-known
Rome benchmark set [2], which is commonly used to assess algorithms for the
crossing number and other graph drawing problems; e.g. [4I8TT]. It consists of
over 11,500 real-world graphs emerging from software-engineering applications,
with between 10 and 100 nodes. We use the non-planar core reduction [7] as a
preprocessing step. We say graphs are trivial, if they are planar or if the heuristic
achieves a planarization with only one crossing, as in these cases we need not
prove optimality. The Rome library contains 7172 non-trivial graphs.

As we see in Figure[Il both new algorithms clearly outperform the old SocMm
algorithm, which drops below a success-ratio of 50% for graphs with 70 nodes.
While OocM solves virtually all graphs with up to 60 nodes to provable opti-
mality within the time limit, the formerly best algorithm already drops to a 70%
success-ratio for graphs of size 60. The experiments also show that the new ILP
formulation OOCM is able to solve more and larger graphs than iSOCM: while
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Fig. 1. Percentage of graphs solved to provable optimality within 30 minutes. The size
of the circles denotes the number of instances per graph size. Therefore, larger circles
correspond to statistically more reliable data points. The gray data points denote the
previously best published results in [8] and the journal version of [4].
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Fig. 2. The number of instances only solved by one of the approaches, but not by both

iSocM only solves 84.4% of all non-trivial graphs within 30 minutes, OocM finds
and proves an optimal solution in 89.2% of all these instances, i.e., 93.3% over
all benchmark instances. Even when OOCM has a time limit of only 10 and 5
minutes per non-trivial instance, it still solves 85.9% and 83.4%, respectively,
and thus produces results comparable to 30 minutes of iSOCM computation in a
3—6x shorter period of time.

Note that there are only 19 instances solved by iSOcM but not by OocwMm,
within 30 minutes, but 361 instances which OocM solved but iSocM did not,
cf. Figure 2l Most importantly, we can now solve over 50% of the largest graphs
of the Rome library. Figure [ further illustrates the strength of OocM; it shows
the average running times for graphs solved by both approaches; even for large
graphs O0OCM only requires roughly 100 seconds on average.
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Fig. 4. The number of instances per combination of lower and upper bound after 30
minutes of O0OCM, over all graphs of the Rome library. 9 instances are not shown as
their lower or upper bounds do not fit into this diagram.

Figure @l shows the dependency of the solvability on the crossing number: we
see that O0oCcM solves all but 6 graphs with a crossing number of up to 20. It
even solves a graph with a crossing number of 37. By contrast, iSOCM solves
only all but 7 graphs with a crossing number of at most 12. Finally, Figure
shows a comparison of the number of required variables for the instances solved
by both approaches: both algorithms start with the same initial variable set,
but OocM requires by far less additional variables during the computation of
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shows the average number of start variables per graph size.

the optimal solution. This seems to be the main reason why OocM is faster and
more efficient than SocM and iSocMm.
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Abstract. We study the mechanism design problem for scheduling un-
related machines and we completely characterize the decisive truthful
mechanisms for two players when the domain contains both positive and
negative values. We show that the class of truthful mechanisms is very
limited: A decisive truthful mechanism partitions the tasks into groups so
that tasks in each group are allocated independently of the other groups.
Tasks in a group of size at least two are allocated by an affine minimizer
and tasks in singleton groups by a task-independent mechanism. This
characterization is about all truthful mechanisms, including those with
unbounded approximation ratio.

A direct consequence of this approach is that the approximation ra-
tio of mechanisms for two players is 2, even for two tasks. In fact, it
follows that for two players, VCG is the unique algorithm with optimal
approximation 2.

1 Introduction

Algorithmic mechanism design is an important area between computer science
and economics. The two most fundamental problems in this area are the prob-
lem of scheduling unrelated machines [25] and the problem of combinatorial
auctions [T9T2[7]. Here we are dealing with the scheduling problem, but our
main result which is the characterization of truthful mechanisms for two players
extends naturally to the more general domain of combinatorial auctions. In the
scheduling problem, there are n players (machines) and m tasks to be executed
on these machines. Each task j needs time ¢;; on machine 7. We want to allocate
the tasks to machines in a way that minimizes the makespan (the time required
to finish all tasks). The problem is that the machines are selfish and will not
reveal the true values (we assume that only machine ¢ knows the true values ¢;;).

A mechanism consists of two parts, the allocation algorithm and the payment
functions, one for each player. Each player ¢ declares its own execution times t;.
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The mechanism collects all the declarations ¢ and allocates the tasks according
to an allocation function a : R"*™ — {1,...,n}™ from the set of all execution
times to the set of partitions of m tasks to n players. It is more convenient to
denote an allocation using the characteristic variables: a;; is an indicator variable
for task j to be allocated to machine ¢. The mechanism also pays each player i a
payment p;. The payment depends on the declared values ¢ and indirectly on the
allocation. A mechanism is truthful, if every player has no incentive to lie. We
are dealing here with the standard and more restricted notion of truthfulness,
dominant truthfulness, in which a player has no incentive to lie for every value
of the other players. It is well-known that in truthful mechanisms, the payment
to player 7 depends on the values t_; of the other players and on the allocation
a; of player i: p; = pi(a;, t—;).

The allocation of the mechanism to player ¢ is given by the argmin expression
a; = argmin,{a; - t; — p;(a;,t—;)}. The allocations to players must be consistent,
i.e., every task is allocated to exactly one machine. The question is what type
of allocation algorithms and payment schemes satisfy this property.

There is a simple answer to this question: A mechanism is truthful if and only if
it satisfies the Monotonicity Property: If a and a’ are the allocations of the mech-
anism for inputs ¢ and ¢’ which differ only on the values of player ¢, then we must
have Zgn:l(aij —aj;)(ti; —t;;) < 0. One nice property of this characterization is
that it does not involve the payments at all. Since we usually care about the allo-
cation part of mechanisms, this property focuses exactly on the interesting part.
Unfortunately, although this is a necessary and sufficient condition [26], it is not
very useful because it is a local and indirect property. The best way to clarify this
point is to consider the case of mechanism design in unrestricted domains. In such
domains, the same monotonicity property characterizes the truthful mechanisms.
However, there is a much more direct characterization due to Roberts [16]: The
class of truthful mechanisms for the unrestricted domain is very limited and con-
tains exactly the class of affine maximizers. An important open problem is to come
up with a similar characterization for the scheduling problem and combinatorial
auctions. This work resolves this question for 2 players.

For the scheduling problem, very few mechanisms are known to be truth-
ful. The principal example is the VCG mechanism [27TTIT5] (or second-price
mechanism) and its generalization, the affine minimizers [I9]. The VCG mecha-
nism allocates each task independently to the machine with minimum value, and
pays the machine the second minimum value. VCG can be generalized in two
ways and retain its truthfulness. The first generalization is the task-independent
mechanisms, which allocate each task independently of the rest. The second gen-
eralization is the affine minimizers, which multiply the value of each player by
some constant, but more importantly, they alter the value of each allocation by
a constant. It is this set of additive constants, one per allocation, which make
this generalization different than the first generalization.

Both these generalizations are known to be truthful, but they make very poor
algorithms. The reason is that they allocate each task independently, or almost
independently. The question is whether there are other truthful mechanisms. The
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answer appears at first to be negative: For example, the mechanism that allocates
all tasks to one player, the one with minimum sum of execution times, is truthful
but it is neither affine minimizer nor task-independent. However, this negative
answer is not satisfactory because some allocations are never used, no matter how
high or low are the values of the players. (One of the undesired properties of these
mechanisms is that they have unbounded approximation ratio.) In contrast, we
usually require that mechanisms have a much stronger property: decisiveness. A
mechanism is called decisive when a player can enforce an outcome (allocation),
by declaring very high or very low values.

A natural question is to characterize the decisive truthful algorithms. Unfor-
tunately, by restricting our interest to decisive algorithms, we leave out impor-
tant truthful specimens because some affine minimizers are not decisive: in some
cases, a task will not be allocated to a player even when he declares 0 value
for the task. To circumvent this problem, we allow negative values and we char-
acterize the decisive truthful mechanisms for the domain of real values (both
positive and negative). These algorithms include the affine minimizers and the
task-independent algorithms; furthermore, every such algorithm is also truthful
(but not necessarily decisive) for the nonnegative domain. By allowing negative
values, we obtain not only a clean characterization but a useful one too, because
we can still use it to argue about the approximation ratio for nonnegative values.

In our presentation we deal a lot with payments and, since we are only inter-
ested in the difference of payments, we will use the following notation

cit:a’ (t*i) = Pi (aga t*i) —Pi (aia t*i)-

For simplicity, we write f,.. in place of fl_,. We also represent the allocations
using only the allocation of player 1, since the allocation of player 2 can be
inferred. For example, we write foo.10 for the difference in payments of player 1
when he gets only task 1 and when he gets no task. There is an extra reason to
define f4:o: at some point in our proof, we will use the inverse function f, i,.

The main reason for using negative values in our characterization is that the
values f,.q/, being the differences of payments, can take negative values.

As we mentioned, the allocation of a mechanism can be expressed with argmin
expressions, one for every player: a; = argmin,{a; - t;, — p;(a;,t_;)}. For two
players and two tasks, we essentially seek the payments that satisfy the following
equation, which expresses the fact that the allocations for the two players must
be consistent (i.e. each task is allocated exactly once):

argmin{tiy + t12 — p1(11,t2),t11 — p1(10,t2), t12 — p1(01,t2), —p1(00,t2)} =
argmin{—pa(11,t1), %22 — p2(10,t1),t21 — p2(01, 1), 221 + taz — p2(00,1)}.

Therefore the problem of characterizing the argmin mechanisms for two play-
ers and two tasks boils down to the following simple question: Which payments
p satisfy the above equation? This is precisely the problem that we are trying
to solve here.

The following theorem provides the answer, which applies also to any number
of tasks. But first we give a precise definition of the affine minimizers:
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Definition 1 (Affine minimizers). A mechanism is an affine minimizer if
there are constants \; > 0 (one for each player i) and v, (one for each of the
n™ allocations) such that the mechanism selects the allocation a which minimizes
> i Aiiti + Ya-

We now state our main result:

Theorem 1. For the scheduling problem with real values every decisive truthful
mechanism for 2 players is a collection of, independent from each other, affine
minimizers and task-independent mechanisms.

By combining the theorem with the fact that non-decisive mechanisms have
unbounded approximation ratio (see Section [H), one can show that even for 2
players and 2 tasks, the approximation ratio of every truthful mechanism is at
least 2. In fact, we don’t need the full power of our characterization for this
result, but only Lemma [l below.

2 Related Work

The scheduling problem on unrelated machines is one of the most fundamen-
tal problems in combinatorial optimization. Here we study its mechanism de-
sign version which was introduced by Nisan and Ronen in their paper [25] that
initiated the algorithmic theory of Mechanism Design. They gave a truthful
n-approximate (polynomial-time) algorithm (where n is the number of ma-
chines); they also showed that no mechanism (polynomial-time or not) can
achieve approximation ratio better than 2 when there are at least three tasks.
We strengthen this result by proving that it holds even for only two tasks.

The lower bound for deterministic mechanisms has been improved in [I0] to
2.41 (this is the best-known lower bound for 3 machines) and [I7] to 2.618 for
n — 0o machines.

There is a lot of work on randomized truthful mechanisms for the scheduling
problem [2512321], on fractional truthful mechanisms [9], on the discrete-domain
case [20], and on the special case of related machines [24I2ITIT8]. Much more
work has been done in the context of combinatorial auctions (see for example
BITIRIT2I6/T3] and the references within).

Our approach of aiming at a complete characterization of truthful mecha-
nisms, regardless of approximation ratio, is analogous to Roberts [16] result for
unrestricted domains, but also resembles the approach in [T95], and it was in-
fluenced by the limitations of the current methods in establishing lower bounds
[LTOMT].

Saks and Yu [26] proved that the monotonicity property is necessary and suffi-
cient for truthful mechanisms of convex domains, which applies to the scheduling
problem. Monderer [22] shows that the domain cannot be further generalized in
the case of quasi-linear utility functions.

A very recent paper [14] by Dobzinski and Sundararajan is very close in spirit
to this work. Dobzinski and Sundararajan restrict their attention to mechanisms
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with bounded approximation ratio. They show that the truthful mechanisms
with bounded approximation ratio are task-independent. In contrast, our work
provides a more complete characterization of all mechanisms including those
with unbounded approximation ratio.

3 The Characterization of Decisive Mechanisms for 2
Tasks

Our main result is based on the following theorem which applies to 2 players
and 2 tasks and which is the subject of this section.

Theorem 2. For the scheduling problem with real values the decisive truthful
mechanisms for 2 players and 2 tasks are either task-independent or affine min-
1mizers.

We proceed in our proof carefully, revealing gradually the properties of f4.... We
assume here that the payments take real (positive or negative) values, so that
fa:ar 1s also a real function. An indispensable part of the proof is the following
lemma.

Lemma 1. For allocations a and a' that differ in only one task, the quantity
fa:ar (t2) depends only on (a — a') - ta (and therefore it depends on only one
variable).

Proof. This lemma holds for every number of tasks. We will first prove the lemma
for m = 2 tasks. We will focus on the case of a = 00 and a’ = 10 since the other
cases are very similar.

We will show by contradiction that foo.10(t21,%22) does not depend on tas.
Suppose that there are 15217 15227 and tl22 with t22 75 t22/ with foo;lo(tgl,tgg) <
Joo:10(ta1, the).

From the definition of fop.10(t21, t22), the tasks of the form

<foo:1o(t21,t22) +e )

to1 % too %

have the indicated allocation for every € > 0, where in fty indicates an arbitrarily
high value which guarantees that the second task will not be allocated to player

1 (i.e., oo is greater than max{ fo0.01(t2), foo:11(t2)})-
Similarly, the tasks of the form

<f00:10(t217t/22) —€x 00 )

/
t21 t22 *

have the indicated allocation for every € > 0. As we mentioned before, co denotes
an arbitrarily high value. We assume of course that the two occurrences of this
symbol above denote the same value.

By the Monotonicity Property, if we decrease the values of t22 to thy to
min{¢so, thy }, the allocations remain the same.
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This leads to a contradiction when € = (foo;lo(tzl,tIQQ) — foo;(n (t21,t22))/2,
because the task

<f00;10(t21,t22)+f00:10(t21,t§2) 00 )

to1 min{t227 t/22} *

would have two allocations.

The proof can be extended to the case of m > 2 tasks: We reduce it to the m =
2 case by fixing all tasks except of two. For example, for every to = (ta1, toa, tag)
and th = (ta1,1h9,t53) we have: fooo:100(t21,t22,t23) = fooo:100(t21,tha,t23) =
Joo0:100(t21, thy, ths).

Corollary 1. The quantities c1 = for.11(t2) — foo0(t2) and ca = fi.00(t2) —
f?1.01(t2) do not depend on ts.

We can now define the regions of truthful mechanisms. For fixed ts, let Ry
denote the set of values t; for which the mechanism allocates both tasks to
player 1. Region R;; which is defined by the following constraints:

t11 < fio.11(t21)
tiz < for:11(t22)
tin + ti2 < for:11(t21) + fooo1(ta2).

There are similar constraints that define the other regions Ry, Rig, and Ryi.
What happens at the boundaries, where the inequality becomes an equality is
not determined by the Monotonicity Property. These undetermined values are a
major source of difficulty in the characterization of the mechanisms.

From the above inequalities we get that the boundary between regions Ry
and Rqq, if it exists, is of the form ¢17 + t12 = fo1.11(t21) + foo:10(t22). Since a
similar constraint holds for player 2 (in which the sum to; + 22 appears), one
could be tempted to conclude that the boundary between allocations 00 and
11 is of the form t11 + t12 = h(ta1 + ta2) for some function h. Although this
conclusion is exactly the one that we will eventually reach, the above argument
1§ not rigorous.

To proceed to the characterization of mechanisms, we need to understand
the functions foo.10 and foo.01- To this end, we prove a series of lemmas (the
proofs which are similar in spirit to the proof of Lemma [Il are omitted from this
extended abstract).

Lemma 2. The functions fo1.11 and foo.01 are nondecreasing.

For most reasonable mechanisms, a stronger statement seems to apply for these
two functions: that they are strictly increasing. This however is not generally
true. But we can show that the functions fy1.11 and foo.01 are indeed strictly
increasing when ¢; # 0. In fact, we show in the next lemma that either the
functions are strictly increasing or they are like the following mechanism, which
is not a decisive mechanism.
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Ezample 1 (Mechanism with some oblivious player). Consider the mechanism
with fOO:lO(t21) = bl, foo;(n (t22) = b2 where bl, bg, and c1 are constants. In this
mechanism the first player decides independently of the values of the second
player. For given values t; of the first player, the second player has the same
allocation for every ts. This mechanism is not decisive, since the second player
cannot force all allocations.

Lemma 3. In a truthful mechanism with ¢; # 0 the functions fo1.11 and foo.01
are either both strictly increasing or both constant. (The same holds for the pair
foo:10 and fio:11-)

The above lemma establishes that the mechanisms with ¢; # 0 are either one of
the mechanisms of the Example [l or both functions fg1.11 and foo.01 are strictly
increasing. As we consider decisive mechanisms, from now on we will consider
only strictly increasing functions.

Lemma 4. If co # 0 then the functions fo1.11 and foo.01 are bijections from R
to R.

The assumption co # 0 is essential in the above lemma. When ¢y = 0, there are
mechanisms in which foo.10 and fpo.01 are not bijections.

Lemma 5. The constants ¢; and co are either both positive, both negative, or
both 0.

Lemma 6. For ¢y # 0, the functions foo.10 and foo.01 are semiperiodic and in
particular they satisfy foo.10(t21 + c2) = foo:10(t21) + c1 and foo.01(t22 + c2) =
Joo:01(t22) + c1.

We will focus on the case of ¢; > 0 as the case ¢; < 0 is very similar. Consider
the diagonal boundary between the regions R;; and Ryg. This boundary is on
the line t11+t12 = fo1:11(t21)+ foo:01(t22). We have foo.11(t21,t22) = for:11(t21)+
Joo:01(t22). The heart of the characterization is that the function foo.11(¢21,t22)
depends only on the sum of to1 + tos.

Lemma 7. The function foo.11(t21,%22) = for:11(t21) + foo:01(t22) depends only
on tag +1tog, i. e., there is some function h such that foo.11(t21, taz) = h(ta1 +1ta2).

Proof. Suppose not. That is suppose that there are to and ¢} such that to; +t2s =
b1 + the and yet foo.11(ta1,t22) < foo.11(thy,thy). If the values differ, they have
to differ for some t9; and t5, that are very close.

Without loss of generality then we assume that to; < th; < ta1 + ca.

This implies that thy < taa < toor + ¢ and therefore

f00:01(t22) < foo:01(the + c2) = fo0:01(thy) + C1-

Let € be a positive parameter with € < foo.11(th1,the) — foo:11(t21,t22) and
€ < fo1:11(ths) — foo.01(t22). By the above inequalities, € belongs to an open
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interval and more specifically it can take at least two distinct values. Consider
then the values

tin = forai(ta1) tiz = foo.o1(ta2) + €

We can easily verify that the following inputs satisfy the boundary constraints
of the appropriate regions (Roo and Ri1) and have the indicated allocations:

ti1 ti2 t11 % Lg%

ta1 * tag x thy thy
This means that, when we fix ¢, the points t2 and ¢, are on the boundary
between regions Ry1 and Ry of player 2. Equivalently, that

ta1 + taz = forh1 (t11) + foomon (trz — €).

(A similar equation holds for 5 which however is not different since we assumed
that to; + tog = th; + th,). This equality should hold for every e in some open
interval. But this contradicts the fact that fy,, is strictly increasing.

From the last lemma, we get that h(tzl —|—t22) = f01;11(t21) +f00;01 (tzz). We claim
that the functions involved are affine as the following lemma (which is based on
the Cauchy functional equation) shows.

Lemma 8. If for some real functions h, hy, ho which are continuous at some
point, we have h(z + y) = hi(x) + ha(y), then all three functions are affine, i.
e., they are of the form ax + b for some constants a and b.

We have established that the functions fo1.11 and fyo.01 are affine but we can
say more about their coefficients:

Lemma 9. When ¢1 # 0, the payments of the first player (up to a common
additive term which depends on ts) are of the form p1(ai,t2) = —X- a2 -ta — Ya,
for some constants A > 0 and v,.

With the above payments, the mechanism is the following affine minimizer:
argmin,{ai - t1 + X -az - t2 +7a}.

4 The Case of Many Tasks

The generalization of the characterization to more than two tasks is almost
straightforward. Fix a truthful mechanism. For two distinct tasks j; and jo we
will write j; ~ jo when there are some values for the other m — 2 tasks such that
the mechanism restricted to tasks j; and js is an affine minimizer (i.e., with the
associated constant ¢; # 0). It should be stressed that we require the mechanism
restricted to these two tasks to be an affine minimizer for some values of the
other tasks, not necessarily for all values, but we are going to see that the two
are equivalent.
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Our aim is to show that the relation ~ is transitive; since it is clearly symmet-
ric, it essentially partitions the tasks into equivalence classes with the exception
that classes of size one are not affine minimizer but task-independent mecha-
nisms. Assume that j; ~ jo and jo ~ j3. That is, assume that when we fix some
values of the other tasks, the mechanism for tasks j; and jo is an affine minimizer
and when we fix some (not necessarily the same) values of the other tasks the
mechanism for tasks jo and j3 is also an affine minimizer, not necessarily with
consistent coefficients. Our aim is to show that the coefficients are consistent.
We show the following lemma, first for two tasks, and then for 3 or more tasks
(the proof is omitted).

Lemma 10. When ji1 ~ ja, jo ~ j3, ---, Jk—1 ~ Jjk, the payments of player 1
satisfy the following for allocations a and b thal agree on all other tasks (i.e.,
not in {Jj1,...,jk}):

Pa(tz) — po(t2) = Ajy...j, - (@ = b)l2 + Ca,
where Aj, ... j, > 0 and (u.p are constants.

The relation ~ is symmetric and transitive and it partitions the tasks into equiv-
alence classes. Suppose for simplicity that all tasks belong to one class. Then the
mechanism is an affine minimizer (when there are at least 2 tasks). This follows
from the last lemma: Fix b =1, i.e. in b all tasks are allocated to player 1. The
payment p, can be set arbitrarily, so we set it to some arbitrary constant ~.
Then p,(t2) = A-(a —b) - to + Cap + po(te) = =X\ - as - ta — 4, where we defined
Ya = —Ca:p + 7 (a constant) and used A > 0 as an abbreviation of A\, . Then
the allocation for player 1 is given by

argmin{aiti — pa(t2)} = argmin{aits + Aasts + 7o},
ail ay
with A and 7, constants.
The above lemma allows as to partition the tasks so that each part is indepen-
dent of the other parts. Parts that have 2 or more tasks are affine minimizers.
Parts that have only 1 task are not necessarily affine minimizers.

5 Lower Bound for 2 Tasks

Although our characterization involves only decisive mechanisms and negative
values, it can be extended directly to show that the approximation ratio even
for two tasks is at least 2. The following claim from [I4] shows a non-decisive
mechanism for positive values has unbounded ratio:

Suppose for example that the allocation 10 does not occur for some t5, and take
the input ( € ) . Since the allocation of the first player cannot be 10 the
to1 x too %
allocation is indicated by the stars. By monotonicity the allocation is the same for

the instance < . ¢ N :i) . But this gives approximation ratio 1 4 t21 /€ — oo.
21
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The following theorem reproduces the result in [I4] for any number m > 2 of
tasks.

Theorem 3. No truthful mechanism for 2 players with ¢ # 0 can have a
bounded approzimation ratio. Consequently any mechanism for 2 players with
bounded approxrimation ratio is a task independent mechanism.

In fact, for two tasks, we can show (proof omitted):

Theorem 4. For 2 players and 2 tasks, the only truthful mechanism which
achieves approzimation ratio 2 is the VCG mechanism.

References

1. Andelman, N., Azar, Y., Sorani, M.: Truthful approximation mechanisms for
scheduling selfish related machines. In: STACS, pp. 69-82 (2005)

2. Archer, A.: Mechanisms for Discrete Optimization with Rational Agents. PhD
thesis, Cornell University (January 2004)

3. Archer, A., Papadimitriou, C.H., Talwar, K., Tardos, E.: An approximate truthful
mechanism for combinatorial auctions with single parameter agents. In: SODA,
pp. 205-214 (2003)

4. Archer, A., Tardos, E.: Truthful mechanisms for one-parameter agents. In: FOCS,

pp. 482-491 (2001)

Archer, A., Tardos, E.: Frugal path mechanisms. In: SODA (2002)

6. Babaioff, M., Lavi, R., Pavlov, E.: Mechanism design for single-value domains. In:
AAAIL pp. 241-247 (2005)

7. Bartal, Y., Gonen, R., Nisan, N.: Incentive compatible multi unit combinatorial
auctions. In: TARK, pp. 72-87 (2003)

8. Briest, P., Krysta, P., Vocking, B.: Approximation techniques for utilitarian mech-
anism design. In: STOC, pp. 39-48 (2005)

9. Christodoulou, G., Koutsoupias, E., Kovacs, A.: Mechanism design for fractional
scheduling on unrelated machines. In: Arge, L., Cachin, C., Jurdzinski, T., Tarlecki,
A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 40-52. Springer, Heidelberg (2007)

10. Christodoulou, G., Koutsoupias, E., Vidali, A.: A lower bound for scheduling mech-
anisms. In: SODA, pp. 1163-1169 (2007)

11. Clarke, E.: Multipart pricing of public goods. Public Choice 8, 17-33 (1971)

12. Dobzinski, S., Nisan, N., Schapira, M.: Approximation algorithms for combinatorial
auctions with complement-free bidders. In: STOC, pp. 610-618 (2005)

13. Dobzinski, S., Nisan, N.; Schapira, M.: Truthful randomized mechanisms for com-
binatorial auctions. In: STOC, pp. 644-652 (2006)

14. Dobzinski, S., Sundararajan, M.: On characterizations of truthful mechanisms for
combinatorial auctions and scheduling. In: EC (2008)

15. Groves, T.: Incentives in teams. Econometrica 41, 617-631 (1973)

16. Kevin, R.: The characterization of implementable choice rules. In: Aggregation and
Revelation of Preferences, pp. 321-348 (1979)

17. Koutsoupias, E., Vidali, A.: A lower bound of 1+¢ for truthful scheduling mecha-
nisms. In: Kucera, L., Kucera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 454-464.
Springer, Heidelberg (2007)

18. Kovécs, A.: Fast Algorithms for Two Scheduling Problems. PhD thesis, Universitét
des Saarlandes (2007)

o



19.

20.

21.

22.
23.

24.

25.

26.

27.

A Characterization of 2-Player Mechanisms for Scheduling 307

Lavi, R., Mu’alem, A., Nisan, N.: Towards a characterization of truthful combina-
torial auctions. In: FOCS, pp. 574-583 (2003)

Lavi, R., Swamy, C.: Truthful mechanism design for multi-dimensional scheduling
via cycle monotonicity. In: EC, pp. 252-261 (2007)

Lu, P., Yu, C.: An improved randomized truthful mechanism for scheduling unre-
lated machines. In: STACS, pp. 527-538 (2008)

Monderer, D.: Monotonicity and implementability. In: EC (2008)

Mu’alem, A., Schapira, M.: Setting lower bounds on truthfulness. In: SODA, pp.
1143-1152 (2007)

Myerson, R.B.: Optimal auction design. Mathematics of Operations Research 6(1),
58-73 (1981)

Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and Economic Be-
havior 35, 166-196 (2001)

Saks, M.E., Yu, L.: Weak monotonicity suffices for truthfulness on convex domains.
In: Proceedings 6th ACM Conference on Electronic Commerce (EC), pp. 286-293
(2005)

Vickrey, W.: Counterspeculations, auctions and competitive sealed tenders. Journal
of Finance 16, 8-37 (1961)



A Local-Search 2-Approximation for
2-Correlation-Clustering*

Tom Coleman, James Saunderson, and Anthony Wirth

The University of Melbourne

Abstract. CORRELATIONCLUSTERING is now an established problem in
the algorithms and constrained clustering communities. With the re-
quirement that at most two clusters be formed, the minimisation prob-
lem is related to the study of signed graphs in the social psychology
community, and has applications in statistical mechanics and biological
networks.

Although a PTAS exists for this problem, its running time is im-
practical. We therefore introduce a number of new algorithms for 2CC,
including two that incorporate some notion of local search. In particular,
we show that the algorithm we call PASTA-TOSS is a 2-approximation
on complete graphs.

Experiments confirm the strong performance of the local search ap-
proaches, even on non-complete graphs, with running time significantly
lower than rival approaches.

1 Introduction

The TwoO-CORRELATION-CLUSTERING (2CC) problem asks us to partition a
dataset into two clusters given only advice about pairs of points in the dataset.
This advice comes in the form of soft must-link and cannot-link constraints.
The aim is to minimise the number of such constraints violated in forming the
clusters.

1.1 The 2CC Problem

The CORRELATIONCLUSTERING problem [I] asks us to form a clustering of a
signed graph that minimises the number of edges that are not respected. In
the 2CC variant, the number of clusters is restricted to two. This bears some
similarity to the MAXCUT problem. Formally, the input is a graph G = (V, E)
and a labelling on edges [ : E — {—1,+1}. The output is a clustering of the
vertices ¢ : V' — {—1,+1}. The aim is to choose a clustering that minimises the
number of edges that disagree with the labelling, viz.

{e = (v,w) € E s.t. l(e) # c(v) - c(w)}].

* This work was supported by the Australian Research Council through Discovery
Grant DP0663979.
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We refer to this as the cost of the clustering ¢ under labelling [ or just the cost if
the clustering and labelling are clear from the context. Note that labelling refers
to edges, whereas clustering refers to vertices, and that n refers to |V|.

If the graph is not two-connected, then each two-connected component can be
considered independently. Without loss of generality, we will therefore assume
that the input graph is two-connected.

1.2 Related Work

Initial work on signed graphs [2I3] focused on graph theory, rather than opti-
misation. Early results [4] demonstrated that 2CC is an NP-complete problem,
both on complete graphs, and in general.

Bansal et al. [I] put forward the first approximation algorithm for MIN-2CC
on complete graphs, with factor 3. Giotis and Guruswami [5] completed the
picture, from a theoretical viewpoint, for 2CC on complete graphs by developing
a PTAS (polynomial time approximation scheme) for both the maximisation
and minimisation versions of the problem. For CORRELATIONCLUSTERING on
complete graphs, a PTAS exists for maximisation, but minimisation is APX-
hard [6]. The best known upper bound for MIN-CORRELATIONCLUSTERING on
complete graphs is a 5/2-approximation developed by Ailon et al. [7].

On general graphs, the problem is more difficult to solve. There is a direct
relationship between 2CC and the classic MAXCUT problem: replace all + edges
on the signed graph with a pair of — edges meeting at a new vertex. The classic
SDP-based approximation algorithm, by Goemans and Williamson [§], achieves
a 0.878-approximation for MAXCUT. Dasgupta et al. [9] extend this result to the
maximization version of the 2CC problem, achieving the same approximation
factor. Note that CORRELATIONCLUSTERING on general graphs and MINIMUM
MULTICUT reduce to one another, leading to O(logn) approximations [6]. Fi-
nally, Huffner et al. [I0] use a fixed parameter algorithm, and some data reduc-
tion rules, to solve 2CC exactly in greatly reduced time compared to a brute
force algorithm. However, such algorithms are still exponential in running time.

1.3 History of the 2CC Problem

The 2CC problem has been repeatedly rediscovered, and renamed, since it was
first defined by Harary [2] in 1950. Harary introduced the signed graph: an undi-
rected graph with +1 or —1 labels on the edges (corresponding to must-link
and cannot-link advice). He also introduced the notion of imbalance in a signed
graph, which corresponds to the 2CC cost of the graph, the number of violated
constraints. Harary considered a psychological interpretation of the problem:
positive edges correspond to pairs of people who like one another, and negative
edges to pairs who dislike one another. His aim was to find two highly cliquey
groups.

Apart from social psychology, the study of signed graphs has many other
applications, notably in statistical mechanics, where it relates to energy config-
urations of the Ising model with no external field. Solé and Zaslavsky [3] show
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a connection to coding theory: between signings of a graph and the cutset code
defined by that graph. Also, Dasgupta et al. [9] apply the problem to the de-
composition of large-scale biological networks into monotonic subsystems.

1.4 Layout of the Paper

In Section 2l we outline the majority of the algorithms used in this paper. In Sec-
tion Bl we show that the PASTA-TOss algorithm is a 2-approximation. Section []
explains a more involved algorithm, PASTA-FLIP, which is similar in structure
to PASTA-T0sS. Finally, Section [l outlines the experimen