

Lecture Notes in Computer Science 5193
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Dan Halperin Kurt Mehlhorn (Eds.)

Algorithms –
ESA 2008

16th Annual European Symposium
Karlsruhe, Germany, September 15-17, 2008
Proceedings

13

Volume Editors

Dan Halperin
Tel-Aviv University
School of Computer Science
Tel Aviv 69978, Israel
E-mail: danha@tau.ac.il

Kurt Mehlhorn
Max-Planck-Institut für Informatik
66123 Saarbrücken, Germany
E-mail: mehlhorn@mpi-inf.mpg.de

Library of Congress Control Number: 2008934902

CR Subject Classification (1998): F.2, G.1-2, E.1, F.1.3, I.3.5, C.2.4, E.5

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-87743-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-87743-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12532902 06/3180 5 4 3 2 1 0

Preface

This volume contains the 69 papers presented at the 16th Annual European
Symposium on Algorithms (ESA 2008), held in Karlsruhe during September
15–17, 2008, including two papers by the distinguished invited speakers Mark
Overmars and Leslie Valiant.

Since 2002, ESA has consisted of two tracks, with separate program commit-
tees, dealing with design and mathematical analysis of algorithms, the “Design
and Analysis” track, and real-world applications, engineering, and experimen-
tal analysis of algorithms, the “Engineering and Applications” track. Previous
ESAs in the two-track format were held in Rome, Italy (2002); Budapest, Hun-
gary (2003); Bergen, Norway (2004); Palma de Mallorca, Spain (2005); Zurich,
Switzerland (2006); and Eilat, Israel (2007). The proceedings of these symposia
were published as Springer’s LNCS volumes 2461, 2832, 3221, 3669, 4168, and
4698 respectively.

Papers were solicited in all areas of algorithmic research, including algorith-
mic aspects of networks, approximation and on-line algorithms, computational
biology, computational finance and algorithmic game theory, computational ge-
ometry, data structures, databases and information retrieval, external-memory
algorithms, streaming algorithms, graph and network algorithms, graph draw-
ing, machine learning, mobile and distributed computing, pattern matching and
data compression, quantum computing, randomized algorithms, and algorithm
libraries. Submissions were especially encouraged in mathematical programming
and operations research, including Combinatorial Optimization, Integer Pro-
gramming, Polyhedral Combinatorics and Network Optimization.

Each extended abstract was submitted to one of the two tracks. The extended
abstracts were typically read by three or four referees each, and evaluated on their
quality, originality, and relevance to the symposium. The Program Committees
of both tracks met in Karlsruhe on May 24–25, 2008. The design and analysis
track selected 51 papers out of 147 submissions. The engineering and applications
track selected 16 out of 53 submissions.

ESA 2008 was sponsored by EATCS (the European Association for Theoret-
ical Computer Science). We appreciate the critical financial support of ALGO
2008 by the DFG (Deutsche Forschungsgemeinschaft), the KIT (Karlsruhe In-
stitute of Technology), and the Computer Science Department of the University
of Karlsruhe. The EATCS sponsorship included an award for the author of the
best paper “Better and Simpler Approximation for the Stable Marriage Prob-
lem,” by Zoltán Király and for the two best student papers, one from the design
and analysis track: “Deterministic Sampling Algorithms for Network Design,” by
Anke van Zuylen, and one from the engineering and applications track: “Time-
Dependent SHARC-Routing,” by Daniel Delling, as selected by the Program
Committees.

VI Preface

ESA 2008 was held along with the Workshop on Algorithms in Bioinformatics
(WABI), the Workshop on Approximation and Online Algorithms (WAOA),
and the Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems (ATMOS), in the context of the combined conference
ALGO 2008.

Throughout the entire process of submission, selection, and compilation of
the papers into these proceedings, we used the EasyChair system, which was very
convenient and freed us from a lot of the technical chores of Program Chairs.
We are grateful to the EasyChair people for letting us use the system and for
their responsiveness to our queries. We also thank Guy Zucker for his assistance
in compiling the proceedings.

July 2008 Dan Halperin
Kurt Mehlhorn

Organization

Program Committee

Design and Analysis Track

Yossi Azar Tel Aviv University
Xioatie Deng City University of Hong Kong
Lisa Fleischer Dartmouth
Gianni Franceschini University of Pisa
Naveen Garg IIT, Dehli
Johan Haastad KTH, Stockholm
Stephen Kobourov University of Arizona
Christian Knauer FU Berlin
Kazuhiso Makino University of Tokyo
Kurt Mehlhorn MPII Saarbrücken (Chair)
Rasmus Pagh IT University of Copenhagen
Katarzyna Paluch University of Wroc�law
Mike Paterson University of Warwick
Nicole Schweikardt HU Berlin

Engineering and Applications Track

David Applegate AT&T Labs – Research
Esther M. Arkin SUNY, Stony Brook
Hagit Attiya Technion, Haifa
David Coudert INRIA, Sophia-Antipolis
Camil Demetrescu University of Rome “La Sapienza”
Rolf Fagerberg University of Southern Denmark
Joachim Gudmundsson NICTA, Sydney
Dan Halperin Tel Aviv University (Chair)
Michael Hoffmann ETH, Zurich
Marco Lübbecke TU Berlin
Renato Werneck Microsoft Research, Silicon Valley

Organizing Committee

Dorothea Wagner (Co-chair) University of Karlsruhe
Peter Sanders (Co-chair) University of Karlsruhe
Veit Batz University of Karlsruhe
Reinhard Bauer University of Karlsruhe
Michael Baur University of Karlsruhe
Lilian Beckert University of Karlsruhe

VIII Organization

Anja Blancani University of Karlsruhe
Daniel Delling University of Karlsruhe
Dennis Luxen University of Karlsruhe
Sascha Meinert University of Karlsruhe
Vitaly Osipov University of Karlsruhe
Elke Sauer University of Karlsruhe
Dominik Schultes University of Karlsruhe

External Reviewers

Mohammad Ali Abam
Manuel Abellanas
Isolde Adler
Hee-Kap Ahn
Nir Ailon
Ernst Althaus
Alexandr Andoni
Diogo Andrade
Spyros Angelopoulos
Michael Anshel
François Anton
Stefan Arnborg
Tetsuo Asano
Mike Atkinson
Per Austrin
Sang Won Bae
Amitabha Bagchi
Sebastian Bala
Nikhil Bansal
Yair Bartal
Cristina Bazgan
Luca Becchetti
Fredrik Bengtsson
Andre Berger
Jerome Besombes
Marcin Bienkowski
Philip Bille
Benjamin Birnbaum
Johannes Blömer
Liad Blumrosen
Manuel Bodirsky
Endre Boros
Glencora Borradaile
Prosenjit Bose
Florent Bouchez

Joan Boyar
Peter Brass
Patrick Briest
Yves Brise
Tianming Bu
Christoph Buchheim
Kevin Buchin
Maike Buchin
Luciana Buriol
Sergio Cabello
LeiZhen Cai
Huiping Cao
Alberto Caprara
Erin Chambers
Timothy M. Chan
Timoth Chan
Kun-Mao Chao
Ioannis Chatzigiannakis
Amitabh Chaudhary
Shuchi Chawla
Chandra Chekuri
Danny Chen
Ke Chen
Ning Chen
Yijia Chen
Siu-Wing Cheng
Benny Chor
Tobias Christ
George Christodoulou
Tomasz Cichocki
Ken Clarkson
Graham Cormode
Jose Correa
Artur Czumaj
Bhaskar DasGupta

Organization IX

Marcelo Dias de Amorim
Colin de la Higuera
Arjen De Vries
Pedro J. de Rezende
Brian Dean
Julius Degesys
Britta Denner-Broser
Martin Dietzfelbinger
Darko Dimitrov
Bojan Djordjevic
Shahar Dobzinski
Ye Du
Vida Dujmovic
Alon Efrat
Friedrich Eisenbrand
Khaled Elbassioni
Matthias Englert
Amir Epstein
Leah Epstein
Thomas Erlebach
Bruno Escoffier
Alejandro Estrella-Balderrama
Eyal Even-Dar
Esther Ezra
Alex Fabrikant
Rolf Fagerberg
Mikael Fallgren
Michalis Faloutsos
Arash Farzan
Lene Favrholdt
Henning Fernau
Paolo Ferragina
Irene Finocchi
Rudolf Fleischer
Fedor Fomin
Dimitris Fotakis
Joe Fowler
Pierre Fraigniaud
Antonio Frangioni
W. Randolph Franklin
Leonor Frias
Bernhard Fuchs
Toshihiro Fujito
Hiroshi Fujiwara
Takuro Fukunaga

Armin Fügenschuh
Bernd Gärtner
Jerome Galtier
Iftah Gamzu
Daya Gaur
Cyril Gavoille
Pawel Gawrychowski
Heidi Gebauer
Loukas Georgiadis
Panos Giannopoulos
Anders Gidenstam
Francesco Giordano
Frederic Giroire
Xavier Goaoc
Andrew Goldberg
Alfredo Goldman
Vineet Goyal
Szymon Grabowski
Fabrizio Grandoni
David Gregg
Ilan Gronau
Roberto Grossi
Romain Grunert
Anupam Gupta
Neelima Gupta
Gregory Gutin
Shai Gutner
Carsten Gutwenger
Takashi Horiyama
Sebastian Hack
Marios Hadjieleftheriou
Magnus M. Halldorsson
Xin Han
Sariel Har-Peled
Tobias Harks
Rolf Harren
Jan-Henrik Haunert
Herman Haverkort
David Hay
Michael Hemmer
Gregorio Hernandez
André Hernich
Marijn Heule
Moritz Hilger
Frank Hoffmann

X Organization

Jiaqiao Hu
Thore Husfeldt
Robert Irving
Mashhood Ishaque
Toshimasa Ishii
Takehiro Ito
Riko Jacob
Martin Jaggi
Artur Jez
�Lukasz Jeż
Li Jian
Öjvind Johansson
David Johnson
Peter Jonsson
Tomasz Jurdzinski
Yoshiyuki Karuno
Naonori Kakimura
Kanela Kaligosi
Frank Kammer
Tom Kamphans
Takafumi Kanamori
Przemka Kanarek
Mihyun Kang
Ming-Yang Kao
Andreas Karrenbauer
Jyrki Katajainen
Michael Kaufmann
Dimitris Kavvadias
Akinori Kawachi
Ken-ichi Kawarabayashi
Balazs Keszegh
Rohit Khandekar
Samir Khuller
Shuji Kijima
David Kirkpatrick
Masashi Kiyomi
Rolf Klein
Tomi Klein
Robert Kleinberg
Jon Kleinberg
Stefan Koerkel
Alex Kogan
Stavros Kolliopoulos
Vladimir Kolmogorov
Rachel Kolodny

Jochen Konemann
Guy Kortsarz
Miroslaw Korzeniowski
Arie Koster
Lukasz Kowalik
Darek Kowalski
Richard Kralovic
Stephan Kreutzer
Klaus Kriegel
Shankar Krishnan
Danny Krizanc
Sven Krumke
Amit Kumar
Maciej Kurowski
Ekkehard Köhler
Arnaud Labourel
Oded Lachish
Jens Lagergren
Soeren Laue
Ron Lavi
Emmanuelle Lebhar
Jonathan Lenchner
Stefano Leonardi
Moshe Lewenstein
Xiangyang Li
Bengu Li
Leo Liberti
Christian Liebchen
Jeff Linderoth
Andrzej Lingas
Giuseppe Liotta
Haowen Liu
Andrea Lodi
Jakub Lopuszanski
Krzysztof Lorys
Tzvi Lotker
Vadim Lozin
Eyal Lubetzky
Fabrizio Luccio
Rune Lyngsoe
Eiji Miyano
Anil Maheshwari
Veli Mäkinen
Daniel Marx
Domagoj Matijevic

Organization XI

Jochen Maydt
Colin McDiarmid
Frank McSherry
Nicole Megow
Julian Mestre
Peter Bro Miltersen
Joe Mitchell
Michael Mitzenmacher
Shuichi Miyazaki
Sonoko Moriyama
Gabriel Moruz
Robin Moser
Matthias Müller-Hannemann
Ian Munro
Nabil Mustafa
Petra Mutzel
Kiyohito Nagano
Rouven Naujoks
Gonzalo Navarro
Yakov Nekrich
C. Thach Nguyen
Rolf Niedermeier
Bengt Nilsson
Stefan Nilsson
Marc Nunkesser
Yoshio Okamoto
Hirotaka Ono
Rotem Oshman
Patric Ostergard
Sang-il Oum
John Owens
Gyula Pap
Maurizio Patrignani
David Peleg
Ulrich Pferschy
Marc E. Pfetsch
Andrea Pietracaprina
Michal Pioro
Marek Piotrow
Marcus Poggi
C.K. Poon
Ely Porat
Andreas Profous
Guido Proietti
Kirk Pruhs

Geppino Pucci
Simon Puglisi
Evangelia Pyrga
Qi Qi
Tomasz Radzik
Prasad Raghavendra
Rajmohan Rajaraman
Rajeev Raman
Rajiv Raman
R. Ravi
Andreas Razen
Joachim Reichel
Mauricio Resende
Dana Ron
Stefan Ropke
Peter Rossmanith
Günter Rote
Jonathan E. Rowe
Shai Rubin
Daniel Russel
Kunihiko Sadakane
Carlos Sanches
Pedro Sander
Peter Sanders
Srinivasa Rao Satti
Rahul Savani
Gilles Savard
Ludmila Scharf
Dominik Scheder
Marc Scherfenberg
Heiko Schilling
Florian Schoppmann
Oded Schwartz
Daria Schymura
Yoav Seginer
Raimund Seidel
Meinolf Sellmann
Jose M. Sempere
Jiri Sgall
Nira Shafrir
Akiyoshi Shioura
Mark Silberstein
Laurent Simon
Jadranka Skorin-Kapov
Martin Skutella

XII Organization

Michiel Smid
Shakhar Smorodinsky
Christian Sohler
Olivier Spanjaard
Bettina Speckmann
Aravind Srinivasan
Grzegorz Stachowiak
Fabian Stehn
Cliff Stein
Rainer Steinwandt
Marek Sulovsky
Zoya Svitkina
Suguru Tamaki
Chuan Yi Tang
Till Tantau
Kavitha Telikepalli
Mitchell Thornton
Mikkel Thorup
Srikanta Tirthapura
Alexander Tiskin
Patrick Traxler
Dekel Tsur
Ryuhei Uehara
Takeaki Uno
Gregory Valiant
Marc van Kreveld
Rob van Stee
George Frederick Viamontes
Anastasios Viglas

Antoine Vigneron
Berthold Voecking
Imrich Vrt’o
Uli Wagner
Magnus Wahlström
Feng Wang
Lusheng Wang
Ron Wein
Carola Wenk
Juergen Werber
Douglas Wikström
Paul Wollan
Bangye Wu
Xiaodong Wu
Avi Yadgar
Masaki Yamamoto
Tommy Yang
Takuya Yoshihiro
Ryo Yoshinaka
Hai Yu
Li Zhang
Xun Zhang
Junqiang Zhou
Binhai Zhu
Roie Zivan
Philipp Zumstein
Uri Zwick
Grazyna Zwozniak

Table of Contents

Invited Lectures

Flexible Path Planning Using Corridor Maps . 1
Mark Overmars, Ioannis Karamouzas, and Roland Geraerts

A Bridging Model for Multi-core Computing . 13
Leslie G. Valiant

Contributed Papers

Robust Kinetic Convex Hulls in 3D . 29
Umut A. Acar, Guy E. Blelloch, Kanat Tangwongsan, and
Duru Türkoğlu

On Dominance Reporting in 3D . 41
Peyman Afshani

Stabbing Convex Polygons with a Segment or a Polygon 52
Pankaj K. Agarwal, Danny Z. Chen, Shashidhara K. Ganjugunte,
Ewa Misio�lek, Micha Sharir, and Kai Tang

An Efficient Algorithm for 2D Euclidean 2-Center with Outliers 64
Pankaj K. Agarwal and Jeff M. Phillips

A Near-Tight Bound for the Online Steiner Tree Problem in Graphs of
Bounded Asymmetry . 76

Spyros Angelopoulos

Cache-Oblivious Red-Blue Line Segment Intersection 88
Lars Arge, Thomas Mølhave, and Norbert Zeh

The Complexity of Bisectors and Voronoi Diagrams on Realistic
Terrains . 100

Boris Aronov, Mark de Berg, and Shripad Thite

Space-Time Tradeoffs for Proximity Searching in Doubling Spaces 112
Sunil Arya, David M. Mount, Antoine Vigneron, and Jian Xia

A Scaling Algorithm for the Maximum Node-Capacitated Multiflow
Problem . 124

Maxim A. Babenko and Alexander V. Karzanov

Linear Time Planarity Testing and Embedding of Strongly Connected
Cyclic Level Graphs . 136

Christian Bachmaier and Wolfgang Brunner

XIV Table of Contents

Straight Skeletons of Three-Dimensional Polyhedra 148
Gill Barequet, David Eppstein, Michael T. Goodrich, and
Amir Vaxman

Randomized Competitive Analysis for Two-Server Problems 161
Wolfgang Bein, Kazuo Iwama, and Jun Kawahara

Decompositions and Boundary Coverings of Non-convex Fat
Polyhedra . 173

Mark de Berg and Chris Gray

Approximating Multi-criteria Max-TSP . 185
Markus Bläser, Bodo Manthey, and Oliver Putz

An Integer Programming Algorithm for Routing Optimization in IP
Networks . 198

Andreas Bley

A Constant-Approximate Feasibility Test for Multiprocessor Real-Time
Scheduling . 210

Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and
Sebastian Stiller

Tight Bounds and a Fast FPT Algorithm for Directed Max-Leaf
Spanning Tree . 222

Paul Bonsma and Frederic Dorn

Engineering Tree Labeling Schemes: A Case Study on Least Common
Ancestors . 234

Saverio Caminiti, Irene Finocchi, and Rossella Petreschi

A Practical Quicksort Algorithm for Graphics Processors 246
Daniel Cederman and Philippas Tsigas

Bloomier Filters: A Second Look . 259
Denis Charles and Kumar Chellapilla

Coupled Path Planning, Region Optimization, and Applications in
Intensity-Modulated Radiation Therapy . 271

Danny Z. Chen, Shuang Luan, and Chao Wang

A New Approach to Exact Crossing Minimization . 284
Markus Chimani, Petra Mutzel, and Immanuel Bomze

A Characterization of 2-Player Mechanisms for Scheduling 297
George Christodoulou, Elias Koutsoupias, and Angelina Vidali

A Local-Search 2-Approximation for 2-Correlation-Clustering 308
Tom Coleman, James Saunderson, and Anthony Wirth

Table of Contents XV

The Alcuin Number of a Graph . 320
Péter Csorba, Cor A.J. Hurkens, and Gerhard J. Woeginger

Time-Dependent SHARC-Routing . 332
Daniel Delling

Detecting Regular Visit Patterns . 344
Bojan Djordjevic, Joachim Gudmundsson, Anh Pham, and
Thomas Wolle

Improved Approximation Algorithms for Relay Placement 356
Alon Efrat, Sándor P. Fekete, Poornananda R. Gaddehosur,
Joseph S.B. Mitchell, Valentin Polishchuk, and Jukka Suomela

Selfish Bin Packing . 368
Leah Epstein and Elena Kleiman

Improved Randomized Results for That Interval Selection Problem 381
Leah Epstein and Asaf Levin

Succinct Representations of Arbitrary Graphs . 393
Arash Farzan and J. Ian Munro

Edge Coloring and Decompositions of Weighted Graphs 405
Uriel Feige and Mohit Singh

The Complexity of Sorting with Networks of Stacks and Queues 417
Stefan Felsner and Martin Pergel

Faster Steiner Tree Computation in Polynomial-Space 430
Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch

Fitting a Step Function to a Point Set . 442
Hervé Fournier and Antoine Vigneron

Faster Swap Edge Computation in Minimum Diameter Spanning
Trees . 454

Beat Gfeller

The Partial Augment–Relabel Algorithm for the Maximum Flow
Problem . 466

Andrew V. Goldberg

An Optimal Dynamic Spanner for Doubling Metric Spaces 478
Lee-Ad Gottlieb and Liam Roditty

RFQ: Redemptive Fair Queuing . 490
Ajay Gulati and Peter Varman

Range Medians . 503
Sariel Har-Peled and S. Muthukrishnan

XVI Table of Contents

Locality and Bounding-Box Quality of Two-Dimensional Space-Filling
Curves . 515

Herman Haverkort and Freek van Walderveen

Probabilistic Analysis of Online Bin Coloring Algorithms Via Stochastic
Comparison . 528

Benjamin Hiller and Tjark Vredeveld

On the Complexity of Optimal Hotlink Assignment 540
Tobias Jacobs

Oblivious Randomized Direct Search for Real-Parameter
Optimization . 553

Jens Jägersküpper

Path Minima in Incremental Unrooted Trees . 565
Haim Kaplan and Nira Shafrir

Improved Competitive Performance Bounds for CIOQ Switches 577
Alex Kesselman, Kirill Kogan, and Michael Segal

Two-Stage Robust Network Design with Exponential Scenarios 589
Rohit Khandekar, Guy Kortsarz, Vahab Mirrokni, and
Mohammad R. Salavatipour

An Optimal Incremental Algorithm for Minimizing Lateness with
Rejection . 601

Samir Khuller and Julián Mestre

More Robust Hashing: Cuckoo Hashing with a Stash 611
Adam Kirsch, Michael Mitzenmacher, and Udi Wieder

Better and Simpler Approximation Algorithms for the Stable Marriage
Problem . 623

Zoltán Király

Edit Distances and Factorisations of Even Permutations 635
Anthony Labarre

Speed Scaling Functions for Flow Time Scheduling Based on Active
Job Count . 647

Tak-Wah Lam, Lap-Kei Lee, Isaac K.K. To, and
Prudence W.H. Wong

Facility Location in Dynamic Geometric Data Streams 660
Christiane Lammersen and Christian Sohler

The Effects of Local Randomness in the Adversarial Queueing Model . . . 672
Yann Lorion and Maik Weinard

Table of Contents XVII

Parallel Imaging Problem . 684
Thành Nguyen and Éva Tardos

An Online Algorithm for Finding the Longest Previous Factors 696
Daisuke Okanohara and Kunihiko Sadakane

Collusion-Resistant Mechanisms with Verification Yielding Optimal
Solutions . 708

Paolo Penna and Carmine Ventre

Improved BDD Algorithms for the Simulation of Quantum Circuits 720
Vasilis Samoladas

Mobile Route Planning . 732
Peter Sanders, Dominik Schultes, and Christian Vetter

How Reliable Are Practical Point-in-Polygon Strategies? 744
Stefan Schirra

Fast Divide-and-Conquer Algorithms for Preemptive Scheduling
Problems with Controllable Processing Times – A Polymatroid
Optimization Approach . 756

Natalia V. Shakhlevich, Akiyoshi Shioura, and Vitaly A. Strusevich

Approximability of Average Completion Time Scheduling on Unrelated
Machines . 768

René A. Sitters

Relative Convex Hulls in Semi-dynamic Subdivisions 780
Mashhood Ishaque and Csaba D. Tóth

An Experimental Analysis of Robinson-Foulds Distance Matrix
Algorithms . 793

Seung-Jin Sul and Tiffani L. Williams

On the Size of the 3D Visibility Skeleton: Experimental Results 805
Linqiao Zhang, Hazel Everett, Sylvain Lazard,
Christophe Weibel, and Sue Whitesides

An Almost Space-Optimal Streaming Algorithm for Coresets in Fixed
Dimensions . 817

Hamid Zarrabi-Zadeh

Deterministic Sampling Algorithms for Network Design 830
Anke van Zuylen

Author Index . 843

Flexible Path Planning Using Corridor Maps

Mark Overmars, Ioannis Karamouzas, and Roland Geraerts

Department of Information and Computing Sciences, Utrecht University
3508 TA Utrecht, the Netherlands

markov@cs.uu.nl

Abstract. Path planning is a central problem in virtual environments
and games. When computer-controlled characters move around in vir-
tual worlds they have to plan their paths to desired locations. These
paths must avoid collisions with the environment and with other moving
characters. Also a chosen path must be natural, meaning that it is the
kind of path a real human being could take. The algorithms for planning
such paths must be able to handle hundreds of characters in real-time
and must be flexible.

The Corridor Map Method (cmm) was recently introduced as a flexible
path planning method in interactive virtual environments and games.
The method is fast and flexible and the resulting paths are reasonable.
However, the paths tend to take unnatural turns when characters get
close to other characters or small obstacles. In this paper we will improve
on the cmm by decoupling collision avoidance with the environment and
local steering behavior. The result is a method that keeps the advantages
of the cmm but has much more natural steering. Also the method allows
for more flexibility in the desired routes of the characters.

1 Introduction

Virtual worlds are nowadays commonly used in computer games, simulations,
city models, and on-line communities like Second Life. Such worlds are often
populated by computer-controlled characters. The characters must move around
in the environment and need to plan their paths to desired locations. These paths
must avoid collisions with the environment and with other moving characters.
Also a chosen path must be natural, meaning that it is the kind of path a real
human being could take. The algorithms for planning such paths must be able
to handle hundreds of characters in real-time and must be flexible to e.g. avoid
local hazards or incorporate animation constraints.

The path planning or motion planning problem had received considerable at-
tention over the past twenty years and many algorithms have been devised to
tackle it. (See [1, 2] for an overview.) These algorithms were mainly developed
in the field of robotics, aiming at creating a path for one or a few robots hav-
ing many degrees of freedom. In virtual worlds the requirements though are
completely different. The environment is very complex and even though path
planning normally can be performed in the 2-dimensional footprint of the envi-
ronment, we still need to deal with thousands of polygons. We need to plan the

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 1–12, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 M. Overmars, I. Karamouzas, and R. Geraerts

(a) Corridor map (b) Backbone path (c) Resulting path

Fig. 1. The Corridor Map Method in action

motion of hundreds of characters in real-time using only a small percentage of
the cpu time. Per character only a (fraction of a) millisecond per second cpu

time may be spent on path planning. Also paths need not only be collision-free
but they must also be natural. On the positive side, we can represent the char-
acter as a disk, and, hence, have to deal with only two degrees of freedom of
movement.

In conclusion, virtual world applications require algorithms for path planning
that are fast, flexible, and generate natural paths. In practice, currently two
approaches are common. The first is to let designers script most of the motion, for
example using waypoints, and then using potential field approaches (see e.g. [3])
to avoid obstacles and other characters. Such an approach is only possible when
the virtual world is predefined by designers. It is also expensive because of the
manual work involved. In addition, the method is not very flexible. The potential
field approach has the risk of characters getting stuck in local minima and not
reaching their goals. Also, as can be seen from many (recent) games, it leads to
rather unnatural paths, in particular when waypoints get blocked.

The second common approach is the put a grid on the world and using searches
based on A* to create a path through the empty cells. See for example [4,
5]. This method is guaranteed to find a path if one exists. However, it lacks
flexibility because a single fixed path is returned. In addition, the paths tend
to be unnatural. Also, even though some optimization algorithms exist, when
the grids get large and the motion of many characters must be planned, the
approach can become too slow to be applied in real-time [6].

Recently, the Corridor Map Method (cmm) has been proposed as a new path
planning method in interactive virtual environments and games [7]. The method
is fast and flexible and the quality of resulting paths is reasonable. Globally
speaking the cmm works as follows (see Fig. 1 for an example). In a preprocess-
ing phase a roadmap of paths is computed for the static part of the environment.
Often the medial axis is used for this. With the roadmap, clearance information
is stored, defining collision-free corridors around the roadmap edges. This data
structure is called the corridor map. When a path planning query must be solved
a backbone path is extracted from the roadmap together with a collision-free cor-
ridor around it. We move an attraction point along the backbone path which

Flexible Path Planning Using Corridor Maps 3

attracts the character in such a way that no collisions occur with the environ-
ment. This leads the character toward the goal. Local motions are controlled by
potential fields inside a corridor, providing the desired flexibility.

Although the cmm is fast and flexible, the paths tend to take unnatural turns
when characters get close to other characters or small obstacles. In this paper
we will extend the cmm as follows. We separate the corridor map from the
so-called control network. The corridor map is defined as above. The control
network provides a roadmap of paths that can be used to lead the characters
to their goals. When a query must be solved a control path is extracted from
the control network. With the control path we find a corresponding corridor in
the corridor map. We again move an attraction point along the control path but
this is only used to lead the character to the goal. Separate forces are used to
keep the character inside the corridor. Again we use additional forces to steer
the character away from other characters, small obstacles and other hazards. As
we will show, separating the collision-avoiding forces in the corridor from the
attraction forces along the control path, leads to much more natural paths while
hardly increasing the computation time. We initially still use the medial axis
for the control network but we will also show how even more flexibility can be
obtained by using other control networks and paths.

This paper is organized as follows. In Section 2 we provide definitions of corri-
dors and corridor maps and show how such maps can be computed efficiently. In
Section 3 we briefly review the original approach for using corridors for path plan-
ning. In Section 4 we present our improved approach in which we use the medial
axis as a control network to obtain more natural paths. In section 5 we provide re-
sults from experiments that show that the resulting paths are considerably better
than those produced by the original cmm. In Section 6 we will indicate how the
approach can be extended using other control networks and control paths. Finally,
in Section 7 we provide some conclusions and plans for further research.

2 The Corridor Map

The corridor map is an efficient data structure representing the (walkable) free
space in the environment. It was introduced by Geraerts and Overmars [7] and we
will outline the most important aspects here. As the walkable space is normally
2-dimensional we will define the corridor map in the plane. The obstacles are
the footprints of the original 3-dimensional obstacles in the environment.

The corridor map is a graph whose edges represent collision-free corridors.
Such a corridor consists of a backbone path and a set of disks centered around
this path. More formally, a corridor B = (B[t], R[t]) is defined as a sequence
of maximum clearance disks with radii R[t] whose center points lie along its
backbone path B[t]. The parameter t is an index ranging between 0 and 1, and
B[t] denotes the coordinates of the center of the disk corresponding to index t.
Together, the backbone paths form the skeleton of the corridor map. See Fig.
2 for an example of a virtual city, its footprint, and the skeleton defining the
corridor map.

4 M. Overmars, I. Karamouzas, and R. Geraerts

(a) 3D model (b) Footprint and skeleton

Fig. 2. The McKenna mout training site at Fort Benning, Georgia, usa

We will use the corridors to provide the flexibility to handle a broad range
of path planning issues, such as avoiding other characters and computing nat-
ural paths. To approach these issues, we set the following requirements for the
corridor map. First, if a path exists in the free space then a corridor must exist
in the map that leads the character from its start to goal position. Second, the
map includes all cycles that are present in the environment. These cycles pro-
vide short global paths and alternative routes which allow for variation in the
characters’ routes. Third, corridors extracted from the map have a maximum
clearance. Such a corridor provides maximum local flexibility.

These requirements are met by using the Generalized Voronoi Diagram (gvd)
as skeleton for the corridor map [8]. A gvd is a decomposition of the free space
into regions such that all points p in a region R(p) are closer to a particular
obstacle than to any other obstacle in the environment. Such a region is called
a Voronoi region. The boundaries of the Voronoi regions form the skeleton (i.e.
the underlying graph) of the corridor map. We refer the reader to Fig. 2(b) for
an example. The boundaries are densely sampled and with each such sampled
point, we store the radius of the maximum clearance disk centered at this point.
A sequence of these disks forms the corridor.

A gvd can be computed efficiently by exploiting graphics hardware. Like
in [9], we compute a 3D distance mesh, consisting of polygons, for each geometric
obstacle present in the footprint of the environment. Each of the meshes is
rendered on the graphics card in a different color. A parallel projection of the
upper envelope of the arrangement of these meshes gives the gvd. The diagram
can be retrieved from the graphics card’s frame buffer and the clearance values
(i.e. distance values) can be found in the Z-buffer. These steps are visualized in
Fig. 3. The approach is very fast. For example, the corridor map in Fig. 2(b) was
computed in 0.05 seconds on a modern PC with a nvidia GeForce 8800 gtx

graphics card. Note that the computation of the corridor map happens only once
during preprocessing.

Flexible Path Planning Using Corridor Maps 5

(a) Environment (b) Frame buffer (c) Z-buffer (d) Corridor map

Fig. 3. Construction of the Corridor map using graphics hardware

3 The Original Corridor Map Method

In our original description [7], the corridor map is used as follows to answer
path planning queries. To plan a path for a character, which is modeled by a
disk with radius r, we first compute the shortest backbone path connecting the
start to the goal. After connecting the start and goal positions to the roadmap,
this backbone path is obtained by applying the A* shortest path algorithm on
the skeleton graph. The corresponding corridor is formed by concatenating the
corridors of the edges of the backbone path. See Fig. 1(b) for an example of a
backbone path.

The backbone path guides the global motions of the character. Its local mo-
tions are controlled by continuously applying one or more forces to the character.
The basic force steers the character toward the goal and keeps the character in-
side the corridor. For this purpose, we create an attraction point α(x) that runs
along the backbone path and attracts the character.

Definition 1 (Attraction point). Let x be the current position of the character
with radius r. The attraction point α(x) is the point B[t] on the backbone path
B having the largest time index t : t ∈ [0 : 1] such that Euclidean distance
(x,B[t]) < R[t] − r.

The character is attracted to the attraction point with force Fa. Let d be the
Euclidean distance between the character’s position x and the attraction point
α(x). Then

Fa(x) = f
α(x) − x

||α(x) − x|| ,where f =
1

R[t] − r − d
− 1
R[t] − r

.

The scalar f is chosen such that the force will be 0 when the character is po-
sitioned on the attraction point. In addition, f will be ∞ when the character
touches the boundary of the clearance disk. (However, f will never reach ∞ since
we require that the radii of the disks are strictly larger than r.)

Additional behavior can be incorporated by adding extra forces to Fa, re-
sulting in a force F. The final path is obtained by iteratively integrating F over
time while updating the velocity, position and attraction point of the character.
In [7], it is proved that the resulting path is smooth (i.e. C1-continuous). An
example of such a path is displayed in Fig. 1(c).

6 M. Overmars, I. Karamouzas, and R. Geraerts

4 The Improved Approach

In the previous section, we used a force function Fa which simultaneously steers
the character toward the goal and keeps it inside the corridor. This sometimes
results in rather unnatural motions, in particular when characters also have to
avoid each other. The cause for this is that due to the choice of the attraction
point, the position of the character lies close to the boundary of the clearance
disk, and, hence, the force Fa gets very large.

In this section we will show how to avoid this by decoupling Fa into two
forces. The boundary force Fb will push the character away from the boundary
of the corridor. The steering force Fs will guide the character toward the goal.
For the latter we again use an attraction point on a path to the goal. However
this path no longer needs to be the same as the backbone path of the corridor.
Hence, from now on we refer to this path as the control path.

To be able to compute the boundary force we need an explicit representation
of the boundary of the corridor.

4.1 Computing an Explicit Corridor Boundary Representation

Up to now we used an implicit description of a corridor, i.e. the corridor is
retrieved from the map as a sequence of disks. However, such a sequential repre-
sentation does not allow for easy/efficient computation of a closest point on the
boundary which is required for computing the boundary force. Hence, we need
an explicit description of the corridor’s boundary (see Fig. 4(c)).

We can obtain this description by adding information to the corridor map in
the preprocessing phase. For each sampled point on the skeleton we compute the
set of closest points to the obstacles. By exploiting graphics hardware, we can
efficiently compute these closest points. Let B be a sample point on the skeleton.
We determine the position of B in the frame buffer. Next we consider the colors

(a) Closest points stored in
the corridor map

(b) Closest points corre-
sponding to a corridor

(c) Explicit representation
of the corridor’s boundary

Fig. 4. Closest points to the obstacles. By concatenating the points with line segments
and circular arcs, we obtain an explicit representation of the corridor’s boundary.

Flexible Path Planning Using Corridor Maps 7

of the pixels neighboring B. These colors correspond to unique obstacles and the
closest points must lie on these obstacles. Computing these points can then be
achieved by simple geometric calculations.

Fig. 4(a) shows the corridor map and corresponding closest points of our running
example. Each sample point is linked to exactly two closest points, except for the
vertices of an edge because they have at least two (and at most four) closest points.

To obtain an explicit description of a corridor’s boundary, we need to know
for each point B which closest point is on the left side and which one is on the
right side with respect to the local orientation of the edge at B. This information
can easily be obtained by inspecting the location of the pixels in the frame buffer
relative to this orientation. An example of a corridor, together with its left and
right closest points, is displayed in Fig. 4(b).

From this information we can efficiently compute the closest boundary point
cp(x) to any point x in the corridor. First, the sample point B is retrieved whose
corresponding left (or right) boundary point is closest to point x. Then the
previous and next sample point are extracted along with their corresponding
boundary points. In case the three boundary points define a line segment on
the outline of the corridor, the closest boundary point cp(x) is computed using
simple linear algebra. Otherwise, cp(x) lies on an arc. Let a and b denote the
start and the end of the arc, respectively, and θ = arccos(a − B, x − B). Then
cp(x) = R(θ) (a−B) where R(θ) represents the 2D rotation matrix.

4.2 The Boundary Force

To ensure that the character remains inside the corridor, a repulsive force Fb

from the boundary of the corridor toward the character is applied. Since people
prefer to keep a safe distance from walls, streets, buildings, etc. [10, 11], such a
force is only exerted if the distance between the character and its corresponding
boundary point is below a threshold value. Let db be the Euclidean distance
between the character’s position x and its corresponding closest point cp(x) on
the boundary of the corridor. Let r be the radius of the character and let dsafe

denote the preferred safe distance. Then the force is defined as follows:

Fb =

⎧
⎪⎪⎨

⎪⎪⎩

cb
x− cp(x)
||x− cp(x)|| , if db − r < dsafe

0 otherwise.

The scalar cb =
dsafe + r − db

db
is chosen such that the force will become ∞

when the character and the boundary point touch. By modifying the safe distance
dsafe a wide variety of behaviors can be achieved. A typical value that is also
used in our experiments is to set dsafe = r.1

1 Note that the safe distance should be taken into account upon the extraction of a
corridor. i.e. R[t] > r + dsafe. Otherwise, the character will be continuously pushed
from the left to the right side of the corridor and vice versa (db will always be less
than r + dsafe and hence, a Fb will be exerted on the character at every time step).

8 M. Overmars, I. Karamouzas, and R. Geraerts

4.3 The Steering Force

The character should also feel the urge to move forward toward its goal position.
Thus, at every time step a steering force Fs is needed to guide the character at
position x toward an attraction point α(x). The force is defined as

Fs = cs
α(x) − x

||α(x) − x|| ,

where cs specifies the relative strength of the force. This scalar can remain fixed,
or it can vary depending on the distance between the character and the attraction
point, making the character speed up or slow down. In our experimental setting
we used cs = 1.

Having defined the forces that acted upon the character, we calculate its
new position by numerically integrating its acceleration and velocity. We use
an integration scheme that is quite stable and can deal with stiff differential
equations. In our simulations we used Verlet integration with step size Δt = 0.05
and set the maximum acceleration to 5m/s2 in order to keep the error minimal.

5 Experiments

We have implemented the new method to experimentally validate whether it can
generate paths that are smoother than the ones computed by the original cmm.
All the simulations were performed on a Pentium IV 2.4 GHz computer with
1GB memory.

The experiments were conducted for the environment depicted in Fig. 2. This
is a model of the McKenna mout (military operations in urban terrain) training
center, hosted at Fort Benning, Georgia, usa. Its corridor map, displayed in Fig.
2(b), was computed in 0.3 seconds (0.05s for the gvd and clearance, and 0.25s
for the closest points).

In all of the experiments we used the medial axis as the control network of the
new method and defined the attraction points as in the original cmm. Therefore,
the two approaches were only differentiated by the forces used to generate the
character’s motion inside the corridor. In the original cmm the attraction force
Fa makes the character both move forward and stay inside the corridor, whereas
in the new approach the two forces (Fs + Fb) are used to guide the character
through the corridor.

To evaluate the quality of the paths when avoiding other characters we popu-
lated the environment with a number of static characters (obstacles). We chose
static characters because this makes it easier to compare the results. To avoid
the static characters, an additional collision response force has to be applied
on the character. Thus, both of the methods were enhanced with a simple ob-
stacle avoidance model [7]. At every iteration a repulsive force is exerted from
each obstacle Oi : i ∈ [1 : n] that lies inside the clearance disk corresponding to
the attraction point α(x) of the character. This force is monotonically decreasing

Flexible Path Planning Using Corridor Maps 9

(a) Path generated by the original
cmm.

(b) Path generated by the revised
method.

Fig. 5. Comparing the paths generated by the original and the revised cmm

with the Euclidean distance di between the obstacle Oi and the character’s
position x. Given the radius r of the character and the radius ri of each obstacle,
the total repulsive force Fobs can be computed as

Fobs =
n∑

i=1

cobs
x− Oi

||x− Oi||
, where cobs =

1
di − ri − r

.

5.1 Results

Fig. 5 shows the paths created by the two methods for an example query (r =
0.75, ri = 1). It must be pointed out that some of the artifacts in the resulting
paths are due to the simple obstacle avoidance method that was used. A more
sophisticated approach would have improved the quality of the paths. However,
our goal was to evaluate the two methods regardless of any specific details.

To quantitatively describe the quality of the resulting motions we measured
the length as well as the average curvature of the paths. Given any three suc-
cessive points on a path we approximated the curvature at the middle point as
κ = 1/ρ, where ρ is the radius of the circumscribing circle that passes through
each of these three points. By taking the average over all points we were able to
detect poor and irregular paths.

Table 1 shows the corresponding statistics for the two paths. As it can be
inferred both by the table and Fig. 5(a), the original cmm generates a longer
and more erratic path (high-curvature). Due to the way the attraction point
is defined (furthest advanced point for which the character is still enclosed by
the clearance disk), at every integration step the character lies very close to
the boundary of the disk. Thus, an almost infinite attraction force steers the
character, rendering impossible to exhibit smooth motions when other obstacles
and/or entities are present in the environment. The character has to be very

10 M. Overmars, I. Karamouzas, and R. Geraerts

Table 1. Curvature and path length statistics for the example query, shown in Fig. 5

Compared Methods

Original CMM Improved Method

Path Length 155.12 150.61

Avg. Curvature 0.27 0.13

close to an obstacle to avoid it, and only at the very last moment, it changes its
direction (i.e. when the repulsive force from the obstacle becomes very strong).
Hence, the resulting motion is far from realistic.

The revised method handles the obstacles more naturally, generating a
smoother path (i.e. the path is shorter with less curvature). As it can be ob-
served in Fig. 5(b) the oscillations noted in the original method are reduced.
The character is more “relaxed”, in the sense that it is not pulled toward the
attraction point with an infinite force. Therefore, if an obstacle is encountered
the character will start evading soon enough, ensuring a more realistic behavior.

Other queries in the same and other scenes led to similar results. The per-
formance of the two methods was similar (i.e. computing the closest boundary
points and decoupling the attraction force into two separate forces influenced
the running time marginally). Hence, we can conclude that the revised approach
has clear advantages over the original cmm. It is more flexible, it provides better
control over the character’s motion and consequently leads to more believable
paths.

Clearly, the quality of the resulting paths can be further improved by varying
the parameters of the revised model and by using a more elaborate approach
for collisions avoidance, like Helbing’s social force model [12]. For example, more
convincing paths can be obtained, as displayed in Fig. 6, as follows. We can
increase the safe distance that the character keeps from the boundary of the
corridor (dsafe = 2r). In addition, we can apply a repulsive force only for obstacles
that are perceived within the character’s desired direction of motion.

6 Using Alternative Control Paths

Up to now we have used the medial axis as the control network. This works fine in
environments in which there are no wide open spaces. However, it will encourage
the characters to stay in the middle of the corridors which can be unnatural. So
in practice one might want to use alternative control networks and control paths.
Such control networks could be indicated manually by a designer to encourage
certain character behavior. Also they could be computed automatically based
on required behavior. For example we could use the Voronoi-Visibility diagram
as introduced in [13] that allows for shortcuts when there is enough clearance.
Alternatively we can determine control paths during queries based on perceived
danger or interesting places that characters like to visit.

Flexible Path Planning Using Corridor Maps 11

Fig. 6. An alternative path is obtained by increasing the safe distance from the bound-
ary of the corridor

Using alternative control paths is possible but leads to a number of complica-
tions. First of all, given such a control path we need to compute the correspond-
ing corridor. The easiest way to achieve this is to retract the control path onto
the medial axis [14]. Using the boundary representation described in Section 4
this can be done efficiently.

Secondly, we need a method to choose the location of the attraction point
on the control path. The method described above, in which we pick the furthest
point along the control path for which the character still lies within the clearance
disk, will not be suited anymore when the control path passes close to obstacles.
Different options are possible here. We can use an attraction point that moves
with constant speed (as long as the character does not lag too far behind). We
can also use an attraction point at a particular distance from the character
(that can vary over the control path and will determine how closely the control
path must be followed). Or we can pick the attraction point based on visibility,
although such calculations are relatively expensive. In a future paper we will
explore these possibilities further.

7 Conclusions

In this paper we have presented an improved version of the Corridor Map
Method. The method can be used to plan in real time natural paths for a large
number of characters in complicated environments. It is relatively easy to imple-
ment and is flexible enough to incorporate many additional constraints on the
resulting paths.

We are currently investigating the effect of using alternative control paths on
the behavior of the characters. Also we are studying improved local force models
that create even better paths in environments with many moving characters. We
also want to incorporate the notions of dangerous and interesting regions and we

12 M. Overmars, I. Karamouzas, and R. Geraerts

want to incorporate small groups of moving characters that stick together. This
all should lead to very efficient and high-quality path planning for individuals,
groups and whole crowds of computer-controlled characters.

Acknowledgments

This research has been supported by the gate project, funded by the Nether-
lands Organization for Scientific Research (nwo) and the Netherlands ict Re-
search and Innovation Authority (ict Regie). In addition, part of this research
has been funded by the Dutch bsik/bricks project.

References

1. Latombe, J.C.: Robot Motion Planning. Kluwer, Dordrecht (1991)
2. LaValle, S.: Planning Algorithms (2006), http://planning.cs.uiuc.edu
3. Rimon, E., Koditschek, D.: Exact robot navigation using artificial potential fields.

IEEE Transactions on Robotics and Automation 8, 501–518 (1992)
4. DeLoura, M.: Game Programming Gems 1. Charles River Media, Inc. (2000)
5. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall,

Englewood Cliffs (1994)
6. Geraerts, R., Overmars, M.: Creating high-quality paths for motion planning. In-

ternational Journal of Robotics Research 26, 845–863 (2007)
7. Geraerts, R., Overmars, M.: The corridor map method: A general framework for

real-time high-quality path planning. Computer Animation and Virtual Worlds 18,
107–119 (2007)

8. Geraerts, R., Overmars, M.: Enhancing corridor maps for real-time path planning
in virtual environments. In: Computer Animation and Social Agents (2008)

9. Hoff, K., Culver, T., Keyser, J., Lin, M., Manocha, D.: Fast computation of gener-
alized voronoi diagrams using graphics hardware. In: International Conference on
Computer Graphics and Interactive Techniques, pp. 277–286 (1999)

10. Stucki, P.: Obstacles in pedestrian simulations. Master’s thesis, Swiss Federal In-
stitute of Technology ETH (September 2003)

11. Transportation Research Board, National Research Council Washington, D.C:
Highway Capacity Manual (2000)

12. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Physical Re-
view 51, 4282–4287 (1995)

13. Wein, R., Berg, J., Halperin, D.: The Visibility-Voronoi complex and its applica-
tions. In: Annual Symposium on Computational Geometry, pp. 63–72 (2005)

14. Ó’Dúnlaing, C., Sharir, M., Yap, C.: Retraction: A new approach to motion plan-
ning. In: ACM Symposium on Theory of Computing, pp. 207–220 (1983)

http://planning.cs.uiuc.edu

A Bridging Model for Multi-core Computing�

Leslie G. Valiant

School of Engineering and Applied Sciences
Harvard University

valiant@seas.harvard.edu

Abstract. We propose a bridging model aimed at capturing the most
basic resource parameters of multi-core architectures. We suggest that
the considerable intellectual effort needed for designing efficient algo-
rithms for such architectures may be most fruitfully pursued as an effort
in designing portable algorithms for such a bridging model. Portable al-
gorithms would contain efficient designs for all reasonable ranges of the
basic resource parameters and input sizes, and would form the basis for
implementation or compilation for particular machines.

1 Introduction

The designer of parallel algorithms for multi-core computers has to face at least
four sources of considerable challenge. First, the underlying computational sub-
strate is much more intricate than it is for conventional sequential computing and
hence the design effort is much more onerous. Second, the resulting algorithms
have to compete with and outperform existing sequential algorithms that are
often much better understood and highly optimized. Third, the ultimate reward
of all this effort is limited, at best a speedup of a constant factor, the number
of processors. Fourth, machines differ, and speedups obtained for one machine
may not translate to speedups on others, so that all the design effort may be
substantially wasted. For all these reasons it is problematic how or whether effi-
cient parallel algorithms will be created and exploited in the foreseeable future,
in spite of the many relevant algorithmic discoveries that have been made by
researchers over the last several decades.

We have argued previously that the general problem of parallel computing
should be approached via two notions [13, 28]. First, it needs to be recognized
as a primary goal to write portable parallel algorithms those that are parameter-
aware and designed to run efficiently on machines with the widest range of
performance parameters. Second, such portable algorithms have to be supported
by a bridging model, one that bridges in a performance-faithful manner what
the hardware executes and what is in the minds of the software writer. It is
this bridging model that defines the necessary performance parameters for the
parameter-aware software.

The originally proposed bridging model was the BSP model [28]. Its main
features are that: (i) it is a computational model, (ii) it incorporates numerical
� This work was supported in part by NSF-CCF-04-27129.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 13–28, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

14 L.G. Valiant

parameters that reflect ultimate physical constraints, and (iii) it has as its non-
local primitive barrier synchronization which is powerful and relatively easy to
realize.

In this paper we introduce the Multi-BSP model which extends BSP in two
ways. First, it is a hierarchical model with an arbitrary number of levels that
recognizes the physical realities of multiple memory and cache levels in single
chips, as well as in multi-chip architectures constructed from these. The aim is
to model all levels of an architecture together. An algorithm that is aware of the
relevant parameters at only some of the levels will not be portable in any useful
sense. Second, at each level, Multi-BSP incorporates memory size as a further
parameter. After all, it is the physical limitation on the amount of memory that
can be accessed in a fixed amount of time that creates the need for multiple
levels.

The Multi-BSP model for depth d will be specified by 4d numerical parameters
(p1, g1, L1,m1)(p2, g2, L2,m2)(p3, g3, L3,m3) · · · (pd, gd, Ld,md). It is a depth d
tree with memories/caches at the internal nodes and processors at the leaves.
At each level the four parameters quantify, respectively, the number of subcom-
ponents, the bandwidth, the synchronization cost, and the memory/cache size.

It may be thought that proliferating numerical parameters only further ex-
ponentiates the difficulty of designing parallel algorithms. The main observation
of this paper is that this is not necessarily the case. In particular we show, by
means mostly of well-known ideas, that for problems such as matrix multipli-
cation, fast Fourier transform and sorting, for which optimal algorithms can be
written with the few parameters of the standard BSP model, the same holds also
for an arbitrary number of levels. Our purpose is to persuade that it is feasible
and beneficial to write down the best algorithmic ideas we have in a standard-
ized form that will be compilable to run efficiently on arbitrary machines and
guaranteed to be optimal in a specifiable sense .

In order to elucidate this striking phenomenon, we shall define a parameter-
free notion of an optimal Multi-BSP algorithm with respect to a given algorithm
A to mean the following: (i) It is optimal in computation steps to within additive
lower order terms, (ii) it is optimal in total communication costs to constant mul-
tiplicative factors among distributed (even non-Multi-BSP) algorithms, and (iii)
it is optimal in synchronization costs to within constant multiplicative factors
among Multi-BSP algorithms. Insisting on optimality to a factor of 1 in one of
the measures is significant and distinguishes this work from much of the parallel
algorithms literature. We also note that the multiplicative factors in the other
two measures will be independent of the p, g, L and m parameters, but may
depend on d. Of course, specifying particular constant multipliers for all three
measures would give even stricter notions of optimality, and would be needed
when designing actual portable algorithms.

There have existed several previous models that have substantial commonality
with Multi-BSP. Using memory size as a fourth BSP parameter was proposed
and investigated by Tiskin [27] and by McColl and Tiskin [22]. In a different
direction a variety of hierarchical versions of BSP have been proposed such as

A Bridging Model for Multi-core Computing 15

the D-BSP of de la Torre and Kruskal [9], which has been further investigated
by Bilardi et al. [5, 6]. The D-BSP captures hierarchies in communication while
Multi-BSP seeks also to capture hierarchies in the cache/memory system. In [6]
a cache-oblivious [10] result is proved in this network hierarchical context that,
like our analyses, allows for arbitrary parameters at each level.

In a different direction, numerous models have been proposed for studying
varieties of memory or cache hierarchies both in the sequential [1] and in the
parallel [30] contexts. In Alpern et al. [3] a tree structure of memories akin to
ours is defined. For such hierarchical models in both the sequential and paral-
lel contexts authors have generally taken some uniform cost view of the various
levels, rather than analyzing the effect of arbitrary parameters at each level. Sav-
age [24] has analyzed the communication requirements of a hierarchical memory
model, with arbitrary parameters at each level, using a generalization of the
Hong-Kung [17] pebble model. Very recently, also motivated by multi-core ma-
chines, multi-level cache models have been proposed and analyzed by Blelloch
et al. [7], Chowdhury and Ramachandran [8], and Arge et al., [4]. The analyses
published for these have been for two levels with arbitrary parameters.

In comparison with the previous literature we emphasize that our goal is that
of finding a bridging model that isolates the most fundamental and unevadable
issues of multi-core computing and allows them to be usefully studied in some
detail. The Multi-BSP model reflects the view that fundamentally there are just
two unevadable sources of increasing cost that the physical world imposes at
increasing distances: (i) a cost g for bandwidth, and (ii) a cost L related to la-
tency that must be charged for synchronization and for messages that are too
short. The model is a comprehensive model of computation in that it has mech-
anisms for synchronization as well as for computation and communication. The
suggestion is that these unevadable costs already capture enough complications
that we would be best advised to understand algorithmic issues in this bridg-
ing framework first. Designing algorithms for more detailed performance models
that reflect further details of particular architectures may be regarded as further
refinements.

There are of course several issues relevant to multi-core computing that we do
not explore here. One is the use of multi-core for executing independent tasks,
or code automatically compiled from sequential code, or code compiled from
languages in which parallelism is expressed but not scheduled. This paper is
predicated on the idea that there will be a demand for exploiting multi-core ar-
chitectures beyond what is possible by these means. Another issue not discussed
here is the role of non-homogeneous cores [16, 21].

The main commonality between the previous literature and our algorithmic re-
sults is the observation that certain recursive algorithms are well suited to models
with multiple parameters. We push this observation further by allowing an arbi-
trary number of arbitrary parameter. One can paraphrase our main point as one
that asserts that for computational problems for which parallelism is understand-
able, it is sometimes the case that it is embarrassingly understandable. However,
even for these, programming them to be efficient for all input sizes for even one

16 L.G. Valiant

machine is an onerous task. Our suggestion is that with the use of a bridging model
it may be possible for these and other problems to make one big effort once and
for all to write a program that is efficient for all inputs and all machines.

2 The Multi-BSP Model

To define an instance of Multi-BSP we fix d the depth or number of levels, and 4d
further parameters (p1, g1, L1,m1)(p2, g2, L2,m2)(p3, g3, L3,m3) · · · , (pd, gd,
Ld,md). At the ith level there are a number of components specified by the pa-
rameters (pi, gi, Li,mi) and each containing a number of i−1st level components,
where:

(i) pi is the number of i− 1st level components inside an ith level component.
If i = 1 then p1 is the number of raw processors in this lowest level component.
One computational step of a raw processor on data in level 1 memory is taken
as one basic unit of time.

(ii) gi, the communication bandwidth parameter, is the ratio of the number
of operations that a raw processor can do in a second, to the number of words
that can be transmitted in a second between an ith level component and the
memory of the i+ 1st level component of which it is a part. A word here is the
amount of data on which a raw processor operation is performed. Note that we
shall assume here that the level 1 memories can keep up with the raw processors,
or in other words that g0 if it were defined would have value 1.

(iii) A level i superstep is a construct within a level i component that allows
each of its pi level i − 1 components to execute independently until they reach
a barrier. When all pi of them have reached the barrier all its pi level i −
1 components can exchange information with the mi memory of the level i
component. The next level i superstep can then start. Li is the cost charged for
this barrier synchronization for a level i superstep. (In this paper we use L1 = 0,
since the subcomponents of a level 1 component have no memories and directly
read from and write to the level 1 memory.)

(iv) mi is the number of words of memory and caches inside an ith level
component that is not inside any i− 1st level component.

Finally we have to specify the nature of the communication between a level
i and the level i + 1 component of which it is a part. The question is whether
concurrent reading or writing (or some other combining operation) is allowed in
either direction. The algorithms in this paper are all exclusive read and exclu-
sive write (EREW), while the lower bounds hold for the strongest concurrent
(CRCW) version.

We note that the parameters of the model imply values for certain other useful
measures. The number of raw processors in a level i component will be Pi =
p1 · · · pi. The number of level i components in a level j component will be Qi,j =
pi+1 · · · pj , and the number in the whole system will be Qi,d = Qi = pi+1 · · · pd.
The total memory in a level i component will be Mi = mi+pimi−1+pi−1pimi−2+
· · ·+p2 · · · pi−1pim1. The gap or bandwith parameter that characterizes the cost
of communication from level 1 to outside level i is Gi = gi +gi−1+gi−2+ · · ·+g1.

A Bridging Model for Multi-core Computing 17

Since the intention is to model the entire system, defining as many levels as
necessary, we assume by convention that Qd = 1 and that gd is infinite. The
latter condition reflects the fact that there is no communication analysed off
the level d components. For the same reason it is assumed that for any problem
instance of size n and an algorithm for it, the level d memory is sufficient to
support the computation, and certainly md ≥ n. In the applications in this
paper md = O(n) is sufficient.

We make the assumption that for all i

mi ≥ mi−1 (1)

in order to simplify certain analyses. Also, we sometimes invoke the assumption
that for for some constant c > 0

mi ≥ cMi (2)

which is true with c = 1/d for conventional caches where any word at one level
has copies at every higher level. We note that in the treatment here we do not
otherwise distinguish between memory and caches.

As far as relationships to other models we note that the depth d = 1 Multi-
BSP with (p1 ≥ 1, g1 = 1, L1 = 0,m1) is the PRAM [11, 20] model. Of course,
(p1 = 1, g1 = 1, L1 = 0,m1) is the von Neumann model. The BSP model [26]
with parameters (p, g, L) where the basic unit has memory m corresponds to
d = 2 with (p1 = 1, g1 = g, L1 = 0,m1 = m)(p2 = p, g2 = ∞, L2 = L,m2). The
difference is that in the basic BSP model communication is allowed horizontally
between units at the same level, while in Multi-BSP such communication would
need to be simulated via memory at a higher level. This (p1 = 1, g1 = g, L1 =
0,m1 = m)(p2 = p, g2 = ∞, L2 = L,m2) corresponds precisely to the BSPRAM
model of Tiskin [27].

In general, in expressing resource bounds F1, F2 in terms of the parameters
{pi, gi, Li,mi|1 ≤ i ≤ d} and the input size n, we shall define F1 � F2 to mean
that for all ε > 0, F1 < (1 + ε)F2 for all sufficiently large values of n and of m =
min{mi|1 ≤ i ≤ d}. This enables expressions such as (1 + 1/mi), (1 + 1/m1/2

i)
or (1 + 1/ logmi) to be approximately upper bounded by 1.

Also, we define F1 �d F2 to mean that for some constant cd depending possibly
on d but on none of the parameters {pi, gi, Li,mi|1 ≤ i ≤ d} or n, F1 < cdF2 for
all sufficiently large values of n and m.

Because we can suppress constant multipliers with these notations, in the
discussion where appropriate we shall assume that the various parameters are
appropriate multiples of each other, and sometimes write mj , for example, for
some fixed multiple of itself.

For a Multi-BSP algorithm A∗ we shall define Comp(A∗), Comm(A∗), and
Synch(A∗) to be the parallel costs of computation, computation, and synchro-
nization respectively on a Multi-BSP machine H in the sense that for any com-
putation of A∗ on H and along any single critical path in it, at most Comp(A∗)
raw processor steps have been executed and at most Comm(A∗) communication
charge and at most Synch(A∗) synchronization charge has been incurred. (For

18 L.G. Valiant

randomized algorithms the same claim holds with high probability.) Note that
all three charges are expressed in terms of the basic unit of time taken by a raw
processor to perform one operation.

To quantify the efficiency of A∗ we specify a baseline algorithm A of which
A∗ is the Multi-BSP implementation and for that:

(i) Comp(A) is the total number of computational operations of A divided by
Pd the total number of raw processors in H .
(ii) Comm(A) is the minimal communication cost on any distributed implemen-
tation of A with the Mi and pi parameters of H . Thus it certainly lower bounds
the best Multi-BSP algorithm on H .
(iii) Synch(A) is the minimal synchronization cost of any Multi-BSP implemen-
tation of A on H .

A Multi-BSP algorithm A∗ is optimal with respect to algorithm A if
(i) Comp(A∗) � Comp(A),
(ii) Comm(A∗) �d Comm(A), and
(iii) Synch(A∗) �d Synch(A).

Allowing at each level some efficiency loss in communication and synchroniza-
tion is tolerable for problems for which computational costs dominate asymptot-
ically. It frees the analysis of several concerns, such as whether the input size is
exactly of the right form, such as being an exact multiple of the memory sizes.
Analogous to the role of the polynomial time criterion in sequential comput-
ing, we believe that freeing the algorithm designer from the tedium of certain
well-chosen optimality criteria will encourage the development of practical al-
gorithms. In this instance we permit a constant factor inefficiency at each level
in the communication and synchronization, but not in computation. In all three
measures additive lower order terms that have a vanishing relative contribution
as the input size n and m = min{mi|1 ≤ i ≤ d} grow, are also allowed.

It has been amply demonstrated that the performance of one level parallel
machines can be well modeled by appropriate BSP parameters [14, 15]. The ar-
chitecture of multi-core machines is still evolving. The most appropriate way of
modeling them by Multi-BSP parameters is yet to be determined. Of course, we
can read off some approximations to these parameters from technical specifica-
tions of existing architectures. For example, consider a parallel machine consist-
ing of p Sun Niagara UltraSparc T1 multi-core chips connected to an external
storage device that is large enough to store the input to the problem at hand.
Then the parameters of the chip according to one interpretation of the specifica-
tions and modulo the serious qualifications listed below, would be the following:

Level 1: 1 core has 1 processor with 4 threads plus L1 cache: (p1 = 4, g1 =
1, L∗

1 = 3,m1 = 8kB).
Level 2: 1 chip has 8 cores plus L2 cache: (p2 = 8, g2 = 3, L∗

2 = 23,m2 =
3MB).

Level 3: p multi-core chips with external memory m3 accessible via a network
accessible at rate g2 : (p3 = p, g3 = ∞, L∗

3 = 108,m3 ≤ 128GB).

A Bridging Model for Multi-core Computing 19

Now the qualifications include the following: First, the L∗-parameters listed
are certain latency parameters given in the chip specifications, rather than the
cost of a synchronization which is needed in the BSP interpretation. Second, the
caches on the chip are caches with certain cache protocols, rather than memories
where addressing is fully controlled. Third, in the actual chip the lowest level
processors run four threads sharing a processor, and groups of processors share a
common arithmetic unit. Hence, while the relative values shown of the various g
values and the various L∗ values are meaningful, their absolute values are harder
to pin down.

We note, however, that while we advocate that the proposed bridging model
be faithful to physical realities in terms of numerical parameters, we also be-
lieve that there is room for architects to design systems that are faithful to the
bridging model. For example, if it turns out that the Multi-BSP model is a good
vehicle for the design of parallel algorithms then it would seem reasonable that
architectures should reflect it, by efficiently supporting the associated synchro-
nization operation as well as by allowing more explicit control of the caches.

3 Work-Limited Algorithms

Our proofs of optimality for communication and synchronization all derive from
lower bounds on the number of communication steps required in distributed
algorithms and are direct applications of previous work, particularly of Hong
and Kung [17], Aggarwal and Vitter [2], and Irony, Toledo and Tiskin [18].

Defn. An algorithm A is w(m)-limited if when the algorithm execution is par-
titioned into disjoint sequences S1, ..., St of operations each sequence Si using at
most m words of memory for reading and writing, each sequence Si consists of
no more than w(m) operations.

Note that such a memory limitation to m words imposes the twin constraints
that at most m words can be used as data by the algorithm fragment, and at
most m words can be used to pass values computed in this fragment to later
computation steps.

We first consider associative composition AC(n): Here, given a linear array A
of n elements, an associative binary operation ⊗ on these elements, and disjoint
contiguous sublists of A, the object is to compute the composition of each sublist
under ⊗ in some order.

Proposition 1. For any n and m, any algorithm with minimum total operations
for associative composition AC(n) is (m− 1)-limited.

Proof. On sublists of total lengthm at mostm−1 operations can be performed.�

Next we consider the problem MM(n× n) of multiplying two n× n matrices by
the standard algorithm, where the additions can be performed in any order.

Proposition 2. For any n and m, the standard matrix multiplication algorithm
MM(n× n) is O(m3/2)-limited.

20 L.G. Valiant

Proof. This is proved by Irony, Toledo and Tiskin[18] and follows a closely
related result of Hong and Kung [17]. �

Next we consider FFT(n) the standard algorithm for computing the one-
dimensional Fast Fourier transform on n points.

Proposition 3. For any n and m, the standard fast Fourier transform algorithm
FFT(n) is O(m logm)-limited.

Proof. This has been shown by Hong and Kung [17] and by Aggarwal and
Vitter[2]. �

Finally we shall consider Sort(n) the problem of sorting where the only operation
allowed that is dependent on the elements to be sorted is pairwise comparison,
and these are the only operations counted.

4 General Lower Bounds

Our lower bound results we derive using the approach of Irony, Toledo and Tiskin
[18]. The communication bounds will be stated for Multi-BSP but, except for
sorting, the lower bound arguments hold more generally for all distributed algo-
rithms with the same hierarchy of memory sizes and costs of communication. In
other words, they hold even if communication happens at arbitrary times.

Lemma 1. Suppose W computational steps are to be performed of a w(m)-limited
algorithm on a Multi-BSP machine. Then the total number of words transmitted
between level j components and the level j + 1 components to which they belong
is at least

Mj(W/w(2Mj) −Qj), (3)

and the total number of component supersteps at least

W/w(Mj). (4)

Proof. The lower bound we argue for any distributed algorithm, even if the
data exchanges are regarded as going at arbitrary times rather than bulk syn-
chronized. For each level j component divide the computation into phases, where
each phase ends when the total number of messages sent to or received from level
j + 1 reaches Mj. In each phase therefore at most 2Mj words are available, in-
cluding those residing in memory before the start of the phase. Then at most
w(2Mj) operations can be performed by each phase. It follows that the total
number of such component phases is at least W/w(2Mj). Further, each of these
phases must complete and involve a movement of Mj data except possibly the
last phase for each component. Hence the total amount of data movement be-
tween level j and level j + 1 is at least as claimed in (3).

A Bridging Model for Multi-core Computing 21

By the same argument, since in component supersteps at most w(Mj) steps
can be performed, at least W/w(Mj) component supersteps are needed, which
gives (4). �
Theorem 1. Suppose W(n) operations are to be performed of a w(m)-limited al-
gorithm A on input size n on a depth d Multi-BSP machine. Then the bandwidth
cost over the whole machine is at least

Comm(n, d) �d

∑

i=1··d−1

(W (n)/(Qiw(2Mi)) − 1)Migi (5)

and the synchronization cost at least

Synch(n, d) �d

∑

i=1··d−1

W (n)Li+1/(Qiw(Mi)) (6)

Proof. This follows from Lemma 1 by adding the costs over all the levels. Con-
sider the Q1 paths from the level 1 components to the level d component in the
tree hierarchy as potential critical paths of the executions. The average load on
these, and hence the worst case also, is as claimed in (5) and (6). �
Corollary 1

AC-Comm(n, d) �d

∑

i=1··d−1

(n/(MiQi) − 1)Migi (7)

AC-Synch(n, d) �d

∑

i=1··d−1

nLi+1/(QiMi) (8)

MM-Comm(n× n, d) �d

∑

i=1··d−1

(n3/(QiM
3/2
i) − 1)Migi (9)

MM-Synch(n× n, d) �d

∑

i=1··d−1

n3Li+1/(QiM
3/2
i) (10)

FFT-Comm(n, d) �d

∑

i=1··d−1

(n log(n)/(QiMi logMi) − 1)Migi (11)

FFT-Synch(n, d) �d

∑

i=1··d−1

n log(n)Li+1/(QiMi logMi) (12)

Sort-Comm(n, d) �d

∑

i=1··d−1

(n log(n)/(QiMi logMi) − 1)Migi (13)

Sort-Synch(n, d) �d

∑

i=1··d−1

n log(n)Li+1/(QiMi logMi) (14)

Proof. Applying Theorem 1 directly gives the first six inequalities. The bounds
for sorting follow from an adversarial argument in the style of [2]. �

22 L.G. Valiant

5 Optimal Algorithms

We shall describe algorithms that at every level j component will execute super-
steps that perform Ωd(w(mj)) computational operations on the average, where
Ωd denotes that the multiplicative constant in the lower bound can depend on d
but on none of the other parameters. This is optimal up to constant factors for
communication, even over algorithms that are not constrained to be Multi-BSP,
under assumption (2) which allows us to replace Mj by mj in lower bounds.
They will also be optimal up to constant factors for synchronization among
Multi-BSP algorithms, since they communicate as infrequently as possible, only
when communication is unavoidable.

In describing algorithms we shall use the term level j (global) superstep to
refer to all the Qj level j components executing a superstep in parallel (but not
necessarily simultaneously.) A level j component superstep will refer to what a
single level j component performs in a level j superstep.

For each of the algorithms described below it is easy to verify that the condi-
tion Comp(A∗) � Comp(A) of optimality is satisfied, and we shall not comment
on this further.

5.1 Associative Composition

For AC(n) consider the recursive process where each level j component contains
contiguous sequences of total length mj , distributes the task of performing the
required compositions of subsequences of length mj−1 of those sequences to its pj

subcomponents, and when it receives the results back it performs up to mj/mj−1

further pairwise ⊗ operations recursively.
The costs of the recursion at one level j component can be divided into (i)

the data movement steps between the level j component and its level j − 1
components, and (ii) the recursive computation of the mj/mj−1 further pairwise
⊗ operations. For (i) since at most mj/mj−1 times in the overall computation a
level j − 1 memory has to be filled with information from level j (and one word
returned), the cost of communication at this level is at most

(mj/(pjmj−1))(mj−1 + 1)gj−1 � mjgj−1/pj

and the total cost of synchronization at most

� mjLj/(pjmj−1)

For (ii) we observe that the cost corresponds to the original problem for a
level j superstep component, but for input length mj/mj−1 rather than mj . In
other words its costs are AC-Comp(mj/mj−1, j), AC-Comm(mj/mj−1, j) and
AC-Synch(mj/mj−1, j). Hence,

AC-Comm(mj, j)
� mjgj−1/pj+(mj/(pjmj−1))AC-Comm(mj−1, j−1)+AC-Comm(mj/mj−1,j)

A Bridging Model for Multi-core Computing 23

and

AC-Synch(mj, j) � mjLj/(pjmj−1)+(mj/(pjmj−1))AC-Synch(mj−1, j − 1)+
AC-Synch(mj/mj−1,j)

Expanding the first gives

AC-Comm(mj, j)
�(mjgj−1/pj+(mj/(pjmj−1))AC-Comm(mj−1, j−1))(1+1/mj−1+1/m2

j−1 · · ·)
�d (mjgj−1/pj + (mj/(pjmj−1))AC-Comm(mj−1, j − 1)).

Since we can equate the input size n with md, it follows by induction on j that

AC-Comm(n, d) �d

∑

i=1··d−1

ngi/Qi. (15)

Expanding the second recurrence gives in exactly the same way

AC-Synch(n, d) �d

∑

i=1··d−1

nLi+1/(Qimi). (16)

5.2 Matrix Multiplication

For matrix multiplication w(m) = O(m3/2) and in a level j superstep it is
optimal to within constant factors to do w(3m) operations per component having
total memory 3m, by inputting an m1/2 ×m1/2 submatrix of each of A and B,
computing the products of these submatrices, and outputting the m sums as
contributions to each of m entries in the appropriate m1/2 ×m1/2 submatrix of
C = AB.

Hence at level 1 a component superstep consists of an m
1/2
1 × m

1/2
1 ma-

trix multiplication. Overall one will need n3/m
3/2
1 such executions, and hence

n3/(Q1m
3/2
1) level 1 component supersteps where Q1 is the total number of level

1 processors.
In general, a level j component superstep consists (within multiplicative con-

stant factors) of an m
1/2
j × m

1/2
j matrix multiplication. Overall one will need

n3/m
3/2
j such component supersteps, and hence n3/(Qjm

3/2
j) global supersteps.

In a level j local superstep there will be m3/2
j /(m3/2

j−1) level j-1 local super-

steps of m1/2
j−1 ×m

1/2
j−1 matrix multiplications. In addition we will charge to this

level the further mj(m1/2
j /m

1/2
j−1) = m

3/2
j /m

1/2
j−1 additions needed to combine the

results from the level j − 1 local supersteps. For the latter operations we will
use m

1/2
j /m

1/2
j−1 successive Associative Composition operations AC(mj , j)) we

analyzed earlier, each such operation performing compositions on various sets of
size m1/2

j /m
1/2
j−1. Hence using (15) and Qi ≥ 1, the total communication cost we

charge at level j is

(n3/(m3/2
j Qj))(gjmj + (m1/2

j /m
1/2
j−1)AC-Comm(mj , j))

�d (n3/(m3/2
j Qj))(gjmj + (m3/2

j /m
1/2
j−1)

∑
i=1··j−1 gi/Qi)

�d n
3gj/(m1/2

j Qj) + (n3/m
1/2
j−1)

∑
i=1··j−1 gi/Qi.

24 L.G. Valiant

Hence adding over all levels gives

MM-Comm(n× n, d) �d

∑

i=1··d−1

(n3gi/Qi)
∑

k=i··d−1

(1/m1/2
k)

�d n
3

∑

j=1··d−1

gjm
−1/2
j /Qj (17)

since by (1) the mj are nondecreasing in j. Assuming (2) this meets the lower
bound (9).

Similarly, the total charge for synchronization at level j is

(n3/(Qjm
3/2)
j)(Lj+1 + (m1/2

j /m
1/2
j−1)AC-Synch(mj , j))

�d (n3/(m3/2
j Qj))(Lj+1 + (m3/2

j /m
1/2
j−1)

∑
i=1··j−1 Li+1/(Qimi)

�d n
3Lj+1/(m3/2

j Qj) + (n3/m
3/2
j−1)

∑
i=1··j−1 Li+1/Qi.

Hence adding over all levels gives

MM-Synch(n× n, d) �d

∑

i=1··d−1

(n3Li+1/Qi)
∑

k=i··d−1

(1/m3/2
k)

�d n
3

∑

j=1··d−1

Lj+1m
−3/2
j /Qj . (18)

since by (1) the mj are nondecreasing in j. Assuming (2) this meets the lower
bound (10).

5.3 Fast Fourier Transform

We consider the FFT problem for input size N = 2u as a straight line program
where each operation corresponds to a node, and an operation at layer k is a
linear combination of the values produced at its two antecedent nodes at level
k − 1. The operation sequence can be represented as a directed acyclic graph
with nodes (i1i2 · · · iu, k) where ij ∈ {0, 1} and k ∈ {0, 1, · · · , u}, and edges
((i1i2 · · · iu, k), (i1i2 · · · iu, k + 1) and ((i1i2 · · · iu, k), (i1i2 · · · i∗k+1 · · · iu, k + 1))
where for i ∈ {0, 1}, i∗ ∈ {0, 1} is the complement, namely i+ i∗ = 1 mod 2.

Our basic algorithm FFT(mj , x, j) for x FFTs on disjoint sets of mj/x points
all initially held in the level j memory with the output to be held also at that
level will be performed by doing

(i) mj/mj−1 problems of type FFT(mj−1, 1, j − 1), and
(ii) on the mj values so obtained doing FFT(mj , xmj−1, j).

In other words (i) will solve each disjoint set ofmj/x points by doingmj/(xmj−1)
FFT’s on mj−1 points each, and (ii) states that the effect of this is to increase the

A Bridging Model for Multi-core Computing 25

number (and hence reduce the size) of the resulting FFT problems remaining by
a factor of mj−1. Note that after r = logmj/ logmj−1 iterations of steps (i) and
(ii) together, FFT(mj , x, j) will be called with mj = x, which requires no op-
erations. Hence if we denote by FFT-Comm(mj , x, j) and FFT-Synch(mj , x, j)
the communication and synchronization costs of this task then

FFT-Comm(mj , x, j) = (mj/(mj−1pj))[mj−1gj−1 +FFT-Comm(mj−1, 1, j−1)]
+ FFT-Comm(mj , xmj−1, j)

and

FFT-Synch(mj , x, j) = (mj/(mj−1pj))[Lj + FFT-Synch(mj−1, 1, j − 1)]
+ FFT-Synch(mj , xmj−1, j).

Expanding the first gives for r = logmj/ logmj−1 that

FFT-Comm(mj , x, j)
= (mj/(mj−1pj))[mj−1gj−1 + FFT-Comm(mj−1, 1, j − 1)]

.

.

+ (mj/(mj−1pj))[mj−1gj−1 + FFT-Comm(mj−1, 1, j − 1)]
+ FFT-Comm(mj , x(mj−1)r, j),

= r(mj/(mj−1pj))[mj−1gj−1+ FFT-Comm(mj−1, 1, j − 1)]

= (logmj/ logmj−1)gj−1mj/pj

+(mj logmj/(pjmj−1 logmj−1)) FFT-Comm(mj−1, 1, j − 1)]

Now assuming by induction that

FFT-Comm(mj−1, 1, j − 1) ≤
∑

i=1··j−2(logmj−1/ logmi)gimj−1/Qi,j−1

and substituting in the above using Qi,j−1pj = Qi,j gives

(logmj/ logmj−1)gj−1mj/pj

+ (mj logmj/(pjmj−1 logmj−1))
∑

i=1··j−2(logmj−1/ logmi)gimj−1/Qi,j−1

=(logmj/ logmj−1)gj−1mj/pj

+(mj logmj

∑
i=1··j−2(1/ logmi)gi/Qi,j

= mj logmj

∑
i=1··j−1(1/ logmi)gi/Qi,j .

26 L.G. Valiant

Then for n ≤ md

FFT-Comm(n, 1, d) �d

∑

i=1··d−1

n log(n)gi/(Qi logmi) (19)

Now for synchronization the second recurrence gives by an identical argument

FFT-Synch(n, 1, d) �d

∑

i=1··d−1

n log(n)Li+1/(Qimi logmi). (20)

5.4 Sorting

Sorting by deterministic oversampling and splitting into smaller subsets of about
equal size is known to be achievable using the following idea [12, 23, 26]:

Lemma 2. For numbers N,S,G and t one can find a set of S splitters in any
ordered set X of N elements such that in the ordering on X the number of
elements between two successive splitters is N/S ± 2tG by using the following
procedure: Partition X into G sets of N/G elements each, sort each such set,
pick out every tth element from each such sorted list, sort the resulting N/t ele-
ments, and finally pick every N/(tS)th element of that.

Let Sort(n, x, j) be a procedure for sorting a set Y of size n ≤ mj residing
in level j memory that includes a set of x splitters that already split Y into
sets of about equal size. Our recursive step will divide the set into xmj−1/t

2

sorted sublists of about equal size at the next stage for t = e
√

(log m) where
m = min{mi|1 ≤ i ≤ d}. This is achieved for every sorted sublist of Y by the
method of the above paragraph with N = (mj/x), S = mj−1/t

2, G = N/mj−1.
On the assumption that the sublists are of exactly the same length we get the
recurrence

Sort-Comm(mj , x, j)
� (mj/(mj−1pj))(gi−1mj−1 + Sort-Comm(mj−1, 0, j − 1))
+ Sort-Comm(mj , xmj−1/t

2, j) + Sort-Comm(mj/t, 0, j).

Since mj/t = o(mj/ logmj) the last term will contribute a lower order term
even if implemented by a sorting algorithm in which the communication cost is
proportional to the computation cost (rather than a logarithmic factor cheaper)
and can be ignored, leaving the same recurrence as for FFT-Comm but with
the multiplier mj−1/t

2 rather than mj−1 in the second term. This will therefore
yield the following solutions analogous to (19) and (20):

Sort-Comm(n, d) �d

∑

i=1··d−1

n log(n)gi/(Qi logmi) (21)

Sort-Synch(n, d) �d

∑

i=1··d−1

n log(n)Li+1/(Qimi logmi). (22)

A Bridging Model for Multi-core Computing 27

In fact, the sublists are not of exactly equal length but only within multi-
plicative factors of 1 ± 2/t. This is because the mean of their lengths is N/S =
Nt2/mj−1 while the maximum deviation from this length is 2tG = 2Nt/mj−1.
It can be verified that accommodating these variations in the recurrence would
not change the conclusion.

Acknowledgements

I am grateful to Alex Gerbessiotis and Alex Tiskin for their comments on this
paper and to Guy Blelloch, Phil Gibbons, Mark Hill, and Vijaya Ramachandran
for conversations.

References

[1] Aggarwal, A., Alpern, B., Chandra, A., Snir, M.: A model for hierarchical memory.
In: Proc. of the 19th ACM Symp. on Theory of Computing, pp. 305–314 (1987)

[2] Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Communications of the ACM 31(9), 1116–1127 (1988)

[3] Alpern, B., Carter, L., Feig, E., Selker, T.: A uniform memory hierarchy model
of computation. Algorithmica 12, 72–109 (1994)

[4] Arge, L., Goodrich, M., Nelson, M., Sitchinava, N.: Fundamental parallel algo-
rithms for private-cache chip multiprocessor. In: Proc. 20th Symp. on Parallelism
in Algorithms and Architectures, pp. 197–206 (2008)

[5] Bilardi, G., Fantozzi, C., Pietracaprina, A., Pucci, G.: On the Effectiveness of D-
BSP as a Bridging Model of Parallel Computation. In: International Conference
on Computational Science 2001, pp. 579–588 (2001)

[6] Bilardi, G., Pietracaprina, A., Pucci, G., Silvestri, F.: Network-oblivious algo-
rithms. In: Proc. 21st International Parallel and Distributed Processing Sympo-
sium, IPDPS, pp. 1–10 (2007)

[7] Blelloch, G., Chowdhury, R., Gibbons, P., Ramachandran, V., Chen, S., Kozuch,
M.: Provably good multicore cache performance for divide and conquer algorithms.
In: Proc. ACM-SIAM Symposium on Discrete Algorithms, pp. 501–510 (2008)

[8] Chowdhury, R., Ramachandran, V.: Cache-efficient dynamic programming algo-
rithms for multicores. In: Proc. 20th Symp. on Parallelism in Algorithms and
Architectures, pp. 207–216 (2008)

[9] de la Torre, P., Kruskal, C.P.: Submachine Locality in the Bulk Synchronous
Setting (Extended Abstract). In: Euro-Par, vol. II, pp. 352–358 (1996)

[10] Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-Oblivious Al-
gorithms. In: Proc. 40th IEEE Symp. on Foundations of Computer Science, pp.
285–298 (1999)

[11] Fortune, S., Wyllie, C.: Parallelism in Random Access Machines. In: Proceedings
of the Tenth Annual ACM Symposium on Theory of Computing, pp. 114–118
(1978)

[12] Gerbessiotis, A.V., Siniolakis, C.J.: Efficient Deterministic Sorting on the BSP
Model. Parallel Processing Letters 9(1), 69–79 (1999)

[13] Gerbessiotis, A.V., Valiant, L.G.: Direct Bulk-Synchronous Parallel Algorithms.
Journal of Parallel and Distributed Computing 22, 251–267 (1994)

28 L.G. Valiant

[14] Goudreau, M., Lang, K., Rao, S., Suel, T., Tsantilas, T.: Towards Efficiency and
Portability: Programming with the BSP Model. In: Proc. 8th ACM Symposium
on Parallel Algorithms and Architectures (SPAA 1996), pp. 1–12 (1996)

[15] Goudreau, M.W., Lang, K., Narlikar, G., Rao, S.B.: Boss is Boss: A Case for Bulk-
Synchronous Object Systems. In: Proceedings of the 11th Annual ACM Sympo-
sium on Parallel Algorithms and Architectures (SPAA 1999), pp. 115–125 (1999)

[16] Hill, M.D., Marty, M.R.: Amdahl’s Law in the Multicore Era. IEEE Computer
(July 2008)

[17] Hong, J., Kung, H.: I/O-complexity: The red-blue pebble game. In: Proceedings
of ACM Symposium on Theory of Computing, pp. 326–333 (1981)

[18] Irony, D., Toledo, S., Tiskin, A.: Communication lower bounds for distributed-
memory matrix multiplication. Journal of Parallel and Distributed Comput-
ing 64(9), 1017–1026 (2004)

[19] Juurlink, B.H.H., Wijshoff, H.A.G.: The parallel hierarchical memory model. In:
Schmidt, E.M., Skyum, S. (eds.) SWAT 1994. LNCS, vol. 824, pp. 240–251.
Springer, Heidelberg (1994)

[20] Karp, R.M., Ramachandran, V.: Parallel algorithms for shared memory machines.
In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, pp. 869–
941. Elsevier Science Publishers B. V, Amsterdam (1990)

[21] Kumar, R., Tullsen, D., Jouppi, N., Ranganathan, P.: Heterogeneous Chip Mul-
tiprocessors. IEEE Computer, 32–38 (November 2005)

[22] McColl, W.F., Tiskin, A.: Memory-efficient matrix computations in the BSP
model. Algorithmica 24(3–4), 287–297 (1999)

[23] Nodine, M.H., Vitter, J.S.: Optimal deterministic sorting on parallel processors
and parallel memory hierarchies (manuscript, 1993); Deterministic distribution
sort in shared and distributed memory multiprocessors. In: Proc. ACM Symp. on
Parallel Algorithms and Architectures, pp. 120–129 (1993)

[24] Savage, J.E.: Extending the Hong-Kung Model to Memory Hierarchies. In: Du, D.-
Z., Li, M. (eds.) Computing and Combinatorics, pp. 270–281. Springer, Heidelberg
(1995)

[25] Sen, S., Chatterjee, S., Dumir, N.: Towards a Theory of Cache-Efficient Algo-
rithms. J. ACM 49(6), 828–858 (2002)

[26] Shi, H., Schaeffer, J.: Parallel sorting by regular sampling. J. of Parallel and
Distributed Computing 14, 362–372 (1992)

[27] Tiskin, A.: The bulk-synchronous parallel random access machine. Theoretical
Computer Science 196(1–2), 109–130 (1998)

[28] Valiant, L.G.: A Bridging Model for Parallel Computation. Communications of
the ACM 33(8), 103–111 (1990)

[29] Vitter, J.S.: External Memory Algorithms and Data Structures: Dealing with
Massive Data. ACM Computing Surveys 33(2), 209–271 (2001)

[30] Vitter, J.S., Shriver, E.A.M.: Algorithms for parallel memory II: Hierarchical mul-
tilevel memories. Algorithmica 12(2/3), 148–169 (1994)

Robust Kinetic Convex Hulls in 3D�

Umut A. Acar1, Guy E. Blelloch2, Kanat Tangwongsan2, and Duru Türkoğlu3

1 Toyota Technological Institute at Chicago (TTI-C)
2 Carnegie Mellon University

3 University of Chicago

Abstract. Kinetic data structures provide a framework for comput-
ing combinatorial properties of continuously moving objects. Although
kinetic data structures for many problems have been proposed, some
difficulties remain in devising and implementing them, especially ro-
bustly. One set of difficulties stems from the required update mecha-
nisms used for processing certificate failures—devising efficient update
mechanisms can be difficult, especially for sophisticated problems such
as those in 3D. Another set of difficulties arises due to the strong assump-
tion in the framework that the update mechanism is invoked with a single
event. This assumption requires ordering the events precisely, which is
generally expensive. This assumption also makes it difficult to deal with
simultaneous events that arise due to degeneracies or due to intrinsic
properties of the kinetized algorithms. In this paper, we apply advances
on self-adjusting computation to provide a robust motion simulation
technique that combines kinetic event-based scheduling and the classic
idea of fixed-time sampling. The idea is to divide time into a lattice of
fixed-size intervals, and process events at the resolution of an interval.
We apply the approach to the problem of kinetic maintenance of convex
hulls in 3D, a problem that has been open since 90s. We evaluate the
effectiveness of the proposal experimentally. Using the approach, we are
able to run simulations consisting of tens of thousands of points robustly
and efficiently.

1 Introduction

In many areas of computer science (e.g., graphics, scientific computing), we must
compute with continuously moving objects. For these objects, kinetic data struc-
tures [BGH99] is a framework for computing their properties as they move. A
Kinetic Data Structure (KDS) consists of a data structure that represents the
property of interest being computed, and a proof of that property. The proof is
a set of certificates or comparisons that validate the property in such a way that
as long as the outcomes of the certificates remain the same, the combinatorial
property being computed does not change. To simulate motion, a kinetic data
structure is combined with a motion simulator that monitors the times at which

� Acar, Blelloch, and Tangwongsan are supported in part by a gift from Intel.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 29–40, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

30 U.A. Acar et al.

certificates fail, i.e., change value. When a certificate fails, the motion simulator
notifies the data structure representing the property. The data structure then
updates the computed property and the proof, by deleting the certificates that
are no longer valid and by inserting new certificates. To determine the time at
which the certificates fail, it is typically assumed that the points move along
polynomial trajectories of time. When a comparison is performed, the polyno-
mial that represents the comparison is calculated; the roots of this polynomial
at which the sign of the polynomial changes becomes the failure times of the
computed certificate.

Since their introduction [BGH99], many kinetic data structures have been de-
signed and analyzed. We refer the reader to survey articles [AGE+02, Gui04] for
references to various kinetic data structures, but many problems, especially in
three-dimensions, remain essentially open [Gui04]. Furthermore, several difficul-
ties remain in making them effective in practice [AGE+02, GR04, RKG07, Rus07].
One set of difficulties stems from the fact that current KDS update mechanisms
strongly depend on the assumption that the update is invoked to repair a single
certificate failure [AGE+02]. This assumption requires a precise ordering of the
roots of the polynomials so that the earliest can always be selected, possibly re-
quiring exact arithmetic. The assumption also makes it particularly difficult to
deal with simultaneous events. Such events can arise naturally due to degenera-
cies in the data, or due to the intrinsic properties of the kinetized algorithm1.

Another set of difficulties concerns the implementation of the algorithms. In
the standard scheme, the data structures need to keep track of what needs to
be updated on a certificate failure, and properly propagate those changes. This
can lead to quite complicated and error-prone code. Furthermore, the scheme
makes no provision for composing code—there is no simple way, for example, to
use one kinetic algorithm as a subroutine for another. Together, this makes it
difficult to implement sophisticated algorithms.

Recent work [ABTV06] proposed an alternative approach for kinetizing algo-
rithms using self-adjusting computation [ABH+04, Aca05, ABBT06, AH06]. The
idea is that one implements a static algorithm for the problem, and then runs
it under a general-purpose interpreter that keeps track of dependences in the
code (e.g., some piece of code depends on the value of a certain variable or on
the outcome of a certain test). Now when the variable or test outcome changes,
the code that depends on it is re-run, in turn possibly invalidating old code
and updates, and making new updates. The algorithm that propagates these
changes is called a change propagation algorithm and it is guaranteed to return
the output to the same state as if the static algorithm was run directly on the
modified input. The efficiency of the approach for a particular static algorithm
and class of input/test changes can be analyzed using trace stability, which can
be thought as an edit distance between computations represented as sequences
of operations [ABH+04].

1 For example, the standard incremental 3D convex hull algorithm can perform a plane-
side-test between a face and a point twice, once when deleting a face and once when
identifying the conflict between a point and the face.

Robust Kinetic Convex Hulls in 3D 31

The approach can make it significantly simpler to implement kinetic algo-
rithms for a number of reasons: only the static algorithms need to be imple-
mented2; algorithms are trivial to compose as static algorithms compose in the
normal way; and simultaneous update of multiple certificates are possible be-
cause the change propagation algorithm can handle any number of changes.
Acar et al. [ABTV06] used the ability to process multiple updates to help deal
with numerical inaccuracy. The observation was that if the roots can be limited
to an interval in time (e.g. using interval arithmetic), then one need only identify
a position in time not covered by any root. It is then safe to move the simula-
tion forward to that position and simultaneously process all certificates before
it. Although the approach using floating-point number arithmetic worked for 2D
examples in that paper, it has proved to be more difficult to find such positions
in time for problems in three dimensions.

In this paper, we propose another approach to advancing time for robust
motion simulation and apply it to a 3D convex hull algorithm. We then evaluate
the approach experimentally. The approach is a hybrid between kinetic event-
based scheduling and classic fixed-time sampling. The idea is to partition time
into a lattice of intervals of fixed size δ, and only identify events to the resolution
of an interval. If many roots fall within an interval, they are processed as a batch
without regard to their ordering. As with kinetic event-based scheduling, we
maintain a priority queue, but in our approach, the queue maintains non-empty
intervals each possibly with multiple events. To separate roots to the resolution
of intervals, we use Sturm sequences in a similar way as used for exact separation
of roots [GK99], but the fixed resolution allows us to stop the process early. More
specifically, in exact separation, one finds smaller and smaller intervals (e.g. using
binary search) until all roots fall into separate intervals. In our case, once we
reach the lattice interval, we can stop without further separation. This means
that if events are degenerate and happen at the same time, for example, we need
not determine this potentially expensive fact.

For kinetic 3D convex hulls, we use a static randomized incremental convex
hull algorithm [CS89, BDH96, MR95] and kinetize it using self-adjusting com-
putation. To ensure that the algorithm responds to kinetic events efficiently, we
make some small changes to the standard incremental 3D convex-hull algorithm.
This makes progress on the problem of kinetic 3D convex hulls, which was iden-
tified in late 1990s [Gui98]. To the best of our knowledge, currently the best way
to compute the 3D kinetic convex hulls is to use the kinetic Delaunay algorithm
of the CGAL package [Boa07], which computes the convex hull as a byproduct
of the 3D Delaunay triangulation (of which the convex hull would be a subset).
As shown in our experiment, this existing solution generally requires processing
many more events than necessary for computing convex hulls.

We present experimental results for the the proposed kinetic 3D convex hull
algorithm with the robust motion simulator. Using our implementation, we can
run simulations with tens of thousands of moving points in 3D and test their
accuracy. We can perform robust motion simulation by processing an average

2 In the current system, some annotations are needed to mark changeable values.

32 U.A. Acar et al.

of about two certificate failures per step. The 3D hull algorithm seems to take
(poly) logarithmic time on average to respond to a certificate failure as well
as an integrated event—an insertion or deletion that occurs during a motion
simulation.

2 Robust Motion Simulation on a Lattice

We propose an approach to robust motion simulation that combines event-based
kinetic simulation and the classic idea of fixed-time sampling. The motivation
behind the approach is to avoid ordering the roots of polynomials, because it
requires high-precision exact arithmetic when the roots are close. To achieve
this, we discretize the time axis to form a lattice {k · δ | k ∈ Z+} defined by the
precision parameter δ. We then perform motion simulations at the resolution
of the lattice by processing the certificates that fail within an interval of the
lattice simultaneously. This approach requires that the update mechanism used
for revising the computed property be able to handle multiple certificate failures
at once. In this paper, we use self-adjusting computation, where computations
can respond to any change in their data correctly by means of a generic change
propagation algorithm. The correctness of change propagation has been proven
elsewhere, sometimes by providing machine-checked proofs [ABD07, AAB08].

For robust motion simulations, we will need to perform the following
operations:

– Compute the signs of a polynomial and its derivatives at a given lattice
point.

– Compute the intervals of the lattice that contain the roots of a polynomial.

In our approach, we assume that the coefficients of the polynomials are integers
(up to a scaling factor) and use exact integer arithmetic to compute the signs
of the polynomial and its derivatives. For finding the roots, we use a root solver
described below.

The Root Solver. Our root solver relies on a procedure, which we call a Sturm
query, that returns the number of roots of a square-free polynomial that are
smaller than a given lattice point. To answer such a query, we compute the
Sturm sequence (a.k.a. standard sequence) of the polynomial, which consists of
the intermediary polynomials generated by the Euclid’s algorithm for finding
the greatest common divisor (GCD) of the polynomial and its derivative. The
answer to the query is the difference in the number of alternations in the signs
of the sequence at −∞ and at the query point. Using the Sturm query, we can
find the roots of a square-free polynomial by performing a variant of a binary
search.3 We can eliminate the square-free assumption by a known technique that
factors the polynomial into square and square-free polynomials.

Motion Simulation. We maintain a priority queue of events (initially empty),
and a global simulation time (initially 0). We start by running the static
3 In practice, we start with an approximation computed by floating-point arithmetic.

Robust Kinetic Convex Hulls in 3D 33

time
0 1 2 3 4 5 6 7

* * * *

a cb d e f xi

h

Fig. 1. The lattice (δ = 1) and the events (certificate failures)

algorithm in the self-adjusting framework. This computes a certificate polyno-
mial for each comparison. For each certificate, we find the lattice intervals at
which the sign of the corresponding polynomial changes, and for each such in-
terval, we insert an event into the priority queue. After the initialization, we
simulate motion by advancing the time to the smallest lattice point t such that
the lattice interval [t − δ, t) contains an event. To find the new time t we re-
move from the priority queue all the events contained in the earliest nonempty
interval. We then change the outcome of the removed certificates and perform a
change-propagation at time t. Change propagation updates the output and the
queue by inserting new events and removing invalidated ones. We repeat this
process until there is no more certificate failure. Figure 1 shows a hypothetical
example with δ = 1. We perform change propagation at times 1, 2, 3, 5, 7. Note
that multiple events are propagated simultaneously at time 2 (events b and c),
time 5 (events e and f), and time 7 (events h, i and, x).

When performing change propagation at a given time t, we may encounter a
polynomial that is zero at t representing a degeneracy. In this case, we use the
derivatives of the polynomial to determine the sign immediately before t. Using
this approach, we are able to avoid degeneracies throughout the simulation, as
long as the certificate polynomials are not identically zero.

We note that the approach described here is quite different from the approach
suggested by Ali Abam et al. [AAdBY06]. In that approach, root isolation is
avoided by allowing certificate failures to be processed out of order. This can
lead to incorrect transient results and requires care in the design of the kinetic
structures. We do not process certificates out of order but rather as a batch.

3 Algorithm

In the kinetic framework based on self-adjusting computation [ABTV06], we
can use any static algorithm directly. The performance of the approach, how-
ever, depends critically on the cost of the change propagation algorithm when
applied after changes are made to input or predicate values. In particular, when
invoked, the change-propagation algorithm updates the current trace (sequence
of operations together with their data) by removing outdated operations and re-
executing parts of the algorithm that cannot be reused from the current trace.
The performance of change propagation therefore depends on some form of the
edit distance between the execution trace before and after the changes. This
edit distance has been formalized in the definition of trace stability [ABH+04].
In this section, we describe a variant of the randomized incremental convex-hull
algorithm [CS89, BDH96, MR95], and remark on some of its features that are

34 U.A. Acar et al.

crucial for stability—i.e., that minimize the number of operations that need to
be updated when a certificate fails.

Given S ⊆ R3, the convex hull of S, denoted by conv(S), is the smallest convex
polyhedron enclosing all points in S. During the execution of the algorithm on
input S, each face f of the convex hull will be associated with a set Σ(f) ⊂ S
of points (possibly empty). Each input point p will be given a real number
π(p) ∈ [0, 1], called its priority. Each face f will have the priority π(f) :=
min{π(p) : p ∈ Σ(f)}. We say that a face of the hull is visible from a point if
the point is outside the plane defined by the face.

The algorithm takes as input a set of points S = {p1, p2, . . . , pn}, and performs
the following steps:

1. Assign to each pi a random priority π(pi) ∈ [0, 1].
2. Initialize H := conv(A4), where A4 is the set of four highest-priority points.
3. Pick a center point c inside the convex body H .
4. For each f ∈ H , set Σ(f) := {p ∈ S \ H : the ray −→cp penetrates f}.
5. While ∃f ∈ H such that Σ(f) �= ∅:

(a) Choose the face f∗ with the highest priority, and let p∗ ∈ Σ(f) be the
point with the highest priority.

(b) Delete all faces on H visible from p∗. This creates a cavity in the convex
hull whose boundary is defined by horizon edges that are incident to
both deleted and live faces.

(c) Update H by creating new faces each of which consists of p∗ and a
horizon edge to fill up the cavity. Set Σ(f) := {p∗ ∈ S \ H : the ray

−→
cp∗

penetrates f} for each new faces f .

In our implementation, we maintain a priority queue of faces ordered by pri-
orities of the faces. We also store at each face the point in Σ(f) with priority
π(f). This allows us to perform step 5(a) efficiently.

Even though the algorithm presented above is fairly standard, certain key
elements of this implementation appear to be crucial for stability—without them,
the algorithm would be unstable. For stability, we want the edit distance between
the traces to be small. Towards this goal, the algorithm should always insert
points in the same order—even when new points are added or old points deleted.
We ensure this by assigning a random priority to every input point. The use of
random priorities makes it easy to handle new points, and obviates the need to
explicitly remember the insertion order.

For better stability, we also want the insertion of a point p to visit faces of the
convex hull in the same order every time. While the presented algorithm cannot
guarantee this, we use the following heuristic to enhance stability. The point-
to-face assignment with respect to a center point c ensures that the insertion
of p∗ always starts excavating at the same face, increasing the likelihood that
the faces are visited in the same order. Note that the choice of the center point
is arbitrary, with the only requirement that the center point has to lie in the
convex hull. Our implementation takes c to be the centroid of the tetrahedron
formed by A4.

Robust Kinetic Convex Hulls in 3D 35

4 Implementation

Our implementation consists of three main components: 1) the self-adjusting-
computation library, 2) the incremental 3D convex-hull algorithm, and 3) the
motion simulator. Previous work [ABBT06] provided an implementation of the
self-adjusting computation library. The library requires that the user adds some
notations to their static algorithms to mark what values can change and what
needs to be memoized. These notations are used by the system to track the
dependences and know when to reuse subcomputations.

In our experiments, we use both the original static 3D convex-hull algorithm
and the self-adjusting version with the annotations added. The static version
uses exact arithmetic predicates to determine the outcomes of comparisons pre-
cisely (we use the static version for checking the robustness of the simulation).
The self-adjusting version uses the root solver to find the roots of the polyno-
mial certificates, and inserts them into the event queue of the motion simulator.
We implement a motion simulator as described in Section 2. Given a precision
parameter δ and a bound Mt on the simulation time, the simulator uses an
event scheduler to perform a motion simulation on the lattice with precision δ
until Mt is reached. We model the points with an initial location traveling at
constant speed in a fixed direction. For each coordinate, we use B� and Bv bits
to represent the initial location and the velocity respectively; B� and Bv can be
assigned to arbitrary positive natural numbers.

5 Experiments

We describe an experimental evaluation of our kinetic 3D convex-hull algorithm.
The evaluation investigates the effectiveness of our approach according to a
number of metrics proposed in the previous work [BGH99], i.e., responsiveness,
efficiency, locality, and compactness. Following that, we report timing results for
the integrated dynamic and kinetic experiments.

Experimental Setup. All of the experiments were performed on a 2.66Ghz
dual-core Xeon machine, with 8 GB of memory, running Ubuntu Linux 7.10.
We compiled the applications with the MLton compiler [MLt, Wee06] with the
option “-runtime ram-slop 0.75,” directing the run-time system to allocate
at most 75% of system memory. Our timings measure the wall-clock time (in
seconds).

Input Generation. In our experiments, we pick the initial positions of the
points on each axis to fit into 20 bits, i.e., B� = 20, and the velocity along each
axis to fit into 8 bits, i.e, Bv = 8. We pick both the initial locations and the
velocities uniformly randomly from the cube [−1.0, 1.0]3. We perform motion
simulations on lattice defined by δ = 2−10, with a maximum time of Mt = 227.
With this setting, we process an average of about two certificates simultaneously.

Checking for robustness. We check that our algorithm simulates motion ro-
bustly by comparing it to our exact static algorithm after each event in the

36 U.A. Acar et al.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 0 5000 10000 15000 20000 25000

T
im

e
(s

ec
)

Input Size (n)

CGAL
Our algorithm

Fig. 2. Static algorithms compared

CGAL Our Algorithm
Input # Total # Total
Size Events Time (s) Events Time (s)
22 357 13.42 71 2.66
49 1501 152.41 151 11.80
73 2374 391.31 218 23.42
109 4662 1270.24 316 40.37
163 7842 3552.48 380 70.74
244 15309 12170.08 513 125.16

Fig. 3. Simulations compared

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 5000 10000 15000 20000 25000

T
im

e
(s

ec
)

Input Size (n)

Kinetic w/ Sturm
15x(Static w/ Sturm)

90x(Static w/ Floating)

Fig. 4. Kinetic and static runs

kinetic simulation. When the inputs are large (more than 1000 points), we check
the output at randomly selected events (with varying probabilities between 1
and 20%) to save time.

Baseline Comparison. To assess the efficiency of the static version of our
algorithm, we compare it to CGAL 3.3’s implementation of the incremental
convex-hull algorithm. Figure 2 shows the timings for our static algorithm and
for the CGAL implementation with the Homogeneous<double> kernel. Inputs
to the algorithms are generated by sampling from the same distribution; the
reported numbers averaged over three runs. Our implementation is about 30%
slower than CGAL’s. Implementation details or our use of a high-level, garbage-
collected language may be causing this difference.

We also want to compare our kinetic implementation with an existing kinetic
implementation capable of computing 3D convex hulls. Since there is no direct
implementation for kinetic 3D convex hulls, we compare our implementation
with CGAL’s kinetic 3D Delaunay-triangulation implementation, which com-
putes the convex hull as part of the triangulation. Figure 3 shows the timings
for our algorithm and for CGAL’s implementation of kinetic 3D Delaunay (us-
ing the Exact_simulation_traits traits).These experiments are run until the
event queue is empty. As expected, the experiments show that kinetic Delaunay
processes many more events than necessary for computing convex hulls.

Kinetic motion simulation. To perform a motion simulation, we first run
our kinetic algorithm on the given input at time t = 0, which we refer to as
the initial run. This computes the certificates and inserts them into the priority
queue of the motion scheduler. Figure 4 illustrates the running time for the initial

Robust Kinetic Convex Hulls in 3D 37

run of the kinetic algorithm compared to that of our static algorithm which
does not create certificates. Timings show a factor of about 15 gap between the
kinetic algorithm (using Sturm sequences) and the static algorithm that uses
exact arithmetic. The static algorithm runs by a factor of 6 slower when it uses
exact arithmetic compared to using floating-point arithmetic. These experiments
indicate that the overheads of initializing the kinetic simulations is moderately
high: more than an order of magnitude over the static algorithm with exact
arithmetic and almost two orders of magnitude over the the static algorithm with
floating-point arithmetic. This is due to both the cost of creating certificates and
to the overhead of maintaining the dependence structures used by the change
propagation algorithm.

After completing the initial run, we are ready to perform the motion simu-
lation. One measure of the effectiveness of the motion simulation is the average
time for a kinetic event, calculated as the total time for the simulation divided
by the number of events. Figure 5 shows the average times for a kinetic event
when we use our δ-precision root solver. These averages are for the first 5 · n
events on an input size of n. The average time per kinetic event appears asymp-
totically bounded by the logarithm of the input size. A kinetic structure is said
to be responsive if the cost per kinetic event is small, usually in the worst case.
Although our experiments do not indicate responsiveness in the worst case, they
do indicate responsiveness in the average case.

One concern with motion simulation with kinetic data structures is that the
overhead of computing the roots can exceed the speedup that we may hope to
obtain by performing efficient updates. This does not appear to be the case in
our system. Figure 6 shows the speedup for a kinetic event, computed as the
time for change propagation divided by the time for a from-scratch execution of
the static algorithm using our solver.

In many cases, we also want to be able to insert and remove points or change
the motion parameters during the motion simulation. This is naturally supported
in our system, because self-adjusting computations can respond to any combi-
nation of changes to their data. We perform the following experiment to study
the effectiveness of our approach at supporting these integrated changes. During
the motion simulation, at every event, the motion function of an input point
is updated from r(t) to 3

4r(t). We update these points in the order they ap-
pear in the input, ensuring that every point is updated at least once. From this

 0

 0.003

 0.006

 0.009

 0.012

 0.015

 0 5000 10000 15000 20000 25000

T
im

e
(s

ec
)

Input Size (n)

Time per Kinetic Event
0.0012!log(n)

Fig. 5. Time per kinetic event

 0

 50

 100

 150

 200

 250

 300

 350

 0 5000 10000 15000 20000 25000

S
pe

ed
up

Input Size

Speedup

Fig. 6. Speedup for a kinetic event

38 U.A. Acar et al.

 0
 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014

 0 5000 10000 15000 20000 25000

T
im

e
(s

ec
)

Input Size (n)

Dynamic+Kinetic Event
0.0012!log(n)

Fig. 7. Time per integrated event

 0

 100

 200

 300

 400

 500

 0 5000 10000 15000 20000 25000

In
te

rn
al

/E
xt

er
na

l R
at

io

Input Size (n)

Interval / External
0.035!log4(n)

Fig. 8. Interval/external events

experiment, we report the average time per integrated event, calculated by di-
viding the total time to the number of events. Figure 7 shows the average time
per integrated event for different input sizes. The time per integrated event ap-
pears asymptotically bounded by the logarithm of the input size and are similar
to those for kinetic events only. A kinetic structure is said to have good locality
if the number of certificates a point is involved in is small. We note that the
time for a dynamic change is directly affected by the number of certificates it
is involved in. Again, although our experiments do not indicate good locality in
the worst case, they do indicate good locality averaged across points.

In a kinetic simulation, we say that an event is internal if it does not cause
the output to change. Similarly, we say that an event is external if it causes
the output to change. A kinetic algorithm is said to be efficient if the ratio of
interval events to external events is small. Figure 8 shows this ratio in complete
simulations with out algorithm. The ratio can be reasonably large but appears
to grow sublinearly.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0 5000 10000 15000 20000 25000

C

er
tif

ic
at

es
 (

M
ill

io
n)

Input Size (n)

20!n!log(n)
Certificates

Fig. 9. Number of certificates

Another measure of the effectiveness
of a kinetic motion simulation is com-
pactness, which is a measure of the to-
tal number of certificates that are live
at any time. Since our implementation
uses change-propagation to update the
computation when a certificate fails, it
guarantees that the total number of cer-
tificates is equal to the number of certifi-
cates created by a from-scratch execution at the current position of the points.
Figure 9 shows the total number of certificates created by a from-scratch run of
the algorithm with the initial positions. The number of certificates appears to
be bounded by O(n log n).

6 Conclusion

We present a technique for robust motion simulation based on a hybrid of kinetic
event scheduling and fixed-time sampling. The idea behind the approach is to
partition the time line into a lattice of intervals and perform motion simulation
at the resolution of an interval by processing the events in the same interval

Robust Kinetic Convex Hulls in 3D 39

altogether, regardless of their relative order. To separate roots to the resolution
of intervals, we use Sturm sequences in a similar way as used for exact separation
of roots in previous work, but the fixed resolution allows us to stop the process
early. The approach critically relies on self-adjusting computation, which enables
processing multiple events simultaneously. Although the hybrid technique using
kinetic-event-scheduling and fixed-time sampling was primarily motivated by
robustness issues, it may also be helpful in situations where explicit motion
prediction is difficult [AGE+02].

We apply the approach to the problem of kinetic convex hulls in 3D by kine-
tizing a version of the incremental convex-hull algorithm via self-adjusting com-
putation. We implement the motion simulator and the algorithm and perform an
experimental evaluation. Our experiments show that our algorithm is effective
in practice: we are able to run efficient robust simulations involving thousands
of points. Our experiments also indicate that the data structure can respond to
a kinetic event, as well as an integrated dynamic change (an insertion/deletion
during motion simulation) in logarithmic time in the size of the input. To the
best of our knowledge, this is the first implementation of kinetic 3D convex hulls
that can guarantee robustness and efficiency for reasonably large input sizes.

References

[AAB08] Acar, U.A., Ahmed, A., Blume, M.: Imperative self-adjusting computation.
In: Proceedings of the 25th Annual ACM Symposium on Principles of
Programming Languages (POPL) (2008)

[AAdBY06] Abam, M.A., Agarwal, P.K., de Berg, M., Yu, H.: Out-of-order event
processing in kinetic data structures. In: Azar, Y., Erlebach, T. (eds.) ESA
2006. LNCS, vol. 4168, pp. 624–635. Springer, Heidelberg (2006)

[ABBT06] Acar, U.A., Blelloch, G.E., Blume, M., Tangwongsan, K.: An experimental
analysis of self-adjusting computation. In: Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation
(2006)

[ABD07] Acar, U.A., Blume, M., Donham, J.: A consistent semantics of self-
adjusting computation. In: De Nicola, R. (ed.) ESOP 2007. LNCS,
vol. 4421, pp. 458–474. Springer, Heidelberg (2007)

[ABH+04] Acar, U.A., Blelloch, G.E., Harper, R., Vittes, J.L., Woo, M.: Dynamizing
static algorithms with applications to dynamic trees and history indepen-
dence. In: ACM-SIAM Symposium on Discrete Algorithms (SODA) (2004)

[ABTV06] Acar, U.A., Blelloch, G.E., Tangwongsan, K., Vittes, J.L.: Kinetic algo-
rithms via self-adjusting computation. In: Azar, Y., Erlebach, T. (eds.)
ESA 2006. LNCS, vol. 4168, pp. 636–647. Springer, Heidelberg (2006)

[Aca05] Acar, U.A.: Self-Adjusting Computation. PhD thesis, Department of Com-
puter Science, Carnegie Mellon University (May 2005)

[AGE+02] Agarwal, P.K., Guibas, L.J., Edelsbrunner, H., Erickson, J., Isard, M.,
Har-Peled, S., Hershberger, J., Jensen, C., Kavraki, L., Koehl, P., Lin, M.,
Manocha, D., Metaxas, D., Mirtich, B., Mount, D., Muthukrishnan, S.,
Pai, D., Sacks, E., Snoeyink, J., Suri, S., Wolefson, O.: Algorithmic issues
in modeling motion. ACM Comput. Surv. 34(4), 550–572 (2002)

40 U.A. Acar et al.

[AH06] Acar, U.A., Hudson, B.: Optimal-time dynamic mesh refinement: prelimi-
nary results. In: Proceedings of the 16th Annual Fall Workshop on Com-
putational Geometry (2006)

[BDH96] Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for
convex hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)

[BGH99] Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data.
Journal of Algorithms 31(1), 1–28 (1999)

[Boa07] CGAL Editorial Board. CGAL User and Reference Manual, 3.3 edn. (2007)
[CS89] Clarkson, K.L., Shor, P.W.: Applications of random sampling in computa-

tional geometry, II. Discrete and Computational Geometry 4(1), 387–421
(1989)

[GK99] Guibas, L.J., Karavelas, M.I.: Interval methods for kinetic simulations. In:
SCG 1999: Proceedings of the fifteenth annual symposium on Computa-
tional geometry, pp. 255–264. ACM Press, New York (1999)

[GR04] Guibas, L., Russel, D.: An empirical comparison of techniques for updating
delaunay triangulations. In: SCG 2004: Proceedings of the twentieth annual
symposium on Computational geometry, pp. 170–179. ACM Press, New
York (2004)

[Gui98] Guibas, L.J.: Kinetic data structures: a state of the art report. In: WAFR
1998: Proceedings of the third workshop on the algorithmic foundations of
robotics on Robotics: the algorithmic perspective, Natick, MA, USA, pp.
191–209. A. K. Peters, Ltd (1998)

[Gui04] Guibas, L.: Modeling motion. In: Goodman, J., O’Rourke, J. (eds.) Hand-
book of Discrete and Computational Geometry, 2nd edn., pp. 1117–1134.
Chapman and Hall/CRC (2004)

[MLt] MLton
[MR95] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge Univer-

sity Press, Cambridge (1995)
[RKG07] Russel, D., Karavelas, M.I., Guibas, L.J.: A package for exact kinetic data

structures and sweepline algorithms. Comput. Geom. Theory Appl. 38(1-
2), 111–127 (2007)

[Rus07] Ruseel, D.: Kinetic Data Structures in Practice. PhD thesis, Department
of Computer Science, Stanford University (March 2007)

[Wee06] Weeks, S.: Whole-Program Compilation in Mlton. In: ML 2006: Proceed-
ings of the 2006 workshop on ML, p. 1. ACM, New York (2006)

On Dominance Reporting in 3D

Peyman Afshani

School of Computer Science
University of Waterloo

Waterloo, Ontario, N2L 3G1, Canada
pafshani@uwaterloo.ca

Abstract. In this paper, we study the 3D dominance reporting problem
in different models of computations and offer optimal results in the pointer
machine and the external memory models and a near optimal result in the
RAM model; all our results consume linear space. We can answer queries
in O(log n + k) time on a pointer machine, with O(logB n + k/B) I/Os in
the external memory model and in O((log log n)2 + log log U + k) time in
the RAM model and in a U ×U ×U integer grid. These improve the results
of various papers, such as Makris and Tsakalidis (IPL’98), Vengroff and
Vitter (STOC’96) and Nekrich (SOCG’07). Here, n, k and B are the in-
put, output and block size respectively. With a log3 n fold increase in the
space complexity these can be turned into orthogonal range reporting al-
gorithms with matching query times, improving the previous orthogonal
range searching results in the pointer machine and RAM models. Using
our 3D results as base cases, we can provide improved orthogonal range
reporting algorithms in Rd, d ≥ 4. We use randomization only in the pre-
processing part and our query bounds are all worst case.

1 Introduction

Let P be a set of n points in Rd. In the dominance reporting problem we are
given a query point q = (q1, . . . , qd) and we are asked to find all the points
p = (x1, . . . , xd) ∈ P such that xi < qi, 1 ≤ i ≤ d. Dominance reporting is one
of the important problems in the orthogonal range searching area; it emerges
naturally when studying various problems regarding orthogonal objects [1], it is
an important special case of orthogonal range searching (which has been stud-
ied extensively, see [2,3,4,5]) and many times it is used as a basis of various
orthogonal range searching algorithms [6,7,8].

Previous results. Previously, in the pointer machine model, we were quite close to
the optimal answer. Makris and Tsakalidis [9] had shown it is possible to achieve
the query time of O(log n log log n+k) with linear space, improving an old result
from 1987 [10] (here, n and k are the input size and output size respectively). Also
in the same paper [9], they achieve the query time of O((log log U)2 log log log U+
k log log U) in the RAM model and with linear space (for points in a U × U × U
integer grid). Further results in the RAM model include an algorithm with linear
space and query time of O(log n

log log n + k) [11] assuming integer inputs. However,

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 41–51, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

42 P. Afshani

Table 1. Results on 3D dominance reporting problem. Here, n, k, B are input, output
and block size respectively. The results in RAM assume the input is from a U ×U ×U
integer grid. Optimal query complexities are marked with a star. The last two rows
assume an external memory model of computation in the RAM model where the input
is on a U × U × U integer grid.

Model Space Query complexity Source

pointer machine O(n) O(log n log log n + k) [9]

pointer machine O(n log n) O(log n + k)∗ [10]

pointer machine O(n) O(log n + k)∗ this paper

RAM O(n) O((log log U)2 log log log U + k log log U) [9]

RAM O(n) O(log n
log log n

+ k) [11]

RAM O(n log n) O((log log n)2 + log log U + k) [6]

RAM O(n) O((log log n)2 + log log U + k) this paper

external memory O(n log n) O(logB n + k/B)∗ [8]

external memory O(n) O(logB n + k/B)∗ this paper

EM & integer grid O(n log n) O(log logB U + (log log n)2 + k/B) [13]

EM & integer grid O(n logB n) O(log logB U + (log log n)2 + k/B) this paper

these are not the fastest data structures, since if we allow O(n log n) space we
can achieve the query time of O((log log n)2 + log log U + k) [6]. In the external
memory model, there are much fewer results and it is believed that solving such
orthogonal range reporting problems in this model is more difficult than the
main memory model [7]. Currently, the best algorithm in the traditional exter-
nal memory model uses O(n log n) space and can answer queries with optimal
O(logB n + k/B) I/Os [8,12] (here B is the block size). Very recently, Nekrich
has proposed another algorithm using O(n logB n) space which can answer rect-
angular point location queries in a U × U grid with O(log logB U + (log log n)2)
I/Os [13]. Using this, he provides another dominance reporting algorithm with
O(n log n) space and O(log logB U + (log log n)2 + k/B) query I/Os.

Our results. In this paper we solve the 3D dominance reporting problem in
pointer machine and external memory models and match the fast O((log log n)2+
log log U +k) query time of Nekrich [6] with a linear space algorithm. In essence,
our techniques allow us to reduce the dominance reporting problem to point
location in planar rectilinear arrangements. For instance, this enables us to use
the new point location data structure of Nekrich [13] as black box and obtain
another algorithm using O(n logB n) space and with O(log logB U +(log log n)2+
k/B) query I/Os, assuming the input is a subset of U × U × U integer grid.

A summary of our results in comparison with the previous work is shown in
Table 1. Using our efficient dominance reporting algorithms as base cases we can
obtain new algorithms for orthogonal range reporting in the RAM model. These
improvements have been listed in Table 2.

Unlike some previous algorithms, our methods use many common ideas and
techniques with the other important cases of range searching, namely halfspace

On Dominance Reporting in 3D 43

Table 2. The fastest known orthogonal range reporting algorithms for d ≥ 3. Here,
n, k, B are input, output and block size respectively.

Model Dimension Space Query complexity Source

RAM d = 3 O(n log4 n) O((log log n)2 + log log U + k) [6]

RAM d = 3 O(n log3 n) O((log log n)2 + log log U + k) this paper

RAM d > 3 O(n logd+1+ε n) O(logd−3 n/(log log n)d−5 + k) [6]

RAM d > 3 O(n logd−2+ε n) O(logd−2 n/(log log n)d−2 + k) [4]

RAM d > 3 O(n logd+ε n) O(logd−3 n/(log log n)d−5 + k) this paper

external memory d = 3 O(n log4 n) O(logB n + k/B) [8]

external memory d = 3 O(n log3 n) O(logB n + k/B) this paper

and simplicial range searching. In fact, an underlying implication of our tech-
niques is that both halfspace range reporting and dominance reporting in 3D can
be attacked within the same framework and using the same array of techniques
and tools. We believe this is one of the important contributions of our paper
since apparently this had eluded the previous researchers. For instance, we use
the shallow cutting lemma provided by Agarwal et al. [14] for a general class
of surfaces (which is inspired by Matoušek’s shallow cutting lemma for halfs-
paces [15]) and observe that it leads to approximate levels of optimal size. A
concept similar to approximate levels was previously employed by Vengroff and
Vitter [8] and later by Nekrich [6] but only under the name of B-approximate
boundaries and with non-optimal and complicated constructions.

Given this, one might wonder whether other fundamental theorems of half-
space or simplicial range searching such as the shallow partition theorem can
also be proven in this context. We do not investigate these questions and for two
reasons (aside from being outside the scope of this paper). First, as we noted, the
latter challenge has already been undertaken by Agarwal et al. [14] and second,
we show the existence of a novel partition type theorem (it is not a partition
per se and only resembles the partition theorem in “spirit”) for the dominance
reporting problem; unfortunately (or fortunately) our proof technique neither is
inspired nor resembles the original shallow partition theorem. Nonetheless, this
theorem seems to be stronger than an analogous of the shallow partition theo-
rem for the dominance reporting problem since it leads to an optimal external
memory data structure (fortunately). A similar result for the halfspace range
reporting problem has not been obtained yet [16].

As a consequence of our results, we can obtain two orthogonal range reporting
algorithms consuming O(n log3 n) space; one with O((log log n)2 + log log U + k)
query time in the RAM model and another with O(logB n + k/B) I/Os in the
external memory model. Previously, best results consumed O(n log4 n) space in
both cases. We only use randomization in the preprocessing part and our query
bounds are all worst case.

44 P. Afshani

2 Preliminaries

For two points A and B in Rd, we say A dominates B if and only if all the
coordinates of A are greater than those of B. In this paper, we shall deal with
a special form of geometric ranges that we call a downward corner , which is
uniquely determined by a point A ∈ Rd (called apex) and contains all the points
of Rd which are dominated by A. Let P be a set of n points in Rd. To make the
notation consistent, we will reserve r for downward corners and with an abuse of
notation, sometimes we will use r to refer both to the geometric object and the
subset of P inside the geometric object. We define an approximate k-level Lk as
a set of downward corners with the following two properties: (i) any downward
corner r ∈ Lk must contain at most c1k points of P and (ii) any downward corner
r′ which contains at most k points of P must be contained in a downward corner
r ∈ Lk. Here, c1 can be chosen to be an arbitrary constant (by our algorithms).
The size of an approximate level is the number of its downward corners. For a
set S of geometric objects, we will use the shorthand notation of Sx to refer to
the subset of S intersecting another geometric object x. Finally, for the sake of
simplicity of description, we assume the input point set and the query points are
in general position; a restriction that can be overcome using standard tricks.

3 Optimal Approximate Levels

We define the level of a point p ∈ R3 to be the number of downward corners of
S which contain p. As with the case of halfspaces, we define the (≤ k)-level to
be the set of all the vertices the arrangement A formed by S with level at most
k. Thus, the (≤ 0)-level of A contains all the vertices of the arrangement that
are not inside any downward corner of S.

One crucial requirement of any optimal lemma on approximate levels is a
linear bound on the size of the (≤ 0)-level of the arrangement formed by the set
of geometric objects.

Lemma 1. For a set S of n downward corners the size of the (≤ 0)-level is
O(n).

Proof. Sweep a plane h parallel to the xy plane from z = +∞ to z = −∞. We
will count the vertices of the (≤ 0)-level of the arrangement as they appear on
this sweep plane.

The apex A of an element r ∈ S will appear on h when the z-coordinate
of h becomes equal to the z-coordinate of A and it will disappear as soon as
another point q′ on h dominates A (in 2D sense). The crucial observation is that
if a point disappears from h it no longer can contribute any new vertices to the
(≤ 0)-level (Fig. 1(a,b,c)). So, at any moment we have an active set of downward
corners on this plane with none dominating another; these points form a chain
on this plane (Fig. 1(d)). Assume a new point ct+1 appears on this plane. If ct+1

creates j new vertices then it will have to dominate and remove Ω(j − 4) active
points from h (Fig. 1(c,e)). A simple charging argument implies that number of
vertices of the (≤ 0)-level is O(n). ��

On Dominance Reporting in 3D 45

b1

b2

b3

b1

b2

b3

b4

b1

b2

b3

b4

(d)

b1
b2

bt

(e)

bt+1

(a) (c)(b)

Fig. 1. (a) Boxes b1, b2 and b3 already swept (b) Sweep plane discovers b4 and from
this point b1 can be ignored. (c) Marks denote the new vertices on the 0-level. (d,e)
View on plane h.

The shallow cutting lemma of Agarwal et al. [14] operates on a general class
of surfaces and thus accepts a parameter φ(r) which is the worst case size of
the (≤ 0)-level of any collection of r surfaces. The above lemma implies in our
problem we have φ(r) = O(r). Combining this with the theorem of Agarwal et
al. [14] we obtain the following lemma.

Lemma 2. Given a set S of n downward corners in 3D and a parameter k, one
can build a set B of O

(
n
k

)
boxes which cover the (≤ k)-level of the arrangement

formed by S where each box is intersected by O(k) downward corners.

Proof. With slight perturbations we can turn a downward corner into a continu-
ous surface which fits the framework of Agarwal et al. [14] and use their shallow
cutting lemma with r = n

k . The fact that the set B can be taken as a set of boxes
follows from the vertical decomposition used by Agarwal et al. [14]. The source
of randomness is the sampling technique used in the same paper. ��

The above shallow cutting result can be used to construct approximate levels.

Lemma 3. There exists approximate k-levels of size O(n
k), 1 ≤ k ≤ n, for the

dominance reporting problem.

Proof. Let P be an input set of size n. For a point p ∈ R3, define an upward
corner with apex p to be the subset of R3 which dominates p. Let S be the set
of n upward corners determined by points of P as apexes and let A be the
arrangement formed by S. A point reflection with origin can transform A into
an arrangement of n downward corners, A′, and thus we can use Lemma 2 and
build a collection B′ of O(n

k) boxes which cover the (≤ k)-level of A ′. Perform
the point reflection on elements of B′ and let B be the resulting set of boxes. For
every box in b ∈ B, place the vertex with the maximum coordinates, denoted

46 P. Afshani

with m(b), in a set C. We claim the set of downward corners defined by apexes
in C is an approximate level.

Consider a downward corner r with apex A which contains less than k points
of P . This means that there are less than k upward corners of S which contain A.
The reflection A′ of A by the origin lies in the (≤ k)-level of A ′ and thus there
is a box b ∈ B which contains A. The downward corner defined by m(b) ∈ C
contains r.

On the other hand, Lemma 2 implies every box b′ ∈ B′ lies in the (≤ O(k))-
level of A ′. Thus, every vertex of b ∈ B can dominate at most O(k) vertices
of P . ��

Remarks. Agarwal et al. [14] do not discuss the construction time of their gen-
eral shallow cutting theorem. Unfortunately, to achieve a decent bound on the
construction time we will need to deal with the details of their construction
which we feel would be distracting, despite the fact that for our set of ranges
it is possible to simplify their argument. We postpone the details for the full
version of the paper (simply claim a polynomial bound here) but it can be seen
that we can employ the techniques used by Ramos [17] and build the cutting
in a gradual fashion (similar to the case for halfspaces) in O(n log n) expected
time.

4 Solving the Dominance Reporting Problem

To solve the dominance reporting in the RAM and pointer machine we simply
need a linear size data structure with polylogarithmic query time to combine
it with our lemma on approximate levels. For instance, we can either use the
data structure of Makris and Tsakalidis [9] or Eledsbrunner and Chazelle [10].
For the moment assume that we have access to a linear size data structure with
O(log2 n + k) query time.

Theorem 1. Given a set of n points P in R3, dominance reporting queries can
be answered in O(log n + k) worst case time in a pointer machine and using
linear space.

Proof. Let A be a data structure consuming linear space which can answer
dominance reporting queries in O(log2 n+k) time. Build an approximate log2 n-
level C. For every downward corner r ∈ C implement the data structure A on
the points contained in r and at the end build on extra copy for the whole point
set P .

If k = Ω(log2 n) then we can use the data structure on P to answer the
query in O(log2 n+k) = O(k) time. Otherwise, one downward corner r in C will
contain q. Finding q is known to be equivalent to a point location query in a 2D
orthogonal arrangement [9,6] and thus can be solved in O(log n) time. Since r will
contain at most log2 n points, the query can be answered in O((log log2 n)2+k) =
O((log log n)2 + k) time using the data structure implemented on r. Combining
all these results in a query time of O(log n + k). ��

On Dominance Reporting in 3D 47

The exact same idea can be applied in the RAM model, by employing the point
location data structure of [18] which offers the query time of O((log log U)2) in
a U × U × U integer grid.

Theorem 2. Given n points in U × U × U integer grid, dominance reporting
queries can be answered in O((log log U)2+k) worst case time in the RAM model
using linear space.

Reduction to the rank space and predecessor search are common techniques and
tools which have appeared in many places (e.g., see [4] for more references and
details) and they allow us obtain the following results.

Corollary 1. For n points in R3, dominance reporting queries can be answered
in O((log log n)2 + log log U + k) time using only linear space.

Also, by using standard techniques to reduce orthogonal range reporting queries
to dominance reporting queries (e.g., see [6,8]) we can have the following.

Corollary 2. There exists a data structure capable of answering 3D orthogonal
range reporting queries on a U × U × U grid in O((log log n)2 + log log U + k)
time, using O(n log3 n) space.

The above can be extended to higher dimensions [4].

Corollary 3. There exists a data structure capable of answering orthogonal
range reporting queries in Rd using O(n logd+ε n) space and with O(logd−3 n/
(log log n)d−5 + k) query time.

We also note that any improvements to the data structure for point location in
a planar rectangular subdivision [18] can be carried over automatically to the
dominance reporting problem and thus all the above corollaries.

Unfortunately, we cannot do the same trick to obtain an optimal algorithm
in the external memory model, since in this model, up to our knowledge, there
is no linear space algorithm with reasonable query time to combine with our
approximate levels. Thus, to get an optimal algorithm in the external memory
model, we need to develop additional tools and ideas. This is done in the next
section.

5 The External Memory Model

We use B to denote the block size in the external memory model. As we claimed
in the introduction, our result on approximate levels can simplify the data struc-
ture of Vengroff and Vitter [12] by building a hierarchy of approximate levels.
Of course, the space consumption would still be more than linear. To reduce the
space complexity, we will need the following lemma.

Lemma 4. Let P ⊂ R3 be a set of n points such that the level of each point
is at most m for a parameter m. We can find t = O(n

m) sets, V1, . . . , Vt ⊂ P ,
|Vi| = O(m) such that for any downward corner r containing k points there exist
s = O(k

m) sets Vt1 , . . . , Vts with |Pr \ (
⋃s

i=1 Vti)| = O(m) in which Pr = P ∩ r.

48 P. Afshani

Proof. Let C = {r1, . . . , rt} be an approximate Cm-level for a constant C to
be determined later. With a slight abuse of the notation, we will use ri to refer
to both the downward corner ri and the subset of P contained in ri. We claim
r1, . . . , rt are the sets claimed in the lemma. By Lemma 3 we know t = O(n

m).
Consider a downward corner r containing k points. According to Lemma 3,

we can find an approximate m-level, C′ = {r′1, . . . , r′t}, of size t′ = O(k
m) for the

points inside r. By definition, C′ covers the (≤ m)-level of Pr and so every point
of Pr is contained in at least one downward corner of C′. Thus, Pr =

⋃t′

i=1 r
′
i. If

we could show that for every r′i ∈ C′ there is another downward corner rj ∈ C
which contains r′i, then our lemma could be easily solved. Unfortunately this
is not true and in fact, r′i may contain Ω(n) points of P (although it can only
contain O(m) points of Pr). Because of this we aim for a slightly weaker claim.

Let (x, y, z) be the coordinates of the apex A of r and (x′, y′, z′) be the
coordinates of the apex A′

i of r′i. By Lemma 3 we know each r′i contains O(m)
points; assume the constant in the O notation is c. Pick C > c. We have four
important cases:

1. A dominates A′
i (Fig. 2(a)): In this case r′i contains at most Cm points of P

and is contained in at least one downward corner ri ∈ C. Thus, in this case
r′i ⊂ ri.

2. Only one coordinate of A′
i is not dominated by that of A (Fig. 2(b)): Without

loss of generality assume it is the x-coordinate (i.e., x < x′, y > y′ and
z > z′). In this case, the point Q = (x, y′, z′) is contained in r and thus
dominates at most Cm points of P which means Q is contained in at least
one downward corner ri ∈ C. Thus, in this case r′i ∩ r ⊂ ri.

3. Only one coordinate of A dominates that of A′
i (Fig. 2(c)): This case can

only happen for three elements of C′, once for each coordinate; for instance,
if x′ > x and z′ > z, then r′i contains at most Cm points with minimum
y-coordinates in Pr.

4. A′
i dominates A. This case can only happen if Pr contains less than Cm

points.

For every downward corner r′i ∈ C′, the first two cases provide us with another
downward corner ri ∈ C such that r′i ∩ r ⊂ ri. The other two cases only cover

r

r′
i

A

A′
i

Ar

A′
i

r′
i

Q

x

y
z

Ar

A′
i

r′
i

(a) (b) (c)

Fig. 2. (a) r′
i is contained inside r. (b) Only the x-coordinate of A′

i is greater than
that of A. (c) Two coordinates of A′

i are greater than those of A.

On Dominance Reporting in 3D 49

O(m) points. Thus, we can find at most t′ downward corners r1, . . . rt′′ , ∈ C such
that |Pr \ (∪t′′

i=1rti)| = O(m) with t′′ = O(k/m). ��

Remarks. The closest theorem in the context of the halfspace range searching to
the above lemma is the shallow partition theorem by Matoušek [15]; however, the
above lemma does not partition the point set and does not cover all the points
inside the downward corner r. Also, it can be viewed as “output sensitive” in the
sense that the number of sets contained or intersected by r depends on the number
of points, k, contained in r. It has been observed that such dependence on k is a
desirable property [19]. Thus, an interesting question is whether it is possible to
obtain a similar result for halfspace range searching; if so, we can also obtain an
optimal halfspace range searching data structure in the external memory model.

Lemma 5. There is a data structure for a set P of n points in R3 which can an-
swer dominance reporting queries with O(logB n + k/B) I/Os using O(n) space.

Proof. Partition P into subsets P1, . . . , Pr in the following way: define P1 to be
the set of points p ∈ P with level at most B logB n, remove P1 and repeat and
continue this operation until P is partitioned. This construction ensures that
every point p ∈ Pi has level at most O(B logB n) in Pi.

Assume for every Pi we have a data structure which uses O(|Pi|) space and
can answer queries with O(logB |Pi|+k/B) I/Os. Given a query r, we start from
P1 and using the data structure implemented on P1 we return all the points of
P1 inside r and then move on to the next set P2 and continue this until we
reach a point set Pi which does not contain any point in r; at this point we
terminate the search. The crucial observation is that if r contains at least one
point from Pi+1 then it must contain at least B logB n points from Pi−1. This
implies k = Ω(iB logB n) and thus the total query complexity will add up to
O((i + 1) logB n + k/B) = O(logB n + k/B). In short, this means that it suffices
to solve the problem for point sets P in which the level of every point is at most
B logB n. This will be our assumption in the rest of the proof.

Let m = B logB n. Using Lemma 4, compute t = O(n
m) sets, V1, . . . , Vt,

|Vi| = O(m) and store the points of each set Vi sequentially. Consider a downward
corner r containing k points. According to Lemma 4 there are s = O(k

m) sets
Vt1 , . . . , Vts such that |Pr\(∪s

i=1Vti)| = O(m). We can represent the points inside
r using O(k

m) pointers to sets Vti and an additional list of O(m) points. This is
our storage scheme for the list of points inside a downward corner r.

To make the data structure, we build a hierarchy of approximate ki-levels
for ki = 2im, 0 ≤ i ≤ O(log(n/B)) and we store the list of points in every
downward corner of the approximate levels using our storage scheme. Every
downward corner in an approximate 2im-level has O(2im) points and thus will
be stored using O(2i) pointers and a list of O(m) points. Since this approximate
level contains O(n

2im) ranges, the total space consumption for this level will be
O(n

m + m). Summing this up over all the approximate levels and including the
space needed to store the sets V1, . . . , Vt yields the space complexity of

O

(

n +
n log(n/B)

m
+ m log(n/B)

)

.

50 P. Afshani

A simple calculation reveals this is always O(n) for all values of B.
To answer the query, we find the smallest i that a downward corner rj of

an approximate 2im-level contains r. This can be done with O(i + 1) steps of
point location, once for every approximate level up to the i-th one. This will also
ensure that rj contains Θ(m2i) = Θ(k) points. The output can be determined
by a linear scan of all the points in rj; however, we have not stored the list of
points of rj directly and thus we must perform O(k

m) I/Os to just access the
pointers, O(k

B) I/Os to access the list of points referenced by these pointers and
finally an additional O(m

B) I/Os to access the list of points stored at rj . This
amounts to O

(
(i + 1) logB n + k+m

B

)
= O(logB n + k/B) I/Os. ��

Combined with the standard reductions (e.g., see [6]), we can obtain the following
corollary.

Corollary 4. There is a data structure for a set of n points in R3 which that can
answer orthogonal range reporting queries using O(n log3 n) space and O(logB n+
k/B) I/Os.

Using new point location data structure of Nekrich [13] we can also have the
following result.

Corollary 5. There is a data structure for a set of n points in R3 which that can
answer dominance reporting queries using O(n logB n) space and O(log logB U +
(log log n)2 + k/B) I/Os.

The super-linear space complexity of the above corollary stems from the super-
linear requirement of the point location data structure.

Acknowledgements. The author is in debt to Timothy Chan for many great
suggestions, ideas and references which significantly improved the presentation
of this article.

References

1. Edelsbrunner, H., Overmars, M.H.: On the equivalence of some rectangle problems.
Information Processing Letters 14 (May 1982)

2. Agarwal, P.K.: Range searching. In: Goodman, J.E., O’Rourke, J. (eds.) CPC
Handbook of Discrete and Computational Geometry (2004)

3. Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In:
Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Compu-
tational Geometry. AMS Press, Providence (1999)

4. Alstrup, S., Brodal, G.S., Rauhe, T.: New data structures for orthogonal range
searching. In: FOCS 2000: Proceedings of the 41st annual symposium on founda-
tions of computer science, Washington, DC, USA, p. 198. IEEE Computer Society,
Los Alamitos (2000)

5. Chazelle, B.: Functional approach to data structures and its use in multidimen-
sional searching. SIAM J. Comput. 17(3), 427–462 (1988)

On Dominance Reporting in 3D 51

6. Nekrich, Y.: A data structure for multi-dimensional range reporting. In: SCG 2007:
Proceedings of the 23rd annual symposium on computational geometry, pp. 344–
353. ACM, New York (2007)

7. Subramanian, S., Ramaswamy, S.: The P-range tree: a new data structure for range
searching in secondary memory. In: SODA ’95: Proceedings of the 6th annual ACM-
SIAM symposium on Discrete algorithms, Philadelphia, PA, USA, pp. 378–387
(1995)

8. Vengroff, D.E., Vitter, J.S.: Efficient 3-D range searching in external memory. In:
STOC 1996: Proceedings of the 28th annual ACM symposium on theory of com-
puting, pp. 192–201. ACM, New York (1996)

9. Makris, C., Tsakalidis, A.: Algorithms for three-dimensional dominance searching
in linear space. Inf. Process. Lett. 66(6), 277–283 (1998)

10. Chazelle, B., Edelsbrunner, H.: Linear space data structures for two types of range
search. Discrete and Computational Geometry 2(1), 113, 126 (1987)

11. JaJa, J., Mortensen, C.W., Shi, Q.: Space-efficient and fast algorithms for multidi-
mensional dominance reporting and counting. In: Fleischer, R., Trippen, G. (eds.)
ISAAC 2004. LNCS, vol. 3341, pp. 558–568. Springer, Heidelberg (2004)

12. Vitter, J.S.: External memory algorithms and data structures: dealing with massive
data. ACM Comput. Surv. 33(2), 209–271 (2001) (updated, 2007),
http://www.cs.duke.edu/∼jsv/Papers/catalog/

13. Nekrich, Y.: I/O-efficient point location in a set of rectangles. In: Laber, E.S.,
Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp.
687–698. Springer, Heidelberg (2008)

14. Agarwal, P.K., Efrat, A., Sharir, M.: Vertical decomposition of shallow levels in
3-dimensional arrangements and its applications. SIAM J. Comput. 29(3), 912–953
(2000)

15. Matoušek, J.: Reporting points in halfspaces. Computational Geometry: Theory
and Applications 2(3), 169–186 (1992)

16. Agarwal, P.K., Arge, L., Erickson, J., Franciosa, P.G., Vitter, J.S.: Efficient search-
ing with linear constraints. J. Comput. Syst. Sci. 61(2), 194–216 (2000)

17. Ramos, E.A.: On range reporting, ray shooting and k-level construction. In: SCG
1999:Proceedings of the 14th Annual Symposium on Computational Geometry, pp.
390–399 (1999)

18. de Berg, M., van Kreveld, M., Snoeyink, J.: Two- and three-dimensional point
location in rectangular subdivisions. J. Algorithms 18(2), 256–277 (1995)

19. Aronov, B., Har-Peled, S., Sharir, M.: On approximate halfspace range counting
and relative epsilon-approximations. In: SCG 2007: Proceedings of the 23rd annual
symposium on Computational geometry, pp. 327–336. ACM, New York (2007)

http://www.cs.duke.edu/~jsv/Papers/catalog/

Stabbing Convex Polygons with a Segment or a

Polygon�

Pankaj K. Agarwal1, Danny Z. Chen2, Shashidhara K. Ganjugunte1,
Ewa Misio�lek3, Micha Sharir4, and Kai Tang5

1 Dept. of Comp. Sci., Duke University, Durham, NC 27708-0129
2 Dept. of Comp. Sci. and Engg., University of Notre Dame, Notre Dame, IN 46556

3 Mathematics Dept., Saint Mary’s College, Notre Dame, IN 46556
4 School of Comp. Sci., Tel Aviv University, Tel Aviv 69978, and Courant Inst. of

Math. Sci., NYC, NY 10012
5 Dept. of Mech. Engg., HKUST, Hong Kong, China

Abstract. Let O = {O1, . . . , Om} be a set of m convex polygons in R2

with a total of n vertices, and let B be another convex k-gon. A placement
of B, any congruent copy of B (without reflection), is called free if B
does not intersect the interior of any polygon in O at this placement. A
placement z of B is called critical if B forms three “distinct” contacts
with O at z. Let ϕ(B, O) be the number of free critical placements. A
set of placements of B is called a stabbing set of O if each polygon in O

intersects at least one placement of B in this set.
We develop efficient Monte Carlo algorithms that compute a stabbing

set of size h = O(h∗ log m), with high probability, where h∗ is the size of
the optimal stabbing set of O. We also improve bounds on ϕ(B, O) for the
following three cases, namely, (i) B is a line segment and the obstacles
in O are pairwise-disjoint, (ii) B is a line segment and the obstacles in
O may intersect (iii) B is a convex k-gon and the obstacles in O are
disjoint, and use these improved bounds to analyze the running time of
our stabbing-set algorithm.

1 Introduction

Problem statement. Let O = {O1, . . . , Om} be a set of m convex polygons in R2

with a total of n vertices, and let B be another convex polygon. A placement of
B is any congruent copy of B (without reflection). A set of placements of B is

� Work by P.A, S.G, and M.S, was supported by a grant from the U.S.-Israel Binational
Science Foundation. Work by P.A. and S.G. was also supported by NSF under grants
CNS-05-40347, CFF-06-35000, and DEB-04-25465, by ARO grants W911NF-04-1-
0278 and W911NF-07-1-0376, and by an NIH grant 1P50-GM-08183-01 and by a
DOE grant OEGP200A070505. Work by M.S. was partially supported by NSF Grant
CCF-05-14079, by grant 155/05 from the Israel Science Fund, by a grant from the
AFIRST joint French-Israeli program, and by the Hermann Minkowski–MINERVA
Center for Geometry at Tel Aviv University. Work of D.C. was supported in part by
the NSF under Grant CCF-0515203.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 52–63, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Stabbing Convex Polygons with a Segment or a Polygon 53

called a stabbing set of O if each polygon in O intersects at least one copy of B in
this set. In this paper we study the problem of computing a small-size stabbing
set of O.

Terminology. A placement of B can be represented by three real parameters
(x, y, tan(θ/2)) where (x, y) is the position of a reference point o in B, and θ is
the counterclockwise angle by which B is rotated from some fixed orientation.
The space of all placements of B, known as the configuration space of B, can
thus be identified with R3 (a more precise identification would be with R2 × S1;
we use the simpler, albeit topologically less accurate identification with R3).

For a given point z ∈ R3, we use B[z] to denote the corresponding placement
(congruent copy) of B. Similarly, for a point p ∈ B or a subset X ⊆ B, we use
p[z] and X [z] to denote the corresponding point and subset, respectively, in B[z].
A placement z of B is called free if B[z] does not intersect the interior of any
polygon in O, and semifree if B[z] touches the boundary of some polygon(s) in
O but does not intersect the interior of any polygon. Let F(B,O) ⊆ R3 denote
the set of all free placements of B. For 1 ≤ i ≤ m, let Ki ⊆ R3 denote the set
of placements of B at which it intersects Oi. We refer to Ki as a c-polygon. Set
K(B,O) = {K1, . . . ,Km}. If B and the set O are obvious from the context, we
use F and K to denote F(B,O) and K(B,O), respectively. Note that F(B,O) =
cl(R3 \

⋃
K(B,O)), where cl is the closure operator. If {B[z1], . . . , B[zh]} is a

stabbing set for O, then each Ki contains at least one point in the set Z =
{z1, . . . , zh}, i.e., Z is a hitting-set for K. Hence, the problem of computing a
small-size stabbing set of O reduces to computing a small-size hitting set of K.

We use a standard greedy algorithm (see, e.g., [6]) to compute a hitting set
of K. The efficiency of our algorithm depends on the combinatorial complexity
of F, defined below. We consider the following three cases:

(C1) B is a line segment and the polygons in O may intersect.
(C2) B is a line segment and the polygons in O are pairwise disjoint.
(C3) B is a convex k-gon and the polygons in O are pairwise disjoint.

A contact C is defined to be a pair (s, w) where s is a vertex of B and w is
an edge of O ∈ O, or w is a vertex of O and s is an edge of B. A double contact
is a pair of contacts, and a triple contact is a triple of contacts. A placement
z forms a contact C = (s, w) if s[z] touches w and B[z] does not intersect the
interior of the polygon O ∈ O containing w. A placement z forms a double
contact {C1, C2} if it forms both the contacts C1 and C2, and similarly it forms
a triple contact {C1, C2, C3} if it forms all three of them; we also refer to triple-
contact placements as critical. A double (or triple) contact is realizable if there
is a placement of B at which this contact is formed. We call a double contact
{C1, C2} degenerate if both the contacts C1 and C2 involve the same polygon of
O. If z forms a degenerate double contact then either a vertex of B[z] touches
a vertex of O or an edge of B[z] is flush with an edge of O. A triple contact is
called degenerate if its three contacts involve at most two polygons of O, i.e.,
if it involves a degenerate double contact. If we decompose ∂Ki into maximal
connected components so that all placements within a component form the same

54 P.K. Agarwal et al.

contact(s), then the edges and vertices on ∂Ki correspond to degenerate double
and triple contacts, respectively (more precisely, the vertices are those triple
contacts that involve at most two polygons). A non-degenerate triple contact
(or critical) placement is formed by the intersection of the boundaries of three
distinct c-polygons. Using the fact that each Oi is a convex polygon and B is
also a convex polygon, it can be shown (see, e.g., [11]) that the complexity of F
is proportional to the number of semifree critical placements, which we denote
by ϕ(B,O). We use ϕ∗(B,O) to denote the number of semifree non-degenerate
critical placements. In many cases ϕ(B,O) is proportional to ϕ∗(B,O) but in
some cases ϕ∗(B,O) can be much smaller. We improve the bounds on ϕ(B,O)
for all three cases (C1)–(C3), and on ϕ∗(B,O) for (C2).

Related work. The general hitting-set problem is NP-hard, and it is believed to be
intractable to obtain an o(log n)-approximation [7]. An O(log n)-approximation
can be achieved by a simple greedy algorithm [16]. The hitting-set problem
remains NP-hard even in a geometric setting [12,13], and in some instances
also hard to approximate [4]. However, in many cases polynomial-time algo-
rithms with approximation factors better than O(log n) are known. For exam-
ple, Hochbaum and Maass [9] devise (1 + ε)-approximation algorithms (for any
ε > 0), for the problem of hitting a set of unit disks by a set of points. For set
systems that typically arise in geometric problems, the approximation factor can
be improved to O(log c∗), where c∗ is the size of the optimal solution, and in
some settings a constant factor approximation is also possible; see, e.g., [5].

Motivated by motion-planning and related problems in robotics, there is a rich
body of literature on analyzing the complexity of the free space of a variety of
moving systems B (“robots”), and a considerable amount of the earlier work has
focussed on the cases where B is a line segment or a convex polygon translating
and rotating in a planar polygonal workspace. Cases (C2) and (C3) correspond to
these scenarios. It is beyond the scope of this paper to review all of this work. We
refer the reader to the surveys [8,14,15]. We briefly mention the results that are
directly related to our study. Leven and Sharir [10] proved that ϕ(B,O) = O(n2)
if B is a line segment and O is a set of pairwise-disjoint polygons with a total
of n vertices. They also give a near-quadratic algorithm to compute F(B,O).
For the case where B is a convex k-gon, Leven and Sharir [11] proved that
ϕ(B,O) = O(k2n2β6(kn)), where βs(t) = λs(t)/t, and λs(t) is the maximum
length of an (t, s)-Davenport-Schinzel sequence [15]; βs(t) is an extremely slowly
growing function of t.

Our results. There are two main contributions of this paper. First, we refine the
earlier bounds on ϕ(B,O) so that they also depend on the number m of polygons
in O, and not just on their total number of vertices, since m� n in many cases.
Second, we present a general approach for computing a hitting set, which leads
to faster algorithms for computing stabbing sets.

Specifically, we first prove (in Section 2), for the case whereB is a line segment,
that the complexity of F(B,O) is O(mnα(n)), and that F(B,O) can be computed
in O(mnα(n) log2 n) randomized expected time. If the polygons in O are pairwise

Stabbing Convex Polygons with a Segment or a Polygon 55

disjoint, then ϕ(B,O) = Θ(mn), but ϕ∗(B,O) = O(m2 + n). We then show
that we can compute, in O((m2 + n) logm log2 n) randomized expected time,
an implicit representation of F of size O(m2 + n), which is sufficient for many
applications (including ours). We then consider case (C3) (Section 3). We show
that ϕ(B,O) = O(k2mnβ6(kn)) in this case, and that F can be computed in
expected time O(k2mnβ6(kn) log(kn) logn).

The subsequent results in this paper depend on the complexity of F. Since we
are mainly interested in bounds that are functions of the number of polygons and
of their total size, we abuse the notation a little, and write ϕ(m,n) to denote the
maximum complexity of F for each of the three cases; the maximum is taken over
all m convex polygons with a total of n vertices, and these polygons are disjoint
for cases (C2) and (C3). Similarly we define ϕ∗(m,n) for the maximum number
of nondegenerate critical placements (in case (C3), the bounds also depend on k).

For a point z ∈ R3, we define its depth to be the number of c-polygons Ki

that contain z. We present a randomized algorithm Depth Threshold , which,
given an integer l ≤ m, determines whether the maximum depth of a placement
(with respect to O) is at most l. If not, it returns all critical placements (of depth
at most l). The expected running time of this algorithm is O(l3ϕ(m/l, n/l) logn).
For (C2), the procedure runs in expected time O(l3ϕ∗(m/l, n/l) log2 n) time.

Finally, we describe algorithms for computing a hitting set of K of size O(h∗

logm) where h∗ is the size of the smallest hitting set of K. Basically, we use the
standard greedy approach, mentioned above, to compute such a hitting set, but
we use more efficient implementations, which exploit the geometric structure of
the problems at hand. The first implementation runs in O(Δ3ϕ(m/Δ,n/Δ) log n)
time, whereΔ is the maximum depth of a placement. The second implementation
is a Monte Carlo algorithm, based on a technique of Aronov and Har-Peled [3] for
approximating the depth in an arrangement. The expected running time of the
second implementation is O(ϕ(m,n)h logm logn + mn1+ε) time, where h is the
size of the hitting set computed by the algorithm, which is O(h∗ logm), with high
probability. Finally, we combine the two approaches and obtain a Monte Carlo al-
gorithm whose running time is O(ϕ(m,n) · nε + η3ϕ(m/η, n/η) logn log3m), for
any ε > 0, where η = min{h1/3,m1/4} and h = O(h∗ logm), with high proba-
bility. For case (C2), the expected running time can be improved to O(ϕ∗(m,n) ·
nε +η3ϕ∗(m/η, n/η) logc n)), for some constant c > 1. We believe that one should
be able to improve the expected running time to O(ϕ(m,n) logO(1) n), but such
a bound remains elusive for now. Because of lack of space many algorithms and
proofs are omitted from this abstract, which can be found in the full version of
this paper [1].

2 Complexity of F for a Segment

Let B be a line segment of length d, and let O be a set of m convex polygons in
R2 with a total of n vertices. We first bound the number of critical placements
when the polygons in O may intersect, and then prove a refined bound when

56 P.K. Agarwal et al.

the polygons are pairwise disjoint. We omit the algorithms for computing these
placements from this abstract.

The case of intersecting polygons. There are several types of critical placements
of B (see Figure 1(a)):

(i) A placement where one endpoint of B touches a vertex of one polygon and
the other endpoint touches an edge of another polygon.
(ii) A placement where one endpoint of B touches a vertex of one polygon and
the relative interior of B touches a vertex of another polygon.
(iii) The relative interior of B touches two vertices (of the same or of distinct
polygons) and one endpoint of B touches a polygon edge.
(iv) The relative interior of B touches a vertex of a polygon, and one of its
endpoints touches an intersection point of two edges (of distinct polygons).
(v) One endpoint of B touches an intersection point of two edges (of distinct
polygons), and the other endpoint touches a third edge.
(vi) The relative interior ofB touches a vertex of a polygon, and its two endpoints
touch two respective edges (of distinct polygons).

There are O(mn) placements of types (i) and (ii), and O(m2 +n) placements
of type (iii).

(i) (ii)

(v)

(iii)

(iv) (vi)

(a) (b)

v
d d

u

z

y

w

Q′

Q

Fig. 1. (a) Critical free placements of B; (b) FQ and GQ′ intersect at most twice

Consider the placements of types (iv) and (v). Let u be an intersection point
of two polygon boundaries (which lies on the boundary of their union), and let
H denote the hole (i.e., connected component of the complement) of the union
of O which contains u on its boundary. Again, placing an endpoint of B at u
leaves B with one degree of freedom of rotation about u. However, at any such
free placement, B must be fully contained in (the closure of) H . For any polygon
O ∈ O whose boundary contributes to ∂H , there are at most two critical free
placements of types (iv) and (v) where B swings around u and touches O, and no
other polygon (namely, those which do not show up on ∂H) can generate such a
placement. It follows that, for any polygon O ∈ O, the intersection points u that
can form with O critical free placements of type (iv) or (v) are vertices of the

Stabbing Convex Polygons with a Segment or a Polygon 57

zone of ∂O in the arrangement A(O \ {O}). Since ∂O is convex, the complexity
of the zone is O(nα(n)) [2]. Hence the overall number of such placements is
O(mnα(n)).

Finally, consider critical free placements of type (vi). Let v be a fixed vertex
of some polygon (not lying inside any other polygon). The placements of B at
which its relative interior touches v can be parametrized in a polar coordinate
system (r, θ), where r is the distance of one endpoint a of B from v, and θ is
the orientation of B, oriented towards a, so that O lies to the right of (the line
supporting) B. The admissible values of (r, θ) can be restricted to the rectangle
[0, d]×I, where I is the range of orientations of tangent lines to O at v, for which
O lies to their right. For any polygon Q ∈ O \ {O}, we define a forward function
r = FQ(θ) and a backward function r = GQ(θ), where FQ(θ) (resp., GQ(θ)) is
the distance from v to �θ ∩ Q (resp., d minus that distance), where �θ is the
line at orientation θ that passes through v. FQ(θ) (resp., GQ(θ)) is defined only
when �θ ∩Q is nonempty, lies ahead (resp., behind) v along �θ, and its distance
from v is at most d; in all other cases, we set FQ(θ) := d (resp., GQ(θ) := 0). It
is clear that the set Fv of free placements of B when its relative interior hinges
over v, is given in parametric form by

{(r, θ) | max
Q

GQ(θ) ≤ r ≤ min
Q

FQ(θ)}.

That is, Fv, in parametric form, is the sandwich region between the lower enve-
lope of the functions FQ and the upper envelope of the functions GQ. It follows
that the combinatorial complexity of Fv is proportional to the sum of the com-
plexities of the two individual envelopes. A placement of B, where one endpoint
lies either at a vertex of some polygon (including v itself), or at the intersection
point between two edges of distinct polygons, its relative interior touches v, and
the portion of B between these two contacts is free, corresponds to a breakpoint
in one of the envelopes. Arguing as in the analysis of the preceding types of criti-
cal placements, the overall number of such placements, summed over all vertices
v, is O(mnα(n)). It follows that the overall number of critical placements of type
(vi) is also O(mnα(n)). Putting everything together, we obtain:

Theorem 1. Let B be a line segment and let O be a set of m (possibly intersect-
ing) convex polygons in R2 with n vertices in total. The number of free critical
placements of B is O(mnα(n)).

The case of pairwise-disjoint polygons. We now prove a refined bound on the
number of free critical placements if the polygons in O are pairwise disjoint.
A trivial construction shows that, even in this case, there can be Ω(mn) free
critical placements of types (i) and (ii). However, most of these placements in-
volve contacts with only two distinct polygons, so they are degenerate critical
contacts. As we next show, the number of nondegenerate critical contacts is
smaller. Specifically, we argue that there are only O(m2 +n) free nondegenerate
critical placements.

We have already ruled out critical placements of types (i) and (ii) because they
are degenerate, and we rule out placements of type (iv) and (v) because

58 P.K. Agarwal et al.

they involve intersecting polygons. It thus remains to bound the number of free
critical placements of types (iii) and (vi). There are only O(m2 +n) critical place-
ments of type (iii), as argued above. For placements of type (vi), we use the same
scheme as above, fixing the pivot vertex v and considering the system of func-
tions FQ(θ), GQ(θ) in polar coordinates about v. Let Lv(θ) = minQ FQ(θ) and
Uv(θ) = maxQGQ(θ); Let μv (resp. νv) be the number of breakpoints in Lv (resp.
Uv). Using the fact that the functions FQ (and GQ) are pairwise disjoint, we claim
the following:

Lemma 1.
∑

v(μv + νv) = O(m2 + n).

If we mark the θ-values at which a breakpoint of Lv or Uv occurs, we partition
the θ-range into intervals so that each of Lv and Uv is attained by (a connected
portion of the graph of) a single function, say FQ and GQ′ , respectively. We
claim that FQ and GQ′ intersect in at most two points in this interval, i.e., there
are two semifree placements of B such that v lies in the interior of B and the
endpoints of B lie on ∂Q and ∂Q′; see Figure 1(b). Hence, the number of vertices
in the sandwich region between Lv and Uv is O(μv + νv). Putting everything
together, we obtain:

Theorem 2. Let B be a line segment, and let O be a set of pairwise-disjoint con-
vex polygons with n vertices in total. The number of nondegenerate free critical
placements of B is O(m2 + n).

3 Complexity of F for a Convex k-gon

In this section we derive an improved bound on ϕ(B,O) for the case where B is
a convex k-gon and O is a set of m pairwise-disjoint convex polygons in R2 with
n vertices in total. We assume that the polygons in O are in general position,
as in [11]. We first prove that the number of degenerate free critical placements
is O(k2mn), and then show that the total number of realizable double contacts
is O(k2mn). By adapting the argument of Leven and Sharir [11], we then prove
that ϕ(B,O) = O(k2mnβ6(kn)). We begin by stating a lemma, which establishes
an upper bound on the number of realizable double contacts when there are only
two obstacles.

Lemma 2. Let B be a convex k-gon, and let O1 and O2 be two disjoint con-
vex polygons with n1 and n2 vertices, respectively, then the number of semifree
degenerate critical placements in F(B, {O1, O2}) is O(k2(n1 + n2)).

The following corollary follows immediately from Lemma 2.

Corollary 1. Let B be a convex k-gon and let O be a set of m pairwise-disjoint
convex polygons with n vertices in total. The number of degenerate critical place-
ments in F(B,O) is O(k2mn).

Next, we bound the number of realizable double contacts. It is tempting to
prove that a fixed contact C can realize only O(km) double contacts, but, as

Stabbing Convex Polygons with a Segment or a Polygon 59

shown in the full version, a contact may be involved in Ω(kn) realizable double
contacts, so we have to rely on a more global counting argument. Note first that
the preceding argument shows that the number of degenerate double contacts
is O(k2mn), so it suffices to consider only nondegenerate double contacts. Since
we assume that the polygons are in general position, the locus of placements
forming a fixed non-degenerate double contact {C1, C2} is a curve in R3. Let
O1 and O2 be the two (distinct) polygons involved in {C1, C2}. Adapting the
argument in [15, Lemma 8.55], one can show that at least one endpoint of this
curve is a degenerate triple contact, which we denote by z(C1, C2), which is
semifree with respect to O1 and O2. We thus charge {C1, C2} to z(C1, C2), and
argue that each nondegenerate triple contact in F(B, {O1, O2}) is charged at
most O(1) times. Omitting all further details, we obtain:

Lemma 3. Let B be a convex k-gon and let O be a set of m pairwise-disjoint
convex polygons with n vertices in total. The number of realizable double contacts
is O(k2mn).

Plugging Corollary 1 and Lemma 3 into the proof of Leven and Sharir [11], we
obtain the main result of this section.

Theorem 3. Let B be a convex k-gon, and let O be a set of m pairwise-disjoint
convex polygons with n vertices in total. Then ϕ(B,O) = O(k2mnβ6(kn)).

4 Computing Critical Placements

So far, we have only considered semifree critical placements, but, since we want to
construct a set of stabbing placements of B, we need to consider (and compute)
the set of all (nonfree) critical placements.

Bounding the number of critical placements. Let K = {K1, . . . ,Km} be the
set of c-polygons yielded by B and O, as defined in the Introduction, and let
A(K) denote the 3-dimensional arrangement of K. For a point z ∈ R3 and a
subset G ⊆ K, let Δ(z,G) denote the depth of z with respect to G, i.e., the
number of c-polygons in G containing z in their interior; we use Δ(z) to denote
Δ(z,K). Let Φl(K) denote the set of vertices of A(K), whose depth is l, and put
Φ≤l(K) =

⋃
h≤l Φh(K). Set ϕl(K) = |Φl(K)| and ϕ≤l(K) = |Φ≤l(K)|. We now

state a theorem, whose proof is deferred to the full version of this paper.

Theorem 4. (i) Let B be a line segment, let O be a set of m convex polygons
in R2 with a total of n vertices, and let K = K(B,O). Then, for any 1 ≤ l ≤ m,
we have ϕ≤l(K) = O(mnlα(n)). If the polygons in O are pairwise disjoint, then
the number of non-degenerate critical placements in Φ≤l(K) is O(m2l + nl2).

(ii) Let B be a convex k-gon, let O be a set of m pairwise-disjoint polygons in
R2 with a total of n vertices, and let K = K(B,O). Then, for any 1 ≤ l ≤ m,
we have ϕ≤l(K) = O(k2mnlβ6(kn)).

60 P.K. Agarwal et al.

The Depth Threshold procedure. One of the strategies that we will use for
computing a stabbing set is based on determining whether the maximal depth
in A(K) exceeds a given threshold l. For this we use the Depth Threshold

procedure, which, given an integer l ≥ 1, determines whether Depth (K) ≤ l. If
not, it returns a critical placement whose depth is greater than l. Otherwise, it
returns all critical placements of B (which are all the vertices of A(K)). Without
describing the details of this procedure, we claim the following.

Theorem 5. (i) Let B be a line segment, and let O be a set of m convex poly-
gons in R2 with a total of n vertices. For a given integer 1 ≤ l ≤ m, the
Depth Threshold (l) procedure takes O(mn(log n + lα(n))) expected time.
If the polygons in O are pairwise disjoint, the expected running time is O((m2l+
nl2) log2 n).

(ii) Let B be a convex k-gon and O be a set of m pairwise-disjoint convex
polygons in R2 with a total of n vertices. For a given integer 1 ≤ l ≤ m, the
Depth Threshold (l) procedure takes O(k2mn(logn+lβ6(kn))) expected time.

5 Computing a Hitting Set

Let K = {K1, . . . ,Km} be the set of c-polygons, for an input collection O of
convex polygons and a line segment or convex polygon B, as above. Our goal is
to compute a small-size hitting set for K, and we do it by applying a standard
greedy technique which proceeds as follows. In the beginning of the ith step we
have a subset Ki ⊆ K; initially K1 = K. We compute a placement zi ∈ R3

such that Δ(zi,Ki) = Depth (Ki), and we also compute the set Kzi ⊆ Ki of
the c-polygons that contain zi. We add zi to H , and set Ki+1 = Ki \ Kzi . The
algorithm stops when Ki becomes empty. The standard analysis of the greedy
algorithm [6] shows that |H | = O(h∗ logm), where h∗ is the size of the smallest
hitting set for K. In fact, the size of H remains O(h∗ logm), even if at each
step we choose a point zi such that Δ(zi,Ki) ≥ Depth (Ki)/2. We describe
three different procedures to implement this greedy algorithm. The first one, a
Las Vegas algorithm, works well when Depth (K) is small. The second one, a
Monte Carlo algorithm, works well when h∗ is small. Finally, we combine the
two approaches to obtain an improved Monte Carlo algorithm. For simplicity,
and due to lack of space, we focus on case (C1): B is a segment and the polygons
in O may intersect.

The Las Vegas algorithm. It suffices to find a deepest point in A(K) that lies
on ∂Ki for some i, and that (assuming general position), we may assume it to
lie in the relative interior of some 2-face (the depth of all the points within the
same 2-face is the same). Thus, for each 2-face f of A(K) we choose a sample
point zf . Let Z ⊆ R3 be the set of these points. We maintain Δ(z,Ki) for each
z ∈ Z, as we run the greedy algorithm, and return zi = arg maxz∈Z Δ(z,Ki) at
each step, and delete the c-polygons containing zi from K. It will be expensive
to maintain the depth of each point in Z explicitly. We describe a data structure
that maintains the depth of each placement zi in Z implicitly, supports deletion

Stabbing Convex Polygons with a Segment or a Polygon 61

of c-polygons and returns a placement of maximum depth. For each c-polygon
Kj, let Γj = {γji = ∂Kj ∩Ki | i
= j} be a set of regions on ∂Kj. We compute
A(Γj) using Theorem 5. Let D(Γj) be the planar graph that is dual to A(Γj).
We choose a representative point zf from each face f of A(Γj), and use zf to
denote the node of D(Γj) dual to f . If an edge e of A(Γj) lies on ∂Ka, for some
Ka ∈ K, we label the edge e of D(Γj) with Ka and denote this label by χ(e).
We compute a spanning tree T of D(Γj), and then convert T into a path Π by
performing a traversal of T , starting from some leaf v; each edge of T appears
twice in Π . The sequence of vertices in Π can be decomposed into intervals, such
that all vertices in each interval either lie in a c-polygon Ka or none of them lie
inside Ka. Let Ja be the subset of those intervals whose vertices lie inside Ka.
We represent an interval vx, . . . , vy by the pair [x, y]. Set J =

⋃
a�=j Ja. For any

vertex vs ∈ Π , we define the weight w(vs) to be the number of intervals [x, y]
in J that contain vs, i.e., intervals satisfying x ≤ s ≤ y. For a subset G ⊆ K,
Δ(vs,G) is the number of intervals in

⋃
Ka∈G Ja that contain vs. We store J

in a segment tree, Σ, built on the sequence of edges in Π . Each node σ of Σ
corresponds to a subpath Πσ of Π . For each σ, we maintain the vertex of Πσ of
the maximum weight. The root of Σ stores a vertex of Π of the maximum weight.
Once we have computed A(Γj), J and Σ can be constructed in O(κj log κj) time,
where κj is the complexity of A(Γj). We have

∑
j κj = O(mnΔα(n)), where

Δ = Depth (K). The information in Σ can be updated in O(log n) time when
an interval is deleted from J . When the greedy algorithm deletes a c-polygon
Ka, we delete all intervals in Ja from J and update Σ. The total time spent in
updating Σ is O(κj logn). Maintaining this structure for each c-polygon Kj, the
greedy algorithm can be implemented in O(mnΔα(n) log n) expected time.

Lemma 4. A hitting set of K of size O(h∗ logm) can be computed in expected
time O(mnΔα(n) log n), where Δ = Depth (K) and where h∗ is the size of a
smallest hitting set of K.

A simple Monte Carlo algorithm. Let Δ = Depth (K). If Δ = O(logm), we use
the above algorithm and compute a hitting set in time O(mnα(n) logm logn).
So assume that Δ ≥ c logm for some constant c ≥ 1. We use a procedure by
Aronov and Har-Peled [3], which computes a placement whose depth is at least
Δ/2. Their main algorithm is based on the following observation. Fix an integer
l ≥ Δ/4. Let G ⊆ K be a random subset obtained by choosing each c-polygon
of K with probability ρ = (c1 lnm)/l, where c1 is an appropriate constant.
Then the following two conditions hold with high probability, (i) if Δ ≥ l then
Depth (G) ≥ 3lρ/2 = (3c1/2) lnm, and, ii) if Δ ≤ l then Depth (G) ≤ 5lρ/4 =
(5c1/4) lnm.

This observation immediately leads to a binary-search procedure for approx-
imating Depth (K). Let τ = (5c1/4) lnm. In the ith step, for i ≤ �log2(m/
log2m)�, we set li = m/2i. We choose a random subset Gi ⊆ K using the pa-
rameter l = li, and then run the procedure Depth Threshold on Gi with
parameter τ . If the procedure determines that Depth (Gi) ≤ τ , then we con-
clude that Depth (K) ≤ li, and we continue with the next iteration. Otherwise,
the algorithm returns a point z ∈ R3 such that Δ(z,Gi) ≥ τ . We need a data

62 P.K. Agarwal et al.

structure for reporting the set of polygons in O intersected by B[z] for a place-
ment z ∈ R3. As we show in the full version, we can preprocess O into a data
structure of size O(mn1+ε), for any ε > 0, so that a convex polygon Oi of O can
be deleted in time O(|Oi| · nε), where |Oi| is the number of vertices of Oi, and
so that the set of all κ polygons intersecting a query placement B[z] of B can
be reported in time O((1 + κ) logn).

Set mi = |Gi|, and let ni be the number of vertices in the original polygons
corresponding to the c-polygons in Gi. Then the expected running time of the ith
iteration is O(miniτα(n) log n). Since E[mini] = O(mnρ2 + nρ), the expected
running time of the ith iteration is O((mn/l2i)α(n) log3m logn).

Since the algorithm always stops after at most �log2(m/ log2m)� iterations,
the overall expected running time is O(mnα(n) logm logn). Note that if the al-
gorithm stops after i steps, then, with high probability, Δ ∈ [li, 2li]. Hence, the
expected running time of the algorithm is O((mn/Δ2)α(n) log3m logn). Plug-
ging this procedure into the greedy algorithm described above, and accounting
for O(mn1+ε) time for preprocessing and reporting the polygons intersecting a
placement z, we get the following lemma.

Lemma 5. There is a Monte Carlo algorithm for computing a hitting set of K

whose size is h = O(h∗ logm) with probability at least 1 − 1/mO(1), and whose
expected running time is O(mnhα(n) logm logn +mn1+ε).

An improved Monte Carlo algorithm. We now combine the two algorithms given
above, to obtain a faster algorithm for computing a small-size hitting set of K.
For this we use the data structure mentioned above, which preprocesses O in
O(mn1+ε) time to support deletion.

We now run the greedy algorithm as follows. We begin by running the Monte
Carlo algorithm described above. In the ith iteration, it returns a point zi such
that Δ(zi,Ki) ≥ Depth (Ki)/2, with high probability. We use the above data
structure to report the set Ozi of all polygons that intersect the query placement
B[zi], or, equivalently, the set Kzi of the c-polygons that contain zi. We delete
these polygons from the data structure. If |Ozi | < i1/3 then we switch to the Las
Vegas algorithm described earlier, to compute a hitting set of Ki+1.

We now analyze the expected running time of the algorithm. The total time
spent in reporting the polygons intersected by the placements B[z1], . . . , B[zh],
is O(mn1+ε), so it suffices to bound the time spent in computing z1, . . . , zh.
Suppose that the algorithm switches to the second stage after ξ + 1 steps. Then
Depth (Ki) ≥ ξ1/3, for 1 ≤ i ≤ ξ, and, the expected running time of each of the
iterations of the first stage is O((mn/ξ2/3)α(n) log n log3m). Hence, the expected
running time of the first stage is O(mnξ1/3α(n) log n log3m). The expected run-
ning time of the second stage is O(mnξ1/3α(n) log n) because Depth (Kξ+2) ≤
2ξ1/3. Suppose h is the size of the hitting set computed by the algorithm. Then
ξ ≤ h. Moreover, for 1 ≤ i ≤ ξ, each zi lies inside at least (ξ1/3)/2 c-polygons
of Ki, and all these polygons are distinct. Therefore, ξ4/3 ≤ 2m. The expected
running time of the overall algorithm is O(mnηα(n) log n log3m+mn1+ε), where
η = min{m1/4, h1/3}. We thus obtain the following.

Stabbing Convex Polygons with a Segment or a Polygon 63

Theorem 6. Let B be a line segment, and let O be a set of m (possibly in-
tersecting) convex polygons in R2, with a total of n vertices. A stabbing set
of O of h = O(h∗ logm) placements of B can be computed, with probability
at least 1 − 1/mO(1), in expected time O(mn(nε + ηα(n) log n log3m)), where
η = min{m1/4, h1/3}, h∗ is the smallest size of a hitting set, and ε > 0 is an
arbitrarily small constant.

Remark: The expected running time of the above approach is O((m2 +n)nε +
(m2η + nη2) logc(n)) for case (C2) and O(k2mn(nε + ηβ6(kn) logn log3m)) for
case (C3).

References

1. Agarwal, P.K., Chen, D.Z., Ganjugunte, S.K., Miso�lek, E., Sharir, M., Tang, K.:
Stabbing convex polygons with a segment or a polygon (2008),
http://www.cs.duke.edu/∼shashigk/sstab/shortstab.pdf

2. Agarwal, P.K., Sharir, M.: Arrangements and their applications. In: Sack, J.-R.,
Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 49–119. Elsevier,
Amsterdam (2000)

3. Aronov, B., Har-Peled, S.: On approximating the depth and related problems. In:
Proc. of the 16th Annu. ACM-SIAM Sympos. Discrete Algorithms, pp. 886–894
(2005)

4. Berman, P., DasGupta, B.: Complexities of efficient solutions of rectilinear polygon
cover problems. Algorithmica 17, 331–356 (1997)

5. Clarkson, K.L., Varadarajan, K.: Improved approximation algorithms for geometric
set cover. Discrete Comput. Geom. 37, 43–58 (2007)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2001)

7. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45, 634–652
(1998)

8. Halperin, D., Kavraki, L., Latombe, J.-C.: Robotics. In: Goodman, J.E., O’Rourke,
J. (eds.) Handbook of Discrete and Computational Geometry, pp. 755–778. CRC
Press, Boca Raton (1997)

9. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing
problems in image processing and VLSI. J. ACM 32, 130–136 (1985)

10. Leven, D., Sharir, M.: An efficient and simple motion planning algorithm for a
ladder moving in two-dimensional space amidst polygonal barriers. In: Proc. 1st
Annu. Sympos. on Comput. Geom., pp. 221–227. ACM, New York (1985)

11. Leven, D., Sharir, M.: On the number of critical free contacts of a convex polygonal
object moving in two-dimensional polygonal space. Discrete Comput. Geom. 2,
255–270 (1987)

12. Megiddo, N., Supowit, K.J.: On the complexity of some common geometric location
problems. SIAM J. Comput. 13, 182–196 (1984)

13. Megiddo, N., Tamir, A.: On the complexity of locating linear facilities in the plane.
Operations Research Letters 1, 194–197 (1982)

14. Sharir, M.: Algorithmic motion planning in robotics. IEEE Computer 22, 9–20
(1989)

15. Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and their Geometric Ap-
plications. Cambridge University Press, New York (1995)

16. Vazirani, V.: Approximation Algorithms. Springer, Heidelberg (2004)

http://www.cs.duke.edu/~shashigk/sstab/shortstab.pdf

An Efficient Algorithm for 2D Euclidean

2-Center with Outliers�

Pankaj K. Agarwal and Jeff M. Phillips

Department of Computer Science, Duke University, Durham, NC 27708

Abstract. For a set P of n points in R2, the Euclidean 2-center problem
computes a pair of congruent disks of the minimal radius that cover P .
We extend this to the (2, k)-center problem where we compute the mini-
mal radius pair of congruent disks to cover n−k points of P . We present
a randomized algorithm with O(nk7 log3 n) expected running time for
the (2, k)-center problem. We also study the (p, k)-center problem in R2

under the �∞-metric. We give solutions for p = 4 in O(kO(1)n log n) time
and for p = 5 in O(kO(1)n log5 n) time.

1 Introduction

Let P be a set of n points in R2. For a pair of integers 0 ≤ k ≤ n and p ≥ 1,
a family of p congruent disks is called a (p, k)-center if the disks cover at least
n − k points of P ; (p, 0)-center is the standard p-center. The Euclidean (p, k)-
center problems asks for computing a (p, k)-center of P of the smallest radius.
In this paper we study the (2, k)-center problem. We also study the (p, k)-center
problem under the �∞-metric for small values of p and k. Here we wish to cover
all but k points of P by p congruent axis-aligned squares of the smallest side
length. Our goal is to develop algorithms whose running time is n(k logn)O(1).

Related work. There has been extensive work on the p-center problem in algo-
rithms and operations research communities [4,14,18,9]. If p is part of the input,
the problem is NP-hard [22] even for the Euclidean case in R2. The Euclidean 1-
center problem is known to be LP-type [20], and therefore can be solved in linear
time for any fixed dimension. The Euclidean 2-center problem is not LP-type.
Agarwal and Sharir [3] proposed an O(n2 log3 n) time algorithm for the 2-center
problem. The running time was improved to O(n logO(1) n) by Sharir [24]. The
exponent of the logn factor was subsequently improved in [15,6]. The best known
deterministic algorithm takes O(n log2 n log2 logn) time in the worst case, and
the best known randomized algorithm takes O(n log2 n) expected time.

There is little work on the (p, k)-center problem. Using a framework described
by Matoušek [19], the (1, k)-center problem can be solved in O(n log k + k3nε)
� This work is supported by NSF under grants CNS-05-40347, CFF-06-35000, and

DEB-04-25465, by ARO grants W911NF-04-1-0278 and W911NF-07-1-0376, by an
NIH grant 1P50-GM-08183-01, by a DOE grant OEGP200A070505, and by a grant
from the U.S. Israel Binational Science Foundation.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 64–75, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Efficient Algorithm for 2D Euclidean 2-Center with Outliers 65

time for any ε > 0. In general, Matoušek shows how to solve this problem
with k outliers in O(nkd) time where d is the inherent number of constraints in
the solution. The bound for the (1, k)-center problem is improved by Chan [7]
to O(nβ(n) log n + k2nε) expected time, where β(·) is a slow-growing inverse-
Ackermann-like function and ε > 0.

The p-center problem under �∞-metric is dramatically simpler. Sharir and
Welzl [25] show how to compute the �∞ p-center in near-linear time for p ≤ 5.
In fact, they show that the rectilinear 2- and 3-center problems are LP-type
problems and can be solved in O(n) time. Also, they show the 1-dimensional
version of the problem is an LP-type problem for any p, with combinatorial
dimension O(p). Thus applying Matoušek’s framework [19], the �∞ (p, k)-center
in R2 for p ≤ 3, can be found in O(kO(1)n) time and in O(kO(p)n), for any p, if
the points lie in R1.

Our results. Our main result is a randomized algorithm for the Euclidean
(2, k)-center problem in R2 whose expected running time is O(nk7 log3 n). We
follow the general framework of Sharir and subsequent improvements by Epp-
stein. To handle outliers we first prove, in Section 2, a few structural properties
of levels in an arrangement of unit disks, which are of independent interest.

As in [24,15], our solution breaks the (2, k)-center problem into two cases
depending on the distance between the centers of the optimal disks; (i) the cen-
ters are further apart than the optimal radius, and (ii) they are closer than their
radius. The first subproblem, which we refer to as the well-separated case and de-
scribe in Section 3, takes O(k6n log3 n) time in the worst case and uses paramet-
ric search [21]. The second subproblem, which we refer to as the nearly concentric
case and describe in Section 4, takes O(k7n log3 n) expected time. Thus we solve
the (2, k)-center problem in O(k7n log3 n) expected time. We can solve the nearly
concentric case and hence the (2, k)-center problem in O(k7n1+δ) deterministic
time, for any δ > 0. We present near-linear algorithms for the �∞ (p, k)-center
in R2 for p = 4, 5. The �∞ (4, k)-center problem takes O(kO(1)n logn) time, and
the �∞ (5, k)-center problem takes O(kO(1)n log5 n) time. See the full version [2]
for the description of these results. We have not made an attempt to minimize
the exponent of k. We believe that it can be improved by a more careful analysis.

2 Arrangement of Unit Disks

Let D = {D1, . . . , Dn} be a set of n unit disks in R2. Let A(D) be the ar-
rangement of D.1 A(D) consists of O(n2) vertices, edges, and faces. For a subset
R ⊆ D, let I(R) =

⋂
D∈R D denote the intersection of disks in R. Each disk in

R contributes at most one edge in I(R). We refer to I(R) as a unit-disk polygon
and a connected portion of ∂I(R) as a unit-disk curve. We introduce the notion

1 The arrangement of D is the planar decomposition induced by D; its vertices are the
intersection points of boundaries of two disks, its edges are the maximal portions of
disk boundaries that do not contain a vertex, and its faces are the maximal connected
regions of the plane that do not intersect the boundary of any disk.

66 P.K. Agarwal and J.M. Phillips

of level in A(D), prove a few structural properties of levels, and describe an
algorithm that will be useful for our overall algorithm.

Levels and their structural properties. For a point x ∈ R2, the level of x
with respect to D, denoted by λ(x,D), is the number of disks in D that do not
contain x. (Our definition of level is different from the more common definition
in which it is defined as the number of disks whose interiors contain x.) All points
lying on an edge or face φ of A(D) have the same level, which we denote by λ(φ).
For k ≤ n, let Ak(D) (resp. A≤k(D)) denote the set of points in R2 whose level
is k (resp. at most k); see Fig. 1. By definition, A0(D) = A≤0(D) = I(D).

The boundary of A≤k(D) is composed of the edges of A(D). Let v ∈ ∂D1 ∩
∂D2, for D1, D2 ∈ D, be a vertex of ∂A≤k(D). We call v convex (resp. concave) if
A≤k(D) lies in D1∩D2 (resp. D1∪D2) in a sufficiently small neighborhood of v.
∂A≤0(D) is composed of convex vertices; see Fig. 1(a). We define the complexity
of A≤k(D) to be the number of edges of A(D) whose levels are at most k. Since
the complexity of A≤0(D) is n, the following lemma follows from the result by
Clarkson and Shor [11] (see also Sharir [23] and Chan [8]).

1 12 2

12 2 1

(a) (b) (c)

Fig. 1. (a) A(D), shaded region is A≤1(D), filled (resp. hollow) vertices are convex
(resp. concave) vertices of A≤1(D), covering of A≤1(D) edges by six unit-disk curves.
(b) A(Γ+), shaded region is A≤1(Γ

+), and the covering of A≤1(Γ
+) edges by two

concave chains. (c) A(Γ −), shaded region is A≤1(Γ
−), and the covering of A≤1(Γ

−)
edges by two convex chains.

Lemma 1. [11] For k ≥ 0, the complexity of A≤k(D) is O(nk).

Remark 1. The argument by Clarkson and Shor can also be used to prove that
A≤k(D) has O(k2) connected components and that it has O(k2) local minima
in (+y)-direction. See also [19,10]. These bounds are tight in the worst case; see
Fig. 2.

It is well known that the edges in the ≤k-level of a line arrangement can be
covered by k+ 1 concave chains [17], as used in [13,7]. We prove a similar result
for A≤k(D); it can be covered by O(k) unit-disk curves.

For a disk Di, let γ+
i (resp. γ−i) denote the set of points that lie in or below

(resp. above) Di; ∂γ+
i consists of the upper semicircle of ∂Di plus two vertical

downward rays emanating from the left and right endpoints of the semicircle

An Efficient Algorithm for 2D Euclidean 2-Center with Outliers 67

— we refer to these rays as left and right rays. The curve ∂γ−i has a similar
structure. See Fig. 1(b). Set Γ+ = {γ+

i | 1 ≤ i ≤ n} and Γ− = {γ−i | 1 ≤ i ≤ n}.
Each pair of curves ∂γ+

i , ∂γ
+
j intersect in at most one point. (If we assume that

the left and right rays are not vertical but have very large positive and negative
slopes, respectively, then each pair of boundary curves intersects in exactly one
point.) We define the level of a point with respect to Γ+, Γ−, or Γ+ ∪ Γ− in
the same way as with respect to D. A point lies in a disk Di if and only if it lies
in both γ+

i and γ−i , so we obtain the following inequalities:

max{λ(x, Γ+), λ(x, Γ−)} ≤ λ(x,D). (1)

λ(x,D) ≤ λ(x, Γ+ ∪ Γ−) ≤ 2λ(x,D). (2)

We cover the edges of A≤k(Γ+) by k + 1 concave chains as follows. The level
of the (k + 1)st rightmost left ray is at most k at y = −∞. Let ρi be such a
ray, belonging to γ+

i . We trace ∂γ+
i , beginning from the point at y = −∞ on ρi,

as long as ∂γ+
i remains in A≤k(Γ+). We stop when we have reached a vertex

v ∈ A≤k(Γ+) at which it leaves A≤k(Γ+); v is a convex vertex on A≤k(Γ+).
Suppose v = ∂γ+

i ∩ ∂γ+
j . Then ∂A≤k(Γ+) follows ∂γ+

j immediately to the right
of v, so we switch to ∂γ+

j and repeat the same process. It can be checked that we
finally reach y = −∞ on a right ray. Since we switch the curve on a convex vertex,
the chain Λ+

i we trace is a concave chain composed of a left ray, followed by a
unit-disk curve ξ+i , and then followed by a right ray. Let Λ+

0 , Λ
+
1 , . . . , Λ

+
k be the

k+1 chains traversed by this procedure. These chains cover all edges of A≤k(Γ+),
and each edge lies exactly on one chain. Similarly we cover the edges of A≤k(Γ−)
by k+1 convex curves Λ−

0 , Λ
−
1 , . . . , Λ

−
k . Let Ξ = {ξ+0 , . . . , ξ+k , ξ

−
0 , . . . , ξ

−
k } be the

family of unit-disk curves induced by these convex and concave chains. By (1),
Ξ covers all edges of A≤k(D). Since a unit circle intersects a unit-disk curve in
at most two points, we conclude the following.

Lemma 2. The edges of A≤k(D) can be covered by at most 2k + 2 unit-disk
curves, and a unit circle intersects O(k) edges of A≤k(D).

The curves in Ξ may contain edges of A(D) whose levels are greater that k. If
we wish to find a family of unit-disk curves whose union is the set of edges in
A≤k(D), we proceed as follows. We add the x-extremal points of each disk as
vertices of A(D), so each edge is now x-monotone and lies in a lower or an upper
semicircle. By (1), only O(k) such vertices lie in A≤k(D). We call a vertex of
A≤k(D) extremal if it is an x-extremal point on a disk or an intersection point of
a lower and an upper semicircle. Lemma 2 implies that there are O(k2) extremal
vertices. For each extremal vertex v we do the following. If there is an edge e of
A≤k(D) lying to the right of v, we follow the arc containing e until we reach an
extremal vertex or we leave A≤k(D). In the former case we stop. In the latter
case we are at a convex vertex v′ of ∂A≤k(D), and we switch to the other arc
incident on v′ and continue. These curves have been drawn in Fig. 1(a). This

68 P.K. Agarwal and J.M. Phillips

procedure returns an x-monotone unit-disk curve that lies in A≤k(D). It can
be shown that this procedure covers all edges of A≤k(D). We thus obtain the
following:

Lemma 3. Let D be a set of n unit disks in R2. Given A≤k(D), we can compute,
in time O(nk), a family of O(k2) x-monotone unit-disk curves whose union is
the set of edges of A≤k(D).

Remark 2. Since A≤k(D) can consist of Ω(k2) connected components, the O(k2)
bound is tight in the worst case; see Fig. 2.

Fig. 2. Lower bound.
A≤2(D) (shaded region)
has 4 connected compo-
nents

Emptiness detection of A≤k(D). We need a dy-
namic data structure for storing a set D of unit disks
that supports the following two operations:

– (O1) Insert a disk into D or delete a disk from
D;

– (O2) For a given k, determine whether
A≤k(D)
= ∅.

As described by Sharir [24], I(D) can be main-
tained under insertion/deletion in O(log2 n) time per
update. Matoušek [19] has described a data structure
for solving LP-type problems with violations. Find-
ing the lowest point in I(D) can be formulated as an LP-type problem. Therefore
using the dynamic data structure with Matoušek’s algorithm, we can obtain the
following result.

Lemma 4. There exists a dynamic data structure for storing a set of n unit disks
so that (O1) can be performed inO(log2 n) time, and (O2) takesO(k3 log2 n) time.

3 Well-Separated Disks

In this section we describe an algorithm for the case in which the two disks
D1, D2 of the optimal solution are well separated. That is, let c1 and c2 be the
centers of D1 and D2, and let r∗ be their radius. Then ||c1c2|| ≥ r∗; see Fig. 3(a).
Without loss of generality, let us assume that c1 lies to the left of c2. Let D−

i be
the semidisk lying to the left of the line passing through c1 in direction normal
to c1c2. A line � is called a separator line if D1∩D2 = ∅ and � separates D−

1 from
D2, or D1∩D2
= ∅ and � separates D−

1 from the intersection points ∂D1∩∂D2.
We first show that we can quickly compute a set of O(k2) lines that contains a
separator line. Next, we describe a decision algorithm, and then we describe the
algorithm for computing D1 and D2 provided they are well separated.

Computing separator lines. We fix a sufficiently large constant h and choose
a set U = {u1, . . . , uh} ⊆ S1 of directions, where ui = (cos(2πi/h), sin(2πi/h)).

An Efficient Algorithm for 2D Euclidean 2-Center with Outliers 69

p[i]
a

p
[i]
n−b

ui

c1 c2

�

(a) (b)

�

D1

D2

C
ρ+

ρ−

z

Fig. 3. (a) Let � is a separator line for disks D1 and D2. (b) Two unit disks D1 and
D2 or radius r∗ with centers closer than a distance r∗.

For a point p ∈ R2 and a direction ui, let p[i] be the projection of p in
the direction normal to ui. Let P [i] = 〈p[i]

1 , . . . , p
[i]
n 〉 be the sorted sequence of

projections of points in the direction normal to ui. For each pair a, b such that
a+ b ≤ k, we choose the interval δ[i]a,b = [p[i]

a , p
[i]
n−b] and we place O(1) equidistant

points in this interval. See Fig. 3(a). Let L[i]
a,b be the set of (oriented) lines in the

direction normal to ui and passing though these points. Set

L =
⋃

1≤i≤h
a+b≤k

L
[i]
a,b.

We claim that L contains at least one separator line. Intuitively, let ui ∈ U
be the direction closest to −−→c1c2. Suppose pa and pn−b are the first and the last
points of P in the direction ui that lie inside D1∪D2. Since |P \ (D1∪D2)| ≤ k,
a + b ≤ k. If D1 ∩D2 = ∅, then let q be the extreme points of D1 in direction
−−→c1c2. Otherwise, let q be the first intersection point of ∂D1 ∩ ∂D2 in direction
ui. Following the same argument as Sharir [24], one can argue that

〈c1 − q, ui〉 ≥ α〈pn−b − pa, ui〉,

where α ≤ 1 is a constant. Hence if at least 2α points are chosen in the interval
δ
[i]
a,b, then one of the lines in L

[i]
a,b is a separator line. Omitting all the details,

which are similar to the one in [24], we conclude the following.

Lemma 5. We can compute in O(k2n logn) time a set L of O(k2) lines that
contains a separator line.

Let D1, D2 be a (2, k)-center of P , let � ∈ L be a line, and let P− ⊆ P be
the set of points that lie in the left halfspace bounded by �. We call D1, D2 a
(2, k)-center consistent with � if P− ∩ (D1 ∪D2) ⊆ D1, the center of D1 lies to
the left of �, and ∂D1 contains at least one point of P−. We describe a decision
algorithm that determines whether there is a (2, k)-center of unit radius that is

70 P.K. Agarwal and J.M. Phillips

consistent with �. Next, we describe an algorithm for computing a (2, k)-center
consistent with �, which will lead to computing an optimal (2, k)-center of P ,
provided there is a well-separated optimal (2, k)-center of P .

Decision algorithm. Let � ∈ L be a line. We describe an algorithm for de-
termining whether there is a unit radius (2, k)-center of P that is consistent
with �. Let P− (resp. P+) be the subset of points in P that lie in the left
(resp. right) halfspace bounded by �; set n− = |P−|, n+ = |P+|. Suppose
D1, D2 is a unit-radius (2, k)-center of P consistent with �, and let c1, c2 be
their centers. Then P− ∩ (D1 ∪ D2) ⊆ D1 and |P− ∩ D1| ≥ n− − k. For a
subset Q ⊂ P , let D(Q) = {D(q) | q ∈ Q} where D(q) is the unit disk cen-
tered at q. Let D− = D(P−) and D+ = D(P+). For a point x ∈ R2, let
D+

x = {D ∈ D+ | x ∈ D}. Since ∂D1 contains a point of P− and at most k
points of P− do not lie in D1, c1 lies on an edge of A≤k(D−).

We first compute A≤k(D−) in O(nk logn) time. For each disk D ∈ D+, we
compute the intersection points of ∂D with the edges of A≤k(D−). By Lemma 2,
there are O(nk) such intersection points, and these intersection points split each
edge into edgelets. The total number of edgelets is also O(nk). Using Lemma 2,
we can compute all edgelets in time O(nk logn). All points on an edgelet γ lie in
the same subset of disks of D+, which we denote by D+

γ . Let P+
γ ⊆ P+ be the

set of centers of disks in D+
γ , and let κγ = λ(γ,D−). A unit disk centered at a

point on γ contains P+
γ and all but κγ points of P−. If at least k′ = k−κγ points

of P+ \P+
γ can be covered by a unit disk, which is equivalent to A≤k′(D+ \Dγ)

being nonempty, then all but k points of P can be covered by two unit disks.
When we move from one edgelet γ of A≤k(D−) to an adjacent one γ′ with

σ as their common endpoint, then D+
γ = D+

γ′ (if σ is a vertex of A≤k(D−)),
D+

γ′ = D+
γ ∪ {D} (if σ ∈ ∂D and γ′ ⊂ {D}), or D+

γ′ = D+
γ \ {D} (if σ ∈ ∂D and

γ ⊂ D). We therefore traverse the graph induced by the edgelets of A≤k(D) and
maintain D+

γ in the dynamic data structure described in Section 2 as we visit
the edgelets γ of A≤k(D−). At each step we process an edgelet γ, insert or delete
a disk into D+

γ , and test whether A≤j(D+
γ) = ∅ where j = k − λ(γ,D−). If the

answer is yes at any step, we stop. We spend O(k3 log2 n) time at each step, by
Lemma 4. Since the number of edgelets is O(nk), we obtain the following.

Lemma 6. Let P be a set of n points in R2, � a line in L, and 0 ≤ k ≤ n an
integer. We can determine in O(nk4 log2 n) time whether there is a unit-radius
(2, k)-center of P that is consistent with �.

Optimization algorithm. Let � be a line in L. Let r∗ be the smallest radius of a
(2, k)-center of P that is consistent with �. Our goal is to compute a (2, k)-center
of P of radius r∗ that is consistent with �. We use the parametric search technique
[21] — we simulate the decision algorithm generically at r∗ and use the decision
algorithm to resolve each comparison, which will be of the form: given r0 ∈ R+,
is r0 ≤ r∗? We simulate a parallel version of the decision procedure to reduce
the number of times the decision algorithm is invoked to resolve a comparison.
Note that we need to parallelize only those steps of the simulation that depend

An Efficient Algorithm for 2D Euclidean 2-Center with Outliers 71

on r∗, i.e., that require comparing a value with r∗. Instead of simulating the
entire decision algorithm, as in [15], we stop the simulation after computing the
edgelets and return the smallest (2, k)-center found so far, i.e., the smallest radius
for which the decision algorithm returned “yes.” Since we stop the simulation
earlier, we do not guarantee that we find the a (2, k)-center of P of radius r∗

that is consistent with �. However, as argued by Eppstein [15], this is sufficient
for our purpose.

Let P−, P+ be the same as in the decision algorithm. Let D−, D+ etc. be
the same as above except that each disk is of radius r∗ (recall that we do not
know the value of r∗). We simulate the algorithm to compute the edgelets of
A≤k(D−) as follows. First, we compute the ≤kth order farthest point Voronoi
diagram of P− in time O(n log n + nk2) [5]. Let e be an edge of the diagram
with points p and q of P− as its neighbors, i.e., e is a portion of the bisector of p
and q. Then for each point x ∈ e, the disk of radius ||xp|| centered at x contains
at least n− − k points of P−. We associate an interval δe = {||xp|| | x ∈ e}. By
definition, e corresponds to a vertex of A≤k(D−) if and only if r∗ ∈ δe; namely,
if ||xp|| = r∗, for some x ∈ e, then x is a vertex of A≤k(D−), incident upon the
edges that are portions of ∂D(p) and ∂D(q). Let X be the sorted sequence of the
endpoints of the intervals. By doing a binary search on X and using the decision
procedure at each step, we can find two consecutive endpoints between which r∗

lies. We can now compute all edges e of the Voronoi diagram such that r∗ ∈ δe.
We thus compute all vertices of A≤k(D−). Since we do not know r∗, we do not
have actual coordinates of the vertices. We represent each vertex as a pair of
points. Similarly, each edge is represented as a point p ∈ P−, indiciating that
e lies in ∂D(p). Once we have all the edges of A≤k(P−), we can construct the
graph induced by them and compute O(k2) x-monotone unit-disk curves whose
union is the set of edges in A≤k(P−), using Lemma 3. Since this step does not
depend on the value of r∗, we need not parallelize it. Let Ξ = {ξi, . . . , ξu},
u = O(k2), be the set of these curves.

Next, for each disk D ∈ D+ and for each ξi ∈ Ξ, we compute the edges
of ξi that ∂D intersects, using a binary search. We perform these O(nk2) bi-
nary searches in parallel and use the decision algorithm at each step. Incor-
porating Cole’s technique [12] in the binary search we need to invoke the
decision procedure only O(log n) times. For an edge e ∈ A≤k(D), let D+

e ∈ D

be the set of disks whose boundaries intersect e. We sort the disks in D+
e by

the order in which their boundaries intersect e. By doing this in parallel for all
edges and using a parallel sorting algorithm for each edge, we can perform this
step by invoking the decision algorithm O(log n) times. The total time spent is
O(nk4 log3 n).

Putting pieces together. We repeat the optimization algorithm for all lines
in L and return the smallest (2, k)-center that is consistent with a line in L.
The argument of Eppstein [15] implies that if an optimal (2, k)-center of P is
well-separated, then the above algorithm returns an optimal (2, k)-center of P .
Hence, we conclude the following:

72 P.K. Agarwal and J.M. Phillips

Lemma 7. Let P be a set of n points in R2 and 0 ≤ k ≤ n an integer. If an
optimal (2, k)-center of P is well separated, then the (2, k)-center problem for P
can be solved in O(nk6 log3 n) time.

4 Nearly Concentric Disks

In this section we describe an algorithm for when the two disks D1 and D2 of
the optimal solution are not well separated. More specifically, let c1 and c2 be
the centers of D1 and D2 and let r∗ be their radius. Then this section handles
the case where ||c1c2|| ≤ r∗.

First, we find an intersector point z of D1 and D2 — a point that lies in
D1 ∩ D2. We show how z defines a set P of O(n2) possible partitions of P
into two subsets, such that for one partition Pi,j , P \ Pi,j the following holds:
(D1 ∪D2) ∩ P = (D1 ∩ Pi,j) ∪ (D2 ∩ (P \ Pi,j)). Finally, we show how to search
through the set P in O(k7n1+δ) time, deterministically, for any δ > 0, or in
O(k7n log3 n) expected time.

Finding an intersector point. Let C be the circumcircle of P ∩ (D1 ∪D2).
Eppstein [15] shows that we can select O(1) points inside C such that at least
one, z, lies in D1 ∩D2. We can hence prove the following.

Lemma 8. Let P be a set of n points in R2. We can generate in O(nk3) time
a set Z of O(k3) points such that for any nearly concentric (2, k)-center D1, D2,
one of the points in Z is their intersector point.

Proof. If the circumcircle of P is not C, then at least one point of P ∩ ∂C must
not be in D1 ∪D2. We remove each point and recurse until we have removed k
points. Matoušek [19] shows that we can keep track of which subsets have already
been evaluated and bounds the size of the recursion tree to O(k3). Building the
entire recursion tree takes O(nk3) time. Since |P \ C| ≤ k, at least one node in
the recursion tree describes P ∪ C. Generating O(1) possible intersector points
for each node completes the proof.

Let z be an intersector point of D1 and D2, and let ρ+, ρ− be the two rays from
z to the points of ∂D1 ∩ ∂D2. Since D1 and D2 are nearly concentric, the angle
between them is at least some constant θ. We choose a set U ⊆ S1 of h = �2π/θ�
uniformly distributed directions. For at least one u ∈ U , the line � in direction
u and passing through z separates ρ+ and ρ−, see Fig. 3(b). We fix a pair z, u
in Z × U and compute a (2, k)-center of P , as described below. We repeat this
algorithm for every pair. If D1 and D2 are nearly concentric, then our algorithm
returns an optimal (2, k)-center.

Fixing z and u. For a subset X ⊂ P and for an integer t ≥ 0, let rt(X) denote
the minimum radius of a (1, t)-center of X . Let P+ (resp. P−) be the subset of P
lying above (resp. below) the x-axis; set n+ = |P+| and n− = |P−|. Sort P+ =
〈p+

1 , . . . , p
+
n+〉 in clockwise order and P− = 〈p−1 , . . . , p−n−〉 in counterclockwise

An Efficient Algorithm for 2D Euclidean 2-Center with Outliers 73

order. For 0 ≤ i ≤ n+, 0 ≤ j ≤ n−, let Pi,j = {p+
1 , . . . , p

+
i , p

−
1 , . . . , p

−
j } and

Qi,j = P \ Pi,j . For 0 ≤ t ≤ k, let

mt
i,j = max{rt(Pi,j), rk−t(Qi,j)}.

For 0 ≤ t ≤ k, we define an n+ × n− matrix M t such that M t(i, j) = mt
i,j .

Suppose z is an intersector point of D1 and D2, � separates ρ+ and ρ−, and
ρ+ (resp. ρ−) lies between p+

a , p
+
a+1 (resp. p−b , p

−
b+1). Then P ∩ (D1 ∪ D2) =

(Pa,b ∩D1) ∪ (Qa,b ∪D2); see Fig 3(b). If |Pa,b \D1| = t, then r∗ = mt
a,b. The

problem thus reduces to computing

μ(z, u) = min
i,j,t

mt
i,j

where the minimum is taken over 0 ≤ i ≤ n+, 0 ≤ j ≤ n−, and 0 ≤ t ≤ k. For
each t, we compute μt(z, u) = mini,j m

t
i,j and choose the smallest among them.

Computing μt(z, u). We note two properties of the matrix M t that will help
search for μt(z, u):

– (P1) If rt(Pi,j) > rk−t(Qi,j) then mt
i,j ≤ mt

i′,j′ for i′ ≥ i and j′ ≥ j. These
partitions only add points to Pi,j and thus cannot decrease rt(Pi,j). Similarly,
if rk−t(Qi,j) > rt(Pi,j), then mt

i,j < mt
i′,j′ for i′ ≤ i and j′ ≤ j.

– (P2) Given a value r, if rt(Pi,j) > r, then mt
i′,j′ > r for i′ ≥ i and j′ ≥ j,

and if rt(Qi,j) > r, then mt
i′,j′ > r for i′ ≤ i and j′ ≤ j.

Deterministic solution. We now have the machinery to use a technique of
Frederickson and Johnson [16]. For simplicity, let us assume that n+ = n− =
2τ+1 where τ = �log2 n�+O(1). The algorithm works in τ phases. In the begin-
ning of the hth phase we have a collection Mh of O(2h) submatrices of M t, each
of size (2τ−h+1 +1)×(2τ−h+1 +1). Initially M1 = {M t}. In the hth phase we di-
vide each matrixN ∈ Mh into four submatrices each of size (2τ−h+1)×(2τ−h+1)
that overlap along one row and one column. We call the cell common to all four
submatrices the center cell of N . Let M′

h be the resulting set of matrices. Let
C = {(i1, j1), . . . , (is, js)} be the set of center cells of matrices in Mh. We com-
pute mt

il,jl
for each 1 ≤ l ≤ s. We use (P1) to remove the matrices of Mh that are

guaranteed not to contain the value μt(z, u). In particular, if mt
il,jl

= rt(Pil,jl
)

and there is a matrix N ∈ M′
h with the upper-left corner cell (i′, j′) such that

i′ ≥ il and j′ ≥ jl, then we can remove N . Similarly if mt
il,jl

= rk−t(Qi,j) and
there is a matrix N ∈ M′

h with the lower-right corner cell (i′, j′) such that i′ ≤ il
and j′ ≤ jl, we can delete N . It can be proved that after the pruning step if we
have a matrix N in M′

h such that it spans [a1, a2] rows and [b1, b2] columns of
M t, then mt

a1,b1
= rt(Pa1,b1) and mt

a2,b2
= rk−t(Qa2,b2). This implies that O(n)

cells remain in M′
h after the pruning step. We set M′

h to Mh+1.
Finally, it is shown in [15] that the center cells in C can be connected by

a monotone path in Mt, which consists of O(n) cells. Since Pi,j differs from
Pi−1,j and Pi,j−1 by one point, we can compute mt

il,jl
for all (il, jl) ∈ C using an

74 P.K. Agarwal and J.M. Phillips

algorithm of Agarwal and Matoušek [1] in total time O(k3n1+δ) for any δ > 0.
Agarwal and Matoušek’s data structure can maintain the value of the radius
of the smallest enclosing disk under insertions and deletions in O(nδ) time per
update. Each step in the path is one update, and then searching through the
O(k3) nodes of the recursion tree of all possible outliers — each requires O(1)
updates — takes O(k3nδ) time per cell. Hence, each phase of the algorithm takes
O(k3n1+δ) time.

Lemma 9. Given z ∈ Z, u ∈ U , and 0 ≤ t ≤ k, μt(z, u) can be computed in
time O(k3n1+δ), for any δ > 0.

Randomized solution. We can slightly improve the dependence on n by using
the dynamic data structure in Section 2 and (P2). As before, in the hth phase,
for some constant c > 1, we maintain a set Mh of at most c2h submatrices of M t,
each of side length 2τ−h+1+1, and their center cells C. Each submatrix is divided
into four submatrices of side length 2τ−h + 1, forming a set M′

h. To reduce the
size of M′

h, we choose a random center cell (i, j) from C and evaluate r = mt
i,j in

O(k3n) time. For each other center cell (i′, j′) ∈ C, mt
1′,j′ > r with probability

1/2, and using (P2), we can remove a submatrix from M′
h. Eppstein [15] shows

that by repeating this process a constant number of times, we expect to reduce
the size of M′

h to c2h+1.
On each iteration we use the dynamic data structure described in Section 2.

For O(n) insertions and deletions, it can compare each center cell from C to r
in O(k3n log2 n) time. Thus, finding μt(z, u) takes expected O(nk3 log3 n) time.

Lemma 10. Given z ∈ Z, u ∈ U , and 0 ≤ t ≤ k, μt(z, u) can be computed in
expected time O(k3 log3 n).

Putting pieces together. By repeating either above algorithm for all 0 ≤ t ≤ k
and for all pair (z, u) ∈ Z×U , we can compute a (2, k)-center of P that is optimal
if D1 and D2 are nearly concentric. Combining this with Lemma 7, we obtain
the main result of the paper.

Theorem 1. Given a set P of n points in R2 and an integer k ≥ 0, an optimal
(2, k)-center of P can be computed in O(k7n1+δ) (deterministic) time, for any
δ > 0 or in O(k7n log3 n) expected time.

Acknowledgements. We thank Sariel Har-Peled for posing the problem and
for several helpful discussions.

References

1. Agarwal, P.K., Matoušek, J.: Dynamic half-space range reporting and its applica-
tions. Algorithmica 13, 325–345 (1995)

2. Agarwal, P.K., Phillips, J.M.: An efficient algorithm for 2D Euclidean 2-center with
outliers (2008) arXiV:0806.4326

An Efficient Algorithm for 2D Euclidean 2-Center with Outliers 75

3. Agarwal, P.K., Sharir, M.: Planar geometric locations problems. Algorithmica 11,
185–195 (1994)

4. Agarwal, P.K., Sharir, M.: Efficient algorithms for geometric optimization. ACM
Computing Surveys 30, 412–458 (1998)

5. Aggarwal, A., Guibas, L.J., Saxe, J., Shor, P.W.: A linear-time algorithm for com-
puting the voronoi diagram of a convex polygon. Discrete Comput. Geom. 4, 591–
604 (1989)

6. Chan, T.: More planar two-center algorithms. Comput. Geom.: Theory Apps. 13,
189–198 (1999)

7. Chan, T.: Low-dimensional linear programming with violations. SIAM J. Com-
put. 34, 879–893 (2005)

8. Chan, T.: On the bichromatic k-set problem. In: Proc. 19th Annu. ACM-SIAM
Sympos. Discrete Algs., pp. 561–570 (2007)

9. Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for faciity
location problems with outliers. In: 12th Annu. ACM-SIAM Sympos. on Discrete
Algs., pp. 642–651 (2001)

10. Clarkson, K.L.: A bound on local minima of arrangements that implies the upper
bound theorem. Discrete Comput. Geom. 10, 427–433 (1993)

11. Clarkson, K.L., Shor, P.W.: Applications of random sampling in geometry, II. Dis-
crete Comput. Geom. 4, 387–421 (1989)

12. Cole, R.: Slowing down sorting networks to obtain faster sorting algorithms. Jour-
nal of ACM 34, 200–208 (1987)

13. Dey, T.K.: Improved bounds for planar k-sets and related problems. Discrete Com-
put. Geom. 19, 373–382 (1998)

14. Drezner, Z., Hamacher, H.: Facility Location: Applications and Theory. Springer,
Heidelberg (2002)

15. Eppstein, D.: Faster construction of planar two-centers. In: Proc. 8th Annu. ACM-
SIAM Sympos. on Discrete Algs., pp. 131–138 (1997)

16. Frederickson, G.N., Johnson, D.B.: The complexity of selection and ranking in x+y
and matrices with sorted columns. J. Comput. Syst. Sci. 24, 197–208 (1982)

17. Gusfield, D.: Bounds for the parametric minimum spanning tree problem. In: Hum-
boldt Conf. on Graph Theory, Combinatorics Comput., pp. 173–183. Utilitas Math-
ematica (1979)

18. Hochbaum, D.S. (ed.): Approximation Algorithms for NP-hard Problems. PWS
Publishing Company (1995)

19. Matoušek, J.: On geometric optimization with few violated constraints. Discrete
Comput. Geom. 14, 365–384 (1995)

20. Matoušek, J., Welzl, E., Sharir, M.: A subexponential bound for linear program-
ming and related problems. Algorithmica 16, 498–516 (1996)

21. Megiddo, N.: Linear-time algorithms for linear programming in R3 and related
problems. SIAM J. Comput. 12, 759–776 (1983)

22. Megiddo, N., Supowit, K.J.: On the complexity of some common geometric location
problems. SIAM J. Comput. 12, 759–776 (1983)

23. Sharir, M.: On k-sets in arrangement of curves and surfaces. Discrete Comput.
Geom. 6, 593–613 (1991)

24. Sharir, M.: A near-linear time algorithm for the planar 2-center problem. Discrete
Comput. Geom. 18, 125–134 (1997)

25. Sharir, M., Welzl, E.: Rectilinear and polygonal p-piercing and p-center problems.
In: Proc. 12th Annu. Sympos. Comput. Geom., pp. 122–132 (1996)

A Near-Tight Bound for the Online Steiner Tree

Problem in Graphs of Bounded Asymmetry

Spyros Angelopoulos

Max-Planck-Institut für Informatik
Campus E1 4, Saarbrücken 66123, Germany

sangelop@mpi-inf.mpg.de

Abstract. The edge asymmetry of a directed, edge-weighted graph is
defined as the maximum ratio of the weight of antiparallel edges in the
graph, and can be used as a measure of the heterogeneity of links in a
data communication network. In this paper we provide a near-tight up-
per bound on the competitive ratio of the Online Steiner Tree problem in
graphs of bounded edge asymmetry α. This problem has applications in
efficient multicasting over networks with non-symmetric links. We show

an improved upper bound of O
(
min

{
max

{
α log k

log α
, α log k

log log k

}
, k
})

on

the competitive ratio of a simple greedy algorithm, for any request se-
quence of k terminals. The result almost matches the lower bound of

Ω
(
min

{
max

{
α log k

log α
, α log k

log log k

}
, k1−ε

})
(where ε is an arbitrarily small

constant) due to Faloutsos et al. [8] and Angelopoulos [2].

1 Introduction

The Steiner Tree problem occupies a central place in the area of approximation
and online algorithms. In its standard version, the problem is defined as follows.
Given an undirected graph G = (V,E) with a weight (cost) function c : E → R+

on the edges, and a subset of vertices K ⊆ V with |K| = k (also called terminals),
the goal is to find a minimum-cost tree which spans all vertices in K. When the
input graph is directed, the input to the problem must specify, in addition to G
and K, a vertex r ∈ V called the root. The problem is then to find a minimum
cost arborescence rooted at r which spans all vertices in K.

In the online version of the problem, the terminals in K are revealed to the
algorithm as a sequence of requests. When a request for terminal u ∈ V is issued,
and assuming a directed graph, the algorithm must guarantee a directed path
from r to u. The input graph G is assumed to be known to the algorithm. Using
the standard framework of competitive analysis (see, e.g., [6]), the objective is
then to design online algorithms of small competitive ratio.

Apart from its theoretical importance, the Steiner tree problem is useful in
modeling efficient multicast communication over a network. The reader is re-
ferred to [10] for an in-depth study of the relation between Steiner tree problems
and network multicasting.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 76–87, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Near-Tight Bound for the Online Steiner Tree Problem 77

The majority of existing research in Steiner trees and its generalizations ap-
plies to undirected graphs. In contrast, actual communication networks contain,
in their majority, links asymmetric in the quality of service they offer; this sit-
uation is even mored prevalent in satellite and radio networks [7]. Motivated by
this observation, Ramanathan [11] introduced the problem of multicast-tree gen-
eration in the presence of asymmetric links. To this end, he considered several
metrics of network asymmetry, among which the maximum edge asymmetry is
the most intuitive and easiest to measure in a real network. Formally, the mea-
sure is defined as the maximum ratio of the weights of antiparallel links. More
precisely, let A denote the set of pairs of vertices in V such that if the pair u, v
is in A, then either (v, u) ∈ E or (u, v) ∈ E (i.e, there is an edge from u to v or
an edge from v to u or both). Then the edge asymmetry is defined as

α = max
{v,u}∈A

c(v, u)
c(u, v)

According to this measure, undirected graphs are the class of graphs of asymme-
try α = 1, whereas directed graphs in which there is at least one pair of vertices
v, u such that (v, u) ∈ E, but (u, v) /∈ E are graphs with unbounded asymmetry
(α = ∞). Between these extreme cases, graphs of bounded asymmetry can be
useful in modeling networks with a certain degree of link heterogeneity.

The competitive ratio of the online Steiner tree problem in graphs of either
constant, or unbounded asymmetry is tightly bound. For the former class, Imase
and Waxman [9] showed a bound of Θ(log k), achieved by a simple greedy algo-
rithm, (a result which was extended by Berman and Coulston [5] to the General-
ized Steiner Problem). The performance of the greedy algorithm for online Steiner
Trees and its genereralizations has also been studied by Awerbuch et al. [3] and
Westbrook and Yan [13]. For the online Steiner Tree in the Euclidean plane, the
best known lower bound on the competitive ratio isΩ(log k/ log log k) due to Alon
and Azar [4]. On the other hand, Westbrook and Yan [12] showed that in directed
graphs (of unbounded asymmetry), the competitive ratio can be bad as Ω(k).

Faloutsos et al. [8] were the first to study the online Steiner tree problem
in graphs of bounded asymmetry. They showed that a simple greedy algorithm
(to which we refer to as Greedy) has competitive ratio O(min{α log k, k}).
The algorithm works by connecting each requested terminal u to the current
arborescence by buying the edges in a least-cost directed path from the cur-
rent arborescence to u. On the negative side, they showed a lower bound of
Ω
(

min
{

α log k
log α , k

})
on the competitive ratio of every deterministic algorithm.

Angelopoulos [2] (see also [1] for the full version) improved the upper bound on
the competitiveness of Greedy to O

(
min

{
α log k

log log α , k
})

, and showed a corre-

sponding lower bound of Ω
(

min
{

α log k
log log k , k

1−ε
})

for every constant 0 < ε < 1.
It is important to note that when α ∈ Ω(k) the lower bound on the competitive

ratio due to [8] is Ω(k), which is obviously tight (using the trivial upper bound
of O(k) for Greedy). Thus the problem is interesting only when α ∈ o(k).

78 S. Angelopoulos

In this paper we show1 the following near-tight upper bound:

Theorem 1. The competitive ratio of Greedy for an input graph of asymmetry
α and a request sequence of k terminals is O

(
min

{
max

{
α log k

log α , α
log k

log log k

}
, k
})

.

The result almost matches the lower bound due to [8] and [2], namely
Ω
(

min
{

max
{
α log k

log α , α
log k

log log k

}
, k1−ε

})
(where ε is any arbitrarily small con-

stant) In particular it provides a tight bound on the competitive ratio of the
problem for the case where either α ∈ O(k1−ε) (for some constant ε ∈ (0, 1)) or
α ∈ Ω(k). In contrast, [2] is not tight when α is relatively small, e.g., when α is
polylogarithmic in k. Note that a gap still remains for a narrow interval of values
for α, namely when α ∈ ω(k1−ε) for all ε, and also α ∈ O(k) (for instance when
α = k/f(k), with f(k) polylogarithmic in k). In such a case, the best upper
bound we can guarantee is O(k), whereas the best lower bound is Ω(α).

1.1 Preliminaries and Notation

We denote by e = (v, u) and e = (u, v) a pair of antiparallel directed edges.
Let T = (r′, V ′, E′) be an arborescence rooted at r′, we denote by T̂ the graph
(V ′, E′′), with E′′ = E′ ∪{e : e ∈ E′}. In words, T̂ induces all edges in T as well
as all their antiparallel edges. We denote by pT (u, v) (resp. pT̂ (u,v)) the simple

directed path from u to v using exclusively edges in T (resp. T̂). Note that such
paths are uniquely defined (provided that pT (u, v) exists in T).

The cost of a directed path p will be denoted by c(p). We denote by c(T) the
cost of arborescence T , namely the sum of the cost of the directed edges in T . We
emphasize that only edges in T and none of their antiparallel edges contribute
to c(T). We will always use T ∗ to denote the optimal arborescence on input
(G,K), with |K| = k, and OPT = c(T ∗). For any K ′ ⊆ K, we let cGR(K ′)
denote the cost that Greedy pays on the subset K ′ of the input (in other
words, the contribution of terminals in K ′ towards the total cost of Greedy). For
convenience, we will be using the term “tree” to refer to a (rooted) arborescence.

2 Outline of the Proof of Theorem 1 and Intuition

In order to prove Theorem 1, we first show that it applies to situations in which
the spanning arborescence has a fairly simple structure: in particular, to in-
stances called comb instances in [2] (see Figure 1 for an illustration).

Definition 1. Let T ′ denote a tree rooted at vertex r′ ∈ V and let K ′ ⊆ K, with
|K ′| = k′. We call the triplet C = (T ′,K ′, r′) a comb instance, or simply comb
if the following hold: T ′ consists of a directed path P from r′ to a certain vertex
v1, which visits vertices vk′ , . . . , v1 in this order (but possibly other vertices too);

1 Due to space constraints, several technical proofs are either omitted or only sketched
in this paper.

A Near-Tight Bound for the Online Steiner Tree Problem 79

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

tk′

. . .

u1 u2

v1 v2 vk′−1 vk′

uk′uk′−1

r′

t1 t2 tk′−1

Fig. 1. The structure of a comb instance

there are also disjoint directed paths ti from vi to ui. No other edges are in T ′.
Finally the set K ′ is precisely the set {u1, . . . , uk′}. We call P the backbone of
C, and the paths ti the terminal paths of the comb. The vertex set of C is the set
of vertices in T ′.

The following is a key theorem in the analysis of Greedy.

Theorem 2. Given the comb C = (T ′,K ′, r′), let z ∈ K ′ denote the terminal
requested the earliest among all terminals in K ′. Then cGR(K ′) = cGR(z) +
O
(

max
{
α log k′

log α , α
log k′

log log k′

})
c(T ′).

Given Theorem 2, the main result (Theorem 1) follows by partitioning the set of
all requests K into a collection of near-disjoint comb-instances, along the lines
of Lemma 3.1 in [2] (we omit the proof). Here, by near-disjoint we require that
every edge in T ∗ appears in at most two comb instances.

In order to prove Theorem 2, let π denote a permutation of {1, . . . , k′} such
that σ = uπ1 , . . . , uπk′ is the sequence of the requests in K ′ in the order in
which they are requested (hence z = uπ1). Note that we aim towards bounding
cGR(K ′ \ uπ1). To this end, we will determine an assignment for every terminal
uπi with 2 ≤ i ≤ k′ to a specific terminal uπi ∈ {uπ1, . . . uπi−1}. We call terminal
uπi the mate of uπi . Let qi denote the directed path in T̂ from uπi to uπi, also
called the connection path for uπi . It suffices to show that

C
def=

k′
∑

i=2

c(qi) = O

(

max
{

α
log k′

logα
, α

log k′

log log k′

})

c(T ′). (1)

Comb instances were identified in [2] as the hard instances for the problem,
and for such instances, a weaker version of Theorem 2 was proved (c.f. Lemma
3.2 in [2]). More precisely, the definition of the comb in [2] requires a strict upper
bound of O(α) on the number of terminals in the comb: this leads to an upper
bound for cGR(K ′ \ uπ1) equal to O

(
α log α

log log α

)
c(T ′). The proof of the main

result in [2] proceeds then by first extending the result to all subtrees of T ∗ of
O(α) terminals (not necessarily combs), and then by applying it, in a recursive
manner, in a hierarchical partition of T ∗ in trees of O(α) terminals each. This
process yields an additional multiplicative overhead of log k/ logα compared to
the cost incurred by a comb instance of size O(α).

80 S. Angelopoulos

In this paper we follow a different approach. We allow the combs to contain
an arbitrarily large number of terminals, which may very well be in Ω(α). This
allows us to bypass the need for recursion, and thus to save the factor log k/ logα.
Instead, as already mentioned, suffices to decompose T ∗ (and K) into a collection
of near-disjoint comb instances. In this more general setting, some of the high-
level proof ideas remain as in [2]: we will still partition the terminals in a comb in
appropriately defined subsets called runs which dictate how to select the proper
mate for each terminal. However, the definition of runs and the assignment of
mates in [2] is not applicable anymore when k′ ∈ Ω(α): In [2] a connection path
can be as costly as the cost of the backbone (which becomes far too expensive if
the number of terminals in the comb is in Ω(k)). Instead, a substantially more
involved assignment is required.

Definition 2. Let C = (T ′,K ′, r′) be a comb instance. For a terminal ui in the
comb we say that its index is i. For two terminals ui, uj in the comb with i < j
we say that ui precedes uj in C (denoted by ui ≺ uj). We say that uj is between
ui and ui′ iff ui ≺ uj ≺ ui′ . For ui ≺ uj we call the path pT ′(vj , vi) the segment
of ui, uj and we denote it by s(ui, uj). The interval (ui, uj) is simply the pair of
indices of ui, uj , namely the pair (i, j). A terminal ul is in the interval (i, j) if
ui � ul � uj (here ui � ul means either ui ≺ ul or ui is identical to ul).

With a slight abuse of notation, we use the term “segment” to refer to both a
path and its cost, when this is clear from context.

3 Proof of Theorem 2

3.1 Assignment of Terminals to Their Mates

The first step towards bounding the cost of the connection paths for terminals
in the comb is to assign each terminal to a unique mate. This assignment is
determined by Algorithm 1. We also seek a partition of terminals as they are
being requested, in particular, every terminal becomes the member of a unique
run (we can think of each run as being assigned a unique integer id, starting with
0 and increasing by 1 every time a new run is initiated). For a terminal u we
denote by run(u) the run to which u is assigned. Define w = min{α, x}, where
x is the solution to xx = k′, hence x = Θ(log k′

log log k′). Without loss of generality
we will assume that x is integral.

Let u = uπi+1 denote the current request and Ui denote the set of the i
previously requested terminals. Every terminal u (with the exception of terminals
in run 0) is characterized by two unique terminals in the set Ui, say terminals
ul, uh ∈ Ui such that ul ≺ u ≺ uh, and no other terminal in Ui is in the
interval (ul, uh). We call ul and uh the immediate successor and predecessor of
u, respectively, at the time of the request to u. After u is revealed, the algorithm
assigns a label to each of the resulting intervals (ul, u) and (u, uh). There are
four types of labels an interval can be assigned, and their semantics is related to
the action at the time u is requested:

A Near-Tight Bound for the Online Steiner Tree Problem 81

– If the interval (ul, uh) has been labeled free, then u will initiate a new run,
say r. We call u the initiator of r (denoted by in(r) = u).

– If the interval (ul, uh) has been labeled left then u will be assigned ul as
its mate (i.e its immediate predecessor at the time of request).

– If the interval (ul, uh) has been labeled right then u will be assigned uh as
its mate (i.e. its immediate successor at the time of request).

– A blank label is the default labeling for an interval, if the assignment algo-
rithm does not explicitly assign a label in the set {free, left, right}.

At a high-level, the assignment algorithm works as follows: In the event u
is not between two terminals in Ui (i.e., it does not have either a successor or
a predecessor in Ui) it will become part of run 0 (lines 1-9): this is a set-up
phase for all remaining runs. Otherwise, let ul and uh denote the immediate
predecessor/successor of u among terminals in Ui, at the time u is requested.
(Note that umax is defined as the terminal of highest index in the comb, among
terminals in Ui, whereas umin is the terminal of smallest such index).

If the interval (ul, uh) is free, then the assignment algorithm invokes algorithm
Free which initiates a new run, say r: the run is associated with a representative,
defined as rep(r) ≡ uh, the left-end of the run, defined as l(r) = ul and a segment,
defined by seg(r) = s(ul, uh) = s(l(r), rep(r)). The representative of the run is
assigned to be the mate of u. Last, we set the parameter R(u′) to be equal to r,
for all u′ between ul and uh in the comb. The meaning of this assignment is that
future requests for terminals within (ul, uh) should become members of the run
r (unless their R() value changes, in the meantime, due to subsequent requests).

In any other case the assignment algorithm invokes algorithm NonFree which
assigns u to the run r = R(u), and follows a more complicated rule for assigning
a mate and labels: More specifically, if the interval (ul, uh) is left (resp right)
then the assignment and labeling is performed in lines 2–6 (resp 7–11), and u
is assigned its immediate predecessor (resp. successor) as its mate. The only
remaining possibility is for (ul, uh) to be a blank interval (lines 13–23). In this
case, if u is “close” to ul (resp. uh) wrt the cost s(ul, u) (resp. s(u,uh)), then u is
assigned ul as its mate in lines 13–16 (resp. u is assigned uh as its mate in lines
17–20). If u is not close to either terminal then it is assigned the representative
of the run it belongs to as its mate (line 22).

In order to bound the total connection cost C, we will express C as the sum
of six partial costs, denoted by C1, . . . C6 (C1, . . . , C5 apply to terminals in runs
other than run 0). In particular:

– C1 is defined as the cost of connection paths due to edges e such that e be-
longs in some terminal path ti in the comb (i.e., the cost of edges antiparallel
to edges of a terminal path).

– C2 is defined as the cost of connection paths due to edges e such that e
belongs in the backbone P (i.e., the cost of edges antiparallel to edges in the
backbone) and which are bought by connection paths established in either
line 3 or line 14 of NonFree (i.e., when the current request is assigned its
immediate predecessor as its mate).

82 S. Angelopoulos

Input : Request u and the existing assignment of terminals in Ui

Output: Assignment of u to an appropriate run and an appropriate mate
if u � umax then1

assign u to run 02

mate(u) ← umax3

label interval (umax, u) free4

end5

if u ≺ umin then6

assign u to run 07

mate(u) ← umin8

label interval (u, umin) free9

end10

else11

Let ul and uh be the immediate successor and predecessor of u, among12

terminals in Ui

if interval (ul, uh) is free then13

Free(u,ul,uh)14

end15

else16

Non-free(u,ul,uh)17

end18

end19

Algorithm 1. Assignment of terminals to runs and mates

Initiate a run r with seg(r) = s(ul, uh); set rep(r) ← uh and l(r) ← ul1

label (ul, u) and (u, uh) blank2

Set mate(u) ← uh3

if s(u, uh) ≤ seg(r)/w then4

label (u, uh) left5

end6

if s(ul, u) ≤ seg(r)/w then7

label (ul, u) right8

end9

For all u′ ∈ C, with ul ≺ u′ ≺ uh set R(u′) ← r10

Algorithm 2. Algorithm Free(u, ul, uh)

– C3 is defined as the cost of connection paths due to edges e such that e
belongs in the backbone P , and which are bought by connection paths es-
tablished in either line 8 or line 18 of NonFree (i.e., when the current request
is assigned its immediate successor as its mate).

– C4 is defined as the cost of connection paths due to edges e such that e
belongs in the backbone P , and which are bought by connection paths es-
tablished in either line 3 of Free or line 22 of NonFree.

A Near-Tight Bound for the Online Steiner Tree Problem 83

Assign u to run r = R(u). Label (ul, u), (u, uh) blank1

if (ul, uh) is left then2

set mate(u) ← ul3

label (ul, u) free4

label (u, uh) left5

end6

if (ul, uh) is right then7

set mate(u) ← uh8

label (u, uh) free9

label (ul, u) right10

end11

else12

if s(ul, u) ≤ seg(r)/w then13

set mate(u) ← ul14

label (ul, u) right15

end16

else if s(u, uh) ≤ seg(r)/w then17

set mate(u) ← uh18

label (u, uh) left19

end20

else21

set mate(u) ← rep(r)22

end23

end24

Algorithm 3. Algorithm NonFree(u, ul, uh)

– C5 is defined as the cost due to edges e such that e belongs in some terminal
path ti in the comb.

– C6 is defined as the cost of connection paths for terminals in run 0.

It can be shown easily that C6 is bounded by O(α) · c(T ′), hence we will focus
only on terminals in runs> 0 from this point on. Also, since the terminal paths
ti are edge-disjoint, it follows that C5 ≤ c(T ′). Thus, it remains to bound Cj ,
j ∈ [1, 4]. We will denote by Cj,i the contribution of the connection path qi for
terminal uπi to the cost Cj,i, which means that Cj =

∑k′

i=1 Cj,i.

3.2 Properties of Runs and Labellings

Property 1. Every terminal u can be the representative and/or the left-end of at
most one run. In addition, for every terminal u, l(run(u)) ≺ u ≺ rep(run(u)).

We say that an interval (u, u′) is contained within interval (v, v′) (u, u′, v, v′ de-
note terminals in the comb) if each of u, u′ is contained within interval (v, v′). We
say that a run r is contained within interval (u, u′) if (l(r), rep(r)) is contained
within (u, u′) (and hence from Property 1 the same holds for all terminals in r).

84 S. Angelopoulos

Last, r is contained within r′ if (l(r), rep(r)) is contained within (l(r′), rep(r′)).
Note that this implies that seg(r) ≤ seg(r′).

Property 2. Let (u, v) be an interval labeled free at some point in the execution
of the assignment algorithm. Then for every future request u′ with u ≺ u′ ≺ v,
u′ will become member of a run r which is contained within the interval (u, v).

Property 3. Let terminal u be requested, with immediate predecessor and suc-
cessor at the time of its request ul, uh, respectively, and suppose that the interval
(u, uh) becomes left as a result of line 5 of NonFree. Suppose also that there
exists a pair of terminals u1, u2, in immediate successor/predecessor relation at
the time of one of their requests such that u1 ≺ ul ≺ uh � u2, and (u1, u2) was
labeled free. Then there exists a terminal v with the following properties:

– u1 ≺ v � ul;
– At the time v is requested no terminal other than uh has been requested in

the interval (v, uh);
– Interval (v, uh) becomes left as a result of the execution of either line 5 in

algorithm Free or line 19 in algorithm NonFree.

Lemma 1. For any given run r, at most w terminals in K ′ are assigned rep(r)
as their mate in line 22 of algorithm NonFree.

3.3 Bounding the Cost C1,i

Lemma 2. C1,i ≤ α(w + 5) · c(ti), where ti is the terminal path for uπi .

Proof sketch. Fix a terminal v = uπi : we will bound the number of terminals in
K ′ which are assigned v as their mate. There are six possible cases for which a re-
quested terminal u is assigned v as its mate, in particular during executions of the
following lines: line 3 for Free(∗, ∗, v); line 8 or line 18 for NonFree(∗, ∗, v); line
3 or line 14 for NonFree(∗, v, ∗); and last, line 22 of NonFree, more specifically
during the call NonFree(u, ul, uh) for some terminals u, uh, ul, with rep(r) ≡ v.
Here, “*” denotes any arbitrary terminal. One can show that, for fixed v, all in-
vocations will occur at most once, with the exception of line 22 which will be
invoked at most w times (due to Lemma 1). The lemma then follows. �

3.4 Bounding C2,i and C3,i

We first show how to bound C2,i, then the bound for C3,i will follow an almost
identical proof. We say that uπi contributes the directed edge e, with e ∈ P when
the connection path qi for uπi includes e. For the remainder of the proof for C2,i

we will call such edges expensive. Also, let q′i denote the subpath of qi which
consists of expensive edges only (i.e., the subpath of qi which consists of edges
antiparallel to edges in the backbone of the comb), then clearly C2,i = c(q′i). Let
X denote the subset of the set of comb terminals K ′ which consists of terminals
with non-zero contribution to C2. Consider the sequence of connection paths
for terminals in X , as such terminals are requested over time. More precisely,

A Near-Tight Bound for the Online Steiner Tree Problem 85

we can think of all edges in q′i being “bought”, as the connection path between
the terminal and its mate is established, at the precise moment uπi ∈ X is
requested. In this view, every time an expensive edge is contributed due to
such an assignment, we say that the depth of the edge increases by 1 (initially,
i.e., before any terminals have been requested, all expensive edges have depth
zero).

Lemma 3. For uπi ∈ X, all expensive edges in q′i have the same depth.

Lemma 3 asserts that it is meaningful to say that terminal uπi ∈ X is of depth δ
if right after it is assigned to its mate, and the connection path qi is established,
the depth of all expensive edges at the connection path becomes equal to δ. Thus
we can partition X into sets X1, X2 . . . such that Xi consists of all terminals of
depth i. Note that for all i with uπi ∈ Xj , the paths q′i are edge-disjoint.

The following is the main technical lemma of this section. The lemma shows
that the contribution of a terminal to C2 decreases exponentially with its depth
(recall that c(P) denotes the cost of the backbone P of the comb).

Lemma 4. For a terminal uπi ∈ Xj, with j ≥ 1, C2,i ≤ αc(P)
wj−1 .

A similar upper bound can be shown for C3,i, since terminals which contribute
to C3,i follow assignments to mates which are symmetric to the assignments for
terminals with contribution to C2,i (even strongly, the α factor does not appear
in the upper bound since connection paths which contribute to C3,i follow edges
in the backbone, and not their antiparallel edges).

3.5 Towards Bounding Cost C4,i

In this section we establish a lemma which is instrumental in bounding C4,i. For
a given e ∈ P define the r-depth (or for simplicity depth for the remainder of
this section) of e as the total number of runs r
= 0, (i.e., excluding run 0) whose
segment seg(r) includes edge e. Let R denote the set of all runs (again, excluding
run 0) established by the assignment algorithm. We say that every time a new
run r is initiated (line 1 of Free), the depth of every edge in seg(r) increases by
1 (before any terminal is requested, all edges in P have zero depth).

Lemma 5. All edges in seg(r) have the same depth after r is established.

Lemma 5 asserts that we can partition R into sets R1, R2, . . . such that Ri

consists of all runs of depth i. Note that for every two runs r and r′ with
r, r′ ∈ Rj , the segments of r and r′ are disjoint.

Lemma 6. For a run r ∈ Rj , seg(r) ≤ c(P)
wj−1 .

Proof sketch. By induction on j. The lemma is trivially true for j = 1. Suppose
the lemma holds for j, we will show that it holds for j + 1. Let r be a run in
Rj+1. We will show that r is contained within a run r′ of depth j for which it
holds that seg(r) ≤ seg(r′)/w: by induction hypothesis, we will then have that
seg(r) ≤ c(P)

wj , and the lemma is proved.

86 S. Angelopoulos

It is easy to see first that there exists a run r′ of depth j such that r is
contained within r′ (similar to the proof of Lemma 5); more precisely, l(r′) ≺
l(r) ≺ rep(r) ≺ rep(r′). Recall that at the time right before in(r′) is requested,
the interval (l(r′), rep(r′)) is a free interval. Likewise, at the time right before
in(r) is requested, the interval ((l(r), rep(r)) is a free interval. We thus consider
cases, depending on how the interval (l(r), rep(r)) became free:

Case 1. (l(r), rep(r)) became free as a result of line 4 of NonFree. Then there
exists a terminal u with rep(r) ≺ u � rep(r′) such that when rep(r) was re-
quested, the interval (l(r), u) was a left interval. From Property 3 there must
exist a terminal v such that l(r′) ≺ v � l(r) and the interval (v, u) became left as
a result of either line 19 of NonFree or line 5 of Free. Let r′′ denote the run that
v joins, then from the two cases above, we have that the if-condition of line 17 of
NonFree, or line 4 of Free, respectively, holds, hence s(v, u) ≤ seg(r′′)/w. Note
that (l(r), rep(r)) is contained within the interval (v, u), thus seg(r) ≤ s(v, u); in
addition from Property 2 r′′ is contained within run r′, hence seg(r′′) ≤ seg(r′).
Combining the above inequalities we deduce that seg(r) ≤ seg(r′)/w.

Case 2. ((l(r), rep(r)) became free as a result of line 9 of NonFree. This case
is very similar to Case 1, in the sense that left intervals are now “replaced” by
right intervals. We also require a property symmetric to Property 3. �

3.6 Adding Up the Individual Contributions

Recall from the discussion in section 3.2 that the total connection cost C for
terminals in the comb is expressed as the sum of the partial costs C1, . . . C6,
and that C5 and C6 have only a small asymptotic contribution to C. Also, using
Lemma 2, and given the disjointness of terminal paths, it is easy to show that
C1 ≤ α(x+ 5) · c(T ′). We thus need to focus on costs C2, . . . C4. Recall also that
w is defined as min{α, x}, x is such that xx = k′ and that y is such that αy = k′.

We first show how to bound C4. Let Z ⊆ K ′ be the set of terminals contribut-
ing to C4. Recall that a terminal u ∈ Z which belongs to a run r is assigned as
a mate the representative of the run r. Moreover, the contribution of u to C4

is at most the segment of the run r, seg(r). Using the notation introduced in
section 3.5, we say that a terminal u ∈ Z belongs in class Zj ⊆ Z if and only if
its corresponding run belongs in the class Rj . Denote by c4(Zj) the contribution
of terminals in Zj to Z.

From Lemma 1 we know that for any fixed run r there are at most w terminals
in Z which contribute to C4 due to line 22 of NonFree, and their total contribu-
tion is bounded by w ·seg(r). On the other had, since r has a unique initiator for
a fixed r at most one terminal in Z contributes to cost C4 due to line 3 of Free.
In total, for a given run r at most w+1 terminals in run r contribute to C4, and
their total contribution is bounded by (w+1)·seg(r). For fixed j the segments of
all runs in Rj are edge-disjoint, which yields c4(Zj) ≤ (w+ 1) · c(P). Combining
this fact with Lemma 6 we have c4(Zj) ≤ min{(w + 1) · c(P), (w + 1) c(P)

wj−1 |Zj |}

A Near-Tight Bound for the Online Steiner Tree Problem 87

Since C4 =
∑

j c4(Zj), and there are at most as many runs as terminals in
the comb, it follows that C4 is maximized if |Zj| = wj−1, for all j ≥ 2, which
yields C4 ∈ O(wmax{x, y} · c(P)) = O(αmax{x, y} · c(P)).

For costs C2 and C3 one can show the following bounds, using a similar
argument based on the lemmas of section 3.4:

C2 = O(max{αx · c(P), αy · c(P)} and C3 = O(max{x · c(P), y · c(P)}.

Theorem 2 follows by adding C1, . . . C6 and the fact c(P) ≤ c(T ′). �

References

1. Angelopoulos, S.: Improved Bounds for the Online Steiner Tree Problem in Graphs
of Bounded Edge-Asymmetry. Technical Report CS-2006-36, David R. Cheriton
School of Computer Science, University of Waterloo (2006)

2. Angelopoulos, S.: Improved Bounds for the Online Steiner Tree Problem in Graphs
of Bounded Edge-Asymmetry. In: Bansal, N., Pruhs, K., Stein, C. (eds.) Proceed-
ings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 248–257. ACM Press, New York (2007)

3. Awerbuch, B., Azar, Y., Bartal, B.: On-line Generalized Steiner Problem. Theor.
Comp. Sci. 324(2–3), 313–324 (2004)

4. Azar, Y., Alon, N.: On-line Steiner Trees in the Euclidean Plane. Discrete and
Computational Geometry 10, 113–121 (1993)

5. Berman, P., Coulston, C.: Online Algorithms for Steiner Tree Problems. In: Pro-
ceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Com-
puting, pp. 344–353 (1997)

6. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

7. Claffy, K.G., Polyzos, B.H.W.: Traffic Characteristics of the T1 NSFnet Backbone.
In: IEEE-Infocom, pp. 885–892 (1993)

8. Faloutsos, M., Pankaj, R., Sevcik, K.C.: The Effect of Asymmetry on the On-line
Multicast Routing Problem. Int. J. Found. Comput. Sci. 13(6), 889–910 (2002)

9. Imase, M., Waxman, B.: The Dynamic Steiner Tree Problem. SIAM Journal on
Discrte Mathematics 4(3), 369–384 (1991)

10. Oliveira, C.A.S., Pardalos, P.M.: A Survey of Combinatorial Optimization Prob-
lems in Multicast Routing. Comput. Oper. Res. 32(8), 1953–1981 (2005)

11. Ramanathan, S.: Multicast Tree Generation in Networks with Asymmetric Links.
IEEE/ACM Trans. Netw. 4(4), 558–568 (1996)

12. Westbrook, J., Yam, D.C.K.: Linear Bounds for On-line Steiner Problems. Inf.
Proc. Ltrs. 55(2), 59–63 (1995)

13. Westbrook, J., Yan, D.C.K.: The Performance of Greedy Algorithms for the On-line
Steiner Tree and Related Problems. Math. Syst. Theory 28(5), 451–468 (1995)

Cache-Oblivious Red-Blue

Line Segment Intersection

Lars Arge1,�, Thomas Mølhave1,��, and Norbert Zeh2,���

1 MADALGO†, Department of Computer Science, University of Aarhus, Denmark
{large,thomasm}@madalgo.au.dk

2 Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
nzeh@cs.dal.ca

Abstract. We present an optimal cache-oblivious algorithm for finding
all intersections between a set of non-intersecting red segments and a
set of non-intersecting blue segments in the plane. Our algorithm uses
O(N

B
logM/B

N
B

+ T/B) memory transfers, where N is the total number
of segments, M and B are the memory and block transfer sizes of any
two consecutive levels of any multilevel memory hierarchy, and T is the
number of intersections.

1 Introduction

The memory systems of modern computers are becoming increasingly complex;
they consist of a hierarchy of several levels of cache, main memory, and disk. The
access times of different levels of memory often vary by orders of magnitude and,
to amortize the large access times of memory levels far away from the processor,
data is normally transferred between levels in large blocks. Thus, it is important
to design algorithms that are sensitive to the architecture of the memory system
and have a high degree of locality in their memory access patterns.

Building on the two-level external-memory model [1] introduced to model the
large difference between the access times of main memory and disk, the cache-
oblivious model [8] was introduced as a way of obtaining algorithms that are
efficient on all levels of arbitrary memory hierarchies. In this paper, we develop
a cache-oblivious algorithm for the red-blue line segment intersection problem,

� Supported in part by the US Army Research Office through grant W911NF-04-01-
0278, by an Ole Roemer Scholarship from the Danish National Science Research
Council, a NABIIT grant from the Danish Strategic Research Council, and by the
Danish National Research Foundation.

�� Supported in part by an Ole Roemer Scholarship from the Danish National Science
Research Council, a NABIIT grant from the Danish Strategic Research Council,
and by the Danish National Research Foundation.

��� Supported by the Canada Research Chairs program, the Natural Sciences and
Engineering Research Council of Canada, and the Canadian Foundation for Inno-
vation.

† Center for Massive Data Algorithmics, a Center of the Danish National Research
Foundation.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 88–99, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Cache-Oblivious Red-Blue Line Segment Intersection 89

that is, for finding all intersections between a set of non-intersecting red segments
and a set of non-intersecting blue segments in the plane. Our algorithm is optimal
and, to the best of our knowledge, the first efficient cache-oblivious algorithm
for any intersection problem involving non-axis-parallel objects.

External-memory model. In the two-level external-memory model [1], the
memory hierarchy consists of an internal memory big enough to hold M ele-
ments and an arbitrarily large external memory partitioned into blocks of B
consecutive elements. A memory transfer moves one block between internal and
external memory. Computation can occur only on data in internal memory. The
complexity of an algorithm in this model (an external-memory algorithm) is mea-
sured in terms of the number of memory transfers it performs. Aggarwal and
Vitter proved that the number of memory transfers needed to sort N data items
in the external-memory model is Sort(N) = Θ(N

B logM/B
N
B) [1]. Subsequently,

a large number of algorithms have been developed in this model; see [10, 2] for
an overview. Below we briefly review results directly related to our work.

In the first paper to consider computational geometry problems in external
memory [9], Goodrich et al. introduced the distribution sweeping technique (a
combination of M/B-way distribution sort and plane sweeping) and showed
how it can be used to solve a large number of geometric problems in the plane
using O(Sort(N) + T/B) memory transfers, where T is the output size of the
problem (eg., number of intersections). The problems they considered include
the orthogonal line segment intersection problem and other problems involving
axis-parallel objects. Arge et al. developed an algorithm that solves the red-blue
line segment intersection problem using O(Sort(N)+T/B) memory transfers [4],
which is optimal. The algorithm uses the distribution sweeping technique [9] and
introduces the notion of multi-slabs; if the plane is divided into vertical slabs, a
multi-slab is defined as the union of any number of consecutive slabs. Multi-slabs
are used to efficiently deal with segments spanning a range of consecutive slabs.
The key is that, if there are only

√
M/B slabs, there are less than M/B multi-

slabs, which allows the distribution of segments into multi-slabs during a plane
sweep using standard M/B-way distribution. Arge et al. also extended their
algorithm to obtain a solution to the general line segment intersection problem
using O(Sort(N + T)) memory transfers [4].

Cache-oblivious model. In the cache-oblivious model [8], the idea is to design
a standard RAM-model algorithm that has not knowledge of the parameters of
the memory hierarchy but analyze it in the external-memory model assuming
that an offline optimal paging strategy performs the memory transfers necessary
to bring accessed elements into memory. Often it is also assumed that M ≥ B2

(the tall-cache assumption). The main advantage of the cache-oblivious model
is that it allows us to reason about a simple two-level memory model but prove
results about an unknown, multi-level memory hierarchy [8].

Frigo et al. [8] developed optimal cache-oblivious sorting algorithms, as well
as algorithms for a number of other fundamental problems. Subsequently, al-
gorithms and data structures for a range of problems have been developed [3].

90 L. Arge, T. Mølhave, and N. Zeh

Relevant to this paper, Bender et al. [5] developed a cache-oblivious algorithm
that solves the offline planar point location problem using O(Sort(N)) memory
transfers; Brodal and Fagerberg [6] developed a cache-oblivious version of distri-
bution sweeping and showed how to use it to solve the orthogonal line segment
intersection problem, as well as several other problems involving axis-parallel
objects, cache-obliviously using O(Sort(N) + T/B) memory transfers. To the
best of our knowledge, no cache-oblivious algorithm was previously known for
any intersection problem involving non-axis-parallel objects.

Our results. We present a cache-oblivious algorithm for the red-blue line seg-
ment intersection problem that uses O(Sort(N) + T/B) memory transfer. This
matches the bound of the external-memory algorithm of [4] and is optimal.

As discussed, the external-memory algorithm for this problem [4] is based
on an extended version of distribution sweeping utilizing multi-slabs. Our new
algorithm borrows ideas from both the external-memory algorithm for the red-
blue line segment intersection problem [4] and the cache-oblivious algorithm for
the orthogonal line-segment intersection problem [6]. In order to obtain a useful
notion of sweeping the plane top-down or bottom-up, we utilize the same to-
tal ordering as in [4] on a set of non-intersecting segments, which arranges the
segments intersected by any vertical line in the same order as the y-coordinates
of their intersections with the line. In the case of axis-parallel objects, such an
ordering is equivalent to the y-ordering of the vertices of the objects; in the
non-axis-parallel case, this ordering is more difficult to obtain [4]. Similar to the
cache-oblivious orthogonal line-segment intersection algorithm [6], we employ
the cache-oblivious distribution sweeping paradigm, which uses two-way merging
rather than

√
M/B-way distribution. While this eliminates the need for multi-

slabs, which do not seem to have an efficient cache-oblivious counterpart, it also
results in a recursion depth of Θ(log2N) rather than Θ(logM/B N). This implies
that one cannot afford to spend even 1/B memory transfers per line segment at
each level of the recursion. For axis-parallel objects, Brodal and Fagerberg [6]
addressed this problem using the so-called k-merger technique, which was intro-
duced as the central idea in Funnel Sort (ie., cache-oblivious Merge Sort) [8].
This technique allows N elements to be passed through a log2N -level merge
process using only O(Sort(N)) memory transfers, but generates the output of
each merge process in bursts, each of which has to be consumed by the next
merge process before the next burst is produced. This creates a new challenge,
as a segment may have intersections with all segments in the output stream of
a given merge process and, thus, needs access to the entire output stream to
report these intersections. To overcome this problem, Brodal and Fagerberg [6]
provided a technique to detect, count, and collect intersected segments at each
level of recursion that ensures that the number of additional accesses needed to
report intersections is proportional to the output size.

Our main contribution is the development of non-trivial new methods to ex-
tend the counting technique of Brodal and Fagerberg [6] to the case of non-axis-
parallel line segments. These ideas include a look-ahead method for identifying
certain critical segments ahead of the time they are accessed during a merge,

Cache-Oblivious Red-Blue Line Segment Intersection 91

as well as an approximate counting method needed because exact counting of
intersected segments (as utilized in the case of axis-parallel objects) seems to be
no easier than actually reporting intersections.

2 Vertically Sorting Non-intersecting Segments

In this section, we briefly sketch a cache-oblivious algorithm to vertically sort a
set S of N non-intersecting segments in the plane. Let s1 and s2 be segments
in S. We say that s2 is above s1, denoted s1 <A s2, if there exists a vertical
line intersecting s1 and s2 in points (x, y1) and (x, y2), respectively, and y1 <
y2. Some segments in S may be incomparable under <A, and the problem of
vertically sorting S is to extend the partial order <A to a total order <t such
that s1 <A s2 implies s1 <t s2 [4]. We call <t a vertical ordering of the segments.

Our cache-oblivious algorithm for vertically sorting S is an adaptation of the
corresponding external-memory algorithm [4]. The main ingredients are an al-
gorithm for finding the segments immediately above and below every segment
endpoint and an algorithm for topologically sorting the resulting planar st-graph.
The former can be solved using an offline cache-oblivious point location algo-
rithm [5]; for the latter we use a cache-oblivious adaptation of the external-
memory algorithm [7]. Details will appear in the full paper.

Theorem 1. A vertical ordering of N non-intersecting line segments in the
plane can be computed cache-obliviously using O(Sort(N)) memory transfers and
linear space.

3 Red-Blue Line Segment Intersection

In this section, we give an overview of our algorithm for finding all intersections
between a set R of non-intersecting red segments and a set B of non-intersecting
blue segments. For simplicity we assume that the x- and y-coordinates of all
endpoints are distinct. Sections 4 and 5 present the details of our algorithm.

The
√

N-merger. Our algorithm uses the
√
N -merger technique [6, 8] exten-

sively. A
√
N -merger merges

√
N sorted input streams of length

√
N into one

sorted output stream. It is defined recursively in terms of smaller k-mergers. A
k-merger takes k sorted input streams of total length at least k2 and produces
a sorted output stream by merging the input streams. The cost of merging k2

elements using a k-merger is O(Sort(k2)), which is O(Sort(N)) for k =
√
N [6,8].

A k-merger is a complete binary tree over k/2 leaves with a buffer associated
with each edge. If k = 2, the merger consists of a single node with two input
streams and one output stream; see Fig. 1(a). Otherwise, it consists of

√
k+1

√
k-

mergers as shown in Fig. 1(b); the buffers associated with the edges between the
top merger and the bottom mergers have size k. The merge process is performed
by invoking a Fill operation on the root of the merger. A Fill operation on a
node u fills the output buffer S(u) of u (the buffer between u and its parent) by

92 L. Arge, T. Mølhave, and N. Zeh

(a)

√
k

√
k

√
k

√
k

(b)

b1

b2
b3

b4

r1

r2

σ1 σ2 σ3 σ4 σ5 σ6 σ8σ7

(c)

Fig. 1. (a) A 2-merger. (b) A k-merger for k > 2. (c) Slabs and intersection types.

repeatedly removing the minimum element from S(l(u)) or S(r(u)) and placing
it into S(u), where l(u) and r(u) denote the left and right children of u. When
S(l(u)) or S(r(u)) becomes empty, a Fill operation is invoked recursively on the
corresponding child before continuing to fill S(u). The Fill operation returns
when S(u) is full or there are no elements left in any buffer below u. Since the
root’s output buffer has size N , only one Fill operation on the root is required
to place all elements in the input streams into a sorted output stream.

The basic concept in the analysis of a
√
N -merger is that of a base tree, which

is the largest subtree in the recursive definition of a
√
N -merger such that the

entire tree plus one block for each of its input and output buffers fit in memory.
The central observation is that, in order to achieve the O(Sort(k2)) merge bound,
a Fill operation on a base tree root can afford to load the whole base tree into
memory and perform O(1) memory transfers per node in the base tree; note that
this means that Fill operations on other nodes of the base tree are free. It also
means that we can associate O(1) auxiliary buffers with each merger node u and
that we can assume that a Fill operation at node u can access the first O(1)
blocks of each auxiliary buffer without any memory transfers. See [6] for details.

Distribution sweeping. To find all intersections between red and blue seg-
ments, we start by dividing the plane into q =

√
N vertical slabs σ1, . . . , σq

containing 2
√
N segment endpoints each, where N = |R| + |B| is the total

number of segments. We recurse on each slab σi to find the intersections in σi

between segments with at least one endpoint in this slab; these intersections are
shown using white dots in Fig. 1(c). Each of the remaining intersections, shown
as black dots in Fig. 1(c), involves at least one segment that completely spans the
slab containing the intersection. To find these intersections, we use a

√
N -merger

whose input streams are sorted lists of segments and/or segment endpoints asso-
ciated with slabs σ1, . . . , σq. We also associate slabs with the nodes of the merger.
The slab σu associated with a node u is the union of the slabs corresponding to
the input streams of u’s subtree. We use l(σu) and r(σu) to denote its left and
right boundaries, respectively. We call a segment with an endpoint in σu long
wrt. slab σl(u) if it spans σl(u) (segment b3 in Fig. 2(a)), and short otherwise
(segments b1, b2, b4 in Fig. 2(a)). We call an intersection in σl(u) long-long if it

Cache-Oblivious Red-Blue Line Segment Intersection 93

involves two long segments wrt. slab σl(u) (point p3 in Fig. 2(a)), and short-long
if it involves a short and a long segment (points p1 and p2 in Fig. 2(a)). Short
and long segments and short-long and long-long intersections in slab σr(u) are
defined analogously. It is easy to see that every intersection in a slab σi that
involves a segment spanning σi is long-long or short-long at exactly one merger
node. Hence, our goal in merging the streams corresponding to slabs σ1, . . . , σq

is to report all long-long and short-long intersections at each merger node.
Throughout this paper, we only discuss finding, at every merger node u, short-

long and long-long intersections inside σl(u). The intersections in σr(u) can be
found analogously. Our algorithm finds short-long and long-long intersections
separately and finds each intersection type using several applications of the

√
N -

merger to appropriate input streams associated with slabs σ1, . . . , σq. We call one
such application a pass through the merger. In the process of merging the input
streams of the merger, each pass either reports intersections or performs some
preprocessing to allow a subsequent pass to report intersections. As we show
in Sect. 4 and 5, O(1) passes are sufficient to report all short-long and long-
long intersections, and each pass uses O(Sort(N) +Ts/B) memory transfers and
linear space, where Ts is the number of reported intersections. Let Ni denote
the number of short segments in slab σi, Ti the number of intersections between
these segments, and C(N,T) the complexity of our algorithm on N segments
that have T intersections. Then the complexity of our algorithm is given by the
recurrence C(N,T) =

∑√
N

i=1 C(Ni, Ti) + O(Sort(N) + Ts/B), which solves to
C(N,T) = O(Sort(N) + T/B) because each original segment participates as a
non-spanning segment in at most two slabs on each level of the recursion.

Theorem 2. The red-blue line segment intersection problem can be solved
cache-obliviously using O(Sort(N) + T/B) memory transfers and linear space,
where N is the total number of line segments and T is the number of intersec-
tions.

4 Short-Long Intersections

In this section, we discuss how to find all short-long intersections at all merger
nodes using O(1) passes through the merger. Recall that we focus only on inter-
sections inside σl(u). We call such an intersection between a long red segment r
and a short blue segment b upward if b has at least one endpoint in σl(u) that is
below r (points p2, p3, p5 in Fig. 2(b)); otherwise, the intersection is downward
(points p1 and p4 in Fig. 2(b)). We focus on finding upward short-long intersec-
tions between long red and short blue segments in the remainder of this section.
The other types of short-long intersections can be found analogously. We discuss
first how to find these intersections in the desired number of memory transfers
using linear extra space per merger node. Then we discusses how to reduce the
space bound to O(N) in total.

Our algorithm uses two passes through the
√
N -merger. The first pass asso-

ciates a red list R(u) of size N (big enough to hold all segments in the input

94 L. Arge, T. Mølhave, and N. Zeh

u

σl(u) σr(u)

l(u) r(u)

b1 b2

b3

b4 r1

r2
p1

p2
p3

p4

(a)

u

σl(u) σr(u)

l(u) r(u)

b1

b2

b3

b4

r

b5

p1

p2

p3

p4

p5

(b)

u

σl(u) σr(u)

l(u) r(u)

1
2

3
4

67
8

10

9
5

(c)

u

σl(u) σr(u)

l(u) r(u)

b
rp

q

(d)

Fig. 2. (a) Short-long and long-long intersections. (b) Upward and downward inter-
sections. (c) Detecting long segments involved in upward short-long intersections. (d)
Reporting upward short-long intersections. Dashed segments are not in R(u).

if necessary) with every merger node u and populates it with all red segments
that are long wrt. σl(u) and are involved in upward short-long intersections at
node u. The second pass uses these red lists to report all upward short-long in-
tersections. Both passes merge segment streams sorted by the vertical segment
ordering from Sect. 2. More precisely, we construct a set R′ containing all red
segments and one zero-length segment per blue segment endpoint and use the
vertical ordering on R′ as a total ordering of red segments and blue segment
endpoints, bottom-up. The rank of a red segment or blue segment endpoint is
its position in this ordering.

Populating red lists. To populate all red lists, we initialize the input streams
of the merger so that the stream corresponding to slab σi stores all red segments
whose right endpoints are in σi, as well as all blue segment endpoints in σi. The
entries of the stream are sorted bottom-up (by increasing rank). Now we merge
these streams to produce one sorted output stream, where the output stream of
each merger node u contains all red segments with right endpoints in σu and
all blue segment endpoints in σu, again sorted bottom-up. The Fill operation
at a node u is the standard Fill operation of a

√
N -merger, except that, when

placing a red segment r into u’s output stream S(u), we check whether r is
involved in an upward short-long intersection at node u. If it is, we also append
segment r to u’s red list R(u).

To see how this test is performed, consider an upward short-long intersection
between a short blue segment b and a long red segment r. Segment b must have
at least one endpoint in σl(u) that is below r (has lower rank than r). Since
b and r intersect in σl(u), either b’s other endpoint q also lies in σl(u) and is
above r (has higher rank than r), or b intersects one of the slab boundaries of
σl(u) above r; see Fig. 2(c). Since we merge segments and segment endpoints at
each node u bottom-up, we process (ie., place into S(u)) all short blue segment
endpoints below r before we process r. We call a blue segment processed if we
have processed at least one of its endpoints. A segment b with one endpoint
in σl(u) is internal, left-intersecting, or right-intersecting depending on whether
both its endpoints are in σl(u), b intersects l(σl(u)) or b intersects r(σl(u)). Let
ρ(u) be the highest rank of all endpoints of processed internal blue segments, and
yl(u) the y-coordinate of the highest intersection between l(σl(u)) and processed

Cache-Oblivious Red-Blue Line Segment Intersection 95

left-intersecting blue segments; yr(u) is defined analogously for processed right-
intersecting blue segments. By our previous discussion, r has an upward short-
long intersection at u if and only if r has rank less than ρ(u), intersects l(σl(u))
below y-coordinate yl(u) or intersects r(σl(u)) below yr(u); see Fig. 2(c).

Values ρ(u), yl(u), and yr(u) are easily maintained as the Fill operation at
node u processes blue segment endpoints. When processing a red segment r, it
is easy to test whether it is long wrt. σl(u) and its rank is less than ρ(u), its
intersection with l(σl(u)) has y-coordinate less than yl(u) or its intersection with
r(σl(u)) has y-coordinate less than yr(u). If this is the case, r has at least one
upward short-long intersection at u, and we append it to u’s red list R(u).

Reporting short-long intersections. Given the populated red lists, the sec-
ond pass starts out with the input stream of each slab σi containing all blue
segment endpoints in σi, sorted top-down (ie., by decreasing ranks). We merge
these points so that every node u outputs a stream of blue segment endpoints
in σu, sorted top-down. To report all short-long intersections at a node u, the
Fill operation at node u keeps track of the current position in R(u), which is
the segment with minimum rank in R(u) we have inspected during the current
pass. Initially, this is the last segment in R(u). Now when processing an endpoint
p ∈ σl(u) of a blue segment b, we first scan backwards in R(u) from the current
position to find the segment r with minimum rank in R(u) whose rank is greater
than that of p. Segment r becomes the new current position in R(u). Segment
r is the lowest segment in R(u) that can have an upward intersection with b,
and all segments having such intersections with b form a contiguous sequence in
R(u) starting with r. Therefore, we scan forward from r, reporting intersections
between scanned segments and b until we find the first segment in R(u) that
does not have an upward short-long intersection with b; see Fig. 2(d).

Since every segment placed into R(u) is involved in at least one intersection
and all but O(1) accesses to a segment in R(u) can be charged to reported
intersections, the scanning of red lists adds only O(Ts/B) to the O(Sort(N)) cost
of the merger. The space usage of the algorithm can be reduced to O(N + Ts)
by running the pass populating red lists twice. The first time, we only count
segments that would be placed into each list and then allocate a list of the
appropriate size to each node. The second time, we place segments into the
allocated lists. Using the same technique as in [6], the space can then be reduced
further to O(N). Details will appear in the full paper.

Lemma 1. Short-long intersections can be reported using O(Sort(N) + Ts/B)
memory transfers and linear space.

5 Long-Long Intersections

In this section, we discuss how to find the long-long intersections at all merger
nodes. Again, we focus on finding, at every node u, only long-long intersections
inside slab σl(u). Similar to the short-long case, we first describe our procedure
assuming we can allocate two lists of size N to each node. Later we discuss how
to reduce the space usage to O(N).

96 L. Arge, T. Mølhave, and N. Zeh

A simple solution using superlinear space. After some preprocessing dis-
cussed later in this section, long-long intersections can be found using one pass
through the

√
N -merger. This time, the input stream corresponding to slab σi

contains all segments whose right endpoints are inside σi and which intersect
l(σi). The segments are sorted by decreasing y-coordinates of their intersections
with l(σi). The goal of the merge process at a merger node u is to produce an
output stream of all segments with right endpoints in σu and which intersect
l(σu). Again, these segments are to be output sorted by decreasing y-coordinates
of their intersections with l(σu). In the process of producing its output stream,
each merger node u reports all long-long intersections inside σl(u).

This merge process in itself poses a challenge compared to the short-long case,
as segments in S(r(u)) that intersect both r(σl(u)) and l(σl(u)) may have to be
placed into S(u) in a different order from the one in which they arrive in S(r(u));
see Fig. 3(a). Thus, we need to allow segments to “pass each other”, which we
accomplish using two buffers B(u) and R(u) of size N associated with each
node u in the merger. Buffer B(u) is used to temporarily hold blue segments
that need to be overtaken by red segments at u; these segments are sorted by
the y-coordinates of their intersections with l(σu). Buffer R(u) serves the same
purpose for red segments. Initially, B(u) and R(u) are empty.

To implement the merge process, we also need a “look-ahead” mechanism
that allows each node u to identify the next long segment of each color to be
retrieved from S(r(u)) without actually retrieving it. We discuss below how to
provide such a mechanism. Again, the need for such a mechanism arises because
long red and blue segments may change their order between S(r(u)) and S(u).
If the topmost segment b in S(r(u)) is long and blue, we can decide whether it is
the next segment to be placed into S(u) only if we know whether the next long
red segment r intersects l(σu) above b; but there may be an arbitrary number of
blue and short red segments between b and r in S(r(u)), and we cannot afford
to scan ahead until we find r in S(r(u)). Look-ahead provides us with r without
the need to scan through S(r(u)).

A Fill operation at node u now reduces to repeatedly identifying the next
segment s to be placed into S(u). This segment is currently in S(l(u)), S(r(u)),
R(u) or B(u) and is the one with the highest intersection with l(σu) among the
segments remaining in these streams. Thus, if s belongs to S(l(u)), it must be
the next segment s′ in S(l(u)) because the segments in S(l(u)) are sorted by
their intersections with l(σl(u)) = l(σu). If s belongs to S(r(u)), R(u) or B(u),
it must be the next long red segment r or the next long blue segment b to be
placed into S(u). Note that our look-ahead mechanism provides us with r and
b. To decide which of s′, r, and b is the next segment s to be placed into S(u),
it suffices to compare their intersections with l(σu).

In order to place s into S(u), we need to locate it in S(l(u)), S(r(u)), B(u)
or R(u), remove it, and output it into S(u). If s ∈ S(l(u)), B(u) or R(u), this
is easy because s is the next segment in S(l(u)) or the first segment in B(u)
or R(u). So assume that s is long, wlog. red, and stored in S(r(u)). Then we
retrieve segments from S(r(u)) until we retrieve s. Since the segments in S(r(u))

Cache-Oblivious Red-Blue Line Segment Intersection 97

u

σl(u) σr(u)

l(u) r(u)

r

b2

b1

b3
b4

(a)

u

σl(u) σr(u)

l(u) r(u)
s1
s2
s3
s4
s5
s6
s7
s8

(b)

u

σl(u) σr(u)

l(u) r(u)

b

(c)

Fig. 3. (a) Segments b1, b2, b3, b4 arrive before r in S(r(u)) but need to be placed into
S(u) after r. Thus, r must be able to overtake them at u. (b) Implementation of
look-ahead. Bold solid segments are in Rt(u), dashed ones are not. Arrows indicate
how every long segment finds the next long segment. (c) Approximate counting using
sampling. The bold segments are in the sample, the dashed ones are not.

are sorted by their intersections with l(σr(u)) and red segments do not intersect,
there cannot be any long red segment in S(r(u)) that is retrieved before s. Thus,
all segments retrieved from S(r(u)) before s are blue or short. Short segments
can be discarded because they cannot be involved in any long-long intersections
at u or any of its ancestors. Long blue segments are appended to B(u) in the
order they are retrieved, which is easily seen to maintain the segments in B(u)
sorted by their intersections with l(σl(u)).

So far we have talked only about outputting the segments at each node u in
the correct order. To discuss how to report intersections, we say that a segment
is placed into S(u) directly if it is never placed into R(u) or B(u); otherwise, we
say that it is overtaken by at least one segment. It is not hard to see that every
long-long intersection at a node u involves a segment s placed directly into S(u)
and a segment that is overtaken by s; a segment s placed directly into S(u) has
long-long intersections with exactly those segments of the other color that are
in B(u) or R(u) at the time when s is placed into S(u). Thus, we can augment
the merge process at u to report long-long intersections as follows. Immediately
before placing a long red segment r directly into S(u), we scan B(u) to report
all intersections between r and the segments in B(u). When a long blue segment
b is placed directly into S(u), we scan R(u) instead. Since only segments that
are overtaken (and thus involved in at least one intersection) are placed into
R(u) and B(u) and every scan of R(u) and B(u) reports one intersection per
scanned segment, the manipulation of these buffers at all merger nodes adds
only O(Ts/B) memory transfers to the O(Sort(N)) cost of the merger. Next
we discuss how to implement the look-ahead mechanism using only O(Sort(N))
additional memory transfers, which leads to an O(Sort(N) + Ts/B) cost for
finding all long-long intersections.

Look-ahead. Consider the merge process reporting long-long intersections at a
node u. Given look-ahead at u’s children, it is easy to ensure that every segment
in S(l(u)) or S(r(u)) knows the next segment s′ of the same color in S(l(u)) or
S(r(u)), respectively. When placing a long segment s from S(r(u)) into S(u),
however, we need to identify not the next segment of the same color as s in

98 L. Arge, T. Mølhave, and N. Zeh

S(r(u)) but the next long such segment s′′. If s′ is long, then s′′ = s′. Otherwise,
we say that s′ terminates at node u, as it is not placed into S(u). In this case,
s′ comes between s and s′′ in S(r(u)). Note also that every segment terminates
at exactly one node in the merger.

To allow us to identify segment s′′, we preprocess the merger and associate two
lists Rt(u) and Bt(u) with every node u. List Rt(u) (resp., Bt(u)) contains all
those long red (resp., blue) segments in S(r(u)) that are immediately preceded by
red (resp., blue) segments that terminate at u. Given these lists, a long segment
s in S(r(u)) that is succeeded by a terminating segment of the same color in
S(r(u)) can identify the next long segment of the same color by retrieving the
next segment from Rt(u) or Bt(u), depending on its color; see Fig. 3(b). These
lists are easily constructed in O(Sort(N)) memory transfers by merging the blue
and red segments independently; details will appear in the full paper. In order
to ensure that each list uses only as much space as it needs—and, thus, that
all look-ahead lists use only O(N) space—we run each merge twice. The first
pass counts the number of segments to be placed into each list, the second one
populates the lists after allocating the required space to each list.

During the merge that reports long-long intersections, each list Rt(u) or Bt(u)
is scanned exactly once, as the segments in these lists are retrieved in the order
they are stored. Thus, scanning these lists uses O(N/B) memory transfers.

Linear space via approximate counting of intersected segments. Finally,
we discuss how to reduce the space usage of the merge that finds long-long
intersections to O(N + Ts). Using the same technique as in [6] again, the space
usage can then be reduced further to O(N). Details appear in the full paper.

To achieve this space reduction, we need to reduce the total size of the red and
blue buffers R(u) and B(u) to O(N +Ts). We observe that R(u) and B(u) never
contain more than cb(u) and cr(u) segments, respectively, where cb(u) and cr(u)
denote the maximum number of red (resp., blue) segments intersected by any
long blue (resp., red) segment at u. Hence, it suffices to determine these values
and allocate cb(u) space for R(u) and cr(u) space for B(u). Since these values
summed over all nodes of the merger do not sum to more than Ts, this would
ensure that the total space usage of all buffers R(u) and B(u) is at most Ts.
However, it seems difficult to determine cb(u) and cr(u) exactly without already
using buffers R(u) and B(u). Instead, we compute upper bounds c′b(u) and c′r(u)
such that cb(u) ≤ c′b(u) ≤ cb(u) +

√
N and cr(u) ≤ c′r(u) ≤ cr(u) +

√
N , which

can be done in linear space. By allocating c′b(u) space for buffer R(u) and c′r(u)
space for buffer B(u), each buffer is big enough and we waste only O(

√
N) space

per merger node. Since there are O(
√
N) merger nodes, the total space used by

all buffers is therefore O(N + Ts).
We discuss how to compute values c′b(u), as values c′r(u) can be computed

similarly. To compute values c′b(u), we compute a
√
N/2-sample of the long red

segments passing through each node u and determine for every long blue segment
b how many segments in the sample it intersects. If this number is h(b), then b
intersects between

√
N(h(b) − 1)/2 and

√
N(h(b) + 1)/2 long red segments at

Cache-Oblivious Red-Blue Line Segment Intersection 99

node u. See Fig. 3(c). We choose c′b(u) to be the maximum of
√
N(h(b) + 1)/2

taken over all long blue segments b at node u.
More precisely, we use two passes through the

√
N -merger after allocating a

sample buffer Rs(u) of size 2
√
N to each node. The first pass merges red segments

by their intersections with left slab boundaries. At a node u, every
√
N/2’th long

segment is placed into Rs(u). The second pass merges blue segments by their
intersections with left slab boundaries. Before this pass, we set c′b(u) = 0 for every
node u. During the merge, when we process a long blue segment b, we determine
the number hl(b) of segments in Rs(u) that intersect l(σl(u)) below b, as well
as the number hr(b) of segments in Rs(u) that intersect r(σl(u)) below r. Let
h(b) = |hr(b)−hl(b)|. If

√
N(h(b)+1)/2 > c′b(u), we set c′b(u) =

√
N(h(b)+1)/2.

Since we allocate only O(
√
N) space to each merger node during the approx-

imate counting of intersections, the space usage of this step is linear. Moreover,
we merge red and blue segments once, and it can be shown that the computation
of values hr(b) and hl(b) for all blue segments b passing through node u requires
two scans of list Rs(u) in total. Hence, this adds O(N/B) to the merge cost, and
we obtain the following lemma, which completes the proof of Theorem 2.

Lemma 2. Long-long intersections can be reported using O(Sort(N) + Ts/B)
memory transfers and linear space.

References

1. Aggarwal, A., Vitter, J.S.: The Input/Output complexity of sorting and related
problems. Comm. ACM 31(9), 1116–1127 (1988)

2. Arge, L.: External memory data structures. In: Abello, J., Pardalos, P.M., Resende,
M.G.C. (eds.) Handbook of Massive Data Sets. Kluwer Academic Publishers, Dor-
drecht (2002)

3. Arge, L., Brodal, G.S., Fagerberg, R.: Cache-oblivious data structures. In: Mehta,
D., Sahni, S. (eds.) Handbook on Data Structures and Applications. CRC Press,
Boca Raton (2005)

4. Arge, L., Vengroff, D.E., Vitter, J.S.: External-memory algorithms for processing
line segments in geographic information systems. Algorithmica 47, 1–25 (2007)

5. Bender, M.A., Cole, R., Raman, R.: Exponential structures for cache-oblivious al-
gorithms. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S.,
Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 195–207. Springer, Heidelberg
(2002)

6. Brodal, G.S., Fagerberg, R.: Cache oblivious distribution sweeping. In: Widmayer,
P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP
2002. LNCS, vol. 2380, pp. 426–438. Springer, Heidelberg (2002)

7. Chiang, Y.-J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter,
J.S.: External-memory graph algorithms. In: Proc. SODA, pp. 139–149 (1995)

8. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algo-
rithms. In: Proc. FOCS, pp. 285–298 (1999)

9. Goodrich, M.T., Tsay, J.-J., Vengroff, D.E., Vitter, J.S.: External-memory compu-
tational geometry. In: Proc. FOCS, pp. 714–723 (1993)

10. Vitter, J.S.: External memory algorithms and data structures: Dealing with MAS-
SIVE data. ACM Comp. Surveys 33(2), 209–271 (2001)

The Complexity of Bisectors and Voronoi

Diagrams on Realistic Terrains

Boris Aronov1, Mark de Berg2, and Shripad Thite3

1 Department of Computer and Information Science, Polytechnic University, USA
aronov@poly.edu

2 Department of Computing Science, TU-Eindhoven, the Netherlands
mdberg@win.tue.nl

3 California Institute of Technology, Center for the Mathematics of Information, USA
shripad@caltech.edu

Abstract. We prove tight bounds on the complexity of bisectors and
Voronoi diagrams on so-called realistic terrains, under the geodesic dis-
tance. In particular, if n denotes the number of triangles in the terrain,
we show the following two results.

(i) If the triangles of the terrain have bounded slope and the projection
of the set of triangles onto the xy-plane has low density, then the
worst-case complexity of a bisector is Θ(n).

(ii) If, in addition, the triangles have similar sizes and the domain of the
terrain is a rectangle of bounded aspect ratio, then the worst-case
complexity of the Voronoi diagram of m point sites is Θ(n + m

√
n).

1 Introduction

Motivation. The Voronoi diagram of a set S of m sites in a metric space is
the decomposition of the space into m cells, one per site, such that the cell
corresponding to a site p ∈ S contains exactly those points for which p is the
closest site. Often the sites are points and the ambient space is a Euclidean space,
but there are many other interesting settings. Voronoi diagrams play a role in
numerous applications and they have been studied extensively—see for example
the book by Okabe et al. [9] or one of the several surveys [1, 2, 6] dedicated to
Voronoi diagrams. One of the areas where Voronoi diagrams are frequently used
is geographic information systems. A natural setting in this application is where
the sites are points in a mountainous terrain, and the distance between any two
points on the terrain is the geodesic distance. (The geodesic distance between
two points is the length of a shortest path on the terrain connecting them.) This
is the setting of our paper.

A standard way to model a terrain is using a triangulated irregular network, or
TIN for short: a triangulation of a convex polygonal domain in the xy-plane—
usually the domain is simply a rectangle—where each vertex is given an elevation.
In computational geometry, a TIN is called a polyhedral terrain. Hereafter, the
term terrain refers to a polyhedral terrain.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 100–111, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Complexity of Bisectors and Voronoi Diagrams on Realistic Terrains 101

A fundamental issue in the study of Voronoi diagrams is their combinato-
rial complexity. It is well known that the complexity—that is, the number of
vertices, edges, and cells—of the Voronoi diagram of m sites in the plane un-
der the Euclidean distance is Θ(m). This follows easily from the fact that the
Voronoi diagram is a planar subdivision with m faces, whose vertices have de-
gree at least three and whose edges are line segments or half lines. For Voronoi
diagrams on a terrain, things are more complicated. Here, the complexity de-
pends not only on the number of sites but also on the number of triangles in the
terrain. Indeed, a single bisector—the bisector of two sites is the set of points
equidistant from both sites—on a terrain consisting of n triangles can already
have complexity Ω(n2) [8] and the Voronoi diagram of m sites can have com-
plexity Ω((n + m)n). Fortunately, these high-complexity bisectors and Voronoi
diagrams seem to arise only on carefully constructed, artificial terrains—terrains
in practical applications probably behave much better. Thus the question arises:
how can we formalize the notion of a “well-behaved terrain” and what is the
worst-case complexity of bisectors and Voronoi diagrams on such terrains?

Previous results. These considerations lead Moet et al. [8] to study terrains with
the following properties: (i) the triangles in the terrain have bounded slope;
(ii) the set of terrain triangles has low density; (iii) the domain of the terrain
has bounded aspect ratio; (iv) all terrain triangles have roughly the same size.
(A more formal definition of these properties is given in Section 2.) They call a
terrain with these four properties a realistic terrain. Moet investigates [7] whether
the assumption of bounded slope, density etc. is pragmatic by measuring these
parameters of terrain models of various mountainous regions in the US, which
she concludes indeed have the properties listed above.

Moet et al. prove that the complexity of a single bisector on a realistic terrain
with n triangles is O(n

√
n) and can sometimes be Ω(n). Moreover, they show

that the complexity of the Voronoi diagram on a realistic terrain is O((n+m)
√
n),

and can sometimes be Ω(n +m
√
n).

Recently, Schreiber [11] studied the computation of shortest paths on real-
istic terrains (or, more generally, realistic polyhedra). Schreiber computes an
implicit representation of the Voronoi diagram on a realistic terrain in O((n +
m) log(n + m)) time, so that the site closest to a query point can be reported
in O(log(n + m)) time. For some applications it will be sufficient to have such
an implicit representation; for others one needs an explicit representation. The
explicit Voronoi diagram can be constructed in O((n+m) log(n+m) + k) time,
where k is the combinatorial complexity of the Voronoi diagram, by an exten-
sion of Schreiber’s algorithm [12]. The question now arises: what is the maximum
combinatorial complexity of the Voronoi diagram on a realistic terrain? This is
the question studied by Moet et al. [8,7] and explored further in this paper.

Our results. We improve on the results by Moet et al. [8] and give tight bounds
on the complexity of bisectors and Voronoi diagrams on realistic terrains.

First, we prove that the worst-case complexity of a single bisector on a realistic
terrain is Θ(n). We obtain our improved bound by studying the global shape

102 B. Aronov, M. de Berg, and S. Thite

of the bisector and showing essentially that it cannot “wiggle” too wildly. More
precisely, we prove that the set of pieces forming the bisector has low density. We
believe that this result is of independent interest. Interestingly, our proof only
requires the terrain to have properties (i) and (ii) listed above; thus it yields not
only a significantly better bound than what was known, but it also applies to a
wider class of terrains.

Second, we show that the worst-case complexity of the Voronoi diagram on a
realistic terrain is Θ(n + m

√
n). This result is based partially on our improved

bound on the complexity of a bisector and partially on a careful investigation of
the structure of the Voronoi diagram.

2 Preliminaries

Let T be a terrain with n triangles. In this section, we denote the vertical
projection of any subset o ⊂ T to the xy-plane by o. We will use D to denote
the domain of T , which is a subset of the xy-plane. For simplicity, and because
this is mostly the case in practice, we assume that D is a rectangle; our results
can easily be extended to the case where D is an arbitrary convex region. Notice
that T is a triangulation of D.

Next we formally define the parameters that measure how well-behaved a
terrain is.

– The slope of a triangle Δ in R3 is the maximum slope of any line segment
contained in Δ. For example, a triangle parallel to the xy-plane has slope 0,
while a vertical triangle—a triangle parallel to the z-axis—has infinite slope.
The slope ξ of the terrain T is the maximum slope of any of its triangles.
Note that a terrain does not contain vertical triangles by definition, so it has
finite slope.

– The density [4] of a set S of objects in the plane is defined as the smallest
number λ such that any disk B intersects at most λ objects o ∈ S such
that diam(o) � diam(B), where diam(·) denotes the diameter. The density
λ of the terrain T is the density of the set of edges of T . In other words,
the density refers to the edges of the triangulation of the domain D that
corresponds to T .

– The aspect ratio of a rectangle with width w and height h is defined as
max(w/h, h/w). The aspect ratio ρ of T is the aspect ratio of its domain D.

– The scale factor σ of T is the ratio between the maximum and the minimum
length of any edge of T .

Moet et al. [8] define a realistic terrain as a terrain whose slope ξ, density λ,
aspect ratio ρ, and scale factor σ are constants independent of n, and then prove
bounds on the complexity of bisectors and Voronoi diagrams as a function of n
only, with the dependence on ξ, λ, ρ, and σ hidden in the asymptotic notation.
We make this dependence explicit in all our bounds.

For two points p, q ∈ T , we use dist(p, q) to denote the geodesic distance
between p and q. In other words, dist(p, q) is the length of a shortest path from

The Complexity of Bisectors and Voronoi Diagrams on Realistic Terrains 103

p to q on T . Furthermore, we use |pq| to denote the Euclidean distance between
p and q. As already observed by Moet et al. [8], the geodesic distance between
two points on a terrain with bounded slope is closely related to the Euclidean
distance between their projections:

Lemma 1. [8] For any two points p, q on a terrain T with slope ξ, we have
dist(p, q) �

√
ξ2 + 1 · |pq|.

A second basic fact that we will use is that shortest paths on a realistic terrain
cross O(

√
n) triangles.

Lemma 2. [8] Let T be a terrain with slope ξ, density λ, aspect ratio ρ, and
scale factor σ. Then any shortest path on T crosses O(c

√
n) terrain edges, where

c = ξλσ
√
ρ.

Finally, we will use the following result, which follows easily from the definition
of density (just charge every intersecting pair (o1, o2) to the object with smaller
diameter). Similar results have been used in previous papers [3,13] dealing with
low-density scenes.

Lemma 3. Let S1 be a set of n1 objects and density λ1, and let S2 be a set of
n2 objects and density λ2. Then the number of pairs (o1, o2) ∈ S1 ×S2 such that
o1 intersects o2 is O(λ2n1 + λ1n2).

There is a natural one-to-one correspondence (obtained by vertical projection)
between points on the terrain T and points in the domain D. Hence, we can
view Voronoi diagrams and bisectors as subsets of T , or as subsets of D. From
now on, we will take the latter view and consider these structures to be subsets
of D. It is then also convenient to no longer make an explicit distinction between
geometric entities—points, shortest paths, bisectors, etc.—on the terrain T and
their projections to the domain D, and drop the notation o for the projection
of an object o. Thus, for example, when we speak of a shortest path π between
two points s and t on the terrain, we actually refer to the path π that connects
s to t. (When it is important to make the distinction between an object and
its projection, we will explicitly do so.) Moreover, |xy| refers to the Euclidean
distance between points x and y on D, while dist(x, y) refers to the length of a
shortest path between the corresponding points on T .

The structure of shortest paths on a terrain. A shortest path π(x, y) between
x, y ∈ T is a polygonal path that stays straight within individual terrain triangles
and unfolds to a straight line segment whenever it crosses a terrain edge away
from a vertex. A shortest path may pass through a terrain vertex (the vertex
has to be non-convex in a technical sense that is not important in this paper).
Two shortest paths π(x, y) and π(x, z) emanating from the same point x do not
properly cross, nor overlap and then diverge, except possibly at (non-convex)
vertices of T .

If two sites are equidistant from a terrain vertex, their bisector need not be a
curve; it may contain entire two-dimensional regions. So, in order for bisectors

104 B. Aronov, M. de Berg, and S. Thite

and Voronoi diagrams to be properly defined, following previous work [8], we
therefore make the general position assumption that no two sites are equidis-
tant from a terrain vertex. This assumption guarantees that bisectors are 1-
dimensional and that Voronoi cells are regions that cover T without overlap,
except at their common boundaries.

Moreover, in this version of the paper, we also add another non-degeneracy
assumption that is not needed for the results presented to hold but that simplifies
the presentation; the assumption is removed in the full version of the paper.
Namely, we assume that each site s is connected to every vertex v of the terrain
by a unique shortest path. Non-degeneracy implies that, for every point x ∈ T ,
all shortest paths between s and x are pairwise non-crossing; they may overlap
but they cannot cross. Now, for any two shortest paths π(s, x) and π(s, y),
for x
= y, there must exist a point z (which might coincide with s) so that
π(s, x)∩ π(s, y) = π(s, z). Moreover, for any two distinct shortest paths π1(s, x)
and π2(s, x) from s to the same point x there must exist a point z
= x with a
unique shortest path π(s, z) from s so that π1(s, x) ∩ π2(s, x) = π(s, z) ∪ {x}.

3 The Bisector

Let s and t be two point sites (not necessarily vertices) on a terrain T . In this
section we study the complexity of the bisector b = b(s, t) of s and t on T . We
will do the analysis in terms of n, the number of triangles of the terrain, and its
slope ξ and density λ.

The bisector b, by definition, consists of all points p ∈ T such that dist(p, s) =
dist(p, t). It partitions T into two regions: V(s), the Voronoi cell of s, which
contains the points closer to s, and V(t), the Voronoi cell of t, which contains
the points closer to t. Since Voronoi cells are connected, b is a simple curve that
is either closed—this can happen, for instance, when s is the peak of a mountain
and t is at the foot of the mountain—or connects two points on the boundary
of the terrain.

For most points on b, there is a unique shortest path to s and a unique
shortest path to t. For some points, however, there are multiple shortest paths
to s and/or to t. We call such points breakpoints. The number of breakpoints
on b is at most n, because each of them can be attributed to a terrain vertex [10].
The breakpoints partition b into pieces ; the intersection of a piece with a terrain
triangle is a line segment or hyperbolic arc [10]. The complexity of b is now
defined as the number of breakpoints plus the number of times that b crosses a
terrain edge.

We denote the set of all bisector pieces by Γ . Moet et al. [8] prove that
on a realistic terrain any piece γ ∈ Γ can cross only O(

√
n) triangles. Since

|Γ | � n+ 1, this implies that the total complexity of the bisector is O(n
√
n). To

improve upon this, we take a more global look at the bisector and show that the
set Γ has low density. (Here it is important to recall that we view Γ as a set of
curves in the xy-plane, that is, as a collection of subsets of D.) The result will
then readily follow from Lemma 3 and the fact that T has low density.

The Complexity of Bisectors and Voronoi Diagrams on Realistic Terrains 105

f

top(f)

bottom(f)

top

bottom

r

top

bottom

Fig. 1. Seven fragments and the two blocks defined by them. The rightmost fragment
does not belong to any block.

Let r be a rectangle in the xy-plane, and assume without loss of generality
that r is axis-parallel. We say that a piece γ crosses r if γ ∩ r has a connected
component with one endpoint on the top edge of r and one endpoint on the
bottom edge of r. We call such a component a fragment of γ. To bound the
density of Γ , we first show that r cannot be crossed too many times.

We denote the top endpoint of a fragment f by top(f) and its bottom endpoint
by bottom(f). For each piece γ that crosses r, we pick one of its fragments, and
we let F denote the set of all such fragments. Since each fragment f ∈ F connects
the top edge of r to the bottom edge of r, we can order the fragments from left
to right. We group the fragments from left to right in triples, and we call such
an (ordered) triple a block—see Fig. 1. We start by proving a lemma on the
structure of the shortest paths from the endpoints of the fragments in a block
to s and t.

Define the top of a block to be the line segment connecting the top of the
leftmost fragment of the triple to that of its rightmost fragment. Define the
bottom of a block analogously.

Lemma 4. Let (f1, f2, f3) be a block. Then at least one of the three top endpoints
has a shortest path to s or t that intersects the bottom of the block. Similarly, at
least one of the three bottom endpoints has a shortest path to s or t that intersects
the top of the block.

Proof. We will prove the lemma for the top endpoints; the proof for the bottom
endpoints is symmetric.

π1(s)

π1(t)

π2(s) π3(s)

π2(t) π3(t)

f1 f2 f3

Fig. 2. One of the paths from the top endpoints must intersect the bottom of the block

106 B. Aronov, M. de Berg, and S. Thite

For i ∈ {1, 2, 3} and q ∈ {s, t}, let πi(q) denote the shortest path from top(fi)
to q. Let V1 := {top(f1), top(f2), top(f3)} and V2 := {s, t, bottom(f2)}.

Consider a geometric realization of the graph K3,3, where V1 ∪ V2 is the set
of nodes and the arcs are realized as follows—see also Fig. 2. The arcs from
nodes in V1 to s and t are given by the shortest paths πi(s) and πi(t); the arc
from top(f2) to bottom(f2) is given by f2; and for i = 1, 3 the arc from top(fi)
to bottom(f2) is given by the concatenation of fi and the segment connecting
bottom(fi) to bottom(f2).

Since K3,3 is non-planar, there must be an intersection between some pair of
arcs. Recall that the fragments fi are all part of the bisector b, which also means
that the points top(fi) lie on b. Hence, the paths πi(s) and πi(t) lie inside V(s)
and V(t), respectively. This implies that the paths πi(s) and πi(t) do not inter-
sect any of the fragments fj , and also that a path πi(s) does not intersect any
path πj(t) (except possibly at common endpoints). Furthermore, after two short-
est paths πi(s) and πj(s) meet for the first time, they follow the same subpath, by
our non-degeneracy assumption. Hence, a small perturbation yields paths that are
disjoint (except at s). Similarly, we can enforce that the paths πi(t) and πj(t) are
disjoint except at t. Finally, two fragments fi, fj do not intersect each other, by
construction. The only remaining possibility is that one of the paths πi(s) or πi(t)
intersects one of the segments connecting bottom(fi) to bottom(f2) for i = 1, 3.
In other words, one of these paths intersects the bottom of the block. �

Now define the top width of a block (f1, f2, f3) as the length of the top of the
block, define its bottom width analogously, and define the width of a block as the
maximum of its top and bottom widths. The previous lemma allows us to prove
a lower bound on the width of a block.

Lemma 5. The width of any block (f1, f2, f3) is at least h/
√
ξ2 + 1, where h is

the height of the rectangle r.

Proof. By Lemma 4 one of the top endpoints, say top(fi), has a shortest path
to s or t that intersects the bottom of the block. Similarly, one of the bottom
endpoints, say bottom(fj), has a shortest path to s or t that intersects the top
of the block. We can assume, without loss of generality, that dist(top(fi), s) �
dist(bottom(fj), s). Since top(fi) and bottom(fj) lie on the bisector b, we get

dist(top(fi), t) = dist(top(fi), s) � dist(bottom(fj), s) = dist(bottom(fj), t).

shortest path to s or t

shortest path to s

top(fi)

bottom(fj)
p

h

Fig. 3. The width of a block cannot be too small

The Complexity of Bisectors and Voronoi Diagrams on Realistic Terrains 107

Now assume, also without loss of generality, that the shortest path from top(fi)
that crosses the bottom of the block is the shortest path to s, and let the point
where it crosses the bottom be denoted by p—see Fig. 3. Then we have

dist(top(fi), s) � dist(bottom(fj), s)
� dist(bottom(fj), p) + dist(p, s)

�
√
ξ2 + 1 · |bottom(fj)p| + dist(p, s) by Lemma 1

�
√
ξ2 + 1 · |bottom(fj)p| + dist(top(fi), s) − h

It follows that |bottom(fj)p| � h/
√
ξ2 + 1. �

The previous lemma implies that a rectangle r of small aspect ratio cannot be
crossed by too many bisector pieces.

Lemma 6. The rectangle r is crossed by at most 2 + 6w
√
ξ2 + 1/h bisector

pieces, where h is the height of the rectangle r and w is its width.

Proof. Consider the set of fragments induced by the bisector pieces crossing r,
as defined above. These fragments are grouped into blocks of three, with at
most two fragments not belonging to any block. Hence, we must show that the
number of blocks is at most 2w

√
ξ2 + 1/h. By Lemma 5, either the top width

or the bottom width of any block is at least h/
√
ξ2 + 1. Since the width of r

is w, there can be at most w/
√
ξ2 + 1/h blocks whose top width is at least

at least h/
√
ξ2 + 1. Similarly, there can be at most w

√
ξ2 + 1/h blocks whose

bottom width is at least h/
√
ξ2 + 1, and so the total number of blocks is as

claimed. �

Using Lemma 6 we obtain the following theorem. Its proof is very similar to a
low-density proof by De Berg [3], and therefore omitted.

Theorem 1. Let s and t be any two points on a terrain T , let b(s, t) be their
bisector, and let Γ be the collection of (projected) bisector pieces obtained by
splitting b(s, t) at breakpoints as defined above. Then Γ has density O(ξ), where
ξ is the slope of T .

Combining Theorem 1 with Lemma 3 immediately leads to the following result.

Corollary 1. The bisector of two points on a terrain T with n triangles has
complexity O((ξ + λ)n), where ξ is the slope of T and λ is its density.

4 The Voronoi Diagram

Let S := {s1, . . . , sm} be a set of m point sites on a terrain T with n triangles,
and let VD(S) denote the Voronoi diagram of S. Each Voronoi edge is a portion
of some bisector b(si, sj), and the number of Voronoi edges is O(m). (Note that a
Voronoi edge is not necessarily incident to two Voronoi vertices; it can also be a

108 B. Aronov, M. de Berg, and S. Thite

closed curve or have one or both endpoints on the boundary of D.) Bounding the
complexity of the Voronoi diagram amounts to bounding the total complexity of
all Voronoi edges. In the previous section we bounded the complexity of a single
bisector as a function of n, and the slope ξ and density λ of T . The bound on
the complexity of the Voronoi diagram that we will prove in this section also
depends on the aspect ratio ρ and the scale factor σ of T .

Recall that a bisector b(si, sj) is partitioned into pieces at breakpoints—points
where the shortest path to si and/or to sj is not unique—and that the intersec-
tion of such a piece with a terrain triangle is a hyperbolic arc or line segment.
Because a breakpoint on a Voronoi edge that is part of b(si, sj) can be uniquely
attributed to a vertex lying inside one of the Voronoi cells V(si) or V(sj), the
total number of breakpoints over all Voronoi edges is O(n) [8]. Hence, the total
complexity of the Voronoi edges is proportional to m+ n plus the total number
of intersections between Voronoi edges and terrain edges. The rest of this section
is devoted to bounding the number of intersections between Voronoi edges and
terrain edges.

Consider a breakpoint p on the Voronoi edge generated by b(si, sj). We call p
a special breakpoint if it has two shortest paths to si that enclose at least one
hole in V(si), or two shortest paths to sj that enclose at least one hole in V(sj).
(A hole in V(si) is formed by one or more other Voronoi cells V(sk) enclosed by
V(si). As remarked earlier, this can happen for instance if si is at the foot of a
steep mountain and sk is at the peak.) Let B be the set of all special breakpoints.
The special breakpoints subdivide the Voronoi edges into subedges. To simplify
the presentation, we augment B with O(m) additional points to ensure that B
contains, for each site si, at least two points on every component of ∂V(si).

Lemma 7. Let p and q be the endpoints of a subedge γ on ∂V(si). Then there
exists a shortest path π(p) from p to si and a shortest path π(q) from q to si, such
that the region V(γ, si) ⊂ V(si) enclosed by γ, π(p) and π(q) is simply connected.
Moreover, there is a choice of shortest paths π(p), π(q) for all subedges γ that
guarantees that V(γ, si) and V(γ′, sj) do not overlap for (γ, si)
= (γ′, sj).

Proof. Since we augmented B with extra points, p and q cannot coincide. Take
any point r in the interior of γ, and draw a shortest path π(r) from r to si.
Imagine moving r towards p. As we move r continuously, we can also transform
π(r) continuously such that it stays shortest, except when r moves over a break-
point: at that point π(r) jumps. (More precisely, when r reaches a breakpoint
which, by definition, has more than one shortest path to si, π(r) coincides with
one of these paths. To be able to continuously deform the path further while
remaining shortest, we have to switch π(r) to one of the other shortest paths.
This is what we refer to as “jumping” of a shortest path.) Since γ is a subedge,
however, a breakpoint in its interior cannot be a special breakpoint. Hence, π(r)
does not jump over a hole of V(si), i.e., the region bounded by the two shortest
paths to the breakpoint is fully contained in V(si) and is simply connected. The
same argument shows that π(r) will not jump over a hole when we move r to q.
Hence, we can find shortest paths from p and q to si such that the region V(γ, si)
enclosed by them and γ is simply connected.

The Complexity of Bisectors and Voronoi Diagrams on Realistic Terrains 109

Since V(γ, si) ⊂ V(si), regions belonging to different sites cannot overlap.
We claim that V(γ, si) and V(γ′, si), for different subedges γ, γ′, do not overlap
either. Recall from Section 2 that the non-degeneracy assumption implies that
shortest paths from si to points x, y, after diverging for the first time (as seen
from si), do not meet again (except at x when x = y). Hence, the shortest
paths that bound the regions V(γ, si) form a tree-like structure, which implies
the regions V(γ, si) and V(γ′, si) for different subedges do not overlap. �

Next we bound the total number of subedges.

Lemma 8. The total number of subedges is O(m).

Proof. The number of edges of the Voronoi diagram is O(m), so to prove the
lemma we must show that the total number of special breakpoints is O(m).
For each special breakpoint p, there is a Voronoi cell V(si) such that p has
two shortest paths α, β to si so that the loop α ∪ β encloses a hole of V(si).
Because shortest paths do not cross (by the non-degeneracy assumption), two
such cycles can never cross, though they may partially overlap. Thus we obtain
a collection of non-crossing loops, each containing one or more holes (and thus
sites) in its interior. These loops may nest, but each loop contains a different
subset of sites. We can conclude that the overall number of loops—and, hence,
the overall number of special breakpoints—is O(m). �

We are now ready to prove a bound on the number of intersections between
Voronoi edges and terrain edges and, hence, obtain our main result.

Theorem 2. The complexity of the Voronoi diagram of m point sites on a ter-
rain T with n triangles is O(c1n+c2m

√
n)), where c1 = ξ+λ and c2 = ξ2λσ

√
ρ.

Here ξ, λ, ρ, and σ denote the slope, density, aspect ratio, and scale factor of T ,
respectively.

Proof. We already observed that, up to an additive O(n + m) term, the com-
plexity of the Voronoi diagram is bounded by the total number of intersections
between Voronoi edges and terrain edges.

Let Γ denote the set of subedges as defined above. Let γ ∈ Γ be a subedge
lying on the common boundary of Voronoi cells V(si) and V(sj). For any terrain
edge intersecting γ, at least one of the following two conditions holds: (i) it has
an endpoint inside V(γ, si) or V(γ, sj), or (ii) it intersects a shortest path from
an endpoint of γ to si or sj , i.e., the boundary of V(γ, si)∪V(γ, sj). In Fig. 4, the
edge e illustrates case (i) and e′ case (ii). Let ET (γ) denote the set of all terrain
edges for which one of the two cases (i) and (ii) hold. From Lemmas 8 and 2 we
can conclude that ∑

γ∈Γ

|ET (γ)| = O(n + cm
√
n),

where c = ξλσ
√
ρ, because every edge of T can contribute at most two to the

count in case (i) and each shortest path contributes at most O(c
√
n) edges in

case (ii). Now partition each subedge γ into pieces, by adding all the breakpoints
on γ; let EVD(γ) denote the set of these pieces. Since the overall number of

110 B. Aronov, M. de Berg, and S. Thite

si

sj γ

e

e′

Fig. 4. Two terrain edges, e and e′, intersecting a subedge γ

breakpoints is O(n), we have
∑

γ∈Γ |EVD(γ)| = O(n + m). Trivially, the total
number of intersections between Voronoi edges and terrain edges is equal to the
sum, over all γ ∈ Γ , of the number of intersections between pieces in EVD(γ)
and terrain edges in ET (γ). Moreover, EVD(γ) has density O(ξ) by Theorem 1,
and ET (γ) has density λ by definition. Hence, by Lemma 3, the number of
intersections between pieces in EVD(γ) and terrain edges in ET (γ) is

O(ξ · |ET (γ)| + λ · |EVD(γ)|).

It follows that the total number of intersections is bounded by
∑

γ∈Γ

O(ξ · |ET (γ)| + λ · |EVD(γ)|) = O(ξ(n + cm
√
n) + λ(n +m)),

which gives the claimed bound. �

5 Conclusion

We proved tight bounds on the complexity of bisectors and Voronoi diagrams
on the realistic terrains introduced by Moet et al. [8]. Even though our bounds
are tight, there are still some interesting open questions. In particular, we have
shown that the total number of intersections between bisector pieces and terrain
edges is O(n), but we suspect that this bound is not tight. Improving this bound
will not lead to a better bound on the complexity of the bisector, since the
number of bisector pieces can already be Ω(n). Nevertheless, a tight bound on
the number of intersections between a bisector and terrain edges would give
more insight into the global shape of bisectors. Moreover, an O(

√
n) bound on

the number of triangle edges crossed by a bisector would immediately imply an
O(n+m

√
n) bound on the complexity of the Voronoi diagram—something that

requires a more involved argument in our current paper.
Another direction for further research is to see under what conditions one can

prove an O(n+m) bound on the complexity of the Voronoi diagram. For this one
would probably also need to make assumptions on how the sites are distributed,
and not only on the properties of the terrain.

The Complexity of Bisectors and Voronoi Diagrams on Realistic Terrains 111

As remarked in the introduction, Moet [7] studied some terrain models for
mountainous regions in the US and found that the values of the four parame-
ters defined in Section 2 are indeed bounded by a constant independent of the
terrain size. Some of these values, however, are still fairly high. Usually this is
caused by only a few triangles in the terrain. Hence, it would be interesting to
obtain bounds that depend on the average slope of the triangles rather than the
maximum slope.

Acknowledgments. Work by Boris Aronov has been partially supported by a
grant from the U.S.-Israel Binational Science Foundation and by NSA MSP
Grant H98230-06-1-0016. Research by Mark de Berg has been supported by
the Netherlands’ Organisation for Scientific Research (NWO) under project
no. 639.023.301. Part of the research was carried out by Shripad Thite at TU/e,
supported by NWO project no. 639.023.301, and by Boris Aronov while visiting
TU/e in January 2007 and January 2008.

References

1. Aurenhammer, F.: Voronoi diagrams: A survey of a fundamental geometric data
structure. ACM Comput. Surv. 23, 345–405 (1991)

2. Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.-R., Urrutia, J. (eds.)
Handbook of Computational Geometry, ch. 5. Elsevier, Amsterdam (1999)

3. de Berg, M.: Improved bounds for the union complexity of fat objects. Discr.
Comput. Geom. (in print, 2008)

4. de Berg, M., van der Stappen, A.F., Vleugels, J., Katz, M.J.: Realistic input models
for geometric algorithms. Algorithmica 34, 81–97 (2002)

5. Chen, J., Han, Y.: Shortest paths on a polyhedron. Int. J. Comput. Geom. Appl. 6,
127–144 (1996)

6. Fortune, S.: Voronoi diagrams and Delaunay triangulations. In: Goodman, J.E.,
O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, ch. 23.
CRC Press, Boca Raton (2004)

7. Moet, E.: Computation and complexity of visibility in geometric environments.
PhD thesis, Utrecht University (2008)

8. Moet, E., van Kreveld, M., van der Stappen, A.F.: On realistic terrains. In: Proc.
22nd ACM Sympos. Comput. Geom., pp. 177–186 (2006)

9. Okabe, A., Boots, B., Sugihara, K.: Spatial tesselations: Concepts and applications
of Voronoi diagrams. John Wiley & Sons, Chichester (1992)

10. Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The discrete geodesic problem.
SIAM J. Comput. 16, 647–668 (1987)

11. Schreiber, Y.: Shortest paths on realistic polyhedra. In: Proc. 23rd ACM Sympos.
Comput. Geom., pp. 74–83 (2007)

12. Schreiber, Y.: Personal communication (April 2008)
13. van der Stappen, A.F.: Motion planning amidst fat obstacles. Ph.D. thesis, Utrecht

University (1994)

Space-Time Tradeoffs for Proximity Searching

in Doubling Spaces

Sunil Arya1,�, David M. Mount2,��, Antoine Vigneron3,���, and Jian Xia1,†

1 Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong
{arya,piper}@cse.ust.hk

2 Department of Computer Science and Institute for Advanced Computer Studies,
University of Maryland, College Park, Maryland 20742

mount@cs.umd.edu
3 INRA, UR341 Mathématiques et Informatique Appliquées,

78352 Jouy-en-Josas, France
antoine.vigneron@jouy.inra.fr

Abstract. We consider approximate nearest neighbor searching in met-
ric spaces of constant doubling dimension. More formally, we are given
a set S of n points and an error bound ε > 0. The objective is to
build a data structure so that given any query point q in the space,
it is possible to efficiently determine a point of S whose distance from
q is within a factor of (1 + ε) of the distance between q and its nearest
neighbor in S. In this paper we obtain the following space-time trade-
offs. Given a parameter γ ∈ [2, 1/ε], we show how to construct a data
structure of space nγO(dim) log(1/ε) space that can answer queries in time
O(log(nγ))+(1/(εγ))O(dim). This is the first result that offers space-time
tradeoffs for approximate nearest neighbor queries in doubling spaces. At
one extreme it nearly matches the best result currently known for dou-
bling spaces, and at the other extreme it results in a data structure that
can answer queries in time O(log(n/ε)), which matches the best query
times in Euclidean space. Our approach involves a novel generalization
of the AVD data structure from Euclidean space to doubling space.

1 Introduction

Nearest neighbor searching is a fundamental problem in computational geometry
with numerous applications in areas such as pattern recognition, information
retrieval, machine learning, and robotics. The goal is to store a set S of n points
so that, for any query point q, we can quickly return its nearest neighbor in S.
As the problem is computationally difficult in most settings, researchers have

� Research supported by RGC Grant HKUST6184/04E.
�� Research supported in part by NSF grant CCF–0635099.

��� Research partially supported by a Marie Curie international reintegration grant.
† Research supported by RGC Grant HKUST6184/04E.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 112–123, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Space-Time Tradeoffs for Proximity Searching in Doubling Spaces 113

considered a variant in which it suffices to return an approximate answer. Given
an error bound ε > 0, a point p ∈ S is said to be an ε-approximate nearest
neighbor (denoted ε-NN) of q if its distance from q is at most (1 + ε) times the
distance between q and its nearest neighbor in S.

Approximate nearest neighbor searching has been studied extensively in Eu-
clidean spaces. Recently there has been considerable interest in metric spaces as
well. Data structures for proximity searching in metric spaces have been known
for some time (see, e.g., [6, 10, 18]). Clarkson [8] and later Karger and Ruhl [14]
introduced models designed to capture the sphere packing and local growth prop-
erties of low-dimensional Euclidean spaces. Much of the recent work has focused
on metric spaces of low doubling dimension [4, 11]. The doubling dimension of
a metric space is the minimum value ρ such that every ball in the space can
be covered by 2ρ balls of half the radius. This model was applied to various
proximity problems by Krauthgamer, Lee, and co-authors [11, 15, 16, 17]. The
results have been extended by Har-Peled and Mendel [13] and others [5, 9].

The results described in these papers on doubling spaces apply in the so called
black-box model, in which points of the space can only be accessed through a
black box that computes the distance between any two points in constant time.
One of the advantages of this approach is that it relies on the barest set of
assumptions, and so it is possible to obtain the conceptually simplest and most
general algorithms. In this model, it is known that given a set of n points in a
metric space of doubling dimension dim, ε-approximate nearest neighbor queries
can be answered in time O(log n) + (1/ε)O(dim) using a data structure of linear
space [9, 13]. It is also observed in [13] that this result is optimal in the black-box
model, as there is a lower bound of Ω(log n) + (1/ε)Ω(dim) on the query time in
this model irrespective of the space used. (These asymptotic bounds, like ours,
hide multiplicative factors that depend on the doubling dimension, except for
the space bounds of Cole and Gottlieb [9], which are truly O(n), irrespective of
the dimension.)

Unfortunately, this query time compares unfavorably to the fastest query
times known for Euclidean spaces. In Euclidean d-space, it is possible to answer
ε-approximate nearest neighbor queries in time O(log(n/ε)) and space roughly
O(n/εd) through the use of a data structure called an approximate Voronoi dia-
gram (or AVD) [1, 2, 12]. The difference in query time is quite significant, since
in practice factors of the form (1/ε)d dominate the query time. It is also shown
in [2] that space-time tradeoffs can be achieved. Thus, by limiting consideration
to the purely implicit black-box model, simplicity and generality are achieved at
the expense of efficiency and flexibility.

This raises the important question of whether it is possible to achieve results
for approximate nearest neighbor searching that are comparable to the best re-
sults for Euclidean space in efficiency and flexibility, but in a model that provides
the generality of metric spaces of low doubling dimension. The aforementioned
lower bound indicates that this is not possible within the black-box model. In
this paper we provide an affirmative answer to this question by strengthening the
model slightly, which we call the weakly explicit model. In particular, we assume

114 S. Arya et al.

the doubling space is endowed with a doubling oracle, which, given any ball in
the metric space returns in constant time a covering with a constant number of
balls of half the radius (see Section 2).

Our approach is based on generalizing the AVD data structure to metric
spaces in the weakly explicit model. We obtain the following space-time trade-
offs for approximate nearest neighbor searching in metric spaces of doubling
dimension dim. Given a parameter γ ∈ [2, 1/ε], we show how to construct AVDs
of nγO(dim) log(1/ε) space that can answer ε-NN queries in time O(log(nγ)) +
(1/(εγ))O(dim). This is the first result that offers space-time tradeoffs for ap-
proximate nearest neighbor queries in doubling spaces. At one extreme (γ =
2), we obtain an AVD of O(n log(1/ε)) space that answers queries in time
O(log n)+(1/ε)O(dim). This result nearly matches the best result currently known
for doubling spaces [9, 13], albeit in our stronger model. At the other extreme
(γ = 1/ε), we obtain an AVD of n(1/ε)O(dim) space that can answer queries in
time O(log(n/ε)). This matches the query times for AVDs in Euclidean spaces,
and overcomes the restrictive lower bound imposed by the black-box model for
doubling spaces.

1.1 Overview of Techniques

In Euclidean space, the AVD is a quadtree-based partitioning of space into con-
stant complexity cells, where each cell stores one or more representatives such
that, given a query point q that lies within a cell, one of the associated repre-
sentatives is an ε-NN of q. Queries are answered by first locating the cell that
contains the query point and then scanning the list of stored representatives to
find the closest one. The key idea underlying the construction of AVDs in Eu-
clidean space is to partition space into cells, such that each cell enjoys certain
separation properties with respect to the point set S. These separation properties
assert that the region surrounding each cell is simple enough that we can answer
ε-NN queries with the help of a small set of representatives. The construction is
based on the box-decomposition tree (or the compressed quadtree), which yields
a hierarchical partitioning of space into fat cells. The construction is bottom-up,
first generating quadtree boxes and then building a tree structure over them.

In metric spaces we do not have the same explicit access to the ambient
space’s structure, and so we need a different approach. While similar in spirit,
our generalization of AVDs to doubling metric spaces differs in the types of cells
generated, the method used to generate these cells, and the separation properties
they satisfy. It will be necessary to relax the AVD’s partitioning of space to
allow for a covering instead. We know of no analogous decomposition structure
to the box-decomposition tree in doubling spaces, and so we have developed a
hybrid construction, which is neither purely top-down nor bottom-up. Roughly
speaking, the cells corresponding to all the nodes in the hierarchy that are in the
vicinity of the point set S are generated right in the beginning. Next, for each
such cell, we identify its children independently. We determine both the cells and
the child-parent relationships between them on the basis of the well-separated
pair decomposition [7, 13] of the point set. The resulting data structure is not

Space-Time Tradeoffs for Proximity Searching in Doubling Spaces 115

a tree, but a rooted directed acyclic graph, which we call a region-DAG. The
cells associated with the leaves of the region-DAG cover all of space and satisfy
certain separation properties with respect to the point set S. This feature enables
us to use region-DAGs for constructing AVDs in doubling spaces.

2 Preliminaries

We begin with some definitions. Let (M,d) be a metric space. We let B(x, r)
denote the closed ball of radius r centered at x, i.e., B(x, r) = {y ∈M : d(x, y) �
r}. For a ball b and any positive real η, we use ηb to denote the ball with the
same center as b and whose radius is η times the radius of b, and b̄ to denote the
set of points that are not in b.

The doubling dimension of M , denoted dim(M), is the minimum value ρ such
that every ball in M can be covered by 2ρ balls of half the radius. When there is
no ambiguity, we will write dim instead of dim(M). We say that M is a doubling
space if it has constant doubling dimension.

Throughout this paper, we will assume that the metric space M is doubling.
As mentioned earlier, our constructions will assume the existence of a doubling
oracle, which given any ball b of radius r in M , returns in 2O(dim(M)) time a
set of 2O(dim(M)) balls of radius r/2 covering b. Note that the centers of these
balls are not necessarily in the input point set. We view the points (data, query,
and covering-ball centers) as being drawn from some ambient metric space to
which this oracle has access. This motivates our use of the term weakly explicit
to describe this model.

A subset S ⊆ M is defined to be an r-net of M if (i) every point of M is
covered by a ball of radius r centered at some point of S and (ii) the pairwise
distance between any two points of S is Ω(r). It is well-known that such nets
always exist for any r > 0.

Throughout, we treat n, ε and γ as asymptotic quantities. The constant factors
hidden by the O(·) notation are independent of n, ε and γ, but may depend on
the doubling dimension.

2.1 The Well-Separated Pair Decomposition

We briefly review the notion of well-separated pair decomposition, as our con-
structions rely on it. Let S be a set of n points in the doubling space M . We
say that two sets of points X ⊆ S and Y ⊆ S are well-separated if there ex-
ist two disjoint balls of radius r covering X and Y respectively, such that the
distance between the centers of these balls is at least σr, where σ � 2 is a real
parameter called the separation factor. We refer to (X,Y) as a well-separated
pair. In Euclidean space, if we imagine joining the centers of these two balls by a
line segment, the resulting geometric shape resembles a dumbbell. The balls are
the heads of the dumbbell. The length of a dumbbell is defined as the distance
between the centers of the balls.

Let x and y be two points in S. We say that a well-separated pair (X,Y) con-
tains x if x ∈ X ∪ Y , and we say that it separates x and y if (x, y)

116 S. Arya et al.

∈ (X × Y) ∪ (Y × X). These notions can also be applied in a natural way
to the dumbbell associated with a well-separated pair.

A well-separated pair decomposition (WSPD) of S is a set PS,σ = {{X1, Y1},
. . . , {Xm, Ym}} of pairs of subsets of S such that (i) for 1 � i � m, Xi and Yi are
well-separated, and (ii) for any distinct points x, y ∈ S, there exists a unique pair
(Xi, Yi) that separates x and y. Given any n-point set in constant-dimensional
Euclidean space, Callahan and Kosaraju [7] showed that there exists a WSPD
of linear size. This result was generalized to doubling spaces by Har-Peled and
Mendel [13], who showed that the number of pairs in the WSPD of S is σO(dim)n
and it can be constructed in 2O(dim)n logn+ σO(dim)n time. For each pair, their
construction also provides the corresponding dumbbell satisfying the separation
criteria mentioned above. Furthermore, the centers of both the dumbbell heads
are points of S.

The following preliminary lemma will be useful for us. It follows from the
definition of well-separatedness and the triangle inequality.

Lemma 1. Consider the WSPD of S with separation factor σ � 16. Consider
the dumbbell for a pair P = (X,Y) in this WSPD. Let x and y denote the centers
of the dumbbell heads, and let � = d(x, y) be the length of the dumbbell. Then for
any x′ ∈ X and y′ ∈ Y we have d(x, x′) � �/16 and 7�/8 � d(x′, y′) � 9�/8.

3 The Region-DAG

In this section, we describe our construction of the region-DAG, which can be
viewed as a generalization of the box-decomposition tree [3] to doubling spaces.
Our AVD construction in doubling spaces described in Section 4 will rely cru-
cially on this data structure.

Let S be a set of n points in a doubling space (M,d). The region-DAG for
S is a directed acyclic graph in which each node is associated with a region of
space called a cell, which is the difference of two concentric balls, an outer ball
and an (optional) inner ball. If the inner ball exists, its radius is at most half the
radius of the outer ball. If a cell has no inner ball, we call it a simple cell (the
corresponding node is called a simple node), otherwise we call it a doughnut cell
(the corresponding node is called a doughnut node). Throughout this paper, for
a simple node u, we let bu denote the associated cell. The size of a cell (and the
corresponding node) is defined to be the radius of its outer ball. If a cell contains
no points of S, we say that it is empty, otherwise it is nonempty. If there is an
edge from node u to node v, we say that v is a child of u. If a node has no
children, it is called a leaf, otherwise it is an internal node.

Our construction of the region-DAG involves two parameters γ � 2 and β �
γ. These parameters help to control the degree of separation enjoyed by the
leaf cells with respect to the points of S. As we will see later, varying these
parameters enables us to achieve space-time tradeoffs in our AVD constructions.
The key properties satisfied by the region-DAG are given below. We provide
some intuition on how these properties aid in constructing AVDs in doubling
spaces. Property (i) says that there is a node whose associated ball, which is

Space-Time Tradeoffs for Proximity Searching in Doubling Spaces 117

called the root ball, contains the point set S close to its center. This property is
useful for answering queries when the query point q lies outside the root ball.
If, however, q lies inside the root ball, then we first find a leaf cell containing
q. Such a leaf cell must exist because, by property (iii), the cell associated with
any internal node is covered by the cells associated with its children. Property
(iv) guarantees that we can find this leaf cell quickly (even though the depth of
the region-DAG can be large). Property (ii) describes the separation properties
satisfied by the leaves, which help in answering queries efficiently.

(i) There exists a node whose associated cell is a ball b, which is centered at a
point of S and which satisfies S ⊆ 1

β b. (We maintain a pointer to one node
satisfying this property, which is called the root of the region-DAG. The cell
associated with the root is called the root ball.)

(ii) There are two kinds of leaves, simple leaves and doughnut leaves, with the
following separation properties. (See Figure 1.)
(a) Let ball b denote the cell associated with a simple leaf. Then either the

ball γb is empty, or it contains one point of S, which is the center of b.

b

γb

Empty simple leaf Nonempty simple leaf

γb

b

bO

bI

γbO

Doughnut leaf

Fig. 1. Separation properties of leaf cells

(b) Let bO and bI denote the outer and inner ball, respectively, of the cell
associated with a doughnut leaf. Then S∩γbO ⊆

(
1
β

)
bI . (Note that the

doughnut cell bO \ bI is empty.)
(iii) The cell associated with an internal node is always simple, and is covered

by the cells associated with its children. More precisely, there are two kinds
of internal nodes, splitting nodes and shrinking nodes, with the following
properties. Let the cell associated with an internal node u be a ball b of
radius r.
(a) If u is a splitting node, then it has a constant number of children (de-

pending on the doubling dimension). Moreover, each child is simple, and
its size is in [r/64, r/2].

(b) If u is a shrinking node, then it has two children. One of these children
is a doughnut leaf. The outer ball associated with this leaf is b, and the
inner ball associated with it is a ball b′, whose radius is at most r/2.
(That is, the doughnut leaf cell is b \ b′.) The cell associated with the
other child is a ball covering b′, having radius at most r/2. We refer to

118 S. Arya et al.

the child that is a doughnut leaf as the outer child of u and refer to the
other child as the inner child of u.

(iv) Let b denote the root ball defined in property (i). Given a point q ∈ b, we
can find a leaf cell containing q in O(log(nγ)) time.

It is clear from property (iii) that the size of a node is always smaller than that
of its parent by a factor of at least two, except for a doughnut leaf, whose size
is the same as that of its parent. It follows that the region-DAG has no cycle.

In Section 3.1, we will establish the following theorem, which shows that any
set S in doubling space admits a region-DAG of size linear in n, and it can be
constructed efficiently.

Theorem 1. Let γ � 2 and β � γ be two real parameters. Given a set S of n
points in doubling space M , there exists a region-DAG of size nγO(dim) log β sat-
isfying all of the above properties. Furthermore, this structure can be constructed
in time O (n logn) + nγO(dim) log2 β.

3.1 Construction

Recall that our construction uses two parameters γ � 2 and β � γ that determine
the separation properties of the leaves with respect to the points of S. Before
constructing the region-DAG, we first construct a WSPD for S using σ = 16. The
number of pairs in the WSPD is O(n) and the time to construct it is O(n log n).
We associate each pair in this WSPD with several balls as follows. Let x, y ∈ S
denote the points at the centers of the heads of the dumbbell corresponding to a
pair, and let � = d(x, y) denote the length of this dumbbell. Then the associated
balls are the balls of radius 2i� centered at x and y, for all integers i such
that

⌊
log

(
1

c1β

)⌋
� i � �log(c2β)�, where c1, c2 � 1 are suitable large positive

constants. We will refer to these balls as type-1 balls. We associate a unique
node in the DAG with each distinct type-1 ball. Note that for this purpose, we
treat any two type-1 balls as distinct if they have different centers or radii or
are generated by different pairs in the WSPD. We will refer to these nodes as
type-1 nodes. Since there are O(n) pairs in the WSPD and we generate O(log β)
balls for each pair, the total number of type-1 nodes is O(n log β). Since there is
a point of S at the center of each type-1 ball, these nodes are always nonempty.
Besides the type-1 nodes, we will also create some new nodes in the DAG during
the construction, which will always be empty (but not necessarily leaves). We
will call them type-2 nodes.

We process each type-1 node u as follows. Recall that bu denotes the cell
associated with u. We assume that bu is a ball of radius r centered at a point
p ∈ S. Roughly speaking, if all the points of S \ {p} are very far from p, we will
make u a leaf, and if all the points of S ∩ γbu are very close to p, we will make
it a shrinking node. Otherwise, if there are points of S at intermediate distances
(i.e., neither too far nor too close), then we will make u a splitting node. Since
it is too time consuming to examine the points of S for the purpose of these tests,

Space-Time Tradeoffs for Proximity Searching in Doubling Spaces 119

bu

p

2γr
r

P̃

r/16β

Fig. 2. Case where u is a splitting node

we will instead examine certain well-separated pairs containing p, which yield
sufficient information on the position of the points.

We begin by finding the shortest dumbbell P̃ in the WSPD that contains p
and has length at least r/(16β). If P̃ has length at most 2γr, then u is made
into a splitting node. (See Figure 2.) Otherwise, it is clear that there are no
dumbbells containing p of length between r/(16β) and 2γr. We then look for
the longest dumbbell P̂ containing p that has length at most r/(16β). If we find
such a dumbbell, then u is made into a shrinking node (See Figure 3), otherwise
it is made into a simple leaf. We will establish property (ii.a) for the case when u
is made into a simple leaf. After that we will describe how children are assigned
when u is a shrinking and splitting node, respectively, and establish properties
(ii) and (iii) for these cases.

p

r/16β r
2γr

P̂
P̃

Fig. 3. Case where u is a shrinking node

u is a leaf. We first consider the case when u is made into a leaf. Recall that
in this case there are no dumbbells containing p of length at most 2γr. By
Lemma 1, it follows that the distance between p and any other point of S is at
least (7/8)2γr. Thus, all the points of S \ {p} lie outside the ball γbu, which
proves that u satisfies property (ii.a).

u is a shrinking node. We next consider the case when u is made into a shrinking
node. Recall that in this case there are no dumbbells containing p that have
length between r/(16β) and 2γr. Recall also that we have already found the
longest dumbbell P̂ containing p that has length at most r/(16β). We will assign
two children to node u. Before describing these children, we first show that all

120 S. Arya et al.

the points of S in γbu are very close to p. Let �̂ denote the length of P̂ and let b̂
denote the ball B(p, 2�̂). We claim that S∩γbu ⊆ b̂. To prove this claim, let x be
any point of S∩γbu. Since d(p, x) � γr, it follows from Lemma 1 that the length
� of the dumbbell separating p and x is at most 8γr/7 < 2γr. By our earlier
remarks, there are no dumbbells containing p that have length between r/(16β)
and 2γr. Therefore, � < r/(16β). Since P̂ is the longest dumbbell containing p

that has length at most r/(16β), it follows that � � �̂. Again, applying Lemma 1,
it follows that d(p, x) � 9�/8 � 9�̂/8 � 2�̂. Thus, x ∈ b̂, which proves the claim.

We can now describe the two children of u. For one of these children, we create
a new node in the region-DAG whose associated cell is bu \ b′, where b′ is the
ball βb̂. We make this child a doughnut leaf whose only parent is u. By the claim
above, S ∩ γbu ⊆

(
1
β

)
b′, and so (ii.b) holds. Further, since the radius of b′ is

2β�̂ and �̂ � r/(16β), it follows that the radius of b′ does not exceed r/8 < r/2.
Thus the condition given in (iii.b) for this child is satisfied.

We now describe the other child of u. Let p′ denote the point of S at the
center of that head of dumbbell P̂ that contains p, and let b′′ denote the ball
B(p′, 2
log 3β��̂). Assuming that c2 � 3, it is easy to see that b′′ is one of the type-
1 balls associated with dumbbell P̂ and so must have a unique corresponding
node in the region-DAG. We make this type-1 node the second child of u. To
establish property (iii.b), we need to show that b′′ covers b′ and has radius at
most r/2. Clearly, the radius of b′′ is at most 6β�̂. Since �̂ � r/(16β), it follows
that the radius of b′′ is at most 3r/8 < r/2. By Lemma 1 we have d(p, p′) � �̂/16.
Using this fact and the triangle inequality, it follows that

b′ = B(p, 2β�̂) ⊆ B

(

p′,
�̂

16
+ 2β�̂

)

⊆ B(p′, 3β�̂) ⊆ b′′.

This establishes property (iii.b) and completes the description of the processing
required for a shrinking node.

u is a splitting node. Finally, we consider the case when u is made into a splitting
node. Recall that in this case there exists a dumbbell containing p that has length
between r/(16β) and 2γr. In the full version, we show that this fact implies that
node u can be assigned O(1) children, whose associated cells together cover the
ball bu and satisfy certain properties. Some of these children are of type-1 while
the rest are newly created type-2 nodes associated with empty balls. Roughly
speaking, the role of the type-1 children is to cover the parts of bu that lie close
to the points of S and the role of the type-2 children is to cover the parts of bu
that remain uncovered. More precisely, we have the following lemma.

Lemma 2. There exists a set B1 of type-1 balls and a set B2 of type-2 balls such
that (i) the total number of balls of B1 and B2 is 2O(dim), (ii) any ball of B1∪B2

has radius between r/64 and r/2, (iii) the balls of B1 and B2 together cover bu,
and (iv) for any ball b ∈ B2, there are no points of S in the ball 4b.

The nodes corresponding to the balls of B1 and B2 are made children of u. From
the above lemma, it is easy to see that property (iii) holds for u.

Space-Time Tradeoffs for Proximity Searching in Doubling Spaces 121

It remains to discuss the processing for the type-2 children of u. Observe that
we cannot make these nodes into leaves because their γ-expansion may contain
points of S and so they do not necessarily satisfy property (ii.a). However, by
Lemma 2(iv), we do know that a 4-expansion of any ball in B2 is free of points
of S. To increase this expansion factor to γ, we proceed as follows for each type-
2 child v of u. Let bv denote the ball associated with v, and let r′ denote its
radius. Using the doubling oracle, in 2O(dim) time we can find 2O(dim) balls of
radius r′/2 which overlap bv. We create type-2 nodes for these balls and make
them all children of v. We apply this procedure recursively to the children of v,
terminating when we finally reach nodes of size r′/2
log γ�, which are made leaves
of the region-DAG. It is easy to see that v is the root of a subtree with γO(dim)

nodes and �log γ�+1 levels. All nodes in this subtree, except at the bottom level,
are splitting nodes, and clearly satisfy property (iii). Applying Lemma 2(iv) and
noting that the radii of the associated balls decrease by at least a factor of 2 as
we descend this subtree, it is easy to show that the leaves satisfy property (ii.a).

Next we bound the size of the region-DAG.

Lemma 3. The size of the region-DAG for an n-point set is nγO(dim) log β.

Proof : Recall that the region-DAG has O(n log β) type-1 nodes. It is clear from
our discussion above that a shrinking node acquires one child that is not of type-
1 (this child is a doughnut leaf), and a type-1 splitting node acquires γO(dim)

descendants that are not of type-1. Therefore, the size of the region-DAG is
nγO(dim) log β. �

In the full version, we show that the region-DAG for an n-point set can be
constructed in time O (n logn) +nγO(dim) log2 β, and also satisfies properties (i)
and (iv). This completes the proof of Theorem 1.

4 Approximate Voronoi Diagrams

In this section we show how to construct approximate Voronoi diagrams in dou-
bling spaces. Let (M,d) be a metric space with constant doubling dimension.
Our main result is as follows.

Theorem 2. Let S be a set of n points inM , and let 0 < ε � 1/2 and 2 � γ � 1/ε
be two real parameters. We can construct an AVD of nγO(dim) log(1/ε) space that
allows us to answer ε-approximate nearest neighbor queries in time O (log(nγ)) +
(1/(εγ))O(dim). The time to construct the AVD is n(1/ε)O(dim) logn.

Given the region-DAG, the proof of this theorem is straightforward by adapting
the ideas used previously for Euclidean AVDs [1, 2]. We sketch the main ideas
briefly. Given the point set S and parameters 0 < ε � 1/2 and 2 � γ � 1/ε,
we construct the region-DAG described in Theorem 1 for β = 1/ε. The num-
ber of nodes in the region-DAG is nγO(dim) log(1/ε). Recall that the leaves of this

122 S. Arya et al.

structure satisfy certain separation properties with respect to S (region-DAG
property (ii)). These properties enable us to answer queries efficiently with the
help of a sparse set of representatives stored with each leaf. The following lemma
provides a bound on the number of representatives we need to store with each
cell. Given a set X of points and a point q, let NNq(X) be the distance from q
to its nearest neighbor in X . We say that a subset R ⊆ S is an ε-representative
set for a region w (with respect to S) if for any query point q ∈ w, we have
NNq(R) � (1 + ε)NNq(S).

Lemma 4 (Concentric Ball Lemma). Let 0 < ε � 1/2 and γ � 2 be two real
parameters. Let S be a set of points in M . Let b1 and b2 be two concentric balls of
radius r and γr, respectively. Then there exist subsets R1, R2 ⊆ S each consisting
of at most (1 + 1/(εγ))O(dim) points such that (i) R1 is an ε-representative set
for b1 with respect to S ∩ b2, and (ii) R2 is an ε-representative set for b2 with
respect to S ∩ b1.

In part (i), the set R1 is formed by choosing an (ε/2)-NN of each point in an
(εγr/c)-net for b1, where c is a suitable constant. Applying the triangle inequal-
ity, it is easy to prove part (i). The proof of part (ii) is analogous. For each leaf
cell u, we can use the above lemma to find an ε-representative set R for u with
respect to S. We illustrate this for the case of a doughnut leaf cell u (the case
where u is a simple leaf is easier and is omitted). Let bO and bI denote the outer
and inner ball, respectively, for u. Recall that u = bO \ bI . It follows from region-
DAG property (ii.b) that all the points of S are either outside γbO or inside εbI .
By Lemma 4(i), there exists an ε-representative set R1 of size (1/(εγ))O(dim) for
u with respect to S ∩ γbO, and by Lemma 4(ii), there exists an ε-representative
set R2 of size O(1) for u with respect to S ∩ εbI . Clearly, the set R = R1 ∪R2 is
an ε-representative set of size (1/(εγ))O(dim) for u with respect to S. We store
the set R with u. The resulting AVD can be used for answering ε-NN queries as
follows. Suppose that the query point q lies inside the root ball. By region-DAG
property (iv), we can find a leaf that contains q in O(log(nγ)) time. Then we
return the closest representative stored with this leaf cell as the answer. The
total query time is O (log(nγ)) + (1/(εγ))O(dim). If q lies outside the root ball, a
similar approach works using region-DAG property (i).

Consider next the space used by this AVD. A naive analysis of the space bound
is provided by the product of the number of nodes in the region-DAG and the
maximum number of representatives per cell, which yields a total of n/εO(dim).
We can improve this bound significantly by applying a charging technique similar
to that employed earlier in the Euclidean context [2]. This technique shows that
although for a given cell, (1/(εγ))Ω(dim) representatives may be needed, this
cannot be the case for most of the cells. We omit the details due to lack of space.
Applying this technique we can show that the total number of representatives
summed over all the cells is nγO(dim) log(1/ε), and they can be computed in time
n(1/ε)O(dim) logn. This completes the proof of Theorem 2.

Space-Time Tradeoffs for Proximity Searching in Doubling Spaces 123

References

1. Arya, S., Malamatos, T.: Linear-size approximate Voronoi diagrams. In: Proc. 13th
ACM-SIAM Sympos. Discrete Algorithms, pp. 147–155 (2002)

2. Arya, S., Malamatos, T., Mount, D.M.: Space-efficient approximate Voronoi dia-
grams. In: Proc. 34th Annu. ACM Sympos. Theory Comput., pp. 721–730 (2002)

3. Arya, S., Mount, D.M., Netanyahu, N., Silverman, R., Wu, A.Y.: An optimal al-
gorithm for approximate nearest neighbor searching in fixed dimensions. In: Proc.
5th ACM-SIAM Sympos. Discrete Algorithms, pp. 573–582 (1994)

4. Assouad, P.: Plongements lipschitziens dans Rn. Bull. Soc. Math. France 111(4),
429–448 (1983)

5. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In:
Proceedings of the 23rd International Conference on Machine Learning, pp. 97–
104 (2006)

6. Brin, S.: Near neighbor search in large metric spaces. In: Proc. 21st International
Conf. on Very Large Data Bases, pp. 574–584 (1995)

7. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. J. Assoc.
Comput. Mach. 42, 67–90 (1995)

8. Clarkson, K.L.: Nearest neighbor queries in metric spaces. Discrete Comput.
Geom. 22(1), 63–93 (1999)

9. Cole, R., Gottlieb, L.: Searching dynamic point sets in spaces with bounded dou-
bling dimension. In: Proc. 38th Annu. ACM Sympos. Theory Comput., pp. 574–583
(2006)

10. Feustel, C.D., Shapiro, L.G.: The nearest neighbor problem in an abstract metric
space. Pattern Recognition Letters 1(2), 125–128 (1982)

11. Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-
distortion embeddings. In: Proc. 44th Annu. IEEE Sympos. Found. Comput. Sci.,
pp. 534–543 (2003)

12. Har-Peled, S.: A replacement for Voronoi diagrams of near linear size. In: Proc.
42nd Annu. IEEE Sympos. Found. Comput. Sci., pp. 94–103 (2001)

13. Har-Peled, S., Mendel, M.: Fast construction of nets in low dimensional metrics,
and their applications. SIAM J. Comput. 35(5), 1148–1184 (2006)

14. Karger, D.R., Ruhl, M.: Finding nearest neighbors in growth-restricted metrics.
In: Proc. 34th Annu. ACM Sympos. Theory Comput., pp. 741–750 (2002)

15. Krauthgamer, R., Lee, J.R.: Navigating nets: simple algorithms for proximity
search. In: Proc. 15th ACM-SIAM Sympos. Discrete Algorithms, pp. 798–807
(2004)

16. Krauthgamer, R., Lee, J.R.: The black-box complexity of nearest-neighbor search.
Theoretical Computer Science 348(2-3), 262–276 (2005)

17. Krauthgamer, R., Lee, J.R.: Algorithms on negatively curved spaces. In: Proc. 47th
Annu. IEEE Sympos. Found. Comput. Sci., pp. 119–132 (2006)

18. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in gen-
eral metric spaces. In: Proc. 4th ACM-SIAM Sympos. Discrete Algorithms, pp.
311–321 (1993)

A Scaling Algorithm for the Maximum

Node-Capacitated Multiflow Problem

Maxim A. Babenko1,� and Alexander V. Karzanov2,��

1 Dept. of Mechanics and Mathematics, Moscow State University;
Leninskie Gory, 119991 Moscow, Russia

max@adde.math.msu.su
2 Institute for System Analysis;

9, Prospect 60 Let Oktyabrya, 117312 Moscow, Russia
sasha@cs.isa.ru

Abstract. We study the problem of finding a fractional node-
capacitated multiflow of maximum value in an undirected network. Pre-
viously known methods for this problem are based on linear programming
and the ellipsoid method. In this paper we apply a capacity scaling ap-
proach and develop a purely combinatorial weakly polynomial algorithm
of time complexity O(Λ(n, m,U) n2 log2 n log U), where n, m, U are the
number of nodes, the number of edges, and the maximum node capacity,
respectively, and Λ(n, m, U) denotes the complexity of finding a maxi-
mum integer flow in a digraph with n nodes, m edges, and integer arc
capacities not exceeding U ∈ Z+.

1 Introduction

In an undirected graphG, the sets of nodes and edges are denoted by V G andEG,
respectively. When G is a directed graph, we speak of arcs rather than edges and
write AG instead of EG. A similar notation is used for paths, cycles, and etc.

We consider an undirected graph G and a distinguished subset T ⊆ V G of
nodes, called terminals. Nodes in V G − T are called inner. A T -path is a path
in G that connects a pair of distinct terminals and has all other (intermediate)
nodes in V G − T . The set of T -paths is denoted by P(G, T). A multiflow is a
function F : P(G, T) → R+. Equivalently, one may think of F as a collection

{(α1, P1), . . . , (αq, Pq)} , (1.1)

where the Pi are T -paths and the αi are non-negative reals, called weights of
paths. Sometimes (e.g., in [IKN98]) such a multiflow F is called free to emphasize
that all pairs of distinct terminals are allowed to be connected by flows. The value
val (F) of F is the sum

∑
P F (P).

� Supported by RFBR grants 03-01-00475, 05-01-02803, and 06-01-00122.
�� Supported by NWO–RFBR grant 047.011.2004.017 and by RFBR grant 05-01-02805

CNRSL a.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 124–135, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Scaling Algorithm for the Maximum Node-Capacitated Multiflow Problem 125

For a subset A of a set X , the incidence vector of A in RX is denoted by χA,
i.e., χA(e) is 1 for e ∈ A and 0 for e ∈ X − A (usually X is clear from the
context).

Let c : V G → Z+ be a nonnegative integer function of node capacities. For a
multiflow F , define the function ζF on V G by

ζF :=
∑(

F (P) · χV P : P ∈ P(G, T)
)
.

We say that F is c-feasible if ζF ≤ c.
This paper deals with the following problem:

(P) Given G, T, c as above, find a c-feasible multiflow F whose value val (F) is
maximum.

It is known that this problem has a half-integer optimal primal [Pap07] and
dual solutions [Vaz01]. Also (P) is solvable in polynomial time by use of the
ellipsoid method [Pap07]. However, no efficient combinatorial algorithm for (P)
has been known so far.

We present a combinatorial algorithm that solves (P) via capacity scaling. Our
approach relies on earlier results of Ibaraki, Karzanov, and Nagamochi [IKN98]
concerning an edge-capacitated analog of (P). As a result, the time complexity of
our algorithm for (P) is O(Λ(n,m,U) n2 log2 n logU). Hereinafter n, m, U de-
note the number of nodes, the number of edges, and the maximum capacity,
respectively, and Λ(n,m,U) stands for the complexity of finding a max-
imum integer flow in a digraph with n nodes, m edges, and integer
arc capacities not exceeding U ∈ Z+. In particular, applying the al-
gorithm of Goldberg and Rao [GR98], problem (P) can be solved in
O(n2mmin(n2/3,m1/2) log(n2/m) log2 n log2 U) time.

The paper is organized as follows. Section 2 contains backgrounds. An outline
of the algorithm and a sketch of a proof of its correctness are given in Section 3.
Section 4 estimates the time complexity of the algorithm.

2 Preliminaries

Let A be a subset of nodes of a graph (or a digraph). We denote by γ(A) the
set of edges of the graph (or arcs of the digraph) with both endpoints in A,
and by δ(A) the set of edges (or arcs) with exactly one endpoint in A. Also in
case of a digraph, δin(A) (resp. δout(A)) denotes the set of arcs that enter A
(resp. leave A). When A is a singleton {v}, we use the abbreviated notation
δ(v), δin(v), and δout(v).

Clearly (P) is a linear program, with variables F (P) associated to T -paths P .
To state its dual program, we call a function π : V G→ R+ a (fractional) cover if
π(V P) ≥ 1 holds for each T -path P . (As usual, for a function f on a set X and
a subset X ′ ⊆ X , f(X ′) denotes

∑
x∈X′ f(x); so π(V P) means

∑
v∈V P π(v).)

By the c-value of a cover π we mean the inner product cπ :=
∑

v∈V G c(v)π(v).
Then the program dual of (P) is:

(C) Find a cover π whose c-value cπ is minimum.

126 M.A. Babenko and A.V. Karzanov

We will use standard definitions and some facts about flows and multiflows
(for details, see, e.g., [Schr03]). Let G be a digraph with distinguished subsets
S, T ⊂ V G, S ∩ T = ∅. The nodes in S (resp. T) are regarded as sources
(resp. sinks), and the other nodes are called inner. A function f : AG → R+

is an S–T flow if (i) f(δin(s)) = 0 for any source s; (ii) f(δout(t)) = 0 for
any sink t; (iii) f(δin(v)) = f(δout(v)) for any inner node v. The value of f is
val (f) :=

∑
(f(δout(s)) : s ∈ S).

Given arc capacities c : AG→ R+, a flow f is c-feasible if f ≤ c. The max-flow
problem is:

(MF) Given G,S, T, c as above, find a c-feasible flow f of maximum value val (f).

Theorem 1 (Goldberg, Rao [GR98]). For arbitrary integer arc capac-
ities not exceeding U ∈ Z+, an integer maximum flow can be found in
O(mmin(m1/2, n2/3) log(n2/m) logU) time.

Next, we will also deal with an analog of (MF) for node capacitated networks.
For a flow f and a node v ∈ V G, define the value of flow through v as

f [v] := max
(
f(δin(v)), f(δout(v))

)
.

Then for node capacities c : V G → R+, function f is said to be c-feasible if
f [v] ≤ c(v) for all v ∈ V G.

There are well-known facts about the node-capacitated max-flow problem. A
set A ⊆ V G is called an S–T separator if each (directed) S–T path meets A.

Fact 1 (a version of Menger theorem). For c : V G→ Z+, one has

max val (f) = min c(A),

where the maximum is taken over all integer c-feasible (node-capacitated) S–T
flows f , and the minimum over all S–T separators A.

Suppose that a c-feasible S–T flow f is not maximum. Then one can increase
val (f) by use of a standard construction. More precisely, consider a sequence

R = (v0, a1, v1, a2, . . . , al, vl), (2.1)

where v0 ∈ S, vl ∈ T , vi ∈ V G (1 ≤ i < l), ai ∈ AG (1 ≤ i ≤ l). Also, for each
1 ≤ i ≤ l either ai = (vi−1, vi) (then ai is said to be forward) or ai = (vi, vi−1)
(then ai is said to be backward). An occurrence of node vi in R is called increasing
if either i = 0, or i = l, or 0 < i < l and both ai and ai+1 are forward.

Then R is called f -augmenting if the following conditions hold:

1. if vi is increasing then f [vi] < c(vi),
2. if ai is backward then f(ai) > 0,
3. all arcs in R are distinct,
4. each node occurs in R at most twice, moreover, if vi = vj for 0 ≤ i < j ≤ l

then neither vi nor vj is increasing.

A Scaling Algorithm for the Maximum Node-Capacitated Multiflow Problem 127

Note that since no arc with positive flow enters a source and no arc with
positive flow leaves a sink, the arcs a1 and al are forward.

Fact 2. For c : V G → Z+, let f be an integer c-feasible node-capacitated flow
and R an f -augmenting sequence. Define

f ′(a) :=

⎧
⎪⎨

⎪⎩

f(a) + 1 if a is a forward arc,
f(a) − 1 if a is a backward arc,
f(a) otherwise.

Then f ′ is an integer c-feasible flow of value val (f) + 1.

Fact 3. A c-feasible node-capacitated flow f admits an f -augmenting se-
quence R if and only if val (f) is not maximum. Moreover, in O(m) time, one
can find either an f -augmenting sequence or an S–T separator A such that
c(A) = val (f).

Finally, some important facts and tools that will be extensively used throughout
the paper are borrowed from the theory of edge- and arc-capacitated multiflows.
Typically problems on such multiflows are somewhat “simpler” than their node-
capacitated counterparts.

Let G be a graph (or a digraph), and T = {t1, . . . , tk} ⊆ V G be a set of
terminals. For a multiflow F : P(G, T) → R+, define the function ξF on EG by

ξF :=
∑(

F (P) · χEP : P ∈ P(G, T)
)
.

In case of a digraph G, the term EP in this definition is replaced by AP .
Let, in addition, G be endowed with edge (resp. arc) capacities c. A multi-

flow F is c-feasible if ξF ≤ c. The problem is:

(MMF) Given G, T, c as above, find a c-feasible (edge- or arc-capacitated) mul-
tiflow F whose value val (F) is maximum.

The function c is said to be inner Eulerian if c is integer-valued and c(δ(v))
is even, in the undirected case (resp. c(δin(v)) = c(δout(v)), in the directed case)
for each inner node v ∈ V G− T .

Consider a collection Q = {Q1, . . . , Qk} of pairwise disjoint subsets of V G
such that ti ∈ Qi for i = 1, . . . , k. Following terminology in [Bab07], the sets Qi

are called islands, and Q an island collection.

Theorem 2 (Lovász [Lov76], Cherkassky [Che77]). In the undirected case
of (MMF) with inner Eulerian capacities, one has

max val (F) =
1
2

min
∑

t∈T

c(δ(Qt)),

where the maximum is taken over all integer c-feasible multiflows F , and the
minimum over all island collections Q = {Qt | t ∈ T }.

128 M.A. Babenko and A.V. Karzanov

Remark 1. When G is a digraph and c is inner Eulerian, a similar max-min
relation also takes place. This is due to Lomonosov (unpublished manuscript,
1978); see also [Kar79, Fr89].

In the undirected case of (MMF), given a multiflow F , an island collection
{Qt | t ∈ T } is called F -tight if ξF (δ(t)) = c(δ(Qt)) holds for all t ∈ T . The
following is immediate from Theorem 2.

Corollary 1. A multiflow F is maximum if and only if there exists an F -tight
island collection.

Theorem 3 (Ibaraki, Karzanov, Nagamochi [IKN98]). In the undirected
case of (MMF) with inner Eulerian capacities, a maximum integer multiflow
can be found in O(Λ(n,m,U) log |T |) time. In the directed case of (MMF)
with inner Eulerian capacities, a maximum integer multiflow can be found in
O(Λ(n,m,U) log |T |+ n2m) time. In both cases, the maximum value of a multi-
flow and an optimal island collection can be found in O(Λ(n,m,U) log |T |) time.

We will also use the following corollary of that result.

Corollary 2. In the undirected case of (MMF) with inner Eulerian edge capac-
ities, the function ξF for some maximum integer multiflow F can be constructed
in O(Λ(n,m,U) log |T |) time. Also, by spending additional O(mn log |T |) time,
one can turn F into a path packing (of the form (1.1)).

Remark 2. Strictly speaking, the time bounds figured in Theorem 3 are valid
under some assumption concerning Λ(n,m,U); see [IKN98] for details. Fortu-
nately, this assumption is satisfied for reasonable max-flow algorithms, in par-
ticular, for the algorithm of Goldberg and Rao [GR98].

3 Algorithm Outline

3.1 Scaling Step

The general scheme of our approach for solving (P) resembles that of Ford and
Fulkerson’s capacity scaling algorithm [FF62]. Namely, let c0 : V G→ Z+ be the
original node capacities. We assume that c0 is even for all nodes and construct
an integer-valued maximum c0-feasible multiflow. Clearly, this is equivalent to
constructing a half-integral multiflow for arbitrary integer capacities.

The algorithm performsO(logU) scaling steps. Each such step takes the previ-
ous even-valued capacity function c and the corresponding maximum c-feasible
integer multiflow F . Initially c := 0 and F := 0. On each scaling step unit
is added to capacities of some nodes (namely, to those having 1 at the corre-
sponding position in the binary representation of c0) and then all capacities are
multiplied by 2, thus producing an even-valued function c′ : V G → Z+. Then a
maximum c′-feasible integer multiflow F ′ is computed. To this aim, the current
function F is replaced by 2F and a certain augmenting path approach is applied.

A Scaling Algorithm for the Maximum Node-Capacitated Multiflow Problem 129

The process stops when c = c0, and the last c-feasible multiflow F is the answer.
So O(logU) scaling steps are needed to compute this F .

Our algorithm does not store F explicitly as a path packing. Instead, it
maintains certain edge capacities ω : EG → Z+. For v ∈ V G − T , put
ω[v] := 1

2ω(δ(v)), and for v ∈ T , put ω[v] := ω(δ(v)). Define ω[T] := 1
2

∑
t∈T ω[t].

The function ω obeys the following conditions:

(3.1) ω is inner Eulerian,

(3.2) ω[v] ≤ c(v) for all v ∈ V G,

(3.3) there exists an integer edge-capacitated ω-feasible multiflow in G of value
ω[T].

Note that (3.2) implies that any multiflow constructed from ω by (3.3) is
c-feasible.

Scaling step first puts ω := 2ω and then applies a number of augmentation
steps that increase ω[T]. When augmentation steps are complete, ω[T] is equal
to the value of a maximum c′-feasible node-capacitated multiflow. The following
lemma bounds the number of augmentation steps that are needed to turn 2F
into a maximum c′-feasible multiflow (call the latter F ′).

Lemma 1. val (F ′) − val (2F) ≤ 2n.

When the scaling steps are complete, the final function ω is converted (with
the help of Theorem 2) into the desired multiflow in the path-packing form, in
O(Λ(n,m,U) logn+mn logn) time.

3.2 Augmentation Step

Consider the current node capacities c and edge capacities ω (obeying (3.1)–
(3.3)). The core of the algorithm is an augmentation procedure that either up-
dates ω to increase ω[T] by 1 (while maintaining (3.1)–(3.3)) or detects that
ω[T] is equal to the value of a maximum c-feasible multiflow.

In our approach we are forced to strengthen problem (P) by imposing certain
conditions on T -paths. For an island collection Q = {Q1, . . . , Qk}, a T -path P
is called Q-feasible if |EP ∩ δ(Qi)| ≤ 1 for i = 1, . . . , k (in particular, P meets
exactly two islands). Accordingly, we say that a c-feasible multiflow F is (Q, c)-
feasible if each path P in the support supp (F) := {P | F (P)
= 0} of F is Q-
feasible.

The needed strengthening of (P) is the following problem (which turns into (P)
when the island collection is formed by single terminals):

(QP) Given Q as above, find a (Q, c)-feasible multiflow F whose value val (F)
is maximum.

Let us say that a function π : V G → R+ is a Q-cover if π(V P) ≥ 1 holds
for any Q-feasible T -path P . Then, similar to the duality of (P) and (C), the
program dual of (QP) is:

(QC) Find a Q-cover π whose c-value cπ is minimum.

130 M.A. Babenko and A.V. Karzanov

The augmentation step grows an island collection Q in G and consists of a
sequence of extension steps. These steps deal with the refined problem (QP)
rather than (P). The process starts with the trivial collection: Qi := {ti} for
i = 1, . . . , k. Also two additional invariants concerning ω are maintained.

Firstly, the algorithm handles ω-feasible multiflows F of value ω[T] that con-
sist of Q-feasible paths, and the collection Q is required to be F -tight. In terms
of ω, this turns into the following condition:

(3.4) ω[ti] = ω(δ(Qi)) for all 1 ≤ i ≤ k.

Secondly, let ν(c) (resp. ν(Q, c)) denote the value of a maximum c-feasible
(resp. (Q, c)-feasible) multiflow in G. The algorithm ensures that problem (QP)
remains equivalent, in a sense, to (P):

(3.5) if ω[T] = ν(Q, c) and if, moreover, there exists a half-integral Q-cover π
obeying ν(Q, c) = πc, then ω[T] = ν(c).

Each extension step either (i) updates the current function ω so as to increase
ω[T] by 1 while maintaining (3.1)–(3.3), or (ii) updates both ω and Q while
preserving ω[T], increasing some island and non-decreasing the other ones, and
maintaining (3.1)–(3.3), (3.4), (3.5). In case (i), the current augmentation step
completes, and in case (ii), the algorithm proceeds with a next extension step.

3.3 Extension Step

A sketch of performing an extension step is as follows. In order to increase ω[T],
the algorithm tries to find a sort of “augmenting path” P for ω. This path
connects a pair of (possibly coinciding) terminals. Also P may contain terminals
as intermediate nodes and need not be node- or edge-simple. Each edge of P
is marked as either “positive” or “negative”. The first and the last edges of P
are always positive. (The function ω will be updated by increasing by 1 on the
positive edges and decreasing by 1 on the negative ones.)

Unfortunately some additional constraints that we have to impose on P do
not seem to be easily expressible in terms of graph G. For this reason, P will be
obtained as a projection of an augmenting sequence (as in (2.1)) in a specially
designed partially doubly covering digraph Ĝ (constructed from G and Q). This
digraph was introduced in [Bab07] for solving the uncapacitated version of (P)
and is close to the notion of doubly covering digraph that was used in [Kar94] to
study the edge-capacitated min-cost multiflow problem. The precise definition
of Ĝ will be given later.

The following three cases can occur:

– Case (A): no augmenting sequence in Ĝ exists; then the current scaling
step completes;

– Case (B): an augmenting sequence exists and, in a sense, can be “fully
applied” to ω; then the current function ω updates with increasing ω[T],
and the current augmentation step completes;

A Scaling Algorithm for the Maximum Node-Capacitated Multiflow Problem 131

a

b

c

d e

f g

h
Q1 Q2

(a) Graph G and an island collection
Q = {Q1, Q2}.

a2

b2

c2

a1

b1

c1

d

f

e2

g2

h2

e1

g1

h1

Q1
1

Q2
1

Q1
2

Q2
2

(b) Graph Ĝ (undirected edges denote
pairs of oppositely directed arcs).

Fig. 1. Constructing the partially doubly covering digraph Ĝ

– Case (C): an augmenting sequence exists but cannot be “fully applied”
to ω; then the function ω updates with preserving ω[T], some island in Q
increases, and the current extension step completes.

Now we define the partially doubly covering digraph Ĝ formally. Put Q =
Q(Q) := Q1 ∪ . . . ∪Qk and Z = Z(Q) := V G−Q; the elements of Q and Z are
referred to as island and central nodes, respectively. Each node v ∈ Q is split
into a pair v1, v2 of nodes in Ĝ. Each node v ∈ Z corresponds to a unique node
in Ĝ; we identify the latter node in Ĝ with v. Each edge {u, v} ∈ γ(Z) generates
a pair of arcs (u, v), (v, u) in Ĝ. Each edge {u, v} ∈ γ(Qi), 1 ≤ i ≤ k, generates
four arcs (uj , vj), (vj , uj) in Ĝ, j = 1, 2. Each edge {u, v} ∈ EG with u ∈ Q and
v ∈ Z generates arcs (u1, v) and (v, u2) in Ĝ. Each edge {u, v} ∈ EG with u ∈ Qi

and v ∈ Qj , i
= j, generates arcs (u1, v2), (v1, u2) in Ĝ. Finally, Ĝ is trimmed:
all arcs entering nodes in T 1 and all arcs leaving nodes in T 2 are deleted. (We
define Ai :=

{
vi | v ∈ A

}
for any set A ⊆ Q.) An example is depicted in Fig. 1.

We assign capacities ĉ to the nodes of Ĝ by

(3.6) ĉ(v) := c(v) for all v ∈ Z, and ĉ(v1) := ĉ(v2) := 1
2c(v) for all v ∈ Q.

Since the capacities c are even, ĉ is integer-valued.
We need some notation that relates objects in graphs Ĝ and G. Each arc a

in Ĝ corresponds to the uniquely defined edge Ω(a) in G. Next, let ϕ̂ be an
arbitrary integer T 1–T 2 flow in Ĝ. Then, ϕ̂ generates an inner Eulerian function
ϕ := Ω(ϕ̂) on EG by ϕ(e) :=

∑(
ϕ̂(a) : Ω(a) = e

)
.

As mentioned earlier, the algorithm deals with augmenting sequences in Ĝ
rather than G. More precisely, the function ω is lifted to an integer ĉ-feasible
T 1–T 2 flow ω̂ in Ĝ of value ω[T] that obeys ω = Ω(ω̂). This transformation is
not straightforward and will be described in the full version of the paper. The
algorithm seeks for an ω̂-augmenting sequence in Ĝ. If the latter does not exist,
then Case (A) applies, the scaling step completes.

132 M.A. Babenko and A.V. Karzanov

Lemma 2. If ω̂ admits no augmenting sequence then ω[T] = ν(c).

Proof. According to Fact 3 there exists a T 1–T 2 separator A of ĉ-capacity equal
to val (ω̂) = ω[T]. Construct the function π : V G→

{
0, 1

2 , 1
}

as follows:

π(v) :=

{
|A ∩ {v} | if v ∈ Z,
1
2 · |A ∩

{
v1, v2

}
| if v ∈ Q.

We claim that π is a Q-cover. Suppose, for a contradiction, that there is a
Q-admissible T -path P in G such that π(V P) ≤ 1

2 . Lift P to a directed T 1–T 2

path P̂ in Ĝ. Since P̂ meets A, it follows that π(V P) ≥ 1
2 , therefore π(V P) = 1

2 .
Hence, all central nodes of P̂ do not belong to A and there is a unique island
node of P̂ belonging to A. Consider the reversed path P−1. Its image P̂−1 in Ĝ
does not contain nodes from A, which is a contradiction.

From πc = ĉ(A) = ω[T] and (3.5) it follows that ω[T] = ν(c), as needed.

Now let R̂ be an ω̂-augmenting sequence in Ĝ. We introduce the notion of “partial
application” of R̂ as follows. First of all we construct another digraph G from Ĝ
by merging, for each i = 1, . . . , k, nodes t1i and t2i back into node ti. Also we add
an auxiliary terminal t0 with no incident arcs. Note that the above contractions
do not remove any arcs since there are no arcs between nodes t1i and t2i . Nodes
T := T ∪ {t0} are regarded as terminals in G. The arcs of G are identified
with the corresponding arcs of Ĝ and we regard ω̂ as a capacity function in G.
For each 1 ≤ i ≤ k and j = 1, 2 put Q

j

i to be the image of Qj
i in G, that is,

Qj
i − {tji} ∪ {ti}. Also put Qi := Q

1

i ∪Q
2

i .
The sequence R̂ in Ĝ induces a sequence R = (v0, a1, v1, a2, . . . , al, vl) of nodes

and arcs in G. For i = 1, . . . , l, consider the first i arcs ARi := {a1, . . . , ai}
of R. Suppose we are going to increase ω̂ by 1 on the forward arcs in ARi

and simultaneously decrease by 1 on the backward arcs. This may result in arc
capacities that are not inner Eulerian. To overcome this difficulty, we add an
auxiliary arc (vi, t0) of capacity 1 unless i > 0 and vi ∈ T . The resulting digraph
(resp. capacities function) obtained from G (resp. from ω̂) is denoted by Gi

(resp. ωi). It is easy to check that ωi is inner Eulerian (w.r.t. T).
By taking trivial islands {tj}, j = 0, . . . , k, one can see that the maximum

value of an ωi-feasible integer multiflow in Gi does not exceed ω[T] + 1. If the
latter is exactly ω[T] + 1, we call index i good ; otherwise i is called bad. One can
prove the following:

Lemma 3. Index 0 is good.

The algorithm examines index l by applying the algorithm of Ibaraki, Karzanov,
and Nagamochi, see Theorem 3. First suppose that l is good; this corresponds
to Case (B). There exists an integer ωl-feasible multiflow F in Gl = G of value
ω[T] + 1. The algorithm applies Theorem 2 to construct ξF and updates ω by
taking the projection ω := Ω(ξF). Thus, ω[T] increases by 1. Invariants (3.1)

A Scaling Algorithm for the Maximum Node-Capacitated Multiflow Problem 133

and (3.2) follow from the construction of Ĝ, ĉ and Fact 2. Invariant (3.3) follows
from the existence of F .

Finally, suppose that l is bad; this corresponds to Case (C). Consider the
sequence of graphs G0, . . . , Gl and the corresponding sequence of capacity func-
tions ω0, . . . , ωl. Our aim is to find an index j such that j is good whereas j+1 is
bad. To make this quickly, the algorithm performs a binary search over the range
{0, . . . , l}. At each step it maintains a pair of indices (j−, j+), j− < j+ such that
j− is good while j+ is bad (initially j− := 0, j+ := l). Put i := � 1

2 (j− + j+)�,
consider graph Gi, capacities ωi, and solve (MMF) for this pair. If i is good,
put j− := i; otherwise put j+ := i. This process converges to a required pair
(j, j + 1) after O(log n) maximum multiflow computations.

Then, function ω and collection Q are updated as follows. Let F j denote an
integer ωj-feasible multiflow in Gj of value ω[T] + 1. One can easily see that
val

(
F j

)
= ω[T] + 1 implies that F j saturates all terminals T , i.e. ξF j (δ(ti)) =

ωj(δ(ti)) for all 0 ≤ i ≤ k.
We shall use the following statement:

Lemma 4. There exist, and can be found in O(Λ(n,m,U) log n) time, a ter-
minal tα ∈ T and a set Aα ⊆ V G obeying the following properties (in Gj):
1. Aα ∩ T = {tα},
2. Qα ⊆ Aα,
3. Qβ ∩Aα = ∅ for all β
= α,

4. vj ∈ Aα −Q
1

α,
5. ξF j (δout(Aα)) = ωj(δout(Aα)) = ωj(δout(tα)),
6. ξF j (δin(Aα)) = ωj(δin(Aα)) = ωj(δin(tα)).

Applying Lemma 4 the algorithm finds tα and set Aα. Note that from Prop-
erty (4) in the above Lemma 4 and the construction of Gj it follows that vj /∈ T ,
so arc (vj , t0) is present in Gj .

The rest of the extension step consists of two phases. Firstly, one needs to
update function ω to make it consistent with the upcoming extension of islands.
This is achieved as follows.

Consider graph Gj and contract the set V Gj −Aα −{t0} into a new node w.
Denote the resulting graph by H . It is endowed with inner Eulerian arc capaci-
ties ωj . Nodes {tα, t0, w} are regarded as terminals in H .

From Lemma 4 it follows that ξF j (δ(Aα)) = ωj(δ(Aα)) in H . Hence, graph H
also admits an integer multiflow that saturates all its terminals. Moreover, the
latter multiflow can only contain tα–w, w–tα, and tα–t0 paths and, hence, may
be represented by a collection {g1, g2, g3}, where g1 is an integer tα–w flow,
g2 is an integer w–tα flow, and g3 is an integer tα–t0 flow. These flows obey
g1 + g2 + g3 ≤ ωj and val (g1) + val (g2) + val (g3) = ωj(δ(tα)). Moreover,
val (g3) = 1.

To compute g1, g2, g3 as above, the algorithm finds a maximum integer tα–
{w, t0} flow g1 + g3 (in O(Λ(n,m,U) time) and then decomposes it into g1

and g3. Since val (g3) = 1, the latter decomposition takes O(m) time. Next, the
algorithm puts g2 := ωj − (g1 + g3).

134 M.A. Babenko and A.V. Karzanov

Consider an inner Eulerian function ω′ : AG→ Z+ defined by

ω′(a) :=

⎧
⎪⎨

⎪⎩

g1(a) + g2(a) if a ∈ γ(Aα),
0 if a = (vj , t0),
ωj(a) otherwise.

Replacing ωj by ω′ eliminates the auxiliary tα–t0 component of F j , therefore
ω′ = ξF

′
for some integer multiflow F

′
in G of value ω[T]. Put ω′ := Ω(ω′).

Lemma 5. Function ω′ is inner Eulerian and obeys ω′[v] ≤ c(v) for all v ∈
V G.

This completes the description of the first phase.
Now let us proceed with the second phase and explain how the island collec-

tion Q is updated. Let Aα be the image of Aα in G (i.e. Aα := Aα −Qα ∪Qα).
Contract the set V G − Aα into a new node z and denote the resulting graph
by H . Consider the digraph

−→
H obtained by replacing each edge {u, v} of H

with a pair of oppositely directed arcs (u, v) and (v, u). Function ω′ induces arc
capacities in

−→
H by ω′(u, v) = ω′(v, u) := ω′({u, v}).

Existence of the multiflow Ω(F
′
) in G implies that there is an integer ω′-

feasible tα–z flow h in
−→
H of value ω(δ(tα)) = ω(δ(z)). The algorithm con-

structs h by applying a max-flow algorithm. Additionally, it adjusts h to en-
sure that supp (h) is acyclic (e.g. with the help of an O(m logn)-time algorithm
from [ST83]).

Since val (g3) = 1, there exists (and can be found in O(m) time) a tα–t0 path L
in H (and, hence, in Gj) such that χAL ≤ g3. By Property (4) from Lemma 4,
one has vj /∈ Q

1

α, hence L contains at least one central node. We follow L from
tα to t0 and denote the first central node on this path by q. Put L1 to be the−→
H -image of the tα–q prefix of L.

We call a node x ∈ Aα − Qα reachable if there exists a path in
−→
H from x

to q consisting of arcs in supp (h). Add all reachable nodes to Qα and denote
the resulting set by Q′

α. Put Q′ := Q− {Qα} ∪ {Q′
α}.

Lemma 6. There exists an integer ω′-feasible multiflow F ′ in G of value ω[T]
such that each path P ∈ supp (F ′) is both Q-feasible and Q′-feasible.

Lemma 7. Suppose that π is a half-integral Q′-cover obeying ω′[T] = πc. Then
ω′[T] = ν(c).

The island extension completes by putting ω := ω′ and Q := Q′. Lemma 5,
Lemma 6, and Lemma 7 imply that the above change of ω and Q preserves
invariants (3.1)–(3.3) and (3.4)–(3.5).

4 Running Time

The algorithm totally performs O(logU) scaling steps; each of the latter con-
sists of O(n) augmentation steps (by Lemma 1). Each augmentation step is a

A Scaling Algorithm for the Maximum Node-Capacitated Multiflow Problem 135

sequence of at most O(n) extension steps. To bound the complexity of a single
extension step note the following. It takes Λ(n,m,U) time to construct graph Ĝ
and flow ω̂. The existence of an augmenting sequence is checked in O(m) time.
Next, O(Λ(n,m,U) logn) time is sufficient to check if the augmenting sequence
is fully applicable. If it is not the case, the binary search is performed. The
later executes O(log n) checks, each requires solving (MMF). Next, islands Q
are extended and function ω is updated, this takes O(Λ(n,m,U) logn) time.
Finally, transforming ω into the desired multiflow in path packing form takes
O(Λ(n,m,U) logn+mn logn) time.

Summing up the above estimates one concludes as follows:

Theorem 4. Problem (P) can be solved in O(Λ(n,m,U) n2 log2 n logU) time.

References

[Bab07] Babenko, M.A.: A fast algorithm for path 2-packing problem. In: Diekert,
V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp.
70–81. Springer, Heidelberg (2007)

[Che77] Cherkassky, B.V.: A solution of a problem on multicommodity flows in a
network. Ekonomika i Matematicheskie Metody 13(1), 143–151 (1977)

[FF62] Ford, L., Fulkerson, D.: Flows in Networds. Princeton University Press,
Princeton (1962)

[Fr89] Frank, A.: On connectivity properties of Eulerian digraphs. Ann. Discrete
Math. 41, 179–194 (1989)

[GR98] Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J.
ACM 45(5), 783–797 (1998)

[IKN98] Ibaraki, T., Karzanov, A.V., Nagamochi, H.: A fast algorithm for finding a
maximum free multiflow in an inner Eulerian network and some generaliza-
tions. Combinatorica 18(1), 61–83 (1998)

[Kar79] Karzanov, A.V.: Combinatorial methods to solve cut-dependent multiflow
problems. Combinatorial Methods for Flow Problems (Inst. for System
Studies, Moscow (3), 6–69 (1979) (in russian)

[Kar94] Karzanov, A.V.: Minimum cost multiflows in undirected networks. Math.
Program. 66(3), 313–325 (1994)

[Lov76] Lovász, L.: On some connectivity properties of Eulerian graphs. Acta Math.
Akad. Sci. Hung. 28, 129–138 (1976)

[Lov80] Lovász, L.: Matroid matching and some applications. J. Combinatorial The-
ory, Ser. B 28, 208–236 (1980)

[Pap07] Pap, G.: Some new results on node-capacitated packing of a-paths. In:
STOC 2007: Proceedings of the thirty-ninth annual ACM symposium on
Theory of computing, pp. 599–604. ACM Press, New York (2007)

[Schr03] Schrijver, A.: Combinatorial Optimization, vol. A, C. Springer, Heidelberg
(2003)

[ST83] Sleator, D., Tarjan, R.: A data structure for dynamic trees. J. Comput.
Syst. Sci. 26(3), 362–391 (1983)

[Vaz01] Vazirani, V.: Approximation Algorithms. Springer, Heidelberg (2001)

Linear Time Planarity Testing and Embedding of
Strongly Connected Cyclic Level Graphs

Christian Bachmaier and Wolfgang Brunner

University of Passau, Germany
{bachmaier,brunner}@fim.uni-passau.de

Abstract. A level graph is a directed acyclic graph with a level assign-
ment for each node. Such graphs play a prominent role in graph draw-
ing. They express strict dependencies and occur in many areas, e. g., in
scheduling problems and program inheritance structures.

In this paper we extend level graphs to cyclic level graphs. Such graphs
occur as repeating processes in cyclic scheduling, visual data mining, life
sciences, and VLSI. We provide a complete study of strongly connected
cyclic level graphs. In particular, we present a linear time algorithm
for the planarity testing and embedding problem, and we characterize
forbidden subgraphs. Our results generalize earlier work on level graphs.

1 Introduction

Cyclic level planar graphs receive their motivation from two sources: level planar
graphs and recurrent hierarchies. A level graph is a directed acyclic graph with
a level assignment for each node. Nodes on the same level are placed at different
positions on a horizontal line and edges are drawn downwards from the upper
to the lower end node. The challenging problems on level graphs are planarity
testing and embedding algorithms in linear time and a characterization in terms
of forbidden subgraphs. This parallels the situation for planar graphs, where
nowadays there are many O(|V |) testing and embedding algorithms [3,8,12] and
the famous Kuratowski graphs [11]: Each graph is planar if it does not contain
a subgraph that is homeomorphic to the complete graph with 5 nodes K5 or
the complete bipartite graph K3,3 with 3 nodes in each set. Level planarity
has been studied intensively in recent years [4, 6]. Jünger and Leipert [9] finally
established a linear time algorithm for the level planarity testing and embedding
problem. Healy et al. [7] gave a complete set of seven level non-planarity patterns
for hierarchies. Fowler and Kobourov [5] added two more forbidden graphs for
a complete set for arbitrary level graphs. Bachmaier et al. [1] extended level
planarity to radial level planarity. There the levels are concentric circles and the
edges are directed from inner to outer circles.

Recurrent hierarchies were introduced by Sugiyama et al. [15] more than 25
years ago. A recurrent hierarchy is a level graph with additional edges from the
last to the first level. Here two drawings are natural: The first is a 2D drawing,
where the levels are rays from a common center, and are sorted counterclock-
wise by their number, see Fig. 1(a). All nodes of one level are placed at different

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 136–147, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Linear Time Cyclic Level Planarity Testing and Embedding 137

positions on their ray and an edge e = (u, v) is drawn as a monotone coun-
terclockwise curve from u to v wrapping around the center at most once. The
second is a 3D drawing on a cylinder, see Fig. 1(b). A planar recurrent hierarchy
is shown on the cover of the book by Kaufmann and Wagner [10]. There it is
stated that recurrent hierarchies are “unfortunately [. . .] still not well studied”.

The standard method to visualize directed graphs is the Sugiyama algo-
rithm [15], which eliminates all cycles in the graph. This may be acceptable
in many applications. But there are areas in which it is important that the cy-
cles are preserved and represented as cycles, e. g., visual data mining, or chemical
reactions in the life sciences [14]. Important applications can further be found in
the layout of regular VLSI circuits [13]. Recurrent hierarchies are well suited to
visualize such cyclic or regular structures. To enhance the readability of draw-
ings, edge crossings should be avoided and even excluded.

In this paper we improve our earlier result [2] of an O(|V | log |V |) planarity
testing and embedding algorithm on strongly connected cyclic level graphs and
present an optimal linear time algorithm. Moreover, we characterize forbidden
subgraphs for such graphs. This settles the major questions on strongly con-
nected cyclic level graphs.

13 1

4

5

6

8

2

2

3

4

5

7

right

left

(a) In the plane

76

8
2 1 3

4

(b) On a cylinder

Fig. 1. Drawings of a cyclic 5-level graph G

1 2

4

1

2

3

4

5

3

6

7

8

9

10

11

9

9

12 3
9

6

4

7

5

8

7

12 3

5

6

8

Fig. 2. (2, 1)-hierarchy of G

138 C. Bachmaier and W. Brunner

2 Preliminaries

A cyclic k-level graph G = (V (G), E(G), φG) (k ≥ 2) is a directed graph with-
out self-loops with a given surjective level assignment of the nodes φG : V →
{1, 2, . . . , k}. For two nodes uG, vG ∈ V (G) let span(uG, vG) := φG(vG)−φG(uG)
if φG(uG) < φG(vG), and span(uG, vG) := φG(vG)−φG(uG)+k otherwise. For an
edge e = (uG, vG) ∈ E(G) we define span(e) := span(uG, vG). For a simple path
or a simple cycle P define span(P) :=

∑
e∈E(P) span(e). All paths and cycles in

this paper are directed if not stated otherwise. A graph is strongly connected if
for all uG, vG ∈ V (G) a path from uG to vG exists. A cyclic k-level graph G is a
k-level graph if φG(uG) < φG(vG) for each edge (uG, vG) ∈ E(G) holds. A draw-
ing is (cyclic) level plane if the edges do not cross except on common endpoints.
A (cyclic) k-level graph is (cyclic) level planar if such a drawing exists. The right
outer face is the face of the 2D drawing containing the center and the left outer
face is the unbounded face (see Fig. 1(a)). A (cyclic) level planar embedding G
of G consists of two lists N−

G (vG) and N+
G (vG) for each node vG ∈ V (G) which

contain the end nodes of ingoing and outgoing edges, respectively. Both lists are
ordered from left to right. A hierarchy is a level graph G s. t. each node vG with
φG(vG)
= 1 has an ingoing edge.

3 Cyclic Level Non-planarity Patterns

In this section we give a characterization of cyclic level non-planarity patterns
in strongly connected graphs (SCLNP).

Definition 1. A (cyclic) level non-planarity pattern P is a set of (cyclic) level
non-planar graphs with structural similarities. We call a pattern minimal if for
each element of P the removal of one edge makes the graph (cyclic) level planar.
A (cyclic) level graph G matches a pattern P if there exists p ∈ P s. t. p is a
subgraph of G. A set of patterns S is minimal if each pattern in S is minimal.
S is complete if each (cyclic) level non-planar graph matches a pattern in S.

Concerning level non-planarity patterns, Di Battista and Nardelli [4] presented
three patterns for hierarchies (HLNP). This set is complete but not minimal.
Healy et al. [7] gave seven minimal level non-planarity patterns for hierarchies
(MHLNP). This complete set consists of two tree patterns T1 (Fig. 3(a)) and T2
(Fig. 3(b)), a level non-planar cycle C0 (Fig. 3(c)), and four level planar cycles
with one (C1, Fig. 3(d)) to four (C4, Fig. 3(h)) paths starting from the cycle
(C2 having two subcases). For the formal definition of the patterns see [7]. Note,
that contrary to graph planarity, the partition of all minimal (cyclic) non-level
planar graphs into patterns is somewhat arbitrary. Thus, nobody has treated
the minimal cardinality of a minimal set of patterns.

Fowler and Kobourov [5] showed that the MHLNP set is not complete for
general level graphs and added two more tree patterns, which are not needed for
hierarchies, however. These nine patterns (MLNP) are minimal and complete
for the general case. To formally describe cyclic level non-planarity patterns, we
need the following definition.

Linear Time Cyclic Level Planarity Testing and Embedding 139

i

j

x wva

cbu

1

(a) T1

i

j

x

wv a

cbu

1

(b) T2

i

j

1 2

3 4

(c) C0

i

j

1 2 3

4 5

p1

v

(d) C1

i

j

p1

p2

1

2

h

l

v

w

x

y

(e) C2 (case 1)

i

j

p1

p2

1

2

h

l

v

w

x

y

(f) C2 (case 2)

i

j

p1

p2

3

p3

1 2

4 5

v

w

x

(g) C3

i

j

p1

p2

p3

1 2

43

p4

v

x

w

y

(h) C4

C

v i

(i) CC

Fig. 3. The cyclic level non-planarity patterns for strongly connected graphs (SCLNP)

Definition 2. Let G be a cyclic k-level graph. Let c ∈ N and l ∈ {1, . . . , k}.
Suppose that no edge crosses level l (if such an edge e = (uG, vG) exists, add a
node dG to level l, remove the edge e and add the edges (uG, dG) and (dG, vG)
to the graph). The (c, l)-hierarchy H of G is a (ck+ 1)-level hierarchy. For each
node vG on level l H has c+1 duplicates v1, vk+1, . . . vck+1 with vi on level i. Let
wG be a node with φG(wG)
= l and let l′ = φG(wG) − l + 1 if φG(wG) > l and
l′ = φG(wG) − l + k + 1 otherwise. For each such node wG, H has c duplicated
nodes wl′ , wk+l′ , . . . w(c−1)k+l′ with wi on level i. For each edge e = (uG, vG) and
for each duplicate ui in H with i < ck + 1 H contains the edge (ui, vi+span(e)).

Informally speaking, the (c, l)-hierarchy H of G is obtained by splitting G at
level l (thus creating a level graph) and duplicating the graph c times one below
the other. We will use the notation vi for a duplicate of vG ∈ V (G) on level i in
H in the following. Figure 1 shows a cyclic 5-level graph and Fig. 2 a level plane

140 C. Bachmaier and W. Brunner

v5

1 2

7 8 9

5

1

2

3

4

5

4

6

v1

3

(a) T1

1 2

1

2

3

5

v1

v6

6 7 85

6

3

4

4

(b) T2

v1

v4

1

2

3

4

1 2

3 4

(c) C0

v5

1

4 5

1

2

3

4

5

v1

3

2

(d) C1

1 2

1

2

3

4

v1

v6

5 65

6

4

3

(e) C2 (1)

1 2

1

2

3

4

v1

v6

5 65

6

4

3

(f) C2 (2)

1 2

1

2

3

6

v1

7

5

3

4

4 5

v5

(g) C3

1 2

1

2

3

5

v1

v6

6 7 85

6

3

4

4

(h) C4

1 2

1

2

3

w1v1

v3w3

(i) CC

Fig. 4. (1, 1)-hierarchies of cyclic graphs matching exactly one of the SCLNP patterns

drawing of the corresponding (2, 1)-hierarchy. Note that a (c, l)-hierarchy does
not include an embedding.

In a hierarchy, each node v with φ(v) > 1 has an ingoing edge. In strongly
connected cyclic level graphs each node has an ingoing and outgoing edge. There-
fore, it is not obvious that each of the seven MHLNP patterns can occur in the
cyclic case. But for each of the patterns a strongly connected cyclic level graph
can be constructed. Figures 4(a) to (h) show (1, 1)-hierarchies of strongly con-
nected cyclic k-level graphs which match exactly one of the MHLNP patterns.
The edges needed for the patterns are drawn as full lines. Obviously each of the
MHLNP patterns is a proof of non-planarity in the cyclic case as well. Therefore,
we define a cyclic version of each of the seven MHLNP patterns:

Definition 3. Let G be a cyclic k-level graph. We say that G matches the
pattern CT1 if there exists c ∈ N s. t. the (c, 1)-hierarchy of G matches T1.
We define the remaining six patterns in an analog way and set SCLNP’ =
{CT1, CT2, CC0, CC1, CC2, CC3, CC4}.

Linear Time Cyclic Level Planarity Testing and Embedding 141

Definition 4. Let G be a cyclic k-level graph and c ∈ N \ {0}. A c-cycle is a
simple cycle with span c · k.

Figure 4(i) shows the (1, 1)-hierarchy of a strongly connected cyclic 2-level graph
which is a 2-cycle. Note that this graph is cyclic level non-planar, but does not
match any pattern of SCLNP’. On the other hand none of the graphs in Fig. 4(a)
to (h) contains a 2-cycle. Therefore, an eighth cyclic level non-planarity pattern
is needed.

Definition 5. We define CC as the set of all c-cycles in cyclic k-level graphs
with c, k ∈ N, c > 1 (Fig. 3(i)). We set SCLNP = SCLNP’ ∪{CC}.

Proposition 1. Let G be a cyclic k-level graph. If G matches CC, then G is
cyclic level non-planar.

Note that CC is a minimal pattern, as removing one edge from the cycle leads
to a cyclic level planar graph.

Definition 6. We call a (c, l)-hierarchy H of a cyclic level graph G strongly
level planar if it is level planar and has a level planar embedding s. t. the first
and last level have the same permutation. We call such an embedding a strongly
level planar embedding.

Proposition 2. Let G be a strongly connected cyclic k-level graph and l ∈
{1, . . . k}. G is cyclic level planar if and only if the (1, l)-hierarchy of G is strongly
level planar. Let c ∈ N. If the (c, l)-hierarchy of G is (strongly) level non-planar,
then G is cyclic level non-planar.

Definition 7. Let H be a level graph with a fixed level planar embedding H and
u, v be two nodes on the same level. We say u < v (u > v) if u lies left (right)
of v in H.

Definition 8. Let U , V , W be three permutations of the same node set. We
define the lexicographical ordering with respect to U on the set of permutations
in the following way: If V and W are the same permutations, then they are
equal in the ordering. Otherwise there is a leftmost position on which V and W
have different nodes. Let v and w be the nodes on this position in V and W ,
respectively. We define V < W if v < w in U and V > W if v > w in U .

Another way to look at this ordering is as follows: The permutation U definies
an ordering on an alphabet. A permutation V is then smaller than W if the word
it builds is smaller than the word of W in the lexicographical ordering.

Lemma 1. Let G be a strongly connected cyclic k-level graph s. t. G does not
match CC. Let H be the (2, 1)-hierarchy of G. Let H be level planar with a fixed
level planar embedding H. Then G is cyclic level planar and a cyclic level planar
embedding G of G exists s. t. the permutation of level 1 in G is the same as the
permutation of level k + 1 in H.

Proof. Assume for contradiction that such an embedding G of G does not exist.
Consider all level planar embeddings of H which have the same permutation of

142 C. Bachmaier and W. Brunner

1

l k1-

l k2-

l k3-

l k4-

k+1

l1

l2

l3

l4

2 +1k

I

O

Rv

Ru

Ru

Rv

I

i o v

i

w

x

y

z

o

?? i

w

x

y

z

OO

Q

Q

I

u

0

i

I
00

I
00

I
00

I
00

I
0

o

v u

Fig. 5. Sketch for the proof of Lemma 1

12

4

0

2

3

4

5

3

6

7

9

9

6 7

5

12 3

1

d
4

d
5

d
3

d
2

d
1

d
4

d
5

d
3

d
2

d
1

8

Fig. 6. Rigid (1, 1)-hierarchy

level k+ 1 as H. None of these embeddings has this permutation on level 2k+ 1,
too (otherwise G would be cyclic level planar with the same permutation on level
1). Of all these embeddings choose one which has the minimal permutation on
level 2k + 1 in the lexicographical ordering with respect to the ordering of level
k+ 1. We consider this embedding from now on. We show that we can construct
a new embedding with an even smaller permutation on level 2k + 1, which is a
contradiction.

As the permutations of level k+ 1 and 2k+ 1 are not the same, there have to
exist two nodes u and v s. t. uk+1 < vk+1 but u2k+1 > v2k+1. W.l.o.g. let u2k+1

and v2k+1 be a pair of nodes with the wrong orientation that have the maximal
number of nodes between them. See Fig. 5 for a sketch in which we omit the
indices indicating the levels.

As G is strongly connected but does not match CC, each node lies on a 1-cycle.
Thus, there have to be paths Qu from uk+1 to u2k+1 and Qv from vk+1 to v2k+1.
As the embedding is level planar, Qu and Qv cannot be disjoint. Therefore, we
have a path Ql from uk+1 to v2k+1 and a path Qr from vk+1 to u2k+1. As G
does not match CC, Ql and Qr cannot be disjoint. Even more than that, there
has to exist a node which lies on all paths from uk+1 to v2k+1 and on all paths
from vk+1 to u2k+1 (otherwise the leftmost path from uk+1 to v2k+1 and the
rightmost path from vk+1 to u2k+1 would be disjoint and generate a graph in
CC). Let wl1 and xl2 be the uppermost and lowest such nodes, respectively, and
Q be one path between them.

Linear Time Cyclic Level Planarity Testing and Embedding 143

Let Rv be the leftmost path from xl2 to v2k+1. Let Ru be the rightmost path
from xl2 to u2k+1. We now prove that we can flip all nodes between Rv and
Ru, thus creating a smaller permutation on level 2k + 1 in the lexicographical
ordering and thus a contradiction.

Consider the nodes on the path Ru from level l2 +1 to 2k. Assume for contra-
diction that a node yl3 on the path has an outgoing edge right to Ru. We follow
this path O downwards. If O ends on Ru, then Ru was not the rightmost path.
Therefore, it has to reach a node o2k+1 on level 2k + 1 right of u2k+1. As O is
disjoint to Rv, ok+1 has to lie left of vk+1 (we do not know whether ok+1 < uk+1

or ok+1 > uk+1 holds). But then o2k+1 and v2k+1 have the wrong orientation
and have more nodes between them than v2k+1 and u2k+1. A contradiction. The
same argument can be used for Rv (switching left and right).

Now consider the nodes on the path Rv from level l2 + 1 to 2k + 1. Assume
for contradiction that a node zl4 on the path has an ingoing edge left to Rv. We
follow this path I upwards. If I ends on Rv below or on xl2 , then Rv was not the
leftmost path. If I ends on Q \ {xl2}, then xl2 would not lie on each path from
uk+1 to v2k+1. If it ends on the leftmost connection of uk+1 to wl1 above wl1 ,
then there would be disjoint paths from uk+1 to v2k+1 and from vk+1 to u2k+1.
The only remaining possibility is that I reaches the level k + 1 on a node ik+1

left of uk+1. Due to the path I, i1 has to lie right of u1 and v1. However, we do
not know whether u1 < v1 or u1 > v1 holds.

We now consider the position of i2k+1. If i2k+1 > u2k+1 and, therefore, i2k+1 >
v2k+1, then i2k+1 and v2k+1 have the wrong orientation and more nodes between
them than u2k+1 and v2k+1. If i2k+1 lies between v2k+1 and u2k+1, we consider
the path I ′ from i2k+1 upwards. If I ′ reachesRu, then we have disjoint paths from
vk+1 to i2k+1 and from ik+1 to v2k+1 and thus G matches CC. If I ′ reaches Rv

first, then I ′ would cause a crossing from ik+1 upwards. The remaining possibility
is that i2k+1 < v2k+1 < u2k+1. Now the same path I ′′ from i1 to ik+1 and from
ik+1 to i2k+1 has to exist. I ′′ cannot be disjoint with Qu or Qv as i1 is right of u1

and v1 but ik+1 is left of uk+1 and vk+1. Therefore, from i2k+1 upwards I ′′ has
to reach I or Rv first to reach Qu. In both cases a crossing from ik+1 upwards
occurs, which is a contradiction. The same argument can be used to show that
no path from Ru upwards exists.

As a consequence, we do not have any outgoing or ingoing edges on Rv to the
left between l2 + 1 and 2k+ 1. Analogously, we do not have outgoing or ingoing
edges to the right of Ru between the same levels. So we can flip the subgraph
between Rv and Ru and thus create a permutation of level 2k+1 which is smaller
than the given one in the lexicographical ordering with respect to the ordering
of level k+ 1. A contradiction. Thus, G is cyclic level planar with an embedding
G s. t. the permutation of level 1 in G is the permutation of level k+ 1 in H. �

Figure 1 shows a strongly connected cyclic 5-level graph and Fig. 2 an arbitrary
level plane drawing of its (2, 1)-hierarchy. Note that levels 1, 6, and 11 have
three different permutations. According to Lemma 1, we can fix the embedding
of level 6 and change the permutation of level 11 to the permutation of level 6.
We search for two nodes on level 11 which have the wrong orientation according

144 C. Bachmaier and W. Brunner

to level 6 and the maximal number of nodes between them. These nodes are
u = 1 and v = 9. We get w = x = 6 and flip the tree below node 6. After that 1
and 2 have the wrong orientation (with w = 4 and x = 6) and we flip these two
nodes. Thereafter, levels 6 and 11 have the same permutation. This permutation
is used for the cyclic level plane drawings in Fig. 1.

Theorem 1. Let G be a strongly connected cyclic k-level graph. G is cyclic level
planar if and only if it does not match a pattern in SCLNP.

Proof. “⇒” We show the contrapositive. If G matches a pattern of SCLNP’, then
there exists c ∈ N s. t. the (c, 1)-hierarchy H of G matches an MHLNP pattern.
Therefore, H is level non-planar. According to Proposition 2, G is cyclic level
non-planar then. If G matches the pattern CC, then G is cyclic level non-planar
according to Proposition 1.

“⇐” We show the contrapositive. Let G be cyclic level non-planar and let
H be its (2, 1)-hierarchy. If H is level non-planar, then H matches a MHLNP
pattern and, therefore, G matches a SCLNP’ pattern. If H is level planar, then
(the contrapositive of) Lemma 1 shows that G matches the pattern CC. �

Note that according to Lemma 1 for each strongly connected cyclic k-level non-
planar graph not matching CC its (2, 1)-hierarchy matches an MHLNP pattern.
Therefore, patterns in SCLNP’ can be limited to 2k + 1 levels.

4 Cyclic Level Planarity Testing and Embedding

In this section we give a simple linear time level planarity testing and embedding
algorithm.

Definition 9. Let G be a cyclic k-level graph and H the (2, 1)-hierarchy of G.
Let H be level planar with embedding H. Let F = (v1

k+1, v
2
k+1, . . . , v

s
k+1) be the

permutation of level k+1 in H. The rigid (1, 1)-hierarchy H ′ of H consists of the
(1, 1)-hierarchy of G and the additional levels 0 and k+ 2. Level 0 has the nodes
d1
0, d

2
0, . . . d

s+1
0 and level k + 2 the nodes d1

k+2, d
2
k+2, . . . , d

s+1
k+2. H

′ contains the
edges (di

0, v
i
1), (di+1

0 , vi
1), (vi

k+1, d
i
k+2) and (vi

k+1, d
i+1
k+2) for each i ∈ {1, . . . , s} as

well as the edges (d1
0, d

1
k+2) and (ds+1

0 , ds+1
k+2).

Note that the rigid (1, 1)-hierarchy H ′ of H is level planar if and only if it has
an embedding s. t. the levels 1 and k+ 1 have the same permutation F . Then H
is strongly level planar and G cyclic level planar. From Theorem 1 we get the
following idea for a cyclic level planarity testing and embedding algorithm.

Let G = (V (G), E(G), φG) be a strongly connected cyclic k-level graph. We
first test whether |E(G)| ≤ 3|V (G)| − 6 holds (otherwise G cannot be (cyclic
level) planar (Euler)). Construct the (2, 1)-hierarchy H of G then. If H is level
non-planar, then G is cyclic level non-planar. Otherwise let H be a level planar
embedding of H . We construct the rigid (1, 1)-hierarchyH ′ of H and test its level
planarity. If it fails G is cyclic level non-planar. If it does not fail, we transform

Linear Time Cyclic Level Planarity Testing and Embedding 145

the level planar embedding H′ of H ′ into a cyclic level planar embedding G of
G in a straight forward way: Let vG ∈ V (G) with φG(vG)
= 1. Let vl be the
corresponding node in H ′. We set N−

G (vG) = N−
H′(vl) and N+

G (vG) = N+
H′(vl).

For a node vG ∈ V (G) with φG(vG) = 1 we set N−
G (vG) = N−

H′(vk+1) and
N+

G (vG) = N+
H′(v1). In both cases we identify the nodes in H ′ with the corre-

sponding nodes in G.

Algorithm 1. cyclicLevelPlanarEmbedding
Input: A strongly connected cyclic k-level graph G = (V (G), E(G), φG)
Output: A cyclic level planar embedding G or false

if |E(G)| > 3|V (G)| − 6 then1
return false2

Let H be the (2, 1)-hierarchy of G3
if ¬levelPlanar(H) then4

return false5

Let H be a level planar embedding of H6
Let H ′ be the rigid (1, 1)-hierarchy of H7
if ¬levelPlanar(H ′) then8

return false9

Let H′ be a level planar embedding of H ′10
Construct cyclic level planar embedding G of G from H′11
return G12

Theorem 2. Cyclic level planarity testing and embedding on strongly connected
cyclic level graphs can be achieved by Algorithm 1 in linear time.

Proof. The correctness of Algorithm 1 follows directly from Theorem 1. To prove
its time complexity, we consider the construction of the (2, 1)-hierarchy H of G
first. The addition of dummy nodes on level 1 increases the number of nodes and
edges by at most E(G). After that the graph is duplicated: Each node on level
1 has three duplicates, all remaining nodes and all edges have two duplicates.
Therefore, the size of H is linear in the size of G. All steps can easily be done in
linear time. To test the level planarity of H any linear time level planarity testing
and embedding algorithm for hierarchies can be used [4, 9]. The construction of
the (1, 1)-hierarchy is possible in linear time as well. Let w be the number of
nodes on level 1 in this hierarchy. To build the rigid (1, 1)-hierarchy, we add
2(w + 1) nodes and 4w + 2 edges and again use a linear time level planarity
testing and embedding algorithm. The construction of G from H′ can again
easily be done in linear time. �

5 Summary and Open Problems

We have shown that each of the seven MHLNP patterns of Healy et al. [7] are
necessary in the strongly connected cyclic level case. To build a complete set,

146 C. Bachmaier and W. Brunner

an eighth pattern is needed: a simple cycle wrapping around the center more
than once (CC). This leads to a simple linear time level planarity testing and
embedding algorithm.

As open problems remain finding a linear time planarity testing and embed-
ding algorithm for arbitrary cyclic level graphs, a stronger characterization of
the SCLNP patterns as well as finding patterns for the arbitrary cyclic level case.

1

2

3 2

4

1

v1

v4

u1 w1

w4 u4

(a) Pattern CC2
using 4 levels

1

2

3

4 a4 d4b4
c4

a1 d1b1
c1

1 2

3 4

(b) Pattern CC0 using 5 levels in a not
strongly connected graph

Fig. 7. (1, 1)-hierarchies of cyclic 3-level graphs matching one SCLNP pattern

Conjecture 1. Let G be a strongly connected cyclic k-level graph.G is cyclic level
planar if and only if G does not match a pattern in SCLNP with the patterns
in SCLNP’ using at most k + 1 levels.

Figure 7(a) shows a (1, 1)-hierarchy of a cyclic 3-level graph which matches the
pattern CC2 (case 1) and uses 4 levels. If Conjecture 1 holds, it is not possible
to construct a strongly connected cyclic k-level non-planar graph not matching
CC s. t. all patterns use more than k + 1 levels. Obviously, this is false for not
strongly connected graphs, as the cyclic 3-level graph in Fig. 7(b) shows. The
only pattern it matches is the pattern CC0 using 5 levels. This example can
easily be enlarged s. t. the pattern uses an arbitrary amount of levels.

Conjecture 2. Let G be a (not necessarily strongly connected) cyclic k-level
graph. G is cyclic level planar if and only if there does not exist c ∈ N s. t.
the (c, 1)-hierarchy matches one of the nine MLNP patterns and G does not
contain an undirected simple cycle wrapping around the center more than once.

Lemma 2 is a strong indication for Conjecture 1:

Lemma 2. Let G be a strongly connected cyclic k-level graph not matching CC.
If G matches an SCLNP’ pattern using less than 2k + 1 and more than k + 2
levels, then it matches another instance of an SCLNP’ pattern.

Proof. Let H be the (2, 1)-hierarchy of G. W.l.o.g. let 1 be the first level of the
pattern in H . Note that H matches the pattern, but the (2, 2)-hierarchy H ′ of G
does not match it, as the level 1 of G is missing at the top. As more than k + 2

Linear Time Cyclic Level Planarity Testing and Embedding 147

levels are used by the pattern, the pattern is not completely there from level k
downwards as well. H ′ has to match another SCLNP’ pattern, as we could use
H ′ instead of H in Lemma 1. �

Note that Lemma 2 does not make a statement on patterns using 2k+1 or k+2
levels. Nevertheless, we conjecture that the patterns use k + 1 levels at most,
as all strongly connected cyclic level graphs matching a longer pattern seem to
match a shorter pattern or a CC pattern as well.

References

1. Bachmaier, C., Brandenburg, F.J., Forster, M.: Radial level planarity testing and
embedding in linear time. Journal of Graph Algorithms and Applications 9(1),
53–97 (2005)

2. Bachmaier, C., Brunner, W., König, C.: Cyclic level planarity testing and embed-
ding (extended abstract). In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007.
LNCS, vol. 4875, pp. 50–61. Springer, Heidelberg (2008)

3. Boyer, J., Myrvold, W.: On the cutting edge: Simplified O(n) planarity by edge
addition. Journal of Graph Algorithms and Applications 8(3), 241–273 (2004)

4. Di Battista, G., Nardelli, E.: Hierarchies and planarity theory. IEEE Transactions
on Systems, Man, and Cybernetics 18(6), 1035–1046 (1988)

5. Fowler, J.J., Kobourov, S.G.: Minimum level nonplanar patterns for trees. In:
Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 69–75.
Springer, Heidelberg (2008)

6. Healy, P., Kuusik, A.: Algorithms for multi-level graph planarity testing and layout.
Theoretical Computer Science 320(2–3), 331–344 (2004)

7. Healy, P., Kuusik, A., Leipert, S.: A characterization of level planar graphs. Discrete
Mathematics 280, 51–63 (2004)

8. Hopcroft, J.E., Tarjan, R.E.: Efficient planarity testing. Journal of the ACM 21(4),
549–568 (1974)

9. Jünger, M., Leipert, S.: Level planar embedding in linear time. Journal of Graph
Algorithms and Applications 6(1), 67–113 (2002)

10. Kaufmann, M., Wagner, D.: Drawing Graphs. LNCS, vol. 2025. Springer, Heidel-
berg (2001)

11. Kuratowski, K.: Sur le problème des courbes gauches en topologie. Fundamenta
Mathematicae 15, 271–283 (1930)

12. Lempel, A., Even, S., Cederbaum, I.: An algorithm for planarity testing of graphs.
In: International Symposium, Rome, pp. 215–232 (1967)

13. Mehlhorn, K., Rülling, W.: Compaction on the torus. IEEE Transactions on
Computer-Aided Design 9(4), 389–397 (1990)

14. Michal, G.: Biochemical Pathways: An Atlas of Biochemistry and Molecular Biol-
ogy. Wiley, Chichester (1999)

15. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchi-
cal system structures. IEEE Transactions on Systems, Man, and Cybernetics 11(2),
109–125 (1981)

Straight Skeletons of Three-Dimensional

Polyhedra�

Gill Barequet1, David Eppstein2, Michael T. Goodrich2, and Amir Vaxman1

1 Dept. of Computer Science
Technion—Israel Institute of Technology

Haifa 32000, Israel
{barequet,avaxman}@cs.technion.ac.il

2 Computer Science Department
Univ. of California, Irvine

{eppstein,goodrich}@ics.uci.edu

Abstract. We study the straight skeleton of polyhedra in 3D. We first
show that the skeleton of voxel-based polyhedra may be constructed by
an algorithm taking constant time per voxel. We also describe a more
complex algorithm for skeletons of voxel polyhedra, which takes time
proportional to the surface-area of the skeleton rather than the volume
of the polyhedron. We also show that any n-vertex axis-parallel polyhe-
dron has a straight skeleton with O(n2) features. We provide algorithms
for constructing the skeleton, which run in O(min(n2 log n, k logO(1) n))
time, where k is the output complexity. Next, we show that the straight
skeleton of a general nonconvex polyhedron has an ambiguity, suggesting
a consistent method to resolve it. We prove that the skeleton of a general
polyhedron has a superquadratic complexity in the worst case. Finally,
we report on an implementation of an algorithm for the general case.

1 Introduction

The straight skeleton is a geometric construction that reduces two-dimensional
shapes—polygons—to one-dimensional sets of segments approximating the same
shape. It is defined in terms of an offset process in which edges move inward, re-
maining straight and meeting at vertices. When a vertex meets an offset edge, the
process continues within the two pieces so formed. The straight segments traced
out by vertices during this process define the skeleton. Introduced by Aichholzer
et al. [1,2], the two-dimensional straight skeleton has since found many appli-
cations, e.g., surface folding [9], offset curve construction [13], interpolation of
surfaces in three dimensions from cross sections [3], automated interpretation of
geographic data [15], polygon decomposition [21], etc. The straight skeleton is
more complex to compute than other types of skeleton [6,13], but its piecewise-
linear form offers many advantages. The best known alternative, the medial
axis [5], consists of both linear and quadratic curve segments.
� Work on this paper by the first and fourth authors has been supported in part by a

French-Israeli Research Cooperation Grant 3-3413.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 148–160, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Straight Skeletons of Three-Dimensional Polyhedra 149

It is natural, then, to try to develop algorithms for skeleton construction of
a polyhedron in 3D. The most well-known type of 3D skeleton, the medial axis,
has found applications, e.g., in mesh generation [17] and surface reconstruc-
tion [4]. Unlike its 2D counterpart, the 3D medial axis can be quite complex,
both combinatorially and geometrically. Thus, we would like an alternative way
to characterize the shape of 3D polyhedra using a simpler type of 2D skeleton.

1.1 Related Prior Work

We are not aware of any prior work on 3D straight skeletons, other than Demaine
et al. [8], who give the basic properties of 3D straight skeletons, but do not study
them in detail w.r.t. their algorithmic, combinatorial, or geometric properties.

Held [16] showed that in the worst case, the complexity of the medial axis of
a convex polyhedron of complexity n is Ω(n2), which implies a similar bound
for the 3D straight skeleton. Perhaps the most relevant prior work is on shape
characterization using the 3D medial axis, defined from a 3D polyhedron as the
Voronoi diagram of the set of faces, edges, and vertices of the polyhedron. The
best known upper bound for its combinatorial complexity is O(n3+ε) [18].

Because of these drawbacks, a number of researchers have studied algorithms
for approximating 3D medial axes. Sherbrooke et al. [20] give an algorithm that
traces out the curved edges of the 3D medial skeleton. Culver et al. [7] use exact
arithmetic to compute a representation of a 3D medial axis. In both cases, the
running time depends on both the combinatorial and geometric complexity of
the medial axis. Foskey et al. [14] construct an approximate medial axis using a
voxel-based approach that runs in time O(nV), where n is the number of features
of the input polyhedron and V is the volume of the voxel mesh that contains
it. Sheehy et al. [19] use instead the 3D Delaunay triangulation of a cloud of
points on the surface of the input polyhedron to approximate 3D medial axis.
Likewise, Dey and Zhao [10] study the 3D medial axis as a subcomplex of the
Voronoi diagram of a sampling of points approximating the input polyhedron.

1.2 Our Results

– We study the straight skeleton of orthogonal polyhedra formed as unions of
voxels. We analyze how the skeleton may intersect each voxel, and describe
a suitable a simple voxel-sweeping algorithm taking constant time per voxel.

– We give a more complex algorithm for skeletons of voxel polyhedra, which,
rather than taking time proportional to the total volume, takes time propor-
tional to the the number of voxels it intersects.

– We show that any n-vertex axis-parallel polyhedron has a skeleton with
O(n2) features. We provide two algorithms for computing it, resulting in a
runtime of O(min(n2 logn, k logO(1) n)), where k is the output complexity.

– We discuss the ambiguity in defining skeletons for general polyhedra and
suggest a consistent method for resolving it. We show that for a general
polyhedron, the straight skeleton can have superquadratic complexity. We
also describe an algorithm for computing the skeleton in the general case.

150 G. Barequet et al.

(a) Vertex (b) Edge (c) 2 edges (d) 3 edges (e) Face (f) Face & edge

c

a b

(g) 2 faces (h) 3 faces (i) Overlapping (j) Overlapping faces (k) Overlapping
edges edge & face

Fig. 1. Cases of straight skeleton within a subvoxel (a-h) or voxel (i-k)

2 Voxel Polyhedra

In this section we consider the case in which the polyhedron is a polycube, that
is, a rectilinear polyhedron all of whose vertices have integer coordinates. The
“cubes” making up the polyhedron are also called voxels. For voxels, and more
generally for orthogonal polyhedra, the straight skeleton is a superset of the L∞
Voronoi diagram. Due to this relationship, the straight skeleton is significantly
easier to compute for orthogonal inputs than in the general case.

As in the general case, the straight skeleton of a polycube can be modeled
by offsetting the boundary of the polycube inward, and tracing the movement
of the boundary. During this sweep, the boundary forms a moving front whose
features are faces, edges, and vertices. An edge can be either convex or concave,
while a vertex can be convex, concave, or a saddle. In the course of this process,
features may disappear or appear.

The sweep starts at time 0, when the front is the boundary of the polycube.
In the first time unit we process all the voxels adjacent to the boundary. In the
ith round (i ≥ 1) we process all the voxels adjacent to voxels processed in the
(i−1)st round, that have never been processed before. Processing a voxel means
the computation of the piece of the skeleton lying within the voxel. During this
process, the polycube is shrunk, and may be broken into several components.
The process continues for every piece separately until it vanishes.

2.1 A Volume Proportional-Time Algorithm

Theorem 1. The combinatorial complexity of the straight skeleton of a polycube
of volume V is O(V). The skeleton can be computed in O(V) time.

Proof. The claims follow from the fact that the complexity of the skeleton within
every voxel (or, more precisely, within every 1/8-voxel), as well as the time
needed to compute it during the sweep, is O(1). Fig. 1 illustrates the different
cases. The full details are given in the full version of the paper. �

Straight Skeletons of Three-Dimensional Polyhedra 151

(a) (b)

Fig. 2. A polycube of volume V whose skeleton has complexity Θ(V)

This algorithm is worst-case optimal, since in the worst case the complexity of
the skeleton of a polycube made of V voxels is Θ(V). One such example, shown
in Fig. 2(a), is made of a flat layer of cubes (not shown), with a grid of supporting
“legs,” each a single cube. The number of legs is about 1/5 of the total number
of voxels. The skeleton of this object has features within every leg, see Fig. 2(b)
(the bottom of a leg corresponds to the right side of the figure).

2.2 Output-Sensitive Voxel Sweep

The straight skeleton of a polycube, as constructed by the previous algorithm,
contains features within some voxels, but other voxels may not participate in
the skeleton; nevertheless, the algorithm must consider all voxels and pay in its
running time for them. In this section we outline a more efficient algorithm that
computes the straight skeleton in time proportional only to the number of voxels
containing skeleton features, or equivalently, in time proportional to the surface
area of the straight skeleton rather than its volume. Necessarily, we assume
that the input polycube is provided as a space-efficient boundary representation
rather than as a set of voxels, for otherwise simply scanning the input would
take more time than we wish to spend.

Our algorithm consists of an outer loop, in which we advance the moving front
of the polycube boundary one time step at a time, and an inner loop, in which
we capture all features of the straight skeleton formed in that time step. During
the algorithm, we maintain at each step a representation of the moving front, as
a collection of polygons having orthogonal and diagonal edges. As long as each
operation performed in the inner and outer loops of the algorithm can be charged
against straight skeleton output features, the total time will be proportional to
the output size.

In order to avoid the randomization needed for hashing, several steps of our
algorithm will use as a data structure a direct-addressed lookup table, which we
summarize in the following lemma:

Lemma 1. In time proportional to the boundary of an input polycube, we may
initialize a data structure that can repeatedly process a collection of objects, in-
dexed by integers within the range of coordinates of the polycube vertices, and
produce as output a graph, in which the vertices are sets of objects that have
equal indices and the edges are pairs of sets with index values that differ by one.
The time per operation is proportional to the number of objects given as input.

152 G. Barequet et al.

In each step of the outer loop of the algorithm, we perform the following:

1. Advance each face of the wavefront one unit inward. In this advancement
process, we may detect events in which a wavefront edge shrinks to a point,
forming a straight skeleton vertex. However, events involving pairs of features
that are near in space but far apart on the wavefront may remain undetected.
Thus, after this step, the wavefront may include overlapping pairs of coplanar
oppositely-moving faces.

2. For each plane containing faces of the new wavefront boundary, detect pairs
of faces that overlap within that plane, and find the features in which two
overlapping face edges intersect or in which a vertex of one face lies in the
interior of another face. (Details are provided in the full version of the paper.)

3. In the inner loop of the algorithm, propagate straight skeleton features within
each face of the wavefront from the points detected in the previous step to
the rest of the face. If two faces overlap in a single plane, the previous step
will have found some of the points at which they form skeleton vertices,
but the entire overlap region will form a face of the skeleton. We propagate
outward from the detected intersection points using DFS, voxel by voxel, to
determine the skeleton features contained within the overlap region.

In summary, we have:

Theorem 2. One can compute the straight skeleton of a polycube in time pro-
portional to its surface area.

3 Orthogonal Polyhedra

3.1 Definition

We consider here the more general orthogonal polyhedra, in which all faces are
parallel to two of the coordinate axes. As in the 2D case, we define the straight
skeleton of an orthogonal polyhedron P by a continuous shrinking process in
which a sequence of nested “offset surfaces” are formed, starting from the bound-
ary of the polyhedron, with each face moving inward at a constant speed. At
time t in this process, the offset surface Pt for P consists of the set of points at
L∞ distance exactly t from the boundary of P . For almost all values of t, Pt will
be a polyhedron, but at some time steps Pt may have a non-manifold topology,
possibly including flat sheets of surface that do not bound any interior region.
When this happens, the evolution of the surface undergoes sudden discontinuous
changes, as these surfaces vanish at time steps after t in a discontinuous way.
More precisely, we define a degenerate point of Pt to be a point p that is on the
boundary of Pt, s.t., for some δ, and all ε > 0, Pt+ε does not contain any point
within distance δ of p.

At each step in the shrinking process, we imagine the surface of Pt as decorated
with seams left over when sheets of degenerate points occur. Specifically, suppose
that P contains two disjoint xy-parallel faces at the same z-height; then, as we
shrink P , the corresponding faces of Pt may grow toward each other. When they

Straight Skeletons of Three-Dimensional Polyhedra 153

meet, they leave a seam between them. Seams can also occur when two parts of
the same nonconvex face grow toward and meet each other. After a seam forms,
it remains on the face of Pt on which it formed, orthogonal to the position at
which it originally formed.

We define the straight skeleton of P as the union of three sets: 1. Points that,
for some t, belong to an edge or vertex of Pt; 2. Degenerate points for Pt for
some t; and 3. Points that, for some t, belong to a seam of Pt.

3.2 Complexity Bounds

As each face has at least one boundary edge, and each edge has at least one
vertex, we may bound the complexity of the straight skeleton by bounding the
number of its vertices. Each vertex corresponds to an event, that is, a point p
(the location of the vertex), the time t for which p belongs to the boundary of
Pt, and the set of features of Pt−ε near p for small values of ε that contribute to
the event. We may classify events into six types.

Concave-vertex events, in which one of the features of Pt−ε involved in the
event is a concave vertex : that is, a vertex of Pt−ε s.t. seven of the eight
quadrants surrounding that vertex lie within Pt−ε. In such an event, this
vertex must collide against some oppositely-moving feature of Pt.

Reflex-reflex events are not concave-vertex events, but these events involve
the collision between two components of boundary of Pt−ε that prior to the
event are far from each other as measured in geodesic distance around the
boundary, both of which include a reflex edge. These components may either
be a reflex edge, or a vertex that has a reflex edge within its neighborhood.

Reflex-seam events are not either of the above two types, but they involve
the collision between two different components of boundary of Pt−ε, one of
which includes a reflex edge. The other component must be a seam edge or
vertex, because it is not possible for a reflex edge to collide with a convex
edge of Pt−ε unless both edges are part of a single boundary component.

Seam-seam events in which vertices or edges on two seams, on oppositely
oriented parallel faces of Pt−ε, collide with each other.

Seam-face events in which a seam vertex on one face of Pt−ε collides with a
point on an oppositely oriented face that does not belong to a seam.

Single-component events in which the boundary points near p in Pt−ε form
a single connected subset.

Theorem 3. The straight skeleton of an n-vertex orthogonal polyhedron has
complexity O(n2).

Proof. (Sketch) We count the events of each different type. There are O(n)
concave-vertex and seam-face events, while there are O(n2) reflex-reflex, reflex-
seam, and seam-seam events. Single-component events can be charged against
the events of other types. Each event contributes a constant amount of skeletal
features. More details are given in the full version of the paper. �

154 G. Barequet et al.

3.3 Algorithms

Again, we view the skeleton as generated by a moving surface that changes at
discrete events. It is easy to fully process an event in constant time, so the prob-
lem reduces to determining efficiently the sequence of events, and distinguishing
actual events from false events. To this aim we provide two algorithms.

Theorem 4. There is a constant c, s.t. the skeleton of an n-vertex orthogonal
polyhedron with k skeletal features may be constructed in time O(k logc n).

Proof. Each event in our classification (except single-component events, which
may be handled by an event queue) is generated by the interaction of two features
of the moving surface Pt. To generate these events, ordered by the time at which
they occur, we use a data structure of Eppstein [11,12] for maintaining a set of
items and finding the pair of items minimizing some binary function f(x, y)—
the time at which an event is generated by the interaction of items x and y
(+∞ if there is no interaction). The data structure reduces this problem (with
polylogarithmic overhead) to a simpler problem: maintain a dynamic set X of
items, and answer queries asking for the first interaction between an item x ∈ X
and a query item y. We need separate first-interaction data structures of this
type for edge-edge, vertex-face, and face-vertex interactions. In the full version
of the paper we provide the implementation details of these data structures. �

A simpler algorithm is worst-case (rather than output-sensitive) optimal.

Theorem 5. The straight skeleton of an orthogonal polyhedron with n vertices
and k straight skeleton features may be constructed in time O(n2 logn).

Proof. For each pair of objects that may interact (features of the input polyhe-
dron P or of the 2D straight skeletons SΠ in each face plane Π), we compute the
time of interaction. We process the pairs of objects by the order of these times;
whenever we process a pair (x, y), we consult an additional data structure to de-
termine whether the pair causes an event or whether the event that they might
have caused has been blocked by some other features of the skeleton.

To test whether an edge-edge pair causes an event, we maintain a binary
search tree for each edge, representing the family of segments into which the line
containing that edge (translated according to the motion of the surface Pt) has
been subdivided in the current state of the surface Pt. An edge-edge pair causes
an event if the point at which the event would occur currently belongs to line
segments from the lines of both edges, which may be tested in logarithmic time.

To test whether a vertex-face pair causes an event, we check whether the
vertex still exists at the time of the event, and then perform a point location
query to locate the point in SΠ at which it would collide with a face belonging
to Π . The collision occurs if the orthogonal distance within Π from this point to
the nearest face is smaller than the time at which the collision would occur. We
do not need to check whether other features of the skeleton might have blocked
features of SΠ from belonging to the boundary of Pt, for if they did they would
also have led to an earlier vertex-face event causing the removal of the vertex.

Straight Skeletons of Three-Dimensional Polyhedra 155

Thus, each object pair may be tested using either a dynamic binary search
tree or a static point location data structure, in logarithmic time per pair. �

4 General Polyhedra

4.1 Ambiguity

Defining the straight skeleton of a general polyhedron is inherently ambiguous,
unlike the cases for convex and orthogonal polyhedra. The ambiguity stems
from the fact that, whereas convex polyhedra are defined uniquely by the planes
supporting their faces, nonconvex polyhedra are defined by both the supporting
planes and a given topology, which is not necessarily unique. Thus, while being
offset, a polyhedron can propagate from a given state into multiple equally valid
topological configurations. (This issue was alluded to in [8].) A simple example
is shown in Fig. 3(a). The problem is illustrated w.r.t. two boundary pieces—a
wedge, A, and a tabletop, B—that are growing relative to each other. Due to
the angle of the two front planes of A, the growing wedge eventually grows past
the tabletop. The issue is to determine how the wavefronts continue growing.
Possible choices include: (i) The wedge A grows through to the other side of B
when A reaches the edge of B and moves past the edge; (ii) The wedge continues
growing forward, but is blocked from growing downward by clipping it with the
plane defined by the top of the tabletop; (iii) The wedge suddenly projects into
the empty space in front of the table and continues growing out from there. In
fact, all suggestions above cause a contradiction or a noncontinuous propagation
of the wavefront. The actual solution that we chose is to blunt the front end of
the wedge A by clipping it with the plane defined by the side of the tabletop.

A more general example of the ambiguity of the propagation of the skeleton
is shown in Fig. 3(b). The figure shows a vertex of degree 5, and two possible
topologies during the propagation. This is the so-called weighted-rooftop prob-
lem: Given a base polygon and slopes of walls, all sharing one vertex, determine
the topology of the rooftop of the polygon, which does not always have a unique
solution. In our definition of the skeleton, we define a consistent method for
the initial topology and for establishing topological changes while processing the
algorithm’s events, based on the 2D weighted straight skeleton (see Section 4.3).

B

A
A

B

Top view Side view Initial topology Our method Another solution
(a) A Simple example (b) A more complex example

Fig. 3. 3D skeleton ambiguity

156 G. Barequet et al.

4.2 A Combinatorial Lower Bound

Theorem 6. The complexity of a 3D skeleton for a simple polyhedron is
Ω(n2α2(n)) in the worst case, where α(n) is the inverse of the Ackermann
function.

Proof. (Sketch) We use an example (see

side view top view

Fig. 4. Illustrating 3D skeleton
complexity

Fig. 4), in which a sequence of triangular
prisms result in a growing wavefront whose
complexity is that of the upper envelope of
n line segments, that is, Ω(nα(n)) [22]. We
attach two such sequences of prisms to the
“floor” and “ceiling” of the polyhedron, ob-
taining two growing wavefronts which pro-
duce Ω(n2α2(n)) skeletal features. �

4.3 The Algorithm

Our algorithm is an event-based simulation of the propagation of the bound-
ary of the polyhedron. Events occur whenever four planes, supporting faces of
the polyhedron, meet at one point. At these points the propagating boundary
undergoes topological events. The algorithm consists of the following steps:

1. Collect all possible initial events.
2. While the event queue is not empty:

(a) Retrieve the next event and check its validity. If not valid, go to Step 2.
(b) Create a vertex at the location of the event and connect to it the vertices

participating in the event.
(c) Change the topology of the propagating polyhedron according to actions

in Step 2(b). Set the location of the event to the newly-created vertices.
(d) Create new events for newly-created vertices, edges, and faces and their

neighbors, if needed.

v

1

2

3
4

5

1

2

3

4

5

v1

v2

v3

v1
v2

v3

1

2

3

4

5 v

(a) (b) (c) (d)

Fig. 5. Changing the initial topology of a vertex of degree ≥ 4 (skeleton in dashed
lines): (a) The original polyhedron. Vertex v has degree 5; (b) The cross-section and
its weighted straight skeleton. Vertex v becomes three new vertices v1, v2, v3; (c) The
straight skeleton of the polyhedron. Vertex v spawned three skeletal edges; (d) The
propagated polyhedron. Vertices v1, v2, v3 trace their skeletal edges.

Straight Skeletons of Three-Dimensional Polyhedra 157

We next describe the different events and how each type is dealt with. The
procedure always terminates since the number of all possible events is bounded
from above by the number of combinations of four propagating faces.

Initial Topology. At the start of the propagation, we need to split each vertex
of degree greater than 3 into several vertices of degree 3 (see Fig. 5). This is the
ambiguous situation discussed earlier; it can have several valid solutions. Our
approach is based on cutting the faces surrounding the vertex with one or more
planes (any cutting plane intersecting all faces and parallel to none suffices), and
finding the weighted straight skeleton of the intersection of these faces with the
cutting plane, with the weights determined by the dihedral angles of these faces
with the cutting plane, after an infinitesimally-small propagation. The topology
of this 2D straight skeleton tells us the connectivity to use subsequently, and
always yields a unique valid solution. In the full version of the paper we detail
the application of this method for all types of vertices.

Collecting Events. In the full version of the paper we describe how events are
collected, classified as valid or invalid, and handled by the algorithm. In a nut-
shell, each event arises from interactions of features of the wavefront, and gives
rise to potential future events. However, a potential event may be found invalid
already when it is created, or later when it is fetched for processing. Each valid
event results in the creation of features of the skeleton, and in a topological
change in the structure of the propagating polyhedron.

Handling Events. Propagating vertices are defined as the intersection of propa-
gating planes. Such a vertex is uniquely defined by exactly three planes, which
also define the three propagating edges adjacent to the vertex. (When an event
creates a vertex of degree greater than 3, we handle it as as in the initial topol-
ogy.) The topology of the polyhedron remains unchanged during the propagation
between events. The possible events are:

1. Edge Event. An edge vanishes as its two endpoints meet, at the meeting
point of the four planes around the edge.

2. Hole Event. A reflex vertex (adjacent to three reflex edges, called a “spike”)
runs into a face. The three planes adjacent to this vertex meet the plane of
the face. After the event, the spike meets the face in a small triangle.

3. Split Event. A ridge vertex (adjacent to one or two reflex edges) runs into
an opposite edge. The faces adjacent to the ridge meet the face adjacent to
the twin of the split edge. This creates a vertex of degree greater than 3,
handled as in the initial topology.

4. Edge-Split event. Two reflex edges cross each other. Every edge is adjacent
to two planes.

5. Vertex event. Two ridges sharing a common reflex edge meet. This is
a special case of the edge event, but it has different effects, and so it is
considered a different event. Vertex events occur when a reflex edge runs
twice into a face, and the two endpoints of this edge meet.

158 G. Barequet et al.

Data Structures. We use an event queue which holds all possible events sorted
by time, and a set of propagating polyhedra, initialized to the input polyhedron,
after the initialization of topology. The used structure is a generalization of the
SLAV structure in 2D. We provide the details in the full version of the paper.

Running Time. Let n be the total complexity of the polyhedron, r be the number
of reflex vertices (or edges), and k the number of events. For collecting the initial
events, we iterate over all vertices, faces, and edges. Edge events require looking
at each edge’s neighborhood, which is done in O(n) time. Finding hole events
requires considering all pairs of a reflex vertex and a face. This takes O(rn) time.
Computing a split event is bounded within the edges of the common face, but
this can take O(rn) time, and computing edge-split events takes O(r2) time.

The algorithm computes and processes events. For a convex polyhedron, only
edge events are created, each one computed locally in O(1) time. However, for a
general polyhedron, every edge might be split by any ridge and stabbed by any

Fig. 6. Sample objects

Straight Skeletons of Three-Dimensional Polyhedra 159

spike. In addition, new spikes and ridges can be created when events are pro-
cessed, and they have to be tested against all other features of their propagating
component. Since O(1) vertices and edges are created in every event, every event
can take O(n) time to handle. (The time needed to perform queue operations
per a single event, O(log n), is negligible.) The total time needed for processing
the events is, thus, O(kn). This is also the total running time.

We have implemented the algorithm for computing the straight skeleton of
a general polyhedron in Visual C++ .NET2005, and experimented with the
software on a 3GHz Athlon 64 processor PC with 1GB of RAM. We used the
CGAL library to perform basic geometric operations. The source code consists
of about 6,500 lines of code. Fig. 6 shows the straight skeletons of a few simple
objects, and the performance of our implementation.

References

1. Aichholzer, O., Aurenhammer, F.: Straight skeletons for general polygonal figures
in the plane. In: Cai, J.-Y., Wong, C.K. (eds.) COCOON 1996. LNCS, vol. 1090,
pp. 117–126. Springer, Heidelberg (1996)

2. Aichholzer, O., Aurenhammer, F., Alberts, D., Gärtner, B.: A novel type of skeleton
for polygons. J. of Universal Computer Science 1(12), 752–761 (1995)

3. Barequet, G., Goodrich, M.T., Levi-Steiner, A., Steiner, D.: Contour interpolation
by straight skeletons. Graphical Models 66(4), 245–260 (2004)

4. Bittar, E., Tsingos, N., Gascuel, M.-P.: Automatic reconstruction of unstructured
3D data: Combining a medial axis and implicit surfaces. Computer Graphics Fo-
rum 14(3), 457–468 (1995)

5. Blum, H.: A transformation for extracting new descriptors of shape. In: Wathen-
Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380.
MIT Press, Cambridge (1967)

6. Cheng, S.-W., Vigneron, A.: Motorcycle graphs and straight skeletons. In: Proc.
13th Ann. ACM-SIAM Symp. on Discrete Algorithms, pp. 156–165 (January 2002)

7. Culver, T., Keyser, J., Manocha, D.: Accurate computation of the medial axis of a
polyhedron. In: Proc. 5th ACM Symp. on Solid Modeling and Applications, New
York, NY, pp. 179–190 (1999)

8. Demaine, E.D., Demaine, M.L., Lindy, J.F., Souvaine, D.L.: Hinged dissection of
polypolyhedra. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005.
LNCS, vol. 3608, pp. 205–217. Springer, Heidelberg (2005)

9. Demaine, E.D., Demaine, M.L., Lubiw, A.: Folding and cutting paper. In: Akiyama,
J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 104–118.
Springer, Heidelberg (2000)

10. Dey, T.K., Zhao, W.: Approximate medial axis as a Voronoi subcomplex.
Computer-Aided Design 36, 195–202 (2004)

11. Eppstein, D.: Dynamic Euclidean minimum spanning trees and extrema of binary
functions. Discrete & Computational Geometry 13, 111–122 (1995)

12. Eppstein, D.: Fast hierarchical clustering and other applications of dynamic closest
pairs. ACM J. Experimental Algorithmics 5(1), 1–23 (2000)

13. Eppstein, D., Erickson, J.: Raising roofs, crashing cycles, and playing pool: Appli-
cations of a data structure for finding pairwise interactions. Discrete & Computa-
tional Geometry 22(4), 569–592 (1999)

160 G. Barequet et al.

14. Foskey, M., Lin, M.C., Manocha, D.: Efficient computation of a simplified medial
axis. J. of Computing and Information Science in Engineering 3(4), 274–284 (2003)

15. Haunert, J.-H., Sester, M.: Using the straight skeleton for generalisation in a multi-
ple representation environment. In: ICA Workshop on Generalisation and Multiple
Representation (2004)

16. Held, M.: On computing Voronoi diagrams of convex polyhedra by means of wave-
front propagation. In: Proc. 6th Canadian Conf. on Computational Geometry, pp.
128–133 (August 1994)

17. Price, M.A., Armstrong, C.G., Sabin, M.A.: Hexahedral mesh generation by medial
surface subdivision: Part I. Solids with convex edges. Int. J. for Numerical Methods
in Engineering 38(19), 3335–3359 (1995)

18. Sharir, M.: Almost tight upper bounds for lower envelopes in higher dimensions.
Discrete & Computational Geometry 12, 327–345 (1994)

19. Sheehy, D.J., Armstrong, C.G., Robinson, D.J.: Shape description by medial sur-
face construction. IEEE Trans. on Visualization and Computer Graphics 2(1), 62–
72 (1996)

20. Sherbrooke, E.C., Patrikalakis, N.M., Brisson, E.: An algorithm for the medial axis
transform of 3d polyhedral solids. IEEE Trans. on Visualization and Computer
Graphics 2(1), 45–61 (1996)

21. Tănase, M., Veltkamp, R.C.: Polygon decomposition based on the straight line
skeleton. In: Proc. 19th Ann. ACM Symp. on Computational Geometry, pp. 58–67
(June 2003)

22. Wiernik, A., Sharir, M.: Planar realizations of nonlinear Davenport-Schinzel se-
quences by segments. Discrete & Computational Geometry 3, 15–47 (1988)

Randomized Competitive Analysis for

Two-Server Problems

Wolfgang Bein1, Kazuo Iwama2, and Jun Kawahara2

1 Center for the Advanced Study of Algorithms, School of Computer Science,
University of Nevada, Las Vegas, Nevada 89154, USA�

bein@cs.unlv.edu
2 School of Informatics, Kyoto University,

Kyoto 606-8501, Japan
iwama@kuis.kyoto-u.ac.jp, jkawahara@kuis.kyoto-u.ac.jp

Abstract. We prove that there exits a randomized online algorithm for
the 2-server 3-point problem whose expected competitive ratio is at most
1.5897. This is the first nontrivial upper bound for randomized k-server
algorithms in a general metric space whose competitive ratio is well below
the corresponding deterministic lower bound (= 2 in the 2-server case).

1 Introduction

The k-server problem, introduced by Manasse, McGeoch and Sleator [20], is one
of the most fundamental online problems. In this problem the input is given as k
initial server positions and a sequence p1, p2, · · · of requests in the Euclidean space,
or more generally in any metric space. For each request pi, the online player has to
select, without any knowledge of future requests, one of the k servers and to move
it to pi. The goal is to minimize the total moving distance of the servers.

The k-server problem is widely considered instructive to the understanding of
online problems in general, yet, there are only scattered results. The most notable
open problem is perhaps the k-server conjecture, which states that the k-server
problem is k-competitive. The conjecture remains open for k ≥ 3, despite years
of effort by many researchers; it is solved for a very few special cases, and remains
open even for 3 servers when the metric space has more than 6-points.

In the randomized case, even less is known. One of the the most daunting
problems in online algorithms is to determine the exact randomized competi-
tiveness of the k-server problem, that is, the minimum competitiveness of any
randomized online algorithm for the server problem. Even in the case k = 2 it is
not known whether its competitiveness is lower than 2, the known value of the
deterministic competitiveness. This is surprising, since it seems intuitive that
randomization should help. It should be noted that generally randomization is
quite powerful for online problems, since it obviously reduces the power of the
adversary (see our paragraph “Related Work” below). Such seems to be the case
for the 2-server problem as well.
� Research of the first author (Bein) done while visiting Kyoto University as Kyoto

University Visiting Professor.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 161–172, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

162 W. Bein, K. Iwama, and J. Kawahara

ba c

1 1

Fig. 1. 3 points on a line

L

C

R

d1

d2

1

Fig. 2. Triangle CLR

The following example illustrates this intuition. Consider a simple 2-server
problem on the three fixed points a, b and c on a line (See Fig. 1). It is easy to
prove a lower bound of 2 for the competitive ratio of any deterministic algorithm:
The adversary always gives a request on the point the server is missing. Thus
for any online algorithm, A, its total cost is at least n – the number of request.
But it turns out by a simple case analysis that the offline cost is n/2.

Suppose instead that A is randomized. Now if the request comes on b (with
missing server), then A can decide by a coin flip which server (a or c) to move.
An (oblivious) adversary knows A’s algorithm completely but does not know the
result of the coin flip and hence cannot determine which point (a or c) has the
server missing in the next step. The adversary would make the next request on
a but this time a has a server with probability 1/2 and A can reduce its cost.
Without giving details, it is not hard to show that this algorithm A – with the
randomized action for a request to b and a greedy action one for others – has a
competitive ratio of 1.5.

Indeed, one would imagine that it might be quite straightforward to design
randomized algorithms which perform significantly better than deterministic
ones for the 2-server problem. A bit surprisingly, this has not been the case.
Only few special cases have yielded success. Bartal, Chrobak, and Larmore gave
a randomized algorithm for the 2-server problem on the line, whose competitive
ratio is slightly better than 2 (155

78 ≈ 1.987) [3]. One other result by Bein et. al. [4]
uses a novel technique, the knowledge state method, to derive a 19

12 competitive
randomized algorithm for the special case of Cross Polytope Spaces. Using similar
techniques a new result for paging (the k-server problem in uniform spaces) was
recently obtained. Bein et al. [5] gave an Hk-competitive randomized algorithm
which requires only O(k) memory for k-paging. (Though the techniques in this
paper are inspired by this work, the knowledge state method is not used here.)
Lund and Reingold showed that if specific three positions are given, then an
optimal randomized algorithm for the 2-server problem over those three points
can be derived in principle by using linear programming [19]. However, they do
not give actual values of its competitive ratio and to this date the problem is
still open even for the 2-server 3-points case.

Our Contribution. In this paper, we prove that the randomized competitive
ratio of the 2-server 3-point problem in a general metric space is at most 1.5897
and also give a strong conjecture that it is at most e/(e− 1) + ε ≈ 1.5819.

The underlying idea is to find a finite set S of triangles (i.e. three points) such
that if the expected competitive ratio (abbreviated by ECR) for each triangle

Randomized Competitive Analysis for Two-Server Problems 163

in S is at most c, then the ECR for all triangles in any metric space is at most
c · δ(S) where δ(S) ≥ 1 is a value determined by S. To bound the ECR for each
triangle in S, we apply linear programming. As we consider larger sets, the value
of δ(S) becomes smaller and approaches 1. Thus the upper bound of the general
ECR also approaches the maximum ECR of triangles in S and we can obtain
arbitrarily close upper bounds by increasing the size of the computation.

Related Work. As for the (deterministic) k-server conjecture, the current best
upper bound is 2k−1 given by Koutsoupias and Papadimitriou in 1994 [18]. The
conjecture is true for k = 2, for the line [7], trees [8], and on fixed k+ 1 or k+ 2
points [17]. It is still open for the 3-server problem on more than six points and
also on the circle [6]. The lower bound is k which is shown in the original paper
[20]. For the randomized case, in addition to the papers mentioned above, Bartal
et al. [2] have an asymptotic lower bound, namely that the competitiveness of any
randomized online algorithm for an arbitrary metric space is Ω(log k/ log2 log k).
Chrobak et. al. [10] provided a lower bound of 1 + e−

1
2 ≈ 1.6065 for the ECR of

the 2-server problem in general spaces. For special cases, see for example, [15]
for ski-rental problems, [21] for list access problems, and [12] for paging.

Our result in this paper strongly depends on computer simulations similar
to earlier work based on knowledge states. Indeed, there are several successful
examples of such an approach, which usually consists of two stages; (i) reducing
infinitely many cases of a mathematical proof to finitely many cases (where this
number is still too large for a “standard proof”) and (ii) using computer programs
to prove the finitely many cases. See [1,11,13,16,23] for design and analysis of
such algorithms. In particular, for online competitive analysis, Seiden proved
the currently best upper bound, 1.5889, for online bin-packing [22]. Also by this
approach, [14] obtained an optimal competitive ratio for the online knapsack
problem with resource augmentation by buffer bins.

2 Our Approach

Since we consider only three fixed points, we can assume without loss of gen-
erality that they are given in the two-dimensional Euclidean space. The three
points are denoted by L, C and R, furthermore let d(C,L) = 1, d(C,R) = d1,
and d(L,R) = d2 (see Fig. 2). Again without loss of generality, we assume that
1 ≤ d1 ≤ d2 ≤ d1 + 1. The 2-server problem on L, C and R is denoted by
Δ(1, d1, d2), where the two servers are on L and R initially and the input is
given as a sequence σ of points ∈ {L,C,R}. Δ(1, d1, d2) is also used to denote
the triangle itself. The cost of an online algorithm A for the input sequence σ is
denoted by ALGA(σ) and the cost of the offline algorithm by OPT (σ). Suppose
that for some constant α ≥ 0, E[ALGA(σ)] ≤ r · OPT (σ) + α, holds for any
input sequence σ. Then we say that the ECR of A is at most r.

We first consider the case that the three points are on a line and both d1 and
d2 are integers. In this case, we can design a general online algorithm as follows.
The proof is given in the next section.

164 W. Bein, K. Iwama, and J. Kawahara

Lemma 1. Let n be a positive integer. Then there exists an online algorithm

for Δ(1, n, n+ 1) whose ECR is at most Cn =
(1+ 1

n)n− 1
n+1

(1+ 1
n)n−1

.

Note that if triangles Δ1 and Δ2 are different, then “good” algorithms for Δ1

and Δ2 are also different. However, the next lemma says that if Δ1 and Δ2 do
not differ too much, then one can use an algorithm for Δ1 as an algorithm for
Δ2 with a small sacrifice on the competitive ratio.

Lemma 2. Suppose that there are two triangles Δ1 = Δ(1, a1, b1) and Δ2 =
Δ(1, a2, b2) such that a1 ≥ a2 and b1 ≥ b2 and that the ECR of algorithm A for
Δ1 is at most r. Then the ECR of A for Δ2 is at most r · max(a1

a2
, b1

b2
).

Proof. Let α = max(a1
a2
, b1

b2
) and Δα = Δ(1/α, a1/α, b1/α). Fix an arbitrary

input sequence σ and let the optimal offline cost against σ be OPT1, OPT2 and
OPTα for Δ1, Δ2 and Δα, respectively. Since Δα is similar to Δ1 and the length
of each side is 1/α, OPTα is obviously (1/α)OPT1. Since every side of Δ2 is at
least as long as the corresponding side of Δα, OPT2 ≥ OPTα = (1/α)OPT1.

Let the expected cost of A against σ for Δ1 and Δ2 be ALG1 and ALG2,
respectively. Note that A moves the servers exactly in the same (randomized)
way for Δ1 and Δ2. Since each side of Δ2 is at most as long as the corresponding
side of Δ1, ALG2 ≤ ALG1.

We have ALG2
OPT2

≤ ALG1
(1/α)OPT1

= max(a1
a2
, b1

b2
) · ALG1

OPT1
. �

Thus we can “approximate” all triangles, whose α-value is at most within some
constant, by a finite set S of triangles as follows: Suppose that the target com-
petitive ratio, i.e. the competitive ratio one wishes to achieve, is r0. Then we
first calculate the minimum integer n0 such that r0 ≥ n0+2

n0
·Cn0+1, where Cn0+1

is the value given in the statement of Lemma 1. We then construct the set S
such that for any two numbers a and b with 1 ≤ a ≤ n0 and b ≤ a + 1, there
exist two triangles Δ1 = Δ(1, a1, b1) and Δ2 = Δ(1, a2, b2) in S such that the
following conditions are met:

(i) a2 < a ≤ a1 and b2 < b ≤ b1,
(ii) there exists an algorithm for Δ1 whose ECR is r1, and
(iii) r1 · max(a1

a2
, b1

b2
) ≤ r0.

We call such a set an “approximation set”.

Lemma 3. If one can construct an approximation set S, then there is an online
algorithm whose ECR is at most r0.

Proof. Consider the following algorithm A(a, b) which takes the values a and b
of the triangle Δ(1, a, b). Note that A(a, b) is an infinite set of different algorithms
from which we select one due to the values of a and b. If a ≥ n0, then we select
the maximum integer n such that a ≥ n. Then A(a, b) uses the algorithm for
Δ(1, n+1, n+2). Clearly we have a ≤ n+1 and b ≤ n+2. Therefore, by Lemma
2, the ECR of this algorithm for Δ(1, a, b) is at most (recall that Cn+1 is the
ECR of this algorithm for Δ(1, n+ 1, n+ 2) given in Lemma 1)

max(
n + 1
a

,
n+ 2
b

) · Cn+1 ≤
n + 2
n

· Cn+1 ≤
n0 + 2
n0

· Cn0+1 ≤ r0.

Randomized Competitive Analysis for Two-Server Problems 165

By a simple calculation we have that n+2
n ·Cn+1 = n+2

n · (1+ 1
n)n− 1

n+1

(1+ 1
n)n−1

monoton-

ically decreases, which implies the inequality second to last.
If a < n0, then we have the two triangles Δ1 and Δ2 satisfying the conditions

(i) to (iii) above. Then we use the algorithm for Δ1 guaranteed by condition (ii).
Its ECR for Δ(1, a, b) is obviously at most r0 by Lemma 2. �

3 Three Points on a Line

In order to prove Lemma 1, we first need a state diagram, called an offset graph,
which shows the value of the work function W (s, σ) [9]. Recall that W (s, σ) is an
optimal offline cost such that all the requests given by σ are served and the final
state after σ must be s, where s is one of (L,C), (L,R) and (C,R) in our case.

Fig. 3 shows the offset graph, GOPT
n for Δ(1, n, n+ 1). Each state includes a

triple (x, y, z), further explained next. In the figure, the top middle state, denoted
by VLR, is the initial state (recall that our initial server placement is (L,R)). This
state includes (n, 0, 1), which means that W ((L,C), φ) = n, W ((L,R), φ) = 0,
and W ((C,R), φ) = 1. Those values are correct for the following reason: Since
this is the initial state, we do not have any request yet, or the request sequence is
empty (denoted by φ). Also since our initial server placement is (L,R), in order

L, 1R, n

C, 0

R, 3

R, 2n-1

R, 2n-3
L, n

L, 0

C, 0

L, 0

C, 0

L, 0

C, 0

R, 1

R, 2

R, 2n-2

v2n-1

vLC vLR
vCR

v1

v2

v3

v2n-3

v2n-2

(0, n, n+1) (n, 0, 1) (n+1, 1, 0)

(n, 2, 1)

(n, 2, 3)

(n, 4, 3)

(n, 2n-2, 2n-3)

(n, 2n-2, 2n-1)

(n, 2n, 2n-1)

Fig. 3. Offset graph

LR

C

R

R

RL

L

C

L

C

L

C

R

R

R

S2n-1

SLC S LR SCR

S1

S2

S3

S2n-3

S2n-2

p
1-p

1
1

p
1-p

n-1
n-1

1 1 1

p
1-p

1
1

p
1-p

2
2

p
1-p

n-1
n-1

p
1-p

n
n

Fig. 4. State diagram of the algorithm

166 W. Bein, K. Iwama, and J. Kawahara

to change this placement into (L,C), we can optimally move a server from R
to C, which needs a cost of n. This is why W ((L,C), φ) = n. Similarly for the
others.

In the figure, V3 is the forth state from the top. The triple in this state shows
the value of the work function for the request sequence CLC, i.e., W ((L,C),
CLC), W ((L,R), CLC) and W ((C,R), CLC). Note that this request sequence,
CLC, is obtained by concatenating the labels of arrows from the initial state VLR

to V3. For example, Fig. 3 shows that W ((L,R), CLC) = 4, which is calculated
from the previous state, V2, as follows: Namely, server position (L,R) can be
achieved from previous (L,R) (= 2) plus 2 (= the cost of moving a server on
L to C and back to L) or from previous (C,R) (= 3) plus 1 (= the cost of
moving a server on C to L). Both are 4. From this state V3, there is an arrow
to VCR by request R. Carrying out a similar calculation, one can see that the
triple should change from (n, 4, 3) to (n+4, 4, 3) by this transition. However, the
triple in VCR is (n+ 1, 1, 0). The reason for this is that we have an offset value,
3, on the arrow from V3 to VCR. Namely, (n + 1, 1, 0) in VCR is obtained from
(n+4, 4, 3) by reducing each value by 3. Because of this offset values, we can use
such a finite graph to represent the values of the work function the value of which
can be infinitely large. Thus one can see that (n, 0, 1) in the initial state VLR

also means (n + 4, 4, 5), (n+ 8, 8, 9), · · · by traversing the cycle VLRV1V2V3VCR

repeatedly. Although we omit a formal proof, it is not hard to verify that Fig. 3
is a valid offset graph for Δ(1, n, n+ 1).

We next introduce another state graph, called the algorithm graph. Fig. 4
shows the algorithm graph, GALG

n , for Δ(1, n, n+1). Notice that GALG
n is similar

to GOPT
n . Each state includes a triple (q1, q2, q3) such that q1 ≥ 0, q2 ≥ 0, q3 ≥ 0

and q1 + q2 + q3 = 1, which means that the probabilities of placements (C,L),
(L,R) and (C,R) are q1, q2 and q3, respectively. (Since the most recent request
must be served, one of the three values is zero. In the figure, therefore, only two
probabilities are given, for example, in S1, the probabilities for (L,C)(= p1) and
for (C,R)(= 1− p1) are given.) In our specific algorithm GALG

n , set those values
as follows:

SLC = (1, 0, 0), SLR = (0, 1, 0), SCR = (0, 0, 1),
S2i−1 = (pi, 0, 1 − pi) (i = 1, . . . , n), S2i = (pi, 1 − pi, 0) (i = 1, . . . , n − 1)

where pi is n
n+1 ·

(1+ 1
n)i−1

(1+ 1
n)n−1

.

We describe how an algorithm graph is converted to the specific algorithm.
Namely we can calculate how to move servers and its average cost as follows:
Suppose for example that the request sequence is CL. Then we are now in
S2, and suppose that the next request is C. The state transition from S2 to
S3 occurs. Suppose that S2 has placement-probability pairs (C1, q1), (C2, q2),
and (C3, q3) (C1 = (L,C), C2 = (L,R) and C3 = (C,R)) and S3 has (D1, r1),
(D2, r2), and (D3, r3). We introduce variables xij (i, j = 1, 2, 3) such that xij is
equal to the probability that the placement before the transition is Ci and the
placement after the transition is Dj. By an abuse of notation the xij values can

Randomized Competitive Analysis for Two-Server Problems 167

be considered as the algorithm itself. The xij values also allow us to calculate
the average cost of the algorithm as described next.

The average cost for a transition is given by cost =
∑3

i=1

∑3
j=1 xijd(Ci, Dj),

where d(Ci, Dj) is the cost to change the placement from Ci to Dj. We can
select the values of xij in such a way that they minimize the above cost under
the condition that

∑3
j=1 xij = qi,

∑3
i=1 xij = rj . In the case of three points

on the line, it is straightforward to solve this LP in general. If the servers are
on L and C and the request is R, then the greedy move (C → R) is optimal. If
the servers are on L and R and the request is C, then the optimal probability
is just a proportional distribution due to d(L,C) and d(C,R). These values xij

also show the actual moves of the servers. For example, if the servers are on L
and R in S2, we move a server in L to C with probability x23/q2 and R to C
with probability x21/q2.

From the values of xij , one can also obtain the expected cost of an algorithm
for each transition, given as follows:

cost(SLC , SLR) = n, cost(SCR, SLR) = 1, cost(SLR, S1) = np1 + 1 − p1,
cost(S2i−1, S2i) = 1 − pi (i = 1, . . . , n− 1),
cost(S2i, S2i+1) = n(pi+1 − pi) + 1 − pi+1 (i = 1, . . . , n− 1),
cost(S2i−1, SCR) = (n + 1)pi (i = 1, . . . , n),
cost(S2i, SLR) = npi (i = 1, . . . , n− 1),
cost(S2n−1, SLC) = (n + 1)(1 − pn).

We are now ready to prove Lemma 1. Recall that GOPT
n and GALG

n are the
same graph. With a request sequence σ, we can thus associate a same sequence,
λ(σ), of transitions in GOPT

n and GALG
n . The offline cost for λ(σ) can be calcu-

lated from GOPT
n and the average online cost from GALG

n . By comparing these
two costs, we have the ECR for σ.

Omitting details we can prove that it suffices to consider only the following
three sequences (cycles) for this purpose:

(1) S1, S2, . . . , S2h−1, SCR, SLR (h = 1, . . . , n− 1)
(2) S1, S2, . . . , S2h, SLR (h = 1, . . . , n− 1)
(3) S1, S2, . . . , S2n−1, SLC , SLR.

For sequence (1), the OPT cost is 2h and ALG cost is 2nph + 2h− 2
∑h−1

j=1 pj =
2hCn. Similarly, for sequence (2), OPT = 2h and ALG < 2hCn and for sequence
(3) OPT = 2n and ALG = 4n− 2

∑n
j=1 pj = 2nCn. Thus the ECR is at most

Cn for any of these sequences, which proves the lemma. �

4 Construction of the Finite Set of Triangles

For triangle Δ1 = Δ(1, a, b) and d > 0, let Δ2 = Δ(1, a′, b′) be any triangle such
that a − d ≤ a′ ≤ a and b − d ≤ b′ ≤ b. Then as shown in Sec. 2 the ECR for
Δ2, denoted by f(Δ2), can be written as

f(Δ2) ≤ max
(
a

a′
,
b

b′

)

f(Δ1) ≤ max
(

a

a− d
,

b

b− d

)

f(Δ1) ≤ a

a− d
f(Δ1).

168 W. Bein, K. Iwama, and J. Kawahara

1

2

0 a

b

Fig. 5. Area Ω

(a,b)d
d

1

2

0 a

b

Fig. 6. Square [a, b; d]

1

2

X0

0 a

b

X1
X6

X4
X3

X2

X5X7
X8

i

Fig. 7. Set of squares

(The last inequality comes the fact that a ≤ b.) Recall that triangle Δ(1, a, b)
always satisfies 1 ≤ a ≤ b ≤ a+1, which means that (a, b) is in the area Ω shown
in Fig. 5. Consider point (a, b) in this area and the square X of size d, whose
right upper corner is (a, b) (Fig. 6). Such a square is also denoted by [a, b; d].
Then for any triangle whose (a, b)-values are within this square (some portion
of it may be outside Ω), its ECR can be bounded by a

a−df(Δ(1, a, b)), which we
call the competitive ratio of the square X and denote by g(X) or g([a, b; d]).

Consider a finite set of squares X0, X1, . . . , Xi = [ai, bi; di], . . . , Xm with the
following properties (see also Fig. 7):

(1) The right-upper corners of all the squares are in Ω.
(2) X0 is the rightmost square, which must be [i, i+ 1, 2] for some i.
(3) The area of Ω between a = 1 and i must be covered by those squares, or

any point (a, b) in Ω such that 1 ≤ a ≤ i must be in some square.

Suppose that all the values of g(Xi) for 0 ≤ i ≤ m are at most r0. Then
one can easily see that the set S =

⋃
i=0,m {Δ(1, ai, bi), Δ(1, ai − di, bi − di)} of

triangles satisfies conditions (i) to (iii) given in Sec. 2, i.e., we have obtained the
algorithm whose competitive ratio is at most r0.

The issue is how to generate those squares efficiently. Note that g(X) becomes
smaller if the size d of the square X becomes smaller. Namely we can subdivide
each square into smaller ones to obtain a better competitive ratio. However, it
is not clever to subdivide all squares evenly since g(X) for a square X of the
same size substantially differs in different positions in Ω. Note the phenomenon
especially between positions close to the origin (i.e., both a and b are small)
and those far from the origin (the former is larger). Thus our approach is to
subdivide squares X dynamically, or to divide the one with the largest g(X)
value in each step.

We give an intuitive description of the procedure for generating the squares.
We start with a single square [2, 3; 2]. Of course, its g-value is poor (indeed be-
comes infinite) and we divide [2, 3; 2] into four half-sized squares as shown in
Fig. 8: [1, 3; 1], [1, 2; 1], [2, 2; 1] and [2, 3; 1] of size one. Simultaneously we intro-
duce square [3, 4; 2] of size 2. In general, if the square [i, i+1; 2] of size 2 is divided

Randomized Competitive Analysis for Two-Server Problems 169

a

b

0

[3, 4; 2]

[2, 3; 1]

[2, 2; 1]

Fig. 8. Division of a square

514 states

,
4
3

5
3

,
170
128

213
128

g-value = 1.558

0.0078

0.0078

12 states
g-value = 1.560

0.013

0.013

Fig. 9. Approximation of a square

and [i+ 1, i+ 2; 2] of size 2 does not exists yet, we introduce [i+ 1, i+ 2; 2]. By
this we can always satisfy the condition (2). Thus we have four squares of size
1 (two of them are indeed outside Ω) and one square of size 2 at this stage. In
the next step we divide again one of the three squares (inside Ω) whose g value
is the worst. Continue this and take the worst g-value as an upper bound of the
competitive ratio.

Thus the squares are becoming progressively smaller (as might the maximum
g-value). An issue regarding the efficiency of the procedure is that the number
of states of the state diagram used by the algorithm for a (small) square (or for
the corresponding triangle) becomes large. This implies a large amount of com-
putation time to solve the LP in order to obtain the algorithm for the square in
question and to obtain its competitive ratio. Consider for example the triangle
(1, 170

128 ,
213
128) (or the square [170128 ,

213
128 ; 1

128]). It turns out that we need 514 states for
the diagram (and a substantial computation time for LP solving. However, note
that we have slightly larger triangle, (1, 4

3 ,
5
3) (or the square [43 ,

5
3 ; 5

384]), which only
needs 12 states to solve the LP (Fig. 9). Thus we can save computation time by
using [43 ,

5
3 ; 5

384] instead of [170128 ,
213
128 ; 1

128] and the g-value of the former (= 1.5606),
which is certainly worse than that of the latter (= 1.5549), is not excessively bad.
Although we do not have an exact relation between the triangle and the number
of states, it is very likely that if the ratio of the three sides of the triangle can be
represented by three small integers then the number of states is also small. In our
procedure, therefore, we do not simply calculate g(X) for a square X , but we try
to find X ′ which contains X and has such desirable properties.

Procedure 1 gives the formal description of our procedure. Each square X =
[a, b; d] is represented by p = (a, b, d, r), where r is an upper bound of g(X).
The main procedure SquareGeneration divides the square, whose g value
is the worst, into four half-sized squares and, if necessary, also creates a new
rightmost square of size 2. Then we calculate the g-values of those new squares
by procedure CalculateCR. However, as described before, we try to find a
“better” square. Suppose that the current square is X = [a, b; d]. Then we want
to find X̃ = [ã, b̃; d̃] which contains X and ã can be represented by β

α , where both
α and β are integers and α is at most 31 (similarly for b̃). (We have confirmed that
the number of states and the computation time for the LP are reasonably small

170 W. Bein, K. Iwama, and J. Kawahara

if α is at most this large). To do this we use procedure FindApproxPoint. Note
that we scan the value of α only from 17 to 31. This is sufficient; for example,
α = 10 can be covered by α = 20 and α = 16 is not needed either since it should
have been calculated previously in the course of subdivision. If g(X̃) is smaller
than the g-value of the original (double-sized) square, then we use that value as
the g-value of X . Otherwise we abandon such an approximation and calculate
g(X) directly.

Now suppose that SquareGeneration has terminated. Then for any p =
(a, b, d, r) in P , it is guaranteed that r ≤ R0. This means that we have created
the set of squares which satisfy the conditions (1) to (3) previously given. As
mentioned there, we have also created the set of triangles satisfying the condi-
tions of Sec. 2. Thus by Lemma 3, we can conclude:

Theorem 1. There is an online algorithm for the 2-server 3-point problem
whose competitive ratio is at most R0.

We now give results of our computer experiments: For the whole area Ω, the
current upper bound is 1.5897 (recall that the conjecture is 1.5819). The number
N of squares generated is 13285, in which the size m of smallest squares is 1/256
and the size M of largest squares is 2. We also conducted experiments for small
subareas of Ω: (1) For [5/4, 7/4, 1/16]: The upper bound is 1.5784 (better than
the conjecture but this is not a contradiction since our triangles are restricted).
(N,M,m) = (69, 1/64, 1/128). (2) For [7/4, 9/4, 1/4]: The upper bound is 1.5825.
(N,M,m) = (555, 1/64, 1/2048). (3) For [10, 11, 1]: The upper bound is 1.5887.
(N,M,m) = (135, 1/16, 1/32).

5 Concluding Remarks

There are at least two directions for the future research: The first one is to prove
that the ECR of the 2-server 3-point problem is analytically at most e/(e−1)+ε.
The second one is to extend our current approach (i.e., approximation of infinite
point locations by finite ones) to four and move points. For the latter, we already
have a partial result for the 4-point case where two of the four points are close
(obviously it is similar to the 3-point case), but the generalization does not
appear easy.

(a, b)

d
d

(a2, b2)

(a4, b4) (a3, b3)

2
d’ =

= (a1, b1)

Fig. 10. Lines 9-13

(a, b)

d

(a0, b0)d + e0

d + e0

e0

Fig. 11. Line 27

(a, b)

,
x
i

y
i

- ax
i

- by
i

Fig. 12. Lines 40-47

Randomized Competitive Analysis for Two-Server Problems 171

Procedure 1. SquareGeneration

procedure SquareGeneration(R0)
p ← (2, 3, 2, C2 · 2/(2 − 2) = ∞)

Mark p.
P ← {p}
while ∃p = (a, b, d, r) such that r > R0

p ← the point in P whose r is maximum.
P ← P\{p}
Let p = (a, b, d, r)
d′ ← d/2

a1 ← a, b1 ← b
a2 ← a − d′, b2 ← b
a3 ← a, b3 ← b − d′

a4 ← a − d′, b4 ← b − d′ See Fig. 10.

for i ← 1 to 4
if (ai, bi) ∈ Ω

ri ← CalculateCR(ai, bi, d
′, r)

P ← P ∪ {(ai, bi, d
′, ri)}

end if
end for
if p is marked

p′ ← (a + 1, b + 1, 2, Ca+1 · a/(a − 2)).

Mark p′. Unmark p.
P ← P ∪ {p′}

end if
end while

end procedure

procedure CalculateCR(a, b, d, r)
(a0, b0) ← FindApproxPoint(a, b)

 See Fig. 11.
r0 ← GetCR FromLP(a0, b0)
e0 ← max(a − a0, b − b0)
r̃0 ← r0 · a0/(a0 − d − e0)

if r̃0 < r0

return r̃0

else
r0 ← GetCR FromLP(a, b)
r̃0 ← r0 · a0/(a0 − d)

return r̃0

end if
end procedure
procedure FindApproxPoint(a, b)

 See Fig. 12.

emin ← ∞
for i ← 31 to 17

x ← �a · i, y ← �b · i
e ← max(x/i − a, y/i − b)

if e < emin

emin ← e, imin ← i
xmin ← x, ymin ← y

end if
end for
return (xmin/imin, ymin/imin)

end procedure

References

1. Appel, K., Haken, W.: Every planar map is four colorable. Illinois Journal of Math-
ematics 21(5), 429–597 (1977)

2. Bartal, Y., Bollobas, B., Mendel, M.: A Ramsey-type theorem for metric spaces
and its applications for metrical task systems and related problems. In: Proc. 42nd
FOCS, pp. 396–405. IEEE, Los Alamitos (2001)

3. Bartal, Y., Chrobak, M., Larmore, L.L.: A randomized algorithm for two servers
on the line. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA
1998. LNCS, vol. 1461, pp. 247–258. Springer, Heidelberg (1998)

4. Bein, W., Iwama, K., Kawahara, J., Larmore, L.L., Oravec, J.A.: A randomized
algorithm for two servers in cross polytope spaces. In: Kaklamanis, C., Skutella,
M. (eds.) WAOA 2007. LNCS, vol. 4927, pp. 246–259. Springer, Heidelberg (2008)

5. Bein, W., Larmore, L.L., Noga, J.: Equitable revisited. In: Arge, L., Hoffmann,
M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 419–426. Springer, Heidelberg
(2007)

172 W. Bein, K. Iwama, and J. Kawahara

6. Bein, W., Chrobak, M., Larmore, L.L.: The 3-server problem in the plane. In:
Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 301–312. Springer, Heidelberg
(1999)

7. Chrobak, M., Karloff, H., Payne, T.H., Vishwanathan, S.: New results on server
problems. SIAM J. Discrete Math. 4, 172–181 (1991)

8. Chrobak, M., Larmore, L.L.: An optimal online algorithm for k servers on trees.
SIAM J. Comput. 20, 144–148 (1991)

9. Chrobak, M., Larmore, L.L.: The server problem and on-line games. In: McGeoch,
L.A., Sleator, D.D. (eds.) On-line Algorithms. DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, vol. 7, pp. 11–64. AMS/ACM (1992)

10. Chrobak, M., Larmore, L.L., Lund, C., Reingold, N.: A better lower bound on the
competitive ratio of the randomized 2-server problem. Inform. Process. Lett. 63,
79–83 (1997)

11. Feige, U., Goemans, M.X.: Approximating the value of two prover proof systems,
with applications to max-2sat and max-dicut. In: Proc. 3rd ISTCS, pp. 182–189
(1995)

12. Fiat, A., Karp, R., Luby, M., McGeoch, L.A., Sleator, D., Young, N.E.: Competitive
paging algorithms. J. Algorithms 12, 685–699 (1991)

13. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J.
ACM 42(6), 1115–1145 (1995)

14. Horiyama, T., Iwama, K., Kawahara, J.: Finite-state online algorithms and their
automated competitive analysis. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288,
pp. 71–80. Springer, Heidelberg (2006)

15. Karlin, A.R., Kenyon, C., Randall, D.: Dynamic tcp acknowledgement and other
stories about e/(e−1). In: Proc. 33rd STOC, pp. 502–509. ACM, New York (2001)

16. Karloff, H., Zwick, U.: A 7/8-approximation algorithm for max 3sat. In: Proc. 38th
FOCS, pp. 406–417. IEEE, Los Alamitos (1997)

17. Koutsoupias, E., Papadimitriou, C.: Beyond competitive analysis. In: Proc. 35th
FOCS, pp. 394–400. IEEE, Los Alamitos (1994)

18. Koutsoupias, E., Papadimitriou, C.: On the k-server conjecture. J. ACM 42, 971–
983 (1995)

19. Lund, C., Reingold, N.: Linear programs for randomized on-line algorithms. In:
Proc. 5th SODA, pp. 382–391. ACM/SIAM (1994)

20. Manasse, M., McGeoch, L.A., Sleator, D.: Competitive algorithms for server prob-
lems. J. Algorithms 11, 208–230 (1990)

21. Reingold, N., Westbrook, J., Sleator, D.D.: Randomized competitive algorithms
for the list update problem. Algorithmica 11, 15–32 (1994)

22. Seiden, S.S.: On the online bin packing problem. J. ACM 49(5), 640–671 (2002)
23. Trevisan, L., Sorkin, G.B., Sudan, M., Williamson, D.P.: Gadgets, approximation,

and linear programming. SIAM J. Comput. 29(6), 2074–2097 (2000)

Decompositions and Boundary Coverings of

Non-convex Fat Polyhedra�

Mark de Berg and Chris Gray

Department of Computing Science, TU Eindhoven
{mdberg,cgray}@win.tue.nl

Abstract. We show that any locally-fat (or (α, β)-covered) polyhedron
with convex fat faces can be decomposed into O(n) tetrahedra, where
n is the number of vertices of the polyhedron. We also show that the
restriction that the faces are fat is necessary: there are locally-fat poly-
hedra with non-fat faces that require Ω(n2) pieces in any convex de-
composition. Furthermore, we show that if we want the polyhedra in the
decomposition to be fat themselves, then the worst-case number of tetra-
hedra cannot be bounded as a function of n. Finally, we obtain several
results on the problem where we want to only cover the boundary of the
polyhedron, and not its entire interior.

1 Introduction

Polyhedra and their planar equivalent, polygons, play an important role in many
geometric problems. From an algorithmic point of view, however, general polyhe-
dra are unwieldy to handle directly: several algorithms can only handle convex
polyhedra, preferably of constant complexity. Hence, there has been extensive
research into decomposing polyhedra (or, more generally, arrangements of trian-
gles) into tetrahedra or other constant-complexity convex pieces. The two main
issues in developing decomposition algorithms are (i) to keep the number of
pieces in the decomposition small, and (ii) to compute the decomposition quickly.

In the planar setting the number of pieces is, in fact, not an issue if the pieces
should be triangles: any polygon admits a triangulation, and any triangulation
of a polygon with n vertices has n − 2 triangles. Hence, research focused on
developing fast triangulation algorithms, culminating in Chazelle’s linear-time
triangulation algorithm [12]. An extensive survey of algorithms for decomposing
polygons and their applications is given by Keil [16].

For 3-dimensional polyhedra, however, the situation is much less rosy. First of
all, not every non-convex polyhedron admits a tetrahedralization: there are poly-
hedra that cannot be decomposed into tetrahedra without using Steiner points.
Moreover, deciding whether a polyhedron admits a tetrahedralization without
Steiner points is NP-complete [18]. Thus we have to settle for decompositions using
Steiner points. Chazelle [11] has shown that any polyhedron with n vertices can be
� This research was supported by the Netherlands’ Organisation for Scientific Research

(NWO) under project no. 639.023.301.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 173–184, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

174 M. de Berg and C. Gray

decomposed into O(n2) tetrahedra, and that this is tight in the worst case: there
are polyhedra with n vertices for which any decomposition usesΩ(n2) tetrahedra.
(In fact, the result is even stronger: any convex decomposition—a decomposition
into convex pieces—uses Ω(n2) pieces, even if one allows pieces of non-constant
complexity.) Since the complexity of algorithms that need a decomposition de-
pends on the number of pieces in the decomposition, this is rather disappointing.
The polyhedron used in Chazelle’s lower-bound example is quite special, however,
and one may hope that polyhedra arising in practical applications are easier to
handle. This is the topic of our paper: are there types of polyhedra that can be
decomposed into fewer than a quadratic number of pieces?

Erickson [14] has answered this question affirmatively for so-called local poly-
hedra (see below) by showing that any such 3-dimensional polyhedron P can be
decomposed into O(n log n) tetrahedra and that this bound is tight. We consider
a different class of polyhedra, namely fat polyhedra.

Types of fatness. Before we can state our results, we first need to give the
definition of fatness that we use. In the study of realistic input models [10],
many definitions for fatness have been proposed. When the input is convex,
most of these definitions are equivalent up to constants. When the input is not
convex, however, this is not the case: polyhedra that are fat under one definition
may not be fat under a different definition. Therefore we study two different
definitions.

The first definition that we use was introduced by De Berg [5]. For an object
o and a ball B whose center lies inside o, we define B � o to be the connected
component of B∩o that contains the center of B. An object o is locally-γ-fat if for
every ball B that has its center inside o and which does not completely contain o,
we have vol (B � o) ≥ γ · vol(B), where vol(·) denotes the volume of an object.
We call an object locally fat if it is locally γ-fat for a fixed constant γ. If we
replace � with ∩—that is, we do not restrict the intersection to the component
containing the center of B—then we get the definition of fat polyhedra proposed
by Van der Stappen [19]. Note that for convex objects the two definitions are
equivalent. Hence, for convex objects we can omit the adjective “locally” from
the terminology. For non-convex objects the definitions are not equivalent: a
polyhedron that is fat under Van der Stappen’s definition can have skinny pieces,
unlike locally-fat polyhedra.

The second definition is a generalization of the (α, β)-covered objects intro-
duced by Efrat [13] to 3-dimensional objects. A simply-connected object P in
R3 is (α, β)-covered if the following condition is satisfied: for each point p ∈ ∂P
there is a tetrahedron Tp ⊂ P with one vertex at p that is α-fat and has diam-
eter β · diam(P), where ∂P denotes the boundary of P and diam(P) denotes
the diameter of P . Here a tetrahedron is called α-fat if it is α-fat under the
definition of Van der Stappen. (Equivalently, we could define a tetrahedron to
be α-fat if all its solid angles are at least α.) The tetrahedron Tp is called a good
tetrahedron for p.

As observed by De Berg [5] the class of locally-γ-fat objects is strictly more
general than the class of (α, β)-covered objects: any object that is (α, β)-covered

Decompositions and Boundary Coverings of Non-convex Fat Polyhedra 175

for some constants α and β is also locally-γ-fat for some constant γ (depending
on α and β), but the reverse is not true.

For comparison, let us also give the definition of a local polyhedron P [14].
To this end, define the scale factor at a vertex v of P as the ratio between the
length of the longest edge incident to v and the minimum distance from v to any
other vertex. The local scale factor of P is now the maximum scale factor at any
vertex. The global scale factor of P is the ratio between the longest and shortest
edge lengths of the whole polyhedron. Finally, P is called a local polyhedron if
its local scale factor is a constant, while its global scale factor is polynomial in
the number of vertices of P . It is easy to see that local polyhedra need not be
fat, while fat polyhedra need not be local.

Our Results. First we study the decomposition of (α, β)-covered polyhedra and
locally-γ-fat polyhedra into tetrahedra. By modifying Chazelle’s polyhedron so
that it becomes (α, β)-covered, we obtain the following negative result.

– There are (α, β)-covered (and, hence, locally-fat) polyhedra with n vertices
such that any decomposition into convex pieces uses Ω(n2) pieces.

Next we restrict the class of fat polyhedra further by requiring that their faces
should be convex and fat, when considered as planar polygons in the plane
containing them. For this class of polyhedra we obtain a positive result.

– Any locally-fat polyhedron (and, hence, any (α, β)-covered polyhedron) with
n vertices whose faces are convex and fat can be decomposed into O(n)
tetrahedra in O(n log n) time.

Several applications that need a decomposition or covering of a polyhedron into
tetrahedra would profit if the tetrahedra were fat. In the plane any fat polygon
can be covered by O(n) fat triangles, as shown by Van Kreveld [17] (for a slightly
different definition of fatness). We show that a similar result is, unfortunately,
not possible in 3-dimensional space.

– There are (α, β)-covered (and, hence, locally-fat) polyhedra with n vertices
and convex fat faces such that the number of tetrahedra in any covering that
only uses fat tetrahedra cannot be bounded as a function of n.

For some applications—ray shooting is an example—we do not need a decom-
position of the full interior of the given polyhedron P ; instead it is sufficient to
have a boundary covering, that is, a set of objects whose union is contained in
P and that together cover the boundary of P . Interestingly, when we consider
boundary coverings there is a distinction between (α, β)-covered polyhedra and
locally-fat polyhedra:

– The boundary of any (α, β)-covered polyhedron P , can be covered by
O(n2 logn) fat convex constant-complexity polyhedra, and there are (α, β)-
covered polyhedra that requireΩ(n2) convex pieces in any boundary covering.
If the faces of the (α, β)-covered polyhedron are fat, convex and of

176 M. de Berg and C. Gray

approximately the same size, then the boundary can be covered with onlyO(n)
convex fat polyhedra. Furthermore, the worst-case number of convex pieces
needed to cover the boundary of a locally-fat polyhedron cannot be bounded
as a function of n.

Finally, we consider boundary coverings using so-called towers [1]—a type of
decomposition that has previously been used for ray-shooting. Unfortunately, we
must relegate most discussion of these results to the full paper for space reasons.

Table 1 summarizes our results.

Table 1. Overview of results on decomposing and covering polyhedra. An entry marked
× means that the corresponding decomposition or covering is not always possible. (For
example, since general polyhedra can have arbitrarily sharp vertices, they cannot always
be decomposed into fat tetrahedra.)

decomposition of interior by covering of boundary by
tetrahedra fat tetrahedra fat convex polyhedra towers

general Θ(n2) [11] × × unbounded

local Θ(n log n) [14] × × unbounded

locally fat Θ(n2) unbounded unbounded unbounded
with fat faces Θ(n) unbounded unbounded unbounded

(α,β)-covered Θ(n2) unbounded O(n2 log n), Ω(n2) Θ(1)
with fat faces Θ(n) unbounded O(n2 log n) Θ(1)

Applications. As already mentioned, decomposing polyhedra into tetrahedra or
other convex pieces is an important preprocessing step in many applications.
Below we mention some of these applications, where our results help to get
improved performance when the input polyhedra are fat.

Hachenberger [15] studied the computation of Minkowski sums of non-convex
polyhedra. To obtain a robust and efficient algorithm for this problem, he first
decomposes the polyhedra into convex pieces. Our results imply that this first
step can be done such that the resulting number of pieces is O(n) if the in-
put polyhedra are locally fat with fat faces, while in general this number can
be quadratic.

Another application is in computing depth orders. The best-known algorithm
to compute a depth order for n tetrahedra runs in timeO(n4/3+ε) [3]. De Berg and
Gray [7] recently showed that for fat convex polyhedra of constant complexity, this
can be improved to O(n log3 n). Our results imply that any constant-complexity
(α, β)-covered polyhedron can be decomposed into constant-complexity fat con-
vex polyhedra. It can be shown that this is sufficient to be able to use the depth-
order algorithm of [7]. Similarly, our results imply that the results from De Berg
and Gray [7] on vertical ray shooting in convex polyhedra extend to constant-
complexity (α, β)-covered polyhedra. Finally, our results on boundary coverings
with towers (in the full paper) imply that we can use the method of Aronov et al. [1]
to answer ray-shooting queries in (α, β)-covered polyhedra in O((n/

√
m) log2 n)

time with a structure that uses O(m1+ε) storage, for any n ≤ m ≤ n2. This is in

Decompositions and Boundary Coverings of Non-convex Fat Polyhedra 177

contrast to the best-known data structure for arbitrary polyhedra [3], which gives
O(n1+ε/m1/4) query time with O(m1+ε) storage for n ≤ m ≤ n4.

2 Decomposing the Interior

In this section we discuss decomposing the interior of fat non-convex objects into
tetrahedra. We start with decompositions into arbitrary tetrahedra, and then we
consider decompositions into fat tetrahedra.

2.1 Decompositions into Arbitrary Tetrahedra

The upper bound. Let P be a locally-γ-fat polyhedron in R3 whose faces, when
viewed as polygons in the plane containing the face, are convex and β-fat. We
will prove that P can be decomposed into O(n) tetrahedra in O(n log n) time.

In our proof, we will need the concept of density. The density [6] of a set
S of objects in R3 is defined as the smallest number λ such that the following
holds: any ball B ⊂ R3 is intersected by at most λ objects o ∈ S such that
diam(o) ≥ diam(B).

We also need the following technical lemma. Its proof is standard and therefore
omitted.

Lemma 1. Let P be a convex β-fat polygon embedded in R3 where diam(P) ≥ 1.
Let C and C′ be axis-aligned cubes centered at the same point. Let the side length
of C be 1 and the side length of C′ be 2

√
3/3. If P intersects C, then P ′ := P ∩C′

is β′-fat for some β′ = Ω(β).

The following lemma shows that the faces of a locally-γ-fat polyhedron have low
density if they are fat themselves.

Lemma 2. Let FP be the set of faces of a locally-γ-fat polyhedron P . If the faces
of P are themselves β-fat and convex, then FP has density O(1/γβ3).

Proof. Without loss of generality, let S be a sphere with unit radius. We wish
to show that the number of faces f ∈ FP with diam(f) ≥ 1 that intersect S is
O(1/γβ3).

Partition the bounding cube of S into eight equal-sized cubes by bisecting
it along each dimension. Consider one of the cubes: call it C. Also construct
an axis-aligned cube C′ that has side length 2

√
3/3 and concentric with C. For

all faces f intersecting C that have diam(f) ≥ 1, we define f ′ := f ∩ C′. By
Lemma 1, we know that f ′ is β′-fat for some β′ = Ω(β).

Since f ′ is a fat convex polygon with a diameter of at least 2
√

3/3−1, it must
contain a circle c of radius ρ = β′(2

√
3/3− 1)/8 [19]. For any such circle c, there

is a face F of C′ such that the projection of c onto F is an ellipse which has a
minor axis with length at least ρ/

√
2.

We make a grid on each face of C′ where every grid cell has side length ρ/2.
We call the rectangular prism between two grid cells on opposite faces of C′ a

178 M. de Berg and C. Gray

box

2
√

3
3

ρ
2

(a) (b)

fi

interior in positive x-direction

interior in negative x-direction

si

b

Fig. 1. (a) A box. (b) A box b (side view) and the different types of faces assigned to it.

box—see Figure 1(a). Each face f ′ has an intersection with some box that is the
entire cross-section of the box. We assign each face to such a box.

We now consider the set of faces that can be assigned to any one box b. There
are two types of faces in this set—see Figure 1(b). For example, if b has its long
edges parallel to the x axis, there are the faces that have the interior of P in
the positive x direction and the faces that have the interior in the negative x
direction. We consider one type of face at a time. For each face fi, we place a
sphere si with radius ρ/4 so that its center is on fi and in the center of b (that
is, the center is exactly between the long faces of b). Since P is locally-γ-fat,
vol(P � si) ≥ γ4π

3

(
ρ
4

)3
= γπρ3/48. Since we only consider one type of face,

(P �si)∩ (P �sj) = ∅ for any sj
= si. Therefore the number of faces of one type
that can cross one box is 48/(

√
3γπρ2). The number of faces that can cross one

box is twice that. The number of boxes per direction is 2
√

3/3
ρ/2 = 4

ρ
√

3
and the

number of directions is 3. Hence, the number of faces that can intersect S is at
most

2 · 3 · 48√
3γπρ2

· 4
ρ
√

3
=

184
πγρ3

.

Since ρ = Ω(β), this is O(1/γβ3). �

Since the set FP of faces of the polyhedron P has density O(1/γβ3) = O(1),
there is a BSP for FP of size O(n) that can be computed in O(n log n) time [4].
The cells of the BSP are convex and contain at most one facet, so we can easily
decompose all cells further into O(n) tetrahedra in total.

Theorem 1. Let γ and β be fixed constants. Any locally-γ-fat polyhedron with
β-fat convex faces can be partitioned into O(n) tetrahedra in O(n log n) time,
where n is the number of vertices of the polyhedron.

The lower bound. Next we show that the restriction that the faces of the poly-
hedron are fat is necessary, because there are fat polyhedra with non-fat faces
that need a quadratic number of tetrahedra to be covered.

Decompositions and Boundary Coverings of Non-convex Fat Polyhedra 179

The polyhedron known as Chazelle’s polyhedron [11]—see Figure 2(b)—is an
important polyhedron used to construct lower-bound examples. We describe a
slight modification of that polyhedron which makes it (α, β)-covered and retains
the properties needed for the lower bound.

The essential property of Chazelle’s polyhedron is that it contains a region
sandwiched between a set L of line segments defined as follows. Fix a small
positive constant ε > 0. For an integer i with 1 ≤ i ≤ n, define the line segment
�i as �i := {(x, y, z) : 0 ≤ x ≤ n + 1 and y = i and z = ix − ε} and the line
segment �′i as �′i := {(x, y, z) : x = i and 0 ≤ y ≤ n+ 1 and z = iy}. Next define
L := {�i : 1 ≤ i ≤ n} ∪ {�′i : 1 ≤ i ≤ n}.

The region Σ := {(x, y, z) : 1 ≤ x, y ≤ n and xy − ε ≤ z ≤ xy} between these
segments has volume Θ(εn2). Chazelle showed that for any convex object o that
does not intersect any of the segments in L we have vol(o ∩Σ) = O(ε). These two
facts are enough to show thatΩ(n2) convex objects are required to cover any poly-
hedron that contains Σ but whose interior does not intersect the segments in L.

(b)(a) (c)

n + 1
n + 1

n2

Fig. 2. (a) The line segments used in the lower-bound construction (not to scale). (b)
Chazelle’s polyhedron before modification (also not to scale). (c) Cross-section of the
polyhedron P shown with the cross-section of a good tetrahedron (shaded).

Chazelle turns the set of line segments into a polyhedron by putting a box
around L, and making a slit into the box for each segment, as shown in Fig-
ure 2(b). The resulting polyhedron has each of the segments in L as one of its
edges, and contains the sandwich region Σ. Hence, any convex decomposition or
covering of its interior needs Ω(n2) pieces.

Chazelle’s polyhedron is not (α, β)-covered. We therefore modify it as follows.
First of all, we make the outer box from which the polyhedron is formed a cube
of size 6n2×6n2×3n2 centered at the origin. Second, we replace the slits by long
triangular prisms—we will call the prisms needles from now on—sticking into the
cube. Thus, for each segment in L, there is a needle that has an edge containing
the segment. We do not completely pierce the cube with the needles, so that
the resulting polyhedron, P , remains simple (that is, topologically equivalent to
a sphere). Note that Σ is still contained in P , and that for each segment in L
there is an edge containing it.

Next we argue that P is (α, β)-covered. First, consider a point p ∈ ∂P on one
of the needles. Assume without loss of generality that the needle is parallel to
the xz-plane. If p is near one of the needles going into the other direction, then
the situation is as in Figure 2(c).

180 M. de Berg and C. Gray

Note that the distance between consecutive needles of the same orientation—
that is, the distance between the small triangles in Figure 2(c)—is at least 1.
Moreover, we can choose the distance ε between the needles of opposite
orientation—that is, the distance between the small triangles and the long needle in
the figure—as small as we like. The same is true for the “width” of the needles—that
is, the size of the small triangles in the figure. Hence, we can make the construction
such that we can always put a good (that is, large and fat) tetrahedron at p.

Next, consider a point p ∈ ∂P that is near one of the places where a needle
“enters” the cube. Note that the segments in L have slopes ranging from 1 to
n, and that any needle passes near the center of the cube—this is true since the
cube has size 6n2 × 6n2 × 3n2, while the segments in L all pass at a distance
at most n from the cube’s center. Hence, the needles will intersect the bottom
facet of the cube, and they make an angle of at least 45◦ with the bottom facet.
This implies that also for points p near the places where these needles enter the
cube, we can place a good tetrahedron.

Finally, it is easy to see that for points p on a cube facet, and for points on a
needle that are not close to a needle of opposite orientation, we can also put a
good tetrahedron. We can conclude with the following theorem.

Theorem 2. There are constants α > 0 and β > 0, such that there are (α, β)-
covered polyhedra for which any convex decomposition consists of Ω(n2) convex
pieces, where n is the number of vertices of the polyhedron.

2.2 Decompositions and Coverings with Fat Tetrahedra

When we attempt to partition non-convex polyhedra into fat tetrahedra, or
other fat convex objects, the news is uniformly bad. That is, no matter which
of the realistic input models we use (of those we are studying), the number of
fat convex objects necessary to cover the polyhedron can be made arbitrarily
high. For polyhedra without fatness restrictions, there are many examples which
require an arbitrary number of fat convex objects for partitioning. In fact, for
any constant β > 0 we can even construct a polyhedron that cannot be covered
at all into β-fat convex objects—simply take a polyhedron that has a vertex
whose solid angle is much smaller than β. It is also not hard to construct, for
any given β > 0, a local polyhedron that cannot be covered with β-fat convex
objects. For instance, we can take a pyramid whose base is a unit square and
whose top vertex is at distance ε� β above the center of the base.

Next we show how to construct, for any given k, an (α, β)-covered polyhedron
of constant complexity and with convex fat faces, which requires Ω(k) fat convex
objects to cover it. First we observe that a rectangular box of size 1 × (β/k) ×
(β/k) requires Ω(k) β-fat convex objects to cover it. Now consider the (α, β)-
covered polyhedron in Figure 3. The essential feature of the construction in
Figure 3 is that from any point p along the long axis of the tube, one cannot see
much outside the tube. Thus any convex object inside P that contains p must
stay mainly within the tube, and the tube basically acts as a rectangular box of
size 1× (β/k)× (β/k). Hence, Ω(k) β-fat tetrahedra are required in any convex
covering of the polyhedron. We obtain the following result.

Decompositions and Boundary Coverings of Non-convex Fat Polyhedra 181

β/k1

α

(a) (b)

Fig. 3. (a) An (α, β)-covered polyhedron with fat faces whose interior cannot be covered
by a bounded number of fat tetrahedra. (b) The part of the polyhedron seen by a point
in the center. Note that the polyhedron is constructed so that a good tetrahedron just
fits at the points on the boundary inside the central “tube”.

Theorem 3. There are (α, β)-covered (and, hence, locally-fat) polyhedra with n
vertices and convex fat faces, such that the number of objects used in any covering
by fat convex objects cannot be bounded as a function of n. Furthermore, for any
given β > 0 there are local polyhedra for which no convex covering with β-fat
tetrahedra exists.

3 Covering the Boundary

In the previous section we have seen that the number of fat convex objects needed
to cover the interior of a fat non-convex polyhedron P cannot be bounded as
a function of n. In this section we show that we can do better if we only wish
to cover the boundary of P . Unfortunately, this only holds when P is (α, β)-
covered; when P is locally fat, we may still need an arbitrarily large number of
fat convex objects to cover its boundary.

Recall that for each point p on the boundary of an (α, β)-covered polyhedron
P , there is a good tetrahedron Tp ⊂ P with one vertex at p, that is, a tetrahedron
that is α-fat and has diameter β ·diam(P). We first observe that we can actually
replace Tp by a canonical tetrahedron, as made precise in the following lemma.

Lemma 3. Let P be an (α, β)-covered polyhedron. There exists a set C of O(1/α)
canonical tetrahedra that are Ω(α)-fat and have diameter Ω(β · diam(P)) with
the following property: for any point p ∈ ∂P , there is a translated copy T ′

p of a
canonical tetrahedron that is contained in P and has p as a vertex.

Proof. Cover the boundary of the unit sphere S in a grid-like fashion by O(1/α)
triangular surface patches, each of area roughly cα, for a suitably small con-
stant c. For each triangular patch, define a canonical tetrahedron that has the
origin as one of its vertices, and that has edges going through the vertices of the
patch. Scale the resulting set of tetrahedra appropriately, thus giving the set C.
Now consider a good tetrahedron p. Place (a suitably scaled copy) of the sphere
S with its center at p. Tp will intersect S in a fat region R of area α. By choosing

182 M. de Berg and C. Gray

c appropriately we can ensure that R contains one of the triangular patches. This
implies we can select a tetrahedron T ′

p from C with the required properties. �

Now we can prove that we can cover the boundary of an (α, β)-covered polyhe-
dron with a bounded number of fat convex objects.

Theorem 4. The boundary of an (α, β)-covered polyhedron with complexity n
can be covered by O(n2 logn) convex, fat, constant-complexity polyhedra.

Proof. Let C be the set of canonical tetrahedra defined in Lemma 3. Fix a canon-
ical tetrahedron T ∈ C. Note that when we put a translated copy of T at some
point p ∈ ∂P according to Lemma 3, we always put the same vertex, v, at p.
(Namely, the vertex coinciding with the origin before the translation.) For a face
f of P , let f(T) ⊂ f be the subset of points p on f such that we can place
T with its designated vertex v at p in such a way that T is contained in P .
The region f(T) is polygonal. We triangulate f(T), and for each triangle t in
this triangulation, we define a convex polyhedron by taking the union of all the
translated copies of T that have v ∈ t. By doing this for all faces f , we get a
collection CT of convex polyhedra that together cover

⋃
f f(T).

We claim that every convex object o ∈ CT is fat. This follows from the fact
that T is fat and that T cannot be much smaller than t. Indeed, diam(T) =
Ω(β · diam(P)) = Ω(β · diam(t)).

Next, we claim that |CT | = O(n2 log n). This follows directly from the fact
that the complexity of

⋃
f f(T) is upper bounded by the complexity of the free

space of T , when it is translated amidst the faces of P . Aronov and Sharir [2]
showed that this free space has complexity O(n2 logn).

Finally, we observe that
⋃

T∈C
⋃

f f(T) = ∂P by Lemma 3. In other words,
the convex objects in the set

⋃
T∈C CT together cover the boundary of P . �

Theorem 4 implies that the boundary of a constant-complexity (α, β)-covered
polyhedron P can be covered by a constant number of fat objects. Unfortunately,
the number of convex objects used in the boundary covering grows quadratically
in the complexity of P . If P has convex fat faces that are roughly the same size,
then the number of convex fat objects required to cover the boundary reduces
to linear. We summarize this in the following theorem, the proof of which is very
similar to the proof of Theorem 4. It uses the observation by Van der Stappen [19]
that the free space in such a situation has linear complexity.

Theorem 5. Let P be an (α, β)-covered polyhedron with convex β′-fat faces.
Further, let there be a constant c where, for any two faces f1 and f2 of P ,
diam(f1) ≤ c ·diam(f2). Then the boundary of P can be covered by O(n) convex,
fat, constant-complexity polyhedra.

We claim that any covering of the boundary of an (α, β)-covered polyhedron
by fat convex objects requires Ω(n2) pieces. To show this, we slightly modify
our version of Chazelle’s polyhedron from the previous section. In particular, we
replace the edges of the needles that contain the segments in the set L by long
and thin rectangular facets. The resulting polyhedron is still (α, β)-covered, and
it requires Ω(n2) fat convex polyhedra to cover the newly introduced facets.

Decompositions and Boundary Coverings of Non-convex Fat Polyhedra 183

Theorem 6. There are constants α > 0 and β > 0 such that there are (α, β)-
covered polyhedra P for which any decomposition of ∂P into fat convex polyhedra
requires Ω(n2) pieces.

The number of fat convex polyhedra necessary to cover the boundary of a polyhe-
dronP that is not (α, β)-covered can not be bounded as a function ofn. To see this,
we make a simple modification to the polyhedron of Figure 3. We reduce the gaps
that separate the interior “tube” from the rest of P to some arbitrarily small con-
stant ε. This forces any fat convex polyhedron that covers the part of the boundary
of the polyhedron inside the tube to be inside the tube. Now for any k, we can re-
duce the width and height of the tube until its boundary requires more than k fat
convex polyhedra to be covered. This example remains locally fat with fat convex
faces and it is a local polyhedron. Note that P is no longer (α, β)-covered: reducing
the gaps that separate the tube from the rest of the polyhedron causes the points
on the boundary inside the tube to no longer have a good tetrahedron.

Theorem 7. For any given k, there exist locally-γ-fat polyhedra for some ab-
solute constant γ with faces that are β-fat for some absolute constant β which
require at least k fat convex polyhedra to cover their boundaries. These polyhedra
are also local polyhedra.

4 Concluding Remarks

We studied decompositions and boundary coverings of fat polyhedra. Our bounds
on the number of objects needed in the decomposition (or covering) are tight,
except for the bound on the number of convex fat polyhedra needed to cover the
boundary of an (α, β)-covered object. In particular, there is still a large gap for
the case that the facets of the polyhedron are also fat. It would be interesting
to get tight bounds for this case.

Acknowledgments

The second author thanks Herman Haverkort, Elena Mumford, and Bettina
Speckmann for conversations regarding this topic.

References

1. Aronov, B., De Berg, M., Gray, C.: Ray shooting and intersection searching amidst
fat convex polyhedra in 3-space. Computational Geometry: Theory and Applica-
tions 41, 68–76 (2008)

2. Aronov, B., Sharir, M.: On translational motion planning of a convex polyhedron
in 3-space. SIAM J. Comput. 26, 1785–1803 (1997)

3. De Berg, M.: Ray Shooting, Depth Orders and Hidden Surface Removal. LNCS,
vol. 703. Springer, New York (1993)

4. De Berg, M.: Linear size binary space partitions for uncluttered scenes. Algorith-
mica 28, 353–366 (2000)

184 M. de Berg and C. Gray

5. De Berg, M.: Improved bounds on the union complexity of fat objects. Discr.
Comput. Geom. (to appear) doi:10.1007/s00454-007-9029-7

6. De Berg, M., Cheong, O., Van Kreveld, M., Overmars, M.: Computational Geom-
etry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)

7. De Berg, M., Gray, C.: Vertical ray shooting and computing depth orders for fat
objects. SIAM J. Comput. 38(1), 257–275 (2008)

8. De Berg, M., Gray, C.: Computing the visibility map of fat objects. In: Dehne, F.,
Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 251–262. Springer,
Heidelberg (2007)

9. De Berg, M., David, H., Katz, M.J., Overmars, M., Van Der Stappen, A.F.,
Vleugels, J.: Guarding scenes against invasive hypercubes. Computational Geom-
etry: Theory and Applications 26, 99–117 (2003)

10. De Berg, M., Van Der Stappen, A.F., Vleugels, J., Katz, M.J.: Realistic input
models for geometric algorithms. Algorithmica 34, 81–97 (2002)

11. Chazelle, B.: Convex partitions of polyhedra: a lower bound and worst-case optimal
algorithm. SIAM J. Comput. 13, 488–507 (1984)

12. Chazelle, B.: Triangulating a simple polygon in linear time. Discr. Comput.
Geom. 6, 485–524 (1991)

13. Efrat, A.: The complexity of the union of (α, β)-covered objects. SIAM J. Com-
put. 34, 775–787 (2005)

14. Erickson, J.: Local polyhedra and geometric graphs. Computational Geometry:
Theory and Applications 31, 101–125 (2005)

15. Hachenberger, P.: Exact Minkowski sums of polyhedra and exact and efficient
decomposition of polyhedra in convex pieces. In: Arge, L., Hoffmann, M., Welzl,
E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 669–680. Springer, Heidelberg (2007)

16. Keil, J.M.: Polygon Decomposition. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of
Computational Geometry, pp. 491–518 (2000)

17. Van Kreveld, M.: On fat partitioning, fat covering, and the union size of polygons.
Comput. Geom. Theory Appl. 9, 197–210 (1998)

18. Rupert, J., Seidel, R.: On the difficulty of triangulating three-dimensional noncon-
vex polyhedra. Discr. Comput. Geom. 7, 227–253 (1992)

19. Van Der Stappen, A.F.: Motion planning amidst fat obstacles. Ph.D. thesis, Utrecht
University, Utrecht, the Netherlands (1994)

Approximating Multi-criteria Max-TSP

Markus Bläser, Bodo Manthey, and Oliver Putz

Saarland University, Computer Science
Postfach 151150, 66041 Saarbrücken, Germany

blaeser/manthey@cs.uni-sb.de, oli.putz@gmx.de

Abstract. We present randomized approximation algorithms for multi-
criteria Max-TSP. For Max-STSP with k > 1 objective functions, we
obtain an approximation ratio of 1

k
− ε for arbitrarily small ε > 0. For

Max-ATSP with k objective functions, we obtain a ratio of 1
k+1 − ε.

1 Multi-criteria Traveling Salesman Problem

1.1 Traveling Salesman Problem

The traveling salesman problem (TSP) is one of the most fundamental problems
in combinatorial optimization. Given a graph, the goal is to find a Hamiltonian
cycle of minimum or maximum weight. We consider finding Hamiltonian cycles
of maximum weight (Max-TSP).

An instance of Max-TSP is a complete graph G = (V,E) with edge weights
w : E → N. The goal is to find a Hamiltonian cycle of maximum weight. The
weight of a Hamiltonian cycle (or, more general, of a subset of E) is the sum of
the weights of its edges. If G is undirected, we speak of Max-STSP (symmetric
TSP). If G is directed, we have Max-ATSP (asymmetric TSP).

Both Max-STSP and Max-ATSP are NP-hard and APX-hard. Thus, we are in
need of approximation algorithms. The currently best approximation algorithms
for Max-STSP and Max-ATSP achieve approximation ratios of 61/81 and 2/3,
respectively [3,5].

Cycle covers are an important tool for designing approximation algorithms
for the TSP. A cycle cover of a graph is a set of vertex-disjoint cycles such that
every vertex is part of exactly one cycle. Hamiltonian cycles are special cases of
cycle covers that consist of just one cycle. Thus, the weight of a maximum-weight
cycle cover is an upper bound for the weight of a maximum-weight Hamiltonian
cycle. In contrast to Hamiltonian cycles, cycle covers of maximum weight can be
computed efficiently using matching algorithms [1].

1.2 Multi-criteria Optimization

In many optimization problems, there is more than one objective function. Con-
sider buying a car: We might want to buy a cheap, fast car with a good gas
mileage. How do we decide which car suits us best? With multiple criteria in-
volved, there is no natural notion of a best choice. Instead, we have to be content

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 185–197, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

186 M. Bläser, B. Manthey, and O. Putz

with a trade-off. The aim of multi-criteria optimization is to cope with this prob-
lem. To transfer the concept of an optimal solution to multi-criteria optimization
problems, the notion of Pareto curves was introduced (cf. Ehrgott [4]). A Pareto
curve is a set of solutions that can be considered optimal.

More formally, a k-criteria optimization problem consists of instances I, solu-
tions sol(X) for every instance X ∈ I, and k objective functions w1, . . . , wk that
map X ∈ I and Y ∈ sol(X) to N. Throughout this paper, our aim is to maximize
the objective functions. We say that a solution Y ∈ sol(X) dominates another
solution Z ∈ sol(X) if wi(Y,X) ≥ wi(Z,X) for all i ∈ [k] = {1, . . . , k} and
wi(Y,X) > wi(Z,X) for at least one i. This means that Y is strictly preferable
to Z. A Pareto curve contains all solutions that are not dominated by another
solution. Unfortunately, Pareto curves cannot be computed efficiently in many
cases: They are often of exponential size, and they are often NP-hard to compute
even for otherwise easy problems. Thus, we have to be content with approximate
Pareto curves.

For simpler notation, let w(Y,X) = (w1(Y,X), . . . , wk(Y,X)). We will omit
the instance X if it is clear from the context. Inequalities are meant component-
wise. A set P ⊆ sol(X) of solutions is called an α approximate Pareto curve
for X ∈ I if the following holds: For every solution Z ∈ sol(X), there exists
a Y ∈ P with w(Y) ≥ αw(Z). We have α ≤ 1, and a 1 approximate Pareto
curve is a Pareto curve. (This is not precisely true if there are several solutions
whose objective values agree. However, in our case this is inconsequential, and
we will not elaborate on this for the sake of clarity.) An algorithm is called an α
approximation algorithm if, given the instance X , it computes an α approximate
Pareto curve. It is called a randomized α approximation algorithm if its success
probability is at least 1/2. This success probability can be amplified to 1− 2−m

by executing the algorithm m times and taking the union of all sets of solutions.
(We can remove dominated solutions from this union, but this is not required
by the definition of an approximate Pareto curve.)

Papadimitriou and Yannakakis [8] showed that (1 − ε) approximate Pareto
curves of size polynomial in the instance size and 1/ε exist. The technical re-
quirement for the existence is that the objective values of solutions in sol(X) are
bounded from above by 2p(N) for some polynomial p, where N is the size of X .
This is fulfilled in most optimization problems and in particular in our case.

A fully polynomial time approximation scheme (FPTAS) for a multi-criteria
optimization problem computes (1− ε) approximate Pareto curves in time poly-
nomial in the size of the instance and 1/ε for all ε > 0. Papadimitriou and
Yannakakis [8] showed that multi-criteria minimum-weight matching admits a
randomized FPTAS, i. e., the algorithm succeeds in computing a (1 − ε) ap-
proximate Pareto curve with constant probability. This yields also a randomized
FPTAS for the multi-criteria maximum-weight cycle cover problem [7], which
we will use in the following.

Manthey and Ram [6,7] designed randomized approximation algorithms for
several variants of multi-criteria Min-TSP. However, they leave it as an open
problem to design any approximation algorithm for Max-TSP.

Approximating Multi-criteria Max-TSP 187

1.3 New Results

We devise the first approximation algorithm for multi-criteria Max-TSP. For k-
criteria Max-STSP, we achieve an approximation ratio of 1

k − ε for arbitrarily
small ε > 0. For k-criteria Max-ATSP, we achieve 1

k+1 − ε. Our algorithm is
randomized. Its running-time is polynomial in the input size and 1/ε and expo-
nential in the number k of criteria. However, the number of different objective
functions is usually a small constant. The main ingredient for our algorithm
is a decomposition technique for cycle covers and a reduction from k-criteria
instances to (k − 1)-criteria instances.

Due to lack of space, some proofs are omitted. For complete proofs, we refer
to the full version of this paper [2].

2 Outline and Idea

A straight-forward 1/2 approximation for mono-criterion Max-ATSP is the fol-
lowing: First, we compute a maximum-weight cycle cover C. Then we remove
the lightest edge of each cycle, thus losing at most half of C’s weight. In this
way, we obtain a collection of paths. Finally, we add edges to connect the paths
to get a Hamiltonian cycle. For Max-STSP, the same approach yields a 2/3
approximation since the length of every cycle is at least three.

Unfortunately, this does not generalize to multi-criteria Max-TSP for which
“lightest edge” is usually not well defined: If we break an edge that has little
weight with respect to one objective, we might lose a lot of weight with respect to
another objective. Based on this observation, the basic idea behind our algorithm
and its analysis is the following case distinction:

Light-weight edges: If all edges of our cycle cover contribute only little to its
weight, then removing one edge does not decrease the overall weight by too
much. Now we choose the edges to be removed such that no objective loses
too much of its weight.

Heavy-weight edges: If there is one edge that is very heavy with respect to at
least one objective, then we take only this edge from the cycle cover. In this
way, we have enough weight for one objective, and we proceed recursively
on the remaining graph with k − 1 objectives.

In this way, the approximation ratio for k-criteria Max-TSP depends on two
questions: First, how well can we decompose a cycle cover consisting solely of
light-weight edges? Second, how well can (k − 1)-criteria Max-TSP be approxi-
mated? We deal with the first question in Section 3. In Section 4, we present and
analyze our approximation algorithms, which also gives an answer to the second
question. Finally, we give evidence that the analysis of the approximation ratios
is tight and point out some ideas that might lead to better approximation ratios
(Section 5).

188 M. Bläser, B. Manthey, and O. Putz

3 Decompositions

Let α ∈ (0, 1], and let C be a cycle cover. We call a collection P ⊆ C of paths
an α-decomposition of C if w(P) ≥ αw(C) (recall that all inequalities are meant
component-wise). In the following, our aim is to find α-decompositions of cycle
covers consisting solely of light-weight edges, that is, w(e) ≤ αw(C) for all e ∈ C.

Of course, not every cycle cover possesses an α-decomposition for every α. For
instance, a single directed cycle of length two, where each edge has a weight of
1 shows that α = 1/2 is best possible for a single objective function in directed
graphs. On the other hand, by removing the lightest edge of every cycle, we
obtain a 1/2-decomposition.

For undirected graphs and k = 1, α = 2/3 is optimal: We can find a 2/3-
decomposition by removing the lightest edge of every cycle, and a single cycle
of length three, where each edge weight is 1, shows that this is tight.

More general, we define αd
k ∈ (0, 1] to be the maximum number such that

every directed cycle cover C with w(e) ≤ αd
k · w(C) for all e ∈ C possesses

an αd
k-decomposition. Analogously, αu

k ∈ (0, 1] is the maximum number such
that every undirected cycle cover C with w(e) ≤ αu

k · w(C) possesses an αu
k -

decomposition. We have αd
1 = 1

2 and αu
1 = 2

3 , as we have already argued above.
We also have αu

k ≥ αd
k and αu

k ≤ αu
k−1 as well as αd

k ≤ αd
k−1.

3.1 Existence of Decompositions

In this section, we investigate for which values of α such α-decompositions exist.
In the subsequent section, we show how to actually find good decompositions.
We have already dealt with αu

1 and αd
1. Thus, k ≥ 2 remains to be considered

in the following theorems. In particular, only k ≥ 2 is needed for the analysis of
our algorithms.

Let us first normalize our cycle covers to make the proofs in the following
a bit easier. For directed cycle covers C, we can restrict ourselves to cycles of
length two: If we have a cycle c of length � with edges e1, . . . , e�, we replace it
by ��/2� cycles (e2j−1, e2j) for j = 1, . . . , ��/2�. If � is odd, then we add a edge
e�+1 with w(e�+1) = 0 and add the cycle (e�, e�+1). (Strictly speaking, edges
are 2-tuples of vertices, and we cannot simply reconnect them. What we mean
is that we remove the edges of the cycle and create new edges with the same
names and weights together with appropriate new vertices.) We do this for all
cycles of length at least three and call the resulting cycle cover C′. Now any
α-decomposition P ′ of the new cycle cover C′ yields an α-decomposition P of
the original cycle cover C by removing the newly added edges e�+1: In C, we
have to remove at least one edge of the cycle c to obtain a decomposition. In
C′, we have to remove at least ��/2� edges of c, thus at least one. Furthermore,
if w(e) ≤ α · w(C) for every e ∈ C, then also w(e) ≤ α · w(C′) for every e ∈ C′

since we kept all edge weights. This also shows w(P) = w(P ′).
We are interested in α-decompositions that work for all cycle covers with k

objective functions. Thus in particular, we have to be able to decompose C′.

Approximating Multi-criteria Max-TSP 189

(1, 0) (0, 1) (1, 0) (0, 1) (1, 0) (0, 1)

(a) αd
2 ≤ 1/3.

(0, 1)(1, 0)

(1, 1)

(b) αu
2 ≤ 1/2.

Fig. 1. Examples that limit the possibility of decomposition

The consequence is that if every directed cycle cover consisting solely of cycles
of length two possesses an α-decomposition, then all directed cycle covers do so.

For undirected cycle covers, we can restrict ourselves to cycles of length three:
We replace a cycle c = (e1, . . . , e�) by ��/3� cycles (e3j−2, e3j−1, e3j) for 1 ≤ j ≤
��/3�. If � is not divisible by three, then we add one or two edges e�+1, e�+2

to form a cycle of length three with the remaining edge(s). Again, every α-
decomposition of the new cycle cover yields an α-decomposition of the original
cycle cover.

The following two theorems are proved using the probabilistic method.

Theorem 1. For all k ≥ 2, we have αu
k ≥ 1/k.

For undirected graphs and k = 2, we do not need the assumption that the weight
of each edge is at most αu

2 times the weight of the cycle cover. Lemma 1 below
immediately yields a (1/2−ε) approximation for bi-criteria Max-STSP: First, we
compute a Pareto curve of cycle covers. Second, we decompose each cycle cover
to obtain a collection of paths, which we then connect to form Hamiltonian
cycles. The following lemma can also be generalized to arbitrary k that do not
contain cycles of length at most k.

Lemma 1. For every undirected cycle cover C with edge weights w = (w1, w2),
there exists a collection P ⊆ C of paths with w(P) ≥ w(C)/2.

For directed cycle covers, our aim is again to show that the probability of having
not enough weight in one component is less than 1/k. Hoeffding’s inequality
works only for k ≥ 7. We use a different approach, which immediately gives us
the desired result for k ≥ 6, and which can be tweaked to work also for small k.

Theorem 2. For all k ≥ 2, we have αd
k ≥ 1/(k + 1).

Figure 1 shows that Theorems 1 and 2, respectively, are tight for k = 2. Due to
these limitations for k = 2, proving larger values for αu

k or αd
k does not immedi-

ately yield better approximation ratios (see Section 5). However, for larger values
of k, Hoeffding’s inequality yields the existence of Ω(1/ log k)-decompositions.
Together with a different technique for heavy-weight cycle covers, this might
lead to improved approximation algorithms for larger values of k.

Lemma 2. We have αu
k , α

d
k ∈ Ω(1/ log k).

190 M. Bläser, B. Manthey, and O. Putz

3.2 Finding Decompositions

While we know that decompositions exist due to the previous section, we have
to find them efficiently in order to use them in our approximation algorithm. We
present a deterministic algorithm and a faster randomized algorithm for finding
decompositions.

Decompose (Algorithm 1) is a deterministic algorithm for finding a decompo-
sition. The idea behind this algorithm is as follows: First, we scale the weights such
that w(C) = 1/α. Then w(e) ≤ 1 for all edges e ∈ C. Second, we normalize all
cycle covers such that they consist solely of cycles of length two (in case of directed
graphs) or three (in case of undirected graphs). Third, we combine very light cy-
cles as long as possible. More precisely, if there are two cycles c and c′ such that
w′(c) ≤ 1/2 and w′(c′) ≤ 1/2, we combine them to one cycle c̃ with w′(c̃) ≤ 1.
The requirements for an α-decomposition to exist are still fulfilled. Furthermore,
any α-decomposition of C′ immediately yields an α-decomposition of C.

P ← Decompose(C, w, k, α)
input: cycle cover C, edge weights w, k ≥ 2, w(e) ≤ α · w(C) for all e ∈ C
output: a collection P of paths
1: obtain w′ from w by scaling each component such that w′

i(C) = 1/α for all i
2: normalize C to C′ as described in the text such that C′ consists solely of cycles

of length three (undirected) or two (directed)
3: while there are cycles c and c′ in C′ with w′(c) ≤ 1/2 and w′(c′) ≤ 1/2 do
4: combine c and c′ to c̃ with w′(c̃) = w′(c) + w′(c′)
5: replace c and c′ by c̃ in C′

6: try all possible combinations of decompositions
7: choose one P ′ that maximizes mini∈[k] w

′
i(P)

8: translate P ′ ⊆ C′ back to obtain a decomposition P ⊆ C
9: return P

Algorithm 1. A deterministic algorithm for finding a decomposition

Lemma 3. Let k ≥ 2. Let C be an undirected cycle cover and w1, . . . , wk be
edge weights such that w(e) ≤ αu

k ·w(C). Then Decompose(C,w, k, αu
k) returns

a collection P of paths with w(P) ≥ αu
k · w(C).

Let C be a directed cycle cover and w1, . . . , wk be edge weights such that w(e) ≤
αd

k · w(C). Then Decompose(C,w, k, αd
k) returns a collection P of paths with

w(P) ≥ αd
k · w(C).

Let us also estimate the running-time of Decompose. The normalization in
lines 1 to 5 can be implemented to run in linear time. Due to the normalization,
the weight of every cycle is at least 1/2 with respect to at least one w′

i. Thus, we
have at most 2k/αu

k cycles in C′ in the undirected case and at most 2k/αd
k cycles

in C′ in the directed case. In either case, we have O(k2) cycles. All of these cycles
are of length two or of length three. Thus, we find an optimal decomposition,
which in particular is an αu

k or αd
k-decomposition, in time linear in the input size

and exponential in k.

Approximating Multi-criteria Max-TSP 191

P ← RandDecompose(C, w, k, α)
input: cycle cover C, edge weights w = (w1, . . . , wk), k ≥ 2, w(e) ≤ α · w(C) for all

e ∈ C
output: a collection P of paths with w(P) ≥ α · w(C)
1: if k ≥ 6 then
2: repeat
3: randomly choose one edge of every cycle of C
4: remove the chosen edges to obtain P
5: until w(P) ≥ α · w(C)
6: else
7: P ← Decompose(C, w, k, α)

Algorithm 2. A randomized algorithm for finding a decomposition

By exploiting the probabilistic argument of the previous section, we can find
a decomposition much faster with a randomized algorithm. RandDecompose

(Algorithm 2) does this: We choose the edges to be deleted uniformly at random
for every cycle. The probability that we obtain a decomposition as required is
positive and bounded from below by a constant. Furthermore, as the proofs of
Theorems 1 and 2 show, this probability tends to one as k increases. For k ≥ 6,
it is at least approximately 0.7 for undirected cycle covers and at least 1/4 for
directed cycle covers. For k < 6, we just use our deterministic algorithm, which
has linear running-time for constant k. The following lemma follows from the
considerations above.

Lemma 4. Let k ≥ 2. Let C be an undirected cycle cover and w1, . . . , wk be
edge weights such that w(e) ≤ αu

k · w(C). Then RandDecompose(C,w, k, αu
k)

returns a collection P of paths with w(P) ≥ αu
k · w(C).

Let C be a directed cycle cover and w1, . . . , wk be edge weights such that w(e) ≤
αd

k · w(C). Then RandDecompose(C,w, k, αd
k) returns a collection P of paths

with w(P) ≥ αd
k · w(C).

The expected running-time of RandDecompose is O(|C|).

4 Approximation Algorithms

Based on the idea sketched in Section 2, we can now present our approximation
algorithms for multi-criteria Max-ATSP and Max-STSP. However, in particular
for Max-STSP, some additional work has to be done if heavy edges are present.

4.1 Multi-criteria Max-ATSP

We first present our algorithm for Max-ATSP (Algorithm 3) since it is a bit
easier to analyze.

First of all, we compute a (1− ε) approximate Pareto curve C of cycle covers.
Then, for every cycle cover C ∈ C, we decide whether it is a light-weight cycle
cover or a heavy-weight cycle cover (line 7). If C has only light-weight edges,

192 M. Bläser, B. Manthey, and O. Putz

PTSP ← MC-MaxATSP(G, w, k, ε)
input: directed complete graph G = (V, E), k ≥ 1, edge weights w : E → Nk, ε > 0
output: approximate Pareto curve PTSP for k-criteria Max-TSP
1: if k = 1 then
2: compute a 2/3 approximation PTSP

3: else
4: compute a (1 − ε) approximate Pareto curve C of cycle covers
5: PTSP ← ∅
6: for all cycle covers C ∈ C do
7: if w(e) ≤ αd

k · w(C) for all edges e ∈ C then
8: P ← Decompose(C,w, k)
9: add edges to P to form a Hamiltonian cycle H ; add H to PTSP

10: else
11: let e = (u, v) ∈ C be an edge with w(e) �≤ αd

k · w(C)
12: for all a, b, c, d ∈ V such that P e

a,b,c,d is legal do
13: for i ← 1 to k do
14: obtain G′ from G by contracting the paths of P e

a,b,c,d

15: obtain w′ from w by removing the ith objective
16: P ′

TSP ← MC-MaxATSP(G′, w′, k − 1, ε)
17: for all H ′ ∈ P ′

TSP do
18: form a Hamilton cycle from H ′ plus P e

a,b,c,d; add it to PTSP

19: form a Hamilton cycle from H ′ plus (u, v); add it to PTSP

Algorithm 3. Approximation algorithm for k-criteria Max-ATSP

b

a

u v

d

c

(a) Two disjoint paths.

a

u

b=c

v

d

(b) With b = c.
a

u=c v=b

d

(c) Including edge e.

Fig. 2. The three possibilities of P e
a,b,c,d. Symmetrically to (b), we also have a = d.

Symmetrically to (c), we also have v = a and u = d.

we decompose it to obtain a collection P of paths. Then we add edges to P to
obtain a Hamiltonian cycle H , which we then add to PTSP.

If C contains a heavy-weight edge, then there exists an edge e = (u, v) and
an i with wi(e) > αk · wi(C). We pick one such edge. Then we iterate over all
possible vertices a, b, c, d (including equalities and including u and v). We denote
by P e

a,b,c,d the graph with vertices u, v, a, b, c, d and edges (a, u), (u, b), (c, v),
and (v, d). We call P e

a,b,c,d legal if it can be extended to a Hamiltonian cycle:
P e

a,b,c,d is legal if and only if it consists of one or two vertex-disjoint directed
paths. Figure 2 shows the different possibilities.

For every legal P e
a,b,c,d, we contract the paths as follows: We remove all out-

going edges of a and c, all incoming edges of b and d, and all edges incident to u
or v. Then we identify a and b as well as c and d. If P e

a,b,c,d consists of a single

Approximating Multi-criteria Max-TSP 193

path, then we remove all vertices except the two endpoints of this path, and we
identify these two endpoints.

In this way, we obtain a slightly smaller instance G′. Then, for every i, we
remove the ith objective to obtain w′, and recurse on G′ with only k−1 objectives
w′. This yields a approximate Pareto curves P ′

TSP of Hamiltonian cycles of G′.
Now consider any H ′ ∈ P ′

TSP. We expand the contracted paths to obtain H .
Then we construct two tours: First, we just add P e

a,b,c,d to H , which yields a
Hamiltonian cycle by construction. Second, we observe that no edge in H is
incident to u or v. We add the edge (u, v) to H as well as some more edges
such that we obtain a Hamiltonian cycle. We put the Hamiltonian cycles thus
constructed into PTSP.

We have not yet discussed the success probability. Randomness is needed for
computing the approximate Pareto curves of cycle covers and the recursive calls
of MC-MaxATSP with k − 1 objectives. Let N be the size of the instance at
hand, and let pk(N, 1/ε) is a polynomial that bounds the size of a (1−ε) approx-
imate Pareto curve from above. Then we need at most N4 · pk(N, 1/ε) recursive
calls of MC-MaxATSP. In total, the number of calls of randomized algorithms
is bounded by some polynomial qk(N, 1/ε). We amplify the success probabilities
of these calls such that the probability is at least 1− 1

2·qk(N,1/ε) . Thus, the prob-
ability that one such call is not successful is at most qk(N, 1/ε) · 1

2·qk(N,1/ε) ≤ 1/2
by a union bound. Hence, the success probability of the algorithm is at least 1/2.

Instead of Decompose, we can also use RandDecompose. We modify
RandDecompose such that the running-time is guaranteed to be polynomial
and that there is only a small probability that RandDecompose errs. Further-
more, we have to make the error probabilities of the cycle cover computation
as well as the recursive calls of MC-MaxATSP slightly smaller to maintain an
overall success probability of at least 1/2.

The running-time of MC-MaxATSP is polynomial in the input size and 1/ε,
which can be seen by induction on k: We have a polynomial time approximation
algorithm for k = 1. For k > 1, the approximate Pareto curve of cycle covers can
be computed in polynomial time, yielding a polynomial number of cycle covers.
All further computations can also be implemented to run in polynomial time
since MC-MaxATSP for k−1 runs in polynomial time by induction hypothesis.

Theorem 3. MC-MaxATSP is a randomized 1
k+1−ε approximation for multi-

criteria Max-ATSP. Its running-time is polynomial in the input size and 1/ε.

Proof. We have already discussed the error probabilities and the running-time.
Thus, it remains to consider the approximation ratio, and we can assume in
the following, that all randomized computations are successful. We prove the
theorem by induction on k. For k = 1, this follows since mono-criterion Max-
ATSP can be approximated with a factor 2/3 > 1/2.

Now assume that the theorem holds for k − 1. We have to prove that, for
every Hamiltonian cycle Ĥ , there exists a Hamiltonian cycle H ∈ PTSP with
w(H) ≥

(
1

k+1 − ε
)
·w(Ĥ). Since every Hamiltonian cycle is in particular a cycle

cover, there exists a C ∈ C with w(C) ≥ (1 − ε) · w(Ĥ). Now we distinguish

194 M. Bläser, B. Manthey, and O. Putz

two cases. The first case is that C consists solely of light-weight edges, i. e.,
w(e) ≤ 1

k+1 · w(C), then Decompose returns a collection P of paths with
w(P) ≥ 1

k+1 ·w(C) ≥
(

1
k+1 −ε

)
·w(Ĥ), which yields a Hamiltonian cycle H with

w(H) ≥ w(P) ≥
(

1
k+1 − ε

)
· w(Ĥ) as claimed.

The second case is that C contains at least one heavy-weight edge e = (u, v).
Let (a, u), (u, b), (c, v), and (v, d) be the edges in Ĥ that are incident to u or v.
(We may have some equalities among the vertices as shown in Figure 2.) Note
that Ĥ does not necessarily contain the edge e. We consider the corresponding
P e

a,b,c,d and divide the second case into two subcases.
The first subcase is that there is a j ∈ [k] with wj(P e

a,b,c,d) ≥ 1
k+1 · wj(Ĥ),

i. e., at least a 1
k+1 fraction of the jth objective is concentrated in P e

a,b,c,d. (We
can have j = i or j
= i.) Let J ⊆ [k] be the set of such j.

We fix one j ∈ J arbitrarily and consider the graph G′ obtained by removing
the jth objective and contracting the paths (a, u, b) and (c, v, d). A fraction of
1− 1

k+1 = k
k+1 of the weight of Ĥ is left in G′ with respect to all objectives but

those in J . Thus, G′ contains a Hamiltonian cycle Ĥ ′ with w�(Ĥ ′) ≥ k
k+1 ·w�(Ĥ)

for all � ∈ [k] \ J . Since (k − 1)-criteria Max-ATSP can be approximated with
a factor of 1

k − ε by assumption, P ′
TSP contains a Hamiltonian cycle H ′ with

w�(H ′) ≥ (1
k − ε) · k

k+1 · w�(Ĥ) ≥
(

1
k+1 − ε

)
· w�(Ĥ) for all � ∈ [k] \ J . Together

with P e
a,b,c,d, which contributes enough weight to the objectives in J , we obtain

a Hamiltonian cycle H with w(H) ≥
(

1
k+1 − ε

)
· w(Ĥ), which is as claimed.

The second subcase is that wj(P e
a,b,c,d) ≤ 1

k+1 ·wj(H) for all j ∈ [k]. Thus, at
least a fraction of k

k+1 of the weight of Ĥ is outside of P e
a,b,c,d. We consider the

case with the ith objective removed. Then, with the same argument as in the first
subcase, we obtain a Hamiltonian cycle H ′ of G′ with w�(H ′) ≥

(
1

k+1−ε
)
·w�(Ĥ)

for all � ∈ [k] \ {i}. To obtain a Hamiltonian cycle of G, we take the edge
e = (u, v) and connect its endpoints appropriately. (For instance, if a, b, c, d
are distinct, then we add the path (a, u, v, d) and the edge (c, b).) This yields
enough weight for the ith objective in order to obtain a Hamiltonian cycle H
with w(H) ≥

(
1

k+1 − ε
)
· w(Ĥ) since wi(e) ≥ 1

k+1 · w(C) ≥
(

1
k+1 − ε

)
· w(Ĥ).

4.2 Multi-criteria Max-STSP

MC-MaxATSP works of course also for undirected graphs, for which it achieves
an approximation ratio of 1

k+1 − ε. But we can do better for undirected graphs.
Our algorithm MC-MaxSTSP for undirected graphs (Algorithm 4) starts by

computing an approximate Pareto curve of cycle covers just as MC-MaxATSP

did. Then we consider each cycle cover C separately. If C consists solely of light-
weight edges, then we can decompose C using Decompose. If C contains one
or more heavy-weight edges, then some more work has to be done than in the
case of directed graphs. The reason is that we cannot simply contract paths –
this would make the new graph G′ (and the edge weights w′) asymmetric.

So assume that a cycle cover C ∈ C contains a heavy-weight edge e = {u, v}.
Let i ∈ [k] be such that wi(e) ≥ wi(C)/k. In a first attempt, we remove the ith

Approximating Multi-criteria Max-TSP 195

PTSP ← MC-MaxSTSP(G, w, k, ε)
input: undirected complete graph G = (V, E), k ≥ 2, edge weights w : E → Nk,

ε > 0
output: approximate Pareto curve PTSP for k-criteria Max-TSP
1: compute a (1 − ε) approximate Pareto curve C of cycle covers
2: PTSP ← ∅
3: if k = 2 then
4: for all C ∈ C do
5: P ← Decompose(C, w, k)
6: add edges to P to form a Hamiltonian cycle H ; add H to PTSP

7: else
8: for all cycle covers C ∈ C do
9: if w(e) ≤ w(C)/k for edges e ∈ C then

10: P ← Decompose(C, w, k)
11: add edges to P to form a Hamiltonian cycle H ; add H to PTSP

12: else
13: let i ∈ [k] and e = {u, v} ∈ C with wi(e) > wi(C)/k
14: for all � ∈ {0, . . . , 4k}, distinct x1, . . . , x� ∈ V \ {u, v}, and k ∈ [k]

do
15: U ← {x1, . . . , x�, u, v}
16: obtain w′ from w by removing the jth objective
17: set w′(f) = 0 for all edges f incident to U
18: PU,j

TSP ← MC-MaxSTSP(G, w′, k − 1, ε)
19: for all H ∈ PU,j

TSP do
20: remove all edges f from H with f ⊆ U to obtain H ′

21: for all HU such that H ′ ∪ HU is a Hamiltonian cycle do
22: add H ′ ∪ HU to PTSP

Algorithm 4. Approximation algorithm for k-criteria Max-STSP.

objective to obtain w′. Then we set w′(f) = 0 for all edges f incident to u or
v. We recurse with k − 1 objectives on G with edge weights w′. This yields a
tour H ′ on G. Now we remove all edges incident to u or v of H ′ and add new
edges including e. In this way, we get enough weight with respect to objective
i. Unfortunately, there is a problem if there is an objective j and an edge f
incident to u or v such that f contains almost all weight with respect to wj : We
cannot guarantee that this edge f is included in H without further modifying
H ′. To cope with this problem, we do the following: In addition to u and v, we
set the weight of all edges incident to the other vertex of f to 0. Then we recurse.
Unfortunately, there may be another objective j′ that now causes problems. To
solve the whole problem, we iterate over all � = 0, . . . , 4k and over all additional
vertices x1, . . . , x�
= u, v. Let U = {x1, . . . , x�, u, v}. We remove one objective
i ∈ [k] to obtain w′, set the weight of all edges incident to U to 0, and recurse
with k − 1 objectives. Although the time needed to do this is exponential in k,
we maintain polynomial running-time for fixed k.

196 M. Bläser, B. Manthey, and O. Putz

As in the case of directed graphs, we can make the success probability of every
randomized computation small enough to maintain a success probability of at
least 1/2.

The base case is now k = 2: In this case, every cycle cover possesses a 1/2
decomposition, and we do not have to care about heavy-weight edges. Overall,
we obtain the following result.

Theorem 4. MC-MaxSTSP is a randomized 1
k − ε approximation for

multi-criteria Max-STSP. Its running-time is polynomial in the input size
and 1/ε.

5 Remarks

The analysis of the approximation ratios of our algorithms is essentially opti-
mal: Our approach can at best lead to approximation ratios of 1

k+c for some
c ∈ Z. The reason is as follows: Assume that (k − 1)-criteria Max-TSP can be
approximated with a factor of τk. If we have a k-criteria instance, we have to
set the threshold for heavy-weight edges somewhere. Assume for the moment
that this threshold αk be arbitrary. Then the ratio for k-criteria Max-TSP is
min{αk, (1 − αk) · τk−1}. Choosing αk = τk−1

τk−1+1 maximizes this ratio. Thus,
if τk−1 = 1/T for some T , then τk ≤ τk−1

τk−1+1 = 1
T+1 . We conclude that the

denominator of the approximation ratio increases by at least 1 if we go from
k − 1 to k.

For undirected graphs, we have obtained a ratio of roughly 1/k, which is
optimal since αu

2 = 1/2 implies c ≥ 0. Similarly, for directed graphs, we have a
ratio of 1

k+1 , which is also optimal since αd
2 = 1/3 implies c ≥ 1.

Due to the existence of Ω(1/ log k)-decompositions, we conjecture that both
k-criteria Max-STSP and k-criteria Max-ATSP can in fact be approximated with
factors of Ω(1/ log k). This, however, requires a different approach or at least a
new technique for heavy-weight edges.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Englewood Cliffs (1993)

2. Bläser, M., Manthey, B., Putz, O.: Approximating multi-criteria Max-TSP. Com-
puting Research Repository (2008) arXiv:0806.3668 [cs.DS]

3. Chen, Z.-Z., Okamoto, Y., Wang, L.: Improved deterministic approximation algo-
rithms for Max TSP. Information Processing Letters 95(2), 333–342 (2005)

4. Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005)
5. Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.I.: Approximation algorithms

for asymmetric TSP by decomposing directed regular multigraphs. Journal of the
ACM 52(4), 602–626 (2005)

Approximating Multi-criteria Max-TSP 197

6. Manthey, B.: Approximate pareto curves for the asymmetric traveling salesman
problem. Computing Research Repository (2007) cs.DS/0711.2157, arXiv

7. Manthey, B., Ram, L.S.: Approximation algorithms for multi-criteria traveling sales-
man problems. Algorithmica (to appear)

8. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and op-
timal access of web sources. In: Proc. of the 41st Ann. IEEE Symp. on Foundations
of Computer Science (FOCS), pp. 86–92. IEEE Computer Society, Los Alamitos
(2000)

An Integer Programming Algorithm for Routing

Optimization in IP Networks

Andreas Bley

Zuse Institute Berlin
Takustr. 7, D-14195 Berlin, Germany

bley@zib.de

Abstract. Most data networks nowadays use shortest path protocols
to route the traffic. Given administrative routing lengths for the links of
the network, all data packets are sent along shortest paths with respect
to these lengths from their source to their destination.

In this paper, we present an integer programming algorithm for the
minimum congestion unsplittable shortest path routing problem, which
arises in the operational planning of such networks. Given a capacitated
directed graph and a set of communication demands, the goal is to find
routing lengths that define a unique shortest path for each demand and
minimize the maximum congestion over all links in the resulting routing.
We illustrate the general decomposition approach our algorithm is based
on, present the integer and linear programming models used to solve the
master and the client problem, and discuss the most important imple-
mentational aspects. Finally, we report computational results for various
benchmark problems, which demonstrate the efficiency of our algorithm.

Keywords: Shortest Path Routing, Integer Programming.

1 Introduction

In this paper, we present an integer programming algorithm to optimize the
routing in communication networks based on shortest path routing protocols
such as OSPF [22] or IS-IS [16], which are widely used in the Internet. With
these routing protocols, all end-to-end traffic streams are routed along shortest
paths with respect to some administrative link lengths (or routing weights),
that form the so-called routing metric. Finding a routing metric that induces
a set of globally efficient end-to-end routing paths is a major difficulty in such
networks. The shortest path routing paradigm enforces rather complicated and
subtle interdependencies among the paths that comprise a valid routing. The
routing paths can be controlled only jointly and only indirectly via the link
lengths. In this paper, we consider the unsplittable shortest path routing variant,
where the lengths must be chosen such that the shortest paths are unique and
each traffic stream is sent unsplit via its single shortest path.

One of the most important operational planning tasks in such networks is traf-
fic engineering. Its goal is to improve the service quality in the existing network

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 198–209, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Routing Optimization in IP Networks 199

by (re-)optimizing the routing of the traffic, but leaving the network topology
and hardware configuration unchanged. Mathematically, this can be formulated
as the minimum congestion unsplittable shortest path routing problem (Min-

Con-USPR). The problem input consists of a digraph D = (V,A) with arc
capacities ca ∈ Z for all a ∈ A, and a set of directed commodities K ⊆ V × V
with demand values dst ∈ Z for all (s, t) ∈ K. A feasible solution is an unsplit-
table shortest path routing (USPR) of the commodities, i.e., a metric of link
lengths wa ∈ Z, a ∈ A, that induce a unique shortest (s, t)-path for each com-
modity (s, t) ∈ K. Each commodity’s demand is sent unsplit along its shortest
path. The objective is to minimize the maximum congestion (i.e., the flow to
capacity ratio) over all arcs. The maximum congestion is a good measure and
typically used as a key indicator for the overall network service quality.

Due to their great practical relevance, shortest path routing problems have
been studied quite intensively in the last decade. Ben-Ameur and Gourdin [3],
Broström and Holmberg [13,14] studied the combinatorial properties of path sets
that correspond to shortest (multi-)path routings and devised linear program-
ming models to find lengths that induce a set of presumed shortest paths (or
prove that no such lengths exist). Bley [5,9], on the other hand, showed that
finding a smallest shortest-path conflict in a set of presumed shortest paths or
the smallest integer lengths inducing these paths is NP-hard. Bley [6,7] also
proved that Min-Con-USPR is inapproximable within a factor of Ω(|V |1−ε)
for any ε > 0, presented examples where the smallest link congestion that can
be obtained with unsplittable shortest path routing exceeds the congestion that
can be obtained with multicommodity flow or unsplittable flow routing by a
factor of Ω(|V |2), and proposed polynomial time approximation algorithms for
several special cases of Min-Con-USPR and related network design problems.
The minimum congestion shortest multi-path routing problem has been shown
to be inapproximable within a factor less than 3/2 by Fortz and Thorup [18].

Various approaches for the solution of network design and routing problems in
shortest path networks have been proposed. Algorithms using local search, sim-
ulated annealing, or Lagrangian relaxation techniques with the routing lengths
as primary decision variables are presented in [4,10,15,17,18], for example. These
length-based methods work well for shortest multi-path routing problems, where
traffic may be split among several equally long shortest paths, but they often
produce only suboptimal solutions for hard unsplittable shortest path routing
problems. As they deliver no or only weak quality guarantees, they cannot guar-
antee to find provenly optimal solutions.

Using mixed integer programming formulations that contain variables for the
routing lengths as well as for the resulting shortest paths and traffic flows, short-
est path routing problems can – in principle – be solved to optimality. Formula-
tions of this type are discussed in [10,19,24,26,29], for example. Unfortunately,
the relation between the shortest paths and the routing length always leads to
quadratic or very large big-M models, which are computationally extremely hard
and not suitable for practical problems.

200 A. Bley

In this paper, we present an integer programming algorithm that decomposes
the routing problem into the two tasks of first finding the optimal end-to-end
routing paths and then, secondly, finding a routing metric that induce these
paths. As we will show, this approach permits the solution of real-world prob-
lems. An implementation of this algorithm [11,9] is used successfully in the plan-
ning of the German national education and research network for several years.
Variants of this decomposition approach for shortest multi-path and shortest
path multicast routing problems are discussed in [12,20,27,28,29].

The remainder of this paper is organized as follows. In Section 2, we formally
define the problem addressed in this paper and introduce the basic notion and
notation. The overall decomposition algorithm, the integer and linear program-
ming models and sub-algorithms used for the solution of the master and the client
problem, and the most important aspects of our implementation are described
in Section 3. In Section 4, we finally report on numerical results obtained with
this algorithm for numerous real-world and benchmark problems and illustrate
the relevance of optimizing the routing in practice.

2 Notation and Preliminaries

Let D = (V,A) be a directed graph with arc capacities ca ∈ Z for all a ∈ A and
let K ⊆ V × V be a set of directed commodities with demand values dst ∈ Z
for all (s, t) ∈ K. A metric w = (wa) ∈ ZA of arc lengths is said to define an
unsplittable shortest path routing (USPR) for the commodities K, if the shortest
(s, t)-path P ∗

st with respect to w is uniquely determined for each commodity
(s, t) ∈ K. The demand of each commodity is routed unsplit along the respective
shortest path. For a metric w that defines such an USPR, the total flow through
an arc a ∈ A then is

fa(w) :=
∑

(s,t)∈K: a∈P ∗
st (w)

dst . (1)

The task in the minimum congestion unsplittable shortest path routing problem
Min-Con-USPR is to find a metric w ∈ ZA that defines an USPR for the given
commodity set K and minimizes the maximum congestion L := max{fa(w)/ca :
a ∈ A}.

Before presenting of our algorithm, we need to introduce some further nota-
tion. We say that a metric w is compatible with a set P of end-to-end routing
paths, if each path P ∈ P is the unique shortest path between its terminals with
respect to w. A metric w is said to be compatible with set of node-arc pairs
F ⊂ V × A, if arc a is on a unique shortest path towards t for all (t, a) ∈ F . If
there exists such a metric, we say that the set F is a valid unique shortest path
forwarding (USPF), otherwise we call it an (USPF-) conflict. One easily verifies
that a metric is compatible with a path set P if and only if it is compatible with
the set of node-arc pairs F :=

⋃
P∈P{(t, a) : t is destination of P , a ∈ P}.

Clearly, any subset (including the empty set) of an USPF is an USPF as well.
Hence, the family of all USPF in the digraph D forms an independence system
(or hereditary family) I ⊂ 2V ×A. The circuits of this independence system are

Routing Optimization in IP Networks 201

exactly the irreducible conflicts. The family of all irreducible conflicts is denoted
by C ⊂ 2V ×A.

In general, these set families can be extremely complex and computationally
intractable [9]. Given an arbitrary set F ⊂ V × A, the smallest conflict (with
respect to the number of node-arc pairs) in F may be arbitrarily large and even
approximating its size within a factor less than 7/6 is NP-hard. Approximating
the size of the largest valid USPF in F within a factor less than 8/7 is NP-hard
as well. However, one can decide in polynomial time whether or not a given set
F ⊂ V × A is a valid USPF and, depending on that, either find a compatible
metric or some (not necessarily minimal) irreducible conflict in F , which is the
foundation of the algorithm described in this paper.

3 Integer Programming Algorithm

Similar to Bender’s decomposition, our algorithm decomposes the problem of
finding an optimal shortest path routing into the master problem of finding the
optimal end-to-end paths and the client problem of finding compatible routing
lengths for these paths.

The master problem is formulated as an integer linear program and solved
with a branch-and-cut algorithm. Instead of using routing weight variables, the
underlying formulation contains special inequalities to exclude routing path con-
figurations that are no valid unsplittable shortest path routings. These inequal-
ities are generated dynamically as cutting planes by the client problem during
the execution or the branch-and-cut algorithm.

Given a set of routing paths computed by the master problem’s branch-and-
cut algorithm, the client problem then is to find a metric of routing lengths that
induce exactly these paths. As we will see in Section 3.2, this problem can be for-
mulated and solved as a linear program. If the given paths indeed form a valid
shortest path routing, the solution of this linear program yields a compatible
metric. If the given paths do not form a valid unsplittable shortest path routing,
the client linear program is infeasible. In this case, the given routing paths con-
tain a conflict that must not occur in any admissible shortest path routing. This
conflict, which can be derived from the dual solution of the infeasible client linear
program, then can be turned into an inequality for the master problem, which is
valid for all admissible shortest path routings, but violated by the current rout-
ing. Adding this inequality to the master problem, we then cut off the current
non-admissible routing and proceed with the master branch-and-cut algorithm
to compute another candidate routing.

3.1 Master Problem

There are several ways to formulate the master problem of Min-Con-USPR

as a mixed integer program. For notational simplicity, we present a variation of
the disaggregated arc-routing formulation used in our algorithm, which contains
additional artificial variables that describe the unique shortest path forwarding
defined by the routing.

202 A. Bley

The primary decision variables used in this formulation are the variables xst
a ∈

{0, 1} for all (s, t) ∈ K and a ∈ A. These variables describe which arcs are
contained in the routing paths. Variable xst

a is supposed to be 1 if and only if
arc a is contained in the routing path for commodity (s, t). A single variable
L ∈ R represents the maximum congestion that is attained by the routing. The
additional artificial variables yt

a ∈ {0, 1} for all t ∈ V and a ∈ A describe the
forwarding defined by the routing paths. Variable yt

a is supposed to be 1 if there
is a routing path towards t that contains arc a. With these variables the master
problem of Min-Con-USPR can be formulated as follows:

min L (2a)

s.t.
∑

a∈δ+(v)

xst
a −

∑

a∈δ−(v)

xst
a =

⎧
⎪⎨

⎪⎩

−1 if v = s

1 if v = t

0 else
(s, t) ∈ K, v ∈ V (2b)

∑

(s,t)∈K

dstx
st
a ≤ ca L a ∈ A (2c)

xst
a ≤ yt

a (s, t) ∈ K, a ∈ A (2d)
∑

a∈δ+(v)

yt
a ≤ 1 t ∈ V, v ∈ V (2e)

∑

(a,t)∈C

yt
a ≤ |C| − 1 C ∈ C (2f)

xst
a ∈ {0, 1} (s, t) ∈ K, a ∈ A (2g)
L ≥ 0. (2h)

Subproblem (2a)–(2c) together with the integrality and non-negativity con-
straints (2g) and (2h) is a standard arc-routing formulation for the unsplittable
multicommodity flow problem, whose objective is to minimize the congestion L.

Inequalities (2d) force the artificial variables yt
a to be (at least) 1 for all arcs

a that are contained in some routing path towards destination t. Together with
the out-degree constraints (2e) this ensures that, for each destination t ∈ V , the
routing paths towards t form an anti-arborescence (a reversely oriented tree).
This is clearly necessary for the paths in any valid unsplittable shortest path
routing.

Constraints (2f) finally ensure that no integer solution of (2) contains all node-
arc pairs of any (irreducible) USPF-conflict C ∈ C. As the irreducible conflicts
are exactly the circuits of the independence system formed by all valid unique
shortest path forwarding, this implies that the artificial variables yt

a describe a
valid USPF. Consequently, the routing given by any integer feasible solution of
(2) is a valid unsplittable shortest path routing. In general, the number of these
conflict constraints (2f) can be exponentially large. They are separated via the
client problem during the branch-and-cut solution process.

Note that the model contains no explicit constraints forcing the artificial vari-
ables yt

a to attain only values 0 or 1. These constrains are not necessary. Any

Routing Optimization in IP Networks 203

solution (x,y, L) with xst
a ∈ {0, 1} for all (s, t) ∈ K and a ∈ A can be easily

turned into an equivalent solution with ya
t ∈ {0, 1} for all t ∈ V and a ∈ A by

setting ya
t := max{xst

a : s with (s, t) ∈ K} for all t and a.

3.2 Client Problem

Now suppose we are given an integer solution (x,y, L) of formulation (2) or, more
precisely, of a subsystem of (2) containing only some of the conflict constraints
(2f) so far.

Let F be the presumed unique shortest path forwarding given by this solution,
i.e., F = {(t, a) : yt

a = 1}. Our goal in the client problem is to find a compatible
metric w for F . However, if the given solution (x,y, L) violates some of the
conflict constraints (2f) that have not yet been added to the master formulation,
such a metric does not exist. In this case, the task is to generate one of these
violated inequalities.

The first part of this problem can be solved with linear programming tech-
niques. A number of alternative formulations for this so-called inverse shortest
paths problem (ISP) have been proposed in the literature [3,25]. In the following,
we present the aggregated formulation used in our algorithm together with the
arc-routing formulation for the master problem.

Let F be the given presumed unique shortest path forwarding. For each pair
(t, a) ∈ F , arc a = (u, v) is assumed to be on a unique shortest path from u to t.
Hence, the arcs a′ ∈ δ+(u)\{a} must not be on any shortest (u, t)-path. The set of
all implied non shortest path node-arc pairs is F̄ =

⋃
(t,(u,v))∈F (δ+(u)\{(u, v)}):

For each pair (t, a) ∈ F̄ , arc a = (u, v) must not be on a shortest path from u to
t. (Note that we cannot simply assume F̄ = V ×A\F , because F not necessarily
prescribes the shortest paths between all node pairs. Arcs that are not relevant
for the routing of the given commodities may or may not be on shortest paths.)

Our formulation of the inverse shortest paths problem uses a variable wa ∈ Z
for the length of each arc a ∈ A and a variable rt

v ∈ R for the potential of each
node v ∈ V with respect to each destination t ∈ V and the metric w. (If rt

t = 0,
the smallest possible potential rt

v of node v is exactly the distance from v to t
with respect to the arc lengths wa.) With these variables, the inverse shortest
paths problem for the given forwarding F , can be formulated as follows:

min wmax (3a)

s.t. w(u,v) − rt
u + rt

v = 0 (t, (u, v)) ∈ F (3b)

w(u,v) − rt
u + rt

v ≥ 1 (t, (u, v)) ∈ F̄ (3c)

w(u,v) − rt
u + rt

v ≥ 0 (t, (u, v)) ∈ (V ×A) \ F \ F̄ (3d)
1 ≤ wa ≤ wmax a ∈ A (3e)

rt
v ∈ R t ∈ V, v ∈ V (3f)

wa ∈ Z a ∈ A . (3g)

Constraints (3b),(3d), and (3e) ensure that the lengths wa in any solution of (3)
form a compatible metric for the given forwarding F . The term w(u,v) − rt

u + rt
v

204 A. Bley

is the difference between the length of the shortest path starting in node u,
passing through arc (u, v), and ending in node t, and the distance from node v
to node t. This difference must be 0 for all arcs (u, v) that are on a shortest path
and strictly greater than 0 for all arcs that must not be on a shortest path, as
expressed in constraints (3b) and (3c). For all remaining arcs it must be non-
negative. Formulation (3) has a solution if and only if there exist a compatible
metric for the given forwarding F . Furthermore, there is a compatible metric
with lengths in the range {1, 2, . . . ,M} if and only if the optimal solution value
wmax of formulation (3) is less or equal to M .

Note that formulation (3) is an integer program and may be computationally
hard. In fact, Bley [8] proved that it is already NP-hard to approximate its
optimum value within a factor less than 9/8 in general.

In our algorithm, we solve the linear relaxation of (3) in a first step and scale
and round its optimal fractional solution to an integer feasible solution of (3)
afterwards. It is not difficult to verify that the integer program (3) has a solution
if and only if its linear relaxation has. Using the rounding scheme proposed by
Ben-Ameur and Gourdin [3], we obtain lengths that exceed the minimal ones
by a factor of at most min (|V |/2, |Pmax|), where Pmax is the longest prescribed
shortest path. For practically relevant network sizes, the weights computed with
this approximate method easily fit into the admissible range of all modern rout-
ing protocols. So, we can safely ignore the integrality constraint (3g) in practice.

If the linear relaxation of (3) is infeasible, then the given solution (x,y, L)
of the (incomplete) master formulation is not a valid routing. In this case, the
presumed forwarding F is no valid unsplittable shortest path forwarding. It
contains at least one (irreducible) conflict C ∈ C, whose corresponding inequality
(2f) is violated by the given solution (x,y, L). To find one of these conflicts, we
iteratively try to remove each node-arc pair from F . In each iteration, we remove
one pair (t, a) from F , update the set F̄ of implied non-shortest path node-arc
pairs, and solve the corresponding linear relaxation of (3). If this linear program
remains infeasible, we remove the pair (t, a) permanently from F . Otherwise,
we reinsert it into F and keep it permanently. If no more node-arc pair can be
removed, the remaining set F defines an irreducible conflict, whose corresponding
conflict inequality (2f) for C = F is violated by the given solution (x,y, L). In
our implementation, we improved the practical performance of this procedure
significantly by removing initially all those pairs (t, (u, v)) from F , for which
the dual variables of the corresponding constraint (3b) and the dual variables
of all constraints (3c) implied by (t, (u, v)) ∈ F are 0. If these constraints are
not active in the infeasible subsystem of (3), there is at least one (irreducible)
conflict that is not related to the fact that (t, (u, v)) ∈ F .

Note that this iterative method finds an irreducible conflict inequality (2f), but
not necessarily the most violated one. Finding the most violated such inequal-
ity is NP-hard, even if the given solution of the master problem is integer [9].
Furthermore, note that this approach solves the separation problem over the
conflict inequalities (2f) only for integer solutions (x,y, L). For fractional so-
lutions (x,y, L), the presumed forwarding F is not well-defined. A separation

Routing Optimization in IP Networks 205

heuristic based on an approximate integer programming model of the separation
problem (for shortest multi-path routings), which can be applied for fractional
solutions, has been proposed by Tomaszewski et al. [28]. Also, several subclasses
of (2f) can be separated in polynomial time; see [9,11,13,14,28,29].

3.3 Implementation

From the theoretical point of view, the branch-and-cut approach presented above
seems not very attractive. The integrality gap of the integer programming formu-
lation (2) can be very large and the separation of the conflict inequalities (2f) is
NP-hard for fractional solutions of (2). Nevertheless, implemented carefully this
approach works surprisingly well in practice. In the following, we briefly discuss
the most important aspects of our implementation of this algorithm. Further
details, including a description of all used cutting planes and separation algo-
rithms, of the specially tailored branching schemes, and of the problem-specific
primal heuristics, can be found in [9].

In our implementation, the initial formulation of the master problem con-
tains only the arc-routing variables xst

a , the congestion variable L, and the flow
conservation and capacity constraints (2b) and (2c). All other constraints are
separated. The degree constraints (2e) are separated by a simple enumerative
algorithm searching through all node pairs t, v ∈ V . The conflict constraints (2f)
are separated via the solution of the client problem as described in the previous
section. However, the artificial variables yt

a involved in these constraints and the
linking constraints (2d) are not generated explicitly. Instead, we assume

yt
a := max{xst

a : s with (s, t) ∈ K} for all t ∈ V and a ∈ A, (4)

disaggregate each of the inequalities (2e) and (2f) into an equivalent set of in-
equalities on the arc-routing variables xst

a instead of the forwarding variables
ya

t , and separate over the set of these disaggregated inequalities. This is done by
applying the separation algorithms for the original inequalities to the values ya

t

defined as in (4). If a violated inequality is found, each variable ya
t in this in-

equality is replaced by a variable xst
a = arg max{xst

a : s with (s, t) ∈ K}, which
yields one of the most violated disaggregated inequalities corresponding to the
violated original inequality.

At each node of the master problem’s branch-and-bound tree we solve the
current LP relaxation and separate violated out-degree constraint and several
other classes of inequalities.

Analogous to the out-degree inequalities (2e), which ensure that the rout-
ing paths towards each destination t form an anti-arborescence, we also sep-
arate in-degree inequalities, which ensure that the routing paths emanating
from each source s form an arborescence. With the implicit, artificial variables
zs

a := max{xst
a : t with (s, t) ∈ K} for all s ∈ V and a ∈ A, these inequalities

can be easily formulated as
∑

a∈δ−(v)

zs
a ≤ 1 v, s ∈ V . (5)

206 A. Bley

Using the same disaggregation approach as for the out-degree constraints, we
separate the disaggregated version of these inequalities with a simple enumera-
tive algorithm.

Numerous types of valid inequalities can be derived from the so-called Bellman
property (or subpath consistency) of shortest path routings. This property basi-
cally says the following: If both terminals s1 and t1 of a commodity (s1, t1) ∈ K
are contained in the routing path of another commodity (s2, t2) ∈ K, then the
routing path of commodity (s1, t1) must be a subpath of commodity (s2, t2).
Otherwise there is no metric such that the two different (sub-)paths between s1
and t1 are both unique shortest paths. In our algorithm, we use the following
three types of inequalities that are implied by the Bellman property:

xs,v
a − xs,t

a +
∑

e∈δ−(v)

xs,t
e ≤ 1 (s, t), (s, v) ∈ K, a ∈ A , (6)

xv,t
a − xs,t

a +
∑

e∈δ−(v)

xs,t
e ≤ 1 (s, t), (v, t) ∈ K, a ∈ A , (7)

xs,v
a + xv,t

a − xs,t
a − 2(1 −

∑

e∈δ−(v)

xs,t
e) ≤ 0 (s, v), (v, t), (s, t) ∈ K, a ∈ A . (8)

Although in general none of these inequalities is facet-defining for the polytope
associated with (2), they all proved to be very useful in practice. In our imple-
mentation, we separate over each of these three classes with a straightforward
enumerative algorithm.

In addition to these inequalities, which describe the valid routing path pat-
terns independent of the given traffic demands and link capacities, our algorithm
also uses cutting planes that are based on the resulting traffic flows and the
link capacities. In practice, induced cover inequalities based on the precedence
constrained knapsacks defined by a single arc capacity constraint (2c) and the
subpath consistency among the paths across that arc proved to be very effective.
Due to the space limitations in this extended abstract, we cannot discuss these
inequalities here. A detailed description of these inequalities and the heuristic
separation methods used in our algorithm is given in [9].

Whenever an integer solution candidate for the (incomplete) master formu-
lation is found, we must solve the client problem to decide whether or not it
defines a valid unsplittable shortest path routing and to find a compatible met-
ric or a violated conflict inequality (2f). In our implementation, we solve the
client problem not only for the fully integer solutions at the leaves of the mas-
ter problem’s branch-and-bound tree, but also for non-integer solutions arising
within the branch-and-bound tree. In practice, this modification drastically re-
duced the running time of the overall algorithm.

At each node of the master problem’s branch and bound tree, we consider the
potential forwarding F ⊆ V ×A defined by the integer and near integer routing
variables. In our implementation, we let F := {(t, a) : yt

a ≥ 0.8}. We solve the
client problem whenever this presumed forwarding differs from the one at the
parent node in the branch-and-bound tree by more than two node-arc pairs, if

Routing Optimization in IP Networks 207

Table 1. Computational results for SNDlib problems

Problem Nodes Links Demands LP LB Sol Nodes Gap (%) Time (s)

Atlanta 15 22 210 0.65 0.86 0.86 30 0.0 10.3

Dfn-bwin 10 45 90 0.34 0.69 0.69 89 0.0 26.5

Dfn-gwin 11 21 110 0.50 0.51 0.51 521 0.0 16.3

Di-yuan 11 42 22 0.25 0.62 0.62 33 0.0 1.8

France 25 45 300 0.60 0.71 0.74 76 5.0 10000.0

Germany50 50 88 662 0.64 0.64 0.73 56 12.7 10000.0

NewYork 16 49 240 0.44 0.62 0.62 15 0.0 54.9

Nobel-EU 28 41 378 0.44 0.44 0.45 75 0.3 10000.0

Nobel-GER 17 26 121 0.64 0.73 0.73 101 0.0 114.1

Nobel-US 14 21 91 0.48 0.49 0.49 77 0.0 20.4

Norway 27 51 702 0.54 0.54 0.62 99 14.9 10000.0

PDH 11 34 24 0.34 0.80 0.80 85 0.0 6.37

Polska 12 18 66 0.82 0.93 0.93 2149 0.0 200.2

TA1 24 55 396 0.30 0.93 0.93 11 0.0 289.2

the depth of the current node in the branch-and-bound is 2k for some k ∈ Z,
or if all arc-routing variables are integer. If the linear relaxation of the client
problem (3) is feasible for this forwarding F , the computed link lengths define a
heuristic solution for the Min-Con-USPR problem, which may improve on the
best known solution. Otherwise, if a violated conflict inequality (2f) is found,
this inequality may cut off the entire invalid branch at the current node in the
branch-and-bound tree.

4 Results

The presented algorithm has been implemented as part of the network optimiza-
tion library Discnet [2]. The data structures and algorithms are based on the
standard c++ library and Leda [1], the linear programs arising in the solution
process are solved with Cplex 11.0 [21]. The master problem’s branch-and-cut
framework and all separation procedures are implemented directly in c++.

Table 1 shows computational results for a collection of benchmark problems
taken from the Survivable Network Design Library [23]. All computations were
performed on an Intel Pentium 4 machine with 2.66 GHz and 4 GB RAM run-
ning Linux 2.6. The algorithm was run with a total CPU time limit of 10,000
seconds on each problem instance. The underlying networks are bidirectional and
have the same capacity for both directions of all links. The numbers of nodes,
bidirected links and non-zero traffic demands are shown in the first columns of
Table 1. Column LP shows the lower bound obtained by solving the initial lin-
ear relaxation of (2) at the root node of the master problem’s branch-and-bound
tree. The columns LB and Sol show the best proven lower bound and the best
solution value found by our algorithm within the given time limit. The remain-
ing columns show the number of explored branch-and-bound nodes, the residual

208 A. Bley

optimality gap, and the total CPU time until either optimality was proven or
the time limit was exceeded.

The results show that our algorithm can be used to solve real-world size prob-
lems. All small and medium size instances have been solved optimally within
seconds or minutes. For large problems optimality cannot always be achieved.
Instances with dense networks and lots of potential routing paths for most de-
mand pairs are more difficult than those where the underlying networks are fairly
sparse. For instances with dense networks, lots of violated conflict constraints
are separated during the execution of the algorithms, which often drastically
slows down the solution of the linear relaxation. For the most difficult problems,
only few branch-and-bound nodes could be explored. Yet, even for those prob-
lem that could not be solved to optimality, our algorithm always found better
solutions than length-based heuristic and Lagrangian approaches. Our algorithm
also clearly outperforms all other integer programming approaches presented in
the literature so far, which typically even fail to achieve gaps below 30% for
networks larger than 10 nodes.

References

1. Algorithmic Solutions Software GmbH: LEDA – Library of Efficient Data types
and Algorithms (2000–2007), http://www.algorithmic-solution.com/leda

2. atesio GmbH: Discnet – Network optimization software library (2000–2007),
http://www.atesio.de

3. Ben-Ameur, W., Gourdin, E.: Internet routing and related topology issues. SIAM
Journal on Discrete Mathematics 17, 18–49 (2003)

4. Bley, A.: A Lagrangian approach for integrated network design and routing in
IP networks. In: Ben-Ameur, W., Pertrowski, A. (eds.) 1st International Network
Optimization Conference, pp. 107–113. Institut National des Télécommunications,
Evry/Paris (2003)

5. Bley, A.: Finding small administrative lengths for shortest path routing. In: Gou-
veia, L., Mourão, C. (eds.) 2nd International Network Optimization Conference,
pp. 121–128. Universidade de Lisboa, Lisbon (2005)

6. Bley, A.: On the approximability of the minimum congestion unsplittable short-
est path routing problem. In: Jünger, M., Kaibel, V. (eds.) IPCO 2005. LNCS,
vol. 3509, pp. 97–110. Springer, Heidelberg (2005)

7. Bley, A.: Approximability of unsplittable shortest path routing problems. Technical
report ZR-06-02, Zuse Institute Berlin (2006)

8. Bley, A.: Inapproximability results for the inverse shortest paths problem with
integer lengths and unique shortest paths. Networks 50, 29–36 (2007)

9. Bley, A.: Routing and capacity optimization for IP networks. PhD thesis, Technis-
che Universität Berlin (2007)

10. Bley, A., Grötschel, M., Wessäly, R.: Design of broadband virtual private networks:
Model and heuristics for the B-WiN. In: Dean, N., Hsu, D., Ravi, R. (eds.) Robust
Communication Networks: Interconnection and Survivability. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, vol. 53, pp. 1–16. AMS
(1998)

11. Bley, A., Koch, T.: Integer programming approaches to access and backbone IP-
network planning. In: 3rd International Conference on High Performance Scientific
Computing, Hanoi, Vietnam (2006)

http://www.algorithmic-solution.com/leda
http://www.atesio.de

Routing Optimization in IP Networks 209

12. Bourquia, N., Ben-Ameur, W., Gourdin, E., Tolla, P.: Optimal shortest path rout-
ing for Internet networks. In: Ben-Ameur, W., Pertrowski, A. (eds.) 1st Inter-
national Network Optimization Conference, pp. 119–125. Institut National des
Télécommunications, Evry/Paris (2003)

13. Broström, P., Holmberg, K.: Determining the non-existence of compatibel OSPF
weights. In: Nordic MPS 2004. Linköping Electronic Conference Proceedings,
vol. 14, pp. 7–21. Linköping University Electronic Press (2004)

14. Broström, P., Holmberg, K.: Stronger necessary conditions for the existence of a
compatible OSPF metric. Technical report LiTH-MAT-R-2004-08, Linköping Uni-
versity (2004)

15. Buriol, L., Resende, M., Ribeiro, C., Thorup, M.: A hybrid genetic algorithm for
the weight setting problem in OSPF/IS-IS routing. Networks 46, 36–56 (2005)

16. Callon, R.: Use of OSI IS-IS for routing in TCP/IP and dual environments. IETF
Internet RFC 1195 (1990)

17. Ericsson, M., Resende, M., Pardalos, P.: A genetic algorithm for the weight set-
ting problem in OSPF routing. Journal of Combinatorial Optimization 6, 299–333
(2002)

18. Fortz, B., Thorup, M.: Increasing Internet capacity using local search. Computa-
tional Optimization and Applications 29, 13–48 (2004)

19. de Giovanni, L., Fortz, B., Labbé, M.: A lower bound for the Internet protocol net-
work design problem. In: Gouveia, L., Mourão, C. (eds.) 2nd International Network
Optimization Conference, pp. 402–408. Universidade de Lisboa, Lisbon (2005)

20. Holmberg, K., Yuan, D.: Optimization of Internet protocol network design and
routing. Networks 43, 39–53 (2004)

21. ILOG CPLEX Division: CPLEX 11.0 (2007), http://www.ilog.com
22. Moy, J.: OSPF version 2. IETF Internet RFC 2328 (1998)
23. Orlowski, S., Pióro, M., Tomaszewski, A., Wessäly, R.: SNDlib 1.0 – Survivable

Network Design Library. In: Fortz, B. (ed.) 3rd International Network Optimization
Conference. Université Libre de Bruxels, Brussels (2007), http://sndlib.zib.de

24. Parmar, A., Ahmed, S., Sokol, J.: An integer programming approach to the OSPF
weight setting problem. Optimization Online (2006)

25. Pióro, M., Medhi, D.: Routing, Flow, and Capacity Design in Communication and
Computer Networks. Morgan Kaufmann, San Francisco (2004)

26. Pióro, M., Szentesi, A., Harmatos, J., Jüttner, A.: On OSPF related network op-
timization problems. In: 8th IFIP Workshop on Performance Modelling and Eval-
uation of ATM & IP Networks, Ilkley, UK, pp. 70/1–70/14 (2000)

27. Prytz, M.: On optimization in design of telecommunications networks with mul-
ticast and unicast traffic. Ph.D. thesis, Royal Institute of Technology, Stockholm,
Sweden (2002)

28. Tomaszewski, A., Pióro, M., Dzida, M., Mycek, M., Zagożdżon, M.: Valid inequali-
ties for a shortest-path routing optimization problem. In: Fortz, B. (ed.) 3rd Inter-
national Network Optimization Conference. Université Libre de Bruxels, Brussels
(2007)

29. Tomaszewski, A., Pióro, M., Dzida, M., Zagożdżon, M.: Optimization of admin-
istrative weights in IP networks using the branch-and-cut approach. In: Gouveia,
L., Mourão, C. (eds.) 2nd International Network Optimization Conference, pp.
393–400. Universidade de Lisboa, Lisbon (2005)

http://www.ilog.com
http://sndlib.zib.de

A Constant-Approximate Feasibility Test
for Multiprocessor Real-Time Scheduling

Vincenzo Bonifaci1,2,", Alberto Marchetti-Spaccamela1,"", and Sebastian Stiller3

1 Sapienza Università di Roma, Italy
2 Università degli Studi dell’Aquila, Italy
3 Technische Universität Berlin, Germany

Abstract. We devise the first constant-approximate feasibility test for sporadic
multiprocessor real-time scheduling. We give an algorithm that, given a task sys-
tem and ε > 0, correctly decides either that the task system can be scheduled
using the earliest deadline first algorithm on m speed-(2− 1/m + ε) machines,
or that the system is infeasible for m speed-1 machines. The running time of the
algorithm is polynomial in the size of the task system and 1/ε . We also provide
an improved bound trading off speed for additional machines.

Our analysis relies on a new concept for counting the workload of an interval,
that might also turn useful for analyzing other types of task systems.

1 Introduction

We study the problem of scheduling recurring processes, or tasks, on a multiprocessor
platform. An instance of the problem is given by a finite set I of tasks, which need to be
executed by the system; each task generates a possibly infinite sequence of jobs. In the
following we denote by n the cardinality of I.

In the periodic version of the problem, a task τ , τ ∈ I, is characterized by a quadruple
of positive numbers: an offset oτ that represents the time instant when the first job
generated by the task is released, a processing time cτ , a relative deadline Dτ and a
period Tτ . Each occurrence of task τ is represented by a job: the k-th occurrence of
task τ is released at time oτ +(k−1)Tτ , requires at most cτ units of processor time and
must complete its execution before time oτ +(k−1)Tτ +Dτ . Note that a task defines an
infinite sequence of jobs, but a given set of tasks generates exactly one job sequence.

In the sporadic case, each task is characterized by a triple (cτ ,Dτ ,Tτ) where cτ , Dτ
have the same meaning as in the periodic case, while Tτ denotes the minimum time
interval between successive occurrences of the task. Note that in a sporadic task system
the time instant when the next invocation of a task will be released after the minimal
separation time has elapsed is unknown. Therefore, a given set of tasks can generate
infinitely many sequences of jobs.

The correctness of a hard-real-time system requires that all jobs complete by their
deadlines. A periodic (sporadic) task system is feasible if there is a feasible schedule for
any possible sequence of jobs that is consistent with the period, deadline, and worst-case

" Research partially supported by the Future and Emerging Technologies Unit of EC (IST prior-
ity - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).

"" Research supported by MIUR-FIRB project RBIN047MH9 Italy-Israel.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 210–221, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Constant-Approximate Feasibility Test for Multiprocessor Real-Time Scheduling 211

execution time constraints of the task system, and it is schedulable by a given algorithm
if the algorithm finds a feasible schedule for every such sequence of jobs. In the sequel
we focus on preemptive scheduling algorithms that are allowed to interrupt the execution
of a job and resume it later.

Given a scheduling algorithm A, a schedulability test for A is an algorithm that takes
as input a description of a task system and answers whether the system is schedulable
by A or not. A schedulability test is exact if it correctly identifies all schedulable and
unschedulable task systems and it is sufficient if it correctly identifies all unschedulable
task systems, but may give a wrong answer for schedulable task systems. A sufficient
schedulability test that can verify whether a given job set is schedulable is a natural
requirement for a scheduling algorithm that must be used in hard-deadline real-time
applications. In fact, from a practical point of view, there is no difference between a
task system that is not schedulable and one that cannot be proven to be schedulable.

In the case of a single machine, the problem has been widely studied and effective
scheduling algorithms are well understood [5,11]. In this paper we study scheduling
algorithm for sporadic task systems on parallel machines. The problem is not only in-
teresting from a theoretical point of view but is also relevant in practice. In fact, real-
time multiprocessor systems are becoming common: there are single-chip architectures,
characterized by a small number of processors and large-scale signal-processing sys-
tems with many processing units.

Related work
There is an extensive literature on real-time scheduling. We limit the following discus-
sion to the results that are more relevant to our work.

Single machine scheduling. In the case of a single machine it is known [5,7,11] that
the earliest deadline first scheduling algorithm (EDF), which at each instant in time
schedules the available job with the smallest deadline (with ties broken arbitrarily), is
an optimal scheduling algorithm for scheduling a periodic (or sporadic) task system
in the following sense: if it is possible to preemptively schedule a given collection of
independent jobs such that all the jobs meet their deadlines, then the schedule generated
by EDF for this collection of jobs will meet all deadlines as well. Despite this positive
result, we remark that the feasibility test for periodic task systems, although solvable in
exponential time, is strongly co-NP-hard even in special cases [5,10].

Approximate feasibility tests have been proposed that allow the design of efficient
feasibility tests (e.g. running in polynomial time) while introducing a small error in the
decision process, that is controlled by an accuracy parameter. Such approaches have
been developed for EDF scheduling and for other scheduling algorithms.

Two different paradigms can be used to define approximate feasibility tests: pes-
simistic and optimistic. If a pessimistic feasibility test returns “feasible”, then the task
set is guaranteed to be feasible. If the test returns “infeasible”, the task set is guaranteed
to be infeasible on a slower processor, of computing capacity (1− ε), where ε denotes
the approximation guaranteed.

If an optimistic test returns “feasible”, then the task set is guaranteed to be feasible
on a (1 + ε)-speed processor. If the test returns “infeasible”, the task set is guaranteed
to be infeasible on a unit-speed processor [6].

212 V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller

Fully polynomial-time approximation schemes (FPTAS) are known for a single
processor; in fact for any ε > 0 there exists a feasibility test that returns an ε-
approximation; the running time of the algorithm is polynomial in the number of tasks
and in 1/ε (see for example [1,2,6,8] and references therein).

Finally we observe that, in the case of one processor, the sporadic feasibility problem
is known to reduce to a special case of the periodic problem, where all tasks have offset
0 (i.e. each task releases its first job at time zero).

Multiple machine scheduling. We first observe that in the multiprocessor case the
previous analogy between sporadic and periodic problems is not true.

Regarding the analysis of EDF, it is known [12] that any feasible task system on
m machines of unit capacity is EDF-schedulable on m machines of speed 2− 1/m.
This result holds for EDF and other policies and has not been improved since then.
Subsequent work has analyzed the advantage of trading speed for machines [9], while
further work on conditions for the schedulability of EDF has been done by Baker [3].

Note that the result of [12] does not imply an efficient test for deciding when EDF
(possibly with extra speed) can schedule a sporadic task system. Thus, the main open
problem in order to apply the result of Phillips et al. [12] is the lack of a feasibility test.

The problem has attracted a lot of attention in recent years (see e.g. [4] and refer-
ences therein for a thoroughly presentation). A number of special cases have also been
studied; for example, when for each task the deadline is equal to the period (implicit-
deadline task systems), it has been shown that

∑
τ∈I

cτ
Tτ

≤ m and max
τ∈I

cτ
Tτ

≤ 1

gives a necessary and sufficient test for feasibility of the system.
However, not much was known regarding the feasibility of an arbitrary-deadline task

system. A sufficient test in this case is given by

∑
τ∈I

cτ
min(Dτ ,Tτ)

≤ m and max
τ∈I

cτ
min(Dτ ,Tτ)

≤ 1,

but this test is far from approximating a necessary condition, i.e., it does not provide a
good approximate feasibility test in general (it is not hard to see that there exist feasible
task systems for which ∑τ∈I cτ/min(Dτ ,Tτ) can be Ω(m logm)).

To the best of our knowledge, no better bound is known. We refer the reader to the
survey [4] for feasibility tests that are known for other special cases.

Our Contribution
We give the first constant-approximate feasibility test for sporadic multiprocessor real-
time scheduling. Namely, we give a test that, given a sporadic multiprocessor instance
I, decides whether it can be scheduled by EDF on m speed-(2− 1/m + ε) machines,
or shows that the instance violates at least one of three basic conditions, which are
necessary for schedulability on m speed-1-machines. In fact we give a slightly stronger
result, allowing to trade some extra speed for extra machines. Note, that in general extra
machines are less powerful than extra speed.

Two of the basic conditions are trivial. The third condition is new and provides
a lower bound on the processing requirement of an interval. We call it the forward

A Constant-Approximate Feasibility Test for Multiprocessor Real-Time Scheduling 213

forced demand. This concept is strong enough to approximately capture the feasibility
of scheduling a sporadic task system on a multiprocessor platform; however it is simple
enough to be approximated in polynomial time up to an arbitrarily small ε > 0: in Sec-
tion 4 we give an algorithm that checks the third condition in time polynomial in the
input size of I and 1/ε , for any desired error bound ε > 0.

2 The Model

An instance is a finite set of tasks I. Each task τ ∈ I is a triple of positive numbers,
namely, a processing time cτ , a relative deadline Dτ and a period or minimal separation
time Tτ . Every job j belongs to a task τ j, and has a release date r j ≥ 0. We write
c j := c jτ , and D j := D jτ , and Tj := Tjτ , and we call d j := r j +D j the (absolute) deadline
of j. We assume Dτ , cτ , Tτ ∈ N.

A (sporadic) job sequence R of an instance I is an arbitrary, countable set of jobs, all
belonging to tasks in I, with the following property: Any pair of distinct jobs j and k
belonging to the same task τ satisfies |r j − rk| ≥ Tτ .

A feasible schedule for a job sequence R on m machines is a set of measurable
functions S j : R+ → {0, . . . ,m}, one function for each job j ∈ R, satisfying:

– Everything is scheduled: ∀ j ∈ R : c j = ∑m
p=1 |S−1

j (p)|.
– Deadlines and release dates are respected: ∀ j ∈ R :

⋃m
p=1 S−1

j (p) ⊆ [r j,d j].
– Each machine processes at most one job at a time: ∀p ∈ {1, . . . ,m} : ∀ j
= g ∈ R :

S−1
j (p)∩S−1

g (p) = /0.
– Jobs of the same task are not scheduled in parallel:

∀ j
= g ∈ R : τ j = τg ⇒
m⋃

p=1

S−1
j (p) ∩

m⋃

p=1

S−1
g (p) = /0.

– No job is processed by two machines at the same time:

∀ j ∈ R,∀p
= q ∈ {1, . . . ,m} : S−1
j (p)∩S−1

j (q) = /0.

Preemption and migration of jobs are explicitly allowed.
Given a real number x we denote by x+ its positive part, that is x+ := max(x,0).

3 A Feasibility Test

Definition 1. Consider a job j with release date r j, absolute deadline d j, and process-
ing time c j satisfying d j ≥ r j + c j (i.e., for its task we have Dτ j ≥ cτ j). For a non-empty
interval Δ = [t,t ′) with d j ∈ Δ , we call

f (j,Δ) :=
(
c j − (t− r j)+)+

the forward forced demand of j in Δ .

Note that, for a job j and an interval Δ such that both deadline and release date lie in
the interval (that is, r j,d j ∈ Δ), the forward forced demand equals the processing time

214 V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller

of the job (f (j,Δ) = c j). If cτ ≤ Tτ for all tasks τ , then each pair of an interval Δ and a
task τ can have at most one job jτ with release date outside the interval (r jτ /∈ Δ) that
has positive forward forced demand (f (jτ ,Δ) > 0) in the interval.

Definition 2. For a job sequence R of an instance I the necessary demand NDR(Δ)
of a non-empty interval Δ is the sum of the forward forced demands of all jobs with
absolute deadline in Δ . We use NDR(Δ ,τ) to denote the part of the necessary demand
originating only from jobs of task τ . We write ND(Δ) and ND(Δ ,τ) when the sequence
R is clear from the context.

Observe that any algorithm working on any number of speed-1 machines must schedule
in an interval at least the necessary demand of that interval.

We use the notation EDF(m+μ,σ) to denote the scheduling algorithm EDF executed
on (m + μ) speed-σ machines, where ties can be broken arbitrarily.

Definition 3. Given an instance I and a job sequence R. For a point in time t, a task
τ , and a scheduling algorithm A, an interval Δ = [t ′,t) is called τ-A-busy before t,
if executing the algorithm A on the sequence R yields for every point in Δ a positive
remaining processing time for at least one of the jobs of task τ .

Observe that the maximal τ-A-busy interval before t is unique, well defined, and starts
with the release date of some job of τ , unless it is empty. Moreover, all demand from
τ-jobs released before some maximal τ-A-busy interval Δ is processed by A strictly
before Δ .

Theorem 1. Let σ ≥ 1. Given an instance I which satisfies cτ ≤ Tτ and cτ ≤ Dτ for
all tasks τ . If there is some job sequence R which cannot be scheduled by EDF(m+μ,σ),
then there is an interval Δ such that NDR(Δ)/|Δ |> (m + μ)(σ −1) + 1.

Before giving the formal, slightly involved proof we convey the main intuitions. Know-
ing that EDF(m+μ,σ) fails, we will inductively construct an interval with high load. The
interval will be composed of several subintervals. To each subinterval we associate a
task such that the subinterval is EDF-busy for that task. Whenever EDF does not pro-
cess a job of that task in the subinterval, it must have all machines busy. In order to
conclude that the load of the whole interval is large, we must establish two things: First,
that the fraction of a subinterval, in which its associated task is processed, is small, i.e.,
in a large part of the subinterval all machines must be busy. Second, everything pro-
cessed in those busy subintervals is part of the necessary demand of the whole interval.

Proof. From now on we assume that R is a job sequence which cannot be scheduled by
EDF(m+μ,σ), and that t0 is the first point in time when EDF(m+μ,σ) fails a deadline.

We define inductively a finite sequence of pairs, comprised of a time ti and a job ji,
for 1≤ i ≤ z. For convenience define Δi := [ti, t0) and Δ i := [ti,ti−1). Also the following
notation for the work that EDF(m+μ,σ) does for a job j in a certain measurable subset S
of R+ will be helpful: EDF(m+μ,σ)(j,S). To shorten we use m′ := (m + μ)(σ −1) + 1.

For each pair (ti, ji) we define two subsets of the interval Δ i, namely Xi and Yi. The
first subset Xi is the set of points in time between ti and ti−1 when a job of task τ ji is
processed. Due to the way EDF(m+μ,σ) schedules, Xi is a finite union of intervals. The

A Constant-Approximate Feasibility Test for Multiprocessor Real-Time Scheduling 215

other subset is its complement in the interval: Yi := Δ i \Xi. Further, we set xi := |Xi| and
yi := |Yi|.

Next, we define two values for each i. They will be interpreted later as certain parts
of the work that EDF(m+μ,σ) does or has to do. Let FAIL be the work that EDF(m+μ,σ)

failed to complete before t0 for jobs of task τ j1 (so FAIL > 0). We define W̃i := (m +
μ)σyi + σxi and Wi := ∑i

s=1 W̃s + FAIL.
We will show the following properties for our sequence of intervals:

1. t0 > t1 > .. . > tz.
2. During each Yi all machines are busy.
3. All jobs EDF(m+μ,σ) schedules during Yi have a deadline in Δi.
4. Wi > m′|Δi|.
5. ND(Δz) ≥Wz.

Property 2 implies that (m + μ)σyi = ∑ j∈J EDF(m+μ,σ)(j,Yi) for some set J of jobs.

Basis of the induction. As job j1 we pick one of the jobs EDF(m+μ,σ) failed to finish at
t0, though they were due. Among these jobs, the job j1 is one of those jobs j with largest
maximal τ j-EDF(m+μ,σ)-busy interval before t0. We let Δ 1 (= Δ1) be the maximal τ j1 -
EDF(m+μ,σ)-busy interval before t0. This also defines t1 as the lower endpoint of this
interval. Clearly, t1 < t0 since relative deadlines cannot have zero length.

We have to verify property 2, 3 and 4 for (t1, j1). If at a certain time t in the τ j1 -
EDF(m+μ,σ)-busy interval Δ 1 no job of τ j1 is processed by EDF(m+μ,σ), then at that
time all machines must be busy with jobs that have deadlines not later than t0. This
gives the first two properties. For property 4 we use that EDF(m+μ,σ) failed at t0 for j1:

W1 = W̃1 + FAIL

> (m + μ)σy1 + σx1 = (m + μ)σ (|Δ1|− x1) + σx1.

So we get
W1

|Δ1|
> (m + μ)σ − (m + μ−1)

σx1

|Δ1|
.

In Δ1 the EDF(m+μ,σ) schedule devotes x1 units of time on jobs of task τ j1 processing
with speed-σ . Since the interval Δ1 is maximally τ j1 -EDF(m+μ,σ)-busy before t0 and j1
is not completed within t0, we know that all those jobs must be released in the interval,
and have their deadline in the interval.

The busy interval Δ1starts with the release date of some job of task τ j1 . Therefore

the number of τ j1 -jobs with release date and deadline in Δ1 is
⌊ |Δ1|−Dj1

+Tj1
Tj1

⌋
, and we

can bound:

σx1

|Δ1|
<

c j1

|Δ1|
· |Δ1|−D j1 + Tj1

Tj1
≤ max

(
c j1

D j1
,

c j1

Tj1

)

≤ 1.

To verify the middle inequality one should distinguish the cases (D j1 ≤ Tj1) and (D j1 >
Tj1) using |Δ1| ≥ D j1 for the former.

Combining the two bounds we get property 4:

W1

|Δ1|
> (m + μ)(σ −1) + 1 = m′.

216 V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller

The inductive step. Assume that the sequence of pairs up to i−1 satisfies the proper-
ties. We choose the job ji as one having the following two properties:

1. The release date of ji is strictly before ti−1.
2.

EDF(m+μ,σ)

(

ji,
i−1⋃

s=1

Ys

)

> f (ji,Δi−1).

If no such job can be found, we set z := i− 1 and return the interval Δi−1 as one
justifying the claim of the theorem. We will show later why this holds true. So assume
such a ji exists. Take Δ i as the maximal τ ji -EDF(m+μ,σ)-busy interval before ti−1, and
accordingly set ti as its lower endpoint.

Let us show the properties. As the release date of ji is strictly before ti−1, also ti <
ti−1, and we have property 1. The next two properties again follow from the fact that Δ i

is τ ji -EDF(m+μ,σ)-busy. Here, take into account for property 3 that ji has a deadline in
Δi−1 by induction.

To prove property 4 it suffices to show W̃i ≥m′ ∣∣Δ i
∣
∣, because we have strict inequality

in Wi−1 > m′ |Δi−1| by induction. By definition

W̃i
∣
∣Δ i

∣
∣

= (m + μ)σ − (m + μ−1)
σxi
∣
∣Δ i

∣
∣
.

We want to establish σxi ≤
∣
∣Δ i

∣
∣. Having this, property 4 follows as above.

For this part we simplify notation by setting τ := τ ji , T := Tτ ji
, c := cτ ji

and D :=
Dτ ji

. We distinguish the cases
∣
∣Δ i

∣
∣≥ T and

∣
∣Δ i

∣
∣< T .

Case 1:
∣
∣Δ i

∣
∣ ≥ T . We can bound σxi by the amount of work released by τ during the

maximal τ-EDF(m+μ,σ)-busy interval Δ i:

σxi ≤
⌊∣
∣Δ i

∣
∣

T

⌋

· c + EDF(m+μ,σ)
(

ji,Δ i
)
.

W.l.o.g.
∣
∣Δ i

∣
∣ is not an integer multiple of T . Otherwise, the last released job could not

contribute to the work done in Xi. But then, a slightly smaller value replacing
∣
∣Δ i

∣
∣would

also give a valid bound on what is processed during Δ i.
Recall that f (ji,Δi−1) :=

(
c ji − (ti−1− r ji)

+)+
. By choice of ji we know that more

than its forced forward demand is done by EDF(m+μ,σ) in Δi−1. Therefore

EDF(m+μ,σ)
(

ji,Δ i
)
≤ c− f (ji,Δi−1) ≤ (ti−1− r ji) ≤

∣
∣Δ i

∣
∣−T ·

⌊∣
∣Δ i

∣
∣

T

⌋

.

Note that the middle inequality is also true for f (ji,Δi−1) = 0. To verify the last in-
equality, assume first that ji is the last job of task τ released in Δ i. Then between the

release of ji and the end of Δ i at most
∣
∣Δ i

∣
∣−T ·

⌊
|Δ i|

T

⌋

units of time may pass.

A Constant-Approximate Feasibility Test for Multiprocessor Real-Time Scheduling 217

Now, say ji is not the last job of task τ released in Δ i. Remember that ji is not finished
by EDF(m+μ,σ) within Δ i. Therefore all jobs of τ released later are not processed within
Δ i at all, because EDF implies FIFO for the jobs of a common task. If there is such
a job released but not started in Δ i, we can subtract its entire processing time from
the upper bound on σxi. This means to subtract at least as much as when we subtract
EDF(m+μ,σ)

(
ji,Δ i

)
. Thus, we have

σxi ≤
⌊∣
∣Δ i

∣
∣

T

⌋

· c ≤
∣
∣Δ i

∣
∣

T
· c ≤

∣
∣Δ i

∣
∣ .

To finish the case
(∣
∣Δ i

∣
∣≥ T

)
plug everything together:

σxi
∣
∣Δ i

∣
∣
≤

⌊
|Δ i|

T

⌋

· c +
∣
∣Δ i

∣
∣−

⌊
|Δ i|

T

⌋

·T
∣
∣Δ i

∣
∣

= 1−
(T − c)

⌊
|Δ i|

T

⌋

∣
∣Δ i

∣
∣

.

As T ≥ c we have σxi ≤
∣
∣Δ i

∣
∣.

Case 2:
∣
∣Δ i

∣
∣< T . Assume

∣
∣Δ i

∣
∣< T . Then only one job of task τ can be released during

∣
∣Δ i

∣
∣, namely ji. The choice of ji gives

c = σxi + EDF(m+μ,σ) (ji,Δi−1) ≥ σxi + EDF(m+μ,σ)

(

ji,
i−1⋃

s=1

Ys

)

> σxi + f (ji,Δi−1).

As the release date of ji is in Δ i we can use ti−1 − r ji ≤
∣
∣Δ i

∣
∣ (indeed we have equality

here) to conclude that

c > σxi + f (ji,Δi−1) = σxi + c− (ti−1− r ji) ≥ σxi + c−
∣
∣Δ i

∣
∣ ,

which shows 0 > σxi −
∣
∣Δ i

∣
∣ for the case f (ji,Δi−1) > 0. Yet, if f (ji,Δi−1) = 0 we

immediately have
∣
∣Δ i

∣
∣≥ c ≥ σxi. So we again obtain σxi ≤

∣
∣Δ i

∣
∣, yielding property 4.

The breaking condition. In each step from i− 1 to i the interval is strictly extended
backwards to the release date of at least one job which is released before t0. As there are
finitely many task, and all have positive minimum separation time T , there are finitely
many such jobs, and we can make only finitely many steps. So at some point the break-
ing condition, namely that there is no job ji with the two required properties, must hold.

If this holds we claim property 5 to be true, i.e., ND(Δz) ≥ Wz. In the value Wz we
count σxi for each Xi, because the whole τ-demand processed in a τ-EDF(m+μ,σ)-busy
interval is part of the necessary demand of that interval. Also, the demand EDF(m+μ,σ)
failed to process before t0 is part of the necessary demand of Δz. For each Yi part we
count (m + μ)σyi, which is by property 2 exactly what is processed in those times by
EDF(m+μ,σ). By property 3 all jobs processed in some Yi have their deadline in the
interval Δi and therefore also in Δz. Finally, there is no job among those processed in
some section Yi with release date before tz, which has been counted in the term (m +
μ)σyi with more than its forced forward demand in Δi. The forced forward demand in
the greater interval Δz can only be greater, and thus we count for no job more in Wz than
in ND(Δz). �

218 V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller

We required cτ ≤ Tτ and cτ ≤ Dτ . Both are easy to test in linear time. In fact, the later
condition is necessary for scheduling any job sequence on any number of machines
with speed 1. The first condition is necessary for scheduling all job sequences on any
number of speed-1 machines.

Now, consider σ ≥ 2− 1+μ
m+μ . We get m′ = (m + μ)(σ − 1) + 1 ≥ m. Then, if an

instance I allows for a job sequence R with an interval Δ generating a necessary demand
NDR(Δ)>m|Δ | as in the theorem, then clearly it cannot be scheduled by any algorithm
on m speed-1 machines. So, all three conditions of the theorem, cτ ≤ Tτ , cτ ≤ Dτ ,
and NDR(Δ) ≤ m|Δ |, are necessary for scheduling on m speed-1 machines. By the
theorem they are sufficient for scheduling on (m + μ) speed-σ machines. Therefore,
all that is missing for an approximate feasibility test is a procedure testing whether an
instance I can have a job sequence R with an interval Δ generating a necessary demand
NDR(Δ)>m|Δ |. For this we will provide an FPTAS in the remainder. As this procedure
determines the maximal load only up to an ε , we will have to choose σ slightly bigger
than 2− 1+μ

m+μ in our final theorem.

4 An FPTAS for Load Estimation

The following observation facilitates the test:

Lemma 1. Assume cτ ≤ Tτ and cτ ≤ Dτ for all tasks τ of an instance I. Then, over
all intervals Δ = [t,t + �) of a fixed length � and all job sequences R of I, the maximal
necessary demand from a certain task τ is

NDR∗(Δ∗,τ) = cτ k + [cτ + �−Dτ − kTτ]+, where k =
⌊
�+ Tτ −Dτ

Tτ

⌋

.

Proof. Rewrite cτ k +[cτ + �−Dτ − kTτ]+ = cτ k +[cτ − (Tτ − (�−Dτ − (k−1)Tτ))]+.
Make t∗ + � the deadline of some job j from τ and t∗ ≥ Tτ . Further choose R∗ such
that all jobs of task τ released in [t −Tτ , t + �) precede their follower at the minimum
distance Tτ . Then the necessary demand NDR∗(Δ∗,τ) is as claimed.

To see that this is maximal, assume any interval Δ with |Δ |= � and any job sequence
R of I with higher necessary demand than the one in the above construction. As cτ ≤ Tτ ,
at most k + 1 jobs can contribute to NDR(Δ ,τ). Compressing the distances between all
contributing jobs cannot diminish the forced forward demand in the interval for any of
those jobs. Now push the compressed sequence of contributing jobs towards the right
until the deadline of the last job coincides with the right boundary of Δ . This will not
diminish the forced forward demand of any contributing job. Thus, we arrive at a job
sequence and an interval as in the above construction which generate at least as much
forced forward demand as the pair (R,Δ) with which we started. This contradicts that
NDR(Δ ,τ) > cτ k + [cτ + �−Dτ − kTτ]+. �

The construction of the lemma also shows, that the maximal forced forward demand
can be achieved for each task independently. As a consequence we only have to find
the optimal length of an interval. Then we know how much forced forward demand a

A Constant-Approximate Feasibility Test for Multiprocessor Real-Time Scheduling 219

maximal pair of interval and job sequence has. We define for any instance I satisfying
for all τ : cτ ≤ Tτ and cτ ≤ Dτ :

w := wI : R+ → R+, � "→ w(�) := wI(�) := ∑
τ∈I

cτ k + [cτ + �−Dτ − kTτ]+

Lemma 1 states that wI(�) is the maximum forced forward demand of any job sequence
of I in any interval of length �.

The following algorithm finds a length �′ which approximates the maximum of w(�)
�

by a factor of ε in time polynomial in the input size of I and 1/ε . In fact, we devise a

function φ which pointwise approximates the load, i.e., ∀� ∈R+ : (1−ε) w(�)
� ≤ φ(�)≤

w(�)
� . There is a polynomial size subset of R+, a priori determinable, in which the func-

tion φ must achieve its maximum. So, the approximation algorithm is straightforward.

Algorithm 1. Load Estimation(I,ε)
For each τ ∈ I, compute:

threshold(τ) := Dτ + Tτ/ε,
points(τ) := {� ∈ (0, threshold(τ)] : � = q ·Tτ + Dτ for some q ∈ N},

points′(τ) := {� ∈ (0, threshold(τ)] : � = q ·Tτ + Dτ −cτ for some q ∈ N}.

Compute POINTS := ∪τ∈I
(
points(τ)∪points′(τ)∪{threshold(τ)}

)
.

Output λ := max
(

max�∈POINTS
w(�)
� ,∑n

τ=1
cτ
Tτ

)
.

Lemma 2. For any instance I Algorithm 1 outputs a λ such that (1− ε)λ ∗ ≤ λ ≤ λ ∗

where λ ∗ = supΔ ,R
NDR(Δ)

|Δ | , and has running time polynomial in n and 1/ε .

Proof. We know that λ ∗ = sup�
w(�)
� . We show that for all �≥ 0 the function

φ(�) := ∑
τ:threshold(τ)≥�

wτ (�)
�

+ ∑
τ:threshold(τ)<�

(

1− Dτ
�

)
cτ
Tτ

approximates the load w(�)/� in the following sense:

(1− ε)
w(�)
�

≤ φ(�) ≤ w(�)
�

.

Secondly, we will show that we can find the maximum of φ by only considering
points in POINTS. The number of points in POINTS is obviously polynomial in the
input, and so is the evaluation of φ for each point. This completes the proof.

Recall that

wτ (�) = cτ

⌊
�+ Tτ −Dτ

Tτ

⌋

+
[

cτ + �−Dτ −
⌊
�+ Tτ −Dτ

Tτ

⌋

·Tτ

]+

.

220 V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller

Therefore wτ (�)Tτ ≥ cτ (�−Dτ) and

wτ (�)
�

≥ cτ
Tτ

·
(

1− Dτ
�

)

,

which summed over all tasks τ yields the upper bound on φ .
Concerning the lower bound, for � > threshold(τ) we have � > Dτ + Tτ

ε implying
ε > Tτ

�−Dτ
. Using again wτ (�)Tτ ≥ cτ(l−Dτ) gives ε > cτ

wτ (�) .
As the difference between the necessary demand of one task τ and the approximate

demand (�−Dτ) · cτ
Tτ

can at most be the execution time of the task, cτ , we can substitute

wτ (�)− (�−Dτ) · cτ
Tτ

wτ (�)
< ε

and by rewriting we get
�−Dτ
�

· cτ
Tτ

> (1− ε)
wτ(�)
�

.

Again, summing over all tasks gives the claimed lower bound on φ .
To finish, observe that between two consecutive points �1, �2 ∈ POINTS∪ {0} we

can write
φ(�) = C1/�+C2 + ξ (�), ∀� ∈ [�1, �2),

with

C1 := ∑
τ:threshold(τ)≥�1

wτ (�1)− ∑
τ:threshold(τ)<�1

cτ Dτ
Tτ

C2 := ∑
τ:threshold(τ)<�1

cτ
Tτ

ξ (�) := (1/�) · ∑
τ:threshold(τ)≥�1

(
[cτ + �−Dτ − k1Tτ]+− [cτ + �1−Dτ − k1Tτ]+

)

where k1 :=
⌊
�1+Tτ−Dτ

Tτ

⌋
.

By definition of POINTS, the function ξ can be written as C/�+C′ for some con-
stants C,C′; this implies that the same is true for the function φ inside each interval
[�1, �2). Thus, a maximum of φ is always attained at an extreme point of such an inter-
val. Also, beyond the maximum of POINTS, the function φ equals ∑τ∈I

(
1− Dτ

�

)
· cτ

Tτ
.

Therefore, the overall maximum of φ is attained at one of the points in POINTS or
equals ∑τ∈I

cτ
Tτ

, and the algorithm is correct. �

Theorem 2. There exists a feasibility test that, given a task system I, μ ∈N and ε > 0,
decides whether I can be scheduled by EDF on (m + μ) speed-(1 + m

(m+μ)(1−ε) −
1

m+μ)
machines, or I cannot be scheduled at all on m speed-1 machines. The running time is
polynomial in n, m and 1/ε .

A Constant-Approximate Feasibility Test for Multiprocessor Real-Time Scheduling 221

Proof. With the help of Algorithm 1 we can verify in polynomial time the following
conditions:

(C1) For all tasks τ ∈ I : cτ ≤ min(Dτ ,Tτ).

(C2) There is λ ≤ m, where (1− ε)λ ∗ ≤ λ ≤ λ ∗ and λ ∗ = supR,Δ
NDR(Δ)
|Δ | .

Both are necessary for scheduling I on m speed-1 machines.
Condition (C2) implies that there is no job sequence R and interval Δ such

NDR(Δ)> m
1−ε |Δ |. Choosing σ ≥ (1+ m

(m+μ)(1−ε) −
1

m+μ) gives (m+ μ)(σ −1)+1≥
m

(1−ε) , and the claim follows from Theorem 1. �

Corollary 1. There exists a feasibility test that, given a task system I and ε > 0, decides
whether I can be scheduled by EDF on m speed-(2−1/m+ε) machines, or I cannot be
scheduled at all on m speed-1 machines. Its running time is polynomial in n, m and 1/ε .

Acknowledgments. The authors acknowledge Enrico Bini for helpful discussions.

References

1. Albers, K., Slomka, F.: An event stream driven approximation for the analysis of real-time
systems. In: Proc. 16th Euromicro Conference on Real-Time Systems, pp. 187–195 (2004)

2. Albers, K., Slomka, F.: Efficient feasibility analysis for real-time systems with EDF schedul-
ing. In: Proc. Conf. on Design, Automation and Test in Europe, pp. 492–497 (2005)

3. Baker, T.P.: An analysis of EDF schedulability on a multiprocessor. IEEE Trans. Parallel
Distrib. Syst. 16(8), 760–768 (2005)

4. Baker, T.P., Baruah, S.K.: Schedulability analysis of multiprocessor sporadic task systems.
In: Son, S.H., Lee, I., Leung, J.Y.-T. (eds.) Handbook of Real-Time and Embedded Systems.
CRC Press, Boca Raton (2007)

5. Baruah, S.K., Howell, R.R., Rosier, L.E.: Feasibility problems for recurring tasks on one
processor. Theor. Comput. Sci. 118(1), 3–20 (1993)

6. Chakraborty, S., Künzli, S., Thiele, L.: Approximate schedulability analysis. In: Proc. 23rd
IEEE Real-Time Systems Symp., pp. 159–168 (2002)

7. Dertouzos, M.L.: Control robotics: The procedural control of physical processes. In: Proc.
IFIP Congress, pp. 807–813 (1974)

8. Fisher, N., Baruah, S.K.: A fully polynomial-time approximation scheme for feasibility anal-
ysis in static-priority systems with arbitrary relative deadlines. In: Proc. 17th Euromicro Con-
ference on Real-Time Systems, pp. 117–126 (2005)

9. Lam, T.W., To, K.-K.: Trade-offs between speed and processor in hard-deadline scheduling.
In: Proc. 10th Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 623–632 (1999)

10. Leung, J.Y.-T., Merrill, M.L.: A note on preemptive scheduling of periodic, real-time tasks.
Inf. Process. Lett. 11(3), 115–118 (1980)

11. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. ACM 20(1), 46–61 (1973)

12. Phillips, C.A., Stein, C., Torng, E., Wein, J.: Optimal time-critical scheduling via resource
augmentation. Algorithmica 32(2), 163–200 (2002)

Tight Bounds and a Fast FPT Algorithm for

Directed Max-Leaf Spanning Tree

Paul Bonsma1,� and Frederic Dorn2

1 Technische Universität Berlin, Institut für Mathematik
Sekr. MA 5-1, Straße des 17. Juni 136, 10623 Berlin, Germany

bonsma@math.tu-berlin.de
2 Humboldt-Universität zu Berlin, Institut für Informatik

Unter den Linden 6, 10099 Berlin, Germany
dorn@informatik.hu-berlin.de

Abstract. An out-tree T of a directed graph D is a rooted tree subgraph
with all arcs directed outwards from the root. An out-branching is a
spanning out-tree. By �(D) and �s(D) we denote the maximum number
of leaves over all out-trees and out-branchings of D, respectively. We give
fixed parameter tractable algorithms for deciding whether �s(D) ≥ k
and whether �(D) ≥ k for a digraph D on n vertices, both with time
complexity 2O(k log k) ·nO(1). This proves the problem for out-branchings

to be in FPT, and improves on the previous complexity of 2O(k log2 k) ·
nO(1) for out-trees. To obtain the algorithm for out-branchings, we prove
that when all arcs of D are part of at least one out-branching, �s(D) ≥
�(D)/3. The second bound we prove states that for strongly connected
digraphs D with minimum in-degree 3, �s(D) ≥ Θ(

√
n), where previously

�s(D) ≥ Θ(3
√

n) was the best known bound. This bound is tight, and also
holds for the larger class of digraphs with minimum in-degree 3 in which
every arc is part of at least one out-branching.

1 Introduction

Many important graph problems are well-studied on undirected graphs unlike
their generalizations to directed graphs. One reason may be that despite their
practical significance, it is generally harder to obtain similar results for directed
graphs, since many standard tools are not available (see [2]) and thus problem
specific approaches need to be used. Max-Leaf Spanning Tree is such a
problem that has received a lot of study, both algorithmically and combinatorial.
This optimization problem is defined as follows: given an undirected graph, find
a spanning tree with maximum number of leaves. In the decision version of this
problem, in addition an integer k is given, and we ask whether a spanning tree
with at least k leaves exists (k-Leaf Spanning Tree). In this paper we develop
new techniques for solving the directed version of this problem and use these to
find improved algorithms and bounds.
� Supported by the Graduate School “Methods for Discrete Structures” in Berlin,

DFG grant GRK 1408.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 222–233, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Tight Bounds and a Fast FPT Algorithm 223

For directed graphs or digraphs we use notions that are defined for undirected
graphs, such as paths, trees, connectedness and vertex neighborhoods. These are
defined as expected, where arc directions are ignored. An out-tree of a digraph
D is a tree subgraph where every vertex has in-degree 1 except for one, the
root, which has in-degree 0. An out-branching is a spanning out-tree. A leaf is a
vertex with out-degree 0. In the directed generalization of the problem, one asks
for an out-branching with maximum number of leaves. This problem is called
Max-Leaf Out-Branching. By �(D) and �s(D) we denote the maximum
number of leaves over all out-trees and out-branchings of D respectively (when
considering �s(D) we assume that D has at least one out-branching). Clearly
�(D) ≥ �s(D) holds, but in contrast to undirected graphs, we do not always
have equality here. Therefore, on digraphs, the problem of finding an out-tree
with maximum number of leaves (Max-Leaf Out-Tree) is of independent in-
terest. The corresponding decision problems where the question is asked whether
�s(D) ≥ k or whether �(D) ≥ k are called k-Leaf Out-Branching (k-LOB)
and k-Leaf Out-Tree (k-LOT), respectively. The related problem of find-
ing out-branchings with minimum number of leaves has also been considered
recently [12]. In the first part of this paper we are concerned with algorithmic
questions, and in the second part we study the combinatorial question of finding
lower bounds for �(D) and �s(D). Throughout this section n denotes the number
of vertices of the graph under consideration.

The NP -hardness of all problems above follows from the NP -completeness of
k-LeafSpanning Tree. Whereas for the undirected problem, Max-Leaf Span-

ningTree, a 2-approximation is known [15], the best known approximation result
for Max-Leaf Out-Branching is a very recent algorithm with ratioO(

√
OPT)

[9]. In thealgorithmicpartof thiswork,weare interested infixedparameter tractable
(FPT) algorithms for thedecisionproblems.We choose thedesirednumberof leaves
k as the parameter. Then an algorithm is an FPT algorithm if its time complexity is
bounded by a function of the form f(k) ·nO(1), where the parameter function f may
be any computable function only depending on k. See [11] for a recent introduction
to FPT algorithms. The main indicator of the practicality of FPT algorithms is the
growth rate of the parameter function. For the undirected problem k-Leaf Span-

ningTree many improvements have been made in this area (see e.g. [10,4]), which
has also has been a large stimulus for research on related combinatorial questions.
The current fastest FPT algorithm has a running time ofO∗(6.75k) +O(m), with
m being the number of edges [6].

Tackling two open problems posed by Fellows in 2005 [13], Alon et al. [2]
were the first to show that k-LOT admits an FPT algorithm with parameter
function f(k) ∈ 2O(k2 log k). Their method yields an FPT algorithm for k-LOB

when restricted to digraph classes where out-trees with k leaves can always be
extended to out-branchings with k leaves, which includes for instance strongly
connected digraphs and acyclic digraphs. This algorithm again has a parameter
function f(k) ∈ 2O(k2 log k). In [1], the same authors improve that function to
2O(k log2 k) for strongly connected graphs, and 2O(k log k) for acyclic graphs. Note
that even for acyclic digraphs, the problem is NP -hard, which is shown in the

224 P. Bonsma and F. Dorn

full version of [1]. The question whether the problem admits an FPT algorithm
for all digraphs remained open, and was posed again in [1,2,7].

In this paper we present FPT algorithms for both k-LOT and k-LOB with
parameter function 2O(k log k). This is the first FPT algorithm for k-LOB

1, and
improves the complexity of all FPT algorithms for digraphs mentioned above,
except for the algorithm for acyclic digraphs, which has the same complexity.

In another line of research, max-leaf problems have been studied in a purely
combinatorial manner. For instance, for the undirected version, a well-known
(tight) bound states that undirected graphs with minimum degree 3 have a
spanning tree with at least n/4 + 2 leaves [14]. Similar bounds appear in [6,8].
For digraphs, it is much harder to obtain tight bounds, or even bounds that are
tight up to a constant factor. Alon et al [1] showed that for strongly connected
digraphs D with minimum in-degree 3, �s(D) ≥ 3

√
n/4 − 1 (this improves their

previous bound from [2]). In addition they construct strongly connected digraphs
D with minimum in-degree 3 with �s(D) ∈ O(

√
n). Considering the gap between

this lower bound and upper bound, it is asked in [1] what the minimum value of
r is such that �s(D) ≥ f(n) ∈ Θ(r

√
n) for all graphs in this class (2 ≤ r ≤ 3).

In this paper we answer this question by showing that for strongly connected
digraphs D with minimum in-degree 3, �s(D) ≥ 1

4

√
n. Considering the examples

from [1], we see that this bound is tight (up to a constant factor). Furthermore
we generalize this result by showing that �s(D) ≥ f(n) ∈ Θ(

√
n) holds for the

larger class of digraphs with minimum in-degree 3 in which every arc is part of
an out-branching.

Overview of new techniques: For our algorithms we start with the general
scheme that was introduced in [1,2]: starting with an arbitrary out-branching,
small changes are made that increase the number of leaves, until a locally opti-
mal out-branching T is obtained. Back arcs of T are those arcs of D that form
a directed cycle together with a part of T (we omit the precise definitions used
in [1]). If there are few back arcs, then a path decomposition of D can be con-
structed with small width, which allows for a dynamic programming procedure
to be used. On the other hand, if the number of back arcs is large, an out-tree
with at least k leaves exists. For graph classes like strongly connected digraphs
this then yields an out-branching with at least k leaves.

However, without significant new ideas this scheme does not work for all
digraphs, as is illustrated by the digraph D in Figure 1 (a): D has �(D) = n− 2,
but the unique out-branching has only one leaf. More importantly, this example
shows that the ratio between �s(D) on one hand, and the number of back arcs
or the pathwidth on the other hand may be arbitrarily bad. But if one takes a
closer look at the arcs of the out-tree, one may observe that they are irrelevant
for the problem we consider; they do not appear in any out-branching. We will
first remove all such arcs, which we call useless arcs. The following question is
then immediate: for digraphs without useless arcs, what is the highest possible
ratio �(D)/�s(D)? Figure 1 (b) shows an example of a digraph without useless

1 In an earlier unpublished technical report [5] we gave a different FPT algorithm for

k-LOB, with parameter function 2O(k3 log k).

Tight Bounds and a Fast FPT Algorithm 225

...

...
r′ r

...r′ r

(a) (b)

Fig. 1. Digraphs with �(D)/�s(D) → ∞ (a), and �(D)/�s(D) = 2 (b)

arcs where �(D)/�s(D) = 2. In the first of the two main bounds of this paper,
we prove that this ratio cannot be much larger; we prove that if D contains no
useless arcs, then �(D)/�s(D) ≤ 3. Since this ratio is bounded by a constant,
and since useless arcs can easily be removed in polynomial time, any algorithm
for k-LOT then easily yields an algorithm for k-LOB with essentially the same
complexity.

Our second algorithmic contribution is that we construct a tree decomposition
instead of a path decomposition (the locally optimal out-branching that we start
with serves as the skeleton for the tree decomposition), and use a better way to
group back arcs. These improvements do not only make the algorithm concep-
tually simpler, but also allow us to decrease the parameter function 2O(k log2 k)

for k-LOT from [1] by a logarithmical factor in the exponent to 2O(k log k).
The paper is organized as follows. Definitions and preliminary observations

are given in Section 2. In Section 3 and 4 we give the FPT algorithm for k-LOT

and k-LOB, respectively. Section 4 also contains the proof that �(D)/�s(D) ≤ 3
for digraphs without useless arcs. In Section 5 we give a lower bound for �s(D).

2 Preliminaries

For a digraph D, V (D) denotes the set of vertices and A(D) the set of arcs. Arcs
are 2-tuples (u, v) where u ∈ V (D) is called the tail and v ∈ V (D) the head.
For an arc set B, Hd(B) is the set of heads of arcs in B. A digraph D is an
oriented graph if (u, v) ∈ A(D) implies (v, u)
∈ A(D). A dipath in a digraph D
is a sequence of distinct vertices v1, v2, . . . , vr such that (vi, vi+1) ∈ A(D) for all
1 ≤ i ≤ r − 1. This will also be called a (v1, vr)-dipath. The digraph consisting
of these vertices and arcs will also be called a dipath. With such a dipath we
associate an order from v1 to vr, for instance when talking about the first arc of
the path that satisfies some property.

A partial order is a binary relation that is reflexive, antisymmetric and tran-
sitive. A strict partial order is irreflexive and transitive. Partial orders will be
denoted by �, and strict partial orders by ≺.

For digraphs we will use normal (undirected) tree decompositions. Hence we
define a tree decomposition of a digraph D as a pair (X,U) where U is an
(undirected) tree whose vertices we call nodes, and X = ({Xi : i ∈ V (U)}) is a
collection of subsets of V (D) (bags) such that

1.
⋃

i∈V (U)Xi = V (D),
2. for each (v, w) ∈ A(D), there exists an i ∈ V (U) such that v, w ∈ Xi,
3. for each v ∈ V (D), the set of nodes {i : v ∈ Xi} forms a subtree of U .

226 P. Bonsma and F. Dorn

The width of a tree decomposition (X,U) equals maxi∈V (U){|Xi| − 1}. For
notational convenience, we will also allow the graph U in a tree decomposition
(X,U) to be directed, in this case it should be understood that we actually
consider the underlying undirected graph of U .

For an out-tree T , the vertices of out-degree at least two are called branch
vertices. Let L(T) denote the set of leaves of T , let Br(T) denote the set of
branch vertices of T , and let Bs(T) be the vertices of T that have a branch
vertex of T as in-neighbor.

Proposition 1. For out-tree T , |Bs(T)| ≤ 2|L(T)| − 2, |Br(T)| ≤ |L(T)| − 1.

The omitted proofs in this section are straightforward and/or can be found
in [1,5]. If there exists a dipath in D from vertex u to vertex v, we say v is
reachable from u (within D). The set of all vertices that are reachable from u
within D is denoted by RD(u) (including u itself.)

Proposition 2. Let T be an out-tree of a digraph D, with root r. Then D has
an out-branching T ′ with root r, that contains T , if and only if RD(r) = V (D).

Let T be an out-tree. Then we write u �T v if v ∈ RT (u), and u ≺T v if in
addition v
= u. Note that the relation �T is a partial order on V (T). This
important observation will be used implicitly throughout the paper.

A digraph H is strongly connected if for all pairs u, v ∈ V (H), a (u, v)-dipath
exists. A strong component is a maximal strongly connected subgraph. A strong
component H of D is an initial strong component if there is no arc (u, v) ∈ A(D)
with u
∈ V (H), v ∈ V (H).

Let T be an out-branching of D, and let (u, v) ∈ A(D)\A(T), where v is not
the root of T . The 1-change for (u, v) is the operation that yields T + (u, v) −
(w, v), where w is the unique in-neighbor of v in T . We call an out-branching
T 1-optimal if there is no 1-change for an arc of A(D)\A(T) that results in an
out-branching T ′ with more leaves. Note that a 1-optimal out-branching can be
found in polynomial time.

Proposition 3. Let T be an out-branching of D, and let (u, v) ∈ A(D)\A(T).

-The 1-change for (u, v) gives again an out-branching of D if and only if v
�T u.
-The 1-change for (u, v) increases |L(T)| if and only if u
∈ L(T) and v
∈ Bs(T).

Proposition 4. Let D be a digraph with a vertex r such that RD(r) = V (D).
An arc (u, v) of D with RD(v)
= V (D) is not useless if and only if there is a
dipath in D starting at r that ends with (u, v).

3 A Faster FPT Algorithm for k-LOT

We now show how back arcs of an out-tree are grouped, that is, how back arcs
are assigned to vertices of the out-tree. Let T be an out-tree of D with z ∈ V (T).
Then

B
T
D(z) = {(u, v) ∈ A(D) : v ≺T z �T u}.

Tight Bounds and a Fast FPT Algorithm 227

If it is clear what the graphs D and T in question are, the subscript and
superscript will be omitted. When |Hd(B(z))| ≥ k for some choice of z, an
out-tree with at least k leaves is easily found.

Proposition 5. Let T be an out-tree of D with |Hd(BT
D(z))| ≥ k for some

z ∈ V (T). Then D has an out-tree with at least k leaves.

Proof. Start with the out-tree T [RT (z)], which is rooted at z. For every vertex
in v ∈ Hd(BT

D(z)), add an arc from some vertex in u ∈ RT (z) to v (such an arc
exists), making v a leaf. �

Algorithm 1. An FPT algorithm for k-LOT

Input : A digraph D and integer k.

for every initial strong component C of D do
Choose r ∈ V (C), let D′ = D[RD(r)].1

Compute a 1-optimal out-branching T of D′ with root r.2

if |L(T)| ≥ k then Return(YES).3

if there exists a vertex z with |Hd(BT
D′(z))| ≥ k then4

Return(YES).
Construct a tree decomposition of D′ with width at most 4k − 5.5

Do dynamic programming on the tree decomposition of D′.6

if an out-tree with at least k leaves is found then Return(YES).7

Return(NO)8

This yields the correctness of Step 4 of the algorithm, which is shown in Al-
gorithm 1. The construction of the tree decomposition of D′ is as follows. For
the tree of the tree decomposition, we simply use the 1-optimal out-branching T
itself. For a vertex v ∈ V (T) with (u, v) ∈ A(T), the bag Xv of the tree decom-
position is defined as Xv = {u, v} ∪ Bs(T) ∪ L(T) ∪ Hd(BT

D′(v)).(If v is the
root of T , simply omit u.) For verifying that (X,T) with X = {Xv : v ∈ V (T)}
is a tree decomposition, the 1-optimality of T and Proposition 3 can be used to
show that for every arc (u, v) ∈ A(D′) the end vertices u, v appear in a common
bag. By the transitivity of �T , it follows that the vertex set Bv = {u : v ∈ Xu}
induces a connected subgraph of T , for every v ∈ V (T).

Lemma 1. If T is a 1-optimal out-branching of D′, then (X,T) as constructed
above is a tree decomposition of D′.

Proposition 6. Let T be an out-branching of a digraph D with |L(T)| ≤ k− 1.
If for all vertices z ∈ V (D) it holds that |Hd(BT

D(z))| ≤ k − 1, then the tree
decomposition (X,T) as constructed above has width at most 4k − 5.

Proof. This follows simply from |Xu| = 2 + |L(T)| + |Bs(T)| + |Hd(B(u))| ≤
2+(k−1)+(2k−4)+(k−1)=4k−4, since |Bs(T)|≤2|L(T)|−2 (Proposition 1).�

228 P. Bonsma and F. Dorn

When a tree decomposition of D′ is given, standard dynamic programming meth-
ods can be used to decide whether D′ has an out-tree with at least k leaves (see
also [3,12]). The time complexity of such a procedure is 2O(w log w) · n, where
n = |V (D′)| and w is the width of the tree decomposition. Since in our case
w ≤ 4k − 5, and every step of the algorithm other than Step 6 can be done in
polynomial time, the complexity of Algorithm 1 is 2O(k log k) · nO(1). If an out-
tree with k leaves exists, it is part of D[RD(r)] for some r in an initial strong
component, so YES will be returned. Thus:

Theorem 1. For any digraph D with n = |V (D)|, Algorithm 1 solves k-LOT

in time 2O(k log k) · nO(1).

4 A Fast FPT Algorithm for k-LOB

Our algorithm for k-LOB is similar to Algorithm 1. We first check whether an
out-branching exists for D, and if so we may remove all useless arcs to obtain D′.
Then a 1-optimal out-branching T of D′ is constructed. If |Hd(BT

D′(z))| ≥ 3k
holds for some vertex z, then an out-tree with at least 3k leaves exists (Propo-
sition 5). In Theorem 3 below we show that this yields the existence of an
out-branching with at least k leaves. On the other hand, if |L(T)| < k and
|Hd(BT

D′(z))| < 3k for all vertices z, the construction from Section 3 yields a
tree decomposition with width ≤ 6k − 5 (see also Proposition 6). At this point
we can again apply dynamic programming.

Theorem 2. For any digraph D with n = |V (D)|, k-LOB can be solved in time
2O(k log k) · nO(1).

It remains to prove that if a graph D without useless arcs has �(D) ≥ 3k,
then �s(D) ≥ k. The proof of Theorem 3 can be turned into a polynomial time
algorithm that constructs an out-branching, and therefore the algorithm for k-
LOB can be made into a constructive FPT algorithm.

Theorem 3. Let D be a digraph without useless arcs. If �(D) ≥ 3k, then
�s(D) ≥ k.

Proof. Let T be an out-tree of D with at least 3k leaves, and let r be the
root of T . If T contains at least one vertex v with RD(v) = V (D), then also
RD(r) = V (D), so then T can be extended to an out-branching with at least 3k
leaves (Proposition 2).

Otherwise, choose an arbitrary vertex r′ with RD(r′) = V (D) (which exists
since there are non-useless arcs, and thus at least one out-branching), and let
P be an (r′, r)-dipath that contains a minimal number of vertices of L(T). Let
L(T) ∩ V (P) = {l1, . . . , lm}, labeled with decreasing labels along P . That is,
if i < j, then lj ≺P li. These definitions are illustrated in Figure 2 (a). We
distinguish two types of vertices li (i ∈ {1, . . . ,m}):

Type 1: D − li contains an (x, y)-dipath for some x, y ∈ V (P) with x ≺P

li ≺P y, with no internal vertices in V (P). Type 2: all other vertices li.

Tight Bounds and a Fast FPT Algorithm 229

(b)(a)

l3

CASE 1
: A(T)
: A(P)\A(T)
: L(T)

r′ l4 l2 l1

T ′:

r′ rr

Fig. 2. (a) Out-tree T and (r′, r)-dipath P , (b) the out-tree T ′ constructed in Case 1

Now we consider three cases: since |L(T)| ≥ 3k, one of the following holds:
(i) |L(T)\V (P)| ≥ k, (ii) the number of type 1 leaves is at least k, or (iii) the
number of type 2 leaves is at least k. In all cases we will find an out-branching
with at least k leaves.

CASE 1: |L(T)\V (P)| ≥ k. We use P and T to construct an out-tree T ′ of
D. This is illustrated in Figure 2 (b). For all arcs (u, v) ∈ A(P) with v
∈ V (T)
or v = r, simply add (u, v) to the out-tree. For arcs (u, v) ∈ A(P)\A(T) with
v ∈ V (T)\{r}, do the 1-change for (u, v). Then T ′ is again an out-tree with
at least k leaves, with root r′ such that RD(r′) = V (D). This is then easily
extended to an out-branching with at least k leaves (Proposition 2).

12345

4 4 3 3

y
rr′

w = z : P ′

: P
: L(T)

2v

x

li = l2 lj = l1

Fig. 3. Definitions used in Case 2. Numbers indicate DL.

CASE 2: The number of type 1 leaves is at least k. The definitions used in this
case are illustrated in Figure 3. For every v ∈ L(T), we define the following value:
if r ∈ RD(v), then consider the (v, r)-dipath of D that contains the minimum
number of L(T)-vertices. Then let DL(v) denote number of vertices in L(T) on
this path (including v itself). Note that since we chose P to contain the minimum
number of L(T)-vertices, we have DL(li) = i. In particular, all vertices li receive
different values for DL.

For every type 1 vertex li, we may consider an (x, y)-dipath P ′ in D with
x ≺P li ≺P y and no internal vertices in P . We can verify that P ′ contains a
vertex z ∈ L(T)\V (P) with DL(z) = DL(li). Since we assumed there are at
least k type 1 vertices, and all of them receive different labels DL, this proves
that there are at least k vertices in L(T)\V (P), so by case 1 above, the desired
out-branching exists.

CASE 3: The number of type 2 leaves is at least k. In this case we will use
the fact that D contains no useless arcs. Let li be a type 2 vertex. Consider the
unique (r, li)-dipath in T . Let (ti, hi) be the last arc of this path that is not
in A(P). Note that hi = li is possible. Note also that by choice of (ti, hi), we

230 P. Bonsma and F. Dorn

have li+1 ≺P hi �P li. Since (ti, hi) is not useless and since we observed in the
beginning of this proof that we may assume RD(hi)
= V (D), there is a dipath
P ′ in D that starts in r′ and ends with the arc (ti, hi) (Proposition 4). Let xi

be the last vertex on P ′ with xi ≺P hi. Let yi be out-neighbor of xi on P ′.
Using these definitions we can show how to construct an out-branching with

at least k leaves. Construct T ′ as follows, starting with P . For every type 2 vertex
li, if yi
∈ V (P), then add (xi, yi). If yi ∈ V (P), then instead do the 1-change
for (xi, yi). Since we do this only for type 2 vertices, it can be shown that T ′ is
an out-tree with root r′ with at least k leaves, which is easily extended to the
desired out-branching (Proposition 2). We omit the details. �

5 Lower Bounds for the Number of Leaves

The following lemma can be used for instance to find leafy out-branchings in
digraphs D with minimum in-degree 3 (which is needed to satisfy the third
condition). Its proof is postponed to the end of this section.

Lemma 2. Let T be an out-branching of D, and let P = v0, . . . , vp−1 be a dipath
in T where (i) D contains no arcs (vi, vj) with i ≤ j − 2, (ii) V (P) contains no
branch vertices of T , and (iii) every vi has an in-neighbor in D other than vi−1

or vi+1. Then D has an out-tree with at least p/8 leaves in V (P).

Lemma 2 is the key ingredient for our main result of this section. Apart from us-
ing this stronger lemma and a shorter formulation, the proof of the next theorem
is similar to the one used in [1].

Theorem 4. Let D be a digraph on n vertices with at least one out-branching.
If D has minimum in-degree 3, or if D is an oriented graph with minimum
in-degree 2, then �(D) ≥ 1

4

√
n.

Proof. Let k = 1
4

√
n. Consider a 1-optimal out-branching T of D. We only have

to consider the case that |L(T)| ≤ k−1, and thus |Br(T)| < k−2 (Proposition 1).
Consider the set P of all maximal dipaths in T that contain no branch vertices.
Note that every non-branch vertex of T is in exactly one such path, so the paths
in P give a partition of V (T)\Br(T). It can easily be seen that the number of
paths in P is bounded by |L(T)| + |Br(T)| ≤ 2k − 3.

For every path v0, . . . , vp−1 in P we may apply Lemma 2: since D either
has minimum in-degree 3 or is an oriented graph with minimum in-degree 2,
every vi has an in-neighbor in D other than vi−1 or vi+1. Since T is 1-optimal,
there are no arcs (vi, vj) in D with i ≤ j − 2 (Proposition 3). Hence if one of
these paths contains at least 8k vertices, the desired out-tree exists (Lemma 2).
So finally suppose every path in P has less than 8k vertices. This yields n <
8k(2k − 3) + k − 2 < 16k2, a contradiction with our choice of k. Hence in every
case an out-tree with at least 1

4

√
n leaves can be found. �

Combining Theorem 4 with Proposition 2 and Theorem 3 respectively, we im-
mediately obtain the following bounds for out-branchings.

Tight Bounds and a Fast FPT Algorithm 231

Corollary 1. Let D be a digraph on n vertices that has minimum in-degree 3,
or has minimum in-degree 2 and is an oriented graph.

-If D is strongly connected, then �s(D) ≥ 1
4

√
n.

-If D contains no useless arcs, then �s(D) ≥ 1
12

√
n.

It remains to prove Lemma 2. For this we will use the following lemma [5].

Lemma 3. Let T be an out-branching of D with root r. Let Q be a dipath in D
that starts at r. Then making all of the 1-changes for every arc in A(Q)\A(T)
yields again an out-branching of D that contains Q.

Proof of Lemma 2: Let T be an out-branching of a digraph D, and let P be
a dipath in T that satisfies the properties stated in the lemma. Let r be the
root of T . If vp−1 is not a leaf of T , then let vp be the unique out-neighbor of
vp−1 in T . In this case, we add the arc (r, vp) to D (if it is not already present),
and apply the 1-change for (r, vp) to T . So in both cases, from now on we may
conveniently assume that RT (vi) = {vi, . . . , vp−1}. In the remainder of the proof
we will use this to show that D has an out-branching with at least p/4 leaves
in V (P). From this the statement follows; if we added (r, vp) then removing this
arc from the out-branching will give two out-trees of the original digraph D, of
which at least one has at least p/8 leaves in V (P). If an arc (vi, vj) is present in
A(D)\A(T), then i > j. Arcs of this type are called back arcs. (This is a subset
of the arcs that were called back arcs in Section 1.)

We will now iteratively make changes to T until every vi ∈ V (P) is either
a leaf, or is the tail of a back arc. The property of T being an out-branching
will be maintained throughout. Changes to T are made in p− 1 stages. During
stage i (i ∈ {1, . . . , p− 1}), the goal is to make vertex vi−1 a leaf, if this is still
possible. For this we consider a dipath Qi that ends in the vertex vi, and make
1-changes based on this path. The changes we make when considering the vertex
vi will only involve arcs that are incident with vertices of P with higher index,
and vertices not in P . So in stages later than stage i, no changes are made to
the arcs incident with vj , for j ≤ i. In particular, vi−1 will remain a leaf if it is
made a leaf in stage i.

Before we define Qi, we observe that the following properties hold for T . These
properties will be maintained throughout the procedure, and will therefore be
called invariant properties: (1) vi has only out-neighbors in {v1, . . . , vi+1}, for
all i ∈ {0, . . . , p−1}. (2) RT (vi) ⊆ V (P). (Note that the second property follows
from the first.)

The changes that will be made to T will consist of adding back arcs and adding
arcs with tail not in P , and removing arcs of the form (vj , vj+1). Figure 4 (a)
shows an example of how the out-branching may look after five stages (only the
vertices of P are shown). Note that the invariant still holds even though the set
of reachable vertices may change for a vertex vi.

The operation of stage i, and the dipath Qi that we use for it is defined
as follows. Let Ti denote the out-branching as it is in the beginning of stage
i, so T1 = T . The changes in stage i will yield a new out-branching Ti+1. In
Figure 4 an example is shown where T7 is constructed from T6. The dashed

232 P. Bonsma and F. Dorn

(a)

v6 vp−1v0

T6:

(b)

v0 vσ(1) vσ(3)vσ(2) x

T7: : Q6

Fig. 4. Stage 6: constructing T7 from T6

arcs in Figure 4 (b) show the dipath Q6. If vi−1 is already a leaf or a tail of
a back arc in Ti, we do nothing, so Ti+1 = Ti. Otherwise, vi is the only out-
neighbor of vi−1 in Ti (invariant Property 1). Then we consider a dipath Qi =
x, vσ(q), vσ(q−1), . . . , vσ(1) in D that ends in vi, and has x
∈ RTi(vi), constructed
as follows. Let σ(1) = i. By our assumption, vi has an in-neighbor u in D that is
not equal to vi−1 or vi+1. Since all arcs between vertices in V (P) are back arcs
and RTi(vi) ⊆ V (P) (invariant Property 2), this vertex u is either not in RTi(vi)
or it is equal to vj for some j ≥ i+ 2. In the first case, Qi = u, vi. In the second
case let σ(2) = j, and continue constructing the path using the same rule: vj has
an in-neighbor that is not in RTi(vj), or is equal to vl for some l ≥ j + 2, etc.

This process will terminate with a dipath Qi = x, vσ(q), . . . , vσ(1), where
vσ(1) = vi, the function σ increases in steps of at least 2, and x
∈ RTi(vi).
It follows that if we make 1-changes for all arcs in Qi, again an out-branching
is obtained (Lemma 3, note that we can easily extend Qi to start in r), and
vi−1 becomes a leaf. Observe also that the invariant properties are maintained
by these changes. This yields Ti+1. We omit the proof that an out-branching Tp

constructed in this way contains at least p/4 leaves. �

6 Discussion

It seems that in order to significantly improve the parameter function of FPT
algorithms for these problems further, a different approach is needed, one that is
not based on dynamic programming over a tree decomposition. It is an interest-
ing question whether different, significantly faster FPT algorithms are possible
for these two problems, for instance FPT algorithms with a parameter function
of the form ck for some constant c. Such algorithms exist for the undirected
version (with c = 6.75, see [6]). This was also asked in [12].

References

1. Alon, N., Fomin, F.V., Gutin, G., Krivelevich, M., Saurabh, S.: Better algorithms
and bounds for directed maximum leaf problems. In: Arvind, V., Prasad, S. (eds.)
FSTTCS 2007. LNCS, vol. 4855, pp. 316–327. Springer, Heidelberg (2007),
Full version: http://arxiv.org/abs/0803.0701

http://arxiv.org/abs/0803.0701

Tight Bounds and a Fast FPT Algorithm 233

2. Alon, N., Fomin, F.V., Gutin, G., Krivelevich, M., Saurabh, S.: Parameterized al-
gorithms for directed maximum leaf problems. In: Arge, L., Cachin, C., Jurdziński,
T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 352–362. Springer, Hei-
delberg (2007)

3. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernet. 11, 1–21
(1993)

4. Bonsma, P., Brüggemann, T., Woeginger, G.J.: A faster FPT algorithm for finding
spanning trees with many leaves. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003.
LNCS, vol. 2747, pp. 259–268. Springer, Heidelberg (2003)

5. Bonsma, P., Dorn, F.: An FPT algorithm for directed spanning k-leaf (2007),
http://arxiv.org/abs/0711.4052

6. Bonsma, P., Zickfeld, F.: Spanning trees with many leaves in graphs without dia-
monds and blossoms. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.)
LATIN 2008. LNCS, vol. 4957, pp. 531–543. Springer, Heidelberg (2008)

7. Demaine, E., Gutin, G., Marx, D., Stege, U.: 07281 Open problems – Structure
theory and FPT algorithmics for graphs, digraphs and hypergraphs. In: Dagstuhl
Seminar Proceedings 07281 (2007),
http://drops.dagstuhl.de/opus/volltexte/2007/1254

8. Ding, G., Johnson, T., Seymour, P.: Spanning trees with many leaves. J. Graph
Theory 37, 189–197 (2001)

9. Drescher, M., Vetta, A.: An approximation algorithm for the maximum leaf span-
ning arborescence problem (manuscript, 2007)

10. Fellows, M.R., McCartin, C., Rosamond, F.A., Stege, U.: Coordinatized kernels and
catalytic reductions: An improved FPT algorithm for max leaf spanning tree and
other problems. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974,
pp. 240–251. Springer, Heidelberg (2000)

11. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, Berlin (2006)

12. Gutin, G., Razgon, I., Kim, E.J.: Minimum leaf out-branching problems. In: Fleis-
cher, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 235–246. Springer, Hei-
delberg (2008)

13. Gutin, G., Yeo, A.: Some parameterized problems on digraphs. Comput. J. 51,
363–371 (2008)

14. Kleitman, D.J., West, D.B.: Spanning trees with many leaves. SIAM J. Discrete
Math. 4, 99–106 (1991)

15. Solis-Oba, R.: 2-approximation algorithm for finding a spanning tree with maxi-
mum number of leaves. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G.
(eds.) ESA 1998. LNCS, vol. 1461, pp. 441–452. Springer, Heidelberg (1998)

http://arxiv.org/abs/0711.4052
http://drops.dagstuhl.de/opus/volltexte/2007/1254

Engineering Tree Labeling Schemes: A

Case Study on Least Common Ancestors�

Saverio Caminiti, Irene Finocchi, and Rossella Petreschi

Computer Science Department, Sapienza University of Rome
Via Salaria, 113 - 00198 Rome, Italy

{caminiti,finocchi,petreschi}@di.uniroma1.it

Abstract. We address the problem of labeling the nodes of a tree such
that one can determine the identifier of the least common ancestor of
any two nodes by looking only at their labels. This problem has applica-
tion in routing and in distributed computing in peer-to-peer networks. A
labeling scheme using Θ(log2 n)-bit labels has been previously presented
by Peleg. By engineering this scheme, we obtain a variety of data struc-
tures with the same asymptotic performances. We conduct a thorough
experimental evaluation of all these data structures. Our results clearly
show which variants achieve the best performances in terms of space
usage, construction time, and query time.

1 Introduction

Effective representations of large, geographically dispersed communication net-
works should allow the users to efficiently retrieve information about the network
in a distributed and localized way. Labeling schemes provide an answer to this
problem by assigning labels to the network nodes in such a way that queries
can be computed alone from the labels of the involved nodes, without any extra
information source. The primary goal of a labeling scheme is to minimize the
maximum label length, while keeping queries fast. Adjacency labeling schemes
were first introduced by Breuer and Folkman in [5,6], and further studied in [12].
The interest in informative labeling schemes, however, was revived only more re-
cently, after Peleg showed the feasibility of the design of efficient labeling schemes
capturing distance information [16]. Since then, upper and lower bounds for la-
beling schemes have been proved on a variety of graph families and for a large
variety of queries, including distance [2,9,11], tree ancestry [1,3], flow and con-
nectivity [14]. In spite of a large body of theoretical works, to the best of our
knowledge only few experimental investigations of the efficiency of informative
labeling schemes have been addressed in the literature [9,13].

In this paper we focus on labeling schemes for answering least common ances-
tor queries in trees. Labeling schemes for least common ancestors can be easily
� Work partially supported by MIUR, the Italian Ministry of Education, University

and Research, under Project MainStream (“Algorithms for Massive Information
Structures and Data Streams”).

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 234–245, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Engineering Tree Labeling Schemes 235

exploited to answer distance queries and are mainly useful in routing messages
on tree networks, processing queries in XML search engines and distributed
computing in peer-to-peer networks (see, e.g., [3,4,13]). In [17], Peleg has proved
that for the class of n-node trees there exists a labeling scheme for least common
ancestors using Θ(log2 n)-bit labels, which is also shown to be asymptotically
optimal.

Peleg’s labeling scheme hinges upon two main ingredients: a decomposition of
the tree into paths, and a suitable encoding of information related to such paths
into the node labels. Peleg’s data structure uses an ad hoc path decomposition
as well as an ad hoc label structure. In this paper we first discuss different
path decomposition approaches and different ways of constructing node labels,
with the aim of engineering Peleg’s scheme and obtaining a variety of labeling
schemes for least common ancestors. We then perform a thorough experimental
evaluation of all these variants, also analyzing the effects of structural properties
of the input tree (such as balancing and degree) on their performances. The main
findings of our experiments can be summarized as follows:

– Among different path decompositions, those that generate the smallest num-
ber of paths (with the largest average path length) appear to be preferable
in order to minimize the total size of the data structure.

– A variant of Peleg’s scheme proposed in [7] achieves the best performances
in terms of space usage and construction time.

– Peleg’s scheme, used with a minor variant of the path decomposition origi-
nally proposed in [17], exhibits the fastest query times.

– All the data structures are very fast in practice. Although node labels have
size O(log2 n), only a small fraction of the labels is considered when answer-
ing random queries: typically, no more than a constant number of words per
query is read in all our experiments. However, query times slightly increase
with the instance size due to cache effects.

– Variants of the data structures carefully implemented with respect to align-
ment issues save 20% up to 40% of the space, but increase the query times
approximately by a factor 1.3 on our data sets. The space saving reduces as
the instance size gets larger.

The remainder of this paper is organized as follows. In Section 2 we describe the
data structures being compared, focusing on path decomposition, label structure,
and query algorithms. In Section 3 we give implementation details and discuss
our experimental framework. The main findings of our experimental study are
presented in Section 4.

2 Labeling Schemes for Least Common Ancestors

All the tree labeling schemes that we study in this paper follow the same basic
approach: the tree is decomposed into a set of node disjoint paths, that we
will call solid paths, and information related to the highest node in each path,
called head of the path, is suitably encoded into the node labels. In the following

236 S. Caminiti, I. Finocchi, and R. Petreschi

we will consider different path decomposition approaches, then we will describe
two possible ways of designing node labels. Different combinations of these two
ingredients yield different labeling schemes: one of them coincides with the tree
labeling scheme for least common ancestors originally proposed by Peleg in [17].

Path Decompositions. Let T be a tree with n nodes rooted at a given node r.
For any node u, we denote its parent and its level in T by p(u) and �(u), respec-
tively. We assume that the root has level 0. We also denote by Tu the subtree of
T rooted at u and by |Tu| the number of its nodes. In all the decompositions, for
any solid path π, we denote by head(π) the node of π with smallest level. We
will also say that a solid path π is an ancestral solid path of a node u if head(π)
is an ancestor of u.

Decomposition by Large Child. This decomposition hinges upon the distinction
between small and large nodes: a nonroot node v with parent u is called small
if |Tv| ≤ |Tu|/2, i.e., if its subtree contains at most half the number of nodes
contained in its parents’ subtree. Otherwise, v is called large. It is not difficult
to see that any node has at most one large child: we will consider the edge to
that large child, if any, as a solid edge. Solid edges induce a decomposition of
the tree into solid paths: we remark that the head of any solid path π is always
a small node, while all the other nodes in π must be large. Each node can have
at most �logn� small ancestors, and thus at most �logn� ancestral solid paths
(unless otherwise stated, all logarithms will be to the base 2).

Decomposition by Maximum Child. This is a minor variant of the previous
decomposition, using a relaxed definition of large nodes: a nonroot node v with
parent u is considered a maximum child of u if |Tv| = maxw:(u,w)∈T |Tw|. If two
or more children of u satisfy this condition, ties are broken arbitrarily. The edge
to the maximum child is considered as a solid edge. We note that a large node
is necessarily a maximum child; however, a maximum child exists even when all
the children v of a node u are such that |Tv| ≤ |Tu|/2. All the basic properties
of the decomposition by large child remain valid in this variant.

Decomposition by Rank. In this decomposition, an edge (u, v) is solid if and only
if �log |Tu|� = �log |Tv|�. It is not difficult to prove that for any node u there
exists at most one child v such that (u, v) is solid (see, e.g., [10,15]). This implies
that solid edges univocally partition the tree into disjoint paths. Some of these
paths can consist of a single node: for instance, all the tree leaves are heads of
solid paths of length 0. We remark that for all nodes v belonging to a given path
π, the size of the subtree rooted at v satisfies the inequality 2i ≤ |Tv| < 2i+1,
for some i ≥ 0: we will say that i is the rank of path π. Since the rank of any
path can be at most �logn�, it follows that each node u can have at most �logn�
ancestral solid paths.

Label Structure and Query Algorithms. We present two different ways of
constructing node labels (the two approaches are extensively described in [17]
and [7], respectively). When combined with any of the path decompositions,
both schemes yield labels of size O(log2 n). We also describe how information

Engineering Tree Labeling Schemes 237

maintained in the node labels can be used to infer the least common ancestor of
any two nodes.

Peleg’s scheme. The first scheme [17] is based on a depth-first numbering
of the tree T : as a preprocessing step, each node v is assigned an interval
Int(v) = [DFS(v);DFS(w)], where w is the last descendent of v visited by
the depth-first tour and DFS(x) denotes the depth-first number of node x. The
label of each node v of the tree is defined as label(v) = < Int(v), list(v) >;
where list(v) contains information related to all the heads (t1, t2, . . . , th) of solid
paths from the root of T to v: for each head ti, list(v) contains a quadruple
(ti, �(ti), p(ti), succv(ti)), where succv(ti) is the unique child of ti on the path to
node v. We remark that this is slightly different (and optimized) with respect to
the scheme originally proposed in [17].

We now describe the query algorithm: given two nodes u and v, the algorithm
infers their least common ancestor z = lca(u, v) using only information contained
in label(u) and label(v). By well-known properties of depth-first search, we have
that for every two nodes x and y of T , Int(x) ⊆ Int(y) if and only if x is a
descendent of y in T : this fact can be easily exploited to check whether the
least common ancestor z coincides with any of the two input nodes u and v.
If this is not the case, let (u1, u2, . . . , uh) and (v1, v2, . . . , vk) be the heads of
solid paths from the root of T to u and v, respectively: information about these
heads is maintained in the node labels. The algorithm finds the least common
ancestor head h, which is identified by the maximum index i such that ui = vi. If
succu(h)
= succv(h), then h must be the least common ancestor. Otherwise, the
algorithm takes the node of minimum level between ui+1 and vi+1, and returns
its parent as the least common ancestor. We refer to [17] for a formal proof
of correctness. Here, we limit to remark that both depth-first numbering and
information about successors appear to be crucial in this algorithm.

CFP’s scheme. This scheme [7] avoids the use of depth-first numbers and of
successors. The label of each node v of the tree is now defined as label(v) = <
isHead(v), list(v) >. The Boolean value isHead(v) discriminates whether v is
the head of its solid path or not. As in Peleg’s scheme, list(v) contains informa-
tion related to all the heads (t1, t2, . . . , th) of solid paths from the root of T to
v. In this case, the information for each head is less demanding and list(v) con-
sists just of a sequence of triples: list(v) = [(t1, �(t1), p(t1)), . . . , (th, �(th), p(th)),
(v, �(v), p(v))]; where t1 always coincides with the root of T . The sentinel triple
(v, �(v), p(v)) is not necessary when v is head of its solid path, since th = v.

We now describe the query algorithm. Given any two nodes u and v, let
(u1, u2, . . . , uh) and (v1, v2, . . . , vk) be the heads of solid paths from the root of
T to u and v, respectively. Similarly to the previous data structure, the algorithm
first identifies the lowest head h which is ancestor of both u and v: let i be such
that h = ui = vi. If neither u nor v coincides with h (in this trivial case it would
be lca(u, v) = h), the algorithm searches the least common ancestor in the
solid path π with head h. At this aim, it identifies two candidates cu and cv and
returns the highest of them. Notice that node ui+1 is either the sentinel of list(u)
or the head following ui in list(u): in the former case the candidate cu is u itself,

238 S. Caminiti, I. Finocchi, and R. Petreschi

while in the latter case the candidate is the parent of ui+1. The candidate cv is
computed similarly and the algorithm returns the highest level node among cu
and cv. We refer the interested reader to [7] for a formal proof of correctness. We
remark that this algorithm compensates for the absence of depth-first intervals
and successor information thanks to the use of sentinel triples.

3 Experimental Framework

In this section we describe our experimental framework, discussing implementa-
tion details of the data structures being compared, performance indicators we
consider, test sets, as well as our experimental setup. All implementations have
been realized by the authors in ANSI C. The full package is available over the
Internet at the URL: http://www.dsi.uniroma1.it/~caminiti/lca/.

Data Structure Implementation Issues. We implemented six different la-
beling schemes, obtained by combining the three path decompositions (rank,
largeChild, and maxChild) and the two label structures (Peleg and CFP). The
labeling scheme originally proposed in [17] corresponds to using Peleg’s labels
together with the decomposition by large child. It can be proved that all the ob-
tained labeling schemes guarantee maximum label size Θ(log2 n) for trees with
n nodes.

Each scheme comes in two variants, depending on alignment issues. In the
word variant, every piece of information maintained in the node labels is stored
at word-aligned addresses: some bytes are therefore used just for padding pur-
poses. The actual sizes of nodes labels may be larger than the size predicted
theoretically, but we expect computations on node labels to be fast. In the bit
variant, everything is 1-bit aligned: this variant guarantees a very compact space
usage, but requires operations for bit arithmetics that might have a negative im-
pact on the running times of operations.

Performance Indicators. Main objectives that we considered to evaluate the
data structures include space usage, construction time, and query time. Space
usage is strictly related to the length of the lists in the node labels, i.e., to
the number of entries in such lists: besides the total size of the data structure
(measured in MB, unless otherwise stated), we have therefore taken into account
also the average and maximum list length. Other structural measures have been
used to study the effect of the different path decompositions on the labeling
schemes: among them, we considered the number of paths in which the tree is
decomposed, the average and maximum length of paths, and the variance of
path lengths.

Test Sets. Problem instances consist both of synthesized, randomly generated
trees and of real test sets. We used two random tree generators with different
characteristics.
Uniformly distributed trees. This generator exploits the existence of a one-to-one
correspondence between labeled rooted trees on n nodes and strings of length
n− 1: it first generates a random codeword of n− 1 integers in the range [1, n]

Engineering Tree Labeling Schemes 239

and then applies a linear-time decoding algorithm [8] to obtain the tree. The
approach guarantees that, if each integer is chosen uniformly at random in [1, n],
each tree will have the same probability to be generated.
Structured trees. This generator produces structured instances taking into ac-
count constraints on the degree and on the tree balancing. It works recursively
and takes as input four arguments, named n, d, D, and β: n is the number of
nodes of the tree T to be built; d and D are a lower and an upper bound for
its degree, respectively; β is the unbalancing factor of T , i.e., a real number in
[0, 1] which indicates how much T must be unbalanced (the larger is β, the more
unbalanced will be T).
Real test sets. Spanning trees of real networks have been obtained from data pro-
vided on the CAIDA (Cooperative Association for Internet Data Analysis) web
site. Specifically, we exploited the network of Autonomous Systems monitored by
the skitter project. We refer the interested reader to http://www.caida.org/
for detailed information about these datasets.

Experimental Setup. Our experiments have been carried out on a workstation
equipped with two Dual Core Opteron processors with 2.2 GHz clock rate, 6 GB
RAM, 1 MB L2 cache, and 64 KB L1 data/instruction cache. The workstation
runs Linux Debian (Kernel 2.6.8). All programs have been compiled through
the GNU gcc compiler version 3.3.5 with optimization level O3, using the C99
revised standard of the C programming language. Unless stated otherwise, in
our experiments we averaged each data point on 1000 different instances. When
computing running times of query operations, we averaged the time on (at least)
106 random queries.

4 Experimental Results

In this section we summarize our main experimental findings. We performed
experiments using a wide variety of parameter settings and instance families,
always observing the same relative performances of the data structures. Due
to the lack of space, we do not explicitly report results on real data in this
extended abstract: all measurements on these data sets completely confirm the
results obtained on synthetic instances.

Path Decomposition. Our first aim was to analyze the effects of different path
decomposition strategies on the size of node labels. A typical outcome of our
experiments on trees generated uniformly at random is exemplified in Table 1.
With respect to all measures, maxChild appears to be slightly preferable than
largeChild and considerably better than rank. Consider first the structural
measures: among the three decompositions, maxChild generates the smallest
number of solid paths. Paths are therefore longer on the average, and their
lengths exhibit a higher variance. On the opposite side, the number of paths
generated by rank is almost twice as large for the parameter setting of this
experiment, and their length is almost twice as small.

240 S. Caminiti, I. Finocchi, and R. Petreschi

Table 1. Comparison of path decompositions. The results of this experiment are av-
eraged over 500 random trees with n = 107 nodes. Only the word variant of the data
structures is reported.

maxChild largeChild rank

Number of paths 3678739 4172966 6803270

Average path length (and variance) 2.72(73.7) 2.4(61.2) 1.47(7.9)

Maximum path length 15352 15351 6346

Average list length (and variance) for Peleg 5.72(2.16) 5.89(2.32) 12.40(10.58)

Maximum list length for Peleg 15 15 24

Data structure size for Peleg 1179 1203 2199

Average list length (and variance) for CFP 6.36(2.06) 6.47(2.18) 12.7(10.44)2

Maximum list length for CFP 15 15 24

Data structure size for CFP 1033 1045 1761

Additional experiments were aimed at analyzing the effects of structural prop-
erties of the tree on the path decomposition: in all these tests, the relative
ranking among the three strategies was always the same observed on uniformly
distributed trees. The graphical outcome of two such experiments, obtained by
increasing tree unbalancing and maximum degree, is reported in Figure 1. As the
tree becomes more and more unbalanced, the advantages of using the maxChild
decomposition drop: the number of solid paths obtained by largeChild and
rank indeed decreases and, conversely, the average path length increases (see
Figure 1a and Figure 1c). To explain this, let u be any node and let v be the
child of u that is root of the maximum size subtree: the more Tu is unbalanced,
the more |Tu| and |Tv| are close to each other and the edge (u, v) is likely to be
solid. This reasoning cannot be applied to the maxChild strategy, according to
which any internal node has always a solid child: for this reason curves related
to maxChild exhibit an almost constant trend. Let us now analyze the effect of
increasing the degree. Let T1 and T2 be two trees generated with the same fixed
unbalancing factor β (β = 0.9 in the right column of Figure 1) and maximum
degrees D1 < D2: for all strategies, we expect the number of solid paths in T2

to be larger than the number of solid paths in T1, since a larger degree implies a
larger number of heads (not only among the children, but among all the descen-
dants of each node). This intuition has been confirmed by the experiments with
increasing maximum degree for all the decompositions, and explains the trend
of the curves in Figure 1b and Figure 1d.

Size Comparison. Our next aim is to evaluate the requirements of Peleg’s
and CFP’s schemes with respect to the space usage. Besides the total size of the
data structure, we measured also the average number of solid heads in the lists
associated to tree nodes (average list length). We performed experiments varying
both structural properties of the input tree and the instance size.

At a first sight, it might appear that the average list length should be inversely
proportional to the average path length: if paths are shorter on the average, the
number of paths in any root-to-leaf path is expected to be larger, and so is

Engineering Tree Labeling Schemes 241

(a)

400000

450000

500000

550000

600000

650000

700000

750000

800000

850000

900000

0.5 0.6 0.7 0.8 0.9

Unbalancing

pa

th
s Maxchild

Largechild

Rank (b)

400000

500000

600000

700000

800000

900000

1000000

1100000

2 3 4 6 8 10 20 30 40 50

Degree

pa

th
s

Maxchild

Largechild

Rank

(c)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0.5 0.6 0.7 0.8 0.9

Unbalancing

A
vg

 p
at

h
le

n

Maxchild

Largechild

Rank (d)

0.5

1

1.5

2

2.5

2 3 4 6 8 10 20 30 40 50

Degree

A
vg

 p
at

h
le

n

Maxchild

Largechild

Rank

(e)

4

6

8

10

12

14

16

0.5 0.6 0.7 0.8 0.9

Unbalancing

A
vg

 li
st

 le
n

Maxchild Peleg Maxchild CFP

Largechild Peleg Largechild CFP

Rank Peleg Rank CFP

(f)

2

3

4

5

6

7

8

9

10

2 3 4 6 8 10 20 30 40 50

Degree

A
vg

 li
st

 le
n

Maxchild Peleg Maxchild CFP

Largechild Peleg Largechild CFP

Rank Peleg Rank CFP

(g)

50

70

90

110

130

150

170

190

210

230

0.5 0.6 0.7 0.8 0.9

Unbalancing

S
iz

e

Maxchild Peleg Maxchild CFP

Largechild Peleg Largechild CFP

Rank Peleg Rank CFP

(h)

20

40

60

80

100

120

140

2 3 4 6 8 10 20 30 40 50

Degree

S
iz

e

Maxchild Peleg Maxchild CFP

Largechild Peleg Largechild CFP

Rank Peleg Rank CFP

Fig. 1. Experimental results on structured trees with n = 106 nodes: increasing unbal-
ancing factor β (left column, d = 2 = D) and increasing degree (right column, d = D,
β = 0.9)

the number of heads in node labels (both for Peleg and CFP). While this was con-
firmed by the experiments on uniformly distributed trees (see Table 1), it is not
necessarily the case on more structured instances: in particular, both the average

242 S. Caminiti, I. Finocchi, and R. Petreschi

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

1000 10000 100000 1000000 10000000

n

av
er

ag
e

lis
t l

en
gt

h

CFP

Peleg

0

200

400

600

800

1000

1200

0 2000000 4000000 6000000 8000000 10000000

n

si
ze

Peleg-Word

CFP-Word

Peleg-Bit

CFP-Bit

Fig. 2. Size comparison for Peleg’s and CFP’s schemes on uniformly distributed random
trees: average list length and total size, measured in MB

path length (Figure 1d) and the average list length (Figure 1f) decrease as the
maximum degree increases. A more refined analysis suggests that the topology of
the tree should also be taken into account, and in particular the average height
of tree nodes should be considered: the deeper a node, the larger the number of
heads above it can be. As far as our generator works, trees with larger degree have
smaller average node height and, according to Figure 1f, the effect of such smaller
height appears to dominate on the shorter length of solid paths.

The total size of the data structure is directly proportional to the average
list length, and curves related to these two measures exhibit the same trend
(see Figure 1g and Figure 1h). However, it is worth observing that the data
structure size in the case of CFP is considerably smaller than Peleg’s size, in
spite of a slightly larger average list length. This is also evident from Figure 2,
that reports on results obtained using the maxChild path decomposition on
uniformly distributed random trees with a number of nodes increasing from 103

to 107 (from this point on we will omit the discussion of rank and largeChild,
since maxChild proved to be consistently better in all the tests described so
far). The smaller data structure size in the case of CFP depends on the fact
that the lists are made of triples, instead of quadruples: the smaller list length
in Peleg’s scheme (due to the absence of sentinel triples) is not sufficient to
compensate for the presence of one more information in each element of the
lists. We remark that lists are very short in practice for both schemes: they
contain on the average 3 up to 6 elements for the data sets considered in this
experiment. This value is very close to log10 n, showing that the constant factors
hidden by the asymptotic notation in the theoretical analysis are very small for
the maxChild path decomposition. In Figure 2 we also distinguish between the
bit and word versions of the data structures (there is no such difference with
respect to the average list length): as expected, for both schemes the bit versions
can considerably reduce the space usage. We will analyze further these data later
in this section.

Running Times. According to the theoretical analysis, the construction times
and the query times for the different labeling schemes are asymptotically the

Engineering Tree Labeling Schemes 243

0

2000

4000

6000

8000

10000

12000

0 2000000 4000000 6000000 8000000 10000000

n

C
on

st
ru

ct
io

n
tim

e

Peleg-Word

CFP-Word

Peleg-Bit

CFP-Bit

0

200

400

600

800

1000

1200

1000 10000 100000 1000000 10000000

n

Q
ue

ry
 ti

m
e

Peleg-Word

CFP-Word

Peleg-Bit

CFP-Bit

Fig. 3. Running time comparison for Peleg’s and CFP’s schemes on uniformly dis-
tributed random trees: construction time (in milliseconds) and average query time (in
milliseconds per 106 queries)

same. A natural question is whether this is the case also in practice. Our ex-
periments confirmed the theoretical prediction only in part, showing that the
constant factors hidden by the asymptotic notation can be rather different for
Peleg’s and CFP’s schemes. The charts in Figure 3, for instance, have been ob-
tained on the same data sets used for the test reported in Figure 2: these charts
show that Peleg is slower than CFP when considering initialization time, but
faster when considering query times. The bit versions of the data structures are
always slower than the corresponding word versions.

In order to explain the larger construction time of Peleg’s scheme, notice that
Peleg makes use of a depth-first numbering of the tree, that is instead avoided
by CFP: all the other operations performed by the initialization algorithms (i.e.,
path decomposition and list construction) are instead very similar. We also recall
that Peleg’s data structure is larger than CFP, and the size of a data structure is
clearly a lower bound on its construction time. The larger amount of information
maintained by Peleg in the list of each node is however efficiently exploited in
order to get faster query times: as an example, if one of the two input nodes
is ancestor of the other, the query algorithm used by CFP needs to scan the
beginning of the nodes’ lists, while the depth-first intervals directly provide the
answer in the case of Peleg data structure.

To get a deeper understanding of the query times, we also measured the aver-
age number of list elements scanned by the query algorithms during a sequence
of operations. This number turns out to be very small both for Peleg and for
CFP, as shown by the left chart reported in Figure 4: on the average, slightly
more than 2 elements are considered in each query even on the largest instances.
Peleg considers less elements than CFP, especially for small values of n: on small
trees, two nodes taken uniformly at random have indeed a higher probability to
be one ancestor of the other, and for all these queries Peleg can avoid to scan
the list at all, as we observed above. Quite surprisingly, however, for the largest
values of n the number of scanned list elements remains almost constant for
both data structures: this seems to be in contrast with the fact that the query
times increase (see Figure 3), and suggests that the larger running times may

244 S. Caminiti, I. Finocchi, and R. Petreschi

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

1000 10000 100000 1000000 10000000

n

sc

an
ne

d
lis

t e
le

m
en

ts

CFP

Peleg

0.E+00

2.E+08

4.E+08

6.E+08

8.E+08

1.E+09

1.E+09

1.E+09

2.E+09

2.E+09

1000 10000 100000

n

L2
 c

ac
he

 r
ef

er
en

ce
s

an
d

m
is

se
s

Total cache refs

Read refs

Write refs

Total cache misses

Read misses

Write misses

Fig. 4. Average number of list elements scanned by the query algorithms on uniformly
distributed random trees (left chart); number of references to L2 cache and number of
cache misses incurred by the CFP query algorithm on the same dataset (right chart)

0

0.5

1

1.5

2

2.5

3

3.5

4

1000 10000 100000 1000000 10000000

n

C
F

P
 b

it
/ w

or
d

ra
tio

InitTime CFP-Bit / InitTime CFP-Word

Size CFP-Bit / Size CFP-Word

QueryTime CFP-Bit / QueryTime CFP-Word

0

0.5

1

1.5

2

2.5

3

3.5

4

1000 10000 100000 1000000 10000000

n

P
el

eg
 b

it
/ w

or
d

ra
tio

InitTime Peleg-Bit/InitTime Peleg-Word

Size Peleg-Bit / Size Peleg-Word

QueryTime Peleg-Bit / QueryTime Peleg-Word

Fig. 5. Space/time saved by the bit/word versions: CFP (left chart) and Peleg (right
chart). Tests are made on uniformly distributed random trees.

be mainly due to cache effects. To investigate this issue, we used the valgrind
profiler to conduct a preliminary experimental analysis of the number of cache
misses incurred by the query algorithms: the outcome of one such experiment,
related to CFP, is reported in the right chart of Figure 4. The experiment con-
firms that the total number of cache references does not increase substantially
with n (in agreement with the result on the number of scanned list elements),
while the number of L2 cache read misses increases sharply, thus justifying the
larger query times.

Trading Space for Time. The experimental results discussed up to this point
show that the bit versions of the data structures require more space than the
corresponding word versions, but have larger construction and query times. In
Figure 5 we summarize the space-time tradeoffs, both for Peleg and for CFP. The
charts show that, for all measures, the differences between bit and word versions
tend to decrease as the instance size increases: this depends on the fact that, as
n increases, the value logn becomes progressively closer to the word size specific
of the architecture, and therefore the number of bits wasted by the word versions
becomes smaller. The size of the bit versions ranges approximately from 60%

Engineering Tree Labeling Schemes 245

up to 80% of the size of the word versions on our data sets. On the other side,
construction and query times of the bit versions are approximately 1.3 times
higher than the word versions for the largest values of n (for small values of n
the ratio is even larger).

References

1. Abiteboul, S., Alstrup, S., Kaplan, H., Milo, T., Rauhe, T.: Compact labeling
schemes for ancestor queries. SIAM J. on Computing 35(6), 1295–1309 (2006)

2. Alstrup, S., Bille, P., Rauhe, T.: Labeling schemes for small distances in trees.
SIAM J. on Discrete Mathematics 19(2), 448–462 (2005)

3. Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest common ancestors: a
survey and a new distributed algorithm. In: Proc. ACM SPAA 2002, pp. 258–264
(2002)

4. Bonichon, N., Gavoille, C., Labourel, A.: Short labels by traversal and jumping. In:
Flocchini, P., Gasieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 143–156.
Springer, Heidelberg (2006)

5. Breuer, M.A.: Coding the vertexes of a graph. IEEE Transactions on Information
Theory IT-12, 148–153 (1966)

6. Breuer, M.A., Folkman, J.: An unexpected result on coding the vertices of a graph.
J. of Mathematical Analysis and Applications 20, 583–600 (1967)

7. Caminiti, S., Finocchi, I., Petreschi, R.: Concurrent data structures for lowest
common ancestors (manuscript, 2008)

8. Caminiti, S., Finocchi, I., Petreschi, R.: On coding labeled trees. Theoretical Com-
puter Science 382(2), 97–108 (2007)

9. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and Distance Queries
via 2-hop Labels. In: Proc. ACM-SIAM SODA 2002, pp. 937–946 (2002)

10. Cole, R., Hariharan, R.: Dynamic LCA Queries on Trees. SIAM J. on Comput-
ing 34(4), 894–923 (2005)

11. Gavoille, C., Peleg, D., Perennes, S., Raz, R.: Distance labeling in graphs. In: Proc.
ACM-SIAM SODA 2001, pp. 210–219 (2001)

12. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. In: Proc. ACM
STOC 1988, pp. 334–343 (1988)

13. Kaplan, H., Milo, T., Shabo, R.: A Comparison of Labeling Schemes for Ancestor
Queries. In: Proc. ACM-SIAM SODA 2002, pp. 954–963 (2002)

14. Katz, M., Katz, N.A., Korman, A., Peleg, D.: Labeling schemes for flow and con-
nectivity. SIAM J. on Computing 34(1), 23–40 (2004)

15. Kopelowitz, T., Lewenstein, M.: Dynamic weighted ancestors. In: Proc. ACM-
SIAM SODA 2007, pp. 565–574 (2007)

16. Peleg, D.: Proximity-preserving labeling schemes and their applications. In: Wid-
mayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 30–41.
Springer, Heidelberg (1999)

17. Peleg, D.: Informative labeling schemes for graphs. In: Nielsen, M., Rovan, B. (eds.)
MFCS 2000. LNCS, vol. 1893, pp. 579–588. Springer, Heidelberg (2000)

A Practical Quicksort Algorithm

for Graphics Processors

Daniel Cederman� and Philippas Tsigas��

Department of Computer Science and Engineering
Chalmers University of Technology, SE-412 96 Göteborg, Sweden

{cederman,tsigas}@chalmers.se

Abstract. In this paper we present GPU-Quicksort, an efficient Quick-
sort algorithm suitable for highly parallel multi-core graphics processors.
Quicksort has previously been considered as an inefficient sorting solu-
tion for graphics processors, but we show that GPU-Quicksort often per-
forms better than the fastest known sorting implementations for graphics
processors, such as radix and bitonic sort. Quicksort can thus be seen
as a viable alternative for sorting large quantities of data on graphics
processors.

1 Introduction

In this paper, we present an efficient parallel algorithmic implementation of
Quicksort, GPU-Quicksort, designed to take advantage of the highly parallel
nature of graphics processors (GPUs) and their limited cache memory. Quicksort
has long been considered as one of the fastest sorting algorithms in practice
for single processor systems, but until now it has not been considered as an
efficient sorting solution for GPUs [1]. We show that GPU-Quicksort presents a
viable sorting alternative and that it can outperform other GPU-based sorting
algorithms such as GPUSort and radix sort, considered by many to be two of
the best GPU-sorting algorithms. GPU-Quicksort is designed to take advantage
of the high bandwidth of GPUs by minimizing the amount of bookkeeping and
inter-thread synchronization needed. It achieves this by using a two-phase design
to keep the inter-thread synchronization low and by steering the threads so
that their memory read operations are performed coalesced. It can also take
advantage of the atomic synchronization primitives found on newer hardware,
when available, to further improve its performance.

The obvious way to parallelize Quicksort is to take advantage of its inherent
parallelism by just assigning a new processor to each new sequence created in
the partitioning step. This means, however, that there will be very little paral-
lelization at the beginning, when the sequences are few and long [2].

Another approach has been to divide each sequence to be sorted into blocks
that can then be dynamically assigned to available processors [3,4]. However, this
� Supported by Microsoft Research through its European PhD Scholarship Programme.

�� Partially supported by the Swedish Research Council (VR).

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 246–258, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Practical Quicksort Algorithm for Graphics Processors 247

method requires extensive use of the atomic synchronization primitive Fetch-
And-Add (FAA) which makes it too expensive to use on graphics processors.

Since most sorting algorithms are memory bandwidth bound, there is no sur-
prise that there is currently a big interest in sorting on the high bandwidth
GPUs. Purcell et al. [5] have presented an implementation of bitonic merge sort
on GPUs based on an implementation by Kapasi et al. [6]. Kipfer et al. [7,8]
have shown an improved version of the bitonic sort as well as an odd-even merge
sort. Greß et al. [9] introduced an approach based on the adaptive bitonic sorting
technique presented by Bilardi et al. [10]. Govindaraju et al. [11] implemented
a sorting solution based on the periodic balanced sorting network method by
Dowd et al. [12] and one based on bitonic sort [13]. They later presented a hy-
brid bitonic-radix sort that used both the CPU and the GPU to be able to sort
vast quantities of data [14]. Sengupta et al. [1] have presented a radix-sort and
a Quicksort implementation. Recently, Sintorn et al. [15] presented a sorting
algorithm that combines bucket sort with merge sort.

2 The System Model

The algorithm has been implemented in CUDA, which is NVIDIA’s initiative to
enable general purpose computations on their graphics processors. It consists of
a compiler for a C-based language which can be used to create kernels that can
be executed on the GPU.

General Architecture. The high range graphics processors from NVIDIA that
supports CUDA currently boasts 16 multiprocessors, each multiprocessor con-
sisting of 8 processors that all execute the same instruction on different data
in lock-step. Each multiprocessor supports up to 768 threads and has 16 KiB of
fast local memory.

Scheduling. Threads are logically divided into thread blocks that are assigned to
a specific multiprocessor. Depending on how many registers and how much local
memory the block of threads requires, there could be multiple blocks running
concurrently on a single multiprocessor. If more blocks are needed than there
is room for, on any of the multiprocessors, the leftover blocks will be scheduled
sequentially.

Synchronization. Threads within a thread block can use the multiprocessors
local memory and a special thread barrier-function to communicate with each
other. The barrier-function forces all threads in the same block to synchronize.
Some newer graphics processors support atomic instructions such as Compare-
And-Swap and FAA.

Memory. Data is stored in a large, global memory that supports both gather
and scatter operations. There is no caching available when accessing this mem-
ory, but each thread block can use its own, very fast, shared local memory to
temporarily copy and store data from the global memory and use it as a manual

248 D. Cederman and P. Tsigas

cache. By letting each thread access consecutive memory locations, it is possible
to allow read and write operations to coalesce, which will increase performance.

3 The Algorithm

The following subsection gives an overview of GPU-Quicksort. Section 3.2 will
then go into the algorithm in more detail.

3.1 Overview

The method used by the algorithm is to recursively partition the sequence to be
sorted, i.e. to move all elements that are lower than a specific pivot value to a
position to the left of the pivot and to move all elements with a higher value to
the right of the pivot. This is done until the entire sequence has been sorted.

In each partition iteration a new pivot value is picked and as a result two new
subsequences are created that can be sorted independently. After a while there
will be enough subsequences available that each thread block can be assigned one
of them. But before that point is reached, the thread blocks need to work together
on the same sequences. For this reason, we have divided up the algorithm into
two, albeit rather similar, phases.

First Phase. In the first phase, several thread blocks might be working on
different parts of the same sequence of elements to be sorted. This requires ap-
propriate synchronization between the thread blocks, since the results of the
different blocks need to be merged together to form the two resulting subse-
quences.

Newer graphics processors provide access to atomic primitives that can aid
somewhat in this synchronization, but they are not yet available on the high-end
graphics processors. Because of that, there is still a need to have a thread block
barrier-function between the partition iterations.

The reason for this is that the blocks might be executed sequentially and we
have no way of knowing in which order they will be executed. The only way
to synchronize thread blocks is to wait until all blocks have finished executing.
Then one can assign new subsequences to them. Exiting and reentering the GPU
is not expensive, but it is also not delay-free since parameters need to be copied
from the CPU to the GPU, which means that we want to minimize the number
of times we have to do that.

When there are enough subsequences so that each thread block can be assigned
its own subsequence, we enter the second phase.

Second Phase. In the second phase, each thread block is assigned its own
subsequence of input data, eliminating the need for thread block synchronization.
This means that the second phase can run entirely on the graphics processor.
By using an explicit stack and always recurse on the smallest subsequence, we
minimize the shared memory required for bookkeeping.

A Practical Quicksort Algorithm for Graphics Processors 249

Fig. 1. Partitioning a sequence (m thread blocks with n threads each)

Hoare suggested in his paper [16] that it would be more efficient to use another
sorting method when the subsequences are relatively small, since the overhead
of the partitioning gets too large when dealing with small sequences. We decided
to follow that suggestion and sort all subsequences that can fit in the available
local shared memory using an alternative sorting method.

In-place. On conventional SMP systems it is favorable to perform the sorting
in-place, since that gives good cache behavior. But on GPUs, because of their
limited cache memory and the expensive thread synchronization that is required
when hundreds of threads need to communicate with each other, the advantages
of sorting in-place quickly fades away. Here it is better to aim for reads and
writes to be coalesced to increase performance, something that is not possible
on conventional SMP systems. For these reasons it is better, performance-wise,
to use an auxiliary buffer instead of sorting in-place.

So, in each partition iteration, data is read from the primary buffer and the
result is written to the auxiliary buffer. Then the two buffers switch places, with
the primary becoming the auxiliary and vice versa.

Partitioning. The principle of two phase partitioning is outlined in Figure 1.
The sequence to be partitioned is selected and it is then logically divided into m

250 D. Cederman and P. Tsigas

equally sized sections (Step a), where m is the number of thread blocks available.
Each thread block is then assigned a section of the sequence (Step b).

The thread block goes through its assigned data, with all threads in the block
accessing consecutive memory so that the reads can be coalesced. This is impor-
tant, since reads being coalesced will significantly lower the memory access time.

Synchronization. The objective is to partition the sequence, i.e. to move all
elements that are lower than the pivot to a position to the left of the pivot in the
auxiliary buffer and to move the elements with a higher value than the pivot to
the right of the pivot. The problem here is to synchronize this in an efficient way.
How do we make sure that each thread knows where to write in the auxiliary
buffer?

Cumulative Sum. A possible solution is to let each thread read an element
and then synchronize the threads using a barrier function. By calculating a
cumulative sum1 of the number of threads that want to write to the left and to
the right of the pivot respectively, each thread would know that x threads with
a lower thread id than its own are going to write to the left of the pivot and that
y threads are going to write to the right of the pivot. Each thread then knows
that it can write its element to either bufx+1 or bufn−(y+1), depending on if the
element is higher or lower than the pivot.

A Two-Pass Solution. But calculating a cumulative sum is not free, so to
improve performance we go through the sequence two times. In the first pass each
thread just counts the number of elements it has seen that have value higher (or
lower) than the pivot (Step c). Then when the block has finished going through
its assigned data, we use these sums instead to calculate the cumulative sum
(Step d). Now each thread knows how much memory the threads with a lower id
than its own needs in total, turning it into an implicit memory-allocation scheme
that only needs to run once for every thread block, in each iteration.

In the first phase, where we have several thread blocks accessing the same se-
quence, an additional cumulative sum need to be calculated for the total memory
used by each thread block (Step e).

When each thread knows where to store its elements, we go through the data
in a second pass (Step g), storing the elements at their new position in the
auxiliary buffer. As a final step, we store the pivot value at the gap between the
two resulting subsequences (Step h). The pivot value is now at its final position
which is why it doesn’t need to be included in any of the two subsequences.

3.2 Detailed Description

The First Phase The goal of the first phase is to divide the data into a large
enough number of subsequences that can be sorted independently.

Work Assignment. In the ideal case, each subsequence should be of the same
size, but that is often not possible, so it is better to have some extra subsequences
1 The terms prefix sum or sum scan are also used in the literature.

A Practical Quicksort Algorithm for Graphics Processors 251

procedure gpuqsort(size, dprim, daux)

minlength, flip ← size
maxseq , false

work, done ← {(0, size, flip, piv)}, ∅
while work �= ∅ ∧ |work| + |done| < maxseq do

ws, xs ←
∑

v∈work
vend−vbeg
maxseq , ∅

for all v ∈ work do

x ← (vbeg, vend, v,

vend−vbeg

ws �)
xs ∪ {x}
for i ← 0, i < xc − 1, i ← i + 1 do

beg ← xs + ws · i
bl ← bl ∪ {(x, beg, beg + ws)}

bl ← bl ∪ {(x, xs + ws · (xc − 1), xe)}

gqsort(bl, dprim, daux);

for all x ∈ xs do
ns1 ← {(x

vbeg , xs, flip, piv)}
ns2 ← {(xe, x

vend , flip, piv)}
if xs − x

vbeg < minlength then
done ← done ∪ ns1

else
work ← work ∪ ns1

if x
vend − xe < minlength then
done ← done ∪ ns2

else
work ← work ∪ ns2

dprim, daux, flip ← daux, dprim,¬flip

if flip then

dprim, daux ← daux, dprim

done ← done ∪ work
lqsort(done, dprim, daux);

procedure gqsort(bl, dprim, daux)
b ← blbid
lttid, gttid ← 0, 0

i ← bbeg + tid

for i < bend, i ← i + T do

if d
prim
i < bxp

then
lttid ← lttid + 1

if d
prim
i > b.x.p then
gttid ← gttid + 1

lt, gt ← accum(lt), accum(gt)
lbeg ← FAA(bxs

, ltT)

gbeg ← FAA(bxe
,−gtT)

lfromtid = lbeg + lttid
gfromtid = gbeg + gttid
i ← bbeg + tid

for i < bend, i ← i + T do

if d
prim
i < pivot then

dauxlfrom ← d
prim
i

lfrom ← lfrom + 1

if ld > pivot then

dauxgfrom ← d
prim
i

gfrom ← gfrom − 1

if FAA(bxc
,−1) = 1 then

for i ← bxs
, i < bxe

, i ← i + 1 do

dauxi ← bxp

Fig. 2. Pseudocode for the first phase

and let the scheduler balance the workload. Based on that observation, a good way
to partition is to only partition subsequences that are longer than minlength =
n/maxseq and to stop when we have maxseq number of subsequences.

In the beginning of each iteration, all subsequences that are larger than the
minlength are assigned thread blocks relative to their size. In the first iteration,
the original subsequence will be assigned all available thread blocks. The sub-
sequences are divided so that each thread block gets an equally large section to
sort, as can be seen in Figure 1 (Step a and b).

First Pass. When a thread block is executed on the GPU, it will iterate through
all the data in its assigned sequence. Each thread in the block will keep track
of the number of elements that are greater than the pivot and the number
of elements that are smaller than the pivot. The data is read in chunks of T
words, where T is the number of threads in each thread block. The threads read
consecutive words so that the reads coalesce as much as possible.

252 D. Cederman and P. Tsigas

procedure lqsort(sl, dtrue, dfalse)

wset = {slbid}

while wset �= ∅ do
v ← minsize(wset)
where v = (vs, ve, vb)

pivot ← med(dvb

vs , dvb

ve , dvb

(vs+ve)/2)

i, lttid, gttid ← vs + tid, 0, 0

for i < ve, i ← i + T do

if dvb

i < pivot then
lttid ← lttid + 1

if dvb

i > pivot then
gttid ← gttid + 1

alt, agt ← accum(lt), accum(gt)
alttid, agttid ← vs + alttid, ve − agttid
i ← vs + tid

for i < ve, i ← i + T do

if dvb

i < pivot then

d¬vb

alttid
, alttid ← dvb

i , alttid − 1

if dvb

i > pivot then

d¬vb

agttid
, agttid ← dvb

i , agttid + 1

i ← vs + altT + tid

for i < vs − agtT , i ← i + T do

dfalse ← pivot

r ← {(vs, altT), (ve − agtT , agtT)}

for all s ∈ r do

if slen < MINSIZE then

altsort(sbeg, slen, dvb
, dfalse)

else
wset ← wset ∪ {(sf , sf + slen,¬vb)}

Fig. 3. Pseudocode for the second phase

Space Allocation. Once we have gone through all the assigned data, we calcu-
late the cumulative sum of the two arrays. We then use the atomic FAA-function
to calculate the cumulative sum for all blocks that have completed so far. This
information is used to give each thread a place to store its result, as can be seen
in Figure 1 (Step c-f).

FAA is as of the time of writing not available on all GPUs. An alternative, if
one wants to run the algorithm on the older, high-end graphics processors, is to
divide the kernel up into two kernels and do the block cumulative sum on the
CPU instead. This would make the code more generic, but also slightly slower
on new hardware.

Second Pass. Using the cumulative sum, each thread knows where to write
elements that are greater or smaller than the pivot. Each block goes through its
assigned data again and writes it to the correct position in the current auxiliary
array. It then fills the gap between the elements that are greater or smaller
than the pivot with the pivot value. We now know that the pivot values are in
their correct final position, so there is no need to sort them anymore. They are
therefore not included in any of the newly created subsequences.

Are We Done? If the subsequences that arise from the partitioning are longer
than minlength, they will be partitioned again in the next iteration, provided
we don’t already have more than maxseq subsequences. If we do have more than
maxseq subsequences, the next phase begins. Otherwise we go through another
iteration. (See Algorithm 1).

The Second Phase. When we have acquired enough independent subsequences,
there is no longer any need for synchronization between blocks. Because of this,
the entire phase two can be run on the GPU entirely. There is however still the

A Practical Quicksort Algorithm for Graphics Processors 253

need for synchronization between threads, which means that we will use the same
method as in phase one to partition the data. That is, we will count the number of
elements that are greater or smaller than the pivot, do a cumulative sum so that
each thread has its own location to write to and then move all elements to their
correct position in the auxiliary buffer.

Stack. To minimize the amount of fast local memory used, there is a very limited
supply of it, we always recurse on the smallest subsequence. By doing that, Hoare
have showed [16] that the maximum recursive depth can never go below log2(n).
We use an explicit stack as suggested by Hoare and implemented by Sedgewick,
always storing the smallest subsequence at the top [17].

Overhead. When a subsequence’s size goes below a certain threshold, we use
an alternative sorting method on it. This was suggested by Hoare since the
overhead of Quicksort gets too big when sorting small sequences of data. When
a subsequence is small enough to be sorted entirely in the fast local memory, we
could use any sorting method that can be made to sort in-place, doesn’t require
much expensive thread synchronization and performs well when the number of
threads approaches the length of the sequence to be sorted.

Theorem 1. The average time complexity for GPU-Quicksort is O(n log(n)).

Theorem 2. The space complexity for GPU-Quicksort is 2n + c, where c is a
constant.

The proofs of the theorems above are simple and are not included in this version
of the paper due to space constraints.

4 Experimental Evaluation

We ran the experiments on a dual-processor dual-core AMD Opteron 1.8GHz
machine. Two different graphics processors were used, the low-end NVIDIA
8600GTS 256MiB with 4 multiprocessors and the high-end NVIDIA 8800GTX
768MiB with 16 multiprocessors. Since the 8800GTX provides no support for
the atomic FAA operation we instead used an implementation of the algorithm
that exits to the CPU for block-synchronization.

We compared GPU-Quicksort to the following state-of-the-art GPU sorting
algorithms:

GPUSort. Uses bitonic merge sort [13].
Radix-Merge. Uses radix sort to sort blocks that are then merged [18].
Global Radix. Uses radix sort on the entire sequence [1].
Hybridsort. Uses a bucket sort followed by a merge sort [15].
STL-Introsort. This is the Introsort implementation found in the C++ Stan-

dard Library. Introsort is based on Quicksort, but switches to heap-sort when
the recursion depth gets too large. Since it is highly dependent on the computer
system and compiler used, we only included it to give a hint as to what could
be gained by sorting on the GPU instead of on the CPU [19].

254 D. Cederman and P. Tsigas

 1

 10

 100

 1000 Uniform

Quicksort Global
Radix

GPUSort Radix
Merge

STL

 1

 10

 100

 1000 Gaussian

 1

 10

 100

 1000

T
im

e
in

 m
ill

is
ec

on
ds

 -
 L

og
ar

ith
m

ic
 s

ca
le

Zero

 1

 10

 100

 1000 Bucket

 1

 10

 100

 1000

1 2 4 8 16

Elements (millions)

Staggered

Fig. 4. Results on the 8800GTX

 1

 10

 100

 1000 Uniform

Quicksort Hybrid Global
Radix

GPUSort STL Radix
Merge

 1

 10

 100

 1000 Gaussian

 1

 10

 100

 1000

 10000

T
im

e
in

 m
ill

is
ec

on
ds

 -
 L

og
ar

ith
m

ic
 s

ca
le

Zero

 1

 10

 100

 1000 Bucket

 1

 10

 100

 1000

1 2 4 8

Elements (millions)

Staggered

Fig. 5. Results on the 8600GTS

We could not find an implementation of the Quicksort algorithm used by
Sengupta et al., but they claim in their paper that it took over 2 seconds to sort
4M uniformly distributed elements on a 8800GTX [1].

We only measured the actual sorting phase, we did not include in the result
the time it took to setup the data structures and to transfer the data on and off
the graphics memory. The reason for this is the different methods used to transfer
data which wouldn’t give a fair comparison between the GPU-based algorithms.
Transfer times are also irrelevant if the data to be sorted are already available
on the GPU. Because of those reasons, this way of measuring has become a
standard in the literature.

On the 8800GTX we used 256 thread blocks, each block having 256 threads.
When a subsequence dropped below 1024 elements in size, we sorted it using
bitonic sort. On the 8600GTS we lowered the amount of thread blocks to 128
since it has fewer multiprocessors. All implementations were compiled with the
-O3 optimization flag.

We used different pivot selection schemes for the two phases. In the first phase
we took the average of the minimum and maximum element in the sequence and

A Practical Quicksort Algorithm for Graphics Processors 255

in the second we picked the median of the first, middle and last element as the
pivot, a method suggested by Singleton[20].

The source code of GPU-Quicksort is available for non-commercial use [21].
For benchmarking we used the following distributions which are defined and

motivated in [22]. These are commonly used yardsticks to compare the perfor-
mance of different sorting algorithms. The source of the random uniform values
is the Mersenne Twister [23].

Uniform. Values are picked randomly from 0 − 231.
Zero. A constant value is used. The actual value is picked at random.
Bucket. The data set is divided into p blocks, where p ∈ Z+, which are then
each divided into p sections. Section 1 in each block contains randomly selected
values between 0 and 231

p − 1. Section 2 contains values between 231

p and 232

p − 1
and so on.
Gaussian. The Gaussian distribution is created by always taking the average
of four randomly picked values from the uniform distribution.
Staggered. The data set is divided into p blocks, where p ∈ Z+. The staggered
distribution is then created by assigning values for block i, where i ≤ �p

2�, so that
they all lie between ((2i− 1)231

p) and ((2i)(231

p − 1)). For blocks where i > �p
2�,

the values all lie between ((2i− p− 2)231

p) and ((2i− p− 1)231

p − 1).
We decided to use a p value of 128. The results presented in Fig. 4 and 5 are

based on experiments sorting sequences of integers. We have done experiments
using floats instead, but found no difference in performance.

4.1 Discussion

Quicksort has a worst case scenario complexity of O(n2), but in practice, and on
average when using a random pivot, it tends to be close to O(n log(n)), which is
the lower bound for comparison sorts. In all our experiments GPU-Quicksort has
shown the best performance or been among the best. There was no distribution
that caused problems to the perfomance of GPU-Quicksort. As can be seen
when comparing the performance on the two GPUs, GPU-Quicksort shows a
speedup of approximately 3 on the higher-end GPU. The higher-end GPU has
a memory bandwidth that is 2.7 times higher and has four times the number
of multiprocessors, indicating that the algorithm is bandwidth bound and not
computation bound, which was the case with the Quicksort in [1].

On the CPU, Quicksort is normally seen as a faster algorithm as it can po-
tentially pick better pivot points and doesn’t need an extra check to determine
when the sequence is fully sorted. The time complexity of radix sort is O(n),
but that hides a potentially high constant which is dependent on the key size.
Optimizations are possible to lower this constant, such as constantly checking
if the sequence has been sorted, but that can be expensive when dealing with
longer keys. Quicksort being a comparison sort also means that it is easier to
modify it to handle different key types.

The hybrid approach uses atomic instructions that were only available on
the 8600GTS. We can see that it outperforms both GPU-Quicksort and the

256 D. Cederman and P. Tsigas

global radix sort on the uniform distribution. But it loses speed on the staggered
distributions and becomes immensely slow on the zero distribution. The authors
state that the algorithm drops in performance when faced with already sorted
data, so they suggest randomizing the data first, but this wouldn’t affect the
result in the zero distribution.

GPUSort doesn’t increase as much in performance as the other algorithms
when executed on the higher-end GPU. This is an indication that the algorithm
is more computationally bound than the other algorithms. It goes from being
much faster than the slow radix-merge to perform on par with and even a bit
slower than it. The global radix sort showed a 3x speed improvement, as did
GPU-Quicksort.

All algorithms showed about the same performance on the uniform, bucket
and Gaussian distributions. GPUSort always shows the same result independent
of distributions since it is a sorting network, which means it always performs
the same number of operations regardless of the distribution. The staggered
distribution was more interesting. On the low-end GPU the hybrid sorting was
more than twice as slow as on the uniform distribution. GPU-Quicksort also
dropped in speed and started to show the same performance as GPUSort. This
can probably be attributed to the choice of pivot selection which was more
optimized for uniform distributions. The zero distribution, which can be seen
as an already sorted sequence, affected the algorithms to different extent. The
STL reference implementation increased dramatically in performance since its
two-way partitioning function always returned even partitions regardless of the
pivot chosen. GPU-Quicksort shows the best performance as it does a three-way
partitioning and can sort the sequence in O(n) time.

5 Conclusions

In this paper we present GPU-Quicksort, a parallel Quicksort algorithm designed
to take advantage of the high bandwidth of GPUs by minimizing the amount of
bookkeeping and inter-thread synchronization needed. A significant conclusion,
we think, that can be drawn from this work, is that Quicksort is a practical
alternative for sorting large quantities of data on graphics processors.

Acknowledgements. We would like to thank Georgios Georgiadis, Marina
Papatriantafilou and the anonymous referees for their valuable comments. We
would also like to thank Ulf Assarsson and Erik Sintorn for insightful discussions
regarding CUDA and for providing us with the source code to their hybrid sort.

References

1. Sengupta, S., Harris, M., Zhang, Y., Owens, J.D.: Scan Primitives for GPU Com-
puting. In: Proceedings of the 22nd ACM Siggraph/Eurographics Symposium on
Graphics Hardware, pp. 97–106 (2007)

2. Evans, D.J., Dunbar, R.C.: The Parallel Quicksort Algorithm Part 1 - Run Time
Analysis. International Journal of Computer Mathematics 12, 19–55 (1982)

A Practical Quicksort Algorithm for Graphics Processors 257

3. Heidelberger, P., Norton, A., Robinson, J.T.: Parallel Quicksort Using Fetch-And-
Add. IEEE Transactions on Computers 39(1), 133–138 (1990)

4. Tsigas, P., Zhang, Y.: A Simple, Fast Parallel Implementation of Quicksort and
its Performance Evaluation on SUN Enterprise 10000. In: Proceedings of the 11th
Euromicro Conference on Parallel Distributed and Network-based Processing, pp.
372–381 (2003)

5. Purcell, T.J., Donner, C., Cammarano, M., Jensen, H.W., Hanrahan, P.: Photon
Mapping on Programmable Graphics Hardware. In: Proceedings of the ACM Sig-
graph/Eurographics Symposium on Graphics Hardware, pp. 41–50 (2003)

6. Kapasi, U.J., Dally, W.J., Rixner, S., Mattson, P.R., Owens, J.D., Khailany, B.:
Efficient Conditional Operations for Data-parallel Architectures. In: Proceedings
of the 33rd annual ACM/IEEE International Symposium on Microarchitecture,
pp. 159–170 (2000)

7. Kipfer, P., Segal, M., Westermann, R.: UberFlow: A GPU-based Particle Engine.
In: Proceedings of the ACM Siggraph/Eurographics Conference on Graphics Hard-
ware, pp. 115–122 (2004)

8. Kipfer, P., Westermann, R.: Improved GPU Sorting. In: Pharr, M. (ed.) GPUGems
2, pp. 733–746. Addison-Wesley, Reading (2005)

9. Greß, A., Zachmann, G.: GPU-ABiSort: Optimal Parallel Sorting on Stream Archi-
tectures. In: Proceedings of the 20th IEEE International Parallel and Distributed
Processing Symposium (2006)

10. Bilardi, G., Nicolau, A.: Adaptive Bitonic Sorting. An Optimal Parallel Algorithm
for Shared Memory Machines. SIAM Journal on Computing 18(2), 216–228 (1989)

11. Govindaraju, N.K., Raghuvanshi, N., Manocha, D.: Fast and Approximate Stream
Mining of Quantiles and Frequencies Using Graphics Processors. In: Proceedings
of the 2005 ACM SIGMOD International Conference on Management of Data, pp.
611–622 (2005)

12. Dowd, M., Perl, Y., Rudolph, L., Saks, M.: The Periodic Balanced Sorting Network.
Journal of the ACM 36(4), 738–757 (1989)

13. Govindaraju, N., Raghuvanshi, N., Henson, M., Manocha, D.: A Cache-Efficient
Sorting Algorithm for Database and Data Mining Computations using Graphics
Processors. Technical report, University of North Carolina-Chapel Hill (2005)

14. Govindaraju, N.K., Gray, J., Kumar, R., Manocha, D.: GPUTeraSort: High Per-
formance Graphics Coprocessor Sorting for Large Database Management. In: Pro-
ceedings of the 2006 ACM SIGMOD International Conference on Management of
Data, pp. 325–336 (2006)

15. Sintorn, E., Assarsson, U.: Fast Parallel GPU-Sorting Using a Hybrid Algorithm.
In: Workshop on General Purpose Processing on Graphics Processing Units (2007)

16. Hoare, C.A.R.: Quicksort. Computer Journal 5(4), 10–15 (1962)
17. Sedgewick, R.: Implementing Quicksort Programs. Communications of the

ACM 21(10), 847–857 (1978)
18. Harris, M., Sengupta, S., Owens, J.D.: Parallel Prefix Sum (Scan) with CUDA. In:

Nguyen, H. (ed.) GPU Gems 3. Addison-Wesley, Reading (August 2007)
19. Musser, D.R.: Introspective Sorting and Selection Algorithms. Software - Practice

and Experience 27(8), 983–993 (1997)
20. Singleton, R.C.: Algorithm 347: an Efficient Algorithm for Sorting with Minimal

Storage. Communications of the ACM 12(3), 185–186 (1969)

258 D. Cederman and P. Tsigas

21. Cederman, D., Tsigas, P.: GPU Quicksort Library (December 2007),
www.cs.chalmers.se/∼dcs/gpuqsortdcs.html

22. Helman, D.R., Bader, D.A., JáJá, J.: A Randomized Parallel Sorting Algorithm
with an Experimental Study. Journal of Parallel and Distributed Computing 52(1),
1–23 (1998)

23. Matsumoto, M., Nishimura, T.: Mersenne Twister: a 623-Dimensionally Equidis-
tributed Uniform Pseudo-Random Number Generator. Transactions on Modeling
and Computer Simulation 8(1), 3–30 (1998)

www.cs.chalmers.se/~dcs/gpuqsortdcs.html

Bloomier Filters: A Second Look

Denis Charles and Kumar Chellapilla

Microsoft Live Labs, One Microsoft Way, Redmond WA - 98052
cdx@microsoft.com, kumarc@microsoft.com

Abstract. A Bloom filter is a space efficient structure for storing static
sets, where the space efficiency is gained at the expense of a small prob-
ability of false-positives. A Bloomier filter generalizes a Bloom filter to
compactly store a function with a static support. In this article we give
a simple construction of a Bloomier filter. The construction is linear
in space and requires constant time to evaluate. The creation of our
Bloomier filter takes linear time which is faster than the existing con-
struction. We show how one can improve the space utilization further at
the cost of increasing the time for creating the data structure.

1 Introduction

A Bloom filter is a compact data structure that supports set membership queries
[1]. Given a set S ⊆ D where D is a large set and |S| = n, the Bloom filter
requires space O(n) and has the following properties. It can answer membership
queries in O(1) time. However, it has one-sided error: Given x ∈ S, the Bloom
filter will always declare that x belongs to S, but given x ∈ D\S the Bloom
filter will, with high probability, declare that x /∈ S. Bloom filters have found
wide ranging applications [3,4,14,16]. There have also been generalizations in
several directions of the Bloom filter [8,13,17,18]. More recently, Bloom filters
have been generalized to “Bloomier” filters that compactly store functions [6].
In more detail: Given S ⊆ D and a function f : S → {0, 1}k a Bloomier filter is a
data structure that supports queries to the function value. It also has one-sided
error: given x ∈ S, it always outputs the correct value f(x) and if x ∈ D\S with
high probability it outputs ‘⊥’, a symbol not in the range of f . In [6] the authors
construct a Bloomier filter that requires, O(n log n) time to create; O(n) space
to store and, O(1) time to evaluate.

In this paper we give an alternate construction of Bloomier filters, which we
believe is simpler than that of [6]. It has similar space and query time complexity.
The creation is slightly faster, O(n) vs. O(n log n). Changing the value of f(x)
while keeping S the same is slower in the worst case for our method, O(log n) vs.
O(1). For a detailed comparison we direct the reader to the extended version of
this paper (see [7] §6). In §3 we discuss another construction that is very natural
and has a smaller space requirement. However, this algorithm has a creation time
of O(n3) which is too expensive. In §4 we discuss how bucketing can be used to
reduce the construction time of this algorithm to n logO(1) n and make it more
practical. Recent independent results of [11] are related to this construction.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 259–270, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

260 D. Charles and K. Chellapilla

Due to space constraints we have omitted our experimental results comparing
our construction to the previous construction. We refer the reader to [7] §7 for
these results.

2 The Construction

2.1 A 1-Bit Bloomier Filter

We begin with the following simplified problem: Given a set S of n elements and
a function f : S → {0, 1}, encode f into a space efficient data structure that
allows fast access to the values of f . A simple way to solve this problem is to use
a hash table (with open addressing) which requires O(n) space and O(1) time on
average to evaluate f . If we want worst case O(1) time for function evaluation,
we could try different hash functions until we find one which produces few hash
collisions on the set S. This solution however does not generalize to our ultimate
goal which is to have a compact encoding of the function f̃ : D → {0, 1,⊥},
where f̃ |S = f and f̃(x) = ⊥ with high probability if x /∈ S. Thus if D is much
larger than S, the solution using hash tables is not very attractive as it uses
space proportional to D. To counter-act this one could use the hash table in
conjunction with a Bloom filter for S. This is not the approach we will take1.

Our approach to solving the simplified problem uses ideas from the creation
of minimal perfect hashes (see [9]). We first map S onto the edges of a random
(undirected) graphG(V,E) constructed as follows. Let V be a set of vertices with
|V | ≥ c|S|, where c ≥ 1 is a constant. Let h1, h2 : D → V be two hash functions.
For each x ∈ S, we create an edge e = (h1(x), h2(x)) and let E be the set of edges
formed in this way (so that |E| = |S| = n). If the graph G is not acyclic we try
again with two independent hash functions h′1, h′2. It is known that if c > 2, then
the expected number of vertices on tree components is |V |+O(1) ([2] Theorem
5.7 ii). Indeed, in [10] the authors proved that if G(V,E) is a random graph with
|V | = c|E| and c > 2, then with probability exp(1/c)

√
(c− 2)/c the graph is

acyclic. Thus, if c > 2 is fixed then the expected number of iterations till we
find an acyclic graph is O(1). In particular, if c ≥ 2.09 then with probability
at least 1/3 the graph G is acyclic. Thus the expected number of times we will
have to re-generate the graph until we find an acyclic graph is ≤ 3. Once we
have an acyclic graph G, we try to find a function g : V → {0, 1} such that
f(x) ≡ g(h1(x)) + g(h2(x)) (mod 2) for each x ∈ S. One can view this as a
sequence of n equations for the variables g(v), v ∈ V . The fact that G is acyclic
implies that the set of equations can be solved by simple back-substitution in
linear time. We then store the table of values g(v) (∈ {0, 1}) for each v ∈ V . To
evaluate the function f , given x, we compute h1(x) and h2(x) and add up the
values stored in the table g at these two indices modulo 2. The expected creation
time is O(n), evaluation time is O(1) (two hash function computations and two
memory lookups to the table of values g) and the space utilization is �cn� bits.

1 The reason this is not optimal is because to achieve error probability ε, we will need
to evalute O(log 1/ε) hash functions.

Bloomier Filters: A Second Look 261

Next, we generalize this approach to encoding the function f̃ : D → {0, 1,⊥}
that when restricted to S agrees with f and outside of S it maps to ⊥ with high
probability. Here again we will use the same construction of the random acyclic
graph G(V,E) together with a map from S → E via two hash functions h1, h2.
Let m ≥ 2 be an integer and h3 : D → Z/mZ be another independent hash
function. We solve for a function g : V → Z/mZ such that the equations f(x) ≡
g(h1(x))+g(h2(x))+h3(x) (mod m) holds for each x ∈ S. Again since the graph
G is acyclic these equations can be solved using back-substitution. Note that back-
substitution works even though we are dealing with the ring Z/mZ which is not
a field unless m is prime. To evaluate the function f at x we compute hi(x) for
1 ≤ i ≤ 3 and then compute g(h1(x))+g(h2(x))+h3(x) (mod m). If the computed
value is either 0 or 1 we output it otherwise, we output the symbol ⊥. Algorithms
1 and 2 give the steps of the construction in more detail. It is clear that if x ∈ S
then the value output by our algorithm is the correct value f(x). If x /∈ S then the
value of h3(x) is independent of the values of g(h1(x)) and g(h2(x)) and uniform
in the range Z/mZ. Thus Prx∈D\S[g(h1(x)) + g(h2(x)) + h3(x) ∈ {0, 1}] = 2

m .

Algorithm 1. Generate Table
Input: A set S ⊆ D and a function f : S → {0, 1}, c > 2, and an integer m ≥ 2.
Output: Table g and hash functions h1, h2, h3 such that ∀s ∈ S : g[h1(s)]+ g[h2(s)]+

h3(s) ≡ f(s) mod m.
Let V = {0, 1, · · · , �cn − 1}, where n = |S|
repeat

Generate h1, h2 : D → V where hi are chosen independently from H – a family of
hash functions; Let E = {(h1(s), h2(s)) : s ∈ S}.

until G(V, E) is a simple acyclic graph.
Let h3 : D → Z/mZ be a third independently chosen hash function from H.
for all T – a connected component of G(V, E) do

Choose a vertex v ∈ T whose degree is non-zero.
F ← {v}; g[v] ← 0.
while F �= T do

Let C be the set of nodes in T\F adjacent to nodes in F .
for all w = hi(s) ∈ C do

g[w] ← f(s) − g[h3−i(s)] − h3(s) mod m.
end for
F ← F ∪ C.

end while
end for

In summary, we have proved the following:

Proposition 1. Fix c > 2 and let m ≥ 2 be an integer, the algorithms described
above (Algorithms 1 and 2) implement a Bloomier filter for storing the function
f̃ : D → {0, 1,⊥} and the underlying function f : S → {0, 1} with the following
properties:

1. The expected time for creation of the Bloomier filter is O(n).
2. The space used is �cn��log2m� bits, where n = |S|.

262 D. Charles and K. Chellapilla

3. Computing the value of the Bloomier filter at x ∈ D requires O(1) time (3
hash function computations and 2 memory lookups).

4. Given x ∈ S, it outputs the correct value of f(x).
5. Given x /∈ S, it outputs ⊥ with probability 1 − 2

m .

2.2 General k-Bit Bloomier Filters

It is easy to generalize the results of the previous section to obtain Bloomier
filters with range larger than just the set {0, 1}. Given a function f : S → {0, 1}k

it is clear that as long as the range {0, 1}k embeds into the ring Z/mZ one
can still use Algorithm 1 without any changes. This translates into the simple
requirement that we take m ≥ 2k. Algorithm 2 needs a minor modification,
namely, we check if f = g(h1(x)) + g(h2(x)) + h3(x) (mod m) ∈ {0, 1}k and if
so we output f otherwise, we output ⊥. We encapsulate the claims about the
generalization in the following theorem (the proof of which is similar to that of
Proposition 1):

Theorem 1. Fix c > 2 and let m ≥ 2k be an integer, the algorithms described
above implement a Bloomier filter for storing the function f̃ : D → {0, 1}k∪{⊥},
and the underlying function f : S → {0, 1}k with the following properties:

1. The expected time for creation of the Bloomier filter is O(n).
2. The space used is �cn��log2m� bits, where n = |S|.
3. Computing the value of the Bloomier filter at x ∈ D requires O(1) time (3

hash function computations and 2 memory lookups).
4. Given x ∈ S, it outputs the correct value of f(x).
5. Given x /∈ S, it outputs ⊥ with probability 1 − 2k

m .

Algorithm 2. Query function
Input: Table g, h1, h2 : D → {0, · · · , �cn − 1}, h3 : D → Z/mZ hash functions and

x ∈ D.
Output: 0, 1 or ⊥ – the output of the Bloomier filter represented by the table g.

f ← g[h1(x)] + g[h2(x)] + h3(x) mod m.
if f ∈ {0, 1} then

Output f .
else

Output ⊥.
end if

2.3 Mutable Bloomier Filters

In this section we consider the task of handling changes to the function stored in
the Bloomier filter produced by the algorithms in the previous section. We will
only consider changes to the function f : S → {0, 1}k where S remains the same
but only the values taken by the function changes. In other words, the support
of the function remains static.

Bloomier Filters: A Second Look 263

Consider what happens when f : S → {0, 1}k is changed to the function
f ′ : S → {0, 1}k where f(x) = f ′(x) except for a single y ∈ S. In this case
we can change the values stored in the g-table so that we output the value
of f ′ at y. We assume that the edges of the graph G are available (this is
an additional O(n log n) bits). We begin with the observation that the values
stored at g(v) for vertices v not in the connected component containing the edge
e = (h1(y), h2(y)) remain unaffected. Thus changing f to f ′ affects only the g
values of the connected component, C (say), containing the edge e. Recomputing
the g values corresponding to C would take time O(|C|). How big can the largest
connected component in G get? Our graph G(V,E) built in Algorithm 1 is a
sparse random graph with |E| < 1

2 |V |. A classical result due to Erdős and Rényi
says that in this case the largest component is almost surely2 O(log n) in size
where n = |E| (see [12] or [2]). Thus updates to the Bloomier filter take O(log n)
time provided we ensure that the largest component in G is small when creating
it. The result from [12] tells us that adding the extra condition while creating G
will not change the expected running time of Algorithm 1. We call this modified
algorithm Algorithm 1’.

Theorem 2. The Bloomier filter constructed using algorithms 1’ and 2 can ac-
comodate changes to function values in time O(log n), provided the graph G is
also retained. Moreover, the claims of Theorem 1 remain true for algorithms 1’
and 2.

3 Reducing the Space Utilization

If we are willing to spend more time in the creation phase of the Bloomier filter,
we can further reduce the space utilization of the Bloomier filter. In this section
we show how one can get a Bloomier filter for a function f : S → {0, 1}k with
error rate 2k

m using only n(1 + ε)�log2 m� bits of storage, where n = |S| and
ε > 0 is a constant. In §2 we used a random graph generated by hash functions
to systematically generate a set of equations that can be solved efficiently. The
solution to these equations is then stored in a table which in turn encodes the
function f . The main idea to reduce space usage further is to have a table
g[0], g[1], · · · , g[N − 1], where N = (1 + ε)n, and try to solve the following set of
equations over Z/mZ:

⎛

⎝
∑

1≤i≤s

hi(x)g[hi+s(x)]

⎞

⎠ + h0(x) = f(x), x ∈ S (1)

for the unknowns g[0], · · · , g[N−1]. Here s≥1 is a fixed integer and h0, h1, · · · , h2s

are independent hash functions. Since s is fixed, look up of a function value will
only take O(1) hash function evaluations. These equations can be solved provided
the determinant of the sparse matrix corresponding to these equations is a unit
in Z/mZ. The next subsection gives an answer (under suitable conditions) to this
question when m is a prime.
2 This means that the probability that the condition holds is 1 − o(1).

264 D. Charles and K. Chellapilla

3.1 Full Rank Sparse Matrices over a Finite Field

Let GLs
n×r(Fp) be the set of full rank n×r matrices over Fp

3 that have exactly s
non-zero entries in each column. Our aim in this section is to get a lower bound
for #GLs

n×r(Fp) (the cardinality of this set). We note the following lemma whose
proof we omit.

Lemma 1. Let M s
n×r(Fp) be the matrices over Fp where each column has exactly

s non-zero entries. Then #M s
n×r(Fp) =

((
n
s

)
(p− 1)s

)r
.

Before we begin the task of getting a lower bound for the sparse full rank ma-
trices we briefly recall the method of proof for finding #GLn(Fp) – the group of
invertible n × n matrices over Fp. One can build invertible matrices column by
column as follows: Choose any non-zero vector for the first column, there are
pn − 1 ways of choosing the first column. The second column vector should not
lie in the linear span of the first. Therefore there are pn−p choices for the second
column vector. Proceeding in this way there are pn − pj for the j + 1 column.
Thus we have #GLn(Fp) =

∏
1≤j≤n(pn − pn−j).

One can adapt this idea to get a bound on the invertible s-sparse matrices. There
are

(
n
s

)
(p − 1)s ways of choosing the first column. Inductively, suppose we have

chosen the first i columns to be linearly independent, then we have a vector space
Vi ⊆ Fn

p of dimension i spanned by the first i columns. One can grow this matrix
to a rank i+1 matrix by augmenting it by any s-sparse vector w /∈ Vi. Thus we are
faced with the task of finding an upper bound on the number of s-sparse vectors
contained in Vi. We introduce some notation: suppose w = 〈w1, w2, · · · , wn〉t ∈
Fn

p is a vector then we define w� to be the vector 〈wn, w1, · · · , wn−1〉t (a cyclic shift
of w). Note that if w is s-sparse then so is w�. Our approach is to show that under
certain circumstances the vector space spanned by the orbit of a sparse vector un-
der the circular shifts have high dimension and consequently, all the shifts cannot
be contained in Vi (unless i = n). It is natural to expect that given a s-sparse vec-
tor w, the vector space W� spanned by all the circular shifts w,w�, · · · ,w�n−1

has dimension ≥ n− s. Unfortunately, this is not so: For example, consider w =
〈1, 0, 1, 0, 1, 0〉whose cyclic shifts generate a vector space of dimension 2. This mo-
tivates the next lemma.

Lemma 2. Suppose q is a prime number and w ∈ Fq
p is an s-sparse vector with

0 < s < q. Then the orbit {w,w�, · · · ,w�q−1} has cardinality q.

Proof. We have a natural action of the group Z/qZ on the set of cyclic shifts of
w, via a "→ w�a

. Suppose we have w�i

= w�j

for 0 ≤ i
= j ≤ q − 1. Then
we have w�(i−j)

= w = w�q

. Since we have a group action this implies that
w�gcd(i−j,p)

= w. Since q is prime this means that w� = w. But 0 < s < q
therefore w�
= w and we have a contradiction. �
3 Here p is a prime number and Fp is the finite field with p elements. Any two finite

fields with p elements are isomorphic and the isomorphism is canonical. If the field
has pr, r > 1, elements then the isomorphism is not canonical.

Bloomier Filters: A Second Look 265

One can show that the vector space spanned by the cyclic shifts of an s-sparse
vector (0 < s < n) has dimension at least n/s. However, this bound is not
sufficient for our purpose. We need the following stronger conditional result
whose proof is available in [7] (see Theorems 8 and 9 in the Appendix of [7]).

Theorem 3. Let w = 〈w0, · · · , wq−1〉 ∈ Fq
p, where p is a prime that is a primi-

tive root modulo q (i.e., p generates the cyclic group F∗
q). Suppose w0 +w1 · · ·+

wq−1
= 0 and wi are not all equal, then W� (the vector space spanned by the
cyclic shifts of w) has dimension q.

Let Vi be a vector space of dimension i contained in Fq
p. We have 1

q

(
q
s

)
(p − 1)s

orbits of size q under the action of Z/qZ on the s-sparse vectors. If s < n then all
the coordinates cannot be identical. Once the s non-zero positions for an s-sparse
vector are chosen there are ≥ (p− 1)s − (p− 1)s−1 vectors whose coordinates do
not sum to zero4. Now each of these orbits generates a vector space of rank q by
the above theorem. In each orbit there are at most i vectors that can belong to
Vi. Consequently, there are at least

1
q

(
q

s

)
(
(p− 1)s − (p− 1)s−1

)
(q − i) (2)

s-sparse vectors that do not belong to Vi. We have thus proved the following
theorem:

Theorem 4. Let q, p be prime numbers such that p is congruent to a primitive
root modulo q. Then

#GLs
q×r(Fp) ≥

∏

0≤i≤r−1

(
1
q

(
q

s

)
(
(p− 1)s − (p− 1)s−1

)
(q − i)

)

.

We note that the bound obtained above is almost tight5 in the case s = 1,
where the 1-sparse matrices are simply diagonal matrices (with non-zero entries)
multiplied by permutation matrices.

3.2 The Algorithm

The outline of the algorithm is as follows. To create the Bloomier filter given
f : S → {0, 1}k, we consider each element x of S in turn. We generate a random
equation as in (1) for x and check that the list of equations that we have so far
has full rank. If not, we generate another equation using a different set of 2s
hash functions. At any time, we keep the hash functions that have been used so
far in blocks of 2s hash functions. When generating a new equation we always
4 Indeed, it is not hard to show that the exact number of such vectors is

(p−1)((p−1)s+(−1)s+1)
p

.
5 The bound is tight if we use the exact formula for the number of s-sparse vectors

that do not sum to 0 in the derivation.

266 D. Charles and K. Chellapilla

start with the first block of hash functions and try subsequent blocks only if the
previous blocks failed to give a full rank system of equations. The results of the
previous section show that the expected number of blocks of hash functions is
bounded (provided the vector space has high dimension). Once we have a full
rank set of equations for all the elements of S, we then proceed to solve the
sparse set of equations. The solution to the equations is then stored in a table.
At look up time, we generate the equations using each block of hash functions
in turn and output the first time an equation generates a value in the range of
f . At first glance it looks like this approach stores f with two-sided error, i.e.,
even when given x ∈ S we might output a wrong value for f(x). However, we
show that the probability of error committed by the procedure on elements of
S can be made so small that, by doing a small number of trials, we can ensure
that we do not err on any element of S.

Algorithm 3. Setup parameters
Input: n ≥ 0 integer given in unary, m ≥ 0 integer, ε > 0.
Output: q and p primes, p is a m-bit prime that is a primitive root modulo q.

Let q be the first prime ≥ n(1 + ε).
Factor q − 1 and let q1, · · · , qk be the (distinct) prime factors of q − 1.
repeat

Choose a random g ∈ Fq.
until gqi �≡ 1 mod q for each 1 ≤ i ≤ k.
Let gi = gi mod q for 1 ≤ i ≤ q − 1, gcd(i, q − 1) = 1.
repeat

Choose a random m-bit integer p.
until p ≡ gi for some i, and p is prime.

Analysis of Algorithm 3: It can be shown that Algorithm 3 has an expected
running time of Õ(n +m4). We refer the reader to [7] for the details.

Analysis of Algorithm 4: The algorithm essentially mimics the proof of The-
orem 4. It starts with a rank i matrix and grows the matrix to a rank i + 1
matrix by adding an s-sparse row using hash functions in Bj

6. Let n = |S| and
suppose, q ≥ n(1 + ε) for a fixed ε > 0. Then equation (2) tells us that in O(1/ε)
iterations we will find that the rank of the matrix increases. In more detail, the
probability that a random s-sparse vector does not lie in Vi is at least q−i

q ≥ ε

since i < n and q ≥ n(1 + ε). Note that this requires rather strong pseudoran-
dom properties from the hash family H. As mentioned in the discussion following
Lemma 4.2 in [6], a family of cryptographically strong hash functions is needed
to ensure that the vectors generated by the hash function from the input behave
as random and independent sparse vectors over the finite field. We will make
this assumption on the hash family H. Checking the rank can be done by Gaus-
sian elimination keeping the resulting matrix at each stage. The inner-loop thus

6 Strictly speaking the row could have < s non-zero entries because a hash function
could map to zero. But this happens with low probability.

Bloomier Filters: A Second Look 267

Algorithm 4. Create Table
Input: A set S ⊆ D and a function f : S → {0, 1}k, two primes p, q, H a hash family,

and s ≥ 2.
Output: Table g, h0 a hash function and r blocks of 2s hash functions Bi.

M ← (0)n×q (a n × q zero matrix).
Let h0 be a random hash function from H.
i ← 0.
for all x ∈ S do

i ← i + 1; j ← 0.
repeat

if Bj is not defined then
Generate h1, · · · , h2s random hash functions from H.
Bj ← {h1, · · · , h2s}.

end if
Let h1, · · · , h2s be the hash functions in Bj .
M [i, hk+s(x)] ← hk(x) for 1 ≤ k ≤ s; j ← j + 1.

until Rank(M) = i
end for
Let v = 〈f(x) − h0(x) : x ∈ S〉t.
Solve the system M × g = v for g = 〈g[i] : 1 ≤ i ≤ q〉t over Fp.
Return g, h0 and Bi.

runs in expected O(n2) time and the “for” loop takes O(n3) time on average.
Solving the resulting set of sparse equations can be done in O(n2) time since the
Gaussian elimination has already been completed. The algorithm also generates
r blocks of hash functions, and by the earlier analysis the expected value of r
is O(1/ε). In summary, the expected running time of Algorithm 4 is O(n3). We
refer the reader to [7] for a discussion on why sparse matrix algorithms cannot
be used in this stage, and also why s = 1 cannot be used here.

Analysis of Algorithm 5: In this algorithm we try the blocks of hash functions
and output the first “plausible” value of the function (namely, a value in the
range of the function f). If the wrong block, Bi, of hash functions was used
then the probability that the resulting function value, y, belongs to the range
{0, 1}k is 2k

p . If the right block Bi was used then, of course, we get the correct
value of the function and y = f(x). If x ∈ D\S, then again the probability
that y ∈ {0, 1}k is at most r2k

p . Since r and s are O(1) the algorithm requires
O(1) operations over the finite field Fp. This requires O(log2 p) bit operations
with the usual algorithms for finite field operations, and only O(log p log log p)
bit operations if FFT multiplication is used.

How to get one-sided error: The analysis in the previous paragraph shows
that the probability that we err on any element of S is ≤ n2k

p . Thus, if p is large
we can construct a g table using Algorithm 4 and verify whether we give the
correct value of f for all elements of S. If not, we can use Algorithm 4 again to

268 D. Charles and K. Chellapilla

Algorithm 5. Query function
Input: Table g, hash functions h0, Bi, 1 ≤ i ≤ r, x ∈ D.
Output: y ∈ {0, 1}k or ⊥.

i ← 1
while i ≤ r do

Let h1, · · · , h2s be the hash functions in Bi.
Let y ← h0(x) +

∑
1≤j≤s hi(x)g[hi+s(x)].

if y ∈ {0, 1}k then
Return y.

end if
i ← i + 1

end while
Return ⊥.

construct another table g. The probability we succeed at any stage is ≥ 1− n2k

p ,
and if p is taken large enough that this is ≥ 1

2 , then the expected number of
iterations is ≤ 2. We summarize the properties of the Bloomier filter constructed
in this section below:

Theorem 5. Fix ε > 0 and s ≥ 2 an integer, let S ⊆ D, |S| = n and let m, k
be positive integers such that m ≥ k. Given f : S → {0, 1}k, the Bloomier filter
constructed, (with parameters ε,m and s) by Algorithms 3 and 4, and queried,
using Algorithm 5, has the following properties:

1. The expected time to create the Bloomier filter is Õ(n3 +m4).
2. The space utilized is �n(1 + ε)�m bits.
3. Computing the value of the Bloomier filter at x ∈ D requires O(1) hash

function evaluations and O(1) memory look ups.
4. If x ∈ S, it outputs the correct value of f(x).
5. If x /∈ S, it outputs ⊥ with probability 1 −O(1

ε 2k−m).

4 Bucketing

The construction in §3 is space efficient but the time to construct the Bloomier
filter is exhorbitant. In this section we show how to mitigate this with bucketing.
To build a Bloomier filter for f : S → {0, 1}k, one can choose a hash function
g : S → {0, 1, · · · , b − 1} and then build Bloomier filters for the functions fi :
Si → {0, 1}k, for i = 0, 1, · · · , b − 1, where Si = g−1(i) and fi(x) = f(x) for
x ∈ Si. The sets |Si| have an expected size of |S|/b and hence results in a speedup
for the construction time. The bucketing also allows one to parallelize of the
construction process, since each of the buckets can in processed independently.
To quantify the time saved by bucketing we need a concentration result for the
size of the buckets produced by the hash function.

Fix a bucket bi, 0 ≤ bi < b and define random variables X(bi)
s1 , · · · , X(bi)

sn for
sj ∈ S as follows: Pick a hash function g : S → {0, 1, · · · , b − 1} from a family

Bloomier Filters: A Second Look 269

of hash functions H and set X(bi)
sj = 1 if g(sj) = bi and set X(bi)

sj = 0 other-
wise. Under the assumption that the random variables X(bi)

sj are mutually in-

dependent, we obtain using Chernoff bounds that Pr
[∑

j X
(bi)
sj > (1 + δ) |S|

b

]
<

2−
δ|S|

b provided δ > 2e− 1. This bound holds for any bucket and consequently,
Pr
[
∃j :

∑
j X

(bi)
sj > (1 + δ) |S|

b

]
< b2−

δ|S|
b . Thus with probability > 1− b2−

δ|S|
b

all the buckets have at most (1 + δ) |S|
b elements. Suppose we take the number of

buckets b to be |S|
c log |S| for c > 1. Then the probability that all the buckets are of

size < c(1 + δ) log |S| is at least 1 − 2(−cδ log |S|+log |S|−c log log |S|) which for large
enough S is > 1/2. In other words, the expected number of trials until we find
a hash function g that results in all the buckets being “small” is less than 2.

In the following discussion we adopt the notation from Theorem 5. We assume
that we have a hash function g that results in all buckets have O(log n) elements.
The time for creation of the Bloomier filter in §3 for each bucket is reduced to
O(log3 n+ r4). To query the bucketed Bloomier filter, given x, we first compute
the bucket, g(x), and then query the Bloomier filter for that bucket. Thus, query-
ing requires one more hash function evaluation than the non-bucketing version.
Suppose ni is the number of elements of S that belonged to the bucket defined
by bi, then the Bloomier filter for this bucket requires �ni(1 + ε)�r bits. The
total number of bits used is

∑
0≤i<b�ni(1 + ε)�r ≤

∑
0≤i<b (ni(1 + ε) + 1) r =

n(1 + ε)r + br, since
∑

i ni = n. Since the number of buckets is O(n/ logn), the
number of bits used is n(1 + ε)r +O(rn/ log n).

We summarize the properties of the bucketing variant of the construction in
§3 in the following theorem.

Theorem 6. Fix ε > 0 and s ≥ 2 an integer, let S ⊆ D, |S| = n and let m, k
be positive integers such that m ≥ k. Given f : S → {0, 1}k, bucketed using
|S|/c log |S| buckets for a fixed c > 1, the Bloomier filter constructed on the
buckets, (with parameters ε,m and s) by Algorithms 3 and 4, and queried (on
the buckets), using Algorithm 5, has the following properties:

1. The expected time to create the Bloomier filter is Õ(n
log n (log3 n +m4)).

2. The space utilized is n(1 + ε)m+O(mn/ logn) bits.
3. Computing the value of the Bloomier filter at x ∈ D requires O(1) hash

function evaluations and O(1) memory look ups.
4. If x ∈ S, it outputs the correct value of f(x).
5. If x /∈ S, it outputs ⊥ with probability 1 −O(1

ε 2k−m).

References

1. Bloom, B.: Space/time tradeoffs in hash coding with allowable errors. Comm. of
the ACM 13, 422–426 (1970)

2. Bollobás, B.: The evolution of random graphs. Trans. Amer. Math. Soc. 286, 257–
274 (1984)

3. Broder, A., Mitzenmacher, M.: Network applications of Bloom filters: a survey,
Allerton (2002)

270 D. Charles and K. Chellapilla

4. Byers, J., Considine, J., Mitzenmacher, M.: Informed content delivery over adaptive
overlay networks. In: Proc. ACM SIGCOMM 2002. Comp. Communication Review,
vol. 34(4), pp. 47–60 (2002)

5. Calkin, N.J.: Dependent sets of constant weight binary vectors. Combinatorics,
Probability and Computing 6(3), 263–271 (1997)

6. Chazelle, B., Kilian, J., Rubinfeld, R., Tal, A.: The Bloomier filter: an efficient data
structure for static support lookup tables. In: Proc. of the 15th Annual ACM-SIAM
Symp. on Discrete Algorithms (SODA 2004), pp. 30–39 (2004)

7. Charles, D., Chellapilla, K.: Bloomier Filters: A second look (extended version)
(2008) arXiv:0807.0928

8. Cohen, S., Matias, Y.: Spectral Bloom filters. In: ACM SIGMOD (2003)
9. Czech, Z., Havas, G., Majewski, B.S.: An optimal algorithm for generating minimal

perfect hash functions. Information Processing Letters 43(5), 257–264 (1992)
10. Czech, Z., Havas, G., Majewski, B.S., Wormald, N.C.: Graphs, hypergraphs and

hashing. In: van Leeuwen, J. (ed.) WG 1993. LNCS, vol. 790, pp. 153–165. Springer,
Heidelberg (1994)

11. Dietzfelbinger, M., Pagh, R.: Succinct Data Structures for Retrieval and Approxi-
mate Membership. In: ICALP (to appear, 2008)

12. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hungar.
Acad. Sci. 5, 17–61 (1960)

13. Fan, L., Cao, P., Almeida, J., Broder, A.: Summary cache: a scalable wide-area
web cache sharing protocol. IEEE/ACM Transactions on Networking 8, 281–293
(2000)

14. Fang, M., Shivakumar, N., Garcia-Molina, H., Motwani, R., Ullman, J.: Computing
iceberg queries efficiently. In: Proc. 24th Int. Conf. on VLDB, pp. 299–310 (1998)

15. Geller, D., Kra, I., Popescu, S., Simanca, S.: On circulant matrices (manuscript),
http://www.math.sunysb.edu/∼sorin

16. Gremillion, L.L.: Designing a Bloom filter for differential file access. Comm. of the
ACM 25, 600–604 (1982)

17. Mitzenmacher, M.: Compressed Bloom filters. IEEE Transactions on Networking
10 (2002)

18. Rhea, S.C., Kubiatowicz, J.: Proabilistic location and routing. In: Proceedings of
INFOCOMM (2002)

http://www.math.sunysb.edu/~sorin

Coupled Path Planning, Region Optimization,

and Applications in Intensity-Modulated
Radiation Therapy�

Danny Z. Chen1, Shuang Luan2, and Chao Wang1,��

1 Department of Computer Science and Engineering, University of Notre Dame,
Notre Dame, IN 46556, USA
{chen,cwang1}@cse.nd.edu

2 Department of Computer Science, University of New Mexico, Albuquerque, NM
87131, USA

sluan@cs.unm.edu

Abstract. The couple path planning (CPP) problem seeks the motion
paths of the leaves of a multileaf collimator, to optimally reproduce the
prescribed dose in intensity-modulated radiation therapy (IMRT). We
study two versions of the CPP problem, constrained and unconstrained
CPP, based on whether the starting and ending locations of the sought
paths are prespecified. The unconstrained CPP problem models the leaf
sequencing problem in dynamic IMRT delivery, while the set of all con-
strained CPP problem instances, in which all combinations of the start-
ing and ending locations are considered, plays a key role in an emerging
IMRT technique called arc-modulated radiation therapy. We give efficient
algorithms for both the constrained and unconstrained CPP problems,
and for computing the set of all constrained CPP problem instances. Our
results are based on several new ideas and geometric observations, and
substantially improve the solutions based on standard techniques. Imple-
mentation results show that our CPP algorithms run fast and produce
better IMRT treatment plans than current methods.

1 Introduction

In this paper, we study an optimization problem in discrete geometry, called
coupled path planning (CPP). The problem is defined on a uniform grid Rg of
size n×H for some integers n and H such that the length of each grid edge is
one unit. We say that a path on the plane is xy-monotone if it is monotone with
respect to both the x-axis and the y-axis. For an integer c > 0, an xy-monotone
(rectilinear) path p along the edges of Rg is said to be c-steep if every vertical
segment of p is of a length at least c (i.e., formed by c or more grid edges)
and every horizontal segment has a unit length. The CPP problem is defined as

� Supported in part by the National Science Foundation under Grants CCF-0515203
and CBET-0755054, and National Institutes of Health under Grant R01-CA117997.

�� Corresponding author.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 271–283, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

272 D.Z. Chen, S. Luan, and C. Wang

(a)

P

i
x

l
p p

r

y

0 n

RgH

(c)

0
1
1
01

10
0

0

1 0 0

011

0
0
0

0

0

0

0

0

0

0

0 0

1 1 1 1 1

1 1 0

4 5 5 3 4 21

1

1
2
2

2

3 4 3

122

11

3

(b)

f

I

0 i n
x

(e)(d)

couchcouch

Fig. 1. (a) Illustrating the CPP problem: pl and pr are two non-crossing c-steep paths
(c = 1); the darkened segment shows the vertical section on the i-th column of the
region enclosed by the two paths, whose length corresponds to the amount of actually
delivered radiation. (b) The input (intensity) function f for the CPP problem, defined
on {1, 2, . . . , n}; the darkened segment shows the value of f at the i-th cell, which
specifies the amount of prescribed dose on that cell. (c) An IM (its 3rd row is described
by the function f in (b)). (d) An MLC. (e) A radiation machine.

follows: Given a non-negative function f defined on the integer set {1, 2, . . . , n}
and positive integers c and Δ (Δ ≤ H), find two non-crossing c-steep paths on
Rg, each starting at the bottom boundary and ending at the top boundary of
Rg, such that the two paths, possibly with the bottom and top boundaries of
Rg, enclose a (rectilinear) region P in Rg such that (1) for any column Ci of
Rg, the vertical length of the intersection between Ci and P approximates the
function value f(i) (i.e., the value of f at i) within the given error bound Δ (see
Figs. 1(a)-1(b)), and (2) the total sum of errors on P is minimized.

We distinguish two versions of the CPP problem: (1) The unconstrained
CPP, in which the starting and ending locations of the sought paths are not
specified by the input; (2) the constrained CPP, where the starting and ending
locations of the sought paths are given as part of the input.

Application Background. The CPP problems arise in intensity-modulated
radiation therapy (IMRT) [26,27], a modern cancer treatment technique aiming
to deliver prescribed conformal radiation dose to target tumors while sparing
the surrounding normal tissue and critical structures. Effective IMRT treatment
is hinged on the ability to accurately and efficiently deliver prescribed intensity
distributions of radiation, called intensity maps (IMs). An IM is specified by

CPP, Region Optimization, and Applications in IMRT 273

an array of non-negative integers on a uniform 2-D grid Ig (see Fig. 1(c)). (We
should point out that the two 2-D grids Ig and Rg represent different entities or
objects.) The value in each cell of Ig indicates the prescribed intensity level of
radiation to be delivered to the body region corresponding to that cell. One of the
most advanced tools for IM delivery is the multileaf collimator (MLC) [26,27],
which consists of many pairs of tungsten alloy leaves of the same rectangular
shape and size (see Fig. 1(d)). The opposite leaves of each pair are aligned to
each other. These leaves, controlled by a computer, can move left and right to
enclose a rectilinear polygonal region called MLC-aperture. During treatment,
the patient is positioned on and secured to the treatment couch (see Fig. 1(e))
and radiation beams are crossfired at the tumor from various directions. The
direction of each radiation beam is controlled by rotating the gantry to the
desired angle. The MLC is mounted on the gantry and the cross-section of a
cylindrical radiation beam is shaped by an MLC-aperture to deliver a uniform
dose to (a portion of) an IM. Each row of the IM is delivered by exactly one
MLC leaf pair.

Two IMRT delivery approaches are commonly used, called static and dynamic
IMRT [26,27]. In static IMRT, the MLC leaves do not move during irradiation
of a beam, and are repositioned to form another beam shape only when the
radiation is turned off. In dynamic IMRT, the MLC leaves keep moving across
an IM field (normally, all from left to right) while the radiation remains on.
In both approaches, the gantry is fixed when delivering an IM. Once an IM is
delivered, the radiation is turned off and the gantry rotates to another angle
to deliver the next IM, if any. Normally, a treatment session delivers 5 to 9
IMs. A key problem in IMRT delivery, called leaf sequencing, is to determine a
treatment plan for a given IM, i.e., a description of how to position the MLC
leaves and maintain the on/off states of the radiation in order to deliver the IM.
Two key criteria are used to measure the quality of an IMRT treatment plan:
(1) Delivery time (the efficiency): Minimizing the delivery time reduces machine
wear and tear, lowers the treatment costs, and increases the patient throughput.
Short delivery time also reduces the risk of treatment uncertainties. (2) Delivery
error (the accuracy): For various reasons, there is a discrepancy between the
prescribed IM and the actually delivered IM.

The unconstrained CPP problem models the dynamic leaf sequencing problem
(i.e., leaf sequencing in dynamic IMRT delivery). Although an IM is delivered
using many MLC leaf pairs, with each pair delivering one IM row, it suffices (as
shown in [7,16] for Varian MLCs) to consider how to optimally deliver one IM row
with one leaf pair. In the CPP problem, f is the intensity function specifying
one row of a prescribed IM (see Fig. 1(b)), and the two output xy-monotone
paths on Rg specify the moving trajectories of the two leaf ends of the MLC
leaf pair, i.e., the leaf end positions (the x-coordinates) at any unit time (the
y-coordinate). Due to the maximum speed constraint on the MLC leaf motion,
i.e., the leaves cannot move faster than a threshold speed (e.g., 3cm/s for Varian
MLCs), the paths must be c-steep for some c > 0. The vertical length of the
segment on the i-th column of the region in Rg enclosed by the two paths equals

274 D.Z. Chen, S. Luan, and C. Wang

the time duration the i-th cell of the IM row is exposed to irradiation, and is
proportional to the intensity level actually delivered to that cell. To ensure the
treatment quality, the delivered intensity level must be accurate enough (within
an error of Δ to the prescribed intensity level at each IM cell). The total error
over all columns of Rg gives the delivery error incurred to the IM row specified
by f . Thus, the CPP problem seeks to deliver one IM row with the minimum
error using exactly H units of delivery time.

The constrained CPP problem is a key to a newly emerging IMRT delivery
technique called arc-modulated radiation therapy (AMRT) [29], which we have
been developing jointly with Univ. of Maryland School of Medicine. AMRT dif-
fers from the common dynamic IMRT delivery in that both the beam direction
(i.e., gantry angle) and MLC leaves keep moving, with the radiation source re-
mained on. As shown in Sect. 5, the leaf sequencing problem in AMRT delivery
can be solved by considering the set of all constrained CPP problem instances.
More specifically, for all possible combinations of starting and ending leaf pair
positions, we seek the optimal solutions for the corresponding constrained CPP
problem instances (in total, there are O(n4) such instances).

Related Work. Algorithmic research for IMRT problems has been active in sev-
eral areas such as medical physics [7,14,17,18,23,24,25,28], operations research
[3,5,6,15], and computational geometry [9,10,11,12,13,19,20,21]. Most of the algo-
rithms proposed so far were designed for the static leaf sequencing problem, i.e.,
the leaf sequencing problem in static IMRT delivery, and their solutions cannot
be directly applied to the dynamic IMRT delivery due to different delivery con-
straints. Dynamic leaf sequencing (DLS) algorithms were mainly developed by
the medical physics community [7,14,17,22,24,25] targeting at the exact delivery
of an input IM with a short delivery time, under the maximum speed constraint.
But, these DLS algorithms all assume that on each IM row, the corresponding
MLC leaves always move from the left boundary of the leftmost non-zero cell to
the right boundary of the rightmost non-zero cell, and hence their output may
not be truly optimal in terms of the delivery time. For example, consider a 1×n
IM filled with 1’s, and assume that for each time unit, an MLC leaf can move
across at most one IM cell. For the above algorithms, since the MLC leaves must
move from the leftmost to the rightmost of the IM field, the minimum delivery
time is Ω(n) time units. However, by fixing the left (resp., right) leaf end to
the leftmost (resp., rightmost) of the IM field, only one time unit is needed for
delivering this IM. For the AMRT delivery, no leaf sequencing algorithm was
known except the heuristic back-and-forth sliding-window method proposed by
Cameron [8].

The CPP problems are somewhat related to the shape rectangularization (SR)
and generalized shape rectangularization (GSR) problems [9], which seek an opti-
mal set of rectangles to exactly, or approximately, “build” an intensity functional
curve. The SR and GSR problems are NP-hard [5,10]. Chen et al. [9] gave a poly-
nomial time (3

2 + ε)-approximation SR algorithm and a pseudo-polynomial time
dynamic programming algorithm for a key GSR case. Though the CPP problem
can be viewed as finding a set of H rectangles, each corresponding to a row

CPP, Region Optimization, and Applications in IMRT 275

section of the region P (see Fig. 1(a)), to approximately build the input curve f ,
it differs from the SR and GSR problems in that all CPP rectangles are of the
same height and form a “smooth” increasing sequence, i.e., no left or right edge
can move more than 1 column in any c consecutive rectangles in the sequence.

Summary of Our Results. We present a unified approach, based on inter-
esting geometric observations, for both the unconstrained and constrained CPP
problems, substantially improving the solutions using standard techniques. One
of our key ideas is to formulate these problems as computing shortest paths in a
weighted directed acyclic graph of O(nHΔ) vertices and O(nH2Δ2) edges. We
exploit a set of geometric properties, such as certain domination relations among
the vertices, to speed up the shortest path computation, resulting in O(nHΔ)
time algorithms for both the unconstrained and constrained CPP problems. To
compute the set of all constrained CPP instances, instead of a simple approach
to apply the O(nHΔ) time constrained CPP algorithm to each of the O(n4)
problem instances (i.e., an O(n5HΔ) time algorithm), we use a graph transfor-
mation scheme that allows a batch fashion computation of the instances. Further,
we accelerate the shortest path computation by exploiting the Monge property
of the transformed graphs. Consequently, we achieve an O(n4Δ+ n2HΔ2) time
algorithm for the set of all constrained CPP instances.

Note that in our CPP formulations, we seek to minimize the delivery error
subject to a given amount of delivery time H . It is also useful to consider the dual
problem of minimizing the delivery time subject to a given bound of delivery
error. As shown in Sect. 2.3, for a givenH , our CPP algorithms actually compute,
in O(nHΔ) time, a sequence of H leaf trajectories (i.e., path pairs), the k-th
(1 ≤ k ≤ H) of which corresponds to the optimal leaf trajectories (i.e., with the
minimum error) for delivering the intensity function f in exactly k time units.
This enables us to compute a tradeoff between the delivery time and delivery
error. Consequently, for any error bound E , in an exponential search manner,
we can determine in O(nH∗Δ) time the minimum delivery time H∗ required for
delivering f with an error at most E . In applications, one may use this feature
to find a treatment plan with balanced delivery time and delivery error.

We implemented our CPP algorithms and developed new leaf sequencing soft-
wares for common dynamic IMRT delivery as well as for the new AMRT delivery
technique. Experimental results (in Sect. 5) on real medical data show that our
CPP-based leaf sequencing software runs very fast and produces better quality
treatment plans than the previously known methods.

2 Unconstrained Coupled Path Planning (UCPP)

2.1 The UCPP Problem Definition and Graph Modeling

We define the height of an xy-monotone path as the difference between the y-
coordinates of its ending and starting points. For two non-crossing c-steep paths
pl and pr of height H on the grid Rg (i.e., both paths start at the bottom and
end at the top of Rg), denote by P (pl, pr) the rectilinear region in Rg enclosed

276 D.Z. Chen, S. Luan, and C. Wang

by pl, pr, and the bottom and top boundaries of Rg. Denote by �(i, pl, pr) the
vertical length of the intersection of the i-th column Ci of Rg with P (pl, pr). Let
�(i, pl, pr) := 0 if Ci ∩ P (pl, pr) = ∅.

Precisely, the unconstrained coupled path planning (UCPP) problem
is: Given an n × H uniform grid Rg, a non-negative function f defined on the
set {1, 2, . . . , n}, and positive integers c and Δ (Δ ≤ H), find two non-crossing
paths pl and pr of height H along the edges of Rg to minimize the total error
E(pl, pr) :=

∑n
i=1 |�(i, pl, pr) − f(i)|, subject to the following constraints: (1) (the

steepness constraint) both pl and pr are c-steep paths, and (2) (the closeness
constraint) |�(i, pl, pr) − f(i)| ≤ Δ for each i = 1, 2, . . . , n.

For the UCPP problem, we can assume the two sought optimal c-steep paths
pl and pr of height H are both increasing going from left to right. This is because
we can vertically “flip” a decreasing path, i.e., by replacing the y-coordinate β
of each point on the path by H − β without changing its x-coordinate (see Fig.
2(a)-2(b)). This makes both paths non-crossing and increasing, with the same
total error without violating the steepness and closeness constraints.

By considering only increasing c-steep paths, the region P (pl, pr) is a rectilin-
ear xy-monotone polygon in Rg, and can be uniquely mapped to a sequence of n
vertical bars B1, B2, . . . , Bn (of unit width each), where the i-th bar Bi is the in-
tersection between P (pl, pr) and the i-th column, Ci, of Rg. If Ci∩P (pl, pr) = ∅,
then Bi is a bar of height 0, aligned with the bottom or top boundary of Rg,
depending on if Ci is to the left or right of P (pl, pr) (see Fig. 2(c)).

The following observations on the vertical bars B1, B2, . . . , Bn are useful. (1)
Each vertical bar can be encoded as a point (α, β) ∈ Z2, where α (resp., β) is
the y-coordinate of its bottom (resp., top) edge, with 0 ≤ α ≤ β ≤ H . (2) The
closeness constraint implies that for any vertical bar Bi = (α, β) (1 ≤ i ≤ n),
|β − α − f(i)| ≤ Δ holds. (3) The steepness constraint implies an interesting
relation, called c-dominance, between any two consecutive vertical bars Bi =
(α, β) and Bi+1 = (α′, β′). More precisely, the c-dominance relation is defined on
the set S := {(x, y) ∈ Z2 | 0 ≤ x ≤ y ≤ H}, and we say that (α′, β′) c-dominates
(α, β) if and only if one of the following conditions holds: (i) α′ = α = β′ = β = 0;
(ii) α′ = α = 0 and β′ − β ≥ c; (iii) α′ − α ≥ c and β′ − β ≥ c; (iv) α′ = α = 0
and β′ = β = H ; (v) α′ − α ≥ c and β′ = β = H ; (vi) α′ = α = β′ = β = H .

The above observations allow us to model the UCPP problem as a shortest
path problem on a directed graph G, as follows. G contains n layers of vertices,
L1, L2, . . . , Ln, where the i-th layer Li (1 ≤ i ≤ n) contains the vertices that
represent all vertical bars on the column Ci whose lengths differ from f(i) by
at most Δ. That is, Li = {(α, β) | 0 ≤ α ≤ β ≤ H and |β − α − f(i)| ≤ Δ}.
For each vertex u = (α, β) ∈ Li, we assign to it a weight w(u) = |β − α− f(i)|.
We also add to G two dummy vertices (of zero weight), the source s and sink t.
The edges of G are defined as follows: (1) For any two vertices u = (α, β) ∈ Li

and u′ = (α′, β′) ∈ Li+1, put a directed edge from u to u′ if (α′, β′) c-dominates
(α, β); (2) For any vertex u′ = (α′, β′) ∈ L1, put an edge from the source s to
u′ if (α′, β′) c-dominates (0, 0); (3) For any u = (α, β) ∈ Ln, put an edge from u
to the sink t if (H,H) c-dominates (α, β).

CPP, Region Optimization, and Applications in IMRT 277

r

pr

p’r

pr

pl

p’l
p (p’)l l

g

2(b)(a) (c)

g g

R

p’

x
0

y

n0

H
R

x
0

y

n0

H
R

B1

Bn

B

Fig. 2. (a) Flipping a decreasing path pr to an increasing path p′
r. (b) Flipping two

monotone decreasing paths pl and pr to two increasing paths p′
l and p′

r. The flipping
in (a)-(b) affects neither the steepness nor the closeness constraint, and �(i, pl, pr) =
�(i, p′

l, p
′
r) holds for each i, implying that the total error remains the same. (c) The xy-

monotone region enclosed by the two paths p′
l and p′

r in (b) corresponds to a sequence
of n vertical bars B1, B2, . . . , Bn.

Clearly, G is a directed acyclic graph (DAG) with vertex weights. Each s-
to-t path in G represents a sequence of vertical bars on Rg, which forms an
xy-monotone rectilinear polygon and thus induces a pair of xy-monotone paths.
The way in which the vertices and edges of G are defined guarantees that the
induced pair of paths satisfies the steepness and closeness constraints, and thus
is a feasible solution for the UCPP problem. It is also easy to argue that any
feasible UCPP solution (pl, pr) corresponds to an s-to-t path p in G, and the
total error E(pl, pr) is equal to the weight w(p) of the path p, i.e., the sum of
weights of all vertices in p. Hence we have the following lemma.

Lemma 1. The UCPP problem is feasible if and only if there is a path from s
to t in the DAG G. Moreover, an s-to-t shortest path in G defines an optimal
solution for the UCPP problem.

Note that the DAG G thus defined has O(nHΔ) vertices and O(nH2Δ2) edges.
Hence an s-to-t shortest path in G can be computed in O(nH2Δ2) time straight-
forwardly in a topological sort fashion. In the next subsection, we show how to
exploit the underlying geometric properties of the graph G to speed up the
computation and obtain an O(nHΔ) time UCPP algorithm.

2.2 Speeding Up the Shortest Path Computation Using Geometry

We compute the single-source shortest paths in the DAG G layer by layer.
For any vertex v of G, define In(v) = {w | (w, v) is an edge of G}. Denote by
length(v) the length of the shortest s-to-v path in G. Since G is vertex-weighted,
to compute length(u) for a vertex u = (α, β), it suffices to find a vertex w∗ that
achieves min{length(w) | w ∈ In(u)}. Our key idea for speeding up the compu-
tation is to exploit the geometric relations among the sets In(u) for all vertices
u in the same layer Li.

Consider the i-th vertex layer Li in G (1 ≤ i ≤ n). Recall that Li =
{(α, β) | 0 ≤ α ≤ β ≤ H and |β − α − f(i)| ≤ Δ}. If we view each vertical

278 D.Z. Chen, S. Luan, and C. Wang

H

H0

f(i)+Δ

Δf(i)−

(c)

Δf(i)−

Δf(i)+

Δf(i)−

Δf(i)+

0

f(i)−

HH

H

Δ

0

H

H

f(i)+Δ

(b)(a) (d)
H0

Fig. 3. (a) Illustrating the geometry of a vertex layer Li of the DAG G. (b)-(d) Illus-
trating the geometry of a vertex layer L′

i of the DAG G′ for (b) lstart < i ≤ rstart, (c)
rstart < i ≤ lend, and (d) lend < i ≤ rend, respectively. In each figure, all vertices in
the vertex layer Li (or L′

i) are mapped to circled points in the 2-D plane; these points
form all the lattice points in a convex polygon (possibly degenerated to a line segment)
marked by the shaded area.

bar (α, β) ∈ Li as a point in the 2-D plane, then Li consists of all lattice points
in a discrete convex polygon bounded by O(1) discrete edges (see Fig. 3(a)).
Recall that the edges of G are defined based on the c-dominance relation among
the vertices in consecutive layers. Fix a vertex u = (α, β) ∈ Li. It is easy to show
that In(u) = Li−1 ∩ Dc(α, β), where Dc(α, β) is the c-dominated set of (α, β),
i.e., the set of all points in S that are c-dominated by (α, β). (Figs. 4(a)-4(f)
give examples of the typical c-dominated sets.) Our key observation here is that
the c-dominated set Dc(α, β) always includes Dc(α − 1, β), Dc(α, β − 1), and
Dc(α− 1, β− 1). Thus In(u) always contains In(v), for v = (α− 1, β), (α, β− 1),
and (α − 1, β − 1). The next lemma quantifies this inclusion relation (proof is
left to the full paper).

Lemma 2. For any vertex u = (α, β) ∈ Li, if In(u)
= ∅, then the following
properties hold:
(2a) If v = (α − 1, β) (resp., v = (α, β − 1), v = (α − 1, β − 1)) ∈ Li, then
In(v) ⊂ In(u) and the set In(u) \ In(v) can be enumerated in O(Δ) time.
(2b) If v1 = (α−1, β) ∈ Li and v2 = (α, β−1) ∈ Li, then In(v1)∪In(v2) ⊂ In(u)
and the set In(u) \ (In(v1) ∪ In(v2)) can be enumerated in O(1) time.

Lemma 2 implies the shortest path computation from s to the vertices in the
layer Li can be sped up by following an appropriate order of the vertices, in a dy-
namic programming fashion. Specifically, we visit (and compute the correspond-
ing paths to) the vertices in Li in the left-to-right and bottom-to-top order; here,
Li is viewed as a discrete convex polygon. Suppose length(u) has been computed
for each vertex u in the previous layer Li−1. For the first vertex of Li visited,
say v0, since In(v0) ⊂ Li−1, length(v0) can be computed in O(|Li−1|) = O(HΔ)
time. For each subsequent vertex in Li, say v = (α, β), there are two possible
cases. Case (I): (α, β) is on the boundary of Li. By (2a) of Lemma 2, we can show
that length(v) is computable in O(Δ) time. Case (II): (α, β) is in the interior
of Li. By (2b) of Lemma 2, we can show that length(v) is computable in O(1)
time. (Here, we assume it takes O(1) time to report whether In(v)
= ∅, which
can be achieved by performing a breadth-first search in G at the beginning of the

CPP, Region Optimization, and Applications in IMRT 279

H−c

H

H−c

H0

H

H−c

H0 H0

H

β

α

−cβ

α−c

H

H

β

β−c

0
(f)(a) (b) (c) (d) (e)

0

H

H−c

α α H−c

H

H0

Fig. 4. Illustrating the typical types of c-dominated sets. In each figure, all the circled
points form the c-dominated set of the point marked by an asterisk. (a) Dc(H, H). (b)
Dc(α, H) (0 < α < H). (c) Dc(0, H). (d) Dc(α, β) (0 < α ≤ β < H). (e) Dc(0, β)
(0 < β < H). (f) Dc(0, 0).

algorithm, in O(nHΔ) time.) Observing that Li has O(HΔ) vertices and O(H)
of them are on the boundary of Li (see Fig. 3(a)), the above process computes
length(v) for all v ∈ Li in O(HΔ) +O(H) ×O(Δ) +O(HΔ) ×O(1) = O(HΔ)
time. Thus, we can obtain an s-to-t shortest path in G in O(nHΔ) time. By
Lemma 1, the result below follows.

Theorem 1. Given a non-negative function f defined on the integers in
{1, 2, . . . , n} and positive integers c, H, and Δ (Δ ≤ H), the UCPP problem
is solvable in O(nHΔ) time.

2.3 Extension

The above UCPP algorithm can be extended to computing a sequence of H path
pairs, with the k-th (1 ≤ k ≤ H) being an optimal path pair of height exactly
k in an n × k grid, for approximating the input function f . The main idea is
to replace the sink t in G by a layer Ln+1 of H sink vertices t1, t2, . . . , tH , and
associate with tk a vertical bar (k, k) for 1 ≤ k ≤ H . The edges from Ln to Ln+1

are defined by the same c-domination relation. It is easy to show that an s-to-tk
shortest path in this new DAG specifies an optimal path pair of height exactly k.
Using the same technique in this section, we can compute single-source shortest
paths in the new DAG in O(nHΔ) time.

3 Constrained Coupled Path Planning (CCPP)

In this section, we study the constrained coupled path planning (CCPP)
problem, in which the starting and ending points of the sought paths are pre-
specified. Precisely, we are given positive integers lstart, rstart, lend, rend, and we
require that the sought path pl (resp., pr) starts at (lstart, 0) (resp., (rstart, 0))
and ends at (lend, H) (resp., (rend, H)).

Without loss of generality, we assume lstart ≤ lend and rstart ≤ rend, so that pl

and pr are both xy-monotone increasing paths. (Otherwise, we can transform the
CCPP problem to a new CCPP problem that satisfies this condition: By flipping
(see Figs. 2(a)-2(b)) one or both of the optimal paths for this new problem, we
obtain two optimal paths for the original CCPP problem.) In the rest of this

280 D.Z. Chen, S. Luan, and C. Wang

section, we present our CCPP algorithm for the case with lend ≥ rstart (the
algorithm can be easily adapted to handle the other case with lend < rstart).

As for the UCPP problem in Sect. 2.1, the CCPP region P (pl, pr) is an xy-
monotone polygon in Rg and is made of a sequence of n vertical bars. Note that
such vertical bars, if viewed as 2-D points, still satisfy the c-dominance relation.
Thus, the problem can be solved in the same spirit as the UCPP algorithm, i.e.,
we can transform it to computing a shortest path in a DAG G′. The DAG G′ has
a source s, a sink t, and n layers of vertices, L′

1, L
′
2, . . . , L

′
n, which are defined as

follows to satisfy the additional geometric constraints of the CCPP problem:

L′
i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{(α, β) | α = β = 0 and |β − α− f(i)| ≤ Δ} if 1 ≤ i ≤ lstart
{(α, β) | 0 = α < β ≤ H − c and |β − α− f(i)| ≤ Δ} if lstart<i ≤ rstart
{(α, β) | c ≤ α ≤ β ≤ H − c and |β − α− f(i)| ≤ Δ} if rstart < i ≤ lend

{(α, β) | c ≤ α < β = H and |β − α− f(i)| ≤ Δ} if lend < i ≤ rend

{(α, β) | α = β = H and |β − α− f(i)| ≤ Δ} if rend < i ≤ n

As the UCPP problem, the weight of a vertex u = (α, β) ∈ L′
i is defined as

w′(u) = |β−α−f(i)| and the edges of G′ are defined based on the c-domination
relation. We can show that a shortest s-to-t path in G′ corresponds to an optimal
CCPP solution. Since G′ has similar geometric properties as stated in Sect. 2.2
(see Figs. 3(b)-3(d)), the computation can be sped up in the same fashion as in
the UCPP algorithm. Our final CCPP algorithm takes O(nHΔ) time.

4 Computing the Set of All CCPP Problem Instances

In this section, we discuss our algorithm for computing the set of all CCPP
problem instances. More specifically, given f, n,H,Δ, and c, we solve the CCPP
problem instances on f, n,H,Δ, c, lstart, rstart, lend, and rend for all possible com-
binations of lstart, rstart, lend, and rend. Due to the space limit, we only sketch our
ideas on solving the subset of CCPP instances with lstart < lend < rstart < rend.

Since 0 ≤ lstart < rstart < lend < rend ≤ n, there are totally N = Θ(n4)
problem instances, which we denote by I1, I2, . . . , IN . As discussed in Sect. 3,
an instance Ik (1 ≤ k ≤ N) corresponds to a shortest path problem on a vertex-
weighted DAG, denoted by G′

k, of O(nHΔ) vertices and O(nH2Δ2) edges. Our
key observation is that we can transform (details left to the full paper) G′

k to an
edge-weighted DAG, denoted by Ĝk, with only O(Δ) vertices and O(Δ2) edges.
The vertice set of Ĝk contains a subset of O(1) vertex layers in G′

k, and each edge
(u, v) of Ĝk is defined by the shortest path between the u and v in G′

k. (Note
that although Ĝk is of a much smaller size than G′

k, the weights of the edges
of Ĝk are costly to compute. Thus, solving a single CCPP problem instance by
transforming G′

k to Ĝk will not lead to a faster CCPP algorithm.)
Our algorithm has two main steps:

(1) Prepare the weights of all edges in Ĝ1, Ĝ2, . . . , and ĜN . By exploiting the
properties of the graph transformation, we implicitly compute and store the
weights of all the O(n4Δ2) edges in a batch fashion, in totally O(n2HΔ2)
time, such that for any edge, its weight can be obtained in O(1) time.

CPP, Region Optimization, and Applications in IMRT 281

(2) Compute a shortest path in each of Ĝ1, Ĝ2, . . . , ĜN . We show that each
Ĝk (1 ≤ k ≤ N) is a DAG satisfying the Monge property [1,2,4]. Since the
weight of any edge can be obtained in O(1) time, a shortest path in Ĝk takes
only O(Δ) time to compute.

Our algorithm thus takes O(n2HΔ2 + n4Δ) time, improving the straight-
forward O(n5HΔ) time algorithm (i.e., by applying the CCPP algorithm N =
O(n4) times) by a factor of min{nH, n3

Δ }.

5 IMRT Applications

We implemented our CPP algorithms using the C programming language and
developed new leaf sequencing softwares for common dynamic IMRT delivery
and the new arc modulated radiation therapy (AMRT) [29]. Due to the space
limit, we only present the application in AMRT.

AMRT is a new dynamic IMRT delivery technique, which we have been devel-
oping jointly with Univ. of Maryland School of Medicine. In an AMRT delivery,
the beam source rotates along an arc path in 3-D, and for every θ degrees (usu-
ally θ = 10), a prescribed IM is delivered to the target volume. A key problem
to AMRT delivery, called AMRT leaf sequencing, is to optimally convert a given
set of K IMs into MLC leaf trajectories. We model the AMRT leaf sequencing
problem as a shortest path problem on a layered DAG G̃, constructed as follows.
The vertices of the i-th (vertical) layer L̃i (i = 1, 2, . . . ,K+1) of G̃ correspond to
all possible leaf pair positions when the beam source is at angle (i−1)θ (assume
that the source starts at angle 0). For any two vertices in adjacent layers, put a
left-to-right directed edge, and let its weight be the minimum delivery error of
the corresponding CCPP instance (with the head and tail of the edge specifying
the starting and ending leaf positions, respectively). Also, add to G̃ two dummy
vertices s and t, and put 0-weight edges from s to L̃1 and from L̃K+1 to t. Then
computing the weights of all edges in G̃ is essentially computing K sets of all
CCPP problem instances.

We developed an AMRT treatment planning software based on our CPP al-
gorithm in Sect. 4, and tested the software using 18 clinical cancer cases with
a wide range of treatment sites. All the tests were done on a Lenovo Thinkpad
T61 laptop with a 2GHz Intel Core 2 Duo processor and 2GB of memory run-
ning Windows XP. On average, the AMRT leaf sequencing can be computed in
5 to 10 minutes using our CPP algorithm. We compared the CPP-based AMRT
plans with AMRT plans based on the back-and-forth sliding-window (BFSW)
method [8] and with the traditional IMRT plans produced by the commercial
Pinnacle treatment planning system.

Comparisons between our CPP-based AMRT plans and the BFSW-based
AMRT plans show that our CPP-based plans have similar tumor coverage but
significantly better healthy structure sparing. For five prostate cases tested, the
amount of undesired dose delivered to the three nearby healthy structures, blad-
der, rectum, and hips, is reduced on average by 25%, 40%, and 50%, respectively.

282 D.Z. Chen, S. Luan, and C. Wang

This is because using our CPP-based algorithm, we are able to reduce the deliv-
ery time by 40%−50% through its tradeoff feature. The reduced delivery time in
turn reduces the radiation leakage, resulting in significantly better quality plans.

Comparisons between our CPP-based AMRT plans and IMRT plans produced
by the commercial Pinnacle planning system show that the two types of plans
have comparable tumor coverage and healthy structure sparing. However, our
CPP-based AMRT plans take much shorter delivery time: Delivering CPP-based
AMRT plans on average takes 2 minutes for a prostate case and 4 minutes for a
head-and-neck case, which are 3 to 5 times faster than the delivery of traditional
IMRT plans.

References

1. Aggarwal, A., Klawe, M.M., Moran, S., Shor, P., Wilber, R.: Geometric Applica-
tions of a Matrix-Searching Algorithm. Algorithmica 2, 195–208 (1987)

2. Aggarwal, A., Park, J.: Notes on Searching in Multidimensional Monotone Arrays.
In: Proc. 29th Annual IEEE Symp. on Foundations of Computer Science, pp. 497–
512 (1988)

3. Ahuja, R.K., Hamacher, H.W.: A Network Flow Algorithm to Minimize Beam-
on Time for Unconstrained Multileaf Collimator Problems in Cancer Radiation
Therapy. Networks 45, 36–41 (2005)

4. Apostolico, A., Atallah, M.J., Larmore, L., McFaddin, H.S.: Efficient Parallel Al-
gorithms for String Editing and Related Problems. SIAM J. Comput. 19, 968–988
(1990)

5. Baatar, D., Ehrgott, M., Hamacher, H.W., Woeginger, G.J.: Decomposition of
Integer Matrices and Multileaf Collimator Sequencing. Discrete Applied Mathe-
matics 152, 6–34 (2005)

6. Boland, N., Hamacher, H.W., Lenzen, F.: Minimizing Beam-on Time in Cancer
Radiation Treatment Using Multileaf Collimators. Networks 43(4), 226–240 (2004)

7. Bortfeld, T.R., Kahler, D.L., Waldron, T.J., Boyer, A.L.: X-ray Field Compen-
sation with Multileaf Collimators. Int. J. Radiat. Oncol. Biol. Phys. 28, 723–730
(1994)

8. Cameron, C.: Sweeping-Window Arc Therapy: An Implementation of Rotational
IMRT with Automatic Beam-Weight Calculation. Phys. Med. Biol. 50(18), 4317–
4336 (2005)

9. Chen, D.Z., Hu, X.S., Luan, S., Misiolek, E., Wang, C.: Shape Rectangularization
Problems in Intensity-Modulated Radiation Therapy. In: Proc. 12th Annual Int.
Symp. on Algorithms and Computation, pp. 701–711 (2006)

10. Chen, D.Z., Hu, X.S., Luan, S., Naqvi, S.A., Wang, C., Yu, C.X.: Generalized
Geometric Approaches for Leaf Sequencing Problems in Radiation Therapy. Inter-
national Journal of Computational Geometry and Applications 16(2-3), 175–204
(2006)

11. Chen, D.Z., Hu, X.S., Luan, S., Wang, C., Wu, X.: Geometric Algorithms for
Static Leaf Sequencing Problems in Radiation Therapy. In: Proc. of 19th ACM
Symposium on Computational Geometry, pp. 88–97 (2003)

12. Chen, D.Z., Hu, X.S., Luan, S., Wang, C., Wu, X.: Mountain Reduction, Block
Matching, and Applications in Intensity-Modulated Radiation Therapy. In: Proc.
of 21th ACM Symposium on Computational Geometry, pp. 35–44 (2005)

CPP, Region Optimization, and Applications in IMRT 283

13. Chen, D.Z., Hu, X.S., Luan, S., Wu, X., Yu, C.X.: Optimal Terrain Construction
Problems and Applications in Intensity-Modulated Radiation Therapy. Algorith-
mica 42, 265–288 (2005)

14. Convery, D.J., Rosenbloom, M.E.: The Generation of Intensity Modulated Fields
for Conformal Radiotherapy by Dynamic Collimation. Phys. Med. Biol. 37, 1359–
1374 (1992)

15. Engel, K.: A New Algorithm for Optimal Multileaf Collimator Field Segmentation.
Discrete Applied Mathematics 152(1-3), 35–51 (2005)

16. Evans, P.M., Hansen, V.N., Swindell, W.: The Optimum Intensities for Multiple
Static Collimator Field Compensation. Med. Phys. 24(7), 1147–1156 (1997)

17. Kallman, P., Lind, B., Brahme, A.: Shaping of Arbitrary Dose Distribution by
Dynamic Multileaf Collimation. Phys. Med. Biol. 33, 1291–1300 (1988)

18. Kamath, S., Sahni, S., Palta, J., Ranka, S.: Algorithms for Optimal Sequencing of
Dynamic Multileaf Collimators. Phys. Med. Biol. 49(1), 33–54 (2004)

19. Luan, S., Wang, C., Cao, D., Chen, D.Z., Shepard, D.M., Yu, C.X.: Leaf-
Sequencing for Intensity-Modulated Arc Therapy Using Graph Algorithms. Medi-
cal Physics 35(1), 61–69 (2008)

20. Luan, S., Wang, C., Chen, D.Z., Hu, X.S., Naqvi, S.A., Wu, X., Yu, C.X.: An
Improved MLC Segmentation Algorithm and Software for Step-and-Shoot IMRT
Delivery without Tongue-and-Groove Error. Med. Phys. 33(5), 1199–1212 (2006)

21. Luan, S., Wang, C., Chen, D.Z., Hu, X.S., Naqvi, S.A., Yu, C.X., Lee, C.L.: A
New MLC Segmentation Algorithm/Software for Step and Shoot IMRT. Med.
Phys. 31(4), 695–707 (2004)

22. Ma, L., Boyer, A., Xing, L., Ma, C.M.: An Optimized Leaf-Setting Algorithm
for Beam Intensity Modulation Using Dynamic Multileaf Collimators. Phys. Med.
Biol. 43, 1629–1643 (2004)

23. Siochi, R.A.C.: Minimizing Static Intensity Modulation Delivery Time Using an
Intensity Solid Paradigm. Int J. Radiation Oncology Biol. Phys. 43(3), 671–680
(1999)

24. Spirou, S.V., Chui, C.S.: Generation of Arbitrary Intensity Profiles by Dynamic
Jaws or Multileaf Collimators. Med. Phys. 21, 1031–1041 (1994)

25. Stein, J., Bortfeld, T., Dorschel, B., Schlegel, W.: Dynamic X-ray Compensation for
Conformal Radiotherapy by Means of Multileaf Collimations. Radiother. Oncol. 32,
163–173 (1994)

26. Webb, S.: The Physics of Three-Dimensional Radiation Therapy. Institute of
Physics Publishing, Bristol (1993)

27. Webb, S.: The Physics of Conformal Radiotherapy — Advances in Technology.
Institute of Physics Publishing, Bristol (1997)

28. Xia, P., Verhey, L.J.: MLC Leaf Sequencing Algorithm for Intensity Modulated
Beams with Multiple Static Segments. Med. Phys. 25, 1424–1434 (1998)

29. Yu, C.X., Luan, S., Wang, C., Chen, D.Z., Earl, M.: Single-Arc Dose Painting: An
Efficient Method of Precision Radiation Therapy. In: Provisional patent applica-
tion, University of Maryland (2006)

A New Approach to Exact Crossing

Minimization

Markus Chimani1, Petra Mutzel1, and Immanuel Bomze2

1 Faculty of Computer Science, Dortmund University of Technology, Germany
{markus.chimani,petra.mutzel}@tu-dortmund.de

2 Dep. of Statistics and Decision Support Systems, University of Vienna, Austria
immanuel.bomze@univie.ac.at

Abstract. The crossing number problem is to find the smallest number
of edge crossings necessary when drawing a graph into the plane. Even-
though the problem is NP-hard, we are interested in practically efficient
algorithms to solve the problem to provable optimality. In this paper,
we present a novel integer linear programming (ILP) formulation for
the crossing number problem. The former formulation [4] had to trans-
form the crossing number polytope into a higher-dimensional polytope.
The key idea of our approach is to directly consider the natural cross-
ing number polytope and cut it with multiple linear-ordering polytopes.
This leads to a more compact formulation, both in terms of variables
and constraints.

We describe a Branch-and-Cut algorithm, together with a combina-
torial column generation scheme, in order to solve the crossing number
problem to provable optimality. Our experiments show that the new ap-
proach is more effective than the old one, even when considering a heavily
improved version of the former formulation (also presented in this paper).
For the first time, we are able to solve graphs with a crossing number of
up to 37.

1 Introduction

A drawing of a graph G = (V,E) in the plane is a one-to-one mapping of each
vertex to a point in �2, and each edge to a curve between its two endpoints. The
curve is not allowed to contain other vertices than its two endpoints. A crossing
is a common point of two curves, other than their endpoints. We forbid common
points of more than two curves, other than their endpoints. The crossing number
cr(G) is the smallest number of crossings in any drawing of G. The NP-hard
problem of finding cr(G) has been widely studied in the literature – see [20]
for an extensive bibliography – both from the graph theoretic, as well as the
algorithmic point of view.

Recently, Buchheim et al. [4] presented the first exact algorithm to solve this
problem to provable optimality, based on an integer linear programming (ILP)
formulation: The central idea in all these formulations is to have a variable x{e,f}
for each pair of edges e, f ∈ E, which is 1 if these edges cross, and zero otherwise.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 284–296, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A New Approach to Exact Crossing Minimization 285

The convex hull of the feasible points of x form the crossing number polytope
Pcr. Unfortunately, there is no known way to describe Pcr directly, as already
checking if a given solution x̄ is feasible – known as the Realizability problem – is
NP-complete [15,19]. If each edge is involved in only a single crossing, checking
feasibility becomes simple: we can substitute each crossing by a dummy vertex of
degree 4 and perform any planarity testing algorithm on the transformed graph.
Hence the problem lies in edges e which are involved in multiple crossings, if we
do not know the order of these crossings on e.

The formulation of [4] circumvents this problem by subdividing the graph
such that each edge is replaced by a path of � segments. Then, the formula-
tion considers the simple crossing number instead, i.e., the smallest number of
crossings in any drawing of G under the restriction that each edge-segment is
involved in at most one crossing. Clearly, this solves the traditional crossing
number problem on G if � is large enough: since the optimal drawing of G might
require all crossings to be on a single edge, we can select � := cr(G), some up-
per bound on the crossing number which may be obtained by a heuristic. Since
cr(G) = O(|E|2) and there are graphs with cr(G) = Ω(|E|2), we obtain O(|E|4)
variables. We denote this formulation by Socm, for subdivision-based optimal
crossing minimization.

The enlarging of the input graph results in far too many variables to handle
the problem efficiently, hence column generation schemes are proposed and com-
pared in [8]: the therein presented combinatorial column generation – a scheme
based on combinatorial and graph-theoretical arguments, rather than on alge-
braic concepts – offers a large improvement compared to traditional approaches
based on reduced costs. Nonetheless, the approach, as presented in [8], was only
suitable for relatively sparse graphs with roughly 70 nodes.

In this paper we present a competing ILP formulation based on linear ordering
of crossings on any edge: we avoid the aforementioned graph expansion and re-
quire only O(|E|3) instead of O(|E|4) variables. We call this formulation Oocm,
for ordering-based optimal crossing minimization. As the number of variables is
still quite large, we furthermore present an efficient corresponding combinatorial
column generation scheme.

From the polyhedral point of view, we can describe the situation as follows:
checking the feasibility of a solution x̄ is NP-complete and there is no known way
to directly describe the feasible integer points of the polytope Pcr. Hence, the
Socm formulation expands the input and considers the simpler polytope Pscr

of the simple crossing number problem. In Oocm, we instead solve the problem
directly in Pcr, by cutting it with O(|E|) many linear-ordering polytopes.

In the next section, we present the ILP formulation, while Section 3 describes
the resulting Branch-and-Cut-and-Price algorithm and its sub-steps. In Section 4
we discuss extensions of Oocm for other types of crossing numbers and present
recent improvements of Socm which lead to improved performance compared
to the results published in [4,8]. Finally, in Section 5 we compare the improved
Socm implementation to the novel Oocm implementation by way of experiment.

286 M. Chimani, P. Mutzel, and I. Bomze

2 The Oocm ILP Formulation

It is a well-known fact that the crossing number of any graph is the sum of the
crossing numbers of its biconnected components. Hence we can assume that the
given graph G is at least 2-connected. Furthermore, we can confine ourselves
to simple graphs, i.e., graphs without multi-edges or self-loops. While loops are
irrelevant for the crossing number, we can get rid of multi-edges by introducing
integer edge weights c. The crossing number can be obtained by counting ce · cf
crossings for a crossing between the edges e and f . The need for these weights
is further strengthened by the non-planar core reduction [7]: this preprocessing
scheme shrinks a given 2-connected graph further without changing its crossing
number, but introduces integer edge weights. Hence we will consider (G, c) as
our input.

2.1 Variables and Linear Ordering

First, we orient all edges of G arbitrarily. For notational simplicity we continue
to refer to the resulting graph as G = (V,E). Let E〈k〉 := {(e1, . . . , ek) | ∀ 1 ≤
i < j ≤ k : ei, ej ∈ E ∧ ei
= ej} be the set of all ordered k-tuples of pairwise
distinct edges. We model the order of the crossings directly via variables:

x{e,f} ∈ {0, 1} ∀{e, f} ∈
(
E

2

)

, ye,f,g ∈ {0, 1} ∀(e, f, g) ∈ E〈3〉 (1)

A variable x{e,f} specifies whether or not the edges e and f cross. A variable
ye,f,g is 1 if and only if both edges f and g cross e, and the crossing (e, f) is
nearer to e’s source node than the crossing (e, g). We say e is the base of the
variable. The objective function of our ILP is then:

min
∑

{e,f}∈(E
2)
ce · cf · x{e,f}

It is known that certain crossing-variables can be fixed to 0 as, e.g., there will
never be crossings between adjacent edges. Any sensible implementation will
ignore such variables.

Linear-Ordering Constraints. We define the set of linear-order (LO) constraints
which ensure a consistent linear ordering over all edges:

x{e,f} ≥ ye,f,g, x{e,g} ≥ ye,f,g ∀(e, f, g) ∈ E〈3〉 (2)

1 + ye,f,g + ye,g,f ≥ x{e,f} + x{e,g} ∀(e, f, g) ∈ E〈3〉 (3)

ye,f,g + ye,g,f ≤ 1 ∀(e, f, g) ∈ E〈3〉 (4)

ye,f,g + ye,g,h + ye,h,f ≤ 2 ∀(e, f, g, h) ∈ E〈4〉 (5)

We introduce crossing-existence constraints (2) which connect the x and y vari-
ables by ensuring that the x-vector specifies a crossing if the y-variables do. Vice

A New Approach to Exact Crossing Minimization 287

versa, the order-existence constraints (3) ensure that if x specifies two cross-
ings on the same edge, the y-vector has to specify their order. The mirror-order
constraints (4) guarantee that two crossings are uniquely ordered if they exist.
Analogously, the cyclic-order constraints (5) ensure that the ordering is acyclic.
A solution (x̄, ȳ) which satisfies the LO-constraints is called LO-feasible. Since
no two edges will ever cross more than once in any optimal solution, we have:

Proposition 1. Let x̄ be any optimal solution to the crossing number problem
of any graph G. There exists an assignment ȳ for the vector y such that (x̄, ȳ) is
LO-feasible.

Checking feasibility. Let (x̄, ȳ) be any integer LO-feasible solution. We replace
each crossing in G by a dummy vertex. Since we know the intended order of
these dummy vertices on each edge from the information in (x̄, ȳ), the resulting
graph is the (partial) planarization of G, which we denote by G[x̄, ȳ]. We can
check feasibility of (x̄, ȳ) by testing G[x̄, ȳ] for planarity.

2.2 Kuratowski Constraints and Correctness of Oocm

The final class of constraints required to fully describe the feasible points of our
ILP are the Kuratowski-constraints. They guarantee that a computed integer
LO-feasible solution (x̄, ȳ) corresponds to a feasible planarization, i.e., G[x̄, ȳ]
is planar: the well-known theorem by Kuratowski [16] states that a graph is
planar if and only if it contains no Kuratowski-subdivision as a subgraph. A
Kuratowski-subdivision results from subdividing the edges of a K5 (complete
graph on 5 nodes) or K3,3 (complete bipartite graph with 3 nodes per partition)
into paths of length at least 1, called Kuratowski-paths. The original nodes not
obtained by the subdivision of the edges are called Kuratowski-nodes.

For any Kuratowski-subdivision K, we require at least one crossing between
the edges of K. Such a subdivision might not be a subgraph of the original
graph G, but might occur only in a partial planarization G[x̄, ȳ] for some integer
LO-feasible solution (x̄, ȳ).

For Socm we simply use the crossings in such a planarization to “turn off”
Kuratowski-constraints that are only valid if these crossings are selected [4]. The
drawback is that these constraints are specifically tied to certain crossings, say
between the edges e and f1. This unavoidably leads to a multitude of very similar
constraints, where, e.g., f1 is replaced by another edge f2, but f1 and f2 were
created by the graph enlargement and correspond to the same original edge.

We cannot reuse such a simple approach straight-forwardly for Oocm. But
now the additional effort is compensated for by constraints which correspond
to a whole class of similar Kuratowski-constraints in Socm. Let (x̄, ȳ) be an
integer LO-feasible solution, and let K be a Kuratowski-subdivision in G[x̄, ȳ].
We define ZK [x̄, ȳ] as the set of crossings induced by (x̄, ȳ) whose dummy nodes
form integral parts of K: any {e, f} ∈ ZK [x̄, ȳ] either induces a Kuratowski-
node or there exist a segment e′ of e, a segment f ′ of f , and a Kuratowski-path
which contains 〈e′, f ′〉 as a subpath. We can then define the crossing shadow
(XK [x̄, ȳ],YK [x̄, ȳ]) as a pair of sets as follows:

288 M. Chimani, P. Mutzel, and I. Bomze

YK [x̄, ȳ] := {(e, f, g) ∈ E〈3〉 | {e, f}, {e, g} ∈ ZK [x̄, ȳ] ∧ ȳe,f,g = 1 ∧ �{e, h} ∈
ZK : ȳe,f,h = ȳe,h,g = 1}, i.e., a triple (e, f, g) is in YK [x̄, ȳ], if no other edge
crosses e between f and g. Thus YK [x̄, ȳ] contains a minimal description of
all crossings and their orderings in K, except for crossings of two edges, both
not involved in multiple crossings; these are collected in the following set:

XK [x̄, ȳ] := {{e, f} ∈ ZK [x̄, ȳ] | ∀g ∈ E : {(e, f, g), (e, g, f), (f, e, g), (f, g, e)} ∩
YK [x̄, ȳ] = ∅}, i.e., all singular crossings in K not contained in YK [x̄, ȳ].

Proposition 2. For each integer LO-feasible solution (x̄, ȳ) and each Kuratowski-
subdivision K in G[x̄, ȳ] we have: the partial planarization of G only realizing the
crossings (and their order) as defined by the crossing shadow, contains K as a
Kuratowski-subdivision.

Using this crossing shadow, we can define Kuratowski-constraints as
∑

{e,f}∈CrPairs(K)

x{e,f} ≥ 1 −
∑

a∈XK [x̄,ȳ]

(1 − xa) −
∑

b∈YK [x̄,ȳ]

(1 − yb) (6)

for all LO-feasible integer vectors (x̄, ȳ) and all Kuratowski-subdivisions K in
G[x̄, ȳ]. Here and in the sequel, CrPairs(K) denotes all pairs of edges belonging
to different paths p1, p2 in K which may cross in order to planarize K (i.e., the
edges corresponding to p1 and p2 in the underlying K5 or K3,3 are non-adjacent).
Our constraints require at least one crossing on every Kuratowski-subdivision if
it exists; this existence is detected via the crossing shadow.

Lemma 1. Each optimal solution to the crossing number problem of any graph
G corresponds to a feasible integer solution vector.

Proof. Clearly, any solution to the crossing number problem can be described
by an integer LO-feasible solution (x̄, ȳ) by construction, see Proposition 1. We
show that this vector does not violate any constraint (6). Assume there is some
(x̄, ȳ) and K which induces a violated Kuratowski constraint. Then

∑

{e,f}∈CrPairs(K)

x{e,f} < 1 −
∑

a∈XK(x̄,ȳ)

(1 − xa) −
∑

b∈YK [x̄,ȳ]

(1 − yb)

Since we only consider integer solutions, the left-hand side is 0 while the right-
hand side is 1. We thus have:

∀{e, f} ∈ CrPairs(K) : x{e,f} = 0 , and (7)

∀a ∈ XK [x̄, ȳ] : xa = 1 ∧ ∀b ∈ YK(x̄, ȳ) : yb = 1 .

But then, due to Proposition 2, the crossing shadow of (x̄, ȳ) w.r.t. K specifies
exactly the crossings which induce a graph Ḡ that contains K as a Kuratowski-
subdivision. Due to (7) we know that there are no further crossings on K which
would lead to a planarization of this non-planar subgraph. This is a contradiction
to the feasibility of the original solution. �

A New Approach to Exact Crossing Minimization 289

Lemma 2. Every feasible solution to the ILP

min

⎧
⎪⎨

⎪⎩

∑

{e,f}∈(E
2)
cecfx{e,f} subject to (2),(3),(4),(5) and all (6)

⎫
⎪⎬

⎪⎭

corresponds to a feasible solution of the crossing number problem.

Proof. We can interpret any integer LO-feasible solution (x̄, ȳ) as a (partial)
planarization Ḡ := G[x̄, ȳ]. Assume the solution vector satisfies all Kuratowski
constraints, but Ḡ is non-planar. Then there exists a Kuratowski-subdivision in
Ḡ. Let K be such a subdivision with the smallest number of contained dummy
nodes. We construct a crossing shadow (XK [x̄, ȳ],YK [x̄, ȳ]) which describes the
precise crossing configuration necessary to identify K. Since K is a non-planar
(minimal) Kuratowski-subdivision, we know that there are no crossings on any
pair of CrPairs(K). But then, (6) is violated for K and (XK [x̄, ȳ],YK(x̄, ȳ)), as
the left-hand side sums up to 0 and the right-hand side is 1. �
We therefore obtain:

Theorem 1. Every optimal solution of the above ILP yields an optimal solution
of the crossing number problem.

3 Branch-and-Cut-and-Price Algorithm

The presented ILP

min

⎧
⎪⎨

⎪⎩

∑

{e,f}∈(E
2)
cecfx{e,f} subject to (2),(3),(4),(5) and all (6)

⎫
⎪⎬

⎪⎭

can be solved by a Branch-and-Cut framework: we start the computation with
a subset of the above constraints and solve the LP-relaxations, i.e., we ignore
the integer properties of the variables. Based on the thereby obtained fractional
solution we start a separation routine to identify violated constraints not in-
cluded in the current model. If we can find any, we add them to our model and
iterate the process, computing the LP relaxation of this, now larger, model. If
we cannot identify any more violated constraints but the solution is still not
integer feasible, we have to resort to branching: we generate two subproblems,
e.g., by fixing a variable to 0 and 1, respectively. Using the LP relaxations for
lower bounds and some constructive heuristics for upper bounds, we can prune
irrelevant subproblems.

Consider any optimal solution for any graph: at least half of the y-variables
will be zero. Most graphs occurring in practice are far from being complete, and
so actually most of the ILP variables will be zero in the optimal solution. Hence
we augment the Branch-and-Cut framework with a column generation scheme,
i.e., we start only with a subset of variables and assume that all other variables
are zero. The task of the scheme is to detect which variables are necessary to
add to the model, in order to guarantee overall optimality of the solution.

290 M. Chimani, P. Mutzel, and I. Bomze

3.1 Upper Bounds and Integer Interpretation

To obtain upper bounds for our problem, we use the efficient planarization heuris-
tic described in [11,12]. As the experiments in [8] showed, this heuristic is very
good in practice, often finding the optimal solution. Before the actual ILP com-
putation is started, we use the heuristic to obtain a first upper bound.

During the computation, we compute LO-feasible integer interpretations (x̃, ỹ)
of the current fractional solution (x̄, ȳ). We can then construct G[x̃, ỹ] and solve
the crossing number problem heuristically on this partial planarization. The
union of the crossings in (x̃, ỹ) and the heuristic solution on G[x̃, ỹ] then consti-
tutes a heuristic solution for G.

Since we require the integer solution (x̃, ỹ) to be LO-feasible in order to con-
struct the planarization G[x̃, ỹ], we cannot use a simple rounding scheme on the
y-variables. Our integer interpretation works as follows:

x̃-variables: We apply a traditional rounding scheme to x̄. The variable x̃{e,f}
is 1 iff x̄{e,f} > τ . Here τ > 0.5 is a fixed threshold value; in our experiments
we used τ = 0.7 and τ = 1− ε (for some very small ε > 0) and compute two
probably distinct planarizations for the subsequent steps.

ỹ-variables: Based on x̃, we can then restrict the set of ỹ-variables that may
be 1. For each edge e, let De be the set of edges which cross e, according to
x̃. We can set ỹe,f,g = 0 for all variables with {f, g}
⊆ De. If |De| ≥ 2, we
define a complete bidirected weighted graph, using De as its vertex set. We
choose the weight of an arc (f, g) as ȳe,f,g. Then we solve the linear ordering
problem on this graph, using a straight-forward greedy heuristic [1]. Using
this resulting order, we can decide the values for ỹe,f,g, for all {f, g} ⊆ De.

3.2 Initial Constraints and Separation

We start our ILP only with the 0/1 bounds on the x-variables. Initially, we do
not need to add the LO-constraints (2),(3),(4), and (5) for the y-variables, as
these variables do not enter the objective function, cf. Section 3.3. All required
Kuratowski-constraints (6) will be added during our cutting step.

There is no known efficient method to identify violated Kuratowski-constraints
in a fractional solution, hence we only separate heuristically. We re-use the in-
teger interpretation of fractional solutions as described in the previous section,
and run a linear planarity test on G[x̃, ỹ]. State-of-the-art planarity testing al-
gorithms can efficiently (i.e., in linear time) extract a Kuratowski-subdivision
as a certificate for non-planarity. We use the method presented in [10], which
is a significantly modified variant of the planarity testing algorithm of Boyer
and Myrvold [3], to efficiently extract several such certificates in linear time. For
each obtained Kuratowski-subdivision, we then can compute the corresponding
crossing shadow and test whether the resulting Kuratowski-constraint is vio-
lated, adding it to the LP if necessary.

A New Approach to Exact Crossing Minimization 291

3.3 Combinatorial Column Generation

Our initial linear program only contains the x-variables. Note that only these vari-
ables enter the objective function: the values of the y-variables do not influence the
solution value as they are only introduced to solve the ordering problems on the
edges. Furthermore, we do not require y-variables if there is only a single crossing
on all edges – then all y-variables are zero. Hence, conceptually, having some so-
lution x̄, we only require the y-variables with a base edge e, if there are multiple
edges crossing over e. Since the separation routine does only use integer interpre-
tations of the current solution, we only require the knowledge of the crossing order
if
∑

f∈E\{e} x̃{e,f} ≥ 2. Let Fe be the set of edges f with x̃{e,f} = 1. The order of
performing the variable generation prior to the separation routine is critical: we
first obtain a fractional solution and check if the solution can be uniquely inter-
preted as a partial planarization, i.e., if all the variables ye,f,g, with {f, g} ⊆ Fe,
are contained in the current LP model. If there is at least one such y-variable miss-
ing in the current LP model, we add all required such variables, together with their
corresponding LO-constraints, and resolve our LP model.

Hence, the variable generation takes place before we interpret a fractional
solution as a partial planarization for the separation routine, and before the
bounding heuristic. Therefore, for these steps we guarantee that all necessary
y-variables are in the model, and the solution is LO-feasible.

3.4 Branching on K5-Constraints

We can use Kleitman’s parity argument for complete graphs with an odd number
of vertices [13,14]: if a K2n+3, n ∈ �+, has an even or odd crossing number, every
possible drawing of K2n+3 will also have an even or odd number of crossings,
respectively. Since we know that cr(K5) = 1, we have for every K5-subdivision
that if it is drawn with more than one crossing, it will require at least 3 crossings.

This jump in the crossing number can be used for branching. Most commonly,
we would select a variable z and generate two subproblems with z = 0 and z = 1.
Before we resort to this kind of branching, we check for any K5-constraint of
the type pTx+ qT y ≥ 1, with p and q being the coefficient vectors. We can then
generate two subproblems, one with pTx+qT y = 1 and one with pTx+qT y ≥ 3.
Note that, theoretically, we can continue to branch on the latter constraint,
generating pTx+ qT y = 3 and pTx+ qT y ≥ 5, etc.

4 Further Remarks

Extending Oocm. The Socm ILP was extended, e.g., to compute the bimodal
crossing number [5], the minor-monotone and hypergraph crossing numbers [6],
and the simultaneous crossing number [9]. The extensions for the first three
problems can straight-forwardly be formulated within Oocm.

By contrast, extensions for the simultaneous crossing number, as well as po-
tential extensions for the pairwise and the odd crossing number [18] are not
straight-forward: they require that some edges cross multiple times, maybe even

292 M. Chimani, P. Mutzel, and I. Bomze

an exponential number of times. This states no problem for Socm, as we can, the-
oretically, subdivide the edges into long enough paths and drop the one-crossing-
per-edge-pair constraint. Anyhow, we cannot model such multiple crossings with
the variables of Oocm.

Improvements to Socm. The Socm implementation of our experiments re-
ceived improvements compared to the algorithm presented in [4,8]. Hence, the
results are far better than previously reported. We denote the improved version
of Socm by iSocm. The modifications include:
– The crossing minimization heuristic (used by both iSocm and Oocm) im-
proved, due to a more time-consuming but stronger post-processing scheme:
in [11], the strongest post-processing was to remove and reinsert every edge,
after obtaining a first full solution. The current implementation in OGDF [17]
can remove and reinsert all edges after each single edge-insertion step.
– The branching on K5-constraints, cf. Section 3.4, is also possible in iSocm.
– The column generation scheme is now fine-tuned: originally, we introduced
a new segment of the original edge e whenever the sum of crossings over the
first segment of e is larger than 1 in the fractional solution. Now, we add this
segment only if the sum is larger than 1 in the rounded solution that is used for
the separation. This idea is then similar to the generation criterion in Oocm.
– As Oocm, iSocm also uses the new extraction algorithm which finds multiple
Kuratowski-subdivisions in linear time [10].

5 Experiments

The following experiments were conducted on an AMD Opteron 2.4 GHz with
2GB of RAM per process. Socm, iSocm, and Oocm are implemented in the
open-source library OGDF [17], using Abacus as a B&C framework and Cplex

9.0 as LP solver. We applied a time limit of 30 minutes for each instance. The
machine and the overall experimental setting is thus identical to the experiments
reported in [4,8], which yielded the currently best known published results.

To compare the performance of both formulations, we chose the well-known
Rome benchmark set [2], which is commonly used to assess algorithms for the
crossing number and other graph drawing problems, e.g. [4,8,11]. It consists of
over 11,500 real-world graphs emerging from software-engineering applications,
with between 10 and 100 nodes. We use the non-planar core reduction [7] as a
preprocessing step. We say graphs are trivial, if they are planar or if the heuristic
achieves a planarization with only one crossing, as in these cases we need not
prove optimality. The Rome library contains 7172 non-trivial graphs.

As we see in Figure 1, both new algorithms clearly outperform the old Socm

algorithm, which drops below a success-ratio of 50% for graphs with 70 nodes.
While Oocm solves virtually all graphs with up to 60 nodes to provable opti-
mality within the time limit, the formerly best algorithm already drops to a 70%
success-ratio for graphs of size 60. The experiments also show that the new ILP
formulation Oocm is able to solve more and larger graphs than iSocm: while

A New Approach to Exact Crossing Minimization 293

40%
50%
60%
70%
80%
90%

100%

10 20 30 40 50 60 70 80 90 100

%
 s

ol
ve

d

nodes

best published resultsimproved SOCMOOCM

Fig. 1. Percentage of graphs solved to provable optimality within 30 minutes. The size
of the circles denotes the number of instances per graph size. Therefore, larger circles
correspond to statistically more reliable data points. The gray data points denote the
previously best published results in [8] and the journal version of [4].

02
46
810121416182022

35 40 45 50 55 60 65 70 75 80 85 90 95 100

#
 in

st
an

ce
s

nodes

only improved-SOCMonly OOCM

Fig. 2. The number of instances only solved by one of the approaches, but not by both

iSocm only solves 84.4% of all non-trivial graphs within 30 minutes, Oocm finds
and proves an optimal solution in 89.2% of all these instances, i.e., 93.3% over
all benchmark instances. Even when Oocm has a time limit of only 10 and 5
minutes per non-trivial instance, it still solves 85.9% and 83.4%, respectively,
and thus produces results comparable to 30 minutes of iSocm computation in a
3–6x shorter period of time.

Note that there are only 19 instances solved by iSocm but not by Oocm,
within 30 minutes, but 361 instances which Oocm solved but iSocm did not,
cf. Figure 2. Most importantly, we can now solve over 50% of the largest graphs
of the Rome library. Figure 3 further illustrates the strength of Oocm; it shows
the average running times for graphs solved by both approaches; even for large
graphs Oocm only requires roughly 100 seconds on average.

294 M. Chimani, P. Mutzel, and I. Bomze

0
50

100
150
200
250
300
350

35 40 45 50 55 60 65 70 75 80 85 90 95 100

av
er

ag
e

ru
n

ti
m

e
(s

ec
)

nodes

improved-SOCMOOCM

Fig. 3. The required running time, averaged over the instances solved by both Oocm

and Socm

1078
821

725
545

485
425

361
337

303
218

253
243

205
220

160
148

136
126

125
105

94
74

75
46

54
36

26
17

12
10

4
2

1
1

1

1
1

2
2

3 4
11 8

15 8 1
10 5 4 2

14 8 7 2 2
10 12 8 7 3

8 16 16 9 1 1
6 16 17 10 9 1 1
11 11 15 15 11 3 1 1 1 1

7 7 4 10 8 4 8 2 3
6 10 6 15 11 4 2 2 1

4 7 9 10 6 8 3 3 1 1
2 6 5 4 10 7 8 3 2 1

4 2 4 3 9 4 5 6 3 1
1 3 6 1 7 4 5 5 1 1 1 2
1 1 2 5 2 2 2 4 2 1 1 1 3 1

1 1 1 2 2 4 4 2 2 1 1 1 1 1
1 2 2 4 2 3 2 1 1

2 1 2 1 2 2 1 1 1 1
1 1 3 3 2 2 1 1

3 1 2 1 2 1 1 1
1 1 1 2 1 1 1

1 1 1 1
1 1 1 1 1

1 1 1

0
5
10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

lo
w

er
 b

ou
n

d

upper bound

Fig. 4. The number of instances per combination of lower and upper bound after 30
minutes of Oocm, over all graphs of the Rome library. 9 instances are not shown as
their lower or upper bounds do not fit into this diagram.

Figure 4 shows the dependency of the solvability on the crossing number: we
see that Oocm solves all but 6 graphs with a crossing number of up to 20. It
even solves a graph with a crossing number of 37. By contrast, iSocm solves
only all but 7 graphs with a crossing number of at most 12. Finally, Figure 5
shows a comparison of the number of required variables for the instances solved
by both approaches: both algorithms start with the same initial variable set,
but Oocm requires by far less additional variables during the computation of

A New Approach to Exact Crossing Minimization 295

0%10%20%30%40%50%60%70%80%90%100%

-500-2500
25050075010001250150017502000

25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

ge
n

er
at

ed
 v

ar
ia

b
le

s
(%

)

#
 s

ta
rt

 v
ar

ia
b

le
s

nodes

start variablesimproved-SOCM increase (%)OOCM increase (%)

Fig. 5. The average factor by which the number of variables increases compared to the
number of start variables, which is identical for Oocm and Socm. The diagram also
shows the average number of start variables per graph size.

the optimal solution. This seems to be the main reason why Oocm is faster and
more efficient than Socm and iSocm.

References

1. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: algorithms
for the visualization of graphs. Prentice-Hall, Englewood Cliffs (1999)

2. Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An ex-
perimental comparison of four graph drawing algorithms. Comput. Geom. Theory
Appl. 7(5-6), 303–325 (1997)

3. Boyer, J.M., Myrvold, W.J.: On the cutting edge: Simplified O(n) planarity by
edge addition. Journal of Graph Algorithms an Applications 8(3), 241–273 (2004)

4. Buchheim, C., Chimani, M., Ebner, D., Gutwenger, C., Jünger, M., Klau, G.W.,
Mutzel, P., Weiskircher, R.: A branch-and-cut approach to the crossing number
problem. Discrete Optimization 5, 373–388 (2008); (Memory of George B. Dantzig)

5. Buchheim, C., Jünger, M., Menze, A., Percan, M.: Bimodal crossing minimization.
In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 497–506.
Springer, Heidelberg (2006)

6. Chimani, M., Gutwenger, C.: Algorithms for the hypergraph and the minor crossing
number problems. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 184–
195. Springer, Heidelberg (2007)

7. Chimani, M., Gutwenger, C.: Non-planar core reduction of graphs. In: Healy, P.,
Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 223–234. Springer, Heidelberg
(2006)

8. Chimani, M., Gutwenger, C., Mutzel, P.: Experiments on exact crossing minimiza-
tion using column generation. In: Àlvarez, C., Serna, M. (eds.) WEA 2006. LNCS,
vol. 4007, pp. 303–315. Springer, Heidelberg (2006)

9. Chimani, M., Jünger, M., Schulz, M.: Crossing minimization meets simultaneous
drawing. In: Proc. IEEE PacificVis 2008 (2008)

296 M. Chimani, P. Mutzel, and I. Bomze

10. Chimani, M., Mutzel, P., Schmidt, J.M.: Efficient extraction of multiple kuratowski
subdivisions. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS,
vol. 4875, pp. 159–170. Springer, Heidelberg (2008)

11. Gutwenger, C., Mutzel, P.: An experimental study of crossing minimization heuris-
tics. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 13–24. Springer, Heidelberg
(2004)

12. Gutwenger, C., Mutzel, P., Weiskircher, R.: Inserting an edge into a planar graph.
Algorithmica 41(4), 289–308 (2005)

13. Kleitman, D.J.: The crossing number of K5,n. J. Comb. Theory 9, 315–323 (1970)
14. Kleitman, D.J.: A note on the parity of the number of crossings of a graph. J.

Comb. Theory, Ser. B 21(1), 88–89 (1976)
15. Kratochv́ıl, J.: String graphs II: Recognizing string graphs is NP-hard. J. Combin.

Theory Ser. B 52, 67–78 (1991)
16. Kuratowski, C.: Sur le problème des courbes gauches en topologie. Fund. Math. 15,

271–283 (1930)
17. OGDF – Open Graph Drawing Framework (2008), http://www.ogdf.net
18. Pach, J., Tóth, G.: Which crossing number is it anyway? J. Comb. Theory Ser.

B 80(2), 225–246 (2000)
19. Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing string graphs in NP. Jour-

nal of Computer and System Sciences 67(2), 365–380 (2003)
20. Vrt’o, I.: Crossing numbers of graphs: A bibliography (2007),

ftp://ftp.ifi.savba.sk/pub/imrich/crobib.pdf

http://www.ogdf.net
ftp://ftp.ifi.savba.sk/pub/imrich/crobib.pdf

A Characterization of 2-Player Mechanisms for

Scheduling�

George Christodoulou1, Elias Koutsoupias2, and Angelina Vidali3

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
gchristo@mpi-inf.mpg.de

2 Department of Informatics, University of Athens
elias@di.uoa.gr

3 Department of Informatics, University of Athens
avidali@di.uoa.gr

Abstract. We study the mechanism design problem for scheduling un-
related machines and we completely characterize the decisive truthful
mechanisms for two players when the domain contains both positive and
negative values. We show that the class of truthful mechanisms is very
limited: A decisive truthful mechanism partitions the tasks into groups so
that tasks in each group are allocated independently of the other groups.
Tasks in a group of size at least two are allocated by an affine minimizer
and tasks in singleton groups by a task-independent mechanism. This
characterization is about all truthful mechanisms, including those with
unbounded approximation ratio.

A direct consequence of this approach is that the approximation ra-
tio of mechanisms for two players is 2, even for two tasks. In fact, it
follows that for two players, VCG is the unique algorithm with optimal
approximation 2.

1 Introduction

Algorithmic mechanism design is an important area between computer science
and economics. The two most fundamental problems in this area are the prob-
lem of scheduling unrelated machines [25] and the problem of combinatorial
auctions [19,12,7]. Here we are dealing with the scheduling problem, but our
main result which is the characterization of truthful mechanisms for two players
extends naturally to the more general domain of combinatorial auctions. In the
scheduling problem, there are n players (machines) and m tasks to be executed
on these machines. Each task j needs time tij on machine i. We want to allocate
the tasks to machines in a way that minimizes the makespan (the time required
to finish all tasks). The problem is that the machines are selfish and will not
reveal the true values (we assume that only machine i knows the true values tij).

A mechanism consists of two parts, the allocation algorithm and the payment
functions, one for each player. Each player i declares its own execution times ti.

� Supported in part by IST-15964 (AEOLUS) and the Greek GSRT.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 297–307, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

298 G. Christodoulou, E. Koutsoupias, and A. Vidali

The mechanism collects all the declarations t and allocates the tasks according
to an allocation function a : Rn×m → {1, . . . , n}m from the set of all execution
times to the set of partitions of m tasks to n players. It is more convenient to
denote an allocation using the characteristic variables: aij is an indicator variable
for task j to be allocated to machine i. The mechanism also pays each player i a
payment pi. The payment depends on the declared values t and indirectly on the
allocation. A mechanism is truthful, if every player has no incentive to lie. We
are dealing here with the standard and more restricted notion of truthfulness,
dominant truthfulness, in which a player has no incentive to lie for every value
of the other players. It is well-known that in truthful mechanisms, the payment
to player i depends on the values t−i of the other players and on the allocation
ai of player i: pi = pi(ai, t−i).

The allocation of the mechanism to player i is given by the argmin expression
ai = argmina{ai · ti − pi(ai, t−i)}. The allocations to players must be consistent,
i.e., every task is allocated to exactly one machine. The question is what type
of allocation algorithms and payment schemes satisfy this property.

There is a simple answer to this question: A mechanism is truthful if and only if
it satisfies the Monotonicity Property: If a and a′ are the allocations of the mech-
anism for inputs t and t′ which differ only on the values of player i, then we must
have

∑m
j=1(aij − a′ij)(tij − t′ij) ≤ 0. One nice property of this characterization is

that it does not involve the payments at all. Since we usually care about the allo-
cation part of mechanisms, this property focuses exactly on the interesting part.
Unfortunately, although this is a necessary and sufficient condition [26], it is not
very useful because it is a local and indirect property. The best way to clarify this
point is to consider the case of mechanism design in unrestricted domains. In such
domains, the same monotonicity property characterizes the truthful mechanisms.
However, there is a much more direct characterization due to Roberts [16]: The
class of truthful mechanisms for the unrestricted domain is very limited and con-
tains exactly the class of affine maximizers. An important open problem is to come
up with a similar characterization for the scheduling problem and combinatorial
auctions. This work resolves this question for 2 players.

For the scheduling problem, very few mechanisms are known to be truth-
ful. The principal example is the VCG mechanism [27,11,15] (or second-price
mechanism) and its generalization, the affine minimizers [19]. The VCG mecha-
nism allocates each task independently to the machine with minimum value, and
pays the machine the second minimum value. VCG can be generalized in two
ways and retain its truthfulness. The first generalization is the task-independent
mechanisms, which allocate each task independently of the rest. The second gen-
eralization is the affine minimizers, which multiply the value of each player by
some constant, but more importantly, they alter the value of each allocation by
a constant. It is this set of additive constants, one per allocation, which make
this generalization different than the first generalization.

Both these generalizations are known to be truthful, but they make very poor
algorithms. The reason is that they allocate each task independently, or almost
independently. The question is whether there are other truthful mechanisms. The

A Characterization of 2-Player Mechanisms for Scheduling 299

answer appears at first to be negative: For example, the mechanism that allocates
all tasks to one player, the one with minimum sum of execution times, is truthful
but it is neither affine minimizer nor task-independent. However, this negative
answer is not satisfactory because some allocations are never used, no matter how
high or low are the values of the players. (One of the undesired properties of these
mechanisms is that they have unbounded approximation ratio.) In contrast, we
usually require that mechanisms have a much stronger property: decisiveness. A
mechanism is called decisive when a player can enforce an outcome (allocation),
by declaring very high or very low values.

A natural question is to characterize the decisive truthful algorithms. Unfor-
tunately, by restricting our interest to decisive algorithms, we leave out impor-
tant truthful specimens because some affine minimizers are not decisive: in some
cases, a task will not be allocated to a player even when he declares 0 value
for the task. To circumvent this problem, we allow negative values and we char-
acterize the decisive truthful mechanisms for the domain of real values (both
positive and negative). These algorithms include the affine minimizers and the
task-independent algorithms; furthermore, every such algorithm is also truthful
(but not necessarily decisive) for the nonnegative domain. By allowing negative
values, we obtain not only a clean characterization but a useful one too, because
we can still use it to argue about the approximation ratio for nonnegative values.

In our presentation we deal a lot with payments and, since we are only inter-
ested in the difference of payments, we will use the following notation

f i
a:a′(t−i) = pi(a′i, t−i) − pi(ai, t−i).

For simplicity, we write fa:a′ in place of f1
a:a′ . We also represent the allocations

using only the allocation of player 1, since the allocation of player 2 can be
inferred. For example, we write f00:10 for the difference in payments of player 1
when he gets only task 1 and when he gets no task. There is an extra reason to
define fa:a′ : at some point in our proof, we will use the inverse function f−1

a:a′ .
The main reason for using negative values in our characterization is that the

values fa:a′ , being the differences of payments, can take negative values.
As we mentioned, the allocation of a mechanism can be expressed with argmin

expressions, one for every player: ai = argmina{ai · ti − pi(ai, t−i)}. For two
players and two tasks, we essentially seek the payments that satisfy the following
equation, which expresses the fact that the allocations for the two players must
be consistent (i.e. each task is allocated exactly once):

argmin{t11 + t12 − p1(11, t2), t11 − p1(10, t2), t12 − p1(01, t2),−p1(00, t2)} =
argmin{−p2(11, t1), t22 − p2(10, t1), t21 − p2(01, t1), t21 + t22 − p2(00, t1)}.

Therefore the problem of characterizing the argmin mechanisms for two play-
ers and two tasks boils down to the following simple question: Which payments
p satisfy the above equation? This is precisely the problem that we are trying
to solve here.

The following theorem provides the answer, which applies also to any number
of tasks. But first we give a precise definition of the affine minimizers:

300 G. Christodoulou, E. Koutsoupias, and A. Vidali

Definition 1 (Affine minimizers). A mechanism is an affine minimizer if
there are constants λi > 0 (one for each player i) and γa (one for each of the
nm allocations) such that the mechanism selects the allocation a which minimizes∑

i λiaiti + γa.

We now state our main result:

Theorem 1. For the scheduling problem with real values every decisive truthful
mechanism for 2 players is a collection of, independent from each other, affine
minimizers and task-independent mechanisms.

By combining the theorem with the fact that non-decisive mechanisms have
unbounded approximation ratio (see Section 5), one can show that even for 2
players and 2 tasks, the approximation ratio of every truthful mechanism is at
least 2. In fact, we don’t need the full power of our characterization for this
result, but only Lemma 1 below.

2 Related Work

The scheduling problem on unrelated machines is one of the most fundamen-
tal problems in combinatorial optimization. Here we study its mechanism de-
sign version which was introduced by Nisan and Ronen in their paper [25] that
initiated the algorithmic theory of Mechanism Design. They gave a truthful
n-approximate (polynomial-time) algorithm (where n is the number of ma-
chines); they also showed that no mechanism (polynomial-time or not) can
achieve approximation ratio better than 2 when there are at least three tasks.
We strengthen this result by proving that it holds even for only two tasks.

The lower bound for deterministic mechanisms has been improved in [10] to
2.41 (this is the best-known lower bound for 3 machines) and [17] to 2.618 for
n→∞ machines.

There is a lot of work on randomized truthful mechanisms for the scheduling
problem [25,23,21], on fractional truthful mechanisms [9], on the discrete-domain
case [20], and on the special case of related machines [24,4,2,1,18]. Much more
work has been done in the context of combinatorial auctions (see for example
[3,7,8,12,6,13] and the references within).

Our approach of aiming at a complete characterization of truthful mecha-
nisms, regardless of approximation ratio, is analogous to Roberts [16] result for
unrestricted domains, but also resembles the approach in [19,5], and it was in-
fluenced by the limitations of the current methods in establishing lower bounds
[25,10,17].

Saks and Yu [26] proved that the monotonicity property is necessary and suffi-
cient for truthful mechanisms of convex domains, which applies to the scheduling
problem. Monderer [22] shows that the domain cannot be further generalized in
the case of quasi-linear utility functions.

A very recent paper [14] by Dobzinski and Sundararajan is very close in spirit
to this work. Dobzinski and Sundararajan restrict their attention to mechanisms

A Characterization of 2-Player Mechanisms for Scheduling 301

with bounded approximation ratio. They show that the truthful mechanisms
with bounded approximation ratio are task-independent. In contrast, our work
provides a more complete characterization of all mechanisms including those
with unbounded approximation ratio.

3 The Characterization of Decisive Mechanisms for 2
Tasks

Our main result is based on the following theorem which applies to 2 players
and 2 tasks and which is the subject of this section.

Theorem 2. For the scheduling problem with real values the decisive truthful
mechanisms for 2 players and 2 tasks are either task-independent or affine min-
imizers.

We proceed in our proof carefully, revealing gradually the properties of fa:a′ . We
assume here that the payments take real (positive or negative) values, so that
fa:a′ is also a real function. An indispensable part of the proof is the following
lemma.

Lemma 1. For allocations a and a′ that differ in only one task, the quantity
fa:a′(t2) depends only on (a − a′) · t2 (and therefore it depends on only one
variable).

Proof. This lemma holds for every number of tasks. We will first prove the lemma
for m = 2 tasks. We will focus on the case of a = 00 and a′ = 10 since the other
cases are very similar.

We will show by contradiction that f00:10(t21, t22) does not depend on t22.
Suppose that there are t21, t22, and t′22 with t22
= t22′ with f00:10(t21, t22) <
f00:10(t21, t′22).

From the definition of f00:10(t21, t22), the tasks of the form
(
f00:10(t21, t22) + ε ∞

t21 " t22 "

)

have the indicated allocation for every ε > 0, where infty indicates an arbitrarily
high value which guarantees that the second task will not be allocated to player
1 (i.e., ∞ is greater than max{f00:01(t2), f00:11(t2)}).

Similarly, the tasks of the form
(
f00:10(t21, t′22) − ε " ∞

t21 t′22 "

)

have the indicated allocation for every ε > 0. As we mentioned before, ∞ denotes
an arbitrarily high value. We assume of course that the two occurrences of this
symbol above denote the same value.

By the Monotonicity Property, if we decrease the values of t22 to t′22 to
min{t22, t′22}, the allocations remain the same.

302 G. Christodoulou, E. Koutsoupias, and A. Vidali

This leads to a contradiction when ε = (f00:10(t21, t′22) − f00:01(t21, t22))/2,
because the task

(
f00:10(t21,t22)+f00:10(t21,t′

22)
2 ∞
t21 min{t22, t′22} "

)

would have two allocations.
The proof can be extended to the case of m > 2 tasks: We reduce it to the m =

2 case by fixing all tasks except of two. For example, for every t2 = (t21, t22, t23)
and t′2 = (t21, t′22, t

′
23) we have: f000:100(t21, t22, t23) = f000:100(t21, t′22, t23) =

f000:100(t21, t′22, t′23).

Corollary 1. The quantities c1 = f01:11(t2) − f00:10(t2) and c2 = f2
10:00(t2) −

f2
11:01(t2) do not depend on t2.

We can now define the regions of truthful mechanisms. For fixed t2, let R11

denote the set of values t1 for which the mechanism allocates both tasks to
player 1. Region R11 which is defined by the following constraints:

t11 < f10:11(t21)
t12 < f01:11(t22)

t11 + t12 < f01:11(t21) + f00:01(t22).

There are similar constraints that define the other regions R00, R10, and R01.
What happens at the boundaries, where the inequality becomes an equality is
not determined by the Monotonicity Property. These undetermined values are a
major source of difficulty in the characterization of the mechanisms.

From the above inequalities we get that the boundary between regions R00

and R11, if it exists, is of the form t11 + t12 = f01:11(t21) + f00:10(t22). Since a
similar constraint holds for player 2 (in which the sum t21 + t22 appears), one
could be tempted to conclude that the boundary between allocations 00 and
11 is of the form t11 + t12 = h(t21 + t22) for some function h. Although this
conclusion is exactly the one that we will eventually reach, the above argument
is not rigorous.

To proceed to the characterization of mechanisms, we need to understand
the functions f00:10 and f00:01. To this end, we prove a series of lemmas (the
proofs which are similar in spirit to the proof of Lemma 1 are omitted from this
extended abstract).

Lemma 2. The functions f01:11 and f00:01 are nondecreasing.

For most reasonable mechanisms, a stronger statement seems to apply for these
two functions: that they are strictly increasing. This however is not generally
true. But we can show that the functions f01:11 and f00:01 are indeed strictly
increasing when c1
= 0. In fact, we show in the next lemma that either the
functions are strictly increasing or they are like the following mechanism, which
is not a decisive mechanism.

A Characterization of 2-Player Mechanisms for Scheduling 303

Example 1 (Mechanism with some oblivious player). Consider the mechanism
with f00:10(t21) = b1, f00:01(t22) = b2 where b1, b2, and c1 are constants. In this
mechanism the first player decides independently of the values of the second
player. For given values t1 of the first player, the second player has the same
allocation for every t2. This mechanism is not decisive, since the second player
cannot force all allocations.

Lemma 3. In a truthful mechanism with c1
= 0 the functions f01:11 and f00:01

are either both strictly increasing or both constant. (The same holds for the pair
f00:10 and f10:11.)

The above lemma establishes that the mechanisms with c1
= 0 are either one of
the mechanisms of the Example 1 or both functions f01:11 and f00:01 are strictly
increasing. As we consider decisive mechanisms, from now on we will consider
only strictly increasing functions.

Lemma 4. If c2
= 0 then the functions f01:11 and f00:01 are bijections from R
to R.

The assumption c2
= 0 is essential in the above lemma. When c2 = 0, there are
mechanisms in which f00:10 and f00:01 are not bijections.

Lemma 5. The constants c1 and c2 are either both positive, both negative, or
both 0.

Lemma 6. For c1
= 0, the functions f00:10 and f00:01 are semiperiodic and in
particular they satisfy f00:10(t21 + c2) = f00:10(t21) + c1 and f00:01(t22 + c2) =
f00:01(t22) + c1.

We will focus on the case of c1 > 0 as the case c1 < 0 is very similar. Consider
the diagonal boundary between the regions R11 and R00. This boundary is on
the line t11+t12 = f01:11(t21)+f00:01(t22). We have f00:11(t21, t22) = f01:11(t21)+
f00:01(t22). The heart of the characterization is that the function f00:11(t21, t22)
depends only on the sum of t21 + t22.

Lemma 7. The function f00:11(t21, t22) = f01:11(t21) + f00:01(t22) depends only
on t21+t22, i. e., there is some function h such that f00:11(t21, t22) = h(t21+t22).

Proof. Suppose not. That is suppose that there are t2 and t′2 such that t21+t22 =
t′21 + t′22 and yet f00:11(t21, t22) < f00:11(t′21, t

′
22). If the values differ, they have

to differ for some t21 and t′21 that are very close.
Without loss of generality then we assume that t21 < t′21 < t21 + c2.
This implies that t′22 < t22 < t22′ + c2 and therefore

f00:01(t22) < f00:01(t′22 + c2) = f00:01(t′22) + c1.

Let ε be a positive parameter with ε < f00:11(t′21, t′22) − f00:11(t21, t22) and
ε < f01:11(t′22) − f00:01(t22). By the above inequalities, ε belongs to an open

304 G. Christodoulou, E. Koutsoupias, and A. Vidali

interval and more specifically it can take at least two distinct values. Consider
then the values

t11 = f01:11(t21) t12 = f00:01(t22) + ε

We can easily verify that the following inputs satisfy the boundary constraints
of the appropriate regions (R00 and R11) and have the indicated allocations:

(
t11 t12
t21 " t22 "

) (
t11 " t12 "
t′21 t′22

)

This means that, when we fix t1, the points t2 and t′2 are on the boundary
between regions R11 and R00 of player 2. Equivalently, that

t21 + t22 = f−1
01:11(t11) + f−1

00:01(t12 − ε).

(A similar equation holds for t′2 which however is not different since we assumed
that t21 + t22 = t′21 + t′22). This equality should hold for every ε in some open
interval. But this contradicts the fact that f−1

00:01 is strictly increasing.

From the last lemma, we get that h(t21+t22) = f01:11(t21)+f00:01(t22). We claim
that the functions involved are affine as the following lemma (which is based on
the Cauchy functional equation) shows.

Lemma 8. If for some real functions h, h1, h2 which are continuous at some
point, we have h(x + y) = h1(x) + h2(y), then all three functions are affine, i.
e., they are of the form ax+ b for some constants a and b.

We have established that the functions f01:11 and f00:01 are affine but we can
say more about their coefficients:

Lemma 9. When c1
= 0, the payments of the first player (up to a common
additive term which depends on t2) are of the form p1(a1, t2) = −λ · a2 · t2 − γa,
for some constants λ > 0 and γa.

With the above payments, the mechanism is the following affine minimizer:
argmina{a1 · t1 + λ · a2 · t2 + γa}.

4 The Case of Many Tasks

The generalization of the characterization to more than two tasks is almost
straightforward. Fix a truthful mechanism. For two distinct tasks j1 and j2 we
will write j1 ∼ j2 when there are some values for the other m−2 tasks such that
the mechanism restricted to tasks j1 and j2 is an affine minimizer (i.e., with the
associated constant c1
= 0). It should be stressed that we require the mechanism
restricted to these two tasks to be an affine minimizer for some values of the
other tasks, not necessarily for all values, but we are going to see that the two
are equivalent.

A Characterization of 2-Player Mechanisms for Scheduling 305

Our aim is to show that the relation ∼ is transitive; since it is clearly symmet-
ric, it essentially partitions the tasks into equivalence classes with the exception
that classes of size one are not affine minimizer but task-independent mecha-
nisms. Assume that j1 ∼ j2 and j2 ∼ j3. That is, assume that when we fix some
values of the other tasks, the mechanism for tasks j1 and j2 is an affine minimizer
and when we fix some (not necessarily the same) values of the other tasks the
mechanism for tasks j2 and j3 is also an affine minimizer, not necessarily with
consistent coefficients. Our aim is to show that the coefficients are consistent.
We show the following lemma, first for two tasks, and then for 3 or more tasks
(the proof is omitted).

Lemma 10. When j1 ∼ j2, j2 ∼ j3, . . . , jk−1 ∼ jk, the payments of player 1
satisfy the following for allocations a and b that agree on all other tasks (i.e.,
not in {j1, . . . , jk}):

pa(t2) − pb(t2) = λj1,...,jk
· (a− b)t2 + ζa:b,

where λj1,...,jk
> 0 and ζa:b are constants.

The relation ∼ is symmetric and transitive and it partitions the tasks into equiv-
alence classes. Suppose for simplicity that all tasks belong to one class. Then the
mechanism is an affine minimizer (when there are at least 2 tasks). This follows
from the last lemma: Fix b = 1, i.e. in b all tasks are allocated to player 1. The
payment pb can be set arbitrarily, so we set it to some arbitrary constant γb.
Then pa(t2) = λ · (a− b) · t2 + ζa:b + pb(t2) = −λ · a2 · t2 − γa, where we defined
γa = −ζa:b + γb (a constant) and used λ > 0 as an abbreviation of λ1,...,m. Then
the allocation for player 1 is given by

argmin
a1

{a1t1 − pa(t2)} = argmin
a1

{a1t1 + λa2t2 + γa},

with λ and γa constants.
The above lemma allows as to partition the tasks so that each part is indepen-

dent of the other parts. Parts that have 2 or more tasks are affine minimizers.
Parts that have only 1 task are not necessarily affine minimizers.

5 Lower Bound for 2 Tasks

Although our characterization involves only decisive mechanisms and negative
values, it can be extended directly to show that the approximation ratio even
for two tasks is at least 2. The following claim from [14] shows a non-decisive
mechanism for positive values has unbounded ratio:

Suppose for example that the allocation 10 does not occur for some t2, and take

the input
(

ε ∞
t21 " t22 "

)

. Since the allocation of the first player cannot be 10 the

allocation is indicated by the stars. By monotonicity the allocation is the same for

the instance
(

ε ∞
t21 " ε "

)

. But this gives approximation ratio 1 + t21/ε→∞.

306 G. Christodoulou, E. Koutsoupias, and A. Vidali

The following theorem reproduces the result in [14] for any number m ≥ 2 of
tasks.

Theorem 3. No truthful mechanism for 2 players with c1
= 0 can have a
bounded approximation ratio. Consequently any mechanism for 2 players with
bounded approximation ratio is a task independent mechanism.

In fact, for two tasks, we can show (proof omitted):

Theorem 4. For 2 players and 2 tasks, the only truthful mechanism which
achieves approximation ratio 2 is the VCG mechanism.

References

1. Andelman, N., Azar, Y., Sorani, M.: Truthful approximation mechanisms for
scheduling selfish related machines. In: STACS, pp. 69–82 (2005)

2. Archer, A.: Mechanisms for Discrete Optimization with Rational Agents. PhD
thesis, Cornell University (January 2004)

3. Archer, A., Papadimitriou, C.H., Talwar, K., Tardos, É.: An approximate truthful
mechanism for combinatorial auctions with single parameter agents. In: SODA,
pp. 205–214 (2003)

4. Archer, A., Tardos, É.: Truthful mechanisms for one-parameter agents. In: FOCS,
pp. 482–491 (2001)

5. Archer, A., Tardos, É.: Frugal path mechanisms. In: SODA (2002)
6. Babaioff, M., Lavi, R., Pavlov, E.: Mechanism design for single-value domains. In:

AAAI, pp. 241–247 (2005)
7. Bartal, Y., Gonen, R., Nisan, N.: Incentive compatible multi unit combinatorial

auctions. In: TARK, pp. 72–87 (2003)
8. Briest, P., Krysta, P., Vöcking, B.: Approximation techniques for utilitarian mech-

anism design. In: STOC, pp. 39–48 (2005)
9. Christodoulou, G., Koutsoupias, E., Kovács, A.: Mechanism design for fractional

scheduling on unrelated machines. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki,
A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 40–52. Springer, Heidelberg (2007)

10. Christodoulou, G., Koutsoupias, E., Vidali, A.: A lower bound for scheduling mech-
anisms. In: SODA, pp. 1163–1169 (2007)

11. Clarke, E.: Multipart pricing of public goods. Public Choice 8, 17–33 (1971)
12. Dobzinski, S., Nisan, N., Schapira, M.: Approximation algorithms for combinatorial

auctions with complement-free bidders. In: STOC, pp. 610–618 (2005)
13. Dobzinski, S., Nisan, N., Schapira, M.: Truthful randomized mechanisms for com-

binatorial auctions. In: STOC, pp. 644–652 (2006)
14. Dobzinski, S., Sundararajan, M.: On characterizations of truthful mechanisms for

combinatorial auctions and scheduling. In: EC (2008)
15. Groves, T.: Incentives in teams. Econometrica 41, 617–631 (1973)
16. Kevin, R.: The characterization of implementable choice rules. In: Aggregation and

Revelation of Preferences, pp. 321–348 (1979)
17. Koutsoupias, E., Vidali, A.: A lower bound of 1+φ for truthful scheduling mecha-

nisms. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 454–464.
Springer, Heidelberg (2007)

18. Kovács, A.: Fast Algorithms for Two Scheduling Problems. PhD thesis, Universität
des Saarlandes (2007)

A Characterization of 2-Player Mechanisms for Scheduling 307

19. Lavi, R., Mu’alem, A., Nisan, N.: Towards a characterization of truthful combina-
torial auctions. In: FOCS, pp. 574–583 (2003)

20. Lavi, R., Swamy, C.: Truthful mechanism design for multi-dimensional scheduling
via cycle monotonicity. In: EC, pp. 252–261 (2007)

21. Lu, P., Yu, C.: An improved randomized truthful mechanism for scheduling unre-
lated machines. In: STACS, pp. 527–538 (2008)

22. Monderer, D.: Monotonicity and implementability. In: EC (2008)
23. Mu’alem, A., Schapira, M.: Setting lower bounds on truthfulness. In: SODA, pp.

1143–1152 (2007)
24. Myerson, R.B.: Optimal auction design. Mathematics of Operations Research 6(1),

58–73 (1981)
25. Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and Economic Be-

havior 35, 166–196 (2001)
26. Saks, M.E., Yu, L.: Weak monotonicity suffices for truthfulness on convex domains.

In: Proceedings 6th ACM Conference on Electronic Commerce (EC), pp. 286–293
(2005)

27. Vickrey, W.: Counterspeculations, auctions and competitive sealed tenders. Journal
of Finance 16, 8–37 (1961)

A Local-Search 2-Approximation for

2-Correlation-Clustering�

Tom Coleman, James Saunderson, and Anthony Wirth

The University of Melbourne

Abstract. CorrelationClustering is now an established problem in
the algorithms and constrained clustering communities. With the re-
quirement that at most two clusters be formed, the minimisation prob-
lem is related to the study of signed graphs in the social psychology
community, and has applications in statistical mechanics and biological
networks.

Although a PTAS exists for this problem, its running time is im-
practical. We therefore introduce a number of new algorithms for 2CC,
including two that incorporate some notion of local search. In particular,
we show that the algorithm we call PASTA-toss is a 2-approximation
on complete graphs.

Experiments confirm the strong performance of the local search ap-
proaches, even on non-complete graphs, with running time significantly
lower than rival approaches.

1 Introduction

The Two-Correlation-Clustering (2CC) problem asks us to partition a
dataset into two clusters given only advice about pairs of points in the dataset.
This advice comes in the form of soft must-link and cannot-link constraints.
The aim is to minimise the number of such constraints violated in forming the
clusters.

1.1 The 2CC Problem

The CorrelationClustering problem [1] asks us to form a clustering of a
signed graph that minimises the number of edges that are not respected. In
the 2CC variant, the number of clusters is restricted to two. This bears some
similarity to the MaxCut problem. Formally, the input is a graph G = (V,E)
and a labelling on edges l : E → {−1,+1}. The output is a clustering of the
vertices c : V → {−1,+1}. The aim is to choose a clustering that minimises the
number of edges that disagree with the labelling, viz.

|{e = (v, w) ∈ E s.t. l(e)
= c(v) · c(w)}| .
� This work was supported by the Australian Research Council through Discovery

Grant DP0663979.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 308–319, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Local-Search 2-Approximation for 2-Correlation-Clustering 309

We refer to this as the cost of the clustering c under labelling l or just the cost if
the clustering and labelling are clear from the context. Note that labelling refers
to edges, whereas clustering refers to vertices, and that n refers to |V |.

If the graph is not two-connected, then each two-connected component can be
considered independently. Without loss of generality, we will therefore assume
that the input graph is two-connected.

1.2 Related Work

Initial work on signed graphs [2,3] focused on graph theory, rather than opti-
misation. Early results [4] demonstrated that 2CC is an NP-complete problem,
both on complete graphs, and in general.

Bansal et al. [1] put forward the first approximation algorithm for min-2CC

on complete graphs, with factor 3. Giotis and Guruswami [5] completed the
picture, from a theoretical viewpoint, for 2CC on complete graphs by developing
a PTAS (polynomial time approximation scheme) for both the maximisation
and minimisation versions of the problem. For CorrelationClustering on
complete graphs, a PTAS exists for maximisation, but minimisation is APX-
hard [6]. The best known upper bound for min-CorrelationClustering on
complete graphs is a 5/2-approximation developed by Ailon et al. [7].

On general graphs, the problem is more difficult to solve. There is a direct
relationship between 2CC and the classic MaxCut problem: replace all + edges
on the signed graph with a pair of − edges meeting at a new vertex. The classic
SDP-based approximation algorithm, by Goemans and Williamson [8], achieves
a 0.878-approximation for MaxCut. Dasgupta et al. [9] extend this result to the
maximization version of the 2CC problem, achieving the same approximation
factor. Note that CorrelationClustering on general graphs and Minimum

Multicut reduce to one another, leading to O(log n) approximations [6]. Fi-
nally, Huffner et al. [10] use a fixed parameter algorithm, and some data reduc-
tion rules, to solve 2CC exactly in greatly reduced time compared to a brute
force algorithm. However, such algorithms are still exponential in running time.

1.3 History of the 2CC Problem

The 2CC problem has been repeatedly rediscovered, and renamed, since it was
first defined by Harary [2] in 1950. Harary introduced the signed graph: an undi-
rected graph with +1 or −1 labels on the edges (corresponding to must-link
and cannot-link advice). He also introduced the notion of imbalance in a signed
graph, which corresponds to the 2CC cost of the graph, the number of violated
constraints. Harary considered a psychological interpretation of the problem:
positive edges correspond to pairs of people who like one another, and negative
edges to pairs who dislike one another. His aim was to find two highly cliquey
groups.

Apart from social psychology, the study of signed graphs has many other
applications, notably in statistical mechanics, where it relates to energy config-
urations of the Ising model with no external field. Solé and Zaslavsky [3] show

310 T. Coleman, J. Saunderson, and A. Wirth

a connection to coding theory: between signings of a graph and the cutset code
defined by that graph. Also, Dasgupta et al. [9] apply the problem to the de-
composition of large-scale biological networks into monotonic subsystems.

1.4 Layout of the Paper

In Section 2, we outline the majority of the algorithms used in this paper. In Sec-
tion 3, we show that the PASTA-toss algorithm is a 2-approximation. Section 4
explains a more involved algorithm, PASTA-flip, which is similar in structure
to PASTA-toss. Finally, Section 5 outlines the experiments we conducted to
validate the practical performance of these algorithms.

2 Algorithms to Solve 2CC

In this section, we provide details about most of the algorithms for 2CC that
we will run experiments on. This includes both existing work and two new algo-
rithms: PAST and Spectral.

2.1 Pick-a-Vertex Type Algorithms

The Pick-a-Vertex Algorithm. Bansal et al. [1] outline a simple approxima-
tion algorithm for 2CC, which we call Pick-a-Vertex. It provides the inspi-
ration for a number of algorithms that we introduce in this paper. First some
notation: let N+(v) be the set of vertices that share a positive-labelled edge with
v, and N−(v) those that share a negative edge. So Pick-a-Vertex is

For each vertex v, there is an associated partitioning: one cluster being
{v} ∪N+(v), the other N−(v). Of these n partitionings, return the one
that minimises the number of disagreements with the labels.

Bansal et al. demonstrate that this simple algorithm is a 3-approximation for
the 2CC problem on complete graphs. It turns out that the 3-approximation
is tight, a fact not mentioned in the original paper. Consider a complete graph,
consisting solely of positive edges, apart from a Hamiltonian cycle of negative
edges. The optimal solution (placing all vertices together) has cost n, whilst any
Pick-a-Vertex solution will have cost 3n− 10.

Notice that the Pick-a-Vertex clustering described above is not a local
optimum. This fact is the inspiration for some of the algorithms we introduce.

The PAST Algorithm. The Pick-a-Vertex algorithm was designed for com-
plete graphs. There is no obvious extension to incomplete graphs, as there may
not be candidate vertices v that are adjacent to every other vertex.

In the complete case, the edges incident to v form a spanning tree of the
underlying graph G. Now, any spanning tree of G induces a unique cluster-
ing that is consistent with the tree. From this perspective, Pick-a-Vertex is
considering spanning tree-based clusterings. We therefore propose the PAST

(Pick-a-Spanning-Tree) algorithm:

A Local-Search 2-Approximation for 2-Correlation-Clustering 311

For each vertex v, perform a breadth first search from v to find a spanning
tree, and use that tree to induce a clustering. Return the best of the n
clusterings.

By using breadth-first-search trees, PAST chooses the same spanning trees as
Pick-a-Vertex on complete graphs, and is thus a generalisation.

2.2 Local Search

Local-search algorithms have been successful in practice for many years, and
more recently as approximation algorithms [11], for various combinatorial prob-
lems. For the 2CC problem, the obvious local improvement to make to is to
move (toss) a vertex from one cluster to the other if, by doing so, the cost of the
clustering is lowered.

Given a clustering c, the clustering cv represents the same clustering as c,
except with v ∈ V in the opposite cluster. We then define λv = cost(c) −
cost(cv), the improvement caused by the change (non-negative, if there is some
improvement). With this in mind, we define LocalSearch as follows:

Given a clustering c, let w be the vertex with maximum λw . If λw ≤ 0,
stop, otherwise let c← cw and repeat.

Counter Example for Local Search Approximation. The LocalSearch

algorithm, used naively, has no good approximation guarantee. Consider a com-
plete graph with n/2 disjoint edges labelled − (all other edges are labelled +).
The global minimum here has cost n/2, however, there is a local minimum—
which cuts across each minus-edge—that has cost n(n− 2)/4.

2.3 The PASTA-toss Algorithm

PASTA-toss is defined in the following way:

Generate n breadth-first-search trees, one emanating from each vertex.
For each such tree T , after finding the 2-clustering Tc consistent with T ,
run LocalSearch on Tc. Return the best locally-optimal solution.

Clearly thePASTA-toss algorithm will return a solution no worse than thePAST

algorithm. In Section 3 we show that PASTA-toss is a two-approximation on
complete graphs.

2.4 A Spectral Algorithm

In an earlier paper [12], we formulated 2CC as an eigenvalue problem, similar
to the spectral clustering approach. We refer the reader to that paper for a full
exposition of that algorithm, which we will refer to as Spectral.

312 T. Coleman, J. Saunderson, and A. Wirth

2.5 The PTAS

Giotis and Guruswami [5] discovered a PTAS (polynomial time approximation
scheme) for the k-CorrelationClustering problem, with arbitrary k. They
first take a random sample of the vertices and then use each possible clustering
of the sample as a basis for a clustering of the entire data set.

Giotis and Guruswami’s scheme provides a (1 + ε)-factor approximation al-
gorithm that runs in time 2O(1/ε3). However, the constants involved are large
enough that the smallest possible sample size is greater than 4000. In practice,
checking every sample clustering is infeasible. We investigated using the same
techniques with smaller sample sizes. Consequently, there are no approximation
guarantees, but we anticipated similar behaviour to the full-blown PTAS.

3 PASTA-toss Is a 2-Approximation

In this section we develop some theoretical results, leading to a proof that
PASTA-toss is a 2-approximation. To begin, we need the concept of a switching
class.

3.1 Switching

The notion of switching in signed graphs is well established [13]. Given a labelling
l, we generate another labelling lv by selecting a vertex v and flipping the labels
on the edges incident to v. We may repeat this switching operation at other
vertices, generating further labellings. The family of all possible labellings can
be partitioned into equivalence classes under this (multiple) switching operation:
we refer to labellings in the same class as switching equivalent.

In this paper we also introduce the notion of switching on 2-clusterings: we
switch a clustering c to cv by tossing v to the other cluster. In this way, every
clustering can be obtained by a series of switching steps from c.

Lemma 1. The cost of c under l is the same as the cost of cv under lv.

Proof. The only edges affected by these operations are edges incident to v. For
such an edge e = (v, u), l(e) = −lv(e), and c(v) = −cv(v), whilst c(u) = cv(u).
Thus the cost of such an edge is unchanged. �
Lemma 1 tells us that if l has a solution of cost k, lv also has a solution of cost k.
Also as (lv)v = l, the converse is true. Consequently, we see the following useful
corollaries.

Corollary 1. The optimal costs of all labellings in a switching class are the
same. In particular, if c∗ is an optimal clustering for l, then c∗v is an optimal
clustering for lv.

Corollary 2. For a given labelling l, there exists a labelling l′, switching equiv-
alent to l, for which placing all vertices together in one cluster is optimal.

Note that the optimal cost for l′ in Corollary 2 equals the number of negative
edges in l′.

A Local-Search 2-Approximation for 2-Correlation-Clustering 313

3.2 Switching-Invariant Algorithms

Imagine we knew that an algorithm behaved in essentially the same way on all
switching-equivalent labellings. Then Corollary 2 tells us that we can focus on
labellings in which the optimum has all elements in one cluster.

Definition 1. An algorithm is switching invariant if, whenever it produces c on
input l, it produces cv on input lv.

We now investigate the behaviour of two key algorithms under switching.

Lemma 2. PAST is switching invariant.

Proof. Let T be any spanning tree of G inducing a clustering Tc under PAST.
Consider two vertices u and x in V . Whether they are clustered together depends
only on the parity of the number of negative edges on the path between u and
x in tree T . If v is not on this path, clearly the parity is unchanged. If v is on
the path, the parity is changed only if u or x is v.

So under lv, the clustering based on T is switching invariant. Lemma 1 tells
us that the spanning tree that induces the best clustering on l also induces the
best clustering on lv. �

We can now infer an interesting fact about spanning trees.

Lemma 3. For a given labelling l on a graph G, there exists a spanning tree T
that induces an optimal clustering.

Proof. Consider labelling l′ as defined in Corollary 2. The positively-labelled
edges in l′ form a subgraph that is connected and spans G: if they did not,
then there would be a non-trivial cut of G with only l′-negative edges. This
would imply that the optimum clustering must use two clusters, contradicting
the definition of l′. Hence, we can find a spanning tree T of positively-labelled
edges in l′: this induces a solution with all vertices in one cluster.

The proof of Lemma 2, combined with Corollary 1 shows that T will induce
the optimum solution on l. �

LocalSearch is not exactly switching invariant, but we can prove a similar
result.

Lemma 4. If LocalSearch is given l as input and uses c as a starting point,
resulting in solution c̄, then given input lv and starting point cv, LocalSearch

produces solution (c̄)v.

Proof. Consider running two simultaneous instances of LocalSearch, one
starting from c and the other starting from cv. To begin with, the only edges that
could possibly be different are the edges incident to v. The proof of Lemma 1
shows that the edges that incur a cost are the same in (lv, cv) as they are in (l, c).
So in both cases, λu is the same, for all u ∈ V . Therefore the same sequence of
vertices will be chosen to be tossed. �

The following lemma is an immediate consequence of Lemmas 2 and 4.

Lemma 5. PASTA-toss is switching invariant.

314 T. Coleman, J. Saunderson, and A. Wirth

3.3 Proof That PASTA-toss Is a 2-Approximation

Since PASTA-toss is switching invariant, we can analyse its behaviour on in-
put labellings in which the optimum places all vertices in one cluster (refer to
Corollaries 1 and 2). For such a labelling, no vertex has minus-degree more than
n/2, and the optimum cost is simply the total number of minus-edges in the
graph. If we let β be the minimum of the minus-degree of all the vertices, then
cost∗ ≥ βn/2.

To analyse the performance of PASTA-toss consider the iteration where
PASTA-toss uses the spanning tree from v, a node of minus-degree β. Initially,
the algorithm splits the vertices into two sets, X0 = {v} ∪ N+(v) and Y0 =
N−(v). As the local search progresses, vertices will be tossed from one set to
the other (call them X and Y). Consider the point at which the first vertex is
tossed from X to Y . Note that this means |Y | ≤ β.

We can compare the cost of the clustering (X,Y) to cost∗ in a fashion similar
to Bansal et al.. We can form an estimate of the difference by counting the
number of + edges between X and Y , discounting the − edges. For a vertex
v ∈ V , and a set A, define A+

v to be the number of + edges from v to A. A−
v is

defined in the analogous way. Then

cost(X,Y) − cost∗ =
∑

y

X+
y −

∑

y

X−
y =

∑

y

pully ≤ βmax
y∈Y

pully (1)

Where pully = X+
y −X−

y is the “pull” that X exerts on y.
If we let pushy = Y −

y − Y +
y (the “push” that Y exerts on y), the local im-

provement of swapping any node y ∈ Y is given by

impy = pully + pushy (2)

So we can use a bound on the local improvement of swapping a node (from X)
to get a contradictory bound on pully for any y.

Theorem 1. PASTA-toss is a 2-approximation on complete graphs.

Proof. We claim at this point, when the first node to be swapped is from X ,
that cost(X,Y) ≤ 2cost∗.

Arguing by contradiction, suppose that cost(X,Y) is not within a factor 2 of
cost∗. Then there must be some y0 ∈ Y such that pully0

> n/2.
Let x0 be the vertex from X that is about to be swapped. By definition,

Y +
x0

+ Y −
x0

= |Y | and X+
x0

+X−
x0

= n− |Y | − 1

Since we have assumed that the optimum solution places all vertices together,
x0 is incident to at most n/2 negative edges, and so X−

x0
≤ n/2. So we have

impx0
= X−

x0
+ Y +

x0
−X+

x0
− Y −

x0
≤ 2X−

x0
− (X−

x0
+X+

x0
) + (Y +

x0
+ Y −

x0
) ,

which is at most 2|Y |+ 1. Given x0 is the vertex which is about to be swapped,
impy0

≤ impx0
≤ 2|Y | + 1.

A Local-Search 2-Approximation for 2-Correlation-Clustering 315

Alternatively, if the algorithm ends without ever swapping an x ∈ X , at the
conclusion, impy0

≤ 0 < 2|Y | + 1.
So, using (2) and our assumption, we have

pushy0
= impy0

− pully0
< 2|Y | − 1 − n/2 (3)

Now we use the fact that y0 has to have at least β minus-edges to show a
contradictory lower-bound on pushy0

. We have

pushy = Y −
y0

− Y +
y0

= 2Y −
y0
− |Y | + 1

≥ |Y | − 2X−
y0

+ 1

= |Y | +X+
y0
−X−

y0
− (X+

y0
+X−

y0
) + 1

> 2|Y | + 1 − n/2

The first equality follows as Y −
y0

+Y +
y0

= |Y |−1, the first inequality as the minus-
degree of y0, Y −

y0
+X−

y0
is at least β ≥ |Y |, and the second as X+

y0
+X−

y0
= n−|Y |

and X+
y0
−X−

y0
= pully0

> n/2. �

4 The PASTA-flip Algorithm

The PASTA-flip algorithm is another local-search approach, but rather more
involved than tossing vertices between clusters.

4.1 Removing Bad Cycles

By removing bad cycles, defined below, we will produce a graph that is trivial
to cluster.

Definition 2. A bad cycle is a cycle C in G in which there is an odd number
of negative-labelled edges.

These cycles are called bad as there is no clustering of the vertices in C that
satisfies all the labels of C’s edges. On the other hand, if there are no bad cycles
in a graph, solving the problem is easy.

Lemma 6. Suppose l is a labelling that causes G to have no bad cycles. Then
there is a clustering of the vertices with cost zero.

Proof. Choose some vertex v and assign every other vertex u to a cluster based
on the parity of the number of negative edges on the paths between u and v.
Note that the parity is uniquely defined: if not, there would be a cycle with an
odd number of negative edges. This proves the lemma, as all paths (and edges,
as length one paths) are respected. �

316 T. Coleman, J. Saunderson, and A. Wirth

The basic principle of PASTA-flip is that it might be a good idea to flip the
label on an edge that is involved in many bad cycles: the cycles would then
become good. If this process could be repeated in an organised way so that no
bad cycles remained, then the clustering problem would be trivial. This approach
has two drawbacks. Firstly, it is conceivable that there is a scenario where there
exists a bad cycle, yet there is no edge to flip that will reduce the number of
bad cycles. More importantly, there are too many cycles to consider (possibly
an exponential number).

Cycle Bases. Let us represent a set of edges by an |E|-dimensional vector with
entries in Z2. The set of all cycles is a subspace of this vector space. Standard
results show that the cycle space has dimension |E|−|V |+1 and can be generated
by a spanning tree T ofG. We obtain a fundamental basis of the cycles by forming
a cycle Ce for each edge e = (v, w) /∈ T : Ce is e plus the path in T from v to w.

4.2 The PASTA-flip Algorithm

Consider such a fundamental cycle basis. Each edge e /∈ T will only be involved
in a single cycle in the basis, Ce. So there is one straightforward technique to
ensure that each cycle in the basis is good: if Ce is bad, simply flip e. At the end
of this process, the labellings on the T -edges will be respected, which is exactly
the PAST algorithm.

However this is wasteful—edges inside T are involved in many basis cycles.
Flipping one of these edges could potentially fix a number of bad cycles (in the
basis), and thus mean fewer flips. Each flip represents a disagreement between the
output clustering and the (original) edge labelling. With this in mind, we define
the PASTA-flip (Pick-a-Spanning Tree and flip) algorithm as follows:

For each vertex v create a breadth-first-search tree Tv. While there is
an edge e ∈ Tv which is involved in more bad cycles than good, flip e.
When there are no more such edges, flip edges outside of Tv. Return the
solution found of lowest cost.

The action of “flipping” never worsens the 2CC cost, giving the following lemma.

Lemma 7. The cost of the solution returned by PASTA-flip is no greater than
the cost of the solution returned by PAST.

5 Experimental Work

5.1 Algorithms Tested

In our experimental work, we tested all algorithms mentioned in Section 2, along
with PASTA-flip. As mentioned, the PTAS was not feasible to implement, so
we tested a PTAS-like algorithm, called PTAS-k, where k is the sample size. Also,
the algorithm we refer to below as LocalSearch takes n randomised starting

A Local-Search 2-Approximation for 2-Correlation-Clustering 317

clusterings, and produces the best clustering found after toss-based search from
each. This is to compare it to PASTA-toss, which uses n PAST-style starting
clusterings. Also we experimented with PASTA-flip+toss, which performs
PAST, and for each tree flips edges (until no more flips are possible) and then
tosses vertices. Additionally we used the code provide by Dasgupta et al. [9] to
test the Goemans-Williamson style SDP algorithm that they developed.

5.2 Datasets

For our experimental work, we used three datasets: the regulatory network of
human epidermal growth factor (EGFR), as used by both Dasgupta et al. [9]
and Huffner et al. [10] in their investigations, and two synthetic datasets.

Each synthetic dataset was generated randomly subject to two parameters,
which were independent over each edge. The first, pe, is the probability that an
edge exists (with either sign), and given the edge exists. The second, p, is the
probability that the edge agrees to a randomly generated initial clustering.

The first data set, called Sparse, had problems of size 200, a pe value of 0.05,
and a p value of 0.3, which was an attempt to approximate the EGFR dataset.
The second data set, called Complete, had problems of size 100, pe = 1—thus
all graphs are complete—and p = 0.45. We found empirically that lower values
of p result in 2CC problems that are easy to solve.

All experiments were run on a 2 GHz Intel Core 2 Duo machine with 2GB of
RAM, running MAC OS X 10.5.2. All algorithms were implemented in C, apart
from Spectral and GW-SDP, which were run in Matlab 7.4.0. Note that this
means the times recorded for the Matlab algorithms perhaps were not entirely
appropriate for comparison.

5.3 Results

Figures 1 and 2 show the relative performances of the algorithms discussed in
this paper on the EGFR and Complete datasets. These plots compare the

 180

 200

 220

 240

 260

 280

 300

 320

 340

 0.1 1 10 100

A
ve

ra
ge

 n
um

be
r

of
 e

rr
or

s

Time (in seconds)

DasGupta

Spectral PAST

PASTA-flip
PASTA-toss

PASTA-flip+toss

PTAS-10 PTAS-15

LocalSearch

Fig. 1. The time/effectiveness profile on the EGFR Dataset

318 T. Coleman, J. Saunderson, and A. Wirth

 2100

 2150

 2200

 2250

 2300

 2350

 1 10 100 1000 10000

A
ve

ra
ge

 n
um

be
r

of
 e

rr
or

s

Time (in seconds)

DasGupta

Spectral

PAST

PASTA-flipPASTA-toss
PASTA-flip+toss

PTAS-10

PTAS-15

LocalSearch

Fig. 2. The time/effectiveness profile on 100 instances of complete signed graphs, n =
100 and p = 0.45

Table 1. The results of running all algorithms on all datasets. We report the average
of the percentage (%) relative difference between the number of errors compared to
LocalSearch, over all problem instances in the dataset. The running time is measured
in seconds.

EGFR Sparse Complete

Algorithm Cost Time Cost Time Cost Time

Dasgupta -0.070 54.01 -0.011 26.28 0.006 689.01
Spectral 0.192 0.42 0.224 2847.70 0.021 114.35
PAST 0.169 1.37 0.298 29.16 0.111 4.54
PASTA-flip -0.061 3.55 -0.033 80.60 0.000 20.77
PASTA-toss -0.023 2.22 -0.020 54.82 -0.000 8.54
PASTA-flip+toss -0.070 4.25 -0.042 99.62 -0.000 23.18

algorithmic performance (number of errors) to the time taken to achieve that
performance. As we can see, the PTAS algorithms and PAST perform poorly
as a rule; Dasgupta can achieve good results, but is very slow in comparison
to our algorithms.Although the Spectral technique can be quite fast on sparse
graphs, its performance is not great. Table 5.2 summarises the results on all
three datasets.

6 Conclusions

In this paper, we have introduced some new algorithms for solving the 2CC prob-
lem: PASTA-toss, PASTA-flip, and the spectral method. The PASTA-toss

algorithm is a 2-approximation on complete graphs. In general, performances
of the local-search enhanced algorithms are impressive, with comparatively low
running times. Certainly, they form a more practical approach than the existing
PTAS, whilst retaining some proved performance bounds.

A Local-Search 2-Approximation for 2-Correlation-Clustering 319

6.1 Further Work

Is it possible to apply these methods to solve CorrelationClustering prob-
lems in which the required number of clusters is fixed at a number larger than
two? Although the local search step generalises easily, it is not at all clear how
to generalise the spanning tree approach.

We have no example showing that the 2-approximation result for PASTA-

toss is tight. We suspect that the proof technique for the approximation perfor-
mance of PASTA-toss extends to PASTA-flip, but have not yet investigated
this in detail. The approximability of 2CC on general graphs is not well under-
stood: the results for MaxCut also apply, but they tell us little about the min-
imisation problem. The good performance of our algorithms on general graphs
suggest that we may obtain something better than the reduction to Minimum

Multicut of the generic CorrelationClustering problem.

References

1. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1),
89–113 (2004)

2. Harary, F.: On the notion of balance of a signed graph. Michigan Mathematical
Journal 2, 143–146 (1953)

3. Solé, P., Zaslavsky, T.: A coding approach to signed graphs. SIAM Journal on
Discrete Mathematics 7, 544–553 (1994)

4. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete
Applied Mathematics 144(1-2), 173–182 (2004)

5. Giotis, I., Guruswami, V.: Correlation clustering with a fixed number of clusters. In:
Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1167–1176 (2006)

6. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information.
Journal of Computer and System Sciences 71(3), 360–383 (2005)

7. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: Rank-
ing and clustering. In: Proceedings of the 37th annual ACM Symposium on Theory
of Computing, pp. 684–693 (2005)

8. Goemans, M., Williamson, D.: Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the
ACM 42(6), 1115–1145 (1995)

9. DasGupta, B., Enciso, G., Sontag, E., Zhang, Y.: Algorithmic and complexity re-
sults for decompositions of biological networks into monotone subsystems. BioSys-
tems 90(1), 161–178 (2007)

10. Huffner, F., Betzler, N., Niedermeier, R.: Optimal edge deletions for signed graph
balancing. In: Proceedings of the 6th Workshop on Experimental Algorithms, pp.
297–310 (2007)

11. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local
search heuristics for k-median and facility location problems. SIAM Journal on
Computing 33(3), 544–562

12. Coleman, T., Saunderson, J., Wirth, A.: Spectral clustering with inconsistent ad-
vice. In: Proceedings of the 25th Annual International Conference on Machine
Learning, pp. 152–159 (2008)

13. Zaslavsky, T.: Signed Graphs. Discrete Applied Mathematics 4, 47–74 (1982)

The Alcuin Number of a Graph

Péter Csorba, Cor A.J. Hurkens, and Gerhard J. Woeginger

Department of Mathematics and Computer Science
TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract. We consider a planning problem that generalizes Alcuin’s
river crossing problem (also known as: The wolf, goat, and cabbage
puzzle) to scenarios with arbitrary conflict graphs. We derive a variety
of combinatorial, structural, algorithmical, and complexity theoretical
results around this problem.

Keywords: Transportation problem; scheduling; graph theory.

1 Introduction

Alcuin’s river crossing problem. The Anglo-Saxon monk Alcuin (735–804 A.D.)
was one of the leading scholars of his time. He served as head of Charlemagne’s
Palace School at Aachen, he developed the Carolingian minuscule (a script which
has become the basis of the way the letters of the present Roman alphabet are
written), and he wrote a number of elementary texts on arithmetic, geometry,
and astronomy. His book “Propositiones ad acuendos iuvenes” (Problems to
sharpen the young) is perhaps the oldest collection of mathematical problems
written in Latin. It contains the following well-known problem.

A man had to transport to the far side of a river a wolf, a goat, and a
bundle of cabbages. The only boat he could find was one which would
carry only two of them. For that reason he sought a plan which would
enable them all to get to the far side unhurt. Let him, who is able, say
how it could be possible to transport them safely?

In a safe transportation plan, neither wolf and goat nor goat and cabbage can
be left alone together. Alcuin’s river crossing problem differs significantly from
other mediaeval puzzles, since it is neither geometrical nor arithmetical but
purely combinatorial. Biggs [3] mentions it as one of the oldest combinatorial
puzzles in the history of mathematics. Ascher [1] states that the problem also
shows up in Gaelic, Danish, Russian, Ethiopian, Suaheli, and Zambian folklore.
Borndörfer, Grötschel & Löbel [4] use Alcuin’s problem to provide the reader
with a leisurely introduction into integer programming.

Graph-theoretic model. We consider the following generalization of Alcuin’s
problem to arbitrary graphs G = (V,E). Now the man has to transport a set
V of items/vertices across the river. Two items are connected by an edge in

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 320–331, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Alcuin Number of a Graph 321

E, if they are conflicting and thus cannot be left alone together without hu-
man supervision. The available boat has capacity b ≥ 1, and thus can carry the
man together with any subset of at most b items. A feasible schedule is a finite
sequence of triples (L1, B1, R1), (L2, B2, R2), . . . , (Ls, Bs, Rs) of subsets of the
item set V that satisfies the following conditions (FS1)–(FS3). The odd integer
s is called the length of the schedule.

(FS1) For every k, the sets Lk, Bk, Rk form a partition of V . The sets Lk

and Rk form stable sets in G. The set Bk contains at most b elements.
(FS2) The sequence starts with L1∪B1 = V and R1 = ∅, and the sequence

ends with Ls = ∅ and Bs ∪Rs = V .
(FS3) For even k ≥ 2, we have Bk ∪Rk = Bk−1 ∪Rk−1 and Lk = Lk−1.

For odd k ≥ 3, we have Lk ∪Bk = Lk−1 ∪Bk−1 and Rk = Rk−1.

Intuitively speaking, the kth triple encodes the kth boat trip: Lk contains the
items on the left bank, Bk the items in the boat, and Rk the items on the right
bank. Odd indices correspond to forward boat trips from left to right, and even
indices correspond to backward trips from right to left. Condition (FS1) states
that the sets Lk and Rk must not contain conflicting item pairs, and that set
Bk must fit into the boat. Condition (FS2) concerns the first boat trip (where
the man has put the first items into the boat) and the final trip (where the
man transports the last items to the right bank). Condition (FS3) says that
whenever the man reaches a bank, he may arbitrarily re-divide the set of items
that currently are on that bank and in the boat.

1. w, c | g → | ∅ 2. w, c | ← ∅ | g

3. w | c → | g 4. w | ← g | c

5. g | w → | c 6. g | ← ∅ | w, c

7. ∅ | g → | w, c

Fig. 1. A solution for Alcuin’s river crossing puzzle. The partitions Lk, Bk, Rk are listed
as Lk | Bk | Rk; the arrows → and ← indicate the current direction of the boat.

We are interested in the smallest possible capacity of a boat for which a graph
G = (V,E) possesses a feasible schedule; this capacity is called the Alcuin number
Alcuin(G) of the graph. In our graph-theoretic model Alcuin’s river crossing
problem corresponds to the path P3 with three vertices w(olf), g(oat), c(abbage)
and two edges [w, g] and [g, c]. Figure 1 lists one possible feasible schedule for a
boat of capacity b = 1. This implies Alcuin(P3) = 1.

A natural problem variant puts a hard constraint on the length of the sched-
ule: Let t ≥ 1 be an odd integer. The smallest possible capacity of a boat for
which G possesses a feasible schedule with at most t boat trips is called the t-trip
constrained Alcuin number Alcuint(G). Of course, Alcuin1(G) = |V | holds for

322 P. Csorba, C.A.J. Hurkens, and G.J. Woeginger

any graph G. For our example in Figure 1, it can be seen that Alcuin1(P3) = 3,
that Alcuint(P3) = 2 for t ∈ {3, 5}, and that Alcuint(P3) = 1 for t ≥ 7.

Known results. The idea of generalizing Alcuin’s problem to arbitrary conflict
graphs goes back (at least) to Prisner [13] and Bahls [2]: Prisner introduced it in
2002 in his course on Discrete Mathematics at the University of Maryland, and
Bahls discussed it in 2005 in a talk in the Mathematics Seminar at the University
of North Carolina.

Bahls [2] (and later Lampis & Mitsou [9]) observed that it is NP-hard to
compute the Alcuin number exactly; Lampis & Mitsou [9] also showed that the
Alcuin number is hard to approximate. These negative results follow quite easily
from the close relationship between the Alcuin number and the vertex cover
number; see Lemma 1. The papers [2,9] provide a complete analysis of the Alcuin
number of trees. Finally, Lampis & Mitsou [9] proved that the computation of
the trip constrained Alcuin number Alcuin3(G) is NP-hard.

Our results. We derive a variety of combinatorial and algorithmical results
around the Alcuin number. As a by-product, our results also settle several open
questions from [9].

Our main result is the structural characterization of the Alcuin number in
Section 3. This characterization yields an NP-certificate for the Alcuin number.
It also yields that every feasible schedule (possibly of exponential length) can be
transformed into a feasible schedule of linear length.

The close relationship between the Alcuin number and the vertex cover num-
ber of a graph (see Lemma 1) naturally divides graphs into so-called small-boat
and big-boat graphs. In Section 4 we derive a number of combinatorial lemmas
around the division line between these two classes. All these lemmas fall out quite
easily from our structural characterization. Standard techniques yield that com-
puting the Alcuin number belongs to the class FPT of fixed-parameter tractable
problems; see Section 5.

In Section 6 we discuss the computational hardness of the Alcuin number.
First, we provide a new NP-hardness proof for this problem. Other proofs of
this result are already in the literature [2,9], but we think that our three-line
argument is considerably simpler than all previously published arguments. Sec-
ondly, we establish the NP-hardness of distinguishing small-boat graphs from
big-boat graphs. Thirdly, we prove NP-hardness of computing the t-trip con-
strained Alcuin number Alcuint(G) for every fixed value t ≥ 3.

In Section 7 we finally apply our machinery to chordal graphs, trees, and
planar graphs, for which we get concise descriptions of the division line between
small-boat and big-boat graphs. We also show that the Alcuin number of a
bipartite graph can be determined in polynomial time.

2 Definitions and Preliminaries

We first recall some basic definitions. A set S ⊆ V is a stable set for a graph
G = (V,E), if S does not induce any edges. The stability number α(G) of G

The Alcuin Number of a Graph 323

is the size of a largest stable set in G. A set W ⊆ V is a vertex cover for G if
V −W is stable. The vertex cover number τ(G) of G is the size of a smallest
vertex cover for G. We denote the set of neighbors of a vertex set V ′ ⊆ V by
Γ (V ′).

The Alcuin number of a graph is closely related to its vertex cover number.

Lemma 1. (Prisner [13]; Bahls [2]; Lampis & Mitsou [9])
Every graph G satisfies τ(G) ≤ Alcuin(G) ≤ τ(G) + 1.

Indeed during the first boat trip of any feasible schedule, the man leaves a stable
set L1 on the left bank and transports a vertex cover B1 with the boat. This
implies b ≥ τ(G). And it is straightforward to find a schedule for a boat of
capacity τ(G) + 1: The man permanently keeps a smallest vertex cover W ⊆ V
in the boat, and uses the remaining empty spot to transport the items in V −W
one by one to the other bank.

The following observation follows from the inherent symmetry in conditions
(FS1)–(FS3).

Lemma 2. If (L1, B1, R1), . . . , (Ls, Bs, Rs) is a feasible sched-
ule for a graph G and a boat of capacity b, then also
(Rs, Bs, Ls), (Rs−1, Bs−1, Ls−1), . . . , (R1, B1, L1) is a feasible schedule.

3 A Concise Characterization

The definition of a feasible schedule does not a priori imply that the decision
problem “Given a graph G and a bound A, is Alcuin(G) ≤ A?” is contained
in the class NP: Since the length s of the schedule need not be polynomially
bounded in the size of the graph G, this definition does not give us any obvious
NP-certificate. The following theorem yields such an NP-certificate.

Theorem 1. (Structure theorem)
A graph G = (V,E) possesses a feasible schedule for a boat of capacity b ≥ 1,
if and only if there exist five subsets X1, X2, X3, Y1, Y2 of V that satisfy the
following four conditions.

(i) The three sets X1, X2, X3 are pairwise disjoint. Their union X := X1 ∪
X2 ∪X3 forms a stable set in G.

(ii) The (not necessarily disjoint) sets Y1, Y2 are non-empty subsets of the set
Y := V −X, which satisfies |Y | ≤ b.

(iii) X1 ∪ Y1 and X2 ∪ Y2 are stable sets in G.
(iv) |Y1| + |Y2| ≥ |X3|.

If these four conditions are satisfied, then there exists a feasible schedule of length
at most 2|V | + 1. This bound 2|V | + 1 is the best possible (for |V | ≥ 3).

As an illustration for Theorem 1, we once again consider Alcuin’s problem with
b = 1; see Figure 1. The corresponding sets in conditions (i)–(iv) then are

324 P. Csorba, C.A.J. Hurkens, and G.J. Woeginger

X1 = X2 = ∅, X3 = {w, c}, and Y1 = Y2 = {g}. The rest of this section is
dedicated to the proof of Theorem 1.

For the (only if)-part, we consider a feasible schedule (Lk, Bk, Rk) with 1 ≤
k ≤ s. Without loss of generality we assume that Bk+1
= Bk for 1 ≤ k ≤ s− 1.
Lemma 1 yields that there exists a vertex cover Y ⊆ V with |Y | = b (which is
not necessarily a vertex cover of minimum size). Then the set X = V − Y is
stable. We branch into three cases.

In the first case, there exists an index k for which Lk∩Y
= ∅ and Rk∩Y
= ∅.
We set Y1 = Lk ∩ Y , X1 = Lk ∩ X , and Y2 = Rk ∩ Y , X2 = Rk ∩ X , and
X3 = Bk ∩ X . This construction yields X = X1 ∪ X2 ∪ X3, and obviously
satisfies conditions (i), (ii), (iii). Since

|Y | = b ≥ |Bk ∩X | + |Bk ∩ Y | = |X3| + (|Y | − |Y1| − |Y2|),

we also derive the inequality |Y1| + |Y2| ≥ |X3| for condition (iv).
In the second case, there exists an index k with 1 < k < s such that Bk = Y .

If index k is odd (and the boat is moving forward), our assumption Bk−1
=
Bk
= Bk+1 implies that Lk−1∩Y
= ∅ and Rk+1∩Y
= ∅. We set Y1 = Lk−1∩Y ,
X1 = Lk−1∩X , and Y2 = Rk+1∩Y , X2 = Rk+1∩X , and X3 = (Bk−1∪Bk+1)∩X .
Then X1, X2, X3 are pairwise disjoint, and conditions (i), (ii), (iii) are satisfied.
Furthermore,

|Y | = b ≥ |Bk−1 ∩X | + |Bk−1 ∩ Y | = |Bk−1 ∩X | + (|Y | − |Y1|)

implies |Bk−1 ∩X | ≤ |Y1|, and a symmetric argument yields |Bk+1 ∩X | ≤ |Y2|.
These two inequalities together imply |Y1|+ |Y2| ≥ |X3| for condition (iv). If the
index k is even (and the boat is moving back), we proceed in a similar way with
the roles of k − 1 and k + 1 exchanged.

The third case covers all remaining situations: All k satisfy Lk ∩ Y = ∅ or
Rk ∩Y = ∅, and all k with 1 < k < s satisfy Bk
= Y . We consider two subcases.
In subcase (a) we assume Rs ∩Y
= ∅. We define Y1 = Rs ∩Y and X1 = Rs ∩X ,
and we set Y2 = Y1, X2 = ∅, and X3 = Bs ∩ X . Then conditions (i), (ii), (iii)
are satisfied. Since

|Y | = b ≥ |Bs ∩X | + |Bs ∩ Y | = |X3| + (|Y | − |Y1|),

also condition (iv) holds. In subcase (b) we assume Rs ∩ Y = ∅. We apply
Lemma 2 to get a symmetric feasible schedule with L1 ∩ Y = ∅. We prove
by induction that this new schedule satisfies Rk ∩ Y
= ∅ for all k ≥ 2. First,
L1 ∩ Y = ∅ implies Y ⊆ B1, and then B2
= B1 implies R2 ∩ Y
= ∅. In the
induction step for k ≥ 3 we have Rk−1 ∩ Y
= ∅, and hence Lk−1 ∩ Y = ∅. If k is
odd, then Rk = Rk−1 and we are done. If k is even, then Rk∩Y = ∅ would imply
Bk = Y , a contradiction. This completes the inductive argument. Since the new
schedule has Rs ∩ Y
= ∅, we may proceed as in subcase (a). This completes the
proof of the (only if)-part.

The proof of the (if)-part can be found in the full version of this paper.

The Alcuin Number of a Graph 325

4 Small Boats Versus Big Boats

By Lemma 1 every graph G has either Alcuin(G) = τ(G) or Alcuin(G) =
τ(G) + 1. In the former case we call G a small-boat graph, and in the latter case
we call G a big-boat graph. Note that for a small-boat graph G with b = τ(G),
the stable set X in Theorem 1 is a maximum size stable set and set Y is a
minimum size vertex cover.

The following three lemmas provide tools for recognizing small-boat graphs.

Lemma 3. Let G = (V,E) be a graph, and let set C ⊆ V induce a subgraph of
G with stability number at most 2. If the graph G−C has at least two non-trivial
connected components, then G is a small-boat graph.

Proof. Let V1 ⊆ V denote the vertex set of a non-trivial connected component
of G− C, and let V2 = V − (V1 ∪ C) be the vertex set of all other components.
Let X be a stable set of maximum size in G.

We set X1 = V1∩X , X2 = V2∩X , and X3 = C∩X ; note that X1∪X2∪X3 = X
and |X3| ≤ 2. Since V1 and V2 both induce edges, V1 −X and V2 −X are non-
empty. We put a single vertex from V2 − X into Y1, and a single vertex from
V1 −X into Y2. This satisfies all conditions of the Structure Theorem 1. �

Lemma 4. Let G = (V,E) be a graph with a minimum vertex cover Y and a
maximum stable set X = V − Y . If Y contains two (not necessarily distinct)
vertices u and v that have at most two common neighbors in X, then G is a
small-boat graph. �

Lemma 5. Let G = (V,E) be a graph that has two distinct stable sets S1, S2 ⊆
V of maximum size (or equivalently: two distinct vertex covers of minimum size).
Then G is a small-boat graph. �

The following lemma allows us to generate a plethora of small-boat and big-boat
graphs.

Lemma 6. Let G = (V,E) be a graph with α(G) = s, let I be a stable set on
q ≥ 1 vertices that is disjoint from V , and let G′ be the graph that results from
G and I by connecting every vertex in V to every vertex in I.

Then G′ is a small-boat graph if s/2 ≤ q ≤ 2s, and a big-boat graph if q ≥
2s+ 1. �
The following Corollary 1 follows from Lemma 6. It also illustrates that the
statement of Lemma 6 cannot be extended in any meaningful way to the cases
with 1 ≤ q < s/2: If we join the graph G = Ks,s with stability number s to a
stable set I on q vertices, then the resulting tri-partite graph Kq,s,s is a small-
boat graph. On the other hand, if we join the graph G = Kq,s with stability
number s to a stable set I on q vertices, then the resulting tri-partite graph
Kq,q,s is a big-boat graph.

Corollary 1. Let k ≥ 2 and 1 ≤ n1 ≤ n2 ≤ · · · ≤ nk be positive integers. Then
the complete k-partite graph Kn1,...,nk

is a small-boat graph if nk ≤ 2nk−1, and
it is a big-boat graph otherwise.

326 P. Csorba, C.A.J. Hurkens, and G.J. Woeginger

The following observation is a consequence of Lemma 3 (with C = ∅) and the
Structure Theorem 1. It allows us to concentrate our investigations on connected
graphs.

Lemma 7. A disconnected graph G with k ≥ 2 connected components is a big-
boat graph, if and only if k − 1 components are isolated vertices, whereas the
remaining component is a big-boat graph (which might be another isolated vertex).

5 An Algorithmic Result

The following theorem demonstrates that determining the Alcuin number of a
graph belongs to the class FPT of fixed-parameter tractable problems.

Theorem 2. For a given graph G with n vertices and m edges and a given
bound A, we can decide in O(4Amn) time whether Alcuin(G) ≤ A.

Proof. The proof can be found in the full version of this paper. �

6 Hardness Results

The reductions in this section are from the NP-hard Vertex Cover and from
the NP-hard Stable Set problem; see Garey & Johnson [5]. Slightly weaker ver-
sions of the statements in Lemma 8 and 9, and also the restriction of Theorem 4
to three boat trips have been derived by Lampis & Mitsou [9].

The following observation implies that finding the Alcuin number is NP-hard
for planar graphs and for graphs of bounded degree.

Lemma 8. Let G be a graph class that is closed under taking disjoint unions.
If the vertex cover problem is NP-hard for graphs in G, then it is NP-hard to
compute the Alcuin number for graphs in G.

Proof. For a graph G ∈ G, we consider the disjoint union G′ of two independent
copies of G. Then τ(G′) = 2 τ(G), and Lemma 1 yields 2 τ(G) ≤ Alcuin(G′) ≤
2 τ(G) + 1. Hence, we can deduce the vertex cover number τ(G) from
Alcuin(G′). �

The approximability threshold of a minimization problem P is the infimum of all
real numbers R ≥ 1 for which problem P possesses a polynomial time approxi-
mation algorithm with worst case ratio R. The approximability threshold of the
vertex cover problem is known to lie somewhere between 1.36 and 2, and it is
widely conjectured to be exactly 2; see for instance Khot & Regev [8].

Lemma 9. The approximability threshold of the vertex cover problem coincides
with the approximability threshold of the Alcuin number problem.

Proof. First, we show that an approximation algorithm with worst case
ratio R for Vertex Cover implies an approximation algorithm with worst
case ratio R for the Alcuin number problem. For an input graph G, we call

The Alcuin Number of a Graph 327

the approximation algorithm for vertex cover and simply output its approx-
imation of τ(G) as approximation A′ of Alcuin(G). Then Lemma 1 yields
A′ ≤ R · τ(G) ≤ R ·Alcuin(G).

Secondly, we show that an approximation algorithm with worst case ratio R
for the Alcuin number problem implies an approximation algorithm with worst
case ratio R+ ε for the Vertex Cover, where ε > 0 can be brought arbitrarily
close to 0. For an input graph G we first check whether τ(G) ≤ R/ε holds.
If it holds, then we compute the value τ(G) exactly in polynomial time; see
Section 5. If it does not hold, then we call the approximation algorithm for the
Alcuin number, and output its approximation of Alcuin(G) as approximation
τ ′ of τ(G). Then Lemma 1 yields τ ′ ≤ R ·Alcuin(G) ≤ R · (τ(G) + 1) ≤ (R+ ε)
τ(G). �

Theorem 3. It is NP-hard to decide whether a given graph is a small-boat
graph.

Proof. We show that if small-boat graphs can be recognized in polynomial
time, then there existis a polynomial time algorithm for computing the stability
number of a graph.

Indeed, consider a graph G = (V,E) on n = |V | vertices. For q = 1, . . . , 2n+1,
let Iq be a stable set on q vertices that is disjoint from V , and let Gq be the
graph that results from G and Iq by connecting every vertex in V to every vertex
in Iq. We check for every q whether Gq is small-boat, and we let q∗ denote the
largest index q for which Gq is small-boat. Lemma 6 yields that the stability
number of G equals q∗/2. �

Since the Structure Theorem 1 produces feasible schedules of length at most
2|V |+ 1, we have Alcuint(G) = Alcuin(G) for all t ≥ 2|V |+ 1. Consequently,
computing the t-trip constrained Alcuin number is NP-hard, if t is part of the
input. The following theorem shows that this problem is NP-hard for every fixed
t ≥ 3.

Theorem 4. Let r ≥ 1 be a fixed integer bound. Then it is NP-hard to decide for
a given graph and a given boat capacity, whether there exists a feasible schedule
that only uses 2r + 1 boat trips.

Proof. The proof can be found in the full version of this paper. �

7 Special Graph Classes

In this section we discuss Alcuin number, small-boat graphs, and big-boat graphs
in several classes of specially structured graphs.

7.1 Chordal Graphs and Trees

A split graph is a graph G = (V,E) whose vertex set can be partitioned into a
clique and a stable set; see Golumbic [6]. An equivalent characterization states

328 P. Csorba, C.A.J. Hurkens, and G.J. Woeginger

that a graph is a split graph, if and only if it does not contain C4, C5, and
2K2 (= two independent edges) as induced subgraphs. Chordal graphs are the
graphs in which every cycle of length exceeding three has a chord, that is, an
edge joining two non-consecutive vertices in the cycle; see Golumbic [6]. An
equivalent characterization states that a graph is chordal, if and only if every
minimal vertex separator induces a clique. Note that split graphs and trees are
special cases of chordal graphs.

The following lemma provides a complete charaterization of chordal small-
boat graphs.

Lemma 10. Let G = (V,E) be a connected chordal graph. Then G is a small-
boat graph, if and only if one of the following holds:

(1) G is a split graph with a maximum stable set X and a clique Y = V −X,
such that there exist two (not necessarily distinct) vertices u, v in Y that
have at most two common neighbors in X.

(2) G is not a split graph. �

As a special case, Lemma 10 contains the following classification of trees (which
has already been derived in [2,9]). Stars K1,k with k ≥ 3 leaves are split graphs
that do not satisfy condition (1) of Lemma 10; therefore they are big-boat graphs
(note that this also follows from Lemma 6). All remaining trees T are small-boat
graphs: Either such a tree T has two independent edges (and thus is small-boat),
or it is of the following form: There are vertices a0, . . . , ak and b0, . . . , b� with
k, � ≥ 0, and edges [a0, ai] for all i > 0, and edges [b0, bj] for all j > 0. Then
T is a split graph with clique {a0, b0} that satisfies condition (1); hence T is
small-boat.

7.2 Bipartite Graphs

The proof of the following theorem is centered around submodular functions. We
recall that a function f : 2X → R over a set X is submodular , if f(A) + f(B) ≥
f(A ∪B) + f(A ∩B) holds for all A,B ⊆ X ; see for instance Grötschel, Lovász
& Schrijver [7] or Schrijver [14]. Standard examples of submodular functions are
f(A) = c |A| for any real parameter c, and the function f(A) = |Γ (A)| that
assigns to a subset A ⊆ V of vertices the number of neighbors in an underlying
graph. If f(A) is submodular, then also fmin(A) = min{f(B) |B ⊆ A} and
f ′(A) = f(X − A) are submodular. Also the sum of two submodular functions
is submodular. The minimum of a submodular function f can be determined in
polynomial time [7,14].

Theorem 5. For a bipartite graph G = (V,E), the Alcuin number can be com-
puted in polynomial time.

Proof. It is well-known that the stability number and the vertex cover number
of a bipartite graph G can be computed in polynomial time; see for instance
Lovász & Plummer [10]. Hence it is also easy to decide whether G has a unique

The Alcuin Number of a Graph 329

maximum size stable set (for instance, by finding some maximum size stable
set X , and by checking for every x ∈ X whether G − x has a stable set of
cardinality |X |). If G possesses two distinct maximum size stable sets, then
Lemma 5 yields Alcuin(G) = τ(G). Hence, in the light of Theorem 1 the only
interesting situation is the following: The graph G has a unique maximum size
stable set X and a unique minimum size vertex cover Y = V −X . Do there exist
sets X1, X2, X3 and Y1, Y2 that satisfy conditions (i)–(iv)?

Let V = V1 ∪ V2 denote a bipartition of V with E ⊆ V1 × V2. If Y ∩ V1
= ∅
and Y ∩ V2
= ∅, then we may choose X1 = X ∩ V1, X2 = X ∩ V2, X3 = ∅, and
Y1 = Y ∩ V1, Y2 = Y ∩ V2. Otherwise Y ⊆ V1 or Y ⊆ V2 holds, and Y is also
stable. Hence, we may concentrate on the case where X = V1 and Y = V2 form
the bipartition. Our problem boils down to identifying the two disjoint sets X1

and X2: Then X3 = X−(X1∪X2) is fixed. By condition (iv), Y1 should be chosen
as large as possible and hence should be equal to Y − Γ (X1); symmetrically we
set Y2 = Y − Γ (X2). Condition (iv) can now be rewritten into

|Γ (X1)| − |X1| + |Γ (X2)| − |X2| ≤ 2|Y | − |X |.

We define a function f : 2X → R by f(X1) = |Γ (X1)| − |X1|, and a function
g : 2X → R by g(X1) = min{f(X2) |X2 ⊆ X −X1}. Since functions f , g, and
their sum f + g are submodular, the minimum of f + g can be determined in
polynomial time. If the corresponding minimum value is at most 2|Y |−|X |, then
Alcuin(G) = τ(G). Otherwise Alcuin(G) = τ(G) + 1. �

7.3 Planar Graphs

Next, let us turn to planar and outer-planar graphs. Outer-planar graphs are
easy to classify: Any outer-planar graph G with τ(G) = 1 is a star, and hence a
small-boat if and only if it has at most two leaves; see Section 7.1. Any outer-
planar graph G with τ(G) ≥ 2 satisfies the conditions of Lemma 4 and thus is
small-boat: Two arbitrary vertices u and v in a minimum vertex cover cannot
have more than two common neighbors, since otherwise K2,3 would occur as a
subgraph. The behavior of general planar graphs is more interesting.

Lemma 11. Every planar graph G = (V,E) with τ(G) ≥ 5 is a small-boat
graph.

Proof. Let Y = {y1, . . . , yt} with t ≥ 5 be a vertex cover of minimum size, and
let X = V −Y denote the corresponding stable set. For y ∈ Y we denote by Γx(y)
the set of neighbors of y in X . If there exist two indices i, j with 1 ≤ i < j ≤ 5
such that Γx(yi)∩Γx(yj) contains at most two vertices, then G is small-boat by
Lemma 4. We will show that no other case can arise.

Suppose for the sake of contradiction that for every two indices i, j with
1 ≤ i < j ≤ 5, the set Γx(yi) ∩ Γx(yj) contains at least three vertices. Then let
a, b, c be three vertices in Γx(y1) ∩ Γx(y2). In any planar embedding of G the
three paths y1−a−y2, y1−b−y2, y1−c−y2 divide the plane into three regions. If
two of y3, y4, y5 would lie in different regions, they could not have three common

330 P. Csorba, C.A.J. Hurkens, and G.J. Woeginger

neighbors; a contradiction. Hence y3, y4, y5 all lie in the same region, say in the
region bounded by y1 − a − y2 − b − y1, and hence vertex c is not a neighbor
of y3, y4, y5. An analogous argument yields that for any 1 ≤ i < j ≤ 5, the two
vertices yi and yj have a common neighbor that is not adjacent to the other
three vertices in {y1, y2, y3, y4, y5}. This yields that G contains a subdivision of
K5, the desired contradiction. �

The condition τ(G) ≥ 5 in Lemma 11 cannot be dropped, since there exists a
variety of planar graphsG with τ(G) ≤ 4 that are big-boat. Consider for instance
the following planar graph G: The vertex set contains four vertices y1, y2, y3, y4,
and for every i, j with 1 ≤ i < j ≤ 4 a set Vij of t ≥ 3 vertices. The edge set
connects every vertex in Vij to yi and to yj . It can be verified that G is planar,
that τ(G) = 4, and that Alcuin(G) = 5.

Lemma 11 implies that there is a polynomial time algorithm that decides
whether a planar graph G is small-boat or big-boat: In case G has a vertex cover
of size at most 4 we use Theorem 2 to decide whether Alcuin(G) = τ(G), and
in case G has vertex cover number at least 5 we simply answer YES.

Summarizing, this yields the following (perhaps unexpected) situation: Al-
though it is NP-hard to compute the Alcuin number and the vertex cover num-
ber of a planar graph, we can determine in polynomial time whether these two
values coincide.

8 Conclusions

In this paper we have derived a variety of combinatorial, structural, algorithmi-
cal, and complexity theoretical results around a graph-theoretic generalization
of Alcuin’s river crossing problem.

Our investigations essentially revolved around three algorithmic problems: (1)
Computation of the stability number; (2) Computation of the Alcuin number; (3)
Recognition of small-boat graphs. All three problems are polynomially solvable,
if the input graph has bounded treewidth (the Alcuin number can be computed
along the lines of the standard dynamic programming approach).

Question 1. Does there exist a graph class G, for which computing the stability
number is easy, whereas computing the Alcuin number is hard?

In particular, the case of perfect graphs remains open. A graph is perfect , if for
every induced subgraph the clique number coincides with the chromatic number;
see for instance Golumbic [6]. Trees, split graphs, and chordal graphs are special
cases of perfect graphs.

Question 2. Is there a polynomial time algorithm for computing the Alcuin num-
ber of a perfect graph?

Also the computational complexity of recognizing small-boat graphs remains
unclear.

Question 3. Is the problem of recognizing small-boat graphs contained in NP?

The Alcuin Number of a Graph 331

We have proved that this problem is NP-hard, but there is no reason to assume
that it lies in NP: To demonstrate that a graph is small-boat in a straightforward
way, we have to show that its Alcuin number is small (NP-certificate) and that its
vertex cover number is large (coNP-certificate). This mixture of NP- and coNP-
certificates suggests that the problem might be located in one of the complexity
classes above NP (see for instance Chapter 17 in Papadimitriou’s book [12]); the
complexity class DP might be a reasonable guess.

Acknowledgement. This research has been supported by the Netherlands Or-
ganisation for Scientific Research (NWO), grant 639.033.403; by DIAMANT (an
NWO mathematics cluster); and by BSIK grant 03018 (BRICKS: Basic Research
in Informatics for Creating the Knowledge Society).

References

1. Ascher, M.: A river-crossing problem in cross-cultural perspective. Mathematics
Magazine 63, 26–29 (1990)

2. Bahls, P.: The wolf, the goat, and the cabbage: A modern twist on a classical
problem. University of North Carolina Asheville (unpublished manuscript, 2005)

3. Biggs, N.L.: The roots of combinatorics. Historia Mathematica 6, 109–136 (1979)
4. Borndörfer, R., Grötschel, M., Löbel, A.: Alcuin’s transportation problems and

integer programming. In: Charlemagne and his heritage. 1200 years of civilization
and science in Europe, Brepols, Turnhout, vol. 2, pp. 379–409 (1998)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

6. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York (1980)

7. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial
optimization. Springer, New York (1988)

8. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε.
Journal of Computer and System Sciences 74, 335–349 (2008)

9. Lampis, M., Mitsou, V.: The ferry cover problem. In: Crescenzi, P., Prencipe, G.,
Pucci, G. (eds.) FUN 2007. LNCS, vol. 4475, pp. 227–239. Springer, Heidelberg
(2007)

10. Lovász, L., Plummer, M.D.: Matching Theory. Annals of Discrete Mathematics,
vol. 29. North-Holland, Amsterdam (1986)

11. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, New York (2006)

12. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
13. Prisner, E.: Generalizing the wolf-goat-cabbage problem. Electronic Notes in Dis-

crete Mathematics 27, 83 (2006)
14. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in

strongly polynomial time. Journal of Combinatorial Theory, Series B 80, 346–355
(2000)

Time-Dependent SHARC-Routing�

Daniel Delling

Universität Karlsruhe (TH), 76128 Karlsruhe, Germany
delling@ira.uka.de

Abstract. During the last years, many speed-up techniques for Dijk-

stra’s algorithm have been developed. As a result, computing a shortest
path in a static road network is a matter of microseconds. However, only
few of those techniques work in time-dependent networks. Unfortunately,
such networks appear frequentely in reality: Roads are predictably con-
gestured by traffic jams, and efficient timetable information systems rely
on time-dependent networks. Hence, a fast technique for routing in such
networks is needed. In this work, we present an exact time-dependent
speed-up technique based on our recent SHARC-algorithm. As a re-
sult, we are able to efficiently compute shortest paths in time-dependent
continental-sized transportation networks, both of roads and of railways.

1 Introduction

Computing shortest paths in graphs is used in many real-world applications like
route planning in road networks, timetable information for railways, or schedul-
ing for airplanes. In general, Dijkstra’s algorithm [1] finds a shortest path
between a given source s and target t. Unfortunately, the algorithm is far too
slow to be used on huge datasets. Thus, several speed-up techniques have been
developed yielding faster query times for typical instances, e.g., road or railway
networks. See [2] for an overview. A major drawback of most existing speed-
up techniques is that their correctness depends on the fact that the network is
static, i.e., the network does not change between queries. Only [3,4] showed how
preprocessing can be updated if a road network is perturbed by a relatively small
number of traffic jams.

However, in real-world road networks, many traffic jams are predictable. This
can be modeled by a time-dependent network, where the travel time depends on
the departure time τ . Moreover, a very efficient model for timetable information
relies on time-dependent networks (cf. [5] for details) as well. Unfortunately,
none of the speed-up techniques yielding high speed-ups can be used in a time-
dependent network in a straight-forward manner. Moreover, possible problem
statements for shortest paths become even more complex in such networks. A
user could ask at what time she should depart in order to spend as little time
traveling as possible.

� Partially supported by the Future and Emerging Technologies Unit of EC (IST
priority – 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 332–343, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Time-Dependent SHARC-Routing 333

Related Work. As already mentioned, a lot of speed-up techniques for static
scenarios have been developed during the last years. Due to space limitations,
we direct the interested reader to [2], which gives a good overview over static
routing techniques. Much less work has been done on time-dependent routing.
In [6], Dijkstra’s algorithm is extended to the time-dependent case based on
the assumption that the network fulfills the FIFO property. The FIFO property
is also called the non-overtaking property, because it basically states that if A
leaves an arbitrary node s before B, B cannot arrive at any node t before A.
Computation of shortest paths in FIFO networks is polynomially solvable [7],
while it is NP-hard in non-FIFO networks [8].

Goal-directed search, also called A∗ [9], has been adapted to the previously
described scenario; an efficient version for the static case has been presented
in [10]. In [3], unidirectional ALT is evaluated on time-dependent graphs (ful-
filling the FIFO property) yielding mild speed-ups of a factor between 3 and
5, depending on the degree of perturbation. Goal-directed search has also suc-
cessfully been applied to time-dependent timetable networks [5,11]. Recently, it
has been shown that time-dependent ALT can be used in a bidirectional man-
ner [12]. However, in order to obtain faster queries than in the unidirectional
case, the user has to accept approximative solutions. Moreover, our old imple-
mentation of static SHARC [13] already allowed fast approximative queries in a
time-dependent scenario.

Our Contribution. In this work, we show how our recently developed SHARC-
algorithm [13] can be generalized in such a way that we are able to perform exact
shortest-path queries in time-dependent networks. The key observation is that
the concept of SHARC stays untouched. However, at certain points we augment
static routines to time-dependent ones. Moreover, we slightly adapt the intuition
of Arc-Flags [14]. And finally, we deal with the problem that adding shortcuts
to the graph is more expensive than in static scenarios. As a result, we are able
to perform exact time-dependent queries in road and railway networks.

We start our work on time-dependent routing in Section 2 by introducing
basic definitions and a short review of SHARC in static scenarios. Basic work on
modeling time-dependency in road and railway networks is located in Section 3.
Furthermore, we introduce basic algorithms that our preprocessing routines rely
on. The preprocessing routine itself and the query algorithms of time-dependent
SHARC are located in Section 4. We hereby show how the two main ingredients
of SHARC, i.e., graph contraction and arc-flags computation, have to be altered
for time-dependent networks. It turns out that the adaption of contraction is
straight-forward, while arc-flags computation gets more expensive: The key ob-
servation is that we have to alter the intuition of arc-flags slightly for correct
routing in time-dependent networks. We also show how SHARC can be used to
compute a shortest path between two points for all possible departure times.

In order to show that time-dependent SHARC performs well in real-world
environments, we present an extensive experimental evaluation in Section 5.
Section 6 concludes our work with a summary and possible future research.

334 D. Delling

2 Preliminaries

The major difference between static and time-dependent routing is the usage
of functions instead of constants for specifying edge weights. Throughout the
whole work, we restrict ourselves to a function space � consisting of positive
periodic functions f : Π → �

+, Π = [0, p], p ∈ � such that f(0) = f(p) and
f(x) + x ≤ f(y) + y for any x, y ∈ Π,x ≤ y. In the following, we call Π the
period of the input. The composition of two functions f, g ∈ � is defined by
(f ⊕ g)(x) := f(x) + g((f(x) +x)mod p). Moreover, we need to merge functions.
The merged function h of two functions f, g is defined by h(x) = min{f(x), g(x)}.
Comparison of functions is defined as follows: f < g means that f(x) < g(x)
holds for all x ∈ Π . The upper bound of f is noted by f = maxx∈Π f(x), the
lower by f = minx∈Π f(x). An underapproximation ↓ f of a function f is a
function such that ↓ f(x) ≤ f(x) holds for all x ∈ Π . An overapproximation
↑f is defined analogously. We also restrict ourselves to simple, directed graphs
G = (V,E) with time-dependent length functions len : E → �. Note that our
networks fullfill the FIFO-property if we interpret the length of an edge as travel
times due to our choice of �. The reverse graph G = (V,E) is the graph obtained
from G by substituting each (u, v) ∈ E by (v, u). The 2-core of an undirected
graph is the maximal node induced subgraph of minimum node degree 2. The
2-core of a directed graph is the 2-core of the corresponding simple, unweighted,
undirected graph. A partition of V is a family C = {C0, C1, . . . , Ck} of sets
Ci ⊆ V such that each node v ∈ V is contained in exactly one set Ci. An
element of a partition is called a cell. A multilevel partition of V is a family
of partitions {C0, C1, . . . , Cl} such that for each i < l and each Ci

n ∈ Ci a cell
Ci+1

m ∈ Ci+1 exists with Ci
n ⊆ Ci+1

m . In that case the cell Ci+1
m is called the

supercell of Ci
n. The supercell of a level-l cell is V . The boundary nodes BC of

a cell C are all nodes u ∈ C for which at least one node v ∈ V \ C exists such
that (v, u) ∈ E or (u, v) ∈ E.

By d(s, t, τ) we denote the distance between s, t ∈ V if departing from s at
time τ . The distance-label, i.e., the distance between s and t for all possible
departure times ∈ Π , is given by d∗(s, t). Note that the distance-label is a
function ∈ �. In the following, we call a query for determining d(s, t, τ) an s-t
time-query, while a query for computing d∗(s, t) is denoted by s-t profile-query.

Static SHARC-Routing. The classic arc-flag approach [14] first computes
a partition C of the graph and then attaches a label to each edge e. A label
contains, for each cell Ci ∈ C, a flag AFCi(e) which is true iff a shortest path
to a node in Ci starts with e. A modified Dijkstra then only considers those
edges for which the flag of the target node’s cell is true. SHARC [13] extends and
combines ideas of Arc-Flags and hierarchical approaches [18,17]. Preprocessing
of static SHARC is divided into three sections. During the initialization phase,
we extract the 2-core of the graph and perform a multi-level partition of G.
Then, an iterative process starts. At each step i we first contract the graph by
bypassing low-degree nodes and set the arc-flags automatically for each removed
edge. On the contracted graph we compute the arc-flags of level i by growing a

Time-Dependent SHARC-Routing 335

partial centralized shortest-path tree from each cell Ci
j . At the end of each step

we prune the input by detecting those edges that already have their final arc-
flags assigned. In the finalization phase, we assemble the output-graph, refine
arc-flags of edges removed during contraction and finally reattach the nodes
removed at the beginning. The query of static SHARC is a multi-level Arc-Flags
Dijkstra adapted from a two-level Arc-Flags setup [14].

3 Models and Basic Algorithms

In this section, we introduce our approach how to model time-dependency in road
and railway networks efficiently. In particular, we present our label-correcting
algorithm, which is a main ingredient of time-dependent SHARC-preprocessing.

Modeling Time-Dependency. We apply two types of edge-functions, one for
road networks, the other one for timetable information.

In road networks, we use a piece-wise linear function for modeling time-
dependency. Each edge gets assigned a number of sample points that depict
the travel time on this road at the specific time. Evaluating a function at time τ
is then done by linear interpolation between the points left and right to τ . Let
P (f) be the number of interpolation points of f . Then the composed function
f⊕g, modeling the duration for traversing g after f , may have up to P (f)+P (g)
number of interpolation points in worst case. This is one of the main problems
when routing in time-dependent graphs: Almost all speed-up techniques devel-
oped for static scenarios rely on adding long shortcuts to the graph. While this
is “cheap” for static scenarios, the insertion of time-dependent shortcuts yields a
high amount of preprocessed data. Even worse, merging travel-functions, mod-
eling the merge of two parallel edges into one, increases |P | as well.

In timetable graphs, time-dependent edges model several trains running on
the same route from one station to another. For each such connection, we add
an interpolation point to the corresponding edge. The timestamp σ of the in-
terpolation point is the departure time, the weight w the travel time. When we
want to evaluate a time-dependent edge at a specific time τ , we identify the
interpolation point with minimum σ − τ ≥ 0. Then the resulting traveltime is
w+ σ− τ , i.e., the waiting time for the next connection plus its travel duration.

Note that composing two timetable edge-functions f, g is less expensive than in
road networks. More precisely, P (f⊕g) = min{P (f), P (g)} holds as the number
of relevant departure times is dominated by the edge with less connections.
Merging functions, however, may increase the number of interpolation points.

Label-Correcting Algorithms. As already mentioned, computing d(s, t, τ)
can be solved by a modified Dijkstra [6]. However, computing d∗(s, t) is more
expensive but can be computed by a label-correcting algorithm [15]. Such an
algorithm can be implemented very similarly to Dijkstra. The source node
s is initialized with a constant label d∗(s, s) = 0, any other node u with a
constant label d∗(s, u) = ∞. Then, in each iteration step, a node u with minimum

336 D. Delling

d∗(s, u) is removed from the priority queue. Then for all outgoing edges (u, v) a
temporary label l(v) = d∗(s, u) ⊕ len(u, v) is created. If l(v) ≥ d∗(s, v) does not
hold, l(v) yields an improvement. Hence, d∗(s, v) is updated to min{l(v), d∗(s, v)}
and v is inserted into the queue. We may stop the routine if we remove a node
u from the queue with d(s, u) ≥ d(s, t). If we want to compute d∗(s, t) for many
nodes t ∈ V , we apply a label-correcting algorithm and stop the routine as soon
as our stopping criterion holds for all t. Note that we may reinsert nodes into the
queue that have already been removed by this procedure. Also note that when
applied to a graph with constant edge-functions, this algorithm equals a normal
Dijkstra. An interesting result from [15] is the fact that the runtime of label-
correcting algorithms highly depends on the complexity of the edge-functions.

In the following, we construct shortest-path DAGs, i.e., compute d∗(s, u) for
a given source s and all nodes u ∈ V , with our label-correcting algorithm. We
call an edge (v, u) a DAG-edge if d∗(s, v) ⊕ (v, u) > d∗(s, u) does not hold. In
other words, (u, v) is a DAG-edge iff it is part of a shortest path from s to v for
at least one departure time.

4 Exact Time-Dependent SHARC

In static scenarios, a true arc-flag AFC(e) denotes whether e has to be considered
for a shortest-path query targeting a node within C. In other words, the flag is
set if e is important for (at least one target node) in C. In a time-dependent
scenario, we use the following intuition to set arc-flags: an arc-flag AFC(e) is set
to true, if e is important for C at least once during Π . In the following, we show
how to adapt preprocessing of SHARC in order to reflect this intuition correctly.
Moreover, we present the time-dependent query algorithm.

4.1 Time-Dependent Preprocessing

Initialization. In a first step, we extract the 2-core from the graph since we can
directly assign correct arc-flags to all edges outside the 2-core: Edges targeting
the 2-core get full flags assigned, others only get the own-cell flag set to true.
Note that this procedure is independent from edge weights. Next, we perform a
multi-level partitioning—using SCOTCH [16]—of the unweighted graph.

Iteration. Next, an iterative process starts. Each iteration step is divided into
three parts, described in the following: contraction, edge reduction, arc-flag com-
putation.

Contraction. Our time-dependent contraction routine works very similar to a
static one [2,17]: We iteratively bypass nodes until no node is bypassable any
more. To bypass a node n we first remove n, its incoming edges I and its outgo-
ing edges O from the graph. Then, for each combination of ei ∈ I and eo ∈ O,
we introduce a new edge of the length len(ei)⊕ len(eo). Note that we explicitely
allow multi-edges. Hence, each shortcut represents exactly one path in the graph,

Time-Dependent SHARC-Routing 337

making shortcut unpacking easier. We call the number of edges of the path that a
shortcut represents on the graph at the beginning of the current iteration step the
hop number of the shortcut. Note that in road networks, contraction gets more
expensive in terms of memory consumption because the number of interpolation
points of an added shortcut is roughly the sum of the number of interpolation
points of the arcs the shortcuts is assembled from. Moreover, merging a short-
cut with an existing edge may increase the number of interpolation points even
further. Hence, the choice of which node to bypass next is even more important
for the time-dependent scenario than for the static one. We use a heap to deter-
mine the next bypassable node [17]. Let #shortcut of new edges that would be
inserted into the graph if n is bypassed and let ζ(n) =#shortcut/(|I| + |O|) be
the expansion [17] of node n. Furthermore, let h(n) be the hop number of the
hop-maximal shortcut, and let p(n) be the number of interpolation points of the
shortcut with most interpolation points, that would be added if n was bypassed.
Then we set the key of a node n within the heap to h(n)+p(n)+10 ·ζ(n), smaller
keys have higher priority. By this ordering for bypassing nodes we prefer nodes
whose removal yield few additional shortcuts with a small hop number and few
interpolation points.

To keep the costs of shortcuts limited we do not bypass a node if its removal
would either result in a shortcut with more than 200 interpolation points or a
hop number greater than 10. We say that the nodes that have been bypassed
belong to the component, while the remaining nodes are called core-nodes. Note
that in order to guarantee correctness, we have to use cell-aware contraction,
i.e., a node n is never marked bypassable if any of its neighboring nodes is not
in the same cell as n.

Edge-Reduction [4]. Note that our contraction potentially adds shortcuts not
needed for keeping the distances in the core correct. Hence, we perform an edge
reduction directly after each contraction. We grow a shortest-path DAG from
each node u of the core. We stop the growth as soon as all neighbors t of u have
their final label assigned. Then we check all neighbors whether d∗(u, t) < len(u, t)
holds. If it holds, we can remove (u, t) from the graph because for all possible
departure times, the path from u to t does not include (u, t). In order to limit
the running time of this procedure, we restrict the number of priority-queue
removals to 100. Hence, we may leave some unneeded edges in the graph.

Arc-Flags. We have to set arc-flags for all edges of our output-graph, including
those which we remove during contraction. Like for static SHARC, we can set
arc-flags for all removed edges automatically. We set the arc-flags of the current
and all higher levels depending on the source node s of the deleted edge. If s is
a core node, we only set the own-cell flag to true (and others to false) because
this edge can only be relevant for a query targeting a node in this cell. If s
belongs to the component, all arc-flags are set to true as a query has to leave
the component in order to reach a node outside this cell.

Setting arc-flags of those edges not removed from the graph is more expensive.
A straight-forward adaption of computing arc-flags in a time-dependent graph

338 D. Delling

is to grow a shortest-path DAG in G for all boundary nodes b ∈ BC of all cells
C at level i. We stop the growth as soon as d∗(u, b) ≥ d∗(v, b) holds for all
nodes v in the supercell of C and all nodes u in the priority queue. Then we set
AFC(u, v) = true if (u, v) is a DAG-edge for at least one DAG grown from all
boundary nodes b ∈ BC .

However, this approach would require to compute a full label-correcting al-
gorithm on the backward graph from each boundary node yielding too long
preprocessing times for large networks. Recall that the running time of grow-
ing DAGs is dominated by the complexity of the function. Hence, we may grow
two DAGs for each boundary node, the first uses ↑len as length functions, the
latter ↓len. As we use approximations with a constant number of interpolation
points (we use 48), growing two such DAGs is faster than growing one exact
one. We end up in two distance labels per node u, one being an overapproxi-
mation, the other being an underapproximation of the correct label. Then, we
set AFC(u, v) = true if len(u, v)⊕ ↑ d∗(v, bC) >↓ d∗(u, bC) does not hold. If
networks get so big that even setting approximative labels is prohibited due to
running times, one can even use upper and lower bounds for the labels. This has
the advantage that building two shortest-path trees per boundary node is suffi-
cient for setting correct arc-flags. The first uses len as length function, the other
len. Note that by approximating arc-flags the quality of them may decrease but
correctness is untouched. Thus, queries remain correct but may become slower.

Finalization. The last phase of our preprocessing-routine first assembles the
output graph. It contains the original graph, shortcuts added during preprocess-
ing and arc-flags for all edges of the output graph. However, some edge may have
no arc-flag set to true, which we can safely remove from the output graph.

Arc-Flags Refinement. During the iteration-phase we set sub-optimal arc-flags
to edges originating from component nodes. However, a query starting from a
node u being part of the a component has to leave the component via core-nodes.
We call those nodes the exit nodes of u. The idea of arc-flags refinement is to
propagate the flags from the exit nodes to edges outgoing from u. For details,
see [13]. This routine can directly be adapted to a time-dependent scenario by
growing shortest-paths DAGs from each u. However, we limit the growth of those
DAGs to 1000 priority-queue removals due to performance. In order to preserve
correctness, we then may only propagate the flags from the exit nodes to u if
the stopping criterion is fulfilled before this number of removals.

Shortcut-Removal. As already mentioned, time-dependent shortcuts are very
space-consuming. Hence, we try to remove shortcuts as the very last step of
preprocessing. The routine works as follows. For each added shortcut (u, v) we
analyze the shortest path it represents. If all nodes on this shortest path have a
degree less than 3, we remove (u, v) from the graph and all edges being part of
the shortest path additionally inherit the arc-flags from (u, v).

Time-Dependent SHARC-Routing 339

4.2 Query

Time-dependent SHARC allows time- and profile-queries. For computing dτ (s, t),
we use a modified Dijkstra that operates on the output graph. The modifica-
tions are as follows: When settling a node n, we compute the lowest level i on
which n and the target node t are in the same supercell. In order to keep the
effort for this operation as small as possible we use such a numbering of cells such
that the common level can be computed by the most significant bit of current
and target cell. Moreover, we consider only those edges outgoing from n having
a set arc-flag on level i for the corresponding cell of t. In other words, we prune
edges that are not important for the current query. We stop the query as soon
as we settle t. For computing d∗(s, t), we use a modified variant of our label-
correcting algorithm (see Section 3) that also operates on the output graph. The
modifications are the same as for time-queries and the stopping criterion is the
standard one explained in Section 3.

SHARC adds shortcuts to the graph in order to accelerate queries. If the
complete description of the path is needed, the shortcuts have to be unpacked.
As we allow multi-edges during contraction, each shortcut represents exactly one
path in the network, and hence, we can directly apply the unpacking routine from
Highway Hierarchies [18].

5 Experiments

In this section, we present our experimental evaluation. To this end, we evaluate
the performance of time-dependent SHARC for road and railway networks. Our
implementation is written in C++ using solely the STL. As priority queue we
use a binary heap. Our tests were executed on one core of an AMD Opteron
2218 running SUSE Linux 10.3. The machine is clocked at 2.6 GHz, has 16 GB
of RAM and 2 x 1 MB of L2 cache. The program was compiled with GCC 4.2,
using optimization level 3.

Default Setting. Unless otherwise stated, we use a 7-level partition with 4 cells
per supercell on levels 0 to 5 and 104 cells on level 6 for road networks. As
railway networks are smaller, we use a 3-level setup with 8 cells per supercell
on levels 0 to 1 and 112 cells on level 2 for such networks. We use c = 2.5 as
contraction parameter for the all levels. The hop-bound of our contraction is set
to 10, the interpolation-bound to 200.

In the following, we report preprocessing times and the overhead of the pre-
processed data in terms of additional bytes per node. Moreover, we report two
types of queries: time-queries, i.e., queries for a specific departure time, and
profile-queries, i.e., queries for computing d∗(s, t). For each type we provide the
average number of settled nodes, i.e., the number of nodes taken from the pri-
ority queue, and the average query time. For s-t profile-queries, the nodes s and
t are picked uniformly at random. Time-queries additionally need a departure
time τ as well, which we pick uniformly at random as well. All figures in this
paper are based on 1 000 random s-t queries and refer to the scenario that only

340 D. Delling

the lengths of the shortest paths have to be determined, without outputting
a complete description of the paths. However, our shortcut expansion routine
needs less than 1 ms to output the whole path; the additional space overhead is
≈ 4 bytes per node.

5.1 Time-Dependent Timetable Information

Our timetable data—provided by Hacon for scientific use—of Europe consists
of 30 516 stations and 1 775 482 elementary connections. The period is 24 hours.
The resulting realistic, i.e., including transfer times, time-dependent network
(cf. [5] for details on modeling issues) has about 0.5 million nodes and 1.4 million
edges. Table 1 reports the performance of time-dependent SHARC using this
input. We report the performance of two variants of SHARC: the economical
version computes Dijkstra-based arc-flags on all levels, while our generous
variant computes exact flags during the last iteration step. Note that we do not
use additional techniques in order to improve query performance, e.g. the avoid
binary search technique (cf. [5] for details). For comparison, we also report the
results for plain Dijkstra and unidirectional ALT [3].

We observe a good performance of SHARC in general. Queries for a spe-
cific departure times are up to 29.7 times faster than plain Dijkstra in terms
of search space. This lower search space yields a speed-up of a factor of 26.6.
This gap originates from the fact that SHARC operates on a graph enriched
by shortcuts. As shortcuts tend to have many interpolation points, evaluating
them is more expensive than original edges. As expected, our economical variant
is slower than the generous version but preprocessing is almost 8 times faster.
Recall that the only difference between both version is the way arc-flags are com-
puted during the last iteration step. Although the number of heap operations is
nearly the same for running one label-correcting algorithm per boundary node
as for growing two Dijkstra-trees, the former has to use functions as labels. As
composing and merging functions is more expensive than adding and comparing
integers, preprocessing times increase significantely.

Table 1. Performance of time-dependent Dijkstra, uni-directional ALT and SHARC
using our timetable data as input. Preprocessing times are given in hours and minutes,
the overhead in bytes per node. Moreover, we report the increase in edge count over
the input. #delete mins denotes the number of nodes removed from the priority queue,
query times are given in milliseconds. Moreover, speed-up reports the speed-up over
the corresponding value for plain Dijkstra.

Prepro Time-Queries Profile-Queries

time space edge #delete speed time speed #delete speed time speed
technique [h:m] [B/n] inc. mins up [ms] up mins up [ms] up

Dijkstra 0:00 0 0% 260 095 1.0 125.2 1.0 1 919 662 1.0 5 327 1.0
uni-ALT 0:02 128 0% 127 103 2.0 75.3 1.7 1 434 112 1.3 4 384 1.2
eco SHARC 1:30 113 74% 32 575 8.0 17.5 7.2 181 782 10.6 988 5.4
gen SHARC 12:15 120 74% 8 771 29.7 4.7 26.6 55 306 34.7 273 19.5

Time-Dependent SHARC-Routing 341

Comparing time- and profile-queries, we observe that computing d∗ instead of
d yields an increase of about factor 4 − 7 in terms of heap operations. Again, as
composing and merging functions is more expensive than adding and comparing
integers, the loss in terms of running times is much higher. Still, both our SHARC-
variants are capable of computing d∗ for two random stations in less than 1 second.

5.2 Time-Dependent Road Networks

Unfortunately, we have no access to large real-world time-dependent road net-
works. Hence, we use available real-world time-independent networks and gen-
erate synthetic rush hours. As network, we use the largest strongly connected
component of the road network of Western Europe, provided by PTV AG for
scientific use. The graph has approximately 18 million nodes and 42.6 million
edges and edge lengths correspond to (time-independent) travel times. Each
edge belongs to one of five main categories representing motorways, national
roads, local streets, urban streets, and rural roads. In order to generate syn-
thetic time-dependent edge costs, we use the generator introduced in [12]. The
methods developed there are based on statistics gathered using real-world data
on a limited-size road network. The period is set to 24 hours. For details, see [12].
We additionally adjust the degree of perturbation by assigning time-dependent
edge-costs only to specific categories of edges. In a low traffic scenario, only mo-
torways are time-dependent. The medium traffic scenario additionally includes
congested national roads, and for the high traffic scenario, we pertube all edges
except local and rural roads. For comparison, we also report the performance of
static SHARC in a no traffic scenario, i.e., all edges are time-independent.

Table 2 reports the results of SHARC in our different scenarios. Note that
we use the same parameters for all inputs and also report the speed-up over
Dijkstra’s algorithm in terms of query performance. Unfortunately, it turned
out that this input is too big to use a label-correcting algorithm for computing
arc-flags. Hence, we use Dijkstra-based approximation of arc-flags for all lev-
els. Note that this type of preprocessing equates our economical variant from
the last section. We observe that the degree of perturbation has a high influ-
ence on both preprocessing and query performance of SHARC. Preprocessing
times increase if more edges are time-dependent. This is mainly due to our

Table 2. Performance of SHARC on our time-dependent European road network in-
stance. Note that profile-queries are reported in seconds, while time-queries are given
in milliseconds. Also note that we apply static SHARC for the no traffic scenario.

Prepro Time-Queries Profile-Queries

time space edge #delete speed time speed #delete time
scenario [h:m] [B/n] inc. mins up [ms] up mins [s]

no traffic 0:41 13.7 27% 997 8 830 0.42 13 369 - -
low traffic 4:03 27.2 31% 34 123 261 26.12 214 37 980 35.28
medium traffic 6:10 45.6 32% 51 738 173 38.05 148 57 761 61.05
high traffic 8:31 112.4 34% 84 234 105 75.33 76 92 413 154.32

342 D. Delling

refinement phase that uses partial label-correcting algorithms in order to im-
prove the quality of arc-flags. The increase in overhead derives from the fact that
the number of additional interpolation points for shortcuts increases. Analyzing
time-query performance of SHARC, we observe that in a our scenario where
only motorways are time-dependent, SHARC provides speed-ups of up to 214
over Dijkstra. However, this values drops to 76 if more and more edges become
time-dependent. The reason for this loss in query performance is the bad quality
of our Dijkstra-based approximation. If more edges are time-dependent, upper-
and lower-bounds are less tight than in a scenario with only few time-dependent
edges. Comparing time- and profile-queries, we observe that the search-space
only increases by ≈ 10% when running profile- instead of the time-queries. How-
ever, due to the high number of interpolation points of the labels propagated
through the network, profile-queries are up to 1200 times slower than time-
queries. Comparing the figures from Tab. 1 and 2, we observe that speed-ups
for time-queries in road networks are higher than in railway networks. However,
the situation changes when running profile-queries. Here, timetable queries are
much faster than queries in road networks. The reason for this is that composing
functions needed for timetables is cheaper than those needed for road networks.

Summarizing, average time-query times are below 100 ms for all scenarios,
while plain Dijkstra has query times of about 5.6 seconds. Moreover, for the
probably most important scenario, i.e., the medium traffic scenario, SHARC
provides query times of about 38 ms being sufficient for many applications.
Moreover, SHARC allows profile-queries that cannot be handled by a plain label-
correcting algorithm due to memory consumption.

6 Conclusion

In this work, we presented the first efficient speed-up technique for exact rout-
ing in large time-dependent transportation networks. We generalized the recently
introduced SHARC-algorithm by augmenting several static routines of the pre-
processing to time-dependent variants. In addition, we introduced routines to
handle the problem of expensive shortcuts. As a result, we are able to run fast
queries on continental-sized transportation networks of both roads and of rail-
ways. Moreover, we are able to compute the distances between two nodes for all
possible departure times.

Regarding future work, one could think of faster ways of composing, merging,
and approximating piece-wise linear functions as this would directly accelerate
preprocessing and, more importantly, profile-queries significantly. Another in-
teresting question is, whether SHARC is helpful to run multi-criteria queries in
time-dependent graphs. The good performance of the multi-metric variant of
static SHARC [13] might be a good indicator that this works well. This is very
interesting for timetable information systems as users may be willing to accept
longer travel times if the required number of transfers is smaller.

Acknowledgments. The author thanks Veit Batz, Reinhard Bauer, Robert
Görke, Riko Jacob, Bastian Katz, Ignaz Rutter, Peter Sanders, Dominik Schultes

Time-Dependent SHARC-Routing 343

and Dorothea Wagner for interesting discussions on time-dependent routing.
Moreover, I thank Giacomo Nannicini for providing me with his time-dependent
edge-cost generator, and Thomas Pajor for his work on timetable data parsers.

References

1. Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik 1, 269–271 (1959)

2. Schultes, D.: Route Planning in Road Networks. PhD thesis, Uni. Karlsruhe (2008)
3. Delling, D., Wagner, D.: Landmark-Based Routing in Dynamic Graphs. In: Deme-

trescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 52–65. Springer, Heidelberg (2007)
4. Schultes, D., Sanders, P.: Dynamic Highway-Node Routing. In: Demetrescu, C.

(ed.) WEA 2007. LNCS, vol. 4525, pp. 66–79. Springer, Heidelberg (2007)
5. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient Models for Timetable

Information in Public Transportation Systems. ACM J. of Exp. Al. 12, 2–4 (2007)
6. Cooke, K., Halsey, E.: The Shortest Route Through a Network with Time-

Dependent Intermodal Transit Times. Journal of Mathematical Analysis and Ap-
plications, 493–498 (1966)

7. Kaufman, D.E., Smith, R.L.: Fastest Paths in Time-Dependent Networks for Intel-
ligent Vehicle-Highway Systems Application. Journal of Intelligent Transportation
Systems 1, 1–11 (1993)

8. Orda, A., Rom, R.: Shortest-Path and Minimum Delay Algorithms in Networks
with Time-Dependent Edge-Length. Journal of the ACM 37, 607–625 (1990)

9. Hart, P.E., Nilsson, N., Raphael, B.: A Formal Basis for the Heuristic Determina-
tion of Minimum Cost Paths. IEEE Transactions on Systems Science and Cyber-
netics 4, 100–107 (1968)

10. Goldberg, A.V., Harrelson, C.: Computing the Shortest Path: A* Search Meets
Graph Theory. In: 16th Annual ACM–SIAM Symposium on Discrete Algorithms
(SODA), pp. 156–165 (2005)

11. Disser, Y., Müller-Hannemann, M., Schnee, M.: Multi-Criteria Shortest Paths in
Time-Dependent Train Networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS,
vol. 5038, pp. 347–361. Springer, Heidelberg (2008)

12. Nannicini, G., Delling, D., Liberti, L., Schultes, D.: Bidirectional A* Search for
Time-Dependent Fast Paths. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038,
pp. 334–346. Springer, Heidelberg (2008)

13. Bauer, R., Delling, D.: SHARC: Fast and Robust Unidirectional Routing. In: 10th
Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 13–26 (2008)

14. Hilger, M., Köhler, E., Möhring, R.H., Schilling, H.: Fast Point-to-Point Shortest
Path Computations with Arc-Flags. In: 9th DIMACS Implementation Challenge -
Shortest Paths (2006)

15. Dean, B.C.: Continuous-Time Dynamic Shortest Path Algorithms. Master’s thesis,
Massachusetts Institute of Technology (1999)

16. Pellegrini, F.: SCOTCH: Static Mapping, Graph, Mesh and Hypergraph Partition-
ing, and Parallel and Sequential Sparse Matrix Ordering Package (2007)

17. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Better Landmarks Within Reach. In:
Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 38–51. Springer, Heidelberg
(2007)

18. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Highway Hierarchies Star. In:
9th DIMACS Implementation Challenge - Shortest Paths (2006)

Detecting Regular Visit Patterns

Bojan Djordjevic1,2, Joachim Gudmundsson2, Anh Pham1,2,
and Thomas Wolle2

1 School of Information Technologies, University of Sydney, NSW 2006, Australia
bojan@cs.usyd.edu.au, vinhanh@gmail.com

2 NICTA� Sydney, Locked Bag 9013, Alexandria NSW 1435, Australia
{joachim.gudmundsson,thomas.wolle}@nicta.com.au

Abstract. We are given a trajectory T and an area A. T might intersect
A several times, and our aim is to detect whether T visits A with some
regularity, e.g. what is the longest time span that a GPS-GSM equipped
elephant visited a specific lake on a daily (weekly or yearly) basis, where
the elephant has to visit the lake most of the days (weeks or years), but
not necessarily on every day (week or year).

During the modelling of such applications, we encounter an elementary
problem on bitstrings, that we call LDS (LongestDenseSubstring).
The bits of the bitstring correspond to a sequence of regular time points,
in which a bit is set to 1 iff the trajectory T intersects the area A at the
corresponding time point. For the LDS problem, we are given a string s as
input and want to output a longest substring of s, such that the ratio of 1’s
in the substring is at least a certain threshold.

In our model, LDS is a core problem for many applications that aim
at detecting regularity of T intersecting A. We propose an optimal al-
gorithm to solve LDS, and also for related problems that are closer to
applications, we provide efficient algorithms for detecting regularity.

1 Introduction

Recent technological advances of location-aware devices and mobile phone net-
works provide increasing opportunities to trace moving individuals. As a result
many different areas including geography, market research, database research,
animal behaviour research, surveillance, security and transport analysis involve
to some extent the study of movement patterns of entities [1,6,10]. This has
triggered an increasing amount of research into developing algorithms and tools
to support the analysis of trajectory data [7]. Examples are detection of flock
movements [3,5,8], leadership patterns [4], commuting patterns [11,12,13] and
identification of popular places [9].

In this paper, we introduce and study a problem called the Longest Dense
Substring problem, which originally stems from a problem concerning the anal-
ysis of trajectories, namely detecting regular visits to an area. As an example,
� NICTA is funded by the Australian Government’s Backing Australia’s Ability ini-

tiative, in part through the Australian Research Council.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 344–355, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Detecting Regular Visit Patterns 345

consider a person whose locations are tracked over time. It is easy to detect
which areas are important for her, such as home, work, local shopping areas and
the cricket ground. But it would be interesting to find out if she goes to the
cricket ground with some regularity, for example batting practice every Wednes-
day night. Note that the visits may be regular even though the cricket ground is
not visited every Wednesday evening. It might be a regular event even though
it only takes place 50% of all Wednesday evenings.

The above examples give rise to the following problem, as illustrated in Fig. 1.
Given an area A in some space and a trajectory T , one can generate a sequence
of n time intervals I = 〈I1 = [ts1, t

e
1], . . . , In = [tsn, t

e
n]〉 for which T intersects

the area A. Some of these intervals might be important for our application,
while others are not (e.g. a person’s visit to the cricket ground on a Sunday
to watch a match is not interesting for detecting regular practice that occurs
on Wednesdays). Hence, we look at whether T intersects A for a sequence of
regular time points. For modelling regularity among the sequence of time points,
we introduce two important notions: the period length p and the offset o. For
fixed period length p and offset o (with o < ts1 + p), we have a sequence of time
points between ts1 and ten uniquely defined in the following way: All time points
are equidistant with distance p and the first time point is at time o (e.g. if o is
chosen to be a ‘Wednesday at 19:30’, and p equals 7 days, then all these time
points correspond to all ‘Wednesday at 19:30’ for all weeks). Having the entire
sequence of regular time points, the problem is to find the longest subsequence of
consecutive time points such that T intersects A with high density (e.g. among
the last three years, find the longest time span that a person was at the cricket
ground on Wednesdays at 19:30). The density allows us to model exceptional
occurrences of T not intersecting A (we still would like to detect the regular
Wednesday’s practice, even though the person called in sick on some Wednes-
days). We model the density as a value c ∈ [0, 1] and require that T intersects A
for at least (100 · c)% of the times. To further formalise the above, we associate
to each regular time point a value in {0, 1}. This value is 1 iff there exists an
interval I ∈ I such that the time point is inside I, (this can be extended to
‘approximate’ versions where the value is set to 1 if A is visited approximately
at this time point). These values generate the bitstring s(o, p) for fixed p and o
(for the example of batting practice, the bits indicate that a person has or has
not been at the cricket ground on the corresponding Wednesday at 19:30). Now
the aim is to compute a longest substring sopt of s(o, p) with the ratio of 1’s
being at least c. We refer to such an optimal substring sopt as a longest dense
substring. A longest dense substring represents a longest time span, where T
visited A with regularity and high density (defined by o, p and c). This gives the
following problem. Let length(s) denote the length of bitstring s, and ratio(s) is
the number of 1’s in s divided by length(s).

Problem: LDS (LongestDenseSubstring)

Input: A string s and a real number c ∈ (0, 1].
Question: What is a longest dense substring sopt ⊆ s, i.e. what is a longest

substring sopt of s with ratio(sopt) ≥ c?

346 B. Djordjevic et al.

A

I = 〈[ts1, te1], [ts2, te2], [ts3, te3], [ts4, te4]〉

te
4

te
2

te
1

te
3

ts
3 ts

2

ts
4

ts
1

=⇒

T

o p

0
p

0
p

1 1

te
4te

2te
1 te

3ts
3ts

2 ts
4ts

1

Fig. 1. A trajectory T and an area A is shown. From this, we derive the sequence of
intervals I from which we obtain the sequence of regular time points and also s(o, p).

LDS plays an important role for most of our applications for detecting reg-
ularity. Despite the fact that it seems fundamental, nothing is known about it
to the best of the authors’ knowledge. Motivated from the analysis of trajec-
tories, we have different variants for our applications. For an application, we
may or may not be given a set of offsets and/or a set of period lengths. Thus
together with the LDS-problem, we will also focus on finding the offsets and/or
period lengths that generate the string that contains a longest dense substring.
The perhaps given offsets and/or period lengths then generate an entire set of
strings. Depending on the application and our approach, we can then compute
a longest dense substring for each string or over all strings in this set of strings.
The exact definitions are given in the appropriate section.

In Section 2, we propose an optimal algorithm to solve LDS. This algorithm is
used in Section 3, where we consider the case when both a set of possible offsets
and a set of possible period lengths are given as input. For example if we know
the first time of the period we would have a fixed offset, or set of possible offsets.
In the most common scenario, one is given a set of possible period lengths. This
variant is considered in Sections 4 and 5. In Section 6, we consider the general
version, where nothing is known regarding the offset and only a lower bound is
given for the period length. We conclude the paper with some final remarks in
Section 7. Due to space constraints, detailed proofs are omitted.

2 Optimally Solving LDS

We present an algorithm to solve LDS for a string s(o, p), for given period length
p, offset o and density ratio c. Note that the length of the string s(o, p) can be
much larger than the number of intervals in I. Hence, we study a flavour of LDS

that deals with compressed strings, where runs of 1s or 0s are compressed.
A compressed bit-string is easy to obtain from a normal bitstring or a set I

of intervals: runs of 0s or 1s are represented as pairs (count, value); for example,
a run (of maximal length) of x bits whose value is 0 is represented by (x, 0). A
compressed bitstring scomp that arises from I for an offset o and a period length
p is a sequence of such pairs:

scomp(o, p) = (count1, value1)(count2, value2)...(countk, valuek)

Detecting Regular Visit Patterns 347

1

i

16

0

4

8

8 124

−4

0

4

1

i

168 124 1

i

168 124

−4

0

4
c · i

f1(i)

f2(i) LLE(i) URE(i)

Fig. 2. Exemplary illustrations of f1(i), f2(i), LLE(i) and URE(i) for c = 0.6 and the
compressed bit string (4, 0)(2, 1)(1, 0)(3, 1)(2, 0)(1, 1)(2, 0)(1, 1)

The number of bits in scomp is
∑k

i=1 counti, where the number k of pairs depends
on the intervals and on o and p. The advantage of a compressed bit-string which
is derived from a set of n intervals, is that its size is linear in n. The results of
this section carry over to the problem with non-compressed bitstrings.

Problem: LDScomp

Input: A compressed string scomp of k pairs and a real number c ∈ (0, 1].
Question: What is a compressed longest dense substring sopt ⊆ scomp with

ratio(sopt) ≥ c?

Our general approach to solve LDScomp is to transform it in the following
way. We consider a function f1(i) that is the number of 1’s in scomp from
the first position to position i, see Fig. 2(a). We then define a second func-
tion f2 that is obtained from f1 by skewing the coordinate system: f2(i) :=
f1(i) − c · i, see Fig. 2(b). We observe that a longest dense substring in scomp

corresponds to two indices i1 ≤ i2, such that i2 − i1 is as large as possible
and f2(i1) ≤ f2(i2). To compute such indices efficiently, we define a lower left
envelope LLE(i) := min1≤j≤i f2(j). In a symmetric way, we also define an up-
per right envelope URE(i) := maxi≤j f2(j). These envelopes are indicated in
Fig. 2(c). Finding two indices i1 ≤ i2 where i2 − i1 is as large as possible and
f2(i1) ≤ f2(i2) can be done by a ‘walking along’ these envelopes with two point-
ers i1 and i2, initially both are at bit position 1. With i2 we walk along URE as
long as URE(i2) ≥ LLE(i1). We then walk forward with i1 on LLE and repeat
the process until both pointers reached the end of the envelopes. During this
process, we keep track of the largest difference between these two pointers.

Theorem 1. Let scomp be a compressed bitstring represented by k pairs. There
is an O(k) time algorithm to solve LDScomp for scomp, for a given c.

3 Given Offsets and Period Lengths

If we are given a sequence I of n intervals, a set P of period lengths and a set O
of offsets, we can use the results in Section 2 and run the algorithm of Theorem 1
on every string s(o, p) that is generated by any combination of p ∈ P and o ∈ O.
We obtain the following lemma.

348 B. Djordjevic et al.

Lemma 1. Let O be a set of offsets and P be a set of period lengths. In O(|O| ·
|P | · n) time, we can compute the overall longest dense substring over all p ∈ P
and o ∈ O. In the same time, we can compute the longest dense substrings for
all combinations of p ∈ P and o ∈ O.

4 Given Period Lengths (Approximate)

Here, we are given a set of period lengths P together with the set of intervals I.
We propose an efficient algorithm that computes for each period length p ∈ P all
approximate longest dense substrings – one for each possible offset. The general
approach is to run an algorithm for every p ∈ P . For a fixed p, the algorithm is as
follows: We cut the time-line and intervals between ts1 and ten into te

n−ts
1

p pieces of
length p, see Fig. 4(a). We arrange all the pieces into a two dimensional structure
by putting them above each other, see Fig. 4(b). Now we scan this structure from
left to right with a vertical scan line. The scan line stops at events, which are
moments during the scan, where the scan line leaves or enters any interval of
any piece. At each event, we perform certain computations. We can interpret
inside an interval as bit 1 and outside as bit 0. Hence, each vertical position
o of the scan line cutting through the pieces represents a bit-string s(o, p) of
length te

n−ts
1

p . Note that this bitstring does not change in between two events;
and hence, we only have at most 2 · n offsets to consider.

We observe that from one event to the next, exactly one bit will flip in s(o, p).
(In the case that two or more intervals have the same endpoint modulo p, we
define an order on them according to their absolute time.) In the just mentioned
approach, we spend O(te

n−ts
1

p) time for each bitstring, even though this bitstring
differs only by one bit from the previous bitstring. We will present an approxima-
tion algorithm that spends O(log te

n−ts
1

p) time per bitflip. The main idea is that
the bitstring s(o, p) is represented in the leaves of a binary tree T . For a bitflip,
we have to update the corresponding leaf of T and also information stored in
nodes along the path from that leaf to the root of T . After that we can query
the tree T to find an approximate solution for the current bitstring. Updating
and querying can be done in logarithmic time, if T is balanced. In addition to T ,
we store in an event queue the O(n) events in sorted order. We have one event
for each endpoint of an interval, each of which causes a bitflip.

For our approximation algorithm, we assume that we are given a constant
real ε, 0 < ε < 1. To clarify what we mean by an approximation, let sopt be
an optimal solution to the LDS problem on a string s. A (1 − ε)-approximate
solution to this problem is a string s′ ⊆ s with ratio(s′) ≥ (1 − ε) · c and
length(s′) ≥ length(sopt). Note that sopt and s′ can be disjoint and that s′ can
be much longer than sopt, and ratio(s′)

ratio(sopt)
can be smaller than (1 − ε).

The Data Structure T : The structure T is a binary tree with the leaves
representing the bits of the current string s, see Fig. 3. To ease the description,
we assume w.l.o.g. that T is a complete binary tree. We define leaves of T to

Detecting Regular Visit Patterns 349

v1 v2 vm

︸ ︷︷ ︸

sv1

︸ ︷︷ ︸

svm

︸ ︷︷ ︸

sv2

Fig. 3. The tree T for string s is shown (grey arrows are the level-links). Also the list
of m nodes v1, ..., vm on the same level as v1 and starting with v1 is indicated (grey
rectangle), as well as the substrings corresponding to those nodes.

have height-level 0 and the root of T has height-level log(length(s)). Each node
v1 of the tree represents a substring sv1 of s that contains exactly those bits of
s that are represented in the leaves of the subtree rooted at v1. The length of
sv1 depends on the height-level level (v1) of v1, i.e. length(sv1) = 2level(v1).

Each node in T will store four values and two links as described next. For
each node v1, we store the ratio ratio(sv1) and the length length(sv1) of the
corresponding string sv1 . We also create level-links (indicated in Fig. 3) that
connect consecutive nodes in T on the same height-level into a doubly-linked
list. On top of that, we attach two other values to every node v1. Since the tree
is level-linked, we can easily access the nodes v2, v3, ... on the same height-level
as v1 and to the right of v1 in T , see Fig. 3. Hence, we can easily compute the
ratio and length of the substrings obtained by concatenating (‘◦’-operation) the
substrings sv1 , sv2 , ..., svi . For 1 ≤ i ≤ m, we obtain m such substrings, where
m := � 4

ε − 4�. And among those we store at v1 the length lengthmax (v1) of the
longest such substring with ratio at least (1 − ε) · c. Note that lengthmax (v1)
is always a multiple of length(sv1). Additionally, we store at v1 the maximum
lengthtree

max (v1) of this value over all nodes of the subtree rooted at v1. Using
elementary techniques and results, we can conclude with the following lemma.

Lemma 2. Constructing the tree T and the event queue can be done in O(1
ε2 ·

te
n−ts

1
p + n logn) time and O(te

n−ts
1

p + n) space.

Once we have the tree T for string s, we will see that an optimal solution sopt ⊆ s
to the LDS problem can be approximated by concatenating at most m substrings
that correspond to consecutive tree-nodes on the same height-level.

Lemma 3. Let lvl be the smallest height level in T such that length(sopt) ≤
m · 2lvl. Among the nodes of T on level lvl, let v1 be the left-most node with
sv1 ∩ sopt
= ∅, and let vi be the right-most node with svi ∩ sopt
= ∅. Then
ratio(sv1 ◦ ... ◦ svi) ≥ (1 − ε) · c and sopt ⊆ sv1 ◦ ... ◦ svi .

Note that the previous lemma also holds for any string with ratio at least c.
Nevertheless, we formulated it with respect to an optimal solution sopt, and we

350 B. Djordjevic et al.

can conclude the existence of approximate solutions. For finding an approximate
solution, recall that for each node v in T , we store the lengthmax (v) values.

Lemma 4. Let lvl and v1, ..., vi be defined as in Lemma 3, and let s′ be the
string defined by s′ := sv1 ◦ sv2 ◦ ... and length(s′) = lengthmax (v1). Then s′ ⊇
sv1 ◦ ... ◦ svi ⊇ sopt.

So far, we have considered the approximate longest dense substrings only for
one string for the current position of the scan line. Now, we will move the scan
line to the right until it either leaves an interval or enters a new interval. This
results in one bitflip, and we have to update T accordingly.

Lemma 5. For a single bitflip, T can be updated in O(1
ε2 · log te

n−ts
1

p) time.

Given the tree at any time, an approximate solution to the LDS problem can be
found by following the path from the root of the tree to children with highest
lengthtree

max value. From this and Lemmas 4 and 5, we derive the following theorem.

Theorem 2. Let P be a set of period lengths and I be a set of n intervals. We
can compute approximate solutions for all longest dense substrings for all period
lengths in P and all possible offsets in O(|P |·(n(log n+ 1

ε2 log(ten−ts1))+(ten−ts1)))
time and O((ten − ts1) + n) space.

5 Given Period Lengths (Exact)

As in the previous section we are given a set of period lengths P together with
the set of intervals I = 〈I1 = [ts1, te1], . . . , In = [tsn, ten]〉, see Fig. 4(a). We refer to
the intervals in I as grey intervals and to the intervals between them as white
intervals. We give an efficient algorithm that computes a longest dense substring
for each period length p ∈ P over all possible offsets. The general approach is
also the same as in the previous section: run an algorithm for every p ∈ P . For
a fixed p, the algorithm is as follows: we cut the time-line and intervals between
ts1 and ten into ρ = te

n−ts
1

p pieces of length p, denoted �1, . . . , �ρ. The last piece
might have length less than p. We arrange all the pieces into a two dimensional
structure by putting them above each other, as shown in Fig. 4(b).

Transform into a weighted range query problem: We will show how
the original problem can be transformed into the problem of finding the tallest
grounded rectangle among a set of weighted points such that the total weight
of the points within the rectangle is at least zero. A grounded rectangle is a
rectilinear rectangle whose bottom left corner lies at (0, o′) for some offset o′.
The tallest rectangle is the one with the maximum height. Subsequently, we
show how this problem can be solved efficiently.

The part of a piece that is grey or white is called a grey part or white part,
respectively, see Fig. 4(b). Each part has an index i that indicates the position
along the vertical axis. The problem now is to find a longest vertical segment

Detecting Regular Visit Patterns 351

i

o
1
2
3
4
5
6
7

p

A

o
1
2
3
4
5

A

o
1
2
3
4
5

A′

o

A′i′i′i′

tp

te1ts1 t22 te2

I1 I2

wt(�) = 2

1 -1

1 -1
2 -2
1 -1

-c
-2c

-2c
-c

-c

(b)

(e)(d)(c)

(a)

Fig. 4. (a) Input is a set of intervals and a period length p. (b) Cut off pieces of
length p and place them above each other. (c) Compressed segments and best line. (d)
Segments replaced by their endpoints, best line becomes best grounded rectangle. (e)
The additional points.

A = {o′} × [i1, i2] that intersects at least c(i2 − i1 + 1) grey parts. Note that a
grey or white interval that is much longer than p would create a large number
of adjacent pieces that each contain just one grey or white part of length p, such
as pieces 2 to 3 and 5 to 6 in Fig. 4(b). To overcome this problem, we compress
them into a single piece with just one grey or white part. The pieces at i = 2 and
i = 3 (respectively at i = 5 and i = 6) get compressed into the piece at i′ = 2
(respectively at i′ = 4) in Fig. 4(c). When pieces are compressed, all pieces on
top are moved downward to fill the gap. Each compressed piece �′ is assigned
a weight wt(�′), equal to the number of pieces that were compressed. For each
uncompressed piece �′ we let wt(�′) = 1. Note that this compression is valid since
an optimal pattern will always contain either all or none of the grey parts in a
compressed piece. The obtained set of pieces is denoted Λ = 〈�′1, . . . , �′ρ′〉. We
further assign to each grey piece l the weight wt(l), equal to the weight wt(�′)
of the compressed piece �′ it belongs to.

When pieces with indices in the range [i1, i2] are compressed into a single
piece at i′, we lose information about the vertical position of pieces. So we define
two mappings α1(i′) and α2(i′) that return the lowest and highest index of the
compressed pieces, i.e. α1(i′) returns i1 and α2(i′) returns i2. Note that we can
go from the input in Fig. 4(a) to the compressed version in Fig. 4(c) directly in
O(n) time.

We can now rewrite the original problem as follows. Find an offset o′ and
integers i′1 and i′2 such that α2(i′2) − α1(i′1) is maximised and the sum of the
weights over all grey parts intersected by the segment {o′} × [i′1, i′2] is at least
c(α2(i′2)−α1(i′1) + 1). Since there are only O(n) different offsets that might give
different bitstrings we can use the approach presented in Section 3 to obtain the
following observation.

352 B. Djordjevic et al.

Observation 1. A longest pattern for any offset can be computed in O(n2)
time.

In the rest of this section we will prove that the running time can be improved
to O(n

3
2 log2 n). We replace each grey part l by two points qleft(l) and qright(l).

The point qleft(l) has weight wt(l) and is placed at the left endpoint of l and
qright(l) has weight −wt(l) and is placed at the right endpoint of l, as illustrated
in Fig. 4(d). The set of weighted points is denoted Λ′. We observe that the sum
over all the weights of the grey parts in Λ intersected by a vertical segment A
is equal to the sum over the points in Λ′ in the rectilinear rectangle A′ with
top right corner at the top endpoint of A, bottom right corner at the bottom
endpoint of A and unbounded to the left, see Fig. 4(c) and (d). The condition
on A′ is that

∑
q∈A′ wt(q) ≥ c(α2(i′2) − α1(i′1) + 1).

Finally, for each piece �′, insert into Λ′ a point (0, i′), where i′ is the index of
�′, as shown in Fig. 4(e), with weight −wt(�′) · c. The sum over the new points
in the region A′ will be equal to −c(α2(i′2) − α1(i′1) + 1), so the constraint on
A′ becomes that the sum over all points in A′ is at least zero. Note that the
constraint on the sum is now independent of the height of A′, i.e. i′1 and i′2. We
have now transformed the original problem into the following problem:

Problem:
Input: A set of weighted points in the plane.
Question: What is a grounded rectangle [0, o′]× [i′1, i′2] of total weight at least

zero that maximises α2(i′2) − α1(i′1)?

Finding a longest pattern: Partition the points in Λ′ with respect to their
i′-coordinates into

√
n sets Λ′

1, . . . , Λ
′√

n
, each set having at most

√
n points, as

shown in Fig. 5(a). An optimal solution will either only contain points from a set
Λ′

i, for some 1 ≤ i ≤
√
n, or contain points from several consecutive sets. In the

former case we can find an optimal solution by simply running the quadratic time
algorithm from Observation 1 on each set Λ′

i, to find the longest pattern that
does not cross a boundary between the sets. It remains to handle the case when
the optimal solution contains points from several consecutive sets. Recall that the
height of A in the uncompressed setting is α2(i′2)−α1(i′1). For a bottom side fixed
at i′1, finding the tallest rectangle is equivalent to finding one that maximises
i′2. We do this for every value of i′1 and at the end report the rectangle with
the largest height in the uncompressed setting. We first need to define a new
problem. A point q dominates a point q′ if and only if qx ≥ q′x and qy ≥ q′y. Let
dom(q) be the set of points dominated by a point q. We define the dominance
sum, denoted σ(q) to the be sum of wt(q′) over all points q′ dominated by q.
Finally, the Highest Valid Dominance Point, or HVDP (x1, x2, S), is the point
q with the following properties: σ(q) ≥ S, qx ∈ [x1, x2), and qy is maximised.

Lemma 6. We can preprocess a set of n weighted points in O(n log2 n) time
using O(n log n) space s.t. HVDP queries can be answered in O(log2 n) time.

Detecting Regular Visit Patterns 353

(a)
Λ′

5

Λ′
4

Λ′
3

Λ′
2

Λ′
1

o

i′

Λ′
2

D2

[)L

(o′, i′2)

(b)

oj oj+1

Fig. 5. (a) The points in Λ′ are split into
√

n sets. (b) The grounded rectangle is split
into two quadrants. Any point on L covers the same set of points in Λ′

i.

Now, for each set Λ′
i, 1 ≤ i <

√
n, we build a HVDP data structure Di on all the

points in Λ′
i+1, . . . , Λ

′√
n
. We are going to search for grounded rectangles with

the bottom edge in Λ′
i and the top edge using the structure Di. Note that such

a rectangle can be partitioned into a top left quadrant in Λ′
i and a bottom left

quadrant in Di, as shown in Fig. 5(b).
Let o1 < . . . < om be the ordered set of o-coordinates of the points in Λ′

i, where
m ≤

√
n, and let I ′ be the set of the corresponding i′-coordinates. For a fixed

i′1 ∈ I ′ we partition the horizontal line i′ = i′1 into O(
√
n) half-open segments

〈L1 = [o1, o2)×{i′1}, . . . , Lm−1 = [om−1, om)×{i′1}, Lm = [om,∞)×{i′1}〉, such
as segment L in Fig. 5(b). Let q be a point and dom′(qo, qi′) be the set of points
q′ in Λ′

i with q′o ≤ qo and q′i′ ≥ qi′ , i.e. the set of points in the top-left quadrant
from q. Note that dom′(qo, qi′) will be the same for any point q on the half-open
segment [oa, oa+1) × {i′1}, and will therefore be equal to dom′(oa, i

′
1).

For each segment Lj we want to find the tallest rectangle with the bottom
right corner on Lj . Let S be the sum over points in dom′(xj , i

′
1), which we can

find using semigroup dominance searching using standard techniques [2]. Now we
query Di for the highest point (o′, i′2) with o′ ∈ [oj , oj+1) and whose dominance
sum is at least −S. We calculate the uncompressed height of each rectangle,
α2(i′2)−α1(i′1), and report only the tallest one. This process is repeated for each
i′1 ∈ I ′. We summarise by stating the main result of this section.

Theorem 3. Let P be a set of period lengths and I be a set of n intervals.
For each period length in P , we can compute a longest dense substring over all
possible offsets in O(|P | · n 3

2 log2 n) time and O(n logn) space.

6 Nothing Given

Even if we are not given a set of possible offsets nor a set of possible period
lengths, we still can tackle the problem of computing the overall longest dense
substring over all period lengths and over all offsets.

We solve this problem under the following assumptions: the period length p
can be any value in [0, ten− ts1], the offset can be any value between ts1 and ts1 +p,

354 B. Djordjevic et al.

and the period length p is larger than any interval. Hence, a single visit can only
contribute once to a bit-string. Usually the lower bound is related to the length
of the shortest interval between two visits. We believe that considering these
constraints is meaningful from an application point of view. We observe that it
is sufficient to check O(n3

c) period lengths, one of which leads to a bit string
with overall longest dense substring. For these period lengths, we can apply
the algorithm in Section 5 (respectively, Observation 1) to obtain the following
theorem.

Theorem 4. There exists an O(n5

c) time and O(n) space algorithm, and an

O(n
9
2

c) time and O(n logn) space algorithms to compute an overall longest dense
substring, assuming that the period length p can be any value in [0, ten − ts1], the
offset can be any value between ts1 and ts1 + p, and that the intervals are shorter
than the period length.

7 Concluding Remarks

In our applications, we look for regularities when a trajectory T intersects an
area A. To this end, we generate a bit string from T and A that reflects regularity
by specifying a period length and an offset. The here proposed approaches are
not confined to regular visit patterns, but can be used for finding regularities in
anything that can be expressed as a bit string.

During the course of this application driven research, we encountered the
elementary problem, called LDS, of computing a longest dense substring, which
is at the core of many applications. We provided an optimal algorithm to solve
this basic LDS problem, see Theorem 1. To solve our more applied problems,
we proposed efficient (approximation) algorithms that compute longest dense
substrings, and hence, longest regular visit patterns for the cases where we are
given a set of possible offsets and/or a set of possible period lengths.

It is often a topic for discussion to specify what our algorithms should produce
as output. We chose to maximise the length of a substring, while the density has
to be above a certain threshold. From an application point of view it might
be a good choice to output all substrings of a string of which the length and
the density are above certain thresholds. Some of our algorithms can be easily
extended (with increased running time) to this report all version of our problems,
while other algorithms require more research for such an extension.

When generating bit strings, we used a sequence of time points to define the
bit values. It is also possible to use time spans instead (e.g. each bit represents
an entire day and is set to 1, iff the person has been to the cricket ground on
that day at any time). This is appropriate for many applications, and because
our results also hold for this modelling, we can conclude the practical relevance
of our algorithms.

Worthwhile directions for further research include the consideration of LDS
and the related applications when we have streaming data. Also if we do not know
the area(s) A, we can consider the problem of computing the area(s) A that are
visited with regularity (perhaps specified by length and density thresholds).

Detecting Regular Visit Patterns 355

Acknowledgements

We would like to thank Mark de Berg, Sergio Cabello and Damian Merrick for
sharing their insights and for very useful discussions. Some of these discussions
took place during the GADGET Workshop on Geometric Algorithms and Spatial
Data Mining, funded by the Netherlands Organisation for Scientific Research
(NWO) under BRICKS/Focus grant number 642.065.503.

References

1. Wildlife tracking projects with GPS GSM collars (2006),
http://www.environmental-studies.de/projects/projects.html

2. Agarwal, P., Erickson, J.: Geometric range searching and its relatives (1999)
3. Al-Naymat, G., Chawla, S., Gudmundsson, J.: Dimensionality reduction for long

duration and complex spatio-temporal queries. In: Proceedings of the 22nd ACM
Symposium on Applied Computing, pp. 393–397. ACM, New York (2007)

4. Andersson, M., Gudmundsson, J., Laube, P., Wolle, T.: Reporting leaders and
followers among trajectories of moving point objects. GeoInformatica (2007)

5. Benkert, M., Gudmundsson, J., Hübner, F., Wolle, T.: Reporting flock patterns.
Computational Geometry—Theory and Applications (2007)

6. Frank, A.U.: Socio-Economic Units: Their Life and Motion. In: Frank, A.U., Raper,
J., Cheylan, J.P. (eds.) Life and motion of socio-economic units. GISDATA, vol. 8,
pp. 21–34. Taylor & Francis, London (2001)

7. Gudmundsson, J., Laube, P., Wolle, T.: Encyclopedia of GIS, chapter Movement
Patterns in Spatio-temporal Data, pp. 726–732. Springer, Heidelberg (2008)

8. Gudmundsson, J., van Kreveld, M.: Computing longest duration flocks in trajectory
data. In: Proceedings of the 14th ACM Symposium on Advances in GIS, pp. 35–42
(2006)

9. Gudmundsson, J., van Kreveld, M., Speckmann, B.: Efficient detection of motion
patterns in spatio-temporal sets. GeoInformatica 11(2), 195–215 (2007)

10. Güting, R.H., Schneider, M.: Moving Objects Databases. Morgan Kaufmann Pub-
lishers, San Francisco (2005)

11. Lee, J.-G., Han, J., Whang, K.-Y.: Trajectory clustering: a partition-and-group
framework. In: SIGMOD 2007: Proceedings of the 2007 ACM SIGMOD interna-
tional conference on Management of data, pp. 593–604. ACM Press, New York
(2007)

12. Mamoulis, N., Cao, H., Kollios, G., Hadjieleftheriou, M., Tao, Y., Cheung, D.:
Mining, indexing, and querying historical spatiotemporal data. In: Proceedings of
the 10th ACM SIGKDD International Conference On Knowledge Discovery and
Data Mining, pp. 236–245. ACM, New York (2004)

13. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional tra-
jectories. In: Proceedings of the 18th International Conference on Data Engineering
(ICDE 2002), pp. 673–684 (2002)

http://www.environmental-studies.de/projects/projects.html

Improved Approximation Algorithms

for Relay Placement

Alon Efrat1, Sándor P. Fekete2, Poornananda R. Gaddehosur1,
Joseph S.B. Mitchell3, Valentin Polishchuk4, and Jukka Suomela4

1 Department of Computer Science, University of Arizona
alon@email.arizona.edu, poorna@email.arizona.edu

2 Department of Computer Science, Braunschweig University of Technology
s.fekete@tu-bs.de

3 Department of Applied Mathematics and Statistics, Stony Brook University
jsbm@ams.stonybrook.edu

4 Helsinki Institute for Information Technology HIIT,
University of Helsinki and Helsinki University of Technology

valentin.polishchuk@cs.helsinki.fi, jukka.suomela@cs.helsinki.fi

Abstract. In the relay placement problem the input is a set of sensors and
a number r ≥ 1, the communication range of a relay. The objective is to
place a minimum number of relays so that between every pair of sensors
there is a path through sensors and/or relays such that the consecutive
vertices of the path are within distance r if both vertices are relays and
within distance 1 otherwise. We present a 3.11-approximation algorithm,
and show that the problem admits no PTAS, assuming P �= NP.

1 Introduction

A sensor network consists of a large number of low-cost autonomous devices,
called sensors. Communication between the sensors is performed by wireless
radio with very limited range, e.g., via the Bluetooth protocol. To make the
network connected, a number of additional devices, called relays, must be judi-
ciously placed within the sensor field. Relays are typically more advanced and
expensive than sensors. For instance, in addition to a Bluetooth chip, each relay
may be equipped with a WLAN transceiver, enabling communication between
distant relays. The problem we study in this paper is that of placing a minimum
number of relays to ensure the connectivity of a sensor network.

Two models of communication have been considered in the literature
[1,2,3,4,5,6,7,8]. In both models, a sensor and a relay can communicate if the
distance between them as at most 1, and two relays can communicate if the
distance between them is at most r, where r ≥ 1 is a given number. The mod-
els differ in whether direct communication between sensors is allowed. In the
one-tier model two sensors can communicate if the distance between them is at
most 1. In the two-tier model the sensors do not communicate at all, no matter
how close they are. In other words, in the two-tier model the sensors may only
link to relays, but not to other sensors.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 356–367, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Improved Approximation Algorithms for Relay Placement 357

Formally, the input to the relay placement problem is a set of sensors, identi-
fied with their locations in the plane, and a number r ≥ 1, the communication
range of a relay (w.l.o.g. the communication range of a sensor is 1). The objective
in the one-tier relay placement is to place a minimum number of relays so that
between every pair of sensors there exists a path, through sensors and/or relays,
such that the consecutive vertices of the path are within distance r if both ver-
tices are relays, and within distance 1 otherwise. The objective in the two-tier
relay placement is to place a minimum number of relays so that between every
pair of sensors there exists a path through relays only such that the consecutive
vertices of the path are within distance r if both vertices are relays, and within
distance 1 if one of the vertices is a sensor and the other is a relay (going directly
from a sensor to a sensor is forbidden).

The current best approximation ratio of 7 for one-tier relay placement is due
to Lloyd and Xue [5]. For the two-tier version, Lloyd and Xue [5] suggested a
(5 + ε)-approximation algorithm for arbitrary r ≥ 1; Srinivas et al. [6] gave a
(4+ε)-approximation for the case r ≥ 2. In this paper, we present a polynomial-
time 3.11-approximation algorithm for the one-tier relay placement, and show
that it admits no PTAS unless P = NP (assuming that r is part of the input).
In the full version, we will present a PTAS for the two-tier version; the PTAS
works for arbitrary r ≥ 1.

2 Blobs, Clouds, Stabs, Hubs, and Forests

For two points x, y in the plane let |xy| be the Euclidean distance between
them. Let V be a given set of sensors (points in the plane). We form a unit disk
graph G = (V,E) and a disk graph F = (V, F) where E = {{u, v} : |uv| ≤ 1},
F = {{u, v} : |uv| ≤ 2}; see Fig. 1.

We define a blob to be the union of the unit disks centered at the sensors that
belong to the same connected component of G. We use B to refer to a blob, and
B for the set of all blobs.

Analogously, we define a cloud C ∈ C as the union of the unit disks centered
at the sensors that belong to the connected component of the graph F. The
sensors in a blob can communicate with each other without relays, while the
ones in a cloud might not, even though their disks may overlap. Each cloud

C1

C2

Fig. 1. Dots are sensors in V , solid lines are edges in E and F , and dashed lines
are edges in F only. There are 5 blobs in B (one of them highlighted) and 2 clouds
C1, C2 ∈ C. Arrows are stabs, and small rectangles are hubs. The wide grey line is the
only edge in MStFN(C), which happens to be equal to MSFN(C) here.

358 A. Efrat et al.

C ∈ C consists of one or more blobs B ∈ B; we use BC to denote the blobs that
form the cloud C.

We define a stab to be a relay with an infinite communication range (r = ∞),
and a hub as a relay without the ability to communicate with the other relays
(thus hubs can enable communication within one cloud, but are of no use in
communicating between clouds). As will be shown, a solution to stab or hub
placement can be used as a step towards a solution for relay placement.

If we are placing stabs, it is necessary and sufficient to have a stab in each
blob to ensure communication between all sensors (to avoid trivialities we assume
there is more than one blob). Thus, stab placement is equivalent to the set cover
problem: the universe is the blobs, and the subsets are sets of blobs that have a
point in common. In the example in Fig. 1 arrows show an optimal solution to
the stab placement problem; 3 stabs are enough.

If we are placing hubs, it is necessary (assuming more than one blob in the
cloud), but not sufficient, to have a hub in each blob to ensure communication
between sensors within one cloud. In fact, hub placement can be interpreted
as a special case of the connected set cover problem [9,10]. In the example in
Fig. 1 small rectangles show an optimal solution to the hub placement problem
for the cloud C = C1; in this particular case, 2 stabs within the cloud C were
sufficient to “pierce” each blob in BC , however, an additional hub is required to
“stitch” the blobs together. The next lemma shows that, in general, the number
of additional hubs needed is less than the number of stabs:

Lemma 1. Given a feasible solution S to stab placement on BC , we can obtain
in polynomial time a feasible solution to hub placement on BC with 2|S| − 1
hubs.

Proof. Let H be the graph, whose nodes are the sensors in the cloud C and the
stabs in S, and whose edges connect two devices if either they are within dis-
tance 1 from each other or if both devices are stabs (i.e., there is an edge between
every pair of the stabs). Switch off communication between the stabs, thus turn-
ing them into hubs. Suppose that this breaks H into k connected components.
There must be a stab in each connected component. Thus, |S| ≥ k.

If k > 1, by the definition of a cloud, there must exist a point where a unit
disk covers at least two sensors from two different connected components of H.
Placing a hub at the point decreases the number of the connected components
by at least 1. Thus, after putting at most k − 1 additional hubs, all connected
components will merge into one. �

2.1 Steiner Forests and Spanning Forests with Neighbourhoods

Let P be a collection of planar sets; call them neighbourhoods. (In Section 3
the neighbourhoods will be “clusters” of clouds.) For a plane graph G, let
GP = (P, E(G)) be the graph whose vertices are the neighbourhoods and two
neighbourhoods P1, P2 ∈ P are adjacent whenever G has a vertex in P1, a vertex
in P2, and a path between the vertices.

Improved Approximation Algorithms for Relay Placement 359

The Minimum Steiner Forest with Neighbourhoods on P, denoted MStFN(P),
is a minimum-length plane graph G such that GP = (P, E(G)) is connected. The
MStFN is a generalisation of the Steiner tree of a set of points. Note that MStFN
is slightly different from Steiner tree with neighbourhoods (see, e.g., [11]) in that
we are only counting the part of the graph outside P towards its length (since
it is not necessary to connect neighbourhoods beyond their boundaries).

Consider a complete weighted graph whose vertices are the neighbourhoods in
P and whose edge weights are the distances between them. A minimum spanning
tree in the graph is called the Minimum Spanning Forest with Neighbourhoods on
P, denoted MSFN(P). A natural embedding of the edges of the forest is by the
straight-line segments that connect the corresponding neighbourhoods; we will
identify MSFN(P) with the embedding. (As with MStFN, we count the length
of MSFN only outside P.)

We denote by |MStFN(P)| and |MSFN(P)| the total length of the edges of
the forests. It is known that |MSFN(P)| ≤ (2/

√
3)|MStFN(P)| for a point set

P , where 2/
√

3 is the Steiner ratio [12]. The following lemma generalises this to
neighbourhoods.

Lemma 2. For any P, |MSFN(P)| ≤ (2/
√

3)|MStFN(P)|.

Proof. If P is erased, MStFN(P) falls off into a forest, each tree of which is
a minimum Steiner tree on its leaves; its length is within the Steiner ratio of
minimum spanning tree length. �

3 A 3.11-Approximation Algorithm

In this section we give a 3.11-approximation algorithm for one-tier relay place-
ment. We focus on nontrivial instances with more than one blob.

Note that the number of relays in a solution may be exponential in the size
of the input (number of bits). Our algorithm produces a succinct representation
of the solution, given by a set of points and a set of line segments; the relays are
placed on each point and equally-spaced along each segment.

3.1 Overview

The basic steps of our algorithm are as follows:

1. Compute optimal stabbings for clouds which can be stabbed with few relays.
2. Connect the blobs in each of these clouds, using Lemma 1.
3. Greedily connect all blobs in each of the remaining clouds (“stitching”).
4. Greedily connect clouds into clusters, using 2 additional relays per cloud.
5. Connect the clusters by a spanning forest.

The algorithm constructs a set Ar of “red” relays (for connecting blobs in a
cloud, i.e., relays added in steps 1–3), a set Ag of “green” relays (two per cloud,
added in steps 4–5) and a set Ay of “yellow” relays (outside of sensor range,

360 A. Efrat et al.

added in step 5). In the analysis, we compare an optimal solution R∗ to our
approximate one by subdividing the former into a set R∗

d of “dark” relays that
are within reach of sensors, and into a set R∗

� of “light” relays that are outside
of sensor range. We compare |R∗

d| with |Ar| + |Ag|, and |R∗
� | with |Ay|, showing

in both cases that the ratio is less than 3.11.

3.2 Clouds with Few Stabs

For any constant k, it is straightforward to check in polynomial time whether
all blobs in a cloud C ∈ C can be stabbed with i < k stabs. (For any subset
of i cells of the arrangement of unit disks centered on the sensors in C, we can
consider placing the relays in the cells and check whether this stabs all blobs.)
Using Lemma 1, we can connect all blobs in such a cloud with at most 2i−1 red
relays. We denote by Ci the set of clouds where the minimum number of stabs
is i, and by Ck+ the set of clouds that need at least k stabs.

3.3 Stitching a Cloud from Ck+

We focus on one cloud C ∈ Ck+. For a point y in the plane, let B(y) = {B ∈ BC :
y ∈ B} be the set of blobs that contain the point; obviously |B(y)| ≤ 5 for any y.
For any subset of blobs T ⊆ BC , define S(T, y) = B(y) \ T to be the set of blobs
not from T containing y, and define V (T) to be the set of sensors that form the
blobs in T.

Within C, we place a set of red relays AC
r = {yj : j = 1, 2, . . .}, as follows:

1. Choose arbitrary B0 ∈ BC .
2. Initialise j ← 1, Tj ← {B0}.
3. While Tj
= BC :

yj ← arg maxy{|S(Tj, y)| : B(y) ∩ Tj
= ∅},
Sj ← S(Tj , yj),

Tj+1 ← Tj ∪ Sj ,

j ← j + 1.

By induction on j, after each iteration, there exists a path through sensors
and/or relays between any pair of sensors in V (Tj). By the definition of a cloud,
there is a line segment of length at most 2 that connects V (Tj) to V (BC \Tj); the
midpoint of the segment is a location y with S(Tj , y)
= ∅. Since each iteration
increases the size of Tj by at least 1, the algorithm terminates in at most |BC |−1
iterations, and |AC

r | ≤ |BC | − 1. The sets Sj form a partition of BC \ {B0}.
We prove the following performance guarantee.

Lemma 3. For each cloud C we have |AC
r | ≤ 37|R∗

d ∩ C|/12 − 1.

Proof. For each B ∈ BC \ {B0}, define the weight w(B) = 1/|Sj|, where Sj is
the unique set for which B ∈ Sj . We also set w(B0) = 1. We have

∑

B∈BC

w(B) = |AC
r | + 1. (1)

Improved Approximation Algorithms for Relay Placement 361

Consider a relay z ∈ R∗
d ∩C, and find the smallest � with T� ∩B(z)
= ∅, that

is, � = 1 if B0 ∈ B(z), and otherwise y�−1 is the first relay that pierced a blob
from B(z). Partition the set B(z) into U(z) = T� ∩B(z) and V(z) = B(z) \U(z).
Note that V(z) may be empty, e.g., if y�−1 = z.

First, we show that ∑

B∈U(z)

w(B) ≤ 1.

We need to consider two cases. It may happen that � = 1, which means that
B0 ∈ B(z) and U(z) = {B0}. Then the total weight assigned to the blobs in
U(z) is, by definition, 1. Otherwise � > 1 and U(z) ⊆ S�−1, implying w(B) =
1/|S�−1| ≤ 1/|U(z)| for each B ∈ U(z).

Second, we show that

∑

B∈V(z)

w(B) ≤ 1
|V(z)| +

1
|V(z)| − 1

+ · · · +
1
1
.

Indeed, at iterations j ≥ �, the algorithm is able to consider placing the relay yj

at the location z. Therefore |Sj | ≥ |S(Tj , z)|. Furthermore, S(Tj , z)\S(Tj+1, z) =
B(z) ∩ Sj = V(z) ∩ Sj . Whenever placing the relay yj makes |S(Tj , z)| decrease
by k, exactly k blobs of V(z) get connected to Tj . Each of them is assigned the
weight w(C) ≤ 1/|S(Tj , z)|. Thus,

∑
B∈V(z) w(B) ≤ k1/(k1 + k2 + · · · + kn) +

k2/(k2 + k3 + · · · + kn) + · · · + kn/kn, where k1, k2, . . . , kn are the number of
blobs from V(z) that are pierced at different iterations,

∑
i ki = |V(z)|. The

maximum value of the sum is attained when k1 = k2 = · · · = kn = 1 (i.e., every
time |V(z)| is decreased by 1, and there are |V(z)| summands).

Finally, since |B(z)| ≤ 5, and U(z)
= ∅, we have |V(z)| ≤ 4. Thus,

W (z) =
∑

B∈U(z)

w(B) +
∑

B∈V(z)

w(B) ≤ 1 +
1
4

+
1
3

+
1
2

+
1
1

=
37
12
. (2)

The sets B(z), z ∈ R∗
d ∩C, form a cover of BC . Therefore, from (1) and (2),

37
12

|R∗
d ∩C| ≥

∑

z∈R∗
d∩C

W (z) ≥
∑

B∈BC

w(B) = |AC
r | + 1.

�

3.4 Green Relays and Cloud Clusters

At any stage of the algorithm, we say that a set of clouds is interconnected if, with
the current placement of relays, the sensors in the clouds can communicate with
each other. Now, when all clouds have been stitched (so that the sensors within
any one cloud can communicate), we proceed to interconnecting the clouds.
First we greedily form the collection of cloud clusters (interconnected clouds)
as follows. We start by assigning each cloud to its own cluster. Whenever it is
possible to interconnect two clusters by placing one relay within each of the two
clusters, we do so. These two relays are coloured green. After it is no longer

362 A. Efrat et al.

possible to interconnect 2 clusters by placing just 2 relays, we repeatedly place
4 green relays wherever we can use them to interconnect clouds from 3 different
clusters. Finally, we repeat this for 6 green relays which interconnect 4 clusters.

On average we place 2 green relays every time the number of connected com-
ponents in the communication graph on sensors plus relays decreases by one.

3.5 Interconnecting the Clusters

Now, when the sensors in each cloud and the clouds in each cluster are intercon-
nected, we interconnect the clusters by MSFN. We find MSFN on the clusters
and place relays along edges of the forest. Specifically, for each edge e of the
forest, we place 2 green relays at the endpoints of e, and �|e|/r� yellow relays
every r units starting from one of the endpoints (and when we find MSFN, we
minimise the total number of yellow relays that we need). As with interconnect-
ing clouds into the clusters, when interconnecting the clusters we use 2 green
relays each time the number of connected components of the communication
graph decreases by one. Thus, overall, we use at most 2|C| − 2 green relays.

3.6 Analysis: Red and Green Relays

Recall that for i < k, Ci is the class of clouds that require precisely i relays for
stabbing, and Ck+ is the class of clouds that need at least k relays for stabbing.
An optimal solution R∗ therefore contains at least |R∗

d| ≥ k|Ck+| +
∑k−1

i=1 i|Ci|
dark relays (relays inside clouds, i.e., relays within reach of sensors). Further-
more, |R∗

d ∩ C| ≥ 1 for all C.
Our algorithm places at most 2i− 1 red relays per cloud in Ci, and not more

than 37/12|R∗
d ∩ C| − 1 red relays per cloud in Ck+. Adding a total of 2|C| − 2

green relays used for clouds interconnections, we get

|Ar| + |Ag| ≤
∑

C∈Ck+(37|R∗
d ∩ C|/12 − 1) +

∑k−1
i=1 (2i− 1)|Ci| + 2|C| − 2

≤ 37(|R∗
d| −

∑k−1
i=1 i|Ci|)/12 + |Ck+| +

∑k−1
i=1 (2i+ 1)|Ci| − 2

≤ 37|R∗
d|/12 + |Ck+| < (3.084 + 1/k)|R∗

d|.

3.7 Analysis: Yellow Relays

Let R be the communication graph on the optimal set R∗ of relays alone, i.e.,
without sensors taken into account; two relays are connected by an edge in R if
and only if they are within distance r from each other. In R there exists a forest
R′ that makes the clusters interconnected. Let R′ ⊂ R∗ be the relays that are
vertices of R′. We partition R′ into “black” relays R∗

b = R′ ∩ R∗
d and “white”

relays R∗
w = R′ ∩R∗

� – those inside and outside the clusters, resp.
Two black relays cannot be adjacent in R′: if they are in the same cluster,

the edge between them is redundant; if they are in different clusters, the dis-
tance between them must be larger than r, as otherwise our algorithm would
have placed two green relays to interconnect the clusters into one. By a similar

Improved Approximation Algorithms for Relay Placement 363

reasoning, there cannot be a white relay adjacent to 3 or more black relays in
R′, and there cannot be a pair of adjacent white relays such that each of them
is adjacent to 2 black relays. Finally, the maximum degree of a white relay is 5.
Using these observations, we can prove the following lemma.

Lemma 4. There is a spanning forest with neighbourhoods on cloud clusters
that requires at most (4/

√
3 + 4/5)|R∗

w| < 3.11|R∗
w| yellow relays on its edges.

Proof. Let D be the set of cloud clusters. We partition R′ into edge-disjoint
trees induced by maximal connected subsets of white relays and their adjacent
black relays. It is enough to show that for each such tree T which interconnects
a subset of clusters D′ ⊆ D, there is a spanning forest on D′ such that the
number of yellow relays on its edges is at most 3.11 times the number of white
relays in T . As no pair of black relays is adjacent in R′, these edge-disjoint trees
interconnect all clusters in D. The same holds for the spanning forests, and the
lemma follows.

Trees with only one white relay (and thus exactly two black relays) are trivial:
the spanning forest needs only one edge with one yellow relay (and one green in
each end). Therefore assume that T contains at least two white relays.

We introduce yet another colour. For each white relay with two black neigh-
bours, arbitrarily choose one of the black relays and change it into a “grey” relay.
Let w be the number of white relays, let b be the number of remaining black
relays, and let g be the number of grey relays in T .

First, we clearly have b ≤ w. Second, there is no grey–white–white–grey path,
each white relay is adjacent to another white relay, and the maximum degree of
a white relay is 5 (geometry). Therefore the ratio (b+g)/w is at most 9/5. To see
this, let w2 be the number of white relays with a grey and a black neighbour, let
w1 be the number of white relays with a black neighbour but no grey neighbour,
and let w0 be the number of white relays without a black neighbour. By degree
bound, w2 ≤ 4w1+5w0 = 4w1+5(w−w2−w1); therefore 5w ≥ 6w2+w1. We also
know that w ≥ w2+w1. Therefore (9/5)w ≥ (1/5)(6w2 + w1)+(4/5)(w2 + w1) =
(w2 + w1) + w2 = b + g. (The worst case is a star of 1 + 4 white relays, 5 black
relays and 4 grey relays.)

Now consider the subtree induced by the black and white relays. It has fewer
than b + w edges, and the edge length is at most r. By Lemma 2, there is a
spanning forest on the black relays with total length less than (2/

√
3)(b + w)r;

thus we need fewer than (2/
√

3)(b + w) yellow relays on the edges.
Now each pair of black relays in T is connected. It is enough to connect

each grey relay to the nearest black relay: the distance is at most 2, and one
yellow relay is enough. In summary, the total number of yellow relays is less than
(2/

√
3)(b + w) + g ≤ (2/

√
3 − 1)2w + (14/5)w = (4/

√
3 + 4/5)w < 3.11w. �

Then it follows that |Ay| < 3.11|R∗
w| ≤ 3.11|R∗

� |. This completes the proof that
the approximation ratio of our algorithm is less than 3.11.

364 A. Efrat et al.

4 Inapproximability of One-Tier Relay Placement

We have improved the best known approximation ratio for one-tier relay place-
ment from 7 to 3.11. A natural question to pose at this point is whether we could
make the approximation ratio as close to 1 as we wish. In this section, we show
that no PTAS exists, unless P = NP.

Theorem 1. It is NP-hard to approximate one-tier relay placement within fac-
tor 1 + 1/687.

The reduction is from minimum vertex cover in graphs of bounded degree. Let
G = (V,E) be an instance of vertex cover; let Δ ≤ 5 be the maximum degree
of G. We construct an instance I of the relay placement problem which has a
feasible solution with |C| + 2|E| + 1 relays if and only if G has a vertex cover of
size k.

Fig. 2 illustrates the construction. Fig. 2a shows the vertex gadget ; we have
one such gadget for each vertex v ∈ V . Fig. 2b shows the crossover gadget ; we
have one such gadget for each edge e ∈ E. Small dots are sensors in the relay
placement instance; each solid edge has length at most 1. White boxes are good
locations for relays; dashed lines show connections for relays in good locations.

(b)

1

3

← u

← v

(d)

p0

S(e) for each e ∈ ES(0)

(c)(a)

v

Fig. 2. (a) Vertex gadget for v ∈ V . (b) Crossover gadget for {v, u} ∈ E. (c) Reduction
for K5. (d) Normalising a solution, step 1.

We set r = 16(|V | + 1), and we choose |E| + 1 disks of diameter r such that
each pair of these disks is separated by a distance larger than |V |r but at most
poly(|V |). One of the disks is called S(0) and the rest are S(e) for e ∈ E. All
vertex gadgets and one isolated sensor, called p0, are placed within disk S(0).
The crossover gadget for edge e is placed within disk S(e). There are noncrossing
paths of sensors that connect the crossover gadget e = {u, v} ∈ E to the vertex
gadgets u and v; all such paths (tentacles) are separated by a distance at least 3.
Good relay locations and p0 cannot be closer than 1 unit to a disk boundary.

Fig. 2c is a schematic illustration of the overall construction in the case of
G = K5; the figure is highly condensed in x direction. There are 11 disks. Disk

Improved Approximation Algorithms for Relay Placement 365

S(0) contains one isolated sensor and 5 vertex gadgets. Each disk S(e) contains
one crossover gadget. Outside these disks we have only parts of tentacles.

There are 4|E|+ 1 blobs in I. The isolated sensor p0 forms one blob. For each
edge there are 4 blobs: two tentacles from vertex gadgets to the crossover gadget,
and two isolated sensors in the crossover gadget.

Theorem 1 now follows from the following two lemmata.

Lemma 5. Let C be a vertex cover of G. Then there is a feasible solution to
relay placement problem I with |C| + 2|E| + 1 relays.

Proof. For each v ∈ C, place one relay at the good location of the vertex gadget v.
For each e ∈ E, place two relays at the good locations of the crossover gadget e.
Place one relay at the isolated sensor p0. �

Lemma 6. Assume that there exists a feasible solution to relay placement prob-
lem I with k + 2|E| + 1 relays. Then G has a vertex cover of size at most k.

Proof. If k ≥ |V |, then the claim is trivial: C = V is a vertex cover of size at
most k. We therefore focus on the case k < |V |.

Let R be a solution with k+ 2|E|+ 1 relays. We transform the solution into a
canonical form R′ of the same size and with the following additional constraints:
there is a subset C ⊆ V such that at least one relay is placed at the good relay
location of each vertex gadget v ∈ C; two relays are placed at the good locations
of each crossover gadget; one relay is placed at p0; and there are no other relays.
If R′ is a feasible solution, then C is a vertex cover of G with |C| ≤ k.

Now we show how to construct the canonical form R′. We observe that there
are 2|E| + 1 isolated sensors in I: sensor p0 and two sensors for each crossover
gadget. In the feasible solution R, for each isolated sensor p, we can always
identify one relay within distance 1 from p (if there are several relays, pick one
arbitrarily). These relays are called bound relays. The remaining k < |V | relays
are called free relays.

Step 1. Consider the communication graph formed by the sensors in I and the
relays R. Since each pair of disks S(i), i ∈ {0} ∪ E, is separated by a distance
larger than |V |r, we know that there is no path that extends from one disk to
another and consists of at most k free relays (and possibly one bound relay in
each end). Therefore we can shift each connected set of relays so that it is located
within one disk (see Fig. 2d). While doing so, we do not break any relay–relay
links: all relays within the same disk can communicate with each other. We can
also maintain each relay–blob link intact.

Step 2. Now we have a clique formed by a set of relays within each disk S(i),
there are no other relays, and the network is connected. We move the bound
relay in S(0) so that it is located exactly on p0. For each e ∈ E, we move the
bound relays in S(e) so that they are located exactly on the good relay locations.
Finally, any free relays in S(0) can be moved to a good relay location of a suitable

366 A. Efrat et al.

vertex gadget. These changes may introduce new relay–blob links but they do
not break any existing relay–blob or relay–relay links.

Step 3. What remains is that some disks S(e), e ∈ E, may contain free relays.
Let x be one of these relays. If x can be removed without breaking connectivity,
we can move x to the good relay location of any vertex gadget. Otherwise x is
adjacent to exactly one blob of sensors, and removing it breaks the network into
two connected components: component A which contains p0, and component B.
Now we simply pick a vertex v ∈ V such that the vertex gadget v contains
sensors from component B, and we move x to the good relay location of this
vertex gadget; this ensures connectivity between p0 and B. �

Proof of Theorem 1. Let Δ,A,B,C ∈ N, with Δ ≤ 5 and C > B. Assume that
there is a factor α = 1 + (C −B)/(B +ΔA + 1) approximation algorithm A for
relay placement. We show how to use A to solve the following gap-vertex-cover
problem for some 0 < ε < 1/2: given a graph G with An nodes and maximum
degree Δ, decide whether the minimum vertex cover of G is smaller than (B+ε)n
or larger than (C − ε)n.

If n < 2, the claim is trivial. Otherwise we can choose a positive constant ε
such that α− 1 < (C −B − 2ε)/(B + ε+ΔA + 1/n) for any n ≥ 2. Construct
the relay placement instance I as described above.

If minimum vertex cover of G is smaller than (B+ ε)n, then by Lemma 5, the
algorithm A returns a solution with at most b = α((B + ε)n+ 2|E| + 1) relays.
If minimum vertex cover of G is larger than (C − ε)n, then by Lemma 6, the
algorithm A returns a solution with at least c = (C − ε)n + 2|E| + 1 relays. As
2|E| ≤ ΔAn, we have c − b ≥ (C − ε)n + 2|E| + 1 − α((B + ε)n+ 2|E| + 1) ≥
(C −B − 2ε− (α− 1)(B + ε+ΔA + 1/n))n > 0, which shows that we can
solve the gap-vertex-cover problem in polynomial time.

For Δ = 4, A = 152, B = 78, C = 79, and any 0 < ε < 1/2, the gap-vertex-
cover problem is NP-hard [13, Thm. 3]. �
Remark 1. We remind that throughout this work we assume that radius r is part
of the problem instance. Our proof of Theorem 1 heavily relies on this fact; in our
reduction, r = Θ(|V |). It is an open question whether one-tier relay placement
admits a PTAS for a small, e.g., constant, r.

Acknowledgments

We thank Guoliang Xue for suggesting the problem to us and for fruitful discus-
sions, and Marja Hassinen for comments and discussions. We thank the anony-
mous referees for their helpful suggestions. Parts of this research were conducted
at the Dagstuhl research center. AE is supported by NSF CAREER Grant
0348000. JM is partially supported by grants from the National Science Foun-
dation (CCF-0431030, CCF-0528209, CCF-0729019), NASA Ames, and Metron
Aviation. JS is supported in part by the Academy of Finland grant 116547, and
Helsinki Graduate School in Computer Science and Engineering (Hecse). VP is
supported in part by the Academy of Finland grant 118653 (ALGODAN).

Improved Approximation Algorithms for Relay Placement 367

References

1. Chen, D., Du, D.Z., Hu, X.D., Lin, G.H., Wang, L., Xue, G.: Approximations for
Steiner trees with minimum number of Steiner points. Journal of Global Optimiza-
tion 18(1), 17–33 (2000)

2. Chen, D., Du, D.Z., Hu, X.D., Lin, G.H., Wang, L., Xue, G.: Approximations
for Steiner trees with minimum number of Steiner points. Theoretical Computer
Science 262(1–2), 83–99 (2001)

3. Cheng, X., Du, D.Z., Wang, L., Xu, B.: Relay sensor placement in wireless sensor
networks. Wireless Networks (to appear, 2007)

4. Liu, H., Wan, P.J., Jia, X.: Fault-tolerant relay node placement in wireless sen-
sor networks. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 230–239.
Springer, Heidelberg (2005)

5. Lloyd, E.L., Xue, G.: Relay node placement in wireless sensor networks. IEEE
Transactions on Computers 56(1), 134–138 (2007)

6. Srinivas, A., Zussman, G., Modiano, E.: Mobile backbone networks – construction
and maintenance. In: Proc. 7th ACM International Symposium on Mobile Ad Hoc
Networking and Computing, MobiHoc, Florence, Italy, May 2006, pp. 166–177.
ACM Press, New York (2006)

7. Zhang, W., Xue, G., Misra, S.: Fault-tolerant relay node placement in wireless sen-
sor networks: Problems and algorithms. In: Proc. 26th IEEE International Confer-
ence on Computer Communications, INFOCOM, Anchorage, Alaska, USA, May
2007, pp. 1649–1657. IEEE, Piscataway (2007)

8. Bredin, J.L., Demaine, E.D., Hajiaghayi, M., Rus, D.: Deploying sensor networks
with guaranteed capacity and fault tolerance. In: Proc. 6th ACM International
Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc, Urbana-
Champaign, IL, USA, May 2005, pp. 309–319. ACM Press, New York (2005)

9. Cerdeira, J.O., Pinto, L.S.: Requiring connectivity in the set covering problem.
Journal of Combinatorial Optimization 9(1), 35–47 (2005)

10. Shuai, T.P., Hu, X.D.: Connected set cover problem and its applications. In: Cheng,
S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 243–254. Springer,
Heidelberg (2006)

11. Yang, Y., Lin, M., Xu, J., Xie, Y.: Minimum spanning tree with neighborhoods. In:
Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp. 306–316. Springer,
Heidelberg (2007)

12. Du, D.Z., Hwang, F.: An approach for proving lower bounds: Solution of Gilbert–
Pollak’s conjecture on Steiner ratio. In: Proc. 31st Annual Symposium on Founda-
tions of Computer Science, FOCS, St. Louis, MO, USA, October 1990, pp. 76–85.
IEEE, Piscataway (1990)

13. Berman, P., Karpinski, M.: On some tighter inapproximability results. In: Wieder-
mann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644,
pp. 200–209. Springer, Heidelberg (1999)

Selfish Bin Packing

Leah Epstein and Elena Kleiman

Department of Mathematics, University of Haifa, 31905 Haifa, Israel
lea@math.haifa.ac.il, elena.kleiman@gmail.com

Abstract. Following recent interest in the study of computer science
problems in a game theoretic setting, we consider the well known bin
packing problem where the items are controlled by selfish agents. Each
agent is charged with a cost according to the fraction of the used bin
space its item requires. That is, the cost of the bin is split among the
agents, proportionally to their sizes. Thus, the selfish agents prefer their
items to be packed in a bin that is as full as possible. The social goal is
to minimize the number of the bins used. The social cost in this case is
therefore the number of bins used in the packing.

A pure Nash equilibrium is a packing where no agent can obtain a
smaller cost by unilaterally moving his item to a different bin, while
other items remain in their original positions. A Strong Nash equilib-
rium is a packing where there exists no subset of agents, all agents in
which can profit from jointly moving their items to different bins. We
say that all agents in a subset profit from moving their items to different
bins if all of them have a strictly smaller cost as a result of moving, while
the other items remain in their positions.

We measure the quality of the equilibria using the standard measures
PoA and PoS that are defined as the worst case worst/best asymptotic
ratio between the social cost of a (pure) Nash equilibrium and the cost
of an optimal packing, respectively. We also consider the recently intro-
duced measures SPoA and SPoS, that are defined similarly to the PoA
and the PoS, but consider only Strong Nash equilibria.

We give nearly tight lower and upper bounds of 1.6416 and 1.6428, re-
spectively, on the PoA of the bin packing game, improving upon previous
result by Bilò, and establish the fact that PoS = 1. We show that the bin
packing game admits a Strong Nash equilibrium, and that SPoA=SPoS.
We prove that this value is equal to the approximation ratio of a natural
greedy algorithm for bin packing.

1 Introduction

Motivation and framework. In the last few decades, we have witnessed the
tremendous development of the Internet and its penetration into almost any
aspect of our lives, influencing the society on a scope not known before. The
emergence of the Internet created a major shift in our view of computational
networking systems. Traditional system design assumes that all participants be-
have according to some protocol that serves the intentions of the system design-
ers and the users often have to sacrifice some of their own performance for the

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 368–380, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Selfish Bin Packing 369

sake of the entire network. Unlike any other distributed system, the Internet is
built, operated and used by various autonomous and self-interested entities, in
different levels of competition and cooperation relationship with one another.
These entities (or agents) have diverse sets of interests and aim at achieving
their individual goals as opposed to obtaining a global optimum of the system.
Hence, selfishness is an inherent characteristic of the Internet. Also, there exists
no central authority that can enforce a certain policy or regulation on the partic-
ipants of the system. Under these assumptions, network optimization problems
that model situations where rational agents compete each other over network re-
sources while seeking to satisfy their individual requirements at minimum cost,
can be viewed as non-cooperative strategic games considered by the classical
Game Theory. It becomes natural to revisit various aspects concerning network-
ing under a Game-Theoretic perspective, using the tools that the Game Theory
provides us with. In particular, we are interested in quantifying the loss to the
system performance caused by the lack of cooperation and the selfishness of the
players. This is achieved by analyzing the Nash equilibrium (the main concept of
stability in Game Theory) of the game and comparing it to the social optimum.

In reality, in many networking applications the multitude of entities that use
and operate the system are not completely autonomous. They interact with each
other and form coalitions, members of which agree to coordinate their actions in
a mutually beneficial way. Of course, these entities still remain selfish. Thus, each
agent will agree to participate, if at all, in a coalition that ensures him a benefit
from participation in that coalition. This scenario evokes the Coalitional Game
Theory and the concept of Strong Nash equilibrium. Considering the possibility
of players to gather in coalitions allows us to separate the effect incurred to the
system performance due to selfishness from that of lack of coordination (which
disappears if we let the participants of the game to cooperate).

In this paper, we consider the well-known Bin Packing problem (see e.g. [16],
[17], [7] for surveys). The basic Bin Packing problem consists of packing a set of
objects with sizes in (0,1] into a set of unit-capacity bins while using as few bins
as possible. Among other important real-life applications, such as multiprocessor
scheduling and stock cutting, the Bin Packing problem can be met in a great
variety of network problems. For example, the packet scheduling problem (the
problem of packing a given set of packets into a minimum number of time slots for
fairness provisioning), the bandwidth allocation problem (signals have usually
a small size and several of them can be transmitted in the same frame so as
to minimize bandwidth consumption) and the problem of packing the data for
Internet phone calls into ATM packets (filling fixed-size frames to maximize the
amount of data that they carry), to mention only a few. Therefore, the study of
this problem from a Game-Theoretic standpoint is clearly well motivated.

Definitions and notations. To establish notation, we will briefly introduce
the basic concepts from Game Theory. A non-cooperative strategic game is a
tuple G = 〈N, (Si)i∈N , (ci)i∈N 〉, where N is a non-empty, finite set of players,
each player i ∈ N has a non-empty, finite set Si of strategies (actions) and a
cost function ci. Each player chooses a strategy independently of the choices of

370 L. Epstein and E. Kleiman

the other players. The choices of all players can thus be thought to be made
simultaneously. It is assumed that each player has a full knowledge over all
strategy sets of all the players. In a setting of pure strategies, each player chooses
exactly one strategy (with probability one); in a setting of mixed strategies,
each player uses a probability distribution over the strategies. A combination
of strategies chosen by the players s = (xj)j∈N ∈ ×j∈NSj, is called a strategy
profile or a configuration. X = ×j∈NSj denotes the set of the strategy profiles.
Let i ∈ N . X−i = ×j∈N\{i}Sj denotes the strategy profiles of all players except
player i. Let A ⊆ N . XA = ×j∈ASj denotes the set of strategy profiles of
players in A. Strategy profiles s = (xj)j∈N ∈ X will be denoted by (xi, x−i)
or (xA, xN\A) if the strategy choice of player i or of the set A of players needs
stressing. The cost function ci : X → R specifies for each strategy profile s ∈ X
the cost charged from player i, ci(x) ∈ R. The cost charged from each player
depends not only on his own strategy but also on the strategies chosen by all
other players. Each player i ∈ N would prefer to chose a strategy that minimizes
his cost. The accepted concept of rationality in a game is the Nash equilibrium
[24]. Throughout the paper, the Nash equilibrium is considered only in the setting
of pure strategies.

Definition 1. A strategy profile s ∈ X is called a pure Nash equilibrium (NE)
if for every i and for all x′i ∈ Si, x′i
= xi, ci(xi, x−i) ≤ ci(x′i, x−i) holds. That
is, no player can reduce his cost by unilaterally changing his strategy, while the
strategies of all other players remain unchanged.

Nash equilibrium (perhaps only in mixed strategies) exists in every finite game
[24]. A game can have several Nash equilibria, with different social cost values.
If only pure strategies are allowed, there may exist no Nash equilibrium at all.
The set of pure Nash equilibria of a game G is denoted by NE(G).

Games as defined above assume that players can not negotiate and cooperate
with each other. Coalitional Game Theory considers cooperative games, where
the notion of players is replaced by the set of possible coalitions (i.e., groups
of players) rather than individuals. A participation in a coalition is voluntary.
Each coalition can achieve a particular value (the smallest possible sum of costs
among players in the coalition, against worst-case behavior of players outside the
coalition). Aumann [4] introduced the concept of Strong Nash equilibrium. Since
each player can either participate or decline to participate in a coalition, given
the strategy he will be obligated to choose in case he does, and the cost he will be
charged with as a result, the Strong Nash equilibrium is studied only for settings
that involve no randomization, that is, only pure strategies are considered.

Definition 2. A strategy profile s ∈ X is called a Strong Nash equilibrium
(SNE) if for every S ⊆ N and for all strategy profiles yS ∈ XS, there is at
least one player i ∈ S such that ci(xS , x−S) ≤ ci(yS , x−S). That is, no subset of
players can deviate by changing strategies jointly in a manner that reduces the
costs charged from all its members, given that nonmembers stick to their original
strategies.

Selfish Bin Packing 371

The set of Strong Nash equilibria of a game G is denoted by SNE(G). Every
Strong Nash equilibrium is a Nash equilibrium (by definition). Hence, SNE(G)
⊆ NE(G). The opposite does not usually hold. A game can have no Strong
Nash equilibrium at all. Several specific classes of congestion games were shown
in [15,27] to possess Strong Nash equilibria. For any other game, the existence
of Strong equilibria should be checked specifically in each case. Other variants of
Strong equilibria studied consider static predefined coalitions [14,12] and coali-
tions that are not subject to deviations by subsets of their own members [29].

The social cost of a game G, is an objective function SC(s) : X → R that
numerically expresses the ‘social cost’ of an outcome of the game for a strat-
egy profile s ∈ X . The social optimum of a game G, is the game outcome that
optimizes the social cost function. It is denoted by OPT (G), and defined by
OPT (G) = min

s∈X
SC(s).

2 The Bin Packing Game

The model. The bin packing problem consists of packing a set N of items, each
item i ∈ N having a size ai ∈ (0, 1], into a set of unit-capacity bins while using
as few bins as possible. The induced bin packing game BP is defined by a tuple
BP = 〈N, (Bi)i∈N , (ci)i∈N 〉, where N is the set of selfish players. Each player
i ∈ N controls a single item with size ai ∈ (0, 1] and selects the bin to which this
item is packed. We identify the player with the item he wishes to pack. Thus,
the set of players corresponds to the set of items. The set of strategies Bi for
each item i ∈ N is the set of all possible open bins. Each item can be assigned to
one bin only. Splitting items among several bins is not allowed. The outcome of
the game is a particular assignment (bj)j∈N ∈ ×j∈NBj of items to bins of equal
capacity. Let X denote the set of all possible assignments. All the bins have the
same fixed cost which equals their capacity and the cost of a bin is shared among
all the items it contains. The cost function of item i is ci. If we scale the cost and
the size of each bin to one, the cost paid by item i for choosing to be packed in
bin Bj such that j ∈ Bi is defined by ci(j, b−i) =

ai
∑

k:bk=j ak
, when b−i ∈ X−i;

i.e, an item is charged with a cost which is proportional to the portion of the bin
it occupies in a given packing. We consider the cost charged from an item for
being packed in a bin in which it does not fit to be ∞. The items are interested
in being packed in a bin so as to minimize their cost. Thus, item i packed into
Bj in a particular assignment (bj)j∈N will migrate from Bj each time it will
detect another bin Bj′ such that ci(j′, b−i) < ci(j, b−i). This inequality holds for
each j′ such that

∑
k:bk=j′ ak + ai >

∑
k:bk=j ak, thus an item will perform an

improving step each time it will detect a strictly more loaded bin in which it fits.
At a Nash equilibrium, no item can unilaterally reduce its cost by moving to a
different bin. The social cost function that we want to minimize is the number
of used bins.

In the cooperative version of the game, we consider all possible (non-empty)
groups of items A ⊆ N . A group can contain a single item. The cost functions

372 L. Epstein and E. Kleiman

of the players are defined the same as in the non-cooperative case. Each group
of items is interested to be packed in a way so as to minimize the costs of all
group members. Thus, given a particular assignment, all members of group A
will perform a joint improving step if there is a configuration in which, for each
member, the new bin will admit a strictly greater load than the bin of origin.
The costs of the non-members may be enlarged as a result of this step.

At a Strong Nash equilibrium, no group of items can reduce the costs of its
members by jointly moving to a different bin. The social cost function remains
the same one we consider in the non-cooperative setting.

Measuring the inefficiency of the equilibria. It is well-known that Nash
equilibrium does not always optimize the social cost function. Even in very simple
settings, selfish behavior can lead to highly inefficient outcome. Our bin packing
game is no exception: an equilibrium packing does not necessarily have minimum
cost. Note also that not every optimal solution is an equilibrium.

The quality of an equilibrium is measured with respect to the social optimum.
In the bin packing game, the social optimum is the number of bins used in
a coordinated optimal packing. In the computer science literature, the Price
of Anarchy (PoA) [20,25] (also referred to as the Coordination Ratio (CR))
and the Price of Stability (PoS) [3,2] (also called optimistic price of anarchy)
have become prevalent measures of the quality of the equilibria reached with
uncoordinated selfish players. The Price of Anarchy/ Price of Stability of a game
G are defined to be the ratio between the cost of the worst/best Nash equilibrium
and the social optimum, respectively. Formally,

PoA(G) = sup
s∈NE(G)

SC(s)
OPT (G)

, PoS(G) = inf
s∈NE(G)

SC(s)
OPT (G)

.

The former quantifies the worst possible loss to performance incurred by selfish
uncoordinated agents, and the latter measures the minimum penalty in perfor-
mance required to ensure a stable equilibrium outcome.

The bin packing problem is usually studied via asymptotic measures. The
asymptotic PoA and PoS of the bin packing game BP are defined by

PoA(BP) = lim sup
OPT (G)→∞

sup
G∈BP

PoA(G), PoS(BP) = lim sup
OPT (G)→∞

sup
G∈BP

PoS(G).

Recent research by Andelman et al. [1] initiated a study of measures that
separate the effect of the lack of coordination between players from the effect
of their selfishness. The measures considered are the Strong Price of Anarchy
(SPoA) and the Strong Price of Stability (SPoS). These measures are defined
similarly to the PoA and the PoS, but only Strong equilibria are considered. We
define the Strong Price of Anarchy/ Strong Price of Stability of a game G as the
ratio between the cost of the worst/best Strong Nash equilibrium and the social
optimum, respectively. Formally,

SPoA(G) = sup
s∈SNE(G)

SC(s)
OPT (G)

, SPoS(G) = inf
s∈SNE(G)

SC(s)
OPT (G)

,

Selfish Bin Packing 373

As before, we define the asymptotic SPoA and SPoS of the bin packing game
BP by

SPoA(BP) = lim sup
OPT (G)→∞

sup
G∈BP

SPoA(G)

SPoS(BP) = lim sup
OPT (G)→∞

sup
G∈BP

SPoS(G).

3 Related Work and Our Contributions

Related work. The application of concepts and techniques borrowed from
Game Theory to various problems in computer science, specifically, to network
problems, was initiated in [20,25]. Since then, issues like routing [28,23,8], band-
width allocation [30], and congestion control [18], to name only a few, have been
analyzed from a Game-Theoretic perspective. The studied models are simplifi-
cation of problems arising in real networks, that seem appropriate for describing
basic network problems. The bin packing problem discussed in this paper be-
longs to a class of problems induced by selfish flow routing in non-cooperative
networks. The first model studied in that context is the KP model introduced by
Koutsoupias and Papadimitriou in [20]. This model features a network consist-
ing of two nodes, a source and a destination, connected by a set of parallel links,
all with the same bandwidth capacity, and a set of selfish users, each wishing
to route a certain amount of flow from the source to the destination. The delay
suffered by each user for utilizing a link equals to total amount of flow routed
through this link. Hence, the more flow routed on a specific link, the longer
the delay. For such a reason, users, which are assumed to be selfish, want to
route their flow on the least loaded link. The goal is minimize the greatest delay.
The resulting problem can be viewed as a selfish job scheduling problem. The
bounds on the PoA for the aforementioned model were initially analyzed both
in pure and mixed strategies setting in [20]. They were later improved by [23],
and definitively characterized in [9,19]. The existence of pure Nash equilibrium
in this setting was proved in [11]. The cooperative version of the job scheduling
problem was first studied in [1]. The authors proved that job scheduling games
admit Strong equilibria, established the fact that SPoS = 1 as for every in-
stance of the scheduling game there exists an optimal solution which is a Strong
equilibrium, and gave non-tight bounds on the SPoA that were later definitively
characterized in [10]. Since then, many variants and generalizations of this basic
model have been studied, with different network topology, different social costs,
different nature of the flow, etc.. See for example [28,26,22].

The selfish bin packing problem defined above can also be interpreted as a
routing problem. Consider a network consisting of two nodes, a source and a des-
tination, connected by a potentially infinite number of parallel links having the
same bandwidth capacity, and a set of users wishing to send a certain amount
of unsplittable flow between the two nodes. To establish a link, one has to pay a
fixed cost which equals the capacity of the link. The cost of each link is shared

374 L. Epstein and E. Kleiman

Table 1. Summary of the results

Lower Bound Upper Bound

PoA
Bilò [5] 1.6 1.6667

Our paper 1.6416 1.6428

SPoA=SPoS Our paper 1.6067 1.6210

PoS Our paper 1 1

among the users routing their flow on that link according to the normalized
fraction of its utilized bandwidth. For such a reason, users, who are assumed
to be selfish, want to route their traffic on the most loaded link. The goal is to
minimize the number of links used. This model resembles the KP model with
different cost and social functions. It was suggested by Bilò in [5].

Bilò [5] was the first to study the bin packing problem under game theoretic
perspective. He proved that the bin packing game admits pure Nash equilibria
and provided non-tight bounds on the Price of Anarchy. He also proved that the
bin packing game converges to a pure Nash equilibrium in a finite sequence of
selfish improving steps, starting from any initial configuration of the items.

The Subset Sum1 algorithm for bin packing we refer to in the sequel of this
paper, is a greedy algorithm that repeatedly solves a one-dimensional knapsack
problem for packing each bin in turn. It was originally suggested by Prim and first
mentioned by Graham [13], who also gave a lower bound of

∑∞
k=1

1
2k−1

= 1.6067
on its asymptotic worst-case performance. An upper bound of 1.6210 was proved
only recently by Caprara and Pferschy in [6].

Our results and organization of the paper. In this paper we consider the
pin packing game, in a variant originally proposed and analyzed by Bilò in [5].
We establish that for every instance of bin packing game there exists an optimal
NE packing where the social cost is equal to the social optimum; in other words,
PoS = 1. We also give improved (and nearly tight) lower and upper bounds on
the PoA of the bin packing game. We extend the results in [5] and show that
bin packing game admits Strong Nash equilibria as well. Moreover, we show that
the aforementioned Subset Sum algorithm in fact produces an assignment that
admits Strong equilibrium. Therefore, we provide an exponential time determin-
istic algorithm with guaranteed (asymptotic) worst-case performance ratio [6]
that actually calculates the Strong Nash assignment for each bin. Interestingly,
the SPoA equals the SPoS, and we prove this value is equal to the approximation
ratio of the Subset Sum algorithm. Thus, we provide bounds on the SPoA and
the SPoS of the game.

Our results for the PoA improve upon previous results of Bilò [5]. The other
concepts were not addressed to the bin packing framework prior to this paper,
to the best of our knowledge. Our contributions can therefore be summarized in
Table 1. Some of the proofs were omitted due to space constraints.

1 Also called fill bin or minimum bin slack in the literature.

Selfish Bin Packing 375

4 The Price of Stability

In our first result, we establish that for every instance of the bin packing game
there always exists a packing, among the optimal ones, which is a NE. We do it
by introducing an order relation similar to the one used by Fotakis et al. in [11]
between the different configurations and showing that an optimal packing which
is the “highest” among all optimal packings according to this order is always a
NE. Specifically, in this section we prove the following theorem.

Theorem 1. For every instance of the bin packing game there is a NE packing
which is optimal.

Definition 3. For a configuration b, the load vector is an n-tuple
L(b) = (L1(b), L2(b), . . . , Ln(b)), where each component Li(b) is the load of bin
Bi in a packing defined by b.

Definition 4. A vector u = (u1, u2, . . . , un) is greater than v = (v1, v2, . . . , vn)
lexicographically, if there is some k ≥ 1 such that ui = vi for i = 1, . . . k−1, and
uk > vk.

We define a sorted lexicographic order on the configurations via the lexicographic
order on the vectors.

Definition 5. Let b and b′ be two configurations with the corresponding load
vectors L(b) = (L1(b), L2(b), . . . , Ln(b)) and L(b′) = (L1(b′), L2(b′), . . . , Ln(b′)).
A configuration b′ is greater than b lexicographically, if and only if the load vector
L(b′) sorted in non-increasing order is greater lexicographically than L(b), sorted
in non-increasing order. We denote this relation by b′ ,L b.

The sorted lexicographic order ,L defines a total order on the configurations.
Next, we show that when an item migrates, we move to a “higher” configuration
in the order.

Lemma 1. The sorted lexicographic order of the load vector always increases
when an item migrates.

Lemma 2. For any instance of the bin packing game, the lexicographically max-
imal optimal packing b∗ is a NE.

Theorem 1 now follows from Lemmas 1 and 2. An immediate conclusion from
Theorem 1 is that the upper bound on the Price of Stability (PoS) of the bin
packing game is 1. Combined with the fact that PoS(G) ≥ 1 for any G ∈ BP as
no equilibrium point can be better than the social optimum, we conclude that
PoS(BP) = 1.

5 The Price of Anarchy

We now provide a lower bound for the Price of Anarchy of the bin packing game
and also prove a very close upper bound.

376 L. Epstein and E. Kleiman

5.1 A Lower Bound: Construction

In this section, we present our main technical contribution, which is a lower
bound on the PoA. We start with presenting a set of items. The set of items
consists of multiple levels. Such constructions are sometimes used to design lower
bounds on specific bin packing algorithms (see e.g., [21]). Our construction differs
from these constructions since the notion of order (in which packed bins are
created) does not exist here, and each bin must be stable with respect to all
other bins. The resulting lower bound on the PoA is different from any bounds
known on the asymptotic approximation ratio of well known algorithms for bin
packing. Since we prove an almost matching upper bound, we conclude that the
PoA is probably not related directly to any natural algorithm. We prove the
following theorem.

Theorem 2. The Price of Anarchy of the bin packing game is at least the sum
of the following series:

∑∞
j=1 2−j(j−1)/2, which is equal to approximately 1.64163.

Proof. Let s > 2 be an integer. We define a construction with s phases of indices
1 ≤ j ≤ s, where the items of phase j have sizes which are close to 1

2j , but can
be slightly smaller or slightly larger than this value.

We let OPT = n, and assume that n is a large enough integer, such that
n > 2s3

. We use a sequence of small values, δi such that δj = 1
(4n)3s−2j . Note

that this implies δj+1 = (4n)2δj for 1 ≤ j ≤ s − 1. We use two sequences of
positive integers rj ≤ n and dj ≤ n, for 2 ≤ j ≤ s, and in addition, r1 = n

and d1 = 0. We define rj+1 = rj−1
2j , for 1 ≤ j ≤ s − 1, and dj+1 = rj − rj+1 =

(2j−1)rj+1
2j = (2j − 1)rj+1 + 1.

Proposition 1. For each 1 ≤ j ≤ s, n
2j(j−1)/2 − 1 < rj ≤ n

2j(j−1)/2 .

Phase 1 simply consists of r1 items of size σ1 = 1
2 + 2(d1 + 1)δ1. For j ≥ 2,

phase j consists of the following 2dj + rj items. There are rj items of size σj =
1
2j +2(dj+1)δj, and for 1 ≤ i ≤ dj , there are two items of sizes πi

j = 1
2j +(2i−1)δj

and θi
j = 1

2j − 2iδj. Note that πi
j + θi

j = 1
2j−1 − δj .

The packing will contain dj bins of level j, for 2 ≤ j ≤ s, and the remaining
bins are of level s + 1, where a bin of level j, contains only items of phases
1, . . . , j.

To show that we can allocate these numbers of bins, and to calculate the

number of level s+1 bins, note that
s∑

j=2

dj = r1− rs = n− rs. Thus, the number

of level s+ 1 bins is (at most) rs.
The packing of a bin of a given level is defined as follows. For 2 ≤ j ≤ s, a

level j bin contains one item of each size σk for 1 ≤ k ≤ j − 1, and in addition,
one pair of items of sizes πi

j and θi
j for a given value of i such that 1 ≤ i ≤ dj .

A bin of level s + 1 contains one item of each size σk for 1 ≤ k ≤ j − 1.

Proposition 2. This set of items can be packed into n bins, i.e., OPT ≤ n

Selfish Bin Packing 377

We next define an alternative packing, which is a NE. In the sequel, we apply a
modification to the input by removing a small number of items. Clearly, OPT ≤
n would still hold for the modified input.

Our modification to the input is the removal of items π1
j and θ

dj

j for all
2 ≤ j ≤ s. We construct rj bins for phase j items. A bin of phase j consists of
2j − 1 items, as follows. One item of size σj = 1

2j + 2(di + 1)δi, and 2j−1 − 1
pairs of items of phase j. A pair of items of phase j is defined to be the items
of sizes πi+1

j and θi
j , for some 1 ≤ i ≤ dj − 1. The sum of sizes of this pair of

items is 1
2j + (2i + 1)δj + 1

2j − 2iδj = 1
2j−1 + δj . Using dj = (2j−1 − 1)rj + 1

we get that all phase j items are packed. The sum of items in every such bin is
1 − 1

2j−1 + (2j−1 − 1)δj + 1
2j + 2(dj + 1)δj = 1 − 1

2j + δj(2j−1 + 1 + 2dj).

Proposition 3. The loads of the bins in the packing defined above are mono-
tonically increasing as a function of the phase.

Proposition 4. The packing as defined above is a valid NE packing.

Finally, we bound the PoA as follows. The cost of the resulting NE is
s∑

j=1

rj .

Using Proposition 1 we get that
s∑

j=1

rj ≥
s∑

j=1

(n
2j(j−1)/2 − 1) and since OPT =

n >> s, we get a ratio of at least
s∑

j=1

2−j(j−1)/2. Letting s tend to infinity as

well results in the claimed lower bound. �

5.2 An Upper Bound

To bound the PoA from above, we prove the following theorem.

Theorem 3. For any instance of the bin packing game G ∈ BP : Any NE pack-
ing uses at most 1.64286 · OPT (G) + 2 bins, where OPT (G) is the number of
bins used in a coordinated optimal packing.

6 Bounding the SPoA and the SPoS

The SPoA and the SPoS measures are well defined only when a Strong equi-
librium exists. Our Bin Packing game does not belong to the set of games that
were already shown to admit a Strong equilibrium. Thus, in order to analyze the
SPoA and the SPoS of the Bin Packing game, we must first prove that a Strong
equilibrium exists in our specific setting.

Theorem 4. For each instance of the bin packing game, the set of Strong Nash
equilibria is non-empty.

Proof. We give a constructive proof to this theorem, by providing a deterministic
algorithm that, for each instance of the bin packing game, produces a packing

378 L. Epstein and E. Kleiman

which admits SNE. This is the well-known Subset Sum algorithm, that proceeds
by filling one bin at a time with a set of items that fills the bin as much as
possible. We will show a stronger result; For the Bin Packing game introduced
above, the set of SNE and the set of outcomes of Subset Sum algorithm coincide.
A proof of this result is given in two parts.

Proposition 5. The output of the Subset Sum algorithm is always a SNE.

Proposition 6. Any SNE is an output of some execution of the Subset Sum
algorithm.

As the Subset Sum algorithm is deterministic, Proposition 5 shows that an SNE
always exists. �

Now, we would like to show that for the bin packing game, SPoA equals SPoS,
and that this value is equal to the approximation ratio of the Subset Sum al-
gorithm. For shortening notation, from now on, we refer to the Subset Sum
algorithm as to algorithm C, and denote its approximation ratio by RC .

Theorem 5. For the bin packing game introduced above, SPoA = SPoS = RC .

Theorem 5 implies that the problem of bounding the SPoA and the SPoS of the
bin packing game is equivalent to the problem of bounding the approximation
worst-case ratio RC of the well known Subset Sum algorithm for bin packing.
The latter was tackled by Caprara and Pferschy, who used a novel and non-
trivial method to show 1.6067 ≤ RC ≤ 1.6210, thus determining the exact value
of RC within a relative error smaller than 1% (see [6]). This exact value is yet
to be found. We conclude that 1.6067 ≤ SPoS(BP) = SPoA(BP) ≤ 1.6210.

7 Summary and Conclusions

We have studied the Bin Packing problem, where the items are controlled by
selfish agents, and the cost charged from each bin is shared among all the items
packed into it, both in non-cooperative and cooperative versions. We proved a
tight bound on the PoS and provided improved and almost tight upper and
lower bounds on the PoA of the induced game. We have also provided a simple
deterministic algorithm that computes the SNE assignment for any instance of
the Bin Packing game, and proved that the asymptotic worst-case performance
of this algorithm equals the SPoA and the SPoS values of the game. Two open
problems in that context are closing of the small gaps between upper and lower
bounds for the PoA and the SPoA/SPoS of the bin packing game. The latter,
if achieved, will result in giving a tight bound on the worst-case performance
of the Subset Sum algorithm for bin packing, as we proved these two problems
are equivalent. This probably would not be an easy task, as finding tight bound
on the approximation ratio of the Subset Sum algorithm, though very nearly
approximated by Caprara and Pferschy in [6], remains open problem since 70’s.

Selfish Bin Packing 379

References

1. Andelman, N., Feldman, M., Mansour, Y.: Strong price of anarchy. In: SODA, pp.
189–198 (2007)

2. Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Rough-
garden, T.: The price of stability for network design with fair cost allocation. In:
FOCS, pp. 295–304 (2004)

3. Anshelevich, E., Dasgupta, A., Tardos, É., Wexler, T.: Near-optimal network design
with selfish agents. In: STOC, pp. 511–520 (2003)

4. Aumann, R.J.: Acceptable points in general cooperative n-person games. In:
Tucker, A.W., Luce, R.D. (eds.) Contributions to the Theory of Games IV, Annals
of Mathematics Study, vol. 40, pp. 287–324. Princeton University Press, Princeton
(1959)

5. Bilò, V.: On the packing of selfish items. In: IPDPS. IEEE, Los Alamitos (2006)

6. Caprara, A., Pferschy, U.: Worst-case analysis of the subset sum algorithm for bin
packing. Oper. Res. Lett. 32(2), 159–166 (2004)

7. Coffman Jr., E., Csirik, J.: Performance guarantees for one-dimensional bin pack-
ing. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Meta-
heuristics, ch. 32, pp. (32–1)–(32–18). Chapman & Hall/Crc (2007)

8. Czumaj, A.: Selfish routing on the internet. In: Leung, J. (ed.) Handbook of
Scheduling: Algorithms, Models, and Performance Analysis, ch. 42, CRC Press,
Boca Raton (2004)

9. Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. ACM Transac-
tions on Algorithms 3(1) (2007)

10. Fiat, A., Kaplan, H., Levy, M., Olonetsky, S.: Strong price of anarchy for machine
load balancing. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP
2007. LNCS, vol. 4596, pp. 583–594. Springer, Heidelberg (2007)

11. Fotakis, D., Kontogiannis, S.C., Koutsoupias, E., Mavronicolas, M., Spirakis, P.G.:
The structure and complexity of nash equilibria for a selfish routing game. In:
Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R.
(eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)

12. Fotakis, D., Kontogiannis, S.C., Spirakis, P.G.: Atomic congestion games among
coalitions. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006, Part I. LNCS, vol. 4051, pp. 572–583. Springer, Heidelberg (2006)

13. Graham, R.L.: Bounds on multiprocessing anomalies and related packing algo-
rithms. In: Proceedings of the 1972 Spring Joint Computer Conference, pp. 205–217
(1972)

14. Hayrapetyan, A., Tardos, É., Wexler, T.: The effect of collusion in congestion
games. In: STOC, pp. 89–98 (2006)

15. Holzman, R., Law-Yone, N.: Strong equilibrium in congestion games. Games and
Economic Behavior 21(1-2), 85–101 (1997)

16. Coffman Jr., E.G., Galambos, J., Martello, S., Vigo, D.: Bin packing approximation
algorithms: Combinatorial analysis. In: Du, D.-Z., Pardalas, P.M. (eds.) Handbook
of Combinatorial Optimization. Kluwer Academic Publishers, Amsterdam (1998)

17. Coffman Jr., E.G., Garey, M., Johnson, D.: Approximation algorithms for bin-
packing: An updated survey. In: Ausiello, M.L.G., P.S. (eds.) Algorithm Design for
Computer Systems Design. Springer, New York (1984)

18. Karp, R.M., Koutsoupias, E., Papadimitriou, C.H., Shenker, S.: Optimization prob-
lems in congestion control. In: FOCS, pp. 66–74 (2000)

380 L. Epstein and E. Kleiman

19. Koutsoupias, E., Mavronicolas, M., Spirakis, P.G.: Approximate equilibria and ball
fusion. Theory of Computing Systems 36(6), 683–693 (2003)

20. Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

21. Lee, C.C., Lee, D.T.: A simple online bin packing algorithm. J. ACM 32, 562–572
(1985)

22. Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: A new model for selfish
routing. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 547–
558. Springer, Heidelberg (2004)

23. Mavronicolas, M., Spirakis, P.G.: The price of selfish routing. In: STOC, pp. 510–
519 (2001)

24. Nash, J.: Non-cooperative games. Annals of Mathematics 54(2), 286–295 (1951)
25. Papadimitriou, C.H.: Algorithms, games, and the internet. In: STOC, pp. 749–753

(2001)
26. Roughgarden, T.: Designing networks for selfish users is hard. In: FOCS, pp. 472–

481 (2001)
27. Tennenholtz, M., Rozenfeld, O.: Strong and correlated strong equilibria in mono-

tone congestion games. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C.
(eds.) WINE 2006. LNCS, vol. 4286, pp. 74–86. Springer, Heidelberg (2006)

28. Roughgarden, T., Tardos, É.: How bad is selfish routing? In: FOCS, pp. 93–102
(2000)

29. Whinston, M., Bernheim, B., Peleg, B.: Coalition-proof nash equilibria: I concepts.
Journal of Economic Theory 42, 1–12 (1987)

30. Yäıche, H., Mazumdar, R., Rosenberg, C.: A game theoretic framework for
bandwidth allocation and pricing in broadband networks. IEEE/ACM Trans.
Netw. 8(5), 667–678 (2000)

Improved Randomized Results for That Interval

Selection Problem

Leah Epstein1 and Asaf Levin2

1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel
lea@math.haifa.ac.il

2 Department of Statistics, The Hebrew University, Jerusalem, Israel
levinas@mscc.huji.ac.il

Abstract. Online interval selection is a problem in which intervals ar-
rive one by one, sorted by their left endpoints. Each interval has a length
and a non-negative weight associated with it. The goal is to select a non-
overlapping set of intervals with maximal total weight and run them to
completion. The decision regarding a possible selection of an arriving
interval must be done immediately upon its arrival. The interval may be
preempted later in favor of selecting an arriving overlapping interval, in
which case the weight of the preempted interval is lost. We follow Woeg-
inger [10] and study the same models. The type of instances we consider
are C-benevolent instances, where the weight of an interval in a mono-
tonically increasing (convex) function of the length, and D-benevolent
instances, where the weight of an interval in a monotonically decreasing
function of the length. Some of our results can be extended to the case
of unit length intervals with arbitrary costs. We significantly improve
the previously known bounds on the performance of online randomized
algorithms for the problem, namely, we introduce a new algorithm for
the D-benevolent case and for unit intervals, which uses a parameter

θ and has competitive ratio of at most θ2 ln θ
(θ−1)2 . This value is equal to

approximately 2.4554 for θ ≈ 3.513 being the solution of the equation
x − 1 = 2 ln x. We further design a lower bound of 1 + ln 2 ≈ 1.693 on
the competitive ratio of any randomized algorithm. The lower bound is
valid for any C-benevolent instance, some D-benevolent functions and for
unit intervals. We further show a lower bound of 3

2 for a wider class of D-
benevolent instances. This improves over previously known lower bounds.
We also design a barely random online algorithm for the D-benevolent
case and the case of unit intervals, which uses a single random bit, and
has a competitive ratio of 3.22745.

1 Introduction

We consider the following online problem. The input is a sequence of intervals
arriving at arbitrary times. We denote an interval by Ij = (rj , wj , pj), where
rj ≥ 0 is its release time, wj > 0 is its value, and pj > 0 is its length. Two such
intervals Ij , Ik are said to be non-overlapping if [rj , rj + pj) ∩ [rk, rk + pk) =
∅ (i.e., either rk ≥ rj + pj or rj ≥ rk + pk). The goal of the problem is to

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 381–392, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

382 L. Epstein and A. Levin

select a maximum (total) weight subset of non-overlapping intervals. The online
algorithm is allowed to preempt an interval when a new interval arrives, but in
this case the weight of the preempted interval is lost. See [6,7] for recent surveys
on (offline and online) interval selection problems.

We note that interval selection problems can be seen as scheduling problems,
where intervals are seen as jobs to be processed. The jobs must be run during a
fixed interval in time, and the left and right endpoints of an interval are its release
time and completion time, respectively. Kovalyov, Ng, and Cheng [7] describe
the applications of interval scheduling problems as follows. “These problems arise
naturally in various real-life operations planning situations, including the assign-
ment of transports to loading/unloading terminals, work planning for personnel,
computer wiring, bandwidth allocation of communication channels, printed cir-
cuit board manufacturing, gene identification, and examining computer memory
structures”.

For an algorithm A, we denote its cost by A as well. The cost of an optimal
offline algorithm that knows the complete sequence of intervals is denoted by
opt. Since the problem is scalable, we consider the absolute competitive ratio
criterion. The competitive ratio of A is the infimum R such that for any input,
opt ≤ R · A. If A is randomized, the last inequality is replaced by opt ≤
R·E(A). If the competitive ratio of an online algorithm is at most C we say that
it is C-competitive. If an algorithm has an unbounded competitive ratio, we say
that it is not competitive.

It is known [2,10] that the general case of the problem defined above does
not have a competitive algorithm (in [10] this result was shown for deterministic
algorithms, and in [2] it was shown for randomized algorithms). These negative
results motivate the search of special cases that admit competitive algorithms.
Note that the special case where all intervals have unit weight was studied in [4,3].
This case admits a deterministic online algorithm which produces an optimal
solution for any instance of the problem.

Woeginger [10] has further identified three such special cases. The first one is
called C-benevolent in which wj = f(pj) (the weight of an interval depends only
on its length), and f satisfies the following conditions: f(0) = 0, f(p) > 0 for
all p > 0, and f is (strictly) monotonically increasing, continuous and convex
function in (0,∞). Note that if we do not require strict monotonicity, then
the only type of functions this would add are constant functions. This case is
equivalent to the case of unit weights that is discussed above. The second case
is called D-benevolent where wj = f(pj) and f satisfies f(0) = 0, f(p) > 0 for
all p > 0, and f is a monotonically non-increasing function in (0,∞). The third
case is called the unit interval case is where pj = 1 for all j. For all these three
cases he showed a (deterministic) 4-competitive algorithm. In the C-benevolent
case and in the unit interval case, he showed that no deterministic algorithm can
perform better (which holds for any C-benevolent function). Moreover, for any
D-benevolent function f , such that f is surjective onto R+

0 , he presented a lower
bound of 3 on the competitive ratio of any (deterministic) online algorithm, and
showed that there can be no lower bound on the competitive ratio that applies

Improved Randomized Results for That Interval Selection Problem 383

for any D-benevolent function. He concluded his paper by raising the following
open question, “We leave it as major open problem whether randomization can
help to construct heuristics for OSI with better (randomized) worst case ratio”
(where OSI is the name of this problem in his paper).

Since the publication of [10] there has been some progress in finding the answer
to this last question. More precisely, there are later works designing better online
algorithms for some special cases, and better lower bounds for randomized online
algorithms. We discuss this related work next.

Seiden [9] presented an online algorithm for the C-benevolent case and the D-
benevolent case with competitive ratio of 2+

√
3 < 3.73206. This is still the best

known upper bound for the C-benevolent case. Seiden has raised the question of
the existence of a lower bound (on the performance of randomized algorithms)
for these cases as his first open problem.

Miyazawa and Erlebach [8] considered the case of unit intervals. They designed
a (randomized) 3-competitive algorithm for the special case where the sequence
of arriving intervals has monotonically non-decreasing weight, as a function of
the arrival times. They also designed a lower bound of 5

4 on the competitive ratio
of online randomized algorithm for each of the three cases defined above (that is,
it holds for unit intervals, for any C-benevolent function, and for D-benevolent
functions such that there exist a pair of values p1 and p2 where f(p2) = 2·f(p1)).

The last previous work is due to Fung, Poon and Zheng [5]. They considered
the unit interval case, and presented a randomized algorithm with competitive
ratio of

√
5+5
2 ≈ 3.618 and a lower bound of 4

3 (which can be adapted for all
C-benevolent and some D-benevolent instances). This algorithm uses a single
random bit. Fung et al. showed in [5] that such an algorithm cannot have com-
petitive ratio smaller than 2.

In this paper we significantly improve most previous results by presenting a
new randomized algorithm for D-benevolent case and the unit interval case. This
algorithm uses a parameter θ and has a competitive ratio of at most θ2 ln θ

(θ−1)2 . This
results in an upper bound of approximately 2.4554 using θ ≈ 3.513 which is the
solution of the equation x− 1 = 2 lnx. This improves the upper bound 3.732 of
Seiden [9] for the D-benevolent case, and the upper bound 3.618 of Fung, Poon
and Zheng [5] for unit intervals. We note that our upper bound improves also the
upper bound of [8] for the special case of unit intervals discussed in [8]. We show
that a simplified version of our randomized algorithm that uses a single random
bit has a competitive ratio of 51

√
17−107
32 ≈ 3.227 for the D-benevolent case and

the case of unit intervals. This result improves the current best algorithm which
uses a single random bit for the unit interval case [5].

We introduce an improved lower bound of 1+ln 2 ≈ 1.6931 on the competitive
ratio of any randomized algorithm for all three cases, C-benevolent functions, D-
benevolent functions and unit length intervals. The lower bound is general in the
sense that it is valid for any C-benevolent function. We then show a lower bound
of 3

2 for any D-benevolent function f such that f is surjective onto (c,+∞) for
some constant c ≥ 0. Our lower bounds improve upon the previous lower bound
4
3 of [5].

384 L. Epstein and A. Levin

Paper outline. We present the algorithm and its analysis in Section 2, and
the lower bound in Section 3. We conclude this paper in Section 4 by presenting
some directions for future research.

2 The Algorithm

Let θ > 1 be a parameter to be defined later. We design the following randomized
algorithm Round. The algorithm picks a value τ ∈ (0, 1] uniformly at random.
τ is used as a parameter in a rounding scheme for the weights. From this point
on (given the rounded weights), the algorithm is deterministic (it is similar to
the one of [10], only our inputs have a restricted set of possible weights, due to
the rounding). We define the algorithm as a function of τ .

Upon arrival of a new interval Ij , we let w′
j = max{θp+τ |θp+τ ≤ wj , p ∈ Z}.

If the algorithm is not processing an interval, then it starts the interval Ij .
Otherwise, if it is running an interval Is, such that w′

s < w′
j , Is is preempted

and the algorithm starts Ij (due to the rounding, in this case we actually have
w′

j ≥ θ ·w′
s). Otherwise, if rj + pj < rs + ps (i.e., Ij can be completed before Is)

and w′
j = w′

s, then Is is preempted, and the algorithm starts Ij . Otherwise, the
algorithm rejects Ij .

In this section, each time that we consider an optimal solution for some input
(the original input or a rounded input), we always assume that this is an opti-
mal solution which minimizes the total length of completed intervals, among all
optimal solutions, if more than one optimal solution exists.

We follow [10] and note that when we analyze the worst case performance of
Round, we can restrict ourselves to input sequences such that the case where
rj +pj < rs +ps and w′

j = w′
s never occurs. If we are dealing with unit intervals,

then a later coming interval also ends later, so this condition can never hold for
rj ≥ rs. Note that if several unit intervals have the exact same start point, the
algorithm selects one of them with a maximum rounded weight, already by the
first rule.

Finally, for the D-benevolent case, the swap may be done by Round if the
rounded weights of the two intervals are identical. We first show that the optimal
solution considered here does not select Is. Assume by contradiction that Is is
selected by our optimal solution opt. Replace Is by Ij in opt. This results in a
feasible solution since Ij is contained in Is. Moreover, wj ≥ ws, since Ij is shorter
than Is, and we are considering a D-benevolent function. We also have w′

j = w′
s,

and thus the same claim holds for the optimal solution for the rounded instance.
We get a contradiction with the choice of an optimal solution of minimum total
length of intervals. Consider next a modified instance where Is is replaced with
an interval I ′s, where its release time is rs, and its length is rj +pj −rs, that is, it
ends at the same point as Ij . Since this length is in the range [pj , ps], its rounded
weight is identical to the one of Ij and Is. Running the algorithm on the modified
instance will result in the same output except for possibly the replacement of
Ij by I ′s, in case that Ij was a part of the output of the original instance. opt

does not change as a result of the modification by the same arguments as above.

Improved Randomized Results for That Interval Selection Problem 385

Hence, the modified instance results in a competitive ratio which is at least as
high as the competitive ratio of the original input. This modification can be
applied repeatedly and thus for the sake of analysis, we assume that no such
interval j exists.

We use the following notations. The benefit of Round on an input σ and
a value τ ∈ (0, 1], using the rounded weights, is denoted by Roundτ (σ). The
benefit of an optimal offline algorithm with the weights rounded according to
the value τ , for the sequence σ is denoted by optτ (σ). The benefit of an optimal
offline algorithm is denoted by opt(σ), and the expected benefit of Round

(over all choices of τ) is denoted by Round(σ). We use Roundτ , optτ , opt

and Round if the sequence σ is clear from the context. Our goal is to prove
Round ≥ (θ−1)2

θ2 ln θ opt for every sequence σ. We prove a sequence of lemmas.

Lemma 1. Round ≥ E(Roundτ), where E(Roundτ) is the expected benefit
of Round on the rounded weights, taken over all values of τ .

Proof. Since for every interval and every choice of τ , we have wj ≥ w′
j , the

inequality holds for every value of τ separately, and thus also in expectation. �

Given a specific value of τ , and a sequence σ, let J1, J2, . . . , Jm be a set of
intervals completed by Round. For a given interval Jt, let J1

t , J
2
t . . . , J

pt

t be
a maximal sequence of intervals, such that J1

t is either the first interval ever
started by Round, or the first interval started after a completed interval, each
interval in the sequence is preempted by the previous interval, and Jpt

t = Jt is
completed (pt − 1 is the number of intervals that are preempted by Jt directly
or indirectly).

Lemma 2. Consider either the D-benevolent case and the unit interval case,
then θ

θ−1 · E(Roundτ) ≥ E(optτ), where E(optτ) is the expected benefit of
opt on the rounded weights, taken over all values of τ .

Proof. We consider the subsequence of intervals that are completed by optτ ,
denoted by A = {A1, . . . , Ak}. We may assume that without loss of generality,
an optimal schedule only runs intervals to completion. We define a mapping
from A to the set {Ja

b |1 ≤ b ≤ m, 1 ≤ a ≤ pb}. An interval Aj is mapped to an
interval Ja

b that is run by the algorithm at the time that Aj is released, which
is denoted by r′j . Specifically, we map Aj to Ja

b if r′j ∈ [ra
b , f

a
b) where ra

b is the
release time of Ja

b and fa
b is either the time that it is preempted or the time that

it is completed.
We show that the mapping is well defined and injective (but not necessarily

bijective). We clearly map every interval of optτ to at most one interval of
Roundτ . Assume by contradiction that there exists no interval run by Roundτ

at the time that some interval Aj is released. By the definition of the algorithm,
it must start Aj , so Aj is mapped to itself. To show that this is an injection,
note that for the unit interval case fa

b − ra
b ≤ 1, thus optτ can only start one

interval during this time slot. For the D-benevolent case if there are two intervals
of optτ that start in the interval [ra

b , f
a
b) then the first such interval is (fully)

386 L. Epstein and A. Levin

contained in [ra
b , f

a
b) and hence its rounded weight is not smaller than the one

of Ja
b contradicting the fact that Round did not process it, and hence also in

this case optτ can only start one interval during this time slot.
We now claim that no interval of optτ is mapped to an interval of Roundτ

with smaller rounded weight. The reason here is that by definition, Roundτ

preempts an interval for an interval of larger rounded weight. So an interval Aj

is either mapped to itself, or to an interval Ja
b that Roundτ could preempt in

favor of running Aj .
We conclude that the benefit of optτ is not larger than the total rounded

weight of intervals started by Roundτ . By the definition of the algorithm, we
have for a sequence of intervals J1

t , J
2
t . . . , J

pt

t that the rounded weight of each
interval is strictly smaller than the previous interval, and hence it is actually

smaller by a factor of at least θ. Thus
pt∑

j=1

w′
j ≤ w′

pt
· θ

θ−1 . We get that optτ ≤
θ

θ−1Roundτ , hence this is true for the expected benefits as well. �

Remark 1. We note that the proof of Lemma 2 does not hold for the C-benevolent
case. This is so because when we consider the C-benevolent case, it is no longer
true that the defined mapping is injective (as there might be an interval of optτ

that is fully contained in Jpt

t).

Lemma 3. For a given interval Ij with weight wj, we have θ ln θ
θ−1 ·E(w′

j) ≥ wj.

Proof. We denote by wτ
j the value w′

j for a given choice of τ . Let p be an
integer, and 0 < α ≤ 1 such that wj = θp+α. Then for τ ≤ α, wτ

j = θp+τ , and
for τ > α, wτ

j = θp−1+τ , thus the expected profit from Ij over the choices of τ

is
α∫

0

θp+τdτ +
1∫

α

θp−1+τdτ = 1
ln θ ·

(
θp(θα − 1) + θp−1(θ − θα)

)
= wj(1 − 1

θ) 1
ln θ ,

and the claim follows. �

Lemma 4. For the D-benevolent case and the unit interval case we have θ ln θ
θ−1 ·

E(optτ) ≥ opt.

Proof. We consider an optimal solution for the original weights. We define by
offτ a solution with rounded weights according to τ , which has the same struc-
ture as opt with respect to the set of completed intervals. Clearly, offτ ≤ optτ .
Since the structure of all solutions we consider here is the same, we can compute
the expected profit from an interval Ij that opt completes, in the solutions
offτ . By Lemma 3, this expected profit satisfies θ ln θ

θ−1 · E(w′
j) ≥ wj . Sum-

ming up the last inequalities for all j such that Ij is selected by opt we get
E(offτ) ≥ θ−1

θ ln θopt. �

Combining Lemmas 1, 2 and 4 we conclude that for the D-benevolent case and
the unit interval case

Round ≥ E(Roundτ) ≥ θ − 1
θ

E(optτ) ≥ (θ − 1)2

θ2 ln θ
opt.

Improved Randomized Results for That Interval Selection Problem 387

The maximizer of the function (θ−1)2

θ2 ln θ is θ ≈ 3.513 which is a root of the equation
θ − 1 − 2 ln θ = 0. The resulting competitive ratio of Round for this value of θ
is approximately 2.4554. Therefore, we conclude the following theorem.

Theorem 1. There is a randomized 2.4554-competitive algorithm for the D-
benevolent case and for the unit intervals case.

2.1 Barely Random Algorithms

In this section we study a simplified version of the algorithm which requires the
usage of a single random bit. Such an algorithm (that uses a constant number
of random bits) is called barely random. The 3.618-competitive algorithm of [5]
has this property and uses a single random bit. Our analysis is valid only for the
D-benevolent case and the unit interval case.

The algorithm acts the same as Round, only the choice of τ is done uniformly
at random on the set { 1

2 , 1}. Lemmas 1 and 2 are still valid, since they hold for
any fixed choice of τ . Instead of Lemma 4 we prove the following lemma.

Lemma 5. 2θ√
θ+1

·E(optτ) ≥ opt.

Proof. We consider an optimal solution for the original weights. We define by
offτ a solution with rounded weights according to τ , which has the same struc-
ture as opt regarding the intervals that are completed. Clearly, offτ ≤ optτ .
Since the structure of all solutions we consider here is the same, we can com-
pute the expected profit from an interval Ij that opt completes, in the solutions
offτ . Let p be an integer, and 0 ≤ α < 1 such that wj = θp+α.

Assume first that α ≥ 1
2 . If τ = 1

2 , then w′
j = θp+ 1

2 , and otherwise w′
j = θp.

In the first case w′
j ≥

wj√
θ

and in the second case w′
j ≥

wj

θ . Hence the expected
value of w′

j is at least 1
2 ·

wj√
θ

+ 1
2 ·

wj

θ .

Now assume that α < 1
2 . If τ = 1

2 , then w′
j = θp− 1

2 , and otherwise w′
j = θp.

In the first case w′
j ≥

wj

θ and in the second case w′
j ≥

wj√
θ
. Hence the expected

value of w′
j is at least 1

2 ·
wj√

θ
+ 1

2 ·
wj

θ in this case as well.
Summing up the inequalities for intervals Ij that are selected by opt we get
E(optτ) ≥

√
θ+1
2θ · opt. �

Combining the inequalities of Lemmas 1, 2 and 5 we conclude that,

Round ≥ E(Roundτ) ≥ θ − 1
θ

E(optτ) ≥ θ − 1
θ

·
√
θ + 1
2θ

· opt.

The maximizer of the function θ−1
θ ·

√
θ+1
2θ is θ = 9−

√
17

2 ≈ 2.43845. The re-
sulting competitive ratio of the algorithm for this value of θ is approximately
51

√
17−107
32 ≈ 3.22745. Therefore, we conclude the following theorem.

Theorem 2. There is a barely random algorithm that uses a single random bit
with a competitive ratio of 3.22745 for the D-benevolent case and the unit interval
case.

388 L. Epstein and A. Levin

3 The Lower Bound

Our lower bound proofs follow Yao’s principle [11] (see also Chapter 8.3.1 in
[1]). Yao’s principle states that given a probability measure, defined over a set
of input sequences, a lower bound on the competitive ratio of any online algo-
rithm (for a maximization problem) is implied by a lower bound on the ratio
between the expected value of an optimal solution divided by the expected value
of a deterministic algorithm (both expectations are taken with respect to the
probability distribution defined for the random choice of the input sequence).

We start by considering the unit interval case. Later we show how to modify
our construction to the other cases.

To use Yao’s principle we need to define a probability measure over a set
of input sequences. Our constructions uses a notion of phases, where in our
construction, we have up to N phases. In each phase, the input has k intervals,
where k and N are large numbers defined later. Our probability measure will be
defined using conditional probability.

The sequence starts by presenting k intervals of phase 1 where the j-th such in-
terval is denoted by Ij

1 , its starting time is j
k+1 and its weight is a1,j = 1

1
2+ k−j

2(k−1)
.

Then, with probability 1
2 the sequence stops, and the index j is chosen with prob-

ability 1
2(k−1) for every j ∈ {1, 2, . . . , k − 1}.

Assume that in phase i − 1 (for i = 2, . . . , N) we decided to continue by
selecting index j, and assume that the right endpoint of interval Ij

i−1 is bj and
the right endpoint of interval Ij+1

i−1 is bj +εi,j where εi,j > 0 (the condition on the
value εi,j clearly holds in the first phase, and we keep an invariant throughout the
construction, that no two intervals have the same right endpoint), then in phase
i we present k new intervals I1

i , . . . , I
k
i where Ij′

i has the starting point bj + εi,j ·j′

k+1

and the weight ai,j′ = 2i−1 · 1
1
2+ k−j′

2(k−1)

(note that the weights of the new intervals

are independent of j). Then, for i ≤ N − 1 with conditional probability of 1
2

we stop the sequence after i phases (the conditional probability is conditioned
on the event that we actually reach phase i), and otherwise we pick an index
j = 1, 2, . . . , k − 1 uniformly at random, and continue to the next phase. For
i = N , the sequence stops at phase N (with conditional probability 1).

We note that the marginal probability of stopping the sequence at phase i is
1
2i for i = 1, 2, . . . , N − 1, and 1

2N−1 for i = N , and the marginal probability of
reaching phase i is 1

2i−1 for all i. Thus the marginal probability of choosing an
index j in a phase i is 1

2i(k−1) .

We further note that if an online algorithm chooses interval Ij
i at phase i, and

the sequence continues to phase i+ 1 with the index j′ such that j′ < j, then all
new k intervals overlap with Ij

i , and all have a weight that is not smaller. The
interval I1

i+1 has at least the same weight as Ij
i and it intersects with exactly

the same set of future intervals as Ij
i . We get that preempting Ij

i in favor of I1
i+1

does not reduce the goal function of the resulting solution with respect to the
possibility of keeping this interval, no matter if the sequence stops or continues

Improved Randomized Results for That Interval Selection Problem 389

further afterwards. Thus it is always better to preempt interval Ij
i in favor of

a new interval. Therefore, an online algorithm gains weight from interval Ij
i of

phase i in one of the following events, either the sequence stops at phase i, or it
continues to phase i + 1 and at this time it picks an index j′ such that j′ ≥ j.
This event happens with a marginal probability of 1

2i−1 ·
(

1
2 + k−j

2(k−1)

)
. Note that

if we define the weight of phase i to be the weight that the online algorithm gains
from intervals of phase i, if phase i exists, and if such a phase does not exist
(i.e., the construction was stopped earlier) to be 0, then the expected weight of
phase i is exactly 1 (if i < N) independently of the action that the algorithm
takes (i.e., independently of which of the k intervals it selects. The additional
expected weight of intervals of phase N is at most 2N · 1

2N−1 = 2 (the maximum
occurs when the interval with largest weight is selected). Therefore, the total
expected weight of the online algorithm is at most N + 1.

We now lower bound the expected total weight of the optimal solution. For
a phase i < N such that the algorithm stops at this phase, the optimal solution
picks the maximum weight interval, which is Ik

i . This happens with a marginal
probability of 1

2i , resulting an expected weight of 1. For i = N the optimal
solution again picks interval Ik

N resulting an additional expected weight of 2.
Consider phase i, where the sequence continues by selecting index j. Then, the
optimal solution picks interval Ij

i , since it is the most profitable interval that does
not overlap with intervals of future phases. This event happens with a marginal
probability of 1

2i · 1
k−1 . Hence, by linearity of expectation the total expected

weight (in all phases) of the optimal solution is:

N−1∑

i=1

⎛

⎝1 +
k−1∑

j=1

1
2i

· 1
k − 1

· 2i−1 · 1
1
2 + k−j

2(k−1)

⎞

⎠+ 2

=
N−1∑

i=1

⎛

⎝1 +
k−1∑

j=1

1
2(k − 1)

· 1
k−1+k−j
2(k−1)

⎞

⎠+ 2 = N + 1 + (N − 1) ·
k−1∑

j=1

1
2k − j − 1

= N + 1 + (N − 1) ·
k−1∑

�=1

1
k + �− 1

= N + 1 + (N − 1) ·
(

2k−2∑

p=1

1
p
−

k−1∑

p=1

1
p

)

.

When k is arbitrarily large the right hand side becomes approximately N +
1 + (N − 1) · (ln(2k − 2) − ln(k − 1)) = N + 1 + (N − 1) ln 2, and the ratio
between the expected weight of the optimal solution to the expected weight of
the online algorithm tends to 1 + ln 2 ≈ 1.6931 as N goes to infinity. Therefore,
we established the following theorem.

Theorem 3. Any randomized online algorithm for the case of unit intervals has
a competitive ratio of at least 1 + ln 2.

We next note that one can easily change our lower bound construction to obtain
similar results for the C-benevolent and D-benevolent cases. To do so, we let
δ > 0 be infinitisimally small positive value (more precisely we consider a series of

390 L. Epstein and A. Levin

counter-examples for different values of δ where the series of δ tends to zero, and
we consider the limit of the lower bounds obtained for these values of δ). Then,
we change the length of an interval with weight wj in the above construction
to be 1 + δ · wj . For δ sufficiently small, this does not change the feasibility
of solutions. We now have a weight function f , that is defined by f(p) = p−1

δ .
This function is linearly increasing in p and convex, thus we conclude that this
instance is C-benevolent. By the above theorem, we conclude the result for the
C-benevolent case. For D-benevolent case we change the length of an interval
with weight wj in the above construction to be 1 − δ · wj . For sufficiently small
δ, this does not change the feasibility of solutions (i.e., it does not allow the
algorithm to keep its selection of an interval Ij

i , if the index picked for the next
phase is smaller than j) . Since now we have a weight function f defined as
f(p) = 1−p

δ that is linearly decreasing in p, we conclude that this instance is D-
benevolent. By the above theorem, we conclude the result for the D-benevolent
case. Therefore, we established the following theorem.

Theorem 4. There is no randomized algorithm that can be applied for any C-
benevolent instance or an algorithm that can be applied to any D-benevolent
instance, that achieves a competitive ratio smaller than 1 + ln 2.

The above result for C-benevolent instances shows that there is a C-benevolent
function f for which no online algorithm has a competitive ratio better than
1+ln 2. We next show that our construction actually holds not only for a specific
function, but for all C-benevolent functions. Consider such a function f . f is
monotonically non-decreasing and hence once we place two intervals Ij

i and Ij+1
i

such that the left endpoint of Ij
i is smaller than the left endpoint of Ij+1

i , then we
can conclude that the right endpoint of Ij

i is smaller than the right endpoint of
Ij+1
i . The claim follows by noting that f is continuous and approaches infinity

when its argument goes to infinity, and hence for every non-negative weight,
we can always find an interval with this exact weight that is necessary for our
construction. Hence, we conclude the following.

Proposition 1. For any C-benevolent function f , there is no online algorithm
with competitive ratio smaller than 1 + ln 2.

A similar result for D-benevolent functions cannot hold as a function f that
is f(0) = 0 and f(p) = 1 for all p > 0 is D-benevolent, and for this function
the problem is exactly the one solved optimally by the online algorithm of [4,3]
(a similar argument is given in [10] for deterministic online algorithms). There
is a wide class of D-benevolent functions whose range is contained a bounded
interval [a, b], and for these functions, a deterministic b

a -competitive algorithm
follows directly from the results of [4,3], by treating all intervals as if they have
identical weights.

We next show how to get a lower bound of 3
2 on the competitive ratio of any

algorithm designed for any specific D-benevolent function, that satisfies some
natural assumptions. Assume that f is D-benevolent function that satisfies the
additional property that f is surjective onto (c,+∞) for some constant c ≥ 0.

Improved Randomized Results for That Interval Selection Problem 391

We first multiply the weight of all intervals in our previous construction by c and
we fix k = 2. Then, for every weight of an interval defined by our construction
there is a length that has this weight. Specifically, for a given value of N , we are
interested in intervals having the weights c ·2i for 0 ≤ i ≤ N . Let �i = f−1(c ·2i).

Let δ > 0 be a small value which satisfies δ < min
0≤i≤N

�i

2(i+2) . We next modify

the starting points of the intervals as follows. The construction is adapted in a
way that the overlap between the two intervals of phase i, I1

i and I2
i (if this phase

is reached) is exactly 2iδ, and the common overlap between the three intervals
I1
i , I2

i and I2
i−1, for i ≥ 2, is exactly δ. The specific construction is a follows. I1

1

is placed at time 0. I2
1 is placed such that the length of the intersection between

I1
1 and I2

1 is 2δ. Assume that the construction satisfies the above conditions
up to phase i − 1. Assume now that after phase i − 1 (for some i = 2, . . . , N)
the sequence continues to the next phase (and since k = 2, this can only mean
that the index 1 is chosen), and assume that the right endpoint of interval I1

i−1

is bi and the right endpoint of interval I2
i−1 is bi + εi. By the properties of

the construction, the overlap between these two intervals is 2(i− 1)δ and since
�i−2 ≥ �i−1 > 2(i+1)δ, we get εi > 4δ. Thus εi > 0. In phase i, we present k = 2
new intervals I1

i , I
2
i where I1

i has a starting point bi + δ and I2
i has a starting

point of bi +εi−δ. Since I2
i−1 and I1

i both have the same length �i−1, the overlap
between these two intervals is �i−1−(2i−1)δ > 3δ. We get that the left endpoint
of I1

i is smaller than the left endpoint of I2
i , and the overlap between them is

(2i−1)δ+ δ = 2iδ. Since �i > 2(i+ 2)δ, the right endpoint of I2
i is strictly larger

than the right endpoint of I1
i . We conclude that the construction is correct. To

calculate the value of the resulting lower bound, technical difficulties require us
to to set k = 2 and not k → ∞. We have showed that for every value of k
the online algorithm has an expected weight of at most N + 1 and the optimal

solution has an expected weight of at least N + 1 + (N − 1) ·
k−1∑

j′=1

1
k+j′−1 that

equals (when k = 2) to N + 1 + N−1
2 = 3N+1

2 , and when N goes to infinity the
resulting lower bound tends to 3

2 . Hence, we established the following.

Theorem 5. For any f such that f is D-benevolent function and surjective onto
(c,+∞) for some constant c ≥ 0, there is no randomized online algorithm with
competitive ratio smaller than 3

2 .

4 Concluding Remarks

We note that our upper bound holds also for proper interval graphs. To see
this claim note that these graphs are equivalent to unit interval graphs and the
algorithm we presented acts the same on a proper interval graph as it does not
depend on the exact value of the coordinates of the endpoints of the intervals,
but only on the relative order of these endpoints.

Our lower bounds on the performance of randomized algorithms as well as the
lower bounds of Woeginger [10], indicate that for some D-benevolent functions

392 L. Epstein and A. Levin

f , the problem is significantly easier than the general one. The study of the exact
boundaries of these easier instances is left for future research.

Our randomized algorithm has a competitive ratio better than the previous
results only for the D-benevolent case and the unit interval case. Therefore,
improving the upper bound of Seiden [9] for the C-benevolent case is still left as
a major open question. To understand why our algorithm and its analysis fails
to improve the result for the C-benevolent case, we note that whereas for the
D-benevolent case and the unit interval case setting τ = 1 (in a deterministic
way) results an alternative 4-competitive algorithm, this is not the case for the
C-benevolent case, where we can only show that such a deterministic algorithm
is 6-competitive. Now, randomization in the selection of τ helps to reduce the
resulting competitive ratio below 6 but not enough to get below the competitive
ratio of [9] (or even below 4) for this case.

We considered only the three special cases which are the C-benevolent and
D-benevolent cases and the case of unit intervals, that were all studied by Woeg-
inger [10]. Identifying other special cases for which there exists a (constant)
competitive algorithms is also left for future research.

References

1. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

2. Canetti, R., Irani, S.: Bounding the power of preemption in randomized scheduling.
SIAM Journal on Computing 27(4), 993–1015 (1998)

3. Carlisle, M.C., Lloyd, E.L.: On the k-coloring of intervals. Discrete Applied Math-
ematics 59(3), 225–235 (1995)

4. Faigle, U., Nawijn, W.M.: Note on scheduling intervals on-line. Discrete Applied
Mathematics 58(1), 13–17 (1995)

5. Fung, S.P.Y., Poon, C.K., Zheng, F.: Online interval scheduling: randomized and
multiprocessor cases. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 176–
186. Springer, Heidelberg (2007)

6. Kolen, A.W.J., Lenstra, J.K., Papadimitriou, C.H., Spieksma, F.C.R.: Interval
scheduling: A survey. Naval Research Logistics 54(5), 530–543 (2007)

7. Kovalyov, M.Y., Ng, C.T., Cheng, T.C.E.: Fixed interval scheduling: Models, ap-
plications, computational complexity and algorithms. European Journal of Oper-
ational Research 127(2), 331–342 (2007)

8. Miyazawa, H., Erlebach, T.: An improved randomized online algorithm for a
weighted interval selection problem. Journal of Scheduling 7(4), 293–311 (2004)

9. Seiden, S.S.: Randomized online interval scheduling. Operetions Research Let-
ters 22(4-5), 171–177 (1998)

10. Woeginger, G.J.: On-line scheduling of jobs with fixed start and end times. Theo-
retical Computer Science 130(1), 5–16 (1994)

11. Yao, A.C.C.: Probabilistic computations: towards a unified measure of complexity.
In: Proc. of the 18th Symposium on Foundations of Computer Science (FOCS
1977), pp. 222–227 (1977)

Succinct Representations of Arbitrary Graphs

Arash Farzan and J. Ian Munro

Cheriton School of Computer Science,
University of Waterloo,

Waterloo, Ontario, Canada
{afarzan,imunro}@cs.uwaterloo.ca

Abstract. We consider the problem of encoding a graph with n ver-
tices and m edges compactly supporting adjacency, neighborhood and
degree queries in constant time in the log n-bit word RAM model. The
adjacency query asks whether there is an edge between two vertices, the
neighborhood query reports the neighbors of a given vertex in constant
time per neighbor, and the degree query reports the number of incident
edges to a given vertex.

We study the problem in the context of succinctness, where the goal
is to achieve the optimal space requirement as a function of n and m,
to within lower order terms. We prove a lower bound in the cell probe
model that it is impossible to achieve the information-theory lower bound
within lower order terms unless the graph is too sparse (namely m =
o
(
nδ
)

for any constant δ > 0) or too dense (namely m = ω
(
n2−δ

)
for

any constant δ > 0).
Furthermore, we present a succinct encoding for graphs for all values

of n, m supporting queries in constant time. The space requirement of
the representation is always within a multiplicative 1 + ε factor of the
information-theory lower bound for any arbitrarily small constant ε > 0.
This is the best achievable space bound according to our lower bound
where it applies. The space requirement of the representation achieves the
information-theory lower bound tightly within lower order terms when
the graph is sparse (m = o

(
nδ
)

for any constant δ > 0).

1 Introduction

A succinct representation of a combinatorial object is an encoding which sup-
ports a reasonable set of operations on the object in constant time and has
a storage requirement matching the information-theory lower bound to within
lower order terms. We use the usual model, namely a logn-bit word RAM model
where n is the size of the object (see for example [1]).

In this paper, we study the problem of representing a given graph with n ver-
tices and m edges with vertex labels from [n] = {1, . . . , n} to support adjacency,
degree, and neighborhood queries in constant time. We mainly consider directed
graphs in this paper, however we discuss in section 5 that all of our results apply
to undirected graphs. We assume that there are no multiple edges in the graph
and thus there is only one edge from vertex i to vertex j for each order pair i, j
(edges (i, j) and (j, i) can be simultaneously present as can the loop edge (i, i)).

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 393–404, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

394 A. Farzan and J.I. Munro

Supporting these queries give the functionality of both an adjacency matrix
and an adjacency list to our encoding. An adjacency query on a pair of vertices
(i, j) determines whether (i, j) is an edge. This query is supported easily in
constant time by an adjacency matrix but not an adjacency list. A neighborhood
query has the functionality to iterate through vertices incident to given a vertex
i in constant time per neighbor. A crucial point is that the representation must
be able to iterate through either the in-neighbors and out-neighbors of a given
vertex (though we do not insist on any particular order). Finally, the degree
query is to output the in-degree and out-degree of a vertex in constant time.
Neighborhood and degree queries are supported easily by an adjacency list but
not an adjacency matrix. Therefore, the representation can be used in lieu of
the adjacency list and matrix combined while supporting the same queries they
provide in constant time.

The storage requirement of such a representation is the main issue of the
paper. A counting argument suggests that the information-theory lower bound
for the space requirement of any representation with encodes graphs with n

vertices and m edges is lg
(
n2

m

)
bits. However, we prove a lower bound in section 3

that where nδ < m < n2−δ for a constant δ > 0, it is impossible to achieve this
space within lower order terms. Therefore, the best storage requirement has to be
a multiplicative factor away from the information-theory bound. We match this
lower bound by presenting an encoding in section 4 that requires (1 + ε) lg

(
n2

m

)

bits for an arbitrary small constant ε > 0. In the case where m < nδ for any
constant δ > 0, the space of the representation matches the information-theory
lower bound tightly within lower order terms. For extremely large values of m,
where n2/ lg1/3 n < m < n2/2, the space requirement of the representation
again matches the information theory-bound (cases where m > n/2 edges are
symmetrical to n−m edges).

1.1 Related Work

There is a large body of literature on space-efficient representations of graphs
most of which deal with graphs with certain properties: such as graphs with
limited arboricity or c-decomposable graphs [2], separable graphs [3], planar
graphs [4,5,6,7], triconnected and/or triangulated planar graphs [8].

Raman et al. [9] study the problem of indexable dictionary and in the extended
version of the paper, they observe a given graph can be represented by having a
dictionary structure for each vertex containing the endpoints of all its incident
edges. Using this approach to be able to report both in-neighbors and out-
neighbors of a vertex in constant time per neighbor, we need to include in the
dictionary of a vertex both its in and out neighbors. This is space inefficient as
it may double the storage requirement.

A problem closely related to representation of graphs is binary relations whose
succinct encodings has been studied [10,11]. Binary relations associate r objects
to s labels such that objects can be associate to multiple labels and a partic-
ular label can be assigned to multiple objects. According to this definition a
graph is essentially a binary relation from objects in [n] to labels in [n]. The

Succinct Representations of Arbitrary Graphs 395

supported operations are rank and select on objects and labels. It is not hard to
verify that we can implement adjacency, neighborhood, and degree queries using
these operations. Their representation requires r lg s + o (r log s) bits, however
the operations do not perform in constant time. Golynski [12] proved that any
representation with the same storage requirement within lower order terms can-
not perform these operations in constant time. Nevertheless, the operations we
require to navigate on graphs are weaker than the full rank and select operations
and therefore, the infeasibility result does not hold for our purposes.

2 Preliminaries

We view the problem of encoding a graph with n vertices and m edges as com-
pactly encoding its adjacency matrix. Given boolean matrix A of size n × n
containing m ones, we wish to represent the matrix succinctly so it supports
the access and successor queries. The adjacency query in the graph corre-
sponds to access query in the matrix and the neighborhood query corresponds
to successor query. The degree query in the graph corresponds to reporting the
number of ones in a given row or column.

Definition 1. The access(i,j) query simply reports the content of A[i, j].
r-successor(i,0) gives the position of a one in row i (if there is one).
r-successor(i,j) (where A[i, j] = 1) gives the entry one in row i that
“follows” the one in position (i, j). By “follows” we permit the encoding to it-
erate through ones in row i in any order. c-successor(.,.) is defined identi-
cally on columns. successor(r/c, ., .) query encapsulates r-successor and
c-successor queries as its first parameter is a switch r or c: successor(r, i,
j) = r-successor(i, j), and successor(c, i, j) = c-successor(i, j).

We use succinct dictionaries extensively throughout this paper. We state the
results on succinct dictionaries. The first dictionary structure that we use is the
fully indexable dictionary (FID) [9] (we note that there is a more space-efficient
version [13]). This structure is essentially equivalent to a bit-vector supporting
rank and select on both zeros and ones. The structure is very powerful (e.g.
predecessor queries [14] are supported in constant time), and thus it is rather
space inefficient:

Theorem 1. [9] Given a subset S of a universe U , there is a fully indexable
dictionary (FID) structure which requires lg

(|U|
|S|
)

+ O (|U | log log |U | / log |U |)
bits and supports rank and select queries both on members and nonmembers of
S in constant time.

The second dictionary structure is an indexable dictionary (ID). This structure
is more efficient but its supports for queries is limited. It is essentially equivalent
to a bit vector supporting rank and select, however rank can only be performed
on one bits and not on zero bits:

396 A. Farzan and J.I. Munro

Theorem 2. [9] Given a subset S of a universe U , there is an indexable dic-
tionary (ID) structure which requires lg

(|U|
|S|
)

+ o (|S|) + O (log log |U |) bits and
supports rank and select queries only on members of S in constant time.

At the heart of our representation sits a succinct encoding of functions allowing
forward and reverse navigation, partial rank, and select in constant time.

Definition 2. Given a function f : [n] → [m], forward navigation is, given
i ∈ [n] to compute f(i). The select(i,j) operation determines the i-th largest
element k such that f(k) = j. We can use this operation to report the set f−1(j)
in constant time per element for any given j. We refer to this as the reverse nav-
igation capability of the function. The partial rank(i) operation is determines
the rank of i among all elements k such that f(k) = f(i).

The problem of representing a function f : [n] → [m] supporting the set of
described operations is equivalent to representing a string S of length n over
an alphabet of size m. The equivalent operations are string access (to report
S[i]), string select (to determine the location of the i-th occurrence of a symbol),
and partial rank (given a location i, to determine the number of S[i] symbols
occurring before location i). Golynski et al. [15] studied a stronger version of the
problem where we require support for full rank (given any position i, to determine
the number of occurrences of another given symbol before i). Their space matches
the information theory bound of n lgm within lower order terms, however the
operations do not perform in constant time. It is not clear that constant time
operations are possible even if we relax the space bound to (1 + ε)n lgm for any
constant ε > 0. However, we obtain constant time support for partial rank, select,
and access operations with (1 + ε)n lgm storage requirement for any constant
ε > 0 by a slight modification of their representation. We omit the details of the
needed modifications and state the result:

Theorem 3. Given a function f : [n] → [m], there is a succinct encoding of f
which requires (1 + ε)n logm bits of space for any constant ε > 0 and supports
forward navigation, select, and partial rank (definition 2) in constant time. �

3 Space Lower Bounds

For the purpose of proving lower bounds, we assume the cell probe model where
the size of a word is w = lg n bits. For all values of n,m, we prove lower bounds
as a function of n and m on the worst-case space requirement of representations
of n×n boolean matrices with m ones supporting access and successor queries
as described in definition 1.

There is a trivial information theory bound which comes directly from a count-
ing argument and it holds for any representation regardless of the queries it can
support:

Theorem 4. Any representation of n× n boolean matrices contain m ones re-
quires lg

(
n2

m

)
bits in the worse case for some matrices. �

Succinct Representations of Arbitrary Graphs 397

The main purpose of this section is to show that for a reasonably large range of
values of m in comparison to n, it is infeasible to achieve the optimal information
theory bound in theorem 4 within lower order terms while supporting the desired
queries in constant time (namely for values nδ < m < n2−δ for an arbitrary
small constant δ). This implies that in this range, the space requirement must
be at least a constant multiplicative factor away from the information theory
bound. We give a representation in section 4 that makes the multiplicative factor
arbitrarily small to 1 + ε for any constant ε > 0.

We distinguish two cases depending on relative values of n,m and study each
case separately: (1) the moderate case: m = Ω (n) and m = O

(
n2−δ

)
for any

constant δ > 0, and (2) the Sparse case: m = o (n). In either case, we give
matching upper bounds in section 4. A discussion is in order in section 5 for the
remaining values of m which are extremely close to n2.

3.1 Lower Bound for the Moderate Case

This section proves lower bounds for the moderate case where m = Ω (n) and
m = O

(
n2−δ

)
for a constant δ > 0. We use ideas from Golynski [12] which proved

an infeasibility result for succinct representation of permutations. It proved that
not all permutations π : [n] → [n] can be encoded in the information theory
optimal bound of n lgn bits within lower order terms supporting π and π−1 in
constant time. In fact, this result shows a lower bound directly for our problem
when m = n. Therefore, our lower bound is an extension of that work.

Theorem 5. If m = Ω (n) and m = O
(
n2−δ

)
for a constant δ > 0 , there is

a n× n boolean matrix containing m ones which cannot be encoded in lg
(
n2

m

)
+

o
(

lg
(
n2

m

))
supporting the access and successor queries as described in defini-

tion 1 in constant time.

Proof. Assume such structure S exists in the cell probe model for any such
boolean matrix M which performs the queries in constant time. We derive a
contradiction by showing an encoding for M in less than lg

(
n2

m

)
bits.

Structure S works in the cell probe model and requires lg
(
n2

m

)
+ o

(
lg
(
n2

m

))
=

m lg(n2/m) + o
(
m lg(n2/m)

)
bits which is m lgn(n2/m) + o

(
m lgn(n2/m)

)
=

O (m) cells. We show that a constant fraction of these cells can be safely deleted
while the rest of the structure still describes the original matrix uniquely.

Successor queries iterate through ones in a column and a row and report them
in an order. We denote by qsuccessor(i, j) the successor query that obtains the
successor one from location (i, j). We denote by qaccess(i, j) the access(i,j)
query. As queries take constant time, all such queries probe a constant number of
cells. We denote by C[qaccess(i, j)] and C[qsuccessor(i, j)] the set of cells that these
queries probe, and define C[q(i, j)] as their union: i.e. C[q(i, j)] = C[qaccess(i, j)]∪
C[qsuccessor(i, j)].

Consider all sets C[q(i, j)] for all entries (i, j) where there is a one in the
matrix (M(i, j) = 1). There are m such sets each of which containing a constant

398 A. Farzan and J.I. Munro

number of cells. Since, there are O (m) cells, there is at least a constant fraction
of cells which occur in at most r = O (1) of the sets (for r a suitable large
constant). We denote by Cr the set of all such cells which appear in at most r
sets (|Cr| = Ω (m)). The goal is to select a large subset D ⊂ Cr of these cells to
remove from the structure S in such a manner that the matrix is constructible
given the rest of the cells.

We start by an empty D and add cells from Cr in an incremental fashion.
We maintain some invariants which allow us to recover the matrix after deletion
of cells in D. The first invariant is that for any matrix entry (i, j) such that
M [i, j] = 1, C[q(i, j)]∩D is either empty or it contains a single element. Therefore,
we can label each one entry in the matrix with C[q(i, j)]∩D such that each entry
is labeled either empty or a single cell. Furthermore, we maintain the invariant
that if an entry (i, j) is labeled c, then its predecessor and successor in row
and column i as well as its predecessor and successor in row and column j are
assigned label empty or c.

We remove an arbitrary cell c ∈ Cr and include it in D. If c ∈ C[q(i, j)] for any
(i, j) and (a, b), (a′, b′) are the predecessor and successor to (i, j) in row/column i
and (c, d), (c′, d′) are the predecessor and successor to (i, j) in row/column j, we
remove all elements of C[q(a, b)], C[q(a′, b′)], C[q(c, d)], and C[q(c′, d′)] from Cr,
and add another arbitrary cell from Cr to D and continue in this greedy manner.
Since C[q(i, j)] has constant size, at each step we remove a constant number of
cells from Cr, and hence, the number of cells added to D is a constant fraction
of Cr. It is easy to verify that the deletions from Cr maintain the invariants
throughout the procedure.

We are now ready to delete cells of D from structure S by adding some
auxiliary structures. We form a bit vector deleted cells of length O (m) bits
corresponding to the cells of structure S in order; its bits are one if the corre-
sponding cell belongs to D (and therefore deleted) and zero otherwise. For a cell
c ∈ D, we refer to a one matrix entry (i, j) as affected by c, if c ∈ C[q(i, j)]. We
note that only a constant number (r) of entries are affected by c. We refer to
a row or a column as affected by c, if they contain an entry affected by c. For
each c ∈ D, the projected matrix on affected rows and columns by c is stored
explicitly (each matrix requires a constant number of bits less than r2). Finally
the cells of D are removed from S and remaining cells are stored consecutively.

A constant fraction of the number cells (O (m)) are deleted (O (m logn) bits)
and auxiliary structures stored require O (m) bits. Therefore, the total size of
the final structure is less than lg

(
n2

m

)
. The contradiction is derived from the fact

that the matrix is fully recoverable from the final structures.
Given the deleted cells vector and the retained cells of the structures, one

can simulate a query on the original structure S. The only issue arises where
a query fails as it wants to probe a cell in D which is deleted. To recover the
matrix given these structures, we exhaustively perform all access queries over
all possible entries (i, j) and fill in the matrix where the queries succeed. We
now simulate all successor queries on previously discovered ones in the matrix
repeatedly in to exhaust all one entries these queries can recover. We form an

Succinct Representations of Arbitrary Graphs 399

affected list for all rows and columns which are initially empty. If a successor
query fails on an entry (i, j) as it needs access to cell c, we add c to the affected list
of cells for row i and column j. The invariants guarantee that each row/column
completely discovers the set of cells by which it is affected. For each cell c ∈ D,
we fill in the sub-matrix projected on the rows and columns affected by c, using
the pre-stored sub-matrix for c. Therefore, all one entries are discovered and
hence the matrix is fully recovered.

3.2 Lower Bound for the Sparse Case

In this section, we give a lower bound for the case where m = o (n):

Theorem 6. If m = o (n) , there is a n× n boolean matrix containing m ones
whose encoding requires at least lg

(
n2

m

)
+ εm lgm bits to support the access and

successor queries as described in definition 1 in constant time.

Proof. We omit the proof due to space constraints. The proof is analogous to that
of the lower bound for permutations by Golynski [12] with minor modifications.

Theorem 6 suggests that where m > nδ for a constant δ > 0, the space require-
ment is at least (1 + ε) lg

(
n2

m

)
bits for some constant ε > 0.

4 Upper Bound: The Representation

Given a n × n boolean matrix A containing m ones, this section shows how
to represent the matrix succinctly so it supports the access, successor, and
degree queries in constant time. Given our representation, the support for degree
queries is straightforward, thus we mainly focus on implementation of the access
and successor queries in this section.

Depending on the density of the matrix, we distinguish four cases which we
discuss in four subsequent sections: (1) Over half full: m > n2/2 (2) Dense:
n2/2 ≥ m > n2/ lg1/3 n. (3) Moderate: n2/ lg1/3 n ≥ m > n/2 (4) Sparse:
n/2 ≥ m.

4.1 The over Half Full Case

If more than half of the matrix entries are one (m > n2/2), we simply negate
the matrix by changing zeros to ones and vice versa. In the new flipped matrix,
less than half of the entries are one and thus the problem is reduced to one of
the other three density cases. The access query is answered by simply negating
the result of the access query on the flipped matrix. The successor query
however is more involved. This query translates into successor queries on zeros
in the negated matrix. We perform this query by supporting successor queries
on zeros as well as ones in each of the three following cases.

400 A. Farzan and J.I. Munro

4.2 The Dense Case

There are m > n2/ lg1/3 n ones in the matrix, we divide the matrix into tiny
square matrices of size 1

2

√
lg n × 1

2

√
lgn and represent each tiny square by a

reference to a look-up table.
The look-up table exhaustively lists all square matrices of size 1

2

√
lgn× 1

2

√
lg n

ordered by the number of ones. It moreover contains answers to access and
successor queries for all different possible parameters of these queries. The
space of the table is clearly o (n) and negligible.

A tiny matrix is encoded by a reference to a look-up table. The reference is
a pair (t, i) where t is the number of ones in the matrix and i distinguishes the
matrix among all matrices with the same number of ones. To account for the space
of references, we calculate the space for t and i fields separately. Fields t amount
to O

(
n2 log logn/ logn

)
= o (m) which is negligible. The i fields have a space

requirement which is dominant in the overall space bound. In a tiny matrix Ti with
ki ones, the i field requires

⌈
lg
(
lg n/4

ki

)⌉
bits. Therefore, over all the tiny matrices

these fields occupy
∑4n2/ lg n

i=1

⌈
lg
(
lg n/4

ki

)⌉
= lg

(
n2

m

)
+ o

((
n2

m

))
bits.

Thus far, we can answer our desired queries in tiny matrices. To extend this
power to the entire matrix, we simply use summary bits for rows and column
of tiny matrices. We form a bit vector of length 2n/

√
lgn for each row of the

matrix. Bit i of the vector is a summary bit for the corresponding row of the tiny
matrix; it is set to one if there is at least a one in that row. Similarly, we form
a bit vector for each column of the matrix which contains summary bits for the
columns of tiny matrices. We represent these bit vectors using the FID structure
of theorem 1. These structures together require O

(
n2/

√
logn

)
which is a lower

order term. Using these structures, implementation of queries is straightforward:
Theorem 7. A boolean matrix of size n × n with m > n2/ lg1/3 n ones can be
represented in lg

(
n2

m

)
+ o

(
lg
(
n2

m

))
bits supporting access query and successor

query on both ones and zeros in constant time. �

4.3 The Moderate Case

This is the case where n2/ lg1/3 n ≥ m > n/2. We divide the matrix into smaller
square matrices of size n2/(2m) × n2/(2m). As in the dense case (section 4.2),
we store summary bits to be able to confine our attention to within individual
n2/(2m) × n2/(2m) matrices. For each row of the matrix, we form a bit vector
of length n/(n2/2m) = 2m/n. Bit i of the vector is one if there is at least a one
in the corresponding row of small matrix i in the row. Similarly, there is a bit
vector of the same length for each column of the matrix. Moreover to support
navigation on zeros, there are symmetrical summary row and column bit vectors
for zeros as opposed to ones; these summary bits are one if all entries of the
row or column of the small matrix are one and zero if there is at least one zero
there. These bit vectors are represented using the FID structure (theorem 1).
Therefore, queries reduce to queries within small matrices. We state the bounds
of our representation for small matrices and prove it in the following section:

Succinct Representations of Arbitrary Graphs 401

111

11

111

54321

5

4

3

2

1

0
0
0
1
1
1
0
0
1
0
0
0
1

Rows

Hash functions

f

0
0
0
1
0
0
1
0
1
0
1
0
1

Columns

1

2

3

4

5Boolean matrix

Fig. 1. Structures used to represent a small matrix

Lemma 1. A boolean matrix of size u× u containing r ones can be encoded in
(1+ε)r lg u+O (u) bits for any constant ε > 0 supporting access and successor
queries on both ones and zeros in constant time.

Therefore, we obtain the following to represent a moderate case matrix:

Theorem 8. A n× n boolean matrix with m ones such that n2/ lg1/3 n ≥ m >

n/2 can be represented in (1 + ε) lg
(
n2

m

)
bits for any constant ε > 0 supporting

access query and successor query on both ones and zeros in constant time. �

Representing small matrices: lemma 1. We use a minimal perfect hash
function on each row that hashes u cells on the row to a set of ri cells where ri
is the number of ones in the cell. The matrix is traversed in a row-major fashion
and the ones in each row are traversed in the order the hash function dictates
Hence after the traversal ones are (implicitly) assigned a number from [r].

We store a function f : [r] → [u] where ones in the matrix map their assigned
numbers from [r] to their corresponding columns. In other words, an entry in
row i and column j which is assigned t in the traversal, maps t to j (f(t) = j).
This function is represented using theorem 3 which supports forward navigation,
select, and partial rank operations in constant time. Structures of this section
are illustrated in figure 1.

Furthermore, a bit vector Rows of length u+r is stored containing descriptions
of ri’s in order in unary format; for each row i in order, there is a one bit followed
by ri zero bits. Similarly, we stored a bit vector Columns of length u + r which
contains ci’s in order in unary format where ci is the number of ones in column
i. These bit vectors are encoded using the FID structure of theorem 1.

We now explain how queries can be implemented. To respond to an access(i,
j) query, we perform a select(i) on bit vector Rows to find the first assigned
number on row i. We use the perfect hash function hi of row i to get the offset
from which the entry (i, j) is hashed to; the assigned number to entry (i, j) is
t =select(i)+hi(j). Now the function is used and if f(t) = j then the content
(i, j) of the matrix is one and it is zero otherwise.

To implement successor queries, we need to find ones in a row or a column
in constant time per element. We first explain how we can translate a location in
Rows to the corresponding location in Columns and vice versa. Given a location
in Rows, we determine the corresponding row by a rank query and determine the

402 A. Farzan and J.I. Munro

corresponding column by using the function. We use the partial rank capability
and determine the rank of the cell in the column. The corresponding entry in
Columns bit vector is determined by a select query in Columns to go to the start
of the appropriate column and we add to that the rank in the column to find
the correct entry. Backward translation is performed similarly using the select
capability of the function.

Determining a successor one in a row is easy as consecutive locations in Rows
contain all ones in a row and similarly determining a successor one in a column
is easy as consecutive locations in Columns contain all ones in a column. Given
the translation capability, we can find the row and column number of an entry
in Rows or Columns.

Thus far we showed how successor query is performed on ones. As we men-
tioned in section 4.1, we also need to show successor query on zeros. This
part is more involved and we must add structures to be able to support these
queries in constant time. We store bit vectors Row next and Column next of
length u+r corresponding to bit vectors Rows and Columns respectively. If an
entry in Rows corresponds to cell (i, j) in the matrix, we set the corresponding
entry in Rows next to zero if cell (i, j + 1) is a zero and we set it to one other-
wise. Similarly, if an entry in Columns corresponds to cell (i, j) in the matrix,
we set the corresponding entry in Columns next to zero if (i + 1, j) is a zero
and we set it to one otherwise. This bit vectors essentially mark either ends of
runs of ones and therefore can be used to find zero successors. To determine
a zero successor to (i, j) (M [i, j] = 0) in the column j, we first determine the
content of cell (i + 1, j); if it is a zero then we are done as we have found a
zero successor. Otherwise, if (i + 1, j) contains a one, we find its corresponding
entry to in Columns and therefore Columns next. We only need to determine the
first position after the entry in Columns next which contains a zero (indicating
that its proceeding entry is a zero). This task is easily performed by the FID
structure. Determining a zero successor in a row is essentially similar. The only
difference stems from the fact that ones in a row are not listed in order and thus
entries corresponding to Rows are not sorted. Nevertheless, the same method
works but zero successors are not determined in order and follow the order the
perfect hash function dictates.

The perfect hash functions together require O (u+ r log log u) bits (see for
example [16]). Representation of bit vectors uses lg

(
r+u

u

)
+o (r + u) by theorem 1.

The representation of the function uses (1 + ε)r log u bits. Thus all together the
space requirement of our representation is (1 + ε)r log u+O (u) which concludes
the proof of lemma 1.

4.4 The Sparse Case

This case is the case where there is m ≤ n/2 ones in the matrix. Therefore,
there exists columns or rows containing no ones. We handle this case simply by
projecting the matrix into non-empty rows and columns and representing the
projected matrix using one of the other previous cases (dense or moderate).

Succinct Representations of Arbitrary Graphs 403

To project the matrix, we form two bit vectors R,C of length n which encode
empty rows and columns respectively. Bit i of R is zero if row i is empty and
one otherwise. Similarly, bit i of C is zero if column i is empty and one other-
wise. We represent these bit vectors using the ID structure of theorem 2 using
2m lg(n/m)+o (m) bits. We represent the sub-matrix formed on non-empty rows
and columns using either of representations of sections 4.1, 4.2, or 4.3 depending
on its sparsity. This representation uses at most (1 + ε)m lgm bits for any con-
stant ε > 0. Given these structures, implementation of queries is straightforward:

Theorem 9. A boolean matrix of size n×n with m ones such that m ≤ n/2 can
be represented in lg

(
n2

m

)
+ εm lgm bits for any constant ε > 0 supporting access

query and successor query on both ones and zeros in constant time. �

Theorem 9 implies that where m < nδ for any constant δ > 0, the information
theory lower bound of lg

(
n2

m

)
bits is achieved, and for the remaining values of m

in the range (1 + ε) lg
(
n2

m

)
bits are used.

5 Conclusion and Final Remarks

We considered the problem of encoding a directed labeled graph with n vertices
and m edges compactly supporting adjacency, neighborhood and degree queries.
Measuring the storage requirement of representations as a function of n and m,
we showed that the information-theoretic lower bound of lg

(
n2

m

)
is not achievable

for most cases by proving a better lower bound. More precisely, We proved
impossible to achieve the information-theory lower bound within lower order
terms unless the number of edges in the graph is such that m = o

(
nδ
)

or
m = ω

(
n2−δ

)
for any constant δ > 0. We furthermore matched the lower bound

in its applicable range by presenting an encoding with the worst case storage
requirement of (1 + ε) lg

(
n2

m

)
for any ε > 0. Where m = o

(
nδ
)

for any constant
δ > 0, the representation matches the information theoretic lower bound within
lower order terms and requires lg

(
n2

m

)
+ o

(
lg
(
n2

m

))
bits. The information-theory

lower bound is also matched where n2/ lg1/3 n < m < n2/2. This leaves a small
gap where n2−δ < m < n2/ lg1/3 n for any constant δ > 0 where our lower
and upper bounds are a multiplicative factor 1 + ε apart for any arbitrary small
constant ε > 0, which we leave as an open problem. We showed that the case
where m ≥ n/2 is symmetrical to previous cases by replacing m with n−m.

We argue briefly how the results extrapolate to undirected graphs. One can
transform an undirected graph to a directed graph and support all queries by
orienting an edge towards the incident vertex with the larger label (in other words
taking the upper triangle of the adjacency matrix). The information theory lower
bound for space requirement of representations is clearly lg

(
n2/2

m

)
. This change

does not affect any upper or lower bounds except for the dense case where
n2/ lg1/3 n < m < n2/4 where the same representation with trivial modifications
achieve the information theory bound.

404 A. Farzan and J.I. Munro

References

1. Munro, J.I.: Succinct data structures. Electronic Notes in Theoretical Computer
Science 91, 3 (2004)

2. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. Dis-
crete Math. 5(4), 596–603 (1992)

3. Blandford, D.K., Blelloch, G.E., Kash, I.A.: Compact representations of separable
graphs. In: SODA, pp. 679–688 (2003)

4. Turán, G.: On the succinct representation of graphs. Discrete Applied Mathemat-
ics 8, 289–294 (1984)

5. Keeler, Westbrook: Short encodings of planar graphs and maps. DAMATH: Dis-
crete Applied Mathematics and Combinatorial Operations Research and Computer
Science 58 (1995)

6. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses, static
trees and planar graphs. In: IEEE Symposium on Foundations of Computer Sci-
ence, pp. 118–126 (1997)

7. Chuang, R.C.N., Garg, A., He, X., Kao, M.Y., Lu, H.I.: Compact encodings of
planar graphs via canonical orderings and multiple parentheses. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 118–129. Springer,
Heidelberg (1998)

8. Aleardi, L.C., Devillers, O., Schaeffer, G.: Optimal succinct representations of pla-
nar maps. In: Amenta, N., Cheong, O. (eds.) Symposium on Computational Ge-
ometry, pp. 309–318. ACM, New York (2006)

9. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In: SODA 2002: Proceedings of the thirteenth
annual ACM-SIAM symposium on Discrete algorithms, Philadelphia, PA, USA, pp.
233–242 (2002)

10. Barbay, J., He, M., Munro, J.I., Rao, S.S.: Succinct indexes for strings, binary
relations and multi-labeled trees. In: Bansal, N., Pruhs, K., Stein, C. (eds.) SODA,
pp. 680–689. SIAM, Philadelphia (2007)

11. Barbay, J., Golynski, A., Munro, J.I., Rao, S.S.: Adaptive searching in succinctly
encoded binary relations and tree-structured documents. In: Lewenstein, M., Va-
liente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 24–35. Springer, Heidelberg
(2006)

12. Golynski, A.: Upper and lower bounds for Text Indexing Data Structures. PhD
thesis, University of Waterloo, Waterloo, Ontario, Canada (2007)

13. Golynski, A., Grossi, R., Gupta, A., Raman, R., Rao, S.S.: On the size of succinct
indices. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698,
pp. 371–382. Springer, Heidelberg (2007)

14. Beame, P., Fich, F.E.: Optimal bounds for the predecessor problem and related
problems. J. Comput. Syst. Sci. 65(1), 38–72 (2002)

15. Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large alphabets:
a tool for text indexing. In: Proceedings of the seventeenth annual ACM-SIAM
symposium on Discrete algorithm, pp. 368–373. ACM, New York (2006)

16. Hagerup, T., Tholey, T.: Efficient minimal perfect hashing in nearly minimal space.
In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 317–326.
Springer, Heidelberg (2001)

Edge Coloring and Decompositions of Weighted

Graphs�

Uriel Feige1 and Mohit Singh2

1 Weizmann Institute, Rehovot, Israel
uriel.feige@weizmann.ac.il

2 Tepper School of Business, Carnegie Mellon University, Pittsburgh, USA
mohits@andrew.cmu.edu

Abstract. We consider two generalizations of the edge coloring problem
in bipartite graphs. The first problem we consider is the weighted bi-

partite edge coloring problem where we are given an edge-weighted
bipartite graph G = (V, E) with weights w : E → [0, 1]. The task is to
find a proper weighted coloring of the edges with as few colors as possi-
ble. An edge coloring of the weighted graph is called a proper weighted
coloring if the sum of the weights of the edges incident to a vertex of
any color is at most one. We give a polynomial time algorithm for the
weighted bipartite edge coloring problem which returns a proper
weighted coloring using at most �2.25n colors where n is the maxi-
mum total weight incident at any vertex. This improves on the previous
best bound of Correa and Goemans [5] which returned a coloring using
2.557n + o(n) colors. The second problem we consider is the Balanced

Decomposition of Bipartite graphs problem where we are given a
bipartite graph G = (V, E) and α1, . . . , αk ∈ (0, 1) summing to one. The
task is to find a partition E1, . . . , Ek of E such that degEi(v) is close to
αidegE(v) for each 1 ≤ i ≤ k and v ∈ V . We give an alternate proof of
the result of Correa and Goemans [5] that there is a decomposition such
that �αidegE(v)� − 2 ≤ degEi(v) ≤ �αidegE(v) + 2 for each v ∈ V and
1 ≤ i ≤ k. Moreover, we show that the additive error can be improved
from two to one if only upper bounds or only lower bounds on the degree
are present. All our results hold also for bipartite multigraphs, and the
decomposition results hold also for general graphs.

1 Introduction

Edge coloring problems have been crucial in the development of different algo-
rithmic techniques and have also been used to model various scheduling prob-
lems. In this paper, we consider two edge coloring problems which have been
inspired from study of Clos networks [4] and also generalize classical coloring
problems. Clos network were introduced by Clos [4] in the context of designing
interconnection networks used to route telephone calls and have found various
applications [2,10]. We refer the reader to Correa and Goemans [5] for the rela-
tionship between the problems considered here and Clos networks.
� Part of this work was performed at Microsoft Research, Redmond, Washington.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 405–416, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

406 U. Feige and M. Singh

The first problem we consider is the weighted bipartite edge coloring

problem where we are given an edge-weighted bipartite graph G = (V,E) with
weights w : E → [0, 1]. The task is to find a proper weighted coloring of the
edges with as few colors as possible. An edge coloring of the weighted graph is
called a proper weighted coloring if the sum of the weights of the edges incident
to a vertex of any color is at most one. If all the edges have weight one then
the problem reduces to the classical bipartite edge coloring problem. König’s
Theorem [12] gives an optimal coloring in this case where the number of colors
used is exactly the maximum degree of the graph. For the weighted bipartite
edge coloring problem, Chung and Ross [3] gave the following conjecture.

Conjecture 1. Given an instance of the weighted bipartite edge coloring

problem, there is a proper weighted coloring using at most 2n− 1 colors where
n denotes the maximum over all the vertices of the number of unit-sized bins
needed to pack the weights of edges incident at the vertex.

The following is a stronger version of the Conjecture 1.

Conjecture 2. Given an instance of the weighted bipartite edge coloring

problem, there is a proper weighted coloring using at most 2n− 1 colors where
n is the smallest integer greater than the maximum over all the vertices of the
total weight of edges incident at the vertex.

Conjecture 2 is the best possible since there are instances where any proper
weighted coloring takes 2n − 1 colors. Melen and Turner [15] showed that the
Conjecture 2 is true when all edge-weights are at most 1

2 . Moreover when all
weights are strictly more than 1

2 , Conjecture 2 is also true and follows simply
from König’s Theorem.

One of our main results in the paper makes progress towards the resolution
of Conjecture 2 and therefore Conjecture 1.

Theorem 1. There is a polynomial time algorithm for the weighted bipar-

tite edge coloring problem which returns a proper weighted coloring using at
most �2.25n� colors where n is the maximum total weight incident at any vertex.

Theorem 1 improves on the previous best result given by Correa and Goemans [5]
who give a coloring using at most 2.557n+ o(n) colors. Correa and Goemans [5]
also give an algorithm which returns a proper weighted coloring with 2.5480n+
o(n) colors where n denotes the maximum over all the vertices of the number of
unit-sized bins needed to pack the weights of incident edges. Theorem 1 implies
the improved bound of �2.25n� for this variant as well.

The second problem we consider is the Balanced Decomposition of Bi-

partite graphs problem where we are given a bipartite graph G = (V,E) and
α1, . . . , αk ∈ (0, 1) summing to one. The task is to find a partition E1, . . . , Ek of
E such that degEi(v) is close to αidegE(v) for each 1 ≤ i ≤ k and v ∈ V . Correa
and Goemans [5] gave the following conjecture.

Edge Coloring and Decompositions of Weighted Graphs 407

Conjecture 3. Given an instance of Balanced Decomposition of Bipartite

graph problem there exists a decomposition such that

�αidegE(v)� ≤ degEi(v) ≤ �αidegE(v)�

for each 1 ≤ i ≤ k and each v ∈ v.

Correa and Goemans [5] proved a relaxed version of the conjecture in which
both the upper and lower bounds are relaxed by two, i.e, the decomposition
guarantees that �αidegE(v)� − 2 ≤ degEi(v) ≤ �αidegE(v)� + 2.

We give an alternate proof of the result of Correa and Goemans [5] using
linear programming methods and then show that the violation can be bounded
by an additive one if only upperbound (or lowerbound) are present.

Theorem 2. Given an instance of Balanced Decomposition of Bipartite

graph problem there exists a decomposition E1, . . . , Ek of E such that

�αidegE(v)� − 2 ≤ degEi(v) ≤ �αidegE(v)� + 2

for each 1 ≤ i ≤ k and each v ∈ V . Moreover, there are decompositions
F1, . . . , Fk and G1, . . .Gk such that

degFi(v) ≤ �αidegE(v)� + 1

degGi(v) ≥ �αidegE(v)� − 1

for each 1 ≤ i ≤ k and v ∈ V .

1.1 Previous Work

Two classical results on edge coloring are König’s theorem [12] for coloring a
bipartite graph with Δ colors and the Vizing’s theorem [18] for coloring any
simple graph with Δ + 1 colors where Δ is the maximum degree of the graph.

Before we review some of the existing literature on the problems discussed
in this paper, we introduce some notation. Given a weighted bipartite graph
G = (A ∪ B,E) with weights w : E → [0, 1], let χ′

w(G) denote the minimum
number of colors needed to obtain a proper weighted coloring ofG. Given positive
integers n and r, let M(n, r) = maxGχ

′
w(G) where the maximum is taken over all

bipartite graphs G = (A∪B,E) with |A| = |B| = r and maxv∈V

∑
e∈δ(v) we ≤ n.

In this notation, Conjecture 2 can be reformulated to claim thatM(n, r) ≤ 2n−1.
Given positive integers n and r, let m(n, r) = maxGχ

′
w(G) where the max-

imum is taken over all bipartite graphs G = (A ∪ B,E) with |A| = |B| = r
and where n is the maximum over all the vertices of the number of unit-sized
bins needed to pack the weights of incident edges. Conjecture 1 can be reformu-
lated to claim that m(n, r) ≤ 2n− 1. It is easy to see that Conjecture 2 implies
Conjecture 1 since m(n, r) ≤M(n, r) for each n and r.

If the weight function is restricted to w : E → I for some interval I ⊆ [0, 1],
then we let the minimum number of colors be denoted by MI(n, r) an mI(n, r)

408 U. Feige and M. Singh

respectively. Melen and Turner [15] proved that m[0,1/2](n, r) ≤M[0,1/2](n, r) ≤
2n− 1 and in general showed that

m[0,B](n, r) ≤M[0,B](n, r) ≤
n

1 −B

Improving the bounds for m(n, r) and M(n, r) has received considerable at-
tention [3,5,8,15,16,17] and the previous best bounds known were

5n
4

≤ m(n, r) ≤ 2.548n+ o(n)

2n− 1 ≤M(n, r) ≤ 2.557n+ o(n)

where both the upper bounds are by Correa and Goemans [5]. The lower bound
on m(n, r) is due to Ngo and Vu [16] and lower bound on M(n, r) is due to Du
et al [8]. Our results improve the upper bounds for both m(n, r) and M(n, r) to
�2.25n� making progress towards resolution of Conjecture 1 and Conjecture 2.

The Balanced Decomposition of Bipartite Graphs problem was in-
troduced by Correa and Goemans [5] who proved a relaxed version of the Con-
jecture 3 as mentioned above. Some special cases of Conjecture 3 are known to
be true. When k = 2, Conjecture 3 is true and the decomposition was given
by Hoffman [9]. When each αi is equal to 1

k then de Werra [7] showed that
the conjecture is true. The conjecture is also true when G is regular or when
αidegE(v) is an integer for each i and v and follows from König’s edge coloring
theorem [12].

1.2 Bipartite Versus General Graphs

In all results stated in the paper, there is no distinction between bipartite graphs
and bipartite multigraphs (allowing parallel edges): the proofs apply without
change also to bipartite multigraphs. Conjectures 2 and 3 do not hold as stated
for arbitrary (non-bipartite) graphs. We elaborate on this here, and explain
which of the results in this paper extend to general graphs.

Consider the Petersen graph which is a regular graph of degree 3 whose edges
cannot be properly colored by 3 colors. Give every edge a weight 2/3. In the
setting of Conjecture 2 this corresponds to a value of n = 2 and a requirement
for a proper weighted coloring with 3 colors, which is impossible. This shows
that when general graphs are concerned, the term 2n−1 in the conjecture needs
to be raised to at least 2n.

If one allows parallel edges, then having odd cycles has a more dramatic effect.
Consider for example a triangle with k parallel edges between any two vertices.
Give each edge a weight of (k + 1)/2k. Now n corresponds to k + 1, whereas
any proper weighted coloring requires 3k colors. Hence as k grows, the bound
in Conjecture 1 approaches 3n (if the graph is non-bipartite and has parallel
edges).

Applications of Conjecture 2 often involve bipartite graphs with parallel edges.
And indeed, our proof of Theorem 1 works without change even if the bipartite

Edge Coloring and Decompositions of Weighted Graphs 409

graph has parallel edges. For general (non-bipartite) graphs, our proof of The-
orem 1 easily extends to give a bound of �2.25n�+ r, where r is the maximum
multiplicity of any edge (and in particular, r = 1 in simple graphs). In counting
multiplicity of an edge, one may first merge parallel copies of an edge if the sum
of their weights does not exceed 1. Hence r need never exceed 2n.

Conjecture 3 does not hold for all graphs, a counter example being the triangle
and α1 = α2 = 1

2 . Nevertheless, our proof of Theorem 2 holds with no change for
general graphs. The previous proof of Correa and Goemans 3, that is cited after
the statement of Conjecture 3, makes use of the bipartiteness of the underlying
graph, but it is possible to modify their proof technique, using the results of
Kano and Saito [11], such that that it works also for general graphs (see also
[6]). Unlike the nonbipartite version of Theorem 1 (discussed in the previous
paragraph), multiplicity of edges has no effect on Theorem 2.

2 Edge-Coloring Weighted Bipartite Graphs

In this section we give a proof of Theorem 1. The algorithm is a combination of
König’s Theorem [12] with the greedy algorithm. We state the König’s Theorem
since we use it as a subroutine in our algorithm.

Theorem 3. [12] Given a bipartite (multi) graph G = (V,E) there exists a
coloring of edges with Δ = maxv∈V degE(v) colors such that all edges incident
at a common vertex receive a distinct color. Moreover, such a coloring can be
found in polynomial time.

The algorithm giving the guarantee of Theorem 1 is given in Figure 1. Observe
that in Step 3 of the algorithm, F can indeed be decomposed into �tn� matchings,
using Theorem 3 (because the maximum degree of F is �tn�).

We now show that the algorithm in Figure 1 gives a proper weighted coloring
for t = 9

4 . Since the algorithm only uses �tn� = � 9
4n� colors, it is enough to

show that each edge will be colored in either Step (2) when it is included in F
or Step (4) of the algorithm. We prove this by a series of claims which follow.

1. F ← ∅, t ← 9
4 .

2. Include edges in F in non-increasing order of weight maintaining the property that
degF (v) ≤ �tn� for all v ∈ V .

3. Decompose F into r = �tn� matchings M1, . . . , Mr and color them using colors
1, . . . , r. Let Fi ← Mi for each 1 ≤ i ≤ r.

4. Greedily add remaining edges to any of the Fi’s maintaining that weighted degree
of each color at each vertex is at most one, i.e,

∑
e∈δ(v)∩Fi

we ≤ 1 for each v ∈ V

and 1 ≤ i ≤ r.

Fig. 1. Algorithm for Edge Coloring Weighted Bipartite Graphs

410 U. Feige and M. Singh

Claim. Each edge of weight at least 1
t is in F .

Proof. Let e = {u, v} be an edge such that we ≥ 1
t . If e cannot be added to

F then degF (v) ≥ �tn� or degF (u) ≥ �tn� when e is considered in Step (2) of
the algorithm. But edges added in F , before e is considered in Step (2), have
weight larger than the weight of e. Therefore, the total weight at the endpoint
with degree at least �tn� is at least tn · 1

t + we > n. A contradiction.

Lemma 1. If t ≥ 9
4 then each edge can be colored with one of the colors.

Proof. For sake of contradiction suppose some edge cannot be colored in Step (3)
or Step (4). Let e = {u, v} be such an edge and let we = α. From Claim 2, we
have that α < 1

t . Moreover, when e is considered in Step (2), the degree of
either u or v is already �tn� else we would have included e in F . Without loss
of generality let that vertex be u, i.e, degF (u) = �tn�.

For each color 1 ≤ i ≤ �tn�, we must have that
∑

f∈δ(v)∩Fi
wf > 1 − α or

∑
f∈δ(u)∩Fi

wf > 1 − α else we can color e in Step (4).
Let Lv = {i|

∑
f∈δ(v)∩Fi

wf > 1 − α} and k = |Lv|. Then we have

n >
∑

i∈Lv

∑

f∈δ(v)∩Fi

wf > k(1 − α) (1)

Now for each color i /∈ Lv, we have
∑

f∈δ(u)∩Fi
wf > 1−α. Moreover, degF (u) =

�tn� and each of these edges weighs at least we = α. Hence, for each color
1 ≤ i ≤ �tn�, there is an edge incident at u colored with color i with weight at
least α. Therefore

n >
∑

f∈δ(u)

wf ≥
∑

1≤i≤
tn�

∑

f∈δ(u)∩Fi

wf (2)

=
∑

i∈Lv

∑

f∈δ(u)∩Fi

wf +
∑

i/∈Lv

∑

f∈δ(u)∩Fi

wf (3)

≥
∑

i∈Lv

α +
∑

i/∈Lv

(1 − α) = kα + (�tn� − k)(1 − α) (4)

≥ kα + (tn− k)(1 − α). (5)

Let β = k
n . By scaling Inequation (1), Inequation (5) and from Claim 2, we have

β(1 − α) < 1 (6)
β(2α− 1) + t(1 − α) < 1 (7)

α <
1
t
. (8)

We now show that for t = 9
4 , we have a contradiction to the above inequalities.

The expression β(2α−1)+ t(1−α) is a decreasing function of β as 2α−1 < 0
since α < 1

t <
1
2 . Thus the expression β(2α− 1) + t(1−α) has a minimum value

at largest possible β which is at most 1
1−α and at β = 1

1−α , we have

β(2α− 1) + t(1 − α) =
1

1 − α
(2α− 1) + t(1 − α) =

1
1 − α

− 2 + t(1 − α).(9)

Edge Coloring and Decompositions of Weighted Graphs 411

Let g(α) = 1
1−α − 2 + t(1 − α). We claim that g(α) ≥ 1 for each α ∈ [0, 1

t)
which gives the desired contradiction. Since, g(α) is a differentiable function of
α in the range [0, 1

t) the global minimum will occur at either a local minimum
or at boundary of the interval. The derivative g′(α) = 1

(1−α)2 − t. Thus the local
minima can occur at α = 1 − 1√

t
. But then

g(0) = t− 1 ≥ 1 (10)

g(
1
t
) =

t

t− 1
− 2 + t− 1 =

(t− 2)2

t− 1
+ 1 ≥ 1 (11)

g(1 − 1√
t
) =

√
t− 2 +

√
t = 2(

√
t− 1) ≥ 1 (12)

where the last inequality holds for t ≥ 9
4 . Thus g(α) ≥ 1 for each α ∈ [0, 1

t)
which contradicts inequation (7).

3 Partitioning Bipartite Graphs

In this section we prove Theorem 2. First, we give an algorithm where we show
a decomposition which matches the guarantee of Correa and Goemans [5] and
violates the bounds by at most two. We then show how to modify the algorithm
to obtain the stronger guarantee where violation is bounded by at most one when
only upper or lower bounds are present. Our algorithms use linear programming
methods and the techniques have close resemblance to result of Beck and Fiala [1]
on discrepancy of sets. We also note that the proofs do not use the fact that the
graphs are bipartite or simple and all our results in this section also hold for
general graphs with parallel edges.

Theorem 4. [5] Given an instance of Balanced Decomposition of Bipar-

tite graph problem there exists a decomposition such that

�αidegE(v)� − 2 ≤ degEi(v) ≤ �αidegE(v)� + 2

for each 1 ≤ i ≤ k and each v ∈ v.

Proof. We formulate a feasibility linear program for the following generalization
of the decomposition problem. For each edge e, we are given a set of allowable
colors Ce ⊆ {1, . . . , k} and for each vertex v, we have a degree bound for ev-
ery color from a set of colors Kv ⊆ {1, . . . , k}. We let the binary variable xi

e

denote whether an edge e belongs to Ei for each edge e ∈ E and i ∈ Ce. We
initialize Ce = {1, . . . , k}, Kv = {1, . . . , k} for each v ∈ V and degree bound
Bi

v = αidegE(v) for each 1 ≤ i ≤ k, v ∈ V which corresponds to the required
decomposition in Conjecture 3.

(LP) minimize 0 (13)

subject to
∑

e∈δ(v):i∈Ce

xi
e = Bi

v ∀ v ∈ V, ∀ i ∈ Kv (14)

412 U. Feige and M. Singh

∑

i∈Ce

xi
e = 1 ∀ e ∈ E (15)

xe ≥ 0 ∀ e ∈ E (16)

Observe that the fractional solution xi
e = αi for each 1 ≤ i ≤ k and e ∈ E is

a fractional feasible solution to the linear program.
We give an iterative algorithm which rounds the above linear program into

an integral decomposition. The integral decomposition will violate the degree
bounds by an additive error of 2 giving us Theorem 4. The algorithm iteratively
constructs the partition E1, . . . , Ek of E and is given in Figure 2.

1. Let Ei ← ∅ for each 1 ≤ i ≤ k. While E �= ∅ do

(a) Find an extreme point optimal solution x to (LP).
(b) If there is a variable xi

e = 0 then remove variable xi
e and let Ce ← Ce \ {i}.

(c) If xi
e = 1 then

– Ei ← Ei ∪ {e}
– E ← E \ {e}
– Bi

v ← Bi
v − 1 for each v ∈ e.

(d) If there exists a vertex v ∈ V and 1 ≤ i ≤ k such that i ∈ Kv and there are
at most 3 edges incident at v with non-zero xi

e then remove the constraint at
vertex v for i, i.e, Kv ← Kv \ {i}.

2. Return Ei for 1 ≤ i ≤ k.

Fig. 2. Decomposition Algorithm I

First we show that if the algorithm reaches Step (2), then the solution returned
by the algorithm satisfies the guarantees claimed in Theorem 4. In Step (1c) we
reduce Bi

v whenever we select an edge e in Ei incident at v. Therefore, the
bound for Ei at any vertex v can only be violated if the constraint for v and i
is removed in Step (1d) We maintain the property that the constraint for vertex
v and i is removed only if there are at most three edges incident at vertex v
which can possibly be included in Ei. Therefore, it follows that the number of
edges selected in Ei incident at v is strictly less than Bi

v + 3 and hence at most
�Bi

v� + 2. Moreover, we have already selected strictly more than Bi
v − 3 edges

incident at v in Ei when we remove the constraint for vertex v and color i.
Hence, the number of edges in Ei incident at v is at least �Bi

v� − 2.
To complete the proof we show that the algorithm indeed reaches Step (2).

Observe that Steps (1b), (1c) and (1d) all make progress in the sense that they
reduce either the number of variables or the number of constraints. Lemma 2
implies that whenever Step (1a)is not applicable (because we are already at an
extreme point of the current LP), at least one of these three other steps is indeed
available. Since between every two applications of Step (1a) there must be an
application of one of the other three steps, Step (2) must be reached eventually.

Edge Coloring and Decompositions of Weighted Graphs 413

Lemma 2. Given an extreme point solution x such that 0 < xi
e < 1 for each

e ∈ E and i ∈ Ce there must exist a vertex v and color i satisfying the conditions
of Step (1d).

Proof. Suppose for the sake of contradiction there is no vertex v ∈ V and color
i ∈ Kv with at most three edges incident at v with non-zero xi

e. Since x is an
extreme point, the number of tight independent constraints equals the number of
variables. We will show a contradiction to this fact by showing that the number of
tight independent constraints at x are strictly less than the number of variables.

We first count the number of variables. For each edge e, we must have |Ce| ≥ 2
since xi

e < 1 for each edge e and i ∈ Ce and
∑

i∈Ce
xi

e = 1. Hence,

of variables ≥ 2|E|. (17)

For each vertex v ∈ V and i ∈ Kv, let Di
v denote the number of variables of

form xi
e where v ∈ e. Since the condition of Step (1d) is not applicable we must

have Di
v ≥ 4 for each vertex v ∈ V and i ∈ Kv.

Hence,

of variables ≥ 1
2

∑

v∈V

k∑

i=1

Di
v ≥ 2

∑

v

|Kv|. (18)

A simple averaging gives that the

of variables ≥ |E| +
∑

v

|Kv| (19)

Observe that if equality must hold in inequations (18) and (19) then i ∈ Kv

whenever i ∈ Ce for some e ∈ δ(v).
Now we bound the total number of tight independent constraints. Since 0 <

xi
e < 1 for each e and i ∈ Ce, these integrality constraints cannot be tight at
x. The number of other constraints is exactly |E| +

∑
v |Kv|. Thus all of these

constraints must be at equality at x and linearly independent. We now show that
this cannot be the case and derive a linear dependence in the tight constraints.

Summing up all the edge constraints we obtain that
∑

e∈E

∑

i∈Ce

xi
e = |E| (20)

where LHS is the sum of the all the variables. Summing up all the vertex con-
straints we obtain

∑

v∈V,i∈Kv

∑

e∈δ(v):i∈Ce

xi
e =

∑

v∈V,i∈Kv

Bi
v (21)

where each variable occurs exactly twice in the LHS. Thus equation (21) is
exactly twice of equation (20) giving us a dependence in the tight constraints
which is a contradiction.

This completes the proof of the Theorem 4.

414 U. Feige and M. Singh

We now prove the second guarantee in Theorem 2.

Theorem 5. Given an instance of Balanced Decomposition of Bipartite

graph problem, there are decompositions F1, . . . , Fk and G1, . . . Gk such that

degFi(v) ≤ �αidegE(v)� + 1

degGi(v) ≥ �αidegE(v)� − 1

for each 1 ≤ i ≤ k and v ∈ V .

Proof. We first show how to construct the decomposition F1, . . . , Fk which sat-
isfies the upper bounds within an additive error of 1. The algorithm is very
similar to the algorithm given in Figure 2 with the following difference. The re-
laxation step (1d) is modified and the constraint for i ∈ Kv is removed whenever
Di

v ≤ �Bi
v�+1 where Di

v is the number of variables of the form xi
e for some edge

e incident at v.

1. Let F i ← ∅ for each 1 ≤ i ≤ k. While E �= ∅ do

(a) Find an extreme point optimal solution x to (LP).
(b) If there is a variable xi

e = 0 then remove variable xi
e and let Ce ← Ce \ {i}.

(c) If xi
e = 1 then

– F i ← F i ∪ {e}
– E ← E \ {e}
– Bi

v ← Bi
v − 1 for each v ∈ e.

(d) If there exists a vertex v ∈ V and i such that i ∈ Kv and Di
v ≤ �Bi

v� + 1
then remove the constraint at vertex v for color i, i.e, Kv ← Kv \ {i}. Here
Di

v = |{e ∈ δ(v) : xi
e > 0}|.

2. Return F i for 1 ≤ i ≤ k.

Fig. 3. Decomposition Algorithm II

If the modified algorithm reaches Step (2) then it gives the claimed guarantee
since the bound for color i at vertex v is violated only when the corresponding
constraint is removed in Step (1d). In such a case we have Di

v ≤ �Bi
v� + 1 and

hence the total number of edges in F i incident at v are bounded by �Bi
v�+ 1 as

desired.
To complete the proof of the Theorem 5 we show that the algorithm reaches

Step (2). As in the discussion preceding Lemma 2, this will follow from the
following lemma.

Lemma 3. Given an extreme point solution x such that 0 < xi
e < 1 for each

v ∈ V and i ∈ Kv there must exist a vertex v and color i such that Di
v ≤ �Bi

v�+1
where Di

v is the number of variables of the form xi
e for some edge e incident at v.

Edge Coloring and Decompositions of Weighted Graphs 415

Proof. Suppose for sake of contradiction we have Di
v ≥ �Bi

v� + 2 for each i ∈
Kv. We give a contradiction to the fact that the number of tight independent
constraints is equal to the number of variables in x.

The contradiction is shown by a counting argument. We give one token to
each variable which redistributes its token to the constraints. We then collect
one token for each tight independent constraint and still have extra tokens, giving
us the contradiction. The redistribution is given by the following two rules.

– Rule 1: Each variable xi
e gives xi

e tokens to the constraint for edge e.
– Rule 2: Each variable xi

e gives 1−xi
e

2 tokens to the constraint for each end-
point v of e and i.

Observe that each edge gives a total of one token.
Now, we count the number of tokens received by each constraint. Edge con-

straint for an edge e receives
∑

i∈Ce
xi

e tokens from Rule 1 which is exactly one
from the edge constraint of e in (LP). Hence, each edge constraint receives one
token in the redistribution.

Consider a constraint for vertex v ∈ V and i ∈ Kv. It receives 1−xi
e

2 tokens
for each e ∈ δ(v) such that xi

e > 0 by Rule 2 or equivalently each edge counting
towards Di

v. Hence, the total number of tokens received by the constraint is at
least

∑

e∈δ(v),xi
e>0

1 − xi
e

2
=

1
2

(Di
v −

∑

e∈δ(v),xi
e>0

xi
e) ≥ 1

2
(Di

v −Bi
v) ≥ 1

where the last inequality follows since Di
v ≥ Bi

v +2. Thus each degree constraint
also receives at least one token. Moreover, if any of the constraints receives more
than token or there is a vertex v ∈ V and color i /∈ Kv such that xi

e > 0 for
some edge e ∈ δ(v) then 1−xi

e

2 token given by Rule 2 is extra and gives us the
contradiction. Otherwise, for any color i and vertex v, we must have that i ∈ Kv

whenever i ∈ Ce. But then the sum of all the edge constraints exactly equals
the sum of the all the degree constraints, contradicting the requirement that the
constraints are linearly independent.

This completes the proof that there exists a decomposition F1, . . . , Fk satisfying
the upper bounds within additive error of one.

We now show how to construct the decomposition G1, . . . , Gk which satisfies
the lower bounds within an additive error of one. The algorithm is exactly similar
to one in Figure 3 except that we modify Step (1d) in the following manner. We
delete the constraint for vertex v ∈ V and i ∈ Kv only when �Bi

v� ≤ 1. Observe
that with this modification it is easy to verify that the solution returned satisfies
the lowerbound within an additive error of 1. This follows from the fact that
at least �Bi

v� − 1 edges incident at v are in Gi before we remove the degree
constraint for vertex v and color i.

We now show that algorithm will make progress with the modified Step (1d)
in the following lemma. The proof of Lemma 4 is omitted and appears in the
full version of the paper.

416 U. Feige and M. Singh

Lemma 4. Given an extreme point solution x such that 0 < xi
e < 1 for each

v ∈ V and i ∈ Kv there must exist a vertex v and color i such that �Bi
v� ≤ 1.

This completes the proof of Theorem 5.

References

1. Beck, J., Fiala, T.: “Integer-Making” Theorems. Discrete Applied Mathematics 3,
1–8 (1981)

2. Beetem, J., Denneau, M., Weingarten, D.: The GF11 Supercomputer. In: Pro-
ceedings of the 12th annual international symposium on Computer architecture,
Boston, Massachusetts, United States, June 17-19, pp. 108–115 (1985)

3. Chung, S.-P., Ross, K.W.: On Nonblocking Multirate Interconnection Networks.
SIAM Journal of Computing 20(4), 726–736 (1991)

4. Clos, C.: A Study of Nonblocking Switching Networks. Bell System Technical Jour-
nal 32(2), 406–424 (1953)

5. Correa, J., Goemans, M.X.: Improved Bounds on Nonblocking 3-Stage Clos Net-
works. SIAM Journal of Computing 37, 870–894 (2007)

6. Correa, J.R., Matamala, M.: Some Remarks About Factors of Graphs. Journal of
Graph Theory 57, 265–274 (2008)

7. de Werra, D.: On Some Combinatorial Problems arising in Scheduling. Operations
Research Society Journal 8, 165–175 (1970)

8. Du, D.Z., Gao, B., Hwang, F.K., Kim, J.H.: On Multirate Rearrangeable Clos
Networks. SIAM Journal on Computing 28(2), 463–470 (1999)

9. Hoffman, A.J.: Generalization of a theorem of König. Journal of the Washington
Academy of Science 46, 211–212 (1956)

10. Itoh, A., Takahashi, W., Nagano, H., Kurisaka, M., Iwasaki, S.: Practical Imple-
mentation and Packaging Technologies for a Large-Scale ATM Switching System.
Journal of Selected Areas in Communications 9, 1280–1288 (1991)

11. Kano, M., Saito, A.: [a,b]-factors of graphs. Discrete Mathematics 47, 113–116
(1983)

12. König, D.: Graphok és Alkalmazásuk a Determinánsok és a Halmazok Elméletére.
Mathematikai és Termszettudományi értesitö 34, 104–119 (1916)

13. Lin, G.-H., Du, D.-Z., Hu, X.-D., Xue, G.: On Rearrangeability of Multirate Clos
Networks. SIAM Journal on Computing 28(4), 1225–1231 (1999)

14. Lin, G., Du, D., Wu, W., Yoo, K.: On 3-Rate Rearrangeability of Clos Networks.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science 42,
315–333 (1998)

15. Melen, R., Turner, J.S.: Nonblocking Multirate Networks. SIAM Journal on Com-
puting 18(2), 301–313 (1989)

16. Ngo, H.Q., Vu, V.H.: Multirate Rearrangeable Clos Networks and a Generalized
Edge Coloring Problem on Bipartite Graphs. In: Proceedings of the fourteenth an-
nual ACM-SIAM symposium on Discrete algorithms, Baltimore, Maryland, Jan-
uary 12-14 (2003)

17. Slepian, D.: Two Theorems on a Particular Crossbar Switching (unpublished
manuscript, 1958)

18. Vizing, V.G.: On an Estimate of the Chromatic Class of a p-Graph (in Russian).
Diskret. Analiz 3, 23–30 (1964)

The Complexity of Sorting with Networks of

Stacks and Queues

Stefan Felsner1 and Martin Pergel2,�

1 Institut für Mathematik,
Technische Universität Berlin
felsner@math.tu-berlin.de

2 Department of Applied Mathematics (KAM),
Charles University Prague
perm@kam.mff.cuni.cz

Abstract. We consider a sorting problem on networks whose nodes are
storage elements of type stack or queue. A railway switchyard could be an
instance of such a network. Given is an input node where a permutation
of items 1 to n is delivered and an output node where they are expected in
sorted order. How many moves, where an item is transfered from one node
to an adjacent node, are needed in the worst case for the sorting? Among
others we have the following results: A characterization of networks where
the sorting complexity is Θ(n log n). A lower bound of Ω(n2−ε) for the
network consisting of only two stacks that can exchange items.

1 Introduction

In 1972 Tarjan published the article “Sorting Using Networks of Queues and
Stacks” [8]. Tarjan’s model consists of an acyclic directed graph, alternatively
called network or switchyard, with a designated input node s and output node t
and additional nodes representing storage buffers of type Q (queue) or S (stack).
Suppose a permutation i1, i2, . . . , in of items 1, . . . , n is entered at the source
node of the network, the question is whether they can be sorted, i.e., whether
there is a sequence of moves such that the items arrive at the output node in
the correct order. A move consists of choosing an edge e = (i, j) and transferring
the item that can be extracted at i through e and insert it into the storage at j.

The question could be answered for some special types of networks. The first
result being Knuth’s characterization of permutations that can be sorted with
a single stack as those avoiding the pattern 231, see [5, Exercises 2.2.1.2–6].
This line of research leads to the study of permutation classes, c.f. Bóna [3,4].
A related line of research deals with token passing, in this model the nodes of
the network are allowed to hold only a single item, again characterizations of
sortable permutations are a central topic, e.g. Atkinson et al. [2]. Amato et al. [1]
study the problem of reversing a train with a spur line just large enough to hold
a single car. They have results for several cost models.
� Support of grant GAUK 154907 is gladly acknowledged.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 417–429, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

418 S. Felsner and M. Pergel

In this paper we shift the focus from existence to complexity. Quoting Tarjan:
“A circuit in the switchyard will allow us to sort any sequence”, thus when
looking at ‘cyclic’ networks we may ask the questions:

How many moves are needed in the worst case to sort a permutation of
n items in a given network?

We feel that the question is well motivated from a practical point of view, after
all switchyards are cyclic in general and a specific order of the wagons of a train
may be requested. Figure 1 shows a network with two stacks. The ability to use
the track connecting the two stacks in two directions transforms the classical
2-stack problem into a ‘cyclic’ 2-stack problem as investigated in Theorem 3.

stack 1stack 2

inout

Fig. 1. If the track between the stacks is directed we have 2 stacks in series, the permu-
tation 2435761 is unsortable, making the track bidirectional allows to sort every input

We were motivated to investigate the problem by discussions with König and
Lübbecke [6]. They ask for approximation algorithms for a problem in steel pro-
cessing where steel slabs are moved into a warehouse where they have to be placed
on a fixed number of stacks. The aim is to allow extraction of the slabs in a pre-
scribed order such that the amount of rearrangement (stack to stack transfers) is
minimized. The hardness of the optimization problem is shown in [7].

In Section 2 we consider networks consisting of k communicating stacks, i.e.,
there is a directed edge between each ordered pair of stacks. We determine the
asymptotic worst case for the number of moves required to sort in such a network
for different choices of k. For k ≥ 3 constant the complexity is Θ(n log n), for
k ∼ log n it is Θ(n log n

log log n) and for k =
√
n it is exactly 3n −

√
n. In the case

k = 2 we complement the trivial upper bound of O(n2) with a lower bound of
Ω(n2−ε) for all ε > 0.

Section 3 deals with general networks. We identify two simple substructures
of networks that allow sorting with O(n log n) moves. Networks avoiding these
substructures are ‘almost acyclic’. We show that the sorting complexity on such
networks depends on the length of certain paths. In the conclusion we have
collected some open problems.

2 Communicating Stacks

In this section we analyze the sorting complexity for networks of k communi-
cating stacks. Such a network consists of input and output nodes s and t and k

The Complexity of Sorting with Networks of Stacks and Queues 419

additional nodes each representing an unbounded stack, i.e., a storage of last-in-
first-out type. There are edges (s, i), (i, j) and (j, t) for all i, j
= s, t. Recall that
we assume that the input to the sorting network consists of some permutation
π of items numbered 1, 2, . . . , n.

2.1 The Upper Bound

Let us begin considering the case k = 3 and let S0, S1 and S2 be the three
stacks. The idea for the algorithm is to sort by recursive splitting. First the
input is distributed on the stacks such that S0 contains a block consisting of the
n/3 smallest items, the block on S1 consists the middle third of the items and
the block on S2 consists of the largest third of the items. The three blocks will
be sorted and sent to the output one after the other. To begin with the block
B0 from S0 is extracted. The smaller half of the items, i.e., those with a number
smaller than the median of B0, are moved to S2 and the larger half the items,
i.e., the remaining ones, are moved to S1. This makes new blocks B′

2 and B′
1 on

top of the blocks B2 and B1. Recursively first sort B′
2 and then B′

1. If a block
to be sorted in the recursive process is of size 1, then this item is sent to the
output.

For a more formal description we need to enhance each block B with infor-
mation about the items in it, in particular we need min(B) and max(B) to be
the smallest and largest numbers of items in B and stack(B) to be the index
of the stack of B, we use arithmetic modulo 3 on these indices. Here is a code
describing the recursion.

sort(B)

if |B| = 1 then output this item
else

i← stack(B)
m← �min(B)+max(B)

2 �
create a new block B− on Si−1

min(B−) ← min(B) and max(B−) ← m

create a new block B+ on Si+1

min(B+) ← m+ 1 and max(B+) ← max(B)
for b ∈ B do

if b ≤ m then move b to B− else move b to B+

sort(B−)
sort(B+)

Correctness of the procedure follows from the fact that the algorithm always
acts on the block containing the smallest items that have not yet been moved
to the output. For the complexity note that when an element is moved, then it
is transfered from a block B to a block whose size is only half of the size of B.

420 S. Felsner and M. Pergel

Hence after log2 n move operations the element is in a block of size 1 and will
be output.

The procedure is easily generalized to the case of networks with k > 3 com-
municating stacks. In that case a block can be split into k − 1 parts and the
total number of moves between stacks is bounded by n logk−1(n). Note that in
this analysis we have already included the cost of moving items from the input
to their initial blocks. Adding one unit per item for the move to the output we
obtain a bound of n(logk−1(n)+1) for the total number of moves. The following
simple observation allows to improve this slightly. Whenever, sort(B) is called
the smallest element of the block can be moved directly to the output. Doing
this saves at least one move for every recursive call. The number of recursive
calls equals the number of inner nodes of a full (k − 1)-ary tree with n leaves,
i.e., it is n−1

k−2 .

Theorem 1. Every permutation π of 1, . . . , n can be sorted in a network of
k ≥ 3 communicating stacks with at most n logk−1(n) + n− n−1

k−2 moves.

Let us look at two particular values.
If k = log(n) + 1 the cost per item is a = loglog(n)(n) = log n

log log n .
If k =

√
n + 1 the cost per item is a = log√n(n), i.e., (

√
n)a = n and a = 2.

From the theorem we get the upper bound 3n−
√
n for the number of moves. This

number of moves is also enough if we have one stack less, i.e., for k =
√
n: Split

the elements into
√
n blocks of size

√
n, when processing a block the smallest goes

to the output and the others are intermediately placed in the
√
n−1 other stacks.

Hence
√
n items are moved only twice and all others three times. Note that an

additional smallest element 0 can be processed with two additional moves. When
it arrives it is immediately moved to the output.

For completeness some word about the case k = 2. In this case sorting can be
accomplished by keeping all items together in one block which is moved hence
and forth between the two stacks. In each transfer of the block the smallest
remaining element is directly moved to the output. Hence the size of the block
is decreasing and the overall complexity is at most

(
n+1

2

)
.

2.2 Lower Bounds

For the lower bound we only consider permutations with the least element last.
This property implies that all elements have to be inserted into the stacks before
the first element can be moved to the output. This restriction is natural when
the stacks model the store at some transportation hub. Following König and
Lübbecke we refer to the restriction as the midnight constraint.

The idea for the lower bounds is to define an encoding for a sorting procedure.
Different input permutations shall require differently encoded sorting procedures.
Hence the number of different encodings of sorting procedures for n items must
be at least n!. In the computations we use Stirling’s formula n! ≈ (n

e)n
√

2πn to
approximate n!.

A move of an item from stack i to stack j will be encoded as a pair (i, j). A
move from the input to stack i or from this stack to the output will be encoded as

The Complexity of Sorting with Networks of Stacks and Queues 421

(i, i). A sorting procedure is a sequence of moves, hence, a list of such pairs. Since
we have k2 pairs there are k2t possible sequences that potentially encode a sorting
with t moves. The inequality k2t ≥ n! > (n

e)n yields 2t ≥ n logk(n) − O(n), i.e.,
for n large t has to get arbitrarily close to n log(n)

2 log(k) .
For k ≥ 3 we thus obtain upper and lower bounds differing only by the small

factor 2 log(k)
log(k−1) , that is by a factor ≤ 3.2.

Theorem 2. The worst case complexity for sorting n elements in a network of
k ≥ 3 communicating stacks is at least n

2 logk(n) −O(n).

For k =
√
n we can point to a specific permutation that maximizes the number

of moves required. Consider the permutation π = 1, 2, 3, . . . , n, 0. The element 0
at the end enforces the midnight constraint. Consider the position of the n items
in the stacks right after inserting element 0. For a consecutive pair a below b on
any of these stacks we either have a < b and b has to be displaced before a can
be output or we have a > b and if b
= 0 it has been moved after the arrival of
a. Hence, there is a stack to stack move for all elements except 0 and the lowest
of each stack. This gives a total of at least 3(n + 1) −

√
n − 1 = 3n −

√
n + 2

moves. Together with the sorting described in the previous subsection we have
the proposition.

Proposition 1. The worst case complexity for sorting n+ 1 elements in a net-
work of

√
n communicating stacks is precisely 3n−

√
n+ 2.

2.3 Two Communicating Stacks

Again we assume the midnight constraint, i.e., the largest element comes last.
Consider the position of the n elements in the two stacks at midnight, i.e., right
before the first element is moved out. Imagine the two stacks horizontally sticked
together top to top, this shows a permutation of all the elements, this is the
midnight permutation σ of the process. Remarkably the pair (π, σ) uniquely
describes a sorting π → id on the two stacks network. A good way of visualizing
the process is to keep the stacks sticked together linearly from the beginning and
to think of an operating head moving left and right over this linear structure,
push and pop operations always take place at the position of the head. Figure 2
shows an example.

To encode the sorting process we describe the movement of the head between
consecutive in- resp. out-moves. Such a movement is readily described by a di-
rection a ∈ {�, r} indicating whether the head moves left or right and a distance
b for the move, clearly with 0 ≤ b ≤ n−1. In total we have 2n such pairs (ai, bi),
i = 1, .., 2n. Actually, there are only 2n − 2 movements of the head but such
details disappear in the asymptotic analysis, hence, we will continue ignoring
them. The total complexity of the sorting is t = 2n+

∑
i bi. For a fixed t we may

consider (bi)i as a composition of the number t − 2n with 2n parts. Therefore,
there are at most 22n

(
t

2n

)
choices of 2n pairs (ai, bi) respecting the sum con-

straint. Sorting codes of different permutations have to be different, therefore, t
has to be large enough for 22n

(
t

2n

)
≥ n!.

422 S. Felsner and M. Pergel

3
8
5
4
6
7
2
1

π

1
2
3
4
5
6
7
8

id

3 4 2 1 5 7 86σ =

in() pushL

in() pushR

in() pushR

in() pushL

popR pushL in() pushL

in() pushR

popL pushR popL pushR in() pushL

in() pushL

popL out()
popL out() popL pushR

popL out()
popR out()
popR out()
popR out()
popR out()
popR out()

Fig. 2. Sorting the input permutation π = 38546721 via σ = 34215678. Time corre-
sponds to the vertical axis, movements of the head are horizontal arrows. The four
extra moves where an element has to switch between stacks are indicated by squares.
On the right we give the sequence of stack operations for sorting π via σ.

If t satisfies 22n
(

t
2n

)
≥ n! then 22n t2n

(2n)! ≥ n!, hence, 22nt2n ≥
(

n
e

)n(2n
e

)2n and

t2n ≥
(

n
e

)3n. Taking the 2nth root yields t ≥ c n3/2. This is already well above
the Θ(n log(n)) complexity obtained for k ≥ 3 stacks. With an additional idea
we will squeeze more out of this approach.

The idea is that if π is effectively sortable via the midnight permutation σ
and σ′ is close to σ, then the cost of sorting π via σ′ will not be much higher,
hence, an effectively sortable π has many effective sortings. To make this precise
we begin with a notion of closeness: Given a parameter 0 < α < 1 we say that
σ and σ′ are α-close if they have the same elements in the interval between
positions �p nα� and �(p + 1)nα� − 1 for each p ≥ 0. The concept is illustrated
in Figure 3. For later use we note that the equivalence classes of α-closeness are

of size (nα)! n/nα

= (nα)! n1−α

≥ (nα

e)n.

Lemma 1. If sorting π with midnight permutation σ requires at most c n1+α

moves and σ′ is α-close to σ, then the sorting of π with midnight permutation
σ′ requires at most (c + 4) n1+α moves.

Proof. By exchanging σ and σ′ the distance of each of the 2n movements of the
head can increase by no more than 2nα. This adds up to no more than 4n1+α.

Being interested mainly in the exponent 1 + α of the sorting complexity we

may thus assume that every permutation has (nα)! n1−α

different sortings of this

The Complexity of Sorting with Networks of Stacks and Queues 423

σ

σ′ . . .

. . .

Fig. 3. A typical pair of α-close permutations, each of the n1−α blocks of length nα is
permuted independently

complexity. For the required number t of moves we need 22n
(

t
2n

)
/(nα)! n1−α ≥ n!.

This allows to estimate t as follows:

22n t2n

(2n)!
≥ n!

(nα

e

)n

=⇒ 22n t2n ≥
(n

e

)n(2n
e

)2n(nα

e

)n

=⇒ t2n ≥
(n3+α

e4

)n

=⇒ t ≥ 1
e2

n
3+α

2

Any t satisfying the last inequality is in Ω(n1+α), i.e., the additional moves
for replacing a midnight permutation σ by an α-close σ′ can be afforded. The
bound for t holds for every α < 1 we thus obtain:

Theorem 3. The worst case complexity for sorting n elements in a network of
two communicating stacks is at least Ω(n2−ε) for all ε > 0.

3 General Networks

To avoid trivialities we assume that every node of a given network is contained
in some directed s− t path and that a stack-node never has a loop. In the first
part of this section We identify two simple substructures S1, and S2 of networks
that allow sorting with O(n logn) moves.

Networks avoiding the substructures S1 and S2 will be called almost acyclic.
They have strongly connected components of very restricted type only. For such
networks with a path containing r components that do not consist of a single
node without loop we prove that sorting is possible in O(n1+ 1

r) moves. If every
s− t path intersects at most r strong components, then there is a lower bound
of Ω(n1+ 1

2r).

3.1 Strong Substructures

We first describe the two substructures allowing fast sorting. They are:

(S1) Three stacks S1, S2 and S3 and paths p1 : S1 → S2, p2 : S2 → S3 and
p3 : S3 → S1.

(S2) A queue Q, an a second node T , either stack or queue, with paths p1 :
Q → T , p2 : T → Q and in the case where T is a queue an additional path
q : Q → Q that avoids T , q may be a loop. In the case where T is a stack
the concatenation of p1 and p2 can replace q.

424 S. Felsner and M. Pergel

The analysis for case S1 is an obvious reduction to the situation with three
communicating stacks analyzed in Section 2. Move all items from s to one of
the stacks and then use the splitting scheme from Subsection 2.1. When an item
has to be moved from a block on stack Si to a block on stack Sj we move them
along an appropriate concatenation of the paths p1, p2, p3. This yields a sorting
with cn logn moves, where c depends on the length of the paths pi.

A sorting strategy for case S2 also uses blocks and splitting. The block B that
has to be processed will be in the front of Q. Small elements from B are moved
via q to the back of Q where the block B− is created. Large elements are parked
in the block B+ on T . When the processing of B is complete the content of T
is also moved to the back of Q. The start is with a single block consisting of all
elements on B. A round is a period of time in which every element is moved into
a new block. The size of the blocks is essentially halved in each round. When
blocks have size 1 we have a completely sorted list on Q and are done. The
complexity is c n times the number of rounds, i.e., c n logn.

Note that the argument preceding Theorem 2 applies to arbitrary networks
with a constant number k of nodes and thus yields a general lower bound of
order Ω(n logn) for the worst case sorting complexity.

Proposition 2. The sorting complexity on networks with a constant number k
of nodes that contain a substructure of type S1 or S2 is Θ(n log n).

3.2 Almost Acyclic Networks

Networks avoiding the substructures S1 and S2 are called almost acyclic. Their
strong components are either trivial, i.e., consisting of a single node without
loop, or they consist of a simple cycle of queues, this may also be a single queue
with a loop, or they consist of two communicating stacks.

Let us consider a network with an s − t path containing k nontrivial strong
components. Let C1, . . . , Ck be the order of the components on the path. In
the following description of a sorting procedure we again use the terminology of
blocks. At the beginning all items form a single block on C1. When a component
is empty it may receive a new block from the preceding component. A block sent
from Ci to Ci+1 always consists of (approximately) ai items, where ai = n1− i

k .
When component Ci is non-empty and Ci+1 is allowed to receive a block, then
Ci looks at all items it holds and sends the ai smallest. The numbers are set up
such that Ck will send singletons to the output. Since at every moment of time,
when two components Ci and Cj with i < j are non-empty, all items on Ci are
larger than any item on Cj it follows that the process yields the sorted sequence
at the output.

Every block received by Ci is of size ai−1 = n
1
k ai and every block sent by Ci

is of size ai. Therefore, each element is ‘looked at’ at most n
1
k times within the

component. The number of moves of an element in a component is proportional
to the number of looks at it. This makes a cost of O(n1+ 1

k) per component.
This makes a total of O(k n1+ 1

k) moves. For k constant this is O(n1+ 1
k) while

for k ∼ log n it is O(n logn).

The Complexity of Sorting with Networks of Stacks and Queues 425

Theorem 4. Almost acyclic networks with an s− t path containing k nontrivial
strong components can sort with O(k n1+ 1

k) moves.

In Subsection 3.3 we deal with a special class of almost acyclic networks where
the result of the theorem is best possible. First, however, we go for a general
lower bound. Again, the method of choice is to use an appropriate encoding.

We start considering a network consisting of a linearly arranged sequence of
k strong components. Collapsing the strong components this reduces to a single
s− t path with k nodes. To encode a sorting consisting of t moves we first break
the sequence at transition moves, i.e. moves where an element is transfered from
one component to the next. We assume that the sorting is normalized in the
sense that between a transition move bringing an item from Ci to Ci+1 and
the next transition move there are only moves within Ci and Ci+1. From the
structure of the strong components it follows that for each component all that
matters is the direction of the movement and the number of elements moved.
Hence, we can encode the transition move with the index i of the component
and the action on Ci and Ci+1 by two bits b, b′ and two numbers x and y. There
is a total of kn transition moves, hence, we get a sequence of kn encoding tuples
(ij , bj, b′j , xj , yj). For the bits and the leading indices there are at most (4 k)kn

choices. The numbers satisfy
∑

j xj + yj < t, hence, there are at most
(

t
2kn

)

possibilities for them.
The computation that follows is similar to what we did in Subsection 2.2.

Requiring that t is large enough such that all input permutations consisting of
n items can be sorted implies an inequality:

(4 k)kn

(
t

2kn

)

≥ n! =⇒ (4 k)kn t2kn

(2kn)!
≥ n! =⇒

(2
√
k t)2kn ≥

(n

e

)n(2kn
e

)2kn

=⇒ t2kn ≥
(n

e

)(2k+1)n

kkn =⇒ t ≥ c n
(2k+1)

2k .

Consider an arbitrary almost acyclic network with a constant number k of
strong components. There is ‘only’ a constant, say kk, number of s − t path
in the network. Therefore, in a sorting of n items there is a path taken by
linearly many of the items. Applying the previous consideration to this path we
conclude:

Theorem 5. An almost acyclic network containing a constant number k of
strong components requires Ω(n1+ 1

2k) moves for sorting.

In the following subsection we consider two special cases of almost acyclic net-
works. In both cases we can improve upon the lower bound of the theorem.

3.3 Sequences of Looped Queues and Doublestacks

In this subsection we consider almost acyclic networks consisting of a single s− t
path of k strong components. We investigate two particular instances:

426 S. Felsner and M. Pergel

(1) Each strong component is a cycle of queues or a single queue with a loop.

(2) Each strong component is a doublestack, i.e., a pair of communicating stacks.

Let NQk be the first of these instances, and let Zi, i = 1, .., k, denote the ith
cycle of queues along the path. The input permutation is π = n, n − 1, . . . 2, 1.
It will be shown that a sorting of π in NQk requires at least Ω(n1+ 1

k) moves.
Consider a sorting procedure and associate a vector q(x) ∈ Nk with every

number x ∈ {1, .., n}. The component qi(x) of this vector records the number of
rounds item x makes on Zi during the sorting. To account for the move of the
element from Zi to Zi+1 the actual value of qi(x) is one more than the number
of rounds. Hence, in the case where each Zi consists of a single queue with a
loop, the total number of moves of the sorting is exactly

∑
i,x qi(x).

Observe that during a sorting for every given pair of numbers x < y there
is an i such that y is overtaken by x in Zi, i.e., x arrives later in Zi but leaves
earlier, in particular qi(x) < qi(y). This implies that the vectors q(x) are pairwise
different.

Lemma 2. There is a constant ck depending only on k such that

n∑

x=1

k∑

i=1

qi(x) ≥ ck n
1+ 1

k

for every set of n pairwise different vectors q(x) ∈ Nk.

Before proving the lemma we shall point to its consequence. We get a lower
bound matching the upper bound from Theorem 4:

Proposition 3. Sorting the reverse permutation π on the network NQk con-
sisting of k cycles of queues along a path requires Ω(n1+ 1

k) moves.

Proof of the lemma. A set Q of n different positive vectors minimizing the sum
has to be packed in the sense that there is a k-dimensional simplex Δ0

k(r) spanned
by 0 and the k vectors r ei such that all integral points in the open interior of
Δ0

k(r) belong to Q and no point outside of Δ0
k(r) belongs to Q.

Every q ∈ Q is the maximal corner of a unit-cube Cq contained in Δ0
k(r),

therefore,
rk

k!
= Volk(Δ0

k(r)) ≥ n =⇒ r ≥ k

e
n

1
k .

¿From
∑

i qi ≥
∫

Cq
(
∑

i xi) dx for every q ∈ Q we get

∑

q∈Q

∑

i

qi ≥
∫

Δ0
k(r)

(
∑

i

xi) dx =
∫ r√

k

t=0

t · Volk−1(Δk−1(t)) dt,

where Δk−1(t) is the (k− 1)-dimensional simplex spanned by the k vectors t ei,
i.e., Δk−1(t) is a regular simplex with sidelength

√
2t. The volume of the regular

The Complexity of Sorting with Networks of Stacks and Queues 427

k-dimensional simplex with sidelength one is
√

k+1√
2

k
k!

, hence, Volk−1(Δk−1(t)) =
√

k
(k−1)! t

k−1. Using this in the above integral and substituting for r yields the final
inequalities:

∑

q∈Q

∑

i

qi ≥
k
√
k

(k + 1)!

(r√
k

)k+1

≥ k
√
k

(k + 1)!
kk+1

(e
√
k)k+1

n
k+1

k = ck n
1+ 1

k .

Let NSk be an almost acyclic networks consisting of a single s − t path of k
doublestacks. A lower bound for the number of moves required to sort on NSk

was given in Theorem 5. To improve upon this bound we use terminology and
the idea from the proof of Theorem 3. We assume that the input permutation
has the least element last, i.e., the midnight constraint is enforced. Consider
the arrangement of items on doublestack i at midnight, this is a sequence σi.
The concatenation of these sequences is a permutation σ split into k pieces
σ = (σ1, σ2, . . . , σk), in the following we refer to such a permutation as splitted
(midnight) permutation. Two splitted permutations σ and σ′ are α-close if for
all i: σi and σ′

i contain the same items and they are α-close in the old sense, i.e.,
they contain the same items in their buckets of length nα. Equivalence classes
of α closeness are of size at least (nα)! n/nα−k. Since k is a constant we may still
estimate this size as (nα

e)n.

Lemma 3. If sorting π on NSk with splitted midnight permutation σ requires
at most c n1+α moves and σ′ is α-close to σ, then there is a sorting of π with
splitted midnight permutation σ′ that requires at most (c+ 4 + k) n1+α moves.

Proof. The sorting with σ′ reproduces the original sorting with σ as close as
possible, i.e, the sequence of moves where elements are sent to the next dou-
blestack are identical, moreover, if x is an element belonging to piece σj , then
then position of x in the sequence of each doublestack i with i
= j is exactly the
same in both sortings. Hence, all additional moves that are associated with x
occur when x is inserted or removed from doublestack j. These additional moves
are of two types:

• The head is passing an element y that belongs to the block of x, i.e., to the
interval of length nα on σj containing x. There are at most 2nα such moves
associated with the insertion of x into doublestack j and again 2nα moves
associated with the removal.

• The head is passing an element z belonging to a piece σi with i
= j. For
this to happen it must be that in one of the two sortings x is left of z and
in the other it is right of z, i.e., the position of z is in the range spanned by
elements the block of x. This kind of move is assigned to z. While sitting on
doublestack i element z can cause at most nα such moves. Altogether there
are at most k nα such moves assigned to z.

Summing over all x and z we can bound the number of additional moves by
n (4 + k)nα.

428 S. Felsner and M. Pergel

Given the lemma we can redo the computation preceding Theorem 5:

(4 k)kn

(
t

2kn

)

≥ n!(
nα

e
)n =⇒ t ≥ c n1+ 1+α

2k .

The choice of α is restricted by the condition that there is additional work of
order n1+α. Hence we need 1 +α ≤ 1 + 1+α

2k , i.e., the best we can do is to choose
α = 1

2k−1 . This yields the proposition:

Proposition 4. Sorting n elements on the network NSk consisting of k dou-
blestacks along a path requires at least Ω(n1+ 1

2k−1) moves in the worst case.

4 Conclusion

We have analyzed the sorting complexity of networks of stacks and queues. In
most cases we could prove upper and lower bounds that are at least reasonably
close. Some questions are left open or raised by our results. To us the single most
intriguing problem is the following:

• Is it possible to sort on two communicating stacks with o(n2) moves?

One of the aspects where networks of queues and networks of stacks differ is
that in the former case we could get lower bounds by analyzing a specific input
permutation while in the second case we had to rely on counting arguments. It
would be interesting to get hand on explicit permutations that are hard to sort
on a given network of stacks, e.g., on NSk.

A related line of questions is opened if we fix an input permutation and ask
for the optimal sorting on a given network. As mentioned in the introduction
some instances of the problem have been shown to be computationally hard by
König et al. [7]. Again the case of the network consisting of two stacks seems to
be challenging.

• Is it hard to compute an optimal sorting for an input permutation π on a
network of two communicating stacks?

• Is it possible to approximate the sorting complexity of π on a network of
two communicating stacks in polynomial time?

References

1. Amato, N., Blum, M., Irani, S., Rubinfeld, R.: Reversing trains: a turn of the century
sorting problem. J. Alg. 10, 413–428 (1989)

2. Atkinson, M.D., Livesy, M.J., Tulley, D.: Permutations generated by token passing
in graphs. Theor. Comput. Sci. 178, 103–118 (1997)

3. Bóna, M.: A survey of stack-sorting disciplines. Electr. J. Combin. 9(2), 16 pages
(2003)

4. Bóna, M.: Combinatorics of Permutations. Chapman & Hall, Boca Raton (2004)
5. Knuth, D.E.: The Art of Computer Programming, 3rd edn., vol. 1. Addison-Wesley,

Reading (updated and revised) (1997)

The Complexity of Sorting with Networks of Stacks and Queues 429

6. König, F.G., Lübbecke, M.E.: Sorting with Complete Networks of Stacks, TU Berlin,
Mathematik (preprint, 036-2007)

7. König, F.G., Lübbecke, M.E., Möhring, R.H., Schäfer, G., Spenke, I.: Solutions to
real-world instances of Pspace-complete stacking. In: Arge, L., Hoffmann, M., Welzl,
E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 729–740. Springer, Heidelberg (2007)

8. Tarjan, R.: Sorting using networks of queues and stacks. J. Assoc. Comput.
Mach. 19, 341–346 (1972)

Faster Steiner Tree Computation in

Polynomial-Space

Fedor V. Fomin1,�, Fabrizio Grandoni2,��, and Dieter Kratsch3

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway
fomin@ii.uib.no

2 Dipartimento di Informatica, Sistemi e Produzione, Università di Roma “Tor
Vergata”, via del Politecnico 1, 00133, Roma, Italy

grandoni@disp.uniroma2.it
3 LITA, Université Paul Verlaine-Metz, 57045 Metz Cedex 01, France

kratsch@univ-metz.fr

Abstract. Given an n-node graph and a subset of k terminal nodes,
the NP -hard Steiner tree problem is to compute a minimum-size tree
which spans the terminals. All the known algorithms for this problem
which improve on trivial O(1.62n)-time enumeration are based on dy-
namic programming, and require exponential space.

Motivated by the fact that exponential-space algorithms are typi-
cally impractical, in this paper we address the problem of designing
faster polynomial-space algorithms. Our first contribution is a simple
polynomial-space O(6knO(log k))-time algorithm, based on a variant of
the classical tree-separator theorem. This improves on trivial O(nk+O(1))
enumeration for, roughly, k ≤ n/4.

Combining the algorithm above (for small k), with an improved
branching strategy (for large k), we obtain an O(1.60n)-time polynomial-
space algorithm. The refined branching is based on a charging mechanism
which shows that, for large values of k, convenient local configurations
of terminals and non-terminals must exist. The analysis of the algorithm
relies on the Measure & Conquer approach: the non-standard measure
used here is a linear combination of the number of nodes and number of
non-terminals.

As a byproduct of our work, we also improve the (exponential-space)
time complexity of the problem from O(1.42n) to O(1.36n).

1 Introduction

The Steiner tree problem is one of the best-known optimization problems: Given
a connected graph G = (V,E) on n = |V | nodes, edge costs c : E → R+ and
a set T ⊆ V of k = |T | terminals, the objective is to find a subtree S of G
spanning T such that the cost of S (i.e. the total cost of its edges) is minimum.
Steiner trees are important in various applications such as VLSI routings [22],

� Supported by the Norwegian Research Council.
�� Partially supported by MIUR under project MAINSTREAM.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 430–441, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Faster Steiner Tree Computation in Polynomial-Space 431

phylogenetic tree reconstruction [21] and network routing [24]. We refer to the
book of Prömel and Steger [27] for an overview of the results and applications
of the Steiner tree problem.

The Steiner tree problem is known to be NP-hard [18]. Furthermore, it is APX-
complete, even when the graph is complete and all edge costs are either 1 or 2 [3].
Finding the best approximation algorithm for the Steiner tree problem has been
a challenge and many papers have been written on this subject. The currently
best polynomial-time approximation algorithm for the Steiner tree problem, due
to Robins and Zelikovsky, has approximation ratio 1 + (ln 3)/2 < 1.55 [28].
Among other results, Robins and Zelikovsky establish an approximation ratio
of 1.28 for complete graphs with edge costs 1 or 2. The Steiner tree problem
remains NP-hard for Euclidean and rectilinear metrics [17]. On the positive
side, Arora established polynomial-time approximation schemes for those two
important variants of the Steiner tree problem [1].

The Steiner tree problem plays a crucial role also in parameterized algorithms
[9,12,26]. The aim here is designing the fastest possible algorithm under the (re-
alistic) assumption that k � n. For more than 30 years the fastest parameterized
algorithm for the Steiner Tree problem was the classical O∗(3k) dynamic pro-
gramming algorithm by Dreyfus and Wagner [10].1 Dreyfus-Wagner’s algorithm
is still probably the most popular algorithm used for solving different variants
of the Steiner tree problem in practice [8,16]. This algorithm and its variations
are also used as a subroutine in many other algorithms. For example, recent ap-
plications of it can be found in fixed parameter tractable algorithms for certain
vertex cover problems [19] and for near-perfect phylogenetic tree reconstruction
[6]. Recent progress in parameterized complexity and exact algorithms led to
new insights on the Steiner tree problem. Mölle, Richter, and Rossmanith [25]
(see also [15]) improved the running time to O∗((2+ε)k), for any constant ε > 0.
More recently, Björklund, Husfeldt, Kaski, and Koivisto [5] obtained an O∗(2k)
time algorithm for the version of the problem where edges have bounded integer
weights. All the mentioned algorithms are based on a dynamic programming ap-
proach: they store useful auxiliary information for every subset of the terminal
set, and thus use exponential space Ω(2k).

For arbitrary values of k, the fastest known O∗(1.4143n)-time (exponential-
space) algorithm for the Steiner tree problem is obtained by combining the algo-
rithm by Mölle et al. [25] (for small k) with trivial enumeration (for
large k).

Exponential-space versus polynomial-space. The situation with exact al-
gorithms for the Steiner tree problem is quite typical for a number of other
NP-hard problems: the best exponential time complexity is achieved by algo-
rithms with exponential space complexity [29]. However, algorithms with very
high space complexity are unlikely to be fast in practice, especially when exter-
nal memory accesses are frequent. This kind of phenomena is not captured by
the standard RAM model. Hence it makes sense to search for algorithms with
1 Throughout this paper we use the O∗ notation which suppresses polynomial factors:

for any polynomial p(n), O(p(n)f(n)) is O∗(f(n)).

432 F.V. Fomin, F. Grandoni, and D. Kratsch

low memory requirements, even if they are asymptotically slower than their
exponential-space counterpart. Polynomial-space exact algorithms have been
studied for various NP-hard problems, among them Hamiltonian Path [2,20,23]
and Coloring [4].

For k = ω(logn), the existing parameterized algorithms for the Steiner tree
problem are not polynomial-space. Under that assumption, the fastest known
polynomial-space algorithm is the (almost) trivial enumerative algorithm, based
on the following observation. Since all the leaves of any optimal Steiner tree are
terminals, the number of Steiner nodes T ′ of degree 3 or larger is at most k.
Given T ′, the Steiner tree problem is equivalent to the minimum spanning tree
problem on GM [T ∪ T ′], where GM is the metric closure of G. Such problem
can be solved in polynomial time. Hence it is sufficient to list all the subsets
T ′ ⊆ N := V \ T of size at most k, and then apply the observation above. This
takes time O(

∑k
i=1

(
n−k

i

)
nO(1)). For k � n this running time is O∗(nk), while

for arbitrary values of k it is O∗(1.6181n).

Our Results and Techniques. Motivated by the practical limitations of
exponential-space algorithms and by the theoretical interest of the topic itself,
in this paper we address the problem of designing faster polynomial-space exact
algorithms for the Steiner tree problem. In particular, we present an exact algo-
rithm for the cardinality version of the problem (where every edge is of weight
one), of running time O∗(1.5949n). This result is achieved in three steps:

• We describe a new, easy-to-implement, Steiner tree algorithm, taking
O(5.96knO(log k)) time and polynomial space. This means an improvement on
known polynomial-space results for ω(logn) = k ≤ 0.269n, which covers many
real-world instances. Our result is based on a simple variant of the classical tree-
separator theorem: shortly, there is a node in every Steiner tree which separates
two balanced subsets of terminals. This can be exploited in a top-down recursive
implementation of the classical algorithm by Dreyfus and Wagner, hence achiev-
ing running time O((27/4)knO(log k)) and polynomial-space. The running time
can be refined to O(5.96knO(log k)) by exploiting the properties of the Steiner
separators in combination with a more careful branching. This algorithm works
also in the weighted case, and might be of independent, practical interest2.

• We design an improved branching strategy, based on the following idea. When
k is small, it is convenient to use the algorithm above. Otherwise, there must be
clusters of terminals “close” to each other. This property can be used to guide
the branching process. From the technical point of view, we use a simple charging
mechanism to show that, for large k’s, the graph must contain one of a small list
of local configurations of terminals and non-terminals. On such configurations
we are able to branch better than trivially.

• We analyze the algorithm above with the Measure & Conquer technique de-
scribed in [13,14], and based on the quasiconvex analysis of multivariate recur-
rences by Eppstein [11]. The basic idea is designing a convenient (non-trivial)
2 An experimental analysis of our algorithms is postponed to future work.

Faster Steiner Tree Computation in Polynomial-Space 433

measure of the size of the problem. This measure is used to bound in a tighter
way the progress made by the recursive algorithm considered at each branching
step. The running time obtained with respect to the refined measure is eventu-
ally turned into the equivalent running time in terms of the standard measure
considered (typically the number of nodes or edges for graph problems). As it
will be clearer from the analysis, a convenient measure in our case is a linear
combination of the number n of nodes and number nN = n− k of non-terminals
in the graph.

Preliminaries. In the following stG(T) denotes the minimum number of edges
of a Steiner tree of graph G over terminal set T . When the graph G is clear from
the context, we will simply write st(T). By contracting a subset of nodes V ′, we
mean (i) removing V ′ from the graph, (ii) adding a new node v′, and (iii) adding
one edge between v′ and each neighbor of V ′ not in V ′. The following lemma is
easy to verify.

Lemma 1. (Contraction Lemma) Let (G, T) be an instance of the cardinality
Steiner tree problem. Also let V ′ be a connected component of terminals, G′ be the
graph resulting from contracting V ′ in a unique node v′, and T ′ = T ∪ {v′} \V ′.
Then

stG(T) = |V ′| − 1 + stG′(T ′).

The rest of this paper is organized as follows. In Section 2 we present our
O(5.96knO(log k)) polynomial-space algorithm. The refined branching strategy
based on the charging argument is described in Section 3, and analyzed in Sec-
tion 4 with the Measure & Conquer technique.

2 Steiner Tree Via Steiner Separators

In this section we describe a simple polynomial-space algorithm for the Steiner
tree problem of running time O((27/4)knO(log k)). We later show how to reduce
the time complexity to O(5.96knO(log k)). We remark that, with minor modifica-
tions, this algorithm works also in the weighted case.

Our algorithm is inspired by the classical dynamic programming algorithm
D&W by Dreyfus and Wagner [10], which takes O∗(3k) time and exponential space.
Algorithm D&W is based on the following observation. Consider any Steiner tree
S on the set of terminals T , |T | ≥ 3. There must be an internal node s ∈ S, not
necessarily a terminal, such that the subtrees of S rooted at s can be partitioned
in two forests R1 and R2, each one containing at least one terminal. Let Ti be
the terminals in Ri, i ∈ {1, 2}. If we compute optimal Steiner trees on terminals
T1∪{s} and T2∪{s}, and we merge them, we obtain an optimal Steiner tree for
the original problem. Of course we do not know s nor (T1, T2) a priori, but we can
guess them by enumerating all the possible cases. Recall that stG(T) = st(T) is
the minimum cost of a Steiner tree of G on terminals T . The following equation
holds:

st(T) = min
s∈V

min
(T1,T2)∈P(s,T)

{st(T1 ∪ {s}) + st(T2 ∪ {s})}, (1)

434 F.V. Fomin, F. Grandoni, and D. Kratsch

s

R2b

R2a

R2 R1

Fig. 1. Tight example for Lemma 2 (black nodes are terminals): a Steiner separator s,
and the corresponding forests R1 and R2 with |T1| = k/3 and |T2| = 2k/3 terminals,
respectively. Note that in R2 ∪ {s}, node s separates two perfectly balanced forests
R2a and R2b.

where P(s, T) is the set of possible partitions (T1, T2) of T \ {s} in two non-
empty subsets. Algorithm D&W simply applies Equation (1) to any subset of T ,
in a bottom-up fashion, storing each partial solution computed for later compu-
tations. Storing the partial solutions takes Ω(2k) space.

A simple-minded approach to obtain a polynomial-space variant of D&W is
to apply Equation (1) recursively, in a top-down fashion, without storing any
partial solution. When |T | ≤ 2, the problem is solved trivially in polynomial
time and space (base case). Unfortunately, this approach leads to a very high
running time. The main reason is that, by applying Equation (1) as it is, one
generates some subproblems with almost the same number of terminals as in the
original problem.

This problem can be circumvented by exploiting a variant of the classical
tree-separator theorem. It is well known that any n-node tree contains a node s
(separator) whose removal divides the tree in two forests, each one containing at
most 2n/3 nodes. The same basic result holds if we put weights on the nodes [7].
In particular, the following lemma holds (see Figure 1 for a tight example).

Lemma 2. [7] Consider any Steiner tree S on the set of terminals T , |T | = k ≥
3. Then there exists an internal node s ∈ S (Steiner-separator), not necessarily
a terminal, whose removal divides the tree in two forests, each one containing at
most 2k/3 terminals.

As a consequence of Lemma 2, when applying Equation (1), we do not really
need to consider all the partitions in P(s, T), but it is sufficient to consider only
the subset B(s, T) ⊆ P(s, T) of (“almost balanced”) partitions (T1, T2) where
|T1| ≤ |T2| ≤ 2k/3:

st(T) = min
s∈V

min
(T1,T2)∈B(s,T)

{st(T1 ∪ {s}) + st(T2 ∪ {s})}. (2)

Using Equation (2) instead of (1) makes no substantial difference with the dy-
namic programming approach by Dreyfus and Wagner: in fact, the most frequent

Faster Steiner Tree Computation in Polynomial-Space 435

partitions (which determine the running time) contain a balanced number of ter-
minals, and such partitions are contained both in B(s, T) and in P(s, T). The
situation changes drastically in the top-down recursive implementation of the al-
gorithm: here the running time is essentially determined by the most unbalanced
partitions. Hence, replacing P(s, T) with B(s, T) has a tremendous impact on
the performance of the algorithm.

The following Steiner tree algorithm summarizes the discussion above:

• (base case) If T = {v}, return v. If T = {v, w}, return the shortest path
from v to w.

• (recursive case) For every s ∈ V and for every partition (T1, T2) of T \{s},
|T1| ≤ |T2| ≤ 2k/3, compute recursively optimal Steiner trees S1 and S2 over
T1 ∪{s} and T2 ∪ {s}, respectively. Return the cheapest Steiner tree S1 ∪S2

obtained.

Theorem 1. The Steiner tree algorithm above takes time O((27/4)knO(log k))
and polynomial space.

Proof. The correctness of the algorithm follows from the discussion above, and
its space complexity is trivially polynomial. Let P (k) be the number of base
instances generated by the algorithm to solve the problem. The time complexity
of the algorithm is O(P (k)nO(1) log k) = O(P (k)nO(1)), where we used the fact
that each branching step takes polynomial time and the depth of the recursion
is O(log k).

It remains to bound P (k). We will show by induction that P (k) ≤ Cnc ln kαk,
for some constants C > 0, c > 0, and α ≥ 4. Clearly the condition is true for
k ≤ 2. Now assume it is satisfied for every h ≤ k − 1, and consider an instance
with k terminals. For a given partition (T1, T2), the number of base instances
generated is P (|T1| + 1) + P (|T2| + 1). By construction, k/2 ≤ |T2| ≤ 2k/3 and
|T1|+ |T2| ≤ k. Hence, for sufficiently large constants C and c and for α = 8, the
following inequalities hold:

P (k) ≤ n

2k/3∑

i=k/2

(
k

i

)

(P (i + 1) + P (k − i + 1)) ≤ 2n

2k/3∑

i=k/2

(
k

i

)

P (i + 1)

≤ 2n P (2k/3 + 1)

2k/3∑

i=k/2

(
k

i

)

≤ 2n Cnc ln(2k/3+1)α2k/3+1 2k

≤ C nc lnk(2α2/3)k ≤ C nc ln kαk.

Above we used the fact that 2α2/3 = α for α = 8. In order to obtain a better
value of α, we use the following observation.

Fact 1. For every fixed x ≥ 4, function f(y) = xy

yy(1−y)1−y is increasing on
interval (0, 2/3].

436 F.V. Fomin, F. Grandoni, and D. Kratsch

From Stirling’s formula and Fact 1, for i ∈ [k/3, 2k/3],
(
k

i

)

P (i+ 1) ≤ Cnc ln(i+1)αi+1

((i/k)i/k(1 − i/k)1−i/k)k
≤ (αi/k)kαC nc ln(2k/3+1)

((i/k)i/k(1 − i/k)1−i/k)k

≤ αC nc ln(2k/3+1)

(
α2/3

(2/3)2/3(1/3)1/3

)k

= αC nc ln(2k/3+1)

(
3α2/3

22/3

)k

.

It follows that

P (k) ≤ 2n
2k/3∑

i=k/2

(
k

i

)

P (i+ 1) ≤ 2n k αC nc ln(2k/3+1)

(
3α2/3

22/3

)k

≤ C nc ln kαk,

for sufficiently large constants C and c and for α = 27/4. The claim follows.

2.1 A Refined Algorithm

The algorithm of the previous section can be refined thanks to the following
observation. Let S be an optimal Steiner tree. Consider the Steiner-separator
s ∈ S leading to the most balanced partition (T1, T2) of the terminals, |T1| ≤ |T2|.
In case of a tie, we choose s such that the forest R2 associated to T2 contains
the smallest possible number of nodes. In the worst possible case, |T1| = k/3
and |T2| = 2k/3. Note that in such case the forest R2 cannot be formed by a
unique subtree of S. This is because otherwise the root s′ of such a subtree would
contradict the minimality of s. It follows that we can further partition R2 in two
sub-forests R2a and R2b. Let T2x be the terminals of R2x, x ∈ {a, b}. Without
loss of generality, we assume that |T2a| ≤ |T2b|. Again by the minimality of s, we
have |T2b| ≤ |T1| = k/3. In fact, otherwise the partition (T2b, T2a ∪ T1) would be
more balanced than (T1, T2) = (T1, T2a ∪ T2b). It follows that |T2a| = |T2b|, that
is in the subproblem induced by T2 there is a perfectly balanced partition (see
Figure 1 for an example).

This argument can be generalized in the following way. Let γ ∈ (0, 1/6) be a
given parameter. With the same notation as above, suppose |T2| ≥ (2/3 − γ)k.
Then it must be |T2a| ≤ |T2b| ≤ |T1| ≤ (1/3 + γ)k. As a consequence, |T2b|

|T2| ≤
1/3+γ
2/3−γ . For γ < 1/15 this gives a more balanced partition than the one guaranteed
by Lemma 2 (which ensures |T2b|/|T2| ≤ 2/3 only).

The idea is then to modify the algorithm of the previous section in the fol-
lowing way:

• For any partition (T1, T2) considered, if |T2| ≥ (2/3 − γ)k, then in the sub-
problem corresponding to T2 consider only partitions (T2a, T2b) satisfying
|T2a| ≤ |T2b| ≤ 1/3+γ

2/3−γ |T2|.

We can ideally partition the subproblems generated in two classes: (i) the sub-
problems with |T2| < (2/3−γ)k and (ii) the subproblems with |T2| ≥ (2/3−γ)k.
For subproblems of type (i) the larger is γ, the better is the recurrence obtained

Faster Steiner Tree Computation in Polynomial-Space 437

in the current step. For subproblems of type (ii), the smaller is γ, the better
is the recurrence obtained in the following step. Optimizing γ ∈ (0, 1/15) we
obtain the following result, whose proof is omitted for lack of space.

Theorem 2. For a proper choice of the parameter γ, the algorithm above solves
the Steiner tree problem in time O(5.96knO(log k)) and polynomial space.

In the following we will denote by smallST the algorithm of Theorem 2. We remark
that smallST is not fixed-parameter-tractable because of the factor nO(log k) in
its running time. Finding a polynomial-space fixed-parameter-tractable algorithm
for Steiner tree is left as a challenging open problem.

3 Branching on Small-Load Terminals

In this section we describe a simple, recursive algorithm steiner for the Steiner
tree problem, taking O(1.5949n) time and polynomial space. Our algorithm com-
putes the size stG(T) of an optimal Steiner tree, but it can be easily modified in
order to produce one optimal Steiner tree.

The main idea behind our approach is as follows. If k ≤ cn for a suitable
constant c < 1, it is convenient to use the O(5.96knO(log k)) algorithm from
Section 2. Otherwise, there must be a terminal t which is at distance at most
one from “many” other terminals. Thus, if by branching we add to T one or more
non-terminals adjacent to t, we can contract a “large” connected component of
terminals afterwards (using the Contraction Lemma 1). This phenomenon is not
exploited in trivial enumeration, and it is at the base of our refined branching
algorithm.

In order to formalize in a convenient way the mentioned phenomenon, we in-
troduce the following definition of load of a terminal. Let each non-terminal node
s ∈ N := V \T be initially assigned a load one. Node s evenly distributes its load
among the terminals adjacent to it (if any). The final load w(t) of each terminal t
is the sum of the loads received by its non-terminal neighbors. As it will be clearer
from the analysis, we can branch efficiently on terminals of small load.

We are now ready to describe algorithm steiner:

1. (base) If |T | ∈ {0, 1}, stG(T) = 0:

steiner(G, T) = 0.

2. (contraction) If there is a connected component V ′ of at least 2 terminals,
we apply Lemma 1. Let G′ be the graph obtained from G by contracting V ′

in a node v′, and let T ′ = T ∪ {v′} \ V ′. Then

steiner(G, T) = |V ′| − 1 + steiner(G′, T ′).

3. (reduction) If there is a terminal t adjacent to a unique (non-terminal)
node s, we add s to the terminals since s must belong to any Steiner tree
(being k ≥ 2):

steiner(G, T) = steiner(G, T ∪ {s}).

438 F.V. Fomin, F. Grandoni, and D. Kratsch

4. (small k) If k ≤ n/4, we apply our algorithm smallST:

steiner(G, T) = smallST(G, T).

5. (simple branch) If there is a non-terminal s adjacent to at least 3 terminals,
we simply branch by either removing s from the graph, or by adding it to
the terminals:

steiner(G, T) = min{steiner(G \ {s}, T), steiner(G, T ∪ {s})}.

6. (multiple branch) Let t be a terminal of minimum load according to the
definition above, and let s1, . . . , sp be the (not-terminal) neighbors of t,
sorted in decreasing number of adjacent terminals. We branch on the p sub-
problems obtained by removing s1, . . . , si−1, and adding si to the terminals,
for i ∈ {1, . . . , p}:

steiner(G, T) = min
i∈{1,...,p}

{steiner(G \ {s1, . . . , si−1}, T ∪ {si})}.

Observe that Algorithm steiner does not work in the weighted case. This is
essentially due to the fact that the Contraction Lemma 1 does not extend to
such case. Finding an improved algorithm for the weighted Steiner tree problem
is an interesting open problem.

4 Analysis

We next analyze algorithm steiner with the Measure & Conquer technique
described in [13,14]. Recall that nN = n− k is the number of non-terminals.

Theorem 3. Algorithm steiner solves the Steiner tree problem in O(1.6011n)
time and polynomial space.

Proof. The correctness of the algorithm is not hard to check. For k ≤ n/4 the
running time of the algorithm is O∗(5.96k) = O∗(5.96n/4) = O∗(1.5625n), so
assume that initially k > n/4. We let h := n + nN be the size of the problem,
and denote by T (h) the time required to solve a problem of size h. We will show
by induction that T (h) = O∗(1.3086h). The claim follows since, being nN ≤ 3n/4
by assumption, O∗(1.3086h) = O∗(1.30867n/4) = O∗(1.6011n).

Let poly(n) be the maximum (polynomial) time spent at each step of the
algorithm (excluding the recursive calls). For h = 0, k = 0 and hence T (h) ≤
poly(n) = O∗(1). Assume now that T (h′) = O∗(1.3086h′

) for any h′ < h, and
consider the different steps of the algorithm.

Case 1 (base). The problem is solved directly: T (h) ≤ poly(h).

Case 2 (contraction). The algorithm generates a unique subproblem contain-
ing at most n− 1 nodes and nN non-terminals:

T (h) ≤ poly(h) + T (h− 1) = poly(h) +O∗(1.3086h−1) = O∗(1.3086h).

Faster Steiner Tree Computation in Polynomial-Space 439

Table 1. Feasible values of (m1, . . . , mp) for multiple branch, with the corresponding
load (strictly smaller than 3), and number of nodes removed in each subproblem. The
number of non-terminals removed in the ith subproblem is i.

(m1, . . . , mp) load nodes removed
(1, 1) 4/2 1, 2
(2, 1) 3/2 2, 2
(2, 2) 2/2 2, 3

(2, 1, 1) 5/2 2, 2, 3
(2, 2, 1) 4/2 2, 3, 3
(2, 2, 2) 3/2 2, 3, 4

(2, 2, 2, 1) 5/2 2, 3, 4, 4
(2, 2, 2, 2) 4/2 2, 3, 4, 5

(2, 2, 2, 2, 2) 5/2 2, 3, 4, 5, 6

Case 3 (reduction). The algorithm adds s to the set of terminals (and hence
removes one node from the non-terminals), and then removes at least one node
by Case 2:

T (h) ≤ 2poly(h) + T (h− 2) = 2poly(h) +O∗(1.3086h−2) = O∗(1.3086h).

Case 4 (small k). The problem is solved by applying algorithm smallST, in
time O∗(5.96k). Observe that, being k ≤ n/4, k = (n + nN)n−nN

n+nN
= h k

2n−k ≤
h n/4

7n/4 = h
7 . Hence the running time is T (h) = O∗(5.96k) = O∗(5.96h/7) =

O∗(1.2905h).

Case 5 (single branch). Let p ≥ 3 be the number of terminals adjacent to
the selected non-terminal s. The algorithm generates two subproblems. In the
first subproblem it removes s from the graph. In the second one it adds s to the
terminals, and then it removes p nodes by Case 2. Hence
T (h) ≤ 2poly(h) + T (h− 2) + T (h− 1 − p) ≤ 2poly(h) + T (h− 2) + T (h− 4)

= 2poly(h) +O∗(1.3086h−2) +O∗(1.3086h−4) = O∗(1.3086h).

Case 6 (multiple branch). Observe that, being k > n/4 by Case 4, the
minimum load of a node is at most n−k

k < 3n/4
n/4 = 3. In particular, for the selected

terminal t, w(t) < 3. Recall that s1, . . . , sp are the (non-terminal) neighbors of t,
in decreasing order m1, . . . ,mp of the number of adjacent terminals. Note that
the load assigned by si to t is exactly 1/mi. By Case 5 it must be mi ∈ {1, 2} for
each i (each non-terminal has between 0 and 2 terminal neighbors). It follows
by w(t) < 3 and by a simple case enumeration that the sequence (m1, . . . ,mp)
must be one of the sequences in Table 1.

In the ith subproblem, i ∈ {1, . . . , p}, the algorithm removes nodes s1, . . . , si−1

from the graph, and adds node si to the terminals, which later determines the
removal of mi nodes by Case 2. Note that in the ith step i non-terminals are
removed. Hence, by an easy case-by-case check,

T (h) ≤ (1 + p)poly(h) +

p∑

i=1

T (h − (i − 1) − mi − i)

= O∗(

p∑

i=1

1.3086h−(i−1)−mi −i) = O∗(1.3086h).

440 F.V. Fomin, F. Grandoni, and D. Kratsch

4.1 A Refined Measure

The running-time analysis can be refined (without modifying the algorithm) by
defining the size of the subproblems as h := n + αnN , for a proper constant
α > 0. Choosing α = 0.7297, and by essentially the same analysis as in Theorem
3, we obtain the following result.

Theorem 4. Algorithm steiner solves the Steiner tree problem in O(1.5949n)
time and polynomial space.

4.2 An Exponential-Space Algorithm

As a by-product of our approach, we are able to improve on the current best
O∗(1.4143n) exponential-space algorithm as well. This is achieved by modifying
algorithm steiner in the following way.

• In Step 4 replace smallST with the O∗(2k) algorithm of [5], and increase the
corresponding threshold from k ≤ n/4 to k ≤ 3n/7.

• In Step 5 increase the threshold number of adjacent terminals from 3 to 5.

As a consequence of these changes, in Step 6 the minimum load of a terminal
is strictly less than n−3n/7

3n/7 = 4
3 (instead of 3), and each non-terminal can have

between 0 and 4 (instead of 2) adjacent terminals. Note that this implies a
different list of feasible local configurations. The same kind of analysis as in
Theorem 3 leads to the following result.

Theorem 5. Algorithm steiner, modified as above, solves the Steiner tree
problem in time O(1.3533n) and exponential space.

References

1. Arora, S.: Polynomial time approximation schemes for Euclidean TSP and other
geometric problems. J. ACM 45, 753–782 (1998)

2. Bax, E.T.: Inclusion and exclusion algorithm for the hamiltonian path problem.
Information Proc. Letters 47, 203–207 (1993)

3. Bern, M., Plassmann, P.: The Steiner tree problem with edge lengths 1 and 2.
Information Proc. Letters 32, 171–176 (1989)

4. Björklund, A., Husfeldt, T.: Inclusion-exclusion algorithms for counting set parti-
tions. In: FOCS 2006, pp. 575–582. IEEE, Los Alamitos (2006)

5. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbious: Fast
subset convolution. In: STOC 2007, pp. 67–74. ACM Press, New York (2007)

6. Blelloch, G.E., Dhamdhere, K., Halperin, E., Ravi, R., Schwartz, R., Sridhar, S.:
Fixed parameter tractability of binary near-perfect phylogenetic tree reconstruc-
tion. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006.
LNCS, vol. 4051, pp. 667–678. Springer, Heidelberg (2006)

7. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor.
Comp. Sci. 209, 1–45 (1998)

Faster Steiner Tree Computation in Polynomial-Space 441

8. Deneen, L.L., Shute, G.M., Thomborson, C.D.: A probably fast, provably optimal
algorithm for rectilinear Steiner trees. Random Structures and Algorithms 5(4),
535–557 (1994)

9. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, New York
(1999)

10. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1, 195–207
(1971/1972)

11. Eppstein, D.: Quasiconvex analysis of multivariate recurrence equations for back-
tracking algorithms. ACM Transactions on Algorithms 2(4), 492–509 (2006)

12. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)
13. Fomin, F., Grandoni, F., Kratsch, D.: Measure and conquer: domination - a case

study. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580, pp. 191–203. Springer, Heidelberg (2005)

14. Fomin, F., Grandoni, F., Kratsch, D.: Measure and conquer: a simple O(20.288 n)
independent set algorithm. In: SODA 2006, pp. 18–25. ACM Press, New York
(2006)

15. Fuchs, B., Kern, W., Mölle, D., Richter, S., Rossmanith, P., Wang, X.: Dynamic
programming for minimum Steiner trees. Theory of Computing Systems (to appear,
2008)

16. Ganley, J.L.: Computing optimal rectilinear Steiner trees: a survey and experimen-
tal evaluation. Discrete Applied Mathematics 90(1-3), 161–171 (1999)

17. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete.
SIAM J. on Applied Mathematics 32, 826–834 (1977)

18. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

19. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of generalized
vertex cover problems. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS
2005. LNCS, vol. 3608, pp. 36–48. Springer, Heidelberg (2005)

20. Gurevich, Y., Shelah, S.: Expected computation time for Hamiltonian path prob-
lem. SIAM J. Computing 16(3), 486–502 (1987)

21. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. North-
Holland, Amsterdam (1992)

22. Kahng, A., Robins, G.: On Optimal Interconnections for VLSI. Kluwer, Dordrecht
(1995)

23. Karp, R.M.: Dynamic programming meets the principle of inclusion and exclusion.
Operation Research Letters 1, 49–51 (1982)

24. Korte, B., Prömel, H.J., Steger, A.: Steiner trees in VLSI-layout. In: Paths, Flows,
and VLSI-Layout, pp. 185–214 (1990)

25. Mölle, D., Richter, S., Rossmanith, P.: A faster algorithm for the Steiner tree
problem. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp.
561–570. Springer, Heidelberg (2006)

26. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series in
Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)

27. Prömel, H.J., Steger, A.: The Steiner tree problem. Advanced Lectures in Mathe-
matics. Friedr. Vieweg & Sohn, Braunschweig (2002)

28. Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. In:
SODA 2000, pp. 770–779. ACM Press, New York (2000)

29. Woeginger, G.: Space and time complexity of exact algorithms: Some open prob-
lems. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS,
vol. 3162, pp. 281–290. Springer, Heidelberg (2004)

Fitting a Step Function to a Point Set

Hervé Fournier1 and Antoine Vigneron2

1 Laboratoire PRiSM
CNRS UMR 8144 and Université de Versailles St-Quentin en Yvelines

45 av. des États-Unis, 78035 Versailles, France
herve.fournier@prism.uvsq.fr

2 INRA, UR 341 Mathématiques et Informatique Appliquées
78352 Jouy-en-Josas, France

antoine.vigneron@jouy.inra.fr

Abstract. We consider the problem of fitting a step function to a set of points.
More precisely, given an integer k and a set P of n points in the plane, our goal
is to find a step function f with k steps that minimizes the maximum vertical
distance between f and all the points in P . We first give an optimal Θ(n log n)
algorithm for the general case. In the special case where the points in P are given
in sorted order according to their x-coordinates, we give an optimal Θ(n) time
algorithm. Then, we show how to solve the weighted version of this problem
in time O(n log4 n). Finally, we give an O(nh2 log h) algorithm for the case
where h outliers are allowed, and the input is sorted. The running time of all our
algorithms is independent of k.

1 Introduction

In this paper, we consider the problem of fitting a step function to a point set in R2.
(See Figure 1 for an example.) For a given number of steps k, we find the step function
whose maximum vertical distance to a point set P is minimized.

The motivation for this work is to find a concise representation of a large set of
points by a step-function with few steps. This type of representation of point-sets by
step-functions (also called histograms) is used in Database Management Systems, for
query optimization: there can be many different ways of answering a complex query
involving several attributes of the data, and query optimization consists in predicting
the fastest way to answer a query, before this query is performed. This prediction is
done using some statistics on the data, which usually consists of histograms. Several
types of histograms have been used in databases [13]; the histograms that correspond
to our optimal step-functions are called maximum error histograms, and have recently
been studied in the database community [4,10,14].

We give optimal algorithms for computing the optimal step-function in our model;
in other words, we give optimal algorithms for computing maximum error histograms.
We also give efficient algorithms for two generalizations. First, we consider the more
general case where each point is weighted, and its contribution to the distance computa-
tion is multiplied by this weight. Second, we introduce a generalization of our problem
to the case where outliers are allowed; that is, we allow our algorithm to ignore h input

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 442–453, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Fitting a Step Function to a Point Set 443

y

x

Fig. 1. A set of points in R2 and an optimal approximation by a 3-step function

points, where h is an input parameter. The motivation is to make the algorithm more
robust to noise in the input point set.

1.1 Problem Formulations

A function f : [a, b) → R is called a k-step function if there exists a real sequence
a = a0 < a1 < · · · < ak = b such that the restriction of f to each interval [ai, ai+1) is
a constant. We use d(p, f) to denote the vertical distance between a point p ∈ R2 and
f ; in other words when p = (x, y), we have d(p, f) = |f(x) − y|. Let P denote a set
of n points in R2. We define the distance d(P, f) between P and a step function f as
follows:

d(P, f) = max{d(p, f) | p ∈ P}.
We will consider the following three problems. The first one is the problem that

we already mentioned and the second one is the weighted version. The third one is a
generalization where we allow h outliers, which means that we allow a given number h
of points from P to be far from f .

– MIN-DIST : Given an integer k > 0 and a set P of n points in R2, find a k-step
function f∗ such that ε∗ = d(P, f∗) is minimized.

– weighted-MIN-DIST : a generalization of MIN-DIST where we are given a set
of weighted points, and the distance between f and a point p with weight μ is
μ ·d(p, f). The goal is still to minimize the maximum of these distances for a given
k.

– OUTLIER : Given P ⊆ R2, an integer k > 0 and h ∈ N, find a k-step function f
and a subset P ′ ⊆ P such that |P ′| � h and d(P \ P ′, f) is minimized.

1.2 Previous Work

Algorithms for fitting a polyline to a dataset have been extensively studied. For instance,
Goodrich [9] gave anO(n log n) time algorithm for fitting an x-monotone polyline with
k edges to a set of points, under the same criterion as ours: minimizing the maximum
vertical distance between the input point set and the polyline. Goodrich’s work was mo-
tivated by applications to geographic information systems and image processing, where

444 H. Fournier and A. Vigneron

one wants to simplify a curve using a polyline with few edges. References to related
work can be found in Goodrich’s article [9]. There has also been extensive research in
algorithms for fitting a step function to a point set under criterions that are different
from ours: for instance, minimizing the sum of the squared vertical distances. The in-
terested reader can find references to these results in Guha and Shim’s article [10]. We
are not aware of any work for fitting a step function or a polyline that explicitly handles
outliers in the same way as we do, but it has been considered for other shape fitting
problems. See for instance the work of Har-Peled et al. [1,11] on the minimum width
annulus and related problems, or the recent paper by Atanassov et al. [3] on outliers
removal minimizing parameters such as diameter, perimeter of parallel-axis bounding
box, or area of the convex hull.

We now mention results that are more directly related to this paper. Diáz-Báñez and
Mesa [17] showed that the dual problem where we want to minimize the number of
steps k for a fixed error bound ε can be solved in O(n) time by a greedy approach. This
algorithm can be used as a decision algorithm for the MIN-DIST problem, and since
the optimal distance ε∗ in the MIN-DIST problem is realized by half the difference be-
tween two y-coordinates in P , then by sorting these O(n2) values and applying binary
search, Diáz-Báñez and Mesa [17] obtained an O(n2 logn) algorithm. This result was
improved to O(n2) by Wang [18], and then by Mayster and Lopez [16] who gave an
O(min(n2, nk logn)) algorithm for the MIN-DIST problem. Chazal and Das [5] de-
signed an algorithm with running time O(n logn + k2 log(n

k)2) for the same problem.
Recently, Guha and Shim [10] found an algorithm with running time O(n+ k2 log3 n)
when the input points are given in sorted order, by increasing x-coordinate. Their algo-
rithm also applies to a model of maximum relative error and to the case where points
are weighted. For the latter case, the bound becomesO(n log n+k2 log6 n); for large k,
this was later improved by Lopez and Mayster [15] who gave an algorithm with running
time O(n2).

Finally, we mention two recent articles from the database community on maximum
error histograms. (Which, in our terminology, is the MIN-DIST problem.) Karras et
al. [14] give an O(nL)-time algorithm for MIN-DIST with sorted input, where in
the worst case, L is the number of bits used for representing each coordinate of the
input points. They achieve it using the greedy decision algorithm by Diáz-Báñez and
Mesa [17], together with binary search. Buragohain et al. [4] gave an efficient algorithm
for computing maximum error histograms over data streams.

1.3 Our Results

In Section 2, we give a simple O(n log n) time algorithm for MIN-DIST . We achieve
it by combining the technique of Frederickson and Johnson [7] for searching a sorted
matrix, with the linear-time decision algorithm by Diáz-Báñez and Mesa [17]. When the
input points are not given in sorted order, our algorithm is optimal, and it improves on
all previous algorithms [5,10,16,17,18] in the worst case. In particular, our algorithm is
the first one to be truly subquadratic, as previous algorithms run in time Ω(n2), Ω(k2),
or Ω(nk) in the worst case. It is particularly significant for applications to databases,
where n and k could be large enough to make a quadratic running time unacceptable.

Fitting a Step Function to a Point Set 445

In Section 3, we give a more general formulation of Frederickson’s path partitioning
algorithm [6]. In Section 4, we combine this technique with the data structure of Gabow
et al. [8] for reporting range maxima, and we obtain a linear time algorithm for the
MIN-DIST problem where the input points are given in sorted order, by increasing
x-coordinates. It is the first optimal algorithm for this problem.

Our approach also gives an O(n log4 n) algorithm for weighted-MIN-DIST . (See
Section 5.) It is the first truly subquadratic algorithm for this problem, and it im-
proves on the O(n log n + k2 log6 n) algorithm of Guha and Shim [10] when k =
ω(
√
n/ logn).

Finally, our algorithms extend to the OUTLIER problem, where up to h input points
can be ignored. When the input points are given in sorted order according to their x-
coordinate, we give an O(nh2 log h) algorithm. It improves on the obvious O(h2n2)
dynamic programming approach.

2 A Simple Optimal Algorithm for MIN-DIST with Unsorted
Input

In this section we present our algorithm for the MIN-DIST problem. We first present
the sorted matrix searching technique [6,7], then we give the greedy, linear time de-
cision algorithm for sorted input (which is essentially the algorithm by Diáz-Báñez
and Mesa [17] for the dual problem), and then we combine these two results to get an
O(n log n) time optimization algorithm.

2.1 Searching in a Sorted Matrix

In this section we quickly describe the technique of Frederickson and Johnson for
searching in a sorted matrix [6,7]. Suppose we are given an n×n sorted matrixM—by
sorted, we mean that i � i′ and j � j′ implies that Mi,j � Mi′,j′ . We assume that we
can access in constant time the value of each element Mi,j .

Let g : R → {TRUE, FALSE} be a monotone function in the sense that if x < y
and g(x) = TRUE, then g(y) = TRUE. Our goal is to find the smallest element Mi,j

of the matrix M such that g(Mi,j) = TRUE; we call this problem the optimization
problem. The decision problem is to compute the mapping g: given x ∈ R, compute
the value of g(x). If we assume that the decision problem can be solved in time D, the
optimization problem can be trivially solved in time O(n2 logn + D log n) by sorting
{Mi,j | 1 � i, j � n} and then performing a binary search over these values. The
technique of Frederickson and Johnson allows to improve it to O(n+D logn) time as
follows.

The algorithm maintains a collection M of submatrices of M , and initially we set
M = {M}. At each step, we partition each matrix in M into four equal-size square
matrices. We do not maintain these matrices explicitly (which would require quadratic
time): we only keep the range of indices in the original matrix M that corresponds
to each submatrix. Then about half of these matrices are discarded, and we repeat the
process until O(1) elements remain, and thus we can find the optimal element by brute
force.

446 H. Fournier and A. Vigneron

We still need to explain how submatrices are discarded. For each submatrix in M,
we compute the smallest element (which of course is at upper left corner). Then we
compute the median λmin of these smallest elements. We also compute the median
λmax of the largest elements. Suppose now that g(λmin) = TRUE. Then clearly, we
can discard all the submatrices whose smallest element is larger than λmin. We handle
in a similar way the other cases: g(λmin) = FALSE, and the same with λmax. For more
details, we refer to the papers by Frederickson and Johnson [6,7] and the survey by
Agarwal and Sharir [2, Section 3.3]

2.2 A Decision Algorithm for Sorted Input

In this section, we assume that P is given as a set of points pi = (xi, yi) for 1 � i � n
sorted from left to right: we assume that for all i, we have xi < xi+1. (To simplify the
exposition, we assume that no two points have same x-coordinate.) We denote P [i, j] =
{pi, . . . pj}, Y [i, j] = {yi, . . . yj} andΔ[i, j] = (maxY [i, j]−minY [i, j])/2. In other
words, Δ[i, j] is the distance between P [i, j] and the closest 1-step function.

Our decision algorithm takes as input the point set P , an integer k and ε � 0. It re-
turns TRUE if there exists a k-step function f such that d(f, P) � ε, and returns FALSE
otherwise. We define a function nextε as follows: if Δ[i, n] � ε, then nextε(i) = ∞
and otherwise, nextε(i) is the smallest integer j > i such that Δ[i, j] > ε. We first
observe that for all i, we can compute nextε(i) in time O(nextε(i) − i) by traversing
P [i, n] from left to right with a pointer i′, while maintaining the value of maxY [i, i′]
and minY [i, i′]. We are now ready to give the decision algorithm:

Algorithm DECIDE(P, k, ε)
1. i1 ← 1.
2. for j ← 1 to k
3. do ij+1 ← nextε(ij).
4. if ij+1 = ∞
5. then return TRUE.
6. return FALSE.

From our observation that nextε(i) can be computed in timeO(nextε(i)−i), we can
see that algorithm DECIDE runs in O(n) time. Now we still need to prove its correct-
ness. The exact value of the xi’s plays no role in our problem, only their order matters,
so in the proof below, we assume that xi = i for all i. We will first prove that, if our
algorithm returns TRUE, then the answer to the decision problem is positive. Then we
will show the converse, that is, if the answer to the decision problem is positive, then
our algorithm returns TRUE.

First assume that our algorithm returns TRUE. Let j′ denote the last value of j
before DECIDE returns TRUE. Now consider the step function defined by f0(x) =
(maxY [ij , ij+1−1]+minY [ij, ij+1−1])/2 for all x ∈ [ij , ij+1) and j ∈ {1, . . . , j′−
1}, and f0(x) = (maxY [ij′ , n]+minY [ij′ , n])/2 for all x ∈ [ij′ , n+1). Then clearly
f0 is a j′-step function such that d(f0, P) � ε, and since j′ � k, it implies that the
answer to the decision problem is positive.

Conversely, assume that the answer to the decision problem is positive. Let k′ be the
smallest integer such that there exists a k′-step function at distance at most ε fromP . We

Fitting a Step Function to a Point Set 447

denote by f0 such a k′-step function, defined over [1, n+ 1), and which is at distance at
most ε from P . We denote by 1 = a0 < a1 < · · · < ak′ = n+ 1 the numbers such that
f0 is constant over [ai, ai+1) for all i. There could be several such functions; we choose
f0 such that (a0, a1, . . . ak′) is maximal in lexicographic order. First notice that ai is the
x-coordinate of some point in P for all i < k′, so we have ai ∈ {1, . . . , n}. Then we
will show that ai = nextε(ai−1) for all i < k′, which clearly implies that our algorithm
returns TRUE. So now, we assume for a contradiction that it is not the case. Let j denote
the first index such that aj
= nextε(aj−1). Then aj < nextε(aj−1) and P [aj , n] can
be approximated (within distance ε) by a (k′ − j)-step function. So P [nextε(aj−1), n]
can also be approximated by a (k′ − j)-step function f1. Now consider the function
f2 that coincides with f0 over [1, aj−1), that is equal to (maxY [aj−1, nextε(aj−1) −
1]+minY [aj−1, nextε(aj−1)−1])/2 over [aj−1, nextε(aj−1)), and coincides with f1

over [nextε(aj−1), n+ 1). Then d(f2, P) � ε and f2 is larger than f0 in lexicographic
order, a contradiction.

Lemma 1. Given a sorted point set P , an integer k and ε > 0, the algorithm
DECIDE(P, k, ε) decides in O(n) time whether there exists a k-step function f such
that d(f, P) � ε.

2.3 Optimization Algorithm

We denote by E the set of half-differences between y-coordinates in P :

E =
{
y − y′

2
| (x, y) ∈ P and (x′, y′) ∈ P

}

It is easy to see that the error ε∗ of the solution to the MIN-DIST problem is in this
set. The MIN-DIST problem can be solved by sorting E in O(n2 logn) time, and then
looking for the optimal value ε∗ using the decision algorithm and binary search.

In order to avoid a quadratic running time, we will apply the sorted matrix searching
technique (Section 2.1). This is made possible by the fact that E can be written as
follows:

E = Y + (−Y) where Y =
{y

2
| (x, y) ∈ P

}
.

Thus we first sort Y and obtain a non-decreasing sequence (bi) such that Y = {b1 �
b2 . . . � bn}. Then we represent the elements of E as the set of elements of a sorted
matrix M defined by Mi,j = 1

2bi −
1
2bn+1−j .

So our optimization algorithm works as follows. We first place in a sorted array the
elements of Y , which takes O(n log n) time. It will allow us to compute elements of M
in constant time. Then we sort P according the x-coordinates, which, by Lemma 1, will
allow us to run the decision algorithm in O(n) time for any value of ε. So, applying the
sorted matrix searching technique (see Section 2.1), we obtain the following result:

Theorem 1. The MIN-DIST problem can be solved in O(n log n) time.

A simple reduction from sorting shows that it is optimal when the input point-set P is
not given in sorted order: given the input (x1, . . . , xn), take P = {(xi, xi) | 1 � i � n}
and k = n. The sequence of y-values taken by an optimal k-step function corresponds
to (x1, . . . , xn) in sorted order.

448 H. Fournier and A. Vigneron

3 Frederickson’s Algorithm for Min-Max Partitioning

Frederickson [6] gave a linear time algorithm for the following path partitioning prob-
lem: given an integer k > 0 and n positive real numbers ω1, . . . , ωn, compute a par-
tition of {1, . . . , n} into k intervals I1, . . . , Ik such that maxj∈{1,...,k}

∑
i∈Ij

ωi is
minimized.

Notice that a simple reduction allows to use it to solve the sorted-MIN-DIST prob-
lem in the special case where the xi’s are distinct and y1 < y2 < . . . < yn. Our goal is
to extend this algorithm to solve sorted-MIN-DIST in the general case.

Let us first formulate Frederickson’s min-max partition problem in a more general
setting. Let Σ be a set (not necessarily finite); we shall call it the alphabet. We denote
by Σ∗ the set of words over Σ, and the empty word is denoted by e. For v, w ∈ Σ∗,
vw denotes the concatenation of v and w. Let us suppose we have a mapping θ : Σ∗ →
R+ such that θ(e) = 0. We are interested in the following problem: given w ∈ Σ∗,
compute a factorization w = w1w2 . . . wk (where wi ∈ Σ∗) such that max

i∈{1,...,k}
θ(wi)

is minimized. We shall call this problem MIN-MAX PARTITION(θ). Note that the
problem of Frederickson corresponds to MIN-MAX PARTITION(S) with Σ = R+

and S(ωi . . . ωj) = ωi + . . .+ωj . The following result gives sufficient conditions on θ
which allow to apply Frederickson’s technique to solve MIN-MAX PARTITION(θ).

Theorem 2. Let Σ be a set, and θ : Σ∗ → R+ be a mapping such that θ(e) = 0.
Suppose that θ has the following properties:

(i) θ is non-decreasing, that is, θ(v) � θ(uvw) for all u, v, w ∈ Σ∗.
(ii) We can preprocess a1 . . . an ∈ Σn in time π(n) so that, given any query (i, j), we

can compute θ(ai . . . aj) in time κ(n).

Then MIN-MAX PARTITION(θ) can be solved in time O(π(n) + nκ(n)).

To see why this theorem holds, one just has to reformulate the proof of Frederickson [6]
using our more general framework. As it would be quite technical, we only reprove
what corresponds to the O(n log logn) algorithm given by Frederickson, which gives
an O(π(n) + n(log logn)κ(n)) time bound in our case. The rest of the proof in Fred-
erickson’s paper extends directly to our case, which proves Theorem 2.

To simplify the presentation, we assume that κ(n) = O(1) in the remainder of this
section. The lemma below shows that conditions (i) and (ii) yield a linear time algorithm
for the decision problem.

Lemma 2 (Naive decision algorithm). Under the hypothesis of Theorem 2, after the
preprocessing step corresponding to condition (ii), there exists a linear time algorithm
for the decision problem relative to MIN-MAX PARTITION(θ).

Proof. Once the preprocessing on θ has been done, a greedy algorithm for the decision
problem can be achieved by a single sweep from left to right. It is essentially the same
algorithm as the decision algorithm for MIN-DIST presented in Section 2.2, and the
proof carries over to this case. �

Fitting a Step Function to a Point Set 449

Now we still need to design an algorithm to compute the optimal value ε∗. The algo-
rithm to compute this value relies on the technique of matrix searching. We recall the
main result in its general version as it appears in Frederickson’s article [6], but restricted
to the case of square matrices of the same size.

Theorem 3 (Matrix Searching). Let M be a collection of N sorted matrices
{M1, . . . ,MN} in which matrix Mj is of size m × m. Let s be a non-negative inte-
ger (called the stopping count). The number of calls to the decision algorithm that are
needed by the matrix searching algorithm to discard all but at most s of the elements is
O(max{logm, log(Nm/(s + 1))}), and the total time of the Matrix Searching algo-
rithm exclusive of the calls to the decision algorithm is O(Nm).

Given an input w = a1 . . . an ∈ Σn and k > 0 (both fixed from now on), we define
θi,j = θ(ai . . . aj) for all i � j. Let us define the n× n matrix M by Mi,j = θn+1−i,j

when i+ j < n+1 andMi,j = 0 otherwise. Because of property (i), M is a sorted ma-
trix: it is non-decreasing along each line and each column. Let ε∗ be the optimal value
of MIN-MAX PARTITION(θ) on input (w, k). Of course ε∗ ∈ M . Condition (ii) al-
lows to query any entry of the matrixM defined above in time O(1) with preprocessing
time π(n) on the input (a1, . . . , an). Note that we never do any other preprocessing of
this type: all matrices occurring in the algorithm are seen as a product of two intervals
of {1, . . . , n}, and querying these matrices is performed via a query on the big matrix
M . For the next two lemmas, we assume the preprocessing corresponding to condition
(ii) of Theorem 2 has been done, and we only consider the running times after this step.

The main idea to obtain the O(n log logn)-time optimization algorithm is to get
a faster decision algorithm by doing some additional preprocessing on w. Then ε∗ is
computed by applying the technique of matrix searching on M , using this improved
decision algorithm.

The preprocessing is performed as follows. Let r be an integer (to be chosen later).
The input w is divided into �n/r� factors vi of length r, thus we have w = v1 . . . vn/r .
The family of sorted matrices M = {M1, . . . ,Mn/r} is created, where Mi contains
the values of θ over vi. Then a first phase of matrix searching is performed on M with
stopping count n/r2. While doing this search, the decision algorithm is run for several
values of ε. We denote by λ1 the largest such value of ε that is not feasible, and we
denote by λ2 the smallest one that is feasible. Hence, we have λ1 < ε∗ � λ2. At most
n/r2 factors vp have (at least) an element θi,j of their matrix Mp lying in [λ1, λ2]; we
call these factors active. The other factors are called non-active.

We shall carry out some preprocessing on the non-active factors. Let us consider a
factor vi = ap . . . aq . For t ∈ {p, . . . , q}, we define ncut(t) to be the minimum index
� such that there exists a partition at . . . aq = u1 . . . u�+1 such that maxi θ(ui) � λ1.
Moreover, we define rem(t) to be the maximum of j where u�+1 = aj . . . aq over
all these partitions. Notice that these two parameters ncut(t) and rem(t) are the ones
obtained by applying the greedy decision algorithm given in Lemma 2 on ap . . . aq and
λ1. The next lemma explains how to compute these values efficiently.

Lemma 3 (Preprocessing factors). Given an interval of {1, . . . , n} of length r, com-
puting rem(t) and ncut(t) for all t ∈ I can be done in time O(r).

450 H. Fournier and A. Vigneron

Proof. For t ∈ I , we define nextλ1(t) to be the smallest t′ such that θt,t′ > λ1. All
values of nextλ1(t) can be computed in time O(r) by scanning from left to right, while
maintaining a pointers to t and a pointer to nextλ1(t). Then, ncut(t) and rem(t) can
be computed by a single scan from right to left. At each step of this scan, we compute
ncut(t) and rem(t) in constant time by accessing t′ := nextλ1(t), and then using the
already computed values ncut(t′) and rem(t′). �

Once this preprocessing has been done, we obtain a sublinear decision algorithm.

Lemma 4 (Sublinear decision algorithm). After the preprocessing of Lemma 3 has
been done, we have an O((n/r) log r) time algorithm to solve the decision problem
relative to MIN-MAX PARTITION(θ).

Proof. We can assume that λ1 < ε < λ2, because if ε � λ1 we can immediately
return FALSE, and if ε � λ2 we can return TRUE. The idea is to implement the greedy
approach faster, by jumping inside non-active factors; on the other hand, we still operate
by brute force within active factors. So let’s assume that the naive, greedy approach
yields a factorization w = u1 . . . uq.

Consider the maximum sequence ui . . . uj (possibly the empty word) which entirely
lies in the p-th subsequence vp of w. Hence we can write vp = uui . . . uju

′. Assume
that vp is non-active. For all i � i′ � j, we have θ(ui′) � ε, so by definition of non-
active factors, we have θ(ui′) < λ1. It follows that, if at is the first letter in ui, we have
that j − i = ncut(t) and u′ starts at index rem(t).

As a result, we can implement the greedy algorithm in O(log r) time within a non-
active factor vp. First we find by binary search the index t of first cut inside zp, using
the index of the previous cut. Then we find the number of cuts needed inside vp using
ncut(t). Finally, we know that the last cut inside vp is at rem(t).

There are at most n/r2 active factors, so our improved greedy algorithm spends a
total of O(n/r) time on them. On the other hand, it spends time O(log r) on each non-
active interval, and there are less than n/r of them. It yields the desired time bound. �

We can now describe the whole O(π(n) + n log logn)-time algorithm. First the pre-
processing corresponding to condition (ii) is performed on the input w. The sorted ma-
trix M is created. Then we choose r = �logn� and we create the family of sorted ma-
trices M corresponding to the n/r factors v1, . . . , vn/r of length r of w. A first phase
of matrix searching is performed on M using the naive decision algorithm (Lemma 2)
and stopping count n/r2; it provides new bounds λ1 < ε∗ � λ2. Then we perform
the preprocessing (Lemma 3) with respect to λ1 on all non-active factors. The last step
of the algorithm consists in a matrix search on the big matrix M with stopping count
O(1), using the sublinear decision algorithm (Lemma 4). This gives the optimal value
ε∗. It is easy to check that the running time of this algorithm is O(π(n) + n log logn),
thanks to our improved decision algorithm that runs in time O(n(log logn)/ logn).

Frederickson’s O(π(n) + n)-time algorithm is based on clever pruning techniques,
and cutting the intervals recursively (with finely tuned parameters) to obtain faster de-
cision algorithms at each step. A careful reading of the proof of Frederickson shows
that conditions (i) and (ii) are sufficient to be able to apply these techniques exactly in
the same way. We do not rewrite this proof here; the interested reader can check the
original paper of Frederickson [6] to complete the proof of Theorem 2.

Fitting a Step Function to a Point Set 451

4 A Linear Time Algorithm for MIN-DIST with Sorted Input

In this section, we give an optimal, linear-time algorithm for the MIN-DIST prob-
lem with sorted input. We achieve it by combining our reformulation of Frederickson’s
technique (Theorem 2) with efficient data structures for range reporting.

The input of sorted-MIN-DIST is an integer k, and a set P =
{(x1, y1), . . . , (xn, yn)} of n points in the plane. These points are given as a
sequence, sorted according to their x-coordinates, so we have x1 � . . . � xn.
This problem can be reduced in linear time to the case where at most two points
have the same x-coordinate: we only need to rewrite the input under the form
((x1, y1, y

′
1), . . . , (xn, yn, y

′
n)) with x1 < . . . < xn and yi � y′i for all i. The x-

coordinates obviously play no role in this problem, so we are left with an input which is
a positive integer k, and a sequence of intervals of the real line ([y1, y

′
1], . . . , [yn, y

′
n]).

The sorted-MIN-DIST problem corresponds to MIN-MAX PARTITION(Δ) with
Σ = {(a, b) ∈ R2 | a � b} and

Δ([z1, z′1], . . . , [zp, z
′
p]) := (max(z′1, . . . , z

′
p) − min(z1, . . . , zp))/2.

The mapping Δ is obviously non-decreasing, that is, it satisfies property (i)
of Theorem 2. Let us now show that it satisfies property (ii). Given an input
([y1, y

′
1], . . . , [yn, y

′
n]) and k, we define Δi,j := Δ([yi, y

′
i], . . . , [yj , y

′
j]). After O(n)

preprocessing time, we need to be able to computeΔi,j in timeO(1) for any given i and
j. To this end, we use an algorithm for the range maxima problem obtained by Gabow,
Bentley and Tarjan [8] and by Harel and Tarjan [12]. More precisely, given a sequence
of numbers (a1, . . . , an), it allows us to answer any query (i, j) "→ max(ai, . . . , aj) in
constant time, after preprocessing time O(n). After preprocessing (y′1, . . . , y

′
n) in this

way, we can query max(y′i, . . . , y
′
j) in time O(1). In the same way, we can preprocess

(y1, . . . , yn) in linear time with respect to the query (i, j) "→ min(yi, . . . , yj). It allows
us to compute max(y′i, . . . , y

′
j) and min(yi, . . . , yj), and thus Δi,j , in O(1) time per

query after preprocessing time O(n). Thus Δ has property (ii) with π(n) = O(n) and
κ(n) = O(1). So by Theorem 2, we have proved the following:

Theorem 4. The sorted-MIN-DIST problem can be solved in linear time.

This algorithm is optimal, since no algorithm can solve this optimization problem with-
out reading the y-coordinates of all the input points. Suppose indeed that an algorithm
returns a function f on the input (P, k) without accessing the y-coordinate of the point
pi0 . Consider P̃ to be same as P except that the y-coordinate of pi0 is replaced with
z. This algorithm will return the same function f on input (P̃ , k), but f is not optimal
anymore if z is large enough. This gives an Ω(n) lower bound on this problem and
shows the optimality of the linear time algorithm.

5 MIN-DIST with Weighted Inputs

In this section, we give a near-linear time algorithm for the weighted version of the
MIN-DIST problem. Again, it is an application of Theorem 2. We also use an efficient
data structure by Guha and Shim [10] for the related query problem.

452 H. Fournier and A. Vigneron

Let us recall the weighted MIN-DIST problem defined by Guha and Shim [10]—
where it is called Maximum Error Histogram. Given a collection of points in the
plane {(x1, y1), . . . , (xn, yn)} with positive weights μ1, . . . , μn and an integer k > 0,
compute a k-step function f such that max1�i�n μi|f(xi) − yi| is minimized. Guha
and Shim [10] give an algorithm to solve weighted-MIN-DIST in time O(n logn +
k2 log6 n) and space O(n log n). We obtain the following alternative result, which is
better when k = ω(

√
n/ logn).

Theorem 5. The weighted MIN-DIST problem can be solved in timeO(n log4 n) and
space O(n logn).

Proof. To avoid technicalities, we assume that no two points have the same
x-coordinate. Without loss of generality we assume that the points are sorted
with respect to their x-coordinates. Thus the input consists in k > 0 and
((x1, y1, μ1), . . . , (xn, yn, μn)) with x1 < . . . < xn. Since the xi’s play no role,
we suppose that the input is reduced to k and ((y1, μ1), . . . , (yn, μn)). Thus the
weighted MIN-DIST problem corresponds to MIN-MAX PARTITION(H) with
D = R × R+ and

H((z1, μ1), . . . , (zr, μr)) = max
1�i�r

μi|zi − ẑ|

where ẑ is defined as the value of z that minimizes max1�i�r μi|zi − z|. Obviously the
cost function H is non-decreasing, that is, it satisfies condition (i) of Theorem 2.

The algorithm given in [10] relies on a preprocessing step requiring O(n log n)
time and O(n log n) space which allows to perform the queries (i, j) "→
H((yi, μi), . . . , (yj , μj)) in time O(log4 n). So Theorem 2 yields the desired result.

�

6 Handling Outliers

We can also consider a generalization of the MIN-DIST problem where at most h
points are allowed to be at distance more than ε from P . These points are outliers in
the datasets and are removed to make our algorithm more robust to noise. This corre-
sponds to the OUTLIER problem formally defined in Section 1.3. Using Frederick-
son’s method, we obtain:

Theorem 6. The OUTLIER problem with sorted input can be solved in time
O(nh2 log h).

The proof of this theorem is omitted due to space limitation.

Acknowledgment

We thank the anonymous referees for their helpful comments.

Fitting a Step Function to a Point Set 453

References

1. Agarwal, P.K., Har-Peled, S., Yu, H.: Robust shape fitting via peeling and grating coresets.
In: Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 182–191 (2006)

2. Agarwal, P.K., Sharir, M.: Efficient algorithms for geometric optimization. Computing Sur-
veys 30 (1998)

3. Atanassov, R., Bose, P., Couture, M., Maheshwari, A., Morin, P., Paquette, M., Smid, M.,
Wuhrer, S.: Algorithms for optimal outlier removal. Journal of Discrete Algorithms (to ap-
pear)

4. Buragohain, C., Shrivastava, N., Suri, S.: Space efficient streaming algorithms for the maxi-
mum error histogram. In: 23rd International Conference on Data Engineering, pp. 1026–1035
(2007)

5. Chazal, F., Das, S.: An efficient algorithm for fitting rectilinear x - monotone curve to a point
set in a plane. Technical report (August 2006),
http://math.u-bourgogne.fr/IMB/chazal/publications.htm

6. Frederickson, G.N.: Optimal algorithms for tree partitioning. In: Proc. 2nd Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 168–177 (1991)

7. Frederickson, G.N., Johnson, D.B.: Generalized selection and ranking: Sorted matrices.
SIAM Journal on Computing 13(1), 14–30 (1984)

8. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry prob-
lems. In: Proc. 16th Annual ACM Symposium on Theory of Computing, pp. 135–143 (1984)

9. Goodrich, M.T.: Efficient piecewise-linear function approximation using the uniform metric.
Discrete and Computational Geometry 14(4), 445–462 (1995)

10. Guha, S., Shim, K.: A note on linear time algorithms for maximum error histograms. IEEE
Transactions on Knowledge and Data Engineering 19(7), 993–997 (2007)

11. Har-Peled, S., Wang, Y.: Shape fitting with outliers. SIAM Journal on Computing 33(2),
269–285 (2004)

12. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM Journal
on Computing 13(2), 338–355 (1984)

13. Ioannidis, Y., Poosala, V.: Histogram-based solutions to diverse database estimation prob-
lems. IEEE Data Eng. Bull. 18(3), 10–18 (1995)

14. Karras, P., Sacharidis, D., Mamoulis, N.: Exploiting duality in summarization with determin-
istic guarantees. In: 13th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 380–389 (2007)

15. Lopez, M., Mayster, Y.: Weighted rectilinear approximation of points in the plane. In: Laber,
E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 642–
653. Springer, Heidelberg (2008)

16. Mayster, Y., Lopez, M.A.: Approximating a set of points by a step function. Journal of Visual
Comunication and Image Represententation 17(6), 1178–1189 (2006)

17. Dı́az-Báñez, J.M., Mesa, J.A.: Fitting rectilinear polygonal curves to a set of points in the
plane. European Journal of Operational Research 130(1), 214–222 (2001)

18. Wang, D.P.: A new algorithm for fitting a rectilinear x-monotone curve to a set of points in
the plane. Pattern Recognition Letters 23(1-3), 329–334 (2002)

http://math.u-bourgogne.fr/IMB/chazal/publications.htm

Faster Swap Edge Computation in

Minimum Diameter Spanning Trees�

Beat Gfeller

Institute of Theoretical Computer Science, ETH Zurich, Switzerland
gfeller@inf.ethz.ch

Abstract. In network communication systems, frequently messages are
routed along a minimum diameter spanning tree (MDST) of the network,
to minimize the maximum travel time of messages. When a transient fail-
ure disables an edge of the MDST, the network is disconnected, and a
temporary replacement edge must be chosen, which should ideally mini-
mize the diameter of the new spanning tree. Preparing for the failure of
any edge of the MDST, the all-best-swaps (ABS) problem asks for find-
ing the best swap for every edge of the MDST. Given a 2-edge-connected
weighted graph G = (V, E), where |V | = n and |E| = m, we solve the
ABS problem in O (m log n) time and O(m) space, thus considerably
improving upon the decade-old previously best solution, which requires
O(n

√
m) time and O(m) space, for m = o

(
n2/ log2 n

)
.

1 Introduction

For communication in computer networks, often only a subset of the available
connections is used to communicate at any given time. If all nodes are connected
using the smallest possible number of links, the subset forms a spanning tree of
the network. When an edge in a communication tree fails, routing information
becomes wrong and message transmission is interrupted. For transient failures
that are expected to be repaired quickly, the idea of online point-of-failure rerout-
ing has gained popularity recently [2, 3, 6, 8]: Instead of changing a lot of routing
information, only one alternative (so-called swap) edge is used to reconnect the
disconnected parts of the tree. For the corresponding change in routing informa-
tion to be fast, a swap edge for each failing edge needs to be readily available, as
the result of an earlier computation. Among all possible swap links for a failing
edge, one should choose a best swap link, that is, a swap edge which reconnects
the two disconnected parts of the tree in such a way that the resulting swap tree
is best w.r.t. some objective.

We show in the following that the common computation of all best swaps
(ABS) has the further advantage of gaining efficiency (against computing swap
edges individually), because dependencies between the computations for different
failing edges can be exploited.
� We gratefully acknowledge the support of the Swiss SBF under contract no. C05.0047

within COST-295 (DYNAMO) of the European Union.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 454–465, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Faster Swap Edge Computation in Minimum Diameter Spanning Trees 455

In this paper, we are interested in using a Minimum Diameter Spanning Tree
(MDST) as the communication tree, i.e., a tree that minimizes the largest dis-
tance between any pair of nodes, thus minimizing the worst case length of any
transmission path, even if edge lengths are not uniform. Consequentially, a best
swap edge in our case minimizes the diameter of the resulting swap tree. Inter-
estingly, this choice of swapping against adjusting the entire tree even comes at
a moderate loss in diameter: The swap tree diameter is at most a factor of 5/2
larger than the diameter of an entirely adjusted tree [9].

Related Work. During the last decade, the ABS problem has been investigated
for spanning trees with various objectives [1, 8, 9, 10, 11, 12].

Computing all best swaps of a MDST was one of the first swap problems
that were studied. In [9], an algorithm for this problem is given which requires
O(n

√
m) time and O(m) space, where the given underlying 2-edge-connected

communication network G = (V,E) has n = |V | nodes and m = |E| edges. For
each of the n− 1 different tree edges, their algorithm uses somewhat augmented
topology trees to select O(

√
m) best swap candidates, then evaluates the quality

of each of the O(
√
m) candidate swap edges in O(1) amortized time, and selects

the best among them. In order to obtain the O(1) amortized time for computing
the diameter of the swap tree associated with a given swap edge, information
from a preprocessing phase is used, and combined with an inductive computation
that uses path compression.

Contribution. In this paper, we present an algorithm for computing all best
swap edges for a MDST, leading to a proof of our

Main Theorem 1. Given a graph G = (V,E) with n = |V | nodes and m = |E|
edges, and a Minimum Diameter Spanning Tree T of G, all best swap edges of
T can be computed in O(m log n) time and O(m) space.

For m = o
(
n2/log2 n

)
, this significantly improves upon the time complexity

of the previously best known solution [9], using O(n
√
m) time and O(m) space,

without increasing the space complexity. Our techniques can also be used to solve
the {r,max}-problem of [10], which asks for all best swap edges in a shortest
paths tree, in time O(m logn) instead of O(n

√
m).

This improvement over the previous bounds is based on two key ingredients:
First, partitioning the set of tree edges into two particular sets, and computing
their best swap edges separately using two different techniques, and second,
utilizing an essential observation (Lemma 2) to simplify the computation of the
diameter in a given swap tree. Our new observations allow for a simpler algorithm
than the previous; we use only fundamental data structures.

2 Terminology

A communication network is a 2-edge-connected, undirected graph G = (V,E),
with n = |V | nodes and m = |E| edges. Each edge e ∈ E has a non-negative

456 B. Gfeller

rational1 length l(e). The length |P| of a path P = 〈p1, . . . , pr〉, pi ∈ V , is the
sum of the lengths of its edges, and the distance d(x, y) between two nodes x, y
is the length of a shortest path between x and y. Throughout the paper, we are
only dealing with simple paths. The following notation is illustrated in Fig. 1.
Given a spanning tree T = (V,ET) of G, let D(T) := 〈d1, d2, . . . , dk〉 denote a
diameter of T , that is, a longest path in T . From now on, we measure distances
in the given spanning tree T , not in the underlying graph G itself. T is said to
be a minimum diameter spanning tree (MDST) of G if it has minimum diameter
among all the spanning trees of G. For the rest of the paper, we assume that
T is a particular MDST of G. If we consider T to be rooted at a node on the
diameter, say s, then for each node x
= s, let node p(x) be the parent of x and
C(x) the set of its children. Furthermore, let Tx = (V (Tx), E(Tx)) be the subtree
of T rooted at x, including x.

The removal of any edge e ∈ ET partitions the spanning tree into two disjoint
trees. A swap edge f for e is any edge in E\ET that (re-)connects the two
trees, i.e., for which Te/f := (V, (ET \{e}) ∪ {f}) is a spanning tree of G − e =
(V,E\{e}). We denote by Pe/f a longest path in Te/f that goes through swap
edge f . Let F (e) be the set of swap edges for e. A best swap edge (with respect
to the diameter) for e is any edge f ∈ F (e) for which |D(Te/f)| is minimum. The
all-best-swaps (ABS) problem for a MDST is the problem of finding for every
edge e ∈ ET a best swap edge. Throughout the paper, let e denote a failing edge
and f a swap edge.

In Section 3, we start with some crucial observations, which are used to com-
pute all best swaps for failing diameter edges in Section 4, and all best swaps for
failing non-diameter edges in Section 5. Due to space restrictions, we omit some
details of the latter, which can be found in [5].

3 The Quality of a Swap Edge f for a Failing Edge e

We start with a number of observations, all of which are used in our algorithm.
Our first observation is that if the diameter of Te/f is longer than |D(T)|, then
the new diameter must go through f . More precisely:

Lemma 1 (Proved in [6]). For a given failing edge e of the MDST T , the
length of the diameter of Te/f is |D(Te/f)| = max{|D(T)|, |Pe/f |}.

In our algorithm, we always judge swap edges only according to |Pe/f |, instead
of |D(Te/f)|. This causes no problem because any swap edge f for which |Pe/f | <
|D(Te/f)| is a best swap edge for e, since in this case |D(Te/f)| = |D(T)|.

For a given tree T = (V,ET), and a given node r ∈ T , let L(T, r) denote
the length of a longest simple path in T which starts in node r. Note that for
f = (u, v), Pe/f is composed of three parts: the longest path in T − e starting in
u, the longest path in T − e starting in v, and the edge f itself. Thus, we have

1 Assuming the Real-RAM model, our algorithms would also work for non-negative
real weights.

Faster Swap Edge Computation in Minimum Diameter Spanning Trees 457

d1

dk

root s ∈ D(T)

T

x

p(x)
e

u

v

f

Tx

D(T)

Fig. 1. A MDST T rooted at a node s on
its diameter D(T), a failing edge e, and a
swap edge f = (u, v) for e. The bold line
segments denote the diameter D(T) of T .

dS dE

u

vf

q1 q4q2 q3

f1
f2 f3

Fig. 2. Replacing a swap edge f by three
virtual swap edges f1, f2, f3

|Pe/f | = l(f) + L(T − e, u) + L(T − e, v). The following lemma shows how to
compute L(T, r) efficiently for any given node r ∈ V .

Lemma 2 (Proof in [5]2). Let T = (V,ET) be a weighted tree, and let D(T) =
〈dS , . . . dE〉 be a diameter of T with endpoints dS and dE. The length of a longest
simple path inside T starting in r ∈ V is L(T, r) = max

{
d(r, dS), d(r, dE)

}
.

We now show how, given the endpoints of a diameter of T , one can compute
L(T, r) for any given node r in constant time, after a preprocessing step requiring
O(n) time. We root the tree T at any node, and augment it with (i) a labeling of
the nodes which allows to obtain the nearest common ancestor (called nca(a, b)
for two nodes a, b) of two given nodes in constant time [7]; (ii) in every node x,
store its distance to the root, called toRoot(x).

This information allows to compute the distance between two arbitrary nodes
a and b in the tree T (and thus L(T, r)) in constant time: d(a, b)=d(a, nca(a, b))+
d(b, nca(a, b)) = toRoot(a) + toRoot(b) − 2 · toRoot(nca(a, b)).

In our algorithm, we distinguish between failing edges on the diameter, called
diameter edges, and failing edges not on the diameter, called non-diameter edges.
If the given tree has several diameters, we select one and use the same throughout
the algorithm. This guarantees that each edge is either a diameter edge or a non-
diameter edge, and that this classification is consistent.

4 Best Swap Edges for Failing Diameter Edges

In this section, we show how to compute the best swap edges for all failing edges
which lie on the diameter D(T) in time O(m log n) and O(m) space.

Due to Lemma 1, a given swap edge f for a failing edge e can be evaluated by
computing the lengths of the two longest paths starting at its endpoints. It turns
out that these lengths can always be found by only considering paths which visit
the diameter:
2 Due to lack of space, we only present a selection of proofs, and refer to [5] for further

details.

458 B. Gfeller

Lemma 3 (Proof in [5]). Consider a tree T = (V,ET), a diameter D(T) of it
with endpoints dS , dE, a failing edge e on D(T), and an arbitrary node r ∈ V .
Let u be the node on D(T) closest to r. One of the longest paths in T −e starting
from r contains the node u.

Due to the above lemma, a longest path starting in any endpoint r of a given
swap edge can always be found by first going to the node u ∈ D(T) closest to
r. From there, a longest path may either continue to the end of the diameter
(dS or dE), or cross at least one edge towards the failing edge e, and possibly
leave the diameter again. Note that going from u towards dS , but leaving the
diameter again, cannot be longer than continuing until dS .

For finding the length of a longest path starting from u efficiently, we compute
two values μS(di, di+1) and μE(di, di+1) for every node di, i = 1, . . . , k − 1 on
the diameter. By μS(di, di+1) (respectively μE(di, di+1)), we denote the length
of a longest path in T starting at dS (dE) and not crossing the edge (di, di+1).
Formally, we have (dS := d1, dE := dk):

μS(d1, d2) = μE(dk−1, dk) = 0
μS(di, di+1) = max{μS(di−1, di), d(dS , di) + h(di)} for i = 2, 3, . . . , k − 1, and
μE(di, di+1) = max{μE(di+1, di+2), d(dE , di+1) + h(di+1)} for i = k − 2, . . . , 1.

where h(di) denotes the length of a longest path starting in di, and not using any
edges on the diameter dS , . . . dE . It is easy to see that if T is rooted at a node
on the diameter, then h(di) can be computed for all di on the diameter in O(n)
time by traversing T in postorder. Thus, the values μS(di, di+1), μE(di, di+1) can
be computed for all di on the diameter in O(n) time.

The following lemma describes how to efficiently compute the longest path in
T − (di, di+1) starting from any node r.

Lemma 4 (Proof in [5]). Consider any fixed diameter dS , . . . , dE of a tree T ,
any node r of T , and a failing edge (di, di+1) on the diameter. Let u be the
node on the diameter closest to r. The length of a longest path in T − (di, di+1)
starting in r is given by d(r, u) + max{d(u, dS), μS(di, di+1) − d(u, dS)} if r
lies in the same connected component of T − (di, di+1) as dS , and d(r, u) +
max{d(u, dE), μE(di, di+1) − d(u, dE)} otherwise.

4.1 Using Virtual Swap Edges

For any node v, let nc(v) be the node on the diameter which is closest to v
(possibly, nc(v) = v). According to Lemma 4, the value |Pe/f | of a particular
swap edge f = (u, v) for any failing edge e on the diameter is one of the following
four terms (assuming that u lies in the same component of T − e as dS , and v
lies in the same component of T − e as dE):

1. d(u, dS) + d(v, dE) + l(f)
2. d(u, dS) + μE(e) − d(nc(v), dE) + d(v, nc(v)) + l(f)
3. μS(e) − d(nc(u), dS) + d(u, nc(u)) + d(v, dE) + l(f)
4. μS(e)−d(nc(u), dS) +d(u, nc(u)) +μE(e)−d(nc(v), dE) +d(v, nc(v)) + l(f).

Faster Swap Edge Computation in Minimum Diameter Spanning Trees 459

Note that in all above terms, the part depending on the failing edge e is
independent of f . Thus, if two swap edges f ′ and f ′′ for edge e are such
that their values |Pe/f ′ | and |Pe/f ′′ | both correspond to the same of the four
terms above, then we can omit the terms μS(e) and μE(e) when comparing
their quality, without affecting the comparison. Furthermore, note that since
μS(di, di+1) is monotonically increasing in i, all the failing edges (di, di+1) for
which max{d(u, dS), μS(di, di+1) − d(u, dS)} = d(u, dS) form a connected path,
as do all the failing edges for which max{d(u, dS), μS(di, di+1) − d(u, dS)} =
μS(di, di+1) − d(u, dS) (the same holds for dE). Thus, for a given swap edge
f = (u, v), the set of diameter edges can be divided into at most three sets, each
composing a path, such that for each set, f ’s value is defined by a specific one
of the four terms above. We denote the endpoints of these paths by q1, q2, q3, q4.
Note that q1 = nc(u) and q4 = nc(v).

The above observations lead to the idea of introducing virtual swap edges
which replace the original swap edges, as follows (see also Fig. 2): A virtual swap
edge fi consists of its two endpoints, its type, and its value. The two endpoints
define a path on the spanning tree T , which is equal to the set of diameter edges
for which fi is a swap edge. The type of a virtual swap edge is a number in
1, 2, 3, 4. By definition, two virtual swap edges can only be compared if they
have the same type. The value of a virtual swap edge is a rational number. By
construction, the quality of each virtual swap edge for a given failing edge e
is identical to the quality of the original swap edge which it is replacing. Each
swap edge f is replaced by at most three “virtual” swap edges f1, f2, f3 in the
following way:

– The endpoints are: f1 = (q1, q2), f2 = (q2, q3), f3 = (q3, q4).
– For every failing edge e on D(T) such that f ∈ F (e), exactly one of f1, f2, f3

is a swap edge.
– The value of each fi = (u, v) is one of the terms shown above, except for the

part depending on e. Thus, it is either of
1. d(u, dS) + d(v, dE) + l(f),
2. d(u, dS) − d(nc(v), dE) + d(v, nc(v)) + l(f),
3. d(v, dE) − d(nc(u), dS) + d(u, nc(u)) + l(f),
4. −d(nc(u), dS) + d(u, nc(u)) − d(nc(v), dE) + d(v, nc(v)) + l(f).

The number of the term used to compute this value corresponds to the type
of the virtual swap edge fi.

Note that although there are four different types of virtual swap edges, each
individual (original) swap edge is replaced by at most three different virtual swap
edges, whose types are all different. In the following, we assume that a swap edge
f is replaced by exactly three virtual swap edges; if fewer virtual swap edges are
required, the adaptation of the method we describe is straightforward. Let us
summarize.

Lemma 5 (Proof in [5]). The set of all swap edges can be replaced by at most
three times as many virtual swap edges, each having one of four types and a
value, such that the quality of two swap edges of the same type can be compared

460 B. Gfeller

based solely on their values. Moreover, this transformation can be carried out
using O(m log n) time and O(m) space.

Using the virtual swap edges, we compute, for each of the four types t ∈
{1, 2, 3, 4} separately, the best virtual swap edge for all failing edges on the
diameter in O(m log n) time and O(m) space, with the following simple scanline
algorithm:

1. Initialize an empty Heap Ht. The virtual swap edges which are later inserted
into Ht are to be ordered by their values.

2. Consider all failing edges ei = (di, di+1) on the diameter sequentially, for
i = 1, 2, . . . , k. For each ei = (di, di+1):
– add to Ht all those virtual swap edges whose left endpoint (i.e., the one

closer to d1) is di.
– remove from Ht all those virtual swap edges whose right endpoint is di.
– store the current minimum of Ht as best(ei, t).

Then, for each ei and each type t, replace the virtual swap edge best(ei, t) by its
corresponding swap edge. This yields at most four potential best swap candidates
for each diameter edge ei, among which a best swap is contained. The best swap
edges are then found in time O(n) by simply computing |Pe/f | explicitly (and
in constant time) for each of these selected O(n) candidates.

As we show below, replacing each and every swap edge by its virtual swap
edges requires O(m log n) time and O(m) space, and increases the number of
swap edges by a factor of at most three. Summarizing, we have:

Theorem 2. All best swap edges for failing edges on a chosen diameter can be
computed in O(m logn) time and O(m) space3.

5 Swap Edges for Failing Non-diameter Edges

In this section, we describe an algorithm to compute the best swap edges for those
tree edges which do not lie on the chosen diameter D(T) of the given MDST
T . We will show that this algorithm runs in O(m log n) time and requires O(m)
space.

For our approach, we root T in an arbitrary node on the diameter, and label
all edges by their occurrence in a postorder traversal.

To begin, let f = (u, v) be an edge in E\ET such that u is a descendant of
v in T , and such that the path from u to v in T does not contain any edge of
the diameter D(T). We call such an edge a backedge. For a backedge f = (u, v),
we call the endpoint u the lower endpoint of f , and v the upper endpoint of
f . In the following, we assume for ease of exposition that all edges in E\ET

are backedges. In Section 5.3, we describe how to adapt our algorithm to work
without this assumption.
3 With a transmuter data structure, a running time of O(mα(m, n)) could be achieved

here. However, the algorithm in Section 5 requires Ω(m log n) time, and hence the
asymptotic running time of the complete algorithm would not decrease.

Faster Swap Edge Computation in Minimum Diameter Spanning Trees 461

x

p(x)

h

p(h)

w

midpoint edge

failing edge e

f

u

f ′

u′

Fig. 3. Grouping of swap edges according
to their endpoints in Tx. Sets of endpoints
whose swap edges are grouped together
are enclosed in dashed shapes.

p(x)

x

c

e

q
= c

h
p(h)

g

p(g)

q′ q′′

Fig. 4. A failing edge e = (x, p(x)), the
midpoint edge (h, p(h)) of D(Tx), the
child c ∈ C(x) whose subtree contains h,
and the midpoint edge (g, p(g)) of D(Tc)

Consider the sequence of (non-diameter) tree edges e1, . . . , ek in the path from
u to v, starting with the edge adjacent to u: how does |Pei/f | depend on the ei?
Since the failing edge ei is not on the diameter D(T), the connected component
of T − ei containing v still contains D(T). According to Lemma 2, the longest
path in T − ei starting in v is therefore the same for all edges e1, . . . , ek, and
thus L(T − ei, v) = L(T, v).

On the other hand, the longest path in T − ei starting in u may be different
for different failing edges ei. To characterize the structure of these paths, we
introduce a new concept: The midpoint edge of a tree’s diameter is the edge
on the diameter which contains the center of the diameter. More precisely, this
is the diameter edge whose removal splits it into two parts whose difference in
length is minimum (there could be two edges satisfying this definiton; any of
them can be chosen). Note that the position of the midpoint edge determines in
which direction a longest path starting in a particular node goes (again using
Lemma 2): all longest paths which start on one side of the midpoint edge go to
the opposite end of the diameter.

We now focus on a particular failing (non-diameter) edge e = (x, p(x)) for
which the best swap is to be computed. Let (h, p(h)) be the midpoint edge
of D(Tx). By Lemma 2, the longest path starting in u inside Tx will contain
(h, p(h)). This fact allows to partition the set F (e) of swap edges for e into
groups as follows (see Fig. 3):

– All swap edges having their lower endpoint below the midpoint edge (h, p(h))
will have a longest path going up towards this edge, and then further on to
the furthest node in Tx (this furthest node is the endpoint of the diameter
of Tx which lies outside of Th, and which is precomputed). We call this the

462 B. Gfeller

lower group, and denote it by Glower(x). Formally, Glower(x) := {(u, v) ∈
E\ET |u ∈ Th ∧ v /∈ Tx}.

– All swap edges having their lower endpoint u above the midpoint edge (i.e., not
in Th) will have a longest path which first leads to some node on the path from
p(h) to x, then continue down towards the midpoint edge, and finally going
into a deepest leaf in Th (this node is the endpoint of Tx’s diameter which
lies inside Th, which is also precomputed). We partition these swap edges into
groups distinguished by the node w = nca(u, h), the first node on the path
from p(h) to x contained in their longest path in T − e starting in u. These
groups are called the upper groups, and denoted by Gupper(x,w). Formally:
Gupper(x,w) := {(u, v) ∈ E\ET |u ∈ Tx\Th ∧ nca(u, h) = w ∧ v /∈ Tx}.

This grouping is helpful for computing best swap edges, due to the following
fact:

Lemma 6. In any group Gupper(x,w) or Glower(x), a best swap candidate for
the failing edge e = (x, p(x)) is a swap edge f = (u, v) for which L(T, v) + l(f) +
toRoot(u) is minimum.

Proof. For swap edges in the lower group, all “longest paths” in Tx are identical
after crossing the midpoint edge. For each upper group corresponding to some
node w, all “longest paths” in Tx are identical after reaching w. �

In order to compare the best candidates from different upper groups, an addi-
tional offset has to be added to each candidate’s value, such that the so-called
updated value of a candidate f is exactly equal to |Pe/f |. For f = (u, v) with
nca(u, h) = w, this updated value is

L(T, v) + l(f) + toRoot(u) − toRoot(w) + d(w, vdeep), (1)

where vdeep is the endpoint of D(Tx) in Th. For the following, it is useful to denote
by GR(x) the union of all groups associated with a given edge e = (x, p(x)).

5.1 Relations between Groups for Different Non-diameter Edges

There is a close connection between the midpoint edges of a subtree Tx rooted at
a node x and the midpoint edges of the subtrees of this node’s children. Indeed,
the following lemma is easy to prove:

Lemma 7 (Proof omitted). Consider a tree edge e = (x, p(x)) and the child
c ∈ C(x) for which the midpoint edge of D(Tx) is either (c, x) or an edge in
Tc. Then, the midpoint edge of D(Tx) lies on the path from the midpoint edge of
D(Tc) to e (possibly, the midpoint edges of D(Tc) and of D(Tx) are identical).

Thus, the midpoint edge only moves “upwards” when failing edges are visited in
postorder: it never occurs that the midpoint edge of Tx lies below the midpoint
edge of Td for any descendant d of x. This implies that for any particular backedge
f = (u, v), if a longest path in T − ei starting in u does not visit any child of u,
then nor will a longest path in any T − ej, j > i.

Faster Swap Edge Computation in Minimum Diameter Spanning Trees 463

Recall that we consider all (non-diameter) failing edges in a postorder. In the
following, we show how the groups of swap edges for a non-diameter tree edge
e = (x, p(x)) relate to the groups of previously considered failing edges. Later,
we exploit these relations using a collection of suitable data structures.

The set of swap edges for edge e = (x, p(x)) can be expressed as

F (e) = start-at(x) ∪
{ ⋃

q∈C(x)

F ((q, x))
}
\ end-at(x),

where start-at(x) is the set of swap edges whose lower endpoint is x, and where
end-at(x) is the set of swap edges whose upper endpoint is x. We now describe
how F (e) is partitioned into the lower group and all the upper groups of e. Let
c ∈ C(x) be the child of x for which the midpoint edge of D(Tx) is either (c, x)
or an edge in Tc. Furthermore, let (g, p(g)) be the midpoint edge of D(Tc) and
let (h, p(h)) be the midpoint edge of D(Tx) (see Fig. 4). Clearly, all swap edges
which belong to the upper group of e associated with w = x are

Gupper(x, x) = start-at(x) ∪
{ ⋃

q∈C(x),q �=c

GR(q)
}
\ end-at(x).

For any w
= x on the path from p(h) to c, thanks to Lemma 7, we can express
the set of swap edges in the upper group of e associated with w as Gupper(x,w) =
Gupper(c, w) \ end-at(x). Finally, the swap edges belonging to the lower group of
e are

Glower(x) =
(
Glower(c) ∪

{ ⋃

d∈〈p(g),...,h〉
Gupper(c, d)

})
\ end-at(x).

5.2 Our Data Structure and Our Inductive Approach

Our approach visits all non-diameter tree edges in postorder, and computes a
best swap edge for each of them sequentially. In order to leverage our observations
about connections between best swaps for different edges, we associate a data
structure, denoted by GroupsDS(x), with each considered edge e = (x, p(x)).
This structure contains a representation of the group Glower(x) and all groups
Gupper(x,w) for w ∈ 〈p(h), . . . , x〉 (recall (h, p(h)) denotes the midpoint edge),
from which a best swap for e can be extracted in constant time. Moreover, it is
designed such that GroupsDS(x) can be efficiently composed of their counter-
parts of previously visited edges.

Lemma 7 implies that by visiting the (non-diameter) failing edges in postorder
results in a corresponding midedge sequence which is also postorder (although
this may be only a subset of all tree edges). This is crucial for the correct-
ness of our approach, because once we used a data structure GroupsDS(x′)
associated with a previously visited edge (x′, p(x′)), to compute GroupsDS(x),
GroupsDS(x′) is no longer available. In GroupsDS(x), each group is represented
by a Minimum Fibonacci-Heap (short F-Heap in the following) [4]. Each swap
edge f contained in a group G is stored in the corresponding F-Heap, using the

464 B. Gfeller

value L(T, v) + l(f) + toRoot(u), which we call the invariant value of f , as its
key4. Note crucially, that this value is independent of the failing edge, and ac-
cording to Lemma 6 the minimum element in the F-Heap corresponding to a
group is the best swap (in this group) for the currently considered failing edge.
Furthermore, even when this F-Heap is later altered, by inserting or deleting
some swap edges, or by merging the F-Heap with another, the value associ-
ated with a given swap edge need never be changed. In particular, GroupsDS(x)
contains (see [5] for more details):

1. a list heaplist(x) of F-Heaps, containing, for each node w on the path from
p(h) to x, an F-Heap FHupper(x,w) of all swap edges in Gupper(x,w). The
order of the F-Heaps in the list corresponds to the order of the respective
nodes w (lowest node first).

2. an F-Heap FHlower(x) of all swap edges whose lower endpoint lies in Th.

In principle, the best swap for e is found by choosing the candidate with min-
imum updated value among the best of each group. Doing this naively would
require at least linear time in the number of groups, i.e., at least linear in the
number of nodes between e and the midpoint edge. To expedite this process
during the induction, we use an ordinary Minimum Heap which contains the up-
dated values of the best candidate from each upper group. The best swap edge
is then either the minimum element in this heap, or the best candidate from the
lower group. Thus, GroupsDS(x) additionally contains the following item:

3. an ordinary Minimum Heap CandHeap(x), containing for each F-Heap in
heaplist(x) the best swap candidate, ordered by their quality (i.e., their
Pe/f - lengths as defined in Equation 1).

From this information, a best swap edge for (x, p(x)) is found in constant time
by comparing the best candidate in CandHeap(x) with the best candidate in
FHlower(x), and taking the better of the two. Moreover, using the insights of
Section 5.1, we can efficiently compute GroupsDS(x) for each node x in pos-
torder, by composing it from the GroupsDS(c1), . . . ,GroupsDS(ck) associated
with its children c1, . . . , ck. More precisely, we have (see [5] for the details):

Theorem 3. All best swap edges for failing edges not lying on the chosen di-
ameter can be computed in O(m log n) time and O(m) space.

5.3 Transforming Non-tree Edges to Backedges

So far, we have assumed that all swap edges are backedges. We now describe
to replace any edge f by at most two “virtual” backedges, whose lengths are
defined in such a way that the best swap edge computed by our algorithm is

4 Technically speaking, the key must be made unique by using the tuple (L(T, v) +
l(f) + toRoot(u), f) as key, where comparisons are based mainly on the first com-
ponent, and the second is only used to break ties. We omit this detail in the main
text for ease of exposition.

Faster Swap Edge Computation in Minimum Diameter Spanning Trees 465

correct. That is, if the computed best swap for a given failing edge e is a virtual
backedge, then replacing the virtual backedge by the edge f it represents yields
a (non-backedge) swap edge for e with the same quality. Formally, we replace
f = (u, v) by f1 := (u, v1) and f2 := (v, u2) (recall that these tuples are ordered),
with lengths l(f1) := l(f) + d(v, v1) and l(f2) := d(u, u2). If the path from u to
v in T uses one or more edges of D(T), we define v1 := nc(u) and v2 := nc(v).
Otherwise, we define v1 := nca(u, v) and u2 := nca(u, v). If it happens that
u = v1, we omit f1, and if v = u2, we omit f2. To see why this replacement
works, note that in both cases f1 represents f exactly for all failing edges on the
path in T from u to v1, and f2 represents f exactly for all edges from v to u2

(i.e., for each non-diameter tree edge, one of f1, f2 represents f). Furthermore,
the lengths of f1 and f2 are defined exactly such that for any failing edge e for
which fi is a swap edge, it holds |D(Te/fi

)| = |D(Te/f)|.

References

[1] Di Salvo, A., Proietti, G.: Swapping a Failing Edge of a Shortest Paths Tree by
Minimizing the Average Stretch Factor. Theor. Comp. Sci. 383(1), 23–33 (2007)

[2] Flocchini, P., Enriques, A.M., Pagli, L., Prencipe, G., Santoro, N.: Point-of-failure
Shortest-path Rerouting: Computing the Optimal Swap Edges Distributively. IE-
ICE Transactions on Information and Systems E89-D(2), 700–708 (2006)

[3] Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Widmayer, P.: Computing All
the Best Swap Edges Distributively. Journal of Parallel and Distributed Comput-
ing (in press, 2008)

[4] Fredman, M.L., Tarjan, R.E.: Fibonacci Heaps and Their Uses in Improved Net-
work Optimization Algorithms. J. ACM 34(3), 596–615 (1987)

[5] Gfeller, B.: Faster swap edge computation in minimum diameter spanning trees.
Technical Report 597, ETH Zurich (June 2008),
http://www.inf.ethz.ch/research/disstechreps/techreports

[6] Gfeller, B., Santoro, N., Widmayer, P.: A Distributed Algorithm for Finding All
Best Swap Edges of a Minimum Diameter Spanning Tree. In: Pelc, A. (ed.) DISC
2007. LNCS, vol. 4731, pp. 268–282. Springer, Heidelberg (2007)

[7] Harel, D., Tarjan, R.E.: Fast Algorithms for Finding Nearest Common Ancestors.
SIAM Journal on Computing 13(2), 338–355 (1984)

[8] Ito, H., Iwama, K., Okabe, Y., Yoshihiro, T.: Single Backup Table Schemes for
Shortest-path Routing. Theor. Comp. Sci. 333(3), 347–353 (2005)

[9] Nardelli, E., Proietti, G., Widmayer, P.: Finding All the Best Swaps of a Mini-
mum Diameter Spanning Tree Under Transient Edge Failures. Journal of Graph
Algorithms and Applications 5(5), 39–57 (2001)

[10] Nardelli, E., Proietti, G., Widmayer, P.: Swapping a Failing Edge of a Single
Source Shortest Paths Tree Is Good and Fast. Algorithmica 35(1), 56–74 (2003)

[11] Proietti, G.: Dynamic Maintenance Versus Swapping: An Experimental Study
on Shortest Paths Trees. In: Näher, S., Wagner, D. (eds.) WAE 2000. LNCS,
vol. 1982, pp. 207–217. Springer, Heidelberg (2001)

[12] Wu, B.Y., Hsiao, C.-Y., Chao, K.-M.: The Swap Edges of a Multiple-Sources
Routing Tree. Algorithmica 50(3), 299–311 (2008)

http://www.inf.ethz.ch/research/disstechreps/techreports

The Partial Augment–Relabel Algorithm

for the Maximum Flow Problem

Andrew V. Goldberg

Microsoft Research – Silicon Valley, 1065 La Avenida, Mountain View, CA 94062
goldberg@microsoft.com

Abstract. The maximum flow problem is a classical optimization
problem with many applications. For a long time, HI-PR, an efficient
implementation of the highest-label push-relabel algorithm, has been a
benchmark due to its robust performance. We propose another variant of
the push-relabel method, the partial augment-relabel (PAR) algorithm.
Our experiments show that PAR is very robust. It outperforms HI-PR
on all problem families tested, asymptotically in some cases.

1 Introduction

The maximum flow problem and its dual, the minimum cut problem, are clas-
sical combinatorial optimization problems with applications in many areas of
science and engineering. For this reason, the problem has been studied both
from theoretical and practical viewpoints for over half a century. The problem
is to find a maximum flow from the source to the sink (a minimum cut between
the source and the sink) given a network with arc capacities, the source, and the
sink. Below we denote the number of vertices and arcs in the input network by n
and m, respectively. Theoretical line of research led to the development of aug-
menting path [16], network simplex [12], blocking flow [14], and push-relabel [20]
methods. The best currently known time bounds appear in [25,19].

From the practical point of view, good implementations of Dinic’s blocking
flow method [10,21] proved superior to the network simplex and the augmenting
path algorithms. The blocking flow method remained the method of choice until
the development of the push-relabel method [20], which was quickly recognized
as practical. Within a year of its invention, the method had been used in a physics
application [28]. A parallel implementation of the method, including some speed-
up heuristics applicable in the sequential context as well, has been studied in [17].
Implementations of variants of the method has been studied during the First
DIMACS Implementation Challenge [23,2,27]. This work showed that using the
global update and gap heuristics (discussed in detail in Section 3), one gets an
implementation superior to the efficient implementations of Dinic’s algorithm.
Another conclusion was that, except in degenerate cases, the dynamic tree data
structure, used in the most theoretically efficient algorithms, does not help in
practice, where its overhead exceeds the corresponding performance gains [4].
The Challenge also led to the development of the DIMACS problem families.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 466–477, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Partial Augment–Relabel Algorithm 467

Subsequent work of Cherkassky and Goldberg [11] showed that, with a proper
choice of data structures, the combination of global update and gap heuristics
is more robust than the individual heuristics, and the high-level selection rule
outperforms other popular selection rules. This implementation, PRF, and its
later version, HI-PR, has been used for over a decade in many applications.
Several subsequent implementations, such as [26], use the combination of gap and
global update and differ by low-level data structures or initialization strategies.

A number of attempts have been made to develop an implementation that is
more robust than HI-PR. The ideas behind the binary blocking flow algorithm
in particular appear practical, and Hagerup et al. [22] show that this algorithm
outperforms Dinic’ blocking flow algorithm. However, although the algorithm has
a better worst-case time bound and performs better on specific bad instances,
all attempts so far to produce an implementation of this algorithm that is more
robust than HI-PR failed.

Some maximum flow algorithms developed for specific applications outper-
form HI-PR in these applications. For example, minimum cuts are being used
extensively in vision applications. Boykov and Kolmogorov [5] developed an al-
gorithm that is superior to the highest level and FIFO push-relabel implemen-
tations on many vision problems. Their implementation is extensively used by
the vision community. See [5,6] for surveys of the vision applications.

In this paper we describe a new partial augment-relabel (PAR) variant of the
push-relabel method. In our comparison of PAR to HI-PR, the former code is
consistently faster, in some cases asymptotically so. The push-relabel algorithm
implementations had significant impact on applications and experimental work
in the area for over a decade. In this context, the superior performance of PAR is
significant. Furthermore, the push-relabel algorithm is the basis for efficient imple-
mentations of algorithms for the minimum-cost flow [18], global minimum cut [8],
and parametric flow [3] problems. The ideas presented in this paper apply to these
problems, and may improve performance of the corresponding implementations.

2 Definitions and Notation

Input to the maximum flow problem is (G, s, t, u), where G = (V,A) is a directed
graph, s, t ∈ V, s
= t are the source and the sink, respectively, u : A⇒ [1, . . . , U]
is the capacity function, and U is the maximum capacity.

Let aR denote the reverse of an arc a. let AR be the set of all reverse arcs, and
let A′ = A∪AR. Note that we add a reverse arc for every arc of A; in particular,
if A contains both a = (v, w) and b = (w, v), then aR is an arc parallel to but
different from b. A function g on A′ is anti-symmetric if g(a) = −g(aR). Extend
u to be an anti-symmetric function on A′, i.e., u(aR) = −u(a).

A flow f is an anti-symmetric function on A′ that satisfies capacity constraints
on all arcs and conservation constraints at all vertices except s and t. The capac-
ity constraint for a ∈ A is 0 ≤ f(a) ≤ u(a) and for a ∈ AR it is −u(aR) ≤ f(a) ≤
0. The conservation constraint for v is

∑
(u,v)∈A f(u, v) =

∑
(v,w)∈A f(v, w). The

flow value is the total flow into the sink: |f | =
∑

(v,t)∈A f(v, t).

468 A.V. Goldberg

A cut is a partitioning of vertices S ∪ T = V with s ∈ S, t ∈ T . Capacity of a
cut is defined by u(S, T) =

∑
v∈S,w∈T,(v,w)∈A u(v, w).

A preflow is a relaxation of a flow that satisfies capacity constraints and a
relaxed version of conservation constraints

∑
(u,v)∈A f(u, v) ≥

∑
(v,w)∈A f(v, w).

We define flow excess of v by ef (v) =
∑

(u,v)∈A f(u, v) −
∑

(v,w)∈A f(v, w). For
a preflow f , ef (v) ≥ 0 for all v ∈ V − {s, t}.

Residual capacity is defined by uf(a) = u(a) − f(a) for a ∈ A and uf(a) =
f(aR) for a ∈ AR. Note that if f satisfies capacity constraints, then uf is non-
negative. The residual graph Gf = (V,Af) is induced by the arcs in A′ with
strictly positive residual capacity. An augmenting path is an s–t path in Gf .

A distance labeling is an integral function d on V that satisfies d(t) = 0. Given
a preflow f , we say that d is valid if for all (v, w) ∈ Af we have d(v) ≤ d(w) + 1.
Unless mentioned otherwise, we assume that a distance labeling is valid with
respect to the current preflow in the graph. We say that an arc (v, w) is admissible
if (v, w) ∈ Af and d(v) = d(w) + 1, and denote the set of admissible arcs by Ad.

3 The Push-Relabel Method

The push-relabel method [20]1 maintains a preflow and a distance labeling, which
are modified using two basic operations:

Push(v, w) applies if ef (v) > 0 and (v, w) ∈ Ad. The operation chooses δ : 0 <
δ ≤ min(uf (v, w), ef (v)), increases f(v, w) and ef (w) by δ and decreases ef (v)
and f((v, w)R) by δ. A push is saturating if after the push uf (v, w) = 0 and
non-saturating otherwise.

Relabel(v) applies if d(v) < n and v has no outgoing admissible arcs. A relabel
operation increases d(v) to the maximum value allowed by the distance labeling
constraints: 1 + min(v,w)∈Af

d(w) or to n if v has no outgoing residual arcs.
The method can start with any feasible preflow and distance labeling. Unless

mentioned otherwise, we assume the following simple initialization: f is zero on
all arcs except for arcs out of s, for which the flow is equal to the capacity;
d(s) = n, d(t) = 0, d(v) = 1 for all v
= s, t. For a particular application,
one may be able to improve algorithm performance using an application-specific
initialization. After initialization, the method applies push and relabel operations
until no operation applies.

When no operation applies, the set of all vertices v such that t is reachable
from v in Gf defines a minimum cut, and the excess at the sink is equal to the
maximum flow value. For applications that need only the cut, the algorithm can
terminate at this point. For applications that need the maximum flow, we run
the second stage of the algorithm. One way to implement the second stage is to
first reduce flow around flow cycles to make the flow acyclic, and then to return
flow excesses to the source by reducing arc flows in the reverse topological order

1 Sometimes it is referred to as preflow-push, which is misleading: e.g., Karzanov’s im-
plementation [24] of the blocking flow method uses preflows and the push operation.

The Partial Augment–Relabel Algorithm 469

with respect to this acyclic graph. See [29]. Both in theory and in practice, the
first stage of the algorithm dominates the running time.

The current arc data structure [20] is important for algorithm efficiency; it
works as follows. Each vertex maintains a current arc a(v). Initially, and after
each relabeling of v, the arc is the first arc on v′s arc list. When we examine
a(v), we check if it is admissible. If not, we advance a(v) to the next arc on the
list. The definition of basic operations implies that only relabeling v can create
new admissible arcs out of v. Thus as a(v) advances, arcs behind it on the list
are not admissible. When the arc advances past the end of the list, v has no
outgoing admissible arcs and therefore can be relabeled. Thus the current arc
data structure allows us to charge to the next relabel operation the searches for
admissible arcs to apply push operations to. We say that a vertex v
= s, t is
active if d(v) < n and ef > 0. The highest-label variant of the method, which
at each step selects an active vertex with the highest distance label, runs in
O(n2

√
m) time [9,30].

HI-PR Implementation. Next we review the HI-PR implementation [11] of the
push-relabel algorithm. It uses the highest-label selection rule, and global update
and gap heuristics.

To facilitate implementation, the method uses a layers of buckets data struc-
ture. The layers correspond to distance labels i. Each layer i contains two buck-
ets, active and inactive. A vertex v with d(v) = i is in one of these buckets: in the
former if ef(v) > 0 and in the latter otherwise. Active buckets are maintained
as singly linked lists and support insert and extract-first operations. Inactive
buckets are maintained as doubly linked lists and support insert and delete op-
erations. The layer data structure is an array of records, each containing two
pointers – to the active and the inactive buckets of the layer. A pointer is null
if the corresponding bucket is empty. To implement the highest-level selection,
we maintain the index of the highest layer with non-empty active bucket.

The gap heuristic [13] is based on the following observation. Suppose for 0 <
i < n, no vertex has a distance label of i but some vertices w have distance
labels j : i < j < n. The validity of d implies that such w’s cannot reach t in Gf

and can therefore be deleted from the graph until the end of the first phase of
the algorithm.

Layers facilitate implementation of the gap heuristic. We maintain the in-
variant that the sequence of non-empty layers (which must start with layer zero
containing t) has no gaps. Note that only the relabeling operation moves vertices
between layers. During relabeling, we check if a gap is created, i.e., if increasing
distance label of v from its current value d(v) makes both buckets in layer d(v)
empty. If this is the case, we delete v and all vertices at the higher layers from
the graph, restoring the invariant. Note that deleting a vertex takes constant
time, and the total cost of the gap heuristic can be amortized over the relabel
operations.

Push and relabel operations are local. On some problem classes, the algo-
rithm substantially benefits from the global relabeling operation. This operation
performs backwards breadth-first search from the sink in Gf , computing exact

470 A.V. Goldberg

distances to the sink and placing vertices into appropriate layer buckets. Vertices
that cannot reach the sink are deleted from the graph until the end of the first
phase. Global update places the remaining vertices in the appropriate buckets
and resets their current arcs to the corresponding first arcs. HI-PR performs
global updates after Ω(m) work has been done by the algorithm; this allows
amortization of global updates.

HI-PR implements the highest-label algorithm, which runs in O(n2
√
m) time.

As the work of heuristics is amortized, HI-PR runs in the same time bound.

4 PAR Algorithm

First we describe a well-known augment-relabel (AR) variation of the push-
relabel method.2 The AR algorithm maintains a flow (not a preflow), and aug-
ments along the shortest augmenting path. However, instead of breadth-first
search, it uses the relabel operation to find the paths. The method maintains a
valid distance labeling. Any initial labeling can be used. To find the next aug-
menting path, the method starts at s and searches the admissible graph in the
depth-first search manner. At a general step, the algorithm has an admissible
path from s to the current vertex v and tries to extend it. If v has an admissible
arc (v, w), the path is extended to w. (The admissible arcs can be efficiently
found using the current arc data structure.) Otherwise the method shrinks the
path, making the predecessor of v on the path the current vertex, and relabels
v. An augmenting path is found if t becomes the current vertex. The algorithm
augments the flow along the path and starts a new search. Note that the new
search can start at s or at the last vertex of the augmenting path reachable from
s in Gf after the augmentation.

We experimented with the AR algorithm and its preflow variation (which
picks a vertex with excess, finds an admissible path to t, and pushes as much flow
as possible on arcs of the path, possibly creating flow excesses at intermediate
vertices). These algorithms performed very poorly. Next we discuss a related
algorithm that performs well.

The partial augment-relabel (PAR) algorithm is a push-relabel algorithm that
maintains a preflow and a distance labeling. The algorithm has a parameter k.
At each step, the algorithm picks an active vertex v and attempts to find an
admissible path of k arcs starting at v. If successful, the algorithm executes k
push operations along the path, pushing as much flow as possible. Otherwise,
the algorithm relabels v.

PAR looks for augmenting paths in the same way as AR. It maintains a
current vertex x (initially v) with an admissible path from v to x. To extend
the path, the algorithm uses the current arc data structure to find an admissible
arc (x, y). If such an arc exists, the algorithm extends the path and makes y the
current vertex. Otherwise the algorithm shrinks the path and relabels x. The
2 [1] refers to this algorithm as the shortest augmenting path algorithm. However, this

is only one of the methods that augment along the shortest paths. Methods of [14,15]
are also shortest augmenting path algorithms.

The Partial Augment–Relabel Algorithm 471

search terminates if x = t, or the length of the path reaches k, or v is the current
vertex and v has no outgoing admissible arcs.

As in the push-relabel method, we have the freedom to choose the next active
vertex to process. We use the highest-label selection rule. One can show that,
for k = O(

√
m), PAR has the same O(n2

√
m) bound as HI-PR.

Implementation details. Our PAR implementation is similar to that of HI-PR. In
particular, we use layers and highest-label selection. The gap heuristic is identical
to that used in HI-PR. After experimenting with different values of k we used
k = 4 in all of our experiments. The best value of k is problem-dependent, but we
have seen only modest improvements compared to k = 4. Results for 3 ≤ k ≤ 6
would have been similar. We concentrate on the differences in addition to the
most obvious one, the use of partial augment strategy.

Note that HI-PR relabels only active vertices currently being processed, and as
a side-effect we can maintain active vertices in a singly-linked list. PAR can relabel
other vertices as well, and we may have to move an active vertex in the middle of
a list into a higher-level list. Therefore PAR uses doubly-linked lists for active as
well as inactive vertices. List manipulation becomes slower, but the overall effect
is very minor. No additional space is required as the inactive list is doubly-linked
in both implementations and a vertex is in at most one list at any time.

We also make improvements to global relabeling, which could also be applied
to HI-PR. These include (i) incremental restart, (ii) early termination, and (iii)
adaptive amortization.

Incremental restart takes advantage of the fact that if, since the previous
global update, flows from vertices at distance D or less have not changed, we
can start the update from layer D as lower layers are already in breadth-first
order. This change can be implemented very efficiently as the only additional
information we need is the value of D, which starts at n after each global update,
and is updated to min(d(w), D) each time we push flow to a vertex w. Incre-
mental restart has little cost but can save substantial amount of work, especially
in combination with the highest-label vertex selection.

The early termination heuristic stops breadth-first search when all vertices
active immediately before the global update have been placed in their respective
layers by the search. More precisely, let L be the highest distance label of an
active vertex at this point. We stop breadth-first search after scanning all vertices
in the new layer L. For vertices with distance labels of L and below that have
not been scanned by breadth-first search, we set their distance labels to L + 1
and insert them into layer L + 1. Vertices with distance labels above L + 1
remain in their previous layers. In general, the early termination heuristic may
stop before the breadth-first search is completed and make global updates less
effective. However, in our experiments the work saved by early termination seem
to outweigh the potential increase in other operations.

Note that global update with an incremental restart and early termination
produces a valid distance labeling and the distance labels cannot decrease during
an update. Thus the algorithm remains correct, and the running time bound does
not get any worse.

472 A.V. Goldberg

With incremental restart and early termination, global updates sometimes
cost substantially less than the time to do breadth-first search of the whole graph.
We experimented with various amortization strategies based on a threshold,
which is set based on the work done by the previous global update and the
number n′ of vertices left in the graph. When the work since the last global
update exceeds the threshold, we do the next update. The code used in our
experiments uses the number of relabel operation to measure the work and sets
the threshold T as follows: T = F

(
n

100 + n′4S/n′
)
, where S is the number

of vertices scanned during the last global update and F is the global update
frequency parameter. The intuition is to do the next update earlier if the last
one was cheap, but to limit the variation in the threshold value by a factor of 4.

Our experiments use a fixed value F = 1.0 and k = 4. One can improve per-
formance by experimentally tuning these parameters to a a specific applications.

5 Experimental Results

We test code performance on DIMACS problem families [23] (see also [21]) and
on problems from vision applications.3 As we will see, many DIMACS problems
are very simple and algorithm performance is sometimes sensitive to low-level
details. To make sure that the performance is not affected by the order in which
the input arcs are listed, we do the following. First, we re-number vertex IDs at
random. Next, we sort arcs by the vertex IDs. The vision problems have been
made available at http://vision.csd.uwo.ca/maxflow-data/ by the vision
group at the University of Western Ontario, and include instances from stereo
vision, image segmentation, and multiview reconstruction.

The main goal of our experiments is to compare PAR with HI-PR. We use the
latest version, 3.6, of HI-PR and the current version, 0.23, of PAR. We also make
a comparison to an implementation of Chandran and Hochbaum [7]. A paper
describing this implementation is listed on authors’ web sites as “submitted for
publication” and no preprint is publicly available. The authors do make their
code available, and gave several talks claiming that the code performs extremely
well. These claims were about version 3.1 of their code, which we refer to as CH.
Recently, an improved version, 3.21, replaced the old version on the web site.
We compare to this version, denoted as CHn (n for new), as well. We are not
aware of any public document that describes either of these codes.

Our experiments were conducted on an HP Evo D530 machine with 3.6 MGz
Pentium 4 processor, 28 KB level 1 and 2 MB level 2 cache, and 2GB of RAM.
The machine was running Fedora 7 Linux. C codes HI-PR, PAR, and CHn
were compiled with the gcc version 4.1.2 compiler that came with the Fedora
distribution using “-O4” optimization option. C++ code CH was compiled with
the g++ version 4.1.2 compiler using “-O4” optimization.

For synthetic problems, we report averages over ten instances for each problem
size. We give running time in seconds. In some tables we also give scan count

3 Due to space restrictions we omit problem descriptions. See the references.

The Partial Augment–Relabel Algorithm 473

Table 1. RMF-Long (left) and RMF-Wide (right) problem families

n 0.3 M 0.5 M 1.1 M 2.0 M 4.1 M 0.3 M 0.5 M 1.0 M 2.1 M 4.2 M
m 1.3 M 2.6 M 5.1 M 10.2 M 20.3 M 1.3 M 2.6 M 5.2 M 10.3 M 20.7 M

HI-PR time 0.67 1.75 4.26 12.63 41.88 6.45 15.05 41.55 100.12 266.99
sd% 8.04 15.50 10.71 11.41 18.35 2.99 4.48 3.55 3.71 12.06

PAR time 0.32 0.65 1.35 2.79 5.89 3.76 9.29 21.67 50.90 128.61
sd% 5.88 8.69 7.18 7.12 8.78 5.88 8.69 7.18 7.13 8.78

HI-PR sc/n 8.16 11.25 13.25 20.04 33.97 52.93 60.90 76.55 88.64 102.43
PAR sc/n 4.99 5.02 5.05 5.16 5.26 47.16 54.64 62.06 70.24 80.63

CH time 0.74 1.79 4.68 9.21 24.67 8.53 17.30 72.61 476.50 1200.07
sd% 11.90 10.32 4.68 7.57 10.80 76.84 71.17 87.88 47.10 36.83

CHn time 0.59 1.36 3.28 7.43 16.73 2.49 6.31 13.56 85.05 430.42
sd% 18.92 15.34 12.51 14.17 8.69 9.56 18.65 17.88 113.28 90.64

Table 2. Wash-Wide problem family

n 0.13 M 0.26 M 0.52 M 1.0 M 2.1 M 4.2 M 8.4 M
m 0.4 M 0.8 M 1.6 M 3.1 M 6.3 M 12.5 M 25.0 M

HI-PR time 0.80 2.36 7.61 22.10 51.81 133.37 273.51
PAR time 0.47 1.53 4.33 12.71 29.48 77.40 160.17

HI-PR sc/n 16.20 19.99 25.51 30.46 32.32 39.92 39.22
PAR sc/n 9.01 12.26 14.21 18.55 19.66 25.86 25.27

CH time 0.39 1.29 3.23 8.20 18.91 47.05 118.41
CHn time 0.35 1.09 2.78 6.85 15.43 36.32 74.18

per vertex (sc/n), where the scan count (sc) is the sum of the number of relabel
operations and the number of vertices scanned by the global update operations.
This gives a machine-independent measure of performance. In the tables, k = 103

and M = 106. In Table 1, we also give standard deviation in percent (sd%).
Another experiment we ran, but omit due to the lack of space, measured

how much improvement is due to the improved global updates. These usually
improve performance, but by less than 20%. Most of the improvement compared
to HI-PR is due to the PAR basic operation ordering.

5.1 Experiments with DIMACS Families

PAR vs. HI-PR. First we compare PAR to HI-PR on DIMACS families. On
RMF-Long family (Table 1 left), the new code gives an asymptotic improvement,
and its running time is almost linear: As the problem size increases by a factor
of 16, the number of scans per vertex shows a minor increase from 4.99 to 5.26.
On RMF-Wide family (Table 1 right), PAR is faster, by about a factor of two
for larger problems.

On Washington problem families (Tables 2–3), PAR outperforms HI-PR, usu-
ally by a little less than a factor of two. Note that Wash-Long and Wash-Line
problems are very easy, with larger problems requiring less then two scans per
vertex.

474 A.V. Goldberg

Table 3. Wash-Long (left) and Wash-Line (right) problem families

n 0.5 M 1.0 M 2.1 M 4.2 M 8.4 M 41 K 66 K 104 K 165 K 262 K
m 1.6 M 3.1 M 6.3 M 12.6 M 25.2 M 2.1 M 4.2 M 8.4 M 16.8 M 33.5 M

HI-PR time 0.82 1.60 3.05 5.59 10.82 0.24 0.46 1.06 2.26 4.50
PAR time 0.51 0.98 1.81 3.46 6.66 0.15 0.28 0.64 1.40 3.02

HI-PR sc/n 3.98 3.62 3.26 2.68 2.55 2.07 2.06 2.05 2.05 2.04
PAR sc/n 2.49 2.19 1.83 1.66 1.56 1.13 1.11 1.10 1.09 1.07

Table 4. Acyclic-Dense problem family

n 2.0 K 2.9 K 4.1 K 5.8 K 8.2 K
m 2.1 M 4.2 M 8.4 16.8 M 33.6 M

HI-PR time 0.93 1.93 4.60 10.63 27.08
PAR time 0.13 0.25 0.51 1.02 2.05

HI-PR sc/n 8.81 9.12 10.50 11.25 12.39
PAR sc/n 1.87 1.81 1.93 1.91 1.93

The Acyclic-Dense problem
family (Table 4) is also very easy
for PAR, which performs asymp-
totically better than HI-PR. This
problem family is very sensitive
to initialization. A slightly dif-
ferent initial labeling can cause
significant performance degrada-
tion.

The above experiments show that on DIMACS problem families, PAR out-
performs HI-PR, asymptotically on RMF-Long and Acyclic-Dense families.

Comparison with CH. Next we compare HI-PR and PAR with CH and CHn.
We exclude easy problem families where for large problem sizes PAR performs
less than three scans per vertex. The data appear in Tables 1 and 2.

On RMF-Long and RMF-Wide families, PAR is asymptotically the fastest
code. On the RMF-Wide problems, CH and CHn exhibit very high variance in
the running time: Table 1 shows this for all sizes for CH and for the larger sizes
for CHn. For the largest size, the ratio between the fastest and the slowest runs
of CHn is 14.3, compared to 1.35 for PAR. This is an indication that CH and
CHn are not robust. On Wash-Wide problems, CHn is the fastest code. PAR is
slower by about a factor of two.

5.2 Vision Instances

Stereo vision problems (see Table 5) have several independent subproblems:
tsukuba has 16, sawtooth – 20, venus – 22. The BVZ and KZ2 prefixes refer
to different ways of defining the problem. As suggested in [5], we report the
total time for each problem. Here CHn is the fastest code. PAR is the second
fastest, losing by less than a factor of two. HI-PR loses to PAR by about a factor
of two. CH performs poorly, losing by three orders of magnitude in some cases.

On multiview instances, (Table 64) PAR is about a factor of two faster than
HI-PR. CH crashes on these problems. CHn fails feasibility and optimality self-
checks on the smaller problems and fails to allocate the memory it needs for the
larger problems.
4 dnf stands for “did not finish.”

The Partial Augment–Relabel Algorithm 475

Table 5. Stereo vision data

name HI-PR PAR CH CHn
BVZ–
tsukuba 8.07 4.01 643.62 2.80
sawtooth 12.45 7.70 3,127.23 5.45
venus 23.65 11.79 2,707.32 7.23
KZ2–
tsukuba 30.39 13.31 4,020.49 6.85
sawtooth 31.88 16.35 13,472.85 11.70
venus 61.64 24.68 12,898.89 15.84

Table 6. Multiview data

name HI-PR PAR CH CHn
gargoyle-sml 4.37 2.68 dnf dnf
camel-sml 8.54 4.56 dnf dnf
gargoyle-med 125.20 53.04 dnf dnf
camel-med 160.27 76.77 dnf dnf

Table 7. Segmentation data

name HI-PR PAR CH CHn
bone-xyzx-6-10 1.06 0.37 dnf 0.20
bone-xyzx-6-100 1.08 0.39 dnf 0.25
bone-xyz-6-10 2.41 0.86 dnf 0.50
bone-xyz-6-100 2.48 0.93 dnf 0.58
bone-xyzx-26-10 2.89 1.04 dnf 0.60
bone-xyzx-26-100 3.17 1.07 dnf 0.58
bone-xy-6-10 6.65 2.04 dnf 1.19
bone-xy-6-100 6.92 2.16 dnf 1.36
bone-xyz-26-10 6.38 2.25 dnf 1.20
bone-xyz-26-100 6.72 2.44 dnf 1.39
liver-6-10 34.59 16.90 dnf 14.18
liver-6-100 46.69 18.76 dnf 17.59
babyface-6-10 52.75 26.42 dnf 22.77
babyface-6-100 71.55 34.36 dnf 37.85

Data in Table 7 shows that on segmentation instances, CHn is the fastest for
smaller problem sizes, but PAR loses by less than a factor of two. On larger
problems, CHn and PAR perform similarly. HI-PR is two to three times slower
than PAR. CH crashes on these problems.

6 Concluding Remarks

The push-relabel method allows endless variations. Over the years we tried many
potentially promising ideas, but until now our attempts failed to produce an
implementation more robust than HI-PR. Robustness is the main reason why
HI-PR remained the benchmark for a long time. Our experiments give a strong
evidence that PAR is a more robust code. It outperforms HI-PR on all problem
families we used, and in some cases the improvement in performance is asymp-
totic. Simplicity is another reason for the popularity of HI-PR, and PAR is not
much more complicated.

CH is not a very robust code. It is an order of magnitude slower that HI-
PR on large RMF-Wide problems and over two orders of magnitude slower
on stereo vision problems (the only vision problems it has not crashed on).
Compared to PAR, CH is never significantly faster, and often significantly slower
– by over three orders of magnitude on the KZ2-sawtooth instance, for example.
Our experience with this code contradicts the claims made by its authors. CHn
is more robust than CH. However it is noticeably slower on large RMF-Wide
instances. Furthermore, it failed to run on the multiview instances due to higher
memory overhead and insufficient precision. Fixing these problems will probably
make CHn slower as it may require higher precision.

476 A.V. Goldberg

Graphs in vision problems are very regular and can be represented more com-
pactly, as done in [5]. It would be interesting to implement PAR with such a
representation of a graph. This would make PAR more efficient on the vision
problems and would enable a direct comparison to the algorithm of [5]. The
results of [5] also suggest that FIFO outperforms the highest-label selection on
vision problems, so it would be interesting to study a FIFO version of PAR.

Our experiments indicate that the DIMACS data set is showing its age. Most
problems are easy for PAR, requiring less than ten scans per vertex. Wash-Wide
problems are somewhat harder. Only RMF-Wide problems show clear asymptotic
increase in the number of scans per vertex, but even for these problems the rate of
increase is small. The largest problems with millions of vertices are solved using
under a hundred scans per vertex. Although some DIMACS problems are still use-
ful, there is a need for other synthetic and real-life data sets. The vision problems
made available by the UWO group at our request is a step in this direction.

Acknowledgments. I am grateful to the organizers of the 2008 IPAM Graph Cuts
workshop: their invitation to speak motivated me to work on maximum flow
algorithms once again. Many thanks to Yuri Boykov, Andrew Delong, Vladimir
Kolmogorov, and Victor Lempitsky for providing problem instances form vision
applications. In addition, I would like to thank Renato Werneck for stimulating
discussions and many useful comments.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Englewood Cliffs (1993)

2. Anderson, R.J., Setubal, J.C.: Goldberg’s Algorithm for the Maximum Flow in Per-
spective: a Computational Study. In: Johnson, D.S., McGeoch, C.C. (eds.) Network
Flows and Matching: First DIMACS Implementation Challenge, pp. 1–18. AMS
(1993)

3. Babenko, M.A., Goldberg, A.V.: Experimental Evaluation of a Parametric Flow
Algorithm. Technical Report MSR-TR-2006-77, Microsoft Research (2006)

4. Badics, T., Boros, E.: Implementing a Maximum Flow Algorithm: Experiments
with Dynamic Trees. In: Johnson, D.S., McGeoch, C.C. (eds.) Network Flows and
Matching: First DIMACS Implementation Challenge, pp. 65–96. AMS (1993)

5. Boykov, Y., Kolmogorov, V.: An Experimental Comparison of Min-Cut/Max-Flow
Algorithms for Energy Minimization in Vision. IEEE transactions on Pattern
Analysis and Machine Intelligence 26(9), 1124–1137 (2004)

6. Boykov, Y., Veksler, O.: Graph Cuts in Vision and Graphics: Theories and Appli-
cations. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical
Models in Computer Vision, pp. 109–131. Springer, Heidelberg (2006)

7. Chandran, B., Hochbaum, D.: A computational study of the pseudoflow and push-
relabel algorithms for the maximum flow problem (submitted, 2007)

8. Chekuri, C.S., Goldberg, A.V., Karger, D.R., Levine, M.S., Stein, C.: Experimental
Study of Minimum Cut Algorithms. In: Proc. 8th ACM-SIAM Symposium on
Discrete Algorithms, pp. 324–333 (1997)

9. Cheriyan, J., Maheshwari, S.N.: Analysis of Preflow Push Algorithms for Maximum
Network Flow. SIAM J. Comput. 18, 1057–1086 (1989)

The Partial Augment–Relabel Algorithm 477

10. Cherkassky, B.V.: A Fast Algorithm for Computing Maximum Flow in a Net-
work. In: Karzanov, A.V. (ed.) Collected Papers. Combinatorial Methods for Flow
Problems, vol. 3, pp. 90–96. The Institute for Systems Studies, Moscow (1979) (in
russian); English translation appears in AMS Trans., vol.158, pp. 23–30 (1994)

11. Cherkassky, B.V., Goldberg, A.V.: On Implementing Push-Relabel Method for the
Maximum Flow Problem. Algorithmica 19, 390–410 (1997)

12. Dantzig, G.B.: Application of the Simplex Method to a Transportation Problem.
In: Koopmans, T.C. (ed.) Activity Analysis and Production and Allocation, pp.
359–373. Wiley, New York (1951)

13. Derigs, U., Meier, W.: An Evaluation of Algorithmic Refinements and Proper Data-
Structures for the Preflow-Push Approach for Maximum Flow. In: ASI Series on
Computer and System Sciences vol. 8, pp. 209–223. NATO (1992)

14. Dinic, E.A.: Metod porazryadnogo sokrashcheniya nevyazok i transportnye
zadachi. In: Issledovaniya po Diskretnŏı Matematike, Nauka, Moskva (1973) (in
russian); Title translation: Excess Scaling and Transportation Problems

15. Edmonds, J., Karp, R.M.: Theoretical Improvements in Algorithmic Efficiency for
Network Flow Problems. J. Assoc. Comput. Mach. 19, 248–264 (1972)

16. Ford, L.R., Fulkerson, D.R.: Maximal Flow Through a Network. Canadian Journal
of Math. 8, 399–404 (1956)

17. Goldberg, A.V.: Efficient Graph Algorithms for Sequential and Parallel Computers.
PhD thesis, M.I.T., January 1987. Technical Report TR-374, Lab. for Computer
Science, M.I.T (1987)

18. Goldberg, A.V.: An Efficient Implementation of a Scaling Minimum-Cost Flow
Algorithm. J. Algorithms 22, 1–29 (1997)

19. Goldberg, A.V., Rao, S.: Beyond the Flow Decomposition Barrier. J. Assoc. Com-
put. Mach. 45, 753–782 (1998)

20. Goldberg, A.V., Tarjan, R.E.: A New Approach to the Maximum Flow Problem.
J. Assoc. Comput. Mach. 35, 921–940 (1988)

21. Goldfarb, D., Grigoriadis, M.D.: A Computational Comparison of the Dinic and
Network Simplex Methods for Maximum Flow. Annals of Oper. Res. 13, 83–123
(1988)

22. Hagerup, T., Sanders, P., Träff, J.L̃.: An implementation of the binary blocking
flow algorithm. Algorithm Engineering, 143–154 (1998)

23. Johnson, D.S., McGeoch, C.C.: Network Flows and Matching: First DIMACS Im-
plementation Challenge. In: AMS. Proceedings of the 1-st DIMACS Implementa-
tion Challenge (1993)

24. Karzanov, A.V.: Determining the Maximal Flow in a Network by the Method of
Preflows. Soviet Math. Dok. 15, 434–437 (1974)

25. King, V., Rao, S., Tarjan, R.: A Faster Deterministic Maximum Flow Algorithm.
J. Algorithms 17, 447–474 (1994)

26. Mehlhorn, K., Naher, S.: LEDA: A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, Cambridge (1999)

27. Nguyen, Q.C., Venkateswaran, V.: Implementations of Goldberg-Tarjan Maximum
Flow Algorithm. In: Johnson, D.S., McGeoch, C.C. (eds.) Network Flows and
Matching: First DIMACS Implementation Challenge, pp. 19–42. AMS (1993)

28. Ogielski, A.T.: Integer Optimization and Zero-Temperature Fixed Point in Ising
Random-Field Systems. Phys. Rev. Lett. 57, 1251–1254 (1986)

29. Sleator, D.D., Tarjan, R.E.: A Data Structure for Dynamic Trees. J. Comput.
System Sci. 26, 362–391 (1983)

30. Tuncel, L.: On the Complexity of Preflow-Push Algorithms for Maximum-Flow
Problems. Algorithmica 11, 353–359 (1994)

An Optimal Dynamic Spanner for Doubling

Metric Spaces

Lee-Ad Gottlieb1,� and Liam Roditty2

1 Courant Institute, New York University, New York NY 10012
adi@cs.nyu.edu

2 The Weizmann Institute of Science, Rehovot, 76100 Israel
liam.roditty@weizmann.ac.il

Abstract. A t-spanner is a graph on a set of points S with the following
property: Between any pair of points there is a path in the spanner whose
total length is at most t times the actual distance between the points. In
this paper, we consider points residing in a metric space equipped with
doubling dimension λ, and show how to construct a dynamic (1 + ε)-
spanner with degree ε−O(λ) in O(log n

εO(λ)) update time. When λ and ε are
taken as constants, the degree and update times are optimal.

1 Introduction

A graph H is a t-spanner of G if dH(u, v) ≤ tdG(u, v), where dG(u, v) denotes the
shortest path distance between u and v in G, and dH(u, v) denotes the shortest
path distance between u and v in H . A spanner can also be defined for a set of
points residing in Euclidean space: Let S be a set of points in -d. The graph
G is a complete graph whose vertices are the points of S, and the weight of
every edge is the distance between its endpoints. A geometric t-spanner is then
constructed on the graph G.

Geometric spanners have received a fair amount of attention in the past couple
of decades. Various papers have dealt with the construction of geometric span-
ners with specific properties, such as linear number of edges, small weight (the
weight of a spanner is the sum of the weights of its edges), small hop diameter
and low degree. For points residing in low-dimensional Euclidean space, Vaidya
[14], Salowe [12], Callahan and Kosaraju [4] and Soares [13] showed how to com-
pute a geometric (1+ε)-spanner with O(n/εd) edges in O(n log n+εd log(1/ε)n)
time. In the dynamic setting, where the problem is to explicitly maintain a set
of edges that constitute a spanner of the point set, Arya et al. [2] obtained
O(logd n log logn) update time in the restricted model in which updates were
assumed to be random: A point to be deleted is assumed to be selected at ran-
dom from S, and a point to be inserted is assumed to be a random point of
the new point set. Bose et al. [3] gave a semi-dynamic algorithm that supports
insertions in O(logd−1 n) time. Gao et al. [6] considered both dynamic and ki-
netic spanners (a kinetic spanner supports movement of the points), and gave a
� Author’s work partially supported by NSF grant IIS 0414763.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 478–489, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Optimal Dynamic Spanner for Doubling Metric Spaces 479

spanner with update time and degree O(log α
εd), where α is the aspect ratio of the

set, the ratio between the largest and smallest interpoint distances of the set.
This result is of interest when α is small, which is often the case.

This paper is interested in the question of dynamic spanners for points that re-
side in a metric space equipped with a doubling dimension. Let the space within
radius r of a point be called the ball centered at that point. A point set X has
doubling dimension λ if all points of X that are covered by a ball of radius r can
be covered by 2λ balls of radius r

2 . While a low Euclidean dimension implies a
low doubling dimension (Euclidean metrics of dimension d have doubling dimen-
sion Θ(d) [8]), doubling dimension is more general than Euclidean dimension,
so all results for low doubling dimension apply to low Euclidean dimension as
well. In this setting Har-Peled and Mendel [9] showed how to construct a static
constant degree spanner in O(n log n

εO(λ)) time. Roditty [11] gave a dynamic spanner

that supports insertions in O(log n
εO(λ)) amortized time and deletions in Õ(n1/3

εO(λ))
amortized time (where the notation Õ is used to hide logarithmic factors). Very
recently, these authors [7] gave a dynamic spanner that supports insertions in
O(log2 n

εO(λ)) amortized time and deletions in O(log3 n
εO(λ)) amortized time.

In this paper, we improve on previous results by providing a (1+ε)-spanner of
constant degree that supports updates in O(log n

εO(λ)) worst case time. For insertions
and constant ε, λ, O(log n) is in fact optimal. This follows from the fact that the
task of inserting a point into a (1 + ε)-spanner subsumes within it the task
of discovering a (1 + ε)-nearest neighbor of the new point. Since approximate
nearest neighbor search is known to require logarithmic time in the algebraic
decision tree model [1], insertions into a spanner must require logarithmic time
as well. We make no claims on the optimality of deletions.

A further application of our spanner is dynamic maintenance of the closest
pair of points in the set S. Note that in a (2 − ε)-spanner (ε > 0), the pair (or
pairs) of closest points must have an edge between them, or else their spanner
stretch would be greater than 2 − ε. By storing the edges in a heap based on
weight, we can answer a closest pair query in O(1) time.
Comparison to previous work. In [7] we showed how to obtain a spanner
while building on the hierarchical partition introduced in [6] and [10]. These
partitions had individual points appearing in as many as O(logα) levels, and
so in order to avoid a dependence on logα in the update time of the hierarchy
and the spanner, we introduced a complex process of point replacements that
limited the number of times a single point appeared in the hierarchy. This gave
us amortized O(log3 n

εO(λ)) update time, with degree Θ(log n
εO(λ)).

In this paper, we show that a much stronger result is possible if one is willing
to make an additional assumption on the point set: We assume that even after
a point is deleted from S, we can still query the distance between the deleted
point and a point that remains in S, or the distance between two deleted points.
Such an assumption is a rather common one and innocuous enough – it is clearly
true of points in a well defined space such as Euclidean space – but one could
devise instances in which it does not hold, such as when the points represent
wireless users who are deleted when they log off the network.

480 L.-A. Gottlieb and L. Roditty

Making this assumption is necessarily to allow us to use the hierarchy and
nearest neighbor structure of [5], where such an assumption is made. The ad-
vantage in using this hierarchy is that it can be updated in O(log n

εO(λ)) time as
opposed to O(log α

εO(λ)) time, eliminating the central hurdle we faced in building
upon the hierarchy of [6] and [10]. However, it introduces a quite different, yet
similarly difficult problem: This hierarchy contains within it points that have
been deleted from the point set, and these points are prohibited from appearing
in the spanner. Using such a hierarchy to create a spanner is the central challenge
addressed in this paper. We demonstrate a successful solution to this problem,
resulting in a spanner with O(log n

εO(λ)) update time and degree ε−O(λ).
We conclude the introduction with a comment concerning the doubling di-

mension.
Packing under the doubling dimension. It can be shown (via a repetitive
application of the doubling property) that if set S has minimum inter-point
distance a, then at most (b

a)O(λ) points of S can be found within distance b of
any x ∈ S.

The rest of this paper is organized as follows. In the next section we describe
some data structure tools that are essential for our algorithm. In Section 2
we review previous work on maintaining hierarchies and relate it to spanner
construction. In Section 3 we present our new spanner, in Section 4 we prove
low degree. A discussion of how to maintain the spanner dynamically is deferred
to the full version of this paper.

2 Hierarchical Partitions and Spanners

In this section we review previous work on hierarchical partitions of points that
inhabit a doubling dimension, and show how to extend this work to maintain
dynamic spanners in O(logα) update time.

As described in [6,10], a subset of points X ⊆ Y is an ε-discrete center set
(ε-net in the terminology of [10]) of Y if it satisfies the following invariants:

(i) For every x, y ∈ X , d(x, y) ≥ ε.
(ii) Every point y ∈ Y is within distance ε of some point x ∈ X .

We say that x covers y if x ∈ X , y ∈ Y and d(x, y) ≤ ε. The previous
conditions require that the points of X be spaced out, yet nevertheless cover all
points of Y .

Let S be a set of points with doubling dimension λ, and let α be the aspect
ratio of S, the ratio between the largest and smallest inter-point distance in S.
(For ease of presentation, we assume that the minimum inter-point distance in S
is 1.) The hierarchical partition is a hierarchy of discrete center sets. The bottom
level of the hierarchy is the set Y20=1 = S, and the top level is the set Y2�log α�

that contains only a single point. Each level i > 0 of the hierarchy is a set Y2i ,
which is a 2i-discrete center set of the set Y2i−1 .
Extracting a spanner. The hierarchical partition described above can be used
as a backbone for a geometric spanner. A few definitions are necessary. First

An Optimal Dynamic Spanner for Doubling Metric Spaces 481

recall that for a spanner H , dH(x, y) is the spanner distance between x and y.
A point x ∈ Y2i is a parent of y ∈ Y2i−1 if x covers y. If more than one point
covers y then the closest one of these points is chosen to be the parent of y. A
point x is an ancestor of y if there exists a series of points 〈x, . . . , y〉 such that
each point in the series is a parent of the subsequent one.

We use the hierarchical partition to decide which edges are included in the
spanner. There are two types of edges. The first type consists of parent-child
edges that connect each point in Y5i to its parent in Y5i+1 . A point in Y5i+1 may
have 2O(λ) children, so this adds 2O(λ) child-parent edges for each occurrence
of a point in the hierarchy. The second type consists of lateral edges which
connect points in the same level when the distance between them is below some
threshold. Specifically, in level Y5i we add an edge between any two points that
are within distance c · 2i (for some constant c > 16 that will depend on the
desired precision ε, as described below). A point in level Y5i may have cO(λ)

points within distance c · 2i, so this adds cO(λ) lateral edges for each occurrence
of a point in the hierarchy.

Let H be a spanner that contains the aforementioned parent-child and lateral
edges. We can show that H has low stretch. Before proving this, we note a simple
property of the hierarchy:

Property 1. Let x′ ∈ Y2i be an ancestor of x ∈ Y2j (i > j). Then dH(x) ≤
∑i

k=j+1 2k = 2 · 2i − 2j+1 < 2 · 2i.

The main lemma of this section follows.

Lemma 1. The stretch of H is less than 1 + 1
c
16−1

Proof. We must show that for any two points x, y ∈ Y1, dH(x,y)
d(x,y) < 1 + 1

c
16−1 .

If d(x, y) ≤ c then x and y are connected by a lateral edge, so dH(x, y) =
d(x, y) and we are done.

Otherwise, let x′, y′ ∈ Y2i be the lowest ancestors of x and y (respectively)
which are connected by a lateral edge. Since x′ and y′ are connected by a lateral
edge dH(x′, y′) = d(x′, y′). Also note that by Property 1, dH(x, x′) and dH(y, y′)
are both less than 2 · 2i, from which it follows that d(x, x′) and d(y, y′) are also
less than 2 · 2i.

Now, the spanner distance from x to y is dH(x, y) ≤ dH(x, x′) + dH(x′, y′) +
d(y′, y) < 2 ·2i +d(x′, y′)+2 ·2i = d(x′, y′)+4 ·2i. The true distance from x to y
is d(x, y) ≥ d(x′, y′)−d(x′, x)−d(y′, y) > d(x′, y′)−2 ·2i−2 ·2i = d(x′, y′)−4 ·2i.
It follows that the stretch of the spanner less than dH(x,y)

d(x,y) = d(x′,y′)+4·2i

d(x′,y′)−4·2i = 1 +
8·2i

d(x′,y′)−4·2i . This term reaches its maximum when d(x′, y′) reaches its minimum.
It remains only to place a lower bound on d(x′, y′). By assumption, the

children of x′ and y′ (in level Y2i−1) are not connected by a lateral edge, so
the distance between them is greater than c · 2i−1. The distance from x′ to
its child (and the distance from y′ to its child) is at most 2i. It follows that
d(x′, y′) > c · 2i−1 − 2 · 2i − 2 · 2i = c · 2i−1 − 4 · 2i.

482 L.-A. Gottlieb and L. Roditty

The stretch of the spanner is less than 1 + 8·2i

d(x′,y′)−4·2i < 1 + 8·2i

c·2i−1−8·2i =
1 + 1

c
16−1 . �

Choosing c = 16(1
ε + 1) yields a (1 + ε)-spanner. Since a point may appear in

O(logα) levels of the hierarchy, it may have O(log α
εO(λ)) lateral edges incident upon

it in the spanner, and so the degree of the spanner is O(log α
εO(λ)).

To understand why the spanner construction guarantees low stretch, note
that the path from two points x, y ∈ Y1 consists of a set of parent-child edges,
followed by a single lateral edge, followed by a second set of parent-child edges.
Choosing a large value for c causes the length of the lateral edge to dwarf the
lengths of the other edges, and this results in dH(x, y) being close to d(x, y).

[10] showed how to dynamically maintain the above hierarchical partition in
O(log α

εO(λ)
) update time, and it is an easy matter to maintain the aforementioned

spanner in the same time as well.

Modified hierarchical partition. Note that when α = nω(1), then the update
time of the above hierarchy (and spanner) becomes ω(log n

εΘ(λ)). Improving on this,
Cole and Gottlieb [5] modified the hierarchical partition to support insertions
in O(log n

εO(λ)) time. Achieving this update time requires the use of auxiliary data
structures and is intricate, but for our purposes we need only to highlight the
changes to the hierarchical partition.

The modified hierarchical partition is defined as follows. The bottom level is
the set Y1 and contains all the points, and the top level is the set Yα that contains
only a single point. Each level i > 0 of the hierarchy is represented by a set Y5i

(i > 0) which is a 5i-discrete center set of the set Y5i−1 , where the definition of
a discrete center set X of Y is slightly altered to satisfy the following invariants:

(i) For every x, y ∈ X , d(x, y) ≥ ε
5 .

(ii) Every point y ∈ Y is within distance 3
5ε of some x ∈ X .

Notice that the second invariant, applied recursively, implies that every point
of Y5j is within distance

∑i
j+1(3

5)i = 4·5i−1−5j of some point of Y5i (i > j). This
is called the close-containment property. (The choice of the constant 5 to define
the radius of each level of the hierarchy is due to considerations discussed in [5].)
The previous definitions of covering and ancestral relationships are unchanged.

From the modified hierarchy a spanning tree T is extracted. The spanning tree
directly corresponds to the hierarchy: Its nodes are arranged in levels, and it has
one node for each point in the hierarchy. Two nodes in the tree are connected if
and only if their corresponding points are a parent-child pair; by a consequence
of the doubling dimension, a node may have at most 2O(λ) children.

As previously noted, Steiner points (i.e., points that no longer belong to S)
are present in the structure. While [5] showed that the presence of these Steiner
points does not interfere in the execution of a nearest neighbor search, these
points are not acceptable in the spanner. Our challenge then is to use a hierarchy
that contains Steiner points as a tool for the extraction of a spanner that contains
no Steiner points.

An Optimal Dynamic Spanner for Doubling Metric Spaces 483

3 Spanner Construction

In this section, we build upon the hierarchy of [5] to create a (1 + ε)-spanner with
degree (1/ε)O(λ). This spanner can be maintained dynamically in O(log n

εO(λ)) time;
we defer a discussion of dynamic updates to the full version of this paper. We as-
sume that we have access to this hierarchy and its associated spanning tree T .

3.1 Motivation: An Incremental Spanner

Suppose for the moment that we wished to maintain a spanner under insertions
alone, so that the hierarchy contained no deleted points. Then it would possible
to maintain a dynamic spanner in O(log n

εO(λ)) time using the hierarchy of [5] as a
backbone. The spanner is created by assigning parent-child and lateral edges to
all points.

This construction guarantees low stretch: As before, the path from two points
x and y at the bottom of the hierarchy consists of a set of parent-child edges
from x up to one of its ancestors, followed by a single lateral edge to an ancestor
of y, follows by a second set of parent-child edges down to y. Choosing a large
value for the size of lateral edges causes the length of the lateral edge to dwarf
the lengths of the other edges, and this results in the spanner having low stretch
for an appropriate value of c. (We omit the exact analysis, with is similar to
what was shown in the previous section.)

The difficulty with this approach is that the hierarchy contains deleted points
which cannot appear in the spanner. Further, since a point may appear in many
levels of the hierarchy, and possess lateral edge for each level, the degree of the
spanner may be very large. Below, we will use the spanning tree T to create a
new hierarchy that addresses both of these problems: The new hierarchy contains
no deleted points, and each point appears in the hierarchy at most twice (in the
bottom level and possibly one additional level). We will use this new hierarchy
to create a spanner that mimics the spanner described above.

Let the hierarchy, tree and spanner described above be called the full hierarchy,
tree and spanner.

3.2 Step 1. Pruning the Spanning Tree

Recall that tree T corresponds to the full hierarchy. The first step in creating a
new hierarchy involves pruning T in a straightforward manner, thereby creating
a new spanning tree T1.

Let real nodes (or leaves) in T be nodes that correspond to non-deleted points,
and Steiner nodes (or leaves) be those nodes that correspond to deleted points.
We create T1 from T thus: First, we remove from T all Steiner leaves, as well as all
nodes that have no real leaf descendant. Then we compress all single-child paths.
(A single-child path is a maximal chain of nodes v1, v2, . . . , vk in which vi is the
only child of vi−1 for every i ∈ [2, k]. Compressing the path means removing
the nodes v2, . . . , vk and linking the children of vk to v1.) The resulting tree is
T1. By construction, parent-child relationships in T1 may have been ancestor-
descendant relationships in T . Also, all remaining internal nodes have at least

484 L.-A. Gottlieb and L. Roditty

two and at most 2O(λ) children, and have real leaf node descendants. (For a node
v ∈ T that survives in T1, we may refer both to v ∈ T and to v ∈ T1.)

3.3 Step 2. Creating a Better Hierarchy

The nodes of T correspond to points in the full hierarchy, so T1 – whose nodes
are a subset of T – represents a hierarchy which is a subset of the full hierar-
chy. We will call this the intermediate hierarchy. Because the construction of
T1 compressed single-child paths, the intermediate hierarchy obeys the packing
property but not the covering property. However, the presence of parent-child
connections between points in different levels of the hierarchy implies that it
does obey a somewhat weaker covering property, where every point in level Y5i

is within the radius of some point residing in a higher level (but not necessarily
in level Y5i+1).

A slight modification to the intermediate hierarchy will yield the final hierar-
chy which has the properties we want: It contains no deleted points, and each
point appears in at most two levels.

First recall that T1 contains no Steiner leaves, but may contain other Steiner
nodes. We introduce the following assignment scheme to associate each internal
node with a unique leaf node: Assume an arbitrary left-right ordering on the
children of internal nodes. Each internal node of T1 has at least two children
(since all single-child paths in T were compressed), which means that there are
more leaf nodes than internal nodes. This allows us to assign to each internal
node a single leaf descendant. For example, we assign to each internal node V
the leftmost leaf descendant of v’s rightmost child. This scheme assigns a leaf to
at most one ancestor.

Since the assignment scheme assigns each internal node a unique leaf node, it
in effect assigns to every point x ∈ Y5i (i > 0) a unique point y ∈ Y0. The final
hierarchy is created from the intermediate hierarchy by removing each point x
from its level Y5i and adding the appropriate point y to Y5i in place of x. By the
close-containment property, d(x, y) ≤ 4 · 5i−1 − 1; hence x and y are relatively
‘close’, and the final hierarchy can be viewed as a minor perturbation of the
intermediate hierarchy. Crucially, the final hierarchy contains no deleted points,
and each point appears in at most two levels.

Now that we have derived the final hierarchy, we can use it to extract a span-
ner. For presentation purposes, we will first give a spanner for the intermediate
hierarchy (which contains Steiner points), since this spanner is more intuitive.
The spanner for the final hierarchy is almost identical to the spanner of the in-
termediate hierarchy, only with the points of the intermediate hierarchy replaced
by their assignment.

3.4 Step 3. A Spanner for the Intermediate Hierarchy

We wish to construct a spanner for the intermediate hierarchy; the new spanner
should resemble the full spanner, and have the equivalent of parent-child edges

An Optimal Dynamic Spanner for Doubling Metric Spaces 485

and lateral edges. As before, the length of the lateral edges dwarf the lengths of
parent-child edges, resulting in a spanner with low stretch.

Type I edges. The new spanner will have edges that mimic the behavior of
parent-child edges in the full spanner.

Consider node v that survives in T1. v has a parent node in T , and in the full
spanner the points corresponding to these nodes have a parent-child edge con-
necting them. v’s parent in T1 was an ancestor of v in T , and their corresponding
points are and an ancestor-descendant pair in T , but a parent-child pair in T1.
We add a spanner edge between these two points; this is a parent-child edge for
the intermediate spanner.

We will need another type of edge to make up for the fact that the interme-
diate hierarchy obeys only a weak covering property (a point may be covered by
another point at a much higher level). This new edge is similar to a parent-child
edge: Let x ∈ Y5k and z ∈ Y5i (k > i) be two points in the intermediate hierarchy
that are an ancestor-descendant pair. Let y ∈ Y5j (j > i) be the lowest point in
the hierarchy that covers z. If y is below x, then y becomes the step-parent of
x. We add a spanner edge between x and y; this is a step-parent edge.

(We will see in Section 4 that step-parent edges are key to attaining low
spanner degree. Note also that we did not specify how y can be located; we defer
a description of this to the full paper.)

Type II edges. The new spanner will have edges that mimic the behavior of
lateral edges in the full spanner.

Consider node v that survives in T1. The point in the hierarchy corresponding
to v, say y ∈ Y5i , is present in the intermediate hierarchy, and was also found
in the full hierarchy. In the full spanner, y possessed a lateral edge to all level
Y5i points within distance c · 5i of y; call the set of these points R. For each
point x ∈ R that is present in the intermediate hierarchy at level Y5i , we add
to the new spanner a lateral edge connecting x to y. Now, for each point x ∈ R
that is not present in the intermediate hierarchy, we must find an equivalent for
the now missing lateral edge from x to y: Let x′ be the highest descendant of x
(in the full hierarchy) that is still present in the intermediate hierarchy. We add
lateral edges from x′ to all children of y in the intermediate hierarchy.

Let H be the spanner for the intermediate hierarchy described above (where
c ≥ 1

5ε and c ≥ 133
5). H is a spanner for S, but uses Steiner points.

Theorem 1. H is a (1 + ε)-spanner for S.

Proof. To prove this, we define the notion of an ancestral path from a point
y ∈ Y1 in the intermediate hierarchy towards some level Y5i . The path begins at
y, and at each step proceeds to y’s step-parent. If y has no step-parent, then the
path proceeds to y’s parent in the intermediate hierarchy. The path terminates
when the next candidate point is above level Y5i . The spanner distance (and true
distance) from y to any other point on the path is less than 5i

∑∞
m=0(1

5)m = 5
45i.

Let x, y ∈ Y1 be any two points at the bottom level of the hierarchy. We
will show a spanner stretch of (1 + ε) for dH(x, y). First choose j such that

486 L.-A. Gottlieb and L. Roditty

c · 5j ≤ d(x, y) < c · 5j+1. Let the last node in the ancestral path from x (y)
towards level j − 2 be x′ (y′). We will show below that x′ and y′ are connected
by a lateral edge in the spanner; this implies a path from x to y which consists
of the edges between points on the ancestral path from x to x′, followed by a
single lateral edge from x′ to y′, followed by the edges between points on the
ancestral path from y′ to y. As before, the length of the lateral edge dwarfs that
of the other edges, resulting in low stretch.

More rigorously: We know that d(x′, y′) ≤ d(x, y) + d(x, y′) + d(y, y′) ≤
d(x, y) + 5

45j−2 + 5
45j−2 ≤ d(x, y) + 5

25j−2. It is also true that dH(x, y) ≤
dH(x′, y′) + dH(x′, x) + dH(y′, y) ≤ dH(x′, y′) + 5

45j−2 + 5
45j−2 = dH(x′, y′) +

5
25j−2. We will show below that there is a lateral edge between points x′ and y′, so
dH(x′, y′) = d(x′, y′). It follows immediately that dH(x, y) ≤ dH(x′, y′)+ 5

25j−2 =
d(x′, y′) + 5

25j−2 ≤ d(x, y) + 5
25j−2 + 5

25j−2 ≤ d(x, y) + 5 · 5j−2. Therefore, the

stretch of the spanner is dH(x,y)
d(x,y) < d(x,y)+5·5j−2

d(x,y) = 1 + 5·5j−2

d(x,y) . This term is
maximized when d(x, y) assumes its minimum possible value, which is c · 5j. It
follows that the spanner has stretch 1 + 5·5j−2

c·5j = 1 + 1
5c . Taking c ≥ 1

5ε yields a
(1 + ε)-spanner.

It remains only to demonstrate that x′ and y′ are indeed connected by a lateral
edge in the spanner. Let x′′ (y′′) be the final (and unsuccessful) candidate for
the ancestral path of x (y); x′′ occupies level Y5l (l ≥ j− 1), and without loss of
generality we assume that y′′ occupies the same or higher level than x′′. We will
show that the distance from x′′ to the full hierarchy ancestor of y′ in level Y5l

is not greater than c · 2l; by construction, this implies the existence of a lateral
edge between x′ and y′ in the spanner:

Now, the distance from x to x′′, and also the distance from y to the ancestor
of y′ (in level Ybl), is less than 4

55l. So the distance from x′′ to the ancestor of y′

is less than d(x, y)+ 4
55l + 4

55l = d(x, y)+ 8
55l < 5j+1 + 8

55l ≤ 5l+2 + 8
55l = 133

5 5l.
When c ≥ 133

5 , x′ and y′ possess a lateral edge in the spanner. �

3.5 Step 4. A Spanner for the Final Hierarchy

The spanner for the final hierarchy is similar to the one for the intermediate
hierarchy, only with points of the intermediate hierarchy swapped with their
assignment points. Recall that the distance from a point x ∈ Y5i in the interme-
diate hierarchy to its assignment point is at most 3

55i, so the swapping of points
that creates the final hierarchy adds only a small perturbation. Therefore, the
analysis of stretch for the final spanner is almost identical to that of the interme-
diate spanner. Modifying the proof above to incorporate this perturbation gives
that the stretch of the spanner is 1 + 5·(5j−2+ 3

55j−2)

c·(5j− 3
5 5j)

= 1 + 4
5c . Taking c ≥ 4

5ε

yields a (1 + ε)-spanner.

4 Analysis of Degree for the Final Spanner

In this section, we prove that the spanner for the final hierarchy has degree
(1/ε)O(λ). In proving low degree for the spanner of the final hierarchy, it will be

An Optimal Dynamic Spanner for Doubling Metric Spaces 487

useful to refer back to the spanner of the intermediate hierarchy. Before beginning
the proof, we will need an important structural lemma for the intermediate
hierarchy.

4.1 Structural Lemma

Lemma 2. Let x ∈ Y5i and z ∈ Y5k (i > k), be a parent-child pair in in the
intermediate hierarchy.
(i) If z has a step-parent y ∈ Y5j (i > j > k) then there exist only bO(λ) points
of the intermediate hierarchy in levels Y5j through Y5k+1 that contain z within b
times their radius.
(ii) If z has no step-parent, then there exist only bO(λ) points of the intermediate
hierarchy in levels Y5i through Y5k+1 that contain z within b times their radius.

Proof. For case (i) let l = j − 1, and for case (ii) let l = i − 1. Let B be the
set of all level Y5l points in the full hierarchy that are within distance b · 5i of
z, |B| = 2O(λ). Note that, as a consequence of the close-containment property,
any point of the full hierarchy in levels Y5l through Y5k+1 that contains z within
b times its radius is a descendant of a point in B (or is itself in B). Consider
in turn each point in B, but only if it survives in the intermediate hierarchy;
if it does not survive, then consider instead its highest surviving descendant
(assuming the descendant is in level Y5k+1 or higher). In total, 2O(λ) points are
to be considered.

Let the point under consideration be w ∈ Ybm (l > m > k). By assumption, w
does not cover z; d(w, z) > 5m. By the close-containment property, all descen-
dants of w are within distance 4·5m

5 of w, and therefore at distance greater than
5m − 4·5m

5 = 5m

5 = 5m−1 from z. Recall that all points at level Y5m−1−log5b have
radius 5m−1

b . Hence, no descendants of w at level Y5m−1−log5b or lower contain
z within b times their radius. Therefore, only descendants of w in levels higher
than Y5m−1−log5b can contain z within a times their radius, and there are only
bO(λ) such descendants.

Repeating the above analysis for each of 2O(λ) points, we conclude that only
bO(λ) points may contain z within b times their radius. �

4.2 Proof of Low Degree

Now that we have the structural lemma, we can prove that the final spanner has
degree (1/ε)O(λ). Recall that there are two types of edges incident on a point.
Type I edges include parent-child and step-parent edges, and Type II edges
include lateral edges. In proving low degree for the spanner of the final hierarchy,
it will be again prove useful to refer back to the spanner of the intermediate
hierarchy.

Type I edges. For each occurrence of a point y in the intermediate hierarchy,
the point possesses 2O(λ) parent-child edges. Similarly, for each occurrence of y,
the point possesses a single step-parent (and an edge to this step-parent) and
may also serve as a step-parent for at most 2O(λ) other points which it covers:

488 L.-A. Gottlieb and L. Roditty

To see that the occurrence serves as a step-parent for at most 2O(λ) other
points, note that each step-child of y ∈ Y5i has a unique ancestor in level Y5i of
the full hierarchy; this ancestor did not survive in the intermediate hierarchy. By
close-containment, the distance from this step-child to its ancestor is less than
4·5i

5 , so the distance from the ancestor to y is less than 4·5i

5 + 5i = 9·5i

5 . There
are 2O(λ) points in the full hierarchy that are this close to y, so y ∈ Y5i can have
only 2O(λ) step-children.

Since a point in the final hierarchy corresponds to at most two occurrences of
points in the intermediate hierarchy, each point has at most 2O(λ) Type I edges
incident upon it.

Type II edges. For each occurrence of point y in the hierarchy, say at level
Y5j , y is given lateral edges for each point z ∈ Y5j of the full hierarchy that
satisfies d(y, z) ≤ c ·5j : If z survived in the intermediate hierarchy, a lateral edge
connects y and z. If z does not survive in the intermediate hierarchy, lateral edges
connect the children of y to z’s highest surviving descendant. This accounts for
cO(λ) lateral edges incident on y.

However, the occurrence y ∈ Y5j may in fact account for more lateral edges:
The children of a point x ∈ Y5i (i > j) are given lateral edges to y if: (i) y is
the highest surviving descendant of its ancestor in level Y5i of the full hierarchy,
and this ancestor did not survive in the intermediate hierarchy; (ii) the distance
from the ancestor to x is not greater than c · 5i; and (iii) the step-parent of y (if
y has one) is above level Y5i . We can show that there are only cO(λ) points that
satisfy these conditions: Conditions (i) and (iii) imply that the point x ∈ Y5i

is found at a lower level than the lowest point that contains y ∈ Y5j within its
radius (which is y’s step-parent, or y’s parent if y has no step-parent). Condition
(ii), coupled with the close-containment property, implies that d(x, y) is less
than 5j + 4·5j

5 = 9·5j

5 . It follows from Lemma 2 that only cO(λ) points in the
intermediate hierarchy may satisfy both these conditions. Hence, each occurrence
of y may translate to cO(λ) lateral edges incident on y.

Since a point in the final hierarchy corresponds to at most two occurrences of
points in the intermediate hierarchy, each point has at most cO(λ) Type II edges
incident upon it. We may conclude:

Theorem 2. The degree of the final spanner is cO(λ) = (1/ε)O(λ)

References

1. Arya, S., Mount, D.M., Nathanyahu, S., Silverman, R., Yu, A.Y.: An optimal
algorithm for approximate nearest neighbor searching in fixed dimension. Journal
of the ACM 45(6), 891–923 (1998)

2. Arya, S., Mount, D.M., Smid, M.: Dynamic algorithms for geometric spanners
of small diameter: Randomized solutions. Computational Geometry: Theory and
Applications 13, 91–107 (1999)

3. Bose, P., Gudmundsson, J., Morin, P.: Ordered theta graphs. Computational
Geometry: Theory and Applications 28, 11–18 (2004)

An Optimal Dynamic Spanner for Doubling Metric Spaces 489

4. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. J. ACM 42,
67–90 (1995)

5. Cole, R., Gottlieb, L.: Searching dynamic point sets in spaces with bounded dou-
bling dimension. In: ACM Symposium on Theory of Computing (2006)

6. Gao, J., Guibas, L., Nguyen, A.: Deformable spanners and applications. In: ACM
Symposium on Computational Geometry (2004)

7. Gottlieb, L., Roditty, L.: Improved algorithms for fully dynamic geometric spanners
and geometric routing. In: ACM Symposium on Discrete Algorithms (2008)

8. Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-
distortion embeddings. In (IEEE) Symposium on Foundations of Computer Sci-
ence, pp. 534–543 (2003)

9. Har-Peled, S., Mendel, M.: Fast construction of nets in low dimensional metrics,
and their applications. SIAM J. Comput. 35(5), 1148–1184 (2006)

10. Krauthgamer, R., Lee, J.: Navigating nets: Simple algorithms for proximity search.
In: ACM-SIAM Symposium on Discrete Algorithms (2004)

11. Roditty, L.: Fully dynamic geometric spanners. In: ACM Symposium on Compu-
tational Geometry (2007)

12. Salowe, J.S.: Constructing multidimensional spanner graphs. Int. J. Comput.
Geometry Appl. 1(2), 99–107 (1991)

13. Soares, J.: Approximating euclidean distances by small degree graphs. Discrete &
Computational Geometry 11, 213–233 (1994)

14. Vaidya, P.M.: A sparse graph almost as good as the complete graph on points in
K dimensions. Discrete & Computational Geometry 6, 369–381 (1991)

RFQ: Redemptive Fair Queuing

Ajay Gulati1 and Peter Varman2

1 VMware Inc, Palo Alto, CA
2 Department of ECE and Computer Science

Rice University, Houston TX 77005, USA
agulati@vmware.com, pjv@rice.edu

Abstract. Fair-queuing schedulers provide clients with bandwidth or latency
guarantees provided they are well-behaved i.e. the requested service is always
within strict predefined limits. Violation of the service bounds results in nullifi-
cation of the performance guarantees of the misbehaving client.

In this paper we relax this notion of good behavior and present a generalized
service model that takes the current system load into consideration. Consequently
clients may opportunistically consume more than their contracted service without
losing future performance guarantees, if doing so will not penalize well-behaved
clients. We present a new algorithm RFQ (Redemptive Fair Queuing) along with
a generalized traffic model called the Deficit Token Bucket (DTB). RFQ incorpo-
rates the notion of redemption, whereby a misbehaving client may be rejuvenated
and regain its performance guarantees. We characterize the conditions for rejuve-
nating a client, and prove that RFQ meets its performance guarantees in the DTB
model.

1 Introduction

The popularity of hosted application services, and benefits in cost, energy, and man-
ageability of a shared infrastructure has spurred interest in server virtualization and
storage consolidation technologies [1, 2]. This has created the need for flexible and ro-
bust resource management strategies for client isolation and QoS provisioning in shared
server systems [3]. Resource scheduling is used to provide each workload with the ab-
straction of having its own dedicated server, while flexibly sharing server capacity to
handle bursts or low latency requests. A client’s performance requirements are usu-
ally expressed by a combination of throughput and latency constraints. Throughput
refers to the average rate of service completion, while latency or response time is the
interval between the arrival time of a request and the time it completes service. A data-
base workload, for instance, may have strict response time requirements for its transac-
tions, whereas a back-up or other file transfer application might care more about overall
throughput than the latency of individual requests.

The Service Level Agreement (SLA) of client ci has three parameters (σi,ρi,δi): ρi

is the average (long term) service demand of ci, the burst parameter σi specifies the
allowable instantaneous deviation from ρi (as made precise later), and δi is a bound
on the latency of its requests. The scheduler aims to provide ci a throughput of ρi and
a response time guarantee of δi as long as ci is well-behaved (i.e. honors its SLA as

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 490–502, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

RFQ: Redemptive Fair Queuing 491

defined precisely later). In current models [4, 5, 6] a client is considered well-behaved
if in every time interval of size T ≥ 0, the total amount of service requested is upper
bounded by U(T) = σi + ρi × T . Such an arrival model is also known as the token
bucket model [7] with parameters σi and ρi. Well-behaved clients restrict the amount
of service requested in any time interval (either voluntarily or by request dropping) in
return for receiving guaranteed response times.

A major drawback of current QoS schedulers is their fragility with respect to errant
client behavior. If a client violates its SLA by requesting more than U(T) service in any
interval T , the deadline guarantees for the client are effectively nullified. Unfortunately,
this nullification is not restricted to just the offending requests but can persist indefi-
nitely into the future. (See Example 1 in Section 2). In a practical setting this restriction
is unacceptable. When the server has unused capacity (since not every client is sending
at the maximum rate at all times), it is desirable to allow clients who can use the excess
service to do so, without penalizing them in the future for their use of spare capacity. A
robust model should distinguish between benign violations of input limits (as when a
client merely utilizes spare capacity) from critical violations where the client should be
penalized to prevent it from encroaching on the shares of other clients.

In this paper we make the following contributions: (a) we define a dynamic traf-
fic model called the Deficit Token Bucket (DTB) model. DTB allows one to define
a weaker notion of well-behaved clients that distinguishes between benign and crit-
ical arrival violations; (b) we present a new scheduling algorithm RFQ (Redemptive
Fair Queuing) that provides performance guarantees under this weaker model of well-
behaved clients, and includes mechanisms to accelerate the rehabilitation of a misbe-
having client; (c) we provide an algorithm for proportionate bandwidth allocation by
modifying certain parameters of RFQ. The resulting algorithm achieves the optimal
worst case fairness index [8], an important measure of the quality of a fair-queuing
scheduler. Note that RFQ meets its deadlines in all situations where the existing sched-
ulers do, in addition to situations where the latter do not. We believe this is the first
algorithm which can successfully distinguish between benign and critical use of spare
capacity, that allows better server utilization and greater flexibility for the clients.

2 Relation to Previous Work

Formal work related to Fair Queuing algorithms for QoS-based resource allocation
falls into two categories. First is a class of scheduling algorithms for proportionate
bandwidth allocation such as PGPS [9], Virtual Clock [10], WFQ [11, 12], WF2Q [8],
SFQ [13], SCFQ [14], Leap Forward Virtual Clock [15], Latency-rate Servers [16],
Greedy Fair Queuing [17], Elastic Round Robin [18], and Time Share Scheduling [19],
which guarantee weight-proportional throughput to clients by dividing up the server
bandwidth fairly between them. A fundamental limitation of these algorithms is the
strong coupling between their throughput and response time guarantees. The latency of
a client’s requests is fixed by its bandwidth allocation, resulting in over-provisioning
for clients with low throughput and low latency requirements. A corollary to this is the
inability of these algorithms to handle bursts effectively. The algorithms do not distin-
guish a client that sends its requests at a uniform rate from a client sends the requests

492 A. Gulati and P. Varman

in periodic bursts, as long as the average request rates are the same. Both clients will
receive the same bandwidth allocation, but the bursty client will incur large latencies.
On the other hand, an algorithm with independent latency and throughput controls can
schedule the requests to be sensitive to the latencies.

The second class of scheduling algorithms [4, 5, 20, 21, 6] are latency-sensitive in
that both throughput and response time constraints may be independently specified pro-
vided certain capacity constraints are met. The fundamental result in this regard is the
SCED [4, 5] algorithm to schedule workloads specified by a given set of service curves
that meet the capacity constraints. However, this solution and its successors have the
fundamental drawback that a client that uses spare capacity may get starved in the fu-
ture when resource contention is high. We present a detailed example below to show
the issue of starvation and the possibility for indefinite response time penalties in the
SCED algorithm. In the example tag refers to the value assigned to a request that is used
as a scheduling priority. Tags are spaced by the inverse of the throughput ρi when ci is
backlogged; the scheduler dispatches requests to the server in the order of these tags.

2
time(sec)

1 2 3
time(sec)

C
um

ul
at

iv
e

se
rv

ic
e

100

200

A
rr

iv
al

s

1 3

c1

c1

c2

c1 starved

c2

Fig. 1. c1 is starved during [2,3] for using spare capacity during [1,2]

Example 1: Consider a system with two clients c1 and c2 with throughput requirements
ρ1 = ρ2 = 50 req/s. Assume the system capacity is 100 req/s. Suppose that c1 sends a
burst of 200 requests at t = 0, and then sends requests at its desired rate of 50 req/s from
t = 2 onwards. Suppose that c2 is idle till t = 2, sends a burst of 100 requests at t = 2,
and then sends requests at a steady rate of 50 req/s after t = 3. The input profiles are
shown in Figure 1.

Now in the interval [0,2], c1 can utilizes the capacity unused by c2 and will receives
100 req/s instead of its stipulated rate of 50 req/s. All these 200 requests will complete
service by t = 2, but its tags (that are spaced apart by 1/ρi = 1/50) will have reached a
value of 200 x 1/50 = 4 (much higher than the real time). Hence future requests of c1

arriving after t = 2 will have tags beginning at 4 and increasing in increments of 1/50.
When c2 becomes active at time t = 2, the 100 requests of c2 will receive tags starting
at 2 and spaced by 1/50; all these tags are less than the tags of the pending requests of
c1. Hence, c2 will get all the service, and complete its burst of 100 requests in 1 second
at t = 3, starving c1 of any service in this interval, After time t = 3 the requests of c1

and c2 are interleaved, since the tags of both c1 and c2 now begin at 4 and are separated
by 1/50. However, requests of c1 have been pending since t = 2 and therefore these and
all future requests of c1 incur a latency of at least 1 second.

RFQ: Redemptive Fair Queuing 493

A better schedule can be constructed as follows. Serve the 200 requests of c1 in
the interval [0,2] as before. From t = 2 onwards, give both c1 and c2 their guaranteed
service rate of 50 req/s by interleaving the requests of c1 and c2. This ensures that
neither c1 nor c2 will be starved of service, and that all requests of c1 arriving after
t = 2 will be served without delay. Note that c2 missing its deadlines is justified since
it is requesting more than its share during a period when there is no spare capacity in
the system. In contrast, in the traditional fair scheduler c1 misses deadlines indefinitely
even though its only excess is to use unused service capacity between [0,2]. Our recent
algorithm pClock [6] provided a solution to this problem, and showed empirically that
it was able to avoid starvation in many cases. However, the formal conditions under
which spare capacity can be safely used were no stronger than earlier results.

3 Model and Definitions

The system provides shared service to a set of m clients, ci,1 ≤ i ≤ m. Each request
brings in a demand for a specified amount of service (e.g. IO requests, CPU time etc.).
Clients’ requests are held in private queues, and are dispatched to the server one at-a-
time by the scheduler. The server capacity denoted by C is the rate at which it provides
service. Time is represented by discrete time steps t = 0,1,2, · · · . The SLA parameters
of ci are denoted by (σi,ρi,δi). The size of the request made by ci at time t is denoted
by si(t), 0≤ si(t)≤ σi. The total amount of service requested by ci in the interval [a,b],
is denoted by the arrival function Ri(a,b) = ∑b

t=a si(t). The amount of service provided
to ci in the interval [a,b] is denoted by Si(a,b). A client is backlogged at some time
instant if it has one or more requests pending in the queue or currently in service.

Definition 1. The backlog Bi(t) of a client ci at time t is defined as Bi(t) = Ri(0, t)−
Si(0,t). Client ci is said to be backlogged at time t if Bi(t)> 0. A system busy period
is a maximal-sized time interval during which at least one client is backlogged. The
maximum size of any request is denoted by Rmax. The maximum service time of a
request is denoted by ε = Rmax/C.

Requests are classified as either good or bad based on two factors: (i) the total amount
of service requested by the client relative to its SLA parameters, and (ii) the actual
rate at which the client has received service. Good requests will be serviced within
their stipulated response time, while bad requests cannot be guaranteed. This is the
fundamental point of departure from previous schemes. In earlier models only the first
factor is used to classify requests, while in our new model the load of the server is
implicitly taken into account. If the server has sufficient capacity to absorb extra service
without hurting the other clients, then future requests of this client are classified as good,
and compete fairly with the other clients.

In order to classify requests we use a modified form of a token bucket algorithm [7].
For a client with arrival parameters σ and ρ we refer to it as (σ ,ρ)-DTB (Deficit Token
Bucket) model. Initially the bucket contains σ tokens. A request of size s will reduce
the number of tokens in the bucket by s. If this results in the number of tokens becoming
negative the request is classified as bad; else the request is good. The bucket is contin-
ually refilled with tokens at the constant rate of ρ but the maximum number of tokens

494 A. Gulati and P. Varman

is capped at σ . In addition, at a synchronization point, the number of tokens of a client
ci with no current backlog is increased to σi. Intuitively a synchronization point detects
that there is unused server capacity and makes it available to clients. Clients that have
a backlog are still paying the price for past misbehavior and therefore no tokens are
added to their buckets.

Each client ci is controlled by its own (σi,ρi)-DTB. Figure 2 shows the number of
tokens as they change in DTB model. The solid line shows the total number of tokens
accumulated and the dotted line shows the total service requested as a function of time.
The difference between the two is the tokens available at that time instant. If the total
service requested exceeds the cumulative tokens (e.g. beyond time a), the number of
tokens will be negative. On the other hand, if a client gets idle the number of tokens
will continue to increase at a rate ρi, but will be capped at σi.

Time

D
T

B
 &

 A
rr

iv
al

s

σi

tokens = σi

a

tokens = 0

b c

Fig. 2. DTB model for a client ci

Definition 2. A request from ci of size s that arrives when the number of tokens in its
bucket is at least s is good; else the request is bad. Client ci is well-behaved in the
interval [a,b] if all its requests that arrive in the interval are good; else it is said to
misbehave in that interval.

Service guarantees can only be met if admission control ensures that the system has suf-
ficient capacity to meet requirements of admitted clients. A lower-bound on the system
capacity, referred to as the System Capacity Constraint, is stated below. This is de-
rived by considering the situation in which all clients ci,1 ≤ i≤m, simultaneously send
their maximum bursts (σi) at t = 0, followed by sending requests continuously at their
designated throughput rates (ρi). If any of the inequalities in Definition 3 is violated, at
least one request in the above arrival set will miss its deadline. The first constraint is
needed to ensure that all ci can receive throughput ρi. The second constraint follows by
noting that for k ≤ i, ck must complete σk +ρk(δi−δk) amount of service by δi for it to
meet its deadlines.

Definition 3. Let the clients be arranged in order of non decreasing latencies, repre-
sented by δ1 ≤ δ2 ≤ ·· · ≤ δm.

The System Capacity Constraint is defined by the following equations:

∑
∀i

ρi ≤C (1)

RFQ: Redemptive Fair Queuing 495

∀ i ,
i

∑
k=1

σk + ρk(δi − δk) ≤C× δi (2)

In Section 5, we show that these conditions are also sufficient to guarantee that no
good requests are delayed.

4 Scheduling Algorithm RFQ

The algorithm RFQ is based on tagging requests to reflect their scheduling priority.
Each request receives a start tag and a finish tag. The start tags determine eligibility
of requests for scheduling; at any instant, only requests with start tags no more than
the current time are eligible. Among eligible requests the one with the smallest finish
tag is chosen and dispatched to the server. Pseudo code of algorithm is presented in
Algorithm 1 below.

Request Arrival:1

Let ta be arrival time, of request r from ci;2

UpdateNumtokens();3

ComputeTags();4

Request Completion:1

Let tc be time the current request completes;2

AdjustTags ();3

Dispatch();4

Algorithm 1. RFQ algorithm

There are two actions performed by the scheduler on a request arrival: UpdateNum-
tokens implements the DTB model by updating the number of available tokens for this
client; ComputeTags assigns start and finish tags to the request to be used by the dis-
patcher. When a request completes service two actions are again required: AdjustTags is
used for synchronizing tags with real time and rejuvenating clients as necessary, while
routine Dispatch is used to select the next request to send to the server. These compo-
nents are detailed in Algorithms 2 and 3.

UpdateNumtokens: For each client ci, the routine maintains a variable numtokensi

that tracks the amount of tokens in its bucket at an arrival instant. The initial value
of numtokensi is set to σi at the start of a system busy period. The amount of tokens
increases at the uniform rate of ρi. Hence in an interval of Δ seconds it will be incre-
mented by Δ × ρi, but the total amount of tokens is capped at σi.

Compute Tags: This routine assigns start and finish tags (Sr
i and Fr

i respectively) to
the request r arriving from ci. The value assigned to the start tag Sr

i depends on whether
the request is good or bad. Let the size of the request be si. If the request is good
(numtokensi ≥ si), Sr

i is set to the current time t. The start tag of a bad request is set
to a time in the future, specifically the earliest time at which the bucket would have
accumulated si tokens if there are no further withdrawals. If there are n ≥ 0 tokens

496 A. Gulati and P. Varman

currently in the bucket, the additional (si −n) tokens required will be accumulated in a
further (si − n)/ρi time. The condition n < 0 signifies that there are pending requests
with start tags beyond the current time; the request needs to earn si tokens and join the
end of the queue of pending requests. This is done by setting is start tag to si/ρi beyond
the largest start tag of ci at this time. Fr

i is set to the sum of Sr
i and the latency bound δi.

The count of tokens for the client is decremented by the service required (si), and the
number of pending requests for the client is updated. The variables MinSi and MaxSi

track the smallest and largest start tags of ci respectively, and are updated as necessary.

UpdateNumtokens:
On arrival of request r of size si from client ci at time ta;
Let Δ = ta − the arrival time of the previous request of ci;
numtokensi += Δ ×ρi;
if (numtokensi > σi) then

numtokensi = σi

ComputeTags:
On arrival of request r of size si from client ci at time ta;
if (numtokensi ≥ si) then

Sr
i = ta;

else
if (numtokensi > 0) then

Sr
i = ta +(si −numtokensi)/ρi;

else
Sr

i = MaxSi + si/ρi

MaxSi = Sr
i ;

Fr
i = Sr

i + δi;
numtokensi = numtokensi − si;
backlogi = backlogi + 1;
if (backlogi = 1) then

MinSi = Sr
i

Algorithm 2. Components of RFQ algorithm at request arrival

AdjustTags: The routine checks for the condition where the start tags of all pend-
ing requests are greater than the current time tc. We call this a synchronization point.
Rather than allowing the tags to keep running ahead of real time (which is the funda-
mental cause for starvation; see Example 1 of Section 2), the algorithm synchronizes
the backlogged clients and the idle clients. At a synchronization point, the algorithm
shifts the tag values of all requests at the server by a fixed amount, so that the smallest
start tag after the adjustment coincides with the current time tc. The relative values of
the tags are not changed: they just shift as a block by an offset equal to the difference
between the smallest start tag in the system and the current time. Since new clients
will begin their tags from the current time as well, all clients compete fairly from this

RFQ: Redemptive Fair Queuing 497

point on, avoiding starvation. Note that an implementation just needs to maintain an
offset value equal to the the shift amount, and does not need to explicitly alter each tag.

The occurrence of a synchronization point also indicates that there is spare server
capacity that can be reallocated without risking future guarantees. Hence the routine
also checks if there are any clients that can be rejuvenated. If client ci at a synchroniza-
tion point has a backlog of zero, then it can be rejuvenated and the number of tokens is
changed to σi.

Note that this shift in tag values and infusion of tokens by rejuvenation raises the
possibility that some clients may now miss their deadlines, since more requests are
pushed into a given time interval. However, as we show in Theorem 1 the readjustment
of tags does not result in any missed deadlines, since it exactly compensates for the
spare capacity detected by the synchronization point.

Dispatch: This routine is invoked on the completion of each request. It selects a pend-
ing request to dispatch to the server. E is the set of eligible requests consisting of the
requests whose start tags are less than or equal to the current time. Note that the Ad-
justTags routine guarantees that E is not empty as long as there is at least one request
in the system, by forcing a synchronization if necessary. From the eligible requests,
the one with the earliest finish tag is selected for service. The number of pending re-
quests (backlogk) and minimum start tag (MinSk) of the selected client ck are updated
appropriately.

AdjustTags:
Let A be the set of currently backlogged clients at time tc;
if (∀ j ∈ A, MinS j > t) then

mindrift = min j∈A {MinS j − tc};
∀ j ∈ A, Subtract mindrift from MinS j , MaxS j and all start and finish tags;
∀ j /∈ A, numtokens j = σ j;

Dispatch:
On completion of request from client ci at time tc;
Let E be the set of pending requests with start tags no more than tc;
From E, select the request w with minimum finish tag and dispatch it to the server. Let
the chosen request be from client ck;
backlogk = backlogk −1;
if (backlogk > 0) then

Let the start tag of the next pending request of ck be Sr
k;

MinSk = Sr
k;

Algorithm 3. Components of RFQ algorithm on request completion

5 Proof of Correctness

In this section we provide a proof of the scheduling guarantees of RFQ. We will show
that if the system capacity satisfies the constraints noted in Definition 3, then every good

498 A. Gulati and P. Varman

request will meet its deadline. Note that the definition of good requests includes clients
that may have misbehaved in the past, but have since been rejuvenated.

Definition 4. A synchronization point is a departure instant t at which all start tags
are greater than t. Immediately after the synchronization, the minimum start tag is t and
every flow with zero backlog at t is rejuvenated so that it has σi tokens.

Lemma 1. If a good request completes service before the finish tag assigned to it by
RFQ, then the request meets its latency bound.

Proof. Consider a request r of ci that arrives at some time instant t. Since the request is
good, RFQ will set its start tag to the arrival time t and the finish tag to t + δi. Hence if
r finishes service by its finish tag, it meets its latency bound.

Lemma 2. Consider an interval [a,a + τ] in which a is a synchronization point and
there are no more synchronization points between a and a + τ . For any ci, the amount
of its service that is assigned start tags in the interval [a,a + τ], is upper bounded by
σi + τ ×ρi.

Proof. (Sketch) Within the interval there is no adjustment of tags or addition of tokens
through rejuvenation. Recall that start tags are assigned so that a request has to pay for
the service it requests by either getting the tokens from the bucket or delaying the start
tag till it generates the required number of tokens, at the rate ρi. Since there are at most
σi tokens initially in the bucket, the result follows.

Lemma 3. For any time interval [a,b] in which a is a synchronization point and there
are no synchronization points between a and b, the total amount of service with start
tags greater than or equal to a and finish tags less than or equal to b, is no more than
C× (b−a).

Proof. Without loss of generality, let the clients be indexed in non-decreasing order of
their latencies so that for any two clients ci and c j, 1 ≤ i < j ≤ m implies that δi ≤ δ j.
Let n ≤ m be the largest index such that δi ≤ b−a.

Consider a client ci, i ≤ n. Since there are no synchronization points in (a,b], tags
are not changed by AdjustTags at any time during this interval. Since a request of ci

with finish tag less than or equal to b must have its start tag no more than b− δi, we
must bound the amount of service of ci with start tags in the interval [a,b− δi]. From
Lemma 2, the amount of service with start tags in the interval is upper bounded by
σi + (b− δi−a)ρi. For clients with index j > n, the amount of such service is 0.

Summing the bounds over all the clients, the amount of service is bounded by:

n

∑
i=1

(σi + ρi(b−a− δi)) (3)

Now from the Capacity Constraint equation 2 applied to the case i = n we have:

n

∑
k=1

σk +
n

∑
k=1

(δn− δk)ρk ≤C× δn (4)

RFQ: Redemptive Fair Queuing 499

Applying equation 1 of the Capacity Constraint to the non-negative interval b−a− δn

we have
n

∑
k=1

(b−a− δn)ρk ≤C× (b−a− δn) (5)

Combining equations 4 and 5 we get:

n

∑
k=1

σk +
n

∑
k=1

(b−a− δk)ρk ≤C× (b−a) (6)

Hence, the service required (Equation 3) is bounded by C× (b−a).

Theorem 1. Consider the set of requests of ci that arrive during an interval in which
it is well behaved. The irrespective of the behavior of other clients, all these requests
have a latency bounded by δi + ε .

Proof. We will prove the theorem by contradiction. Let Γ denote the set of requests of
ci that arrive in the interval. Since all requests in this interval are good the finish tag and
the deadlines are the same. Assume to the contrary that a request in Γ with a finish tag
td completes later than time td + ε .

Let t0 be the start of the system busy period in which td occurs. Let t be the last time
instant before td during which a request having finish tag greater than or equal to td
begins service. If there is no such request it follows that all requests that are serviced in
the interval [t0,td] have finish tags no more than td . Since the start tags of these requests
are greater than or equal to t0, from Lemma 3 we know that all these requests can be
serviced in the interval [t0,td], which contradicts our assumption proving the theorem.

Otherwise td > t ≥ t0. Since a request with finish tag greater than or equal to td
begins service at time t, it implies that there were no eligible requests with finish times
less than td at t.

Partition the requests of Γ into two sets. Let P be the set of eligible requests at time t
(i,e having a start tag less than or equal to t), and Q be the set of request with start tags
greater than t. The request scheduled at t must be from P and since it has a finish tag
greater than td , either this was the only request in P or all requests of P must have finish
tags greater than td . In both these cases, no additional request of P can be scheduled
before td . This is because in the first case there are no more requests, and in the second
case it would contradict the definition of time t (i.e. the last instant before td when a
request with deadline after td is scheduled). Hence the only requests scheduled between
t and td are one request from P and requests from Q. Since the requests of Q have start
tags greater than t the service required by the requests of Q with deadline td or less, is
bounded by C× (td − t) by Lemma 3. The service required by the request of P that was
scheduled at t is no more than C× ε . Adding this to the service bound on Q, the total
service required after t is no more than C× (td − t + ε). Hence all of these requests will
finish by td + ε – a contradiction.

5.1 RFQ as a Pure Bandwidth Allocator

We now show how to modify RFQ to act as a pure bandwidth allocator. We ignore
σi and numtokensi and assign δi = si/ρi, where si is the size of the current request of

500 A. Gulati and P. Varman

client ci. We simplify ComputeTags to ignore the different conditions based on numto-
kens, and instead to always assign tags as follows: Sr

i = max{ta,MaxSi}, Fr
i = Sr

i + δi

and MaxSi = Sr
i + si/ρi. Similar as before, the scheduling is done using the minimum

finish tag from the set of eligible requests.
In this case, the latency encountered by any request (referred to as the intrinsic delay)

should ideally depend on the total service in its queue (including this request) and its
guaranteed rate of service only, and not on the other clients [8]. We show below that
RFQ meets these bounds.

Theorem 2. The intrinsic delay of a request r from client ci arriving at time τ is
bounded by Qi(τ)

Cwi
+ εi, where wi is ci’s share of system capacity, i.e. wi = ρi/(∑∀ j ρ j),

Qi(τ) is the amount of service pending in queue of ci at time τ , and εi is a parameter
independent of the other clients in the system.

Proof. (Sketch) Let the total service of all pending requests of ci including r be Qi(τ).
From the assignment it can be seen that r will get a finish tag no more than τ +Qi(τ)/ρi +
si/ρi, were si is the size of last completed request of ci. We count the total amount of
pending service from clients c j, j
= i, with finish tags no more than τ +Qi(τ)/ρi +si/ρi.
Now either all the start tags from other clients are higher than τ−Rmax/C (which means
that no one was eligible for scheduling) or the finish tags are ≥ τ + si/ρi. In the first
case, the total service requested by client c j with finish tags in the interval is bounded
by ρ j × (Qi(τ)/ρi + si/ρi + Rmax/C). At most these requests will be serviced before r
completes. The total amount of service from the tagged requests of all clients is bounded
by (((Qi(τ) + si)/ρi) + Rmax/C)Σ jρ j ≤ (Qi(τ) + si)/wi + Rmax. The time required to
service this is bounded by: (Qi(τ) + Rmax)/(Cwi) + Rmax/C. Thus we get a bound for
the maximum delay as: Qi(τ)/(Cwi) + εi, where εi = Rmax/(Cwi) + Rmax/C.

In second case we know that all the requests with finish tag ≤ τ + si/ρi will be able
to finish by the time τ + si/ρi, because C ≥ ∑∀k ρk. Thus the total amount of finish
tags in the interval [τ + si/ρi,τ + Qi(τ)/ρi + si/ρi] from all clients is again bounded by
(Qi(τ)Σ j
=iρ j. The overall bound in this case would be Qi(τ)/(Cwi) + Rmax/(Cwi).

6 Conclusions

We presented a novel algorithm RFQ to provide independent bandwidth and latency
guarantees to multiple clients sharing a server. Our algorithm improves upon previous
schemes significantly by differentiating between benign and critical overuse of server
resources. In doing so, we presented the DTB traffic model (deficit token bucket) and
the RFQ scheduling algorithm, that provide a more relaxed characterization of client
behavior. In this model a misbehaving client can be forgiven for exceeding its contracted
limit on service requests, if the system determines that it will not affect the guarantees
made to any well-behaved client. This flexibility allows clients to use spare capacity
without fear of penalty, increasing system utilization and providing greater scheduling
flexibility. We provided a formal model to characterize this behavior analytically. We
also show its superior properties over existing schemes empirically in [6] and in the full
version of this paper.

RFQ: Redemptive Fair Queuing 501

Acknowledgements

This research was done while the first author was a student at Rice University. The
support of this research by the National Science Foundation under NSF Grant CNS-
0541369 is gratefully acknowledged.

References

1. VMware, Inc.: Introduction to VMware Infrastructure (2007),
http://www.vmware.com/support/pubs/

2. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I.,
Warfield, A.: Xen and the art of virtualization. In: SOSP 2003: Proceedings of the nineteenth
ACM symposium on Operating systems principles, pp. 164–177. ACM, New York (2003)

3. Waldspurger, C.: Memory resource management in vmware esx server (2002)
4. Sariowan, H., Cruz, R.L., Polyzos, G.C.: Scheduling for quality of service guarantees via ser-

vice curves. In: Proceedings of the International Conference on Computer Communications
and Networks, pp. 512–520 (1995)

5. Cruz, R.L.: Quality of service guarantees in virtual circuit switched networks. IEEE Journal
on Selected Areas in Communications 13(6), 1048–1056 (1995)

6. Gulati, A., Merchant, A., Varman, P.: pClock: An arrival curve based approach for QoS guar-
antees in shared storage systems. In: Proceedings of the 2007 ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer Systems, pp. 13–24. ACM
Press, New York (2007)

7. Evans, J., Filsfils, C.: Deploying IP and MPLS QoS for multiservice networks. Morgan Kauf-
mann, San Francisco (2007)

8. Bennett, J.C.R., Zhang, H.: WF2Q: Worst-case fair weighted fair queueing. INFOCOM (1),
120–128 (1996)

9. Parekh, A.K., Gallager, R.G.: A generalized processor sharing approach to flow control in
integrated services networks: the single-node case. IEEE/ACM Trans. Netw. 1(3), 344–357
(1993)

10. Zhang, L.: VirtualClock: A new traffic control algorithm for packet-switched networks. ACM
Trans. Comput. Syst. 9(2), 101–124

11. Demers, A., Keshav, S., Shenker, S.: Analysis and simulation of a fair queuing algorithm.
Journal of Internetworking Research and Experience 1(1), 3–26 (1990)

12. Greenberg, A.G., Madras, N.: How fair is fair queuing. J. ACM 39(3), 568–598 (1992)
13. Goyal, P., Vin, H.M., Cheng, H.: Start-time fair queuing: A scheduling algorithm for inte-

grated services packet switching networks. Technical Report CS-TR-96-02, UT Austin (Jan-
uary 1996)

14. Golestani, S.: A self-clocked fair queueing scheme for broadband applications. In: INFO-
COMM 1994, pp. 636–646 (April 1994)

15. Suri, S., Varghese, G., Chandramenon, G.: Leap forward virtual clock: A new fair queueing
scheme with guaranteed delay and throughput fairness. In: INFOCOMM 1997 (April 1997)

16. Stiliadis, D., Varma, A.: Latency-rate servers: a general model for analysis of traffic schedul-
ing algorithms. IEEE/ACM Transactions on Networking 6(5), 611–624 (1998)

17. Shi, H., Sethu, H.: Greedy fair queueing: A goal-oriented strategy for fair real-time packet
scheduling. In: RTSS 2003: Proceedings of the 24th IEEE International Real-Time Systems
Symposium, Washington, DC, USA, p. 345. IEEE Computer Society, Los Alamitos (2003)

18. Kanhere, S.S., Sethu, H., Parekh, A.B.: Fair and efficient packet scheduling using elastic
round robin. IEEE Trans. Parallel Distrib. Syst. 13(3), 324–336 (2002)

http://www.vmware.com/support/pubs/

502 A. Gulati and P. Varman

19. Cobb, J.A., Gouda, M.G., El-Nahas, A.: Time-shift scheduling—fair scheduling of flows in
high-speed networks. IEEE/ACM Trans. Netw. 6(3), 274–285 (1998)

20. Stoica, I., Zhang, H., Ng, T.S.E.: A hierarchical fair service curve algorithm for link-sharing,
real-time, and priority services. IEEE/ACM Trans. Netw. 8(2), 185–199 (2000)

21. Ng, T.S.E., Stephens, D.C., Stoica, I., Zhang, H.: Supporting best-effort traffic with fair ser-
vice curve. In: Measurement and Modeling of Computer Systems, pp. 218–219 (1999)

Range Medians

Sariel Har-Peled1,� and S. Muthukrishnan2

1 Department of Computer Science, University of Illinois, 201 N. Goodwin Avenue,
Urbana, IL, 61801, USA

sariel@uiuc.edu
http://www.uiuc.edu/∼sariel/

2 Google Inc., 76 9th Av, 4th Fl., New York, NY, 10011
muthu@google.com

Abstract. We study a generalization of the classical median finding
problem to batched query case: given an array of unsorted n items and
k (not necessarily disjoint) intervals in the array, the goal is to deter-
mine the median in each of the intervals in the array. We give an algo-
rithm that uses O(n log k + k log k log n) comparisons and show a lower
bound of Ω(n log k) comparisons for this problem. This is optimal for
k = O(n/ log n).

1 Introduction

The classical median finding problem is to find the median item, that is, the
item of rank �n/2� in an unsorted array of size n. We focus on the comparison
model, where items in the array can be compared only using comparisons, and
we count the number of comparisons performed by any algorithm 1. It is known
since the 70’s that this problem can be solved using O(n) comparisons in the
worst case [BFP+73]. Later research [BJ85, SPP76, DZ99, DZ01] showed that
the number of comparisons needed for solving the median finding algorithm is
between (2+ε)n and 2.95n in the worst case (in the deterministic case). Closing
this gap for a deterministic algorithm is an open problem, but surprisingly, one
can find the median using 1.5n+o(n) comparisons using a randomized algorithm
[MR95].

We study the following generalization of the median problem.

The k-range-medians Problem. The input is an unsorted array S with n entries.
A sequence of k queries Q1, . . . , Qk is provided. A query Qj = [lj , rj] is an
interval of the array, and the output is x1, . . . , xk, where

xj = median
{
S[lj], S[lj + 1], . . . , S[rj]

}

� Work on this paper was partially supported by a NSF CAREER award CCR-
0132901.

1 In the algorithms discussed in this paper, the computation performed beyond the
comparisons will be linear in the number of comparisons.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 503–514, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.uiuc.edu/~sariel/

504 S. Har-Peled and S. Muthukrishnan

for j = 1, . . . , k. We refer to this as the k-range-medians problem. The problem
is to build a data-structure for S such that it can answer this kind of queries
quickly. Notice that the intervals are possibly overlapping.

This is the interval version of the classical median finding problem, and it is
interesting on its own merit. In addition, there are many motivating scenarios
where they arise.

Examples. A motivation arises in analyzing logs of internet advertisements (aka
ads). We have the log of clicks on ads on the internet: each record gives the
time of the click as well as the varying price paid by the advertiser for the click,
and the log is arranged in time-indexed order. Then, S[i] is the price for the
ith click. Any given advertiser runs several ad campaigns simultaneously spread
over different intervals of time. The advertiser then wishes to compare his cost
to the general ad market during the period his campaigns ran, and a typical
comparison is to the median price paid for clicks during those time intervals.
This yields an instance of the k-range-medians problem, for possibly intersecting
set of intervals.

As another example, consider IP networks where one collects what are known
as SNMP logs: for each link that connects two routers, one collects the total
bytes sent on that link in each fixed length duration like say 5 minutes [KMZ03].
Then, S[i] is the number of bytes sent on that link in the ith time duration. A
traffic analyst is interested in finding the median value of the traffic level within
a specific time window such as a week, office hours, or weekends, or the median
within each such time window. Equally, the analyst is sometimes interested in
median traffic levels during specific external events such as the time duration
when an attack happened or a new network routing strategy was tested.

There are other attributes in addition to time where applications may solve
range median problems. For example, S[i] may be the total value of real estate
sold in postal zipcode area i arranged in sorted order, and an analyst may
be interested in the median value for a borough or a city represented by a
consecutive set of zipcodes. �
One can ask similar interval versions of other problems too, for example, the
median may be replaced by (say) the maximum, minimum, mode or even the
sum.

– For sum, a trivial O(n) preprocessing to compute all the prefix sums P [j] =
∑

i≤j S[i] suffices to answer any interval query Qj = [lj , rj] in optimal O(1)
time using P [rj] − P [lj − 1].

– If the summation operator (i.e.,
∑

) is replaced by a semigroup operator
(where the subtraction operator is absent), then S can be preprocessed in
O(nk) space and time and each query can be answered in O(αk(n)) where
αk is a slow growing function [Yao82], and this is optimal under general
semigroup conditions [Yao85].

– For the special cases of the semigroup operator such as the maximum or
minimum, a somewhat nontrivial algorithm is needed to get same optimal
bounds as for the

∑
case (see for example [BFC04]).

Range Medians 505

The median operator is not a semigroup operator and presents a more difficult
problem. The only prior results we know are obtained by using the various
tradeoffs shown in [KMS05]. For the case when k = 1, the interesting tradeoffs
for preprocessing time and query times are respectively, roughly, O(n log2 n) and
O(log n), or O(n2) and O(1), or O(n) and O(nε) for constant fraction ε [KMS05].
These bounds for individual queries can be directly applied to each of the k
interval queries in our problem, resulting in a multiplicative k factor in the
query complexity. In particular, the work of Krizanc et al. [KMS05] implies an
O
(
n log2 n+ k logn

)
time algorithm for our problem.

Our main result is as follows.

Theorem 1. There is a deterministic algorithm to solve the k-range-medians
problem in O(n log k+k log k logn) time. Furthermore, in the comparison model,
any algorithm that solves this problem requires Ω(n log k) comparisons.

The k-range-medians problem seems to be a fairly basic problem and it is worth-
while to have tight bounds for it. In particular, Θ(n log k) may not be the bound
one suspects at first glance to be tight for this problem. For k = O(n/logn), our
algorithm is optimal. It also improves [KMS05] for k = O(n).

The lower bound holds even if the set of intervals is hierarchical, that is, for
any two intervals in the set, either one of them is contained in the other, or they
are disjoint. On the other hand, the upper bound holds even if the queries arrive
online, in the amortized sense. Our algorithm uses relaxed sorting on pieces of the
array, where only a subset of items in a piece is in their correct sorted location.
Relaxed sorting like this has been used before for other problems, for example,
see [AY89].

In the following, the kth element of a set S (or element of rank k) would refer
to the kth smallest element in the set S. For simplicity, we assume the elements
of S are all unique.

2 The Lower Bound

Recall that S is an unsorted array of n elements. Assume that n is a multiple of
k. Let Ψ(n, k) =

{
in
k

∣
∣
∣ i = 1, . . . , k

}
, for n > k > 0. We will say an element of S

is the ith element of S if its rank in S is i.

Claim. Any algorithm MedianAlg that computes all the elements of rank in
Ψ(n, k) from S needs to perform Ω(n log k) comparisons in the worst case.

Proof. Let mi = in/k, for i = 0, . . . , k. An element would be labeled i if it is
larger than the mi−1th element of S and smaller than the mith element of S

(note, that the mkth element of S is the largest element in S). An element would
be unlabeled if its rank in S is in Ψ(n, k).

Note, that the output of the algorithm is the indices of the k unlabeled ele-
ments. We will argue that just computing these k numbers requires Ω(n log k)
time.

506 S. Har-Peled and S. Muthukrishnan

Consider an execution of MedianAlg on S. We consider the comparison tree
model, where the input travels down the decision tree from the root, at any
vertex a comparison is being made, the and the input is directed either to the
right or left child depending on the result of the comparison.

A labelling (at a vertex v of the decision tree) is consistent with the compar-
isons seen so far by the algorithm if there is an input with this labelling, such
that it agrees with all the comparisons seen so far and it reaches v during the
execution. Let Z be the set of labellings of S consistent with the comparisons
seen so far at this vertex v.

We claim that if |Z| > 1 then the algorithm can not yet terminate. Indeed,
in such a case there are at least two different labellings that are consistent with
the comparisons seen so far. If not all the labellings of Z have the same set of k
elements marked as unlabeled, then the algorithm has different output (i.e., the
output is just the indices of the unlabeled elements), and as such the algorithm
can not terminate.

So, let S[α] be an element that has two different labels in two labellings of
Z. There exists two distinct inputs B = [b1, . . . , bn] and C = [c1, . . . , cn] that
realizes these two labellings. Now consider the input D(t) = [d1(t), . . . , dn(t)],
where di(t) = bi(1 − t) + tci, for t ∈ [0, 1] and i = 1, . . . , n. We can perturb the
numbers b1, . . . , bn and c1, . . . , cn so that there is never a t ∈ [0, 1] for which
three entries of D(·) are equal to each other (this can be guaranteed by adding
random infinitesimal noise to each number, and observing that the probability
of this bad event has measure zero). Note that D(0) = B and D(1) = C.

Furthermore, since for the inputs B and C our algorithm had reached the
same node (i.e., v) in the decision tree, it holds that for all the comparisons
the algorithm performed so far, it got exactly the same results for both
inputs.

Now, assume without loss of generality, that the label for bα in B is strictly
smaller than the label for cα in C. Clearly, for some value of t in this range,
denoted by t∗, dα(t) must be of rank in the set {m1, . . . ,mk}. Indeed, as t
increases from 0 to 1, the rank of dα(t) starts at the rank of bα in B, and
ends up with the rank of cα in C. But D(t∗) agrees with all the comparisons
seen by the algorithm so far (since if bi < bj and ci < cj then di(t) < dj(t),
for t ∈ [0, 1]). We conclude that the assignment that realizes D(t∗) must leave
dα(t) unlabeled. Namely, the set Z has two labellings with different sets of k
elements that are unlabeled, and as such the algorithm can not terminate and
must perform SOME more comparisons if it reached v (i.e., v is not a leaf of the
decision tree).

Thus, the algorithm can terminate only when |Z| = 1. Let β = n/k − 1, and
observe that in the beginning of MedianAlg execution, it has

M =
n!

k!(β!)k

possible labellings for the output. Indeed, a consistent labeling, is made out of k
unlabeled elements, and then β elements are labeled by i, for i = 1, . . . , k. Now,
by Stirling’s approximation, we have

Range Medians 507

M ≥ (βk)!

(β!)k
≈

√
2πβk (βk)βk

eβk

(√
2πβ ββ

eβ

)k

(βk)!

(β!)k
=

√
2πβk(βk)βk

(√
2πβββ

)k
= kβk

√
2πβk

(√
2πβ

)k
.

Each comparison performed can only half this set of possible labellings, in the
worst case. It follows, that in the worst case, the algorithms needs

Ω(logM) = Ω

(

βk log k − k

2
log(2πβ)

)

= Ω(βk log k) = Ω(n log k)

comparisons, as claimed.

Lemma 1. Solving the k-range-medians problem requires Ω(n log k) compar-
isons.

Proof. We will show that given an algorithm for the k-range-medians problem,
one can reduce it, in linear time, to the problem of Claim 2. That would imme-
diately imply the lower bound.

Given an input array S of size n, construct a new array T of size 4n where
the first n elements of T are −∞, T[n + 1, . . . , 2n] = S, and T[j] = +∞, for
j = 2n + 1, . . . , 4n. Clearly, the �th element of S is the median of the range
[1, 2n+ 2�− 1] in T. Thus, we can solve the problem of Claim 2 using k median
range queries, implying the lower bound.

Observe that the lower bound holds even for the case when the intervals are
hierarchical.

3 Our Algorithm

We first consider the case when all the query intervals are provided ahead of
time. We will present a slow algorithm first, and later show how to make it
faster to get our bounds. Our algorithm uses the following folklore result.

Theorem 2. Given � sorted arrays with total size n, there is a deterministic
algorithm to determine median of the set formed by the union of these arrays
using O(� log(n/�)) comparisons.

Since we were unable to find a reference to precisely this result beyond [KMS05]
where a slightly weaker result is stated as a folklore claim, we describe this
algorithm in Appendix A.

3.1 A Slow Algorithm

Here we show how to solve the k-range-medians problem.
Let I1, . . . , Ik be the given (not necessarily disjoint) k intervals in the array

S[1..n]. We break S into (at most) 2k− 1 atomic disjoint intervals labeled in the
sorted order B1, . . . , Bm, such that an atomic interval does not have an endpoint

508 S. Har-Peled and S. Muthukrishnan

of any Ii inside it. Next, we sort each one of the Bi’s, and build a balanced binary
tree having B1, . . . , Bm as the leaves in this order. In a bottom-up fashion we
merge the sorted arrays sorted in the leaves, so that each node v stores a sorted
array Sv of all the elements stored in its subtree. Let T denote this tree that has
height O(log k).

Now, computing the median of an interval Ij , is done by extracting the
O(log k) suitable nodes in T that cover Ij . Next, we apply Theorem 2, and using
O(log n log k) comparisons, we get the desired median. We now apply this to
the k given intervals. Observe that sorting the atomic intervals takes O(n log n)
comparisons and merging them in O(log k) levels takes O(n log k) comparisons
in all. This gives:

Lemma 2. The algorithm above uses O(n log n+ k logn log k) comparisons.

Note, that this algorithm is still mildly interesting. Indeed, if the intervals
I1, . . . , Ik are all “large”, then the running time of the naive algorithm is O(nk),
and the above algorithm is faster for k > logn.

3.2 Our Main Algorithm

The main bottleneck in the above solution was the presorting of the pieces of
the array corresponding to atomic intervals. In the optimal algorithm below, we
do not fully sort them.

Definition 3. A subarray X is u-sorted if there is a sorted list LX of at most
(say) 20u elements of X such that these elements appear in this sorted order in X
(not necessarily as consecutive elements). Furthermore, for an element α of LX ,
all the elements of X smaller than it appear before it in X and all the elements
larger than α appear after α in X. Finally, we require that the distance between
two consecutive elements of LX in X is at most |X |/u, where |X | denotes the
size of X. We will refer to the elements of X between two consecutive elements
of LX as a segment.

An array X of n elements that is n-sorted is just sorted, and a 0-sorted array is
unsorted. Another way to look at it, is that the elements of LX are in their final
position in the sorted order, and the elements of the intervals are in an arbitrary
ordering.

Lemma 3. Given an unsorted array X, it can be u-sorted using O(|X | log u)
comparisons, where |X | denotes the number of elements of X.

Proof. We just find the median of X , partition X into two equal size subar-
rays, and continue recursively on the two subarrays. The depth the recursion is
O(log u), and the work at each level of the recursion is linear, which implies the
claim.

Lemma 4. Given a two u-sorted arrays X and Y , they can be merged into an
u-sorted array using O(|X | + |Y |) comparisons.

Range Medians 509

Proof. Convert Y into a linked list. Insert the elements of LX into Y . This can be
done by scanning the list of Y until we arrive at the segment Yi of Y that should
contain an element b of LX that we need to insert. We partition this segment
using b into two intervals, add b to LY , and continue in this fashion with each such
b. This takes O(|Yi|) = O(|Y |/u) comparisons per b (ignoring the scanning cost
which is O(|Y |) overall). Let Z be the resulting u-sorted array, which contains
all the elements of Y and all the elements of LX , and LZ = LX ∪LY . Computing
Z takes

O

(

|Y | + |LX | |Y |
u

)

= O(|Y |)

comparisons.
We now need to insert the elements of X \ LX into Z. Clearly, if a segment Xi

of X has αi elements of LZ in its range, then inserting the elements of Xi would
take O(|Xi| logαi) comparisons. Thus, the total number of comparisons is

O

(
∑

i

|Xi| logαi

)

= O

(
∑

i

|X |
u

logαi

)

= O

(
|X |
u

∑

i

αi

)

= O(X) ,

since |Xi| ≤ |X |/u, logαi ≤ αi and
∑

i αi = O(u).
The final step is to scan over Z, and merge consecutive intervals that are too

small (removing the corresponding elements from LZ), such that each interval is
of length at most |Z|/u. Clearly, this can be done in linear time. The resulting
Z is u-sorted since its sorted list contains at most 2u + 1 elements, and every
interval is of length at most |Z|/u.

Note, that the final filtering stage in the above algorithm is need to guarantee
that the resulting list LZ size is not too large, if we were to use this merging
step several times.

In the following, we need a modified version of Theorem 2 that works for
u-sorted arrays.

Theorem 4. Given � u-sorted arrays A1, . . . , A� with total size n and a rank k,
there is a deterministic algorithm that returns � subintervals B1, . . . , B� of these
arrays and a number k′, such that the following properties hold.

(i) The k′th ranked element of B1 ∪ · · · ∪ B� is the kth ranked element of
A1 ∪ · · · ∪A�.

(ii) The running time is O(� log(n/�)) time.
(iii)

∑�
i=1 |Bi| = O(� · (n/u)).

Proof. For every element of LAi realizing the u-sorting of the array Ai, we as-
sume we have its rank in Ai precomputed. Now, we execute the algorithm of
Theorem 2 on these (representative) sorted arrays (taking into account their
associated rank). (Note that the required modifications of the algorithm of The-
orem 2 are tedious but straightforward, and we omit the details.) The main
problem is that now the rank of an element is only estimated approximately

510 S. Har-Peled and S. Muthukrishnan

up to an (additive) error of n/u. In the end of process of trimming down the
representative arrays, we might still have active intervals of total length 2n/u
in each one of these arrays, resulting in the bound on the size of the computed
intervals.

Using the theorem above as well as two lemmas above, we get the following
result, which is building up to the algorithmic part of Theorem 1.

Lemma 5. There is a deterministic algorithm to solve the k-range-medians
problem in O(n log k + k log k logn) time, when the k query intervals are pro-
vided in advance.

Proof. We repeat the algorithm of Section 3.1 using u-sorting instead of sorting,
for u to be specified shortly. Building the data-structure (i.e., the tree over the
atomic intervals) takes O(n log u) comparisons. Indeed, we first u-sort the atomic
intervals, and then we merge them as we go up the tree.

A query of finding the median of array elements in an interval is now equiva-
lent to finding the median for m = O(log k) u-sorted arrays A1, . . . , Am. Using
the algorithm of Theorem 4 results in m intervals B1, . . . , Bm that belong to
A1, . . . , Am, respectively, such that we need to find the k′th smallest element in
B1 ∪ . . . ∪ Bm. The total length of the Bis is O(mn/u). Now we can just use
the brute force method. Merge B1, . . . , Bm into a single array and find the k′th
smallest element using the classical algorithm. This take O(mn/u) comparisons.
We have to repeat this k times, and the number of comparisons we need is

O
(
km

n

u
+ km logn

)
= O(n + k log k logn),

for u = k2, since m = O(log k). Thus, in all, the number of comparisons using
by the algorithm is O(n log k + k log k log n).

We can extend this bound to the case when the intervals are presented in an
online manner, and we get amortized bounds.

Lemma 6 (When k is known in advance). There is a deterministic algo-
rithm to solve the k-range-medians problem in O(n log k + k log k logn) time,
when the k query intervals are provided in an online fashion, but k is known in
advance.

Proof. The idea is to partition the array into u, u ≤ k2 atomic intervals all of the
same length, and build the data-structure of these atomic intervals. The above
algorithm would work verbatim, except for every query interval I, there would
be two “dangling” atomic intervals that are of size n/u that contain the two
endpoints of I.

Specifically, to perform the query for I, we compute m = O(log k) u-sorted
arrays using our data-structure. We also take these two atomic intervals, clip
them into the query interval, u-sort them, and add them to the m u-sorted arrays
we already have. Now, we need to perform the median query over these O(log k)

Range Medians 511

u-sorted arrays, which we can do, as described above. Clearly, the resulting
algorithm has running time

O
(
n log u+ k log u logn+ k

n

u
log u

)
= O(n log k + k log k logn) ,

since u = k2.

Lemma 7 (When k is not known in advance). There is a deterministic
algorithm to solve the k-range-medians problem in O(n log k+k log k logn) time,
when the k query intervals are provided in an online fashion.

Proof. We will use the algorithm of Lemma 6.
At each stage, we have a current guess to the number of queries to be per-

formed. In the beginning this guess is a constant, say 10. When this number of
queries is exceeded, we square our guess, rebuild our data-structure from scratch
for this new guess, and continue. Let k1 = 10 and ki = (ki−1)2 be the sequence of
guesses, for i = 1, . . . , β, where β = O(log log k). We have that the total running
time of the algorithm is

β∑

i=1

O(n log ki + ki log ki logn) = O(n log k + k log k log n),

since log ki−1 = (log ki)/2, for all i.

Lemma 7 implies the algorithmic part of Theorem 1.

4 Concluding Remarks

The k-range-medians problem is a natural interval generalization of the classical
median finding problem: unlike interval generalizations of other problems such as
max, min or sum which can be solved in linear time, our problem (surprisingly)
needs Ω(n log k) comparisons, and we present an algorithm that solves this prob-
lem with running time (and number of comparisons) O(n log k+k log k logn). A
number of technical problems remain and we list them below.

– Currently, our algorithm uses O(n log k) space. It would be interesting to
reduce this to linear space.

– Say the elements are from an integer range 1, . . . , U . Can we design o(n)
time algorithms in that case using word operations? For the classical median
finding problem, both comparison-based and word-based algorithms take
O(n) time. But given that the comparison-based algorithm needs Ω(n log k)
comparisons for our k-range-medians problem, it now becomes interesting if
word-based algorithms can do better for integer alphabet.

– Say one wants to only answer median queries approximately for each in-
terval (see [BKMT05] for some relevant results). Can one design o(n log k)
algorithms?

512 S. Har-Peled and S. Muthukrishnan

Suppose the elements are integers in the range 1, . . . , U . We define an ap-
proximate version where the goal is to return an element within (1±ε) of the
correct median in value, for some fixed ε, 0 < ε < 1. Then we can keep an
exponential histogram with each atomic interval of the number of elements
in the range [(1 + ε)i, (1 + ε)i+1) for each i, and follow the algorithm outline
here constructing them for all the suitably chosen intervals on the balanced
binary tree atop these atomic intervals. For each interval in the query, one
can easily merge the exponential histograms corresponding to and obtain
an algorithm that takes time O(n+ k log k logU), since any two exponential
histograms can be merged in O(logU) time. If the elements are not integers
in the range 1, . . . , U and one worked in the comparison model, similar re-
sults may be obtained using [GK01, GK04], or ε-nets. It is not clear if these
bounds are optimal.

– We believe extending the problem to two (or more) dimensions is also of
interest. There is prior work for range sum and minimums, but tight bounds
for k range medians will be interesting.

Acknowledgements. The authors would like to thank the anonymous referees
for their careful reading, useful comments and references. In particular, they
identified mistakes in an earlier version of this paper.

References

[AY89] Altman, T., Yoshihide, I.: Roughly sorting: Sequential and parallel ap-
proach. Journal of Information Processing 12(2), 154–158 (1989)

[BFC04] Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified.
Theo. Comp. Sci. 321(1), 5–12 (2004)

[BFP+73] Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time
bounds for selection. J. Comput. Sys. Sci. 7(4), 448–461 (1973)

[BJ85] Bent, S.W., John, J.W.: Finding the median requires 2n comparisons. In:
Proc. 17th Annu. ACM Sympos. Theory Comput., pp. 213–216 (1985)

[BKMT05] Bose, P., Kranakis, E., Morin, P., Tang, Y.: Approximate range mode and
range median queries. In: Proc. 22nd Internat. Sympos. Theoret. Asp.
Comp. Sci., pp. 377–388 (2005)

[DZ99] Dor, D., Zwick, U.: Selecting the median. SIAM J. Comput. 28(5), 1722–
1758 (1999)

[DZ01] Dor, D., Zwick, U.: Median selection requires (2+ ε)n comparisons. SIAM
J. Discret. Math. 14(3), 312–325 (2001)

[GK01] Greenwald, M., Khanna, S.: Space-efficient online computation of quantile
summaries. In: Proc. 2001 ACM SIGOD Conf. Mang. Data, pp. 58–66
(2001)

[GK04] Greenwald, M., Khanna, S.: Power-conserving computation of order-
statistics over sensor networks. In: Proc. 23rd ACM Sympos. Principles
Database Syst., pp. 275–285 (2004)

[KMS05] Krizanc, D., Morin, P., Smid, M.: Range mode and range median queries
on lists and trees. Nordic J. Comput. 12(1), 1–17 (2005)

Range Medians 513

[KMZ03] Korn, F., Muthukrishnan, S., Zhu, Y.: Checks and balances: Monitoring
data quality problems in network traffic databases. In: Proc. 29th Intl.
Conf. Very Large Data Bases, pp. 536–547 (2003)

[MR95] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge Univer-
sity Press, New York (1995)

[SPP76] Schönhage, A., Paterson, M., Pippenger, N.: Finding the median. J. Com-
put. Sys. Sci. 13(2), 184–199 (1976)

[Yao82] Yao, A.C.: Space-time tradeoff for answering range queries. In: Proc. 14th
Annu. ACM Sympos. Theory Comput., pp. 128–136 (1982)

[Yao85] Yao, A.C.: On the complexity of maintaining partial sums. SIAM J. Com-
put. 14(2), 277–288 (1985)

A Choosing Median from Sorted Arrays

In this section, we prove Theorem 2 by providing a fast deterministic algorithm
for choosing the median element of � sorted arrays. As we mentioned before, this
result seems to be known, but we are unaware of a direct reference to it, and as
such we provide a detailed algorithm.

A.1 The Algorithm

Let A1, . . . , A� be the given sorted arrays of total size n. We maintain � active
ranges [li, ri] of the array Ai where the required element (i.e., “median”) lies,
for i = 1, . . . , �. Let k denote the rank of the required median. Let ncurr =
∑

i(ri − li + 1) be the total number of currently active elements.
If ncurr ≤ 32�, then we find the median in linear time, using the standard

deterministic algorithm. Otherwise, let Δ = �ncurr/(32�)�. Pick ui − 1 equally
spaced elements from the active range of Ai, where

ui = 4 +
⌈
ri − li + 1

Δ

⌉

.

Let Li be the resulting list of representatives, for i = 1, . . . , �. Note that Li

breaks the active range of Ai into blocks of size

νi ≤
⌈
ri − li + 1

ui

⌉

.

For each element of Li we know exactly how many elements are smaller than it
and larger than it in the ith array. Merge the lists L1, . . . , L� into one sorted list
L. For an element x, let rank(x) denote the rank of x in the set A1 ∪ . . . ∪ A�.
Note, that now for every element x of L we can estimate its rank(x) to lie within
an interval of length T =

∑�
i=1 νi. Indeed, we know for an element of x ∈ L

between what two consecutive representatives it lies for all � arrays. For element
x ∈ L, let R(x) denote this range where the rank of x might lie.

Now, given two consecutive representatives x and y in the ith array, if k /∈ R(x)
and k /∈ R(y) then the required median cannot lie between x and y, and we can

514 S. Har-Peled and S. Muthukrishnan

shrink the active range not to include this portion. In particular, the new active
range spans all the blocks which might contain the median. The algorithm now
updates the value of k and continues recursively on the new active ranges.

A.2 Analysis

The error estimate for the rank of a representative is bounded by

U =
�∑

i=1

νi ≤ � +
�∑

i=1

ri − li + 1

ui
≤ � +

�∑

i=1

ri − li + 1

4 + ri−li+1
Δ

= � + Δ
�∑

i=1

ri − li + 1

4Δ + ri − li + 1

≤ � + �Δ ≤ ncurr

32
+ �

⌊ncurr

32�

⌋
≤ ncurr

16
,

since � ≤ ncurr/32 and by the choice of Δ.
Consider the sorted merged array B of all the active elements. The length

of B is ncurr, and assume, for the sake of simplicity of exposition, that the
desired median is in the second half of B (the other case follows by a symmetric
argument). Note, that any representative x that fall in the first quarter of B
has a rank that lies in a range shorter than T < ncurr/4, and as such it cannot
include k. In particular, let ti be the index in Ai of the first representative in the
active range (of Ai) that does not falls in the first quarter of B. Observe that∑

i(ti−li +1) ≥ ncurr/4. The total number of elements that are being eliminated
by the algorithm (in the top of the recursion) is at least

∑

i

((ti − li + 1) − 2νi) ≥
∑

i

(ti − li + 1) − 2
∑

i

νi =
ncurr

4
− 2U ≥ ncurr

8
.

Namely, each recursive call continues on total length of all active ranges smaller
by a factor of (7/8) from the original array.

The total length of L1, . . . L� is O(�), and as such the total work (ignoring the
recursive call) is bounded by O(� log �). The running time is bounded by

T (ncurr) = O(� log �) + T ((7/8)ncurr) ,

where T (�) = O(� log �). Thus, the total running time is O(� log � log(ncurr/�)).

A.3 Doing Even Better - A Faster Algorithm

Observe, that the bottleneck in the above algorithm is the merger of the repre-
sentative lists L1, . . . , L�. Instead of merging them, we will compute the median
x of L = L1 ∪ . . . ∪ L�. If R(x) does not contain k, then we can throw away
at least ncurr/4 elements in the current active ranges and continue recursively.
Otherwise, compute the element z of rank ncurr/4 in L. Clearly, k /∈ R(z) and
one can throw, as above, as constant fraction of the active ranges. The resulting
running time (ignoring the recursive call) is O(�) (instead of O(� log �)). Thus,
the running time of the resulting algorithm is O(� log(ncurr/�)).

Locality and Bounding-Box Quality of

Two-Dimensional Space-Filling Curves

Herman Haverkort and Freek van Walderveen

Dept. of Computer Science, Eindhoven University of Technology, the Netherlands
cs.herman@haverkort.net, freek@vanwal.nl

Abstract. Space-filling curves can be used to organise points in the
plane into bounding-box hierarchies (such as R-trees). We develop mea-
sures of the bounding-box quality of space-filling curves that express how
effective different curves are for this purpose. We give general lower
bounds on the bounding-box quality and on locality according to Gots-
man and Lindenbaum for a large class of curves. We describe a generic
algorithm to approximate these and similar quality measures for any
given curve. Using our algorithm we find good approximations of the
locality and bounding-box quality of several known and new space-filling
curves. Surprisingly, some curves with bad locality by Gotsman and Lin-
denbaum’s measure, have good bounding-box quality, while the curve
with the best-known locality has relatively bad bounding-box quality.

1 Introduction

A space-filling curve is a continuous, surjective mapping from R to Rd. Peano
showed that such mappings exist for d = 2 and d = 3 [15]. Since then, quite
a number of space-filling curves have appeared in the literature. Sagan wrote
an extensive treatise [16], which discusses most curves included in our study.
Space-filling curves are applied in areas as diverse as load balancing for grid
computing, colour space dimension reduction, small antenna design, I/O-efficient
computations on massive matrices, and the creation of spatial data indexes.

In this paper, we focus on the last application. We consider the following type
of spatial data indexes for points in the plane. The data points are organised
in blocks of at most B points, for some parameter B, such that each point is
stored in one block. With each block we associate a bounding box, which is
the smallest axis-aligned rectangle that contains all points stored in the block.
The block bounding boxes are then organised in an index structure. Queries
are answered as follows: to find all points intersecting a query window Q, we
query the index for all bounding boxes that intersect Q; then we retrieve the
corresponding blocks, and check the points stored in those blocks. To find the
nearest neighbour to a query point q, one can use the index to search blocks in
order of increasing distance from q. Thus one retrieves exactly the blocks whose
bounding boxes intersect the largest empty circle around q.

An R-tree [12] is an example of the type of structure described above: the
blocks constitute the leaves of the tree, and the higher levels of the tree act as

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 515–527, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

516 H. Haverkort and F. van Walderveen

(a)

space-filling curve

block (leaf) bounding box

input point (b)

p

q

Fig. 1. (a) Leaves of an R-tree with B = 3. (b) L2-locality ratio between p and q =
squared Euclidean distance between p and q, divided by the area covered by the curve
section S between p and q: (62 + 52)/87 ≈ 0.70. Bounding-box area ratio between p
and q = area of the bounding-box of the curve section S between p and q, divided by the
area covered by S: 12 · 12/87 ≈ 1.66. (WBA is the maximum over all pairs p and q).

an index structure for the block bounding boxes. In practice the query response
time is mainly determined by the number of blocks that need to be retrieved:
this is because the bounding box index structure can often be cached in main
memory, while the blocks with data points are stored on slow external memory.

To build an R-tree one needs to organise the input points into blocks. One
way of doing this is is by ordering the input points along a space-filling curve [9]
and then putting each next group of B points together in a block (see Fig. 1(a)).

Since the number of blocks retrieved to answer a query is simply the number
of bounding boxes intersected, it is important that the ordering induced by the
space-filling curve makes us fill each block with points that lie close to each other
and thus have a small bounding box. In fact, if the data and query points lie
within a square of area 1, the average number of blocks retrieved for uniformly
distributed point queries is simply the total area of the bounding boxes. For
uniformly distributed line queries, the average number of blocks retrieved is
proportional to the total perimeter of the bounding boxes. Therefore our goal is
to have bounding boxes with small (total) area and small (total) perimeter.

Our results. We investigate which space-filling curves sort points into bounding
boxes with small (total) area and small (total) perimeter most effectively. To
this end we propose new quality measures of space-filling curves that express
how effective different curves are. We also provide an algorithm to compute
approximations of these and similar quality measures for any given curve. We
give approximations of known measures of so-called curve-to-plane locality and
of our new bounding-box quality measures for several well-known and new curves.

The known locality measures considered are the maximum, over all contiguous
sections S of a space-filling curve, of the squared L∞-, L2- or L1-distance between
the endpoints of S divided by the area covered by S [6], see Fig. 1(b). Our first
new measure is the maximum, over all contiguous sections S of a space-filling
curve, of the area of the bounding box of S divided by the area covered by S. We
call this measure the worst-case bounding-box area ratio (WBA, Fig. 1(b)). Our
second new measure considers 1/16 of the squared perimeter instead of the area,
and we call it worst-case bounding-box squared perimeter ratio (WBP). We prove

Bounding-Box Quality of Space-Filling Curves 517

that WBA and WBP are at least 2 for a large class of space-filling curves. We
also show that this class of curves has L2-locality at least 4, thus complementing
earlier results by Niedermeier et al. [13] who proved this for another class of
space-filling curves. We present a new, balanced variation on Peano’s space-filling
curve with a WBA-value of 2.000 and a WBP-value of 2.155. This variation also
performs very well on L∞-, L2- and L1-locality.

Both WBA and WBP consider the worst case over all possible subsections of
the curve. However, in the context of our application, it may be more relevant to
study the total bounding box area and perimeter of a set of disjoint subsections
of the curve that together cover the complete curve. Therefore we study the
total bounding box area and perimeter of random subdivisions of the curve into
subsections. Here we find that many curves perform roughly equally well, but
those with particularly bad WBA- or WBP-values, such as the Sierpiński-Knopp
curve [16] or H-order [13], are clearly suboptimal.

In the full paper [7], we also estimate the total diameter of the subsections in
random subdivisions of the curve and present results for octagonal (instead of
rectangular) bounding boxes.

2 Describing and Using Space-Filling Curves

Since we are concerned with the use of space-filling curves as a way to order
points in the plane, we choose a method to describe space-filling curves that is
based on defining how to order the space inside a (usually square) unit region.

We define an order (scanning order) ≺ of points in the plane as follows. We
give a set of rules, each of which specifies (i) how to subdivide a region in the
plane into subregions; (ii) what is the order of those subregions; and (iii) for
each subregion, which rule is to be applied to establish the order within that
subregion. We also specify a unit region of area 1 for each order (usually the
unit square), and we indicate what rule is used to subdivide and order it. We
assume that all data that should be ordered is scaled to lie within the unit region.

The definitions of the scanning orders discussed in this paper are shown in
Fig. 2. Each rule is identified by a letter, and pictured by showing a region, its
subdivision into subregions, the scanning order of the subregions (by numbers
{0,1,2,...}), and the rules applied to the subregions (by letters). Variations of
rules that consist of simply rotating or mirroring the order of and within sub-
regions, are indicated by rotating or mirroring the letter identifying that rule.
Variations that consist of reversing the order of and within the subregion are
indicated by an overscore (Fig. 2(k,l,m))—making reversals explicit is the main
difference between our notation and, for example, Asano et al. [2] or Wierum [17].

We can now see how we can implement a comparison operator that allows us
to sort points according to a given scanning order. To decide whether p precedes
q in the order, we determine in which subregions of the unit region p and q lie.
If they are in different regions, p precedes q if and only if p lies in the lowest-
numbered region of the two. If p and q lie in the same region, we compare them
according to the rule for that subregion recursively.

518 H. Haverkort and F. van Walderveen

2 3 8

1 4 7

0 5 6

2 3 8

1 4 7

0 5 6

2 3 8

1 4 7

0 5 6

2 3 8

1 4 7

0 5 6

2 3 8

1 4 7

0 5 6

2 3 4

1 6 5

0 7 8

0

1

Unit square:

0 1

1 2

30

10

2 3 0

1 2

3 0

1 2

3

2 3

10

1 2

30

1 2

30

1 2

30
0

1

6
2

3

4
5

0 1 2

h
√

3

h

(a) GP order

(d) Meurthe order

(b) Serpentine 011 010 110 order (c) Luxburg Variation 2

(e) Coil order (Luxburg Variation 1) (f) R order

(g) Balanced GP order (h) Sierṕınski-Knopp order

(i) Hilbert order (j) Z order (k) βΩ order

(l) AR2W 2 order (m) Gosper flowsnake order

Fig. 2. Space-filling curve definitions and example approximating polylines

Each drawing in Fig. 2 includes a curve that roughly indicates the scanning
order within the subdivisions. To obtain an arbitrarily fine approximation of a
space-filling curve corresponding to a given scanning order, we may compute the
subdivision of the unit region into subregions recursively to the desired depth of
recursion, and connect the centre points of the resulting subregions by a polygo-
nal curve in the order specified by the rules. Fig. 2 includes a small example for
each scanning order. In the rest of this paper, whenever we write “space-filling
curve”, what we really mean is the scanning order that defines it.

The scanning orders considered in this paper are the following.

– GP-order, producing the curve described by G. Peano [15] (Fig. 2(a)). We
call this order GP-order instead of Peano order to avoid confusion with other
curves that have been referred to as the Peano curve by other authors.

– A number of variations following a scheme by Wunderlich [18] (Fig. 2(a–f));
some of these were also studied by Luxburg [11].

Bounding-Box Quality of Space-Filling Curves 519

– A new variation of our own, obtained from GP-order by scaling the horizon-
tal dimension by a factor

√
3. As we will see later, this balanced GP-order

(Fig. 2(g)) has much better locality properties than the original GP-order.
– Sierpiński-Knopp order, producing the Sierpiński-Knopp curve [16]. It or-

ders triangular regions, and can be used to order points as described above.
Niedermeier et al. [13] describe a variation called H-order. For all purposes
in our paper, Sierpiński-Knopp order and H-order are equivalent. (Fig. 2(h))

– Hilbert order, producing Hilbert’s curve [8] (Fig. 2(i)).
– Z-order, which follows a space-filling curve by Lebesgue [10] (Fig. 2(j)).
– βΩ-order (Fig. 2(k)), by Wierum [17].
– AR2W 2-order (Fig. 2(l)), by Asano et al. [2].
– the Gosper flowsnake order (Fig. 2(m)) [5].

3 Quality Measures for Space-Filling Curves

Before we can discuss and analyse quality measures for space-filling curves in
detail, we need to introduce some notation. For ease of writing, we assume that in
any particular scanning order, each rule contains the same number of subregions.

A rule of a scanning order defines how to subdivide a unit region C of size
(area) 1 into n subregions, numbered 0, ..., n − 1. The scanning order inside
subregion i is given by applying a transformation τ(i) to the unit region C. For
any base-n number a we use a′ to denote its first digit, and a′′ to denote the
remaining digits. We use C(a) as a shorthand for τ(a′)(C(a′′)), where C(∅) = C.
For example, C(538) is subregion 8 of subregion 3 of subregion 5, and it is found
by applying transformation τ(5) to C(38). Similarly, we use τ(a) as a shorthand
for τ(a′) ◦ τ(a′′), where τ(∅) is the identity transformation.

By |A| we denote the size of a region A. We have 0 < |C(i)| < 1 for all 0 ≤ i <
n (there are no empty subregions in the rules), and

∑
0≤i<n |C(i)| = |C| = 1.

Let Nk denote the set of k-digit base-n numbers. We write a ≺ b if, in base-n
notation, a and b have the same number of digits and a < b. By C(� b) we denote
the union of subregion b and its predecessors, that is,

⋃b′−1
i=0 C(i)∪τ(b′)(C(� b′′)),

where C(� ∅) = C. Define C(≺ b) := C(� b) \ C(b), C(. a) := C \ C(≺ a),
C(, a) := C \ C(� a), and C(a, b) := C(≺ b) \ C(≺ a).

We may sometimes talk about the distance between two points along the
curve. This may be a somewhat counter-intuitive concept for a curve that can
be refined and therefore lengthened indefinitely. However, the distance between
two points p and q along the curve is well-defined as the area filled by the section
of the curve that runs from p to q, or more precisely, as:

|C(p, q)| := lim
k→∞

min
a,b∈Nk s.t. p∈C(a),q∈C(b)

|C(a, b)|.

Pairwise locality measures We define locality with a generalised version of the
definition by Gotsman and Lindenbaum [6]:

WLr := lim
k→∞

sup
a,b∈Nk

dr(C(a), C(b))2

|C(a, b)| ,

520 H. Haverkort and F. van Walderveen

where dr(S, T) is the Lr-distance between the centre point (Sx, Sy) of S and
the centre point (Tx, Ty) of T . Thus dr(S, T) = (|Sx − Tx|r + |Sy − Ty|r)1/r for
r ∈ N, and d∞(S, T) = max(|Sx − Tx|, |Sy − Ty|). We call this measure WLr for
Worst-case Locality, as it indicates for points that lie close to each other on the
curve how far from each other they might get in the plane.

Pairwise bounding box measures. One may expect a relation between locality
and bounding box size. This is because points that lie close to each other along
the curve are likely to be put together in a block. Then, if the distance between
those points in the plane is small too, the block may have a small bounding box.
However, we may also try to measure bounding box size directly. We define two
measures to do so. The first is the worst-case bounding box area ratio (WBA):

WBA := lim
k→∞

sup
a,b∈Nk

|bbox(C(a, b))|
|C(a, b)| ,

where bbox(S) is the smallest axis-aligned rectangle that contains S. The second
measure is the worst-case bounding box square perimeter ratio (WBP):

WBP :=
1
16

· lim
k→∞

sup
a,b∈Nk

peri(bbox(C(a, b)))2

|C(a, b)| ,

where peri(S) is the perimeter of S in the L2 metric. Taking the square of the
perimeter is necessary, because otherwise WBP would be unbounded as k (the
resolution of the “grid”) goes to infinity. Since the rectangle of smallest perimeter
that has any given area is a square, we have WBP ≥ 1

16 (4
√

WBA)2 = WBA.

Total bounding box measures. For our application we argued that the average
query response time is related to the total area and perimeter of the bounding
boxes formed by grouping data points according to a given scanning order. When
the points are sufficiently densely distributed in the unit region, the gap in the
scanning order between the last point of a group and the first point in the
next group will typically be small. Thus the grouping practically corresponds to
subdividing the complete unit region into curve sections, of which we store the
bounding boxes. Therefore we define the average total bounding box area (ABA):

ABA := lim
k→∞

avga1≺a2≺...≺am−1∈Nk

(
m∑

i=1

|bbox(C(ai−1, ai))|
)

,

where a0 is defined as 0, am is defined as ∅, and the average is taken over
sets of m− 1 cutting points a1, ..., am−1 uniformly chosen from the unit region,
averaged over a range of values of m such that logm is uniformly distributed.
For the square average relative total bounding box perimeter (ABP) we consider
the total perimeter of m curve sections relative to 4

√
m:

ABP := lim
k→∞

(

avga1≺a2≺...≺am−1∈Nk

1
4
√
m

(
m∑

i=1

peri(bbox(C(ai−1, ai)))

))2

Bounding-Box Quality of Space-Filling Curves 521

f1

f2f3

f4

f5

f6

f7

f8

f9

f10f11

f12

p1

p2

p3

p4

p5

p6
p7

p8
p9

p10

p11

p12

Fig. 3. Corner rectangles in a grid. The smooth curve illustrates the order of the
rectangles along the curve. In each corner rectangle, we marked the outer corner and
we shaded the front part.

4 Lower Bounds

Theorem 1. Any scanning order that is based on recursively subdividing an
axis-aligned rectangle into a regular grid of rectangles has WBA ≥ 2.

Proof. Consider a subdivision of the unit rectangle into a regular grid of m
rectangles, following the rules of the scanning order recursively to the depth
where a grid of

√
m ×

√
m rectangles is obtained. We distinguish two cases:

either there is a pair of rectangles that are consecutive in the scanning order and
do not share an edge, or all pairs of consecutive rectangles share an edge.

In the first case, the bounding box of such a pair contains at least four rect-
angles, and thus the curve section that covers that pair results in WBA ≥ 2.

In the second case, let s1, ...sm be these rectangles in order along the space-
filling curve. For each rectangle si (1 < i ≤ m), let the edge of entry be the edge
shared with si−1, and for each rectangle si (1 ≤ i < m), let the edge of departure
be the edge shared with si+1. Among rectangles s2, s3, ..., sm−1, we distinguish
two types of rectangles: straight rectangles and corner rectangles. A rectangle is
straight if its edges of entry and departure are not adjacent. A corner rectangle
is a rectangle si whose edges of entry and departure share a vertex—we call this
vertex the inner corner, and the opposite vertex is the outer corner of si. The
front part of si is the part of si that appears before the outer corner in the order.

Now we number the corner rectangles t1, t2, ..., tk in the order in which they
appear on the curve, let p1, p2, ..., pk be their outer corners, and f1, f2, ..., fk

be the areas of their front parts (Fig. 3). Note that any sequence of at least√
m rectangles must include a corner rectangle, so k ≥

√
m. Consider the curve

section from pi to pi+2, for any i = 1, 2, ..., k − 2. Let the width of this section
(by number of rectangles) be w, let the height be h, and let n ≥ 3 be the number

522 H. Haverkort and F. van Walderveen

of rectangles from ti to ti+2 inclusive. Observe that because there is exactly one
corner rectangle between ti and ti+2, namely ti+1, we have w ≥ 2, h ≥ 2, and
w+h = n+1 (the +1 is because ti+1 counts towards both w and h). Now the area
of the curve section between pi and pi+2 is n− 1 + fi+2 − fi, and the area of its
bounding box is w·h ≥ 2(n−1). Hence we have WBA ≥ 2(n−1)/(n−1+fi+2−fi),
or equivalently, fi+2 − fi ≥ (2/WBA − 1)(n− 1).

For the sake of contradiction, suppose WBA < 2. From the above we get
f2i+2− f2i ≥ 2 · (2/WBA−1) for all i ∈ {1, 2, 3, ...,m′}, where m′ is � 1

2

√
m�−1.

Therefore 2/WBA − 1 ≤ 1
2m′

∑m′

i=1(f2i+2 − f2i) = 1
2m′ (f2m′+2 − f2) < 1

2m′ .
This must be true for any grid of rectangles that is obtained by refining the
subdivision recursively, following the rules of the scanning order. So we must
have limm→∞(2/WBA − 1) = 0 and thus limm→∞ WBA = 2. �

Theorem 2 ([7]). Any order with a rule that contains a triangle has WBA ≥ 2.

Niedermeier et al. [13] prove WL2 ≥ WL∞ ≥ 31/2 for scanning orders that
contain a section whose perimeter is an axis-aligned square. We found that their
proof technique can also be applied to triangular curve sections, where we obtain
WL2 ≥ 4. However, for scanning orders that contain rectangular (not square)
sections this would not work. Using our proof technique of Theorem 1 we obtain:

Theorem 3. Any scanning order that is based on recursively subdividing an
axis-aligned rectangle into a regular grid of rectangles has WL2 ≥ WL∞ ≥ 4.

Niedermeier et al. also proved WL2 ≥ WL∞ ≥ 4, but for another class of
scanning orders, namely those that contain a cyclic section (its end touches its
beginning) whose perimeter is an axis-aligned square.

5 Approximating the Worst-Case Measures

In this section we describe how we can obtain upper and lower bounds on the
quality measures such as the worst-case locality and the worst-case bound-
ing box quality measures defined in Section 3. For ease of description, we as-
sume that the scanning order is defined by a single recursive rule without
reversals.

Let μ be a mapping from regions to real numbers in a way that is invariant
under all transformations τ(i) involved in the recursive definition of the scanning
order. For example, μ(R) could be |bbox(R)|/|R|, or the square of the diameter of
R divided by |R|. Our goal is to approximate μ∗ = limk→∞ supi≺j∈Nk

μ(C(i, j)).
(We may also let μ depend on C(i) or C(j).) The mapping μ must be well-
defined when C(i, j) is not empty; when |C(i, j)| = 0 we may assume
μ(C(i, j)) = ∞.

We will compute the approximation of μ∗ by exploring probes. A probe P
is specified by three consecutive subsections of the order: a front section, a
midsection, and a tail section. The probe P thus describes a set of contigu-
ous subsections of the scanning order, namely all those subsections S that start

Bounding-Box Quality of Space-Filling Curves 523

1

0

2

3

(a)

1

0

2

3

3

0

2

1

(c) (d) (e)

(b)

Fig. 4. (a) The Hilbert order. (b) Base probe B02 of the Hilbert order. The dark
area is the midsection. (c) Canonical form P of B02. (d) Refinement r32(P) of P .
(e) The same refinement in canonical form: child P32 of P .

somewhere in the front section of P and end somewhere in the tail section
of P . For any probe P , let α(P) be the transformation that transforms C into
the front section of P ; let M(P) be the midsection of P ; and let ω(P) be the
transformation that transforms C into the tail section of P . A section P (i, j)
of a probe P is the region α(P)C(. i) ∪M(P) ∪ ω(P)C(≺ j). Let μ∗(P) be
the maximum value of μ(S) over all subsections S covered by the probe, that
is, μ∗(P) = limk→∞ supi,j∈Nk

μ(P (i, j)). A probe P may be rotated, mirrored,
scaled and/or reversed: this does not affect the value of μ∗(P).

All subsections of the scanning order can be captured by a set of probes
as follows. For 0 ≤ i < k < n, let base probe Bik be the probe with front
transformation τ(i), midsection

⋃
i<j<k C(j), and tail transformation τ(k). For

an example, see Fig. 4(a,b). We can prove μ∗ = max0≤i<k<n μ
∗(Bik) [7]. Let

refinement rij(P) of probe P , with i, j ∈ {0, ..., n − 1}, be the probe with
front transformation α(P) ◦ τ(i), tail transformation ω(P) ◦ τ(j), and
midsection α(P)(C(, i)) ∪ M(P) ∪ ω(P)(C(≺ j)); see Fig. 4(c,d). Since
P =

⋃
rij(P), we have μ∗(P) = maxμ∗(rij(P)). We say a probe P is in canon-

ical form if α(P) is the identity transformation. We can construct a canon-
ical form P of any probe P by setting α(P) to the identity transformation,
M(P) := α(P)−1(M(P)), and ω(P) := α(P)−1 ◦ ω(P); see Fig. 4(c,e). Since
μ is invariant under all transformations involved, we have μ∗(P) = μ∗(P).
Therefore it suffices to work only with probes in canonical form, where the
children of a canonical probe P are the canonical forms of its refinements.
Child Pij is the canonical probe with midsection M(Pij) := τ(i)−1(C(, i) ∪
M(P) ∪ ω(P)(C(≺ j))) and tail transformation ω(Pij) := τ(i)−1 ◦ ω(P) ◦ τ(j)
(Fig. 4(e)).

Note that while computing μ∗(P) may be difficult, it may be easy to get a
lower bound μ−(P) and an upper bound μ+(P) on μ∗(P). For example, if μ(A)
is defined as |bbox(A)|/|A|, then |bbox(M(P))|/|C∪M(P)∪ω(P)(C)| would be
a lower bound on μ∗(P), and |bbox(C ∪M(P)∪ω(P)(C))|/|M(P)| would be an
upper bound on μ∗(P) (provided |M(P)| > 0, otherwise we define μ∗(P) := ∞).

524 H. Haverkort and F. van Walderveen

Our algorithm to approximate μ∗ is now as follows:

1 Q← an empty first-in-first-out queue
2 R← an empty dictionary
3 Insert the canonical forms of all base probes Bik in Q and in R
4 lowerBound ← maxP∈Q μ−(P)

5 while we do not like the gap between lowerBound and maxP∈Q μ+(P)
6 do Extract a probe P from the head of Q
7 for all canonical children Pij of P
8 do if μ+(Pij) ≥ lowerBound and R does not contain Pij

9 then Add Pij to Q and R
10 lowerBound ← max(lowerBound , μ−(Pij))
11 Report that μ∗ lies in the interval [lowerBound ,maxP∈Q μ+(P)].

The main idea of the algorithm is that we keep replacing probes by their re-
finements to get tighter lower and upper bounds on μ∗. In the full paper [7] we
explain how the check if Pij is contained in R on line 8 enables the algorithm to
find good upper and lower bounds on μ∗ relatively fast.

6 Computational Results

We implemented the approximation algorithm described above, specifically to
compute the worst-case locality measures WL∞, WL2, and WL1, and the worst-
case bounding box quality measures WBA and WBP, for the curves mentioned
in Section 2. We tested the 278 different orders that fit Wunderlich’s scheme and
are defined on a k × k-grid, for k ≤ 4. From these orders five curves C turned
out to be “dominant” in the sense that there was no curve that was better
than C on at least one measure and at least as good as C on the other measures.
These five curves are Hilbert order, GP-order, Serpentine 011 010 110, Luxburg’s
variation 2, and Meurthe order. We examined these curves further, together with
coil order, balanced GP-order, βΩ-order, AR2W 2-order, Z-order and Sierpiński-
Knopp order. For these curves we estimated the average total bounding box
area and the square average relative total bounding box perimeter by random
sampling: we generated 100 sets of numbers chosen uniformly between 0 and 1
that subdivide the curve, where the logarithm of the size of each set was chosen
uniformly between log 500 and log 18 000. We estimated the average total area
(or relative perimeter) by taking the average over these 100 sample subdivisions.

The results of our computations are shown in Table 1. The exact worst-case
locality was already known for Hilbert order [1,3,4,6,14], GP-order, coil order,
and Luxburg 2 [11], and Sierpiński-Knopp order (or H-order) [13]. The other
bounds have been computed by us. The bounds on the W-measures are the
average of lower and upper bounds which have a gap of at most 0.0005. Only the
bounds for the Gosper flowsnake are less precise (this order involves rotations
by angles of arctan 1

5

√
3, which requires additional implementation effort and

makes it more challenging to get bounds with high precision). The bounds on
the A-measures result from our experiments with random subdivisions of curves.

Bounding-Box Quality of Space-Filling Curves 525

Table 1. Bounds for different measures and curves. New curves printed in bold.

Order WL∞ WL2 WL1 WBA ABA WBP ABP

Sierpiński-Knopp order 4 4 8 3.000 1.78 3.000 1.42
Balanced GP 4.619 4.619 8.619 2.000 1.44 2.155 1.19

GP 8 8 102/3 2.000 1.44 2.722 1.28
Serpentine 011 010 110 5.625 6.250 10.000 2.500 1.44 2.500 1.20
Luxburg 2 55/8 61/4 10 2.500 1.49 2.500 1.24
Meurthe 5.333 5.667 10.667 2.500 1.41 2.667 1.17
Coil 62/3 62/3 102/3 2.500 1.41 2.667 1.17

Hilbert 6 6 9 2.400 1.44 2.400 1.19
βΩ 5.000 5.000 9.000 2.222 1.42 2.250 1.17
AR2W 2 5.400 6.046 12.000 3.055 1.49 3.125 1.22
Z-order ∞ ∞ ∞ ∞ 2.92 ∞ 2.40

Gosper flowsnake 6.35 6.35 12.70 ≥3.18 ≥3.18

7 Conclusions

Known locality measures of space-filling curves do not predict well how effective
they are when grouping points into bounding boxes. Therefore we proposed
new measures of bounding-box quality of space-filling curves. We presented new
scanning orders that perform well on these measures, most notably the balanced
GP-order, which has worst-case bounding box area ratio (WBA) 2.000, and
worst-case bounding box square perimeter ratio (WBP) 2.155. On worst-case
locality measures this curve also scores very well, much better than Peano’s
original curve, and beaten only by Sierpiński-Knopp order.

We conjecture that a WBA of 2 is in fact optimal and cannot be improved by
any (recursively defined) space-filling curve. More provocatively we conjecture
that the optimal WBP is also 2 (note that we have not actually found a curve
with WBP less than 2.155). We add these conjectures to those by Niedermeier et
al., who conjectured that the optimal WL∞, WL2, and WL1 locality values are 4,
4, and 8, respectively (Niedermeier et al. posed this conjecture for curves filling
a square, but we would like to drop this restriction). Niedermeier et al. proved
that the conjectured lower bounds on the WL values are tight for a certain class
of space-filling curves, but almost none of the curves in our study belongs to that
class. For WL2, WBA and WBP, we managed to prove the conjectured lower
bounds for another class of curves, now including almost all curves mentioned
in this paper. Still we have not been able to prove these lower bounds for all
space-filling curves.

Our experiments on random points may give an impression of how effective
the different curves would be in the application considered in this paper: a data
structure for points in the plane, based on sorting the points into blocks of points
that are consecutive along the curve. We see that it would be clearly suboptimal
to use the order with the best WL∞,WL2 and WL1 locality (Sierpiński-Knopp

526 H. Haverkort and F. van Walderveen

order) for this application. It seems to be better indeed to choose a curve based
on WBA and WBP (balanced GP-order). Still the WBA and WBP measures
do not predict performance on random points perfectly either: there are several
curves with only moderate WBA and WBP values that seem to be as effective
as the balanced GP-order (for example Hilbert order) or even slightly better (for
example coil order or βΩ-order) on random point data.

For what the WBA and WBP measures are worth, the conjectured near-
optimality of the balanced GP-order suggests that there is little room for hope
to find significantly more effective scanning orders in two dimensions. A first
topic for further research is to determine the gap between our lower bound con-
structions and the performance of known space-filling curves when we consider
generalisations to three dimensions. Chochia and Cole [4] and Niedermeier et
al. [13] have some results on locality, but the gap is large and the field is still
wide open, especially with respect to bounding box quality.

References

1. Alber, J., Niedermeier, R.: On multidimensional curves with Hilbert property. The-
ory of Computing Systems 33(4), 295–312 (2000)

2. Asano, T., Ranjan, D., Roos, T., Welzl, E., Widmayer, P.: Space-Filling Curves and
Their Use in the Design of Geometric Data Structures. Theor. Comput. Sci. 181(1),
3–15 (1997)

3. Bauman, K.E.: The dilation factor of the Peano-Hilbert curve. Math. Notes 80(5),
609–620 (2006)

4. Chochia, G., Cole, M., Heywood, T.: Implementing the hierarchical PRAM on
the 2D mesh: Analyses and experiments. In: Symp. on Parallel and Distributed
Processing, pp. 587–595 (1995)

5. Gardner, M.: Mathematical Games—In which “monster” curves force redefinition
of the word “curve”. Scientific American 235(6), 124–133 (1976)

6. Gotsman, C., Lindenbaum, M.: On the metric properties of discrete space-filling
curves. IEEE Trans. Image Processing 5(5), 794–797 (1996)

7. Haverkort, H., van Walderveen, F.: Locality and bounding-box quality of two-
dimensional space-filling curves (manuscript, 2008) arXiv:0806.4787 [cs.CG]

8. Hilbert, D.: Über die stetige Abbildung einer Linie auf ein Flächenstück. Math.
Ann. 38(3), 459–460 (1891)

9. Kamel, I., Faloutsos, C.: On packing R-trees. In: Conf. on Information and Knowl-
edge Management, pp. 490–499 (1993)

10. Lebesgue, H.L.: Leçons sur l’intégration et la recherche des fonctions primitives,
pp. 44–45. Gauthier-Villars (1904)

11. von Luxburg, U.: Lokalitätsmaße von Peanokurven. Student project report, Uni-
versität Tübingen, Wilhelm-Schickard-Institut für Informatik (1998)

12. Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A.N., Theodoridis, Y.: R-trees:
Theory and Applications. Springer, Heidelberg (2005)

13. Niedermeier, R., Reinhardt, K., Sanders, P.: Towards optimal locality in mesh-
indexings. Discrete Applied Mathematics 117, 211–237 (2002)

14. Niedermeier, R., Sanders, P.: On the Manhattan-distance between points on space-
filling mesh-indexings. Technical Report IB 18/96, Karlsruhe University, Dept. of
Computer Science (1996)

Bounding-Box Quality of Space-Filling Curves 527

15. Peano, G.: Sur une courbe, qui remplit toute une aire plane. Math. Ann. 36(1),
157–160 (1890)

16. Sagan, H.: Space-Filling Curves. Universitext series. Springer, Heidelberg (1994)
17. Wierum, J.-M.: Definition of a new circular space-filling curve: βΩ-indexing. Tech-

nical Report TR-001-02, Paderborn Center for Parallel Computing (PC2) (2002)
18. Wunderlich, W.: Über Peano-Kurven. Elemente der Mathematik 28(1), 1–10 (1973)

Probabilistic Analysis of Online Bin Coloring
Algorithms Via Stochastic Comparison

Benjamin Hiller1,� and Tjark Vredeveld2

1 Zuse Institute Berlin, Takustraße 7, D–14195 Berlin, Germany
hiller@zib.de

2 Maastricht University, Department of Quantitative Economics, P.O. Box 616,
6200 MD Maastricht, The Netherlands

t.vredeveld@ke.unimaas.nl

Abstract. This paper proposes a new method for probabilistic analysis
of online algorithms. It is based on the notion of stochastic dominance. We
develop the method for the online bin coloring problem introduced in [15].
Using methods for the stochastic comparison of Markov chains we estab-
lish the result that the performance of the online algorithm GreedyFit is
stochastically better than the performance of the algorithm OneBin for
any number of items processed. This result gives a more realistic picture
than competitive analysis and explains the behavior observed in simula-
tions.

1 Introduction

We propose a new method for probabilistic analysis of online algorithms by using
the concept of stochastic dominance. The traditional approach for analyzing
online algorithms is competitive analysis [25,4], which characterizes an online
algorithm by its competitive ratio, i. e., the worst-case ratio of the objective
value achieved by the online algorithm to the optimal offline solution value.
Online algorithms are then compared by comparing their competitive ratios, i. e.,
a smaller competitive ratio is better for a minimization problem. One drawback
of competitive analysis is that it often provides rather pessimistic results due to
its worst-case character. This is partly overcome by more elaborate variants like
average-case competitive analysis [20] and smoothed competitive analysis [2].

In our approach, we suggest to compare the performance of algorithms on
random input sequences directly using stochastic dominance. A random variable
X is stochastically dominated by a random variable Y , written X ≤st Y , if

Pr [X ≥ x] ≤ Pr [Y ≥ x] for all x ∈ R. (1)

Suppose we can describe the performance of two online algorithms A and B by
random variables χA and χB, respectively. We can then say that A is stochasti-
cally better than B (for a minimization problem), if χA ≤st χ

B.
� Supported by the DFG research group “Algorithms, Structure, Randomness” (Grant

number GR 883/10-3, GR 883/10-4) and a DAAD dissertation grant.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 528–539, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Probabilistic Analysis of Online Bin Coloring Algorithms 529

Stochastic comparison methods have been successfully applied in areas like
queueing theory [23], finance, economics and in particular decision under risk
[18]. In this paper we introduce these concepts to the study of online algorithms.

We use this approach to study algorithms for the online bin coloring problem
introduced by Krumke et al. [15]. It has applications in commissioning [15],
vehicle routing [8] and networking [16]. For the bin coloring problem, we are
given a sequence of unit-size items, each of which has one of C colors. These items
need to be packed sequentially into one of m initially empty bins of capacity B.
As soon as a bin is full, i. e., has exactly B items, it is replaced by an empty
one. The goal is to minimize the maximum number of different colors in one bin.
We will refer to the number of different colors in a bin as its colorfulness. In the
online version, the items arrive one by one and must be irrevocably assigned to
a bin before the next item becomes known.

A natural algorithm for this problem is the algorithm GreedyFit [15]: it
packs an item with an already present color in the bin with that color and
otherwise chooses a bin which currently has the least number of different colors.
Another simple algorithm, OneBin, packs all items in the same bin. Krumke et
al. [15] analyzed these algorithms, showing the counterintuitive result that in
terms of the competitive ratio, the trivial algorithm OneBin is better than
the more sophisticated algorithm GreedyFit. The authors mentioned that the
most challenging issue is to analyze the algorithms from an average-case point
of view to explain the clear dominance of GreedyFit over OneBin observed
in simulations. Such an average-case analysis is a consequence of our results.

Our Results. We propose a new probabilistic analysis of both deterministic and
randomized online algorithms. As far as we know, this is the first use of stochastic
dominance in the analysis of the quality of online and approximation algorithms.

Using this approach, we obtain results for the comparison of the Greedy-
Fit and OneBin algorithms, which explain the superiority of GreedyFit over
OneBin observed in simulations. For our analysis, we assume that the color
sequences are generated by choosing the colors i. i. d. according to a color dis-
tribution γ. Note that in this model, all online algorithms eventually have to
produce a bin with colorfulness B if the number of colors is sufficiently high, say
C ≥ 2mB. This implies that in this case, all online algorithms are asymptoti-
cally equally bad. Moreover, since eventually there will be a color subsequence of
length 2mB with all colors different, the asymptotic competitive ratio is 1 with
probability 1. Both issues indicate that asymptotic probabilistic analysis does
not give meaningful results. We therefore show that GreedyFit is stochasti-
cally better than OneBin after n items, for any n. To be more precise, let the
random variables χGF

n and χOB
n denote the maximum colorfulness attained after

processing n items using GreedyFit and OneBin, respectively. We show that
χGF

n ≤st χ
OB
n for all n and distributions γ. We also obtain a similar result if the

objective is the average colorfulness instead of the maximum colorfulness. Both
results are based on an analysis of Markov chains related to the algorithms.

We emphasize several implications of this result. Stochastic dominance implies
not only that the expected value of GreedyFit is bounded by that of OneBin,

530 B. Hiller and T. Vredeveld

but also that the expected competitive ratio of GreedyFit is not more than that
of OneBin. The expected competitive ratio [20] is defined as the expectation
of the ratio between online algorithm and offline optimum. By considering the
uniform color distribution, our result can be interpreted as a counting result
stating that there are more instances for which GreedyFit manages to achieve
a low maximum colorfulness than for OneBin. If the online bin coloring occurs
as a subproblem and the overall performance depends in a non-decreasing way
on the colorfulness achieved, than using GreedyFit is better in expectation
than using OneBin w. r. t. to overall performance.

Related Work. Various alternatives to standard competitive analysis have been
proposed, almost all of them are based on the idea of weakening the offline
adversary. This can be done by considering randomized online algorithms [4] or
by allowing the online algorithms to use more resources [11]. More related to our
approach are concepts like the diffuse adversary [14], average-case competitive
analysis [20] and smoothed competitive analysis [2], which are also based on
random request sequences. Direct comparisons of online algorithms are done in
comparative analysis [14] and the relative worst order ratio [6].

The bin coloring problem has been studied in [15,8,16]. It is shown in [8,16]
that the offline version is NP-hard and that it cannot be approximated within
a factor of 4/3 unless P = NP. Lin et al. [16] provide an algorithm that finds a
solution of cost OPT + 1 in the case that there are exactly mB items. For the
online version, Krumke et al. [15] show that the competitive ratio of GreedyFit
is at least 2m, the competitive ratio of OneBin is at most 2m− 1, and that the
competitive ratio of any randomized algorithm is Ω(m) even if it is allowed to
use more than m bins simultaneously. The bin coloring problem is also related
to class-contrained knapsack problems [21,22]. In those versions of the knapsack
problem, each item is characterized by a size and a color and each knapsack has
an additional limit on the number of different colors that it can hold.

Although Markov chains are a natural tool for the study of online algorithms,
they have not been used much so far in this context. One prominent example
is the paging problem, where Karlin et al. [12] studied request sequences gen-
erated by a Markov chain. However, this work uses Markov chains to model
the instances and not for analyzing algorithms, although the theory of Markov
decision processes is used to derive lower bounds for all online algorithms. Ini-
tiated by Coffman et al. [7], online bin packing algorithms have been analyzed
by modelling their behavior by Markov chains [13,1,19]. General methods for
the analysis of Markov chains have then been used to prove results for online
algorithms. In contrast to our approach these results are only asymptotic and
expectation-based. Other uses of Markov chains in the analysis of algorithms are
in the field of approximate sampling [24]. Some of the techniques used there are
similar to ours since they are based on the concept of coupling, which is very
useful to compare probability distributions.

There are many applications of the rich theory of stochastic comparison and
stochastic dominance, see e. g., [23,18]. However, there are only few papers

Probabilistic Analysis of Online Bin Coloring Algorithms 531

applying them to analyze or develop algorithms. The papers by Mitzenmacher [5,17]
employ these methods to analyze routing algorithms.

Structure of the Paper. Section 2 defines the problem variants and introduces
Markov chain models for the online algorithms, basic notation and technical pre-
liminaries, including Theorem 1 which is the basis of our analysis. In Sections 3
and 4 we prove the result for minimizing the maximum and average colorfulness,
respectively.

2 Problem Definition and Markov Chain Models

An instance of the bin coloring problem is described by the number of simulta-
neously open bins m, the bin capacity B and a sequence of n unit sized items,
each of which has one of C colors. The items need to be packed in the open bins
and whenever a bin has B items, it is closed and replaced by a new empty bin.
The colorfulness of a bin is the number of different colors in this bin and the
goal is to pack the items in the (open) bins such that the maximum colorfulness
over all bins is minimized. A second objective is to pack the items in such a
way that the sum of the colorfulnesses of all bins is minimized. When minimiz-
ing this second objective, we refer to the problem as sum-BC, whereas the first
problem is refered to as max-BC. For probabilistic analysis, we still assume that
the number of open bins m, the bin capacity B and the number of colors C
is given deterministically. The color sequence, however, is generated by chosing
each color independently according to a probability distribution function γ over
the colors.

As mentioned before, asymptotic analysis does not give meaningful results.
However, the algorithms GreedyFit and OneBin differ in how long they man-
age to produce bins of low colorfulness. We therefore will analyze the transient
instead of the asymptotic behavior of the algorithms. Let the random variables
χGF

n and χOB
n denote the maximum colorfulness attained after processing n items

using GreedyFit and OneBin, respectively. We will show that GreedyFit is
stochastically better than OneBin after n items, i. e., that χGF

n ≤st χ
OB
n . For

the sum-BC problem, we show a similar result.

2.1 Markov Chain Models

Let us start with the max-BC and consider an arbitrary online bin coloring algo-
rithm processing color sequences generated by our random model. The operation
of any such algorithm can be described on a state space which encodes for every
bin i its current number of items fi and the set of colors in that bin Ci. Moreover,
the state also keeps track of the maximal colorfulness attained so far. Formally,
we have

Smax-BC := Smax-BC(m,B,C) =
{

(f1, C1, . . . , fm, Cm, χ)
∣
∣ 0 ≤ |Ci| ≤ fi≤ B,

|Ci| ≤ χ ≤ min{B,C}
}
.

532 B. Hiller and T. Vredeveld

Note that the states reachable by the operation of an algorithm may be a subset
of Smax-BC. We will use fi(s), Ci(s), and χ(s) to refer to the components of
state s. Additionally, we define ci(s) := |Ci(s)|. The state (0, ∅, . . . , 0, ∅, 0) is
called the initial empty state.

Suppose an online bin coloring algorithm A is in state s and receives an item
of color c. The algorithm then changes to state s′ by putting this item in one of
the bins, say bin i. There are two cases: Either color c is contained in Ci(s), we
say the color is known (in bin i), or it is not, so the color is new (in bin i). We
will denote the successor state for the first case by sk(i) (the color c is not needed
to determine the successor state), for the second by sn(i,c). It will be convenient
not to consider the new color c, but to deal with the random state resulting from
s if any new color distributed according to γ is seen. We will use the notation
sn(i) for this random state.

The OneBin algorithm is then described by the transitions

s′ =

{
sk(1) with probability γ(C1(s)),
sn(1) with probability 1 − γ(C1(s)),

(2)

where we use the shortcut notation γ(S) :=
∑

s∈S γ(s). This defines a Markov
chain which we denote by OB(m,B,C, γ). Note that although OneBin uses only
the first bin, we consider OB(m,B,C, γ) as working on the whole state space
with m bins.

Similarly, we can give a Markov chain GF(m,B,C, γ) for GreedyFit. GF(s)
is the bin GreedyFit selects for an item with a new color in state s. Depending
on the tie-breaking rule used by the specific variant of GreedyFit, GF(s) may
or may not be a random variable. We only need that GF(s) is one of the bins
having in state s the smallest number of colors.

s′ =

{
sk(i) with probability γ(Ci(s)) 1 ≤ i ≤ m,

sn(GF(s)) with probability 1 − γ
(⋃

i Ci(s)
)
.

(3)

The operation of online algorithms in the sum-BC problem can be captured
by a similar Markov chain model. The main difference is that the χ-component
is no longer the maximum of the colorfulness seen so far, but the sum. Note that
the resulting Markov chains are infinite. Thus the state space Ssum-BC is basically
the same as Smax-BC, but with an unbounded χ-component. The χ-component
increases each time a new color for a bin is encountered.

To avoid notational overhead, we will use the same notation for both problem
variants. Therefore the sum-BC-Markov chains for OneBin and GreedyFit
will be denoted by OB(m,B,C, γ) and GF(m,B,C, γ), too.

We use the notations OB(m,B,C, γ)n and GF(m,B,C, γ)n for the random
state after n steps when OneBin and GreedyFit are started in the initial
empty state. The goal of this paper is to show that, in both problem variants,

χ
(
GF(m,B,C, γ)n

)
≤st χ

(
OB(m,B,C, γ)n

)
∀n

Probabilistic Analysis of Online Bin Coloring Algorithms 533

and for all parameters m,B,C and color distributions γ. This kind of result is
known as comparison result for Markov chains in the probability theory litera-
ture, see e. g., [18].

2.2 A New Comparison Criterion

Unfortunately, the general comparison results for Markov chains based on stochas-
tic monotonicity [18] are not sufficient to prove stochastic dominance between
GreedyFit and OneBin. Doisy [9] developed a comparison criterion that is
not based on stochastic monotonicity, however, this result is also too
weak.

Our analysis is therefore based on the following criterion, which is an extension
of a result in [3]. The criterion is based on stopping times. Given a Markov chain
X = (Xn)n∈N0 on state space S with valuation function χ : S → V , V ⊆ N0, we
denote by T v

X the first time the Markov chain X reaches a state with valuation
at least v.

Theorem 1. Let X = (Xn)n∈N0 and Y = (Yn)n∈N0 be Markov chains on state
space S and let χ : S → V be a valuation function for some V ⊆ N0. Assume that
the transitions of X and Y are such that the value of a state is nondecreasing in
each step and that χ(X0) = χ(Y0). Then the following are equivalent:

1. T v
Y ≤st T

v
X ∀v ∈ V .

2. χ(Xn) ≤st χ(Yn) ∀n ∈ N0.

Proof. Let the Markov chain X be defined on the probability space (Ω,A, prob).
The stopping time T v

X is then a random variable T v
X : Ω → N0 that is defined by

T v
X(ω) := min

{
n
∣
∣χ
(
Xn(ω)

)
≥ v

}

for each ω ∈ Ω. Since χ(Xn(ω)) ≥ χ(Xn′(ω)) whenever n′ ≤ n, we have the

equivalence
T v

X(ω) ≤ n ⇐⇒ χ(Xn(ω)) ≥ v,

which implies

Pr [T v
X ≤ n] = Pr [χ(Xn) ≥ v] .

Of course, analogous statements hold for Y as well.
We now have the following chain of equivalences.

χ(Xn) ≤st χ(Yn) ∀n ∈ N0

⇐⇒ Pr [χ(Xn) ≥ v] ≤ Pr [χ(Yn) ≥ v] ∀n ∈ N0, v ∈ V

⇐⇒ Pr [T v
X ≤ n] ≤ Pr [T v

Y ≤ n] ∀n ∈ N0, v ∈ V

⇐⇒ T v
Y ≤st T

v
X ∀v ∈ V.

�

534 B. Hiller and T. Vredeveld

In the sequel, we denote by T v
X(s) the stopping time for reaching a state with

valuation at least v when started deterministically in state in s.
How can we show T v

Y (s0) ≤st T
v
X(s0)? In order to apply a kind of induction

technique we introduce a family of Markov chains
(
X(n)

)

n∈N
derived from a

Markov chain X as follows. The state space of X(n) is S × {0, . . . , n} and the
transitions are defined by

Pr [X(n)i+1 = (s′, i+ 1) | X(n)i = (s, i)] := Pr [Xi+1 = s′ | Xi = s] ∀0 ≤ i < n,

Pr [X(n)i+1 = (s, n) | X(n)i = (s, n)] := 1 ∀i≥n.

The Markov chain X(n) can be thought of as an time-expanded, acyclic version
of the chain X for the first n steps. Clearly, we have

Pr [T v
X(s) = i] = Pr

[
T v

X(n)((s, 0)) = i
]

∀0 ≤ i < n. (4)

So in order to show T v
Y (s0) ≤st T

v
X(s0), we can prove that

T v
Y (n)((s0, 0)) ≤st T

v
X(n)((s0, 0)) ∀n ∈ N.

To simplify notation, we will write T v
X(n)(s) for T v

X(n)((s, 0)) from now on. We
have the following simple result, the proof of which can be found in [10].

Lemma 1. For any Markov chain X = (Xn)n∈N0 on state space S with valua-
tion function χ : S → V , V ⊆ N0, the stochastic dominance relation

T v
X(n+1)(s) ≤st T

v
X(n)(s)

holds for all states s, n ∈ N0, and v ∈ V .

2.3 Further Preliminaries

For two random variables X and Y , we will write X = Y to mean that they
have the same distribution function.

An important tool used frequently in this paper is the notion of mixture of
random variables.

Definition 1. Let (Xm)m∈M be a family of random variables and Θ be an M -
valued random variable. The random variable Y defined by Y := XΘ, i. e., the
X-variable to use is given by the realization of Θ, is called a mixture and denoted
by [(Xm)m∈M |Θ].

The following results are well-known properties of ≤st: closure under mixtures
and equivalence to sample-path comparisons (see e. g., [18]).

Theorem 2 (Mixture Theorem). Suppose [(Xm)m∈M |Θ] and [(Ym)m∈M |Θ]
are two mixtures controlled by the same random variable Θ satisfying Xm ≤st Ym

for all m ∈M . Then we have [(Xm)m∈M |Θ] ≤st [(Ym)m∈M |Θ] .

Probabilistic Analysis of Online Bin Coloring Algorithms 535

Theorem 3 (Strassen’s Theorem). For two random variables X and Y the
following are equivalent:

1. X ≤st Y
2. There is a probability space (Ω,A, P) with random variables X̃, Ỹ : Ω → R

such that
– X̃ and Ỹ are distributed as X and Y , respectively, and
– Pr

[
X̃ ≤ Ỹ

]
= 1.

3 GreedyFit Is Better Than OneBin: max-BC

We will now apply the strategy described in Section 2.2 to the comparison of
GreedyFit and OneBin. The main technique is to analyze a kind of stochastic
recursion for T v

X(n) based on a mixture of random variables.
Let OB = OB(m,B,C, γ) for fixed parameters m,B,C, γ. In a state s ∈

Smax-BC OneBin does the transitions to states
{
sk(1) with probability γ(C1(s)),
sn(1) with probability 1 − γ(C1(s)).

Using the random variable Θ : Smax-BC → N defined by

Θ(s) :=

{
1 the next color is known in bin 1,
2 the next color is new in bin 1,

we can come up with a recursive expression for T v
OB(n)(s), namely

T v
OB(n)(s) =

{
0 χ(s) ≥ v,

1 +
[
T v

OB(n−1)

(
sk(1)

)
, T v

OB(n−1)

(
sn(1)

) ∣∣
∣Θ(s)

]
χ(s) < v.

(5)

This recursion and the Mixture Theorem are the most important ingredients for
the proofs to come.

We call two states s, s′ ∈ Smax-BC OB-equivalent, if the valuation, the number
of items and the set of colors in bin 1 are the same in s and s′, i. e., if χ(s) = χ(s′),
f1(s) = f1(s′), and C1(s) = C1(s′). Note that OneBin behaves exactly the same
in two OB-equivalent states and therefore the stopping times from two OB-
equivalent states coincide. The following lemma gives some useful comparisons
of stopping times from certain states in the OB(n) chains. The proof of this
lemma can be found in [10].

Lemma 2. Consider the OneBin Markov chain OB = OB(m,B,C, γ) for pa-
rameters m,B ≥ 2, C, and color distribution γ. We have for all states s ∈
Smax-BC, n ∈ N, and v ∈ V :

1. T v
OB(n)(s

n(1)) ≤st T
v
OB(n)(s

k(1)), and
2. T v

OB(n)(s
n(1)) ≤st T

v
OB(n)(s

′) for every state s′ that is OB-equivalent to s.

536 B. Hiller and T. Vredeveld

Theorem 4. Let OB and GF be the OneBin and GreedyFit max-BC-Markov
chains for fixed parameters m,B,C with B,m ≥ 2 for some color distribution γ.
We have for all states s ∈ Smax-BC, n ∈ N, and v ∈ V :

T v
OB(n)(s) ≤st T

v
GF(n)(s).

Proof. The proof is by induction on n. Since GreedyFit is not worse than
OneBin for a single step in each state s, we have T v

OB(1)(s) ≤st T
v
GF(1)(s).

For the induction step, suppose we know that T v
OB(n)(s) ≤st T

v
GF(n)(s) for

all s ∈ Smax-BC. Consider a state s ∈ Smax-BC. Define the random variable
Θ : Smax-BC → {1, . . . ,m + 1} by

Pr [Θ(s) = i] =

{
γ(Ci(s)) 1 ≤ i ≤ m,

1 − γ
(⋃

i Ci(s)
)

i = m+ 1,

i. e., Θ in a sense “selects” the GreedyFit successor of state s. Using Θ, we can
write the recursion for the stopping time of OB as

T v
OB(n+1)(s)

= 1 +
[
T v

OB(n)(s
k(1)), T v

OB(n)(s
n(1)), . . . , T v

OB(n)(s
n(1))

∣
∣
∣Θ(s)

]
.

Observe that sk(i), 2 ≤ i ≤ m, are OB-equivalent to s, sn(GF(s)) is either OB-
equivalent to s or equal to sn(1). We use Lemma 2 to bound this by

≤st 1 +
[
T v

OB(n)(s
k(1)), . . . , T v

OB(n)(s
k(m)), T v

OB(n)(s
n(GF(s)))

∣
∣
∣Θ(s)

]
,

which by the induction hypothesis is bounded by

≤st 1 +
[
T v

GF(n)(s
k(1)), . . . , T v

GF(n)(s
k(m)), T v

GF(n)(s
n(GF(s)))

∣
∣
∣Θ(s)

]

= T v
GF(n+1)(s).

This concludes the induction step and the proof. �

Corollary 1. Let OB and GF be the OneBin and GreedyFit max-BC-Markov
chains for fixed parametersm,B,C and color distribution γ. We have for all states
s ∈ Smax-BC, in particular the initial empty state, and for all n ∈ N0 that

χ
(
GF(s)n

)
≤st χ

(
OB(s)n

)
.

4 GreedyFit Is Better Than OneBin: sum-BC

The analysis of the sum-BC problem is very similar to the one of max-BC in
the preceding section. Recall that the state space of the sum-BC only differs
from the one of the max-BC in its interpretation of the χ-component: it now

Probabilistic Analysis of Online Bin Coloring Algorithms 537

counts the sum of the colorfulnesses of all used bins instead of the maximum.
Therefore, the χ-component increases with every transition due to a new color.
Nevertheless, recursion (5) for the stopping times is also valid for the analysis of
the sum-BC.

Note that the proof of Theorem 4 is based only on Lemma 2. The proof of
item 2 of Lemma 2 only needs item 1 and OB-equivalence (see [10] for details).
The notion of OB-equivalence introduced for the max-BC is also appropriate for
the sum-BC. In particular, stopping times for two OB-equivalent states coincide
also for the sum-BC-Markov chain of OneBin. Due to these observations, it
is sufficient to prove an analogue of item 1 of Lemma 2 to establish stochastic
dominance between GreedyFit and OneBin for the sum-BC. The proof uses
the concept of a coupling Markov chain.

Definition 2. Let X = (Xn)n∈N0 and Y = (Yn)n∈N0 be Markov chains on state
spaces SX and SY , respectively. A Markov chain Z = (X̃, Ỹ) on state space
SX × SY is a coupling Markov chain if X̃ and Ỹ are distributed as X and Y ,
respectively. However, X̃ and Ỹ need not be independent.

Lemma 3. Consider the OneBin Markov chain OB = OB(m,B,C, γ) for pa-
rameters m,B ≥ 2, C, and color distribution γ for the sum-BC. We then have
T v

OB(n)(s
n(1)) ≤st T

v
OB(n)(s

k(1)). for all states s ∈ Ssum-BC, n ∈ N, and v ∈ V .

Proof. We will show the stronger T v
OB(sn(1,c)) ≤st T

v
OB(sk(1)) for all c /∈ C1(s)

by constructing a coupling Markov chain Z = (X,Y) on a state space that is a
subset of Ssum-BC × Ssum-BC. The first component of Z behaves exactly as OB
started in state sn(1,c) and the second component as OB started in sk(1).

A state (sn, sk) of Z that can be reached from the initial state (sn(1,c), sk(1))
will always satisfy the invariant

– either χ(sn) ≥ χ(sk), f1(sn) = f1(sk), and C1(sn) = C1(sk) or
– χ(sn) = χ(sk) + 1, f1(sn) = f1(sk), and C1(sn) = C1(sk) ∪ {c}.

Since in both cases χ(sn) ≥ χ(sk), the invariant implies

Pr
[
T v

X(sn(1,c)) ≤ T v
Y (sk(1))

]
= 1,

so by Strassen’s Theorem the stochastic dominance is established.
It remains to describe Z. The initial state is (sn(1,c), sk(1)), which obviously

satisfies the invariant. Consider any state (sn, sk) satisfying the invariant. If sn
and sk differ at most in the χ-component, then the transitions of Z are such
that the same happens in both components, leading to further states satisfying
the invariant.

Suppose sn and sk differ also in the C1-component. The transitions are then
determined by the next color c′ drawn according to γ as follows:

⎧
⎪⎨

⎪⎩

(
sn,n(1,c′), sk,n(1,c′)

)
c′ /∈ C1(sn) = C1(sk) ∪ {c},

(
sn,k(1), sk,n(1,c′)

)
c′ = c,

(
sn,k(1), sk,k(1)

)
c′ ∈ C1(sk).

538 B. Hiller and T. Vredeveld

Note that all the states satisfy the invariant and that the second kind of transition
leads to states which differ at most in the χ-component (the other way of reaching
such a state is when bin 1 is empty again). Finally, it can be verified that these
transitions mirror the behavior of the OB chain in each component. �

Remark 1. The above coupling argument can be generalized for any algorithm
whose decisions do not depend on χ(s), both for sum-BC and max-BC.

Theorem 5. Let OB and GF be the OneBin and GreedyFit sum-BC-Markov
chains for fixed parameters m,B,C and color distribution γ. We have for all
states s ∈ Ssum-BC, in particular the initial empty state, and for all n ∈ N0 that

χ
(
GF(s)n

)
≤st χ

(
OB(s)n

)
.

5 Concluding Remarks

We introduced a new approach for the probabilistic analysis of online algorithms
which is based on the concept of stochastic dominance. We applied this approach
to the analysis of online algorithms for bin coloring problems. This analysis
explains simulation results much better than the competitive analysis results
existing so far and thus resolves an open problem posed in [15].

For the future it is interesting to see whether the method can be extended
to analyze further bin coloring algorithms or more complicated probabilistic
models, e. g., ones where the color sequence is generated by a Markov chain. As
an example, consider the algorithm FixedColors, which assigns the items to
bins based on their colors and a fixed color-to-bin assignment. In simulations
we observed that this algorithm is “in-between” OneBin and GreedyFit. We
also observed that GreedyFit outperforms OneBin when operating on uniform
color sequences, where OneBin has to cope with fewer colors than GreedyFit.

Similar techniques might also apply for other combinatorial online problems
like bin packing or paging.

References

1. Albers, S., Mitzenmacher, M.: Average-case analyses of first fit and random fit bin
packing. Random Structures Algorithms 16(3), 240–259 (2000)

2. Becchetti, L., Leonardi, S., Marchetti-Spaccamela, A., Schäfer, G., Vredeveld, T.:
Average case and smoothed competitive analysis for the multi-level feedback algo-
rithm. Math. Oper. Res. 31(1), 85–108 (2006)

3. ben Mamoun, M., Bušić, A., Fourneau, J.-M., Pekergin, N.: Increasing convex
monotone Markov chains: Theory, algorithms, and applications. In: MAM 2006:
Markov Anniversary Meeting, pp. 189–210. Boson Books, Raleigh (2006)

4. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, New York (1998)

5. Boyan, J., Mitzenmacher, M.: Improved results for route planning in stochastic
transportation networks. In: Proc. 12th SODA, pp. 895–902 (2001)

Probabilistic Analysis of Online Bin Coloring Algorithms 539

6. Boyar, J., Favrholdt, L.M.: The relative worst order ratio for online algorithms.
ACM Transactions on Algorithms 3(2) (2007)

7. Coffman Jr., E.G., Johnson, D.S., Shor, P.W., Weber, R.R.: Markov Chains, com-
puter proofs, and average-case analysis of best fit bin packing. In: Proc. 25th STOC,
pp. 412–421 (1993)

8. de Paepe, W.E.: Complexity Results and Competitive Analysis for Vehicle Routing
Problems. Technische Universiteit Eindhoven, Ph.D. Thesis (2002)

9. Doisy, M.: A coupling technique for stochastic comparison of functions of Markov
processes. Journal of Applied Mathematics & Decision Sciences 4(1), 39–64 (2000)

10. Hiller, B., Vredeveld, T.: Probabilistic analysis of online bin coloring algorithms
via stochastic dominance. ZIB-Report 08-18, Zuse Institute Berlin (2008)

11. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J.
ACM 47(4), 617–643 (2000)

12. Karlin, A.R., Phillips, S.J., Raghavan, P.: Markov paging. SIAM J. Comput. 30(2),
906–922 (2000)

13. Kenyon, C., Rabani, Y., Sinclair, A.: Biased random walks, Lyapunov functions,
and stochastic analysis of best fit bin packing. J. Algorithms 27(2), 218–235 (1998)

14. Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analysis. SIAM J. Com-
put. 30(1), 300–317 (2000)

15. Krumke, S.O., de Paepe, W.E., Stougie, L., Rambau, J.: Online bin coloring. In:
Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 74–84. Springer,
Heidelberg (2001)

16. Lin, M., Lin, Z., Xu, J.: Almost optimal solutions for bin coloring problems. In:
Deng, X., Du, D. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 82–91. Springer, Hei-
delberg (2005)

17. Mitzenmacher, M.: Bounds on the greedy routing algorithm for array networks. J.
Comput. System Sci. 53, 317–327 (1996)

18. Müller, A., Stoyan, D.: Comparison Models for Stochastic Models and Risks. John
Wiley & Sons, Chichester (2002)

19. Naaman, N., Rom, R.: Average case analysis of bounded space bin packing algo-
rithms. Algorithmica 50, 72–97 (2008)

20. Scharbrodt, M., Schickinger, T., Steger, A.: A new average case analysis for com-
pletion time scheduling. J. ACM, 121–146 (2006)

21. Shachnai, H., Tamir, T.: On two class-constrained versions of the multiple knapsack
problem. Algorithmica 29(3), 442–467 (2001)

22. Shachnai, H., Tamir, T.: Polynomial time approximation schemes for class-
constrained packing problems. Journal of Scheduling 4(6), 313–338 (2001)

23. Shaked, M., Shanthikumar, J.G.: Stochastic Orders and their Applications. Aca-
demic Press, San Diego (1994)

24. Sinclair, A.: Algorithms for Random Generation and Counting: A Markov Chain
Approach. Birkhäuser, Basel (1993)

25. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Comm. ACM 28(2), 202–208 (1985)

On the Complexity of Optimal Hotlink

Assignment

Tobias Jacobs

Department of Computer Science, University of Freiburg

Abstract. The concept of hotlink assignment aims at reducing the nav-
igation effort for users of a web directory or similar structure by inserting
a limited number of additional hyperlinks called hotlinks. Given an ac-
cess probability distribution of the leaves of the tree representing the
web site, the goal of hotlink assignment algorithms is to minimize the
expected path length between the root and the leaves.

We prove that this optimization problem is NP-hard, even if only one
outgoing hotlink is allowed for each node. This answers a question that
has been open since the first formulation of the problem in [3].

In this work we also investigate the model where hotlinks are only
allowed to point at the leaves of the tree. We demonstrate that for this
model optimal solutions can be computed in polynomial time. Our algo-
rithm operates in a very general setting, where the maximum number of
outgoing hotlinks is specified individually for each node. Experimental
evaluation shows that the algorithm is applicable in practice.

1 Introduction

Due to the extensive growth of the Internet as a huge information source, the
task of making an increasing amount of information accessible in a user-friendly
way becomes increasingly important. The value of any information is closely
related to its accessibility. Therefore, the effort spent by users searching for a
specific piece of information, or trying to get an overview of some subset of the
available information, should be minimized.

In this work we address the concept of improving the design of large web
directories or similar structures by assigning additional hyperlinks called hotlinks
to their pages. By taking access frequencies into account, hotlinks can especially
reduce the access time of popular pages, while the site’s original structure is
preserved. A considerable amount of research has been spent on this approach,
see e.g. [3,4,5,7,8,9,11,12,13,14,15,16,17]. The ideas can be applied in a number
of additional scenarios, e.g. knowledge bases, file systems, menus of computer
applications, and, as observed by Bose et. al. in [6], even in communication
protocols.

Problem Definition: A hierarchical web site can be modeled as a weighted
tree T = (V,E, ω) where (V,E) is a tree rooted at r. We assume that inner
nodes represent navigation pages and the information is stored in the leaves. Let

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 540–552, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Complexity of Optimal Hotlink Assignment 541

L ⊆ V be the set of those leaves. The weight function ω : L → IR+
0 assigns a

non-negative weight to each of them. These weights can be interpreted as access
frequencies or, if normalized to sum up to 1, as access probabilities.

In order to access a leaf l, the user has to traverse the unique path from r to l.
A hotlink assignment (HLA) is a set A ⊂ V × V of additional edges, providing
shortcuts for the user. The elements of A are called hotlinks. For (u, v) ∈ A we
refer to v as u’s hotchild. We further refer to u as v’s hotparent and say that the
hotlink starts in u and ends in v.

In this work we assume that the user only knows about the outgoing hotlinks
of the nodes she has already visited and always takes any hotlink that leads her
closer to her destination leaf. This is commonly referred to as the greedy user
model. In contrast, in the clairvoyant user model users know their shortest path
in (V,E ∪A).

A straightforward consequence of the greedy user assumption is that for any
hotlink (u, v) in a reasonable assignment, v is a descendant of u. Furthermore,
there is no hotlink between an ancestor of u and a node on the path between u
and v. Otherwise, (u, v) could be removed from the assignment without affecting
the greedy user’s path to any leaf.

The path length of a hotlink assignment A for T is defined as

p(A) =
∑

l∈L

ω(l) distA(r, l) ,

where distA(u, v) denotes the number of edges and hotlinks a greedy user tra-
verses when traveling from u to v.

Clearly, if there is no restriction concerning the assignment, then any reason-
able hotlink will start in r. The usual restriction arises from the requirement that
the number of hotlinks on a concise web page must be somehow limited. The
Hotlink Assignment Problem denotes the task to compute a hotlink assignment
for a given tree, achieving a minimum path length, where only one hotlink is
allowed to start in each node.

Related Work: The concept of assigning hotlinks to web sites has been sug-
gested by Perkowitz and Etzoni in [2]. Bose et. al. show in [3] that the problem
is NP-hard when considering general DAGs instead of trees. The result applies
to the clairvoyant user model. Note that it is not clear how to extend the greedy
user model to DAGs, as in that kind of graphs shortest paths are not necessarily
unique, and so the user’s behaviour is not determined by the graph structure.

In [3], Bose et. al. also give a fundamental lower bound using coding theory:
No hotlink assignment can result in a path length less than H(ω)/ log(Δ + 1),
where Δ is the degree of the tree and H(ω) =

∑
l∈L ω(l) log(1

ω(l)) is the entropy
of the probability distribution of the leaves (assuming here that the weights sum
up to 1). The bound holds for both user models.

In [6], Bose et. al. apply the close connection to coding theory proposing an
asymmetric communication protocol based on hotlink assignment.

Gerstel et. al. [8] and Pessoa et. al. [12] have independently discovered an
optimal HLA algorithm whose running time is exponential in the depth of the

542 T. Jacobs

tree and thus polynomial for trees of logarithmic depth. The algorithm employs
dynamic programming and is designed for the greedy user model, which has been
introduced in those papers.

A considerable number of approximation algorithms for the problem have
been proposed. Fast algorithms achieving a path length of O(H(ω)) in both user
models have been published in [5,14,15]. Dynamic maintenance of such HLAs
has also been studied in [14]. These algorithms hold constant approximation
ratios for trees of fixed degree. For the greedy user model, in [16] we present a
2-approximation for arbitrary trees.

An equivalent problem formulation is to maximize the gain g(A) = p(∅) −
p(A). For the clairvoyant user model, Matichin and Peleg prove in [9] that the
natural greedy strategy yields an approximation ratio of 2 in terms of the gain.
We show in [16] that this ratio also holds in the greedy user model. In the
same paper we also present a PTAS for the gain, which generalizes another
2-approximation given in [11].

Results from evaluating hotlink assignment algorithms experimentally have
been published in [4,7,13] and most recently in [17].

Our Contribution: The main contribution of this work is to settle the complex-
ity of the Hotlink Assignment Problem by showing that it is is NP-hard. Despite
much previous work, the question whether there is hope to develop an efficient
algorithm for computing optimal hotlink assignments has remained open since
the first formulation of the problem in 2000.

In the second part of this paper we investigate a variant of the problem that
arises from practice. In many applications where hotlinks are actually used,
they only point directly to leaves. Examples are the product recommendations
of amazon.com and similar sites, suggestions for completions to typed-in pre-
fixes in web browsers, or suggestions for frequently used functions in menus
of computer applications. The probable reason for this restriction is that users
would find it confusing to end up on another navigation page after following a
hotlink.

We present a polynomial time algorithm L-OPT that computes optimal HLAs
A ⊂ V × L in a quite general model. In that model not only the tree and the
weight function are part of the input, but also a function θ : V → IN0 speci-
fying the maximum number of outgoing hotlinks for each individual node. Our
algorithm is based on a new dynamic programming approach. In the full paper,
we discuss differences to other dynamic programming algorithms for hotlink as-
signment, and we propose an efficient implementation of L-OPT. Experimental
evaluation shows that our implementation computes optimal HLAs for typical
trees with up to 300,000 nodes within a few seconds on a standard PC.

Paper Organization: The proof of NP-hardness is presented in Sect. 2, while
in Sect. 3 we investigate the model where hotlinks may only point to leaves.
Section 4 concludes. Proofs abbreviated or omitted in this extended abstract
appear in the full paper.

On the Complexity of Optimal Hotlink Assignment 543

Further Notation: We denote the set of children, proper descendants and
proper ancestors1 of a node v by ch(v), desc(v) and anc(v), respectively.

For nodes v in T we write v ∈ T . We denote by Tv the maximal subtree of T
rooted at v. For any set V ′ of nodes, let T \ V ′ be the tree obtained from T by
omitting all maximal subtrees rooted at a node in V ∩ V ′. Let further Tv,A =
Tv \ {v′ ∈ desc(v) | ∃(u, v′) ∈ A : u ∈ anc(v)} be the subtree rooted at v where
the maximal subtrees rooted at the hotchildren of v’s ancestors are omitted.
Finally, for any subtree T ′ of T , we define A|T ′ = {(u, v) ∈ A | u, v ∈ T ′}.

2 Proof of NP-Hardness

Consider the following decision problem: Given a weighted tree T and a real
number α, is there a hotlink assignment A for T with p(A) ≤ α and any node
having at most one hotchild?

In this section we prove that the Hotlink Assigning Problem is NP-hard. We
do this by a reduction from the 3-Set Cover Problem, which is well-known to be
NP-hard [1], to the above decision problem.

Instances of the 3-Set Cover Problem are given by a pair (C,D), where C =
{c1, . . . , cn} is a set containing n = 3k (k ∈ IN) elements, and D = {D1, . . . , Dm}
with Di = {d1

i , d
2
i , d

3
i } ⊆ C and |Di| = 3 for each 1 ≤ i ≤ m is a set containing

subsets of C. The problem is to decide whether there exists a subset D′ =
{Di1 , . . . , Dik

} of D with
⋃k

j=1 Dij = C and |D′| = k.
We assume w. l. o. g. that the elements in the subsets are ordered, i.e. x < y <

z for any Di = {d1
i , d

2
i , d

3
i } with d1

i = cx, d
2
i = cy, d

3
i = cz. We further assume w.

l. o. g. that there is at least one dx
i = cj for any cj ∈ C.

In the following we show how to construct an instance of the hotlink assign-
ment decision problem corresponding to a given instance of 3-Set Cover.

Tree Structure: We first give the structure of the corresponding tree T . For
each Di ∈ D we construct a subtree T i of depth 1. The root of T i is denoted as
ri and the eight leaves are πi, π̄i, σ

1
i , σ̄

1
i , σ

2
i , σ̄

2
i , σ

3
i and σ̄3

i . For x ∈ {1, 2, 3}, σx
i

and σ̄x
i will correspond to element dx

i ∈ Di.
Another part of T is the path P defined by the nodes {pi | 1 ≤ i ≤ m}∪ {p̄i |

1 ≤ i ≤ m} and the edges {(pi, p̄i | 1 ≤ i ≤ m)} ∪ {(p̄i, pi−1 | 2 ≤ i ≤
m)}. Additionally, for 1 ≤ i ≤ m there are nodes si, ai and edges (p̄i, si) and
(si, ai).

The rest of T is formed by the path Q. Nodes in Q are {qj | 1 ≤ j ≤
n} ∪ {q̄j | 1 ≤ j ≤ n} ∪ {tj | 1 ≤ j ≤ n} ∪ {bj | 1 ≤ j ≤ n}. The edges are
{(qj , q̄j) | 1 ≤ j ≤ n}∪{(q̄j, qj−1) | 2 ≤ j ≤ n}∪{(q̄j , tj) | 1 ≤ j ≤ n}∪{(tj, bj) |
1 ≤ j ≤ n}.

The construction of T is completed by connecting P and Q by the edge (p̄1, qn)
and by appending T i to Q via (q̄1, ri) for 1 ≤ i ≤ m. A figure visualizing the
tree structure is included in the full paper.

1 All descendants/ancestors of a node v, not including v itself, are proper descen-
dants/ancestors of v.

544 T. Jacobs

Notation and General Idea: For 1 ≤ i ≤ m, the set {pi, p̄i} is denoted by Pi.
Respectively, {qj , q̄j} = Qj for 1 ≤ j ≤ n.

Intuitively, the idea of the reduction is the following: By the weights of πi, π̄i

and ai, it will be enforced that, in an optimal assignment, each T i has one or two
hotparents in Pi. Additionally, each T i has three pairs of “natural” hotparents
qj , q̄j in Q, which will be determined by the weights of the σx

i s and σ̄x
i s. Achieving

the threshold path length α will be possible if and only if there is an assignment
where, for a collection of k subtrees T i1 , . . . , T ik , each of these subtrees contains
all hotchildren of its natural hotparents.

Fix any T i and let d1
i = cj1 , d

2
i = cj2 and d3

i = cj3 in the 3-Set Cover instance.
We say that T i is undeveloped, if there are hotlinks (pi, ri) and (p̄i, ai) (Fig. 1a).
From the status of being undeveloped, T i is developed to j3 by replacing (pi, ri)
and (p̄i, ai) with (pi, πi), (p̄i, π̄i), (qj3 , ri) and (q̄j3 , bj3) (Fig. 1b). For x ∈ {2, 3},
from the status of being developed to jx, T i is developed to jx−1 by replacing
(qjx , ri) and (q̄jx , bjx) with (qjx , σ

x
i), (q̄jx , σ̄

x
i), (qjx−1 , ri) and (q̄jx−1 , bjx−1). From

the status of being developed to j1, T i becomes fully developed by replacing
(qj1 , ri) and (q̄j1 , bj1) with (qj1 , σ

1
i) and (q̄j1 , σ̄

1
i) (Fig. 1c).

Observe that, if T i is fully developed, then it contains all hotchildren of Pi,
Qj1 , Qj2 and Qj3 . Therefore, there is a solution to an instance of the 3-Set Cover
problem if and only if there is a hotlink assignment for the corresponding tree
T where exactly k subtrees T i1 , . . . , T ik are fully developed.

Weight Assignment: Let h = 2(n + m) + 1 be the depth of T . We begin by
setting the weight of b1 to h and by assigning ω(σx

i) = ω(σ̄x
i) = h + 1 for each

dx
i = c1 in the instance of the 3-Set Cover Problem.

For a fixed j, 2 ≤ j ≤ n, assume that the weights of all bj′ and all σx
i and

σ̄x
i with dx

i = cj′ are given for any j′ < j. We denote the set of those leaves as
Lj−1. The weight of bj is set to

ω(bj) = 2h
∑

v∈Lj−1

ω(v) + 1 . (1)

In the consequence, bj’s weight is more than twice the total weighted path length
to all leaves lighter than bj .

Then, for any dx
i = cj , we assign ω(σ̄x

i) = ω(bj) + 1. Furthermore, ω(σx
i) =

ω(bj) + wx−1
i , where wx−1

i is chosen as follows:
In case of x ∈ {2, 3}, let dx−1

i = cj′ . We choose wx−1
i such that the reward

(i.e. decrease in path length) for developing T i to j′ is 3ω(bj′). When developing
T i to j′, the length of the path to bj increases by one, while the path length
to σx

i decreases by one. The length of the path to σ̄x
i does not change, and the

path length to all σy
i and σ̄y

i with y < x is increased by dist(qj , qj′). Finally, the
new hotlink (q̄j′ , bj′) causes the path length to bj′ to decrease by one. Thus, the
overall weighted path length decreases by

wx−1
i − dist(qj , qj′) ·

∑

1≤y<x

(
ω(σy

i) + ω(σ̄y
i)
)

+ ω(bj′) .

On the Complexity of Optimal Hotlink Assignment 545

...
...

...
...

...

Pi

σ̄1
iσ1

iσ̄2
iσ2

iσ̄3
iσ3

iπ̄iπi

ri

Qj2

Qj3

Qj1

(a)

...
...

...
...

...

Pi

σ̄1
iσ1

iσ̄2
iσ2

iσ̄3
iσ3

iπ̄iπi

ri

Qj2

Qj3

Qj1

(b)

...
...

...
...

...

σ̄1
iσ1

iσ̄2
iσ2

iσ̄3
iσ3

iπ̄iπi

Qj2

Pi

ri

Qj3

Qj1

(c)

Fig. 1. Subtree T i representing the subset {cj1 , cj2 , cj3} = Di ∈ D, as it is (a) unde-
veloped, (b) developed to j3, and (c) fully developed

So, in order to provide the desired reward, we choose

wx−1
i = dist(qj , qj′) ·

∑

1≤y<x

(
ω(σy

i) + ω(σ̄y
i)
)

+ 2ω(bj′) .

In case of x = 1, we choose wx−1
i = 1 so that fully developing T i achieves an

extra reward of 1, which can be shown by a similar calculation.
As we have assumed that in 3-Set Cover the subsets are ordered, the values of

ω(σy
i) and ω(σ̄y

i) have already been assigned for y < x, dx
i = cj , so our weight-

assignment is well-defined.
It remains to specify the weights of πi, π̄i and ai for 1 ≤ i ≤ m, which is

done with respect to similar objectives: ai must be heavier than two times the
weighted path length to all leaves lighter then ai, and the reward for developing
T i to j′ (with d3

i = cj′ in the 3-Set Cover instance) must be 3ω(bj′). For a fixed
i, let the weight of any πi′ , π̄i′ , ai′ for 1 ≤ i′ < i be already given. We assign

ω(ai) = 2h ·
(∑

v∈Ln

ω(v) +
i−1∑

i′=1

(
ω(πi′) + ω(π̄i′) + ω(ai′)

))
+ 1 , (2)

ω(π̄i) = ω(ai) + 1 and ω(πi) = ω(ai) + w3
i . Let d3

i = cj′ . Then, due to the same
argumentation as above, we choose

546 T. Jacobs

w3
i = dist(pi, qj′) ·

∑

1≤x≤3

(
ω(σx

i) + ω(σ̄x
i)
)

+ 2ω(bj′) .

Concerning the problem size, it is not hard to observe that the number of bits
required to encode the weights of the leaves is polynomial in the size of the 3-Set
Cover instance. The analysis can be found in the full paper.

Proof of Equivalence: We call B = {(pi, ri) | 1 ≤ i ≤ m} ∪ {(p̄i, ai) | 1 ≤ i ≤
m} the basic assignment for T . Observe that all T is are undeveloped in B. The
surplus of an assignment A for T is defined as p(B) − p(A).

Instead of explicitly specifying a threshold path length α for the decision
problem, we consider a surplus value β = p(B) − α. We are going to prove that
a surplus of at least β can be achieved if and only if there is a solution to the
instance of 3 Set-Cover. Namely, we consider

β = 3
n∑

j=1

ω(bj) + k .

Lemma 1. Given an instance I of the 3-Set Cover Problem, if I has a solution,
then there is a HLA for the corresponding tree achieving a surplus of β.

Proof. Starting with B, we can develop T is such that we achieve an assignment
where exactly k subtrees T i1 , . . . , T ik are fully developed and the others remain
undeveloped. For 1 ≤ j ≤ n there is some T i that is developed to j during that
procedure and thus gains a reward of 3ω(bj). Furthermore, for the step to full
development of each T i1 , . . . , T ik a reward of 1 is achieved. �

Before we prove that the inverse direction of Lemma 1 holds as well, we introduce
some additional concepts. For a given hotlink assignment A, we say that Pi is
closed if (pi, ri), (p̄i, ai) ∈ A. Let d3

i = cj . We say that Pi is open subject to j if
(pi, πi), (p̄i, π̄i) ∈ A.

Respectively, we say that Qj is closed, if (qj , ri), (q̄j , bj) ∈ A for some T i with
dx

i = cj and x ∈ {1, 2, 3}. We say that Qj is open, if (qj , σx
i), (q̄j , σ̄x

i) ∈ A for
some T i with dx

i = cj and x ∈ {1, 2, 3}. In case of x ∈ {2, 3} and dx−1
i = cj′ , we

say that Qj is open subject to j′.

Lemma 2. Let A∗ be an optimal HLA for a tree T corresponding to an instance
of 3-Set Cover. Then Pi is either open or closed for each i = 1, . . . ,m.

Proof (sketch). For any fixed i we assume that the lemma already holds2 for
i′ > i. We infer from (2) that the path length between pi and any leaf lighter
than ai+1 is at most 6.5ω(ai)+2w3

i +2 if Pi is closed or open. By systematically
considering all other hotlink configurations, we conclude that any of them is
either obviously sub-optimal or results in a path length of at least 7ω(ai).

Lemma 3. Given an instance I of the 3-Set Cover Problem, if I has no solution,
then no HLA for the corresponding tree achieves a surplus of at least β.
2 The argumentation naturally includes the base case i = m.

On the Complexity of Optimal Hotlink Assignment 547

Proof (sketch). Let T be the tree corresponding to an instance of 3-Set Cover
having no solution. Let A∗ be an optimal hotlink assignment for T . Throughout
the proof we assume that A∗ achieves a surplus of at least β.

From Lemma 2 we know that, for 1 ≤ i ≤ m, Pi is either closed or open.
Assume that for 1 ≤ j ≤ n, (a) also Qj is either closed or open and (b) there is
either exactly one Qj′ or exactly one Pi that is open subject to j.

Then we know that A∗ can be obtained from B by developing subtrees: For
j = n, . . . , 1 consider the unique Pi or Qj′ that is open subject to j in A∗ and
develop T i to j, where T i is the subtree containing the hotchildren of Pi or Qj′

in A∗. Note that T i also is the tree containing hotchildren of Qj in A∗, because
otherwise either property (a) or (b) would be violated. If Qj is open in A∗ and
the hotchild of qj in A∗ is σ1

i , then fully develop T i. If Qj is open subject to
some j′′ in A∗, then Qj will be made open in a later step of development.

Due to this construction, the surplus of A∗ is at least 3
∑n

j=1 ω(bj). On the
other hand, as the corresponding 3-Set Cover instance has no solution, it is not
possible that k subtrees are fully developed in A∗, so the surplus is strictly less
than 3

∑n
j=1 ω(bj) + k = β, which contradicts the initial assumption.

To show that properties (a) and (b) indeed hold for 1 ≤ j ≤ n, we fix a j
and assume that they have already been proven for j′ > j. There is at least one
Pi or Qj′ open subject to j, because otherwise we can show that a surplus of
β cannot be achieved. Furthermore, by a careful case analysis it can be proved
that property (a) holds and there is at most one Pi or Qj′ open subject to j. �
Theorem 1. The Hotlink Assignment Problem for trees is NP-hard. �

3 Hotlink Assignment to Leaves

In this section we consider the model where only leaves are allowed to be hotchil-
dren, i.e. A ⊂ V × L, and the maximum number of hotchildren of each node is
arbitrarily specified by a function θ : V → IN0. Hence, problem instances are
given by a pair (T, θ). We assume w. l. o. g. that θ(v) ≤ |L| for any v ∈ V . To our
best knowledge, that variant of the Hotlink Assignment Problem has not been
addressed yet. In the following, we show that in this model optimal solutions
can be computed in polynomial time by a dynamic programming algorithm.

Algorithm L-OPT: On the top level, our algorithm can be described as fol-
lows: (1) If T has a depth of less than 2, return ∅. (2) Recursively compute an
optimal hotlink assignment for each (Tv, θ), v ∈ ch(r). (3) Merge these hotlink
assignments to obtain an optimal assignment for (T, θ).

Given a problem instance (T, θ) and a node v ∈ T , we denote by θ+v/θ−v the
function obtained from θ by increasing/decreasing the image of v by 1.

Assume that there is an efficient method for transforming an optimal HLA A
for (T, θ) into an optimal assignment A+ for (T, θ+r). Then step (3) in the the
above algorithm can be computed efficiently: Apply that method θ(r) times to
the assignment resulting from step (2), which is clearly optimal for (T, θ′), where
θ′ is obtained from θ by setting the image of r to 0. So the main algorithmic
challenge in this section is the development of such a transformation method.

548 T. Jacobs

v

v1

v2

v3

l1

l3
l4

l2

Fig. 2. When applying the transformation sequence (l1, l2, l3, l4), the solid hotlinks are
replaced with the dashed ones. Dotted lines represent tree paths.

Lemma 4. Let A be an optimal hotlink assignment for a weighted tree T . If
(v1, l1), (v2, l2) ∈ A, v2 ∈ desc(v1) and l1 ∈ desc(v2), then ω(l1) ≥ ω(l2). �

Lemma 5. Let A be optimal for (T, θ) and let (v, l) ∈ A. Then A \ {(v, l)} is
optimal for (T \ {l}, θ−v). �

Let A be a hotlink assignment for (T, θ). A transformation sequence for A into
θ+v is a sequence of leaves (l1, . . . , lk), k ≥ 0, where li has a hotparent vi ∈
anc(li+1) in A for 1 ≤ i ≤ k − 1. Such a sequence represents the modification of
A where all hotlinks pointing to l1, . . . , lk are replaced with (v, l1) and (vi, li+1)
for 1 ≤ i ≤ k − 1 (see Fig. 2). In case of k = 0, the empty transformation
sequence represents the identity. A transformation sequence is optimal if the
resulting hotlink assignment is optimal for (T, θ+v).

Lemma 6. Let A be an optimal hotlink assignment for (T, θ), and let v ∈ T .
There exists an optimal transformation sequence for A into θ+v.

Proof (sketch). Consider an optimal assignment A+ for (T, θ+v). The additional
hotchild l1 of v in A+ becomes the first element of our transformation sequence.
If l1 already has a hotparent v1 in A, we use Lemma 5 and induction to apply
the lemma to (T \ {l}, θ−v1) and A \ {(v1, l1)}. �

Let (l1, . . . , lk) be a transformation sequence for A into θ+v. Let v0 = v and let
vi be the hotparent of li for 1 ≤ i ≤ k − 1. We say that the sequence is ordered,
if vi ∈ desc(vi−1) for 1 ≤ i ≤ k − 1, and, in case of lk having a hotparent vk in
A, vk ∈ desc(vk−1). Fig. 2 is an example of an ordered transformation sequence.

Lemma 7. Let A be an optimal hotlink assignment for (T, θ). There is an op-
timal ordered transformation sequence for A into θ+r.

Proof (sketch). We show that any optimal transformation sequence for A into
θ+r can be modified such that it is ordered and still optimal. We do this by
induction over the length of the sequence. For the basic case, the empty sequence,

On the Complexity of Optimal Hotlink Assignment 549

there is nothing to show. For the induction step, consider an optimal sequence of
length 1 or larger that is not ordered. Using Lemma 4, we can show that the first
component that violates the specification of ordered transformation sequences
can be removed without increasing the path length of the resulting assignment.

�

Theorem 2. Given an optimal hotlink assignment for (T, θ), an optimal as-
signment for (T, θ+r) can be computed in polynomial time.

Proof. Let A be optimal for (T, θ). From Lemma 7 follows that it suffices to
find an optimal ordered transformation sequence for A into θ+r. We describe
the algorithm for solving that task in a recursive manner. Assumed that (T, θ)
and A are fixed, the algorithm takes a node v ∈ T as the input, and computes
an optimal transformation sequence for A|Tv,A into θ+v.

If Tv,A contains no leaves, this is the empty sequence. Otherwise, for each leaf
l in Tv,A, L-OPT computes a best ordered transformation sequence that starts
with l. If l has no hotparent in A, then that sequence is (l). Else, if (v′, l) ∈ A, the
algorithm recursively computes an optimal transformation sequence for A|Tv′,A

into θ+v′ and appends that sequence to l. For each leaf l, the algorithm calculates
the benefit (decrease in path length) s(v.l) caused by the corresponding best
sequence and returns the sequence maximizing that benefit. Formally,

s(v) =

⎧
⎨

⎩

max
l is a leaf in Tv,A

s(v, l) if Tv,A contains a leaf

0 otherwise ,
(3)

s(v, l) =

{(
dist(l, v) − 1

)
ω(l) if l has no hotparent in A

dist(v′, v)ω(l) + s(v′) if l has a hotparent v′ in A .
(4)

As (T, θ) and A are fixed, a table containing all possible values of s(v) and
the corresponding transformation sequences has linear size. At most |V | different
possibilities have to be compared during the computation of any table entry, so
the table can be built in quadratic time.

The formal correctness proof of the algorithm appears in the full paper. �

Corollary 1. An optimal hotlink assignment for any problem instance (T, θ)
can be computed in polynomial time. �

Experimental Evaluation: Our test set consists of 40 trees representing the
structure of Brazilian and German university web sites. They contain up to
300,000 nodes, and several subtrees have a depth larger than 100. Subsets of these
instances have been applied for experiments presented in [13,17]. Like done in
all experimental studies on hotlink assignment published so far (cf. [4,7,13,17]),
we randomly assign weights using Zipf distribution, i.e. the ith heaviest leaf is
assigned a weight of 1

iHm
, where Hm is the mth harmonic number and m is the

number of leaves in the tree. We consider constant functions of θ = 1, . . . , 15.
The runtime of our L-OPT implementation is depicted in Fig. 3. It is not

completely monotonic in the tree size, other factors seem to influence it as well.

550 T. Jacobs

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 50000 100000 150000 200000 250000 300000

ru
nt

im
e

in
 m

ill
is

ec
on

ds

tree size

Fig. 3. Runtime of L-OPT with θ = 1 on tree instances of different sizes

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 2 4 6 8 10 12 14

ru
nt

im
e

in
 m

ill
is

ec
on

ds

maximum number of hotchildren

size: 252767, depth: 81
size: 217213, depth: 15
size: 57877, depth: 10
size: 10484, depth: 16

(a)

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 1 10

pa
th

 le
ng

th

maximum number of hotchildren

size: 10484, depth: 16
size: 252767, depth: 81
size: 57877, depth: 10

size: 217213, depth: 15

(b)

Fig. 4. Development of (a) runtime and (b) weighted path length for varying values of
θ. In subfigure (b) the horizontal axis is scaled logarithmically.

However, the typical runtime is only slightly superlinear in the number of nodes.
On all instances the algorithm terminates within a few seconds or less.

Fig. 4a and 4b exemplarily show the development of runtime and path length
on four selected instances for θ = 1, . . . , 15. While the runtime grows linearly with
θ, the path length improves only logarithmically. As a larger number of hotlinks
also reduces the clarity of web pages, only small values of θ are advisable in
practice.

4 Conclusion

We have proven that the Hotlink Assignment Problem for trees is NP-hard. This
holds in the general case where hotlink are allowed to start and end in any node.

When hotlinks are allowed to start in the root only, then it is known that the
problem is solvable in polynomial time (cf. [10]). We have shown in this paper
that there also is an efficient algorithm when hotlinks may start in any node,
but may only end in leaves.

On the Complexity of Optimal Hotlink Assignment 551

The latter model constitutes a maximally general scenario that is computa-
tionally tractable and has a practical application. We note that for the problem
to become intractable it suffices that hotlinks may additionally end in inner
nodes having only leaf children. This becomes clear reconsidering the solutions
to the class of “difficult” tree instances given in Sect. 2.

Acknowledgement. The author wishes to thank an anonymous referee for an
extensive list of helpful comments.

References

1. Karpf, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103. Plenum Press, New York (1972)

2. Perkowitz, M., Etzioni, O.: Towards adaptive web sites: Conceptual framework and
case study. Computer Networks 31(11-16), 1245–1258 (1999)

3. Bose, P., Czyzowicz, J., Gasienicz, L., Kranakis, E., Krizanc, D., Pelc, A., Vargas
Martin, M.: Strategies for hotlink assignments. In: Lee, D.T., Teng, S.-H. (eds.)
ISAAC 2000. LNCS, vol. 1969. Springer, Heidelberg (2000)

4. Czyzowicz, J., Kranakis, E., Krizanc, D., Pelc, A., Vargas Martin, M.: Evaluation
of hotlink assignment heuristics for improving web access. In: Proceedings of the
2nd International Conference on Internet Computing (ICOMP) (2001)

5. Kranakis, E., Krizanc, D., Shende, S.: Approximate hotlink assignment. In: Eades,
P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223. Springer, Heidelberg (2001)

6. Bose, P., Krizanc, D., Langerman, S., Morin, P.: Asymmetric communication pro-
tocols via hotlink assignments. In: Proceeding of the 9th Colloquium on Structural
Information and Communication Complexity (SIROCCO) (2002)

7. Czyzowicz, J., Kranakis, E., Krizanc, D., Pelc, A., Vargas Martin, M.: Enhancing
hyperlink structure for improving web performance. Journal of Web Engineer-
ing 1(2), 93–127 (2003)

8. Gerstel, O., Kutten, S., Matichin, R., Peleg, D.: Hotlink enhancement algorithms
for web directories. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS,
vol. 2906, pp. 68–77. Springer, Heidelberg (2003)

9. Matichin, R., Peleg, D.: Approximation algorithm for hotlink assignments in
web directories. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS,
vol. 2748, pp. 271–280. Springer, Heidelberg (2003)

10. Li, K., Shen, H.: Optimal placement of web proxies for tree networks. In: IEEE
International Conference on e-Technology, e-Commerce and e-Service (EEE 2004)
(2004)

11. Matichin, R., Peleg, D.: Approximation algorithm for hotlink assignment in the
greedy model. In: Kralovic, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104,
pp. 233–244. Springer, Heidelberg (2004)

12. Pessoa, A., Laber, E., de Souza, C.: Efficient algorithms for the hotlink assignment
problem: The worst case search. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004.
LNCS, vol. 3341, pp. 778–792. Springer, Heidelberg (2004)

13. Pessoa, A., Laber, E., de Souza, C.: Efficient implementation of a hotlink assign-
ment algorithm for Web sites. In: Proceedings of the 6th Workshop on Algorithm
Engineering and Experiments (ALENEX) and the First Workshop on Analytic
Algorithmics and Combinatorics (ANALCO) (2004)

552 T. Jacobs

14. Doüıeb, K., Langerman, S.: Dynamic hotlinks. In: Dehne, F., López-Ortiz, A.,
Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 182–194. Springer, Heidelberg
(2005)

15. Doüıeb, K., Langerman, S.: Near-entropy hotlink assignments. In: Azar, Y., Er-
lebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 292–303. Springer, Heidelberg
(2006)

16. Jacobs, T.: Constant factor approximations for the hotlink assignment problem. In:
Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 188–200.
Springer, Heidelberg (2007)

17. Jacobs, T.: An experimental study of recent hotlink assignment algorithms. In:
Proc. of the Workshop on Algorithm Engineering and Experiments (ALENEX)
and the First Workshop on Analytic Algorithmics and Combinatorics (ANALCO)
(2008)

Oblivious Randomized Direct Search
for Real-Parameter Optimization

Jens Jägersküpper�

Technische Universität Dortmund, Informatik 2, 44221 Dortmund, Germany
JJ@Ls2.cs.uni-dortmund.de

Abstract. The focus is on black-box optimization of a function f : RN → R

given as a black box, i. e. an oracle for f -evaluations. This is commonly called
direct search, and in fact, most methods for direct search are heuristics. Theoret-
ical results on the performance/behavior of such heuristics are still rare. One rea-
son: Like classical optimization algorithms, also direct-search methods face the
challenge of step-size control, and usually, the more sophisticated the step-size
control, the harder the analysis. Obviously, when we want the search to actually
converge to a stationary point (i. e., the distance from this point tends to zero)
at a nearly constant rate, then step sizes must be adapted. In practice, however,
obtaining an ε-approximation for a given ε > 0 is often sufficient, and usually all
N parameters are bounded, so that the maximum distance from the optimum is
bounded. Thus, in such cases reasonable step sizes lie in a predetermined bounded
interval. Considering the minimization of the distance from a fixed point as the
objective, we address the question, for randomized heuristics that use isotropic
sampling to generate new candidate solutions, whether we might get rid of step-
size control – namely of the problems connected to it, like so-called premature
convergence – by choosing step sizes randomly according to some properly pre-
defined distribution over this interval. As this choice of step sizes is oblivious to
the course of the optimization, we gain robustness against a loss of step-size con-
trol. Naturally, the question is: What is the price w. r. t. local convergence speed?
As we shall see, merely a factor of order ln(d/ε), where d is the diameter of the
the decision space, an N -dimensional interval region.

1 Introduction

Here optimization in high-dimensional Euclidean space RN is considered, and the cru-
cial aspect is how the optimization time scales with N , the dimensionality of the search
space. Furthermore, the optimization time depends on the approximation error ε – here
defined as the Euclidean distance from the optimum point in RN– of the approximate
solution to be found. That is, we consider the optimization time as a function of N
as well as of ε. Unless stated differently, asymptotics (essentially O and Ω) are w. r. t.
N →∞, though.

The scenario we consider is black-box optimization, i. e., the function f to optimized
is given by a black box, namely an oracle for f -evaluations. In practice, in particular in

� Supported by the German Research Foundation (DFG) through the collaborative research cen-
ter “Computational Intelligence” (SFB 531).

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 553–564, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

554 J. Jägersküpper

various engineering disciplines, this is a very common situation: f is given by simula-
tions or even by real-world experiments. In such situations – unless simulations allow
for algorithmic/automatic differentiation, which is rarely the case – there is no infor-
mation about the gradient or the Hessian, so that classical optimization methods cannot
be applied. In the beginning of black-box optimization, in order to make use of estab-
lished first-order methods, usually gradient approximation by finite forward/symmetric
differences was used, which costs N (or 2N) f -evaluations per iteration. Nowadays,
the focus lies on optimization methods that abandon gradient approximation, but try to
find good solutions directly. Such methods are commonly called direct-search methods,
and in fact, most of these are heuristics. Theoretical results on the performance and
the behavior of such heuristics are still rare, cf. [1]. Among the first and most promi-
nent direct-search heuristics are the pattern search by Hooke/Jeeves and the (downhill)
simplex method by Nelder/Mead, cf. [2] for a comprehensive review. Surprisingly, also
already in the 1960s randomized direct-search methods were proposed, one is the so-
called evolution strategy by Rechenberg [3] and Schwefel. In this algorithm, in each
iteration i a new candidate solution is generated by adding a so-called Gaussian mu-
tation vector m ∈ RN to the current candidate solution x[i−1]. Each component of
m is i. i. d. according to a zero-mean normal distribution with variance σ2. If the so-
called mutant y := x[i−1] + m improves upon x[i−1], then x[i] := y, otherwise
x[i] := x[i−1]. Rechenberg and Schwefel focused on how to update σ adaptively to
the course of the optimization, and they proposed different mechanisms how to adapt σ
such that close-to-optimal (local) performance is achieved on the simple quadratic form
x "→

∑N
k=1 xk

2, which is commonly called SPHERE in the field of (meta)heuristics;
for some x∗ ∈ RN let SPHEREx∗(x) := SPHERE(x − x∗). The simple heuristic just
described is a so-called (1+1) Evolution Strategy. It fits the general framework of itera-
tive methods considered in the following:

For a given initial candidate solution x[0] ∈ RN and i := 1 DO

1. generate the displacement m[i] ∈ RN according to some distributionD[i] over RN

2. evaluate f at the sample y[i] := x[i−1] + m[i] ∈ RN

3. decide whether to accept the new sample; if so, x[i] := y[i], else x[i] := x[i−1]

4. i := i+ 1 and GOTO 1 (unless stopping criterion met)

In many (meta)heuristics, the randomly chosen displacement vector m follows a
(multivariate) normal distribution. Actually, sampling in each iteration i a predefined
number of search points each i. i. d. according to a (multivariate) normal distribution
with mean x[i−1] was already proposed 1958 in [4]—without being specific about how
to choose/adapt the variance, though. Since then randomized direct-search heuristics
have become more and more popular, cf. [5].

The probably most apparent rule to decide (in Instruction 3) whether the sample y
is to be accepted to become the next candidate solution is so-called elitist selection,
namely, in the case of minimization, x[i] := y[i] if and only if f(y[i]) ≤ f(x[i−1]).
This rule is commonly used, and it might be one reason why SPHERE is so attrac-
tive as a starting point for a theoretical analysis: In this scenario the approximation
error in the search space (namely the Euclidean distance from the optimum) is reduced
if and only if there is an improvement w. r. t. the f -value. Apparently, this makes the

Oblivious Randomized Direct Search for Real-Parameter Optimization 555

reasoning easier. (We focus on the approximation error in the search space here.) More-
over, when considering a fixed distribution D in Instruction 1 for the sampling, elitist
selection in combination with f := SPHERE results in maximum expected reduction
of the approximation error because negative gains (i. e., y is further away from the op-
timum) are zeroed out, whereas positives gains (i. e., y is closer to the optimum) are
accepted. Thus, this combination can somewhat be considered a best-case scenario.

One reason for choosing the normal distribution to generate new search points seems
to be that this distribution has maximum (differential) entropy. Another reason is the fol-
lowing invariance property: An N -dimensional Gaussian mutation (the N components
are i. i. d. according to a zero-mean normal distribution with variance σ2) is isotropi-
cally distributed overRN , i. e., its distribution is spherically symmetric, more precisely,
invariant w. r. t. orthonormal transformations. The nice property of an isotropically dis-
tributed vector is that its (possibly) random length is independent of its random direction
and that the direction is uniformly random:

Proposition 1. Let the vector u be uniformly distributed over the unit hyper-sphere
{y ∈ RN | |y| = 1}. A vector x is isotropically distributed over RN if and only if there
exists a non-negative random variable � (independent of u) such that the distribution of
x equals the one of � · u.

A formal proof can be found in [6, Sec. 2.1] for instance. The random length of a
Gaussian mutation (a vector that is distributed according to an isotropic multivariate
normal distribution) follows a scaled χ-distribution.

In black-box optimization, when we do not know anything about f , using isotropic
distributions (centered at the current iterate) to sample new candidate solutions seems
reasonable because of the invariance properties. When we restrict the class of algo-
rithms covered by our framework given above by requiring (in each iteration i) the
distributions D[i] in Instruction 1 to be isotropic, then we can ask for an upper bound
on the expected reduction of the approximation error in one step. Therefore, one may
think of the best-case scenario in which SPHERE is minimized and elitist selection is
used (in which positive gains (reduction of the distance from the optimum) are ac-
cepted, whereas negative gains are zeroed out). Let x∗ ∈ RN denote the optimum and
let d[i] be defined as the distance of x[i] from the optimum after the ith iteration. Fur-
thermore, for a given distance d[i−1], let Δ[i] : RN → R denote the random variable
defined as dist(x[i−1] + m[i],x∗) − d[i−1] which is induced by the distribution D[i]

used to sample m[i] in the ith iteration. For SPHEREx∗ , elitist selection corresponds to
the indicator variable 1{Δ[i]≥0} (which resolves to “1” if Δ[i] ≥ 0, otherwise to “0”), so
that the random variableΔ[i]

+ := Δ[i] ·1{Δ[i]≥0} corresponds to the spatial gain towards

the optimum x∗ in the ith iteration. Note that the distribution of Δ[i]
+ has an atom at

zero with a weight equal to the probability that y[i] = x[i−1] + m[i] is such that it is
discarded in Instruction 3.

As shown in [7], for any isotropic distributionD[i] over RN the expected spatial gain
towards a predefined point (for instance x∗) is bounded above by

E
[
Δ

[i]
+

]
< d[i−1] · 0.52/(N − 1) for N ≥ 4. (1)

556 J. Jägersküpper

Thus, if in each iteration i the isotropic distribution D[i] was the best possible, then we
would observe linear convergence (w. r. t. the distance from the optimum) at an expected
rate larger (i. e. worse) than 1 − 0.52/(N − 1). By substituting (N − 1)/0.52 for n in
the well-known inequality (1 − 1/n)n−1 > 1/e, we easily get that the total expected
gain after (the first) k iterations is less than halve the initial approximation error unless
k > ln 2/(0.52/(N − 1.52)) > 1.33N − 2.03. (Due to the best-case assumption on the
D[i], the factors by which the approximation error is reduced in k sequent steps are in
fact i. i. d., so that we can indeed take the expectation of the one-step factor to the kth
power to obtain the expectation of the factor which corresponds to the total reduction
in the k steps.) Yet this does not tell us much anyway: The randomness is in the total
gain rather than in the number of iterations. Instead, we would like to know a lower
bound on the expected number of steps necessary to actually halve the approximation
error. The local/one-step result from Equation (1) can indeed be transformed into the
following lower-bound result on the runtime [8, Thm. 13]:

Theorem 2. For any heuristic that fits our framework: When the D[i] are isotropic dis-
tributions, then the expected number of iterations necessary to halve the approximation
error (defined as the distance from a fixed point in RN) is bounded from below by
0.5/(0.52/(N−1)) > 0.96N−1 = Ω(N).

Note that this theorem holds for any adaptation mechanisms which determines for each
iteration i according to what isotropic distribution D[i] to sample m[i]. Interestingly, as
shown in [9], even if in each iteration i the point x[i] was magically chosen from the line
{x[i−1] +α ·m[i] | α ∈ R} such that the distance of x[i] from the optimum is minimum
(a “perfect” line search along a uniformly random direction), we would observe linear
convergence at an expected rate larger (i. e. worse) than 1 − 1/N .

Now, talking about linear convergence at an expected rate makes sense only if the
steps resemble each other up to a rescaling of the situation, which is in fact the case
when assuming that in each iteration D[i] was chosen as the best isotropic distribution,
namely the one that maximizes the expected gain. When considering a concrete heuris-
tic, namely a concrete adaptation mechanism to determine the D[i], then – because of
the black-box scenario – it seems that the D[i] just cannot be chosen such that a steady
convergence is observed. Rather the expected reduction of the approximation error will
vary from step to step. This is particularly true for step-size adaptations that aim at
maximizing the local convergence speed, i. e., they try to choose in each iteration i the
distribution D[i] such that expected one-step gain is maximum. To get around this non-
steadiness – and to preclude detrimental effects of a possible loss of step-size control
like premature convergence – one may ask the following

Question: Is there a distribution D∗ over RN such that using D[i] := D∗

in each iteration i results in a virtually steady convergence (i. e. at a virtually
constant expected rate) to the optimum x∗ when minimizing SPHEREx∗?

It is quite easy to see that such a distribution cannot exist if the approximation error is
supposed to become arbitrarily small. Such aD∗ might exist, however, when we merely
aim at an ε-approximation and know an upper bound dmax on the approximation errors
that can occur.

Oblivious Randomized Direct Search for Real-Parameter Optimization 557

In fact, we shall see in Section 3 that for the latter situation there is an isotropic
distribution such that the algorithm in our framework that uses this distribution in each
iteration and elitist selection converges linearly at an expected rate smaller (i. e. better)
than 1 − 1/O(N · ln(dmax/ε)). This algorithm will be called oblivious randomized
direct search (ORDS). As we shall moreover see, as long as the approximation error,
namely the distance from the optimum x∗ of SPHEREx∗ , is in the interval [2ε, dmax],
the expected number of iterations that ORDS needs to halve the approximation error
is bounded above by O(N · ln(dmax/ε)). This is off from the general lower bound
for isotropic sampling (Theorem 2) merely by a factor of order ln(dmax/ε). This is a
remarkable property – especially when considered together with the results of related
work to be discussed in the next section.

2 Related Work

A question similar to the one posed above has already been investigated in [10] (al-
though with a different motivation). The scenario investigated therein is the minimiza-
tion of a unimodal one-dimensional function over the interval (−1, 1]. The search wraps
around when the interval is left; e. g., when the point x = 1.5 is sampled, f(−0.5) is
computed. In this scenario, the approximation error is bounded above by 1. The authors
propose using the following distribution with the density fRH : R → R≥0 defined by
fRH(m) := 1/|2 · p ·m| for m ∈ [ε, 1]∪ [−1,−ε] and fRH(m) := 0 otherwise, where
p := ln(1/ε) for normalization and ε ∈ (0, 1) is the predefined smallest step length.
Note that

∫ d

d/2
fRH(m) dm = (ln(d) − ln(d/2))/(2p) = ln(2)/(2p), which is inde-

pendent of d. Thus, the probability to halve the distance from the optimum is at least
ln(2)/(2p) in a step – independently of the distance d from the optimum. Obviously,
ε ≤ d/2 is required for actual independence of d. Concerning the expected number of
steps to halve the approximation error, the authors conclude that “the expected wait-
ing time (and this is clearly an upper bound) is thus 2p/ ln 2. The number of steps
required to get within δ of the optimum is thereforeO(p · ln(1/δ)).” Apparently, δ ≥ 2ε
seems to be assumed there. As long as the approximation error is at least δ + ε, the ex-
pected factor by which the distance from the optimum is reduced equals 1−α/ ln(1/ε)
for some α > 0 almost constant. Obviously, the smaller the minimum step length ε,
the larger (i. e. worse) the expected convergence rate. Taking the minor technical is-
sue discussed above into account, for δ = 2ε we obtain a bound of O(ln2(1/ε)) to
find an 2ε-approximation when using a minimal step length of ε. Compared to binary
search, this is off by a factor of order ln(1/ε). Dietzfelbinger/Rowe/Wegener/Woelfel
[11] focus on whether this ln(1/ε)-factor is inherent to the usage of a fixed distrib-
ution, i. e., whether any fixed distribution according to which the samples are drawn
needs Ω(ln2(1/ε)) iterations (in expectation) to obtain an ε-approximation. Actually,
they consider a discrete version of the problem, where a blind search on the integers
0, . . . , n is performed using a fixed distribution μ over {1, . . . , n} for the sampling.
Namely, the search starts at a (uniformly) random position in {0, . . . , n}. In each itera-
tion the new position is given by the current position minus a number chosen according
to μ – given that this new position is non-negative; otherwise the search stays at its posi-
tion. Dietzfelbinger et al. prove that for the distribution defined by μ(m) := 1/(m ·Hn)

558 J. Jägersküpper

for m ∈ {1, . . . , n} and μ(m) := 0 otherwise (where Hn =
∑n

i=1 1/n is the nth Har-
monic number; for normalization) the expected number of iterations to reach position
zero is O(ln2 n). Their main result is, however, that the expected number of steps is
Ω(ln2 n) for any distribution μ, i. e., losing a factor of order lnn compared to binary
search is inherent to blind search on the integers using a fixed distribution.

3 “Oblivious Randomized Direct Search” and its Analysis

In the present paper, we focus on direct search in N -dimensional Euclidean space.
Namely, we consider the minimization of SPHEREx∗ , i. e., the minimization of the
(squared) distance from the unique optimum x∗ ∈ RN . Note the following obvious,
but important observation: As x∗ is not known, any candidate for the distribution D∗

that might satisfy the property we ask for in the question at the end of Section 1 must
necessarily be isotropic! Since any isotropic distribution can be decomposed according
to Proposition 1, we are actually looking for some length distribution L∗ such that the
distribution D∗ ∼ L∗ · U over RN has the desired property, where U is uniformly dis-
tributed upon the unit hyper-sphere (uniformly random direction, independent of L∗).
And since we consider isotropic distributions, we can restrict ourselves to the distance
from the optimum x∗. Now, assume that the current candidate solution x is located at
distance d from x∗. Then pd,�,α := P{dist(x + � · U,x∗) ≤ α · d} equals the proba-
bility that adding an isotropically distributed vector with a fixed length � to x generates
a point such that the approximation error is reduced by (at least) the factor α ∈ (0, 1).
Note that pd′,�′,α = pd,�,α whenever �′/d′ = �/d because of scale invariance. Now
assume that the length � is not fixed, but independently chosen according to some prob-
ability distribution with density μ. Then the probability to reduce the approximation
error by at least the factor α ∈ (0, 1) equals

pd,μ,α :=
∫ (1+α)d

(1−α)d

pd,�,α · μ(�) d�.

The integral limits are due to the following fact: For the hyper-sphere with radius �
centered at x to intersect with the hyper-ball with radius α · d centered at x∗, the radius
� must be in the interval [d− αd, d + αd]. If � is smaller than d − αd or larger than
d + αd, the sphere and the ball do not intersect. By substituting d · x for � and using
pd,d·x,α = p1,x,α, we obtain

pd,μ,α =
∫ (1+α)

(1−α)

p1,x,α · μ(x · d) · d dx.

Thus, if μ was such that μ(x · d) · d is independent of d, i. e., μ(x · d) · d = μ(x · d′) · d′,
then pd,μ,α would indeed be independent of d. As a consequence, we choose μ(�) as
β/� for some constant β > 0. Then μ(x · d) · d = β/x, so that

pd,μ,α = β ·
∫ (1+α)

(1−α)

p1,x,α

x
dx,

Oblivious Randomized Direct Search for Real-Parameter Optimization 559

which seems independent of d. However, as already pointed out in the discussion of
related work in Section 2, pd,μ,α is actually independent of d only if the support of μ
covers [d− αd, d + αd]. Note that μ must have bounded support [a, b] with 0 < a < b
in our case since neither

∫ a

0
1/x dx nor

∫∞
b

1/x dx are finite. Actually, when we choose

[a, b] as the support for μ, then 1/β equals
∫ b

a 1/x dx = ln b − ln a = ln(b/a) for
normalization. Later we will focus on how to choose the support [a, b] ⊂ R>0 of

μ : R → R with μ(�) :=

{
1

�·ln(b/a) for � ∈ [a, b]

0 for � /∈ [a, b].
(2)

Note the similarity between μ and the distributions in the two related papers discussed
in Section 2. In the remainder, we focus on the following iterative method:

ORDS[a,b] (Oblivious Randomized Direct Search) is the method in our framework that
uses elitist selection in Instruction 3 and in each iteration the isotropic distribution
D∗ ∼ μ ·U in Instruction 1, where U is uniformly distributed upon the unit hyper-
sphere and μ as in Equation (2) with support [a, b].

Unfortunately, for the analysis of ORDS the reciprocal of the probability to halve the
approximation error in a single step does not result in a reasonable upper bound on the
expected waiting time until the approximation error is halved. The reason is that, for
N ≥ 4, the probability to halve the approximation error in an iteration i is exponentially
small in N , namely smaller than 2−N · 0.43

√
N − 1 for any isotropic distribution D[i]

[12, Lemma 3]. Instead, we will explicitly calculate a lower bound on the expected one-
step gain in the following – and with it an upper bound on the expected convergence
rate. For a start, we follow [12, p. 329]:

“Consider the hyper-plane H that contains the current candidate solution x (
= x∗)
and is orthogonal to the line passing through x and x∗. Assume that the isotropically
distributed vector m happens to have the length � > 0. Then y = x + m is uniformly
distributed upon the hyper-sphere centered at x with radius �. The random variable

G�(y) :=

{
dist(y, H) if y lies in the half-space w. r. t. H containing x∗

− dist(y, H) otherwise

corresponds to the signed distance of the sample x + m from the hyper-plane H (un-
der the condition that |m| = �). Obviously, the support of G� is [−�, �]. For N ≥ 4
the density of G� at some g ∈ [−�, �] equals (1 − (g/�)2)(N−3)/2/(� · Ψ), where
Ψ :=

∫ 1

−1(1 − x2)(N−3)/2 dx (for normalization); cf. [8]. Actually, for a given distance
of d = dist(x,x∗) from the optimum we are interested in the random variable

Δd,�(y) := d− dist(y,x∗)

which corresponds to the spatial gain towards the optimum x∗ (under the condition
|m| = �). The support of the random variable Δd,� is [−�,min{�, 2d− �}]. The inter-
relation between Δd,� and G� is depicted in Figure 1. Simple geometry reveals (for any
y with distance � from x∗) the interrelation

G�(y) = Δd,�(y) +
�2 − (Δd,�(y))2

2d
.”

560 J. Jägersküpper

H

Δ G

xx∗

y

Fig. 1. Interrelation of the random variables G� and Δd,�

As a consequence for the present situation, G�(y) ≥ Δd,�(y) ≥ G�(y) − �2/(2d),
where y is a point from the hyper-sphere with radius � centered at x. In particular,
Δd,�(y) = 0 corresponds to G�(y) = �2/(2d), so that

E
[
Δ+

d,�

]
:= E[Δd,� · 1{Δd,�≥0}] ≥ E[G� · 1{G�≥�2/(2d)}] − �2/(2d). (3)

Note that E[Δ+
d,�] is the expected one-step gain towards the optimum x∗ at distance d,

given that the length of the isotropic distribution happens to be �, when minimiz-
ing SPHEREx∗ using elitist selection (a best-case scenario). As the integral behind
E[Δ+

d,�] seems to not have an algebraically closed form, we will use the lower bound
E[G� · 1{G�≥�2/(2d)}] − �2/(2d), which can be easily calculated. Therefore recall that
the density of G� at g ∈ [−�, �] equals (1 − (g/�)2)(N−3)/2/(� · Ψ). Utilizing that
(1 − x2)(N−1)/2/(1 −N) is an anti-derivative of the function x · (1 − x2)(N−3)/2, for
g ∈ [−�, �] and N ≥ 4

E[G� · 1{G�≥g}] =
1

Ψ · � ·
∫ �

g

x · (1 − (x/�)2)(N−1)/2 dx

=
�2

Ψ · � ·
[

−1
N − 1

· (1 − (x/�)2)(N−1)/2

]�

g

=
�

Ψ · (N − 1)
· (1 − (g/�)2)(N−1)/2.

As Ψ =
√
π·Γ ((N−1)/2)/Γ (N/2), here Γ denotes the well-known gamma function,

1
Ψ · (N−1)

≥
√

(N−2)/2π
/

(N−1) ≥ 1/
√

2π(N+1) > 0.3989/
√
N+1

where we use
√
N − 2

/
(N − 1) ≥ 1/

√
N + 1 for N ≥ 3. Thus, for g := �2/(2d)

E[G� · 1{G�≥�2/(2d)}] > (1 − (�/(2d))2)(N−1)/2 · � · 0.3989/
√
N + 1.

For � ≤ d/
√
N , we have (1 − (�/(2d))2)(N−1)/2 ≥ (1 − 0.25/N)(N−1)/2 ≥ e−1/8 >

0.8824, so that (using 0.8824 · 0.3989 > 0.35)

E[G� · 1{G�≥�2/(2d)}] > 0.35 �/
√
N + 1 for � ≤ d/

√
N and N ≥ 4. (4)

Oblivious Randomized Direct Search for Real-Parameter Optimization 561

Together with Equation (3), we thus obtain the following lower bound on the expected
spatial gain towards the optimum in the search space:

E
[
Δ+

d,�

]
>

0.35 �√
N+1

− �2

2d
for � ≤ d/

√
N and N ≥ 4. (5)

(In particular, for a length � of 0.35d/
√
N + 1 this lower bound on the expected gain

resolves to 0.06125d/(N + 1) = Ω(d/N), which is off from the general upper bound
in Equation (1) by a factor of less than 8.5 + 17/(N − 1) only. As a consequence,
using the lower bound from Equation (5) is safe – in particular when we focus on the
asymptotic order of the gain as N grows.)

Now, recall from Equation (2) the distribution μ with support [a, b] according to
which the length � of the isotropically distributed vector is chosen. Then, given that
a ≤ 0.1d/

√
N + 1 and b ≥ 0.7d/

√
N + 1, we obtain (for N ≥ 4)

E
[
Δ+

d,μ

]
=
∫ ∞

0

E
[
Δ+

d,�

]
· μ(�) d�

>

∫ 0.7d/
√

N+1

0.1d/
√

N+1

(
0.35 �√
N + 1

− �2

2d

)

· 1
� · ln(b/a)

d�

=
0.09d

(N + 1) · ln(b/a)
,

where we use that Δ+
d,� (and thus its expectation) is non-negative anyway, so that in-

tegration limits can be chosen, and the bound from Equation (5). Note that this lower
bound on the expected one-step gain is off from the general upper bound in Equation (1)
by a factor of less than ln(b/a) · 5.8 · (N + 1)/(N − 1) = O(ln(b/a)). All in all, we
have just proved the following.

Lemma 3. Let ORDS[a,b] minimize SPHEREx∗ in RN , N ≥ 4. If the approximation
error d (distance from the optimum x∗) and a and b are such that a ≤ 0.1d/

√
N + 1

as well as b ≥ 0.7d/
√
N + 1, then the expected factor by which the approximation

error is reduced in a step is smaller (i. e. better) than 1 − 0.09
(N+1)·ln(b/a) .

When we aim at an ε-approximation, then a := 0.1ε/
√
N + 1 must be chosen for

the preceding lemma to apply. (Actually, a := ε/
√
N should work; the factor 0.1 is

due to the application of the bound in Equation (5) and the rough estimation of the
integral’s value.) For the choice of b recall the discussion that led to the definition of
μ in Equation (2). Hence, we choose b as twice the maximum possible approximation
error. In the SPHERE scenario, this is twice the initial approximation error. If the initial
approximation error is not known – like in the following setting – an upper bound can
be used. (The length of a diagonal in theN -dimensional interval region [0, 1]N is

√
N .)

Theorem 4. Let ORDS[a,b] minimize SPHEREx∗ in RN , N ≥ 4. Assume that the op-
timum point x∗ as well as the initial search point lie in the set [0, 1]N . Then choosing
a := 0.1ε/

√
N + 1 and b := 2

√
N + 1 ensures linear convergence at an expected rate

smaller (i. e. better) than 1 − 0.09
(N+1)·ln(20(N+1)/ε) = 1 − 1/O(N ln(N/ε)) until the

approximation error drops below ε+ a < ε · (1 + 0.1/
√
N).

562 J. Jägersküpper

Now that we know an upper bound on the expected factor by which the approximation
error is reduced in each step (unless the approximation error drops below ε + a) we
would like to turn this into an upper bound on the expected number of steps to reduce
the approximation error by a predefined amount. The following lemma, which can be
found in [8] including a full proof, will enable us to do so.

Lemma 5. Let X1, X2, . . . denote random variables with bounded support and S the
random variable defined by S := min{ t | X1 + · · ·+Xt ≥ g} for a predefined g > 0.
Given that S is a stopping time, i. e., the event {S = k} depends solely on X1, . . . , Xk,
if E[S] <∞ and E[Xi | S ≥ i] ≥ φ > 0 for all i, then E[S] ≤ E[X1 + · · · +XS]/φ.

Proof. Note that the Xi need not be independent and that, since the Xi are bounded,
the precondition E[S] <∞ implies E[X1 + · · · +XS] <∞. Then

E[X1 + · · · +XS] =
∞∑

i=1

P{S ≥ i } · E[Xi | S ≥ i] ≥
∞∑

i=1

P{S ≥ i } · φ = E[S] · φ

where the first equation is the major part of the proof of Wald’s equation. �

We concentrate on the expected number of steps to halve the approximation error, and
thus, for the application of Lemma 5 we let Xi denote the spatial gain towards the op-
timum in the ith iteration and choose g := d[0]/2 and � := 0.09

(N+1)·ln(20(N+1)/ε)d
[0]/2,

where we use that 0 ≤ Xi ≤ d[0] in our scenario, and that the condition {S ≥ i} merely
means that the approximation error has not been halved within the first i− 1 iterations,
i. e., d[i−1] > d[0]/2. Finally, we use the trivial bound E[X1 + · · · +XS] ≤ d[0] (which
actually costs us a factor of nearly 2) and note that E[S] <∞ since in each iteration the
success/stopping region is hit with positive probability. All in all, the application of the
previous lemma yields the following upper bound on the expected number of steps to
halve the approximation error.

Corollary 6. Consider the settings from Theorem 4. Then, unless the approximation
error is smaller than 2(ε + a) < 2ε(1 + 0.1/

√
N), the expected number of steps to

halve the approximation error is at most d[0]/ 0.09·d[0]/2
(N+1)·ln(20(N+1)/ε) , which is smaller

than 22.3 · (N + 1) · (ln(N + 1) + 3 − ln ε) = O(N · ln(N/ε)).

This upper bound is off from the general lower bound when using isotropic samples
(Theorem 2) – which covers perfect adaptation – by less than a factor of 23.2 ln(N/ε)
for large N . As the location of the optimum x∗ ∈ [0, 1]N is not known, random initial-
ization is the most appropriate choice, finally yielding the main result:

Theorem 7. Let ORDS[a,b] minimize SPHEREx∗ in RN ,N ≥ 4, for some x∗ ∈ [0, 1]N ,
where a := 0.1ε/

√
N + 1 and b := 2

√
N + 1. Then, unless the approximation error

is smaller than ε′ := ε + a < ε · (1 + 0.1/
√
N), the search converges linearly at

an expected rate smaller than 1 − 0.09
(N+1)·ln(20(N+1)/ε) , and moreover, when the initial

candidate solution is sampled uniformly at random from [0, 1]N , the expected number
of steps to obtain an ε′-approximation is O(N · ln2(N/ε)).

Oblivious Randomized Direct Search for Real-Parameter Optimization 563

Proof. Obviously, the (expected) initial approximation error is bounded above by
√
N .

As a consequence, the approximation error must be halved at most ln(
√
N/ε)/ ln 2

times in expectation (w. r. t. the initialization) to obtain an ε-approximation. As the
random initialization and the sampling of μ are independent, we can multiply by the
expected number of steps to halve the approximation error to obtain an upper bound
on the expected runtime of 22.3 · (N+1) · ln(20(N+1)/ε) · ln(

√
N/ε)/ ln 2, which is

bounded above by 32.2 · (N+1) · ln2((N+1)/ε) +O(N · ln(N/ε)). �

4 Discussion and Conclusion

The choice of the unit hyper-cube [0, 1]N as the decision space was somewhat arbitrary,
of course. For any bounded N -dimensional interval region we can choose b as twice
its diameter d. Then the expected number of steps to halve the approximation error on
SPHERE is O(N · ln(d/ε)), which is larger than the general lower bound (when us-
ing isotropic sampling to generate candidate solutions) by a factor of order ln(d/ε).
Actually, this is the factor that ORDS loses in the best-case scenario. In practice, the
optimization scenario is often not best-case, but the function to be optimized may be
multi-modal for instance. Then (usual) step-size controls result in the convergence to
the stationary point that is closest to the (random) staring point. On the one hand, they
(usually) accelerate the convergence to the nearest local optimum, but on the other hand,
the step sizes rapidly become too small to escape the local optimum region. This is bad
in particular when there are many local optima, so that a large number of restarts is
necessary to initialize within one of the “good” local-optimum regions. Also ORDS
may converge to the nearest local optimum, but as it does so without favoring smaller
and smaller step-sizes, and because of the heavy tailed distribution of the step-lengths,
ORDS simultaneously searches more globally, i. e., the chance of escaping the local
optimum region is preserved. This can also be considered as an implicit mechanism
for automated restarts. In particular, after such a “restart”, i. e., after a long step that
made the search leave the current local optimum region into another one, the step-sizes
need not be re-adjusted in ORDS as it would be necessary for (usual) step-size controls.
Preliminary experimental investigations of ORDS support this hypothesis on its behav-
ior, and also the simulations presented in [10] (the first work discussed in Section 2)
indicate that the concept behind ORDS can work well. (The authors consider a bunch
of multi-modal test functions, but also “a difficult real-world application, from medical
image interpretation.”)

Thus, besides the interesting theoretical aspects of ORDS and its runtime analy-
sis presented here, the distribution used in ORDS to sample new candidate solutions
may indeed be used in more complex algorithms. For instance, it could be used within
the CMA-ES (Covariance Matrix Adaptation Evolution Strategy, cf. [13]) instead of
multivariate normal distributions. This would supersede the complex and expensive
step-size adaptation (by the so-called cumulative step-size adaptation (CSA)), but the
learning and the continuous adaptation of the inverse Hessian (similar to a quasi-
Newton approach) would be retained, which particularly helps with the optimization
of ill-conditioned problems. An experimental investigation of such an algorithm with a

564 J. Jägersküpper

(statistical) comparison to other direct-search heuristics shall help us assess the potential
for practical optimization.

Acknowledgment. The author thanks Ingo Wegener (for posing the underlying ques-
tion and giving some initial thoughts about the subject of this paper) and the reviewers
who provided detailed and helpful comments.

References

1. Wegener, I.: Towards a theory of randomized search heuristics. In: Rovan, B., Vojtáš, P. (eds.)
MFCS 2003. LNCS, vol. 2747, pp. 125–141. Springer, Heidelberg (2003)

2. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: New perspectives on
some classical and modern methods. SIAM Review 45(3), 385–482 (2004)

3. Rechenberg, I.: Cybernetic solution path of an experimental problem. Royal Aircraft Estab-
lishment (1965)

4. Brooks, S.H.: A discussion of random methods for seeking maxima. Operations Re-
search 6(2), 244–251 (1958)

5. Wegener, I.: Randomized search heuristics as an alternative to exact optimization. In: Lenski,
W. (ed.) Logic versus Approximation. LNCS, vol. 3075, pp. 138–149. Springer, Heidelberg
(2004)

6. Fang, K.T., Kotz, S., Ng, K.W.: Symmetric multivariate and related distributions. Mono-
graphs on statistics and applied probability, vol. 36. Chapman & Hall, London (1990)

7. Jägersküpper, J.: Analysis of a simple evolutionary algorithm for minimization in Euclidean
spaces. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 1068–1079. Springer, Heidelberg (2003)

8. Jägersküpper, J.: Algorithmic analysis of a basic evolutionary algorithm for continuous opti-
mization. Theoretical Computer Science 379(3), 329–347 (2007)

9. Jägersküpper, J.: Lower bounds for hit-and-run direct search. In: Hromkovič, J., Královič, R.,
Nunkesser, M., Widmayer, P. (eds.) SAGA 2007. LNCS, vol. 4665, pp. 118–129. Springer,
Heidelberg (2007)

10. Rowe, J.E., Hidovic, D.: An evolution strategy using a continuous version of the Gray-code
neighbourhood distribution. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp.
725–736. Springer, Heidelberg (2004)

11. Dietzfelbinger, M., Rowe, J.E., Wegener, I., Woelfel, P.: Tight bounds for blind search on
the integers. In: Proc. 25th Annual Symposium on Theoretical Aspects of Computer Science
(STACS), IBFI Schloss Dagstuhl, Germany. Dagstuhl Seminar Proceedings, vol. 8001, pp.
241–252 (2008)

12. Jägersküpper, J.: Lower bounds for randomized direct search with isotropic sampling. Oper-
ations Research Letters 36(3), 327–332 (2008)

13. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strate-
gies. Evolutionary Computation 9(2), 159–195 (2001)

Path Minima in Incremental Unrooted Trees�

Haim Kaplan and Nira Shafrir

School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
{haimk,shafrirn}@post.tau.ac.il

Abstract. Consider a dynamic forest of unrooted trees over a set of n
vertices which we update by link operations: Each link operation adds
a new edge adjacent to vertices in two different trees. Every edge in the
forest has a weight associated with it, and at any time we want to be
able to answer a path-min query which returns that edge of minimum
weight along the path between two given vertices.

For the case where the weights are integers we give an algorithm that
performs n−1 link operations and m pathmin queries in O(n+mα(m, n))
time. This extends well known results of Tarjan [11] and Yao [12] to a
more general dynamic setting at the cost of restricting the weights to be
integers. We also suggest a simpler data structures for the case where
trees are rooted and the link operation always adds an edge between the
root of one tree and an arbitrary vertex of another tree.

1 Introduction

The incremental path minima problem in rooted trees is defined as follows. Let
F be a forest of rooted trees with n vertices. Each edge e has an integer weight
w(e). We have to support the following operations on the forest.

– make-tree(v): Create a new tree consisting of the singleton node v.
– link(u, v, c). We assume that u ∈ T 1, v ∈ T 2, v is the root of T 2, and
T 1
= T 2. Replace the trees T 1 and T 2, by the tree that is created by adding
the edge e = (u, v) with w(e) = c.

– path-min(u, v): If u and v belong to the same tree, return the edge of mini-
mum weight on the unique path between u and v. Otherwise, return null.

We give an algorithm that supports n − 1 link operations and m path-min
queries in O(n + mα(m,n)) time where α(m,n) is the inverse of Ackermann’s
function. Alstrup and Holm [2] claimed this result without describing the data
structure.

The incremental path minima problem in unrooted trees is defined analogously
as follows. Let F be a forest of unrooted trees. Each edge e has an integer weight
w(e). The operations make-tree and path-min are defined as for rooted trees.
We change the link(u, v, c) operation and remove the requirement that u is a

� This work is partially supported by United States - Israel Binational Science Foun-
dation, project number 2006204.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 565–576, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

566 H. Kaplan and N. Shafrir

root. That is we only require that u ∈ T 1, v ∈ T 2, and T 1
= T 2. The operation
replaces the trees T 1 and T 2 by the tree that is created by adding the edge
e = (u, v) with w(e) = c. This data type is more general in the sense that it
allows link between any two vertices that are not in the same tree. Our main
result is a data structure with the same time bounds for this unrooted version
of the problem.

Our data structures are based on two main components. The first component
is incremental trees . Incremental trees support add-leaf and add-root operations
and path-min queries in O(1) time. They are based on a similar structure of
Alstrup and Holm [2] for the level ancestor problem. We restrict the weights to
be integers so we can use q-heaps [4] to construct incremental trees. We assume
the RAM model of computation with word size b so that a weight of an edge fits
into a single word. We also make sure that b ≥ logn where n is the number of
vertices in our forest.

The second component is a recursive decomposition of trees suggested by
Gabow [6]. Gabow used this scheme to answer m nearest common ancestor
(nca) queries on rooted trees while allowing links in O(n + mα(m,n)) time.
This recursive structure supports all links in O(n + m) time and each query in
O(α(m,n)) time. Gabow also used a similar technique to solve the list splitting
problem [5]. (See also [10] for a similar recursive structure.)

The recursive scheme at high level is as follows. A tree T is partitioned into
clusters each of which is a subtree of T . Each cluster is represented as an in-
cremental tree. We then contract each cluster and represent the resulting tree
recursively. The depth of the recursion is O(α(m,n)).

These two components alone are not sufficient. Even for the rooted problem
subtle issues arise as of how to organize the information so that we only spend a
constant time per level of the recursion when we answer a query. In the rooted
version of the problem there is a natural root for each cluster and we maintain
information on paths to this root. When such a root does not exist it is not clear
anymore on which path to maintain information.

Our application for the incremental path minima problem in unrooted trees is
an optimal algorithm for a restricted version of the mergeable trees problem [8]
which arises in computational topology. The mergeable trees problem is defined
as follows. Let F be a forest of rooted trees. Each node v has a unique weight
w(v). Each S ∈ F is a heap ordered tree so that w(v) ≥ w(p(v)). The data
structure supports the following operations.

• merge(u, v). Let u ∈ S1, v ∈ S2, (S1 may be equal to S2.) Create a new
tree S in which the path from u to the root of S1 is merged with the path of v
to the root of S2, in a way that preserves heap order. In case S1
= S2 we call
the merge an external-merge and otherwise we call it an internal-merge.

• nca(u, v): If u and v belong to the same tree return the nearest common
ancestor of u and v. Otherwise, returns null.

Recently, Georgiadis et al [7] showed a reduction from the mergeable trees prob-
lem without internal merges to the incremental path minima problem in unrooted

Path Minima in Incremental Unrooted Trees 567

trees. A merge operation translates to a link and an nca query translates to a path-
min operation. Thus we get a data structure that supports n− 1 external merges
and m nca queries (where the weights are integers), in O(n + mα(m,n)) time.
This is particularly interesting since it matches the lower bound for the problem,
see [8]. For more on the connection between these problems see [7].

Related results. Yao [12] and Alon and Schieber [1] (See also [3]) solved the
following static problem. Let T be a tree with n nodes each associated with
an element of a semigroup (S, ◦). We want to preprocess the tree to answer
queries of the form: Given two vertices u and v what is the product (◦) of the
element of S associated with the vertices on the path from u to v. Yao and
Alon and Schieber show how to preprocess the tree in linear time so that we can
answer each query in O(α(n)) (where α(n) is yet another version of an inverse
to Ackermann’s function). As a special case we can use their data structure for
a static version of our problem in which there is a single tree given in advance
which we want to preprocess for path-min queries.

Tarjan [11] in his seminal paper used path compression to solve a restricted
version of the problem on rooted trees. In Tarjan’s version link(v,w,c) is defined
only if both v and w are roots of their trees, and path-min queries are restricted
to paths from a given vertex to the root. Tarjan also considered an arbitrary
semigroup. This special case has numerous applications, one of which is to verify
that a given tree is a minimum spanning tree.

Both algorithms mentioned above, when applied to computing path minima
queries, work in the comparison model and need not assume that keys are integers.

The outline of the rest of the paper. To fully grasp our new ideas one
has to go into a quite deep technical discussion. To help the reader we try to
expose some of these ideas through a somewhat less formal discussion in Section
2, focusing on the difference between the rooted and the unrooted problems. In
Section 3 we define incremental trees perform add-leaf and add-root and min
query in O(1) time (but no link). In Section 4 we describe the data structure for
incremental path minima in rooted trees problem. In Section 5 we give a simple
but not optimal data structure for incremental path minima in unrooted trees
problem that supports n− 1 link m pathmin queries in O(n+mα2(m,n)) time.
In the full version of this paper [9] we describe how to improve this running time
to O(n +mα(m,n)).

2 Highlights of the Data Structure

In this section we try to give a high level intuition of the differences between
the rooted problem and the unrooted problem. This shows where the difficulties
are, and the ideas that we introduce to cope with them. We focus on the query
operation.

We avoid formal definitions at this point but recall that each of our trees is
partitioned into clusters. Each cluster is a connected subtree which we represent
as an incremental tree. The clusters are contracted, and the contracted tree is

568 H. Kaplan and N. Shafrir

again partitioned into clusters that are represented as incremental trees, and so
on. See Figure 1(A).

For a vertex x ∈ T , we denote by Ck(x) the cluster of level k that contains it.
Levels of clusters decrease with our recursion so the nodes of a cluster of level k
are clusters of level k + 1. In particular if Ck(x) is not a top-level cluster then
Ck+1(x) is one of its nodes, and if Ck contains the vertices x and y of T then
Ck(x) = Ck(y) = Ck.

Let (x, y), x, y ∈ T , be the edge of T that connects between the clusters
Ck+1(x) and Ck+1(y) in a cluster Ck. What would be the weight of this edge
when we consider it as an edge of Ck ? To define this weight we must root Ck as
a subtree of T even if the original tree is unrooted. Then if say Ck+1(x) is the
parent of Ck+1(y) the weight of (x, y) is the minimum weight of an edge on the
path from y to the root of Ck+1(x) that is induced by the orientation of Ck.

When T is rooted then the root of each cluster is naturally defined. See Figure
1(A). In unrooted trees we can designate an arbitrary vertex to be a root. But to
maintain such a root we will have to change directions of many edges during a link.
On the other hand we still want the clusters to be rooted so that we can define the
weight of each edge in a cluster. A key idea is to exploit the freedom that we have,
and allow each cluster to be independently oriented, see Figure 1(B).

The query pathmin(x, y) for both rooted and unrooted trees works roughly as
follows. We find the highest level k such that Ck(x) = Ck(y). Let Ck = Ck(x) =
Ck(y). (For an illustration see vertices x and y in Figure 1(A) and Figure 1(B).
In these figures we assume that k+2 = �, and all the clusters of level k+1 in are
in the same cluster of level k). By the definition of Ck we have that the clusters
Ck+1(x) and Ck+1(y) are different nodes in Ck. Let Ck+1 be the nearest common
ancestor of Ck+1(x) and Ck+1(y) in Ck, (Ck+1 = Ck+1(a) in the Figures). For
simplicity assume that Ck+1
= Ck+1(y), and Ck+1
= Ck+1(x).

Let (xr, x
′′), xr, x

′′ ∈ T , be the edge between Ck+1(x) to its parent cluster in
Ck where xr ∈ Ck+1(x). Similarly, let (yr, y

′′), yr, y
′′ ∈ T , be the edge between

Ck+1(y) to its parent cluster in Ck. Let Ck+1(x1) be the cluster that precedes
Ck+1 on the path from Ck+1(x) to Ck+1 and let (x1, x̂) be the edge between the
cluster Ck+1(x1) to Ck+1. Similarly, let Ck+1(y1) be the cluster that precedes
Ck+1 on the path from Ck+1(y) to Ck+1 and let (y1, ŷ) be the edge between the
cluster Ck+1(y1) to Ck+1. The query path consists of the following parts. (1)
from x to xr in Ck+1(x); (2) from xr to x1; (3) the edge (x1, x̂) ; (4) from x̂ to
ŷ in Ck+1; (5) The edge (ŷ, y1); (6) from y1 to yr; and (7) from yr to y.

We find the minimum on part (2) and part (6) by a query to the incremen-
tal tree of the cluster Ck. We find the minimum on part (4) recursively. Since
Ck+1(x̂) = Ck+1(ŷ) = Ck+1 the depth of this recursion is O(α(m,n)).

The way we find the minimum on parts (1) and (7) is different in the rooted
and the unrooted data structures. In the rooted structure we use the fact that
xr is the root vertex of the cluster Ck+1(x). This special case of finding the
minimum from a vertex to the root of a cluster is easier and takes O(α(m,n))
time.

Path Minima in Incremental Unrooted Trees 569

a

xr

x1

k

j

(A)
Ck+1(a)

Ck+2(a)

g

b

y1

t

yr

y

x

Ck+1(x)

x′′

x̂

y′′
e′

ŷ

Ck+1(y)

x̂

u

(B)
Ck+1(a)

Ck+2(a)
ŷa

b

g

p

de′′

h

x′′ e′

j

x1
k

y1

t

y′′
Ck+1(y)

yr

y

u

xr

v

q w

x

Fig. 1. In both figures we assume here that k + 2 = �, and that the small circles are
the vertices of T . (A) The recursive structure for a rooted tree. Medium circles are
clusters of Tk+2. Large circles are clusters of Tk+1. Edges of level k + 2 are contained
inside clusters of level k + 2, (edges such as (a, b) (x̂, g) and so on). The edges (b, g)
and (k, j) are of level k + 1. The edges (xr, x

′′), (yr, y
′′), (x1, x̂) and (y1, ŷ) are of level

k. Let e′ = (xr, x
′′). The weight of the edge e′(k) is the minimum weight of an edge on

the path from xr to x1. (B) The recursive structure in unrooted trees. Each cluster is
oriented independently. We have that r(Ck+2(a)) = t(Ck+2(a)) = a, r(Ck+2(g)) = g,
and t(Ck+2(g)) = h. Let e′ = (xr, x

′′). The weight of e′(k) is the minimum weight of
an edge on the path from xr to x1. The weight of e′(k + 1) is the minimum weight
of an edge on the path from xr to j. Let e′′ = (h, b). The weight of e′′(k + 1) is the
minimum weight of an edge on the path from h to a in T .

If the trees are unrooted, (see Figure 1(B)), then xr is not necessarily the
root vertex of the cluster Ck+1(x) and yr is not necessarily the root vertex of
the cluster Ck+1(y). This makes the query slightly more difficult. We suggest
two solutions. In the simple data structure of Section 5, we find the minimum
on parts (1) and (7) again using recursion. This additional recursion degrades
the running time of a query to O(α(m,n)2).

In the full version of the paper we show how to reduce the query time in
unrooted trees to O(α(m,n)) by storing more information. For each edge (u, v)
such that Ck+1(v)
= Ck+1(u), we maintain the edge of minimum weight on the
path from u to each cluster of level k+ 2 in Ck+1(u). Using this information we
find the edge of minimum weight on the path between y and yr in O(α(m,n))
time. To save this additional information we had to restrict the size of a cluster
from above, and to change the implementation of both link and query.

570 H. Kaplan and N. Shafrir

3 Incremental Trees and Partial Incremental Trees

Our building blocks are incremental trees . An incremental tree is a data structure
to maintain a rooted tree T , with an integer weight on each vertex, such that
the following operations are supported in O(1) time.

add-leaf(v,w,c): Add a new leaf v with parent w to T . The weight of the edge
(v, w) is c.

add-root(v,c): Add a new root v to T . The old root of T , say r, becomes a
child of v and the weight of the edge (r, v) is c.

min(v,w): Returns the edge of minimum weight on the path from v to w.
change-weight(v,c): v is a leaf or v’s parent is the root of T . Changes the

weight of the edge between v and its parent to c.

Our incremental trees also support nearest common ancestor (nca) queries in
constant time. If the data structure does not support the add root operation then
we call it a partial incremental tree. A detailed implementation of partial incre-
mental trees and incremental trees appears in the complete version of this paper.

4 A Data Structure for Rooted Trees

We use the following definition of Ackermann’s function

A(i, 1) = 2 i ≥ 1
A(1, j) = 2j j ≥ 1
A(i, j) = A(i− 1, A(i, j − 1)) i, j ≥ 2

and the inverse functions

a(i, n) = min{j | A(i, j) ≥ n}
α(m,n) = min{i | A(i, �m/n�) ≥ n} m,n ≥ 1 .

Assume for now that we know the number of operations m ahead of time1

and let � = α(m,n). We denote a tree in our forest of rooted trees by T . We
denote by p(v) the parent of a node v, and by |T | the number of vertices in T .

Our forest is represented using a recursive family of data structures. At the
top level each tree T in the forest is a member of the data structure D�. Each
tree in D� is classified to a universe. There are a(�, n) universes 0, · · · , a(�, n)−1
in D�. The size of the tree T determines its universe as follows. If |T | < 4 then T
is in universe 0. Otherwise, if 2A(�, i) ≤ |T | < 2A(�, i+ 1) then T is in universe
i. (Note that 2A(�, 1) = 4.)

Let T be in universe i > 0. The vertices of T are partitioned into clusters.
Each cluster is a subtree of T that contains at least 2A(�, i) vertices. Let T ′ be
the tree obtained from T by contracting each cluster into a single node. The tree
1 If m is not known ahead of time then we can globally rebuild the structure when

m = 2n, and subsequently every time m is doubled. This does not affect the time
bounds.

Path Minima in Incremental Unrooted Trees 571

T ′ is represented using the data structure D�−1 which is defined analogously.
The last data structure in this recurrence is D1. In D1 each tree consists of a
single cluster (so the tree with this cluster contracted is a singleton which is not
represented using a recursive structure).

In the data structure Dj we have a(j, n) universes 0, · · · , a(j, n)−1. Let H be
a tree in Dj . If |H | < 4 then H is in universe 0 and otherwise if 2A(j, i) ≤ |H | <
2A(j, i + 1) then H is in universe i. If H is in universe i > 0 then the vertices
of H are partitioned into clusters. Each cluster is a subtree of H that contains
at least 2A(j, i) vertices. The tree H ′ obtained by contracting each cluster, is
represented using the data structure Dj−1.

Consider a tree T in our forest. The tree T is a member of D�. If |T | ≥ 4 then
a tree T ′, obtained from T by contracting its clusters, is in D�−1. Similarly, if
|T ′| ≥ 4 then a tree T ′′ obtained by contracting clusters of T ′, is a member of
D�−2 and so on. We can also think of T ′′ as obtained from T by contracting even
larger subtrees (each such subtree is a cluster of T ′ which is a cluster of clusters
of T). When thinking of T as a member of D� we denote it by T�. We denote by
T�−1, the tree T ′ corresponding to T in D�−1. In general we denote by Tj the
tree corresponding to T in Dj. For j < �, the tree Tj contains all the edges of T
that connect two clusters of Tj+1. See Figure 1(A).

We also use the following definitions. Let v be a vertex in T . We define
C�+1(v) = v. We denote by C�(v) the cluster in T� that contains v. The cluster
C�(v) is a subtree of T . We define recursively Cj(v) for j < � to be the cluster
of Tj that contains Cj+1(v).

One can think of Cj(v) as a subtree of T by substituting the subtrees of T
corresponding to all clusters Cj+1(w) contained in Cj(v). We also refer to Cj(v)
as a node of Tj−1.

For j ≤ �+ 1, we define r(Cj(v)) to be the root of the subtree of T that Cj(v)
represents. Let e = (x, y) ∈ T = T� and let j be the smallest level such that
Cj+1(x)
= Cj+1(y). We define the level of e to be j and denote it by level(e) = j.
A copy of the edge e appears in each Ti, for j ≤ i ≤ �. We denote by e(i) the copy
of e that appears in Ti. The edge e is contracted into the cluster Cj(x) = Cj(y)
in Tj , and therefore does not exist in Ti, for any i < j. We sometimes use e when
in fact we refer to e(j); the context will make clear which edge we refer to. Since
|Tj| < 1

2 |Tj+1| for any j < �, it is clear that
∑�

j=1 |Tj| = O(|T |).
For each tree T in our forest and for every level j such that Tj exists, we

maintain Tj. In addition, the node representing the cluster Cj has a pointer to
r(Cj), a pointer to the cluster of level j+1 which is the root of Cj , and a pointer
to the cluster of level j − 1 containing Cj , if it exists. The edge representing a
copy e(j) of the edge e, has a pointer to e.

Let e = (u, v) ∈ T such that level(e) = j and assume v = p(u). We store with
e a list L(e) of size � − j + 1. Entry � of L(e) contains e. For level j ≤ k < �
entry k of L(e) contains the edge f of minimum weight on the path from u to
r(Ck+1(v)) in T . We represent L(e) as a doubly linked list with pointers to its
first and last entry.

572 H. Kaplan and N. Shafrir

Consider a copy e(k) of e in Tk for some j ≤ k ≤ �. Let f be the edge stored
in entry k of L(e). The weight of e(k), denoted by w(e(k)), is equal to the weight
of f . Since

∑�
j=1 |Tj| = O(|T |), the total space used to store the lists L(e) is

linear. Figure 1(A) illustrates this recursive structure.
Let Cj , j ≤ �, be a cluster of Tj. We represent Cj as an incremental tree

whose nodes are clusters of Tj+1. We keep a pointer from Cj to the incremental
tree that represents it. We also sometimes refer to Cj as the incremental tree
itself. Let e = (u, v) be an edge of level j. Then, e(j) is contained in a cluster
Cj(u) = Cj(v), and in the incremental tree representing it. The weight of e(j)
in this incremental tree is w(e(j)). If T is in universe 0, (|T | < 4), we think of T
as a single cluster C and represent C as an incremental tree.

In this abstract we describe only the path-min query. The link is similar to
the link of unrooted trees described in the next section.

Assume that x and y are two vertices in the same tree T and let Pxy be the
path from x to y in T . We want to find the edge of minimum weight on Pxy. Let
k be the largest level for which Ck(y) = Ck(x)2. We define a recursive procedure
pathmink(x, y, ex, ey), where either ex or ey may be null. If ex = (x′, x) is not
null, then ex is an edge incident to x which is of level < k and we have a pointer
to the entry k in L(ex). Moreover, x is the parent of x′. Similarly, if ey = (y′, y)
is not null, then ey is an edge incident to y which is of level < k and we have a
pointer to entry k in L(ey) and y is the parent of y′. If ex is not null, let a = x′

otherwise let a = x. Similarly, if ey is not null, let b = y′, otherwise let b = y.
The procedure pathmink(x, y, ex, ey) finds the edge of minimum weight on Pab.

We first assume that both ex = (x′, x) and ey = (y′, y) exist. We will re-
lax these assumption later. The procedure pathmink(x, y, ex, ey) works as fol-
lows. The base case is when k = �. In this case we perform minC�(x)(x, y) and
get the edge f of minimum weight on Pxy. We return the edge of minimum
weight among {ex, ey, f}. So assume now that k < �. If Ck+1(x) = Ck+1(y)
then we advance in L(ex) and in L(ey) one step to entry k + 1, and return
the answer of pathmink+1(x, y, ex, ey). If Ck+1(x)
= Ck+1(y) then we find
Ck+1(z) = ncaCk(x)(Ck+1(x), Ck+1(y)) and perform one of the following cases.

Case 1: Ck+1(z)
= Ck+1(x) and Ck+1(z)
= Ck+1(y). Let Ck+1(x1) be the
node in Ck(x) on the path from Ck+1(x) to Ck+1(z) that precedes Ck+1(z),
and assume that x1 = r(Ck+1(x1)). Let Ck+1(y1) be the node in Ck(x) on the
path from Ck+1(y) to Ck+1(z) that precedes Ck+1(z), and assume that y1 =
r(Ck+1(y1)). Let x̂ be the parent of x1 in T . Note that x̂ ∈ Ck+1(z) and the
edge (x1, x̂) is of level k. Similarly, let ŷ be the parent of y1 in T . Note that
ŷ ∈ Ck+1(z) and the edge (y1, ŷ) is of level k. The path Px′y′ splits into five
disjoint parts: (a) from x′ to r(Ck+1(x)), (b) from r(Ck+1(x)), to x1, (c) from
x1 to y1, (d) from y1 to r(Ck+1(y)), (e) from r(Ck+1(y)) to y′.

The minimum edge on part (a) is stored with entry k of L(ex). We find the
minimum edge on part (b) by a minCk(x)(Ck+1(x), Ck+1(x1)) query. We find

2 The level k always exists, since there exists a level j such that Tj is in universe 0.
The tree Tj consists of a single cluster Cj = Cj(x) = Cj(y).

Path Minima in Incremental Unrooted Trees 573

the minimum edges on parts (d) and (e) symmetrically. To find the minimum
edge on part (c) we recursively perform pathmink+1(x̂, ŷ, (x1, x̂), (y1, ŷ)). Since
(x1, x̂) is of level k, entry k + 1 is the next to last entry in L((x1, x̂)) and we
can access it in O(1) time. The situation with respect to (y1, ŷ) is analogous. We
return the edge of smallest weight among the minimum weight edges in each of
the five parts.

Case 2: Ck+1(z) = Ck+1(x) and Ck+1(z)
= Ck+1(y). Let Ck+1(y1) be the
node in Ck(x) on the path from Ck+1(y) to Ck+1(z) that precedes Ck+1(z), and
assume that y1 = r(Ck+1(y1)). Let ŷ = p(y1). Here we split Px′y′ into three
parts: (a) from x′ to y1, (b) from y1 to r(Ck+1(y)), (c) from r(Ck+1(y)) to y′.

We find the minimum edge on parts (b) and (c) as we did in the previous
case. We advance one step in L(ex) to entry k + 1, and we find the minimum
edge on part (a) by performing pathmink+1(x, ŷ, ex, (y1, ŷ)). As in the previous
case entry k + 1 in L((y1, ŷ)) is next to last and we access it in O(1) time. We
return the edge of smallest weight among the minimum weight edges in each of
the three parts.

Case 3: Ck+1(z) = Ck+1(y), and Ck+1(z)
= Ck+1(x). This case is symmetric
to the previous case.

If ex is null and we perform Case 1 or Case 3, then we compute the minimum
on the path from x to r(Ck+1(x)) by another procedure which we call min-root .

The procedure min-root(x, k) finds the edge of minimum weight on the path
between a vertex x and r(Ck(x)) as follows. Let b = r(Ck(x)). If k = � return the
result of the query minCk(x)(x, b). If Ck+1(x) = Ck+1(b) perform min-root(x, k+
1). Otherwise, Ck+1(x)
= Ck+1(b), and we perform minCk(x)(Ck+1(x), Ck+1(b)),
and get in O(1) time the edge f1 of minimum weight on the path between
r(Ck+1(x)) to b. We also perform min-root(x, k + 1) to find the edge f2 of min-
imum weight on the path between x and r(Ck+1(x)). We return the edge of
smaller weight among f1 and f2.

We answer the pathmin query by finding the maximum level k such that
Ck(x) = Ck(y) and calling pathmink(x, y, null, null).

It is clear that min-root runs in O(�−k) time. Notice that if ex is not null when
we call pathmink(x, y, ex, ey), then it would not be null also in the recursive call
invoked by this pathmin. It follows that while performing pathmink(x, y, null,
null), we call twice to min-root with level at least k + 1, and other than these
two calls it takes O(1) time per level between k and �. So pathmin at level k
also takes O(� − k) time.

5 An O(n + mα(m, n)2) Structure for Unrooted Trees

We use the recursive decomposition of Gabow [6] as in the previous algorithm
together with incremental trees. Here the incremental trees do not need to sup-
port the add-root operation. Each tree is partitioned into clusters as before and
we keep the notation where Cj(v) is the cluster which contains v in Tj . The tree
with its clusters contracted is represented recursively. Each cluster Ck of a tree

574 H. Kaplan and N. Shafrir

Tk is rooted at a certain node Ck+1 (which is a cluster of level k+1). The cluster
Ck+1 in turn is rooted at some cluster Ck+2 etc. If we unravel this recursion all
the way to its bottom we obtain a vertex v of T� which is the root of the cluster
Ck when thinking of it as a subtree of T . We denote this vertex by r(Ck). The
cluster Ck as a rooted subtree of Tk is represented by an incremental tree.

Let Cj+1 be a node of the cluster Cj . Assume Cj+1 is not the root of Cj and let
C′

j+1 be the parent of Cj+1 in Cj . Let e = (v, w) be the edge (of level j) such that
e(j) connects Cj+1 to C′

j+1 in Cj , so Cj+1 = Cj+1(v) and C′
j+1 = Cj+1(w). We

define the j-root of Cj+1 to be the vertex v, and denote it by t(Cj+1). This is the
“root” ofCj+1 when considering it as a subtree ofCj . Notice that t(Cj+1) need not
be equal to r(Cj+1). IfCj+1 is the root ofCj then we define t(Cj+1) to be r(Cj+1).

As in Section 3 a node representing the cluster Cj has a pointer to the root
of its subtree in T , to the cluster Cj+1 which is the root of Cj and to the cluster
Cj−1 containing Cj if such a cluster exists. Let e = (u, v) ∈ T be an edge of
level j such that Cj+1(v) is the parent of Cj+1(u) in the incremental tree Cj(v)
(= Cj(u)). We store with e two lists Le(v) and Le(u). The list Le(v) is of length
exactly � − j + 1. Entry � of Le(v) contains e. For level j ≤ k < � entry k of
Le(v) contains the edge f of minimum weight on the path from u to t(Ck+1(v))
in T . The weight of e(k), w(e(k)), is equal to the weight of f . If level(e) = j
then e(j) is contained in a cluster Cj . The weight w(e(j)) is also maintained
by the incremental tree representing Cj . Similarly, entry � of Le(u) contains
e, and for level j ≤ k < �, entry k contains the edge of minimum weight on
the path from v to t(Ck+1(u)) in T . Notice that since Cj+1(v) is the parent of
Cj+1(u), then u = t(Cj+1(u)) and e is the value of entry j in Le(u). Each list is
represented as a doubly linked list with pointers to its first and last entry. Since∑�

j=1 |Tj | = O(|T |) the total space used to store these lists is linear. Figure 1(B)
illustrates the data structure, and the weights of the edges in different levels.

Our query algorithm is similar to the query algorithm of Section 4. Let Pxy

be the path from x to y. We define a recursive procedure pathmink(x, y, ex, ey)
as in Section 4. We first assume that both ex and ey exist. Let ex = (x′, x) and
let ey = (y′, y).

The procedure pathmink(x, y, ex, ey) finds the minimum on Px′y′ under the
assumptions that: (1) Ck(y) = Ck(x), (2) the edge ex is of level < k (that is
x′ /∈ Ck(x)), and we have a pointer to the entry in Lex(x) associated with level
k, and (3) the edge ey is of level < k (that is y′ /∈ Ck(y)), and we have a pointer
to the entry associated with level k in Ley (y).

The implementation of pathmink(x, y, ex, ey) is the same as described in Sec-
tion 4. The main difference of our algorithm here and the algorithm of Section
4 is when ex or ey are not available.

Let d = t(Ck+1(x)). In Section 4 we used the min-root algorithm to find the
edge of minimum weight on the path from x to d. Here we cannot use the min-
root procedure since t(Ck+1(x)) may not be the root of Ck+1(x) (recall that here
each cluster is rooted independently of the higher level clusters containing it).

Instead, if ex does not exist, we find the edge of minimum weight on the path
from x to d as follows. There exists an edge e′ = (d, q) of level k, between

Path Minima in Incremental Unrooted Trees 575

Ck+1(x) (= Ck+1(d)) and Ck+1(q) in Ck(x), where q in on Pxy. We locate the
entry in Le′(d) associated with level k + 1 and recursively perform pathmink+1

(x, d, null, e′).3 If ey does not exist and we have to find the minimum from y to
t(Ck+1(y)), then we do it similarly.

The complexity of pathmink is dominated by the number of recursive calls
to pathmin. To bound this number observe that: (1) Each call to pathmin in
which ex (ey) does not exist makes at most a single call to pathmin in which
both edges exist and a single call to pathmin in which ex (ey) does not exist. (2)
A call to pathmin in which both ex and ey exist makes at most a single recursive
call to pathmin in which ex and ey exist.

From the first observation follows that there are O(� − k) recursive calls to
pathmin in which ex does not exist, and at mostO(�−k) recursive calls to pathmin
in which ey does not exist. This together with the second observation imply that
the total number of recursive calls initiated by pathmink is O((�− k)2).

The implementation of link. Let x be a vertex in a tree T 1
� and let y be a

vertex of T 2
� . The operation link�(x, y) combines T 1

� and T 2
� by adding the edge

e = (x, y). When combining T 1
� and T 2

� we also have to combine T 1
�−1 and T 2

�−1

etc. Therefore the implementation of link is recursive. We define the recursive
operation linkj(Cj+1(x), Cj+1(y)) where Cj+1(x) is a node in T 1

j and Cj+1(y)
is a node in T 2

j . The operation linkj(Cj+1(x), Cj+1(y)) combines T 1
j and T 2

j by
adding the edge (x, y) to the resulting tree Tj. Let q1 be the universe of T 1

j and
let q2 be the universe of T 2

j . To perform linkj(Cj+1(x), Cj+1(y)) we perform the
appropriate of the following four cases.

Case 1: |T 1
j | + |T 2

j | ≥ 2A(j,max{q1, q2} + 1). Create a new tree Tj in universe
max{q1, q2} + 1 containing a single, initially empty, cluster C. Traverse T 1

j top
down and insert all nodes of T 1

j to C by performing add-leaf operations. Then
insert Cj+1(y) as a child of Cj+1(x) into C by another add-leaf operation which
adds e(j) to the new cluster. Finally insert all the nodes of T 2

j into C, top-down
by performing add-leaf operations.

To insert Cj+1(y) as a child of Cj+1(x) we have to compute the edges of Le(x)
and Le(y) associated with level j. The weight of the edge associated with level j
in Le(x) is the weight of e(j) in the incremental tree representing the new cluster.

Notice that the edge of level j in Le(y) is e. We now show how to update the
edge of level j of Le(x). If j = �, then the edge of level � of Le(x) is e. Otherwise,
if j < �, we have to find the edge of minimum weight in T on the path from y
to t(Cj+1(x)). Let b = t(Cj+1(x)). We do that by a pathminj+1(x, b, null, null)
query in T 1. Let f be the edge returned by this query. The edge of level j of
Le(x) is the edge of minimum weight among (x, y) and f .

Each edge f = (v, w) such that f(j) is either in T 1
j or in T 2

j becomes an
edge of Tj . The level of f becomes j and we discard any element of Lf(v) and
Lf(w) of level < j. Let f = (v, w) be an edge such that f(j) ∈ T 2

j . We have to
update the edges of level j of Lf(v) and Lf(w) since t(Cj+1(v)) and t(Cj+1(w))

3 Notice that pathmink+1(x, d, null, e′) actually finds the edge of minimum weight on
Pxq. The result remains correct since q ∈ Pxy.

576 H. Kaplan and N. Shafrir

may have changed in C. Assume Cj+1(v) is the parent of Cj+1(w) in C. Then
clearly w = t(Cj+1(w)) and therefore the edge of level j of Lf(w) is f . Let
b = t(Cj+1(v)). The edge of level j of Lf(v) should be the edge of minimum
weight on the path from w to b in Cj+1(v). We find this edge by performing
pathminj+1(w, b, null, null) on T 2. We perform these updates to all edges of T 2

j

while traversing it top-down.

Case 2: q1 > q2. We traverse the clusters of T 2
j top down starting from Cj+1(y)

inserting them one by one into Cj(x) by performing add-leaf operations to Cj(x).
We start by inserting Cj+1(y) as a child of Cj+1(x). The edge connecting these
two clusters is e(j). We compute its weight and update Le(x) and Le(y) exactly
as in Case 1. The partition of T 2

j into clusters of levels ≤ j is discarded. Let
f = (v, w) be an edge such that f(j) ∈ T 2

j . The level of f becomes j. We discard
any elements of Lf(v) and Lf(w) of levels smaller than j, and update the edge
of level j in these lists exactly as in case 1.

Case 3: q1 < q2. This case is analogous to Case 2.

Case 4: q1 = q2. Create Tj by adding e(j). Recursively perform linkj−1(Cj(x),
Cj(y)) combining T 1

j−1 and T 2
j−1. We update the edges of level j of Le(x) and

Le(y) as in Case 1.

References

1. Alon, N., Schieber, B.: Optimal preprocessing for answering on-line product
queries. Technical report Tech. Report 71/87, Tel Aviv University

2. Alstrup, S., Holm, J.: Improved algorithms for finding level ancestors in dynamic
trees. In: Welzl, E., Montanari, U., Rolim, J. (eds.) ICALP 2000. LNCS, vol. 1853,
pp. 73–84. Springer, Heidelberg (2000)

3. Chazelle, B., Rosenberg, B.: The complexity of computing partial sums off-line.
Int. J. Comput. Geometry Appl. 1(1), 33–45 (1991)

4. Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum span-
ning trees and shortest paths. J. Comput. Syst. Sci. 48(3), 533–551 (1994)

5. Gabow, H.N.: A scaling algorithm for weighted matching on general graphs. In:
FOCS, pp. 90–100 (1985)

6. Gabow, H.N.: Data structures for weighted matching and nearest common ances-
tors with linking. In: SODA, pp. 434–443 (1990)

7. Georgiadis, L., Kaplan, H., Shafrir, N., Tarjan, R.E., Werneck, R.F.: Data struc-
tures for mergeable trees (2007), http://arxiv.org/abs/0711.1682v1

8. Georgiadis, L., Tarjan, R.E., Werneck, R.F.: Design of data structures for merge-
able trees. In: SODA, pp. 394–403 (2006)

9. Kaplan, H., Shafrir, N.: Finding path minima in incremental unrooted trees. Tech-
nical report, http://www.cs.tau.ac.il/∼haimk/papers/pathmin.pdf

10. La Poutre, J.A.: New techniques for the union-find problem. In: SODA, pp. 54–63
(1990)

11. Tarjan, R.E.: Applications of path compression on balanced trees. J. ACM 26(4),
690–715 (1979)

12. Yao, A.C.: Space-time tradeoff for answering range queries (extended abstract). In:
STOC, pp. 128–136 (1982)

http://arxiv.org/abs/0711.1682v1
http://www.cs.tau.ac.il/~haimk/papers/pathmin.pdf

Improved Competitive Performance Bounds

for CIOQ Switches

Alex Kesselman1, Kirill Kogan2, and Michael Segal3

1 Google, Inc.
alx@google.com

2 Cisco Systems, South Netanya, Israel
and

Communication Systems Engineering Dept., Ben Gurion University, Beer-Sheva,
Israel

kkogan@cisco.com
3 Communication Systems Engineering Dept., Ben Gurion University, Beer-Sheva,

Israel
segal@cse.bgu.ac.il

Abstract. Combined input and output queued (CIOQ) architectures
with a moderate fabric speedup S > 1 have come to play a major role in
the design of high performance switches. In this paper we study CIOQ
switches with First-In-First-Out (FIFO) buffers providing Quality of Ser-
vice (QoS) guarantees. The goal of the switch policy is to maximize the
total value of packets sent out of the switch. We analyze the performance
of a switch policy by means of competitive analysis, where a uniform per-
formance guarantee is provided for all traffic patterns. Azar and Richter
[8] proposed an algorithm β-PG (Preemptive Greedy with a preemption
factor of β) that is 8-competitive for an arbitrary speedup value when
β = 3. We improve upon their result by showing that this algorithm
achieves a competitive ratio of 7.5 and 7.47 for β = 3 and β = 2.8, re-

spectively. Basically, we demonstrate that β-PG is at most β2+2β
β−1 and

at least β2−β+1
β−1 -competitive.

1 Introduction

The main tasks of a router are to receive a packet from the input port, to find
its destination port using a routing table, to transfer the packet to that output
port, and finally to transmit it on the output link. If a burst of packets destined
to the same output port arrives, it is impossible to transmit all the packets
immediately, and some of them must be buffered inside the switch (or dropped).

A critical aspect of the switch architecture is the placement of buffers. In the
output queuing (OQ) architecture, packets arriving from the input lines imme-
diately cross the switching fabric, and join a queue at the switch output port.
Thus, the OQ architecture allows one to maximize the throughput, and permits
the accurate control of packet latency. However, in order to avoid contention,
the internal speed of an OQ switch must be equal to the sum of all the input line

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 577–588, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

578 A. Kesselman, K. Kogan, and M. Segal

rates. The recent developments in networking technology produced a dramatic
growth in line rates, and have made the internal speedup requirements of OQ
switches difficult to meet. This has in turn generated great interest in the input
queuing (IQ) switch architecture, where packets arriving from the input lines
are queued at the input ports. The packets are then extracted from the input
queues to cross the switching fabric and to be forwarded to the output ports.

It is well-known that the IQ architecture can lead to low throughput, and it
does not allow the control of latency through the switch. The main problem of
the IQ architecture is head-of-line (HOL) blocking, which occurs when packets
at the head of various input queues contend on a specific output port of the
switch. To alleviate the problem of HOL blocking, one can maintain at each
input a separate queue for each output. This technique is known as virtual
output queuing (VOQ).

Another method to get the delay guarantees of an IQ switch closer to that of
an OQ switch is to increase the speedup S of the switching fabric. A switch is
said to have a speedup S, if the switching fabric runs S times faster than each of
the input or the output lines. Hence, an OQ switch has a speedup of N (where N
is the number of input/output lines), while an IQ switch has a speedup of 1. For
values of S between 1 and N , packets need to be buffered at the inputs before
switching as well as at the outputs after switching. This architecture is called a
combined input and output queued (CIOQ) architecture. CIOQ switches with a
moderate speedup S have recently received increasing attention in the literature,
see e.g. [11,12].

In the present paper we consider CIOQ switches with First-In-First-Out (FIFO)
buffers. We study the case of traffic with packets of variable values where the value
of a packet represents its priority. This corresponds to the DiffServ (Differentiated
Services) model [9]. The goal of the switch policy is to maximize the total value of
the packets sent out of the switch.

Given a CIOQ switch, the switch policy consists of a buffer management
policy controlling the usage of the buffers, a scheduling policy controlling the
switch fabric, and a transmission policy controlling the output buffers. The buffer
management policy decides for any packet that arrives to a buffer, whether to
accept or reject it (in the latter case the packet is lost). If preemption is allowed,
the buffer management policy can drop from the buffer a packet previously
accepted to make room for a new packet. The scheduling policy is responsible for
selecting packets to be transferred from the input queues to the output queues.
This has to be done in a way that prevents contention, i.e., at any given time at
most one packet can be removed from any CIOQ input port, and at most one
packet can be added to any CIOQ output port. The transmission policy selects
the packet to be sent on the output link.

Since Internet traffic is difficult to model and it does not seem to follow the
more traditional Poisson arrival model [23,25], we do not assume any specific
traffic model. We rather analyze our policies against arbitrary traffic and pro-
vide a uniform throughput guarantee for all traffic patterns, using competitive
analysis [24,10]. In competitive analysis, the online policy is compared to the

Improved Competitive Performance Bounds for CIOQ Switches 579

optimal offline policy OPT , which knows the entire input sequence in advance.
The competitive ratio of a policy A is the maximum, over all sequences of packet
arrivals σ, of the ratio between the value of packets sent by OPT out of σ, and
the value of packets sent by A out of σ.

Our results. We consider a CIOQ switch with FIFO buffers of limited capac-
ity. We assume that each packet has an intrinsic value designating its priority.
We analyze the β-Preemtive Greedy policy (β-PG) that was shown to be 8-
competitive by Azar and Richter [8] for β = 3. We improve upon their result by
establishing that β-PG is 7.47-competitve for β = 2.8. Basically, we demonstrate
that the β-PG policy achieves a competitive ratio of β2+2β

β−1 (for β > 1). In par-
ticular, our result implies that for the value β = 3 used by Azar and Richter [8]
the competitive ration of β-PG is at most 7.5. Our proof technique, unlike that
of [8], does not make use of dummy packets. In addition, we show a first lower
bound of β2−β+1

β−1 on the performance of β-PG for sufficiently large S. Thus,
β-PG is at least 3.5 and 3.36-competitive for β = 3 and β = 2.8, respectively.

Related work. A large number of scheduling algorithms have been proposed
in the literature for the IQ switch architecture: these are PIM [4], iSLIP [22],
Batch [14] to name a few. These algorithms achieve high throughput when the
traffic pattern is admissible (uniform), i.e. the aggregate arrival rate to an input
or output port is less than 1. However, their performance typically degrades
when traffic is non-uniform [21]. Most of the above works on the control of IQ
and CIOQ switches assume that there is always enough buffer space to store
the packets when and where needed. Thus, all packets arriving to the switch
eventually cross it. However, contrary to this setting it is observed empirically
in the Internet that packets are routinely dropped in switches. In the present
work we address the question of the design of control policies for switches, when
buffer space is limited, and thus packet drop may occur.

The problem of throughput maximization in the context of a single buffer has
been explored extensively in recent years (see [15] for a good survey). Competitive
analysis of preemptive and non-preemptive scheduling policies for shared memory
OQ switches was given by Hahne et al. [16] and Kesselman and Mansour[18], re-
spectively. Aiello et al. [1] consider the throughput of various protocols in a setting
of a network of OQ switches with limited buffer space. Kesselman et al. [17] study
the throughput of local buffer management policies in a system of merge buffers.

Azar and Richter [7] presented a 4-competitive algorithm for a weighted multi-
queue switch problem with FIFO buffers. An improved 3-competitive algorithm
was given by Azar and Richter [6]. Albers and Schmidt [3] proposed a deter-
ministic 1.89-competitive algorithm for the case of unit-value packets. Azar and
Litichevskey [5] derived a 1.58-competitive algorithm for switches with large
buffers. Albers and Jacobs [2] gave an experimental study of new and known
online packet buffering algorithms.

Kesselman and Rosén [19] study CIOQ switches with FIFO buffers. For the
case of packets with unit values, they present a switch policy that is 3-competitive
for any speedup. For the case of packets with variable values, they propose two

580 A. Kesselman, K. Kogan, and M. Segal

switch policies achieving a competitive ratio of 4S and 8 min(n, 2 logα), where n
is the number of distinct packet values and α is the ratio between the largest and
the smallest value. Azar and Richter [8] obtained a 8-competitive algorithm for
CIOQ switches with FIFO buffers, which is the first algorithm that achieves a
constant competitive ratio for the general case of arbitrary speedup and packet
values. Kesselman and Rosén [20] considered the case of CIOQ switches with
Priority Queuing (PQ) buffers and proposed a policy that is 6-competitive for
any speedup.

Organization. The rest of the paper is organized as follows. The model descrip-
tion appears in Section 2. The switch policy is presented and analyzed in Section
3 and Section 4, respectively. We mention some conclusions in Section 5.

2 Model Description

In this section we describe our model. We consider an N ×N CIOQ switch with
a speedup S (see Figure 1). Packets, of equal size, arrive at input ports. Each
packet is labeled with the output port on which it has to leave the switch and
is placed in the input queue corresponding to its output port. When a packet
crosses the switch fabric, it is placed in the output queue and resides here until
it is sent on the output link. For a packet p, we denote by V (p) its value.

Each input i maintains for each output j a separate queue V OQi,j of capacity
BIi,j (Virtual Output Queuing) and each output j maintains a queue OQj of
capacity BOj .

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

1 1

N N

Speedup S

Fig. 1. An example of a CIOQ switch

We divide time into discrete steps, where a step is the time interval between
arrivals of two consecutive packets at an input line. During each time step one
or more packets can arrive on each input port, and one packet can be forwarded
from each output port.

We divide each time step into three phases. The first phase is the transmission
phase during which a packet from each non-empty output queue can be sent on
the output link. The second phase is the arrival phase. In the arrival phase one
or more packets arrive at each input port. The third phase is the scheduling
phase when packets are transferred from the input buffers to the output buffers.
In a switch with a speedup of S, up to S packets can be removed from any

Improved Competitive Performance Bounds for CIOQ Switches 581

input and up to S packets can be added to each output. This is done in (up to)
S cycles, where in each cycle we compute a matching between the inputs and
the outputs and transfer the packets accordingly. We denote the s-th scheduling
cycle (1 ≤ s ≤ S) at time step t by ts.1

Suppose that the switch is managed by a policyA. ByVOQA
i,j we denoteV OQi,j

as managed by A, and by OQA
j we denote OQj as managed by A. By XA

i,j(ts) we
denote a variable indicating whetherA has scheduled a packet from input i to out-
put j in scheduling cycle ts (XA

i,j(ts) = 1 if some packet has been scheduled from
input i to output j and XA

i,j(ts) = 0 otherwise). By PA
i,j(ts) we denote the packet

itself in case XA
i,j(ts) = 1, or a dummy packet with zero value otherwise.

We represent the state of a switch as an N×N bipartite multi-graph with the
set of nodes VNI ,NO representing the input and the output ports. Each packet p
in V OQi,j creates an edge (i, j) whose weight equals V (p).

The switch has FIFO buffers. That is, packets leave a queue in the order of
their arrivals.

The switch policy is composed of three main components, namely, a trans-
mission policy, a buffer management policy and a scheduling policy.

Transmission Policy. The transmission policy at each time step decides which
packet is transmitted out of each output buffer.

Buffer Management Policy. The buffer management policy controls the ad-
mission of packets into the buffers. More specifically, when a packet arrives to a
buffer, the buffer management policy decides whether to accept or reject it. An
accepted packet can be later preempted (dropped).

Scheduling Policy. At every scheduling cycle, the scheduling policy first de-
cides which packets are eligible for scheduling. Then it specifies which packets
are transferred from the inputs to the outputs. This is done by computing a
matching in the bipartite graph representing the switch state and including only
the edges corresponding to the eligible packets.

The aim of the switch policy is that of maximizing the total value of packets
sent from the output ports. Let σ be a sequence of packets arriving at the inputs
of the switch. Let V A(σ) and V OPT (σ) be the total value of packets transmitted
out of the sequence σ, by an online switch policy A and an optimal offline policy
OPT , respectively. The competitive ratio of a switch policy is defined as follows.

Definition 1. An online switch policy A is said to be c-competitive if for every
input sequence of packets σ, V OPT (σ) ≤ c · V A(σ) + d, where d is a constant
independent of σ.

3 β-Preemptive Greedy Switch Policy

In this section we describe the switch policy that was first introduced by Azar
and Richter [8]. We treat each virtual input or output queue as a separate buffer
1 With slight abuse of notation we say that t0 = (t − 1)S , tS+1 = (t + 1)1 and t = t1.

582 A. Kesselman, K. Kogan, and M. Segal

with independent buffer management policy. The β-preemptive greedy (β-PG)
policy appearing in Figure 2 uses a natural preemptive greedy buffer manage-
ment policy and a scheduling policy based on maximum weight matching. The
value of the parameter β will be determined later. Observe that a packet p is not
scheduled to an output buffer if it will be dropped or if it will preempt another
packet p′ such that V (p′) > V (p)/β. In what follows when we say “first packet”,
or “last packet”, we mean the first or last packet according to FIFO order in the
relevant set.

– Transmission: Transmit the first packet from each non-empty output queue.
– Buffer Management of Input and Output Buffers (greedy): Accept an

arriving packet p if there is free space in the buffer. Drop p if the buffer is full
and V (p) is less than the minimal value among the packets currently in the buffer.
Otherwise, drop from the buffer a packet p′ with the minimal value and accept p
(we say that p preempts p′).

– Scheduling: For each buffer V OQi,j , consider the first packet in V OQi,j and de-
note this value by w. Mark this packet as eligible, if OQj is not full or if the minimal
value among the packets in OQj is at most w/β.
Compute a maximum weight matching.

Fig. 2. The β-Preemptive Greedy Switch Policy (β-PG)

4 Analysis

We will show that β-PG achieves a competitive ratio of β2+2β
β−1 for any speedup S

assuming that β > 1. We also derive a lower bound of β2−β+1
β−1 on the performance

of β-PG for sufficiently large S. Our analysis proceeds along the lines of the work
in [20], which studies Priority Queuing (PQ) buffers. However, extension from
PQ to FIFO buffers is technically challenging.

In what follows we fix an input sequence σ. To prove the competitive ratio
of β-PG we will assign value to the packets sent by β-PG so that no packet is
assigned more than β2+2β

β−1 times its value and then show that the value assigned
is indeed at least V OPT (σ).

For the analysis, we assume that OPT maintains FIFO order and never pre-
empts packets. Notice that any schedule of OPT can be transformed into a
non-preemptive FIFO schedule without affecting its value. The following lemma
is due to [19].

Lemma 1. For any finite input sequence σ, the value of OPT in the model
without FIFO restriction equals the value of OPT in the FIFO model.

The assignment routine presented in Figure 3 specifies how to assign value to
the packets sent by β-PG (we will show that it is feasible).

Observe that the assignment routine assigns some value only to packets that
are scheduled out of the input queues. Furthermore, if a packet is preempted at

Improved Competitive Performance Bounds for CIOQ Switches 583

– Step 1: Assign to each packet scheduled by β-PG at time ts its own value.
– Let p′ be the packet scheduled by OPT at time ts from V OQOPT

i,j , if any. Let p be
the first packet in V OQPG

i,j at time ts if any or a dummy packet with zero value
otherwise.

– Step 2: If p is not eligible for transmission and either (i) V (p′) ≤ V (p) or (ii)
V (p′) > V (p), p′ is present in V OQPG

i,j and p′ has been previously assigned some
value by Step 4, then proceed as follows: Let p′′ be the packet that will be sent from
OQPG

j at the same time at which OPT will send p′ from OQOPT
j (we will later

show that p′′ exists and its value is at least V (p)/β). If (i), assign the value of p′ to
p′′. If (ii), re-assign to p′′ the value that was previously assigned to p′ by Step 4.

– Step 3: If V (p′) > V (p) then proceed as follows:
• Sub-Step 3.1: If p′ was scheduled by β-PG prior to time ts, then assign the

value of V (p′) to p′.
• Sub-Step 3.2: Else if p′ is not present in V OQPG

i,j , consider the set of packets
with value at least V (p′) that are scheduled by β-PG from V OQPG

i,j prior to
time ts. Assign the value of V (p′) to a packet in this set that is not in V OQOPT

i,j

at the beginning of ts, and has not previously been assigned a value by either
Sub-Step 3.1 or Sub-Step 3.2 (we will later show that such a packet exists).

• Sub-Step 3.3: Else (p′ is present in V OQPG
i,j), remove the value assigned to

p′ by Step 4 and assign the value of V (p′) to p′ (we will later show that the
removed value is re-assigned by Step 1).

– Step 4: If a packet q preempts a packet q′ at an input or output queue of β-PG,
re-assign to q the value that has been previously assigned to q′.

Fig. 3. Assignment Routine – executed at the end of scheduling cycle ts

an output queue then the total value assigned to it is re-assigned to the packet
that preempts it. The following observation follows from the finiteness of the
input sequence.

Observation 1. When the assignment routine finishes, only packets that are
eventually sent by β-PG are assigned some value.

The following claim bounds the total value that can be assigned to a β-PG
packet before it leaves a virtual output queue.

Claim. The weight assigned to a beta-PG packet before it leaves a virtual output
queue is at most its own value.

Proof. Initially, a β-PG packet q′ in a virtual output queue can be assigned its
own value by Sub-Step 3.3. If q′ is later preempted by a packet q, then q is re-
assigned the value that was assigned to q by Step 4. Obviously, q is assigned at
most its own value as V (q) > V (q′). Note that if q will be assigned its own value
by Sub-Step 3.3, then the value assigned to q by Step 4 is either re-assigned by
the case (ii) of Step 2 or removed by Step 4 and re-assigned by Step 1. The claim
follows.

In the next claim we show that when the case (ii) of Step 2 re-assigns the value
assigned to a β-PG packet located at a virtual output queue, the value of the
first packet in this queue is at least the value that needs to be re-assigned.

584 A. Kesselman, K. Kogan, and M. Segal

Claim. If the case (ii) of Step 2 applies and we re-assign the value assigned to
the packet p′ in V OQPG

i,j by Step 4, then we have that V (p) is at least the value
to be re-assigned, where p is the first packet in V OQPG

i,j .

Proof. Consider the time step at which p′ has arrived and was accepted by both
β-PG and OPT . If the case (ii) of Step 2 applies, p′ should have preempted
another packet q′ in V OQPG

i,j and was re-assigned the value that had been pre-
viously assigned to q′ by Step 4. Since β-PG always preempts the least valuable
packet from a queue, all packets in V OQPG

i,j preceding p′, and p in particular,
must have a value of at least V (q′). Moreover, according to Claim 4, q′ had been
assigned at most its own value. That establishes the claim.

Now we show that the assignment routine is feasible and establish an upper
bound on the value assigned to a single packet.

Lemma 2. The assignment routine is feasible and no packet is assigned more
than β2+2β

β−1 times its own value.

Proof. First we show that the assignment as defined is feasible. Step 1, Sub-Step
3.1, Sub-Step 3.3 and Step 4 are clearly feasible. We therefore consider Steps 2
and 3.2.

First we consider Step 2. Let p be the first packet in V OQPG
i,j . Assume that p is

not eligible for transmission. Then, by the definition of β-PG, the minimal value
among the packets in OQj is at least V (p)/β and OQj is full. Thus, during the
following BOj time steps, β-PG will send packets with value of at least V (p)/β
out of OQj . The packet p′ scheduled by OPT from V OQOPT

i,j at time ts will
be sent from OQOPT

j in one of these time steps (recall that by our assumption
OPT maintains FIFO order). Since V (p′) ≤ V (p) we have that the packet as
specified in Step 2 indeed exists, and its value is at least V (p)/β.

Next we consider Sub-Step 3.2. First note that if this case applies, then the
packet p′ (scheduled by OPT from V OQOPT

i,j at time ts) is dropped by β-PG
from V OQPG

i,j at some time tq < ts.
Let tr ≥ tq be the last time before ts at which a packet of value at least V (p′)

is dropped from V OQPG
i,j . Since the greedy buffer management policy is applied

to V OQPG
i,j , V OQPG

i,j contains BIi,j packets with value of at least V (p′) at this
time. Let P be the set of these packets. Note that p′ /∈ P because it has already
been dropped by β-PG at this time. We have that in [tr, ts), β-PG has actually
scheduled all packets from P , since in [tr, ts) no packet of value at least V (p′) has
been dropped, and at time ts all packets in V OQPG

i,j have value less than V (p′).
We show that at least one packet from P is available for assignment at time ts,
i.e., it has not been assigned any value by Step 3 and is not currently present in
V OQOPT

i,j . Let x be the number of packets from P that are currently present in
V OQOPT

i,j . By the construction, these x packets are unavailable. From the rest
of the packets in P , a packet is considered available unless it has been already
assigned a value by Step 3. Observe that a packet from P can be assigned a
value by Step 3 only during [tr, ts) (when it is scheduled).

Improved Competitive Performance Bounds for CIOQ Switches 585

We now argue that OPT has scheduled at most BIi,j − 1 − x packets out of
V OQi,j in [tr, ts), and thus P contains at least one available packet. To see this
observe that the x packets from P that are present in V OQOPT

i,j at time ts, were
already present in V OQOPT

i,j at time tr. The same applies to packet p′ (recall that
p′ /∈ P). Since OPT maintains FIFO order, all the packets that OPT scheduled
out ofV OQOPT

i,j in [tr, ts) where also present inV OQOPT
i,j at time tr. Therefore, the

number of such packets is at mostBIi,j −1−x (recall that the capacity of V OQi,j

is BIi,j). We obtain that at least one packet from P is available for assignment at
Sub-Step 3.2 since |P | = BIi,j , x packets are unavailable because they are present
in V OQOPT

i,j and at most BIi,j − 1− x packets are unavailable because they have
been already assigned a value by Step 3.

Next we demonstrate that no packet is assigned more than β2+2β
β−1 times its

own value. Consider a packet p sent by β-PG. Claim 4 implies that p can be
assigned at most once its own value by Sub-Step 3.3 and Step 4, before it leaves
the virtual output queue. In addition, p is assigned its own value by Step 1.

By the specification of Sub-Step 3.2, this step does not assign any value to p if
it is assigned a value by either Sub-Step 3.1 or Sub-Step 3.2. We also show that
Sub-Step 3.1 does not assign any value to p if it is assigned a value by either
Sub-Step 3.1 or Sub-Step 3.2. That is due to the fact that by the specification
of Sub-Step 3.2, if p is assigned a value by Sub-Step 3.2 at time ts, then p is
not in the input buffer of OPT at this time. Therefore, Sub-Step 3.1 cannot be
later applied to it. We obtain that p can be assigned at most its own value by
Sub-Step 3.1 and Sub-Step 3.2 after it leaves the virtual output queue.

Now let us consider Step 2. Observe that cases (i) and (ii) are mutually ex-
clusive. Furthermore, if case (ii) apples, then by Claim 4 the value of the first
packet in the β-PG queue is at least the value that needs to be re-assigned. We
obtain that p can be assigned at most β times its own value by Step 2 of the
assignment routine.

Finally, we bound the value assigned to a packet by Step 4 in the output queue.
Note that this assignment is done only to packets that are actually transmitted
out of the switch (i.e. they are not preempted). In addition, p can preempt
another packet p′ such that V (p′) ≤ V (p)/β. We say that p transitively preempts
a packet p′′ if either p directly preempts p′′ or p preempts a packet p′ that
transitively preempts p′′. Observe that any preempted packet in an output queue
can be assigned at most three times its own value by Step 1, Step 3 and Step 4
due to preemption in the virtual output queue. Hence, the total value that can
be assigned to p by Step 4 due to transitively preempted packets in the output
queue is bounded by 3

β−1 times its own value.

We have that in total no packet is assigned more than 3 + β + 3
β−1 = β2+2β

β−1
times its own value.

Let WOPT (σ, ts) be the total value of packets scheduled out of the input buffers
of OPT by time ts and let MPG(σ, ts) be the total value assigned to packets in
β-PG by time ts, on input sequence σ. We demonstrate that the value gained
by OPT is bounded by the value assigned by the assignment routine.

586 A. Kesselman, K. Kogan, and M. Segal

Lemma 3. For any time ts the following holds: WOPT (σ, ts) ≤MPG(σ, ts).

At this point we are ready to prove the main theorem.

Theorem 2. The competitive ratio of the β-PG policy is at most β2+2β
β−1 for any

speedup.

Proof. Suppose that OPT sends the last packet in σ out of an output buffer at
time t∗. By Lemma 3,

WOPT (σ, t∗) ≤MPG(σ, t∗).

Lemma 2 and Observation 1 imply that

MPG(σ, t∗) ≤ β2 + 2β
β − 1

V PG(σ).

It follows that

V OPT (σ) ≤ β2 + 2β
β − 1

V PG(σ),

since WOPT (σ, t∗) = V OPT (σ) (recall that by our assumption OPT does not
preempt packets).

Finally, we establish a lower bound on the performance of β-PG.

Theorem 3. The β-PG algorithm is at least β2−β+1
β−1 -competitive for sufficiently

large S.

Proof. Consider the following scenario. All packet arrivals are destined to output
port 1 with queue OQ1 of capacity S2. The capacity of virtual output queues
V OQi,1 for 1 ≤ i ≤ S2 is S and the capacity of virtual output queues V OQj,1

for S2 + 1 ≤ j ≤ S2 + S is one.
During time slots t = 0, . . . , S2−1 each of the input ports 1, . . . , S2 receives

one packet of value βi (i = 0, ..., S2 − 1). Note that by definition of β-PG, it
will always preempt old packets from OQ1 and transfer there the newly arrived
packets since they are more valuable by a factor of β than the previously arrived
packets.

During time slots t = S2, . . . , S2 + S − 1 each of the input ports S2 +
1, . . . , S2 + S receives one packet of value βS2 − ε. The β-PG algorithm will
drop all but 2S of these packets since no packets in OQ1 will be preempted and
by time t = S2 +S−1 only 2S of these packets can be buffered in virtual output
queues V OQj,1 for S2 + 1 ≤ j ≤ S2 + S and in OQ1.

On the other hand, OPT will first buffer all packets that arrived at input ports
1, . . . , S2 during time slots t = 0, . . . , S2−1 without transferring them to OQ1.
Then OPT will transfer all packets that arrived at input ports S2+1, . . . , S2+S
to OQ1 and send them on the output link. Having done with these packets, OPT
will deliver all packets buffered at input ports 1, . . . , S2. In this way, the value
obtained by OPT is VOPT = S2(βS2−1 − 1)/(β − 1) + S2(βS2 − ε). At the same

Improved Competitive Performance Bounds for CIOQ Switches 587

time, the value obtained by β-PG is VPG = (βS2−2 − 1)/(β − 1) + S2βS2−1 +
2S(βS2 − ε).

For sufficiently large S, which is a function of N , and a constant value of β,
VPG is dominated by S2βS2−1. Therefore, VOPT /VPG tends to 1/(β − 1) + β.

5 Conclusions

A major problem addressed today in networking research is the need for a fast
switch architecture supporting guaranteed QoS. In this paper we study CIOQ
switches with FIFO queues. We consider switch policies that maximize the switch
throughput for any traffic pattern and use competitive analysis to evaluate their
performance. Our main results are an improved upper bound and the first lower
bound on the competitive ratio of the switch policy proposed by Azar and Richter
[8]. An interesting future research direction is to close the gap between the upper
and lower bounds, which still remains rather substantial.

References

1. Aiello, W., Kushilevitz, E., Ostrovsky, R., Rosén, A.: Dynamic Routing on Net-
works with Fixed-Size Buffers. In: Proceedings of SODA 2003, pp. 771–780 (2003)

2. Albers, S., Jacobs, T.: An experimental study of new and known online packet
buffering algorithms. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 63–74. Springer, Heidelberg (2007)

3. Albers, S., Schmidt, M.: ’On the Performance of Greedy Algorithms in Packet
Buffering. SIAM Journal on Computing 35(2), 278–304 (2005)

4. Anderson, T., Owicki, S., Saxe, J., Thacker, C.: High speed switch scheduling for
local area networks. In: ACM Trans. on Computer Systems, pp. 319–352 (November
1993)

5. Azar, Y., Litichevskey, M.: Maximizing throughput in multi-queue switches. Algo-
rithmica 45(1), 69–90 (2006)

6. Azar, Y., Richter, Y.: The zero-one principle for switching networks. In: Proceed-
ings of STOC 2004, pp. 64–71 (2004)

7. Azar, Y., Richter, Y.: Management of Multi-Queue Switches in QoS Networks.
Algorithmica 43(1-2), 81–96 (2005)

8. Azar, Y., Richter, Y.: An improved algorithm for CIOQ switches. ACM Transac-
tions on Algorithms 2(2), 282–295 (2006)

9. Black, D., Blake, S., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An Architecture
for Differentiated Services. In: Internet RFC , vol. 2475 (1998)

10. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

11. Chuang, S.T., Goel, A., McKeown, N., Prabhakar, B.: Matching Output Queueing
with a Combined Input Output Queued Switch. IEEE Journal on Selected Areas
in Communications 17, 1030–1039 (1999)

12. Dai, J.G., Prabhakar, B.: The Throughput of Data Switches with and without
Speedup. In: Proceedings of INFOCOM 2000, pp. 556–564 (2000)

13. Datta, S., Sitaraman, R.K.: The Performance of Simple Routing Algorithms That
Drop Packets. In: Proceedings of SPAA 1997, pp. 159–169 (1997)

588 A. Kesselman, K. Kogan, and M. Segal

14. Dolev, S., Kesselman, A.: Bounded Latency Scheduling Scheme for ATM Cells.
Journal of Computer Networks 32(3), 325–331 (2000)

15. Epstein, L., Van Stee, R.: SIGACT news online algorithms. Chrobak, M. (ed.), vol.
35(3), pp. 58–66 (2004)

16. Hahne, E.L., Kesselman, A., Mansour, Y.: Competitive Buffer Management for
Shared-Memory Switches. In: Proceedings of SPAA 2001, pp. 53–58 (2001)

17. Kesselmanm, A., Lotker, Z., Mansour, Y., Patt-Shamir, B.: Buffer Overflows of
Merging Streams. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832,
pp. 349–360. Springer, Heidelberg (2003)

18. Kesselman, A., Mansour, Y.: Harmonic Buffer Management Policy for Shared
Memory Switches. Theoretical Computer Science, Special Issue on Online Algo-
rithms. In: Memoriam: Steve Seiden, vol. 324, pp. 161-182 (2004)

19. Kesselman, A., Rosén, A.: Scheduling Policies for CIOQ Switches. Journal of Al-
gorithms 60(1), 60–83 (2006)

20. Kesselman, A., Rosén, A.: Controlling CIOQ Switches with Priority Queuing and
in Multistage Interconnection Networks. Journal of Interconnection Networks (to
appear)

21. Marsan, M.A., Bianco, A., Filippi, E., Giaccone, P., Leonardi, E., Neri, F.: A Com-
parison of Input Queuing Cell Switch Architectures. In: Proceedings of 3rd Inter-
national Workshop on Broadband Switching Systems, Kingston, Canada (June
1999)

22. McKeown, N.: Scheduling Algorithms for Input-Queued Cell Switches. Ph. D. The-
sis, University of California at Berkeley (1995)

23. Paxson, V., Floyd, S.: Wide Area Traffic: The Failure of Poisson Modeling.
IEEE/ACM Transactions on Networking 3, 226–244 (1995)

24. Sleator, D., Tarjan, R.: Amortized Efficiency of List Update and Paging Rules.
CACM 28, 202–208 (1985)

25. Veres, A., Boda, M.: The Chaotic Nature of TCP Congestion Control. In: Proceed-
ings of INFOCOM 2000, pp. 1715–1723 (March 2000)

Two-Stage Robust Network Design with Exponential
Scenarios

Rohit Khandekar1, Guy Kortsarz2,�, Vahab Mirrokni3,��,
and Mohammad R. Salavatipour4,���

1 IBM T.J.Watson research center
rkhandekar@gmail.com

2 Department of Computer Science, Rutgers University-Camden. Currently visiting IBM
Research at Yorktown Heights
guyk@crab.rutgers.edu

3 Google Research, New York, NY, USA
mirrokni@theory.csail.mit.edu

4 Dept. of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
mreza@cs.ualberta.ca

Abstract. We study two-stage robust variants of combinatorial optimization
problems like Steiner tree, Steiner forest, and uncapacitated facility location. The
robust optimization problems, previously studied by Dhamdhere et al. [1], Golovin
et al. [6], and Feige et al. [4], are two-stage planning problems in which the re-
quirements are revealed after some decisions are taken in stage one. One has to
then complete the solution, at a higher cost, to meet the given requirements. In
the robust Steiner tree problem, for example, one buys some edges in stage one
after which some terminals are revealed. In the second stage, one has to buy more
edges, at a higher cost, to complete the stage one solution to build a Steiner tree on
these terminals. The objective is to minimize the total cost under the worst-case
scenario. In this paper, we focus on the case of exponentially many scenarios given
implicitly. A scenario consists of any subset of k terminals (for Steiner tree), or
any subset of k terminal-pairs (for Steiner forest), or any subset of k clients (for
facility location). We present the first constant-factor approximation algorithms
for the robust Steiner tree and robust uncapacitated facility location problems. For
the robust Steiner forest problem with uniform inflation, we present an O(log n)-
approximation and show that the problem with two inflation factors is impossible
to approximate within O(log1/2−ε n) factor, for any constant ε > 0, unless NP has
randomized quasi-polynomial time algorithms. Finally, we show APX-hardness of
the robust min-cut problem (even with singleton-set scenarios), resolving an open
question by [1] and [6].

1 Introduction

In a classical optimization problem, we are usually given a system with some known
parameters and constraints and the goal is to find a feasible solution of minimum cost

� Partially supported by NSF Award Grant number 072887.
�� Part of this work was done when the author was at Microsoft Research.

��� Supported by NSERC and an Alberta Ingenuity New Faculty award.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 589–600, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

590 R. Khandekar et al.

(or maximum profit) with respect to the constraints. These parameters and constraints,
which heavily influence the optimum solution, are assumed to be precisely known.
However, in reality, often it is very costly (or maybe impossible) to have an accurate
picture about the values of the parameters or even the constraints of the optimization
problem at hand at the time of planning. Two of the common approaches studied in the
literature to address this uncertainty about future are referred to as robust optimization
and stochastic optimization.

Robust and Stochastic optimization. Robust optimization has been studied in both
decision theory [10] and Mathematical Programming [2] and deals with the uncertainty
in data. In a typical data-robust model, we have a finite set of scenarios that can mate-
rialize and each scenario contains one possible set of data values. The goal is to find a
solution that is good with respect to all or most scenarios. One example in this category
is min-max regret, in which the goal is to minimize the maximum regret over all pos-
sible scenarios, where the regret of a scenario is defined as the difference between the
cost of the solution in that scenario with respect to optimal solution for that scenario.

In Stochastic optimization, we are provided with a probability distribution on the
possible scenarios and the goal is then to find a solution that minimizes the expected
cost over this distribution. This approach is useful if we have a good idea about the
probability distribution (which may be a strong requirement), and we have a repeated
decision making framework. One particular version of stochastic optimization, that has
attracted much attention in the last decade, is two-stage (or multi-stage) stochastic op-
timization, where the solution is built in two stages: in the first stage we have to decide
to build a partial solution based on the probability distribution of possible scenarios. In
stage two, once the actual scenario is revealed, we have to complete our partial solution
to a feasible solution for the given scenario. There has been considerable amount of re-
search focused on two-stage (or multi-stage) stochastic version of classical optimization
problems such as set-cover, Steiner tree, vertex cover, facility location, cut problems,
and other network design problems [11,13,7,8] and efficient approximation algorithms
have been developed for many of these problem. In some cases, the set of possible sce-
narios and the corresponding probabilities are given explicitly [11,8], and some papers
study a more general model in which the sets of possible scenarios are given implicitly
as the product of a set of independent trials, or by an oracle [1,7,9,13].

Demand-robust optimization. More recently, a new notion of robustness has been in-
troduced by Dhamdhere et al. [1] which can be viewed as the worst-case analogue of
the (two-stage) stochastic optimization problem. This model, called demand-robust op-
timization (and we simply call robust optimization in the rest of the paper), deals with
both uncertainty in data as well as constraints of the problem. In a two-stage robust op-
timization problem, similar to a two-stage stochastic optimization, we are given a set
of possible scenarios (which can be explicit or implicit) and the goal is to compute a
solution in two stages while minimizing the maximum cost over all possible scenarios.
The major difference of this model w.r.t. data-robust model is that each possible scenario
might have a different set of constraints to be satisfied. For example, in the robust Steiner
tree problem, we are given a graphG = (V,E) with a cost function c : E → R+ on the

Two-Stage Robust Network Design with Exponential Scenarios 591

edges. In the second stage one of m possible scenarios materializes; scenario i consists
of a set Si ⊆ V of terminals that need to be connected to each other. We also have an
inflation factor λi for edge costs. Each edge e costs ce in the first stage and λi · ce in the
second stage if scenario i materializes. Our goal is to select a subset of edges E1 ⊆ E
in the first stage, and a set E2(i) ⊆ E in the second stage if scenario i is revealed, so
that E1 ∪E2(i) is a feasible solution for the Steiner tree problem with terminal set Si;
the overall cost paid in scenario i is c(E1) + λi · c(E2(i)). The objective function is
to minimize this cost over all possible scenarios, i.e., to minimize c(E1) + maxi λi ·
c(E2(i)). Since in this model of robustness, each scenario has a different requirement,
it allows one to handle uncertainty in the set of constraints. It also provides a worst-
case guarantee unlike only the expected-cost guarantee as in the two-stage stochastic
optimization model. In a very recent work [4] authors consider a more general model of
(two-stage) robust optimization in which scenarios are given implicitly, and therefore,
one can have an exponentially large set of possible scenarios.

1.1 Previous Work

We are aware of only three other papers [1,6,4] which have studied (demand) robust
optimization. In [1,6], authors consider the robust problems with polynomially-many
explicitly given scenarios. They present constant factor approximation algorithms for
robust versions of Steiner tree, vertex cover, and Facility location problems. They also
give polylogarithmic approximation for robust min-cut and multi-cut. In the problem
of robust min-cut, we are given a edge-weighted graph G = (V,E), a source s ∈ V ,
and inflation factor λi(e); scenario i consist of a terminal ti ∈ V . The goal is to find
a subset E1 ⊆ E for stage one and E2(i) ⊆ E for stage two (if scenario i arrives) so
that E1 ∪ E2(i) is a s, ti-cut. In [1], the authors present an O(logm)-approximation
where m is the number of scenarios. This was improved to a (1 +

√
2)-approximation

in [6]. In the robust multi-cut, each scenario consists of a set of pairs of nodes that form
a multi-cut problem. For this problem [1] present an O(log rm · log log rm) where m
is the number of scenarios and r is the maximum number of pairs in any scenario.

Feige et al. [4] consider covering problems (such as set cover) where the set of possi-
ble scenarios is given implicitly, and therefore can be exponentially large. For example,
in the robust set cover problem, we are given a universe of elements U = {e1, . . . , em}
and a collection of sets S = {S1, . . . , Sm}, where Si ⊆ U and has cost c(Si), an infla-
tion factor λ, and an integer k. Each scenario is a subset U ′ ⊂ U of size k that needs to
be covered. We have to purchase a collection of sets S1 ⊆ S in stage one. Once a set
U ′ of elements is given in stage two, we have to purchase some (possibly none) other
sets S2(U ′) ⊂ S where the cost of each set now is inflated by λ, so that S1 ∪ S2(U ′)
is a set cover for the given set U ′. The goal is to minimize the maximum total cost over
all possible scenarios. Using an LP rounding method, they give a general framework
for designing approximation algorithms for a class of robust covering problems using
competitive algorithms for online variants of the problems. However, this framework
does not apply to robust network design problems like robust Steiner tree, and gives
logarithmic approximation for robust uncapacitated metric facility location problem.

592 R. Khandekar et al.

1.2 Our Results

The model we study in this paper is the (demand) robust optimization model with (pos-
sibly) implicit sets of scenarios (which can be exponentially many). We study Steiner
tree, Steiner forest, uncapacitated facility location, and min-cut problems under this
model and present some approximation algorithms and hardness results.

Specifically, we provide the first constant factor approximation algorithms for the
(exponential scenarios) robust Steiner tree and robust facility location problems. Our
algorithms are combinatorial in nature and are based on nice structural properties of the
stage one solution of a near-optimum algorithm.

Theorem 1. There exists a polynomial-time 5.55-approximation algorithm for two-
stage robust Steiner tree problem with a uniform inflation factor. Here a scenario con-
sists of any k terminals out of given terminals.

Theorem 2. There exists a polynomial-time 10-approximation algorithm for robust un-
capacitated facility location problem in which the inflation factor may depend on the
facility. Here a scenario consists of any k clients (perhaps co-located) out of given
clients.

We then present a logarithmic approximation for robust Steiner forest problem. This
algorithm first approximates the given (shortest-path) metric by a tree metric (thereby,
losing a logarithmic factor) and solves the problem on trees within a constant factor.
For the problem on trees, we first solve a standard LP relaxation using a dynamic-
programming based separation oracle and then round it to a near-optimum integral
solution.

Theorem 3. There exists a polynomial-timeO(logn)-approximation algorithm for two-
stage robust Steiner forest problem on n-vertex graph with a uniform inflation factor.
Here a scenario consists of any k terminal-pairs out of given terminal-pairs.

We complement this result by showing that the robust Steiner forest problem with two
inflation factors is impossible to approximate within a factor of O(log

1
2−ε n), for any

constant ε > 0, unless NP has randomized quasi-polynomial time algorithms. We em-
phasize that our O(log n)-approximation algorithm of Theorem 3 holds for exponen-
tially many scenarios (i.e., k source-sink pairs need to be connected in stage 2), and
our hardness result holds for even polynomially many scenarios, in which we have to
connect only one source-sink pair in the second stage. However in the hardness result,
we allow two possible values for the inflation factors on the edge-costs.

Theorem 4. For any constant ε > 0, there is no O(log
1
2−ε n)-approximation for

robust Steiner forest in which only one pair arrives in stage two, we have only two
(distinct) edge costs and two (distinct) inflation factors, unless NP has randomized
quasi-polynomial time algorithms.

Finally, we resolve an open question posed by Dhamdhere et al. [1] and Golovin et al.
[6] about the hardness of the two-stage robust min-cut problem by proving the following
theorem.

Two-Stage Robust Network Design with Exponential Scenarios 593

Theorem 5. The two-stage robust min-cut problem is APX-hard even with a uniform
inflation factor and which consists of a single source and three sinks.

Organization. The remainder of the paper is organized as follows. In the next sec-
tion, we present our 5.55-approximation algorithm for robust Steiner tree and then the
O(log n)-approximation for Steiner forest. Finally we present the proof of Theorem 5.
Due to space limit, we postpone the proofs of Theorems 2 and 4 to the full version of
our paper.

2 A Constant Approximation for Robust Steiner Tree Problem

In this section we prove Theorem 1. Recall that the input to the Steiner tree problem is
an undirected graph G = (V,E), a cost function c : E → R+, and a subset T ⊆ V
called “terminals”. The objective is to find a connected subgraphH that includes all the
terminals T and has minimum cost c(H) :=

∑
e∈H ce.

In the robust version of the Steiner tree problem, the input also contains an integer k
and a real number λ ≥ 1. There are two stages. In the first stage the algorithm has to
identify a subset E1 ⊆ E of edges to buy. In the second stage, the cost of each edge in
E \E1 increases by a factor of λ and a subset T ′ ⊆ T of at most k terminals is revealed.
We refer to T ′ as a “scenario”. The algorithm, in the second stage, has to augment the
solution E1 by buying edges E2(T ′) so that the resulting graph E1 ∪ E2(T ′) includes
a Steiner tree on terminals T ′. The choice of edges E2(T ′) is allowed to depend on the
subset T ′. The overall cost of this solution is thus

∑
e∈E1

ce + λ ·
∑

e∈E2(T ′) ce. The
objective is to minimize the maximum overall cost over all scenarios, i.e., to minimize

∑

e∈E1

ce + max
T ′⊆T,|T ′|≤k

λ ·
∑

e∈E2(T ′)

ce.

The edge-costs ce induce a shortest-path metric on the vertices V : for any two vertices
u, v ∈ V , we use dG(u, v) to denote the length of the shortest path between u and v,
under costs ce in graph G.

2.1 The Algorithm

Let E∗
1 and E∗

2 (T ′) be the set of edges the optimum buys in the first stage and the
second stage for scenario T ′ respectively. Let OPT = OPT1 + λ · OPT2 be the overall
cost of the optimum, where OPT1 =

∑
e∈E∗

1
ce is its cost in the first stage and OPT2 =

maxT ′⊆T,|T ′|≤k

∑
e∈E∗

2 (T ′) ce is the maximum cost in the second stage divided by λ.

First stage. Our algorithm, in the first stage, guesses (an upper bound on) the value
of OPT2.1 It then computes a subset of terminals C = {c1, c2, . . . , cp} ⊆ T called
“centers” and an assignment π : T → C that satisfy:

1 The algorithm in fact tries all guesses of OPT2 that are powers of (1+ ε), for a small constant
ε > 0, and takes the cheapest solution for any of these guesses. We also point out that we can,
in polynomial time, estimate the cost of our solution for a given guess on OPT2. That is, in
polynomial-time, we can find a scenario that maximizes the cost of the solution (or its upper
bound proved). To simplify the presentation, we assume that the guess on OPT2 is exact.

594 R. Khandekar et al.

– The centers are far apart: dG(ci, cj) > r·OPT2
k for all i
= j, and

– Each terminal is close to its assigned center: dG(t, π(t)) ≤ r·OPT2
k for all t ∈ T ,

where r > 1 is a constant to be determined later. Such a clustering can be computed
as follows. Pick any terminal and name it c1. Assign all terminals within a distance

of r·OPT2
k from c1 to c1 and remove these terminals. Pick any one of the remaining

terminals and name it c2, and so on.
The algorithm then computes an approximate minimum-cost Steiner tree T in G on

the centers C under the costs ce. Currently, the best known polynomial-time algorithm
for the Steiner tree problem is γ-approximate, where γ < 1.55 [12]. The algorithm buys
the edges in the Steiner tree in the first stage.

Second stage. In the second stage, a subset T ′ of at most k terminals is revealed. The
algorithm, in the second stage, buys the shortest path from each terminal t ∈ T ′ to its
assigned center π(t). It is easy to see that the algorithm computes a feasible solution to
the problem.

2.2 The Analysis

We first introduce the notion of a “ball” of certain radius around a vertex in a graph.
Consider the graph G = (V,E) with edge-costs ce. We think of each edge e as a con-
tinuous interval of length ce. For a vertex v and a radius R > 0, let BG(v,R) denote,
intuitively speaking, the “moat” of radiusR around v. More precisely,B(v,R) contains

– all the vertices u such that dG(u, v) ≤ R,
– all edges e = (u,w) such that dG(u, v) ≤ R and dG(w, v) ≤ R, and
– for the edges e = (u,w) such that dG(u, v) ≤ R and dG(w, v) > R, the sub-

interval of edge e of length R− dG(u, v) adjacent to vertex u.

Note that since dG(ci, cj) > r·OPT2
k for any two distinct centers in C, the balls

BG(ci, r·OPT2
2k) and BG(cj , r·OPT2

2k) are disjoint. It is easy to see that the algorithm
pays at most λ · r · OPT2 in the second stage. This holds since the distance of any

terminal to its assigned center is at most r·OPT2
k . Since at most k terminals need to be

connected to their centers, the total cost of these connections is at most λ · k · r·OPT2
k .

We now bound the cost of the algorithm in stage one using the following lemma.

Lemma 1. Assuming r > 4, there exists a Steiner tree on centers C in G that has cost
at most r

r−4 · OPT1 + OPT2.

Proof. Recall that E∗
1 is the set of edges optimum buys in stage one and OPT1 =

∑
e∈E∗

1
ce. Let H be a graph obtained from G by shrinking the edges in E∗

1 . We now
perform another clustering of the centers C in the shortest-path metric on C induced by
the graph H . For centers ci, cj ∈ C, let dH(ci, cj) denote the shortest-path length under
lengths ce in H . We identify a subset of centers L = {l1, l2, . . . , lt} called “leaders”
and a mapping φ : C → L such that

– The leaders are far apart: dH(li, lj) > 2OPT2/k for all i
= j, and
– Each center is close to its mapped leader: dH(c, φ(c)) ≤ 2OPT2/k for all centers
c ∈ C.

Two-Stage Robust Network Design with Exponential Scenarios 595

Such a clustering can be computed as follows. Pick any center and name it l1. For all
centers c ∈ C with dH(c, l1) ≤ 2OPT2/k, define φ(c) = l1. Remove all such centers
from C and repeat.

Analogous to BG(v,R), we use BH(v,R) to denote the ball of radius R centered at

v in the graph H with length ce for e ∈ H . Note that the balls of radii OPT2
k around

the leaders in L are disjoint in H .

Claim. The following inequality holds: |L| ≤ k.

Proof. Assume on the contrary that |L| > k and let T ′ ⊆ L be any subset of size k+ 1.
Consider the scenario T ′. Since even after shrinking the edges in E∗

1 that optimum

bought in the first stage, the balls of radii OPT2
k centered at the centers in T ′ in the

graph H are disjoint. Therefore the minimum Steiner tree on T ′ in H has cost more
than OPT2. This is a contradiction since the optimum pays at most λ · OPT2 in the
second phase to connect all the centers in T ′ after shrinking the edges in E∗

1 . Thus the
claim holds.

Since |L| ≤ k, we now consider scenario L. There exists a Steiner tree E∗
L on L in H

with cost at most OPT2. Thus E∗
1 ∪E∗

L has cost at most OPT1 + OPT2 and contains a
Steiner tree on L in G. We now show how to extend this into a subgraph with low cost
and which contains a Steiner tree on C in G.

Now recall that the balls of radii r·OPT2
2k around the centers C are disjoint in G.

Note however that dH(c, φ(c)) ≤ 2OPT2
k for all centers c ∈ C. Thus at least r·OPT2

2k −
2OPT2

k =
(

r
2 − 2

)
· OPT2

k cost of E∗
1 must lie inside the ball of radius r·OPT2

2k around
each center c ∈ C. We can thus extend the subgraph E∗

1 ∪ E∗
L by adding shortest paths

from each c to φ(c) in H and charge this additional cost to the contribution of E∗
1 in the

respective balls around centers c ∈ C. The resulting subgraph clearly contains a Steiner
tree on C in G. The overall cost of this subgraph is thus at most OPT1 + OPT2 +

2
r
2−2 · OPT1 = r

r−4 · OPT1 + OPT2. We remind the reader thet OPT2 is the cost of
computing a Steiner tree on the leaders. Hence the proof.

Since we use a γ-approximation algorithm to compute a Steiner tree in stage one, the
overall cost of stage one is at most γ·r

r−4 · OPT1 + γ · OPT2. Combining this with the
second stage cost, the overall cost of our solution is:

γ · r
r − 4

· OPT1 + (γ + λr) · OPT2. (1)

A trivial strategy for solving the robust Steiner tree is to select nothing in stage 1 and
make all the selections in stage 2. Given that every edge is inflated by λ and we use
a γ-approximation for Steiner tree, this strategy will have an approximation factor of
λ · γ. Using the best known approximation algorithm for Steiner tree [12], which has
approximation 1.55, we get a 1.55λ-approximation. For values of λ ≤ 3.51 we use this
trivial strategy which gives an approximation factor of 5.45. For values of λ > 3.51 we
use the above algorithm with parameter r defined below.

Let r = r∗ to be the solution of: γ·r
r−4 = γ

λ +r. Then the two factors in front of OPT1

and OPT2 in the ratio of our algorithm calculated in Equation (1) become equal at

596 R. Khandekar et al.

r = r∗ = γλ−γ+4λ+
√

γ2λ2−2γ2λ+8γλ2+γ2+8γλ+16λ2

2λ . Therefore, for r = r∗ and with

γ = 1.55, the ratio of our algorithm becomes: 5.55λ−1.55+
√

30.8025λ2+7.595λ+2.4025
2λ . It

can be verified that this expression is upper bounded by 5.55 (it has a limit of 5.55).
Thus, for values of λ > 3.51, by choosing r = r∗, the ratio of our algorithm presented
will be at most 5.55 and for smaller values of λ we use the trivial strategy which has
ratio at most 5.55 as well. This completes the proof of Theorem 1.

3 A Logarithmic Approximation for Robust Steiner Forest
Problem

In this section, we prove Theorem 3. The input to the Steiner forest problem is an
undirected graph G = (V,E) with non-negative edge-costs ce. We are also given a set
of terminal-pairs T ⊆ V × V . Similar to the robust Steiner tree problem, the input
also has an integer k and a real number λ ≥ 1. There are two stages. In the first stage
the algorithm has to identify a subset E1 ⊆ E of edges to buy. In the second stage,
the cost of each edge in E \ E1 increases by a factor of λ and a subset T ′ ⊆ T of
at most k terminal-pairs is revealed. We refer to T ′ as a “scenario”. The algorithm,
in the second stage, has to augment the solution E1 by buying edges E2(T ′) so that
the resulting graph E1 ∪ E2(T ′) includes a Steiner forest on terminal-pairs T ′, i.e.,
E1 ∪ E2(T ′) contains a path between each terminal-pair in T ′. The objective is to
minimize the maximum overall cost over all scenarios, i.e., to minimize

∑
e∈E1

ce +
maxT ′⊆T,|T ′|≤k λ ·

∑
e∈E2(T ′) ce.

3.1 Reduction to the Tree Metric

We use the standard technique of reducing the problem to the tree metric while incur-
ring a logarithmic approximation. More formally, let dG(u, v) denote the shortest-path
distance between vertices u and v in G under the edge-costs ce. We use the following
theorem of Fakcharoenphol et al. [3].

Lemma 2 (Fakcharoenphol et al. [3]). Any metric d(·, ·) over n points V can be
O(log n)-probabilistically approximated by metrics defined by hierarchically well-
separated trees. That is, there exists a distribution on tree metrics dT on V such that

– dT (u, v) ≥ d(u, v) for all u, v ∈ V and all T , and
– ET [dT (u, v)] ≤ O(log n) · d(u, v) for all u, v ∈ V .

In the remainder of the section, we obtain a constant-approximation for the robust
Steiner forest problem on a metric dT given by a tree T with edge-costs ce, i.e., in
which dT (u, v) denotes the length of the unique path between u and v in T .

For a scenario T ′ ⊆ T of at most k terminal pairs, let E(T ′) denote the union of the
unique paths between the terminal-pairs in T ′. We now consider the following integer
linear programming formulation of our problem. Let xe ∈ {0, 1} denote an integer
variable that takes value 1 if edge e is picked in stage one, and 0 otherwise. Note that
any edge e ∈ E(T ′) is picked in stage two for scenario T ′ if and only if xe = 0. Thus

Two-Stage Robust Network Design with Exponential Scenarios 597

the stage two cost for scenario T ′ is λ ·
∑

e∈E(T ′) ce · (1 − xe). It is now easy to see
that the following integer program is identical to our problem.

min
∑

e ce · xe + λ · C2

s.t.
∑

e∈E(T ′) ce · (1 − xe) ≤ C2 ∀ scenarios T ′

xe ∈ {0, 1} ∀ edges e
C2 ≥ 0

(2)

A linear relaxation of the above integer program is obtained by replacing the inte-
grality constraints xe ∈ {0, 1} by 0 ≤ xe ≤ 1 for each edge e. This linear program has
polynomially many variables and exponentially many constraints. We now give an ap-
proximate separation oracle for this program and solve it using the ellipsoid algorithm.

The separation oracle: The separation oracle for the above linear program needs to
solve the following problem: given xe ∈ [0, 1] for each edge e, find a scenario T ′

such that
∑

e∈E(T ′) ye is maximized, where ye = ce · (1 − xe). Recall that a scenario
T ′ consists of at most k terminal pairs from T and E(T ′) denotes the union of the
paths between the terminal-pairs in T ′. Thus the separation oracle can be viewed as the
following problem. Given a set of paths T on a tree T with edge-profits ye ≥ 0, find a
subset of at most k paths that maximizes the total profit in the union of the paths.

We now give a dynamic programming based 2-approximation algorithm for the
above problem. Pick any vertex r ∈ T in the tree to be the “root” and imagine that
T is hung from r. Thus we get a natural ancestor-descendant relation between the ver-
tices of T : vertex u is called an ancestor of vertex v if u lies on the unique path between
v and root r; and vertex v is called a descendant of vertex u if u is an ancestor of v.

Now any path p ∈ T can be expressed as a disjoint union of two paths p1 and p2 such
that the end-points of both p1 and p2 satisfy the ancestor-descendant relation. We call
such paths “up-paths”. We now solve our profit maximization problem on this collection
of up-paths. It is easy to see that the maximum profit of at most k up-paths obtained in
a manner given above is at least half of the maximum profit of at most k paths in the
original problem.

The maximum profit collection of k up-paths can be computed by dynamic program-
ming as follows. In what follows, we say that a path p “covers” an edge e if e ∈ p. For
every vertex v ∈ T , let Tv be the subtree rooted at v. For each v ∈ T , for each of its
ancestors u ∈ T , and for each integer 0 ≤ l ≤ k, let p(v, u, l) denote the maximum
profit that can be accrued in the subtree Tv by at most l paths that together cover each
edge on the path between v and u in T . We compute the values of p from leaves up.
Below, we only consider triplets (v, u, l) where u is an ancestor of v (possibly, u = v)
and l is an integer (possibly l < 0 to simplify the description). We first initialize the
values of p(v, u, l) to −∞.

To simplify the exposition, we assume that each vertex has at most two children.
This assumption can be made without loss of generality as described below. Consider
a vertex v with c > 2 children v1, . . . , vc. We expand v into a binary tree with c leaves
corresponding to its c children. The profit of any new edge on this binary tree is set to
zero. The original paths can be extended naturally. It is easy to see that the maximum
achievable profit in the new instance is same as that in the original instance.

598 R. Khandekar et al.

Now for the base case of the dynamic program, we set p(v, u, l) where v is a leaf and
l ≥ 0 to 0. Now consider any internal vertex v ∈ T and assume that we have already
computed (and stored) the values of p(v′, u, l) for all children v′ of v.

We first explain how to compute p(v, u, l) when v has only one child v1. Let e =
(v, v1). If u = v, we set p(v, v, l) = max{p(v1, v1, l),p(v1, v, l)+ye,p(v1, v1, l−1)+
ye}. For u
= v, we let p(v, u, l) = max{p(v1, u, l) + ye,maxu′ p(v1, u′, l − 1) + ye}
where the maximum is taken over vertices u′ on the path between v1 and u such that
there is a path between u′ and one of its ancestor that covers the path between u′ and u.

Now we explain how to compute p(v, u, l) when v has exactly two children v1 and
v2. First consider the case when u = v. Let e1 = (v, v1) and e2 = (v, v2). We set
p(v, v, l) to be the maximum of the following different ways of accruing a profit. Be-
low the maximum is taken over l′ where 0 ≤ l′ ≤ l. The maximum profit without
covering edges e1 and e2 is maxl′(p(v1, v1, l′) + p(v2, v2, l − l′)). The maximum
profit covering e1 but not e2 is maxl′(max{p(v1, v, l′),p(v1, v1, l′ − 1)} + ye1 +
p(v2, v2, l − l′)). Similarly, the maximum profit covering e2 but not e1 is maximum
of maxl′(max{p(v2, v, l′),p(v2, v2, l′ − 1)} + ye2 + p(v1, v1, l − l′)). Similarly, the
maximum profit covering both e1 and e2 is maxl′(max{p(v1, v, l′),p(v1, v1, l′−1)}+
ye1 + max{p(v2, v, l − l′),p(v2, v2, l − l′ − 1)} + ye2).

Now consider the case when u
= v. Again let e1 = (v, v1) and e2 = (v, v2). We set
p(v, u, l) to be the maximum of the following different ways of accruing a profit. Below
the maximum is taken over l′ where 0 ≤ l′ ≤ l. The maximum profit without covering
edges e1 and e2 is maxl′(p(v1, v1, l′) + p(v2, v2, (l − l′′) − l′)) if l′′ is the minimum
number of paths needed to cover the edges on path between v and u. The maximum
profit covering e1 but not e2 is maxl′(p(v1, u, l′) + ye1 + p(v2, v2, l − l′)). Similarly,
the maximum profit covering e2 but not e1 is maximum of maxl′(p(v2, u, l′) + ye2 +
p(v1, v1, l−l′)). Similarly, the maximum profit covering both e1 and e2 is the maximum
of maxl′(p(v1, u, l′) + ye1 + p(v2, v, l − l′) + ye2) and maxl′(p(v2, u, l′) + ye2 +
p(v1, v, l − l′) + ye1).

The Rounding: Since there is a 2-approximation to the separation oracle, we can
compute, using the ellipsoid algorithm, a feasible solution ({x∗e}, C∗

2) to (2) such that
∑

e ce · x∗e + λ · C∗
2
2 ≤ OPT∗ ≤

∑
e ce · x∗e + λ · C∗

2 where OPT∗ denotes the cost
of the optimum fractional solution to (2). We round this solution to an integral feasible
solution to the Steiner forest problem on trees as follows: pick e ∈ E in stage one if and
only if x∗e ≥ 1

3 . In stage two, given a scenario T ′, pick the remaining edges in E(T ′) to
form a feasible solution.

The cost of the stage one of our solution is
∑

e:x∗
e≥1/3 ce ≤ 3

∑
e ce · x∗e . The stage

two cost of scenario T ′ is λ ·
∑

e:x∗
e<1/3 ce ≤ 3

2λ ·
∑

e:x∗
e<1/3 ce · (1− x∗e) ≤ 3

2λ ·C∗
2 .

Thus the overall cost of our solution is at most 3
∑

e ce ·x∗e + 3
2λ ·C∗

2 ≤ 3 ·OPT∗. Since
OPT∗ is at most the optimum integral solution, our algorithm is a 3-approximation.

4 APX-Hardness of the Robust Min-Cut Problem

In this section, we prove Theorem 5. In the robust min-cut problem we are given an
undirected graph G = (V,E) with edge-costs ce ≥ 0, a source s ∈ V , a collection

Two-Stage Robust Network Design with Exponential Scenarios 599

of sinks T ⊆ V , and a inflation factor λi ≥ 1 for every ti ∈ T . There are two stages
in the algorithm. The algorithm has to choose edges E0 ⊆ E in the first stage. We
are then given a single sink ti ∈ T . We call ti a “scenario”. In such a scenario, the
cost of each edge e ∈ E \ E0 becomes λi · ce. The algorithm, then, has to pick edges
E1(ti) ⊆ E\E0 such that s and ti are not connected in the graph (V,E\{E0∪E1(ti)}).
The objective is to minimize the maximum cost of the solution under any scenario:
c(E0) + maxti∈T λi · c(E1(ti)), where c(X) =

∑
e∈X ce for X ⊆ E.

In [11], the authors give (1 +
√

2)-approximation algorithm for this problem and
pose as an open question to determine if this problem is NP-hard. We show that the
special case, in which there are only three sinks and all inflation factors λi are equal,
is already APX-hard. We reduce the APX-hard problem of finding multi-way cut to our
problem. The input to the multi-way cut problem is an undirected graph G = (V,E)
with edge-costs ce ≥ 0 and a collection T ⊆ V of terminals. The problem is to find a
subset E′ ⊆ E of minimum total cost c(E′) such that all terminals in T lie in different
connected components in (V,E \ E′). In [5] the following theorem is proved.

Theorem 6. [5] There exists a universal constant α > 0, value of which is known,
such that given an instance of the multi-way cut problem on 3 terminals, it is NP-hard
to distinguish between the following cases: (i)“yes-instance”: there exists a multi-way
cut of cost at most 1, or (ii)“no-instance”: all multi-way cuts have cost at least 1 + α.

Given an instance of the multi-way cut problem I = {G = (V,E), {ce}, T =
{t1, t2, t3}}, we construct a new graph G′ from G by adding a new vertex s and edges
e1 = (s, t1), e2 = (s, t2), e3 = (s, t3). We let λ = 2. In the instance for the robust
min-cut problem, s serves as a source, T serves as a collection of terminals, and the
edge-costs as given by ce for e ∈ E and ce1 = ce2 = ce3 = 1 + α, where α is the
constant from Theorem 6. Let β = 1 + α.

Lemma 3. If I is a yes-instance then the optimum cost of the robust min-cut is at most
1 + 2β.

Proof. Let E∗ be the minimum multi-way cut in G. We pick E∗ in stage one. Then
given any terminal ti ∈ T as a scenario, we pick the edge ei in stage two. This clearly
forms a feasible solution with cost c(E∗) + λ · β ≤ 1 + 2β.

Lemma 4. If I is a no-instance then the optimum cost of the robust min-cut is at least
min{3β, 1 + 2β + α}.

Proof. Fix an optimum algorithm, say OPT. We consider four cases depending upon
whether OPT picks zero, one, two, or three of the edges e1, e2, e3 in stage one. If OPT
picks exactly one edge, say e1, in stage one, we consider scenario t2. Since OPT has to
pick e2 in stage two for this scenario, the overall cost is at least ce1 +λ ·ce2 = β+2β =
3β. If OPT picks exactly two edges, say {e1, e2}, in stage one, we consider scenario
t3. Since OPT has to pick e3 in stage two for this scenario, the overall cost is at least
2β+λ ·β = 4β. Similarly, if OPT picks three edges in stage one, its cost is at least 3β.

Now consider the case where OPT does not pick any edge out of e1, e2, e3 in stage
one. Let E0 be the set of edges OPT picks in stage one. Let H = (V,E \ E0). Let
E123 ⊆ E \ E0 the minimum multi-way cut separating t1, t2, t3 in H . Note that

600 R. Khandekar et al.

c(E0) + c(E123) ≥ 1 + α and hence c(E123) ≥ 1 + α − c(E0). For i = 1, 2, 3,
let Ei denote the minimum cut separating ti from the other two terminals in H . Note
that each of E1 ∪ E2, E2 ∪ E3, and E3 ∪ E1 form a multi-way cut separating the ter-
minals in H . Therefore, c(E1) + c(E2) ≥ c(E123), c(E2) + c(E3) ≥ c(E123), and
c(E3) + c(E1) ≥ c(E123). Thus c(E1) + c(E2) + c(E3) ≥ 3

2 · c(E123) and hence
maxi c(Ei) ≥ c(E123)/2 ≥ (1 + α− c(E0))/2.

Without loss of generality, let c(E1) = maxi c(Ei). Now consider scenario t1. In
stage two, OPT must pick edge e1. Moreover OPT either picks a cut separating t1
from the other terminals in H or picks at least one edge out of e2, e3. If OPT picks
a cut, its overall cost is at least c(E0) + λ · ce1 + λc(E1) ≥ c(E0) + 2β + 2 · (1 +
α − c(E0))/2 = 2β + 1 + α. In the other case, the overall cost of OPT is at least
c(E0) + λ · ce1 + λmin{ce2 , ce3} ≥ 4β. This completes the proof.

Since β = 1 + α, we get that the ratio of costs of the robust min-cuts in a yes-instance
and a no-instance is at least 3+3α

3+2α . This completes the proof of Theorem 5.

References

1. Dhamdhere, K., Goyal, V., Ravi, R., Singh, M.: How to pay, come what may: Approximation
Algorithms for Demand-Robust Covering Problems. In: Proc. of 46th IEEE FOCS (2005)

2. Dantzig, G.B.: Linear programming under uncertainty. Management Sci. 1, 197–206 (1955)
3. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics

by tree metrics. J. Comput. Syst. Sci. 69(3), 485–497 (2004)
4. Feige, U., Jain, K., Mahdian, M., Mirrokni, V.: Robust Combinatorial Optimization with Ex-

ponential Scenarios. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513,
pp. 439–453. Springer, Heidelberg (2007)

5. Dahlhaus, E., Johnson, D., Papadimitriou, C., Seymour, P., Yannakakis, M.: The Complexity
of Multiterminal Cuts. SIAM J. Comput. 23(4), 864–894 (1994)

6. Golovin, D., Goyal, V., Ravi, R.: Pay Today for a Rainy Day: Improved Approximation
Algorithms for Demand-Robust Min-Cut and Shortest Path Problems. In: Proc. of STACS,
pp. 206–217 (2006)

7. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted sampling: approximation algorithms for
stochastic optimization. In: Proc. of 36th ACM STOC (2004)

8. Gupta, A., Ravi, R., Sinha, A.: An edge in time Saves nine: LP Rounding Approximation
Algorithms for Stochastic Network Design. In: Proc. of 45th IEEE FOCS (2004)

9. Immorlica, N., Karger, D., Minkoff, M., Mirrokni, V.: On the costs and benefits of procras-
tination: approximation algorithms for stochastic combinatorial optimization problems. In:
Proc. of SODA 2004 (2004)

10. Milnor, J.W.: Games against nature. In: Thrall, R.M., Coomb, C.H., Davis, R.L. (eds.) Deci-
sion Processes. Wiley, Chichester

11. Ravi, R., Sinha, A.: Hedging uncertainty: Approximation algorithms for stochastic optimiza-
tion problems. In: Bienstock, D., Nemhauser, G.L. (eds.) IPCO 2004. LNCS, vol. 3064, pp.
101–115. Springer, Heidelberg (2004)

12. Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. In: Proc. of
SODA 2000, pp. 770–779 (2000)

13. Shmoys, D., Swamy, C.: Stochastic optimization is (almost) as easy as deterministic opti-
mization. In: Proc. of 45th IEEE FOCS 2004 (2004)

An Optimal Incremental Algorithm for

Minimizing Lateness with Rejection

Samir Khuller1,� and Julián Mestre2,��

1 University of Maryland, College Park, MD 20742, USA
2 Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany

Abstract. This paper re-examines the classical problem of minimizing
maximum lateness which is defined as follows: given a collection of n
jobs with processing times and due dates, in what order should they
be processed on a single machine to minimize maximum lateness? The
lateness of a job is defined as its completion time minus its due date.
This problem can be solved easily by ordering the jobs in non-decreasing
due date order. We now consider the following question: which sub-
set of k jobs should we reject to reduce the maximum lateness by the
largest amount? While this problem can be solved optimally in poly-
nomial time, we show the following surprising result: there is a fixed
permutation of the jobs, such that for all k, if we reject the first k
jobs from this permutation, we derive an optimal solution for the prob-
lem in which we are allowed to reject k jobs. This allows for an in-
cremental solution in which we can keep incrementally rejecting jobs
if we need a solution with lower maximum lateness value. Moreover,
we also develop an optimal O(n log n) time algorithm to find this
permutation.

1 Introduction

Scheduling problems arise in many contexts in computer science and operations
research. Let us begin by defining the problem of scheduling jobs to minimize
maximum lateness. Given a set of jobs A, each having a processing time and a
due date, we want to schedule the jobs on a single machine. A job is considered to
be late if it finishes after its due date, in which case its lateness is the difference
between its finishing time and its due date; if a job finishes on time, its lateness
is 0. Our objective is to find a schedule on a single machine minimizing the
maximum lateness among all jobs.

More formally, let A = {1, . . . , n} be a set of jobs and let pi and di denote the
processing time and due date of job i. Without loss of generality, we can assume
that in an optimal solution the machine is never idle and that the schedule is
non-preemptive. Thus a schedule is specified with a permutation σ on n elements,

� Research supported by NSF grant CCF 0728839.
�� Research supported by an Alexander von Humboldt Fellowship.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 601–610, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

602 S. Khuller and J. Mestre

where σ(j) denotes position of job j ∈ A in our schedule. Then the lateness of
the ith job can be defined as

Li =
∑

j:σ(j)≤σ(i)

pj − di. (1)

Our objective is to find a permutation σ minimizing maxi Li. It is well-known
[6] that scheduling the jobs in non-decreasing due date order yields an optimal
solution.

For the problem of scheduling jobs to minimize maximum lateness with re-
jection, in addition to the n jobs, we are given a budget k. Our objective is to
identify a set of k jobs to reject, so as to minimize the maximum lateness of the
remaining jobs. An incremental solution for the problem is a list of the jobs such
that for any k, the first k jobs in the list form an optimal solution for minimiz-
ing lateness with k rejections. Our main contribution is to show that such a list
always exists and that it can be computed in O(n log n) time. Not only does the
incremental approach let us develop a faster algorithm, it also uncovers some
surprising structural properties of the underlying problem. Moreover, if all due
dates are identical then we need to order the jobs in non-increasing processing
time order, since this is an optimal rejection order, so the problem is at least as
hard as sorting.

Previous Work: Scheduling to minimize maximum lateness with rejection was
studied by Sengupta [11]. In fact, he considered a more general formulation where
each job j has a rejection penalty of ej , and there is a bound on the total penalty
of rejected jobs. In this case Sengupta shows that the problem is actually NP-
complete. However, he also gives a simple dynamic programming solution that
runs in time O(nk + n logn) when all ej = 1, and there is a budget k on the
number of jobs we can reject. This algorithm computes the optimal set of k jobs
to reject, to get the maximum possible reduction in the maximum lateness. Of
course, it may happen that the optimal set of k jobs to reject chosen by the
algorithm is not a subset of the optimal set of k+ 1 jobs to reject chosen by the
algorithm.

Other scheduling problems with rejection have been considered as well, both
in the offline setting [3,7,10,1] and in the online setting [4,1]). To the best of
our knowledge, none of these works have considered incremental solutions for
scheduling with rejection.

Related Work on Incremental Algorithms: Perhaps the earliest example of
an incremental algorithm is Gonzalez’s algorithm for the K-center problem [5],
which yields a 2 approximation. Mettu and Plaxton [9] defined the online median
problem and showed that there is a way to choose centers incrementally, such
that selecting the first K centers, gives a constant factor approximation to the
K-median problem. Even though several constant factor approximations were
developed for the basic K-median problem, there is no mechanism to enforce
that the solution using K medians would be a subset of the solution using K ′

medians when K ′ > K. Mettu and Plaxton’s work then led to several subsequent
improvements and simpler proofs [8,2].

An Optimal Incremental Algorithm 603

For the problem of minimizing maximum lateness with rejection, we develop
an optimal solution for the rejection problem and moreover prove that the op-
timal solution can be computed incrementally. As a consequence it follows that
there is an optimal rejection set of i jobs, that is a subset of the an optimal
rejection set of (i+ 1) jobs. However, in choosing an optimal rejection set of size
i one has to be extremely careful, since there are many optimal solutions and
not all of them have the incremental property.

2 Alternative Problem Formulation and Notation

Before presenting the algorithms, it is convenient to modify the problem formu-
lation slightly. The fact that a job’s lateness (1) is allowed to be negative can
make the analysis cumbersome. A standard way [6] to avoid this issue is to add
a sufficiently large constant to the right hand side of (1) so that the lateness of
every job is always positive.

Mi =
∑

j:σ(j)≤σ(i)

pj +
(

max
h∈A

dh − di

)

. (2)

There is a natural interpretation of measure (2): After the machine finishes
processing job i, the job must be delivered ; only once the job is delivered we
considered the job to be completed. The delivery time of the ith job is given by
si = maxh∈A dh − di. Although our single machine can process only one job at a
time, any number of jobs can be delivered in parallel (see Figure 1.) The objective
is to minimize the makespan of the schedule, that is, the maximum completion
time over all jobs. The two formulations are equivalent since a schedule with
makespan maxh∈A dh + δ under (2) has lateness δ under (1), and vice versa.

Another way to deal with negative lateness is to minimize tardiness, which
is defined as Ti = max {0, Li}. Clearly, if we have an optimal algorithm for
minimizing lateness with rejection, we immediately get an algorithm for mini-
mizing tardiness with rejection: Once the lateness becomes negative we can stop
rejecting jobs for the tardiness objective.

Notation: When talking about a set A, we use A−j and A+ i to denote A\{j}
and A∪{i} respectively. We use p(A) as a shorthand for

∑
j∈A pj . When talking

about a sequence �, we use �(1) and �(|�|) to denote the first and last elements
of � respectively.

For simplicity, from now on we assume that the jobs are given in non-increasing
order of delivery time; that is, we assume that s1 ≥ s2 ≥ . . . ≥ sn. Thus, for
any set of jobs X ⊆ A, we can denote the completion time of job i ∈ X in an
optimal schedule for X with

MX
i = p

(
{j ∈ X | j ≤ i}

)
+ si.

And the makespan of X with

M(X) = max
i∈X

MX
i .

604 S. Khuller and J. Mestre

0 5 10 t

i pi si

1 1 11
2 4 6
3 5 3
4 2 2

Fig. 1. Dark rectangles denote processing times and light rectangles denote delivery
times. Why a greedy choice is not enough: The third job is a greedy choice, but the
only optimal solution when k = 2 is to reject the first and the second jobs.

3 An Incremental Solution

Our goal is to produce an optimal incremental solution for scheduling with re-
jections to minimize lateness. In other words, we want to construct a list of jobs
x1, x2, . . . , xn such that for any k, the set {x1, . . . , xk} is an optimal solution
for minimizing lateness with k rejections. Clearly, the only way to produce such
a solution is to repeatedly remove the job that decreases the lateness of the
remaining jobs the most, we call this a greedy choice.

Definition 1. A job i ∈ A is said to be a greedy choice for a set of jobs A if
M(A− i) ≤M(A− j) for all j ∈ A.

Interestingly, repeatedly selecting a greedy choice may not lead to an optimal
incremental solution. Consider the example in Figure 1. The third job is a greedy
choice, but for k = 2 the unique optimal solution is to reject the first and the
second jobs. There is still hope, however, since the instance does allow an optimal
incremental solution, namely 〈2, 1, 3, 4〉. To get around this pitfall we need a
notion stronger than greedy choice.

Definition 2. Let A = {1, . . . , n} be a set of jobs. A job i ∈ A is said to be a
strongly greedy choice for A if i is a greedy choice for {j, . . . , n} for all j ≤ i.

Our algorithm, whose pseudo-code is given below, repeatedly identifies a strongly
greedy choice for A, adds it to the list, and removes it from A. It is worth noting
here that the existence of a strongly greedy choice is not obvious. Indeed, in the
next section we show that such a job always exists.

incremental(A)
1 �← 〈 〉
2 while A
= ∅ do
3 i← strongly greedy choice for A
4 insert i at the end of �
5 A← A− i
6 return �

An Optimal Incremental Algorithm 605

4 Analysis

In this section we prove that incremental always finds an optimal incremental
solution for minimizing lateness with rejections. To that end we introduce two
lemmas, whose proofs make use of the following property.

Property 1. Let A = {1, . . . , n} and A′ = {2, . . . , n}. For any set X ⊆ A′ we
have M(A \X) = max{p1 + s1,M(A′ \X) + p1}.

Lemma 1 will establish that Line 3 in our algorithm is well defined, and Lemma 2
will show that the choice made there is the right one.

Lemma 1. Every set A of jobs admits a strongly greedy choice.

Proof. By induction on the size of A = {1, . . . , n}. The base case (n = 1) is
trivial. For the inductive step (n > 1), if 1 is a greedy choice then we are done
since 1 is trivially a strongly greedy choice, so let us assume otherwise.

Let A′ = {2, . . . , n}. By induction, there exists a strongly greedy choice i for
A′; thus, we only need to show that i is a greedy choice for A. Since i is a greedy
choice for A′, we have M(A′ − i) ≤ M(A′ − j) for any j > 1. By Property 1, it
follows that M(A − i) ≤ M(A − j) for any j > 1. Furthermore, since 1 is not
a greedy choice for A, we have M(A − 1) > M(A − j) for some j > 1; thus,
M(A− i) < M(A− 1) and we are done. �
Lemma 2. Let i be a strongly greedy choice for A. For any set S ⊆ A− i there
exists j ∈ S such that M(A \ (S − j + i)) ≤M(A \ S).

Proof. By induction on the size of A and k = |S|. For the base case (k = 1)
we note that i is a greedy choice for A so the lemma holds. For the inductive
step (k > 1) let A = {1, . . . , n} and A′ = {2, . . . , n}. There are a few cases to
consider depending on whether 1 ∈ S or 1 = i.

First, consider the case 1 /∈ S and i
= 1. By Definition 2, i is a strongly greedy
choice for A′. By induction, there exists j ∈ S such that M(A′ \ (S − j + i)) ≤
M(A′ \ S). It follows, by Property 1, that M(A \ (S − j + i)) ≤M(A \ S).

Second, consider the case 1 ∈ S and i
= 1. Let S′ = S − 1. Notice that
M(A\S) = M(A′ \S′). Again, i is a strongly greedy choice for A′. By inductive
hypothesis on A and S′ there is a job j ∈ S′ such that M(A′ \ (S′ − j + i)) ≤
M(A′ \ S′). Thus, it follows that M(A \ (S − j + i)) ≤M(A \ S).

Third, consider the case i = 1. Let j be the smallest job in S. We will argue
that M(A \ (S − j + 1)) ≤ M(A \ S). Let t be the leftmost job attaining the
makespan of M(A − j). If t < j then M(A − j) = MA

t and M(A \ S) = MA
t ;

furthermore, since 1 is a greedy choice, we haveM(A−1) ≤M(A−j) = M(A\S).
Otherwise, if t > j, we have M(A− j) = MA

t − pj . Since M(A− 1) ≥MA
t − p1,

this implies p1 ≥ pj. Clearly, the finishing time of all jobs other than j cannot
increase since p1 ≥ pj . We only need to show that the finishing time of j is at
most M(A \ S). Let X = {2, . . . , j − 1} be the set of jobs scheduled before j.

M
A\(S−j+1)
j = p(X) + pj + sj ≤ p(X) + p1 + sj−1 = M

A\S
j−1 ≤M(A \ S).

We have exhausted all possible cases, so the lemma follows. �

606 S. Khuller and J. Mestre

Theorem 1. The procedure incremental outputs an optimal incremental so-
lution.

Proof. First we note that the algorithm actually outputs a solution since, by
Lemma 1, Line 3 is well defined. Let A = {1, . . . , n} be the input of incremen-

tal and 〈x1, . . . , xn〉 be its output. We prove that {x1, . . . , xk} is an optimal
solution with k rejections by induction on k and n. The base case, where k = 1
and n ∈ Z+, is trivial since x1 is a greedy choice for A.

For the inductive step, let S be an optimal solution with k rejections for A.
By Lemma 2, we can assume without loss of generality that x1 ∈ S. Therefore,
S − x1 is an optimal solution with k − 1 rejections for A− x1. We can think of
x2, . . . xn as the output of increment(A−x1). Thus, by induction, 〈x2, . . . , xk〉
is an optimal solution with k− 1 rejections for A− x1. It follows that x1, . . . , xk

is an optimal solution with k rejections for A. �

5 Implementation

So far we have focused on the correctness of incremental and have not dis-
cussed its running time. Although it is not difficult implement incremental

to run in O(n3) time, in this section we outline two variations of it that lead
to faster running times. The first algorithm is based on divide and conquer and
runs in O(n2) time. The second algorithm resembles insertion sort and runs in
O(n log n) time. The reason for including the description of the slower algorithm
is two-fold: First, its implementation details are more straightforward than the
faster algorithm; second, its quadratic running time is a worst-case bound and
it should perform better in practice.

In each case, to prove that the algorithms produce an optimal incremental
solution we argue that their output coincides with incremental. It should
be noted right away that incremental is underspecified, since there could be
many strongly greedy choices to select from in Line 3. However, every possible
execution produces a valid incremental solution. From now on, when we say “the
output of algorithm X is the same as incremental” we mean there exists an
execution of incremental whose output is the same as that of algorithm X.

5.1 Divide and Conquer

Consider the following divide and conquer algorithm. Let A = {1, . . . , n} be our
input instance. First, we find the smallest greedy choice for A, denote this job by
i. Second, we identify the smallest job j attaining the maximum lateness in A−i.
If j > i then i is a strongly greedy choice (this will be proven later) in which
case, i must come first followed by an incremental solution for A− i. Otherwise
j < i, in this case we make two recursive calls on {1, . . . , j} and {j + 1, . . . , n}.
To merge the solutions returned by the two calls, take the leading job from the
second solution, followed by the jobs from the first solution (in order), followed
by the remaining jobs from the second sequence (also in order). The pseudo-code
for this procedure is given below.

An Optimal Incremental Algorithm 607

divide-and-conquer(A = {1, . . . , n})
1 i← min{p | p is a greedy choice of A}
2 j ← min{p | p has maximum lateness in A− i}
3 if j > i
4 �← divide-and-conquer(A− i)
5 insert i to the front of �
6 else
7 �← divide-and-conquer({j + 1, . . . , n})
8 �′ ← divide-and-conquer({1, . . . , j})
9 insert �′ after the first element of �

10 return �

Theorem 2. The procedure divide-and-conquer can be implemented to run
in O(n2) time and returns an optimal incremental solution for minimizing late-
ness with rejections.

Proof. Let T (n) be the running time of the algorithm on an instance with n jobs.
It can be shown that finding the leftmost greedy choice, splitting the instance
for the recursive calls, and the merging can be done in O(n) time. Therefore,
the running time obeys the recursion T (n) = T (n1) + T (n2) + O(n) for some
n1 + n2 = n. If we had control over how the instance is split we could choose
n1 = n2 = n

2 to get a running time of O(n logn). Of course, we do not have
control over this and in the worst case we have n1 = 1 and n2 = n − 1, which
yields a running time of T (n) = O(n2).

To prove the correctness of the algorithm, let us show by induction on n that
the output of divide-and-conquer is the same as incremental. The base
case (n = 1) is obvious. For the inductive step (n > 1), if j > i then we claim
that i is strongly greedy, in which case both algorithms place i first and then
process A − i, which by inductive hypothesis we can assume to be the same.
Let i∗ be the leftmost strongly greedy choice for A and assume, for the sake
of contradiction, that i < i∗. This means that there exists h < i such that for
A′ = {h, . . . n} we have M(A′ − i∗) < M(A′ − i). Note, however, that

M(A− i∗) = max
{
M(A \A′), p(A \A′) +M(A′ − i∗)

}

equals
M(A− i) = max

{
M(A \A′), p(A \A′) +M(A′ − i)

}
.

This mean that M(A \ A′) = M(A − i) contradicting the fact that j is the
leftmost job with maximum lateness in A− i.

Consider the case when j < i. Let i∗ be a strongly greedy choice for A.
Clearly the makespan of A − i∗ is attained by j and i∗ ≥ i > j. Now consider
what happens in the execution of incremental(A) after processing i∗. For all
h > j in A− i∗ we have MA−i∗

h ≤MA−i∗

j . Since the finishing time of j in A− i∗

is larger than that of jobs h > j, the next job to be removed by incremental

must be less or equal than j. This is true until all jobs in {1, . . . , j} are removed:

608 S. Khuller and J. Mestre

Suppose the algorithm has removed so far the jobs X ⊂ {1, . . . , j} and let j′ be
the largest indexed job in {1, . . . , j} \X , then

M
(A−i∗)\X
j′ = MA−i∗

j − p(X) − sj + sj′ ≥MA−i∗

h − p(X) = M
(A−i∗)\X
h

This mean that after removing i∗, incremental removes all jobs in {1, . . . , j}
before removing any jobs from {j + 1, . . . , n} − i∗. By inductive hypothesis the
recursive calls in Lines 7 and 8 find the optimal orderings for {1, . . . , j} and
{j + 1, . . . , n} respectively, which are then combined accordingly in Line 9. �

5.2 Fast Incremental

In order to further improve the running time, we introduce an interesting prop-
erty about the structure of incremental solutions.

Lemma 3. Let A = {1, . . . , n} be a set of jobs and B = {j, . . . , n} be any suffix
of A. Then the order induced on B by the solution output by incremental(A)
and the order of the solution output by incremental(B) are the same.

Proof. As we already mentioned at the beginning of the section, the lemma state-
ment does not imply that every execution of incremental(A) and
incremental(B) will coincide; rather, we mean that for every execution of
the former, there is an execution of the latter in which the orderings coincide,
and vice versa.

By induction on n. Suppose that i is chosen by incremental(A) as a strongly
greedy choice for A. If i ∈ A\B then it does not affect incremental(B), and by
inductive hypothesis on A− i and B their output is the same. Otherwise, i must
also be a strongly greedy choice for B, so both algorithms agree on their first
decision and by inductive hypothesis on A− i and B − i the rest of the output
also coincides. Conversely, suppose i is chosen by incremental(B) as strongly
greedy choice for B. Let i∗ be the leftmost greedy choice of A. If i∗ ∈ A \B, we
let incremental(A) use this job, by inductive hypothesis on A− i∗ and B the
rest of the output coincides. Otherwise, i∗ ∈ B for A, in which case we claim
that i is also a strongly greedy choice for A and by inductive hypothesis the
lemma follows. Consider any suffix A′ of A, by definition i∗ is a greedy choice
for A′, furthermore

M(A′ − i∗) = max {M(A′ \B), p(A′ \B) +M(B − i∗)} .

Similarly,

M(A′ − i) = max {M(A′ \B), p(A′ \B) +M(B − i)}

However, since i is a (strongly) greedy choice for B we have M(B− i) ≤M(B−
i∗). Thus, it follows that i is a greedy choice for A′; that is, M(A′ − i) ≤
M(A′ − i∗). �

An Optimal Incremental Algorithm 609

It is worth noting that a similar statement about the prefixes of A is not true,
and it is ultimately the reason why we cannot modify divide-and-conquer

to run in O(n log n) time. Nevertheless, a scheme similar to insertion sort does
achieve this running time. The underlying idea is very simple: Process jobs from
right to left, maintaining an incremental solution for the jobs processed thus far.

fast-incremental(A = {1, . . . , n})
1 �← 〈 〉
2 for i← n down to 1 do
3 let j ∈ {1, . . . , |�| + 1} be the smallest index such that i

is a greedy choice for {i, �(j), . . . , �(|�|)}
4 insert i to the left of the jth position in �
5 return �

Theorem 3. The procedure fast-incremental can be implemented to run in
O(n log n) time and outputs an optimal incremental solution.

Proof. Let us first argue the correctness of fast-incremental and then discuss
the details behind its implementation. Consider the k + 1st iteration of fast-

incremental where we are trying to insert i = n − k into � and |�| = k, and
denote by �′ the ordering after i is inserted. Let us show by induction on k that �′

is an incremental solution for {i, . . . , n}. For the base case (k = 0) there is nothing
to show. For the inductive step (k > 0), by Lemma 3 it suffices to prove that i is
inserted in � to the left of the jth element (or at the end if j = k+1) where j is the
smallest index such that i is a strongly greedy choice for {i, �(j), . . . , �(k)}, which
happens if and only if i is a greedy choice for that set.

To argue the O(n log n) running time we show that Line 3 of the k + 1st
iteration can be carried out in O(log k) time. As a warm-up we first discuss
a slower O(k) time implementation. For the given sequence �, define μj to be
the makespan of {�(j), . . . , �(k)}, that is, μj = M({�(j), . . . , �(k)}) and μk+1 =
μk+2 = 0. The following easy-to-prove property is the basis for our implementa-
tion of Line 3.

Property 2. Job i is a greedy choice for the set {i, �(j), . . . , �(k)} if and only if
μj ≤ max{μj+1, si} + pi.

Thus, provided with the μ-values we can find the correct position where to insert
i in O(k) time. Although computing the μ-values from scratch could take as much
as O(k2) time, we can update the values from the previous iteration in just O(k)
time: If i is to be inserted to the left of the jth position in the sequence then we
set μ′

h = max{si, μh} + pi = μh + pi for 1 ≤ h < j, μ′
j = max{si, μj} + pi, and

μ′
h+1 = μh for j ≤ h ≤ k.
To improve upon this, we need to keep track of the differences of the μ-values

instead of the μ-values themselves. Let δj = μj −μj+1 for 1 ≤ j ≤ k, where μk+1

is taken to be 0. To find out where to insert i first we identify the smallest j′ such
that μj′ < si. Observe that j′ fulfills the condition of Property 2; thus, we only
need to check whether there exists j′′ < j′ for which the same condition holds.

610 S. Khuller and J. Mestre

For j′′ = j′ − 1 we can check directly. For j′′ ≤ j′ − 2, since μj′′+1 ≥ μj′−1 ≥ si,
the condition of Property 2 is the equivalent to μj′′ − μj′′+1 ≤ pi, in which case
j′′ is the smallest index such that δj′′ ≤ pi and j′′ ≤ j′ − 2, if there is any.

All these tests can be performed in O(log k) time if we maintain an augmented
balanced binary tree whose leaves are the values δ1, . . . , δk, where each internal
node keeps track of the sum of the δ-values, and the minimum δ-value in its
subtree. When inserting i to the left of the jth position, the effect of setting
μ′

h = μh + pi for all 1 ≤ h < j, μ′
j = max{si, μj+1} + pi, and μ′

h+1 = μ′
h for

all j ≤ h ≤ k can be easily achieved by inserting a new value δ′j = μ′
j − μ′

j+1

and setting δ′j−1 = μ′
j−1 − μ′

j . The remaining values are left unchanged since
δ′h = μ′

h − μ′
h+1 = μh + pi − μh − pi = δh for h ≤ j − 2 and δ′h = μ′

h − μ′
h+1 =

μh−1 − μh−2 = δh−1 for h > j . Thus, in each iteration, the tree can be updated
in O(log k) time as well. �

Acknowledgements. We would like to thank the anonymous referees for helpful
suggestions.

References

1. Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., Stougie, L.: Multi-
processor scheduling with rejection. SIAM J. Discrete Math. 13(1), 64–78 (2000)

2. Chrobak, M., Kenyon, C., Noga, J., Young, N.E.: Oblivious medians via online
bidding. In: Proceedings of the 13th Latin American Symposium on Theoretical
Informatics, pp. 311–322 (2006)

3. Engels, D.W., Karger, D.R., Kolliopoulos, S.G., Sengupta, S., Uma, R.N., Wein,
J.: Techniques for scheduling with rejection. J. Algorithms 49(1), 175–191 (2003)

4. Epstein, L., Noga, J., Woeginger, G.J.: On-line scheduling of unit time jobs with
rejection: minimizing the total completion time. Operations Research Letters 30(6),
415–420 (2002)

5. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theo-
retical Computer Science 38, 293–306 (1985)

6. Hall, L.A.: Approximation Algorithms for NP-Hard Problems, ch. 2. PWS Pub-
lishing Company (1997)

7. Hoogeveen, H., Skutella, M., Woeginger, G.J.: Preemptive scheduling with rejec-
tion. Mathematical Programming 94(2-3), 361–374 (2003)

8. Lin, G., Nagarajan, C., Rajaraman, R., Williamson, D.P.: A general approach for
incremental approximation and hierarchical clustering. In: Proceedings of the 17th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1147–1156 (2006)

9. Mettu, R.R., Plaxton, C.G.: The online median problem. SIAM Journal on Com-
puting 32(3), 816–832 (2003)

10. Seiden, S.S.: Preemptive multiprocessor scheduling with rejection. Theor. Comput.
Sci. 262(1), 437–458 (2001)

11. Sengupta, S.: Algorithms and approximation schemes for minimum late-
ness/tardiness scheduling with rejection. In: Proceedings of the 15th International
Workshop on Algorithms and Data Structures, pp. 79–90 (2003)

More Robust Hashing:

Cuckoo Hashing with a Stash

Adam Kirsch1,�, Michael Mitzenmacher1,�, and Udi Wieder2

1 Harvard University
{kirsch,michaelm}@eecs.harvard.edu

2 Microsoft Research Silicon Valley
uwieder@microsoft.com

Abstract. Cuckoo hashing holds great potential as a high-performance
hashing scheme for real applications. Up to this point, the greatest draw-
back of cuckoo hashing appears to be that there is a polynomially small
but practically significant probability that a failure occurs during the
insertion of an item, requiring an expensive rehashing of all items in the
table. In this paper, we show that this failure probability can be dra-
matically reduced by the addition of a very small constant-sized stash.
We demonstrate both analytically and through simulations that stashes
of size equivalent to only three or four items yield tremendous improve-
ments, enhancing cuckoo hashing’s practical viability in both hardware
and software. Our analysis naturally extends previous analyses of mul-
tiple cuckoo hashing variants, and the approach may prove useful in
further related schemes.

1 Introduction

In a multiple choice hashing scheme, each item can reside in one of d possible
locations in a hash table. Such schemes allow for simple O(1) lookups, since
there are only a small number of places where an item can be stored. Cuckoo
hashing refers to a particular class of multiple choice hashing schemes, where
one can resolve collisions among items in the hash table by moving items as
needed, as long as each item resides in one of its corresponding locations. Colli-
sions, however, remain the bane of cuckoo hashing schemes and multiple choice
hashing schemes in general: there is always some chance that on the insertion
of a new item, none of the d choices are or can easily be made empty to hold
it, causing a failure. In the theory literature, the standard response to this diffi-
culty is to perform a full rehash if this rare event occurs. Since a failure in such
schemes generally occurs with low probability (e.g., O(n−c) for some constant
c ≥ 1), these rehashings have very little impact on the average performance of
the scheme, but they make for less than ideal probabilistic worst case guarantees.
Moreover, for many schemes, the constant c in the O(n−c) failure probability
bound is smaller than one actually desires in practice; values of c ≤ 3 arguably

� Supported in part by NSF grant CNS-0721491 and a grant from Cisco Systems.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 611–622, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

612 A. Kirsch, M. Mitzenmacher, and U. Wieder

lead to failures at too high a rate for commercial applications (assuming that the
hidden constants are not too small). In particular, in many applications, such
as indexing, elements are inserted and deleted from the hash table over a long
period of time, increasing the probability of failure at some point throughout
the life of the table. Furthermore, if the hash table is required to be history
independent then a failure may trigger a long series of rehashings. See [10] for
details.

In this paper, we demonstrate that with standard cuckoo hashing variants, one
can construct much more robust hashing schemes by utilizing very small amounts
of memory outside the main table. Specifically, by storing a constant number of
items outside the table in an area we call the stash, we can dramatically reduce
the frequency with which full rehashing operations are necessary. A constant-
sized stash is quite natural in most application settings. In software, one could
use one or more cache lines for quick access to a small amount of such data;
in hardware, one could effectively use content-addressable memories (CAMs),
which are too expensive to store large tables but are cost-effective at smaller
sizes. The intuition behind our approach is quite natural. If the items cause
failures essentially independently, we should expect the number of items S that
cause errors to satisfy Pr(S ≥ s) = O(n−cs) for some constant c > 0 and
every constant s ≥ 1. In this case, if we can identify problematic items during
the insertion procedure and store them in the stash, then we can dramatically
reduce the failure probability bound.

Of course, failures do not happen independently, and formalizing our results
requires revisiting and modifying the various analyses for the different variants of
cuckoo hashing. We summarize our general approach. For many hashing schemes,
it is natural to think of the hash functions as encoding a sample of a random graph
G from some distribution. One can often show that the insertion procedure is guar-
anteed to be successful as long asG satisfies certain structural properties (e.g., ex-
pansion properties). The failure probability of the hashing scheme is then bounded
by the probability that G does not satisfy these requirements. In this context, al-
lowing a stash of constant size lessens these requirements, often dramatically re-
ducing the corresponding failure probability. For example, if the properties of in-
terest are expansion properties, then a stash effectively exempts sets of constant
size from the expansion requirements. When such sets are the bottleneck in deter-
mining the failure probability, the stash allows dramatic improvements. Our work
demonstrates that the technique of utilizing only a constant-sized stash is applica-
ble to a number of interesting hashing schemes, and that one can often determine
whether the technique is applicable by a careful examination of the original analy-
sis. Furthermore, when the technique is applicable, the original analysis can often
be modified in a fairly straightforward way.

Specifically, we first consider a variant of the cuckoo hashing scheme intro-
duced by Pagh and Rodler [11], which uses two choices. We then consider a
variation proposed by Fotakis et al. [4], which utilizes more than two choices.
In this version of the paper, we omit many of the more technical details of the
analysis due to space constraints; a full version of this work is given in [7]. (In

More Robust Hashing: Cuckoo Hashing with a Stash 613

the full version [7], we also consider a variation of cuckoo hashing due to Diet-
zfelbinger and Weidling [2], which allows buckets to hold more than one item.)
Finally, we verify the potential for this approach in practice via some simple
simulations that demonstrate the power of a small stash.

Before continuing, we note that the idea of using a small amount of additional
memory to store items that cannot easily be accommodated in the main hash
table is not new to this work. For instance, Kirsch and Mitzenmacher [5, 6]
examine hash table constructions designed for high-performance routers where
a small number of items can be efficiently stored in a CAM of modest size. (In
particular, [6] specifically considers improving the performance of cuckoo hashing
variants by reordering hash table operations.) However, the constructions in
[5] technically require a linear amount of CAM storage (although the hidden
constant is very small), and the schemes in [6] are not formally analyzed. Our
new constructions are superior in that they only require a small constant amount
of additional memory and have provably good performance.

2 Standard Cuckoo Hashing

We start by examining the standard cuckoo hashing scheme proposed by Pagh
and Rodler in [11]. Here we attempt to insert n items into a data structure
consisting of two tables, T1 and T2, each with m = (1 + ε)n buckets and one
hash function (h1 for T1 and h2 for T2), where ε > 0 is some fixed constant.
Each bucket can store at most one item. To insert an item x, we place it in
T1[h1(x)] if that bucket is empty. Otherwise, we evict the item y in T1[h1(x)],
replace it with x, and attempt to insert y into T2[h2(y)]. If that location is free,
then we are done, and if not, we evict the item z in that location and attempt
to insert it into T1[h1(z)], etc. Of course, this is just one variant of the insertion
procedure; we could, in principle, attempt to place x in either of T1[h1(x)] or
T2[h2(x)] before performing an eviction, or place an upper bound on the number
of evictions that the insertion procedure can tolerate without generating some
sort of failure. We find this variant simplest to handle.

Pagh and Rodler [11] show that if the hash functions are chosen independently
from an appropriate universal hash family, then with probability 1−O(1/n), the
insertion procedure successfully places all n items with at most α logn evictions
for the insertion of any particular item, for some sufficiently large constant α.
Furthermore, they show that if the insertion procedure is modified so that, if in-
serting a particular item requires more than α logn evictions, the hash functions
are resampled and all items in the table are reinserted, then the expected time
required to place all n items into the table is O(n).

Devroye and Morin [1] show that the success of the cuckoo hashing insertion
procedure can be interpreted in terms of a simple property of a random multi-
graph that encodes the hash functions1. In particular, Kutzelnigg [8] uses this
approach to show that, if the hash functions are (heuristically) assumed to be
1 Some of the details in the proofs in [1] are not accurate and are corrected in part in

this paper, as well as by Kutzelnigg [8].

614 A. Kirsch, M. Mitzenmacher, and U. Wieder

independent and fully random, then the probability that the hash functions
admit any injective mapping of the items to the hash buckets such that every
item x is either in T1[h1(x)] or T2[h2(x)] is 1−Θ(1/n). (In fact, [8] identifies the
exact constant hidden in the Theta notation.)

In this section, we use the approach of Devroye and Morin [1] to show that
if the hash functions are independent and fully random and items that are not
successfully placed in α logn evictions result in some (easily found) item being
placed in the stash, then the size S of the stash after all items have been inserted
satisfies Pr(S ≥ s) = O(n−s) for every integer s ≥ 1. Equivalently, the use of a
stash of constant size allows us to drive down the failure probability of standard
cuckoo hashing exponentially.

We now proceed with the technical details. We view the hash functions h1 and
h2 as defining a bipartite multi-graph with m vertices on each side, with the left
and right vertices corresponding to the buckets in T1 and T2, respectively. For
each of n items x, the hash values h1(x) and h2(x) are encoded as an instance of
the edge (h1(x), h2(x)). Following [1], we call this multi-graph the cuckoo graph.

The key observation in [1] is that the standard cuckoo hashing insertion pro-
cedure successfully places all n items if and only if no connected component in
the cuckoo graph has more than one cycle. In this case, the number of evic-
tions required to place any item can be essentially bounded by the size of the
largest connected component, which can be bounded with high probability using
standard techniques for analyzing random graphs.

We modify the insertion algorithm in the following way: whenever an inser-
tion of element x fails, so the component of the cuckoo graph with the edge
(h1(x), h2(x)) has more than one cycle, we put an item in the stash whose cor-
responding edge belongs to a cycle, effectively removing at least one cycle from
the component. There are various ways of implementing an insertion algorithm
with this property. One way is to observe that in a successful insertion, at most
one vertex of the cuckoo graph is visited more than once, and no vertex is visited
more than twice. Thus, if during an insertion we keep track of which memory
slots we have already evicted items from, we can identify the slot that was evicted
twice and thus put in the stash an element whose corresponding edge belongs
to a cycle. This cycle detection mechanism requires us to remember how many
times each slot was evicted. In practice, it may be better to set a limit of α logn
on the number of possible evictions. If α logn evictions do not suffice then we
‘roll back’ to the original configuration (which we can do by remembering the
last item evicted) and try to insert the element a second time, this time with a
‘cycle detection’ mechanism.

Of course, the most natural insertion algorithm is to impose an a-priori bound
of α log n on the number of evictions, and if after α log n evictions an empty
slot had not been found, put the current element in the stash. Unfortunately,
this insertion algorithm does not guarantee that the element put in the stash
corresponds to a cycle edge, a property essential for the analysis. Nevertheless,
simulations given in Section 4 suggest that the same qualitative results hold for
both cases.

More Robust Hashing: Cuckoo Hashing with a Stash 615

The following theorem is the main result of this section.

Theorem 1. For every constant integer s ≥ 1, for a sufficiently large constant
α, the size S of the stash after all items have been inserted satisfies Pr(S ≥ s) =
O(n−s).

The rest of this section is devoted to the proof of Theorem 1. We start with the
following observation, which is almost the same as one in [1].

Lemma 1. Consider a walkW in the cuckoo graph corresponding to an insertion,
and suppose that this walk takes place in a connected component of size k. Then the
number of vertices visited during the walk (with multiplicity) is at most k + 1.

Proof. From the definition of our insertion algorithm, W either contains no
repeated vertices, or exactly one repeated vertex that occurs exactly twice. Since
there are only k vertices in the connected component containing W , it is not
possible for W to visit more than k + 1 vertices.

The following observation allows us to quantify the relationship between the
items that we put in the stash and the connected components in the cuckoo
graph with at least two cycles. For the proof, see [7].

Lemma 2. Let G be a connected multi-graph with v vertices and v + k edges,
for some k ≥ 0. Suppose that we execute the following procedure to completion:
while G contains at least two cycles, we delete some edge in some cycle in G.
Then the number of edges that we delete from G is exactly k.

We are now ready to delve into the main technical details of the proof of Theo-
rem 1. For a distribution D, let G(m,m,D) denote the distribution over bipartite
graphs with m nodes on each side, obtained by sampling � ∼ D and throwing �
edges independently at random (that is, each edge is put in the graph by uni-
formly and independently sampling its left node and its right node). Note that
the cuckoo graph has distribution G(m,m,D) when D is concentrated at n. Now
we fix some arbitrary vertex v of the 2m vertices. For any bipartite multi-graph
G with m vertices on each side, we let Cv(G) denote the connected component
containing v. We then order the edges of G in some arbitrary way, and imagine
that they are inserted into an initially empty graph in that order. We say that
an edge is bad if at the time that it is inserted it closes a cycle (possibly of length
2). Note that while the set of bad edges depends on the ordering of the edges,
the number of bad edges in each connected component of G is the same for all
orderings. Thus, we may define Bv(G) to be the number of bad edges in Cv(G),
and f(G) to be the total number of bad edges in G. We also let T (G) denote
the number of connected components in G with at least one cycle.

Lemma 2 now tells us that S has the same distribution as f(G(m,m, n)) −
T (G(m,m, n)). Thus, we have reduced the problem of bounding the size of the
stash to the problem of analyzing the bad edges in the cuckoo graph. To that
end we use stochastic dominance techniques.

616 A. Kirsch, M. Mitzenmacher, and U. Wieder

Definition 1. For two graphs G and G′ with the same vertex set V , we say
that G ≥ G′ if the set of edges of G contains the set of edges of G′. Similarly,
for two tuples of graphs (G1, . . . , Gt) and (G′

1, . . . , G
′
t) with vertex set V , we say

that (G1, . . . , Gt) ≥ (G′
1, . . . , G

′
t) if Gi ≥ G′

i for i = 1, . . . , t. Let g be a function
from t-tuples of graphs on V to reals. We say g is non-decreasing if g(x) ≥ g(y)
whenever x ≥ y.

Definition 2. Let μ and ν be two probability measures over t-tuples graphs with
some common vertex set V . We say that μ stochastically dominates ν, written
μ . ν, if for every non-decreasing function g, we have Eμ[g(G)] ≥ Eν [g(G)].

Since S has the same distribution as f(G(m,m, n)) − T (G(m,m, n)), and the
function f(G) − T (G) is increasing, it suffices to consider some distribution
over graphs that stochastically dominates G(m,m, n). To this end, we let Po(λ)
denote the Poisson distribution with parameter λ, or, where the context is clear,
we slightly abuse notation by letting Po(λ) represent a random variable with
this distribution. We now give the following stochastic dominance result.

Lemma 3. Fix any λ > 0. For any G ∼ G(m,m,Po(λ)), the conditional distrib-
ution of G given that G has at least n edges stochastically dominates G(m,m, n).

Proof. For a left vertex u and a right vertex v, let X(u, v) denote the multiplicity
of the edge (u, v) in G(m,m,Po(λ)). By a standard property of Poisson random
variables, the X(u, v)’s are independent with common distribution Po(λ/m2).
Thus, for any k ≥ 0, the conditional distribution of G given that G has exactly
k edges is exactly the same as G(m,m, k) (see, e.g., [9, Theorem 5.6]). Since
G(m,m, k1) . G(m,m, k2) for any k1 ≥ k2, the result follows.

The key advantage of introducing G(m,m,Po(λ)) is the “splitting” property of
Poisson distributions used in the proof of Lemma 3: if Po(λ) balls are thrown
randomly into k bins, the joint distribution of the number of balls in the bins
is the same as k independent Po(λ/k) random variables. This property simpli-
fies our analysis. First, however, we must show that we can choose λ so that
G(m,m,Po(λ)) has at least n edges with overwhelming probability for an ap-
propriate choice of λ. This follows easily from a standard tail bound on Poisson
random variables. Indeed, setting λ = (1 + ε′)n for any constant ε′ > 0 gives

Pr(Po(λ) < n) ≤ e−λ

(
eλ

n

)n

= e−n[ε′−ln(1+ε′)] = e−Ω(n),

where we have used [9, Theorem 5.4] and the fact that ε′ > ln(1 + ε′), which
follows from the standard inequality 1 + ε′ < eε′

for ε′ > 0. Therefore, by
Lemmas 1 and 3,

Pr(S ≥ s) ≤ Pr(max
v

|Cv(G(m,m,Po(λ)))| > α logn)

+ Pr(f(G(m,m,Po(λ))) − T (G(m,m,Po(λ))) ≥ s) + e−Ω(n)

More Robust Hashing: Cuckoo Hashing with a Stash 617

and so it suffices to show that for a sufficiently large constant α,

Pr(max
v

|Cv(G(m,m,Po(λ)))| > α logn) = O(n−s) and (1)

Pr(f(G(m,m,Po(λ))) − T (G(m,m,Po(λ)) ≥ s)) = O(n−s). (2)

Since we work with the probability space G(m,m,Po(λ)) from this point on,
we slightly abuse notation and, for all vertices v, let Cv = Cv(G(m,m,Po(λ)))
denote the connected component containing v in G(m,m,Po(λ)), and let Bv =
Bv(G(m,m,Po(λ))) denote the number of bad edges in Cv. To establish (1), we
first introduce a bound on |Cv|. The proof technique is essentially the same as
in [1, Lemma 1]. For details, see [7].

Lemma 4. There exists some constant β ∈ (0, 1) such that for any fixed vertex
v and integer k ≥ 0, we have Pr(|Cv| ≥ k) ≤ βk.

Clearly, Lemma 4 establishes (1) for a sufficiently large constant α. Turning our
attention to (2), we first bound the number of bad edges in a single connected
component of G(m,m,Po(λ)), and then use a stochastic dominance argument
to obtain a result that holds for all connected components. Then we have the
following key technical lemma.

Lemma 5. For every vertex v and t, k, n ≥ 1, Pr(Bv ≥ t | |Cv| = k] ≤
(

3e5k3

m

)t

.

Proof. We reveal the edges in Cv following a breadth-first search starting at v.
That is, we first reveal all of the edges adjacent to v, then we reveal all of the
edges of the form (u,w) where u is a neighbor of v, and so on, until all of Cv is
revealed. Suppose that during this process, we discover that some node u is at
distance i from v. Define B(u) to be the number of edges that connect u to nodes
at distance i−1 from v. In other words, B(u) is the number of edges that connect
u to the connected component containing v at the time that u is discovered by the
breadth-first search. It is easy to see that Bv =

∑
u max{0, B(u)−1}. We bound

Bv by bounding B(u) for each u. The result now follows from a combination of
stochastic dominance arguments and tail bound calculations; for details, see [7].

Combining Lemmas 5 and 4 now tells us that for any vertex v and constant
t ≥ 1,

Pr(Bv ≥ t) ≤
∞∑

k=1

Pr(Bv ≥ t | |Cv| = k) ·Pr(|Cv| ≥ k) ≤
∞∑

k=1

(
3e5k3

m

)t

· βk

= O(n−t) as n→∞.
(3)

Equation (3) gives a bound for the number of bad edges in a single connected
component of G(m,m,Po(λ)). We now extend this result to all connected com-
ponents in order to show (2), which will complete the proof. The key idea is the
following stochastic dominance result, which can be proven using a straightfor-
ward coupling; for details, see [7].

618 A. Kirsch, M. Mitzenmacher, and U. Wieder

Lemma 6. Fix some ordering v1, . . . , v2m of the vertices. For i = 1, . . . , 2m, let
C′

vi
= Cvi if vi is the first vertex in the ordering to appear in Cv, and let C′

vi
be

the empty graph on the 2m vertices otherwise. Let C′′
v1
, . . . , C′′

vm
be independent

random variables such that each C′′
vi

is distributed as Cvi . Then (C′′
v1
, . . . , C′′

v2m
)

stochastically dominates (C′
vi
, . . . , C′

2m).

Now let B denote the common distribution of the Bv’s, and let B′
1, . . . , B

′
2m be

independent samples from B. By Lemma 6, we have that f(G(m,m,Po(λ))) −
T (G(m,m,Po(λ))) is stochastically dominated by

∑2m
i=1B

′
i−| {i : B′

i ≥ 1} |. Ap-
plying (3) now implies that there exists a constant c ≥ 1 such that for sufficiently
large n,

Pr(f(G(m,m,Po(λ))) − T (G(m,m,Po(λ))) ≥ s)

≤ Pr

(
2m∑

i=1

B′
i ≥ s+ | {i : B′

i ≥ 1} |
)

= O(n−s),

where we have omitted several steps of the calculation; for details, see [7]. We
have now established (2), completing the proof of Theorem 1.

3 Generalized Cuckoo Hashing

We now turn our attention to the generalized cuckoo hashing scheme proposed
by Fotakis et al. [4]. Here, we attempt to insert n items into a table with (1+ε)n
buckets and d hash functions (assumed to be independent and fully random),
for some constant ε > 0. We think of the hash functions as defining a bipartite
random multi-graph model G(n, ε, d), which is sampled by creating n left ver-
tices, representing items, each with d incident edges, and (1 + ε)n right vertices,
representing hash locations. The right endpoints of the edges are chosen inde-
pendently and uniformly at random from the vertices on the right. We think of a
partial placement of the items into the hash locations as a matching in G(n, ε, d).
For a graph G in the support of G(n, ε, d) and a matching M in G, we let GM

denote the directed version of G where an edge e is oriented from right to left if
e ∈M , and e is oriented from left to right if e
∈M .

To perform an insertion of one of the n items, we think of the current place-
ment of items into hash locations as defining a matching M on a sample G from
G(n, ε, d), and then we simulate a breadth-first search of depth at most 2t + 1
on GM starting from the left vertex u corresponding to the new item, for some
t ≥ 0 to be specified later. If we encounter an unmatched right vertex v during
this process, then we move the items in the hash table accordingly to simulate
augmenting M using the discovered path from u to v. If not, then we declare
the insertion procedure to be a failure.

Fotakis et al. [4] show the following three results, which we extend to a variant
of the insertion procedure that uses a stash.

Proposition 1. For any constant ε ∈ (0, 1) and d ≥ 2(1 + ε) ln(e/ε), a sample
G from G(n, ε, d) contains a left-perfect matching with probability 1−O(n4−2d).

More Robust Hashing: Cuckoo Hashing with a Stash 619

Proposition 2. For any d < (1 + ε) ln(1/ε), the probability that a sample G
from G(n, ε, d) contains a left-perfect matching is 2−Ω(n).

Theorem 2. It is possible to choose t = O(ln(1/ε)) such that for any constants
ε ∈ (0, 0.2) and d ≥ 5+3 ln(1/ε), the probability that the insertion of the n items
completes without generating a failure is O(n4−d) as n→∞.

Proposition 1 is essentially a feasibility result, in that it tells us that it is highly
likely that the hash functions admit a valid placing of the items into the table,
for an appropriate choice of d = Ω(ln(1/ε)). Proposition 2 tells us that this lower
bound on d is asymptotically tight. Theorem 2 then tells us that for appropriate
ε and d, not only do the hash functions admit a valid placing of the items into
the table with high probability, but the insertion algorithm successfully finds
such a placement by using a breadth-first search of depth O(ln(1/ε)).

Finally, we note that the emphasis of [4] is slightly different from ours. That
work also shows that, with high probability, no insertion operation requires the
examination of more than o(n) right vertices with high probability. It also shows
that, if, whenever a failure occurs, the hash functions are resampled and all
items in the table are reinserted, then the expected time to insert a single item
is O(ln(1/ε)). While these are significant results, they follow fairly easily from the
analysis used to prove Theorem 2, and the exact same arguments apply to the
counterpart to Theorem 2 that we prove later in this section, which considers a
variation of the insertion procedure that allows for items to be placed in a stash.
Thus, for our purposes, Theorem 2 is the most significant result in [4], and so
we use it as our benchmark for comparison.

It is important to recall that, in practice, one would not expect to use a
breadth first search for placement, but instead use a random walk approach,
replacing a random one of the choices for the item to be placed at each step
[4]. Analyzing this scheme (even without a stash) remains an important open
problem.

Having reviewed the results of [4], we are now ready to describe a way to use
a stash in the insertion procedure. The modification is very simple: whenever
an insertion operation for an item x would generate a failure during the original
procedure, we attempt to reinsert every item currently in the stash into the
table, and then we add x into the stash. Alternatively, if there is some maximum
size s of the stash, then if inserting an item x into the table using the original
procedure would result in a failure, we simply place x in the stash if the stash has
fewer than s items, and otherwise we attempt to reinsert every item in the stash
into the table, until (hopefully) one of those insertions succeeds. In that case,
we can place x in the stash, and otherwise we declare a failure. This variant is
probably better suited to practice, since it only requires us to attempt to reinsert
all items in the stash when the stash is full. However, the first method is easier
to work with (since it never generates a failure), so we use it in the following
discussion, although our results can be applied to the second method as well.

Let S denote the maximum size of the stash as the n items are inserted.
We show the following three results, which should be viewed as counterparts to
Proposition 1, Proposition 2, and Theorem 2, respectively.

620 A. Kirsch, M. Mitzenmacher, and U. Wieder

Proposition 3. For any constants c, ε > 0, for sufficiently large constant d,
for every integer constant s ≥ 0, the probability that a sample G from G(n, ε, d)
does not have a matching of size at least n − s is O(n1−c(s+1)) as n → ∞.
Furthermore, the minimum value of d necessary for this result to hold is at most
d = (2 + o(1)) ln(1/ε), where here the asymptotics are taken as ε→ 0 with c held
constant.

Proposition 4. For every constant ε > 0, s ≥ 0, and d ≤ (1 + ε) ln
(

1+ε
2(ε+s/n)

)
,

the probability that a sample G from G(n, ε, d) contains a matching of size n− s
is 2−Ω(n).

Theorem 3. For every constants c > 0 and ε ∈ (0, 0.2), for sufficiently large
constant d, for every integer constant s ≥ 1, we have Pr(S ≥ s) = O(n1−cs) as
n → ∞. Furthermore, the minimum value of d necessary for this result to hold
is at most 3 ln(1/ε) +O(1), where here the asymptotics are taken as ε→ 0 with
c held constant.

Like Proposition 1, Proposition 3 tells us that for an appropriate choice of
d = Ω(ln(1/ε)), it is likely that the hash functions admit a placing of at least
n− s items into the table and at most s items into the stash. Proposition 4 then
tells us that this lower bound on d is asymptotically tight. Finally, Theorem 3
tells us that with a stash of bounded, constant size, our modified insertion al-
gorithm gives a dramatically improved upper bound on the failure probability
for inserting the items when compared to Theorem 2 for the original insertion
algorithm, for the same number of hash functions. The proofs of these results
are conceptually straightforward modifications to the analysis in [4], but unfor-
tunately they seem to require a lot of technical detail, and so we omit them. For
details, see [7].

4 Some Simple Experiments

In order to demonstrate the potential importance of our results in practical
settings, we present some simple experiments. We emphasize that these exper-
iments are not intended as a rigorous empirical study; they are intended only
to be suggestive of the practical relevance of the general stash technique. First,
we consider using a cuckoo hash table with d = 2 choices, consisting of two
sub-tables of size 1200. We insert 1000 items, allowing up to 100 evictions before
declaring a failure and putting some item into the stash. In this experiment we
allow the stash to hold as many items as needed; the number of failures gives the
size the stash would need to be to avoid rehashing or a similar failure mode. In
our experiments, we use the standard Java pseudorandom number generator to
obtain hash values. We consider both standard cuckoo hashing, where after 100
evictions the last item evicted is moved to the stash, and the slightly modified
version considered in Section 2, where if an item is not placed after 100 evictions,
we reverse the insertion operation and redo it, this time looking for a “bad edge”

More Robust Hashing: Cuckoo Hashing with a Stash 621

in the cuckoo graph to place in the stash. Recall that this removal process was
important to our analysis.

The results from one million trials are presented in Table 2a. As expected,
in most cases, in fact over 99% of the time, no stash is needed. The simple
expedient of including a stash that can hold just 4 items, however, appears to
reduce the probability for a need to rehash to below 10−6. A slightly larger stash
would be sufficient for most industrial strength applications, requiring much less
memory than expanding the hash table to achieve similar failure rates. It is
worth noting that there appears to be little difference between standard hashing
and the modified version. It would be useful in the future to prove this formally.

Table 1. For d = 2, failures measured over 106 trials for 1000 items, requiring a
maximum stash size of four (a), and failures measured over 107 trials, requiring a
maximum stash size of three (b)

Stash Size Standard Modified

0 992812 992919

1 6834 6755

2 338 307

3 17 15

4 1 2

(a) 1000 items

Stash Size Standard Modified

0 9989861 9989571

1 10040 10350

2 97 78

3 2 1

4 0 0

(b) 10000 items

We show similar results for placing 10000 items using d = 2 choices with two
sub-tables of size 12000 in Table 2b. Here we use 107 trials in order to obtain
a meaningful comparison. The overall message is the same: a very small stash
greatly reduces the probability that some item cannot be placed effectively. In
the full version of this work [7], we also consider the case where d = 3 using the
random walk variant introduced in [4]. The results are similarly encouraging.

5 Conclusion

We have shown how to greatly improve the failure probability bounds for a
large class of cuckoo hashing variants by using only a constant amount of ad-
ditional space. Furthermore, our proof techniques naturally extend the analysis
of the original schemes in a straightforward way, strongly suggesting that our
techniques will continue to be broadly applicable for future hashing schemes. Fi-
nally, we have also presented some simple experiments demonstrating that our
improvements have real practical potential.

There remain several open questions. As a technical question, it would be
useful to extend our analysis to work with the original cuckoo hashing variants, in
place of the modified variants we have described. More importantly, the analysis
of random-walk variants when d > 2, in place of breadth-first-search variants,
remains open both with and without a stash. A major open question is proving
the above bounds for explicit hash families that can be represented, sampled,

622 A. Kirsch, M. Mitzenmacher, and U. Wieder

and evaluated efficiently. Such explicit constructions are provided for standard
cuckoo hashing in [11] and [3]. It would be interesting to improve upon those
constructions and extend them to the case of a stash.

Acknowledgment

The authors are grateful to Thomas Holenstein for useful discussions.

References

1. Devroye, L., Morin, P.: Cuckoo Hashing: Further Analysis. Information Processing
Letters 86(4), 215–219 (2003)

2. Dietzfelbinger, M., Weidling, C.: Balanced Allocation and Dictionaries with Tightly
Packed Constant Size Bins. Theoretical Computer Science 380(1-2), 47–68 (2007)

3. Dietzfelbinger, M., Woelfel, P.: Almost Random Graphs with Simple Hash Func-
tions. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of
Computing (STOC), pp. 629–638 (2003)

4. Fotakis, D., Pagh, R., Sanders, P., Spirakis, P.: Space Efficient Hash Tables With
Worst Case Constant Access Time. Theory of Computing Systems 38(2), 229–248
(2005)

5. Kirsch, A., Mitzenmacher, M.: The Power of One Move: Hashing Schemes for
Hardware. In: Proceedings of the 27th IEEE International Conference on Computer
Communications (INFOCOM) (2008)

6. Kirsch, A., Mitzenmacher, M.: Using a Queue to De-amortize Cuckoo Hashing
in Hardware. In: Proceedings of the Forty-Fifth Annual Allerton Conference on
Communication, Control, and Computing (2007)

7. Kirsch, A., Mitzenmacher, M., Wieder, U.: More Robust Hashing: Cuckoo Hashing
with a Stash (manuscript, Temporary version),
http://www.eecs.harvard.edu/∼kirsch/pubs/

8. Kutzelnigg, R.: Bipartite Random Graphs and Cuckoo Hashing. In: Proceedings
of the Fourth Colloquium on Mathematics and Computer Science (2006)

9. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

10. Naor, M., Segev, G., Wieder, U.: History Independent Cuckoo Hashing. In: Pro-
ceedings of the 35th International Colloquium on Automata, Languages and Pro-
gramming (ICALP) (to appear, 2008)

11. Pagh, R., Rodler, F.: Cuckoo Hashing. Journal of Algorithms 51(2), 122–144 (2004)

http://www.eecs.harvard.edu/~kirsch/pubs/

Better and Simpler Approximation Algorithms

for the Stable Marriage Problem

Zoltán Király�

Department of Computer Science and Communication Networks Laboratory, Eötvös
University, Pázmány Péter sétány 1/C Budapest, Hungary H-1117

kiraly@cs.elte.hu

Abstract. We first consider the problem of finding a maximum stable
matching if incomplete lists and ties are both allowed, but ties only
for one gender. For this problem we give a simple, linear time 3/2-
approximation algorithm, improving on the best known approximation
factor 5/3 of Irving and Manlove [5]. Next, we show how this extends to
the Hospitals/Residents problem with the same ratio if the residents have
strict orders. We also give a simple linear time algorithm for the general
problem with approximation factor 5/3, improving the best known 15/8-
approximation algorithm of Iwama, Miyazaki and Yamauchi [7]. For the
cases considered in this paper it is NP-hard to approximate within a
factor of 21/19 by the result of Halldórsson et al. [3].

Our algorithms not only give better approximation ratios than the
cited ones, but are much simpler and run significantly faster. Also we
may drop a restriction used in [5] and the analysis is substantially more
moderate.

Keywords: stable matching, Hospitals/Residents problem, approxima-
tion algorithms.

1 Introduction

An instance of the stable marriage problem consists of a set U of N men, a
set V of N women, and a preference list for each person, that is a weak lin-
ear order (ties are allowed) on some members of the opposite gender. A pair
(m ∈ U, w ∈ V) is called acceptable if m is on the list of w and w is on the list
of m. We model acceptable pairs with a bipartite graph G = (U, V,E), (where
E is the set of acceptable pairs; we may assume that if w is not on the list of
m then m is also missing from the list of w). A matching in this graph con-
sists of mutually disjoint acceptable pairs. A matching M is stable if there is no
blocking pair, where an acceptable pair is blocking if they strictly prefer each
other to their current partners (the exact definition is given below). It is well-
known that a stable matching always exists and can be found in linear time. An
interesting problem, motivated by applications, is to find a stable matching of
� Research is supported by EGRES group (MTA-ELTE), OTKA grants NK 67867,

K 60802 and T 046234, and by Hungarian National Office for Research and Tech-
nology programme NKFP072-TUDORKA7.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 623–634, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

624 Z. Király

maximum size. This problem is known to be NP-hard for even very restricted
cases [6,8]. Moreover, it is APX-hard [2] and cannot be approximated within a
factor of 21/19 − δ, even if ties occur only in the preference lists of one gen-
der, furthermore if every list is either totally ordered or consists of a single tied
pair [3]. As the applications of this problem are important, researchers started
to develop good approximation algorithms in the last decade. We say that an
algorithm is approximating with factor r if it gives a stable matching M with
size |M | ≥ (1/r) · |Mopt| where Mopt is a stable matching of maximum size.
It is easy to give a 2-approximating algorithm, as any stable matching is max-
imal. The first non-trivial approximation algorithm was given by Halldórsson
et al. [3] and was recently improved by Iwama, Miyazaki and Yamauchi [7] to
a 15/8-approximation. This was later improved for the special case, where ties
are allowed for only one gender and only at the ends of the lists, by Irving
and Manlove [5]. (We must emphasize that the second restriction is not needed
for our results.) They gave a 5/3-approximating algorithm for this special case.
Their algorithm also applies for the Hospitals/Residents problem (see later) if
residents have strictly ordered lists. If, moreover, ties are of size 2, Halldórsson
et al. [3] gave an 8/5-approximation and in [4] they described a randomized al-
gorithm for this special case with expected factor of 10/7. The paper of Irving
and Manlove [5] also gives a detailed list of known and possible applications that
motivate investigating approximation algorithms.

We store the lists as priorities. For an acceptable pair (m,w) let pri(m,w)
be an integer from 1 up to N representing the priority of w for m. We say that
m ∈ U strictly prefers w ∈ V to w′ ∈ V if pri(m,w) > pri(m,w′). Ties are
represented by the same number, e.g., if m equally prefers w1, w2 and w3 then
pri(m,w1) = pri(m,w2) = pri(m,w3). Of course, pri(m,w) is not related to
pri(w,m). We represent these priorities by writing pri(m,w) and pri(w,m) close
to the corresponding end of edge mw.

Let M be a matching. If m is matched in M , or in other words m is not
single, we denote m’s partner by M(m). Similarly we use M(w) for the partner
of woman w. A pair (m,w) is blocking if mw ∈ E \M (they are an acceptable
pair and they are not matched) and

– m is either single or pri(m,w) > pri(m,M(m)), and
– w is either single or pri(w,m) > pri(w,M(w)).

The famous algorithm of Gale and Shapley [1] for finding a stable matching is
the following. Initially every man is active and makes any strict order of acceptable
women according to the priorities (higher priority comes before lower).

Each active man m proposes to the next woman w on his strict list if w
exists, otherwise (if he has processed the whole list) m inactivates himself. If the
proposal was (temporarily) accepted then m inactivates himself, otherwise, if m
was rejected, m keeps on proposing to the next woman from his list.

Each woman w who got some proposals keeps the best man as a partner and
rejects all other men. More precisely, the first man m who proposed to w will be
her first partner (M(w) := m). Later if w gets a new proposal from another man
m′, she rejects m′ if pri(w,m′) ≤ pri(w,M(w)); otherwise w rejects M(w), then

Better and Simpler Approximation Algorithms 625

M(w) is re-activated, and finally w keeps M(w) := m′ as a new partner. The
algorithm finishes if every man is inactive (either has a partner or has searched
over his strict list). This algorithm runs in O(|E|) time if G is given by edge-lists
and sorting is done by bucket sort (we may suppose that every person has a
non-empty list).

Theorem 1 (Gale-Shapley). Algorithm GS defined above always ends in a
stable matching M .

Proof. Let mw ∈ E \M . If m never made a proposal to w then in the end he
has a partner w′ who precedes w on m’s strict list, consequently pri(m,w′) ≥
pri(m,w). Otherwise, w rejected m at some point, when w had a partner m′ not
worse than m. Observe that after w received a proposal, she will always have
a partner. Moreover, when w changes partner, she always chooses a (strictly)
better one. Thus in the end pri(w,M(w)) ≥ pri(w,m′) ≥ pri(w,m), so mw is
not blocking.

In what follows, we will use not only the statement of this theorem (as most
of the previous results do), but the Algorithm GS itself with some modifica-
tions/extensions.

In the Hospitals/Residents problem the roles of women are played by hos-
pitals and the roles of men are played by residents. Moreover, each hospital w
has a positive integer capacity c(w) (the number of free positions). Instead of
matchings we consider assignments, that is a subgraph F of G, such that all
residents have degree at most one in F , and each hospital w has degree at most
c(w) in F . For a resident m who is assigned, F (m) denotes the corresponding
hospital. For a hospital w, F (w) denotes the set of residents assigned to it. We
say that hospital w is full if |F (w)| = c(w) and otherwise under-subscribed. Here
a pair (m,w) is blocking if mw ∈ E \ F (they are an acceptable pair and they
are not assigned to each other) and

– m is either single or pri(m,w) > pri(m,F (m)), and
– w is either under-subscribed or pri(w,m) > pri(w,m′) for at least one resi-

dent m′ ∈ F (w).

An assignment is stable if there is no blocking pair. It is easy to modify
Algorithm GS to give a stable assignment for the Hospitals/Residents problem.
Each hospital w manages to keep a set of buckets indexed by integers up to N ,
containing each assigned resident m in the bucket indexed by pri(w,m); and w
also stores the number of assigned residents and a pointer to the first non-empty
bucket. If hospital w gets a new proposal from resident m then it accepts him
either if w is under-subscribed or if pri(w,m) > pri(w,m′) for the worst assigned
resident m′. Apart from this, the algorithm is the same. It clearly gives a stable
assignment, and it is easy to see that also runs in O(|E|) time (rejections can
be decided in constant time as well as updating the data when accepting). We
call this modified GS algorithm HRGS. As before, we are interested in giving a
maximum size assignment, i.e., a stable assignment F with maximum number
of edges (that is a maximum number of assigned residents).

626 Z. Király

In the next section we consider the special case of the maximum stable mar-
riage problem, where each man’s list is strictly ordered. We allow arbitrary
number of arbitrarily long ties for each woman. We give a simple algorithm run-
ning in time O(|E|). First we run Algorithm GS, then we give extra scores to
single men, that raise their priorities. These men are re-activated and start mak-
ing proposals from the beginning of their lists. A simple proof shows that this
slightly modified algorithm gives a 3/2-approximation to the maximum stable
marriage problem.

In Section 3 we show that this algorithm applies to the Hospitals/Residents prob-
lem as well in the (practically plausible) case when residents have strictly ordered
lists, also giving 3/2-approximation for the maximum assignment in time O(|E|).

Section 4 contains a slightly more complicated algorithm for the general case.
First we run the algorithm of Section 2, then change the roles of men and women.
In the second phase women get extra scores and make proposals to men. This
algorithm still runs in linear-time, and gives a 5/3-approximation. Finally we
propose some open problems.

2 Men Have Strictly Ordered Lists

In this section we suppose that the lists of men are strictly ordered. We are
going to define extra scores, π(m) for every man with the following properties.
Initially π(m) = 0 and at any time 0 ≤ π(m) < 1 for each man. We also define
adjusted priorities: pri′(m,w) := pri(m,w) and pri′(w,m) := pri(w,m) + π(m)
for each acceptable pair (m,w). It is straightforward to see that if M is stable
with respect to pri′ then it is also stable with respect to pri.

We define a modification of Algorithm GS, that is called rmGS (reduced men-
proposal GS), as follows. This algorithm starts with a stable matching, given
extra scores and a set of active men. Run the original GS algorithm (active men
make proposals; at the beginning of the algorithm they start from the beginning
of their strict lists), where women use pri′ to decide rejections. Stop when every
man is inactive.

If some men with zero extra score remained single, we increase the score
of those men to ε and re-activate them. In the next round they start making
proposals from the beginning of their strict list. At any time let SM denote the
set of single men, and Π0 := {m ∈ U : π(m) = 0}. We fix ε = 1/2.

Our approximation algorithm is as follows:

Algorithm gsa1

run GS
FOR m ∈ U π(m) := 0
WHILE SM ∩Π0
= ∅

FOR m ∈ SM ∩Π0

π(m) := ε
re-activate m

run rmGS

Better and Simpler Approximation Algorithms 627

Mopt :

m’
π() = εm’

π() = 0m
5

M:

m w

3

8

6

w’

priorities (example)3, 5, 6, 8:

Fig. 1. A path of length three in M ∪ Mopt

This simple algorithm runs in O(|E|) time, as there are at most 2|E| proposals
altogether. It is easy to see that Algorithm GSA1 gives a stable matching M
with respect to the adjusted priority, hence M is stable for the original problem
as well.

Let Mopt denote any maximum size stable matching (stable for the original
priorities).

Theorem 2. If men have strictly ordered preference lists, M is the output of
Algorithm GSA1 and Mopt is a maximum size stable matching then

|Mopt| ≤
3
2
· |M |.

Proof. We use an idea of Iwama, Miyazaki and Yamauchi [7]. Take the union ofM
andMopt. We consider common edges as a two-cycle. Each component ofM∪Mopt

is either an alternating cycle (of even length) or an alternating path. It is enough
to prove that in each component there are at most 3/2 times as many Mopt-edges
as M -edges. This is clearly true for each component except for alternating paths
of length three with the M -edge mw in the middle (see Figure 1).

We claim that such a component cannot exist. Suppose that M(m) = w,
Mopt(m) = w′
= w, Mopt(w) = m′
= m and that m′ and w′ are single in
M . Observe first that w′ never got a proposal during Algorithm GSA1. Con-
sequently π(m) = 0 at the end, as otherwise he would have proposed to each
acceptable woman. We may also conclude that pri(m,w) > pri(m,w′) because
there are no ties in the men’s lists. When the algorithm finishes, π(m′) = ε, and
m′ proposed to every acceptable woman with this extra score, but w rejected
him. This means that pri(w,m) = pri′(w,m) ≥ pri′(w,m′) = pri(w,m′) + ε con-
sequently pri(w,m) > pri(w,m′). However, in this case edge mw blocks Mopt, a
contradiction.

We have an example (see Figure 2) showing that for our algorithm this bound
is tight (a possible order of proposals and extra score increases is the following:
mw,m′w,m′w′′,m′′w′′, π(m′′) = ε, m′′w′′).

Note: for open questions please see the section “Open Problems”.

628 Z. Király

Mopt :

M:

m w

2 1

w’ m’ w’’

m’’

1
1

1 2
1 2

1

1

Fig. 2. An example where GSA1 gives |M | = (2/3) · |Mopt|

3 Hospitals/Residents with Strictly Ordered Residents’
Lists

We consider the Hospitals/Residents problem with the restriction that residents
have strict orders on acceptable hospitals. Note, that for real-life applications
of this scheme, this assumption is realistic. Here, as appropriate, residents get
extra scores. The adjusted priorities are defined as in Section 2.

For a reader familiar with this topic it is straightforward that after “cloning”
of hospitals the previous algorithm runs with the same approximation ratio.
However, we describe an algorithm for this problem in some detail for not only
to newcomers, but for three more reasons: (i) the cloning is not well defined
in the literature, (ii) we give a linear time algorithm, and (iii) for showing an
example and a theorem at the end of this section.

We modify GSA1 by replacing GS by HRGS and define rmHRGS as a mod-
ification of HRGS analogously to the derivation of rmGS from GS. Here SM
denotes the set of unassigned residents and again Π0 := {m ∈ U : π(m) = 0}.

Algorithm hrgsa1

run HRGS
FOR m ∈ U π(m) := 0
WHILE SM ∩Π0
= ∅

FOR m ∈ SM ∩Π0

π(m) := ε
re-activate m

run rmHRGS

Algorithm HRGSA1 also runs in time O(|E|) (hospitals need to have 2N
buckets), and gives a stable assignment F .

Theorem 3. If residents have strictly ordered preference lists, F is the output
of Algorithm HRGSA1 and Fopt is any maximum size stable assignment then

|Fopt| ≤
3
2
· |F |.

Better and Simpler Approximation Algorithms 629

Mopt :

M:

m w

2 1

m’ w’’

m’’

1
1

1

w’

1
2 1

1

1

i i

i i

i

i

Fig. 3. A building block of the example where HRGSA1 gives|F | = (2/3) · |Fopt|

Proof. We suppose that positions at hospital w are numbered by 1 . . . c(w). For
the proof we make an auxiliary bipartite graph G′ = (U, V ′, E′) and new pref-
erence lists as follows. The set U of residents remains unchanged. The set V ′

consists of the positions, i.e., V ′ = {wi : w ∈ V, 1 ≤ i ≤ c(w)}. An edge connects
resident m and position wi if (m,w) was an acceptable pair (if hospital w was
acceptable to m then all positions at w are acceptable to m). Each position wi

inherits the preference list of hospital w. For resident m we have to make a new
(and also strict) preference list. Take the original list, and replace each w by
w1 < w2 < . . . < wc(w) (thus if w1 was preferred by m to w2 then all positions
of w1 will be preferred to all positions of w2). If F is an assignment in G then it
defines a matching M in G′ by distributing edges of F incident to a hospital w
to distinct positions w1, w2, . . . , wdF (w). And, conversely, any matching M of G′

defines an assignment in G. The crucial observation is that if assignment F is
stable in G then the associated matching M is stable in G′, and if matching M
is stable in G then the associated assignment F is stable in G. Moreover, if we
imagine running Algorithm GSA1 on G′, the resulting matching M corresponds
to the assignment F given by Algorithm HRGSA1. Using these observations
Theorem 2 implies this theorem.

We note that the example on Figure 2 can be easily modified to show that this
algorithm cannot achieve better approximation ratio than 3/2, not even if all
hospitals have large capacities and if each hospital has an absolutely unordered
list (i.e., pri(w,m) = 1 for every acceptable resident m).

We make c copies of the example shown in Figure 3, one for each i = 1 . . . c.
Then glue together the c copies of wi, the c copies of w′

i and the c copies of w′′
i .

Assign capacity c to each hospital (w, w′ and w′′). The following is a possible run
of Algorithm HRGSA1 yielding an assignment F with |F | = 2c, while |Fopt| = 3c.
First every resident m′′

i proposes to hospital w′′. Next, every resident mi proposes
to hospital w; now hospitals w and w′′ are full. Then every resident m′

i proposes
first to w′′ and then to w, but they are always rejected. So every resident m′

i

gets an extra score. They propose again to hospital w′′ and they succeed. Now
every resident m′′

i gets an extra score, and proposes again to w′′ but they are
rejected.

630 Z. Király

However, with a different type of restriction we are able to prove a stronger
theorem. For a hospital w let τ(w) denote the length of the longest tie for w,
and let λ := maxw∈V τ(w)/(2c(w)).

Theorem 4. Algorithm HRGSA1 gives approximation ratio not worse than

3
2
− 1

6
· 1 − λ

1 + λ

Proof. The proof is very technical, so we only sketch the idea of it. Every com-
ponent of M ∪Mopt (in G′) that is a 5-path has a middle hospital-position wi

such that hospital w is full. Each such hospital has at most τ(w)/2 positions in
such a bad component and c(w) − τ(w)/2 ≥ 1−λ

2λ τ(w) other positions lying in a
good component (where the ratio of F -edges against the Fopt-edges is at least
3/4). In the “worst case” this component is a 7-path that can contain at most 3
such hospital-positions.

4 General Stable Marriage

Now we consider the general maximum stable marriage problem. First we run
the algorithm of Section 2, then change the roles of men and women. In the
second phase women get extra scores and propose to men.

Accordingly, we also use extra scores π(w) for women: initially π(w) = 0
and at any time 0 ≤ π(w) < 1 for each woman w. We also re-define adjusted
priorities: pri′(m,w) := pri(m,w) +π(w) and pri′(w,m) := pri(w,m) +π(m) for
each acceptable pair (m,w). It is straightforward to see that if M is stable with
respect to pri′ then it is also stable with respect to pri.

In the first phase we run Algorithm GSA1, women do not get extra scores in
this phase. Next, in the second phase we change the roles of men and women,
in this phase we increase extra scores of women only. At the beginning of the
second phase each woman makes any strict order of acceptable men according
to the adjusted priorities (higher priority comes before lower).

We define Algorithm rwGS (reduced woman-proposal GS) similarly to Algo-
rithm rmGS. The algorithm starts with a stable matching, given extra scores
and a set of active women. Run the original GS algorithm with interchanged
roles: active women make proposals, and men use pri′ to decide rejections. But
here we have a major difference. If a woman w with π(w) = 0 is rejected by her
actual partner at any time during the process then she gets π(w) := ε/2 extra
scores, activates herself, and starts making proposals from the beginning of her
strict list. Stop when every woman is inactive.

If some women with less than ε extra score remained single, we increase the
score of those women to ε and re-activate them. In the next round they start
making proposals from the beginning of their strict list. At any time let SW
denote the set of single women and Π := {w ∈ V : π(w) ≤ ε/2}. We also use
ε = 1/2.

Better and Simpler Approximation Algorithms 631

Our approximation algorithm is as follows.

Algorithm gsa2

Phase 1
run GSA1
Phase 2
FOR w ∈ V π(w) := 0
WHILE SW ∩Π
= ∅

FOR w ∈ SW ∩Π
π(w) := ε
re-activate w

run rwGS

First we claim that the algorithm runs in time O(|E|). To see this we must
consider two things. In Phase 2, every woman processes her strict list at most
twice, so there are at most 2|E| proposals in the second phase. The strict lists of
women can be calculated in O(|E|) time altogether using bucket sort with 2N
buckets.

Lemma 1. The matching M given by Algorithm GSA2 is stable with respect to
pri′ consequently it is stable with respect to pri.

Proof. We use the facts that in Phase 1 the positions of women do not decline,
while during Phase 2 the positions of men do not decline. Let mw be any edge in
E\M . First suppose that at the end π(w) > 0. After woman w got her final extra
score, she started to propose to men: either w did not propose to m, in this case
pri′(w,m) ≤ pri′(w,M(w)); or else w proposed to m but m rejected her, in this
case pri′(m,w) ≤ pri′(m,M(m)). In both cases we get that the edge mw is not
blocking. Now suppose that at the end π(w) = 0. In this case w is matched in M ,
and also matched in M ′, where M ′ denotes the matching at the end of Phase 1.
MoreoverM(w) = M ′(w) = m′
= m. In Phase 1, after man m got his final score,
either m did not propose to w, in this case pri′(m,M(m)) ≥ pri((m,M(m)) ≥
pri(m,M ′(m)) ≥ pri(m,w) = pri′(m,w); or else m proposed to w but w rejected
him, in this case pri′(w,M(w)) = pri′(w,M ′(w)) ≥ pri′(w,m). In both cases we
get again that the edge mw is not blocking.

Theorem 5. If M is the output of Algorithm GSA2 and Mopt is any maximum
size stable matching then

|Mopt| ≤
5
3
· |M |.

Proof. First we need a technical lemma. Let M ′ denote the matching given at
the end of Phase 1. Consider components of M ∪Mopt as before.

Lemma 2. Suppose M ∪Mopt has a component that is an alternating path of
length three, with the M -edge mw in the middle. Then w′ = Mopt(m) is matched
in M ′.

632 Z. Király

m’

opt :

π() = εw’

π() < εw

π() = ε

M

M:

m w

3

5 8

6

w’ m’

π() = 0m

Fig. 4. A path of length three in M ∪ Mopt

Proof. Let m′ = Mopt(w) (see Figure 4) and suppose w′ was single at the end
of Phase 1 (i.e., w′ is single in M ′). As this is a component of M ∪Mopt, clearly
both m′ and w′ are single in M , and moreover, as matched men never become
single in Phase 2, m′ is also single in M ′.

First we observe that as w′ is single in M ′, m did not propose to her during
Phase 1, so π(m) = 0 (as π(m) could only be positive after m searched over
his strict list). However m′ remained single, so π(m′) = ε at the end of the
algorithm.

In Phase 2, w did not propose to m′ (m′ remained single, thus he did not
receive any proposals), so π(w) ≤ ε/2. Next we use M(w) = m, and we consider
two cases. If M ′(w) = m then in Phase 1, when w rejected m′ the last time, she
had pri′(w,m) ≥ pri′(w,m′) = pri(w,m′) + ε, so that in this case pri(w,m) >
pri(w,m′). Otherwise, if M ′(w)
= m then in Phase 2 w started to make proposals
from the beginning of her strict list (that was made with respect to pri′ after
Phase 1), but she did not propose to m′, so pri′(w,m) ≥ pri′(w,m′) also implying
pri(w,m) > pri(w,m′).

At the beginning of Phase 2, π(w′) was set to ε, and w′ remained single. This
means that w′ proposed to m and m rejected her. Consequently pri′(m,w) ≥
pri′(m,w′), thus pri(m,w) > pri(m,w′). These arguments show that mw is
blocking for Mopt, a contradiction.

We continue the proof of the theorem. Let SM denote the set of single men
at the end of the algorithm. First note, that men in SM were also single after
Phase 1, since in Phase 2 men’s positions do not decline. Let ŜM ⊆ SM denote
the set of those single men who are matched in Mopt. Observe that for each man
m ∈ ŜM , woman Mopt(m) exists and is matched in both M ′ and M (at the end
of any Phase at least one person in any acceptable pair is matched). We further
partition ŜM as follows. Let SM1 consist of each man m ∈ ŜM , for whom
man M(Mopt(m)) is matched in Mopt; and SM2 := ŜM \ SM1. Let SM1

1 :=
{m ∈ SM1 : Mopt(M(Mopt(m))) is matched in M} and SM2

1 := SM1 \ SM1
1 .

By Lemma 2, for every man m in SM2
1 , woman Mopt(M(Mopt(m))) is matched

in M ′ (i.e., at the end of Phase 1). The next lemma plays a crucial role in the
proof of the theorem.

Better and Simpler Approximation Algorithms 633

Lemma 3

|SM1| ≤
2
3
· |M |

Proof. Case 1 |SM1
1 | ≥ |SM1|/2.

We form clubs, every club is led by a man in SM1 and has one or two other
men who are matched in M . For every man m ∈ SM1 the second member of his
club is M(Mopt(m)). For each man m ∈ SM1

1 , his club contains a third member:
M(Mopt(M(Mopt(m)))). We claim that these clubs are pairwise disjoint.

We formed one club for each man in SM1 so it is enough to prove that any man
m′ who is matched in M belongs to at most one club. If M(m′) is single in Mopt

then m′ is not a member of any club. If m = Mopt(M(m′)) ∈ SM , then either
m ∈ SM1 and m′ belongs to m’s club or otherwise m′ has no club at all. In the
other case (m
∈ SM), m′ belongs to the club of m∗ = Mopt(M(Mopt(M(m′))))
as a third member if m∗ exists and m∗ ∈ SM1

1 ; and m′ has no club otherwise.
Let MM denote the set of men who are matched in M . We have

|M | = |MM | ≥ |SM1| + |SM1
1 | ≥

3
2
· |SM1|.

Case 2 |SM2
1 | > |SM1|/2.

In this case we form different clubs, here the non-leader members will be
men matched in M ′. For every man m ∈ SM1 the second member of his club
is M ′(Mopt(m)). For each man m ∈ SM2

1 , his club contains a third member:
M ′(Mopt(M(Mopt(m)))). We claim that these clubs are also pairwise disjoint.

If M ′(m′) is single in Mopt then m′ is not a member of any club. If m =
Mopt(M ′(m′)) ∈ SM , then either m ∈ SM1 and m′ belongs to m’s club or
otherwise m′ has no club at all. Otherwise, m′ belongs to the club of m∗ =
Mopt(M(Mopt(M ′(m′)))) as a third member if m∗ exists and m∗ ∈ SM2

1 ; and
m′ has no club otherwise.

Let MM ′ denote the set of men who are matched in M ′. As men matched
after Phase 1 remain matched till the end, we have

|M | = |MM | ≥ |MM ′| ≥ |SM1| + |SM2
1 | ≥

3
2
· |SM1|.

We are ready to finish the proof of the theorem. Let MMopt denote the set of
men who are matched in Mopt. We claim that |MM∩MMopt| ≤ |MM |−|SM2|.
This is true because |SM2| is the number of components of M ∪Mopt isomorphic
to a path with two edges and with a woman in the middle; and for each such
path the M -matched man is single in Mopt.

|Mopt| = |MMopt| = |MM ∩MMopt| + |SM ∩MMopt| ≤

≤ (|MM | − |SM2|) + (|SM1| + |SM2|) ≤ |M | +
2
3
· |M | =

5
3
· |M |.

634 Z. Király

5 Open Problems

Open Problem 1. Is it possible to improve the performance of GSA1 if we
use smaller ε, increase extra scores more than once, and give extra scores to not
only single men, but also to partners of each woman who is a neighbor of a single
man?

Open Problem 2. Is it possible to improve the performance of GSA1 if we use
the method of Irving and Manlove [5] after GSA1?

Open Problem 3. Is it possible to improve the performance of GSA2 if we use
smaller ε, increase extra scores more than once, alternately for men and women?
(For example with ε < 1/N repeat the algorithm N times, in the ith repetition
increasing the extra scores of singles to iε).

Open Problem 4. Is it possible to improve the performance of GSA2 if we
use the method of Halldórsson et al. [3], or the method of Iwama, Miyazaki and
Yamauchi [7] after GSA2?

Acknowledgement

I am grateful to Tamás Fleiner for his invaluable advice. I am also indebted to
the referees of ESA’08.

References

1. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Amer.
Math. Monthly 69, 9–15 (1962)

2. Halldórsson, M.M., Irving, R.W., Iwama, K., Manlove, D.F., Miyazaki, S., Morita,
Y., Scott, S.: Approximability results for stable marriage problems with ties. Theor.
Comput. Sci. 306, 431–447 (2003)

3. Halldórsson, M.M., Iwama, K., Miyazaki, S., Yanagisawa, H.: Improved approxi-
mation results for the stable marriage problem. ACM Trans. Algorithms, Article
30 3(3) (2007)

4. Halldórsson, M.M., Iwama, K., Miyazaki, S., Yanagisawa, H.: Randomized approx-
imation of the stable marriage problem. Theor. Comput. Sci. 325, 439–465 (2004)

5. Irving, R.W., Manlove, D.F.: Approximation algorithms for hard variants of the
stable marriage and hospitals/residents problems. Journal of Combinatorial Opti-
mization (2007), doi:10.1007/s10878-007-9133-x

6. Iwama, K., Manlove, D.F., Miyazaki, S., Morita, Y.: Stable marriage with incom-
plete lists and ties. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.)
ICALP 1999. LNCS, vol. 1644, pp. 443–452. Springer, Heidelberg (1999)

7. Iwama, K., Miyazaki, S., Yamauchi, N.: A 1.875-approximation algorithm for the
stable marriage problem. In: SODA 2007: Proceedings of the eighteenth annual
ACM-SIAM symposium on Discrete algorithms, pp. 288–297 (2007)

8. Manlove, D.F., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants of
stable marriage. Theor. Comput. Sci. 276, 261–279 (2002)

Edit Distances and Factorisations of Even

Permutations

Anthony Labarre�

Université libre de Bruxelles (U.L.B.),
Département de Mathématique, CP 216

Service de Géométrie, Combinatoire et Théorie des Groupes
Boulevard du Triomphe, B-1050 Bruxelles, Belgium

alabarre@ulb.ac.be

Abstract. A number of fields, including genome rearrangements and
interconnection network design, are concerned with sorting permutations
in “as few moves as possible”, using a given set of allowed operations.
These often act on just one or two segments of the permutation, e.g. by
reversing one segment or exchanging two segments. The cycle graph of
the permutation to sort is a fundamental tool in the theory of genome
rearrangements. In this paper, we present an algebraic reinterpretation
of the cycle graph as an even permutation, and show how to reformulate
our sorting problems in terms of particular factorisations of the latter
permutation. Using our framework, we recover known results in a simple
and unified way, and obtain a new lower bound on the prefix transposition
distance (where a prefix transposition displaces the initial segment of a
permutation), which is shown to outperform previous results. Moreover,
we use our approach to improve the best known lower bound on the
prefix transposition diameter from 2n/3 to

⌊ 3n+1
4

⌋
.

1 Introduction

We study the problem of computing edit distances between permutations, i.e.
the minimum number of operations needed to transform a permutation into
another, using a given set of allowed operations. Those operations satisfy the
property that the induced edit distance between any two permutations π and σ
of the same set equals the distance between σ−1 ◦π and the identity permutation
ι = 〈1 2 · · · n〉, thereby allowing us to restrict our attention to sorting per-
mutations using a minimum number of allowed operations. Two areas in which
these problems have applications are the fields of genome rearrangements and
interconnection network design, which we briefly review below.

In genome rearrangements (recently surveyed in [1]), the permutation to sort
represents an ordering of genes in a given genome, and the allowed operations
model mutations that are known to actually occur in evolution. Rearrangements
� Funded by the “Fonds pour la Formation à la Recherche dans l’Industrie et dans

l’Agriculture” (F.R.I.A.). Research supported by “Communauté française de Bel-
gique - Actions de Recherche Concertées”.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 635–646, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

636 A. Labarre

studied in that context include reversals [2], which reverse a segment of the per-
mutation, block-interchanges [3], which exchange two not necessarily contiguous
segments, and transpositions [4], which displace a block of contiguous elements.
While the complexity of the sorting and distance computation problems is known
for the first two operations (NP-hard for reversals [5] and polynomial for block-
interchanges [3]), it is open for transpositions, and the best polynomial time
approximation algorithm to date has ratio 11/8 [6].

In interconnection network design (see [7] for a thorough survey), permutations
stand e.g. for processors and form the vertex set of a graph whose edges corre-
spond to physical connections between two devices. One wants to build a graph
with small degree and small diameter, among other desirable properties, and this
is often done by choosing a set of allowed operations on permutations, then con-
necting two permutations if there is an allowed operation that transforms one into
the other [8]. In that setting, sorting algorithms for permutations correspond to
routing algorithms for the corresponding networks. Two kinds of operations that
received much attention in that context are prefix reversals [9], which reverse the
initial segment of the permutation, and prefix exchanges [10], which swap the first
element of the permutation with another element. Those operations gave birth to
the pancake network and star graph topologies, respectively, which are extensively
studied models in that field. We also mention prefix transpositions [11], which dis-
place the initial segment of the permutation; they bear little relevance with biolog-
ical problems, but they are hoped to shed light and give insight on the seemingly
challenging problem of sorting by transpositions.

The cycle graph is a ubiquitous structure in the field of genome rearrange-
ments. In this paper, we present a way of encoding the cycle graph as an even
permutation, inspired by a previous work of ours [12], and show how to refor-
mulate any sorting problem of the form described above in terms of partic-
ular factorisations of the latter permutation. We first illustrate the power of
our framework by recovering known lower bounds on the block-interchange and
transposition distances, and then use it to prove a new lower bound on the prefix
transposition distance. We prove that our lower bound always outperforms the
one proved in [11], and show experimentally that it is a significant improvement
over both that result and the only other known lower bound [13]. Finally, we
use this new result to improve the previously best known lower bound on the
maximal value of the prefix transposition distance from 2n/3 to

⌊
3n+1

4

⌋
.

2 Notation and Definitions

2.1 Basic Permutation Group Theory

Let us start with a quick reminder of basic notions on permutations (for de-
tails, see e.g. [14]). The symmetric group Sn is the set of all permutations
of {1, 2, . . . , n}, together with the usual function composition ◦, applied from
right to left. Permutations are denoted by lower case Greek letters, typically
π = 〈π1 π2 · · · πn〉, with πi = π(i). The usual graph Γ (π) of the permutation
π contains an arc (i, j) whenever πi = j, and decomposes in a single way into

Edit Distances and Factorisations of Even Permutations 637

disjoint cycles, leading to another notation for π based on its disjoint cycle de-
composition. For instance, when π = 〈4 1 6 2 5 7 3〉, the disjoint cycle notation is
π = (1, 4, 2)(3, 6, 7)(5) (notice the parentheses and the commas). As in [15], we
order the vertices of Γ (π) by positions. The number of cycles in Γ (π) is denoted
by c(Γ (π)), and the length of a cycle is the number of elements it contains. It is
common to drop the 1-cycles from that representation, and to call the permuta-
tion a k-cycle if the resulting decomposition consists of a single cycle of length
k > 1. A permutation π is even if the number of even cycles in Γ (π) is even or,
equivalently, if it can be expressed as a product of an even number of 2-cycles.
The alternating group An is the set of all even permutations in Sn. Finally, the
conjugate of a permutation π by a permutation σ, both in Sn, is the permutation
πσ = σ ◦ π ◦ σ−1. It has the same disjoint cycle decomposition as π, and can
be obtained, if π = (c1,1, c1,2, . . . , c1,�1) · · · (cm,1, cm,2, . . . , cm,�m), by replacing
each element in each cycle of π with the element onto which it is mapped by σ,
i.e. πσ = (σc1,1 , σc1,2 , . . . , σc1,�1

) · · · (σcm,1 , σcm,2 , . . . , σcm,�m
). All permutations

that have the same disjoint cycle decomposition form a conjugacy class (of Sn).

2.2 Genome Rearrangements and Prefix Operations

We recall a number of operations on permutations, starting with the most general
one, introduced in [3]. For any π in Sn, the block-interchange β(i, j, k, l) with
1 ≤ i < j ≤ k < l ≤ n+1 applied to π exchanges the closed intervals determined
respectively by i and j−1 and by k and l−1. It transforms π into π ◦β(i, j, k, l),
where β(i, j, k, l) is the following permutation:

(
1 · · · i− 1 i · · · j − 1 j j + 1 · · · k − 1 k · · · l − 1 l l + 1 · · · n
1 · · · i− 1 k · · · l − 1 j j + 1 · · · k − 1 i · · · j − 1 l l + 1 · · · n

)

.

Two particular cases of block-interchanges are of interest: when j = k, the re-
sulting operation exchanges two adjacent intervals, and is called a transposition,
denoted by τ(i, j, l); when j = i + 1 and l = k + 1, the resulting operation
swaps two not necessarily adjacent elements in respective positions i and k, and
is called an exchange, denoted by ε(i, k). Two generic problems are studied in
connection to these operations: the problem of finding a sequence of transfor-
mations that sorts a permutation π and is of the shortest possible length, and
the related problem of merely computing the length of such a sequence, called
the distance of π (with respect to the given operation). It is easily seen that the
sorting problem on π is equivalent to factorising π into the product of permu-
tations that are allowed transformations, provided that the inverse of an edit
operation is still an allowed edit operation (which is easily shown to be the case
for all operations considered in this paper). Indeed, any sorting sequence for π,
i.e. π ◦ x1 ◦ x2 ◦ · · · ◦ xt = ι, where xi belongs to the set S of allowed operations
for 1 ≤ i ≤ t, immediately yields the factorisation π = x−1

t ◦x−1
t−1 ◦ · · · ◦x−1

1 , and
vice versa. We denote bid(π), td(π) and exc(π) the block-interchange distance,
transposition distance and exchange distance of π, respectively. Moreover, the

638 A. Labarre

diameter of Sn with respect to a given set of edit operations is the maximal
value that the corresponding edit distance can reach.

The following traditional tool introduced by Bafna and Pevzner [4] has proved
most useful in the study of genome rearrangements. The cycle graph of π in Sn is
the bicoloured directed graph G(π), whose vertex set (π0 = 0, π1, . . . , πn, πn+1 =
n+ 1) is ordered by positions, and whose arc set consists of:

– black arcs (πi, πi−1) for 1 ≤ i ≤ n+ 1;
– grey arcs (πi, πi + 1) for 0 ≤ i ≤ n.

The set of black and grey arcs decomposes in a single way into alternating
cycles, i.e. cycles which alternate black and grey arcs, and we note the number
of such cycles c(G(π)). The length of an alternating cycle in G(π) is the number
of black arcs it contains, and a k-cycle in G(π) is an alternating cycle of length
k. Fig. 1 shows an example of a cycle graph, together with its decomposition
into a 4-cycle and a 2-cycle.

0 4 2 1 5 3 6

(a)

0 4 2 1 5 3 6 0 4 2 1 5 3 6

(b) (c)

Fig. 1. (a) The cycle graph of 〈4 2 1 5 3〉, (b) and (c) the two cycles in its decomposition

Setting i = 1 in the rearrangement operations presented above turns them
into “prefix rearrangements”. The corresponding “prefix distances” are defined
as before, and we denote ptd(π) and pexc(π) the prefix transposition distance and
prefix exchange distance of π, respectively. While the computational complexity
of sorting by transpositions or by prefix transpositions is unknown, a polynomial
time algorithm for sorting by prefix exchanges is known [10], as well as a formula
for computing the associated distance.

Theorem 1. [10] For any π in Sn, we have

pexc(π) = n+ c(Γ (π)) − 2c1(Γ (π)) −
{

0 if π1 = 1,
2 otherwise,

where c1(Γ (π)) denotes the number of 1-cycles in Γ (π), or equivalently the num-
ber of fixed points of π.

Edit Distances and Factorisations of Even Permutations 639

Dias and Meidanis [11] initiated the study of sorting by prefix transpositions,
and derived a lower bound on the corresponding distance using the following con-
cepts. Given a permutation π in Sn, build the permutation π̃ = 〈0 π1 · · · πn n+
1〉; a pair (π̃i, π̃i+1) with 0 ≤ i ≤ n is a prefix transposition breakpoint if
π̃i+1
= π̃i + 1 or if i = 0, and an adjacency otherwise. The number of pre-
fix transposition breakpoints of π is denoted by ptb(π). Noting that a prefix
transposition can create at most two adjacencies and that ι is the only permuta-
tion with one prefix transposition breakpoint, they obtained the following lower
bound.

Lemma 1. [11] For any π in Sn:

ptd(π) ≥
⌈
ptb(π) − 1

2

⌉

. (1)

Finally, Chitturi and Sudborough [13] recently obtained new bounds on the
prefix transposition distance. They used the following concepts, based on per-
mutations of {0, 1, 2, . . . , n− 1} rather than {1, 2, . . . , n}. For a permutation π,
an ordered pair (πi, πi+1) is an anti-adjacency if πi+1 = πi − 1 (mod n). A strip
in a permutation π is a maximal interval of π that contains only adjacencies,
and a clan is a maximal interval of π that contains only anti-adjacencies. They
prove the following lower bound.

Lemma 2. [13] For any π in Sn, let Υ (π) denote the set of all clans of π of
length at least 3, and s(π) denote the number of strips of π. Then

ptd(π) ≥
s(π) +

∑
C∈Υ (π)(|C|−2)

3

2
. (2)

Using Lemma 2, Chitturi and Sudborough prove a lower bound of 2n/3 on the
prefix transposition distance of the reverse permutation 〈n n− 1 · · · 2 1〉, and
therefore on the prefix transposition diameter. They also prove an upper bound
on the prefix transposition diameter.

Theorem 2. [13] For all π in Sn, we have ptd(π) ≤ n− log8 n .

3 A General Lower Bounding Technique

In a previous paper [12], we introduced the following mapping:

f : Sn → An+1 : π "→ π = (0, πn, πn−1, . . . , π1) ◦ (0, 1, 2, . . . , n) , (3)

which in particular maps ι onto ι = 〈0 1 2 · · · n〉. That mapping allowed us to
encode a cycle graph G(π) using an even permutation π, as illustrated by the
following example: let π = 〈4 2 1 5 3〉, whose cycle graph is depicted in Fig. 1.
Then

π = (0, 3, 5, 1, 2, 4) ◦ (0, 1, 2, 3, 4, 5) = (0, 2, 5, 3)(1, 4) ,

and the two disjoint cycles of π correspond to the two alternating cycles of G(π),
whose elements they list in the order they are encountered; indeed:

640 A. Labarre

1. the first cycle of G(π) (Fig. 1(b)) starts with 0, then visits 2 after following
a grey-black path (i.e. a grey arc followed by a black arc), then visits 5 after
following a grey-black path, and in the same way visits 3 after following a
grey-black path before finally going back to 0, which corresponds to the first
cycle of π;

2. the second cycle of G(π) (Fig. 1(c)) starts with 4, then visits 1 after following
a grey-black path, which corresponds to the second cycle of π.

Consequently, speaking about cycles of π, of Γ (π) or of G(π) is equivalent. We
will now demonstrate how f can be used to obtain bounds on sorting problems.
The following result expresses how the action of any rearrangement operation σ
on π is translated on π. In the following, we identify permutations in Sn with
their extended versions in Sn+1 (i.e. we identify π with 〈0 π1 π2 · · · πn〉).

Lemma 3. For all π, σ in Sn, we have π ◦ σ = σπ ◦ π .

Proof. The following relation will be useful:

π = (0, πn, πn−1, . . . , π1) ◦ π ◦ (0, 1, . . . , n) . (4)

By definition, we have:

π ◦ σ = (0, (π ◦ σ)n, (π ◦ σ)n−1, . . . , (π ◦ σ)1) ◦ (0, 1, . . . , n)
= (0, πσn , πσn−1 , . . . , πσ1) ◦ (0, 1, . . . , n)
= π ◦ (0, σn, σn−1, . . . , σ1) ◦ π−1 ◦ (0, 1, . . . , n)
= π ◦ (0, σn, σn−1, . . . , σ1) ◦ (0, 1, . . . , n) ◦ (0, 1, . . . , n)−1 ◦ π−1

◦(0, 1, . . . , n)

= π ◦ σ ◦ (π ◦ (0, 1, . . . , n))−1 ◦ (0, 1, . . . , n)

= π ◦ σ ◦
(
(0, πn, . . . , π1)−1 ◦ π

)−1 ◦ (0, 1, . . . , n) (using (4))

= π ◦ σ ◦ π−1 ◦ (0, πn, . . . , π1) ◦ (0, 1, . . . , n)
= π ◦ σ ◦ π−1 ◦ π . �

We are now ready to prove our main result.

Theorem 3. Let X be a subset of Sn whose elements are mapped by f onto
X ′ ⊆ An+1. Moreover, let C be the union of the conjugacy classes (of Sn+1) that
intersect with X ′; then for any π in Sn, any factorisation of π into t elements
of X yields a factorisation of π into t elements of C .

Proof. Induction on t. The base case is π ∈ X , and clearly π ∈ X ′ ⊆ C . For
the induction, let π = gt ◦ gt−1 ◦ · · · ◦ g1, where gi ∈ X for 1 ≤ i ≤ t, and let
σ = gt−1 ◦ · · · ◦ g2 ◦ g1 ; by Lemma 3, we have:

π = gt ◦ gt−1 ◦ · · · ◦ g2 ◦ g1 = gt ◦ σ = gt ◦ σ ◦ g−1
t ◦ gt .

Edit Distances and Factorisations of Even Permutations 641

By induction, σ = g′t−1 ◦ g′t−2 ◦ · · · ◦ g′1 , where g′i ∈ C for 1 ≤ i ≤ t; therefore:

gt ◦ σ ◦ g−1
t = gt ◦ g′t−1 ◦ g′t−2 ◦ · · · ◦ g′1 ◦ g−1

t

= gt ◦ g′t−1 ◦ g−1
t

︸ ︷︷ ︸
ht

◦ gt ◦ g′t−2 ◦ g−1
t

︸ ︷︷ ︸
ht−1

◦gt ◦ · · · ◦ g−1
t ◦ gt ◦ g′1 ◦ g−1

t︸ ︷︷ ︸
h1

,

and h1, . . . , ht−1 ∈ C , which completes the proof. �
As we briefly explain before applying our method in the next section, Theorem 3
allows us to prove lower bounds on our sorting problems: indeed, as we explained
in Section 2.2, any sorting sequence of length t for π made of elements of X yields
a factorisation of π into the product of t elements (of X , provided X contains
both the transformations and their inverses, which is easily shown to be the case
for all operations considered in this paper), which can in turn be converted, as in
the proof of Theorem 3, into a factorisation of π into the product of t elements
of C . Therefore, the length of a shortest such factorisation of π into the product
of elements of C is a lower bound on the length of a factorisation of π into the
product of elements of X .

4 Recovering Previous Results

We illustrate how to use Theorem 3 to recover two previously known results on
bid and td. First, we need to characterise the image of a block-interchange by
our mapping.

Lemma 4. For any block-interchange β(i, j, k, l), we have

β(i, j, k, l) = (j − 1, l− 1) ◦ (i− 1, k − 1) .

Proof. Using (3) and the definition of a block-interchange, we have

(0, n, n− 1, . . . , l, j − 1, j − 2, . . . , i, k − 1, k − 2, . . . , j, l − 1, l− 2, . . . ,
k, i− 1, i− 2, . . . , 1) ◦ (0, 1, 2, . . . , n)

= (0)(1) · · · (i− 2)(i− 1, k − 1)(i)(i+ 1) · · · (j − 2)(j − 1, l− 1)(j)
(j + 1) · · · (k − 2)(k)(k + 1) · · · (l − 2)(l)(l + 1) · · · (n)

= (j − 1, l − 1) ◦ (i− 1, k − 1) . �
Note that (j−1, l−1) and (i−1, k−1) might not be disjoint, since by definition of
β(i, j, k, l) we may have j = k (hence the use of ◦ in the expression of β(i, j, k, l)).
We can now recover a known lower bound on the block-interchange distance,
which is actually the exact distance [3].

Theorem 4. [3] For all π in Sn, we have bid(π) ≥ n+1−c(Γ (π))
2 .

Proof. By Theorem 3 and Lemma 4, a lower bound on bid(π) is given by the
length of a minimum factorisation of π into pairs of exchanges. Since this length
equals (n+ 1 − c(Γ (π)))/2 (see e.g. [16]), the proof follows. �
Let us now characterise the image of a transposition by our mapping.

642 A. Labarre

Lemma 5. For any transposition τ(i, j, l), we have

τ(i, j, l) = (i− 1, l− 1, j − 1) .

Proof. As noted in Section 2.2, we have τ(i, j, l) = β(i, j, j, l); Lemma 4 yields:

τ(i, j, l) = β(i, j, j, l) = (j − 1, l− 1) ◦ (i− 1, j − 1) = (i− 1, l − 1, j − 1) . �

We recover the following known lower bound on the transposition distance, where
codd(Γ (π)) denotes the number of odd cycles in Γ (π).

Theorem 5. [4] For all π in Sn, we have td(π) ≥ n+1−codd(Γ (π))
2 .

Proof. By Theorem 3 and Lemma 5, a lower bound on td(π) is given by the
length of a minimum factorisation of π into 3-cycles. Since this length equals
(n+ 1 − codd(Γ (π)))/2 (see e.g. [16]), the proof follows. �

5 An Improved Lower Bound on the Prefix Transposition
Distance

Using our theory, we prove a new lower bound on ptd(π) and show that it
always outperforms (1). We will find it convenient to express ptb(π) (defined
after Theorem 1 page 638) as follows.

Lemma 6. For any π in Sn, we have

ptb(π) = n+ 1 − c1(Γ (π)) +
{

1 if π1 = 1,
0 otherwise.

Proof. The formula results from the observation that, among the n+ 1 pairs of
adjacent elements in π̃, each adjacency in π̃ gives rise to a 1-cycle in Γ (π), and
from the fact that if π1 = 1, then we counted the 1-cycle that corresponds to
(0, 1) as an adjacency, which we correct by adding 1. �

Let d1
3(π) denote the length of a minimum factorisation of π in Sn into a product

of 3-cycles, where each 3-cycle in the factorisation is further required to contain
the first element.

Proposition 1. For any π in Sn, we have ptd(π) ≥ d1
3(π) .

Proof. Replace i with 1 in Lemma 5, and mimic the proof of Theorem 5. �

Next, we show how to compute d1
3(π) for π in An. The following simple obser-

vation will be useful.

Observation 1. For any π in An, we have n ≡ c(Γ (π)) (mod 2) .

Lemma 7. For any π in An, we have

d1
3(π) =

n + c(Γ (π))
2

− c1(Γ (π)) −
{

0 if π1 = 1,
1 otherwise.

Edit Distances and Factorisations of Even Permutations 643

Proof. Given a minimum factorisation of length � of an even permutation π into
prefix exchanges, we can construct a sequence of �/2 3-cycles by noting that
(1, j) ◦ (1, i) = (1, i, j). Therefore d1

3(π) ≤ �/2. On the other hand, assume there
exists a shorter sequence of 3-cycles acting on the first element whose product
is π; then one can split each of these 3-cycles into two prefix exchanges using
the relation above and find a shorter expression for π as a product of prefix
exchanges, a contradiction. The result follows from Theorem 1. �

As a corollary, we obtain the following lower bound on the prefix transposition
distance:

Theorem 6. For any π in Sn, we have

ptd(π) ≥ n+ 1 + c(Γ (π))
2

− c1(Γ (π)) −
{

0 if π1 = 1,
1 otherwise. (5)

Proof. Follows from Proposition 1 and Lemma 7. �

We conclude this section by proving that our lower bound always outperforms
Dias and Meidanis’ (Lemma 1).

Theorem 7. Lower bound (5) is always at least as large as lower bound (1).

Proof. Assume π
= ι (otherwise the result trivially holds); this implies that Γ (π)
has at least one cycle of length at least 2, which means that c(Γ (π))−c1(Γ (π)) ≥
1. There are two cases to prove: if π1 = 1, then lower bound (1) becomes

⌈
(n + 1 − c1(Γ (π)) + 1) − 1

2

⌉

=
⌈
n+ 1 − c1(Γ (π))

2

⌉

,

and lower bound (5) satisfies

n+ 1 + c(Γ (π)) − 2c1(Γ (π))
2

≥ n+ 2 − c1(Γ (π))
2

≥
⌈
n+ 1 − c1(Γ (π))

2

⌉

.

On the other hand, if π1
= 1, then lower bound (1) becomes

⌈
(n + 1 − c1(Γ (π))) − 1

2

⌉

=
⌈
n− c1(Γ (π))

2

⌉

,

and by Observation 1, lower bound (5) becomes

n + 1 + c(Γ (π))
2

− c1(Γ (π)) − 1 =
⌈
n+ 1 + c(Γ (π)) − 2c1(Γ (π)) − 2

2

⌉

≥
⌈
n− c1(Γ (π))

2

⌉

. �

644 A. Labarre

6 A Tighter Lower Bound on the Prefix Transposition
Diameter

Dias and Meidanis [11] observed that the prefix transposition diameter lies be-
tween n/2 and n − 1, and conjectured that it is equal to n −

⌊
n
4

⌋
. Recently,

Chitturi and Sudborough [13] improved those bounds to 2n/3 and n − log8 n,
respectively. Using our new lower bound on the prefix transposition distance, we
further improve the lower bound on the prefix transposition diameter.

Theorem 8. For n ≥ 2, the prefix transposition diameter of Sn is at least⌊
3n+1

4

⌋
.

Proof. We construct a family of permutations whose prefix transposition dis-
tance is at least

⌊
3n+1

4

⌋
. Let π = 〈3 2 1 4 7 6 5 · · · n− 4 n n− 2 n− 3〉, or any

other 2-permutation, i.e. a permutation such that Γ (π) contains only cycles of
length 2 (this requires that n ≡ 3 (mod 4)). There are four cases to examine,
each of which relies on Theorem 6:

1. if n ≡ 3 (mod 4), we have ptd(π) ≥ (n+ 1 + (n + 1)/2)/2 − 0 − 1 = 3n−1
4 .

2. if n ≡ 0 (mod 4), let σ be a permutation such that Γ (σ) is obtained by
inserting a fixed point at the beginning of Γ (π); since σ fixes 0 and has n/2
2-cycles, we have ptd(σ) ≥ (n+ 1 + n/2 + 1)/2 − 1 − 0 = 3n

4 .
3. if n ≡ 1 (mod 4), let σ′ be a permutation such that Γ (σ′) is obtained by

inserting a fixed point anywhere in Γ (σ); we have ptd(σ′) ≥ (n+1+ n−2+1
2 +

2)/2 − 2 = 3n+1
4 .

4. if n ≡ 2 (mod 4), let σ′′ be a permutation such that Γ (σ′′) is obtained
by inserting a 3-cycle (a, c, b) with a < b < c anywhere in Γ (π). Since
σ′′ has (n + 1 − 3)/2 + 1 cycles of length at least 2, we have ptd(σ′′) ≥
(n + 1 + n+1−3

2 + 1)/2 − 0 − 1 = 3n−2
4 . �

7 Experimental Results

We generated all permutations in Sn, for 1 ≤ n ≤ 10, along with their prefix
transposition distance, and compared lower bounds (1), (2) and (5) to the ac-
tual distance. Table 1 shows the results. It can be observed that many more
permutations are tight with respect to our lower bound (column 5) than with
respect to Dias and Meidanis’ (column 3) or Chitturi and Sudborough’s
(column 4).

We also examined how large the gap between our lower bound and the ac-
tual prefix transposition distance can get. The remaining columns of Table 1
list the number of permutations whose prefix transposition distance equals our
lower bound plus Δ. We note that, for n ≤ 9, all permutations have a pre-
fix transposition distance that is at most our lower bound plus 2 (plus 3 for
n = 10).

Edit Distances and Factorisations of Even Permutations 645

Table 1. Experimental results; column 3 lists the number of cases where (1) is tight [17],
column 4 lists the number of cases where (2) is tight, and columns 5 to 8 list the number
of cases where (5) underestimates ptd(π) by Δ

n n! tight w.r.t. (1) tight w.r.t. (2) Δ = 0 Δ = 1 Δ = 2 Δ = 3

1 1 1 1 1 0 0 0
2 2 2 2 2 0 0 0
3 6 4 4 6 0 0 0
4 24 13 15 22 2 0 0
5 120 41 48 106 14 0 0
6 720 196 255 574 143 3 0
7 5 040 862 1 144 3 782 1 234 24 0
8 40 320 5 489 7 737 27 471 12 310 539 0
9 362 880 31 033 44 187 229 167 128 576 5 137 0

10 3 628 800 247 006 369 979 2 103 510 1 427 966 97 321 3

8 Conclusions

We presented a new framework for reformulating any edit distance problem on
permutations as a minimum-length factorisation problem on a related even per-
mutation, under the implicit assumption that the edit operations are revertible.
This approach is based on a new representation of a structure known as the
cycle graph, which pervades the field of genome rearrangements in several dif-
ferent forms; it previously allowed us to enumerate permutations whose cycle
graph decomposes into a given number of alternating cycles [12], and allowed
us in this work to recover two previously known results in a simple and unified
way. Moreover, we used our approach to derive a new lower bound on the prefix
transposition distance that, as we showed both theoretically and experimentally,
is a significant improvement over previous results. From that result, we deduced
an improved lower bound on the prefix transposition diameter of the symmetric
group, whose exact value is still unknown.

Future research will need to focus on computational complexity issues, since
the complexity of sorting permutations by transpositions or by any prefix op-
eration (except prefix exchanges) is still open, as well as on finding improved
approximations and upper bounds on the corresponding distances. We hope that
our framework will provide further insight on various issues related to those edit
distance problems and their variants, and will allow us to characterise polynomial
time solvable cases, if the general problems indeed prove to be difficult.

References

1. Li, Z., Wang, L., Zhang, K.: Algorithmic approaches for genome rearrangement:
a review. IEEE Transactions on Systems, Man and Cybernetics, Part C 36(5),
636–648 (2006)

2. Kececioglu, J., Sankoff, D.: Exact and approximation algorithms for sorting by
reversals, with application to genome rearrangement. Algorithmica 13(1-2), 180–
210 (1995)

646 A. Labarre

3. Christie, D.A.: Sorting permutations by block-interchanges. Information Processing
Letters 60(4), 165–169 (1996)

4. Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM Journal on Discrete
Mathematics 11(2), 224–240 (1998)

5. Caprara, A.: Sorting permutations by reversals and eulerian cycle decompositions.
SIAM Journal on Discrete Mathematics 12(1), 91–110 (1999)

6. Elias, I., Hartman, T.: A 1.375-approximation algorithm for sorting by trans-
positions. IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics 3(4), 369–379 (2006)

7. Lakshmivarahan, S., Jwo, J.S., Dhall, S.K.: Symmetry in interconnection networks
based on Cayley graphs of permutation groups: A survey. Parallel Computing 19(4),
361–407 (1993)

8. Akers, S.B., Krishnamurthy, B.: A group-theoretic model for symmetric intercon-
nection networks. IEEE Transactions on Computers 38(4), 555–566 (1989)

9. Gates, W.H., Papadimitriou, C.H.: Bounds for sorting by prefix reversal. Discrete
Mathematics 27(1), 47–57 (1979)

10. Akers, S.B., Krishnamurthy, B., Harel, D.: The star graph: An attractive alternative
to the n-cube. In: Proceedings of the Fourth International Conference on Parallel
Processing, August 1987, pp. 393–400. Pennsylvania State University Press (1987)

11. Dias, Z., Meidanis, J.: Sorting by prefix transpositions. In: Laender, A.H.F.,
Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 65–76. Springer, Heidelberg
(2002)

12. Doignon, J.P., Labarre, A.: On Hultman numbers. Journal of Integer Se-
quences 10(6), Article 07.6.2, 13 pages (2007)

13. Chitturi, B., Sudborough, I.H.: Bounding prefix transposition distance for strings
and permutations. In: Proceedings of the Forty-First Annual Hawaii International
Conference on System Sciences, January 2008, p. 468. IEEE Computer Society
Press, Los Alamitos (2008)

14. Wielandt, H.: Finite permutation groups. Translated from German by R. Bercov.
Academic Press, New York (1964)

15. Labarre, A.: New bounds and tractable instances for the transposition distance.
IEEE/ACM Transactions on Computational Biology and Bioinformatics 3(4), 380–
394 (2006)

16. Jerrum, M.R.: The complexity of finding minimum-length generator sequences.
Theoretical Computer Science 36(2-3), 265–289 (1985)

17. Fortuna, V.J.: Distâncias de transposição entre genomas. Master’s thesis, Univer-
sidade Estadual de Campinas, São Paulo, Brazil (March 2005)

Speed Scaling Functions for Flow Time

Scheduling Based on Active Job Count

Tak-Wah Lam1, Lap-Kei Lee1, Isaac K.K. To2, and Prudence W.H. Wong2

1 Department of Computer Science, University of Hong Kong
{twlam,lklee}@cs.hku.hk

2 Department of Computer Science, University of Liverpool
{isaacto,pwong}@liverpool.ac.uk

Abstract. We study online scheduling to minimize flow time plus en-
ergy usage in the dynamic speed scaling model. We devise new speed
scaling functions that depend on the number of active jobs, replacing
the existing speed scaling functions in the literature that depend on the
remaining work of active jobs. The new speed functions are more stable
and also more efficient. They can support better job selection strategies
to improve the competitive ratios of existing algorithms [8,5], and, more
importantly, to remove the requirement of extra speed. These functions
further distinguish themselves from others as they can readily be used in
the non-clairvoyant model (where the size of a job is only known when
the job finishes). As a first step, we study the scheduling of batched jobs
(i.e., jobs with the same release time) in the non-clairvoyant model and
present the first competitive algorithm for minimizing flow time plus en-
ergy (as well as for weighted flow time plus energy); the performance is
close to optimal.

1 Introduction

Energy usage is an important concern in recent research on online scheduling.
A popular approach to reducing energy usage is dynamic speed scaling (see
e.g., [10,13]), which allows a processor to vary its speed dynamically. A processor
incurs an energy of sα per unit time when running at speed s, where α ≥ 2 (typ-
ically 2 or 3 [10,20]). Running a job slower saves energy, yet it takes longer and
may affect performance. A lot of effort has been devoted to revisiting classical
scheduling problems with dynamic speed scaling and energy concern taken into
consideration (see [14] for a survey). The challenge arises from the conflicting
objectives of providing good “quality of service” (QoS) and conserving energy.
These studies first focused on the infinite speed model [24] where any speed may
be used, and have recently shifted to the more realistic bounded speed model [12],
which imposes a bound T on the maximum allowable speed.

One commonly used QoS measure for job scheduling is the total flow time.
Here, jobs with arbitrary size are released at unpredictable times and the flow
� This research is partly supported by Hong Kong RGC Grant HKU/7140/06E and

EPSRC Grant EP/E028276/1.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 647–659, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

648 T.-W. Lam et al.

time of a job is the time elapsed since it arrives until it is completed. Pre-
emption is allowed without penalty. When energy is not a concern, the objec-
tive is simply to minimize the total flow time of all jobs, and the online algo-
rithm SRPT (shortest remaining processing time) is optimal [3]. If jobs carry
weights, another online algorithm HDF (highest density first) has been shown
to be (1 + 1/ε)-competitive for weighted flow time, when using (1 + ε) times
faster processor [9]; in fact, no online algorithm can be O(1)-competitive without
extra speed [4].

The above results assume clairvoyance, i.e., the size of a job is known at release
time. In some applications like operating systems, job size is only known when
the job finishes. This is referred to as the non-clairvoyant model. The earlier work
focused on batched jobs (i.e., all jobs have the same release time), and Motwani
et al. [19] have shown that the online algorithm Round Robin is 2-competitive
for flow time. There is a matching lower bound of 2 when the number of jobs
is large. Kim and Chwa [17] further showed that a weighted version of Round
Robin is also 2-competitive for weighted flow time. For jobs with arbitrary release
times, Kalyanasundaram and Pruhs [16] showed that SETF (shortest elapsed
time first) is (1 + ε)-speed (1 + 1/ε)-competitive for flow time. The result has
also been generalized to weighted flow time with the same performance [6, 17].

Flow time and energy. To understand the tradeoff between flow time and en-
ergy, Albers and Fujiwara [1] proposed combining the dual objectives into a
single objective of minimizing the sum of total flow time and energy. The in-
tuition is that, from an economic viewpoint, users are willing to pay a certain
(say, x) units of energy to reduce one unit of flow time. By changing the units
of time and energy, one can further assume that x = 1 and thus would like to
optimize total flow time plus energy. Albers and Fujiwara focused on the clair-
voyant model and their work has been improved by Bansal et al. [8,5]. As far as
we know, there is no previous work on the non-clairvoyant model.

In the infinite speed model, Bansal et al. [8] gave an O(1)-competitive online
algorithm for minimizing flow time plus energy; precisely, the competitive ratio
is μεγ1, where ε is any positive constant, με = max{(1 + 1/ε), (1 + ε)α} and
γ1 = max{2, 2(α−1)

α−(α−1)1−1/(α−1) }. E.g., if α = 2, the competitive ratio is 5.236.
Very recently, Bansal et al. [5] adapted this result to the bounded speed model.
Assuming that the online algorithm can have a higher maximum speed of (1+ε)T
for any ε > 0, the competitive ratio in this case increases slightly to μεγ2,
where γ2 = 2α/(α − (α − 1)1−1/(α−1)) = (2 + o(1))α/ lnα. Table 1 shows the
competitive ratios for some fixed α. Both results also hold for weighted flow time
plus energy.

Follow-up questions. The speed function of the algorithms by Bansal et al. [8,5]
depends on the remaining work of “active” jobs (i.e., jobs that have not been
completed). There are several questions related to such a speed function.

– In the non-clairvoyant model, work-based speed functions are not applica-
ble since job size, and hence remaining work, is not known to the online
algorithm. Can one devise a speed function for the non-clairvoyant model?

Speed Scaling Functions for Flow Time Scheduling 649

Table 1. Results on clairvoyant scheduling for minimizing flow time plus energy. Note
that the new results in this paper do not demand extra speed.

α = 2 α = 3

Infinite speed 5.236 [8] 7.940 [8]
model (T = ∞) 2.667 [this paper] 3.252 [this paper]

Bounded speed 10.472 with max speed 1.618T [5] 11.910 with max speed 1.466T [5]
model 3.6 with max speed T [this paper] 4 with max speed T [this paper]

– Work-based speed functions would demand the processor speed to change
continuously which is undesirable practically. Can one design a more stable
speed function that changes in a discrete manner?

– The algorithms in [8, 5] require extra speed even in the unweighted setting.
In contrast, the classic result on flow-time scheduling does not need extra
speed [3]. This is perhaps due to the inefficiency of the work-based speed
functions; specifically, they are sometimes slower than a critical threshold
((n

α−1)1/α where n is the number of active jobs). When this happens, we can
decrease the flow time plus energy by increasing the speed. It is natural to
ask whether a speed function that never goes below this threshold can work
without extra speed and gives a better competitive ratio.

Our contribution. In this paper, we answer affirmatively the above questions
by introducing new speed functions that depend on the number of active jobs.
They are more stable, changing only at job arrival or completion. Using these
functions leads to improvements in the clairvoyant model and provides the first
competitive results on non-clairvoyant scheduling of batched jobs.

– Clairvoyant scheduling: Define the speed function AJC to be n1/α, where n
is the number of active jobs. We use SRPT (instead of SJF (shortest job first)
in [8,5]) to select jobs. Our algorithm is more competitive for minimizing flow
time plus energy and does not need extra speed: for the infinite and bounded
speed model, the competitive ratios are respectively β1 = 2/(1 − α−1

αα/(α−1))
and β2 = 2(α + 1)/(α − α−1

(α+1)1/(α−1)). Table 1 compares these ratios with
those in [8,5]. The improvement is more significant for large α, as β1 and β2

tend to 2α/ lnα, while μεγ1 and μεγ2 [8, 5] tend to 2(α/ lnα)2.
– Non-clairvoyant scheduling: We focus on batched jobs, i.e., when all jobs

are released at time 0. For scheduling unweighted jobs, we use the speed
function AJC∗ = (n

α−1)1/α, where n is the total number of active jobs.
Coupling with Round Robin, we give an algorithm that is (2− 1

α)-competitive
in the infinite speed model and 2-competitive in the bounded speed model.
The latter inherits a lower bound of 2 from flow-time scheduling [19]. We
can further generalize this algorithm for minimizing weighted flow time plus
energy, and the corresponding ratios become (2 − 1

α)2 and 4, respectively.

Technically speaking, the analysis of existing clairvoyant algorithms requires
indirect comparison via a notion called fractional flow. In contrast, we divide

650 T.-W. Lam et al.

the time into “stable intervals”, and directly compare the flow time of the on-
line algorithm against an optimal offline algorithm in each interval. This makes
the analysis tighter. For the non-clairvoyant algorithms, we first prove that the
performance of our algorithm is close to that of a clairvoyant algorithm based
on SJF (shortest job first) plus AJC∗. Then we show that SJF-AJC∗ is optimal
against any offline algorithm for minimizing flow time plus energy.

Remarks. The theoretical study of energy-efficient scheduling was initiated by
Yao, Demers and Shenker [24]. They considered deadline scheduling in the infi-
nite speed model. Their result was improved by Bansal et al. [7], and extended
to the bounded speed model by Chan et al. [12] and Bansal et al. [5]. Irani et
al. [15] considered a setting where the processor has a sleep state. Pruhs et al. [21]
also studied offline scheduling for minimizing the total flow time on a processor
with a given amount of energy. The offline problem of minimizing the makespan
subject to a fixed amount of energy has been studied in [11,22]. Recently, mul-
tiprocessor setting has received attention, with interesting offline [11, 22] and
online results [2, 18]. As some of these multiprocessor algorithms (in particu-
lar, [18]) are based on the single-processor algorithms in [8,5], our new result on
clairvoyant scheduling immediately leads to an improvement.

2 Definitions and Notations

We consider a job set J to be scheduled on a processor whose speed can be
varied between 0 and T , the speed bound. In the infinite speed model, T = ∞,
so any speed is allowed. When running at speed s, the processor processes s
units of work and consumes sα units of energy in each unit of time, where α ≥ 2.
Preemption is allowed; a preempted job can resume at the point of preemption.
We use ri and pi to denote the release time and work requirement (or size) of a
job Ji in J , respectively. If ri = 0 for all jobs, we call J batched jobs.

Consider a particular time t in a schedule of J . For any job Ji in J , we let
qi denote its remaining work at t, and say it is active if ri ≤ t and qi > 0.
The flow time Fi of Ji is the time elapsed since it arrives until it is completed.
The total flow time is given by F =

∑
i Fi. Note that F =

∫∞
0 n(t) dt, where

n(t) denotes the number of active jobs at time t, and the energy consumption is
E =

∫∞
0 s(t)α dt, where s(t) is the speed of the processor at time t. Our aim is to

minimize the total flow time plus energy, G = F + E. We observe that each of
E, F and G is the integration over all time from 0 to ∞. We call the integration
over a period of time to be the contribution to their respective value during that
period. E.g., the contribution to G from t1 to t2 is

∫ t2
t1

(n(t) + s(t)α) dt.

3 Clairvoyant Scheduling with Arbitrary Release Times

In this section, we study the case where a job arrives at arbitrary time and its
size is known upon arrival. Define the speed function AJC (active job count) to
be min{T, n1/α}, where n is the number of active jobs and T is maximum speed.

Speed Scaling Functions for Flow Time Scheduling 651

Coupling with SRPT, we have the algorithm SRPT-AJC. We first explain that
SRPT gives the best job selection (Lemma 1). In the next two subsections, we
analyze SRPT-AJC in the infinite speed and bounded speed models.

Lemma 1. Consider a job sequence J . Suppose a schedule S for J uses speed
function f . Then, among all schedules of J using the speed function f , the one
selecting jobs in accordance with SRPT incurs the least total flow time.

Proof. We modify S in multiple steps to a SRPT schedule. In each step the new
schedule S′ has total flow time reduced. Then the lemma follows.

Let t be the first time when S does not follow SRPT, running Ji instead of
the shortest remaining work job Jj . S′ differs from S during the time intervals
since t when S runs either job: Jj is run to completion before Ji, using the same
speed function. Jj thus completes in S′ earlier than Ji does in S. So the sum of
their completion time, and thus the total flow time, is less in S′ than in S. �

3.1 Analysis of SRPT-AJC for the Infinite Speed Model

We analyze SRPT-AJC for the infinite speed model, comparing it against an
optimal offline schedule OPT. By Lemma 1, OPT uses the SRPT policy as well.

Overview. Consider any time t. Let Ga(t) and Go(t) be the flow time plus
energy incurred up to t by SRPT-AJC and OPT, respectively. We drop the
parameter t when it refers to the current time. Our analysis exploits amortization
and potential functions (e.g., [8, 12]): if there is a potential function Φ(t) and a
value β such that the followings hold, then SRPT-AJC is β-competitive.

– Boundary condition: Φ is initially 0 and finally non-negative.
– Arrival condition: When a job is released, Φ does not increase.
– Running condition: At any other time, the rate of change of Ga plus that

of Φ is no more than β times the rate of change of Go, i.e., dGa
dt + dΦ

dt ≤ β dGo
dt .

We first show such a potential function Φ, whose design is motivated by the
work in [8, 5]. We will choose β to be 2/(1 − α−1

αα/(α−1)). Then we show that the
above conditions hold, and thus can conclude the competitiveness of SRPT-AJC.

Theorem 1. SRPT-AJC is β1-competitive for flow time plus energy in the in-
finite speed model, where β1 = 2/(1 − α−1

αα/(α−1)).

Potential function Φ(t). Consider any time t. For any q ≥ 0, let na(q) denote
the current number of active jobs with remaining work at least q in SRPT-AJC,
and similarly no(q) for OPT. So na(0) and no(0) are the total number of active
jobs in the schedules, which we abbreviate as na and no, respectively. It is useful
to consider na(q) and no(q) as functions of q which change when a job arrives
or runs for a while (see Fig. 3.1). We define the potential function as

Φ(t) = η

∫ ∞

0

φ(q) dq , where φ(q) =
(na(q)∑

i=1

i1−1/α

)

− na(q)1−1/αno(q) ,

and η = 2/(1 − α−1
αα/(α−1)). (In bounded speed model, η = 2/(1 − 1−1/α

(α+1)1/(α−1)).)

652 T.-W. Lam et al.

(a) (b) (c)q q q

n(q)n(q) n(q)

p

Fig. 1. (a) At any time, na(q) or no(q) (denoted by n(q) above) is a step function
containing unit height stripes, the area under n(q) is the total remaining work. (b) If
we run a job selected with SRPT at speed s for a period of time Δ, the top stripe
shrinks by sΔ. (c) When a job of size p is released, n(q) increases by 1 for all q ≤ p.

At t = 0 or ∞, no job remains, so Φ = 0. The integration of the first term of
φ(q) is proportional to the total flow time plus energy of SRPT-AJC after t if
no more job arrives (which is 2

∫∞
0

∑na(q)
i=1 i1−1/α dq), paying the cost once OPT

completes all jobs. The second term of φ(q) makes the arrival condition hold.

Lemma 2. When a job arrives, the change of Φ is non-positive.

Proof. Suppose a job Jj arrives. For q > pj , na(q) and no(q), and hence φ(q),
are unchanged. For q ≤ pj , both na(q) and no(q) increase by 1 (see Fig. 3.1(c)).
So the first term of φ(q) increases by (na(q) + 1)1−1/α. The increase of the term
na(q)1−1/αno(q) is interpreted in two-steps: (i) increase to (na(q)+1)1−1/αno(q),
and (ii) increase to (na(q)+1)1−1/α(no(q)+1). The increase in step (ii), (na(q)+
1)1−1/α, covers the increase in the first term of φ(q), so φ(q) cannot increase. �

Running condition. The rest of this section proves the following lemma.

Lemma 3. When no job arrives, dGa
dt + dΦ

dt ≤ β1
dGo
dt where β1 = 2/(1− α−1

αα/(α−1)).

Consider any time t. Let sa and so be the speed of SRPT-AJC and OPT,
respectively, and qa and qo be the remaining work of the job they run. We divide
the time line into stable intervals by breaking it when the following events occur.

– A job arrives, or is completed by either SRPT-AJC or OPT.
– The speed sa or the job chosen by SRPT-AJC changes.
– The speed so or the job chosen by OPT changes.
– Either no(qa) or na(qo) changes.

Φ does not increase on job arrival (Lemma 2), and is unchanged on other events
above (φ(q) changes for single q). So we focus on its change in a stable interval.

We first bound dΦ
dt . Consider a stable interval of length dt. We analyze dΦ

as if φ(q) is modified in two steps: (i) na(q) decreases due to the execution of
SRPT-AJC. (ii) no(q) decreases due to the execution of OPT. We denote these
changes by dΦ1 and dΦ2, respectively. Then dΦ = dΦ1 + dΦ2.

Lemma 4. Consider a stable interval of length dt. (i) dΦ1 ≤ η(no − na)dt; (ii)
dΦ2 ≤ ηn

1−1/α
a sodt.

Speed Scaling Functions for Flow Time Scheduling 653

Proof. (i) Consider SRPT-AJC. na(q) decreases from na to na − 1 for all q ∈
[qa − sadt, qa] (see Fig. 3.1(b)). For any q ∈ [qa − sadt, qa], φ(q) is changed by:

(na−1∑

i=1

i1−1/α

)

− (na − 1)1−1/αno(q) −
(na∑

i=1

i1−1/α

)

+ n1−1/α
a no(q)

≤− n1−1/α
a + n−1/α

a no(q) ≤ −n1−1/α
a + n−1/α

a no .

(The first inequality is due to n1−1/α− (n−1)1−1/α ≤ n−1/α for any n ≥ 1. The
second holds since no(q) ≤ no.) Recall that sa = n

1/α
a . Integrating over all q,

dΦ1 ≤ η(−n1−1/α
a + n−1/α

a no)(n1/α
a dt) = η(no − na)dt .

(ii) Consider OPT. As in (i), φ(q) is changed only for q ∈ [qo − sodt, qo]. Note
that na(q) ≤ na for all q. Then for any q ∈ [qo − sodt, qo], φ(q) is changed by

−na(q)1−1/α(no(q) − 1) + na(q)1−1/αno(q) = na(q)1−1/α ≤ n1−1/α
a .

Integrating over all q, we have dΦ2 ≤ ηn
1−1/α
a sodt. �

Proof (Lemma 3). We introduce a constant μ > 0 into Lemma 4 (ii) using the
Young’s Inequality (see Corollary 9 of [8]), leading to dΦ2 ≤ ηn

1−1/α
a sodt ≤

(
η(1 − 1

α)μα/(α−1)na + ηsα
o

αμα

)
dt . Since sa = n

1/α
a , dGa

dt = na + sα
a = 2na. Also,

dGo
dt = no + sα

o . Since dΦ = dΦ1 + dΦ2, by Lemma 4 (i), we have

dGa

dt
+

dΦ
dt

≤ 2na + η
(
no − na +

(
1 − 1

α

)
μα/(α−1)na +

sα
o

αμα

)
. (1)

Lemma 3 follows with β1 = η = 2/(1 − α−1
αα/(α−1)) and μ = α−1/α. �

3.2 Analysis of SRPT-AJC for the Bounded Speed Model

We now turn to the bounded speed model. We use the same potential function
while setting η = 2/(1− 1−1/α

(α+1)1/(α−1)). Most of the analysis in Sect. 3.1 still holds,

except Lemma 4 (i). As the speed used might be T instead of n1/α if n is large,
the decrease in Φ1 is not sufficient to guarantee the original competitive ratio.
We observe that the difference (na − no) is upper bounded by Tα (Lemma 5).
Then the competitiveness is only slightly worse (Theorem 2).

Lemma 5. At any time, the number of active jobs in SRPT-AJC and OPT
satisfy na − no ≤ Tα.

Proof. This is trivial if na < Tα. Suppose na ≥ Tα at time t. Let t0 be the last
moment before t when na changes from less than Tα to at least Tα. Consider the
interval [t0, t), where SRPT-AJC runs at full speed. Suppose k jobs arrive, and
OPT completes x of them, so no ≥ k−x. Since SRPT maximizes the number of
jobs completed at any time [23], SRPT-AJC also completes at least x jobs. So
na increases by at most k − x ≤ no since t0, and the lemma follows. �

654 T.-W. Lam et al.

Theorem 2. SRPT-AJC is β2-competitive for flow time plus energy in the
bounded speed model, where β2 = 2(α+ 1)/(α− α−1

(α+1)1/(α−1)).

Proof. The boundary and arrival conditions still hold. It remains to establish
the running condition. Its analysis is split into two cases.

Case 1: na ≤ T α . The arguments in Sect. 3.1 still hold, leading to (1). Set
μ = (α+ 1)−1/α and recall that η = 2/(1− 1−1/α

(α+1)1/(α−1)), (1) implies dGa
dt + dΦ

dt ≤
ηno + (1 + 1/α)ηsα

o ≤ β2
dGo
dt .

Case 2: na > T α . The arguments in Sect. 3.1 hold, except Lemma 4 (i). We
still have dGo

dt = no + sα
o and dGa

dt = na + Tα < 2na. For dΦ1,

dΦ1 ≤ η(−n1−1/α
a + n−1/α

a no)Tdt = η(no − na)
(Tα

na

)1/α

dt .

If no ≥ na, dΦ1 ≤ η(no − na)dt as before (since Tα/na ≤ 1), leading to (1), so
the arguments in Case 1 apply. If no < na, Lemma 5 implies

dΦ1 ≤ −η(na − no)
(Tα

na

)1/α

dt ≤ −η(na − no)1+1/α

n
1/α
a

dt .

Note that f(na−no) ≥ f(na)−f ′(na)no for the convex function f(x) = x1+1/α,
which is equivalent to (na−no)1+1/α ≥ n

1+1/α
a − (1+1/α)n1/α

a no. We thus have

dΦ1 ≤ −η
(
(n1+1/α

a − (1 + 1/α)n1/α
a no)/n1/α

a

)
dt = η

(
(1 + 1/α)no − na

)
dt ,

and
dGa

dt
+

dΦ
dt

≤ 2na + η
(

(1 +
1
α

)no − na +
(
1 − 1

α

)
μα/(α−1)na +

sα
o

αμα

)
.

Setting μ = (α+1)−1/α, this implies dGa
dt + dΦ

dt ≤ (1+ 1
α)η(no +sα

o) = β2
dGo
dt . �

4 Non-clairvoyant Scheduling of Batched Jobs

In this section, we study non-clairvoyant scheduling of batched jobs. Recall that
the online algorithm knows the size of a job only when the job finishes.

AJC∗ and RR-AJC∗. For batched jobs, we use a more energy-conservative speed
function AJC∗, defined as min{T, (n(t)

α−1)1/α}, where n(t) is the number of active
jobs at t. To cope with unknown job sizes, RR-AJC∗ uses AJC∗ with RR: split
the processor equally among all active jobs.

To analyze RR-AJC∗, we consider a clairvoyant algorithm SJF-AJC∗ (shortest
job first plus AJC∗). In Sect. 4.1, we show an interesting relation that the flow
time plus energy incurred by RR-AJC∗ is close to that of SJF-AJC∗. In Sect. 4.2
we complete the analysis by showing SJF-AJC∗ is optimal.

In some applications, jobs may carry weights to reflect their importance. We
use wi to denote the weight of a job Ji, and define its density ρi to be wi/pi. The

Speed Scaling Functions for Flow Time Scheduling 655

weighted flow time of a job is simply its flow time multiplied by its weight. The
above result can be generalized for weighted flow time plus energy as follows.

AJW∗ and WRR-AJW∗. The speed function AJW∗ (active job weight) is de-
fined as min{T, (w(t)

α−1)1/α} where w(t) is the total weight of active jobs at t. The
algorithm WRR-AJW∗ uses AJW∗ with the WRR policy: split the processor
among all active jobs in the ratio of their weights. We define the normalized
work of a job as its work divided by its weight. Every active job has the same
normalized processed work at any time.

To analyze WRR-AJW∗, we consider a clairvoyant algorithm HDF-AJW∗

(highest density first plus AJW∗). The relation between WRR-AJW∗ and HDF-
AJW∗ is the same as before (Sect. 4.1). However, HDF-AJW∗ is not optimal.
Yet we show that HDF-AJW∗ is competitive in Sect. 4.3.

We use the weighted setting as a common platform, where RR-AJC∗ (resp.
SJF-AJC∗) is WRR-AJW∗ (resp. HDF-AJW∗) with job weights all equal to one.
Without loss of generality, we assume the input J = {J1, J2, . . . , Jn} is in increas-
ing job density order, i.e., ρ1 ≤ ρ2 ≤ · · · ≤ ρn (ties are broken by job IDs).

4.1 Comparing WRR-AJW∗ against HDF-AJW∗

As jobs are batched, WRR implies that jobs complete in the order of normalized
work, from Jn to J1. Thus w(t) =

∑i
j=1 wj if Ji is the smallest normalized work

job at t. We can thus compare WRR-AJW∗ against HDF-AJW∗ easily.

Lemma 6. For scheduling batched jobs, the weighted flow time plus energy of
WRR-AJW∗ is (i) at most (2 − 1/α) times of HDF-AJW∗ in the infinite speed
model, and (ii) at most 2 times of HDF-AJW∗ in the bounded speed model.

To prove Lemma 6, we focus on the contributions to weighted flow time and
energy during the time when a particular job Ji is the job with the smallest
normalized work in WRR-AJW∗. Due to the WRR policy, each of the remaining
jobs Jj with 1 ≤ j ≤ i is run for the same amount of normalized work. We thus
evaluate the weighted flow time and energy incurred by WRR-AJW∗ during this
period, denoted as Fw(Ji) and Ew(Ji). They are compared against the weighted
flow time and energy incurred by HDF-AJW∗ to process that same amount of
normalized work for each of these jobs, denoted as Fh(Ji) and Eh(Ji). We show
that both Fw(Ji)/Fh(Ji) and Ew(Ji)/Eh(Ji) are no greater than (2 − 1/α) for
T = ∞, and 2 for general T . Summing over all Ji leads to Lemma 6.

Lemma 7. If T = ∞, Fw(Ji) ≤ (2−1/α)Fh(Ji) and Ew(Ji) ≤ (2−1/α)Eh(Ji).

Proof. Due to the rules in the speed function AJW∗, when T = ∞ we have
Fw(Ji) = (α − 1)Ew(Ji) and Fh(Ji) = (α − 1)Eh(Ji). So it suffices to show
Fw(Ji) ≤ (2 − 1/α)Fh(Ji).

Let us first consider WRR-AJW∗. Let Δh be the normalized work processed
for each job J1, . . . , Ji. We have seen that w(t) =

∑i
k=1 wk, s = (w(t)

α−1)1/α. The
amount of work processed for Jj (1 ≤ j ≤ i) is wjΔh, so the total weighted flow
time incurred Fw(Ji) =

∑i
j=1 wjΔh

∑i
k=1 wk/s = (α−1)1/α(

∑i
j=1 wj)2−1/αΔh.

656 T.-W. Lam et al.

In contrast, HDF-AJW∗ runs only the highest density (i.e., least normalized
work) job. At time t when processing Jj , w(t) =

∑j
k=1 wk, s = (w(t)

α−1)1/α. The
weighted flow time incurred for processing an amount of work wjΔh for Jj is
thus wjΔh(

∑j
k=1 wk)/s = (α− 1)1/αΔh(

∑j
k=1 wk)1−1/αwj . We thus have

Fh(Ji) = (α− 1)1/αΔh

i∑

j=1

(j∑

k=1

wk

)1−1/α

wj .

To approximate
∑i

j=1

(∑j
k=1 wk

)1−1/α
wj , we use the staircase-like function

f(x) = (
∑j

k=1 wk)1−1/α if x ∈ [
∑j−1

k=1 wk,
∑j

k=1 wk) where 1 ≤ j ≤ i .

Note that
∑i

j=1(
∑j

k=1 wk)1−1/αwj is exactly
∫�i

j=1 wj

0 f(x) dx. On the other
hand, f(x) ≥ x1−1/α for all x ∈ [0,

∑i
j=1 wj). We thus have

i∑

j=1

(j∑

k=1

wk

)1−1/α

wj ≥
∫ �i

j=1 wj

0

x1−1/α dx =
(
∑i

j=1 wj)2−1/α

2 − 1/α
,

and Fh(Ji) ≥ (α − 1)1/αΔh
(∑i

j=1 wj

)2−1/α
/(2 − 1

α) = Fw(Ji)/(2 − 1
α). �

Proof (Lemma 6). We obtain (i) (T = ∞) by summing the relations about Fh

and Fw and those about Eh and Ew in Lemma 7 over all Ji.
For (ii) (T <∞), suppose WRR-AJW∗ processesΔh normalized work for each

of J1, . . . , Ji. We first focus on Ew(Ji) and Eh(Ji). If (
∑i

j=1 wj/(α−1))1/α ≤ T ,
Lemma 7 applies, so Ew(Ji) ≤ (2 − 1/α)Eh(Ji). Otherwise, we try to find a
k ∈ {1, . . . , i} such that

∑k
j=1 wj is exactly (α− 1)Tα (so that the speed bound

is just not exceeded). If no such k exists, for the sake of analysis we split some
job Ju into two jobs Ju1 and Ju2 with the same density and total weight, so that
wu1 +

∑u−1
j=1 wj = (α − 1)Tα. We set k = u1. This job splitting does not affect

the speed function, and thus the energy consumption, of either WRR-AJW∗

and HDF-AJW∗ (speed used for Ju1, Ju2 and Ju are all T). We now notice that
both WRR-AJW∗ and HDF-AJW∗ run Jk+1, . . . , Ji at speed T , consuming the
same energy E0. The other jobs are run as if T = ∞, so Lemma 7 leads to
Ew(Ji)−E0 ≤ (2 − 1/α)(Eh(Ji)−E0). This implies Ew(Ji) ≤ (2− 1/α)Eh(Ji).

We now compare Fw(Ji) and Fh(Ji). Again the interesting case is when
(
∑i

j=1 wj/(α−1))1/α > T , otherwise Fw(Ji) ≤ (2−1/α)Fh(Ji) by Lemma 7. For
WRR-AJW∗, the processor uses speed T , so the time needed is

∑i
j=1 wjΔh/T ,

and Fw(Ji) = (
∑i

j=1 wj)2Δh/T . For HDF-AJW∗, the time needed to run Jj for
wjΔh units of work is at least wjΔh/T (since the speed used cannot be faster
than T), incurring weighted flow time of at least

∑j
k=1 wkwjΔh/T . We thus

have Fh(Ji) ≥
∑i

j=1

∑j
k=1 wkwjΔh/T > (

∑i
j=1 wj)2Δh/2T = Fw(Ji)/2.

Summing these relations over all Ji gives the desired ratio in Lemma 6. �

Speed Scaling Functions for Flow Time Scheduling 657

4.2 Analysis of SJF-AJC∗

We show that the speed function AJC∗ minimizes the flow time plus energy for
scheduling batched jobs using SJF (equivalently, SRPT) (Lemma 8), implying
the optimality of SJF-AJC∗ for flow time plus energy. Combining with Lemma 6,
we obtain the competitive ratio of RR-AJC∗ (Theorem 3).

Lemma 8. Consider a set of batched jobs J . Among all schedules of J using
SJF for job selection, the schedule that incurs the minimum flow time plus energy
sets the speed at any time t as min{T, (n(t)

α−1)1/α}, where n(t) is the number of
active jobs at t.

Proof. Consider a particular job Ji in the optimal schedule. We only need to
consider cases where its speed is constant, otherwise we can average the speed
to reduce energy usage without affecting flow time. Note that n(t) is unchanged
when Ji is run. Suppose Ji runs at speed s. Then its contribution to flow time
plus energy is n(t)pi/s+ sα−1pi, which is minimized when s = (n(t)

α−1)1/α. �

Theorem 3. For scheduling batched jobs to minimize flow time plus energy, the
algorithm RR-AJC∗ is (i) (2− 1/α)-competitive in the infinite speed model, and
(ii) 2-competitive in the bounded speed model.

Proof. Since every other schedule can be modified to the SJF-AJC∗ schedule
by Lemma 1 and then Lemma 8 while reducing total flow time plus energy,
SJF-AJC∗ is optimal for total flow time plus energy. The theorem thus follows
naturally from Lemma 6. �

4.3 Analysis of HDF-AJW∗

When jobs are weighted, the clairvoyant algorithm HDF-AJW∗ is not optimal
for weighted flow time plus energy. Instead we analyze HDF-AJW∗ via a variant
concerning fractional flow. Due to space limitation, we only sketch the ideas.

Consider a schedule of J . At any time t, the fractional weight ŵi of Ji is
defined to be wi(qi/pi) (recall that qi is the remaining work of Ji). We define
ŵ(t) =

∑
Ji is active ŵi. The fractional flow is defined as F̂ =

∫∞
0 ŵ(t) dt. We now

define our variant of HDF-AJW∗.

Algorithm HDF-FW. It differs from HDF-AJW∗ only in the speed function,
which uses the speed function FW defined as (�w(t)

α−1)1/α at any time t.
We follow the framework in Sect. 4.2 to show the optimality of HDF-FW:

Firstly, HDF minimizes fractional flow for a fixed speed function. Secondly, FW
minimizes the fractional flow plus energy for scheduling batched jobs using HDF.

Lemma 9. Consider a set of weighted batched jobs. The algorithm HDF-FW is
optimal for minimizing the fractional flow plus energy of the schedule.

By comparing the contribution to the weighted flow time plus energy of
HDF-AJW∗ against that to the fractional flow plus energy of HDF-FW when
each job Ji is running, we can show the following lemma.

658 T.-W. Lam et al.

Lemma 10. Consider a set of batched jobs. Let Ĝhf be the fractional flow plus
energy with HDF-FW. Then the weighted flow time plus energy with HDF-AJW∗

is (i) Gh ≤ (2 − 1/α)Ĝhf in the infinite speed model, and (ii) Gh ≤ 2Ĝhf in the
bounded speed model.

We note that for any schedule, the fractional flow is at most the weighted flow
time. Thus HDF-AJW∗ is (2 − 1/α)-competitive for weighted flow time plus
energy. Together with Lemma 6, we obtain the competitive ratio of WRR-AJW∗.

Theorem 4. Consider a set of weighted batched jobs. The algorithm WRR-AJW∗

is (i) (2 − 1/α)2-competitive in the infinite speed model, and (ii) 4-competitive in
the bounded speed model.

References

1. Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization.
ACM Trans. Alg. 3(4), 49 (2007)

2. Albers, S., Muller, F., Schmelzer, S.: Speed scaling on parallel processors. In: Proc.
SPAA, pp. 289–298 (2007)

3. Baker, K.R.: Introduction to Sequencing and Scheduling. Wiley, New York (1974)
4. Bansal, N., Chan, H.L.: Weighted flow time does not have O(1) competitive algo-

rithms (manuscript)
5. Bansal, N., Chan, H.L., Lam, T.W., Lee, L.K.: Scheduling for speed bounded

processors. In: Proc. ICALP (to appear, 2008)
6. Bansal, N., Dhamdhere, K.: Minimizing weighted flow time. ACM Trans. Alg. 3(4),

39 (2007)
7. Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and tempera-

ture. J. ACM 54(1) (2007)
8. Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. In: Proc.

SODA, pp. 805–813 (2007)
9. Becchetti, L., Leonardi, S., Marchetti-Spaccamela, A., Pruhs, K.: Online weighted

flow time and deadline scheduling. J. Discrete Algorithms 4(3), 339–352 (2006)
10. Brooks, D., Bose, P., Schuster, S., Jacobson, H.M., Kudva, P., Buyuktosunoglu,

A., Wellman, J.-D., Zyuban, V.V., Gupta, M., Cook, P.W.: Power-aware microar-
chitecture: Design and modeling challenges for next-generation microprocessors.
IEEE Micro. 20(6), 26–44 (2000)

11. Bunde, D.P.: Power-aware scheduling for makespan and flow. In: Proc. SPAA, pp.
190–196 (2006)

12. Chan, H.L., Chan, W.T., Lam, T.W., Lee, L.K., Mak, K.S., Wong, P.W.H.: Energy
efficient online deadline scheduling. In: Proc. SODA (2007)

13. Grunwald, D., Levis, P., Morrey, C.B., Neufeld, M.: Policies for dynamic clock
scheduling. In: Proc. OSDI, pp. 73–86 (2000)

14. Irani, S., Pruhs, K.: Algorithmic problems in power management. SIGACT
News 32(2), 63–76 (2005)

15. Irani, S., Shukla, S., Gupta, R.: Algorithms for power savings. ACM Trans.
Alg. 3(4), 41 (2007)

16. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J.
ACM 47(4), 617–643 (2000)

Speed Scaling Functions for Flow Time Scheduling 659

17. Kim, J.-H., Chwa, K.-Y.: Non-clairvoyant scheduling for weighted flow time.
IPL 87(1), 31–37 (2003)

18. Lam, T.W., Lee, L.K., To, I.K.K., Wong, P.W.H.: Competitive non-migratory
scheduling for flow time and energy. In: Proc. SPAA, pp. 256–264 (2008)

19. Motwani, R., Phillips, S., Torng, E.: Nonclairvoyant scheduling. Theoretical Com-
puter Science 130(1), 17–47 (1994)

20. Mudge, T.N.: Power: A first-class architectural design constraint. IEEE
Comp. 34(4), 52–58 (2001)

21. Pruhs, K., Uthaisombut, P., Woeginger, G.: Getting the best response for your erg.
In: Proc. SWAT, pp. 14–25 (2004)

22. Pruhs, K., van Stee, R., Uthaisombut, P.: Speed scaling of tasks with precedence
constraints. In: Proc. WAOA, pp. 307–319 (2005)

23. Schrage, L.: A proof of the optimality of the shortest remaining processing time
discipline. Operations Research 16(3), 687–690 (1968)

24. Yao, F., Demers, A.J., Shenker, S.: A scheduling model for reduced CPU energy.
In: Proc. FOCS, pp. 374–382 (1995)

Facility Location in Dynamic Geometric Data
Streams�

Christiane Lammersen and Christian Sohler

Computer Science Department I,
University of Bonn, 53117 Bonn, Germany
{cl,sohler}@informatik.uni-bonn.de

Abstract. We present a randomized algorithm that maintains a con-
stant factor approximation for the cost of the facility location problem
in the dynamic geometric data stream model. In this model, the input is
a sequence of insert and delete operations of points from a discrete space
{1 . . . Δ}d, where d is a constant. The algorithm needs logO(1) Δ time to
process an insertion or deletion of a point, uses logO(1) Δ bits of storage,
and has a failure probability of 1/ΔΘ(1).

Keywords: facility location, dynamic data streams, approximation.

1 Introduction

The problem of processing large streams of geometric data arises in many ap-
plications such as mobile networks, sensor networks, astronomy, etc. In some
of these applications data is continuously changing. For example, in mobile net-
works the position of network nodes may change over time and in sensor networks
the measured data changes. New positions or measurements are typically com-
municated via wireless communication in form of a stream of update operations.
Such an update may, for example, specify the ‘name’ of the network node, its
‘old position’ and its ‘new position’. Thus we can also think of it as a deletion
of the old data value followed by an insertion of the new value. The model of
dynamic geometric data stream addresses such a scenario. We are given a stream
of insert and delete operations of points from the discrete space {1, ..., Δ}d and
our goal is to maintain certain statistics about the current data. The difficulty
is that the size of the processed data prevents us from storing it completely.
This restriction is modelled by allowing only space polylogarithmic in Δ and the
length of the stream.

In this paper, we study a facility location problem for dynamic geometric
data streams. In this problem, we are given a set of clients that have to be
served by a set of facilities. It is possible to open a facility at any client for a
given cost of f . The cost of serving a client is proportional to its distance to
the nearest facility. This problem models many applications where we have to
allocate resources to satisfy some requirement as good as possible while at the
� Supported by DFG grant So 514/1-1.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 660–671, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Facility Location in Dynamic Geometric Data Streams 661

same time we have to pay for the used resources. For example, we may organize a
wireless network hierarchically, i.e. some nodes (cluster heads) are responsible for
a certain subset of nodes (cluster). Clearly, a cluster head has a certain overhead
in communication, storage space, and processing time required for additional
communication, etc. This overhead corresponds to the cost to open/maintain a
facility. The distance to the facility corresponds to the connection cost.

Since in the facility location problem the number of open facilities can be as
large as the considered point set (and this can be as large as Δd), we cannot
compute a solution in the streaming model. Instead, we focus on approximating
the cost of a solution. We remark that approximating the cost can be very useful
in resource allocation problems to monitor the cost of an existing solution.

Our Contribution. We develop a constant factor approximation algorithm for the
cost of the facility location problem over dynamic data streams in d-dimensional
space, where d is a constant. The best previous result was an O(log2Δ)-approxi-
mation algorithm [13].

Our Techniques. The main difficulty is to define a solution, whose cost a) is
a constant factor approximation and b) can be efficiently approximated within
a constant factor in the streaming model. Our starting point is the work of
Indyk [13], which defines a partition of the space into cubic cells and a set of
cells such that the number of these cells gives an O(logΔ)-approximation [13].
During the approximation process to estimate the number of these cells, the
algorithm of [13] looses another O(logΔ) factor.

In our work, we use a similar partition of the space into nested grids, and we
show that opening a subset of the cells defined in [13] gives a constant factor
approximation. In detail, we call a cell heavy, if the product of the side length of
the cell and number of points inside the cell is at least f . Our subset essentially
consists of all heavy cells such that neither the cell itself nor any of its neighbors
include a (smaller) heavy cell.

The main difficulty is now to give a streaming algorithm that approximates
the number of these cells sufficiently well and so the algorithm to do this is our
main technical contribution. We approximate the number of these cells in each
grid level with additive error by taking random samples and computing certain
set differences of cells and finally applying known algorithms to approximate the
number of distinct items (cells). We then show that the additive error can be
charged to obtain a small multiplicative error.

Related Work. The model of dynamic geometric data streams has been intro-
duced in [13] where the author studied different geometric problems including
minimum spanning tree, minimum matching and minimum bichromatic match-
ing, facility location, and k-median. For both matching problems and the min-
imum spanning tree problem O(logΔ)-approximation algorithms for the cost
of the optimal solution have been obtained. For the facility location problem
an O(log2Δ)-approximation algorithm for the cost of the optimal solution has
been proposed. For the k-median problem also a (1+ε)-approximation algorithm

662 C. Lammersen and C. Sohler

with prohibitively high running time for the extraction of an optimal solution has
been given. The result for the minimum spanning tree problem has subsequently
been improved by a (1 + ε)-approximation algorithm [7]. In the same paper, the
authors also considered the computation of a random almost uniformly distrib-
uted sample in a dynamic data stream. A similar method for random sampling
in dynamic data streams has been obtained independently in [4]. Furthermore,
a more efficient (1 + ε)-algorithm for the k-median problem has been developed
in [8], where similar results have also been obtained for the k-means problem,
the Euclidean MaxCut, and a few other problems.

A large number of geometric data streaming algorithms have been developed
in the insertion-only model. We will focus our summary about the known results
in this field on the facility location problem and two clustering problems, namely
the k-median and the k-means problem, which are closely related to the facil-
ity location problem. One important technique in the development of streaming
algorithms is the construction of coresets. Here the goal is to reduce the com-
plexity of a huge point set to a weighted point set of small size (called coreset),
such that the small coreset approximates the whole point set with respect to
the given problem. Several coreset constructions are known for clustering prob-
lems [3,5,6,8,11,12]. The metric facility location problem that maintains a set
of facilities approximating the optimal facility configuration within a constant
factor has been considered in [9]. Unfortunately, the space requirement for this
approach is dependent on the number of opened facilities which can be linear
in the input size. Another algorithm for a metric facility location problem has
been developed in the multi-pass streaming model [2]. The algorithm computes
an O(�)-approximation of the optimal solution by using O(�) passes and a mem-
ory space of Õ(kn2/�), where k is the number of opened facilities and n is the
number of input points.

Because sublinear time algorithms are closely related to streaming algorithms,
we also mention one work in this model. Bădoiu et al. [1] presented a constant
factor approximation algorithm for the uniform metric facility location prob-
lem that uses O(n log2 n) time. Despite the relation of streaming and sublinear
time algorithms, their techniques cannot be transferred to the other model. Fur-
thermore, Meyerson [14] proposed an online algorithm with a polylogarithmic
competitive ratio that maintains a set of facilities for a sequence of demand
points.

2 Preliminaries

In the model of dynamic data streams, we are given a stream of insert and delete
operations of points from a discrete space {1, ..., Δ}d, where d is a constant. We
assume that the stream is consistent, i.e. no point is deleted that is not present in
the data structure and no point is inserted multiple times (without being deleted
before). Insert and delete operation both get the coordinates of the point. We use
P = {p1, . . . , pn} to denote a set of n points in the discrete space {1 . . .Δ}d. In
the streaming context, P will refer to the current set, i.e. the set obtained after

Facility Location in Dynamic Geometric Data Streams 663

applying an input sequence of insertions and deletions. Let d(p, q) denote the
Euclidean distance between p and q. In the minimum facility location problem,
for a parameter f , we try to find a set F ⊆ P of points that minimizes the
objective f · |F | +

∑
p∈P d(p, F) , where d(p, F) = minq∈F {d(p, q)}. We call the

first part of the objective the opening cost and second part the connection cost.
To compute the cost of the minimum facility location problem, we impose

log(Δ) + 1 nested squared grids over the point space G(0),G(1), . . . ,G(logΔ),
shifted by a vector chosen uniformly at random from [0, Δ]d. The side length of
each cell in grid G(i) is 2i. We say that the grid cells in G(i) are in level i. The
parent cell of a cell C ∈ G(i) is the cell in G(i + 1) that contains C. The set of
neighbors Γ (C) of a cell C in grid G(i) is the set of 3d − 1 cells in grid G(i) that
share some part of the boundary. In grid G(i) a cell is called heavy, if it contains
more than f/2i points.

Definition 1. We call a cell of grid G(i) heavy, if it contains at least T (i) = f
2i

points of P . A grid cell that is not heavy is light.

3 Construction of a Good Estimator

Our first step will be to define a certain partition of the input space and to
relate this partition to the cost of the facility location problem. In particular, if
we assign to each cell in this partition a weight that corresponds to the number of
points inside the cell times the side length of the cell, the sum of these weights will
be a constant factor approximation for the cost of the facility location problem.
We need the following definition.

Definition 2. A cell of grid G(i) is called useful, if it neither contains a heavy
subcell nor any of the 3d−1 neighboring cells Γ (C) in grid G(i) contains a heavy
subcell. A grid cell that is not useful is useless.

Our space partition consists of all maximal -useful cells, i.e. all cells that are
useful, but their parent cell is useless. We define SP(i) to be the set of all
maximal-useful cells in grid G(i) and SP =

⋃
i SP(i) the set of all maximal-

useful cells. The cells in SP form a partition of the input space, because we
can simply construct SP in a process similar to that of building a quadtree and
splitting recursively every useless cell. The idea is now to place a facility in each
heavy cell in SP . We remark that this strategy of choosing the set of facilities
is a refinement of the one proposed in [13]. More precisely, the facilities in [13]
are chosen from all heavy cells in

⋃
i G(i), whereas we choose the facilities from

a subset of those cells.
Our next step is to define a value E(P) that is a constant factor approximation

for the cost of the optimal solution of the facility location problem. Let nP (C)
be the number of points in set P falling into cell C. Then the estimator for the
facility location cost is defined as

E(P) =
log Δ∑

i=0

∑

C∈SP(i)

nP (C) · 2i . (1)

664 C. Lammersen and C. Sohler

Properties of the Partition. Before we prove that E(P) is indeed an O(1)-approx-
imation of the cost of the facility location problem, we discuss some properties
of the space partition that are needed in the analysis. We say that two cells in a
space partition are neighbors, if they share at least one point of their boundary.
Furthermore, the distance between two cells is defined as the minimum distance
between two points, such that one point lies on the boundary of one cell and
the other point on the boundary of the other cell. Now, we prove that the space
partition that consists of all maximal-useful cells has the following properties.

Lemma 1. The set SP of all maximal-useful cells has the following four prop-
erties:

i) The side length of each cell in SP differs from the side length of each of its
neighbors by a factor of at most 2, i.e. the space partition is balanced.

ii) Let i be any level and let C be any useless cell in G(i). Then there is a heavy
cell in SP that has distance at most

√
d · 2i+1 from C.

iii) Let i be any level and let C be any light cell in SP(i). Then there exists a
heavy cell in SP in a distance of at most 5 ·

√
d · 2i from C.

iv) Let i be any level and let C be any heavy cell in SP(i). Then we have f
2i ≤

nP (C) < 2d+1 · f
2i .

Fig. 1. Arrangement of cells that
leads to the desired contradiction

Proof.

i) The proof is by contradiction. Assume that
Cbig is a cell in SP(i) that has a neigh-
bor cell Csmall in SP(j), j ≤ i − 2, i.e.
Csmall has side length 2j ≤ 2i−2. This sit-
uation is illustrated in Figure 1. Let C′

small
be the parent cell of Csmall. Since Csmall is
maximal-useful, its parent C′

small is useless.
Hence, Csmall or at least one neighboring
cell in Γ (C′

small) has a heavy subcell. This
subcell is either contained in Cbig or one of
its neighboring cells Γ (Cbig) (see also Fig-
ure 1). Hence, Cbig is also a useless cell and
cannot be a cell in SP(i), which is a contradiction.

ii) We proceed by induction. Let � be the minimum value such that SP(�) is
not empty. Let C be a useless cell in grid G(� + 1). Since C is useless, either
C or one of its neighbors contains a heavy subcell H. By the choice of �, we
know that H is useful, which proves the base case. Now, let C be a useless
cell in grid G(i). By definition, C either contains a heavy subcell or one of its
neighboring cells contains a heavy subcell. Let H be such a subcell. H has
distance at most

√
d · 2i−1 from C. If H is useful, it is maximal-useful and is

in SP and we are done. Otherwise, H is useless and in grid G(j), j < i. By
induction hypothesis, we have a heavy cell H′ in SP with distance at most√
d · 2j ≤

√
d · 2i from H. Since H has a diagonal of length

√
d · 2i−1, we get

that the distance from C to H′ is at most 2 ·
√
d · 2i−1 +

√
d · 2i =

√
d · 2i+1.

Facility Location in Dynamic Geometric Data Streams 665

iii) Let C be a light cell in SP(i). Let C′ be the parent cells of C. By ii), there is
a heavy cell within a distance of

√
d · 2i+2 from C′. Hence, the distance from

C is at most 5 ·
√
d · 2i.

iv) The cell C contains at least f
2i points, because it is a heavy cell. The number

of points in C is less than 2d+1 · f
2i , because each of the 2d subcells of C is

light, so that there are less than f
2i−1 points inside of them. �

Analysis of the estimator E(P). Let OPT(P) be the facility location cost for the
point set P that arises for an optimal algorithm. Then we can give an appropriate
lower and upper bound for the estimator E(P) depending on the value OPT(P).

Lemma 2. E(P) = Ω(OPT(P)).

Proof. Our goal is to define a set of open facilities whose cost is O(E(P)). This
proves E(P) = Ω(OPT(P)). We will show that it suffices to open one facility
in each heavy cell in SP .

We give an upper bound for the contribution of the points in each cell in SP .
Every heavy cell C ∈ SP(i) contributes at most f + nP (C) ·

√
d · 2i, because

we open one facility in C and connect the points in C to it. Since C is heavy, it
contains at least f/2i points. Thus, we have f + nP (C) ·

√
d · 2i = O(nP (C) · 2i).

The points in each light cell C in SP will be connected to the nearest open
facility. Due to Lemma 1, the distance from any light cell C ∈ SP(i) to the
nearest heavy cell Ch in SP is at most 5 ·

√
d ·2i. The distance between C and Ch

achieves its maximum in the case that we have a chain of light cells between C
and Ch such that the side length of the light cells is non-increasing in direction
Ch and the side length of Ch is 20. Thus, the connection cost for the points in C
is at most nP (C) ·

√
d · (2i + 5 · 2i + 20) = O(nP (C) · 2i). Summing up over all

cells gives that the cost of the defined solution is O(E(P)). �

Lemma 3. E(P) = O(OPT(P)).

Proof. Let FOpt be a set of optimal facilities. We partition the set SP(i) into
two subsets SPnear(i) and SPdist(i). SPnear(i) contains all cells C whose distance
minq∈FOpt d(q, C) to the nearest facility from FOpt is less than 2i−1, i.e.

SPnear(i) = {C ∈ SP(i) | min
q∈FOpt

d(q, C) < 2i−1} .

SPdist(i) contains all other cells from SP(i), i.e. SPdist(i) = SP(i)\SPnear(i).
For each cell C ∈

⋃log Δ
i=0 SPdist(i), the cost to connect the points inside C to the

nearest facility in FOpt is at least nP (C) · 2i−1. This is exactly half of the cost
we charge for the cell C in the definition of E(P). Thus, the cost that we charge
for the set

⋃log Δ
i=0 SPdist(i) is upper bounded by two times the connection cost

in FOpt.
The side length of each cell in SPnear(i) is 2i. By Lemma 1, the side length of

any cell in SP differs from the side length of each of its neighbors by a factor of
at most 2. Thus, for every facility in FOpt, there cannot be more than 3d cells

666 C. Lammersen and C. Sohler

in
⋃log Δ

i=0 SPnear(i). Furthermore, for each cell in SP , in the definition of E(P)
we charge a cost O(f). This follows due to the fact that a cell in SP(i) contains
at most 2d+1 · f

2i points, so that we charge at most 2d+1 · f = O(f). Thus, the
cost that arises for all cells in

⋃log Δ
i=0 SPnear(i) is at most a constant factor larger

than the optimal cost. �

4 Randomized Algorithm

In this section, we describe how our randomized algorithm implements the ideas
of Section 3. The idea of the algorithm is closely related to our partition into
maximal-useful cells. We try to identify heavy cells in grid G(i) by taking each
point with probability 1/T (i) into a random sample. Recall that a cell in grid
G(i) is heavy, if it contains at least T (i) = f/2i points. Thus, in expectation we
will see at least one point in every heavy cell of grid G(i) (however, some sample
points will also end up in light cells). We call a cell in grid G(i) marked, if it
contains a sample point. We open one facility in every marked cell C in grid G(i)
such that a) no subcell of C is marked and b) no smaller cell within a distance
of less than 2i−1 is marked.

The output value Erand(P) of the algorithm is Erand(P) := f · |F|, where F
denotes the set of cells, where we open a facility. The idea of condition b) is
that in our space decomposition SP the size of neighboring cells differs only by
a factor of 2. Hence, a marked cell from SP prevents at most a constant number
of other cells from SP to open a facility.

The random sampling of points is done via fully random hash functions. For
each level i, it uses a random hash function hi : {1 . . .Δ}d → {1, . . . , �T (i)�},
such that each point is mapped independently to a random value from the set
{1, . . . , �T (i)�}. We put a point p into the sample set of level i, if the hash value
hi(p) is equal to 1. The reason why we use hash functions is that we must be
able to handle delete operations on our sample set. The issue of full randomness
is discussed later.

Analysis. We show that our randomized algorithm computes facility location
cost that is an O(1)-approximation of the estimator E(P). Let F(i) be the set
of marked cells in G(i) that do not have a marked subcell and that do not
have a smaller marked cell within distance less than 2i−1. The cells in the set⋃log Δ

i=0 F(i) are exactly the cells in which the algorithm opens its facilities, i.e.
F =

⋃log Δ
i=0 F(i). Thus, the estimator of the randomized algorithm is given by

Erand(P) =
log Δ∑

i=0

f · |F(i)| . (2)

We consider the partition SP of the input space. We are interested in the
number of marked cells from SP . However, f times the number of marked cells
does not immediately give a lower bound on Erand(P), because we do not open
a facility in a marked cell in SP(i), if there is a smaller cell within distance less

Facility Location in Dynamic Geometric Data Streams 667

than 2i−1 that is marked. Since neighboring cells in SP differ by at most a factor
of 2 in their size, a cell in SP can only be blocked if one of its neighboring cells
contains a marked subcell. Hence, every marked cell in SP can prevent at most
a constant number of other facilities in cells from SP being opened. Thus, if we
can show that the expected number of marked cells is Ω(E(P)/f), we are done.

We say that a point p ∈ SP(i) is marked, if it is marked in grid G(i). Let Xp

denote the indicator random variable for the event that p is marked. We get that
E[
∑

p∈C Xp] = nP (C)/T (i) = nP (C)·2i/f . From Lemma 1, it follows for every cell
C ∈ SP that E[

∑
p∈CXp] ≤ 2d+1. Hence, we can group cells into sets S1, . . . ,S�

such that for each set Si, 1 ≤ i ≤ � − 1, we have 12 ≤
∑

C∈Si

∑
p∈C E[Xp] ≤

12+2d+1 and
∑

C∈S�

∑
p∈C E[Xp] ≤ 12+2d+1 for the set S�. We use Yi to denote

the random variable
∑

C∈Si

∑
p∈CXp. Now, we can apply Chernoff bounds to

get that Pr[Yi ≤ 1
2E[Yi]] ≤ e−

1
12E[Yi]. This implies that Pr[Yi ≤ 6] ≤ 1/e for

1 ≤ i < �. Hence, with probability at least 1/e at least one of the cells in Si is
marked. Let Zi denote the random variable for the event that at least one cell
in Si is marked. By Chernoff bounds, we get that with probability at least 3/4
the number of marked cells is Ω(E(P)/f). For � = 1 the optimal cost is Θ(f)
and in case that no cell is marked we can always safely output f .

Lemma 4. Erand(P) = Ω(E(P)) with probability at least 3/4.

To prove the upper bound, we first observe that every cell C is either contained
in SP or it can be partitioned into cells from SP (C lies above SP) or it is a
subcell of a cell of SP (C lies below SP). We will first show that the overall
expected number of sample points from cells that do not lie ‘far above’ SP is
O(E(P)/f). Hence, the overall cost created by these cells is O(E(P)). Then we
prove that the expected contribution of cells ‘far above’ SP is also O(E(P)).
The latter follows, because every such cell C in grid G(i) has a (smaller) heavy
cell from SP within distance 2i−1. These heavy cells will be typically marked
and so the expected contribution of C is small.

Definition 3. We say that a cell C in grid G(i) has height k, if the smallest cell
of SP that is contained in C has side length 2i−k. If no cell of SP is contained
in C then we define its height to be −∞.

Let Xp denote the indicator random variable for the event hi(p) = 1. Further-
more, for a cell C in grid G(i), let XC =

∑
p∈P∩CXp denote the random variable

for the number of sample points in cell C. With this definition, it follows that, for
every cell C in grid G(i), we have E[XC] = nP (C)/T (i) = nP (C) ·2i/f . Moreover,
the expected number of sample points (from different grids) in a cell C and its
subcells is E[

∑
C′⊆CXC′] ≤ 2 ·nP (C) ·2i/f . Let us now consider an arbitrary cell

C in grid G(i) with height k ≥ 0. C can be partitioned into cells C1, . . . , C� from
SP that differ in size by at most 2k. Hence, E[XC] ≤ 2k · E[

∑
1≤i≤� XC�

]. The
set of cells of height k do not overlap in their interior, so the expected number of
sample points in cells of height k∗ or of hight smaller than k∗, for k∗ being a con-
stant greater than log(10

√
d), is O(E(P)/f). Thus, by Markov inequality with

probability at least 7/8 the opening cost for facilities in these cells is O(E(P)).

668 C. Lammersen and C. Sohler

Now, let us consider an arbitrary cell C in grid G(i) with height bigger than
k∗. This cell contains a subcell from SP of size at most 2i−k∗

< 2i · 1

10
√

d
by the

definition of height and the value of k∗. By Lemma 1, we know that every cell in
SP(j) has a heavy cell in SP within distance at most 5

√
d ·2j . We conclude that

there is a heavy cell in SP within distance less than 2i−1 from C. Every parent cell
of a heavy cell is heavy and contains the cell, hence there is a cell in grid G(i−1)
within distance less than 2i−1 of C that is heavy, i.e. C or a neighbor of C is heavy.
In other words, every cell in grid G(i) with height at least k∗ is heavy and contains
a heavy cell in SP or has a neighbor in grid G(i− 1) that is heavy and contains
a heavy cell in SP . We will now proceed as follows. For each heavy cell Hi in
SP(i), we consider all cells that contain it. For each such cell Hj , j > i, in grid
G(j), we assume that its constant number of neighbors in grid G(j+1) all contain
a facility, if and only if Hj is not marked. Thus, every heavy cell contributes at
most f + O(f) ·

∑
j≥i Pr[Hj is not marked]. We have Pr[Hi is not marked] =

(1 − 1/T (i))nP (Hi) ≤
(

1
e

)nP (Hi)/(2T (i)). It follows that Pr[Hj is not marked] ≤
e−j · Pr[Hi is not marked]. This implies

∑
j≥i Pr[Hj is not marked] = O(1).

Hence, the expected contribution from cells with height greater than k∗ is at
most O(f) times the number of heavy cells in SP . However, the number of
heavy cells in SP is at most E(P)/f . Thus, the overall contribution of the cells
with height greater than k∗ is at most E(P). Using Markov inequality we get
the following lemma.

Lemma 5. Erand(P) = O(E(P)) with probability at least 3/4.

5 Streaming Algorithm

In this section, we describe how our randomized algorithm can be transferred to
a streaming algorithm that maintains a constant factor approximation for the
facility location cost under insertions and deletions. Let M(i) be the subset of
marked cells in G(i) and let U(i) be the subset of cells in G(i) that have a cell
contained in the set

⋃i−1
j=0 M(j) within a distance of less than 2i−1. Thus, we

have Erand(P) =
⋃log Δ

i=0 f · |M(i)\U(i)|. Now, the difficulty is to maintain for
each level i a good estimator for the value |M(i)\U(i)| in the streaming model.

We use a similar technique as described in [13] to solve this problem. In
particular, we use two data structures that both maintain the number of distinct
elements in a stream, under insertions and deletions. The first data structure
called DE1(i) is supposed to maintain a good estimator for the value |M(i)∪U(i)|
and the second data structure called DE2(i) is supposed to maintain a good
estimator for the value |U(i)|. Then, the difference of both estimators is a good
estimator for the desired value |M(i)\U(i)|. Let Cp(i) be the cell in level i that
contains the point p and let hi : {1 . . .Δ}d → {1, . . . , �T (i)�} be the random
hash function introduced in Section 4. Then our implementation is as follows:

– Insert(i, p): if hi(p) = 1 insert Cp(i) in DE1(i) and, for each j > i, insert
Cp(j) and all cells in G(j) such that Cp(i) is within a distance of less than
2j−1 in both DE1(j) and DE2(j)

Facility Location in Dynamic Geometric Data Streams 669

– Delete(i, p): if hi(p) = 1 delete Cp(i) from DE1(i) and, for each j > i,
delete Cp(j) and all cells in G(j) such that Cp(i) is within a distance of less
than 2j−1 from both DE1(j) and DE2(j)

– Estimator for the cost of level i: invoke DE1(i) and DE2(i) and output their
difference as an estimator for the cost of level i

Analysis. We show that our streaming algorithm outputs a constant factor ap-
proximation of the optimal facility location cost, has polylogarithmic update
time, and uses polylogarithmic memory space. For that purpose, we analyze the
quality and complexity of the random hash functions and the distinct elements
data structures.

We use the technique introduced in [7] to overcome the assumption of totally
random hash functions. For that purpose, we replace each fully random hash
function hi by a hash function h′i that maps each point p ∈ {1 . . .Δ}d indepen-
dently and almost uniformly at random to a value from {1, . . . , �T (i)�}. More
precisely, for a user-defined value α < 1, the hash value h′i(p) is equal to 1 with
probability greater than 1/ �T (i)� − α and less than 1/ �T (i)�+ α. We refer the
reader to [7] for more details about the construction of h′i. However, its space
requirement is only O(log2(Δ/α)) bits. Thus, for α = 1/Δd, the hash function
h′i is sufficiently close to a fully random hash function and needs O(log2Δ) bits
of storage.

From the analysis in Sections 3 and 4, it follows that Erand(P) = Ω(Opt(P))
and Erand(P) = O(Opt(P)) is true with probability at least 9/16. Thus, with
probability at least 9/16 we have that 1/c · Opt(P) ≤ Erand(P) ≤ c · Opt(P)
for an appropriate chosen constant c. If we use the technique presented in [10],
our data structures to maintain the number of distinct elements under insertions
and deletions have the following properties.

Lemma 6 ([10]). There is a data structure that maintains a (1+ε)-approxima-
tion of the number of distinct elements in a data stream under insertions and
deletions with probability 1− δ. The update time of an element is O(log 1

ε · log 1
δ)

and the storage requirement is O(1
ε2 · (logΔ + logm) · logΔ · log 1

δ) bits, where
Δd is the size of the domain of the elements and m is the sum of frequencies of
the elements in the stream.

We will show that the error of the facility location cost that occurs by using
those DE data structures is dependent on the value

∑log Δ
i=0 f · |M(i)|. Hence, we

give an appropriate upper bound of this value to be able to restrict the error.

Lemma 7. If Erand(P) ≤ c · Opt(P) then we have
∑log Δ

i=0 f · |M(i)| ≤ c · 3d ·
(log(Δ) + 1) ·Opt(P).

Proof. We open in each marked cell in G(0) one facility. Thus, f · |M(0)| =
f ·|F(0)| ≤ c·Opt(P). For any level i > 0, we open a facility in each cell C ∈ M(i)
such that no subcell of C is marked and no smaller cell within a distance of less
than 2i−1 is marked. Hence, for at most 3d cells in M(i) there exists at least one
cell in

⋃i
j=0 F(j). As a consequence, f · |M(i)| ≤ 3d ·

⋃i
j=0 |F(j)| ≤ 3d ·c ·Opt(P)

670 C. Lammersen and C. Sohler

is true for any level i. Now, the lemma follows simply by the fact that there are
log(Δ) + 1 levels. �

We can show that the error of the facility location cost that occurs by using DE
data structures to maintain the number of distinct elements in data streams can
be reduced to 1/(2c) ·Opt(P).

Lemma 8. If Erand(P) ≤ c · Opt(P) and if we run each DE data structure
to maintain a (1 + ε)-approximation of distinct elements in data streams under
insertions and deletions with an error parameter ε ≤ 1/(4c2 · 32d · (log(Δ) + 1)2)
and a failure probability δ < (1 −

√
8/9)/(2(log(Δ) + 1)), then the error of

the estimator for the value
∑log Δ

i=0 f · |M(i)\U(i)| that occurs by using DE data
structures and that is dependent on the number of cells in

⋃log Δ
i=0 U(i) is at most

1/(4c) ·Opt(P) with probability greater than
√

8/9.

Proof. By union bound, the probability that each of the 2(log(Δ) + 1) DE data
structure maintains a (1 + ε)-approximation is greater than

√
8/9.

For any level i and each cell C in U(i), either C has a subcell that is contained
in

⋃i−1
j=0 M(j) or at least one cell in Γ (C) in grid G(i) has a subcell that is

contained in
⋃i−1

j=0 M(j). Thus, for at most 3d cells in U(i), there exists at least
one cell in

⋃i−1
j=0 M(j). Hence, we have |U(i)| ≤ 3d ·

∑log Δ
i=0 |M(i)|. Summation

over all levels results in
⋃log Δ

i=0 |U(i)| ≤ 3d · (log(Δ)+1) ·
∑log Δ

i=0 |M(i)|. Thus, we
can upper bound the error that occurs by using DE data structures and that is
dependent on the number of cells in

⋃log Δ
i=0 U(i) by at most ε · f ·

∑log Δ
i=0 |U(i)| ≤

ε · f · 3d · (log(Δ) + 1) ·
∑log Δ

i=0 |M(i)| with probability greater than
√

8/9. Now,
the correctness follows due to Lemma 7. �

In a similar way, we can prove the following lemma.

Lemma 9. If Erand(P) ≤ c · Opt(P) and if we run each DE data structure
to maintain a (1 + ε)-approximation of distinct elements in data streams under
insertions and deletions with an error parameter ε ≤ 1/(4c2 · 3d · (log(Δ) + 1))
and a failure probability δ < (1 −

√
8/9)/(2(log(Δ) + 1)), then the error of

the estimator for the value
∑log Δ

i=0 f · |M(i)\U(i)| that occurs by using DE data
structures and that is dependent on the number of marked cells is at most 1/(4c)·
Opt(P) with probability greater than

√
8/9.

If 1/c · Opt(P) ≤ Erand(P) ≤ c · Opt(P) and if we run each DE data struc-
ture with an error parameter ε ≤ 1/(4c2 · 32d · (log(Δ) + 1)2) and a failure
probability δ < (1 −

√
8/9)/(2(log(Δ) + 1)), the total error of the DE data

structures is at most 1/(2c) · Opt(P) with probability greater than 8/9. Thus,
we have 1

2c ·Opt(P) ≤ Erand(P) ≤ 2c2+1
2c ·Opt(P) with probability greater than

1/2. Following standard amplification techniques, we can run Θ(r) copies of our
streaming algorithm in parallel to reduce the failure probability to 1/2r.

Theorem 1. There is a randomized algorithm that maintains with probability
1− δ a constant factor approximation of the minimum facility location cost for a

Facility Location in Dynamic Geometric Data Streams 671

stream of points in the discrete space {1 . . .Δ}d under insertions and deletions,
where d is a constant. The algorithm needs O(log(1/δ) · log2Δ · (log logΔ)2)
time to process an insertion or deletion of a point and uses O(log(1/δ) · log7Δ ·
log logΔ) bits of storage.

Proof. We only give a sketch of the proof. To get a failure probability of δ, we run
Θ(log(1/δ)) copies of our algorithm. For each copy we set the error parameter and
the failue probability as defined in Lemma 8. Now, the update time follows due
to Lemma 6 and the fact that we have at most O(log2Δ) update operations on
DE data structures caused by a point. We can create one random hash function
by using O(log2Δ) bits [7]. Now, the space requirement follows due to Lemma 6
and the fact that, for each insertion of a point, our algorithm adds a constant
number of cells to each DE data structure, so that the sum of frequencies m of
elements in each DE data structure is O(n) = O(Δd). �

References

1. Bădoiu, M., Czumaj, A., Indyk, P., Sohler, C.: Facility location in sublinear time.
In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 866–877. Springer, Heidelberg (2005)

2. Chang, K.L.: Pass-Efficient Algorithms for Facility Location. Technical Report
YALEU/DCS/TR-1337 (2005)

3. Chen, K.: On k-Median clustering in high dimensions. In: Proc. 17th ACM-SIAM
Sympos. Discrete Algorithms, pp. 1177–1185 (2006)

4. Cormode, G., Muthukrishnan, S., Rozenbaum, I.: Summarizing and Mining Inverse
Distributions on Data Streams via Dynamic Sampling. DIMACS Technical Report
2005-11 (2005)

5. Feldman, D., Fiat, A., Sharir, M.: Coresets for Weighted Facilities and Their Ap-
plications. In: Proc. 47th FOCS, pp. 315–324 (2006)

6. Feldman, D., Monemizahdeh, M., Sohler, C.: A PTAS for k-means clustering based
on weak coresets. In: Proc. 23rd SoCG, pp. 11–18 (2007)

7. Frahling, G., Indyk, P., Sohler, C.: Sampling in dynamic data streams and appli-
cations. In: Proc. 21st SoCG, pp. 142–149 (2005)

8. Frahling, G., Sohler, C.: Coresets in Dynamic Geometric Data Streams. In: Proc.
37th STOC, pp. 209–217 (2005)

9. Fotakis, D.: Memoryless facility location in one pass. In: STACS, pp. 608–620
(2006)

10. Ganguly, S.: Counting distinct items over update streams. Theoretical Computer
Science 378(3), 211–222 (2007)

11. Har-Peled, S., Kushal, A.: Smaller coresets for k-median and k-means clustering.
In: Proc. 21st SoCG, pp. 126–134 (2005)

12. Har-Peled, S., Mazumdar, S.: On coresets for k-means and k-median clustering. In:
Proc. 36th STOC, pp. 291–300 (2004)

13. Indyk, P.: Algorithms for dynamic geometric problems over data streams. In: Proc.
36th STOC, pp. 373–380 (2004)

14. Meyerson, A.: Online Facility Location. In: Proc. 32nd FOCS, pp. 426–431 (2001)

The Effects of Local Randomness in the

Adversarial Queueing Model�

Yann Lorion and Maik Weinard

Institute of Computer Science
Johann Wolfgang Goethe-Universität Frankfurt am Main

Robert-Mayer-Straße 11-15
60054 Frankfurt am Main, Germany

lorion@tm.cs.uni-frankfurt.de, weinard@thi.cs.uni-frankfurt.de

Abstract. We study the effect of randomness in the adversarial queue-
ing model. All proofs of instability for deterministic queueing strategies
exploit a finespun strategy of insertions by an adversary. If the local
queueing decisions in the network are subject to randomness, it is far
from obvious, that an adversary can still trick the network into instabil-
ity. We show that uniform queueing is unstable even against an oblivi-
ous adversary. Consequently, randomizing the queueing decisions made
to operate a network is not in itself a suitable fix for poor network per-
formances due to packet pileups.

1 Introduction

We work in the adversarial queueing model (see [1]) that has provided a useful
framework for the worst case analysis of queueing policies as well as network
topologies. Many papers have been published in the adversarial queueing setup
throughout the last decade, for a resume see [2].

Graphs are the natural model of communication networks. The vertices repre-
sent the routers and the directed edges indicate the established connections. We
assume the data that is to be transported is organized in blocks of roughly equal
size. We will call these blocks packets and assume that every edge can transport
one packet per time step. Apart from the routing policies, that assign the paths
the packets take, the queueing decisions are crucial for a networks performance.
Queueing policies decide whenever an edge e is contested which packet seeking
to traverse edge e may proceed immediately and which ones have to wait. FIFO
for example is the most prominent queueing policy.

The adversarial queueing model was designed to allow a worst case analysis
of queueing policies in given networks: the insertions of packets are done by
an adversary who also decides which path the packet is supposed to follow on
its way to the destination. Clearly it would be easy for an adversary to create
arbitrary large delays by simply introducing more packets, that need a specific
edge e, than e can handle. Therefore the only restriction of the adversary is to
not straightforwardly overload an edge.
� Partially supported by DFG project SCHN 503/4-1.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 672–683, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Effects of Local Randomness in the Adversarial Queueing Model 673

Definition 1. A sequence of insertions is legal for an (r, b)-Adversary, if for
every time interval I and every edge e ∈ E the number of packets inserted during
I and requiring edge e is bounded by r|I| + b. We call r ≤ 1 the rate and b the
burstiness of the adversary.

Hence if the insertions are performed by an (r, b)-adversary there is no obvious
capacity reason for the network to fail. However it has been shown that queueing
policies like FIFO allow arbitrary pileups of packets even if r is chosen arbitrarily
small (see [3]). On the other hand strategies like LIS (Longest-In-System, giving
priority to the oldest packet) avoid arbitrary pileups and arbitrary transportation
times in every given network. We refer to this ability to keep packet numbers
and transportation times bounded as stability.

Definition 2. A network G is stable under a queueing strategy P against a
(r, b)-adversary, if, starting with an empty initial configuration, the number of
packets in the system is upper bounded by some B(r, b,G) that depends on the
network topology and the parameters of the adversary but not on the time that
the network is exposed to the adversary.

We investigate uniform queueing: the packet traversing edge e is drawn randomly
from the set of packets ready to traverse edge e. Each packet is drawn with the
same probability 1

|Q(e)| with Q(e) being the set of packets waiting before edge
e. This set is usually referred to as the queue of edge e. The term queue in this
context does not imply a first-in-first-out handling of objects.

We assume, the adversary is oblivious and needs to present his entire sequence
of insertions in advance. He is not allowed to change that sequence later on and
cannot adapt it to the result of the random queueing choices in the network.
We choose this weakest form of an adversary as we seek a negative result about
uniform queueing.

Of course, as the queueing is based on random choices, the network could
accidentally mimic a universally stable strategy like Nearest-To-Source. Hence
we need to slightly relax our term of instability. We are able to show, that
uniform queueing is not stable with high probability.

Definition 3. A network G is highly probably instable if for every given con-
stant c a sequence of insertions exists such that the number of packets in the
system after the insertions is at least c with arbitrarily high probability. Through
the entire paper the term ‘highly probable’ will be used as ‘with probability 1 −
exp(−Θ(n))’, n being the size of the initial set of packets (see Section 2).

Our result contrasts a result by [4]. They developed a stable queueing policy
based on randomization: A random priority is determined for every newly in-
serted packet. Every router along the path of the packet advances packets based
on this priority. Hence a router must trust the priority tag on the packet and
every sender must honestly put low priorities on his packets with the appropri-
ate probability. We feel that realistically a router should be restricted to use
only locally reproducible information. Uniform queueing is the simplest possible

674 Y. Lorion and M. Weinard

strategy that utilizes local randomness. As more sophisticated strategies that do
not advance all packets with the same probability are easier to predict for the
adversary, our result suggests, that access to local randomness does not help in
ensuring stability for a system.

2 Proof of Instability

Most instability proofs in the adversarial queueing setup use the baseball graph
of Andrews e.a. (see Figure 1) or a variation of it. It was first used [4] to show the
instability of FIFO for rates greater than 0.85. Even though simulation suggests
that the baseball graph is also unstable for uniform queueing it appears that
this only holds for very high rates above 0.99. In order to keep the proof simpler,
we use an extension of the baseball graph (see Figure 1), in which one of each
double edges is split into k edges. This will allow us to prove highly probable
instability for the rate 0.95. The value of k will be discussed later.

Fig. 1. Baseball graph and extended baseball graph

Next we need to describe the insertions of an (r, b)-adversary with r = 0.95. As
usual in adversarial queueing the insertions are described in rounds. It is assumed
a certain number of packets that still need to traverse a certain remaining path
are in the system. Based on this assumption insertions are performed, such that
afterwards a higher number of packets with the same properties as the initial
set is in the system. As arbitrarily many rounds can be executed, the number of
packets in the system eventually rises beyond any bound. A sufficiently large set
of packets to get the hole process started can always be achieved using burstiness
or separate insertion paths (see [4]).

In the case of randomized queueing that we are interested in, the issue of
stringing together rounds is more sophisticated as the starting set of packets of
later rounds is not fixed but subject to a random distribution. We will address
these specific difficulties in section 2.4.

One round of the adversary is divided into three parts called phases. At the
beginning of a round we assume n packets with the target B0 being in the queue

The Effects of Local Randomness in the Adversarial Queueing Model 675

of d. We will call this set of packets W and refer to these packets as W-packets.
Similar notation will be used for further sets.

The complete injection scheme is given in Table 1. Namely the following in-
sertions are performed: During the first phase the adversary injects X -packets
with the path {d, e1, . . . , ek, d

′}. Since only one packet can cross edge d per time
step, these packets collide with the W-packets and some of the X -packets will
still be stuck in the queue of d at the end of phase 1.

In the second phase the adversary continues to inject packets into the queue
of edge d, these Y-packets have the path {d, f, d′} assigned to them. Again,
there is a collision in d and some of the Y-packets remain in the queue of edge
d. Furthermore the adversary simultaneously injects packets in every queue of
the edges ei each with only that one edge to cross. These packets collide with
X -packets, slow these down and keep some of them from reaching their goal
before phase 2 is over.

During the last phase the adversary tries to collect as many packets as possible
with destination B′

0 in the queue of edge d
′
. For this purpose he injects packets

with path {d′} wich collide with packets injecten in the first two phases. The
goal after the third phase is that the number of packets in the queue of edge d

′

is larger than the size of the initial set W .
In the following sections we need to carefully analyze how the flows of packets

interact and we establish lower bounds on numbers of packets of the given types.

Table 1. Packet injection scheme of the first round

Phase Time steps # packets Name Path

At the beginning n W {d}
1 2.9n 2.755n X {d, e1, . . . , ek, d

′}

2 2n
1.9n Y {d, f, d

′}
∀i : 1.9n ∀i : Y ′

i ∀i : {ei}
3 4.6n 4.37n Z {d

′}

2.1 First Phase

During the first phase the adversary injects packets with the path
{d, e1, . . . , ek, d

′} into the system. We will call this set of packets X .
In the queue Qd the X -packets collide with the initial set. The length t of

the first phase is chosen to maximize the number of X -packets in Qd. Observe
that at most rt X -packets can be inserted in time t and some of them might be
picked by the queuing policy, traverse d and get lost for our purposes. On the
other hand the total number of packets in Qd decreases with rate (1− r). Hence
care must be taken when choosing the parameter t.

We can compute the optimal value for t by switching to a model of continuous
packets allowing us to use differential equations. (see [5]). The results obtained
by using the continuous model do not fully match the expectation values of a

676 Y. Lorion and M. Weinard

discrete model, but become more accurate for increasing n. Being able to choose
an arbitrarily large value for n, the results satisfy our requirements.

It turns out that the maximum number of X -packets in Qd in the continuous
model is reached after nr(1− r)

1−r
r ≈ 2.9n time steps, hence we let the running

time t of the first phase be 2.9n. During this 2.9n time steps the rate forbids
the adversary to inject more than r · 2.9n = 2.755n X -packets. Hence in 0.145n
time steps the adversary does not insert any packets.

We need a highly probable lower bound of X -packets in Qd after the first
phase. We thus consider a worst case for the adversary in which he makes all his
injections at the beginning of the phase, leaving the last 0.145n time steps with-
out injections. That way the probability of X -packets being chosen to traverse
d and getting lost is the highest. Any lower bound on the number of X -packets
in Qd at the end of the phase will hold as well for every legal distribution of the
insertions in the 2.9n steps. For the analysis of this exchange process during the
first 2.755n time steps in Qd the following theorem [6] comes in handy.

Theorem 1. Let Z be the number of nonempty bins when M balls are placed
randomly into N bins. The expectation of Z is given by

μ = E[Z] = N −N

(

1 − 1
N

)M

≥ N
(

1 − e−
M
N

)
.

The probability of a linear deviation by a factor ε can be bounded by

P [|Z − μ| ≥ εμ] ≤ 2 exp
(

− ε
2μ2(N − 1/2)
N2 − μ2

)

= e−Θ(ε2N) , for M < 2N.

In our setup, the bins correspond to the positions in the queue of d. A ball
being thrown into a bin corresponds to the packet in the position being chosen
to traverse d and being replaced by the new X -packet. Initially all the positions
in the queue are taken by W-Packets. If a position is chosen for the first time,
this W-packet is replaced with an X -packet. If the same position is picked again,
one X -packet is replaced with a similar packet leaving the numbers unchanged.
Hence the number of bins, that have been hit by at least one ball is the number
of X -packets in the queue at the end of Phase 1.

Setting N = n and M = 2.755n we get an expected number of X -packets
in Qd after the first 2.755n time steps of n

(
1 − e−2.755

)
> 0.935n. Any linear

deviation from the expected number is highly improbable.
For the remaining 0.145n time steps of phase 1 we assume (worst case) that a

X -packet is chosen to traverse d in every step. Hence we expect at least 0.79n X -
packets inQd at the end of phase 1. Furthermore for every ε1 > 0 it is highly improb-
able to eventually have less than (0.79 − ε1)n X -packets in Qd. The total number
of packets in Qd at the end of the first phase is exactly n− 2.9n · (1− r) = 0.855n.

2.2 Second Phase

During the second phase the adversary inserts two distinct sets of packets si-
multaneously. He injects Y-packets with the path {d, f, d′} and for every i with

The Effects of Local Randomness in the Adversarial Queueing Model 677

(1 ≤ i ≤ k) he injects Y ′

i -packets with the path {ei}. Observe that these inser-
tions may legally be done simultaneously, as the assigned paths of the sets are
edge disjoint. The Y-packets collide with a set of exactly 0.855n packets in Qd

consisting of mostly X -packets and some remaining W-packets.
The adversary’s intent is to maximize the number of Y-Packets in Qd, and at

the same time keep as many X -packets as possible in the queues Qe1 , ..., Qek
.

The optimal running time for maximizing the number of Y-packets in Qd can
be shown to be about 2.5n time steps. Observe that the replacement of W- and
X -packets in Qd by Y-packets is essentially the same setup as the replacement
of the W-packets with the X -packets in the first phase.

However, letting the second phase run for 2.5n time steps gives the X -packets
to much time to traverse all the ei, reach B′

0 and vanish. The adversary needs
a large number of X -packets still stuck in the network at the end of the phase.
Simulations have shown that a running time of 2n is a good compromise and we
now prove a lower bound for the number of X - and Y-packets still in the system
at the end of the phase that will be met with high probability.

At first we concentrate on the Queue Qd. In 2n steps the adversary may
insert 1.9n Y-packets. As soon as a Y-packet is inserted into Qd it has a chance
to be chosen to traverse d and be lost for our purposes. We thus analyze the
setup with the adversary inserting his 1.9n packets in the first 1.9n steps and
remaining inactive for the last 0.1n steps.

Using Theorem 1 with N = 0.855n and M = 1.9n we obtain an expected num-
ber of Y-packets in Qd after the first 1.9n time steps of phase 2 of
0.855n

(
1 − exp(− 20

9)
)
> 0.72n. Any linear deviation from the expected number

is highly improbable.
For the remaining 0.1n time steps of phase 2 we assume (worst case) that a

Y-packet is chosen to traverse d in every step. Hence we expect at least 0.62n
Y-packets in Qd at the end of phase 2. Furthermore for every ε2 > 0 it is highly
improbable to eventually have less than (0.62 − ε2)n Y-packets in Qd.

Secondly we examine the course of the X -packets in phase 2. We need to
guarantee that a certain number of X -packets is still stuck in the network at
the end of phase 2. We know that we start phase 2 with at least (0.79 − ε1)n
X -packets with high probability. Thus we seek an highly probable upper bound
on the number of X -packets that reach B′ and leave the system during phase 2.

We can model the random processes of phase 2 in an idealized manner ex-
ploiting the following lemma:

Lemma 1. Given an initially empty bin a round consists of putting a red and
a blue ball into the bin and removing one ball at random afterwards. The total
number of balls in the bin after N rounds is N , the expected number of red balls
is 1

2N and the probability that at least N
(

1
2 + ε

)
of the balls are red is smaller

than (1 − ε)εN .

Proof. The first two claims are obvious. To calculate the deviation of the ex-
pected value we build a Markov chain with a state for every possible constella-
tion of balls in the bin. Each state has a label [r, b] describing the number of red
and blue balls. At the beginning the bin is empty, hence we label the first state

678 Y. Lorion and M. Weinard

[0, 0]. Every state [r, b] has two transitions, [r, b] → [r + 1, b] with probability
b+1

r+b+2 and [r, b] → [r, b+ 1] with probability r+1
r+b+2 .

Starting in [0, 0], after N transitions the Markov chain reaches a state [r, b]
with r + b = N . What is the probability to reach a distorted state (i.e.: a state
[r, (N − r)] with r ≥ N(1/2 + ε))? We calculate an upper bound by multiplying
the number of paths ending in a distorted state with the highest probability of
such a path.

There are N(1/2 − ε) distorted states and no state is reached by more paths
than the state [N(1/2 + ε), N(1/2 − ε)]. Hence

R := N

(
1
2
− ε

)

·
(

N
N
2 − εN

)

is an upper bound for the number of paths to any distorted state.
Now we need to find the path to a distorted state with the highest probability.

The most probable path ends in [N(1/2 + ε), N(1/2− ε)] and its run is depicted
in figure 2. Namely it stays in balanced states for as long as possible. We call a
state [r, b] balanced if r− 1 ≤ b ≤ r+ 1. The last εn transitions have to increase
the number of red balls.

Along the path with the highest probability the denominator of the transition
probabilities increases each step by one. In between balanced states the numer-
ator of the transition probability increases every two steps by one and for the
last εn transitions stays constant, giving a total probability of

T :=
1

(N + 1)!
·
[(

N − εN

2

)

!
]2(

N − εN

2

)εN

.

Fig. 2. The first figure shows the most probable path to a distorted state. The alterna-
tive path (dotted) is less probable, which is shown with a local argument in the second
figure. For r ≥ b the probability for path A is higher than for path B.

(r+1)(b+2)(b+2)
(r+b+2)(r+b+3)(r+b+4) > (b+1)(b+1)(r+3)

(r+b+2)(r+b+3)(r+b+4) ⇔ 2rb + 3r + 1 > 2b2 + 2b

The Effects of Local Randomness in the Adversarial Queueing Model 679

Hence R · T ≤ (1 − ε)εN is an upper bound of the probability to reach a
distorted state (See [5] for the arithmetics). �

We need an upper bound on the number of X -packets traversing every ei during
phase 2. We obtain that by showing that the ratio of X -packets that reach a
certain Qei approaches 0 as i increases. Hence by choosing k large enough we can
assure that an arbitrary high percentage of X packets remains in the system.

For the analysis we assume (worst case) that an X -packet traverses d in every
time step of phase 2 maximizing the number of X packets that have a chance to
reach their destination.

Furthermore for every i we assume that the X -packets that do reach Qei

during phase 2 arrive consecutively during the first steps of phase 2. Again this
is a worst case assumption as it gives packets most time to traverse the edge.

Finally, for the sake of the argument we assume, that the adversary may insert
Y ′

-packets at rate 1. We will then show how this assumption can be lifted.
Let qin be a highly probable upper bound on the number of X packets that

reach ei. We proceed by induction over i. For i = 1 we set q1 = 2 as we assume
a X packet traverses d in every step of phase 2.

For the first qin steps of phase 2 a X -packet and a Yi-packet arrives in Qei .
Lemma 1 guarantees, that with high probability at most qi(1

2 + ε)n packets
traverse ei during this phase.

For the last (2 − qi)n steps of phase 2, there are no X -packets arriving in
Qei , we are hence in the replacement setup discussed in Theorem 1 with N =
qi
(

1
2 − ε

)
n and M = (2−qi)n. We neglect Y ′-packets that might be in Qei after

qin steps, as they can only slow down X -packets. We get from Theorem 1 that
with high probability at most

n

[

qi

(
1
2
− ε

)(
1 − e

− 2−qi
qi(1/2−ε)

)
+ ε

′
]

≥ qin

(
1
2
− ε∗

)(
1 − e

− 2−qi
qi(1/2−ε∗)

)

X -packets cross the edge ei+1 at the end of phase 2 (for an adequate ε∗). Hence
a high probable higher bound of X -packets, that reach Qei+1 , is given by

qi+1 ≤ qin (1/2 + ε∗) + qin (1/2 − ε∗)
(

1 − e
− 2−qi

qi(1/2−ε∗)

)

= qin
(

1 − (1/2 − ε∗) e−
2−qi

qi(1/2−ε∗)

)
≤ qi

(

1 − e
− 6

qi
−3

3

)

for ε∗ ≤ 1/6.

Because 0 < e
6
qi

−3
/3 < 1, the sequence is strictly monotonically decreasing

and approaches 0 (see [5]). Hence every given ratio of X -packets can be held in
Qe1 , . . . , Qek

with high probability if we choose k sufficiently large:

Theorem 2. We assume that in every time step of the second phase one X -
packet arrives in Qe1 and that the adversary injects one Y ′

-packet for every edge
e1, . . . , ek. Let qin for 1 ≤ i ≤ k be the number of X -packets reaching Qei during
the second phase, then ∀ ε ∈]0, 1[∃ k ∈ � : P (qkn ≥ εn) ≤ e−Θ(n).

680 Y. Lorion and M. Weinard

To simplify matters we choose concrete numbers. We assume that the value of k
is large enough, so that 99% of the X -packets are held in Qe1 , . . . , Qek

with high
probability1. Hence during the 2n time steps of the second phase only 0.02n X -
packets pass Qek

. As in our setup at most (0.79− ε1)n X -packets pass d during
the second phase, the likelihood of such a high amount of packages passing Qek

is even lower.
In order to comply to the rate of 0.95 the adversary must restrain from insert-

ing packets for 0.1n time steps. Hence he cannot insert Y ′

i -packets in every time
step like we assumed. However, even if in each of these 0.1n steps a X -packet is
chosen in each Qei at most 0.1n X -packets slip through, while the composition
of packets in each queue stays the same.

So with high probability after the second phase the queues Qd, Qe1 , . . . , Qek

contain at least (0.79 − ε1)n− 0.02n− 0.1n = (0.67 − ε1)n X -packets.

2.3 Third Phase

During the third phase the adversary wants to collect packets with destination
B

′

0 in Qd′ . He injects only Z-packets with the path {d′}, so that all other queues
are emptied. The total number of packets with destination B

′

0 – all X - and Y-
packets – is at the beginning of the third phase with high probability at least
(0.67 − ε1)n + (0.62 − ε2)n = (1.29 − ε3)n.

We let the running time of the third phase be 4.6n. At the beginning of the
first phase there were n packets in Qd, hence after the second phase Qd contains
n−4.9(1− r)n = 0.755n packets. These packets cross the edge d during the first
0.755n time steps of phase 3. Every Y-packets that arrives in Qf is one time step
later in Qd′ . No queue Qei contains more than 1.9n packets, so every X -packet
in Qei reach Qd′ after at most 1.9n+ k + 1 time steps. For n >> k, a running
time of 4.6n is more than sufficient.

Theorem 3. With high probability at least (1.29−ε3)n+4.6n·0.95 = (5.66−ε3)n
packets reach the queue of d

′
during phase 3 but only 4.6n can traverse d′. Hence

with high probability the queue Qd′ contains at least (1.06 − ε3)n packets with
destination B

′

0 after the third phase (i.e. W-packets of the next round).

We had started with a queue Qd containing n packets with destination B0 and
have now arrived at a queue Qd′ containing at least (1.06 − ε3)n packets with
destination B

′

0 for every arbitrarily small ε3.
To obtain an arbitrarily large number of packets, we need to repeat the three

phases. At this point we need the symmetry of the graph. The adversary can
repeat all three phases – henceforth called a round – only this time starting in
A

′
and ending in A etc.

1 In fact we have shown that qi+1 has a certain maximal value with high probability,
provided qi is of a certain maximum value. As we are only interested in a constant
number k of iterations, the bound for the total number holds with high probability
as well.

The Effects of Local Randomness in the Adversarial Queueing Model 681

2.4 Repeating the Three Phases

Repeating rounds is not as trivial as it seems at first glance. The adversary has
to determine his strategy before even one packet has crossed an edge. For the
first round he knows the number of packets waiting in Qd and is able to calculate
optimal running times for all three phases. For every further round he has to
guess the number of packets and thus the running times.

From Theorem 3 we know, that if the adversary expects the growth rate to be
arbitrarily close to 1.06, the real growth rate will be higher with high probability.
Hence all running times will be based on an underestimated number of packets,
motivating the following theorem.

Theorem 4. Let ni
re be the real number and ni

est be the estimated number of
W-packets at the beginning of the i-th round. If ni

re = ni
est(1 + δ) for δ > 0, then

the expected value of ni+1
re = ni+1

est (1+γ) with 0 < γ < δ, hence the real number of
packets rises regardless of an adversary underestimating the number of packets.

Proof. For this proof we look more precisely into the results of the differential
equations mentioned in Section 2.1. Let nest be the estimated number of W-
packets at the beginning of an arbitrary round. The running time of the first
phase chosen by the adversary depends only on his estimation.

nest

(
(1 − r)(

1−r
r) − 1

r − 1

)

.

The expected2 number of X -packets in Qd after the first phase however depends
on the real number of packets initially in Qd.

EX (t) = −
(

nre
r

tr − t + nre

)(1
r−1)

+ tr − t+ nre

Let t = t1 be the value maximizing EX (t). Let nre := (1+δ)nest for δ ≥ 0, hence

EX (t1) = −
(

(1 − r)(
1−r

r) + δ
)(1

1−r)
· n(1

1−r)
est · (nest + nestδ)(

r
r−1)

+ nest(1 − r)(
1−r

r) + nestδ

= nest

[

−
(

(1 − r)(
1−r

r) + δ
)(1

1−r)
· (1 − δ)(

r
r−1) + (1 − r)(

1−r
r) + δ

]

.

The difference between the expected number of X -packets after a first phase
based on the real and one based on an underestimated number of packets is

EX (t1)−Ereal
X (treal1) = nest

[

−
(

(1 − r)(
1−r

r)+δ
)(1

1−r)
· (1 − δ)(

r
r−1)+(1−r) 1

r + δ

]

and 0 ≤ EX (t1) − Ereal
X (treal1) ≤ δ · Ereal

X (treal1) holds for 0 ≤ δ < 1.
2 As already mentioned the results of the differential equations do not fully match, but

converges to the expected value from the discrete system. As we are able to choose
an arbitrarily large value for n, this suffices.

682 Y. Lorion and M. Weinard

If a round starts with an underestimated number of packets, after the first
phase the expected value of X -packets will still be higher than estimated, but
the factor of the underestimation will decrease – a self correcting process.

Example 1. If the adversary starts the first phase knowing the real number of
packets (nest = nre), the rate r = 0.95 leads to an optimal running time t1 ≈
2.9nest = 2.9nre for the first phase and an expected number of EX ≈ 0.81nest =
0.81nre X -packets. An adversary underestimating the number of packets by the
factor two (nre = 2nest) calculates an optimal running time of t1 ≈ 2.9nest ≈
1.5nre. In this case EX ≈ 0.7nre ≈ 1.4nest holds, so the expected value of X -
packets has grown from 0.81nest to 1.4nest by a factor lower than two.

Since at the beginning of the second phase there are still more packets in Qd

than the adversary assumes we have the same effect on the expectation value as
just shown for the first phase.

For Qe1 , . . . , Qek
we assumed a worst case that holds even if nre > nest. In our

assumption one X -packet per time step tried to cross Qe1 , . . . , Qek
. No matter

how wrong the adversary estimated the number of X -packets, this assumption
will always hold.

The bound of deviation in Theorem 1 is even better if nest < nre. The more
packets there are, the less probable it is to pick a newly injected packet to leave
the queue. The same holds for Qd in the second phase.

The third phase could be a problem, if its running time was not sufficient
for all packets to reach Qd′ , as remaining packets from previous rounds might
interfere with packets of following rounds. However the following lemma indicates
that this problem cannot arise if the running time is chosen to be 4.6nest time
steps.

Lemma 2. The real number of packets nre cannot be higher than 4.6nest.

Proof. At the beginning of the first round n1
re = n1

est. If nj
re is higher than 4.6nj

est,
a first point in time i exists, so that ni

re ≤ 4.6ni
est and ni+1

re > 4.6ni+1
est . The

adversary estimates a growth rate of 1.06, hence 4.6ni+1
est equals 1.06 · 4.6ni

est =
4.87ni

est at the end of round i. To have at least 4.87ni
est packets at the end of

the third phase turning into W-packets of the (i+ 1)-th round, at the beginning
of the third phase there were at least 4.6ni

est · (1 − r) + 4.87ni
est = 5.1ni

est X -
and Y-packets waiting in queues. During the first two phases less than 2.9ni

est

X - and 2ni
est Y-packets were injected, hence this is impossible. �

We conclude, that at the beginning of every round only packets with the path
d (d

′
) exist. The number of packets in the system rises even with the adversary

underestimating the number of packets:

Theorem 5. Uniform queueing is highly probably instable at rate 0.95 on the
extended baseball graph.

Simulations show that on the other hand overestimating the number of packets
can lead to a total loss of all packets (see [5]).

The Effects of Local Randomness in the Adversarial Queueing Model 683

3 Conclusion

We have shown that uniform queueing is unstable with high probability. We
have assumed an oblivious adversary who may not react to the random queueing
decisions, which makes the construction of an insertion sequence resulting in a
packet pileup considerably more involved.

In online setups quite often introducing randomness into a process makes the
construction of a malicious input impossible. Randomized quicksort outperforms
deterministic quicksort, randomized paging algorithms do better than determin-
istic ones. Our result shows that uniform queueing, which can be seen as a form
of randomized FIFO, is unstable just as well as FIFO. The simulations however
show, that it appears to be superior to FIFO in terms of absolute numbers of
packets.

Uniform queueing is the randomized queueing strategy with the least foresee-
able behaviour. Hence our result appears to suggesting that local randomness in
general is insufficient to enforce stability.

References

[1] Borodin, A., Kleinberg, J., Raghavan, P., Sudan, M., Williamson, D.P.: Adversarial
queuing theory. J. ACM 48(1), 13–38 (2001)

[2] Cholvi, V., Echagüe, J.: Stability of fifo networks under adversarial models: State
of the art. Comput. Networks 51(15), 4460–4474 (2007)

[3] Bhattacharjee, R., Goel, A., Lotker, Z.: Instability of fifo at arbitrarily low rates
in the adversarial queueing model. SIAM Journal on Computing 34(2), 318–332
(2005)

[4] Andrews, A., Fernandez, L., Liu, K.: Universal-stability results and performance
bounds for greedy contention-resolution protocols. J. ACM: Journal of the ACM 48
(2001)

[5] Lorion, Y., Weinard, M.: The effects of local randomness in the adversarial queueing
model. Technical Report 2008/01, Frankfurter Informatik Berichte (2008) ISSN
1616-9107

[6] Kamath, A.P., Motwani, R., Palem, K., Spirakis, P.: Tail bounds for occupancy
and the satisfiability threshold conjecture. Random Structures and Algorithms 7,
59–80 (1995)

Parallel Imaging Problem

Thành Nguyen� and Éva Tardos��

Cornell University
{thanh,eva}@cs.cornell.edu

Abstract. Metric Labeling problems have been introduced as a model
for understanding noisy data with pair-wise relations between the data
points. One application of labeling problems with pair-wise relations is
image understanding, where the underlying assumption is that physically
close pixels are likely to belong to the same object.

In this paper we consider a variant of this problem, we will call Paral-
lel Imaging, where instead of directly observing the noisy data, the data
undergoes a simple linear transformation first, such as adding different
images. This class of problems arises in a wide range of imaging prob-
lems. Our study has been motivated by the Parallel Imaging problem
in Magnetic Resonance Image (MRI) reconstruction. We give a constant
factor approximation algorithm for the case of speedup of two with the
truncated linear metric, motivated by the MRI reconstruction problem.
Our method uses local search and graph cut techniques.

1 Introduction

In this paper we propose a problem, we will call Parallel Imaging, that combines
features of the Metric Labeling problem with linear algebra. Metric Labeling prob-
lems have been studied extensively [8,2,5,6] with one of the primary applications
for image processing. In the image processing application the data observed is as-
sociated with each pixel of an image (such as intensity, depth, etc). Given noisy
data about the image we want to recover the most likely original data. Motivated
by a model of images via Markov Random Field [9] this imaging problem is often
solved via an energy minimization approach called the Metric Labeling problem
that combines features of the assignment and graph partitioning problems. In this
paper, we consider a variant of this problem where there are multiple independent
data values associated with each node of the graph, and we are observing different
linear combinations of the associated data at each node.

Our original motivation for studying this problem came from Magnetic Res-
onance Imaging (MRI), an important medical technology widely used for both
clinical and research applications. For many medical applications its essential
to reduce scan time mainly due to reducing motion artifacts. To speed up the

� Supported in part by ONR grant N00014-98-1-0589 and ITR grant CCR-0325453.
�� Supported in part by ITR grant CCR-0325453, ONR grant N00014-98-1-0589 and

NSF grant CCR-0729006.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 684–695, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Parallel Imaging Problem 685

image acquisition MRI technology uses multiple parallel scans. Raj, Singh and
Zabih [10] show how this parallel MRI imaging problem gives rise to the kind of
the labeling problem discussed in this paper where the number of observations
associated with each node is the speedup factor used in the process. Our main
result is a constant factor approximation algorithm for the case of this problem
speeding up image acquisition by a factor of two.

The Metric Labeling Problem. The Metric Labeling problem is defined as follows.
We are given a graph G and a label set L. Our goal is to associate a label value
f(v) ∈ L with each node v of the graph G. There are two competing factors in
defining the most appropriate label for a node. First, the label f(v) should be
identical, or at least similar to an observed data value o(v). Second, neighboring
nodes in the graph should obtain similar labels. These goals are expressed by an
“energy” function of the form: Assignment Cost + Separation Cost =

∑

v∈V

Av(f(v), o(v)) +
∑

e=(u,v)∈E

wed(f(v), f(u)).

Here Av(α, o(v)), or sometimes we only write Av(α), is an assignment cost of
assigning label α to a node v with observed label o(v). The assignment cost
is trying to encourage a labeling that is close to the observation. The goal of
the second term is to encourage neighboring nodes to have the same or similar
labels. The function d(α, β) is the distance between labels, and we will assume
that this distance is a metric, and the value we for an edge e = (u, v) expresses
the strength of the connection between u and v, the strength of the penalty for
assigning u and v (very) different labels.

Image Reconstruction Problem. In imaging problems, an image is modeled as a
graph whose vertices are the pixels of the image, and the neighbors of a vertex
are either 4 or 8 pixels around. Labels can represent a variety of properties of
the associated object, such as color, intensity (darkness), or distance from the
camera. In this paper we consider black-and-white imaging problems, such as
the images obtained by the MRI technology, and will use integers (intensity or
darkness) as labels. For such problems, the most commonly used term for the
assignment penalty function Av(., .) is the square norm (f(v) − o(v))2, where
assignment cost is then

∑

v∈V

Av(f(v), o(v)) = ||f − o||22.

This assignment cost is motivated via the probabilistic roots of the labeling
problem. If the observed labeling o(v) is generated from a labeling f(v) by adding
Gaussian random noise, then the above assignment cost is proportional to the
probability that f(v) is the original labeling, assuming we see observation o(v).

The separation term expresses the goal that most pairs of neighboring nodes
should have same or similar labels. In the context of imagining, this is a reason-
able expectation as most useful images have only a few objects (e.g., the organ

686 T. Nguyen and É. Tardos

that is subject of the MRI, and some of the neighboring organs), and pixels be-
longing to the same object or same body part typically have the same or similar
labels. One simple option is to use the linear metric d(u, v) = |f(v)−f(u)|. How-
ever, a more robust metric is the truncated linear metric d(α, β) = min(M, |α−
β|) where M is a parameter of the problem. Here, small changes in labeling come
with a small penalty, as small change in label can reflect gradual changes in the
object, but the bigger the change is, the more likely that we have an object
boundary. However, once the difference of the assigned labels is large enough,
it does suggest an object boundary independent of the actual size of the differ-
ence. Our goal is to only have few object boundaries. This suggests that after
some difference, the penalty should remain constant and not grow further with
the difference in labels. This robustness of the truncated linear metric helps in
obtaining sharp object boundaries of the resulting images.

Our problem: Parallel Imaging Problem. In MRI, when an image is scanned
with double speed, instead of getting the data on each pixel, we obtain a linear
transform of the image. In particular, a receiver is observing an image whose
width is equal to half of the the width of the original image, obtained by adding
these two strips of the original image with some positive coefficients depending
on the position of the receiver. See [10] for more details. Hence, in order to
reconstruct an image, we need data on more than one receiver. Assume we have
k receivers with the corresponding linear transform H1, .., Hk and the observed
data vectors o1, .., ok.

Now, we model an image as two identical copies G1, G2 corresponding to the
strips of the image. And we use the following convention if v1 is a node in G1

then v2 is its copy in G2 and vice versa. Let f : V1 ∪ V2 → L be a labeling.
Without noise, the linear transform Hj at receiver j adds the labeling of v1 and
v2 with some positive coefficients hjv1 and hjv2 for all pairs of vertices to get
oj(v) = hjv1f(v1) + hjv2f(v2).

Similar to the traditional Metric Labeling problem, our goal now is to find
a labeling f to minimize the sum of assignment cost and separation cost. The
assignment cost is :

∑
j ||Hjf − oj ||2. And the separation cost is the sum of the

separation cost of f in G1 and G2 as discussed above. More precisely, we need
to find a labeling to minimize

∑

j

||Hjf − oj ||2 +
∑

uv∈G1∪G2

wuvd(f(v), f(v)).

We call this problem Parallel Metric Labeling if d is an arbitrary metric, and
Parallel Imaging if d is a linear truncated metric. The main result of this paper
is a constant approximation for the Parallel Imaging problem.

Note. We simplify the problem a bit by considering each “strip” of the original
image as a separate graph Gi, that are not related to each other. This simplifi-
cation ignores the edges connecting the strips, but only a very small fraction of
the edges are ignored, so the method should still lead to good image quality.

Parallel Imaging Problem 687

Related works. In this paper, we consider a class of applications where data
is observed via a linear transformation. Traditional reconstruction models for
such data do not use priors. Given the data f , the observation is through a
linear transformation Hf , where H is a non-negative matrix. The traditional
reconstruction uses a least squares application to reconstruct the data: Given
observed data o, the method looks for the labeling f that minimizes ||o−Hf ||22.
We consider a problem, which adds priors to the above least squares image recon-
struction. This problem combines the combinatorial problem of Metric Labeling
with added linear algebraic features. The problem was introduced by Raj, Singh
and Zabih [10]. In this work they developed practical heuristics for this problem
based on ideas from Metric Labeling.

The Metric Labeling problem was introduced in [8], and studied extensively
[2,5,6,8]. The problem is NP-hard for general metric. The best known approx-
imation algorithm for the problem is an O(log |L|) [8] and has no Ω(

√
logn)

approximation unless NP has quasi-polynomial time algorithms [2]. Many spe-
cial cases of the Metric Labeling problem have been considered: [3,7,4,6], among
which [3] and [6] are the closest to ours.

Boykov, O. Veksler, and R. Zabih [3] were the first to develop a local search
technique, called α-extension, for the Metric Labeling problem. For linear trun-
cated metrics, Gupta and Tardos [6] extend the “α-extension” local move to
“interval” local move to obtain a constant approximation. These techniques are
discussed in details in section 4. Our result is a nontrivial extension of [6]: our
assignment cost depends on pairs of nodes. As will be shown, there is a method
to reduce our problem to the traditional Metric Labeling on a different metric.
However, this metric does not have an embedding with a constant distortion
to tree metric as in the case of truncated one and therefore, one cannot get a
constant approximation using this approach. In order to give a constant approx-
imation, we need to develop a new graph construction for the new assignment
cost, and extend the interval-local move introduced in [6].

Organization. The rest of our paper is organized as follows: In section 2 we show
that our problem can be reduced to the traditional Metric Labeling, but this only
gives a logarithmic approximation. In section 3, we give a graph construction
for our new assignment cost. This is a basic step for us to develop a local search
algorithm in section 4.

2 The Parallel Metric Labeling Problem

In this section, we show that the Parallel Metric Labeling problem can be thought
of as a traditional labeling problem with a larger label set and a different met-
ric. Viewing the Parallel Metric Labeling as a traditional labeling problem on
a bigger label set immediately implies that known techniques for Metric Label-
ing to give a logarithmic approximation for the problem. However, using the
larger label set does not allow us to take advantage of the special structure of
the linear truncated metric needed for a constant factor approximation, but this

688 T. Nguyen and É. Tardos

way of thinking about the Parallel Labeling problem will still be useful in the
subsequent sections on defining our combinatorial algorithm (based on graph
cuts and local search).

Now, if instead of considering a labeling as a function on the vertices of G1 and
G2, we consider it as a mapping from the vertices of a single copy to pairs of
labels. The new set of labels is now the set of pairs of numbers. The assignment
cost depending on these two numbers is now a function of a new label. Given
two vertices u an v with the labeling (α1, β1) and (α2, β2), the separation cost is

d2((α1, α2), (β1, β2)) = d(α1, β1) + d(α2, β2).

Now, if d is a metric on L then d2 defined as above is also a metric on L2.
Therefore, given a Parallel Metric Labeling problem with a metric d, we can
understand the problem as an instance of a traditional Metric Labeling problem
with the metric d2 on a larger set of labels. Using the approximation algorithm
for the Metric Labeling problem in [8], we have the following result:

Theorem 1. There is a O(log |L|) approximation for the Parallel Metric Label-
ing problem with any metric d. When d is a truncated linear metric, which is
the Parallel Imaging problem, we get a O(logM) approximation, where M is the
truncation parameter.

Proof. Due to [8], there exists an algorithm for the Metric Labeling problem
that approximates the best solution up to a factor of O(distort), where distort
is the distortion of a probabilistic embedding of the metric in to random trees.

Any metric on K vertices can be probabilistically embedded into to random
trees with distortion logK. This gives the O(log |L|2) = O(log |L|) approxima-
tion. It is not hard to see that the 2 dimensional truncated linear metric can
be embedded into random trees with distortion of O(logM), which proves the
theorem. �

3 The Problem with Linear Metric Is Solvable

We now consider the Parallel Metric Labeling problem where the metric is the
linear metric, i.e., d(α, β) = |α− β|. We will give a graph cut construction that
allows us to get the optimal labeling.

Ideas of using graph cut to find a best labeling have been used in Boykov et
al. [3], Ishikawa and Geiger [7], and Gupta and Tardos [6] for the traditional
labeling problem. These approaches use the following basic construction:

The basic construction. The basic idea is to build a chain for each vertex as
follows. For each vertex v, build a chain v1, v2, ..., vL of length L representing
the possible labels that the vertex can be assigned to. We also add a super
source s and a super sink t to the network as shown in Figure 1(a). Consider the
following correspondence between (s, t)-cuts and labelings:

A labeling f : V → L assigns v to α, (f(v) = α) if and only if the edge vαvα+1

is in the corresponding cut. Here we use the notation that vL+1 = t for all nodes

Parallel Imaging Problem 689

v. To make sure that the mapping between the labelings and the graph cuts is
well defined, we need to guarantee that for every node v there is exactly one edge
of its corresponding chain in the cut. To do this, we add the edges vα+1vα with
infinite capacity. Further, we do not want to cut edge (s, v1), so we also assign
an infinite capacity to this edge in both directions. Now we have a one-to-one
mapping between finite cuts and all the possible labelings.

New assignment cost. In the traditional Metric Labeling problem, assignment
cost is a function of the label of one vertex: Av(α). This can be captured easily
by assigning a capacity of Av(α) to the edges (vα, vα+1) [3,7]. Now, recall from
section 2, our new assignment cost is a function on pairs of labels: If v1 is labeled
α; v2 is labeled β, i.e., f(v) = (α, β), then the assignment cost is

Av(f(v)) =
k∑

j=1

||Hjf(v) − oj(v)||2 =
k∑

j=1

(hjv1α + hjv2β − oj(v))2. (1)

This assignment cost cannot be separated into terms that depends on α and β
separately, as there is the term 2

∑k
j=1 hjv1hjv2αβ = cvαβ. Note that cv > 0 by

the assumption that all the matrices Hj are nonnegative.
The new observation is that we can modify the chain construction above to

capture this assignment cost: For node v1 ∈ G1 we connect the chain of nodes
v1
1 , . . . v

L
1 as described by the above construction. However, for node v2 ∈ G2 we

connect the chain backwards, reversing the rolls of s and t in the construction
for the copy G2 as shown in Figure 1(b). If a cut separates nodes vα

i and vα+1
i ,

then the corresponding labeling assigns vi to label α. Note that the chain for v2
starts its numbering from the t side, and increases towards the s side, and we
are using the notation that vL+1

1 = t and vL+1
2 = s for all nodes v. To model the

assignment cost, we now add a complete graph between the chains of v1 and v2
with capacity cv/2 on each edge. The cut corresponding to labeling f(v1) = α
and f(v2) = β cuts αβ+(L−α)(L−β) of these edges, so these edges contribute
a total of cv

2 (2αβ − Lα− Lβ + L2) to the capacity of the cut.
After adding the above edges between the pairs of chains, the remaining terms in

the assignment cost can be written as the sum of two functions depending onα and
β separately. Any such assignment cost can be captured exactly via the capacity of
the edges in the two chains. However, these costs may now be negative. Consider
a chain, say corresponding to node vi that has some of the resulting edge capacity
negative. To make all capacities nonnegative, we will add the same positive number
to every edge on the chain. This change adds a constant to the capacity of all cuts,
as each finite cut uses exactly one edge in every chain.

Separation cost. As shown in [3,7], the technique of building chains can also help
us to capture some classes of separation cost function. For simplicity we consider
the case of linear separation cost d(α, β) = |α− β|. In this case, consider an edge
of the original graph e = (u, v), we know that the chains corresponding to u, v
are in the same order, because they are both in the same graph G1 or G2. We add
edges uαvα, ∀α ∈ L with the capacity of we. Note that if a cut uses uαuα+1 and

690 T. Nguyen and É. Tardos

ss s s

tt t t

u1v1v1

uLvLvL v1
2

vL
2v1

1

vL
1

α

β
Complete graph

(a) (b) (c) (d)

α
Av(α)

Fig. 1. Constructions for the problem with linear metric

vβvβ+1, then these edges contribute to the cut a total capacity ofwe|α−β|, which
is exactly the separation cost of the corresponding labeling. See Figure 1(c).

We combine the constructions described above as shown on Figure 1(d). We
use the construction for new assignment cost and the construction of for sepa-
ration cost to get the following theorem:

Theorem 2. The Parallel Metric Labeling problem with linear metric and can
be solved in polynomial time via a graph construction such that the minimum cut
of this graph is equal to the minimum cost of the labeling plus a constant. �

4 Constant Approximation Via Local Search

In the previous section, we give a new graph construction whose minimum cut
gives the optimal solution of the Parallel Metric Labeling problem with linear
metric. The problem is, however, NP hard for the truncated linear metric. Local
search has been proved to be a successful method for this type of problems. Our
algorithm also uses this approach. First let us explain some of previous works
that use the local search method for the traditional Metric Labeling problem.

Local Search. For uniform metric d, (d(i, j) = 1 iff i
= j), Boykov et al [3]
give a local search algorithm that tries to relabel some vertices to a label α.
Such best local move can be found via graph cut algorithm. The graph con-
struction is shown in Figure 2 (a): For each edge (u, v) we build a node puv and
connect it with u, v and the super sink s. The weight of spuv, upuv, vpuv are
d(f(u), f(v)), d(f(v), α), d(f(u), α) respectively, where f(u), f(v) are the current
labeling of u and v. The edges su, sv have weights of the current assignment cost
of u and v, while tu, tv have weights of the assignment cost of u and v if as-
signed to the new label α. Given a cut X such that s ∈ X , in its corresponding
relabeling, a vertex u is relabeled iff u ∈ X . The main observation is the follow-
ing: Because d is a metric, the weights of spuv, upuv, vpuv satisfy the triangle
inequality. Thus, any minimum cut separating s and t would cut at most 1 edge
among these three edges. And therefore a minimum cut captures exactly the
cost of the corresponding relabeling. As a result, a best local move can be found
by a single minimum cut algorithm.

Parallel Imaging Problem 691

For truncated metric with the truncated parameter M , Gupta and Tardos
[6] extended the local move above to an “interval” local move, where at every
step they pick a random interval I of length M and try to reduce the cost of
a current labeling by changing some vertices to labels in I. They construct a
graph to find a local move. See Figure 2 (b). It is shown that although a best
labeling could not be found, approximate optimal local moves are enough for a
constant approximation. The idea of the analysis is analogous to that of Boykov
et. al. For a locally optimal labeling, consider a random interval I and use the
fact that relabeling all nodes that have labels α ∈ I in the optimum, does not
yield a cut with improved cost. The main new observation is that for a random
interval, the probability that there is an error in the term associated with an
edge e = uv in the cut construction is 1/M times the distance d(f∗(u), f∗(v))
between the labels assigned to its nodes in the optimum. This fact is used to
show that the expected error is proportional to the optimal separation cost.

u v

s

s

s s

t

t

t t

puv

puv

vi+1
ui+1

vj uj
I II

J
JJ

v1
2

vL
2v1

1

vL
1

α

β

Complete graph

(a) (b) (c) (d)

pv pv pupuv

Fig. 2. Constructions for the local search technique

Our Local Move and the Construction for a Local Move

Our approach is similar to these results. There are, however, some difficulties
that we need to overcome. First, our assignment cost depends on pairs of nodes.
To solve this we use the idea developed in the previous section to construct a
new graph whose cuts approximately capture the cost of relabeling. Second, we
need to modify the “interval” local move in [6] for our problem. To see why a
naive extension of the interval local move does not work, consider a local move
that picks a random interval I from 1, .., L and finds an approximately good
relabeling to this interval, i.e., changing some labels to labels in I. This will not
give us a provable approximation algorithm. For example, when reassigning a
node in Metric Labeling, we capture the assignment cost exactly, while here a
node v in G needs two labels: one of v1 and one for v2, and maybe only one of
the two is in the interval I. To capture the two different labels for a node v, we
do the following:

Pick two random intervals I, J of length at most M each. We will allow in
one local move to relabel pairs of vertices (v1, v2) where v1, v2 are copies
of vertex v in the original graph G, to a new pair of labels (α, β) ∈ I×J .

692 T. Nguyen and É. Tardos

To describe the construction let us fix intervals I, J . Our main goal is to give
a construction where local moves correspond to cuts and the capacity of each
cut has only a small additive error compared to the corresponding local move.
The construction is shown on Figures 2 (c) and (d). For vertex v, we add two
chains {v1

1 , .., v
L
1 } and {vL

2 , .., v
1
2}, as shown on Figure 2(c), to the graph GI×J .

We also add vertex pv connecting to v1
1 and vL

2 . Connect the super source s to pv

with the capacity Av(f(v)), where f(v) is the label currently assigned to vertex
v, and Av(f(v)) is the corresponding assignment cost. Connect vL

1 and v1
2 to the

super sink t. We use the notation: vL+1
1 = t, vL+1

2 = pv.
We would like to have the following one-to-one correspondence between cuts

and labelings. The cut C uses the edge spv if and only if v retains its label f(v)
and uses some pair of edges vα

1 v
α+1
1 and vβ+1

2 vβ
2 , where (α, β) ∈ I × J , if v1 and

v2 is reassigned to labels (α, β) in the corresponding relabeling. To make sure
exactly one of the conditions above occurs, we need to assign infinite capacity to
some other edges. This step is similar to the constructions above. We now need
to add more edges to capture the assignment cost and separation cost.

Assignment cost. This construction is similar to the construction of the linear
case in the previous section. We want to capture the assignment cost of v as
given in the formula (1): We add a complete bipartite graph between {v1

1 , .., v
L
1 }

and {vL
2 , .., v

1
2} as shown on Figure 2(c). The edges go both ways between vα

1 and
vβ
2 with capacity cv

2 . The contribution of these edges to the cut corresponding to
the relabeling to (α, β) is cv

2 (αβ + (L− α)(L− β))= cvαβ + cv

2 (L2 −Lα− Lβ).
The remaining terms in the assignment cost depend on α and β separately, so
we can use the edges of the chain to capture the assignment cost. To make sure
all capacities are nonnegative, we may have to add a constant to the cost.

Separation cost. For each edge in the original graph e = (u, v) let us consider
the following construction shown on Figure 2(d): Add edges between the chains
of u and v: uα

1 v
α
1 , uβ

2v
β
2 for all α ∈ I, β ∈ J . These edges are bidirectional and

have a capacity of we. We also add one more vertex puv, and connect puv with
pu, pv and s in both directions. The capacity of the edge spuv is wed2(f(u), f(v)),
(that is f ’s separation cost on the edge e); of puvpv puvpu are 2Mwe. These three
numbers satisfy the triangle inequality. Therefore, at most one of the three edges
adjacent to puv is cut. This implies that for a minimum cut C and for each edge
(u, v) one of the followings could happen.

– All of puv, pu and pv are on the s side of the cut. In the corresponding
relabeling both u and v get new labels. In this case, the cut perfectly captures
the separation cost.

– s is on one side and pu, pv, puv are on the other side. In the corresponding
relabeling the label of u and v do not change, and the capacity of the edge
spuv captures exactly the separation cost.

– puv is on the s side, and so is exactly one of pu or pv, say pv. See Figure
2(d). In the corresponding relabeling, u keeps its original label, while v gets
a new label. For this case, the cut does not capture exactly the separation

Parallel Imaging Problem 693

cost. However, it is not hard to see that the capacity exceeds the separation
cost, and the total corresponding capacity is 2weM from edge (puv, pu) and
at most we(2M) from the edges between the chains, while the cost of the
corresponding labeling is wed(f ′(v), f(u)), where f ′(v) is the new label that
v gets.

We have seen that the construction above does not capture exactly the cost of a
local move. For an edge e = (u, v), when one of the nodes (say u) retains its label
and v is labeled with some element f ′(v) ∈ I × J . In this case the separation
cost is always greater or equal than the real separation cost of e. And this value
is at most 4Mwe. We summarize this in the following theorem:

Theorem 3. Given a labeling f , and I × J ⊂ L2 where I and J are of size
at most M , then there exists a network GI×J and a constant CONST with the
following properties. All labelings g that can be reached by relabeling to I × J
correspond to cuts in GI×J with capacity at least the Q(g) + CONST . If g is a
labeling obtained by a local move, then the capacity of the corresponding cut over-
estimates Q(g) + CONST by replacing the separation cost of wed(f ′(u), f ′(v))
for edges e = (u, v) where exactly one end receives a label in I × J by a possibly
larger term which is at most 4weM . And finally, the minimum s− t cut in GI×J

corresponds to a labeling. �

The Algorithm and Its Analysis

We use the above construction in a local search algorithm. At each step we
pick two intervals I, J randomly according to Definition 1 below and find the
minimum cut in the graph GI×J . If the corresponding labeling has a lower cost,
then change the labeling to this new one. The algorithm stops if we cannot find
an improving move.

Definition 1. Given a parameter D, a random partitioning process of the grid
L2 into smaller grids according to D is defined as follow. Pick r = (α, β) ∈
{1, .., D}2 uniform-randomly, for each k ≡ α (mod D), and l ≡ β (mod D),
delete all edges in the row k, and column l of the grid. The L2 grid now is
partitioned into smaller parts, each of them is a grid of the form I × J for some
intervals I, J . We call this set of small grids Partition(r). A random rectangle
is understood as a random grid taken uniformly from a random Partition(r).

We prove the following main theorem:

Theorem 4. Any local optima f of the local search algorithm above with D = M
has cost Q(f) that is at most constant times the optimal cost: 9Q(f∗). For any
constant ε > 0, a solution with cost at most (9 + ε)Q(f∗) can be reached in
polynomial time.

Proof sketch. We first need the following notation. For any subset X ⊂ V ,
let A∗(X) and A(X) be the optimum and the current labeling assignment cost
of the vertices in X . For any subset of edges Y ⊂ E, let S∗(Y), S(Y) be the

694 T. Nguyen and É. Tardos

separation cost for those edges paid by the optimum and the current labeling
respectively. Clearly, Q(f) = A(V) + S(E), Q(f∗) = A∗(V) + S∗(E). Consider
the case where the algorithm chooses a random rectangle I × J . Let VIJ be the
set of nodes in G to which f∗ assigns labels from I × J . Let EIJ be the set of
edges in G such that both ends are assigned to I × J in f∗. Let σIJ be the set
of edge in G such that exactly one end is assigned to I × J in f∗. For a random
partition r, let σr be the edges in EIJ for all rectangles I × J in Partition(r),
we have: σr = 1

2

∑
IJ∈Partition(r) σIJ .

Given two intervals I, J , define the following local move.

f ′(v) =
{
f∗(v) if f∗(v) ∈ I × J
f(v) otherwise.

The 9-approximation guarantee follows from comparing Q(f) and Q(f ′) for
every I, J . If we could find a minimum local move exactly then the local opti-
mality of f would imply the inequality : Q(f) ≤ Q(f ′) for every I, J . However,
the graph cut construction only gives us an approximate minimum local move
(Theorem 3). As a result, we only have a weaker inequality. For every I, J the
cost Q(f) is no more than the cost of the labeling corresponding to the minimum
cut in GI×J . The cost of all cuts corresponding to local moves have the same
additive constant. In addition, the cost Q(f ′) of the local move f ′ can have an
additive cost at most 4M

∑
e∈σIJ

we − S′(σIJ), where S′(σIJ) denotes the sep-
aration cost of f ′ on the set of edges σIJ . The labeling f is locally optimal, and
hence with this additive cost the local move f ′ does not correspond to a smaller
capacity cut. This gives us the following inequality

Q(f) ≤ Q(f ′) + 4M
∑

e∈σIJ

we − S′(σIJ).

Expressing the terms contributing to Q(f) and Q(f ′), and deleting terms that
contribute to both we get the following:

A(VIJ) + S(EIJ) + S(σIJ) ≤ A∗(VIJ) + S∗(EIJ) + 4M
∑

e∈σIJ

we.

Summing this inequality over all the rectangles in Partition(r), we get the fol-
lowing, as the edges in σIJ each contribute to two interval pairs.

Q(f) + S(σr) ≤ A∗(V) + S∗(E − σr) + 8M
∑

e∈σr

we.

⇒ Q(f) + S(σr) ≤ A∗(V) + S∗(E) + 8M
∑

e∈σr

we.

Now, we need to bound the error term 8M
∑

e∈σr
we. This value depends on

the partition. Recall that we picked r ∈ {1, ..,M}2 at random. We will bound
the expected value of this term. What is the probability that an edge e = (u, v)
is in σr? This probability depends on how far the coordinates of f∗(u),f∗(v)

Parallel Imaging Problem 695

are from each other. More precisely, if f∗(u) = (α1, β1), f∗(v) = (α2, β2), then
(u, v) ∈ σ(r) if either α1, α2 or β1, β2 are separated by a random border as
described in Definition 1. The probability of this event is at most:

min{M, |α1 − α2|}
M

+
min{M, |β1 − β2|}

M
=
d(f∗(u), f∗(v))

M
=
de

M
.

Thus, one has the expected value of 8M
∑

e∈σr
we is at most 8S∗(E) =

8
∑

e∈σr
wede. Taking the expected value of the inequality above we have:

Q(f) ≤ Q(f) + S(σr) ≤ A∗(V) + S∗(E) + 8S∗(E) ≤ 9Q(f∗),

which proves that a local optimum is a 9-approximate solution.
Taking only big enough improvements, the algorithm will find in polynomial

time a solution that is within an 9 + ε factor to the optimum value. �

Acknowledgments. We thank Ramin Zabih for introducing this problem, and
Gurmeet Singh and Ashish Goel for numerous discussions.

References

1. Archer, A., Fakcharoenphol, J., Harrelson, C., Krauthgamer, R., Talvar, K., Tar-
dos, E.: Approximate Classification via Earthmover Metrics. In: Proc. SODA 2004
(2004)

2. Chuzhoy, J., Naor, S.: The Hardness of Metric Labeling. In: Proc. FOCS 2004
(2004)

3. Boykov, Y., Veksler, O., Zabih, R.: Markov Random Fields with efficient approxi-
mations. In: Proc. CVPR 1998 (1998)

4. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. In: Proc. ICCV 1999 (1999)

5. Chekuri, C., Khanna, S., Naor, S., Zosin, L.: A Linear Programming Formula-
tion and Approximation Algorithms for the Metric Labeling Problem. SIAM J. on
Discrete Mathematics, 606–635 (2004)

6. Gupta, A., Tardos, E.: A Constant Factor Approximation Algorithm for a Class
of Classification Problems. In: Proc. STOC 2000 (2000)

7. Ishikawa, H., Geiger, D.: Segmentation by grouping junctions. In: Proc. CVPR
1998 (1998)

8. Kleinberg, J., Tardos, E.: Approximation Algorithms for Classification Problems
with Pairwise Relationships: Metric Partitioning and Markov Random Fields. J.
ACM 49(5), 616–639 (2002)

9. Li, S.: Makrov Random Field modeling in Computer Vision. Springer, Heidelberg
(1995)

10. Raj, A., Singh, G., Zabih, R.: MRF’s for MRI’s: Bayesian Reconstruction of MR
Images via Graph Cuts. In: Proc. CVPR 2006 (2006)

An Online Algorithm for Finding the Longest

Previous Factors

Daisuke Okanohara1 and Kunihiko Sadakane2

1 Department of Computer Science, University of Tokyo.
Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0013, Japan

hillbig@is.s.u-tokyo.ac.jp
2 Department of Computer Science and Communication Engineering, Kyushu

University. Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
sada@csce.kyushu-u.ac.jp

Abstract. We present a novel algorithm for finding the longest factors
in a text, for which the working space is proportional to the history text
size. Moreover, our algorithm is online and exact; in that, unlike the
previous batch algorithms [4, 5, 6, 7, 14], which needs to read the en-
tire input beforehand, our algorithm reports the longest match just after
reading each character. This algorithm can be directly used for data com-
pression, pattern analysis, and data mining. Our algorithm also supports
the window buffer, in that we can bound the working space by discard-
ing the history from the oldest character. Using the dynamic rank/select
dictionary [17], our algorithm requires n log σ + o(n log σ) + O(n) bits of
working space, and O(log3 n) time per character, O(n log3 n) total time,
n is the length of the history, and σ is the alphabet size. We implemented
our algorithm and compared it with the recent algorithms [4, 5, 14] in
terms of speed and the working space. We found that our algorithm can
work with a smaller working space, less than 1/2 of those for the previous
methods in real-world data, and with a reasonable decline in speed.

1 Introduction

The problem in searching for the longest previous factor is as follows: given a
history T [0, i− 1], and a next character T [i] = c, find the longest substring (or
factor) that occurs in the history: T [j, . . . , j + l − 1] = T [i − l + 1, . . . , i], and
report (j, l), the position, and the length of the matched substring.

This problem is fundamental in many applications, including data compres-
sion and pattern analysis. For example, we can directly use this algorithm for
the LZ77 compression methods [27]; we compress the data by replacing a sub-
string of a text with a pointer to its longest previous occurrence in the input.
Our algorithm also solves the LZ-factorization problem, which has become in-
teresting, because it can be used for succinct indexing, and for finding the runs
in the string [5].

A straightforward solution to this problem is to search the history on the
fly by using the sequential search. However, this requires O(n) time for each

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 696–707, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Online Algorithm for Finding the Longest Previous Factors 697

character, where n is the length of the history, and thus the total complexity
becomes O(n2), which would be prohibitive for a large n.

Therefore, many previous studies used the indexing method, wherein the index
is constructed for the history, and then search is performed in less than O(n)
time. In particular, previous studies for this problem [4, 5, 6, 7, 14, 15] take the
batch approach; first, we read the whole input beforehand, and then construct
the index such as suffix arrays (SA) or suffix trees. Then, we report the match
information at last. The time complexity of their algorithm is linear in the text
size. For example, in the most recent study [4], they proposed to search the
factors using SA; they first build SA. Then, at each position, they perform
binary search on SA to find the longest match substring, and check whether these
matched factors appeared previously by checking the range minimum queries on
corresponding SAs. A working space is about 6 times of the original text size.

However, this batch method has several drawbacks. If the data is larger than
the available resource, we need to divide the data into small pieces, and would
lose some information. Another problem is that if we do not know the length of
the input text beforehand, such as is the case in the data streaming problem,
these algorithms cannot work.

We instead take the online approach, and we also maintain an index to make
the search faster. The problem here is that it would require a very large working
space if we apply the usual data structure (e.g. trie, hash) to this problem.
In this paper, we will find the actual longest match. We therefore employ the
recent compressed full-text indexing methods [22]. Compressed full-text indexing
methods are data structures that support various string processing efficiently,
by using a space proportional to that of the text itself.

In particular, we use the succinct version of the enhanced suffix arrays (ESA) [1],
in which the sizes are linear in the text size. ESA supports almost the same op-
erations of suffix trees, and can solve various string problems, which cannot be
supported by the original suffix arrays. Note that, in the previous study [1], the
longest matching problem is solved by using ESA; however, their method is the
batch algorithm. On the other hand, our new method reports the longest match-
ing information online.

Moreover, we propose a method to simulate the sliding window, to limit the
working space by discarding the history from the oldest character.

With recent dynamic rank/select dictionary [17], our algorithm requires
n log σ+o(n log σ)+O(n) bits of working space, and O(log3 n) time per character,
where n is the length of history, and σ is the alphabet size. Since our algorithm
employs well-studied succinct data structures: rank/select and range minimum
queries (rmq), it is easy to implement.

To measure the practical performance, we implemented our algorithm with
simpler data structures, and compared it with previous methods. We found that
our algorithm requires less than 1/2 of the working space of the previous meth-
ods in real-word data, and is about 4 times slower than the previous method
[4, 5, 14].

698 D. Okanohara and K. Sadakane

2 Preliminaries

For the computation model, we use the word RAM, with word-length Θ(logn),
where any arithmetic operation for Θ(logn)-bit numbers and Θ(logn)-bit mem-
ory I/Os are achieved in constant time.

Let Σ be a finite ordered alphabet, and σ = |Σ|. Let T [0 . . . n − 1] be an
input text of length n, drawn from Σ. In this paper, we adopt for technical
convenience the assumption that T is preceded by $ (T [−1] = $), which is a
character from Σ that is lexicographically smaller than all other characters, and
appearing nowhere else in T . Note that, although in conventional suffix arrays,
it is assumed that T is followed by T [n] = $, we append the special character
at the beginning of T , because we will construct the prefix arrays instead of the
suffix arrays.

2.1 Rank and Select

Let us define rankc(T, i) as the number of occurrences of a character c in T [0, i],
and selectc(T, j) as the position of (j + 1)-th occurrence of c in T . We also
define predc(T, i) as the largest position of the occurrence of c before i in T ,
and succc(T, i) as the smallest position of the occurrence of c after i in T . These
pred and succ can be supported by using a constant number of rank and
select operations. That is, predc(T, i) = selectc(T, rankc(T, i − 1) − 1), and
succc(T, i) = selectc(T, rankc(T, i)). Here, we define selectc(T,−1) = −1, and
selectc(T, k) = n when k + 1 is larger than the number of c in T .

For the dynamic-case, let us define the operation insert(T, c, p) as the inser-
tion of a character c at T [p], and also define the operation delete(T, p) as the
deletion of a character at T [p].

To achieve these operations, we can use the data structure in [17] that sup-
ports rank and select in O((1 + log σ

log log n) logn) time, and insert and delete in
O((1 + log σ

log log n) logn) amortized time in n log σ + o(n log σ) bits. If σ < logn,
the operation time is O(logn) time.

2.2 Range Minimum Query

The range minimum query (RMQ) problem is as follows: given an arrayE[0, n−1]
of elements from a totally ordered set, rmqE(l, r) returns the index of the smallest
element in E[l, r], i.e., rmqE(l, r) = arg mink∈{l,...,r}{E[k]}, or the leftmost such
element in the case of a tie.

The most simple but naive algorithm for this problem searches the array
from l to r each time a query is presented, and in the worst case results in a
Θ(n) query time. In the static case, we can build index for RMQ [9, 10], which
supports RMQ in constant time using 2n+ o(n) bits. In this paper, we will use
the dynamic version of RMQ index.

An Online Algorithm for Finding the Longest Previous Factors 699

2.3 Suffix Arrays, BWT, FM-Index

Let Ti := T [i, . . . , n] be a suffix of T . A suffix array [12, 19] of T is a permutation
of all the suffixes of input text T so that the suffixes are lexicographically sorted.
Formally, the suffix arrays of T is an array A[0 . . . n] containing a permutation
of the interval [0 . . . n], such that TA[i] < TA[i+1], for all 0 ≤ i < n, where “<”
between strings is the lexicographical order.

The burrows-wheeler transform (BWT) [2] is a reversible transformation from
a string to a string. Given a string T [0 . . . n] and its suffix array A[0 . . . n], its
BWT, B[0 . . . n], is defined as B[i] := T [A[i] − 1], except when A[i] = 0, where
B[i] = T [n] = $.

By using B (BWT of T), we can simulate functions of suffix arrays, called FM-
index. FM-index [8] is a compressed full-text index that supports various opera-
tions, including exact string matching, and operations in compressed suffix arrays.
FM-index consists of B and rank operations on it. FM-index uses LF operations
to perform several operations such as exact matching. The operation LF (i) is de-
fined as LF (i) = j such that A[j] = A[i]− 1. The relation between LF and BWT
can be shown as LF (i) = rankc′(TB, i) + C(c′) [22]; where c′ = B[i] and C(c′)
gives the number of characters smaller than c′ in T [0 . . . n]. FM-index also sup-
ports the operationSAlookup(i), which returns the i-th value of suffix arrays [8, 22].
We sampled every d = logσ n log logn SAs, which are stored in o(n log σ) bits of
space. Then, one SAlookup operation requires d LF operations. Since one LF op-
eration requires O((1 + log σ

log log n) logn) time (rank operation), the total time for
SAlookup operation is O(log2 n) time [17]. Note that while we consider the dynamic
case here, these operations can be O(logn) time faster in the static case.

We consider prefix arrays instead of suffix arrays, and we apply the above dis-
cussion to the prefix arrays similarly. We define the BWT of text for prefix ar-
rays as B[i] := T [A[i] + 1], where A[i] is the prefix array that is a permutation
of all the prefixes of input text T , so that the prefixes are reverse-lexicographically
sorted. The left table in the figure 1 shows the example of prefix arrays for the text
T = abaababa.

2.4 Hgt Array

The Hgt array H [0, n − 1] for T is defined as H [i] = lcp(TA[i], TA[i+1]), where
lcp(TA[i], TA[i+1]) is the length of the longest common prefix between TA[i] and
TA[i+1]. That is, H contains the lengths of the longest common prefixes of T’s
suffixes that are consecutive in lexicographic order. If we store H explicitly, we
need O(n logn) bits of space. Sadakane [23] gave the data structure to storeH effi-
ciently in only 2n bits of space. For this, we use the fact that H [i] ≥ H [LF (i)]− 1.
Let L[i] be a bit array of 2n bits such that L[i] = 1 if i = H [LF k[p]] + 2n − k
and L[i] = 0 otherwise, where p = A−1[n], and LF k[p] = LF k−1[LF [p]] for
k > 1 and LF 1[p] = LF [p]. Then, H [i] is calculated by select1(L, k) − 2k, where
k = SA[i] [23].

In this paper, we consider the Hgt array defined on the prefix array. Therefore,
H [i] is the length of the longest common suffix between TA[i] and TA[i+1]. The

700 D. Okanohara and K. Sadakane

T = $abaababa
s = 4, t = 0

HBprefixi

8

7

6

5

4

3

2

1

0

3$$abaababa

2a$ab

0b$abaaba

1b$abaa

0a$abaabab

3a$aba

0a$

2a$abaab

1b$a

HBprefixi

8

7

6

5

4

3

2

1

0

3$$abaababa

2a$ab

0b$abaaba

1b$abaa

0a$abaabab

3a$aba

0a$

2a$abaab

1b$a

HBprefixi

1$$abaababaa3

9

8

7

6

5

4

2

1

0

3a$abaababa

2a$ab

0b$abaaba

4b$abaa

0a$abaabab

3a$aba

0a$

2a$abaab

1b$a

HBprefixi

1$$abaababaa3

9

8

7

6

5

4

2

1

0

3a$abaababa

2a$ab

0b$abaaba

4b$abaa

0a$abaabab

3a$aba

0a$

2a$abaab

1b$a

Insertion of a (Prefix = $abaababaa)
s = 3, t = 0

HBprefixi

1$$abaababaa2

8

7

6

5

4

3

1

0

3a$abaababa

2a$ab

0b$abaaba

4b$abaa

0a$abaabab

3a$aba

2a$abaab

1b$a

HBprefixi

1$$abaababaa2

8

7

6

5

4

3

1

0

3a$abaababa

2a$ab

0b$abaaba

4b$abaa

0a$abaabab

3a$aba

2a$abaab

1b$a

Deletion of a (T[0])
s = 2, t = 0

Fig. 1. Example of one step in our algorithm

example of Hgt is shown in the right column of figure 1. In this figure we store H
explicitly for explanation, while we keep H in compressed form in our algorithm.

3 Algorithm

We propose a novel algorithm for searching for the longest factors in a text. The
problem is formally defined as follows; given a history T = [0, . . . , n−1], and the
next character c = T [n], we find the longest substring that matches the current
suffix: T [j, . . . , j + l − 1] = T [i − l + 1, . . . , i], and report the position and the
length of the matched substring. We perform this process for all i ∈ [0, . . . , n−1].

Our algorithm relies on the incremental construction of Enhanced Suffix Arrays
(ESA) [1] in a similar way to Weiner’s suffix tree construction algorithm [26]. In
this algorithm suffixes are inserted from the shortest one to the longest one. This
is because the addition of a single symbol to the end of text in a suffix array may
cause Ω(n) changes, whereas in reverse order construction, this is never the case.

However, our algorithm processes from the beginning to the end of the string,
and actually builds the prefix arrays; we insert prefixes from the shortest one to
the longest one, and at the i-th step, our algorithm builds a complete ESA for
T [0, . . . , i]. For example, if the input text is x1x2x3x4, we insert the prefixes in
order x1, x1x2, x1x2x3, and x1x2x3x4.

In each step, our algorithm keeps two arrays, the BWT of T (B), and the Hgt
arrays H . Note that these data structures are stored in compressed form. We
also store the auxiliary data structures to support rank/select operations on
B, and rmq operations on H . Figure 1 is the example of B and H for the text
T = abaababa.

Besides these data structures, we also keep the following variables:

– s: The position for the new prefix in the prefix array.
– lp, ls: The length of the longest common prefix between previous/successor

prefix and the new prefix.

An Online Algorithm for Finding the Longest Previous Factors 701

Note that s corresponds to the position where B[s] = $. While the update for
B is the same as for the previous studies for the incremental construction of
compressed suffix arrays [3, 18], others are new.

Algorithm 1 shows the pseudo code of our entire algorithm. After reading each
character, this reports the position and the length of the longest match. Figure
1 shows the example of one step in our algorithm. The tables to the left and the
center of the figure show B and H for the text T = abaababa, and those for the
text after the insertion of a. The table to the right of the figure shows B and H
for the text after deleting the oldest history a = T [0].

3.1 B Update

Although we use the same algorithm for updating B (The BWT of T) described
in [3, 18], we explain it here again for the sake of clarity. We again note that we
construct prefix arrays instead of suffix arrays and we therefore process from the
beginning of the text to the end of the text, unlike the previous studies [3, 18]
wherein suffix arrays were built from the end of the text to the beginning of the
text.

We initialized s as 0. At the i-th step, we insert c = T [i] into s-th position in
B (insert(B, s, c)). Then, we update s as

s = LF (s) = rankc(B, s) + C(c) (1)

where C(c) returns the number of characters smaller than c in the current B.
We define the operation inc(C, c) that increments C(c′) such that c′ < c by one
and dec(C, c) that decrements C(c′) such that c′ < c by one. We keep C using
a data structure proposed in [20], that supports inc(C, c), dec(C, c) and the
lookup C(c) in O(log σ) time. If we allow for the sorting of the symbols by its
frequency in T , the look up and update time for the s-th frequent character is
O(log(s)) time [20].

3.2 H Update

We now explain how to update H arrays. First, lp and ls are initialized as 0. Let
h(s1, s2) be the length of the longest common prefix (Here, we consider the com-
mon prefix, not the common suffix, because we build the prefix arrays) between
the substring s1 and s2. At the i-th step we insert the new prefix snew = T [0, . . . , i]
to the current prefix arrays. Then, we need to update the corresponding Hgt val-
ues, H [s− 1] and H [s]. Let spre be the previous prefix, and ssuc be the successor
prefix. Then, H [s− 1] = h(spre, snew), and H [s] = h(snew, ssuc).

First, we consider the case lp = h(spre, snew). Let c = T [i] be the current
character. If the first character of spre is not c, lp = 0. Otherwise, first characters
of spre and snew are c; let us denote spre = cs′pre and snew = cs′new. The
value h(s′pre, s

′
new) is the range minimum query of H between p′pre and p′new,

where p′pre is the position of s′pre, and p′new is the position of s′new. Then, lp =
1 + h(s′pre, s

′
new). The position p′pre can be calculated as predc(B, s′new) and

s′new is the value of s in the previous step. We can calculate ls similarly.

702 D. Okanohara and K. Sadakane

Algorithm 1. The overall algorithm for searching the longest match. After
reading each character, it reports the position and the length of the matched
substring.

Input: A text T [0, . . . , n − 1]
s := 0 // The position in B for the next character
lp, ls ← 0 // The lcp between previous/successor prefix and the new prefix
B // The BWT of T
H // The hgt Array
for i = 0 to n − 1 do

c ← T [i]
insert(B, c, s)
if lp ≥ ls then

Report: (lp + 1, SAlookup(p))
insert(H, lp + 1, p)

else
Report: (ls + 1, SAlookup(p + 1))
insert(H, ls + 1, p + 1)

end if
lp ← rmq(H,predc(B, s), s)
ls ← rmq(H,s, succc(B, s))
s ← rankc(B, p) + C(c)
inc(C, c)

end for

If the H are stored in the compressed form (Section 2.4), we need one SAlookup

operation for one character.
Figure 1 shows the examples of updating H . In the left table, s = 4 and

a new character “a” will be inserted to B[4]. The s′pre, and s′suc are “$aba”
and “$ab” (The both of values of B are a). Then lp = 1 + rmq(H, 3, 3) = 4
and ls = 1 + rmq(H, 4, 5) = 1. The new s is 3, and we update H [2] = 4, and
H [3] = 1.

To support rmq operations on H , we store a balanced search tree for RMQs
of blocks of length logn taking O(n) bits. This requires O(logn) accesses to H ,
each of which requires O(log2 n) time. Therefore, the total time for rmq over H
is O(log3 n).

3.3 Simulating the Window Buffer

If the working space is limited, say 1 MB, we often discard the history from
the oldest one, and search the longest match from only the previous 1 MB.
This is usually called the sliding window buffer, which is used for many LZ77
compression implementations.

Larsson [15, 16] proposed to simulate the sliding window with suffix trees. On
the contrary, our algorithm simulates the sliding window buffer for suffix arrays
with Hgt arrays.

An Online Algorithm for Finding the Longest Previous Factors 703

Here, we need to update the data structure in accordance with discarding the
history from the oldest one. This can be supported in a very similar way to the
insertion operation.

To achieve this operation, we keep another variable t, which denotes the posi-
tion for the oldest character in B. We initialized t as 0 (the position of the first
character in B is 0, because it is preceded by $). If we apply the delete operation
to the current data structure, and let c = B[t]. Then, we update t as,

t = selectc(B, t− C(c)). (2)

We simultaneously perform dec(C, c), and decrease s by 1 if t < s. For the
update of H we set H [t − 1] = min(H [t − 1], H [t]), and delete H [t]. We can
also update t = Ψ [t] similar to the lookup with samples of SAs, which requires
additional space.

Note that this operation does not actually delete the oldest character but just
ignores it. Therefore, the order of prefix arrays is not changed after the deletion.
If it actually deletes the character, it may cause Ω(n) changes in B and H . For
example, given a text T = $zaaaaa, if the oldest character (z) is deleted, then
the orders of prefixes are totally reversed.

On the other hand, our algorithm preserves the order, and therefore all
operations can be done in O(log2 n) time. The longest common suffix infor-
mation larger than the window size (w) should be upper bounded by w. In
detail, the code in Algorithm 1 is changed as insert(H,min(lp + 1, w), p), and
insert(H,min(ls + 1, w), p+ 1) where w is the window size.

3.4 Output LZ-Factorization

The LZ factorization of T is a factorization into chunks T = w1w2 . . . wk such
that each wj , j ∈ 1 . . . k is (1) a letter that does not occur in previous history
or otherwise (2) the longest substring that occurs at least twice in w1, w2, . . .,
wj . For example, when T = abaababa, w1 = a,w2 = b, w3 = a,w4 = aba, w5 =
ba. The LZ factorization is used for many applications, such as including data
compression, pattern analysis, and finding the runs in the text [5].

The difference between LZ-factorization and our method is that the former
reports the repetition information at the left of the phrase, while the latter
reports all the repetition at each position. The modification of our algorithm
to output LZ-factorization is straight forward; when the matched length is not
increasing, it is the separation of the LZ-factorization, and reports the occur-
rence of the longest match at that position. Figure 2 shows the algorithm to
report LZ-factorization in an online-manner using our algorithm. We specify the
factorization by a pair of a position of previous occurrence and its length.

4 Overall Analysis

The update of the position s is achieved by using one rank and one inc(C, i)
operations. A rank operation requires O((1 + log σ

log log n) logn) time [17], and a

704 D. Okanohara and K. Sadakane

Algorithm 2. This algorithm outputs the LZ-factorization of a text T =
T [0, . . . , n− 1]. This algorithm employs the result of our algorithm.

Input: Text T [0, . . . , n − 1]
iprev = 0 // The position of the beginning of the next phrase.
(lenprev, posprev) = (0, 0)
for i = 0 to n − 1 do

(len, pos) = process(T [i]) // Result of the algorithm 1.
if len ≤ lenprev then

len = min(len, i − iprev)
Report wt = (len, posprev − len), t = t + 1
iprev = i

end if
posprev = pos

end for
Output: w1, . . . , wt

inc(C, i) operation requires O(log σ) time. The two rmq operations are required
in H , which requires O(log3 n) time. The insertion of a new character into T [p]
requires O((1 + log σ

log log n) log n). The update of the Hgt arrays requires O(log2 n)
time. Therefore, the bottleneck of our algorithm is the rmq operation on H
arrays. Note that this can be improved to O(log2 n) time if we keep the balanced
parentheses sequence representing the topology of the suffix tree [24]. Due to the
space limitation, we defer a discussion of the details to the full paper.

For the space analysis, T can be kept in n log σ+ o(n logσ) bits of space [17],
and The Hgt arrays can be kept in O(n) bits of space. By summarizing the above
result, we obtain the following theorem.

Theorem 1. Let T be an input text of original length n drawn from Σ and
σ = |Σ|. We can solve the online longest previous factor problem using n log σ+
O(n) + o(n log σ) bits of space in O(n log3 n) time.

5 Experiments

In the experiments, we used simpler data structures. We store B and H by a
balanced binary tree. Each leaf in the tree has the buffer of the fixed size to
store the portion of the B and H . After the insertion, we check whether the leaf
is full or not. If the leaf is full, we split the leaf into two leaves as children of
the original leaf. To reduce the space requirement further, if the leaf is full, we
first check whether the preceding node or succeeding node is full or not. If one
of them is not full (say r), we move the buffer in the full leaf to the leaf r. We do
not use the succinct representation for H , because this representation requires
SA lookup operation, which is very slow in practice. We instead used the direct
representation, and set the smallest bit width for each node, so that all values
of H in the node can be represented correctly.

An Online Algorithm for Finding the Longest Previous Factors 705

Table 1. Description of the data used in experiments

String Size (bytes) Σ Description

fib35 9227465 2 The 35th Fibonacci string
fib36 14930352 2 The 36th Fibonacci string
fss9 2851443 2 The 9th run rich string of [11]
fss10 12078908 2 The 10th run rich string of [11]
rnd2 8388608 2 Random string, small alphabet
rnd21 8388608 21 Random string, larger alphabet
ecoli 4638690 4 E.Coli Genome
chr22 34553758 4 Human Chromosome 22
bible 4047392 62 King James Bible
howto 39422105 197 Linux Howto files
chr19 63811651 4 Human Chromosome 19

Table 2. Peak memory usage in bytes
per input symbol

String OS CPSa CPSd kk-LZ CPS6n

fib35 6.85 17.00 11.50 19.92 5.75
fib36 6.85 17.00 11.50 20.76 5.75
fss9 6.84 17.00 11.10 21.27 5.73
fss10 6.86 17.00 11.10 22.47 5.50
rnd2 3.14 17.00 9.00 11.83 5.75
fnd21 3.29 17.00 9.00 - 5.75
ecoli 4.13 17.00 9.00 11.11 5.79
chr22 4.28 17.00 9.00 11.03 5.78
bible 3.40 17.00 9.00 - 5.72
howto 4.63 17.00 9.00 - 5.78
chr19 3.78 17.00 9.00 11.07 5.78

Table 3. Runtime in milliseconds for
searching the longest previous factors

String OS CPSa kk-LZ CPS6n

fib35 22446 5093 9225 4068
fib36 41629 8728 15822 7273
fss9 4623 1261 1853 629
fss10 31855 7020 9280 5538
rnd2 15821 3929 5206 10186
fnd21 21787 4360 - 17605
ecoli 7975 1953 1028 6448
chr22 119056 18800 12855 79861
bible 7098 1558 - 3309
howto 156715 19000 - 60568
chr19 256483 38336 29193 166939

We denote our algorithm implemented in the above way os. We also imple-
mented the other SA-based LZ-factorization, the cps of [5]. The implementa-
tion kk-lz of Kolpakov and Kucherov’s algorithm was obtained from [14], and
cps6n [4] was written by its author. Note that while os reports the matching
result online, others report the matching results last. All programs were writ-
ten in C or C++. All running times given are the average of two runs, and do
not include the time spent reading input files. There are no large variances be-
tween the two trials. Memory usage was recorded with the memusage command.
Times were recorded with the standard C getrusage function. All experiments
were conducted on a 3.0 GHz Xeon processor with 32GB main memory. The
operation system is the Linux version 2.6.9. The compiler was g++ (gcc version
4.0.3) executed with the -O3 option.

Times for the cps, and cps6n implementations include the time required for
SA and LCP array construction. We used libdivsufsort [21] for SA construction,
and the linear-time algorithm [13] for LCP construction. The implementation of

706 D. Okanohara and K. Sadakane

kk-lz is only suitable for strings on small alphabets (σ ≤ 4), so the times are
only given for some files.

Table 1 shows the list of the test data. All data are taken from [25].
Table 2 shows the result of the peak memory usage of each program. The

values in the column of CPSd is taken from [5]. These results indicate that our
algorithm requires a smaller memory than other programs, especially when the
values in H are small. This is because os dynamically set the bit width for H in
each node, so that all values of H in the node can be represented.

Table 3 shows the result of the runtime of each program. Almost all the
runtimes of os are about 4 times that of cps.

6 Conclusion

In this paper, we presented a novel algorithm for searching the longest match
using a small working space. Our algorithm is online, which can process very large
text data, and streaming data. The proposed method is based on the construction
of enhanced prefix arrays. Our method is based on the well-studies rank, select,
and rmq operations, and is therefore easy to implement. Our general approach
can be adapted to simulate a sliding window buffer, by efficiently updating the
index by discarding the history from the oldest one.

The experimental results show that our method requires about 1/2 or 1/4 the
working space of those for the previous methods [5, 14] for real world data, with
a reasonable decline in the speed

Since the compressed suffix trees (CST) can be simulated by adding the bal-
anced parenthesis tree (BP) to ESA [24], we can extend our algorithm to build
the CST incrementally. Due to space limitations, we defer a discussion of the
details to the full paper.

As for our next step, we would like to further reduce the working space and
time. In particular, the data structures for the Hgt array is the bottleneck of our
algorithm, and it is expected to propose a new succinct representation for Hgt
array with faster operation.

Acknowledgements. The authors would like to thank Simon J. Puglisi, who
provided the code and helpful comments. The work is supported in part by the
Grant-in-Aid of the Ministry of Education, Science, Sports and Culture of Japan.

References

1. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. Journal of Discrete Algorithms 2(1), 53–86 (2004)

2. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation (1994)

3. Chan, H., Hon, W.K., Lam, T.W., Sadakane, K.: Compressed indexes for dynamic
text collections. ACM Transactions on Algorithms 3(2), 21 (2007)

4. Chen, G., Puglisi, S.J., Smyth, W.F.: LZ factorization in less time and space. Math-
ematics in Computer Science (MCS) Special Issue on Combinatorial Algorithms
(2008)

An Online Algorithm for Finding the Longest Previous Factors 707

5. Chen, G., Puglisi, S.J., Smyth, W.: Fast and practical algorithms for computing
all the runs in a string. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580,
pp. 307–315. Springer, Heidelberg (2007)

6. Crochemore, M., Ilie, L.: LZ factorization in less time and space. Information Pro-
cessing Letters 106, 75–80 (2008)

7. Crochemore, M., Ilie, L., Smyth, W.F.: A simple algorithm for computing the
Lempel–Ziv factorization. In: DCC, pp. 482–488 (2008)

8. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proc. of FOCS (2000)

9. Fischer, J., Heun, V.: Theoretical and practical improvements on the RMQ-
problem, with applications to LCA and LCE. In: Lewenstein, M., Valiente, G.
(eds.) CPM 2006. LNCS, vol. 4009, pp. 36–48. Springer, Heidelberg (2006)

10. Fischer, J., Heun, V.: A new succinct representation of rmq-information and im-
provements in the enhanced suffix array. In: Chen, B., Paterson, M., Zhang, G.
(eds.) ESCAPE 2007. LNCS, vol. 4614. Springer, Heidelberg (2007)

11. Franek, F., Simpson, R.J., Smyth, W.F.: The maximum number of runs in a string.
In: AWOCA, pp. 26–35 (2003)

12. Gonnet, G.H., Baeza-Yates, R., Snider, T.: New indices for text: PAT trees and
PAT arrays. Information Retrieval: Algorithms and Data Structures, 66–82 (1992)

13. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: Amir, A.,
Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidel-
berg (2001)

14. Kolpakov, R., Kucherov, G.: Mreps, http://bioinfo.lifl.fr/mreps/
15. Larsson, J.: Extended application of suffix trees to data compression. In: Proc. of

DCC, pp. 190–199 (1996)
16. Larsson, J.: Structures of String Matching and Data Compression. PhD thesis,

Lund University (1999)
17. Lee, S., Park, K.: Dynamic rank-select structures with applications to run-length

encoded texts. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 95–
106. Springer, Heidelberg (2007)

18. Lippert, R., Mobarry, C., Walenz, B.: A space-efficient construction of the burrows
wheeler transform for genomic data. Journal of Computational Biology (2005)

19. Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

20. Moffat, A.: An improved data structure for cumulative probability tables. Software:
Practice and Experience 29, 647–659 (1999)

21. Mori, Y.: libdivsufsort, http://code.google.com/p/libdivsufsort/
22. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Sur-

veys 39(1) (2007)
23. Sadakane, K.: Succinct representations of LCP information and improvements in

the compressed suffi arrays. In: ACM-SIAM SODA, pp. 225–232 (2002)
24. Sadakane, K.: Compressed suffix trees with full functionality. J. Theory of Com-

puting Systems (2007)
25. Smyth, W.F.: http://www.cas.mcmaster.ca/∼bill/strbings/
26. Weiner, P.: Linear pattern matching algorihms. In: Proceedings of the 14th IEEE

Symposium on Switching and Automata Theory, pp. 1–11 (1973)
27. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory 23(3), 337–343 (1977)

http://bioinfo.lifl.fr/mreps/
http://code.google.com/p/libdivsufsort/
http://www.cas.mcmaster.ca/~bill/strbings/

Collusion-Resistant Mechanisms with Verification
Yielding Optimal Solutions�

Paolo Penna1 and Carmine Ventre2,��

1 Dipartimento di Informatica ed Applicazioni, Università di Salerno, Italy
penna@dia.unisa.it

2 Computer Science Department, University of Liverpool, UK
Carmine.Ventre@liverpool.ac.uk

Abstract. A truthful mechanism consists of an algorithm augmented with a suit-
able payment function which guarantees that “players” cannot improve their util-
ities by “cheating”. Mechanism design approaches are particularly appealing for
designing “protocols” that cannot be manipulated by rational players.

We present new constructions of so called mechanisms with verification intro-
duced by Nisan and Ronen [STOC 1999]. We first show how to obtain mecha-
nisms that, for single-parameter domains, are resistant to coalitions of colluding
agents even in the case in which compensation among members of the coali-
tion is allowed (i.e., n-truthful mechanisms). Based on this technique we derive
a class of exact truthful mechanisms with verification for arbitrary bounded do-
mains. This class of problems includes most of the problems studied in the al-
gorithmic mechanism design literature and for which exact solutions cannot be
obtained with truthful mechanisms without verification. This result improves over
all known previous constructions of exact mechanisms with verification.

1 Introduction

A large body of the literature studies ways to incorporate economic and game-theoretic
considerations in the design of algorithms and protocols. One of the most studied and
acknowledged paradigms is mechanism design (see, e.g., [1, 4, 7, 12, 13, 16]). Distrib-
uted computations over the Internet often involve self-interested parties (referred to as
selfish agents) which may manipulate the protocol by misreporting a fundamental piece
of information they hold (their own type). The protocol runs some algorithm which, be-
cause of the misreported information, is no longer guaranteed to return a “globally opti-
mal” solution (optimality is naturally expressed as a function of agents’ types) [13, 16].
Since agents can manipulate the algorithm by misreporting their types, one augments
the algorithms with carefully designed payment functions which make it disadvanta-
geous for an agent to do so. A mechanism consists of an algorithm (also termed social
choice function) and a payment rule which associates a payment to every agent. Each
agent derives a utility which depends on the solution computed by the algorithm, on

� Research funded by the European Union through IST FET Integrated Project AEOLUS (IST-
015964).

�� The author is also supported by DFG grant Kr 2332/1-2 within Emmy Noether Program.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 708–719, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Collusion-Resistant Mechanisms with Verification Yielding Optimal Solutions 709

the type of the agent, and on the payment that the agent receives from the mechanism
(the solution and the payment depend on the reported types). A mechanism is truthful if
truthtelling is a dominant strategy for all agents. That is, the utility of any agent is max-
imized when this agent reports her type truthfully, no matter which strategy the other
agents follow. An even stronger solution concept is that of c-truthful mechanism [9]
which requires that no coalition of up to c agents can increase the utility of its members
even when compensations (or side payments) among them occur.

The construction of a truthful mechanism is a challenging problem since the mecha-
nism must fix the “rules” in advance without knowing the types of the agents. The only
available information is that each agent’s type belongs to some domain which depends
on the problem and agents can only report types in that domain. Intuitively speaking,
constructing truthful mechanisms for richer domains is more difficult because there are
more ways in which an agent can cheat the mechanism.

In their seminal work on algorithmic game theory, Nisan and Ronen [13] suggested
a rather innovative paradigm called mechanisms with verification. They showed that
these mechanisms can overcome the main limitations of the “classical” approach which
cannot guarantee exact (or even approximate solutions) for some interesting problems.
Intuitively speaking, these mechanisms can optimize only certain global cost functions.
Suppose that each agent i has a type ti which, for every feasible solution x, specifies
a cost ti(x) associated to this solution. The only known general technique for design-
ing truthful mechanisms are the classical Vickrey-Clarke-Groves (VCG) mechanisms
[5, 10, 23]; these mechanisms optimize only utilitarian problems, that is, global cost
functions of the form ∑

i

αi · ti(x) (1)

where each αi is some nonnegative constant. Moreover, the celebrated Robert’s The-
orem [20] states that these are the only global cost functions that can be optimized,
i.e., for which there exists an exact truthful mechanism, when agents’ domains are un-
restricted. Furthermore, no positive result on the construction of “classical” c-truthful
mechanisms is known, even for simple domains.

This work presents new constructions of mechanisms with verification which guar-
antee c-truthful mechanisms for certain domains or exact solutions for a much more
general class of global cost functions. Before discussing these and prior results in de-
tail, we describe informally the main idea of mechanisms with verification:

Mechanisms with verification. Nisan and Ronen [13] introduced mechanisms with ver-
ification for a task scheduling problem in which each agent corresponds to a machine
of type ti. Tasks needs to be allocated to the machines, and each task allocation x re-
sults in a completion time ti(x) for a machine of type ti. The key observation, made by
Nisan and Ronen [13], is that machine i cannot release its tasks before ti(x) time steps.
Therefore, if agent i reports a type bi and a solution x is implemented, the mechanism
is able to detect that bi is not the true type of machine i if bi(x) < ti(x).

Mechanisms with verification are based on this idea and apply to the following gen-
eral framework (see Section 1.2 for a formal definition). For every feasible solution x,
an agent of type ti has a cost ti(x) associated to this solution. This cost is the time that
this agent must spend for implementing solution x (artificial delays can be introduced

710 P. Penna and C. Ventre

at no cost since an agent can use the idle time for other purposes).1 Agent i is caught
lying if her reported type bi and the computed solution x are such that bi(x) < ti(x).
Agents who are caught lying receive no payment.

In contrast, the classical approach in mechanism design is to provide always each
agent with a payment that depends only on the reported types. In order to distinguish
these mechanisms from mechanisms with verification, in the sequel we use the term
mechanisms without verification.

1.1 Our Contribution and Related Work

We study the existence of truthful (or even c-truthful) mechanisms with verification
that guarantee exact solutions for problems in which the objective is to minimize some
global cost function of interest. Intuitively speaking, our basic question is whether one
can augment an optimal algorithm with a suitable payment function in order to guaran-
tee that no agent (or even coalitions of colluding agents) can benefit from misreporting
their types (i.e., part of the input of the algorithm). We consider a rather general class of
objective functions in which the global cost of a solution depends on the various costs
that the agents associate to that solution; Naturally, the overall cost cannot decrease if
the cost of one agent increases (see Section 2 for a formal definition). The contribution
of this work is twofold:

– We provide a sufficient condition for which an algorithm can be turned into a c-
truthful mechanism with verification, for any c ≥ 1. This result applies to the class
of single-parameter bounded domains (see Section 3 for a formal definition).

– We then show how to obtain optimal truthful mechanisms with verification for the
much more general case of arbitrary bounded domains, i.e., the mechanism needs
only an upper bound on the agents’ costs (see Section 1.2). Despite the fact that
these domains are extremely rich, we provide exact truthful mechanisms with veri-
fication for every problem in which the global cost function is of the form

Cost(t1(x), . . . , tn(x)) (2)

where ti(x) is the cost that agent i associates to solution x and the above function
is naturally nondecreasing in its arguments.

The conditions for obtaining these mechanisms are stated in terms of algorithmic prop-
erties so that the design of the entire mechanism reduces to the design of an algorithm
that fulfills these conditions. All our mechanisms satisfy also the voluntary participa-
tion condition saying that truthful agents have always a nonnegative utility.

The result on single-parameter bounded domains is the first technique for obtain-
ing c-truthful mechanisms, for c > 1, without restricting to a particular class of global
cost functions and it might be of some independent interest. For instance, certain non-
utilitarian graph problems studied in [19] have single-parameter domains and thus are

1 Nisan and Ronen [13] considered the case in which an agent introducing an artificial delay to
her computations will pay this augmented cost. This is one of the differences between mecha-
nisms with verification we consider and those in [13]. See [18] for a discussion.

Collusion-Resistant Mechanisms with Verification Yielding Optimal Solutions 711

the right candidate for studying exact n-truthful mechanisms based on our construc-
tions (namely Theorems 4 and 5). Interestingly enough, the only way to guarantee
c-truthfulness without verification, for c ≥ 2, is to run a (useless) mechanism which
returns always the same fixed solution [9, 21].

The result on arbitrary bounded domains improves significantly over the best known
constructions of mechanisms with verification. In particular, [22] shows exact mecha-
nisms for cost functions like (2) in the case of finite domains, i.e., there is a finite set
of possible types that each agent can report to the mechanism. Exact n-truthful mecha-
nisms with verification for a subclass of the cost functions in (2) are presented in [18]:
For instance, it cannot give exact mechanisms for global cost functions of the form
of the form maxi t

i(x). These so called min-max problems received a lot of attention
in the algorithmic mechanism design literature [4, 8, 11, 12, 13]. These works prove
that there is no exact or even r-approximate mechanism without verification, for some
r > 1; results apply also to finite domains and to mechanisms without verification that
run in exponential time and/or use randomization [12].

We instead show exact mechanisms with verification for any global cost function of
the form (2) without assuming finite domains like in [22] (see Definition 2 and The-
orem 6). Indeed, we only need to consider an (arbitrarily large) upper bound on the
agents’ costs, which turns out to be reasonable in practice. These arbitrary bounded
domains are, in general, infinite because there are infinitely many types that an agent
can report. Since the “cycle-monotonicity” approach adopted in all recent constructions
[2, 3, 22] cannot deal with infinite domains, we use a totally different idea which is to
turn c-truthful mechanisms for single-parameter domains into truthful mechanisms for
arbitrary domains (see Section 4). The result of Theorem 6 is “tight” in the sense that
one cannot relax any of the assumptions without introducing additional conditions (see
Theorems 7 and 8). Finally, an explicit formula for the payments guarantees that the
entire mechanism runs in polynomial-time if the algorithm is polynomial-time and the
domain is finite (Corollary 1).

In this work we do not consider frugality issues, that is, how much the mechanism
pays the agents. The optimality of the payments is an important issue in general since
even truthful mechanisms must have large payments for rather simple problems [6].
Our positive results pose another interesting question that is to design computationally-
efficient algorithms satisfying the conditions required by our methods.

Roadmap. Preliminary definitions are given in Section 1.2. In Section 2 we introduce
the class of optimal algorithms leading to (c-)truthful mechanisms. Mechanisms for
single-parameter domains are given in Section 3, while those for arbitrary domains are
presented in Section 4. Due to lack of space some of the proofs are sketched or missing.
The interested reader may refer to the full version of the paper [17].

1.2 Preliminaries

We have a finite set O of feasible alternative solutions (or outcomes). Without loss of
generality, we assume that O = {1, . . . , a}, where a = |O|, and sometimes write x ≤ y

712 P. Penna and C. Ventre

to denote the fact that outcome x precedes outcome y in this fixed order. There are n
selfish agents, each of them having a so called type

ti : O → R+

which associates a monetary cost to every feasible outcome. If an agent i receives a
payment equal to ri and an outcome x is selected, then her utility is equal to

ri − ti(x). (3)

Each type ti belongs to a so called domain Di which consists of all admissible types,
that is, a subset of all functions u : O → R. The type ti is private knowledge, that is, it is
known to agent i only. Everything else, including each domainDi, is public knowledge.
Hence, each agent i can misreport her type to any other element bi in the domain Di.
We sometimes call such bi the bid or reported type of agent i. We let D being the cross
product of all agents domains, that is, D contains all bid vectors b = (b1, . . . , bn) with
bi in Di. An algorithm A is a function

A : D → O

which maps all agents (reported) types b into a feasible outcome x = A(b).2 A mech-
anism is a pair (A, p), where A is an algorithm and p = (p1, . . . , pn) is a vector of
suitable payment functions, one for each agent, where each payment function

pi : D → R

associates some amount of money to agent i. We say that D is a bounded domain if
there exists � such that bi(x) belongs to the interval [0, �], for all outcomes x, for all bi

in Di, and for all agents i. Unless we make further assumptions on the domain D, we
have (algorithms over) arbitrary bounded domains. Throughout the paper we consider
only type vectors t in the domain D and we denote by ti the type corresponding to
agent i.

We say that an agent i is truthtelling if she reports her type, that is, the bid bi coin-
cides with her type ti. Given an algorithm A and bids b = (b1, . . . , bi, . . . , bn), we say
that agent i is caught lying by the verification if the following inequality holds:

ti(A(b)) > bi(A(b)).

A mechanism (A, p) is a mechanism with verification if, on input bids b, every agent
that is caught lying does not receive any payment, while every other agent i receives her
associated payment pi(b). Hence, the utility of an agent i whose type is ti is equal to

Utilityi(b) :=
{
pi(b) − ti(A(b)) if i is not caught lying,

0 − ti(A(b)) otherwise.

On the contrary, we say that (A, p) is a mechanism without verification if every agent
receives always her associated payment pi(b).

2 In the game theory literature A is often referred to as social choice function.

Collusion-Resistant Mechanisms with Verification Yielding Optimal Solutions 713

For any two type vectors t and b, we say that a coalition C can misreport t to b if
the vector b is obtained by changing the type of some of the agents in C, i.e., ti = bi

for every agent i not in the coalition C. For any two type vectors t and b, we say that
verification does not catch t misreported to b if ti(A(b)) ≤ bi(A(b)) for every agent i.
Conversely, we say that verification catches t misreported to b if ti(A(b)) > bi(A(b))
for some agent i.

Mechanisms (with verification) which are resistant to coalitions of c ≥ 1 colluding
agents that can exchange side payments satisfy the following definition.

Definition 1 (c-truthfulness [9]). A mechanism (with verification) is c-truthful if, for
any coalition of size at most c and any bid of agents not in the coalition, the sum of the
utilities of the agents in the coalition is maximized when all agents in the coalition are
truthtelling.

Mechanisms (with verification) satisfying the definition above only for c = 1 are called
truthful mechanisms (with verification).

Since the above condition must hold for all possible bids of agents outside the coali-
tion under consideration, one can restrict the analysis to the case in which these agents
are actually truthtelling. Thus the following known fact holds:

Fact 1. A mechanism (with verification) is c-truthful if and only if, for any coalition C
of size at most c and for any two type vectors t and b such that C can misreport t to b,
the corresponding agents’ utilities satisfy

∑

i∈C

Utilityi(t) ≥
∑

i∈C

Utilityi(b). (4)

Throughout the paper we make use of the following standard notation. Given a type
vector v = (v1, . . . , vn), we let v−i being the vector of length n − 1 obtained by
removing vi from v, i.e., the vector (v1, . . . , vi−1, vi+1, . . . , vn). We also let (w,v−i)
be the vector (v1, . . . , vi−1, w, vi+1, . . . , vn), which is obtained by replacing the i-th
entry of v with w.

2 A Class of Optimal Algorithms

We focus on algorithms which minimize some global cost function of interest. Our ul-
timate goal is to derive a general technique to augment these algorithms with a suitable
payment function so that the resulting mechanism with verification is truthful or even
n-truthful (i.e., resistant to any coalition of colluding agents).

Towards this end, we consider algorithms that satisfy the following:

Definition 2 (exact algorithm with fixed tie breaking rule). Let Cost : O ×D → R
be a function of the form

Cost(x, t) = Cost(t1(x), . . . , tn(x)),

which is monotone non-decreasing in each ti(x). We say that an algorithmA is an exact
algorithm if there exists O′ ⊆ O such that, for all type vectors t, it holds that

A(t) ∈ arg minx∈O′ {Cost(x, t)} .

714 P. Penna and C. Ventre

Further, we say that A uses a fixed tie breaking rule if, for any two type vectors t and
b, Cost(A(t), t) = Cost(A(b), t) implies that the outcomes A(t) and A(b) in the
outcome set O satisfy: A(t) ≤ A(b).3 We say that A is an exact algorithm with fixed
tie breaking rule if it is an exact algorithm and it uses a fixed tie breaking rule.

Note that the definition of exact algorithm requires only the algorithm being optimal
with respect to an arbitrarily fixed subset of solutions. Of course all positive results
apply to algorithms that are optimal with respect to all solutions, i.e., the case O′ =
O. Observe also that the class of exact algorithm with fixed tie breaking rules strictly
generalizes the class of algorithms that admit VCG-based truthful mechanisms (without
verification) [15] and that optimizes utilitarian cost functions, that is, functions of the
form (1).

3 Collusion-Resistant Mechanisms for Single-Parameter Agents

In this section we consider the case of single-parameter agents (see e.g. [9]). Here, each
outcome partitions the agents into two sets: those that are selected and those that are
not selected. The value ti(x) depends uniquely on the fact that i is selected in x or not
and it is completely specified by a parameter ti, which is a real number such that

ti(x) =
{
ti if i is selected in x,
0 if i is not selected in x.

(5)

Whether i is selected in x is publicly known, for every outcome x, and thus each agent
can only specify (and misreport) the parameter ti. We assume single-parameter bounded
domains, that is, each parameter ti belongs to the interval [0, �].

In the sequel we will provide sufficient conditions for the existence of c-truthful
mechanisms, for any given c ≤ n.

3.1 Sufficient Conditions for c-Truthfulness

We begin with a necessary condition. Observe that in order to have truthful mechanisms
for single-parameter agents (even when using verification [2]) the algorithm must select
agents “monotonically”:

Definition 3 (monotone). We say that algorithm A is monotone if the following holds.
Having fixed the bids of all agents but i, agent i is selected if bidding a cost less than
a threshold value b⊕i , and is not selected if bidding a cost more than a threshold value
b⊕i . In particular, for every b ∈ D and for every i, there exists a value b⊕i which
depends only on b−i and such that (i) i is selected in A(bi,b−i) for bi < b⊕i and (ii)
i is not selected in A(bi,b−i) for bi > b⊕i .

From Definition 3 we can easily obtain the following:

Fact 2. If algorithm A is monotone and i is selected in A(b), then bi ≤ b⊕i . Moreover,
if i is not selected in A(b) then bi ≥ b⊕i . Hence, for bounded domains the threshold
values of Definition 3 are in the interval [0, �].

3 Recall that we identify solutions with integers and thus fix an arbitrary order of them.

Collusion-Resistant Mechanisms with Verification Yielding Optimal Solutions 715

From (5) we immediately get the following:

Fact 3. For single-parameter agents, it holds that verification does not catch t misre-
ported to b if and only if ti ≤ bi for all i that is selected in A(b).

We next give a rather technical sufficient condition for c-truthfulness on single-parameter
bounded domains. Below we show that, in the case of exact algorithms, this leads to a
simpler condition for n-truthfulness on these domains.

Definition 4 (c-resistant). We say that b is c-different from t if these two type vectors
differ for at most c agents’ types. A monotone algorithm A is c-resistant if, for every b
which is c-different from t and such that verification does not catch t misreported to b,
it holds that t⊕i ≤ b⊕i for all i that is not selected in A(b).

Theorem 4. Every c-resistant algorithm A admits a c-truthful mechanism with verifi-
cation for single-parameter bounded domains.

Proof. We define the payment functions as follows:

pi(b) :=
{

� − b⊕i if i is not selected in A(b)
� otherwise

(6)

where � := c · �.
Let us consider an arbitrary coalition C of size at most c and any two type vectors t

and b such that C can misreport t to b. Because of Fact 1, it suffices to prove (4). Either
verification does not catch t misreported to b or verification catches t misreported to
b. We consider the two cases separately.

If verification catches t misreported to b, then we have at least one agent j ∈ C
which does not receive any payment for b. Moreover, the payment received by every
other agent i in the coalition is at most �. Hence, we have

∑

i∈C

Utilityi(b) ≤ (c− 1)� = c� − �.

We next show that the utility of every truthtelling agent is at least � − �. Indeed, the
definition of pi() implies that Utilityi(t) is either �− t⊕i if i is not selected in A(t), or
� − ti if i is selected in A(t). Fact 2 says that t⊕i ≤ � and, if i is selected in A(t), then
ti ≤ t⊕i . Hence, Utilityi(t) ≥ � − �. From this and from our choice of �, we obtain

∑

i∈C

Utilityi(t) ≥ c(� − �) = c� − c� = c� − �.

The two inequalities above clearly imply (4).
If verification does not catch t misreported to b then we can show that for any i ∈ C

it holds
Utilityi(t) ≥ Utilityi(b),

which clearly implies (4). There are four possible cases:

716 P. Penna and C. Ventre

Case 1 (i is selected in A(t) and i is selected in A(b)). In this case nothing changes
for i. Indeed, by the definition of pi(), we have Utilityi(t) = �− ti = Utilityi(b).

Case 2 (i is not selected in A(t) and i is selected in A(b)). Fact 2 implies that t⊕i ≤ ti.
This and the definition of pi() imply Utilityi(t) = �− t⊕i ≥ �− ti = Utilityi(b).

Case 3 (i is not selected in A(t) and i is not selected in A(b)). Since A is c-resistant,
we have that t⊕i ≤ b⊕i . This and the definition of pi() imply Utilityi(t) = �−t⊕i ≥
� − b⊕i = Utilityi(b).

Case 4 (i is selected in A(t) and i is not selected in A(b)). Since i is selected in A(t),
Fact 2 implies ti ≤ t⊕i . Since i is not selected in A(b) and as A is c-resistant, we
have that t⊕i ≤ b⊕i , thus implying ti ≤ b⊕i . This and the definition of pi() imply
Utilityi(t) = � − ti ≥ � − b⊕i = Utilityi(b).

This concludes the proof. �

We next “specialize” the above result for the class of exact algorithm with fixed tie
breaking rule and obtain a more easy-to-handle sufficient condition for obtaining n-
truthful mechanisms with verification.

Definition 5 (threshold-monotone). A monotone algorithm A is threshold-monotone
if, for every t and every b obtained by increasing one agent entry of t, the inequality
t⊕i ≤ b⊕i holds for all i, where t⊕i and b⊕i are the threshold values of Definition 3.

By showing that every threshold-monotone exact algorithm with fixed tie breaking rule
is n-resistant from Theorem 4 we obtain another sufficient condition for n-truthful
mechanisms. We believe this result might be useful in that the threshold-monotone con-
dition might be simpler to exhibit.

Theorem 5. Every threshold-monotone exact algorithm with fixed tie breaking rule ad-
mits an n-truthful mechanism with verification for single-parameter bounded domains.

4 Truthful Mechanisms for Arbitrary Bounded Domains

In this section we derive truthful mechanisms for any exact algorithm with fixed tie
breaking rule over arbitrary bounded domains. The main idea is to regard each agent as
a coalition of (virtual) single-parameter agents.

4.1 Arbitrary Domains as Coalitions of Single-Parameter Agents

We call every agent whose domain is an arbitrary bounded domain a multidimensional
agent. Since there are a alternative outcomes, and n multidimensional agents, we sim-
ply consider n coalitions C1, . . . , Cn, where each coalition Ci consists of a (virtual)
single-parameter agents that correspond to the multidimensional agent i. (These are
actually “known” coalitions which we use only for the purpose of defining the pay-
ments and analyzing the resulting mechanism.) This “new game” has N = n · |O|
single-parameter agents and a alternative outcomes. For each outcome x, we have a
unique single-parameter agent per coalition being selected: denoted by 1(i), . . . , |O|(i)

Collusion-Resistant Mechanisms with Verification Yielding Optimal Solutions 717

the agents in coalition Ci, we have agent x(i) being selected in x, and every other agent
in Ci being not selected in x; this holds for all coalitions above. We choose the para-
meter of the (virtual) single-parameter agents in the coalition Ci so that the cost for an
agent x(i) selected is equal to the cost of the multidimensional agent i when outcome
x is selected. That is, for all i and all outcomes x, the parameter tx(i) of agent x(i) is
equal to ti(x).

Observe that any type bi in the domain of the multidimensional agent i can be seen
as a vector

bi := (bi1, . . . , b
i
a),

with bix = bi(x) for every alternative outcome x. In particular, bi is the vector of the
parameters of the a agents in Ci, that is, bix is the parameter of agent x(i). Consider an
exact algorithm with fixed tie breaking rule B over the multidimensional agents, and
fix the bids b−i of all agents but i. Then the resulting single player functionB(bi,b−i)
can be seen as another exact algorithm with fixed tie breaking ruleA(bi) whose domain
(input) is restricted to the domains of the a = |O| single-parameter agents in Ci.

4.2 The Mechanism and Its Analysis

It turns out that every single player function B(bi,b−i) as above is a-resistant. Based
on this fact, we can apply the techniques developed for single-parameter agents and
define the following class of mechanisms:

Definition 6 (threshold-based mechanism). For any exact algorithm with fixed tie
breaking rule B we consider its single player function, depending on b−i, as A(bi) :=
B(bi,b−i). In this case, the single player functionA has Ci as the set of virtual single-
parameter agents. We define payment functions qi(bi,b−i) :=

∑
j∈Ci

pj(bi) where
each pi() is the payment function of Theorem 4 when applied to A above and to the
single-parameter agents in Ci. The resulting mechanism with verification (B, q) is
called threshold-based mechanism.

In the sequel we prove that every threshold-based mechanism is truthful for multidi-
mensional agents. In order to prove this result, we first observe that the threshold-based
mechanism needs only be resistant to the “known” coalitions defined above (recall that
we have one virtual single-parameter agent per solution and thus coalitions are of size
at most |O|):

Lemma 1. If every single player function A of B is |O|-resistant with respect to its
virtual single-parameter agents, then the threshold-based mechanism is truthful for the
multidimensional agents.

PROOF SKETCH. We observe that the utility of a multidimensional agent i is the sum
of the utilities of all single-parameter agents in the coalition Ci. Therefore, if (B, q)
was not truthful, then the mechanism (A, p) would not be a-truthful, thus contradicting
Theorem 5. �

Theorem 6. Every exact algorithm with fixed tie breaking rule admits a truthful mech-
anism with verification over any arbitrary bounded domain.

718 P. Penna and C. Ventre

PROOF SKETCH. It is possible to show that every single player function A of B is
threshold-monotone. But then every single player function is a-resistant (see discussion
above Theorem 5). The theorem thus follows from Lemma 1. �

We next observe that one cannot extend the result of Theorem 6 by relaxing the defin-
ition of exact algorithm with fixed tie breaking rule. Indeed, the “non-decreasing cost
function”, the “fixed tie breaking rule” and the “optimality” assumptions are neces-
sary in order to guarantee the existence of exact truthful mechanisms with verification
without introducing other conditions. The optimality condition is necessary as we ob-
tain exact mechanisms. As for the other two assumptions we can prove the next two
theorems.

Theorem 7. For any cost function that is not monotone nondecreasing there exists a
bounded domain such that no algorithm that minimizes such a cost function admits a
truthful mechanism with verification.

We next remove the fixed tie breaking rule from our assumptions and show that there
exists an exact algorithm not admitting truthful mechanisms with verification.

Theorem 8. There exists a bounded domain and a monotone cost function such that
the following holds. There exists an exact algorithm (not using a fixed tie breaking rule)
which does not admit any truthful mechanism with verification.

We conclude this section by observing that the mechanisms presented here have a fur-
ther advantage of giving an explicit formula for the payments (see Equation 6 and Defin-
ition 6). In particular, this improves over the construction in [22] since it gives efficient
mechanisms for the case of arbitrary finite domains. The idea is to perform a binary
search to determine the threshold values of Definition 3. For threshold-based mecha-
nisms the running time is polynomial in the size of the input t, where each ti is a vector
of |O| values, one for each outcome. Such an “explicit” representation of the input is in
general necessary, as implied by communication complexity lower bounds for certain
instances of combinatorial auction [14] which fall into the class of finite domains.

Corollary 1. Every polynomial-time exact algorithm with fixed tie breaking rule over
an arbitrary finite domain admits a polynomial-time truthful mechanism with verifi-
cation. For finite single-parameter domains, every polynomial-time c-resistant exact
algorithm with fixed tie breaking rule admits a polynomial-time c-truthful mechanism
with verification.

Acknowledgements. We wish to thank Riccardo Silvestri for several useful comments
on an earlier version of this work.

References

1. Archer, A., Tardos, E.: Truthful mechanisms for one-parameter agents. In: Proc. of FOCS,
pp. 482–491 (2001)

2. Auletta, V., De Prisco, R., Penna, P., Persiano, G.: The power of verification for one-
parameter agents. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142, pp. 171–182. Springer, Heidelberg (2004)

Collusion-Resistant Mechanisms with Verification Yielding Optimal Solutions 719

3. Auletta, V., De Prisco, R., Penna, P., Persiano, G., Ventre, C.: New constructions of mecha-
nisms with verification. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 596–607. Springer, Heidelberg (2006)

4. Christodoulou, G., Koutsoupias, E., Vidali, A.: A lower bound for scheduling mechanisms.
In: Proc. of SODA, pp. 1163–1170 (2007)

5. Clarke, E.H.: Multipart Pricing of Public Goods. Public Choice, 17–33 (1971)
6. Elkind, E., Sahai, A., Steiglitz, K.: Frugality in path auctions. In: Proc. of SODA, pp. 701–

709 (2004)
7. Feigenbaum, J., Papadimitriou, C.H., Sami, R., Shenker, S.: A bgp-based mechanism for

lowest-cost routing. Distributed Computing 18(1), 61–72 (2005)
8. Gamzu, I.: Improved lower bounds for non-utilitarian truthfulness. In: Kaklamanis, C.,

Skutella, M. (eds.) WAOA 2007. LNCS, vol. 4927, pp. 15–26. Springer, Heidelberg (2008)
9. Goldberg, A.V., Hartline, J.D.: Collusion-resistant mechanisms for single-parameter agents.

In: Proc. of SODA, pp. 620–629 (2005)
10. Groves, T.: Incentive in Teams. Econometrica 41, 617–631 (1973)
11. Koutsoupias, E., Vidali, A.: A lower bound of 1 + φ for truthful scheduling mechanisms.

In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 454–464. Springer,
Heidelberg (2007)

12. Mu’alem, A., Schapira, M.: Setting lower bounds on truthfulness. In: Proc. of SODA, pp.
1143–1152 (2007)

13. Nisan, N., Ronen, A.: Algorithmic Mechanism Design. Games and Economic Behavior 35,
166–196 (2001)

14. Nisan, N., Segal, I.: The communication requirements of efficient allocations and supporting
prices. Journal of Economic Theory (2006)

15. Nisan, N., Ronen, A.: Computationally Feasible VCG Mechanisms. In: Proc. of EC, pp.
242–252 (2000)

16. Papadimitriou, C.H.: Algorithms, games, and the internet. In: Proc. of STOC (2001)
17. Penna, P., Ventre, C.: Collusion-resistant mechanisms with verification yielding optimal so-

lutions. Technical report (2008),
http://www.dia.unisa.it/∼penna/papers/esa08full.pdf

18. Penna, P., Ventre, C.: Optimal collusion-resistant mechanisms with verification. Technical
Report (2008)

19. Proietti, G., Widmayer, P.: A truthful mechanism for the non-utilitarian minimum radius
spanning tree problem. In: Proc. of SPAA, pp. 195–202 (2005)

20. Roberts, K.: The characterization of implementable choice rules. Aggregation and Revela-
tion of Preferences, 321–348 (1979)

21. Schummer, J.: Manipulation through bribes. Journal of Economic Theory 91(3), 180–198
(2000)

22. Ventre, C.: Mechanisms with verification for any finite domain. In: Spirakis, P.G., Mavron-
icolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 37–49. Springer,
Heidelberg (2006)

23. Vickrey, W.: Counterspeculation, Auctions and Competitive Sealed Tenders. Journal of Fi-
nance, 8–37 (1961)

http://www.dia.unisa.it/~penna/papers/esa08full.pdf

Improved BDD Algorithms for the Simulation of

Quantum Circuits

Vasilis Samoladas

Technical University of Crete, Chania, Greece
vsam@softnet.tuc.gr

Abstract. In this paper we develop novel algorithms for the simulation
of quantum circuits on classical computers. The most efficient techniques
previously studied, represent both quantum state vectors and quantum
operator matrices as Multi-Terminal Binary Decision Diagrams (MTB-
DDS). This paper shows how to avoid representing quantum operators
as matrices. Instead, we introduce a class of quantum operators that can
be represented more compactly using a symbolic, BDD-based represen-
tation. We propose algorithms that apply operators on quantum states,
using the symbolic representation. Our algorithms are shown to have
superior performance over previous techniques, both asymptotically and
experimentally.

1 Introduction

The study of quantum computing can be greatly aided by the ability to actu-
ally execute quantum algorithms. As quantum hardware is still unavailable, the
only viable option is simulation by classical computer. The problem is gener-
ally intractable by currently known techniques. However, it is of great practical
significance to simulate even small-scale systems. Most simulation algorithms
reported in the literature represent quantum states in the so-called state-vector
representation, i.e., use a complex vector of 2n elements to store the state of an
n-qubit memory. With current hardware, this approach is limited to n ≈ 30.
In order to break through this barrier, either (a) the state-vector representation
must be abandoned, or (b) suitable compression techniques must be employed
to reduce the space needed to represent the state vector.

The first option is an intriguing one, and in fact there exist at least two
approaches that follow this path. Unfortunately, they are only applicable in
limited cases. To our knowledge, every known general technique for quantum
simulation is based on the state vector representation.

Compression of the state representation for classical computations has been
extensively studied by the formal methods community over the past 20 years,
particularly in the context of formal verification. In formal verification, one is
intererested in verifying mechanically that all legal computations of a classical
computer satisfy a given specification. A plethora of algorithmic breakthroughs
in the past 20 years has enabled the verification of gradually larger classical sys-
tems. There is an interesting analogy with quantum simulation, where a qunatum

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 720–731, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Improved BDD Algorithms for the Simulation of Quantum Circuits 721

computation exploiting quantum parallelism is, in some sense, a simulation of
all behaviours of an equivalent classical system.

A major breakthrough in formal verification was the introduction of Reduced
Ordered Binary Decision Diagrams (ROBDDS) by Bryant [3]. ROBDDs can of-
ten compress an exponentially large structure down to a manageable size. It has
been shown in previous works [12,10,11,6] that an extension of ROBDDs, called
Multi-Terminal BDDs (MTBDDs) [4], can be employed effectively in compress-
ing the state vector of a quantum system. By representing quantum operators as
MTBDDs as well, linear-algebraic operations can be performed in time quadratic
to the size of the operand MTBDDs. This approach premits us to simulate large
quantum circuits. However, in most non-trivial cases, the compressed state vector
representation still grows exponentially (albeit much more gradually) as larger
circuits are simulated. Thus, MTBDD-based quantum simulation is still compu-
tationally expensive, and it is vital to improve the efficiency of the algorithms
involved.

In this paper we propose novel MTBDD-based algorithms for quantum circuit
simulation. Our algorithms are distinguished in that they operate with symbolic
representations of quantum operators, instead of matrix-based ones (compressed
or otherwise). This technique exhibits significant performance advantages over
previous work. Our experimental evaluation demonstrates that our techniques
outperform previous ones by roughly two orders of magnitude. We also prove
our algorithms to be asymptotically faster that previous work.

2 Related Work

2.1 Binary Decision Diagrams

In its most general form, a Binary Decision Diagram is a directed acyclic labelled
graph representing a function f(x0, . . . , xn−1) on some domain D, where xi are
boolean variables. A sink vertex t is associated with a value val(t) ∈ D, while
an internal node u is labeled by a boolean variable var(u) and has exactly two
neighbors, a 0-neighbor and a 1-neighbor, denoted by next(u, 0) and next(u, 1)
respectively. There is a single source vertex s. To each assignment of values to xi,
corresponds a unique path through the graph, starting from s, and terminating
to a sink t, yielding the associated value val(t).

Bryant [3] developed efficient algorithms for the case D = {0, 1} (i.e., BDDs
of boolean functions), by introducing two conditions on the structure of the
BDD, ordering and reduction. Ordering states that the variable indices along
each path are strictly increasing, while reduction states that (a) the neighbors of
each node are distinct and (b) there are no equivalent nodes (with equal labelling
or associated value).

Of close relevance to this work are MTBDDs, introduced by Fujita et al. in
[4]. An MTBDD is a reduced, ordered BDD where D is a numeric set, typ-
ically R or C. In a series of papers, Viamontes et al. [12,10,11] explore the
potential of QuIDDs, a slight adaptation of MTBDDs, for quantum simulation.
QuIDDs of n boolean variables represent state vectors of n qubits, and QuIDDs

722 V. Samoladas

of 2n boolean variables represent n-qubit quantum operators. Their experiments
demonstrate that QuIDDs offer significant compression of quantum states and
allow for efficient application of quantum operators, compared to various other
techniques which represent state vectors more-or-less explicitly. Their experi-
ments are mainly concerned with simulations of simple cases of Grover’s algo-
rithm. Koufogiannakis [6] applies their techniques to Shor’s algorithm and also
observes very good compression. Recently, other MTBDD variants have been
introduced to facilitate synthesis and simulation of quantum circuits [1,7].

2.2 Quantum Simulation

Quantum circuit simulation is very useful in physical sciences, both in the context
of quantum computation and because the Hamiltonians of many dynamic physi-
cal systems can be expressed as quantum circuits. A large number of simulation-
related works appear in the literature, mostly by the physics community. In the
majority of cases, these works use a more-or-less explicit state vector represen-
tation and are thus limited by exponential space requirements. For example, the
Fraunhofer Quantum Computing Portal (http://www.qc.fraunhofer.de/) al-
lows users to submit circuits of up to 31 qubits, which are subsequently executed
on a 32-node cluster. Also, the simulator of [9] affords a limit of 30 qubits, and
runs on a Sun Enterprise 4500. These techniques are inferior to MTBDD-based
simulations reported previously, and in this work.

3 Symbolic Representation of Quantum Operators

In this section we introduce some definitions that will allow us to represent
quantum operators by recursive matrix expressions. These expressions are sub-
sequently used to derive and prove the correctness of our MTBDD algorithms.

3.1 Powermatrices and Powervectors

A powermatrix A (or PM for short) is a complex square matrix of dimensions
2k × 2k, where k ≥ 0 is the order of A and is denoted by ord(A). PMs of order
0 are scalars. Two (or more) PMs of the same order are called similar. By Ik we
denote the unit PM of order k.

Now we define operator �, as

A�B =
[
A 0
0 B

]

where 0 is the zero PM similar to A,B. Although � seems limited in that it is
not possible to construct a PM from scalars, unless it is diagonal, it is actually
a handy notation for quantum operator matrices, as will be seen subsequently.

A powervector a (or PV for short) of order k is a vector of dimension 2k,
where k ≥ 0 is the order of PV a, denoted by ord(a). As for PMs, PVs of order
0 are scalar and PVs of equal order are similar.

For similar PVs a and b, a� b is the concatenation of a and b, a PV of order
ord(a) + 1.

http://www.qc.fraunhofer.de/

Improved BDD Algorithms for the Simulation of Quantum Circuits 723

Relationship to MTBDDs. In the literature, MTBDDs are usually treated as
functions of boolean variables. Unfortunately, the functional notation is quite
cumbersome in expressing linear algebraic operators, and equations (esp. recur-
sive ones) involve unnecessarily long and error-prone index manipulations. This
issue is addressed eloquently in [8], from which the � operator was inspired.

By contrast, � allows us to manipulate MTBDDs algebraically, avoiding in-
dexing notation almost completely, resulting in much cleaner formulae. Any
function f(x0, x1, . . . , xn−1) : {0, 1}n → D, can be writen as a concatenation
of its cofactors in x0, f = f0 � f1, where fc(x1, . . . , xn) = f(c, x1, . . . , xn−1).
Repeating this cofactor decomposition until we reach scalars, we obtain a �-
based expression for f , whose expression tree is isomorphic to an ordered (but
unreduced) BDD.

Algebraic properties. The following properties of � are trivial. In these equations,
uppercase letters denote PMs, lowercase latin letters denote PVs and greek let-
ters denote scalars.

λ(A�B) = (λA) �(λB) (A0 �A1) ⊗ U = (A0 ⊗ U) �(A1 ⊗ U)

(A�B)t = At �Bt (A�B)(C �D) = (AC) �(BD)
λ(a� b) = (λa) �(λb) (a0 � a1) ⊗ u = (a0 ⊗ u) �(a1 ⊗ u)

(a� b) + (c� d) = (a + c) �(b+ d) (A�B) + (C �D) = (A + C) �(B +D)

The most useful property for our purposes is trading with matrix-vector product:

(A�B)(a� b) = (Aa) �(Bb) (1)

3.2 Algebraic Construction of Quantum Operators

We now turn our attention to quantum operators. Every quantum operator
(unitary or measurement) on n qubits can be represented as a PM of order n. In
this section, we show that our � operator allows us to express controlled unitary
operations elegantly.

Let U be an n-qubit unitary operator. A simple construction is to extend
U to the (n + 1)-qubit operator I ⊗ U , by adding a qubit above U on which
I⊗U operates trivially. The linear algebra expression for the construction of the
controlled -U operator (see Fig. 1) is not as elegant; usually, controlled operators
are described using the “truth table” notation, i.e. the effect of the operator on
the computational basis vectors.

The linear algebra and truth table notations of Fig. 1 are not as useful in
revealing the structure of the operator matrix. By contrast, controlled operators
have extremely simple �-based expressions. If U, V are two n-qubit operators,
then U �V is the (n+ 1)-qubit operator which means: “if the top qubit is zero,
apply operator U to the bottom n qubits, else apply V ”.

3.3 Controlling from Below

Viamontes [13] observed that, when a unitary operator can be constructed by a
�-expression from small (say, order 1) operands, then the recursive application

724 V. Samoladas

extended U 1-controlled U 0-controlled U

circuit

/n
U /n

•
/n

U /n

�������	

/n
U /n

linear algebra I ⊗ U |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ U |1〉 〈1| ⊗ I + |0〉 〈0| ⊗ U

truth table |x〉 |y〉 → |x〉 U |y〉 |x〉 |y〉 → |x〉Ux |y〉 |x〉 |y〉 → |x〉U x̄ |y〉

powermatrices U � U Iord(U) � U U � Iord(U)

Fig. 1. Three constructions based on U and corresponding representations

of trading (Eq. 1) is much more efficient than representing the operator by an
MTBDD.

Unfortunately, when the control qubit lies below the operator, the matrix of a
controlled operator cannot be constructed from � in this manner. For example,

when U =
[
u0 u1

u2 u3

]

, the matrix of the controlled-U operator with the control

qubit below is

⎡

⎢
⎢
⎣

1 0 0 0
0 u0 0 u1

0 0 1 0
0 u2 0 u3

⎤

⎥
⎥
⎦. A possible solution proposed in [13] is the following:

before an operator controlled from below is to be applied on a state vector,
the vector is permuted appropriately to reflect a reordering of the qubits, so
that the operator over the reordered qubits is now controlled only from above.
This approach could substantially increase the cost of applying an operator,
both because of the additional processing, and—more importantly—because by
reordering the qubits, the resulting MTBDD of the state vector could potentially
increase significantly in size. Therefore this approach is unappealling.

4 Algorithms for Quantum Simulation

4.1 Boolean Projectors

Quantum circuit simulation must handle efficiently both unitary and measure-
ment operators. There is an intimate relationship between measurement operators
and controlled unitary operators. This section treats this issue, and introduces a
general class of unitary and measurement operations.

We overview some elementary facts regarding projectors in quantum mechan-
ics. Let M be a set of measurement outcomes. In quantum physics, M is usually
the set of eignevalues of some Hermitian operator (called an observable), but for
our purposes it can be an arbitrary finite set. A projective measurement on M
is defined by a family of orthogonal projectors P = {Pm}, indexed by M. Pro-
jectors are Hermitian operators (i.e., Pm = P †

m) with the following properties:

Improved BDD Algorithms for the Simulation of Quantum Circuits 725

PmPm′ = δm,m′Pm (orthogonality) (2)
∑

m∈M
Pm = I (completeness) (3)

The main reference to projectors in the quantum mechanics literature is as
measurement operations. A measurement of M on quantum state |ψ〉 will return
m ∈M with probability 〈ψ|Pm|ψ〉, and will set the new state to Pm|ψ〉√

〈ψ|Pm|ψ〉
.

However, projectors can also be seen as quantum controls. Consider a family
U = {Um} of unitary operators, also indexed by M, and a quantum state |ψ〉 |φ〉
of ord(Pm) + ord(Um) qubits. Then, operator

UP =
∑

m∈M
Pm ⊗ Um

is unitary, and its meaning is roughly: “if (for some m), Pm |ψ〉 = |ψ〉 then apply
Um to |φ〉”. This operator is analogous to a switch statement in conventional
programming languages. For example, the standard controlled-U gate can be
derived by taking M = {0, 1}, P0 = |0〉 〈0|, P1 = |1〉 〈1|, U0 = I and U1 = U .

We now turn our attention to the class of boolean projectors, which are simply
all projectors with diagonal matrix (consisting entirely of zeros and ones, since
P 2 = P). Their significance derives from being isomorphic to boolean functions.
Boolean projectors can be constructed from scalars (0 and 1) and �. The di-
agonal of the matrix of boolean projector F of order m is the truth table of a
corresponding boolean function of m variables, which we denote also by F . The
decomposition of PM F = F0 �F1 corresponds to the Shannon expansion of
boolean function F , with F0, F1 corresponding F ’s cofactors.

In quantum algorithms one often encounters the so-called quantum if-then
operator QIT(F,U). QIT(F,U) is defined by a boolean function F (x1, . . . , xn)
and a unitary 1-qubit gate U , with the following mapping of basis states:

|x1 . . . xn〉 |y〉 → |x1 . . . xn〉UF (x1,...,xn) |y〉

The QIT operator is a special case of the switch operator, where the measurable
is the boolean set M = {0, 1}, and P0 = I − F , P1 = F . Thus,

QIT(F ,U) = F ⊗ U + (Iord(F) − F) ⊗ Iord(U)

In turn, QIT operators generalize controlled gates: a unitary operator con-
structed by a 1-qubit gate U , controlled by some other qubits, is simply a QIT,
where the boolean projector corresponds to a simple conjunction. For example,
the operators of Fig. 2 are QIT(x0 ∧ x2, U) and QIT(x0 ∧ x1,H).

x0 • •
x1 �������	

x2 •
x3 U H

Fig. 2. Two controlled gates

726 V. Samoladas

4.2 Applying QIT Operators

A popular set of unitary operators for quantum algorithms consists of all 1-
qubit gates, controlled by zero or more control qubits. This class of quantum
circuit operators is the analog of unrestricted fan-in gates in logic circuits. Here,
we consider a broader set of operators: 1-qubit gates, controlled by boolean
projectors.

Consider a 1-qubit unitary gate U and boolean projector F of order m. Ex-
pression [F : k : U], where 0 ≤ k ≤ m, denotes a QIT operator on m+ 1 qubits,
with U applied to qubit k from the top (starting with 0), controlled by F on
the remaining m qubits (ordered from top to bottom). This operator has the
following truth table

|x0x1 . . . xm〉 → |x0 . . . xk−1〉 (UF (x0...xk−1,xk+1,...,xm) |xk〉) |xk+1 . . . xm〉 (4)

Recursive application of [F : k : U] on quantum state ψ can done straightfor-
wardly, when k > 0. Let F = F0 �F1 and ψ = ψ0 �ψ1. From Eq. 4, it is easy
to see that

[F : k : U]ψ =
(
[F0 : k − 1 : U]ψ0

)
�
(
[F1 : k − 1 : U]ψ1

)
. (5)

When k = m = 0, F is scalar (either 0 or 1) and [F : 0 : U]ψ = UFψ. The
remaining case is k = 0 < m, where U is applied to the top qubit, controlled by
F from below.

Applying [F : 0 : U] on ψ recursively is treated as follows: first, permute the
state vector ψ by swapping the top two qubits, then apply [F : 1 : U] recursively,
and finally swap the top two qubits again.

Swapping of the two top qubits of a state PV ψ can be performed quite easily
in algebraic/MTBDD terms. Given PV ψ = (ψ0 �ψ1) �(ψ2 �ψ3) (of order at
least 2), the reordered PV S(ψ) is easily seen to be

S((ψ0 �ψ1) �(ψ2 �ψ3)) = (ψ0 �ψ2) �(ψ1 �ψ3).

Thus,
[F : 0 : U]ψ = S

(
[F : 1 : U]S(ψ)

)
(6)

Putting everything together, we have

[F : k : U]ψ =

⎧
⎪⎨

⎪⎩

UFψ if ord(F) = 0
([F0 : k − 1 : U] �[F1 : k − 1 : U])ψ if k > 0 and F = F0 �F1

S
(
([F0 : 0 : U] �[F1 : 0 : U])S(ψ)

)
if k = 0 and F = F0 �F1

(7)
By careful implementation, function S in the above formula can be inlined,
incurring zero overhead.

4.3 Implementation Issues for MTBDD Algorithms

We implemented an MTBDD library incorporating the above ideas. In our pack-
age, MTBDDs represent complex PVs. We have not implemented PMs as MTB-
DDs, although we could have done so along the lines of [10]. Besides all the

Improved BDD Algorithms for the Simulation of Quantum Circuits 727

common MTBDD algorithms that are described in [4], we also support func-
tions to perform measurement with boolean projectors and application of QIT
operators. The measurement algorithms are straightforward, since boolean pro-
jectors are diagonal, and thus can be multiplied with state vectors by pointwise
multiplication.

We show an efficient implementation of QIT application, as described by
Eq. 7. The most interesting feature of our implementation is the inlining of swap
function S, so that it incurs no overhead.

Our implementation uses the standard MTBDD API functions:

TNode(z): Return a unique terminal node u with val(u) = z.
Node(a,b,i): If a = b return a, else return a unique non-terminal node u with

var(u) = i, next(u, 0) = a and next(u, 1) = b.
Decompose(a,i): If i < var(a), return node pair (a, a), else return node pair

(next(a, 0), next(a, 1)).
Lookup(k), Cache(k,v): Implement a hash-based cache mapping keys k to

values v.

The code for QIT application is shown in Alg. 1, as Python-like pseudocode.
The implementation is split among two recursive functions. The first function,
Apply(F, ψ) is the main function called. It only accepts two MTBDDs as ar-

guments, the boolean projector F and the state vector ψ; k and U =
[
u0 u1

u2 u3

]

of QIT operator [F : k : U] are passed as global variables. Function Apply
is quite straightforward, and it calls itself recursively, until processing reaches
nodes which belong to qubits below k, in which case processing passes to Ap-
plySwap. The latter is distinguished in that it accepts a pair of state vectors
and also returns a pair of state vectors. The idea is to avoid extra calls to func-
tion Node (as would be made by an explicit implementation of swap function
S), since it is somewhat expensive (it requires memory allocation and hash table
lookups). The actual inlining of function S happens in the else clause.

5 Empirical Study

In this section we report on the experimental evaluation of our algorithms. We
compared our implementation, called PVLIB, against two different MTBDD-
based quantum simulators. For each comparison we simulated exactly the same
quantum circuit. In both cases, our algorithm outperformed the other implemen-
tation by at least an order of magnitude, and typically by around two orders of
magnitude. All experiments were conducted on a machine with two twin core
SMP Intel Xeon processors at 1.6 GHz, with 8 Gb of RAM (all experiments were
run on a single CPU).

In the first experiment, we compared against the QuIDDPro software, created
by Viamontes et al. We were provided with the latest version. For simulation,
we created several stabilizer circuits, with number of qubits per circuit varying
from 5 to 100 qubits. Each stabilizer circuit consisted of 1000 randomly gen-
erated quantum gates. The cirquits were generated using a utility provided by

728 V. Samoladas

Algorithm 1. MTBDD algorithm for application of a QIT operator.
Apply(F ,ψ) {

if F = 0 or ψ = 0: return ψ
if Lookup(F ,ψ) �= nil: return Lookup(F ,ψ)
v := min(var(F), var(ψ))
ψ0, ψ1 := Decompose(ψ, v)
if k ≤ v:

ψa, ψb := ApplySwap(F,ψ0, ψ1)
ψ′ := Node(ψa, ψb, v)

else:
F0, F1 := Decompose(F, v)
ψ′ := Node(Apply(F0, ψ0), Apply(F1, ψ1), v)

Cache((F, ψ), ψ′)
return ψ′

}

ApplySwap(F , ψ0, ψ1) {
if F = 0: return (ψ0, ψ1)
if Lookup(F, ψ0, ψ1) �= nil: return Lookup(F, ψ0, ψ1)
v := min(var(F), var(ψ0), var(ψ1))
if v = ∞: # terminals reached

ψa, ψb := (TNode(u0 val(ψ0) + u1 val(ψ1)), TNode(u2 val(ψ0) + u3 val(ψ1)))
else:

F0, F1 := Decompose(F, v)
y0, y1 := Decompose(ψ0, v)
y2, y3 := Decompose(ψ1, v)
q0, q1 := ApplySwap(F0, y0, y2)
q2, q3 := ApplySwap(F0, y1, y3)
ψa, ψb := (Node(q0, q2, v), Node(q1, q3, v))

Cache((F, ψ0, ψ1), (ψa, ψb))
return (ψa, ψb)

}

Aaronson as part of the CHP simulator. Results of this experiment are shown
in Fig. 3(a). As can be seen, the runtimes of our implementation and QuID-
DPro are proportional, with our implementation being about 100 times faster.
The proportional behaviour is not unexpected, since both implementations use
identical state representations, and operation times are proportional to the size
of the state representation.

For the second experiment, we implemented Shor’s quantum factoring algo-
rithm, by simulating the quantum circuits proposed by [2]. We compared against
ShorADD, a hand-tuned MTBDD-based simulation of Shor’s algorithm devel-
oped by Koufogiannakis [6]. ShorADD uses the algorithms of QuIDD, but simu-
lates a hand-tuned version of the quantum circuit of [2], and includes also some
application specific optimizations. Fig. 3(b) depicts the runtimes of factoring sev-
eral numbers, simulating circuits of up to 53 qubits. Note that this simulation is

Improved BDD Algorithms for the Simulation of Quantum Circuits 729

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100

ru
nt

im
e

(s
ec

)

qubits

PVLIB
QuDDPro

(a) PVLIB vs. QuIDDPro

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000 1e+06

 15 20 25 30 35 40 45 50 55

ru
nt

im
e

(s
ec

)

number factored

qubits

PVLIB
ShorADD

(b) PVLIB vs. ShorADD

Fig. 3. Runtimes of quantum simulations for PVLIB and ShorADD for factoring vari-
ous numbers using Shor’s algorithm

expensive computationally, as the number of gates in the circuit grows roughly
with n3, where n is the number of qubits in the circuit. For the largest circuits we
simulated, each run consisted of approximately 350,000 quantum gates. Again,
our implementation outperformed the MTBDD-based implementation, typically
by 2 orders of magnitude.

5.1 Discussion

The speedup obtained by our algorithm is, at first glance surprising. After all,
it is not obvious that our technique should provide runtime advantages over
previous techniques, since it uses the same state vector representation. However,
our algorithms are actually provably more efficient than previous MTBDD-based
algorithms (e.g., those used by the QuIDD software). In [10], it is shown that
if a quantum operator is represented as an MTBDD of m nodes, and is applied
on a state vector ψ of size |ψ|, then the runtime is bounded by O(m2|ψ|2).
The runtime of our Alg. 1 is at worst O(|F | · |ψ|2). To see this, note that the
runtime of our algorithm is proportional to the number of calls to procedure
Node. By virtue of the caching performed by Lookup and Cache, there are at
most O(|F | · |ψ|) such calls from inside Apply and O(|F | · |ψ|2) calls from inside
ApplySwap.

The size of the MTBDD for a controlled-U operator on n qubits is Θ(n). On
the other hand, the size of the BDD for the projector matrix F is much smaller:
it is equal to the number of control qubits. For example, the projector for the
Toffoli gate is represented by a BDD of 2 (internal) nodes, regardless of the
number of qubits. Thus, the QuIDD algorithms will apply a Toffoli gate in time
Ω(n2|ψ|2) in the worst case, whereas our algorithm will only need time O(|ψ|2).

In practice, the |ψ|2 factor is pessimistic, although there exist contrived state
vectors ψ where even a simple CNOT gate application will cause a quadratic

730 V. Samoladas

increase in the size of the resulting state vector (and thus the runtime). Yet,
in our experiments with Shor’s algorithm, we measured the runtime of Apply;
for almost every operator, the runtime was λ|ψ| with λ between 50 and 500
nanoseconds. In fact, the variance of λ seems to depend more on CPU cache
misses, and less on the actual operator applied.

6 Conclusions

We have presented novel algorithms for quantum simulation, using MTBDD-
based state vector representations. Our algorithms represent quantum operators
symbolically rather than as compressed matrices and are able to handle a broad
class of operators, namely QIT unitary operators and boolean projective mea-
surements. By adopting a symbolic representation, we were able to improve
performance by ≈ 2 orders of magnitude compared to the previously fastest
simulation package. To develop and prove the correctness of our algorithms, we
introduced a handy matrix operator, inspired by the powerlist data structure
[8], which allowed us to present MTBDD-based algorithms in a concise manner.

Our work paves the way for a number of improvements in quantum simu-
lation. By removing the need to represent quantum operators as matrices, we
can concentrate future research on more efficient representations of the state
vector. A number of BDD variants from the areas of model checking and circuit
synthesis seem worth considering (e.g., zero-suppressed BDDs [5]). We are also
interested in investigating the possibilities for hardware-accelerated, MTBDD-
based quantum simulation. So far, BDD-based techniques have proved very hard
to acelerate in hardware (or even on a parallel computer), because two complex
graphs are involved in each operation. In our case, only one complex graph (the
state vector MTBDD) is involved in each operation, whereas the other graph
(the projector F) may be quite small and simple to “hard-code” on silicon, e.g.,
on an FPGA.

Acknowledgements

We thank George Viamontes for graciously providing the QuIDDPro simula-
tor. Also, our thanks to Chris Koyfogiannakis for providing ShorADD, and for
stimulating discussions.

References

1. Abdollahi, A., Pedram, M.: Analysis and synthesis of quantum circuits by using
quantum decision diagrams. In: DATE 2006: Proc. of the Conf. on Design, Automa-
tion and Test in Europe, 3001 Leuven, Belgium, pp. 317–322. European Design and
Automation Association (2006)

2. Beckman, D., Chari, A.N., Devabhaktuni, S., Preskill, J.: Efficient networks for
quantum factoring. Phys. Rev. A 54(2), 1034–1063 (1996)

Improved BDD Algorithms for the Simulation of Quantum Circuits 731

3. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

4. Fujita, M., McGeer, P.C., Yang, J.C.-Y.: Multi-terminal binary decision dia-
grams: An efficient data structure for matrix representation. Form. Methods Syst.
Des. 10(2-3), 149–169 (1997)

5. Minato, S.i.: Zero-suppressed BDDs for set manipulation in combinatorial prob-
lems. In: DAC 1993: Proceedings of the 30th international conference on Design
automation, pp. 272–277. ACM Press, New York (1993)

6. Koufogiannakis, C.: Techniques for simulating quantum computers. Master’s thesis,
Technical U. of Crete (2004)

7. Miller, D.M., Thornton, M.A., Goodman, D.: Qmdd: A decision diagram structure
for reversible and quantum circuits. In: IEEE Int’l Symp. on Multiple-Valued Logic
(ISMVL), pp. 30–30 (2006)

8. Misra, J.: Powerlist: a structure for parallel recursion. ACM Trans. Program. Lang.
Syst. 16(6), 1737–1767 (1994)

9. Niwa, J., Matsumoto, K., Imai, H.: General-purpose parallel simulator for quantum
computing. Phys. Rev. A 66(6), 062317 (2002)

10. Viamontes, G., Markov, I., Hayes, J.: Improving gate-level simulation of quantum
circuits. Quantum Information Processing 2(5), 347–380 (2003)

11. Viamontes, G.F., Markov, I.L., Hayes, J.P.: Graph-based simulation of quantum
computation in the density matrix representation. Quantum Information Process-
ing 5(2), 113–130 (2005)

12. Viamontes, G.F.: Gate-level simulation of quantum circuits. In: Proc. of the 6th
Intl. Conference on Quantum Communication, Measurement, and Computing, pp.
311–314 (2002)

13. Viamontes, G.F.: Efficient Quantum Circuit Simulation. PhD thesis, University of
Michigan (2007)

Mobile Route Planning�

Peter Sanders, Dominik Schultes, and Christian Vetter

Universität Karlsruhe (TH), 76128 Karlsruhe, Germany
{sanders,schultes}@ira.uka.de, veaac@gmx.de

Abstract. We provide an implementation of an exact route planning
algorithm on a mobile device that answers shortest-path queries in a road
network of a whole continent instantaneously, i.e., with a delay of about
100 ms which is virtually not observable for a human user. Our main
algorithmic contribution of is a highly compressed blocked representation
of the underlying hierarchical graph and a new fast yet compact route
reconstruction data structure. Our representation exploits the locality
properties of the graph using a very simple algorithm that does not use
any a priori information.

1 Introduction

In recent years, there has been a lot of work on route planning algorithms, par-
ticularly for road networks, aiming for fast query times and accurate results.
The various real-world applications of such algorithms can be classified accord-
ing to their respective platform into server applications (e.g., providing driving
directions via the internet, optimising logistic processes) and mobile applications
(in particular car navigation systems). On the one hand, many approaches have
been evaluated successfully with respect to the server scenario – the fastest vari-
ant of transit-node routing [1] computes shortest-path distances in the Western
European road network in less than two microseconds on average. On the other
hand, there have been only few results on efficient implementations of route
planning techniques on mobile devices like a PDA. In this paper, we want to
close this gap.

The main challenge is the memory hierarchy of typical PDAs, which consists
of a limited amount of fast main memory and a larger amount of comparatively
slow flash memory, which has similar properties as a hard disk regarding read
access. In order to obtain an efficient implementation, we have to arrange the
data into blocks, respecting the locality of the data. Then, reading at a single
blow a whole block that contains a high percentage of relevant data is much more
efficient than reading single data items at random. Furthermore, compression
techniques can be used to increase the amount of data that fits into a single
block and, consequently, decrease the number of required block accesses.

� Partially supported by DFG grant SA 933/5-1.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 732–743, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Mobile Route Planning 733

Our Contributions. We present an efficient and practically useful implementation
of a fast and exact route planning algorithm for road networks on a mobile
device. For this purpose, we select contraction hierarchies [2] as our method of
choice – we review the most relevant concepts in Section 2. In Section 3, we
design an external-memory graph representation that takes advantage of the
locality inherent in the data to compress the graph and to reduce the number
of required I/O operations – which are the bottleneck of our application. The
graph is divided into several blocks, each containing a subset of the nodes and
the corresponding edges. We put particular efforts in exploiting the fact that the
edges in one block only lead to nodes in a small subset of all blocks; many edges
even lead to nodes in the same block.

By this means, our ‘mobile’ implementation achieves a considerable improve-
ment compared to the original implementation of contraction hierarchies (CH)
[2], which, in turn, is already considerably better than the bidirectional variant
of Dijkstra’s algorithm, as summarised in the following table, which refers to
experiments on an European road network with about 18 million nodes.1

only length complete path
time [ms] space [MB] time [ms] space [MB]

bidir. Dijkstra 298 209.0 408 298 209.0 408
CH [2] 394.9 350 3 025.6 560
CH mobile 59.4 140 96.6 275

All details on our experimental setting can be found in Section 4. We con-
clude our paper in Section 5, where we also discuss related work, draw further
comparisons, and outline possible future work.

2 Contraction Hierarchies

We decided to use contraction hierarchies [2] for our mobile implementation due
to their simplicity, low memory requirements, and its hierarchical properties that
can be exploited to improve the locality of the accessed data. We now review
the most important concepts of contraction hierarchies.

Preprocessing. In a first step, the nodes of a given graph G = (V,E) (with n :=
|V |) are ordered by ‘importance’ using heuristics that try to obtain hierarchies
with few edges and important nodes uniformly distributed over the network.
We obtain a bijection � : V → {1, 2, 3, . . . , n}, where n represents the highest
importance.

In a second step, we first set G′ = (V ′, E′) := G and then, while V ′
= ∅, we
contract the node v with the lowest importance in V ′, i.e., we remove v from G

1 Running times refer to the query type ‘cold’ (Section 4), where the cache is cleared
after each random query. Since the priority queue of Dijkstra’s algorithm would not
fit in the main memory, we ran Dijkstra only on the Dutch subnetwork of Europe
and linearly extrapolated the obtained query times.

734 P. Sanders, D. Schultes, and C. Vetter

in such a way that the shortest paths distances between the remaining nodes are
preserved. To this end, whenever a shortest path contains a subpath of the form
〈u, v, u′〉, we add a so-called shortcut edge (u, u′) whose weight corresponds to
the length of the path 〈u, v, u′〉.

In a third step, we build the so-called search graph G∗ = (V,E∗). We define
Ê to contain all edges from E and all shortcut edges that have been added at
some point during the second step. Then, E↑ := {(u, v) ∈ Ê | �(u) < �(v)},
E↓ := {(u, v) ∈ Ê | �(u) > �(v)}, and E↓ := {(v, u) | (u, v) ∈ E↓}. Finally,
E∗ := E↑ ∪ E↓. Furthermore, we introduce a forward and a backward flag such
that for any edge e ∈ E∗, f(e) = true iff e ∈ E↑ and b(e) = true iff e ∈ E↓. Note
that G∗ is a directed acyclic graph.

Query. We perform two normal Dijkstra searches in G∗, one from the source
using only edges where the forward flag is set and one from the target using
only edges where the backward flag is set. Forward and backward search are
interleaved, we keep track of a tentative shortest-path length and abort the
forward/backward search process when all keys in the respective priority queue
are greater than the tentative shortest-path length. To further reduce the search
space size, we employ the stall-on-demand technique [3,4,2] which stops the
search at nodes that can be proven to be outside the shortest path tree.

In order to determine not only the shortest-path length, but also a full descrip-
tion, the shortcut edges have to be unpacked to obtain the represented subpaths
in the original graph. A simple recursive unpacking routine can be used provided
that we have stored the middle node v of each shortcut (u, u′) that represents
the path 〈u, v, u′〉.

3 External-Memory Graph Representation

Locality. Reading data from external memory is the bottleneck of our applica-
tion. To get a good performance, we want to arrange the data into blocks and
access them blockwise. Obviously, the arrangement should be done in such a
way that accessing a single data item from one block typically implies that a lot
of data items in the same block have to be accessed in the near future. In other
words, we have to exploit locality properties of the data.

The node order of the real-world road networks that we have obtained already
respects spatial locality, i.e., the nodes are ordered somehow by spatial proximity.
However, we can do better. We consider the reverse search graph G∗ = (V,E∗),
where E∗ := {(v, u) | (u, v) ∈ E∗}, which is an acyclic graph (as G∗), and
compute a topological order defined by the finishing times of a depth-first search
(DFS). We demonstrate in the full paper that this order already greatly improves
the locality and is almost as good as a more sophisticated order that can be
obtained using a much more expensive technique. One reason for the success of
this method is presumably the small depth of the search graph.

We can further stress the hierarchical locality: nodes of a similarly high im-
portance should be close to each other since – due to the nature of the query

Mobile Route Planning 735

algorithm – they are likely to be visited together. For a fixed next-layer fraction
f , we divide the nodes into two groups: the first group contains the (1− f) · |V |
nodes of smaller importance, the second group the f · |V | nodes of higher impor-
tance. Within each group, we keep the topological order obtained by our modified
DFS. We recurse in the second group until all nodes fit into a single block. This
hierarchical reordering step is a slightly generalised version of a technique used
in [5]. It is important to note that the resulting order is still a topological order.

Note that a good node order has not only the obvious advantage that a loaded
block contains a lot of relevant data, but also can be exploited to compress the
data effectively. In particular, we exploit that many target nodes belong to the
same block.

Main Data Structure. The starting point for our compact graph data structure
is an adjacency array representation: All edges (u, v) are kept in a single array,
grouped by the source node u. Each edge stores only the target v and its weight.
In addition, there is a node array that stores for each node u the index of the first
edge (u, v) in the edge array. The end of the edge group of node u is implicitly
given by the start of the edge group of u’s successor in the node array. We want
to divide this graph data structure into blocks. In order to decrease the number
of required block accesses, we decided not to store node and edge data separately,
but to put node and the associated edge data in a common block.

When encoding the target v of an edge (u, v), we want to exploit the existing
locality, i.e., in many cases the difference of the IDs of u and v is quite small and,
in particular, u and v often belong to the same block. Therefore, we distinguish
between internal and external edges: internal edges lead to a node within the
same block, external edges lead to a node in a different block. We use a flag to
mark external edges. In case of an internal edge, it is sufficient to just store the
node index within the same block, which requires only a few bits. In case of an
external edge, we need the block ID of the target and the node index within the
designated block. We introduce an additional indirection to reduce the number
of bits needed to encode the ID of the adjacent block: It can be expected that
the number of blocks adjacent to a given block B is rather small, i.e., there are
only a few different blocks that contain all the nodes that are adjacent to nodes
in B. Thus, it pays to explicitly store the IDs of all adjacent blocks in an array in
B. Then, an external edge need not store the full block ID, but it is sufficient to
just store the comparatively small block index within the adjacent-blocks array.

Building the Graph Representation. We pursue the following goals: the graph
data structure should occupy as little memory as possible, and accessing the data
should be fast. We make the following design choices: each block has the same
constant size and contains a subset of consecutively numbered nodes together
with all their incident edges; all three ‘logical’ arrays (adjacent blocks, nodes,
edges) are stored in a single byte array one after the other, the starting index
of each logical array is stored in the header of the block; within each block, we
use the minimal number of bits to store the respective attributes. For example,

736 P. Sanders, D. Schultes, and C. Vetter

if a block has 42 different adjacent blocks, then each external edge (u, v) in this
block uses 6 bits to address the adjacent block that contains v.

In general, building the blocks is not trivial due to a cyclic dependency: On
the one hand, the distribution of the nodes into blocks depends on the required
memory for each edge – in particular, an internal edge typically occupies less
memory than an external edge. In other words, a block can accommodate more
internal than external edges. On the other hand, the distinction whether an edge
is internal or external depends on the distribution of the nodes: if the target node
of an edge fits into the same block, we have an internal edge; otherwise, we have
an external edge.

Fortunately, we can exploit the fact that we sorted the nodes topologically.
When we process the nodes from the most important one to the least important
one, all edges (u, v) point to nodes v that have already been processed. This
implies that we already know whether (u, v) is an internal or external edge and, in
case of an external edge, we also know the number of nodes in the corresponding
block B so that we can choose the minimal number of bits required to encode
the index of node v within the block B. This way, we can easily calculate the
memory requirements of the current edge. If all edges of the current node u fit
into the current block, the node and its incident edges are added. Otherwise,
a new block is started. Note that when we consider to add another node and
its edges, we have to account not only for the memory directly used by these
additional objects, but also for a potential memory increase of the other nodes
and edges in the same block: for example, whenever the number of edges in the
block exceeds the next power of two, all nodes in the block need an additional
bit to store the index of the first outgoing edge.

Since most edge weights in our real-world road networks are rather small and
only comparatively few edges (e.g., long shortcuts that leave important nodes)
are long, we use one bit to distinguish between a long and a short edge; depending
on the state of this bit, we use more or less bits to store the weight.

Storing the Graph Representation. The blocks representing the graph are stored
in external memory. In main memory, we manage a cache that can hold a subset
of the blocks. We employ a simple least-recently used (LRU) strategy. In the
external-memory graph data structure, a node u is identified by its block ID
B(u) and the node index i(u) within the block. We need a mapping from the
node ID u used in the original graph to the tuple (B(u), i(u)). Such a mapping
is realised in a simple array, stored in external memory.

We want to access the external memory read-only in order to improve the
overall performance and in order to preserve the flash memory, which can get
unusable after too many write operations. Therefore, we clearly separate the
read-only graph data structures from some volatile data structures, in particular
the forward and the backward priority queue. We use a hash map to manage
pointers from reached nodes to the corresponding entries in the priority queues.
Since the search spaces of contraction hierarchies are so small (a few hundred
nodes out of several million nodes in the graph), it is no problem to keep these

Mobile Route Planning 737

data structures in main memory. Note that in [6], a similar distinction between
read-only and volatile data structures has been used.

Path Unpacking Data Structures. The above data structures are sufficient to
determine the shortest-path length. In order to generate actual driving directions,
it must also be possible to generate a description of the shortest path. First
of all, since we have changed the node order, we need to store for each node
its original ID so that we can perform the reverse mapping. Furthermore, we
need the functionality to unpack shortcut edges. To support a simple recursive
unpacking routine, we store the ID of the middle node of each shortcut (see
Section 2). We distinguish between internal and external shortcuts (u, u′), where
the middle node v belongs to the same block as u or not. For an internal shortcut,
the middle node can be stored as an index within the block, for an external
shortcut, we have to specify the block B(v) and the index within B(v).

To accelerate the path unpacking, we refine the approach from [7] to store
explicit descriptions of the paths underlying some of the shortcuts. Looking up
the edges (v, u) and (v, u′) in case of an external shortcut (u, u′) with middle node
v might require an expensive additional block read. Therefore, it is reasonable
to completely pre-unpack all external shortcuts and to store the corresponding
node sequences in some additional data blocks. Instead of the middle node, we
store the starting index within these additional data blocks. A new feature is
that we exploit the fact that an external shortcut can contain other external
shortcuts. We do not have to store these contained shortcuts explicitly, it is
sufficient to just note the correct starting position and a direction flag since
contained shortcuts might be filed in the reverse direction. We use a top-down
approach. We consider external shortcuts in a descending order of importance. A
shortcut is unpacked only if it is not contained in an already unpacked shortcut.

4 Experiments

Experiments have been done on a Nokia N800 Internet Tablet equipped with
128 MB of RAM and a Texas Instruments OMAP 2420 microprocessor, which
features an ARM11 processor running at 330 MHz. We use a SanDisk Extreme
III SD flash memory card with a capacity of 2 GB; the manufacturer states a
sequential reading speed of 20 MB/s. The operating system is the Linux-based
Maemo 3.2 in the form of Internet Tablet OS 2007. The program was compiled
by the GNU C++ compiler 4.2.1 using optimisation level 3. Preprocessing has
been done on one core of a single AMD Opteron Processor 270 clocked at 2.0
GHz with 8 GB main memory and 2 × 1 MB L2 cache, running SuSE Linux
10.3 (kernel 2.6.22). The program was compiled by the GNU C++ compiler 4.2.1
using optimisation level 3.

Most experiments have been done on a road network of Europe2, which has
been made available for scientific use by the company PTV AG. For each edge, its
2 Austria, Belgium, Denmark, France, Germany, Italy, Luxembourg, the Netherlands,

Norway, Portugal, Spain, Sweden, Switzerland, and the UK.

738 P. Sanders, D. Schultes, and C. Vetter

length and one out of 13 road categories (e.g., motorway, national road, regional
road, urban street) is provided. In addition, we perform some experiments on a
publicly available version of the US road network (without Alaska and Hawaii)
that was obtained from the DIMACS Challenge homepage [8] and on a new
version3 of the European road network (“New Europe”) that was provided for
scientific use by the company ORTEC. In all cases, we use a travel time metric.
Our starting point are precomputed contraction hierarchies [2]. Preprocessing
takes 31 min, 32 min, and 58 min for Europe, USA, and New Europe, respec-
tively. We distinguish between four different query types:

1. ‘cold’ : Perform 1 000 random queries; after each query, clear the cache. This
way, we can determine the time that is needed for the first query when the
program is started since in this scenario the cache is empty.

2. ‘warm’ : Perform 1 000 random queries to warm up the cache; then, perform
a different set of 1 000 random queries without clearing the cache; determine
the average time of the latter 1 000 queries. This way, we can determine the
average query time when the device has been in use for a while.

3. ‘recompute’ : Select 100 random target nodes t1, . . . , t100 and for each target
ti, 101 random source nodes si,0, . . . , si,100. For each target ti and each j, 1 ≤
j ≤ 100, perform one query from si,0 to ti without measuring the running
time and one query from si,j to ti performing time measurements, and clear
the cache. This way, we can determine the time needed to recompute the
shortest path to the same target in case only the source node changes –
which can happen if the driver does not follow the driving directions.

4. ‘w/o I/O’ : Select 100 random source-target pairs. For each pair, repeat the
same query 101 times; ignore the first iteration when measuring the running
time. This way, we obtain a benchmark for the actual processing speed of
the device when no I/O operations are performed.

For practical scenarios, the first and the third query type are most relevant; The
second query time is closest to the situation reported in related work.

Unless otherwise stated, our experiments refer to the case that the path-
unpacking data structures exist, but are not used. Note that the query times
always include the time needed to map the original source and target IDs to
the corresponding block IDs and node indices, while figures on the memory
consumption do not include the space needed for the mapping.

In the following we use a block size of 4 KB, that was found using experiments
with block sizes from 1 KB to 64 KB. This block size is optimal with respect to
both space consumption and query time. We use a cache size of 64 MB. Addi-
tional experiments indicate that going to 32 MB has negligible effect on the per-
formance of ‘warm’-queries. Even only 256 KB of cache are sufficient to achieve
the performance of our ‘cold’ queries. Finally, we use a value of 1/16 for the
next-layer fraction from Sect. 3. This minimizes query time and has only a small
detrimental effect on the space consumption for which even smaller values would
be better.
3 In addition to the old version, the Czech Republic, Finland, Hungary, Ireland,

Poland, and Slovakia.

Mobile Route Planning 739

Table 1. Building the graph representation. We give the number of nodes, the number
of edges in the original graph and in the search graph, the number of graph-data blocks
(without counting the blocks that contain pre-unpacked paths), the average number
of adjacent blocks per block, the numbers of internal edges, internal shortcuts and
external shortcuts as percentage of the total number of edges, the time needed to pre-
unpack the external shortcuts and to build the external-memory graph representation
(provided that the search graph is already given), and the total memory consumption
including pre-unpacked paths.

|V | |E| |E∗| #blocks #adj. int. int. ext. time space
[×106] [×106] [×106] blocks edges shcs. shcs. [s] [MB]

Europe 18.0 42.2 36.9 52 107 9.1 70.6% 32.2% 7.7% 123 275
USA 23.9 57.7 49.4 80 099 8.4 69.2% 33.7% 8.0% 186 400
New Europe 33.7 75.1 65.7 103 371 8.3 70.3% 32.7% 7.5% 210 548

Table 1 gives an overview of the external-memory graph representation. Build-
ing the blocks is very fast and can be done in about 2–4 minutes. Although the
given memory consumption already covers everything that is needed to obtain
very fast query times (including path unpacking), we need 30% less space than
the original graph would occupy in a standard adjacency-array representation
in case of Europe. Most of the savings come from using less bits than the naive
representation. As already observed in [2] we also save space because contraction
hierarchies need to store bidirectional edges only at one of their end points.

The results for the four query types are represented in Tab. 2. On average,
a random query has to access 39 blocks in case of the European road network.
When the cache has been warmed-up, most blocks (in particular the ones that
contain very important nodes) reside in the cache so that on average less than
four blocks have to be fetched from external memory. This yields a very good
query time of 23 ms. Recomputing the optimal path using the same target, but
a different source node can be done in 34 ms. As expected, the bottleneck of
our application are the accesses to the external memory: if all blocks had been
preloaded, a shortest-path computation would take only about 8 ms instead of
the 72 ms that include the I/O operations. For comparison, on a PC (2 GHz
Opteron), the same code runs about 13 times faster (0.64 ms) – this is basically
the speed difference between the CPUs. The code from [2] is another four times
faster (0.16 ms) – this is the overhead due to the compressed data structure.

Path Unpacking. In Tab. 3, we compare five different variants of path
(not-)unpacking, using the first query type (‘cold’) in each case. First (a), we
store no path data at all. This makes the query very fast since more nodes fit into
a single block. However, with this variant, we can only compute the shortest-path
length. For all other variants, we also store the middle nodes of the shortcuts in
the data blocks. This slows down the query even if we do not use the additional
data (b). After having computed the shortest-path length, getting the very first
edge of the path (which is useful to generate the very first driving direction) is
almost for free (c). Computing the complete path takes considerably longer if
we do not use pre-unpacked path data (d). Pre-unpacked paths (e) somewhat

740 P. Sanders, D. Schultes, and C. Vetter

Table 2. Query performance for four different query types

cold warm recompute w/o I/O
settled blocks time blocks time blocks time time
nodes read [ms] read [ms] read [ms] [ms]

Europe 280 39.2 72.4 3.6 22.9 7.9 34.1 8.4
USA 223 30.1 56.5 4.4 17.1 6.1 28.0 6.1
New Europe 351 44.5 84.2 4.6 24.0 8.5 39.9 12.3

Table 3. Comparison between different variants of path unpacking

Europe USA New Europe
time [ms] space [MB] time [ms] space [MB] time [ms] space [MB]

(a) no path data 59.4 140 47.2 213 66.8 257
(b) only length 72.4 203 56.5 312 84.2 403
(c) first edge 72.5 203 56.7 312 84.4 403
(d) complete path 458.3 203 932.8 312 698.9 403
(e) compl. path (fast) 96.6 275 90.6 400 117.8 548

increase the memory requirements, but greatly improve the running times. Note
that almost half of the pre-unpacked paths are contained in other pre-unpacked
paths so that they require no additional space.

5 Discussion

As far as we know, we provide the first implementation of an exact route planning
algorithm on a mobile device that answers queries in a road network of a whole
continent instantaneously, i.e., with a delay that is virtually not observable for
a human user. Furthermore, our graph representation is comparatively small
(only a few hundred megabytes) and the employed query algorithm is quite
simple, which suggests an application of our implementation in car navigation
systems.

It is algorithmically interesting that a DFS based topological ordering of the
contraction hierarchy yields a numbering of the graph with locality comparable
to much more complicated schemes. Another generally interesting observation
is that compressed storage of DAGs is easier than for general graphs since all
encoding lengths are known when building the graph in topologically sorted
order.

5.1 Related Work

There is an abundance of shortest-path speedup techniques, in particular for road
networks. For a broad overview, we refer to [9,4]. In general, we can distinguish
between goal-directed and hierarchical approaches.

Mobile Route Planning 741

Goal-Directed Approaches. (e.g., [10,11,12,13,6]) direct the search towards the
target t by preferring edges that shorten the distance to t and by excluding edges
that cannot possibly belong to a shortest path to t – such decisions are usually
made by relying on preprocessed data. For a purely goal-directed approach, it is
difficult to get an efficient external-memory implementation since no hierarchical
locality (see Section 3) can be exploited. In spite of the large memory require-
ments, Goldberg and Werneck [6] successfully implemented the ALT algorithm
on a Pocket PC. Their largest road network (North America, 29 883 886 nodes)
occupies 3 735 MB and a random query takes 329 s. Using similar hardware4, a
slightly larger graph (“New Europe”), and a slightly smaller cache size (8 MB
instead of 10 MB), our graph representation requires only 548 MB (about 1/7
of the space needed by [6]) and our random queries (including path unpacking)
take 42 ms (more than 7 500 times faster) when our cache has been warmed up
and 118 ms (more than 2 500 times faster) when our cache is initially empty.

Hierarchical Approaches. (e.g., [14,5,15,16,3,4]) exploit the hierarchical structure
of the given network. In a preprocessing step, a hierarchical representation is
extracted, which can be used to accelerate all subsequent queries. Although
hierarchical approaches usually can take advantage of the hierarchical locality,
not all of them are equally suitable for an external-memory implementation,
in particular due to sometimes large memory requirements. The RE algorithm
[14,5] has been implemented on a mobile device, yielding query times of “a few
seconds including path computation and search animation” and requiring “2–
3 GB for USA/Europe” [17].

Commercial Systems. We made a few experiments with a commercial car nav-
igation system, a recent TomTom One XL5, computing routes from Karlsruhe
to 13 different European capital cities. We observe an average query time of 59 s
to compute the route, not including the time needed to compose the driving di-
rections. Obviously, this is far from being a system that provides instantaneous
responses.6 Furthermore, to the best of our knowledge, current commercial sys-
tems do not compute exact routes.

More Related Work. Compact graph representations have been studied earlier.
In [18], the nodes of the graph are rearranged according to the in-order of a
separator tree that results from recursively removing edges to separate the graph
4 We use a more recent version of the ARM architecture, but with a slightly slower

clock rate (330MHz instead of 400 MHz); in [6], random reads of 512-byte blocks
from flash memory can be done with a speed of 366 KB/s, compared to 326 KB/s on
our device.

5 AK9SQ CSBUS, ARM9 processor clocked at 266 MHz, application version 6.593, OS
version 1731, 29 MB RAM, road network of Western Europe version 675.1409.

6 Note that such a commercial product is slowed down due to various reasons (e.g.,
some time is spent to refresh the display in order to update a progress bar), which
are neglected in our test environment. Therefore, a direct quantitative comparison
is not possible.

742 P. Sanders, D. Schultes, and C. Vetter

into components. By this means, the difference between the IDs of adjacent nodes
gets small so that applying suitable encoding schemes yields a better compression
rate than we achieve. However, the study in [18] does not take into account
additional edge attributes like the edge weight and, more importantly, it does
not refer to the external-memory model, which is crucial for our application.

There has been considerable theoretical work on external-memory graph rep-
resentations and external-memory shortest paths (e.g. [19,20,21,22]). Indeed, al-
though road networks (let alone our hierarchical networks) are not planar, the
basic ideas in [20] lead to a similar approach to blocking as we use it. Also,
the redundant representation proposed in [20], which adds a neighbourhood of
all nodes to a block, might be an interesting approach to further refinements.
However, the worst case bounds obtained are usually quite pessimistic and there
are only few implementations: the closest one we are aware of [23] only works
for undirected graphs with unit edge weights and does not exploit the kind of
locality properties we are dealing with.

5.2 Future Work

Increasing the compression rate seems possible, in particular by using more so-
phisticated techniques, e.g. from [18]. However, we have to bear the decoding
speed in mind: it might be counterproductive to use techniques that are very
complicated.

One particularly relevant scenario is the case that the driver deviates from
the computed route (query type ‘recompute’). The recomputation could be ac-
celerated by explicitly storing and reusing the backward search space.

Acknowledgements. We would like to thank Robert Geisberger for providing
precomputed contraction hierarchies [2] for various networks.

References

1. Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.:
Combining hierarchical and goal-directed speed-up techniques for Dijkstra’s algo-
rithm. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer,
Heidelberg (2008)

2. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies:
Faster and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.)
WEA 2008. LNCS, vol. 5038, pp. 303–318. Springer, Heidelberg (2008)

3. Schultes, D., Sanders, P.: Dynamic highway-node routing. In: Demetrescu, C. (ed.)
WEA 2007. LNCS, vol. 4525, pp. 66–79. Springer, Heidelberg (2007)

4. Schultes, D.: Route Planning in Road Networks. PhD thesis, Universität Karlsruhe
(TH) (2008)

5. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Better landmarks within reach. In:
Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 38–51. Springer, Heidelberg
(2007)

6. Goldberg, A.V., Werneck, R.F.: Computing point-to-point shortest paths from
external memory. In: Workshop on Algorithm Engineering and Experiments
(ALENEX), pp. 26–40 (2005)

Mobile Route Planning 743

7. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Highway hierarchies star. In:
9th DIMACS Implementation Challenge [8] (2006)

8. 9th DIMACS Implementation Challenge: Shortest Paths (2006),
http://www.dis.uniroma1.it/∼challenge9/

9. Sanders, P., Schultes, D.: Engineering fast route planning algorithms. In: Deme-
trescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 23–36. Springer, Heidelberg (2007)

10. Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static
networks with geographical background. In: Geoinformation und Mobilität – von
der Forschung zur praktischen Anwendung, IfGI prints, Institut für Geoinformatik,
Münster, vol. 22, pp. 219–230 (2004)

11. Köhler, E., Möhring, R.H., Schilling, H.: Fast point-to-point shortest path compu-
tations with arc-flags. In: 9th DIMACS Implementation Challenge [8] (2006)

12. Hilger, M.: Accelerating point-to-point shortest path computations in large scale
networks. Diploma Thesis, Technische Universität Berlin (2007)

13. Goldberg, A.V., Harrelson, C.: Computing the shortest path: A∗ meets graph the-
ory. In: 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 156–165 (2005)

14. Gutman, R.: Reach-based routing: A new approach to shortest path algorithms
optimized for road networks. In: Workshop on Algorithm Engineering and Exper-
iments (ALENEX), pp. 100–111 (2004)

15. Sanders, P., Schultes, D.: Engineering highway hierarchies. In: Azar, Y., Erlebach,
T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 804–816. Springer, Heidelberg (2006)

16. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road networks with
transit nodes. Science 316, 566 (2007)

17. Goldberg, A.: personal communication (2008)
18. Blandford, D.K., Blelloch, G.E., Kash, I.A.: An experimental analysis of a compact

graph representation. In: Workshop on Algorithm Engineering and Experiments
(ALENEX) (2004)

19. Nodine, M.H., Goodrich, M.T., Vitter, J.S.: Blocking for external graph searching.
Algorithmica 16, 181–214 (1996)

20. Agarwal, P.K., Arge, L.A., Murali, T.M., Varadarajan, K., Vitter, J.: I/O-efficient
algorithms for contour-line extraction and planar graph blocking. In: 9th ACM-
SIAM Symposium on Discrete Algorithms, pp. 117–126 (1998)

21. Hutchinson, D., Maheshwari, A., Zeh, N.: An external memory data structure for
shortest path queries. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama,
T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 51–60. Springer, Heidelberg (1999)

22. Meyer, U., Zeh, N.: I/O-efficient undirected shortest paths with unbounded edge
lengths. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 540–551.
Springer, Heidelberg (2006)

23. Ajwani, D., Dementiev, R., Meyer, U.: A computational study of external-memory
BFS algorithms. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 601–610
(2007)

24. Ajwani, D., Malinger, I., Meyer, U., Toledo, S.: Characterizing the performance of
flash memory storage devices and its impact on algorithm design. In: McGeoch,
C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 208–219. Springer, Heidelberg (2008)

25. Karypis Lab: METIS - Family of Multilevel Partitioning Algorithms (2008)
26. R Development Core Team: R: A Language and Environment for Statistical Com-

puting (2004), http://www.r-project.org

http://www.dis.uniroma1.it/~challenge9/
http://www.r-project.org

How Reliable Are Practical

Point-in-Polygon Strategies?�

Stefan Schirra

Otto von Guericke University, Department of Computer Science,
Magdeburg, Germany
stschirr@ovgu.de

Abstract. We experimentally study the reliability of geometric software
for point location in simple polygons. As expected, the code we tested
works very well for random query points. However, our experiments re-
veal that the tested code often fails for more challenging degenerate and
also nearly degenerate queries.

1 Introduction

Assume you would like to test points for inclusion in a simple polygon. Most likely,
you will end up using one of the so-called practical point-in-polygon strategies in-
stead of implementing one of the more sophisticated theoretically optimal point
location data structures developed in computational geometry. Code for such prac-
tical point-in-polygon strategies is available on the www. Or you might decide to
use components from cgal [3], leda [10] or some other software library providing
code for point-in-polygon testing or more general point location queries. Most of
the available floating-point based code is very efficient and works well for query
points chosen uniformly at random inside the bounding box of the polygon.

As we shall see in Section 4 most of the existent code produces wrong results
for query points near or on the polygon edges, however, see also Fig. 1 where
queries answered correctly are marked by a grey box , false positives by a red
disk •, and false negatives by a green disk •. If you know that the coordinates of
query points and polygon vertices are inaccurate anyway, you might be willing to
accept this. Unfortunately, sometimes there are errors not only for such problem-
specific degenerate queries, but also for algorithm-specific degeneracies, cf. Fig. 7
in more or less rare cases. Are you willing to accept this for your applications?
And what if your data is not subject to uncertainty at all? This is the case we
are most interested in. In this paper, we consider simple closed polygons and the
corresponding binary point-inclusion predicate only. This is the most important
case and can be used for point location in polygons with holes, too. Furthermore,
point-in-polygon testing is a subtask in landmarks algorithms for point location
in arrangements of straight lines [8].

After a very brief look at related work in the next section, we report on ex-
perimental studies regarding the reliability of practical point-in-polygon testing
software. The studies include code from [7], code available on the www, and
� Partially supported by DFG grant SCHI 858/1-1.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 744–755, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

How Reliable Are Practical Point-in-Polygon Strategies? 745

Fig. 1. Results for query points near or on the edges and the diagonals of a real-world
polygon with 30 edges for strategies crossings (left) and halfplane (right)

code provided by computational geometry software libraries. Furthermore, we
briefly discuss how to achieve full reliability without paying too much for this
benefit in Section 5 .

2 Related Work

Testing a query point for inclusion in a polygon is a fundamental problem in
computational geometry with many applications, e.g. in computer graphics and
geographic information systems, and has been the subject of many research pa-
pers in computer science and related application disciplines. For an overview we
refer to Snoeyink’s survey paper [15]. Probably the most common algorithm for
point-in-polygon testing without preprocessing is the crossing number algorithm.
Interestingly, already the first description of the algorithm by Shimrat [14] con-
tained a flaw fixed later by Hacker [6]. It is well known that handling degenerate
cases in a crossing number algorithm is not obvious. Forrest [4] nicely illustrates
the problems involved.

While previous case studies on practical point-in-polygon testing, e.g. [7,16],
focus on query time and sometimes on memory usage, here we are concerned with
the correctness or at least the numerical stability of practical point-in-polygon
algorithms.

3 Experimental Setup

We concentrate on practical point-in-polygon algorithms with no or little prepro-
cessing without sophisticated data structures. Our selection of existent code in-
cludes the fastest algorithms from the beautiful graphic gems collection of Haines
[7], namely crossings, a “macmartinized” crossing number algorithm, see also [1],

746 S. Schirra

the triangle-fan algorithms halfplane, barycentric, and spackman, and finally grid.
Crossing number algorithms compute the parity of the number of intersections of
an (horizontal) ray with the polygon boundary. Triangle-fan algorithms consider
the collection of triangles formed by an initial vertex v and each polygon edge that
is not incident to v. Then they check how many triangles contain the query point.
Again, the parity tells us about the relative position of the query point with respect
to the polygon. Halfplane precomputes line equations for faster triangle testing,
barycentric and spackman compute barycentric coordinates in addition to point
location. This might be useful for some applications. Grid imposes a 20 × 20 grid
on the bounding box of the polygon and uses a crossing number like strategy to
resolve those cases where the grid cell containing the query point is not completely
contained in the interior or exterior of the polygon. For the sake of completeness, we
also tested Weiler’s code [17] which computes the winding number using quadrant
movements. Furthermore, we consider Franklin’spnpoly code [5], which is another
crossing number based algorithm available on the www. Walker and Snoeyink [16]
use CSG representations of polygons for point location. We include their code1, csg,
in our case study because of the reported efficiency, although the code is not pub-
licly available. Finally, we also consider point location code for polygons from cgal

using the obvious inexact geometry kernel with double precision floating-point co-
ordinates. Of course, with an exact kernel, cgal’s point location code for polygons
is fully reliable. The same holds for leda’s rat polygon code (floating-point filtered
rational kernel).

Regarding polygon data, we use both artificial “random” polygons and real
world data. The random polygons are generated from a random set of vertices
using the 2-opt heuristic [2]. The vertices are generated uniformly at random
inside the unit square. The real world polygons we use are city and village
boundaries from south-west of Germany, scaled to the unit square.

We use different methods to generate query points, cf. Fig. 2. For points gener-
ated uniformly at random inside the unit square using a generator from cgal, all
tested code usually works without any problems. Thus we challenge the code with
problem-dependent (near) degeneracies. We use cgal’s point generator for gener-
ating points “on” a line segment. Given endpoints v andw of a segment and a num-
bern > 2, this generator creates a sequence of equally spaced points on the segment
vw, more precisely, it creates points v+ i

n−1 (w−v) for i = 0, . . . , n−1 and hence the
generated set of points includes the segment endpoints. Because we use double pre-
cision coordinates, usually not all points are exactly on the segment, but only very
close to it. Next we consider potentially algorithm-dependent degeneracies. We cre-
ate points on the vertical and horizontal lines through the polygon vertices. These
are potentially degenerate cases for the crossing number algorithms. Furthermore
we generate query points “on” the diagonals bounding the triangles considered by
the triangle-fan algorithms, again using a generator from cgal. These are poten-
tially degenerate cases for such algorithms. Besides this we generate points “on”
the lines supporting the polygon edges in order to challenge the code based on CSG
representations. Finally we use the polygon vertices as query points.

1 Thanks to Robert Walker for making the code available to us.

How Reliable Are Practical Point-in-Polygon Strategies? 747

uniformly at random on segments on horizontals and verticals
through the vertices

on diagonals on supporting lines at vertices

Fig. 2. Query point generators

A strong point of this case study is its independence: we test only code not
written by the author! For the sake of reproducibility, testbed code and data are
available online [12].

4 Experimental Results

The reported results hold on any machine compliant to the ieee 754 double
precision floating-point standard. As stated above, all tested code works very
well for random query points. Thus we turn to more interesting query points.
Points (almost) on the polygon edges are challenging for all strategies. Fig. 3 and
Fig. 4 show typical results for a real-world and a random polygon, respectively.

All tested code produces some false results. Table 1 shows the percentage of
false positives and false negatives for query points near the polygon edges for the
polygons from Figs. 3 and 4. For all but the cgal code the percentage of false
results is significant. However, the cgal code is about an order of magnitude
slower than the fastest algorithms from [7], but it is also much more reliable for
(nearly) degenerate query points. Especially, polygon vertices cause problems for
all but the cgal code, see also Table 4.

Unfortunately, it is not obvious how to measure sensitivity to errors as a
function of closeness to degeneracy, because, as illustrated by Kettner et al. [9]

748 S. Schirra

Fig. 3. Results for query points near or on the edges of a a real-world polygon with
304 vertices for strategies pnpoly (left) and grid (right)

Table 1. Results for points “on” polygon edges

real-world polygon random polygon
304 vertices 64 vertices

false false false false
positives negatives positives negatives

crossings 12.5 % 17.8 % 18.4 % 18.8 %
weiler 11.9 % 18.0 % 13.4 % 23.0 %

halfplane 15.2 % 24.0 % 16.3 % 24.8 %
barycentric 20.2 % 17.5 % 17.9 % 14.1 %
spackman 20.2 % 18.5 % 19.6 % 15.2 %

grid 16.7 % 15.9 % 17.0 % 19.7 %
pnpoly 11.9 % 18.0 % 13.5 % 23.4 %

csg 23.9 % 23.7 % 26.0 % 18.0 %
cgal 0.4 % 0.0 % 3.4 % 0.6 %

for the orientation test, the set of floating-point points near an edge where a
floating-point implementation of a geometric predicate fails does not necessarily
form a homogeneous sleeve around the edge.

Interestingly, Shimrat [14] already states that his crossing number algorithm
does not apply to query points on the boundary of the polygon. Haines [7] writes

“When dealing with floating-point operations on these polygons we do
not care if a test point exactly on an edge is classified as being inside or
outside, since these cases are extremely rare.

However, our experiments show that we get false results not only for points
exactly on the boundary. Second, for polygons with axis-parallel edges like the

How Reliable Are Practical Point-in-Polygon Strategies? 749

Fig. 4. Results for query points near or on the edges of a random polygon with 64
vertices for strategies csg (left) and cgal (right)

Fig. 5. For polygons with axis-parallel edges query points exactly on an edge are not
unlikely

polygon in Fig. 5, points exactly on the edges are not unlikely to arise in real-
world applications.

Next we turn to algorithm-dependent degeneracies. We create points on the
vertical and horizontal lines through the polygon vertices. These are potentially
degenerate cases for the crossing number algorithms. Because of a conceptual
perturbation, namely considering vertices on the ray as being infinitesimally
above the ray, both crossing number algorithms work very well for random query
points on the horizontals and verticals through vertices, unless we have axis-
parallel edges, see Fig. 6.

Next we generate query points (almost) on the diagonals that bound the
triangles considered in the triangle-fan algorithms. Fig. 7 illustrates some results.
Table 2 shows the percentage of false positives and false negatives for query

750 S. Schirra

Fig. 6. Results for query points on verticals and horizontals through the vertices of a
polygon with axis-parallel edges for crossings (left), pnpoly (middle), and barycentric
(right)

Fig. 7. Results for query points on diagonals of a real-world polygon with 78 vertices
for spackman (left) and barycentric (right)

points generated as described above for the real world polygon from Fig. 7 and
for the random polygon from Fig. 4. As we have suspected the triangle-fan
algorithms err for many points near or on the edges of the triangles considered
by the algorithms. We have many false results, both false positives as well as false
negatives. The percentage is higher for the triangle-fan algorithms compared to
their competitors. Haines [7] admits that the triangle-fan based code “does not
fully address this problem”. Again, the problems occur not only for points exactly
on triangle edges.

There are usually more false-negative results, because the total part of diag-
onal edges inside a polygon is usually larger. The false results of the remaining
methods are mainly caused by query points on the first diagonal which coincides
with the first edge of the polygon and by the endpoints of the diagonals, i.e.,

How Reliable Are Practical Point-in-Polygon Strategies? 751

Table 2. Results for points “on” diagonal edges

real-world polygon random polygon
78 vertices 64 vertices

false false false false
positives negatives positives negatives

crossings 0.6 % 7.8 % 0.8 % 3.3 %
weiler 0.2 % 6.8 % 0.7 % 3.4 %

halfplane 5.5 % 25.5 % 16.1 % 25.6 %
barycentric 1.2 % 11.9 % 6.4 % 12.8 %
spackman 1.4 % 13.5 % 6.7 % 14.0 %

grid 0.6 % 7.7 % 0.4 % 2.9 %
pnpoly 0.3 % 6.8 % 0.7 % 3.4 %

csg 0.0 % 7.7 % 0.0 % 8.3 %
cgal 0.0 % 0.0 % 0.0 % 0.0 %

polygon vertices. Since vertices are false negative if misclassified, this explains
the larger percentage of false negatives for the remaining non triangle-fan based
methods.

We move on to query points on the lines supporting the polygon edges. The
corresponding generator was added to the test set in order to challenge the csg
method. Fig. 8 shows results for csg for the real-world and the random polygon
discussed in Table 3. For the real-world polygon from Fig. 8, the percentage of
both false negatives and false positives is below 1% for all competitors. Indeed,
csg reliability is slightly worse than the reliability of the crossing number algo-
rithms. In some examples, however, the triangle-fan algorithms are worse. As

Fig. 8. Results for query points on supporting lines of polygon edges for a real-world
polygon with 34 vertices (left) and a random polygon with 32 vertices (right) for csg

752 S. Schirra

Table 3. Results for points “on” supporting lines of polygon edges

real-world polygon random polygon
34 vertices 32 vertices

false false false false
positives negatives positives negatives

crossings 1.1 % 0.6 % 1.7 % 1.4 %
weiler 0.4 % 0.9 % 0.8 % 1.4 %

halfplane 0.8 % 1.9 % 3.6 % 7.2 %
barycentric 2.2 % 0.7 % 5.1 % 2.2 %
spackman 2.1 % 0.8 % 5.4 % 2.7 %

grid 1.2 % 1.0 % 2.8 % 1.8 %
pnpoly 0.4 % 0.9 % 0.8 % 1.2 %

csg 3.1 % 0.9 % 4.2 % 1.4 %
cgal 0.3 % 0.0 % 0.6 % 0.0 %

Table 4. Results for polygon vertices as query points

real-world polygon random polygon
304 vertices 256 vertices

false false
negatives negatives

crossings 52.3 % 51.6 %
weiler 48.4 % 49.6 %

halfplane 53.3 % 54.7 %
barycentric 41.4 % 45.3 %
spackman 48.0 % 48.0 %

grid 45.4 % 50.4 %
pnpoly 48.4 % 48.0 %

csg 42.8 % 49.2 %
cgal 0.0 % 0.0 %

can be seen in Fig. 8, csg errs only for query points near the actual polygon
edges, not elsewhere. The same behavior shows up in all our other experiments
with query points on supporting lines. In all examples we study, cgal produces
the largest number of correct results.

Finally, we take a closer look at polygon vertices as query points. Since we
consider our polygons as topologically closed, there can be false negatives only.
Unfortunately, most algorithms produce many wrong results, as shown in Ta-
ble 4. Besides cgal, all err for about half the query points! If we would consider
polygons to be open, the other “half” of the vertices would be misclassified. Be-
sides cgal, all produce inconsistent results for polygon vertices as query points.
If you are not willing to accept this, you have to add a separate routine for
checking whether a query point coincides with a polygon vertex.

How Reliable Are Practical Point-in-Polygon Strategies? 753

5 Reliability and Numerical Stability

For all tested programs there are query points where they produce incorrect re-
sults. Besides the triangle-fan algorithms, all algorithms are apparently numer-
ically stable, i.e., whenever they err there is a point close to the current query
point for which the computed result is the correct one. The triangle-fan based
programs, however, also compute incorrect results far away from the boundary
edges, cf. Fig. 1 (right) and Fig. 7. Hence, they are not numerically stable. Al-
though the remaining programs are numerically stable, they show fairly different
behavior for challenging queries.

Wesselink’s cgal code is by far the most reliable, but is also much slower,
although it is an implementation of the crossing number algorithm as well. The
code does a lot of reasoning based on comparison of coordinates. In terms of
efficiency this is not a good idea as the branching breaks the pipelining in the
processor. In terms of reliability, in ieee 754 compliant architectures, it is a great
approach, because coordinate comparisons are always exact thanks to denormal-
ized floating-point numbers. cgal competitors prefer to perform numerical com-
putations instead of coordinate comparisons. These computations are fast, but
error-prone. The crossing number algorithms test whether a horizontal leftward
ray r starting at query point q = (qx, qy) intersects a polygon edge s. This is
often implemented by computing the intersection point p of the supporting line
of r and the supporting line of s and then testing whether p lies on both r and
s. MacMartin et al. [11] observe that s cannot intersect r if the y-coordinates
of both endpoints of s are smaller or larger than qy. cgal uses comparison of
x-coordinates to save further calculations as well, assuming that we already did
the comparison of y-coordinates. Then, if the x-coordinates of both endpoints of
s are smaller than qx, there is no intersection, and if both are larger, there is one.
If these comparisons do not suffice to decide the test, cgal uses an orientation
test to check whether q is to the left of s.

The straightforward approach to implement geometric algorithms reliably is
to use exact rational arithmetic instead of inherently imprecise floating-point
arithmetic. Unfortunately, this slows down the code by orders of magnitude. As
suggested by the exact geometric computation paradigm [18] a better approach
is to combine exact rational arithmetic with floating-point filters, e.g. interval
arithmetic, in order to save most of the efficiency of floating-point arithmetic for
nondegenerate cases. This approach is implemented in the exact geometry kernels
of cgal [3] and leda [10]. The use of adaptive predicates à la Shewchuck [13]
is highly recommended. Interestingly, exact rational arithmetic does not suffice
to let the tested crossing number code always produce correct results. Due to
the conceptual perturbation of the vertices, vertices as query points still cause
incorrect results many times.

We briefly describe an alternative reliable implementation of the crossing num-
ber algorithm. We suggest to add some preprocessing to compensate for more
expensive arithmetic. Use an interval skip list (or interval tree) to store the
y-ranges of all nonhorizontal polygon edges. In order to handle degeneracies cor-
rectly, store half-open intervals: Only the y-coordinate of the first endpoint is

754 S. Schirra

included, the y-coordinate of the second endpoint is not. Here we assume that
polygon edges are consistently oriented along the polygon boundary. Use another
interval skip list (or a dictionary data structure) to store the y-coordinates of
all vertices and all horizontal edges. The cgal library provides a flexible and
adaptable implementation of interval skip list. Note that all operations on the
interval skip lists are exact, because we need only comparisons of floats besides
arithmetic on small integers.

To answer a query for q = (qx, qy), we use the second interval skip list (or a
dictionary data structure) to check exactly whether q lies on a horizontal ray or
coincides with a polygon vertex. If not, we use the first skip list to get candidate
edges for intersection with the leftward horizontal ray starting at q and use the
comparison-based strategy described above for testing for intersection. Thanks
to the half-openness of the intervals, we count intersections at vertices only
once. In pathological cases we still have to consider a linear number of edges and
vertices, in practice, however, we get only a few, leading to good performance
for most random and real-world polygons.

6 Conclusions

Our experiments show that the tested practical point-in-polygon code often pro-
duces wrong results for challenging queries, where we find inconsistent handling
of vertices as query points most annoying. The experiments also show that the
triangle-fan based code is not even numerically stable. Furthermore, the experi-
ments show that the slower cgal code is much more reliable.

References

1. Akenine-Möller, T., Haines, E.: Real-Time Rendering, 2nd edn. AK Peters, Ltd.
(2002)

2. Auer, T., Held, M.: Heuristics for the generation of random polygons. In: Proc. of
CCCG 1996, pp. 38–44 (1996)

3. CGAL, Computational Geometry Algorithms Library, http://www.cgal.org
4. Forrest, A.R.: Computational geometry in practice. In: Earnshaw, R.A. (ed.) Fun-

damental Algorithms for Computer Graphics. NATO ASI, vol. F17, pp. 707–724.
Springer, Heidelberg (1985)

5. Franklin, W.R.: PNPOLY–point inclusion in polygon test,
http://www.ecse.rpi.edu/Homepages/wrf/Research/Short Notes/pnpoly.html

6. Hacker, R.: Certification of algorithm 112: position of point relative to polygon.
Commun. ACM 5, 606 (1962)

7. Haines, E.: Point in polygon strategies. In: Heckbert, P. (ed.) Graphics Gems IV,
pp. 24–46. Academic Press, Boston (1994),
http://tog.acm.org/editors/erich/ptinpoly/

8. Haran, I., Halperin, D.: An experimental study of point location in general planar
arrangements. In: Proc. of ALENEX 2006, pp. 16–25 (2006)

9. Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., Yap, C.: Classroom examples of ro-
bustness problems in geometric computations. Comput. Geom. Theory Appl. 40(1),
61–78 (2008)

http://www.cgal.org
http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
http://tog.acm.org/editors/erich/ptinpoly/

How Reliable Are Practical Point-in-Polygon Strategies? 755

10. Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, Cambridge (2000)

11. Nassar, A., Walden, P., Haines, E., Dickens, T., Capelli, R., Narasimhan, S., Jam,
C., MacMartin, S.: Fastest point in polygon test. Ray Tracing News 5(3) (1992)

12. Schirra, S.: Companion pages to How reliable are practical point in polygon strate-
gies? http://wwwisg.cs.uni-magdeburg.de/ag/pointInPolygonReliability/

13. Shewchuk, J.R.: Adaptive precision floating-point arithmetic and fast robust geo-
metric predicates. Discrete & Computational Geometry 18(3), 305–368 (1997)

14. Shimrat, M.: Algorithm 112: position of point relative to polygon. Commun.
ACM 5, 434 (1962)

15. Snoeyink, J.: Point location. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of
Discrete and Computational Geometry, ch. 34, 2nd edn., pp. 767–786. CRC Press
LLC, Boca Raton (2004)

16. Walker, R., Snoeyink, J.: Practical point-in-polygon tests using CSG represen-
tations of polygons. In: Goodrich, M.T., McGeoch, C.C. (eds.) ALENEX 1999.
LNCS, vol. 1619, pp. 114–123. Springer, Heidelberg (1999)

17. Weiler, K.: An incremental angle point in polygon test. In: Heckbert, P. (ed.)
Graphics Gems IV, pp. 16–23. Academic Press, Boston (1994)

18. Yap, C.-K.: Towards exact geometric computation. Comput. Geom.–Theory and
Appl. 7, 3–23 (1997)

http://wwwisg.cs.uni-magdeburg.de/ag/pointInPolygonReliability/

Fast Divide-and-Conquer Algorithms

for Preemptive Scheduling Problems
with Controllable Processing Times

– A Polymatroid Optimization Approach

Natalia V. Shakhlevich1, Akiyoshi Shioura2, and Vitaly A. Strusevich3

1 School of Computing, University of Leeds, Leeds LS2 9JT, U.K.
ns@comp.leeds.ac.uk

2 Graduate School of Information Sciences, Tohoku University,
Sendai 980-8579, Japan

shioura@dais.is.tohoku.ac.jp
3 Department of Mathematical Sciences, University of Greenwich, Old Royal Naval

College, Park Row, London SE10 9LS, U.K.
V.Strusevich@greenwich.ac.uk

Abstract. We consider a variety of preemptive scheduling problems
with controllable processing times on a single machine and on identi-
cal/uniform parallel machines, where the objective is to minimize the
total compression cost. In this paper, we propose fast divide-and-conquer
algorithms for these scheduling problems. Our approach is based on the
observation that each scheduling problem we discuss can be formulated
as a polymatroid optimization problem. We develop a novel divide-and-
conquer technique for the polymatroid optimization problem and then
apply it to each scheduling problem. We show that each scheduling prob-
lem can be solved in O(Tfeas(n) × log n) time by using our divide-and-
conquer technique, where n is the number of jobs and Tfeas(n) denotes
the time complexity of the corresponding feasible scheduling problem
with n jobs. This approach yields faster algorithms for most of the
scheduling problems discussed in this paper.

1 Introduction

We consider a variety of preemptive scheduling problems with controllable pro-
cessing times on a single machine and on identical/uniform parallel machines. In
this paper, we propose fast divide-and-conquer algorithms for these scheduling
problems.

Our Problems. Preemptive scheduling problems with controllable processing
times discussed in this paper are described as follows. We have n jobs, which
are to be processed on m machines. The sets of jobs and machines are denoted
by N = {1, 2, . . . , n} and by M = {1, 2, . . . ,m}, respectively. Each job j has
processing requirement p(j). If m = 1, we have a single machine; otherwise we
have m (≥ 2) parallel machines. The parallel machines are called identical if

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 756–767, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Fast Divide-and-Conquer Algorithms for Preemptive Scheduling Problems 757

their speeds are equal; otherwise, the machines are called uniform and machine
i has a speed si, so that processing a job j on machine i for τ time units reduces
its overall processing requirement by siτ .

In the processing of each job preemption is allowed, so that the processing of
any job can be interrupted at any time and resumed later, possibly on another
machine. No job is allowed to be processed on several machines at a time, and
each machine processes at most one job at a time. Job j also has release date
r(j) and due date d(j), and any piece of job j should be scheduled between the
time interval [r(j), d(j)].

Suppose that the processing requirement p(j) (j ∈ N) cannot be feasibly
scheduled on the machines. Then, we can reduce the processing requirement
p(j) to p(j) (≤ p(j)) by paying the cost w(j)(p(j) − p(j)) so that jobs can be
feasibly scheduled. We here assume that the lower bound p(j) of the processing
requirement p(j) is given and p(j) ≥ p(j) should be satisfied. The objective
is to minimize the total cost

∑n
j=1 w(j)(p(j) − p(j)) subject to the constraints

that (i) processing requirement p(j) (j ∈ N) can be feasibly scheduled on m
machines, and (ii) p(j) ≤ p(j) ≤ p(j) (j ∈ N). In this paper, we mainly consider
an equivalent problem of maximizing

∑n
j=1 w(j)p(j) under the same constraints

(i) and (ii). We refer to [10] for comprehensive treatment of this problem.
Preemptive scheduling problem with controllable processing times is also

known by different names with different interpretations. Scheduling of impre-
cise computation tasks (see, e.g., [2,10,19,20,21]; see also [17]) is an equivalent
problem, where the portion p(j) − p(j) of job j is interpreted as the error of
computation and

∑n
j=1 w(j)(p(j)−p(j)) is regarded as the total weighted error.

The scheduling minimizing the weighted number of tardy task units (see, e.g.,
[7,11]) is equivalent to the special case with p(j) = 0 for all job j, where the
value p(j)− p(j) is regarded as the portion of the processing requirement which
cannot be processed before the due date d(j).

There are many kinds of preemptive scheduling problems with controllable
processing times, depending on the setting of the underlying scheduling prob-
lems. In this paper, we consider three types of machines: a single machine, identi-
cal parallel machines, and uniform parallel machines. We also consider the cases
where release/due dates of jobs are the same or arbitrary. We assume r(j) = 0
(resp., d(j) = d (> 0)) for all j ∈ N if all jobs have the same release dates (resp.,
due dates).

We denote each problem as{Single, Ide, Uni}-{SameR, ArbR}-{SameD, ArbD}.
For example, Ide-SameR-ArbD denotes the the identical parallel machine schedul-
ing problem with the same r(j) and arbitrary d(j). We note that the problem
{Single, Ide, Uni}-SameR-ArbD is equivalent to {Single, Ide, Uni}-ArbR-SameD
(see, e.g, [8,15,16]), and therefore need not be considered. Hence, we deal with nine
problems in this paper.

Previous Results. We review the current fastest algorithms for nine scheduling
problems discussed in this paper. The summary is given in Table 1.

Single-SameR-SameD can be easily solved in O(n) time. Janiak and Kova-
lyov [9] formulate Single-SameR-ArbD as a linear program and show that the

758 N.V. Shakhlevich, A. Shioura, and V.A. Strusevich

Table 1. Summary of Our Results and Previous Results

Single Feasibility Optimization Problem
Problem Previous Results This Paper

same r(j) Θ(n) (trivial) Θ(n) (trivial) —
same d(j)

same r(j) O(n log n) [13] Θ(n log n) [9] —
arb. d(j)

arb. r(j) O(n log n) [8] O(n log n + κn) [11] Θ(n log n)
arb. d(j) (O(n) w/o sorting) Θ(n log n) (for Z) [19]

Identical
same r(j) Θ(n) [13] Θ(n) [17] —
same d(j)

same r(j) O(n log n) [15] O(n2(log n)2) [12] O(n log m log n)
arb. d(j) (O(n log m) w/o sorting)

arb. r(j) O(n2(log n)2) O(n2(log n)2) [12] —
arb. d(j) (cf. [2,21])

Uniform
same r(j) O(m log m + n) [6] O(mn + n log n) [14] O(min{n log n,
same d(j) n+m log m log n})
same r(j) O(mn + n log n) [16] O(mn3) [12] O(mn log n)
arb. d(j) (O(mn) w/o sorting)

arb. r(j) O(mn3) [3] O(mn3) [12] —
arb. d(j)

The time complexity with “w/o sorting” means the time complexity except for the
time required for sorting input numbers of size O(n) such as w(j), r(j), d(j).

linear program can be solved in O(n logn) time. For Single-ArbR-ArbD, Le-
ung et al. [11] slightly improve the analysis of the O(n2)-time greedy algorithm
in [20] and obtain a better bound O(n logn + κn), where κ is the number of
distinct w(j). Shih et al. [19] propose an O(n logn)-time divide-and-conquer al-
gorithm for Single-ArbR-ArbD, which works only for instances with the numbers
p(j), p(j), r(j), d(j) given by integers.

Ide-SameR-SameD can be formulated as the continuous knapsack problem by
using the result of McNaughton [13], and therefore can be solved in O(n) time
(see [17]). McCormick [12] shows that Ide-ArbR-ArbD (and also Ide-SameR-
ArbD) can be formulated as a parametric max flow problem, and applies the
algorithm of Gallo et al. [5] to achieve the time complexity O(n3 log n), which
can be reduced to O(n2(logn)2) by using the balanced binary tree representation
of time intervals as in Chung et al. [2,21].

Uni-SameR-SameD can be solved by a greedy algorithm in O(mn+n logn) time
[14]. McCormick [12] shows that Uni-ArbR-ArbD (and also Uni-SameR-ArbD)
can be formulated as a parametric max flow problem on a bipartite network, and
applies the algorithm of Ahuja et al. [1] to achieve the time complexity O(mn3).

Our Approach and Results. The summary of our results is given in Table 1.
Our approach is based on the observation that each of nine scheduling problems

Fast Divide-and-Conquer Algorithms for Preemptive Scheduling Problems 759

discussed in this paper can be formulated as a polymatroid optimization problem
of the following form:

(LP) Maximize
n∑

j=1

w(j)p(j)

subject to p(Y) ≤ ϕ(Y) (Y ∈ 2N), p(j) ≤ p(j) ≤ p̄(j) (j ∈ N),

where p(Y) =
∑

j∈Y p(j) and ϕ : 2N → R+ is a polymatroid rank function, i.e.,
a nondecreasing submodular function with ϕ(∅) = 0. This observation is already
made in [12,17,18] and used to show the validity of greedy algorithms for the
scheduling problems. On the other hand, we use this observation in a different
way; we develop a novel divide-and-conquer technique for the problem (LP), and
apply it to the scheduling problems to obtain faster algorithms.

We define a function ϕ̃ : 2N → R by

ϕ̃(X) = min
Y ∈2N

{ϕ(Y) + p(X \ Y) − p(Y \X)} (X ∈ 2N).

Then, ϕ̃ is also a polymatroid rank function, and the set of maximal feasible
solutions of (LP) is given as {p ∈ Rn | p(Y) ≤ ϕ̃(Y) (Y ∈ 2N), p(N)=ϕ̃(N)}
(cf. [4, Sect. 3.1(b)]). Our divide-and-conquer technique is based on the following
property, where the proof is given in Sect. 2:

Theorem 1. Let k ∈ N and Nk = {j ∈ N | w(j) ≥ w(k)}. Suppose that
X∗ ∈ 2N satisfies

ϕ̃(Nk) = ϕ(X∗) + p(Nk \X∗) − p(X∗ \Nk). (1)

Then, there exists an optimal solution q ∈ Rn of the problem (LP) satisfying
q(X∗) = ϕ(X∗), q(j) = p(j) (j ∈ Nk \X∗), and q(j) = p(j) (j ∈ X∗ \Nk).

By Theorem 1, the problem (LP) can be decomposed into two subproblems of
similar structure, where the one is with respect to the variables {p(j) | j ∈
X∗} and the other with respect to {p(j) | j ∈ N \ X∗}. Moreover, Theorem 1
shows that some of the variables can be fixed, which implies that each of the
two subproblems contains at most n/2 non-fixed variables if we choose k =
n/2. Hence, we can show that the depth of recursion is O(logn) when this
decomposition technique is applied recursively to (LP).

We also show that a subset X∗ ∈ 2N satisfying (1) can be computed in
O(Tfeas(n)) time for each of the scheduling problem, where Tfeas(n) denotes the
time complexity for computing a feasible schedule with n jobs, except for the
time required for sorting the input numbers (see Table 1 for the actual time
complexity for computing a feasible schedule). This implies that each scheduling
problem can be solved in O(Tfeas(n) × logn) time by using our divide-and-
conquer technique. By applying this approach, we can obtain faster algorithms
for four of the nine scheduling problems discussed in this paper (see Table 1).

Organization of This Paper. In Sect. 2 we explain our divide-and-conquer
algorithm for (LP). We then apply the divide-and-conquer technique to each

760 N.V. Shakhlevich, A. Shioura, and V.A. Strusevich

scheduling problem in the following sections. We first give an O(n logn)-time
algorithm for Single-ArbR-ArbD in Sect. 3. We show in Sect. 4 that Ide-SameR-
ArbD and Uni-SameR-ArbD can be solved in O(n logm logn) time and
O(mn logn) time, respectively, in Sect. 4. Finally, two algorithms for Uni-SameR-
SameD, which run in O(n logn) time and O(n+m logm logn) time, respectively,
are presented in Sect. 5. Some proofs are omitted due to the page limitation.

2 Divide-and-Conquer Technique for Polymatroid
Optimization

We explain our divide-and-conquer technique for the problem (LP). The discus-
sion in this section is based on basic properties of polymatroids and submodular
polyhedra (see, e.g., [4]).

We, without loss of generality, assume that the weights w(j) (j ∈ N) are all
distinct; this assumption can be easily fulfilled, e.g., by using perturbation. In
addition, we suppose that a subset F ⊆ N such that p(j) = p(j) (j ∈ F) is
given, i.e, the variable p(j) for each job j ∈ F is already fixed. The set F is
called a fixed-job set, and will be used in the divide-and-conquer algorithm. We
denote by n̂ the number of non-fixed variables in (LP), i.e., n̂ = n− |F |.

We first show how to decompose the problem (LP) into subproblems. Let
k ∈ N be an integer with |Nk \F | = �n̂/2�, where Nk = {j ∈ N | w(j) ≥ w(k)}.
Suppose that (1) holds for some X∗ ∈ 2N . By Theorem 1, the problem (LP) can
be decomposed into the following two subproblems of smaller size:

(SLP1) Maximize
∑

j∈X∗
w(j)p(j)

subject to p(Y) ≤ ϕ1(Y) (Y ∈ 2X∗),
p(j) ≤ p(j) ≤ p̄(j) (j ∈ X∗ ∩Nk),
p(j) = p(j) (j ∈ X∗ \Nk),

(SLP2) Maximize
∑

j∈N\X∗
w(j)p(j)

subject to p(Y) ≤ ϕ2(Y) (Y ∈ 2N\X∗),
p(j) ≤ p(j) ≤ p̄(j) (j ∈ (N \Nk) \X∗),
p(j) = p(j) (j ∈ Nk \X∗),

where ϕ1 : 2X∗ → R and ϕ2 : 2N\X∗ → R are defined as

ϕ1(Y) = ϕ(Y) (Y ∈ 2X∗), ϕ2(Y) = ϕ(Y ∪X∗) − ϕ(X∗) (Y ∈ 2N\X∗).

Note that the subproblems (SLP1) and (SLP2) (and their corresponding schedul-
ing problems) have a structure similar to that of the original problem (LP).

Lemma 1. Suppose that p1 ∈ RX∗ (resp., p2 ∈ RN\X∗) is an optimal solution
of (SLP1) with p1(X∗) = ϕ1(X∗) (resp., (SLP2) with p2(N \X∗) = ϕ2(N \X∗)).
Then, the direct sum p = p1 ⊕ p2 ∈ Rn of p1 and p2 defined by

(p1 ⊕ p2)(j) =
{
p1(j) (j ∈ X∗),
p2(j) (j ∈ N \X∗)

is an optimal solution of (LP) with p(N) = ϕ(N).

Fast Divide-and-Conquer Algorithms for Preemptive Scheduling Problems 761

The fixed-job sets for (SLP1) and (SLP2) are given by F1 = (F ∩X∗)∪(X∗ \Nk)
and F2 = (F \X∗) ∪ (Nk \X∗), respectively. Since

|X∗ \ F1| ≤ |Nk \ F | = �n̂/2�, |(N \X∗) \ F2| ≤ |(N \Nk) \ F | = �n̂/2�, (2)

the numbers of non-fixed variables in (SLP1) and in (SLP2) are at most half
of that in (LP). This implies that the depth of recursion is O(logn) when this
decomposition is applied recursively.

We then explain how to compute X∗ ∈ 2N satisfying (1). We have

ϕ̃(Nk) = −p(N \Nk) + min
X∈2N

{ϕ(X) + p(Nk \X) + p((N \Nk) \X)}, (3)

and the second term in the right-hand side of (3) is equal to the optimal value
of the following problem (cf. [4, Sect. 3.1 (b)]):

(ULP) Maximize
n∑

j=1

p(j)

subject to p(X) ≤ ϕ(X) (X ∈ 2N),
0 ≤ p(j) ≤ u(j) (j ∈ N),

where

u(j) =
{
p(j) (j ∈ Nk),
p(j) (j ∈ N \Nk). (4)

The problem (ULP) is a special case of (LP) where the objective function is
unweighted, i.e., w(j) = 1 (j ∈ N), and the lower bound of the variable p(j)
(j ∈ N) is equal to zero, and therefore easier to solve. The scheduling prob-
lem corresponding to (ULP) is to maximize the sum of processing requirements
under the upper bound constraint and the feasibility constraint that the pro-
cessing requirements can be feasibly scheduled on machines, and can be solved
in O(Tfeas(n)) time, in a similar way as computing a feasible schedule.

Let q ∈ Rn be an optimal solution of (ULP), and X∗ ∈ 2N the unique maximal
set with q(X∗) = ϕ(X∗). It is shown in the following sections that such X∗ can
be computed in O(Tfeas(n)) time. By the optimality of q and submodularity of
ϕ, we have q(j) = p(j) (j ∈ Nk \ X∗) and q(j) = p(j) (j ∈ (N \ Nk) \ X∗)),
implying that X∗ satisfies (1) since

ϕ̃(Nk) = −p(N \Nk) + q(N)
= −p(N \Nk) + {ϕ(X∗) + p(Nk \X∗) + p((N \Nk) \X∗)}
= ϕ(X∗) + p(Nk \X∗) − p(X∗ \Nk).

Finally, we analyze the time complexity of our divide-and-conquer algorithm.
Let T (n, n̂) be the time complexity for solving the problem (LP) with n variables
and n̂ non-fixed variables, except for the time required for sorting input numbers.
Then, we have

T (n, n̂) = O(Tfeas(n)) + T (n1, n
′
1) + T (n2, n

′
2),

where n1 + n2 = n, n′
1 ≤ min{n1, �n̂/2�}, and n′

2 ≤ min{n2, �n̂/2�}. By solving
the recursive equation, we have T (n, n̂) = O(Tfeas(n) × logn).

762 N.V. Shakhlevich, A. Shioura, and V.A. Strusevich

Theorem 2. Suppose that a subset X∗ ∈ 2N satisfying (1) can be computed in
O(Tfeas(n)) time. Then, problem (LP) can be solved in O(Tfeas(n)× logn) time.

Finally, we give a proof of Theorem 1.

Proof (Proof of Theorem 1). Since the set of maximal feasible solutions of (LP)
is given as {p ∈ Rn | p(Y) ≤ ϕ̃(Y) (Y ∈ 2N), p(N)=ϕ̃(N)}, the vector p∗ ∈ Rn

given by p∗(j) = ϕ̃(Nj) − ϕ̃(Nj−1) (j = 1, 2, . . . , n) is an optimal solution of
(LP) (cf. [4, Sect. 3.1]). We show that the vector q = p∗ satisfies the conditions

q(X∗) = ϕ(X∗), q(j) = p(j) (j ∈ Nk \X∗), q(j) = p(j) (j ∈ X∗ \Nk). (5)

Since p∗ is a feasible solution of the problem (LP), we have

p∗(X∗) ≤ ϕ(X∗), p∗(j) ≤ p(j) (j ∈ Nk\X∗), −p∗(j) ≤ −p(j) (j ∈ X∗\Nk). (6)

By the definition of p∗, we have p∗(Nk) = ϕ̃(Nk) = ϕ(X∗) +p(Nk \X∗)−p(X∗ \
Nk), which, together with (6), implies that all the inequalities in (6) hold with
equality. Hence, (5) follows.

3 Single Machine with Arbitrary Release/Due Dates

We apply the divide-and-conquer technique in Sect. 2 to the problem Single-
ArbR-ArbD. To describe the algorithm, we consider a restriction on the availabil-
ity of the machine. Let Ĩ = {[gk, gk+1] | k = 1, 2, . . . , 2n− 1} be a set of time in-
tervals, where gk is the k-th largest number in {r(j), d(j) | j ∈ N}. We are given
a set of time intervals I = {[e1, f1], [e2, f2], . . . , [e�, f�]} ⊆ Ĩ such that the ma-
chine is available only in these time intervals, where e1 ≤ f1 ≤ · · · ≤ e� ≤ f�. In
addition, we are given a subset F of jobs (fixed-job set) such that p(j) = p(j) for
j ∈ F . We denote this variant of the problem Single-ArbR-ArbD by P(I,N, F).
Any subproblem which appears during the recursive decomposition of the prob-
lem Single-ArbR-ArbD is of the form P(I,N, F); in particular, the original prob-
lem Single-ArbR-ArbD coincides with P(Ĩ , N, ∅).

The problem P(I,N, F) can be formulated as the problem (LP) with the
polymatroid rank function ϕ : 2N → R given by

ϕ(X) =
∑

{fk − ek | 1 ≤ k ≤ �, [ek, fk] ⊆ [r(j), d(j)] for some j ∈ X}.

Let k ∈ N be an integer with |Nk \F | = �n̂/2�, where n̂ = n− |F |, and suppose
that X∗ ∈ 2N satisfies (1). Then, P(I,N, F) is decomposed into the subproblems
P(I1, N1, F1) and P(I2, N2, F2), where

⎧
⎨

⎩

I1 = {[ek, fk] | 1 ≤ k ≤ �, [ek, fk] ⊆ [r(j), d(j)] for some j ∈ X∗},
N1 = X∗, F1 = (F ∩X∗) ∪ (X∗ \Nk),
I2 = I \ I1, N2 = N \X∗, F2 = (F \X∗) ∪ (Nk \X∗).

In addition, we update p and p by

p(j) := p(j) (j ∈ X∗ \Nk), p(j) := p(j) (j ∈ Nk \X∗). (7)

Fast Divide-and-Conquer Algorithms for Preemptive Scheduling Problems 763

We decompose the problem P(I,N, F) recursively in this way and compute an
optimal solution.

We now explain how to compute X∗ ∈ 2N satisfying (1) in O(n) time. It is
assumed that the numbers r(j), d(j) (j ∈ N) and ek, fk (k = 1, 2, . . . , �) are
already sorted. We firstly compute an optimal solution q ∈ Rn of the problem
(ULP) corresponding to P(I,N, F), which can be done in O(Tfeas(n)) = O(n)
time by using either of the algorithms in [7,20]. Then, we compute a partition
{N0, N1, . . . , Nv} of N such that q(Nh) = maxj∈Nh

d(j) − minj∈Nh
r(j) (h =

1, 2, . . . , v) and that N \N0 is maximal under this condition, which can be done
in O(n) time. Since maxj∈Nh

d(j)−minj∈Nh
r(j) = ϕ(Nh) (h = 1, . . . , v), the set

X∗ = N \ N0 is the unique maximal set with q(X∗) = ϕ(X∗). Hence, Theorem
2 implies the following result.

Theorem 3. The problem P(I,N, F) can be solved in O(n logn) time. In par-
ticular, the problem Single-ArbR-ArbD can be solved in O(n logn) time.

It should be mentioned that our algorithm for Single-ArbR-ArbD is similar to
the divide-and-conquer algorithm by Shih et al. [19], but the two algorithms are
based on different ideas. Indeed, the algorithm in [19] works only for instances
with the numbers p(j), p(j), r(j), d(j) given by integers, while ours can be applied
to any problem with real numbers.

4 Identical Parallel Machines with the Same Release
Dates and Different Due Dates

We apply the divide-and-conquer technique in Sect. 2 to the problem Ide-SameR-
ArbD. To describe the algorithm, we consider a restriction on the availability
of the machines. Suppose that we are given numbers bi (i ∈ M) and c such
that machine i is available in the time interval [bi, c]. In addition, we are given a
subset F of jobs (fixed-job set) such that p(j) = p(j) for j ∈ F . We denote this
variant of the problem Ide-SameR-ArbD by P(m,B, c,N, F), where B = {bi |
i ∈ M}. Any subproblem which appears during the recursive decomposition
of the problem Ide-SameR-ArbD is of the form P(m,B, c,N, F); in particular,
the original problem Ide-SameR-ArbD is the case where b1 = · · · = bm = 0,
c = maxj∈N d(j), and F = ∅.

The problem P(m,B, c,N, F) can be formulated as the problem (LP) with
the polymatroid rank function ϕ : 2N → R given by

ϕ(X) =
m∑

i=1

max{min{d(i), c} − bi, 0},

where we assume that b1 ≤ b2 ≤ · · · ≤ bm and that d(i) is the i-th largest number
in {d(j) | j ∈ N} for i = 1, . . . ,m. Let k ∈ N be an integer with |Nk \ F | =
�n̂/2�, where n̂ = n − |F |, and suppose that X∗ ∈ 2N satisfies (1). Then, the

764 N.V. Shakhlevich, A. Shioura, and V.A. Strusevich

problem P(m,B, c,N, F) is decomposed into subproblems P(m1, B1, c1, N1, F1)
and P(m2, B2, c2, N2, F2), where

⎧
⎪⎪⎨

⎪⎪⎩

m1 = min{m, |X∗|}, B1 = {b1, b2, . . . , bm1}, c1 = min{c, d(jm1)},
N1 = X∗, F1 = (F ∩X∗) ∪ (X∗ \Nk),
m2 = m, B2 = {d(j1), . . . , d(jm1), bm1+1, . . . , bm}, c2 = c,
N2 = N \X∗, F2 = (F \X∗) ∪ (Nk \X∗),

where we assume that {j1, j2, . . . , jm1} ⊆ X∗ and d(ji) is the i-th largest num-
ber in {d(j) | j ∈ X∗} for i = 1, . . . ,m1. In addition, we update p and p by
(7). Finally, we put p(j) := p(j) − max{0, d(j) − d(jm1)} and p(j) := p(j) −
max{0, d(j) − d(jm1)} for j ∈ X∗.

Suppose that p1 ∈ RX∗ (resp., p2 ∈ RN\X∗) is an optimal solution of P(m1, B1,
c1, N1, F1) (resp., P(m2, B2, c2, N2, F2)). Then, the vector p∗ ∈ Rn defined by

p∗(j) =
{
p1(j) + max{0, d(j) − d(jm1)} (j ∈ X∗),
p2(j) (j ∈ N \X∗)

is an optimal solution of P(m,B, c,N, F).
We now explain how to compute X∗ ∈ 2N satisfying (1) in O(n logm) time.

It is assumed that the numbers d(j) (j ∈ N) are already sorted. By using a
slight modification of the algorithm by Sahni [15], we can compute an optimal
solution q ∈ Rn of the problem (ULP) corresponding to P(m,B, c,N, F) in
O(Tfeas(n)) = O(n logm) time. Then, we compute the unique maximal set X∗ ∈
2N with q(X∗) = ϕ(X∗). Using the following simple observations, we can find
such X∗ in O(n logm) time.

Lemma 2. We have {j ∈ N | p(j) < u(j)} ⊆ X∗. Moreover, any j′ ∈ N is
contained in X∗ if there exist j ∈ X∗ \ {j′} and a time interval [e, f] satisfying
the following conditions: [e, f] ⊆ [r(j), d(j)], any portion of job j is not processed
on [e, f], and some portion of job j′ is processed on [e, f].

Theorem 4. The problem P(m,B, c,N, F) can be solved in O(n logm logn)
time. In particular, Ide-SameR-ArbD can be solved in O(n logm logn) time.

We can solve the problem Uni-SameR-ArbD in a similar way as Ide-SameR-ArbD
by using the algorithm of Sahni and Cho [16]. The details are omitted.

Theorem 5. The problem Ide-SameR-ArbD can be solved in O(mn logn) time.

5 Uniform Parallel Machines with the Same Release/Due
Dates

We apply the divide-and-conquer technique in Sect. 2 to the problem Uni-
SameR-SameD. For the description of the algorithm, we consider the problem
Uni-SameR-SameD with a subset F ob jobs (fixed-job set) such that p(j) = p(j)
for j ∈ F . We denote this problem by P(M,N,F), where M and N denote the
sets of machines and jobs, respectively. Note that P(M,N, ∅) coincides with the
original problem Uni-SameR-SameD. It is assumed that the speed of machines
are already sorted and satisfy s1 ≥ s2 ≥ · · · ≥ sm.

Fast Divide-and-Conquer Algorithms for Preemptive Scheduling Problems 765

5.1 The First Algorithm

The problem P(M,N,F) can be formulated as (LP) with the polymatroid rank
function ϕ : 2N → R given by ϕ(X) = dSmin{m,|X|} (X ∈ 2N), where Sh =
∑h

i=1 si (h = 1, . . . ,m). It can be decomposed (or reduced) into subproblems of
smaller size, as follows. We assume that the numbers {p(j) | j ∈ N} ∪ {p(j) |
j ∈ N} is already sorted.

The next property is a direct application of Theorem 1 to the problem
P(M,N,F).

Lemma 3. Let k ∈ N , and suppose that X∗ ∈ 2N satisfies (1). Then, there
exists an optimal solution q ∈ Rn of the problem P(M,N,F) satisfying the fol-
lowing properties, where h = |X∗|:
(i) if h < m, then q(X∗) = dSh, q(j) = p(j) (j ∈ Nk \ X∗), q(j) = p(j) (j ∈
X∗ \Nk).
(ii) If h ≥ m, then q(N) = dSm and q(j) = p(j) (j ∈ N \Nk).

Let k ∈ N be an integer with |Nk \F | = �n̂/2�, where n̂ = n− |F |, and suppose
that X∗ ∈ 2N satisfies (1). Such X∗ can be computed in O(n) time by Lemma 4
given below.

Lemma 4. Suppose that the sorted list of the numbers P ≡ {p(j) | j ∈ N} ∪
{p(j) | j ∈ N} is given. For any X ∈ 2N , we can compute the value of ϕ̃(X)
and a set Y∗ ∈ 2N with ϕ̃(X) = ϕ(Y∗) + p(X \ Y∗) − p(Y∗ \X) in O(n) time.

Let h = |X∗|. If h < m, then the problem P(M,N,F) can be decomposed into
the following two subproblems P(M1, N1, F1) and P(M2, N2, F2), where

{
M1 = {1, 2, . . . , h}, N1 = X∗, F1 = (F ∩X∗) ∪ (X∗ \Nk),
M2 = M \M1, N2 = N \X∗, F2 = (F \X∗) ∪ (Nk \X∗).

In addition, we update p and p by (7). Before solving the subproblems, we
sort the numbers P1 ≡ {p(j) | j ∈ N1} ∪ {p(j) | j ∈ N1} and P2 ≡ {p(j) | j ∈
N2}∪{p(j) | j ∈ N2}, which can be done in O(n) time. Hence, the decomposition
can be done in O(n) time.

If h ≥ m, then P(M,N,F) can be reduced to the subproblem P(M1, N1, F1),
where M1 = M , N1 = N , and F1 = F ∪ (N \ Nk). In addition, we update p by
p(j) := p(j) (j ∈ N \Nk). Hence, the reduction can be done in O(n) time as well.

The following result follows from Theorem 2 and the discussion above.

Theorem 6. The first algorithm solves the problem P(M,N,F) in O(n logn)
time. In particular, Uni-SameR-SameD can be solved in O(n logn) time.

5.2 The Second Algorithm

The running time of the first algorithm is dominated by the time for sorting the
numbers in P . To reduce the time complexity, we modify the first algorithm by
using the information of the fixed-job set, so that it does not require the sorted
list. We assume that the min{m, |F |} largest numbers in {p(j) | j ∈ F} and the
number p(F) are given in advance. Recall that n̂ = n− |F |.

766 N.V. Shakhlevich, A. Shioura, and V.A. Strusevich

Lemma 5. Suppose that the min{m, |F |} largest numbers in {p(j) | j ∈ F} and
the number p(F) =

∑
j∈F p(j) are given. For any X ∈ 2N , we can compute the

value of ϕ̃(X) and a set Y∗ ∈ 2N with ϕ̃(X) = ϕ(Y∗) + p(X \ Y∗)− p(Y∗ \X) in
O(n̂+m logm) time.

Hence, we can compute X∗ ∈ 2N satisfying (1) in O(n̂ + m logm) time. Using
the set X∗ we decompose (or reduce) the problem P(M,N,F) into subproblems
in the same way as the first algorithm.

If |X∗| < m, then the problem P(M,N,F) can be decomposed into the two
subproblems P(M1, N1, F1) and P(M2, N2, F2). The second subproblem
P(M2, N2, F2) is solved recursively by the second algorithm, while the first sub-
problem P(M1, N1, F1) is solved by the first algorithm in O(|M1| log |M1|) =
O(m logm) time. Before solving P(M2, N2, F2), we compute the min{|M2|, |F2|}
largest numbers in {p(j) | j ∈ F2} and the number p(F2), which can be done in
O(n̂+m logm) time.

If |X∗| ≥ m, the problem P(M,N,F) is reduced to the subproblem
P(M1, N1, F1), which is recursively solved by the second algorithm. Before solv-
ing the subproblem, we compute the min{m, |F1|} largest numbers in {p(j) | j ∈
F1} and the number p(F1), which can be done in O(n̂+m logm) time as well.

Let T2(m,n, n̂) denote the running time of the second algorithm for P(M,N,F).
Then, the following recursive formula holds:

T2(m,n, n̂)=

⎧
⎨

⎩

O(m logm) (if n̂ ≤ 1),
O(n̂+m logm)+T2(|M2|, |N2|, |N2| − |F2|) (if n̂≥2, |X∗| < m),
O(n̂+m logm)+T2(|M1|, |N1|, |N1| − |F1|) (if n̂≥2, |X∗| ≥ m).

Note that |N2| − |F2| ≤ �n̂/2� and |N1| − |F1| ≤ �n̂/2� by (2). Hence, we have
T2(m,n, n̂) = O(n̂ + m logm log n̂). As a preprocessing, we need to compute the
min{m, |F |} largest numbers in {p(j) | j ∈ F} and the number p(F), which re-
quires O(n +m logm) time. Hence, the following result holds.

Theorem 7. The problem P(M,N,F) can be solved in O(n+m logm logn) time
by the second algorithm. In particular, Uni-SameR-SameD can be solved in O(n+
m logm logn) time.

Acknowledgements. The authors thank Satoru Iwata for discussions and valu-
able comments.

References

1. Ahuja, R.K., Orlin, J.B., Stein, C., Tarjan, R.E.: Improved algorithms for bipartite
network flow. SIAM J. Comput. 23, 906–933 (1994)

2. Chung, J.Y., Shih, W.-K., Liu, J.W.S., Gillies, D.W.: Scheduling imprecise compu-
tations to minimize total error. Microprocessing and Microprogramming 27, 767–774
(1989)

3. Federgruen, A., Groenevelt, H.: Preemptive scheduling of uniform machines by or-
dinary network flow techniques. Management Sci. 32, 341–349 (1986)

Fast Divide-and-Conquer Algorithms for Preemptive Scheduling Problems 767

4. Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Elsevier, Amster-
dam (2005)

5. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algo-
rithm and applications. SIAM J. Comput. 18, 30–55 (1989)

6. Gonzales, T.F., Sahni, S.: Preemptive scheduling of uniform processor systems. J.
ACM 25, 92–101 (1978)

7. Hochbaum, D.S., Shamir, R.: Minimizing the number of tardy job unit under release
time constraints. Discrete Appl. Math. 28, 45–57 (1990)

8. Horn, W.: Some simple scheduling algorithms. Naval Res. Logist. Quat. 21, 177–185
(1974)

9. Janiak, A., Kovalyov, M.Y.: Single machine scheduling with deadlines and resource
dependent processing times. European J. Oper. Res. 94, 284–291 (1996)

10. Leung, J.Y.-T.: Minimizing total weighted error for imprecise computation tasks and
related problems. In: Leung, J.Y.-T. (ed.) Handbook of Scheduling, ch. 34. Chapman
& Hall, Boca Raton (2004)

11. Leung, J.Y.-T., Yu, V.K.M., Wei, W.-D.: Minimizing the weighted number of tardy
task units. Discrete Appl. Math. 51, 307–316 (1994)

12. McCormick, S.T.: Fast algorithms for parametric scheduling come from extensions
to parametric maximum flow. Oper. Res. 47, 744–756 (1999)

13. McNaughton, R.: Scheduling with deadlines and loss functions. Management Sci. 12,
1–12 (1959)

14. Nowicki, E., Zdrza�lka, S.: A bicriterion approach to preemptive scheduling of parallel
machines with controllable job processing times. Discrete Appl. Math. 63, 237–256
(1995)

15. Sahni, S.: Preemptive scheduling with due dates. Oper. Res. 27, 925–934 (1979)
16. Sahni, S., Cho, Y.: Scheduling independent tasks with due times on a uniform pro-

cessor system. J. ACM 27, 550–563 (1980)
17. Shakhlevich, N.V., Strusevich, V.A.: Preemptive scheduling problems with control-

lable processing times. J. Sched. 8, 233–253 (2005)
18. Shakhlevich, N.V., Strusevich, V.A.: Preemptive scheduling on uniform parallel ma-

chines with controllable job processing times. Algorithmica 51, 451–473 (2008)
19. Shih, W.-K., Lee, C.-R., Tang, C.-H.: A fast algorithm for scheduling imprecise com-

putations with timing constraints to minimize weighted error. In: 21th IEEE Real-
Time Syst. Symp., pp. 305–310. IEEE Computer Society, Los Alamitos (2000)

20. Shih, W.-K., Liu, J.W.S., Chung, J.-Y.: Algorithms for scheduling imprecise com-
putations with timing constraints. SIAM J. Comput. 20, 537–552 (1991)

21. Shih, W.-K., Liu, J.W.S., Chung, J.-Y., Gillies, D.W.: Scheduling tasks with ready
times and deadlines to minimize average error. ACM SIGOPS Oper. Syst., Rev. 23,
14–28 (1989)

Approximability of Average Completion Time

Scheduling on Unrelated Machines

René A. Sitters�

Technische Universiteit Eindhoven
r.sitters@tue.nl

Abstract. We show that minimizing the sum of completion times on
unrelated machines is APX-hard if preemption of jobs is allowed. Addi-
tionally, we show that randomized rounding of a convex quadratic pro-
gram gives a non-preemptive schedule for which the sum of weighted
completion times is less than 1.81 times the optimal preemptive sum.
This factor is 2.78 if release dates are involved. We sketch how the ratios
can be reduced further.

1 Introduction

In the last decade extensive research has been done on approximation algorithms
for machine scheduling problems with minsum objective. The most difficult prob-
lems are the ones with precedence constraints. The area is still wide open here.
(See [9] for a recent overview.) The approximability of classical machine schedul-
ing problems without precedence constraints is much better understood. Almost
all problems have shown to be either polynomial time solvable, or approximable
within a factor 1 + ε for arbitrary small constant ε. A few have shown to be
APX-hard. A recent paper by Afrati and Milis [2] gives an extensive overview.
Among the classical machine scheduling problems there is one problem that has
not been classified so far: the problem of minimizing total completion time on
unrelated machines in the preemptive setting: R|pmtn|

∑
Cj . This holds also in

the presence of release dates and job weights. All techniques for designing poly-
nomial time approximation schemes have failed for these problems. In this paper
we prove that even the simplest of these problems is APX-hard. Hence, none of
these problems can be approximated in polynomial to within an arbitrary small
constant, unless P=NP.

This result is interesting for two reasons: First, this provides one of the last
missing pieces in the overall picture of machine scheduling with weighted sum
of completion times objective. Second, the problem R|pmtn|

∑
Cj has the pe-

culiar property that the preemptive problem is much harder to solve than the
non-preemptive problem which was shown to be solvable by weighted matching
thirtyfive years ago [3,6]. Intuitively, preemption should make problems easier,
just as LP’s are in general easier than ILP’s. Indeed, for almost all scheduling
� Supported by a research grant from the Netherlands Organization for Scientific Re-

search (NWO-veni grant).

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 768–779, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Approximability of Average Completion Time Scheduling 769

problems the non-preemptive version is at least as hard to solve as the problem
in the preemptive setting. In fact, R|pmtn|

∑
Cj is the only classical scheduling

problem for which the preemptive version is APX-hard and the non-preemptive
version is solvable in polynomial time.

The second contribution of this paper is an improvement of the best known
approximation ratio for R|pmtn|

∑
wjCj (and R|pmtn|

∑
j Cj). Skutella [13]

gave a 2-approximation algorithm for this problem. In this paper he showed
the first application of convex quadratic programs to machine scheduling prob-
lems. Schulz and Skutella [10] and Queyranne and Sviridenko [8] published a
(2 + ε)-approximation using an interval-indexed linear program. One difficulty
of improving on the constant 2 is finding good lower bounds on the optimal
solution. Here, we give a new lower bound and show how a modification of the
convex program used in [13] reduces the approximation ratio to 1.81

In [10], Schulz and Skutella raised the question whether a stronger LP-
formulation could improve on the factor 2. We sketch how a similar modification
leads to the same improved ratio. We also sketch how a combination of [8] and
our algorithm leads to an even smaller approximation ratio. The analysis of this
improvement is quite complicated and not included here.

The remaining of the paper is divided in two sections: approximability and
non-approximability.

Table 1. Approximability of some classical parallel machine problems. The new results
are written in <red>. A larger table is given in the recent paper by Afrati and Milis [2].

Problem Lower bound Upper bound

Q|rj |
∑

j wjCj NP-hard PTAS [4]

Q|rj , pmtn|
∑

j wjCj NP-hard PTAS [4]

Rm|rj |
∑

j wjCj NP-hard PTAS [1]

Rm|rj , pmtn|
∑

j wjCj NP-hard PTAS [1]

R||
∑

j Cj − ∈ P [3,6]

R|pmtn|
∑

j Cj < APX-hard >, NP-hard [11] < 1.81 >, 2 [13]

R||
∑

j wjCj APX-hard [5] 3/2 [13], 3/2 + ε [10]

R|pmtn|
∑

j wjCj < APX-hard >, NP-hard [11] < 1.81 >, 2 [13]

R|rj |
∑

j Cj and R|rj |
∑

j wjCj APX-hard [5] 2 [13], 2 + ε [10]

R|rj , pmtn|
∑

j wjCj < APX-hard >, NP-hard [11] 2 + ε [8], < 2.78 >

2 Approximability

In this section we present an algorithm that gives a non-preemptive schedule for
which the sum of weighted completion times is less than 1.81 times the optimal
preemptive sum. The algorithm builds on the convex program relaxations by
Skutella [13]. In the end of this section we discuss how to get the same ratio
using an LP-formulation given by Schulz and Skutella [10] and how we can get
even smaller ratios if we combine any of these two algorithms with the algorithm
by Quayranne and Sviridenko [8].

770 R.A. Sitters

An instance of our problem R|pmtn|
∑

j wjCj is given by numbers m and n

and numbers wj , pij ∈ Q+ for all i ∈ {1, 2 . . . ,m} and j ∈ {1, 2 . . . , n}. The time
it takes to process job j completely on machine i is pij . Given the process time
pij , we say that job j is processed with a speed sij = 1/pij if it is processed on
machine i. If job j is processed for a time t on machine i then the processed
fraction will be t · sij = t/pij. A schedule is an assignment of jobs to machines
over time such that all jobs are completely processed. We do not allow a machine
to work on more than one job at the time or two machines to work on the same
job simultaneously. For a given schedule we denote the completion time of job j
by Cj and the objective value is the sum of the weighted completion times, i.e.,∑n

j=1 wjCj .
Given a preemptive schedule σ we define fσ

j (x) as the speed at which job j
is processed at time x and call fσ

j the density function of job j in σ. The mean
busy time Mσ

j of job j is defined as the average time at which it is processed.
More precisely,

Mσ
j :=

∫ T

0

fσ
j (x)xdx,

where T is any upper bound on the completion time of j. Additionally, we define
for given σ the process time P σ

j as the total time that job j is processed.
Minimizing a linear function of mean busy times and processing times is in

general easier than minimizing a linear function of completion times. For ex-
ample, preemptively minimizing the total weighted mean busy time on a single
machine with job release times is simply done by always processing the job with
largest ratio wj/pj. However, minimizing the total weighted completion time is
NP-hard.

One difficulty of improving on the approximation ratio of 2 is to find new
lower bounds. If all machines are identical then Mσ

j +P σ
j /2 is a lower bound on

the completion time Cσ
j of a job j. This bound no longer holds in the unrelated

machine model. The ratio’s in [8,10,13] are based on the weaker bound Mσ
j ≤ Cσ

j

and the bound P σ
j ≤ Cσ

j . The next theorem gives a new relation between the
three concepts: completion time, mean busy time and process time. The proof
is given in Section 2.1

Theorem 1. For any instance I of R|pmtn|
∑
wjCj and feasible preemptive

schedule σ for I there exists a feasible preemptive schedule σ′ for I such that
Mσ′

j + P σ′

j < 1.81Cσ
j for any job j.

Corollary 1 (Lower bound). For any instance I of R|pmtn|
∑
wjCj we have

min
σ

⎛

⎝
∑

j

wjP
σ
j + wjM

σ
j

⎞

⎠ < 1.81 min
σ

⎛

⎝
∑

j

wjC
σ
j

⎞

⎠ . (1)

We use this corollary in the following way. First, we give a convex quadratic
program for which the optimal value Z∗ is a lower bound on the left side of (1).

Approximability of Average Completion Time Scheduling 771

Second, we show how we can round any solution of the program with value
Z to obtain a feasible non-preemptive schedule for which the expected sum of
weighted completion times is at most Z. These two observation combined with
Corollary 1 give us our approximation algorithm.

We introduce variables xij (i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}) to denote
the fraction of job j processed on machine i. To simplify notation we introduce
for each machine i a total order ≺i on the set of jobs by setting j ≺i k if
wj/pij > wk/pik or wj/pij = wk/pik and j < k.

Consider the following quadratic program (QP).

minimize
n∑

j=1

wj

(
PQP

j +MQP
j

)

subject to PQP
j =

m∑

i=1

xijpij for all j (2)

MQP
j =

m∑

i=1

xij(
m∑

k≺i j

xikpik + xijpij/2) for all j (3)

m∑

i=1

xij = 1 for all j,

xij ≥ 0 for all i, j

If the values xij are taken from a feasible preemptive schedule σ then (2) is
exactly the process time of a job j. For given values xij the sum of weighted
mean busy times is minimized if, on each machine, the jobs are ordered by
Smith’s ratio rule [14], i.e., in non-increasing order of wj/pij. Hence, the mean
busy time for a job j in the feasible schedule σ is at least

m∑

i=1

xij(
m∑

k≺i j

xikpik + xijpij/2,)

which equals (3).
We rewrite (QP) in matrix notation and adopt the notation from [13]. Define

cij = wjpij and, for any i ∈ {1, 2, . . . ,m}, let i1, i2, . . . , in be the indices of the
jobs according to ≺i. Let c, x ∈ Rmn be, respectively, the vector of all cij ’s and
xij ’s ordered by increasing i and then, for each i, in the order ≺i. The mn×mn
matrix A is given by

A =

⎛

⎜
⎜
⎜
⎝

A1 0 0 0
0 A2 0 0
...

...
. . .

...
0 0 · · · Am

⎞

⎟
⎟
⎟
⎠

, where Ai =

⎛

⎜
⎜
⎜
⎝

wi1pi1 wi2pi1 · · · winpi1

wi2pi1 wi2pi2 · · · winpi2
...

...
. . .

...
winpi1 winpi2 · · · winpin

⎞

⎟
⎟
⎟
⎠
.

772 R.A. Sitters

Precisely, the entry (j, k) of submatrix Ai is wimax{j,k}pimin{j,k} . Now we can
rewrite (QP) as

minimize cTx+
1
2
xTAx (4)

subject to
m∑

i=1

xij = 1 for all j

x ≥ 0

Convexity of this program now follows from the following lemma.

Lemma 1 (Skutella [13]). Matrix A is positive semidefinite.

The main difference with [13] is that our convex program (QP) is not a proper
relaxation of R|pmtn|

∑
j wjCj . The objective value may be strictly larger than

the minimum sum of weighted completion times. However, Theorem 1 makes up
for this.

Randomized rounding. Given a solution with values xij , (i∈{1, 2, . . . ,m}, j∈
{1, 2, . . . , n}), we assign each job j independently from the others to one of the
machines, where job j is assigned to machine i with probability xij . Then, on
any every machine i we place the assigned jobs in the order ≺i. For the given
values xij let PQP

j and MQP
j be defined by (2) and (3) respectively. The new

schedule is non-preemptive and expected completion time E[Cj] of job j is easily
expressed in the values xij as follows.

E[Cj] =
m∑

i=1

xij(
m∑

k≺i j

xikpik + pij)

=
m∑

i=1

xijpij +
m∑

i=1

xij

m∑

k≺i j

xikpik

< PQP
j +MQP

j .

Corollary 2. Solving (QP) up to a sufficiently small additive constant ε and
applying randomized rounding as above gives a randomized 1.81-approximation
for R|pmtn|

∑
wjCj .

Corollary 3. For any instance of R|pmtn|
∑
wjCj , the value of the optimal

non-preemptive schedule is no more than 1.81 times the value of the optimal
preemptive schedule.

In particular, the last corollary implies that we immediately get a deterministic
1.81-approximation for the unweighted problem R|pmtn|

∑
Cj by computing the

optimal non-preemptive schedule. This problem can be formulated as a weighted
matching problem ([3,6]) which solvable in polynomial time. We can easily de-
randomize the algorithm using the method of conditional probabilities. We need
to show that we can bound expected completion times on the condition that

Approximability of Average Completion Time Scheduling 773

some jobs are already assigned to machines. In the related program, the matrix
A in (4) is adjusted by removing the rows and columns of the assigned jobs and
therefore remains positive semidefinite. The changes in the vector c are slightly
more involved but have no effect on the convexity of the adjusted program.

2.1 Proof of Theorem 1

The theorem states that for any instance I of R|pmtn|
∑
wjCj and feasible

preemptive schedule σ for I there exists a feasible preemptive schedule σ′ for I
such that Mσ′

j + P σ′

j < 1.81Cσ
j for any job j. Our proof is constructive.

For any β ≥ 1 we can change schedule σ into a feasible schedule σ′ by removing
a 1−1/β fraction of every job and stretching the remaining schedule by a factor
β. The fraction of a job processed in the new schedule will be exactly 1/β ·β = 1.
For a given β ≥ 1 we may decide for each job independently what part to remove.
We will compute a function F (β) for which any job j can be rescheduled in this
way such that its sum of mean busy time and processing time in the new schedule
is at most F (β) times its original completion time. Then, we minimize over β.

We now describe exactly how the schedule of an arbitrary j is modified for
a given β ≥ 1. Basically, we keep the 1/β fraction of j that has minimum
processing time. To simplify notation assume w.l.o.g. that the machines are
ordered in increasing processing time for job j, i.e., p1j ≤ p2j ≤ · · · ≤ pmj . Let
tij be the total time that machine i processes job j and let αij be the fraction
of job j that is processed on machine i, i.e., αij = tij/pij . Let kj ∈ {1, . . . ,m}
and qj ∈]0, 1] satisfy

1/β = α1j + α2j + · · · + αkj−1,j + qj · αkj ,j .

If we define γj = t1 + · · ·+ tk−1 + qjtk, then γj is the minimum amount of time
in which a fraction 1/β of job j is processed in σ. Consequently, γj ≤ Cj/β.

From job j we keep all its fractions processed on on machines 1, 2, . . . , kj − 1
and an arbitrary qjαkj fraction on machine kj . Let Ij ⊆ [0, Cj] be that part
of the time in which these fractions are processed. Consequently, |Ij | = γj . We
may assume that Ij is the union of a finite number of intervals. Since the whole
schedule σ is stretched by a factor β, the set Ij is mapped onto a set I ′j of size
|I ′j | = βγj . In the new schedule we process job j completely during I ′j .

Let p′j and M ′
j be, respectively, the total processing time and mean busy time

of job j in σ′.

Lemma 2. M ′
j + p′j ≤ maxτ∈]0,1/β] (M(β, τ) + P(β, τ)) · Cj, where

M(β, τ) :=
(β − β2)τ2

2(1 − τ)
+ β and P(β, τ) = βτ. (5)

Proof. Define τ = γj/Cj . Then τ ∈]0, 1/β]. The part of job j that we keep has
length γj and its new length becomes p′j = βγj = βτCj = P(β, τ)Cj .

The analysis for M ′
j is more involved. Let fj(x) and f ′

j(x) be the density
functions of job j in σ and σ′, respectively. Then f ′

j(βx) = fj(x) for any x ∈ Ij .

774 R.A. Sitters

Now let M (I)
j be the part of Mj contributed by the fraction 1/β that is processed

in Ij , i.e.,

M
(I)
j =

∫

x∈Ij

fj(x)xdx.

The mean busy time of j in the new schedule is β2 times M (I)
j since the schedule

is stretched by a factor β and the processed fraction increases from 1/β to 1.
More precisely,

M ′
j =

∫

y∈I′
j

f ′
j(y)ydy =

∫

x∈Ij

f ′
j(βx)βxd(βx) = β2

∫

x∈Ij

fj(x)xdx = β2M
(I)
j .

Next, we give a lower bound on the density fj(x) for x ∈ Ij . Since we assumed
that the machines are ordered according to their processing time for j, we have
pkjj = tkjj/αkjj ≤ tkj+1,j/αkj+1,j ≤ · · · ≤ tmj/αmj, where kj is defined as
before. This implies

pkjj =
tkjj

αkjj
=

(1 − qj)tkjj

(1 − qj)αkjj
≤

(1 − qj)tkjj + tkj+1,j + · · · + tmj

(1 − qj)αkjj + αkj+1,j + · · · + αmj
≤ Cj − γj

1 − 1/β
.

Thus, the speed at which job j is processed in σ at time x ∈ Ij is

fj(x) ≥ 1/pkjj ≥ δj , where δj := (1 − 1/β)/(Cj − γj). (6)

An upper bound on M
(I)
j now follows from the following optimization prob-

lem. We compute the maximum of
∫

x∈Ij

fj(x)xdx,

where the maximum is taken over all density functions fj that satisfy

(i) fj(x) ≥ δj for all x ∈ Ij , and (ii)
∫

x∈Ij

fj(x)dx = 1/β.

Constraint (i) is given by (6) and (ii) is by definition of Ij . Clearly, the maximum
is attained in the limit situation where the density is δj everywhere except for
an infinitesimal region before time Cj , where a fraction 1/β − γjδj is processed.
Hence,

M
(I)
j ≤

∫

x∈Ij

δjxdx + (1/β − γjδj)Cj . (7)

An upper bound for the first term follows from

∫

x∈Ij

xdx ≤
Cj∫

Cj−γj

xdx =
1
2
C2

j −
1
2

(Cj − γj)2 = γjCj −
γ2

j

2
.

Approximability of Average Completion Time Scheduling 775

Substituting this in (7) we get

M
(I)
j ≤ δj(γjCj −

γ2
j

2
) + (

1
β
− γjδj)Cj = −δj

γ2
j

2
+

1
β
Cj

Next we substitute the values γj = τCj and δj = (1 − 1/β)/(Cj − γj).

M ′
j = β2M

(I)
j ≤ −δj

τ2

2
β2C2

j + βCj

= − 1 − 1/β
(1 − τ)Cj

τ2

2
β2C2

j + βCj

=
(

(β − β2)τ2

2(1 − τ)
+ β

)

Cj .

This completes the proof of Lemma 2. �

For fixed β, the expression M(β, τ) + P(β, τ) is maximized for value τ∗ = 1 −√
(β − 1)/(β + 1). (This can easily be computed by hand but is omitted in this

abstract. It is also easily verified that τ∗ ∈]0, 1/β].) Now define

F (β) := M(β, τ∗) + P(β, τ∗).

Lemma 2 says that for any β ≥ 1, schedule σ can be transformed in a feasible
schedule σ′ such that

Mσ′

j + pσ′

j ≤ F (β)Cσ
j ,

for any job j. With a mathematical solver we find that the minimum of F is
attained for β∗ = 1

24u
2 + (1

56

√
78− 1

42)u− 1
12 with u = (8 + 6

√
78)1/3, implying

β∗ ≈ 1.089. Note however that for our proof it is not necessary to know this
exact value and it suffices to verify that F (1.089) < 1.81, which completes the
proof of Theorem 1.

2.2 Release Dates

We sketch how to adjust the algorithm if jobs have arbitrary release dates rj .
We only comment on the part that differs from [13] and refer the reader to that
paper for more details.

We denote the new convex quadratic program by QP2. The n release dates
partition the time into at most n timeslots. Instead of using variables xij we
use variables xijk to model the fraction of job j processed on machine i in the
k’th timeslot. Again we formulate expressions PQP2

j and MQP2
j that are lower

bounds on, respectively, the processing time and mean busy time of job j in
the following sense. If the values xijk are taken from a feasible schedule σ, then
PQP2

j = P σ
j and MQP2

j ≤ Mσ
j for any job j. The exact formulation is quite

extensive and is found in a slightly different form in [13]. The next theorem is
similar to Theorem 1 and is given here without proof.

776 R.A. Sitters

Theorem 2. For any instance I of R|rj , pmtn|
∑
wjCj and feasible preemptive

schedule σ for I there exists a feasible preemptive schedule ρ for I such that
2Mρ

j + P ρ
j < 2.78Cσ

j for any job j.

The objective function we use in QP2 is essentially different however:

minimize
n∑

j=1

wj

(
2MQP2

j + PQP2
j

)
.

Randomized rounding of the program is similar to the case without release
dates. The only difference is that no job can start before its release date.

Lemma 3
E[Cj] ≤ 2MQP2

j + PQP2
j .

Corollary 4. Solving (QP2) up to a sufficiently small additive constant ε and
applying randomized rounding as above gives a randomized 2.78-approximation
for R|rj , pmtn|

∑
wjCj.

The approximation factor that was originally obtained by Skutella is 3 and
Quayranne and Sviridenko [8] give a randomized (2 + ε) approximation using an
LP-relaxation. Hence, we do not improve on the best approximation ratio here.
However, unlike [8], the schedule that we compute here is non-preemptive which
yields the following corollary.

Corollary 5. For any instance of R|rj , pmtn|
∑
wjCj, the value of the optimal

non-preemptive schedule is less than 2.78 times the value of the optimal preemp-
tive schedule.

2.3 Improving the Approximation Ratio

Before showing how we can improve the constant 1.81, we will sketch how the
interval-indexed LP-formulation and randomized rounding technique given by
Schulz and Skutella [10] leads to the same approximation ratios 1.81 and 2.78.
Queyranne and Sviridenko [8] use a different random assignment to get a 2 + ε-
approximation but that technique does not lead to an improved ratio here. The
interval indexed LP uses variables yijt indicating the fraction of interval t on
machine i used by job j. Given an LP-solution, a job is assigned to interval t on
machine i with probability yijtΔt/pij , which is the fraction of j processed in this
slot t of length Δt. Given the assignment, we get a feasible schedule by processing
on each machine the jobs as early as possible in the order of the timeslots assigned
to the jobs. See [10] for a precise formulation. That papers shows that any
solution to the LP can be rounded such that the expected completion time of
any job is at most PLP

j +MLP
j , where PLP and MLP

j are the process time and
mean busy time of the pseudo-schedule defined by the LP-solution. Hence, all we
need to do is to change the objective function to PLP

j + MLP
j . Theorem 1 now

guarantees a 1.81-approximation. In case of release dates we use PLP
j + 2MLP

j .

Approximability of Average Completion Time Scheduling 777

Now we sketch how the (2 + ε)-approximation algorithm by Queyranne and
Sviridenko [8] can be used to improve on the constant 1.81. The main idea in
that paper is the following. Given a feasible schedule σ for R|(rj), pmtn|

∑
Cj ,

we stretch the schedule by a factor β ≥ 1 and then process each job within
its new intervals as early as possible. If 1/β is chosen at random from]0, 1]
with density function f(x) = 2x, then the expected sum of weighted completion
times is at most 2

∑
j wjM

σ
j . Finding a schedule that minimizes

∑
j wjM

σ
j can

be done up to a factor (1+ε) by an interval-indexed linear programming. Placing
this algorithm next to the machinery of Theorem 1, we observe that the worst
case scenario for this algorithm is precisely the best scenario for Theorem 1. To
illustrate this consider an instance I with

min
σ

∑

j

wjM
σ
j = αmin

σ

∑

j

wjC
σ
j , (α ≤ 1). (8)

The approximation guarantee obtained from the algorithm of Queyranne and
Sviridenko is 2α(1 + ε). Hence, the worst situation occurs when α ≈ 1. From the
proof of Theorem 1 we see that in that case

min
σ

∑

j

wj(Mσ
j + P σ

j) ≈ min
σ

∑

j

wjC
σ
j .

The approximation factor of our algorithm is approximately 1 in this case. We
can actually prove that applying both algorithms and taking the best of the two
gives a ratio strictly smaller than 1.81. This optimization still has to be done
but we do not expect the ratio to be smaller than 1.5.

3 Inapproximability

The problem R|pmtn|
∑
Cj is known to be NP-hard [11]. Surprisingly, the non-

preemptive version can be solved in polynomial time. Here, we give a reduction
which shows that the problem is even APX-hard. The reduction itself is simpler
than the one used in [11]. This simplification is essential to obtain an approx-
imation preserving reduction. However, the proof that this reduction is correct
is much more difficult and it is omitted here. (See technical report [12] for the
full proof).

We reduce from the maximum bounded 3-dimensional matching problem
which was proven to be APX-hard by Kann [7].

Maximum bounded 3-Dimensional Matching (Max-3DM-B)
An instance is given by sets A = {a1, . . . , am}, B = {b1, . . . , bm}, and C =
{c1, . . . , cm} and a set T ⊆ A × B × C of cardinality n, such that n ≤ δm for
some constant δ > 1. The goal is to find a subset S ⊆ T of maximum cardinality
such that no two triples of S agree in any coordinate.

In fact, for any δ > 1 there is a constant γ < 1 such that is an NP-complete
problem to decide wether there is a matching of size m or wether the largest
matching has size at most γm.

778 R.A. Sitters

� � � � � � � � � � � ��

� � �

� � �

� � 	

� � �

� � �

� � 	

� � �

� � �

� � 	

� � �

� � �

� � 	

� �

� � � � � � � � �

� � � � � � 	 � �

� � 	 � � 	 � 	 �

� �
 � � 	 � � �

� � � � � � � � � � �

� � � � � � � � � � � � � �

Fig. 1. An optimal schedule σ∗ for the given instance in which m = 3 and n = 4. The
maximum matching has cardinality k = 2.

Theorem 3. The problem R|pmtn|
∑
Cj is APX-hard.

Proof. We reduce from the maximum bounded 3-dimensional matching problem
and take δ = 2, i.e. n = 2m. Given an instance IM of Max-3DM-B we write
T = {t1, . . . , tn} and simplify notation by writing tj = (xj , yj , zj) ∈ {1, . . . , n}3

in stead of tj = (axj , byj , czj). We define an instance IR of the scheduling problem
with 3m + n machines and (15/ε + 1)n + 2m jobs, where 1/ε is a large integer
which value we choose appropriately later. (We will show that 1/ε = 15 suffices,
giving a total of 226n+ 2m = 454m jobs.)

Machines: For each of the three coordinates we define m machines:
X1, · · · , Xm, Y1, · · · , Ym and Z1, · · · , Zm. Further, we define for each triple tj ∈
T one machine Mj.

Next we define 3 types of jobs: A-jobs, B-jobs, and triple jobs.

A-jobs: For each machine Yi we define one job with processing requirement
6 on this machine and with an infinite processing requirement on any of the
other 3m + n − 1 machines. Similarly, for each machine Zi we define one job
with processing requirement 11 on that machine and with an infinite processing
requirement on any other machine. These 2m jobs form the set of A-jobs.

B-jobs: The B-jobs are defined in a similar way: for each machine Mi we define
15/ε jobs with processing requirement 16 on that specific machine and an infinite
processing requirement on any of the other machines. The total number of B-jobs
is 15n/ε.

Triple jobs: For each triple tj = (xj , yj , zj) we define one triple job j with
processing requirements 18, 15, and 12 on, respectively, machine Xxj , Yyj , and

Approximability of Average Completion Time Scheduling 779

Zzj . The processing requirement on machine Mj is ε and is infinite on any of
the other 3m+ n− 4 machines.

This completes the reduction. The proof of correctness is omitted in this
abstract and can be found in [12].

References

1. Afrati, F., Bampis, E., Chekuri, C., Karger, D., Kenyon, C., Khanna, S., Milis, I.,
Queyranne, M., Skutella, M., Stein, C., Sviridenko, M.: Approximation schemes for
minimizing average weighted completion time with release dates. In: FOCS 1999,
pp. 32–44 (1999)

2. Afrati, F., Milis, I.: Designing ptass for min-sum scheduling problems. Discrete
Appl. Math. 154(4), 622–639 (2006)

3. Bruno Jr., J., Coffman, E.G., Sethi, R.: Scheduling independent tasks to reduce
mean finishing time. Communications of the ACM 17, 382–387 (1974)

4. Chekuri, C., Khanna, S.: A PTAS for minimizing weighted completion time on
uniformly related machines. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.)
ICALP 2001. LNCS, vol. 2076, pp. 848–861. Springer, Heidelberg (2001)

5. Hoogeveen, J.A., Schuurman, P., Woeginger, G.J.: Non-approximability results for
scheduling problems with minsum criteria. INFORMS Journal on Computing 13,
157–168 (2001)

6. Horn, W.A.: Minimizing average flow time with parallel machines. Operations Re-
search 21, 846–847 (1973)

7. Kann, V.: Maximum bounded 3-dimensional matching is MAX SNP-complete.
Information Processing Letters 37, 27–35 (1991)

8. Queyranne, M., Sviridenko, M.: A (2+epsilon)-approximation algorithm for the
generalized preemptive open shop problem with minsum objective. J. Algo-
rithms 45(2), 202–212 (2002)

9. Queyranne, M., Schulz, A.S.: Approximation bounds for a general class of prece-
dence constrained parallel machine scheduling problems. SIAM J. Comput. 35(5),
1241–1253 (2006)

10. Schulz, A.S., Skutella, M.: Scheduling unrelated machines by randomized rounding.
SIAM Journal on Discrete Mathematics 15, 450–469 (2002)

11. Sitters, R.A.: Complexity of preemptive minsum scheduling on unrelated parallel
machines. J. Algorithms 57(1), 37–48 (2005)

12. Sitters, R.A.: Inapproximability of average completion time scheduling, SPOR-
report, Technische Universiteit Eindhoven (2008)

13. Skutella, M.: Convex quadratic and semidefinite programming relaxations in
scheduling. J. ACM 48(2), 206–242 (2001)

14. Smith, W.E.: Various optimizers for single-stage production. Naval Research Lo-
gistics Quarterly 3, 59–66 (1956)

Relative Convex Hulls

in Semi-dynamic Subdivisions

Mashhood Ishaque1,� and Csaba D. Tóth2,��

1 Dept. of Comp. Sci., Tufts University, Medford, MA
mishaq01@cs.tufts.edu

2 Dept. of Mathematics, University of Calgary, AB
cdtoth@ucalgary.ca

Abstract. We present data structures for maintaining the relative con-
vex hull of a set of points (sites) in the presence of pairwise non-crossing
line segments (barriers) that subdivide a bounding box into simply con-
nected faces. Our data structures have O((n + m) log n) size for n sites
and m barriers. They support O(m) barrier insertions and O(n) site dele-
tions in O((m + n) polylog (mn)) total time, and can answer analogues
of standard convex hull queries in O(polylog (mn)) time.

Our data structures support a generalization of the sweep line tech-
nique, in which the sweep wavefront may have arbitrary polygonal shape,
possibly bending around obstacles. We reduce the total time of m on-
line updates of a polygonal sweep wavefront from O(m

√
n polylog n) to

O((m + n) polylog (mn)).

1 Introduction

Relative convex hull of a set of sites in a simply connected polygonal domain.
The convex hull, ch(S), of a set S of points (sites) in the plane is the shortest
polygon that circumscribes S (see Fig. 1(a)). If the configuration space is re-
stricted to a polygonal domain, then the Euclidean distance is typically replaced
by the Euclidean shortest path (or geodesic) distance. There is a unique shortest
path between any two sites iff the domain is simply connected. We consider two
interpretations of the relative convex hull. For a finite set S of point sites and a
simply connected open polygonal domain P ,
• the geodesic hull ghP (S) is the shortest weakly simple polygon contained in P
and circumscribing S ∩ P ;
• the bubble hull bhP (S) is a collection of simple polygons such that they jointly
circumscribes all sites of S ∩P , each polygon is ghP (S′) for some subset S′ ⊆ S,
and the number of polygons is minimal.
See Fig. 1(b-c). If D is a set of pairwise interior-disjoint polygons, then we denote
by ghD(S) (resp. bhD(S)) the collection of geodesic (resp., bubble) hulls of S
w.r.t. the polygons in D. The set of all points circumscribed by the polygons in
� Partially supported by NSF grant CCF-0431027.

�� Partially supported by NSERC grant RGPIN-328155.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 780–792, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Relative Convex Hulls in Semi-dynamic Subdivisions 781

(a) (b) (c) (d)

h

h′

q v1

v2
�1

�3

�2

�4
�5

�6
�7

�8
�9

Fig. 1. (a) A convex hull of 20 points; (b) the geodesic hulls of the points in two simply
connected domains formed by 9 barriers; (c) the bubble hull of the same point set in
the same subdivision; (d) a tangent query q and an extreme point query h

ghD(S) (resp. bhD(S)) is denoted by ghD(S) (resp. bhD(S)). Clearly, we have
bhD(S) ⊆ ghD(S). Intuitively, the bubble hull is the kernel of the geodesic hull, it
can be obtained from the geodesic hull by successively splitting it at singularities
(i.e., reflex vertices of P visited twice by the geodesic hull). Obviously. if P is
convex, then ghP (S) = bhP (S) = ch(S ∩ P).

The geodesic hull was introduced by Sklansky et al. [20] in the digital imaging
community and later rediscovered in computational geometry (c.f. [21]).

Results. We present data structures to maintain the bubble hull and the geodesic
hull. For n sites and m barriers they both have size O((n + m) logn), and can be
built in O((n+m) polylog (mn)) preprocessing time. They both support a mixed
sequence of O(m) barrier insertions and O(n) site deletions in O((n + m)
polylog (mn)) total time. The worst case time of a single update operation is
O(m polylog (nm)) for a site deletion, andO((m+n1/2+δ) polylog (mn)) for a bar-
rier insertion for any δ > 0.

Queries. We would like our data structures to answer certain elementary queries,
similar to classical convex hull queries. Here rchP (S) may refer to either one of the
two relative convex hulls ghP (S) and bhP (S)); queries (iv) and (v) are defined for
ghP (S) only, since bhP (S) may consists of several components:

(i) find the adjacent vertices of rchP (S) for a given vertex (gift-wrapping);
(ii) decide whether a given point in P lies in rchP (S) (point inclusion);
(iii) find the intersection � ∩ rchP (S) for a given line segment � ⊂ P (line

stabbing).
(iv) for a given point q in P but outside of ghP (S), find all vertices v ∈ ghP (S)

such that the segment of the geodesics between q and v is tangent to ghP (S)
at vertex v (the analogue of the tangent query, Fig. 1(d)).

(v) For a given chord h of P disjoint from ghP (S), find a parallel chord h′,
if possible, which is tangent to ghP (S) and separates h from ghP (S) (the
analogue of the extreme point query, Fig. 1(d)).

Our bubble hull data structure answers query (i), defined below, in O(1) time,
since the bubble hull is maintained explicitly; it also answers queries (ii)–(iii) in
O(polylog (mn)) time. Our geodesic hull data structure answers queries (i)–(v)

782 M. Ishaque and C.D. Tóth

in O(polylog (mn)) time. Our geodesic hull data structure relies on the bubble
hull structure, and hence the updates and the queries are slightly more expensive
than for the bubble hull.

1.1 Applications

Adversarial polyline sweep. In a classical sweep line algorithm, a vertical line
scans the plane from left to right. The sweep line meets any set of sites in the
order determined by their x-coordinates. It is not so easy to determine the order
in which sites are scanned if the plane is swept by a polyline wavefront, driven
by obstacles that has to be avoided and paths that has to be followed, although
polygonal wavefronts are used in many applications. We consider a model where
we are given n sites, and an adversary sweeps the plane with a polyline wavefront
in m moves. The wavefront is a simple polygon at all times: initially it is an
empty triangle, and each move expands the interior of the polygon by a triangle
with one side adjacent to the current wavefront, each move may be modeled as
a continuous deformation of the wavefront. Determining the order in which n
sites are swept with currently available data structures, would require either m
distinct relative convex hull computations (in O(m(n +m) logn) total time) or
m simplex range reporting queries (in O(m

√
n) total time).

The adversarial polyline sweep problem can be solved with our data structure
in O((m+n) polylog (mn)) time, using site deletions and barrier insertions only.
For each move of the adversary, we insert the two new edges of the wavefront
boundary into our subdivision. These edges separate a triangle adjacent to the
current wavefront. With respect to a triangle (or any convex polygon), the rela-
tive convex hull is just the (classical) convex hull. We can move continuously the
wavefront from one edge of the triangle to the two other edges, and repeatedly
delete the first site hit by the wavefront.

1.2 Related Results

Sweep-line algorithms. Graham’s scan [13] computed the convex hull of n
points in the plane in O(n log n) time by scanning the plane with a line rotating
about an extremal point, it is considered the first sweep-line algorithm. A typical
plane sweep, of Bentley and Ottmann [2], scans the plane with a vertical line
from left to right. The topological sweep of Chazelle and Edelsbrunner [5,10]
(originally developed for optimal segment intersection detection) scans the plane
with a polyline wavefront which deforms in response to the data it encounters.

Dynamic convex hulls. Preparata [19] gave a semi-dynamic (insert-only)
convex hull data structure, which supports point insertion in O(log n) time.
Chazelle [4] and later Hershberger and Suri [14] gave a semi-dynamic (delete-
only) data structure, which supports n point deletions in O(n logn) time. The
classic data structure for fully dynamic convex hull in the plane is due to Over-
mars and van Leeuwen [18], supporting updates in O(log2 n) worst-case time.

Relative Convex Hulls in Semi-dynamic Subdivisions 783

So far, Brodal and Jacob [3,15] gave the best data structure for dynamic convex
hull in the plane. It supports updates in O(log n) amortized time, and basic
convex hull queries in O(log n) time.

Geodesic paths. The theoretical study of geodesics in the interior of a simple
polygon was pioneered by Toussaint [21,22]. He showed that the geodesic hull
ghP (S) of a set S of n points in a simple n-gon P can be computed in O(n log n)
time, and any line segment in the interior of P crosses at most two edges of
ghP (S). Mitchell [17] and Ghosh [11] survey results on geometric shortest paths.

Dynamic subdivisions. Chiang et al. [9] dynamically maintained the trape-
zoidal subdivision of n noncrossing segment barriers in the plane with O(log3 n)
amortized update time. Goodrich and Tammasia [12] gave an improved method
based on balanced geodesic triangulation for maintaining dynamic planar sub-
divisions. The data structure uses O(n) space and O(log2 n) update time.

Range reporting. A data structure for simplex reporting, which is based on
Matoušek’s technique of simplicial partitioning with low crossing number [16],
uses O(n polylogn) space, and achieves a query time of O(n1/2+ε + k). The best
lower bound for simplex reporting queries in the plane is due to Chazelle and
Rosenberg [7] who showed that, on a pointer machine, a query time of O(nδ +k)
requires Ω(n2(1−δ)−ε) space. Thus for any data structure for planar simplex
reporting that uses O(n polylogn) space, there is a lower bound of Ω(n1/2−ε +k)
on the query time.

2 Tools

Shortest paths, point location, and ray shooting in a dynamic sub-
division. Chazelle et al. [6] showed that a balanced geodesic triangulation of
a polygon with n vertices can be used for answering ray shooting queries in
the polygon in O(log n) time. Goodrich and Tamassia [12] generalized this data
structure to dynamic subdivisions defined by noncrossing line segments where
each face is a simple polygon. They maintain a balanced geodesic triangulation
of each face. For m segments, the data structure has O(m) size. Each segment
insertion and deletion, point location, and ray shooting query takes O(log2 m)
time. It reports a shortest (geodesic) path between two points in O(log2m+ k)
time, where k is the length of the path. However, it can report O(1) information
about the shortest paths in O(log2m) time.

Geometric partition trees. A geometric partition tree for n points in the plane
is a rooted binary tree T where (1) every node v ∈ T corresponds to a convex cell
Cv in the plane; (2) the root at level 0 corresponds to the plane (or a bonding
box); (3) for every nonleaf node v ∈ T the cell Cv is tiled by the two convex cells
corresponding to the children of v; and (4) every cell Cv, v ∈ T at level k of T
contains at most n/λk points, for some fixed λ, 1 < λ ≤ 2. In particular, the
convex cells Cv, for all leaf nodes v ∈ T form a subdivision of the entire plane
(or the bounding box).

784 M. Ishaque and C.D. Tóth

Geometric partition trees with low stabbing numbers. The stabbing num-
ber of a geometric graph or a subdivision is the maximum number of edges
crossed by a straight line. Chazelle et al. [8,1] showed that one can construct a
geometric partition tree in O(n log n) time such that the stabbing number of the
corresponding subdivision of the plane is O(n

1
2+δ), for any fixed δ > 0.

3 Barriers and Geometric Partition Trees

We present a few basic structural properties of the bubble hull (without proof).

Proposition 1. 1. For a set S of sites and a simply connected domain P , the
bubble hull bhP (S) is unique.

2. A line segment � ⊂ P intersects both ghP (S) and bhP (S) in at most two
points.

3. If P1 ⊂ P2, then bhP1(S) ⊆ bhP2(S).

The motivation for introducing bubble hulls is the following feature of geodesic
hulls: The insertion ofm barriers may induce Ω(m(m+n)) combinatorial changes
in ghP (S) (see Fig. 2). However, we show in Proposition 2 below that the inser-
tion of m barriers induce only O(m + n) combinatorial changes in bhP (S).

(a) (b) (c) (d)

�2

�3
�1

Fig. 2. The successive insertion of m barriers may induce Ω(m(m + n)) combinatorial
changes in ghP (S)

Representation of geodesic hulls. In each simply connected face f , the
geodesic hull ghf (S) is connected and its vertices are sites and barrier endpoints.
If two consecutive vertices are sites, then they belong to the same component
of bhf (S). The portions of ghf (S) between two consecutive sites is the geodesic
path between those sites. We represent ghf (S) as a cyclic alternating sequence of
paths (b1, g1, b2, g2, . . . , gk), where bi is a portion of a component of bhf (S) be-
tween two sites and gi is a geodesic path between sites along distinct components
of bhf (S); only the first and last vertex of each portion will be stored.

The backbone of our data structure is a geometric partition tree T for n point
sites in a bounding box B, which is computed at preprocessing and remains fixed
thereafter. Each node v ∈ V (T) corresponds to a cell Cv. If D is a subdivision of
the bounding box B into simply connected faces, let D(v) denote the subdivision

Relative Convex Hulls in Semi-dynamic Subdivisions 785

of cell Cv by the portion of the barriers clipped to Cv. Storing D(v) for every node
v ∈ V (S) would be prohibitively expensive: if every barrier intersectsΩ(

√
n) cells

then storing D(v) for all leaf nodes would require Ω(m
√
n) space. Therefore, we

store only some carefully chosen portions of D(v) (c.f. Section 4). The size of
the relative convex hulls, however, for all v ∈ V (T) is close to linear.

Lemma 1. The union of all bhD(v)(S) (resp., ghD(v)(S)) for all nodes v ∈ V (T)
of a geometric partition tree T is a plane graph with O(n +m logn) edges.

Proof. For the planarity, note that due to the hierarchy of the geometric partition
tree T , we have bhD(w)(S) ⊆ bhD(v)(S) and ghD(w)(S) ⊆ ghD(v)(S) wherever w
is a descendant of v. Hence, the edges of the bubble hulls (resp., geodesic hulls)
of different levels cannot cross.

Assume w.l.o.g. that the 2m endpoints of the barriers are disjoint (using
virtual coordinates, if necessary). We say that an endpoint of barrier � is incident
to a face f if the endpoint and an incident portion of � lie on the boundary of f .
At the leaf nodes of T , S ∩ Cv is a singleton, and its convex hull has no edges.
Consider now a non-leaf node v ∈ V (T) whose children are w1 and w2. The
faces of D(w1) are separated from the faces of D(w2) by a line hv. Each face
f ∈ D(v) is the union of some faces F1 ⊆ D(w1) and F2 ⊆ D(w2) of the two child
subdivisions (Fig. 3, middle). Hence, rchf (S) can be constructed by merging the
relative convex hulls rchD(w1)(S) and rchD(w2)(S). The merge step creates new
edges along geodesic paths between components of rchD(W1)(S) and rchD(w2)(S)
(each may consists of several components). Each geodesic is either a single edge
(common tangent) or passes through barrier endpoints lying in Cv. At most two
geodesics pass through any barrier endpoint in ghf (S), and at most one geodesic
for bhf (S). If the merge step reduces the number of components by γv and the
new geodesics pass through mv barrier endpoints, then O(γv + mv) new edges
are created. Summing up the terms O(γv) over all v ∈ V (T), we obtain O(n).
Summing up the terms O(mv) over all v ∈ V (T) at a level of T , we have O(m),
which gives O(m log n) over all log n levels of T . �

�1�1

Fig. 3. Merging the relative convex hulls of two convex hulls (left). Merging the geodesic
hulls of the subdivisions of two consecutive vertical slabs before (middle) and after
(right) inserting a new barrier �i.

786 M. Ishaque and C.D. Tóth

Combinatorial changes. If a new barrier � partitions a face f ∈ D(v) into two
faces f1 and f2, we will replace rchf (S) by rchf1(S) and rchf2(S). If � has an
endpoint in the interior of f (note that at most one endpoint of � may lie in the
interior of f since every face is simply connected), then f is deformed to a face
f ′ and we will replace rchf (S) by rchf ′(S). Of course, an update of a relative
convex hull w.r.t. the subdivision D(v) is necessary only if � intersects rchf (S).
The following lemma counts the intersections between the edges of the relative
convex hulls and successively inserted barriers.

Lemma 2. We are given a set S of n sites in a bounding box B and a geometric
partition tree T . If we update rchD(v)(S) for all v ∈ V (T) during an intermixed
sequence of m barrier insertions and O(n) site deletions, then there are altogether
O(m+n) intersections between new barriers and current edges of rchD(v)(S) for
all v ∈ V (T) at each level of T .

Proof. For every i ∈ N, there are O(2i) nodes v ∈ V (T) at level i such that Cv

contains at least n/2i+1 and less than n/2i sites. Distinguish two types of inter-
sections between a new barrier � and the current relative convex hull rchD(v)(S)
for v ∈ V (T).

Type 1: � partitions a current face f ∈ D(v) into two faces, both of which con-
tain sites of S. In this case, the number of connected components of rchD(v)(S)
increases by one. A set of k sites can recursively be partitioned into nontrivial
subsets at most k− 1 times. Hence, summing all type 1 events for all m barriers
and all v ∈ V (T) at level i, we obtain O(n/2i)O(2i) = O(n).

Type 2: � has an endpoint in the interior of a current face f ∈ D(v), which
contains sites of S. At each level of T , each barrier endpoint lies in a unique cell
of D(v) for a unique v ∈ V (T). Hence there are O(n) type 2 events. �

In Section 4 below, we describe in detail how to maintain the relative convex
hulls w.r.t. each subdivision D(v), v ∈ V (T).

Proposition 2. Given n sites in a bounding box B, a mixed sequence of m
barrier insertions and O(n) site deletions induce O(m+n) combinatorial changes
in bhD(S).

Proof. bhD(S) may split into several components due to a barrier insertion or
a site deletion. A barrier insertion and a site deletion both decrease the region
circumscribed by the bubble hull, that is, bhD1(S1) ⊆ bhD2(S2) if S1 ⊆ S2 and
int(D1) ⊆ int(D2). Hence, if a point p ∈ S is a vertex of bhD(S) at one step,
it remains a vertex of a polygon of bhD(S) until p is deleted. If an endpoint
q of a barrier � is a vertex of bhD(S) at one step, it remains a vertex of a
polygon in bhD(S) until all sites on one side of the line through � are deleted,
or a component of bhD(S) visits q twice and it is split into two components.
Every edge deletion or creation in bhD(S) can be charged to an event involving
an endpoint of that edge. There are four possible events: a site s ∈ S becomes
a vertex of bhD(S); a vertex s ∈ S of bhD(S) is deleted; a barrier endpoint q
becomes a vertex of bhD(S); or a barrier endpoint q is no longer a vertex of

Relative Convex Hulls in Semi-dynamic Subdivisions 787

bhD(S). There are n + m possible events, each one is responsible for two edge
changes in bhD(S). �

Proposition 3. Given n sites in a bounding box B, a mixed sequence of m
barrier insertions and O(n) site deletions induce O(m+n) combinatorial changes
in the our representation of ghD(S) as a cyclic alternating sequences of portions
of bhD(S) and geodesic paths.

Proof (sketch). A site deletion or barrier insertion may trigger the splitting of
a component of bhD(S) into several components O(m) times (at most once for
each barrier). If the corresponding portion of bhS(D) lies in ghD(S), then it is
replaced by two portions of the resulting components of bhD(S) and a geodesic
path between them, that is, O(1) combinatorial changes in the representation of
ghD(S). Besides the effects of splitting the bubble hull into several components,
each site deletion or barrier insertion incurs only O(1) change in the affected
portion of ghD(S) and in the two adjacent portions. �

4 Data Structure

Bubble hull data structure. We are given a set of n sites and a subdivision
D formed by set of barriers in a bounding box B. Our data structure has three
main components: (1) a geometric partition tree T for S, where every node
v ∈ V (T) will store numerous items; (2) plane graphs Gi, i = 1, 2, . . . , logn, one
for each level of T . The vertices of Gi are the sites and the barrier endpoints, the
edges are formed by the barriers, all bubble hulls bhD(v)(S) for the subdivisions
D(v) at level i of the T , and an anchor edge between each convex component
of bhD(v)(S) and a nearby barrier endpoint, the faces are simply connected; (3)
dynamic data structures of Goodrich and Tamassia [12] for each face of each Gi.

At each node v ∈ V (T), we store Cv. We store some faces of the subdivision
D(v). Let the parent of a face f ∈ D(v) be the face f ′ ∈ D(v′) such that
v′ ∈ V (T) is the parent of v and f ⊆ f ′. At node v, we store a face f ∈ D(v) if
f or its parent contains a site of S; we also store f if f or its parent is incident
to a barrier endpoint. We store some edges of bhD(v)(S). For a leaf v ∈ V (T),
we have |S ∩Cv| ≤ 1, and so bhD(v) has no edges. For a nonleaf node v ∈ V (T),
we store the line hv that partitions Cv into two cells. We store each segment of
hv clipped in a stored face f ∈ D(v). We store each component of bhD(v)(S) in
a doubly linked edge list and a binary search tree; and store also the cyclic list
of sites along each component.

We store the plane graph Gi, i = 1, 2, . . . , logn, formed by the barriers and all
edges of bhD(v)(S) for all v ∈ V (T) at level i of T (see Fig. 3). In addition, for
every convex component of bhD(v)(S), we store an anchor edge that connects it to
a reflex vertex of D (recall that the components of bhD(S) are mutually occluded
from each other). The first edge where a component of bhD(v)(S) diverge from
ghD(v)(S) is a good choice for an anchor. The anchors divide the region f \bhf (S)
surrounding the bubble hull into a simply connected face (e.g., Fig. 3, right). Let
Φ(Gi) denote the set of faces of Gi. We maintain the dynamic data structure

788 M. Ishaque and C.D. Tóth

of [12] for each face ϕ ∈ Φ(Gi). This completes our data structure for maintaining
the bubble hull.

Geodesic hull data structure. In addition to all components of the bubble
hull data structure, we store ghD(v)(S) for every v ∈ V (T). Here ghD(v)(S)
is represented as an cyclic alternating sequence of paths (b1, g1, b2, g2, . . . , gk),
where bi is a portion of a component of bhD(v)(S) (represented by the counter-
clockwise first and last sites), and gi is a geodesic path in a face of Φ between
two sites of different components of bhD(v)(S) (represented by the two sites).

Space requirement. The geometric partition tree T has size O(n). Recall that
the cells Cv for nodes v ∈ V (T) at each level correspond to a partition of
the bounding box B. If a face f ∈ D(v) is incident to mf barrier endpoints,
then it has at most 4 + mf edges. Each barrier endpoint is incident to two
faces at each level of T . Hence storing faces of all subdivisions D(v), which are
either incident to a barrier endpoint or contain a site, requires O((n+m) logn)
space. The bubble hulls bhD(v)(S) for all nodes v at a single level of T jointly
have O(n + m) edges. Storing bhD(v)(S) explicitly for all v ∈ V (T) requires
O((n + m) logn) space. The size of each Gi is O(n + m), and so the dynamic
data structure of Goodrich-Tamassia [12] for the all faces of Gi requires O(n+m)
space. All graphs Gi, i = 1, 2, . . . , , logn, jointly use O((n + m) log n) space. In
our representation of geodesic hulls, with selected sites, ghD(v)(S) for all nodes
v at a level of T jointly have at most n edges. Storing ghD(v)(S) for all v ∈ V (T)
requires O(n log n) space.

4.1 Updates and Queries

Primitives. In the Goodrich-Tamassia data structure [12], each barrier insertion
and deletion, point location, or ray shooting query takes O(log2m) time. It
reports the shortest path πf (p1, p2) between p1 and p2 in O(log2m + k) time
where k is the size of πf (p1, p2). For two points, p1 and p2, it can report the first
and the last segments, as well as the middle vertex of πf (p1, p2) in O(log2 m)
time. For two points p1, p2 and a chord h, it can report the intersection of
πf (p1, p2) and h in O(log2m) time. Given three points p, q1, q2, the first segments
where πf (p, q1) and πf (p, q2) differ can also be reported in O(log2m) time.

With the queries of the data structure of [12], we can compute the common
tangent geodesics of two disjoint geodesic hulls: Given two sets of sites, S1 and
S2 in a face f such that ghf (S1) and ghf (S2) are disjoint, find the pairs of
vertices (v1, v2) ∈ S1 × S2 such that πf (v1, v2) is the shortest path in f tangent
to ghf (S1) and ghf (S2) at the endpoints v1 and v2, respectively (Fig. 4(ab)).
The common tangent geodesics can be used for merging the geodesic hulls into
ghf (S1∪S2). Searching for v1 and v2 is analogous to finding the common tangents
between disjoint convex polygons [18]. With O(log n) shortest path queries, each
in O(log2m) time, we can find pairs of sites (s1, s2) ∈ S1×S2 such that πf (s1, s2)
is tangent to ghf (S1) and ghf (S2) at s1 and s2, respectively. If the endpoints
s1 and s2 are the only common vertices of πf (s1, s2) with ghf (S1) and ghf (S2),
then v1 = s1 and v2 = s2. Otherwise, v1 and v2 are the first vertices where

Relative Convex Hulls in Semi-dynamic Subdivisions 789

(a) (b) (c) (d)

h h

s1

v2

v1 s1

v1

s2

v2s2

q1

q2

q1

q2

Fig. 4. The common tangent geodesics between two geodesic hulls (ab). The common
geodesic hulls between a chord h and a geodesic hull (cd).

πf (s1, s2) diverges from ghf (S1) and ghf (S2), resp., and hence v1 and v2 can
be computed with the above mentioned three-point query of [12] in O(log2 m)
time. The common tangent geodesics can be computed in O(log n log2m) time.

The common tangent geodesics can be used to compute the bubble hull from the
geodesic hull and the bubble hulls of the two subfaces. Let f be a face of a subdivi-
sion D(v), where a line hv partitions f into some faces f1, f2, . . . , fκ. Assume for
a moment that we are given ghf (S) explicitly and bhfk

(S) for all k = 1, 2, . . . , κ.
Then we can compute bhf (S) by successively pruning the singularities (i.e., ver-
tices visited twice by ghf (S)). Refer to Fig. 1(c). If p is a singularity (which is
necessarily a barrier endpoint), then find the two pairs of closest sites, (s1, s2) and
(s3, s4) along ghf (S) such that s1, s3 are on the same side of p. Here both πf (s1, s2)
and πf (s3, s4) pases through p. Denote by Rj the component of a bubble hull
bhfk

(S) that contains sj for j = 1, 2, 3, 4. Split the ghf (S) into two geodesic hulls,
by removing πf (s1, s2) and πf (s3, s4), and inserting instead the common tangent
geodesic between R1, R3 and the common tangent geodesic between R2, R4. The
pruning each singularity takes O(log n log2m) time. If bhf (S) has t components,
then we can compute it in O(t log n log2m) time.

Site deletion. Assume we delete site s ∈ S, where s corresponds to a leaf
v0 ∈ V (T). Update the information at all logn nodes v ∈ V (T) where s ∈ Cv.
Delete every face f ∈ D(v) whose parent face contained no other site but s.
Update bhD(v)(S) bottom up. No update is necessary if s is in the interior of
bhD(v)(S). Assume that s is on the vertex of a component ghf (S′) of bhf (S)
for some face f ∈ D(v) and S′ ⊆ S. If f contains no other site, then bhf (S) is
deleted. Otherwise assume that s has already been deleted from bhf1(S), where
f1 is the child face of f containing s.

Compute ghf (S′ \ {s}) in O(log n log2m) time as follows. Let a and b denote
the two closest sites of s along ghf (S′). Let Ra and Rb be the components of the
corresponding bubble hulls bhfk

(S) containing a and b, resp. (which have already
been updated). Compute the common geodesic tangent of Ra and Rb. If ghf (S′ \
{s}) is a simple polygon, then bhf (S′ \ {s}) = ghf (S′ \ {s}) and we are done.
However, if ghf (S′\{s}) is not a simple polygon, we need to compute bhf (S \{s})
by successively pruning the singularities as described above (Fig. 1(c)).

790 M. Ishaque and C.D. Tóth

Barrier insertion. Let � be a barrier inserted (refer to Fig. 3). Insert � into
the Goodrich-Tamassia data structures in O(log2m) time. Since � does not cross
other barriers, it intersects at most one face in each subdivision D(v), v ∈ V (T).
In a top-down traversal of T , find all faces fv ∈ D(v) in our data structure that
intersect �. Update the faces fv. Some of the faces may be split by � into two
faces. If a new face and its parent contain no site, the new face is deleted from
our data structure.

Compute all intersection points with bhD(v)(S) using a ray shooting data
structure at O(log2(m + n)) cost per intersection. Locate all faces f ∈ D(v)
where � intersects bhf (S) in a top-down traversal of T . If � is disjoint from
bhf (S), then it is disjoint from the bubble hull in all descendent faces. Update
bhf (S) in all faces bottom-up as follows.

Assume that � intersects the component ghf (S′) of a bubble hull bhf (S), for
some f ∈ D(v) and S′ ⊆ S ∩ f . Assume that all descendant faces have already
been updated. Distinguish two cases:

Case 1: � intersects bhf (S) in exactly one point p. Find the pair of sites, say
s1 and s2, along ghf(v)(S′) closest to p. Let R1 and R2 be the bubble hulls at
the children faces of f containing s1 and s2, respectively. Compute ghf\�(S

′) by
replacing πf (s1, s2) with the common tangent geodesics between R1 and p, and
between p and R2. If ghf\�(S

′) is a simple polygon, then we are done; otherwise
prune successively the singularities to obtain bhf\�(S′).
Case 2: � intersects bhf(v)(S) in two points. Then � partitions the point set S′

into some point sets S′
1 and S′

2. Find the pairs of sites, say (s1, s2) and (s3, s4),
along ghf (S′) closest to the intersection points with �, such that s1 and s3 are
on the same side of �. Let Rj be the bubble hulls at the children faces of f
containing sj for j = 1, 2, 3, 4. Compute ghf\�(S

′
1) and ghf\�(S

′
2) by replacing

πf (s1, s2) and πf (s3, s4) with the common tangent geodesics between R1, R3 and
R2, R4 in the face f \ �. If ghf\�(S

′
1) and ghf\�(S

′
2) are simple polygons, then we

are done; otherwise prune successively the singularities to obtain bhf\�(S′). The
geodesic hull ghf\�(S) can be updated analogously in a bottom-up traversal.

A single barrier insertion takes O(κ� polylog (mn)) time, where κ� is the
number of cells stabbed by �. Here κ� = O(n log n) is a trivial bound (which
is tight, e.g., for a partition tree into vertical slabs [18]); and we have κ� =
O(m + n1/2+δ) for a δ > 0 for a partition tree of low stabbing number [1,8].

Queries. Here, we discuss query (v) only for space limitations. Refer to the full
paper for a detailed description of the remaining queries (i)–(iv).

Query (v) We can check whether the query chord h = p1p2 is indeed disjoint
from ghD(S) in O(log n log2m) time, using the line stabbing query (iii). Then lo-
cate the face f of the subdivision D containing h. Compute the common tangent
geodesics between h and ghf (S), which meet ghf (S) at some vertices q1 and q2.
The chord h, the two common tangent geodesics, and the porion of ghf (S) be-
tween q1 and q2 forms a geodesic quadrilateral (Fig. 4(cd)). Every chord parallel
to h that separates h from ghf (S) must cross both common tangent geodesics,
so the point of tangency along ghf (S), if exists, must be between q1 and q2. The
portion of ghf (S) between q1 and q2 is a convex polygonal chain, hence it has

Relative Convex Hulls in Semi-dynamic Subdivisions 791

at most one tangent parallel to h. Since ghf (S) is not stored directly, we first
find the portion of ghf (S) (a geodesic path or a portion of bhf (S)) that possi-
bly has a tangent parallel to h in a binary search in O(log n) time. If it is in a
portion of a bubble hull, then we can find the tangency point in a binary search
in O(log n) time. If it is in some geodesic path πf (v1, v2) along ghf (S), then a
binary search takes O(logm) queries with the [12] data structure, in O(log3 m)
total time. Altogether, query (v) can be answered in O(log(mn) log2m) time.

References

1. Agarwal, P.K., Sharir, M.: Applications of a new space-partitioning technique.
Discrete Comput. Geom. 9, 11–38 (1993)

2. Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric
intersections. IEEE Trans. Comput. C-28(9), 643–647 (1979)

3. Brodal, G.S., Jacob, R.: Dynamic planar convex hull. In: Proc. FOCS, pp. 617–626.
IEEE, Los Alamitos (2002)

4. Chazelle, B.: On the convex layers of a planar set. IEEE Trans. Inform. Theory IT-
31(4), 509–517 (1985)

5. Chazelle, B., Edelsbrunner, H.: An optimal algorithm for intersecting line segments
in the plane. J. ACM 39(1), 1–54 (1992)

6. Chazelle, B., Edelsbrunner, H., Grigni, M., Guibas, L.J., Hershberger, J., Sharir,
M., Snoeyink, J.: Ray shooting in polygons using geodesic triangulations. Algo-
rithmica 12, 54–68 (1994)

7. Chazelle, B., Rosenberg, B.: Simplex range reporting on a pointer machine. Com-
put. Geom. Theory Appl. 5(5), 237–247 (1996)

8. Chazelle, B., Sharir, M., Welzl, E.: Quasi-optimal upper bounds for simplex range
searching and new zone theorems. Algorithmica 8, 407–429 (1992)

9. Chiang, Y.-J., Preparata, F.P., Tamassia, R.: A unified approach to dynamic point
location, ray shooting, and shortest paths in planar maps. SIAM J. Comput. 25,
207–233 (1996)

10. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. EATCS Monographs on
Theoretical Computer Science, vol. 10. Springer, Heidelberg (1987)

11. Ghosh, S.: Visibility Algorithms in the Plane. Cambridge University Press, New
York (2007)

12. Goodrich, M.T., Tamassia, R.: Dynamic ray shooting and shortest paths in planar
subdivisions via balanced geodesic triangulations. J. Algorithms 23, 51–73 (1997)

13. Graham, R.L.: An efficient algorithm for determining the convex hull of a finite
planar set. Inform. Process. Lett. 1, 132–133 (1972)

14. Hershberger, J., Suri, S.: Applications of a semi-dynamic convex hull algorithm.
BIT 32, 249–267 (1992)

15. Jacob, R.: Dynamic Planar Convex Hull, PhD thesis, University of Aarhus, Aarhus,
Denmark (2002)

16. Matousek, J.: Geometric range searching. ACM Comput. Surv. 26
17. Mitchell, J.S.B.: Geometric shortest paths and network optimization. Handbook

of Computational Geometry. Elsevier, Amsterdam (2000)
18. Overmars, M.H., van Leeuwen, J.: Maintenance of configurations in the plane. J.

Comput. Syst. Sci. 23, 166–204 (1981)

792 M. Ishaque and C.D. Tóth

19. Preparata, F.P.: An optimal real-time algorithm for planar convex hulls. Commun.
ACM 22, 402–405 (1979)

20. Sklansky, J., Chazin, R.L., Hansen, B.J.: Minimum perimeter polygons of digitized
silhouettes. IEEE Trans. Comput. C-21, 260–268 (1972)

21. Toussaint, G.T.: Shortest path solves translation separability of polygons, Report
SOCS-85.27, School Comput. Sci., McGill Univ., Montreal, PQ (1985)

22. Toussaint, G.T.: An optimal algorithm for computing the relative convex hull of
a set of points in a polygon. In: Signal Processing III: Theories and Applications,
pp. 853–856 (1986)

An Experimental Analysis of Robinson-Foulds

Distance Matrix Algorithms

Seung-Jin Sul and Tiffani L. Williams

Department of Computer Science
Texas A&M University

College Station, TX 77843-3112
{sulsj,tlw}@cs.tamu.edu

Abstract. In this paper, we study two fast algorithms—HashRF and
PGM-Hashed—for computing the Robinson-Foulds (RF) distance matrix
between a collection of evolutionary trees. The RF distance matrix rep-
resents a tremendous data-mining opportunity for helping biologists un-
derstand the evolutionary relationships depicted among their trees. The
novelty of our work results from using a variety of different architecture-
and implementation-independent measures (i.e., percentage of biparti-
tion sharing, number of bipartition comparisons, and memory usage)
in addition to CPU time to explore practical algorithmic performance.
Overall, our study concludes that HashRF performs better across the
various performance measures than its competitor, PGM-Hashed. Thus,
the HashRF algorithm provides scientists with a fast approach for un-
derstanding the evolutionary relationships among a set of trees.

Keywords: phylogenetic trees, RF distance, performance analysis.

1 Introduction

Given a collection of organisms (or taxa), the objective of a phylogenetic anal-
ysis is to produce an evolutionary tree describing the genealogical relationships
between the taxa. Since the true evolutionary history for a set of taxa is un-
known, many phylogenetic techniques use stochastic search algorithms to solve
NP-hard optimization criteria such as maximum likelihood and maximum parsi-
mony. During a phylogenetic search, thousands of candidate trees can be found,
each representing a hypothesis of the true tree. The collection of candidate trees
represent a tremendous data-mining for understanding the evolutionary relation-
ships depicted among the trees. For example, trees could be clustered based on
the topological distances between every pair of trees [1]. However, such cluster-
ing strategies require fast algorithms for computing the distance between every
pair of trees in the collection of interest.

In this paper, we study two of the fastest algorithms—HashRF [2], [3] and
PGM-Hashed [4]—to compute a t× t Robinson-Foulds (RF) distance [5] matrix
in O(nt2) time. Figure 1 presents an overview of the RF matrix problem. Here, t
is the number of trees in the collection and n is the number of taxa (or leaves) in

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 793–804, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

794 S.-J. Sul and T.L. Williams

B

A C D

E

T
1

B

A D C

E

T
2

B

A E C

D

T
3

E

A B D

C

T
4

T 1
T 2 T 3 T 4

1

1

1 2

2

1

T 1

T 2

T 3

T 4

I n p u t T r e e s

R F D i s t a n c e M a t r i x

1

1

2 2

1

1 0

0

0

0

B 2B 1B 1 B 2B 1 B 2 B 1 B 2

Fig. 1. Overview of computing the RF distance matrix. The tree collection consists
of four phylogenies: T1, T2, T3, and T4. Bipartitions (or internal edges) in a tree are
labeled Bi, where i ranges from 1 to 2. For example, according to the RF matrix, the
number of bipartition that are different between trees T1 and T2 is 1.

each tree. Day [6] provided an optimal linear time algorithm for computing the
RF distance between two trees by utilizing a special cluster representation of the
trees. By using repeated applications of Day’s algorithm, the RF distance ma-
trix can be computed in O(nt2) time. Although the PGM-Hashed algorithm by
Pattengale, Gottlieb, and Moret has the same theoretical complexity as repeated
applications of Day’s approach, PGM-Hashed is much faster in practice [4],[3].
We compare the PGM-Hashed approach to an algorithm we developed called
HashRF, which also has the same theoretical complexity of O(nt2).

Given that the RF matrix algorithms under investigation have the same theo-
retical complexity, what is to be gained from studying their actual performance
in practice? The novelty of our study is that we explore algorithmic performance
by: (i) varying the amount of shared evolutionary relationships among the t trees,
(ii) counting the actual number of bipartitions compared, and (iii) considering
the memory usage of the algorithms. Theoretical complexity does not provide
the algorithm designer with such insightful information as it relates to the above
criteria.

In this study, we use artificial trees to assess the performance of the RF matrix
approaches. Although biological tree collections are preferable, their availability
for the parameters of interest in this study are limited (see Section 3.2). For our
artificial tree collections, the number of taxa, n, and number of trees, t, ranged
from 128 to 2,048. The experimental results show that HashRF’s performance de-
creases as the number of shared relationships among the trees increases. PGM-
Hashed, on the other hand, shows the opposite performance. That is, PGM-Hashed

An Experimental Analysis of Robinson-Foulds Distance Matrix Algorithms 795

executes faster as the number of shared bipartitions increases. Overall, regardless
of the number of evolutionary relationships shared among the trees, HashRF
is about 1.2 to 13 times faster than PGM-Hashed depending on the level of
bipartition sharing in the collection of trees. Our results also demonstrate that
HashRF requires a smaller number of bipartition comparisons among the t trees
than PGM-Hashed. Finally, we show that HashRF uses one-third of the memory
required by its competitor.

Given that the grand challenge in phylogenetics is to infer The Tree of Life,
which is estimated to contain 10 to 100 million taxa, significant reductions in the
running time and storage requirements of RF matrix algorithms is necessary to
handle the increasing size of evolutionary trees and the collections that contain
them. Our experimental study shows that the HashRF algorithm provides scien-
tists with a fast approach for computing the all-pairs RF distance between their
collection of trees, which could lead scientists to understanding the evolutionary
relationships among their collection of trees in new and exciting ways.

2 Computing the Robinson-Foulds Matrix

In a phylogenetic tree, modern organisms (or taxa) are placed at the leaves and
ancestral organisms occupy internal nodes, with the edges of the tree denoting
evolutionary relationships. Oftentimes, it is useful to represent phylogenies in
terms of their bipartitions. Removing an internal edge e from a tree separates
the taxa (or leaves) on one side from the taxa on the other. The division of the
taxa into two subsets is the non-trivial bipartition B associated with internal
edge e. (Note: all trees have trivial bipartitions denoted by external edges.) In
Figure 1, T2 has two bipartitions: AB|CDE and ABD|CE. An evolutionary tree
is uniquely and completely defined by its set of O(n) bipartitions.

The Robinson-Foulds (RF) distance between two trees is the number of bi-
partitions that differ between them. Let Σ(T) be the set of bipartitions defined
by all edges in tree T . The RF distance between trees T1 and T2 is defined as:

dRF (T1, T2) =
|Σ(T1) −Σ(T2)| + |Σ(T2) −Σ(T1)|

2
(1)

Figure 1 depicts how the RF distance between two trees T1 and T2. The set
of bipartitions defined for tree T1 is Σ(T1) = {AB|CDE,ABC|DE}. Σ(T2) =
{AB|CDE,ABD|CE}. The number of bipartitions appearing in T1 and not T2

(i.e., |Σ(T1) −Σ(T2)|) is 1, since {ABC|DE} does not appear in T2. Similarly,
the number of bipartitions in T2 but not in T1 is 1. Hence, dRF (T1, T2) = 1.

In this paper, we are interested in computing the all-to-all RF distance or
RF distance matrix. Given a set of t input trees, the output is a t × t matrix
of RF distances. Here, the matrix represents the topological distances between
every pair of trees. Our work assumes that the input trees are binary. Hence,
the largest possible RF distance between two binary trees is n− 3.

796 S.-J. Sul and T.L. Williams

2.1 Bipartition Representations

For each tree in the collection of input trees, we find all of its bipartitions (in-
ternal edges) by performing a postorder traversal. In order to process the bipar-
titions, we need some way to store them in the computer’s internal memory.

An intuitive bitstring representation requires n bits, one for each taxon. Con-
sider Figure 1. The first bit is labeled by the first taxon name (e.g., taxon A),
the second bit is represented by the second taxon (e.g., taxon B), etc. We can
represent all of the taxa on one side of the tree with the bit ‘0’ and the remaining
taxa on the side of the tree with the bit ‘1’. Consider the bipartition ABE|CD
from tree T4. This bipartition would be represented as 11001, which means that
taxa A, B, and E are one side of the tree, and the remaining taxa are on the
other side. Here, taxa on the same side of a bipartition as taxon A receive a ‘1’.
For each tree in the collection of unrooted input trees, we arbitrarily root it. We
find all of its bipartitions by performing a postorder traversal of each tree while
performing an OR operation to the bitstrings of an internal node’s (parent’s)
children.

The PGM-Hashed RF matrix algorithm [4] uses a compressed k-bitstring.
Each input taxon is represented by a random k-bitstring, where k < n. Similarly
to the n-bitstring case, all bipartitions are found by performing a depth-first
search traversal of the tree. However, the bitstrings of an internal node’s (par-
ent’s) children are exclusive-OR’ed together in this representation. One conse-
quence of using a compressed bitstring is that there is a possibility that two
different bipartitions may in fact be represented by the same compressed bit-
string. If this happens, then the resulting RF matrix will be incorrect. Patten-
gale et al. show that the probability of colliding compressed bitstrings decreases
exponentially with the number of bits chosen for representing the bitstrings [4].

2.2 HashRF

Figure 2(a) provides an overview of the HashRF algorithm, which runs in O(nt2)
time. Each input tree, Ti, is traversed in post-order, and its bipartitions are fed
through two hashing functions, h1 and h2. Hash function h1 is used to generate
the location needed for storing a bipartition in the hash table. h2 is responsible
for creating bipartition identifiers (BIDs). For each bipartition, its associated
hash table record contains its BID along with the tree index (TID) where the
bipartition originated.

Similarly to Amenta et al. [7], Our h1 and h2 universal hash functions are
defined as follows.

h1 (B) =
∑

biri mod m1 (2)

h2 (B) =
∑

bisi mod m2 (3)

m1 represents the number of entries (or locations) in the hash table. m2 represent
the largest bipartition ID (BID) that we can be given to a bipartition. That is,

An Experimental Analysis of Robinson-Foulds Distance Matrix Algorithms 797

H a s h T a b l e

0

4

8

...

m - 11

1 7

.. .

h1

B i p a r t i t i o n s

1

2

3

T1

T2

T3

2B

1B

T4

T Y P E 0 c o l l s i o n s

T Y P E 1 c o l l s i o n

H a s h R e c o r d s

T1

2 7 3 5

T1 T2 T3 T4

3 1

4 0

T2

T3 T4 T Y P E 0 c o l l s i o n s

4 6

2B

1B

2B

1B

2B

1B

(a) HashRF

B i p a r t i t i o n M a t r i x

T1 T2 T3 T4

7 6 2

B 1

B 2 3 3 2 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6 9 8 7

7 6 2 4 5 6 4 5 6 9 8 7

4 5 6 3 3 2 1 2 3 1 2 31

o r i g i na l ma t r i x

s o r t e d m a t r i x

T1 T2 T3 T4

2

(b) PGM-Hashed

Fig. 2. Overview of the RF matrix algorithms under study. Bipartitions are from Fig-
ure 1. (a) The implicit representation of each bipartition, Bi, is fed to the hash functions
h1 and h2. The shaded value in each hash record contains the bipartition ID (or h2

value). Each bipartition ID has a linked list of tree indexes that share that particular
bipartition. (b) Each unique bipartition in the tree is represented by a unique integer
value. Both the original matrix and its sorted version, which is then used to compute
the RF distance matrix, are shown.

instead of storing the n-bitstring, a shortened version of it (represented by the
BID) will be stored in the hash table instead. R = (r1, ..., rn) is a list of random
integers in (0, ...,m1−1), S = (s1, ..., sn) is a list of random integers in (0, ...,m2−
1), and B = (b1, ..., bn) is a bipartition represented by an n-bitstring. By using
an implicit representation, we can avoid sending the n-bitstring representations
to our hashing functions. An implicit bipartition is simply the integer value
(instead of the n-bitstring) that provides the representation of the bipartition.

A consequence of using hash functions is that bipartitions may end up residing
in the same location in the hash table. Such an event is considered a collision.
There are three types of collisions that our hashing algorithms must resolve.
Type 0 collisions occur when the same bipartition (i.e. Bi = Bj), is shared
across the input trees. Such collisions are not serious and are a function of the
set of input trees. Type 1 collisions result from two different bipartitions Bi

and Bj (i.e., Bi
= Bj) residing in the same location in the hash table. That is,
h1(Bi) = h1(Bj). Type 2 collisions occur when Bi and Bj hash to the same
location in the hash table with the same bipartition IDs (BIDs). In other words,
h1(Bi) = h1(Bj) and h2(Bi) = h2(Bj). If a Type 2 occurs, the result output
matrix will be incorrect. The probability of an incorrect answer is O

(
1
c

)
, where

c can be made arbitrarily large. Since c = 1, 000 in our experiments, there is a
0.001% chance that our HashRF algorithm will return an incorrect result.

Once all the bipartitions are organized in the hash table, then the RF distance
matrix can be calculated. For each non-empty hash table location i, we have a

798 S.-J. Sul and T.L. Williams

list of tree index (TID) nodes for each unique bipartition index (BID) node.
HashRF uses a t× t dissimilarity matrix, D, to track the number of bipartitions
that are different between all tree pairs. In the case of binary trees, the Di,j

entries are initialized to n− 3, the number of internal edges in a binary tree.
For each BID node at location l, every pair of TID nodes in the linked list

are compared to each other. Then, the counts of Di,j and Dj,i are decremented
by one. That is, we have found a common bipartition between Ti and Tj and
decrement the difference counter by one. For example, trees with BID 27 at
location 4 in the hash table shows that the pairs (T1, T2), (T1, T3), and (T2, T3)
share a bipartition (ABC|DE from Figure 1). Thus, entries D1,2, D1,3, and D2,3

are decremented by one. Once we have computed D, we can compute the RF
matrix quite easily. Thus, RF i,j = Di,j+Dj,i

2 , for every tree pair i and j.

2.3 PGM-Hashed

Pattengale, Gottlieb, and Moret [4] develop an O(nt2) algorithm that uses k-
length bitstrings to represent each tree’s bipartitions. In their paper, Pattengale
et al. describe a number of exact and approximate algorithms to compute the RF
distance matrix. Since we focus strictly on exact approaches, we study Pattengale
et al.’s Hashed algorithm, which we call PGM-Hashed.

The algorithm starts by assigning a 64-bit integer random number to each
taxon and using the XOR accumulator to combine the taxa numbers to represent
the bipartition found during depth-first search traversal. Since each binary tree
contains n−3 bipartitions, the entire set of bipartitions collected from the t trees
are stored in a (n−3)×t two-dimensional array (or bipartition table). Entry (i, j)
in the table represents the integer (converted from the 64-bitstring) representing
bipartition i from tree j (see Figure 2(b)). Although the PGM-Hashed does not
explicitly use a hash table, it is considered a hashing approach because different
bipartitions may be represented with the same 64-bit integer.

Once the (n− 3)× t bipartition table is constructed, the RF distance matrix
is computed. Each of tree j’s bipartitions (i.e., column j in the bipartition table)
are sorted since they are stored as integer values. After the sort, the RF distance
between the trees is computed. For each pair of trees Ti and Tj, two pointers
p and q are used to compare the bipartitions of Ti and Tj, respectively. If the
bipartition pointed to by p is equal to the one referred to by q, then both pointers
are incremented which means they have the same bipartition. However, if the
bipartitions are different, a difference counter is incremented, and either the p or
q pointer is incremented appropriately. To get the RF distance, the value of the
difference counter is subtracted from n− 3 since we are assuming binary input
trees.

3 Our Collection of Evolutionary Trees

3.1 Overview

We test the performance of the HashRF and PGM-Hashed algorithms by using
tree collections that share varying number of bipartitions between them. We

An Experimental Analysis of Robinson-Foulds Distance Matrix Algorithms 799

B

A C

D

E

7 5 %

Fig. 3. Majority consensus tree for the input trees shown in Figure 1. The bipartition
weight implies that 75% of the t trees must have the bipartition AB|CDE.

measure the amount of sharing among the t trees in a collection by the resolution
rate, r, of the resulting majority consensus tree, which is one of the most popular
consensus tree techniques used in a phylogenetic analysis. Majority trees contain
bipartitions that appear in more than half of the t input trees. In Figure 3, the
majority tree has a resolution rate of 50%. That is, for five taxa there are n−3 (or
2) possible bipartitions in the resulting phylogenetic tree. However, the majority
tree only has 1 of the 2 possible bipartitions. A 0% resolved tree represents a
star whereas a 100% resolution rate denotes a binary tree. Larger resolution
rates denote more shared bipartitions among the input trees.

3.2 Motivation for Using Artificial Trees

Our objective is to assess the RF matrix algorithms on large tree collections as
a function of the number of taxa, n, the number of trees, t, and the resolution
rate, r. In this paper, we create artificial tree collections to provide the diverse
input trees we require to evaluate the algorithms. (Although their tree genera-
tion approach differs from ours, we note that Pattengale et al. also use artificial
trees in their work.) There are a few large biological tree collections available,
but they are often limited in one or more of the input parameters of interest.
For example, we evaluate the performance of RF matrix algorithms on several
biological tree collections provided to us by life scientists, where we found that
HashRF is the best overall algorithm followed by PGM-Hashed [3]. The biolog-
ical tree collections used contained trees with less than 600 taxa and the trees
were quite similar since majority tree resolution rates were above 85%. Unfor-
tunately, the biological tree collections are too limited (e.g., we are interested in
bigger collections with more diverse bipartition sharing among the trees) for the
objectives of interest in this paper. Our experiments are designed to understand
how the algorithms perform under very diverse conditions of n, t, and r. These
results will then allow us to predict how the algorithms will respond as more
biological tree collections become available for post-processing analysis.

3.3 Creating Artificial Tree Collections

To create our artificial tree collections, we used apTreeshape [8]—a R package for
the simulation and analysis of phylogenetic tree topologies—to create a random,

800 S.-J. Sul and T.L. Williams

Yule model tree consisting of n taxa. Next, we transform this tree into a r%
resolved multifurcating tree by randomly removing bipartitions. We take our r%
resolved tree and use it to generate t input trees. The resolved tree represents the
majority consensus tree, Tr%, of interest. Each bipartition in tree Tr% is given
a weight in the interval (50%, 100%], which represents the percentage of the t
trees that have that bipartition (see Figure 3).

Once all of the bipartitions from the majority tree Tr% have been distributed,
each of the t trees is constructed. For each tree Ti, where 1 ≤ i ≤ t, we con-
struct tree Ti with the bipartitions that have been distributed to it. After the
construction, any remaining multifurcating nodes are randomly resolved into bi-
nary nodes. These randomly resolved bipartitions (non-majority bipartitions)
are then distributed to �p� trees, where 1 < p ≤ 0.50t and i < p ≤ t. We dis-
tribute the non-majority bipartitions to the remaining trees in order to increase
the amount of sharing among them in the tree collection. The above process
is repeated five times for each n, t, and r. Thus, our plots show the average
performance on our artificial datasets.

4 Experimental Results

We ran a series of experiments to study the performance of HashRF and PGM-
Hashed for computing the all-to-all RF distance problem across varying number
of taxa (n), trees (t), and bipartition sharing (r). We obtained the source code
for PGM-Hashed from the authors. For HashRF, we pick a a prime number to
represent the size of our hash table, m1, which is the smallest prime number
bigger than O(tn), the total number of bipartitions in the collection of trees. For
m2, we choose the smallest prime number larger than c·tn, where c is chosen to be
1,000. Experimental results were compared across the competing algorithms for
experimental validation. All experiments were run on an Intel Pentium platform
with 3.0GHz dual-core processors and a total of 2GB of memory. HashRF and
PGM-Hashed were written in C++ and compiled with gcc 4.1.0 with the -O2
compiler option. Each plot shows the average performance over five runs.

Figure 4 shows the actual CPU time performance and bipartition comparison
counts of the HashRF and PGM-Hashed algorithms on four of our artificial tree
collection datasets as a function of the consensus tree resolution rate. CPU time
includes the time to traverse the input trees, insert each tree’s bipartitions into
the hash table (HashRF) or bipartition table (PGM-Hashed), and compute the
resulting RF distance matrix. Counting the number of bipartition comparisons
to compute the RF distance matrix comes into play once all bipartitions have
been collected and organized into the appropriate data structure used by the RF
matrix algorithm.

HashRF and PGM-Hashed show contrasting results in how they perform under
different levels of bipartition sharing. Interestingly, the plots show that counting
the number of bipartition comparisons is an effective measure for obtaining insights
about algorithmic behavior since the trends shown by CPU time and bipartition
comparison counts match very well. HashRF is the best overall performer both in

An Experimental Analysis of Robinson-Foulds Distance Matrix Algorithms 801

0 25 50 75 100
0.05

0.1

0.15

0.2

0.25

0.3

majority consensus tree resolution (%)

C
P

U
 ti

m
e

(s
ec

)

PGM−Hashed
HashRF

0 25 50 75 100
0

1

2

3

4

5
x 10

6

majority consensus tree resolution (%)

nu
m

be
r

of
 b

ip
ar

tit
io

n
co

m
pa

ris
on

PGM−Hashed
HashRF

(a) 128 taxa, 128 trees

0 25 50 75 100
1

2

3

4

5

6

7

8

majority consensus tree resolution (%)

C
P

U
 ti

m
e

(s
ec

)

PGM−Hashed
HashRF

0 25 50 75 100
0

0.5

1

1.5

2

2.5

3
x 10

8

majority consensus tree resolution (%)

nu
m

be
r

of
 b

ip
ar

tit
io

n
co

m
pa

ris
on

PGM−Hashed
HashRF

(b) 512 taxa, 512 trees

0 25 50 75 100
5

10

15

20

25

30

35

40

45

majority consensus tree resolution (%)

C
P

U
 ti

m
e

(s
ec

)

PGM−Hashed
HashRF

0 25 50 75 100
0

0.5

1

1.5

2

2.5
x 10

9

majority consensus tree resolution (%)

nu
m

be
r

of
 b

ip
ar

tit
io

n
co

m
pa

ris
on

PGM−Hashed
HashRF

(c) 1024 taxa, 1024 trees

0 25 50 75 100
0

50

100

150

200

250

300

majority consensus tree resolution (%)

C
P

U
 ti

m
e

(s
ec

)

PGM−Hashed
HashRF

0 25 50 75 100
0

0.5

1

1.5

2
x 10

10

majority consensus tree resolution (%)

C
P

U
 ti

m
e

(s
ec

)

PGM−Hashed
HashRF

(d) 2048 taxa, 2048 trees

Fig. 4. RF matrix algorithms performance on four of our tree collections. The scale of
the y-axis is different for all the plots.

802 S.-J. Sul and T.L. Williams

number of taxa

nu
m

be
r

of
 tr

ee
s

speedup128 256 512 1024 2048

2048

1024

512

256

128 4

5

6

7

8

9

10

11

12

13

(a) r = 0%

number of taxa

nu
m

be
r

of
 tr

ee
s

speedup128 256 512 1024 2048

2048

1024

512

256

128

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

(b) r = 50%

number of taxa

nu
m

be
r

of
 tr

ee
s

speedup128 256 512 1024 2048

2048

1024

512

256

128 1.4

1.6

1.8

2

2.2

2.4

2.6

(c) r = 100%

Fig. 5. Heatmaps depicting the speedup of HashRF over PGM-Hashed for various
levels of bipartition sharing. The scale of the y-axis is different for all the plots. For
best results, please view electronically.

terms of actual CPU time and number of bipartition comparisons performed. In
Figure 4, the worst case for HashRF is when many bipartitions are shared, which
is depicted with increasing consensus tree resolution rates. HashRF’s performance
gets worse with increased bipartition sharing as a result of processing longer linked
lists of trees in the hash table to compute the RF distance matrix. PGM-Hashed,
on the other hand, gets faster as the amount of bipartition sharing increases. In
PGM-Hashed, for each pair of trees Ti and Tj , two pointers p and q are used to
compare the bipartitions, which are in sorted order based on their integer values.
Two trees with identical bipartitions result in n − 3 comparisons to compute the
RF distance between them. Two trees that do not share any bipartitions require
2(n− 3)− 1 (or 2n− 7) bipartition comparisons. Thus, PGM-Hashed runs faster
as the similarity among the trees increases.

In Figure 5, we use heatmaps to explore the speedup in terms of CPU time
of HashRF over PGM-Hashed at specific majority resolution rates, r. In the
heatmap representation, each speedup value (or cell) in the 5 × 5 matrix is rep-
resented as a color. Darker (lighter) colors represent smaller (higher) speedup
values in terms of how much faster HashRF is compared to PGM-Hashed. The
speedup of HashRF over PGM-Hashed ranges from about 1.2 to 13. The plots
clearly show that with increasing r, HashRF’s speedup over PGM-Hashed de-
creases significantly. Again, this is a result of HashRF having longer chains of
linked lists to process. Another interesting observation from the plots is that with
high resolution rates (e.g., r = 100%), HashRF performs worse as the number
of trees increases.

Finally, Figure 6 shows the memory usage of the RF matrix approaches. We
used version 3.3.0 of the Valgrind software package (http://www.valgrind.org)
to obtain our results. HashRF uses about three times less memory than PGM-
Hashed. Interestingly, HashRF memory usage decreases as the number of shared
bipartitions increases. When there are many unique bipartitions, a bipartition in-
dex (BID) and tree index (TID) have to be stored for each bipartition. However,
for shared bipartitions, a single BID is stored for a linked list of TIDs. Thus, for
HashRF this translates into less memory consumption. For PGM-Hashed, the
memory usage is essentially constant.

http://www.valgrind.org

An Experimental Analysis of Robinson-Foulds Distance Matrix Algorithms 803

0 25 50 75 100
3

4

5

6

7

8

9

10

11

majority tree resolution (%)

to
ta

l m
em

or
y

al
lo

ca
te

d
(M

B
)

PGM−Hashed
HashRF

(a) 128 taxa, 128 trees

0 25 50 75 100
40

60

80

100

120

140

160

180

majority tree resolution (%)

to
ta

l m
em

or
y

al
lo

ca
te

d
(M

B
)

PGM−Hashed
HashRF

(b) 512 taxa, 512 trees

0 25 50 75 100
500

1000

1500

2000

2500

3000

majority tree resolution (%)

to
ta

l m
em

or
y

al
lo

ca
te

d
(M

B
)

PGM−Hashed
HashRF

(c) 2048 taxa, 2048 trees

Fig. 6. Memory usage of the HashRF and PGM-Hashed algorithms. For the case of
2,048 taxa and 2,048 trees additional swap space beyond the 2 GB of physical memory
on our platform was required. The scale of the y-axis is different for all the plots.

5 Conclusions and Future Work

Phylogenetic searches usually produce a large number of candidate trees, which
present a huge data-mining challenge for understanding the evolutionary rela-
tionships between them. In our study, we empirically compare the performance
of HashRF and PGM-Hashed—which are the two fastest RF matrix algorithms
available—for computing the t× t RF distance matrix. Given that large collec-
tions of real biological trees are not readily available, we characterize the behavior
of our algorithms on artificial tree instances. The novelty of our work concerns
our methodology for assessing the practical performance of these O(nt2) RF ma-
trix algorithms. Thus, algorithmic performance of HashRF and PGM-Hashed is
evaluated based on (i) the number of shared bipartitions among the t trees, (ii)
the number of bipartition comparisons, and (iii) the amount of memory used.

Our experiments show that although the performance of the algorithms are
impacted significantly by the number of shared bipartitions, HashRF shows bet-
ter performance in all cases. Hence, the constants involved in the running time
analysis are smaller for HashRF than for PGM-Hashed. For high levels of bipar-
tition sharing (r ≥ 50), HashRF can execute from 1.2 to 3.9 times faster than
PGM-Hashed. When there is very little sharing (r = 0%), HashRF is over 13
times faster. By using the number of bipartition comparisons as an architecture-
and implementation-independent substitute for CPU time, HashRF’s good per-
formance is not based on programmer skill or taking advantage of
specific architectural features of the underlying platform. Furthermore, our exper-
iments show that HashRF also requires less memory than its counterpart. Given
HashRF’s good performance on the wide-range of bipartition sharing provided by
our artificial tree collections, it should perform quite well when confronted with
diverse collections of biologically-based trees.

Our work can be extended in many different directions. In this paper, we as-
sumed that the input trees are binary. We plan to extend our study by including
datasets that include multifurcating evolutionary trees. Additional experiments
will study much larger sets of trees since the goal of a phylogenetic is to recon-
struct the Tree of Life, which is estimated to contain between 10 to 100 million

804 S.-J. Sul and T.L. Williams

taxa. Finally, we are currently obtaining large collections of biological trees from
life scientists to compliment the results shown here.

Acknowledgements

Funding for this project was supported by the National Science Foundation under
grants DEB-0629849 and IIS-0713618. The authors wish to thank Eric Gottlieb,
Bernard Moret, and Nick Pattengale for providing the PGM-Hashed code.

References

1. Hillis, D.M., Heath, T.A., John, K.S.: Analysis and visualization of tree space. Syst.
Biol. 54(3), 471–482 (2005)

2. Sul, S.J., Williams, T.L.: A randomized algorithm for comparing sets of phylogenetic
trees. In: Proc. Fifth Asia Pacific Bioinformatics Conference (APBC 2007), pp. 121–
130 (2007)

3. Sul, S.J., Williams, T.L.: HashRF: a fast algorithm for computing the Robinson-
Foulds distance matrix. Technical Report TR-CS-2008-6-1, Department of Com-
puter Science, Texas A& M University (2008),
http://www.cs.tamu.edu/academics/tr/tamu-cs-tr-2008-6-1

4. Pattengale, N., Gottlieb, E., Moret, B.: Efficiently computing the Robinson-Foulds
metric. Journal of Computational Biology 14(6), 724–735 (2007)

5. Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Mathematical Bio-
sciences 53, 131–147 (1981)

6. Day, W.H.E.: Optimal algorithms for comparing trees with labeled leaves. Journal
Of Classification 2, 7–28 (1985)

7. Amenta, N., Clarke, F., John, K.S.: A linear-time majority tree algorithm. In: Work-
shop on Algorithms in Bioinformatics. LNCS, vol. 2168, pp. 216–227 (2003)

8. Bortolussi, N., Durand, E., Blum, M., Franois, O.: apTreeshape: statistical analysis
of phylogenetic tree shape. Bioinformatics 22(3), 363–364 (2006)

http://www.cs.tamu.edu/academics/tr/tamu-cs-tr-2008-6-1

On the Size of the 3D Visibility Skeleton:
Experimental Results

Linqiao Zhang1, Hazel Everett2, Sylvain Lazard2,
Christophe Weibel3, and Sue Whitesides1

1 McGill University, School of Computer Science, Montreal,
Quebec H3A 2A7, Canada

{lzhang15,sue}@cs.mcgill.ca
2 INRIA Nancy Grand Est , Université Nancy 2, LORIA, Nancy, France

FirstName.LastName@loria.fr
3 McGill University, Math Department, Montreal, Quebec H3A 2A7, Canada

weibel@math.mcgill.ca

Abstract. The 3D visibility skeleton is a data structure used to encode
global visibility information about a set of objects. Previous theoretical
results have shown that for k convex polytopes with n edges in total, the
worst case size complexity of this data structure is Θ(n2k2) [Brönnimann
et al. 07]; whereas for k uniformly distributed unit spheres, the expected
size is Θ(k) [Devillers et al. 03].

In this paper, we study the size of the visibility skeleton experimen-
tally. Our results indicate that the size of the 3D visibility skeleton, in our
setting, is C k

√
n k, where C varies with the scene density but remains

small. This is the first experimentally determined asymptotic estimate
of the size of the 3D visibility skeleton for reasonably large n and ex-
pressed in terms of both n and k. We suggest theoretical explanations
for the experimental results we obtained. Our experiments also indicate
that the running time of our implementation is O(n3/2k log k), while its
worst-case running time complexity is O(n2k2 log k).

1 Introduction

Computing visibility information is crucial to many problems in computer graph-
ics, vision and robotics, such as computing the view from a given point, deter-
mining whether two objects partially see each other, and computing the umbra
and penumbra cast by a light source.

In a given scene, two points are visible if the segment joining them does
not properly intersect any obstacle in the scene. The study of visibility is thus
intimately related to the study of the set of free line segments in a scene. The vis-
ibility complex, which is, roughly speaking, a partition of the space of maximal
free line segments into connected components of segments that touch the same
objects, was proposed by Pocchiola and Vegter as a data structure encoding visi-
bility information of a scene in 2D [21]. Durand et al. [8,10] initiated the study of
the visibility complex in 3D, and furthermore, introduced the visibility skeleton,

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 805–816, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

806 L. Zhang et al.

which is essentially the zero and one-dimensional cells of the visibility complex,
arguing that this smaller and simpler structure suffices for solving interesting
visibility queries related to shadow computation [8,9]. Although smaller than
the visibility complex, the visibility skeleton is, nevertheless, a potentially enor-
mous structure; it has worst-case size complexity O(n4). Note that the visibility
skeleton is related to the aspect graph [19] as the embedding of the visibility
skeleton in R3 is almost the partition of R3 whose dual is the aspect graph.

Durand et al. implemented the visibility skeleton for polygonal scenes and
demonstrated that use of the skeleton indeed results in higher quality light simu-
lation in rendered images with improved computation time compared to previous
algorithms [9]. Despite these positive results their pioneering approach suffers a
major drawback. Their algorithm is not efficient because it is based on a sys-
tematic enumeration of all possibilities and thus has worst-case time complexity
Θ(n5) although the use of heuristics gives an observed complexity Θ(n2.4) [8].
Two other implementations, one by Glaves [14] for random triangles and another
by Schröder [22] for polytopes, yielded similar results. Duguet et al. [7] report an
implementation that computes elements of the visibility skeleton needed for light
simulations in the restricted setting of point-light sources (possibly at infinity);
their results can thus not be compared to those mentioned previously.

Worst-case examples are somewhat artificial and indeed Durand et al. [8]
provide empirical evidence indicating that the O(n4) worst-case upper bound on
the size of the visibility skeleton is largely pessimistic in practical situations; they
observe a quadratic growth rate, albeit for the rather small scenes (at most 1,500
triangles) that they were able to test. Again, these results were experimentally
confirmed by Glaves [14] and Schröder [22]. Some recent theoretical results also
support the observation that the O(n4) is pessimistic. When the inputs are k
polytopes with n edges in total, [17,2] show that the number of vertices of the
visibility skeleton is Θ(n2k2) in the worst case. If the polytopes are disjoint
and their silhouettes have worst-case complexity O(

√
n/k), then the size of the

visibility skeleton is O(nk2
√
nk) [15]. Moreover, when the inputs are randomly

distributed unit balls, the expected size is linear [6]. Nevertheless, the problem
of estimating the size of the visibility skeleton in practice for reasonably large
input scenes has remained open for years because of the absence of a sufficiently
efficient implementation.

We address in this paper the problem of computing and estimating the size
of the visibility skeleton of k disjoint polytopes of total complexity n in generic
position. In fact, we measure the size of the skeleton as the number of its ver-
tices (since vertices have constant degree under general position assumptions).
A definition of the visibility skeleton is given in Section 2. We present a robust
implementation based on a sweep-plane algorithm that was first presented in
[17] for the case of pairwise disjoint polytopes and generalized to the case of
possibly intersecting polytopes in [2]. We then present experiments on k disjoint
polytopes of size n/k, with vertices on congruent spheres randomly distributed
with fixed densities in a given (spherical) universe. These experiments show that
the number of vertices of the visibility skeleton is roughly C k

√
nk where the

On the Size of the 3D Visibility Skeleton: Experimental Results 807

observed constant C varies with scene density but remains small (less than 5
in our setting). Our experiments also indicate that the average running time
of our implementation is O(n3/2k log k). By contrast, the theoretical worst-case
running time of the algorithm in our setting is O(n2k2 log k).

These results are significant for three reasons. First, this is the first experi-
mentally determined asymptotic estimate of the number of vertices of the 3D
visibility skeleton that takes into account not only the total number n of edges,
but also the number k of polytopes in the scene. The results show that the size
of the visibility skeleton may be sub-quadratic; in particular, they show a sub-
linear growth in n and a sub-quadratic growth in k. Second, assuming that the
size of the silhouette of a polytope on n/k vertices is O(

√
n/k), our results show

that we may express the size of the visibility skeleton as a function that is linear
in the size of the silhouette and quadratic in the number of polytopes; that is,
the number of vertices in the scene impacts the size of the visibility skeleton only
insofar as it increases the size of the silhouettes. Finally, our results indicate that
there is no large constant hidden in the big-Oh notation.

In the next section, we give a definition of the visibility skeleton. In Section
3, we review the algorithm and discuss technical details of our implementation.
We present our experimental results in Section 4 and conclude in Section 5.

2 The Visibility Skeleton of a Set of Polytopes

We start with some preliminary definitions. A polytope is the convex hull of a
point set. Here, polytopes are assumed to have nonempty interior. A plane is
tangent to a polytope if it intersects the polytope but not its interior. A line or
segment is tangent to a polytope if it intersects the polytope and is contained
in a tangent plane. A line or segment is free if it does not intersect the interior
of any polytope. A free line segment is maximal if it is not properly contained
in another free line segment.

A support vertex of a line is a polytope vertex that lies on the line. A support
edge of a line is a polytope edge that intersects the line but has no endpoint on
it (a support edge intersects the line at only one point of its relative interior). A
support of a line is one of its support vertices or support edges. The supports of a
segment are defined to be the supports of its relative interior; thus if a maximal
free segment ends at a vertex of a polytope, this vertex is not a support.

The visibility complex of smooth disjoint objects is, roughly speaking, the
partition of the space of maximal free line segments into connected components
of segments that are tangent to the same objects [21]. For polytopes, each cell of
the complex is further subdivided so that the corresponding maximal free line
segments have the same set of supports. The visibility skeleton [8] is then defined
as the one-skeleton (i.e. the vertices and arcs) of the visibility complex.

Here we study not the full one-skeleton but rather the skeleton containing only
those arcs that correspond to local changes in the view, i.e., arcs such that, when
a viewpoint crosses the surface generated by the set of segments corresponding to
the arc, a new polytope comes into view or a previously seen polytope disappears;

808 L. Zhang et al.

in particular, we do not consider the appearance or disappearance of a polytope
feature as a change in the view. For pairwise disjoint convex smooth algebraic
surfaces, it well known that these arcs consist of one-dimensional sets of maximal
free line segments that are tangent to three objects or that are tangent to two
objects in planes tangent to the two objects (tangent crossing events) [20]. This
also holds for pairwise disjoint polytopes [5].1

With this in mind, we classify the arcs and vertices of the skeleton, in the spirit
of Durand et al. [8], as follows. Unless stated otherwise, no two supports come
from the same polytope. An arc is of type EEE if its set of supports consists
of three edges; it is of type EV if its set of supports consists of an edge and a
vertex that define a plane tangent to their respective polytopes. A vertex is of
type EEEE if its set of supports consists of four edges; it is of type VEE if its
set of supports consists of a vertex and two edges; it is of type FEE if its set
of supports consists of two edges on one face, and two additional edges; it is of
type VV if its set of supports consists of two vertices that lie on a plane that is
tangent to their two respective polytopes.2

In this paper, we study the number of vertices of the visibility skeleton thus
defined and refer to it, with abuse of notation, as the size of the visibility skeleton.
Since, under our general position assumptions, the degree of each skeleton vertex
is bounded by a constant, the actual size of the skeleton, including the arcs, will
be a constant factor away from what we measure.

3 Algorithm and Implementation

Algorithm. We give here a brief overview of the O(n2k2 log k) algorithm for
computing the vertices of the visibility skeleton of k convex disjoint polytopes
with n edges in total and in general position. (Discussion about the general
position assumption can be found below.) This algorithm was presented in [17]
for the case of pairwise disjoint polytopes3 and then generalized to possibly
intersecting polytopes in [2].

Given k convex disjoint polytopes in general position, that have n edges in
total, the algorithm sweeps a plane about each edge e of each polytope in turn.
1 Note that the visibility skeleton for smooth objects does not contain the arcs that

correspond to tangent crossing events. On the other hand, the one-skeleton of the
visibility complex of polytopes contains all arcs corresponding to visual events (as
they appear as sets of segments tangent to two objects); however, it also contains
many arcs that do not correspond to a local changes in the view (but only to the
the appearance or disappearance of a polytope feature).

2 This catalog is a subset of the one in [8] because Durand et al. essentially consider
the one-skeleton of the visibility complex. They consider, in particular, line segments
supported by two vertices which do not lie on a plane tangent to the two polytopes.
This has an impact on the asymptotic size of the structure since the number of
such vertices is presumably linear in the total complexity of the polytopes (in our
experimental setting).

3 Efrat et al. [11] presented a similar algorithm for computing not necessarily free
isolated transversals in the same setting.

On the Size of the 3D Visibility Skeleton: Experimental Results 809

The sweep plane is initially coplanar with one face incident to edge e and rotates
about edge e until it becomes coplanar with the other face incident to e.

Initially, the sweep plane intersects the input polytopes in a set of polygons
and the 2D visibility skeleton of these polygons is computed. This involves com-
puting all the bitangents that are tangent to two polygons at two vertices. Each
of these vertices lies on an edge of the input polytope; we call these edges the
support edges of the bitangent. During the sweep, we maintain the 2D visibility
skeleton of the polygons intersected by the sweep plane. An event occurs when-
ever a bitangent appears or disappears, or support edges of a bitangent change.
The EEEE, VEE, and FEE skeleton vertices arise from some of these events.
(See [23] for a video on the algorithm.)

The worst-case running time of this algorithm is O(nk2 log k) per sweep, that
is O(n2k2 log k) in total.4 Notice that the Θ(nk2 log k) worst-case bound for one
sweep can be quite pessimistic: the time complexity of each sweep is, modulo the
logarithmic factor, proportional to the complexity of the 2D visibility skeleton
over the whole sweep, that is, to the number of combinatorially distinct bitan-
gents occurring during the sweep. In particular, the time complexity of one sweep
can be sub-linear in n. Note that this differs from the algorithms presented in
both [11] and [2] which maintain all line segments tangent to two polygons in
the sweep plane, even if they are not free.

Implementation. While our ultimate objective is a robust implementation that
correctly computes the visibility skeleton vertices on a set of polyhedra in arbi-
trary position in a reasonable amount of time, our current implementation takes
as input any set of convex polyhedra and either outputs the skeleton vertices
or reports that the polytopes are not in general position (see below). We imple-
mented the algorithm in C++ using the CGAL library [3] with the 2D visibility
skeleton package due to Angelier and Pocchiola [1].

Predicates. Several predicates are required by the algorithm including, for ex-
ample, determining whether four segments admit a line transversal. As in all
sweep algorithms, an essential predicate is one that compares two positions of
the sweep plane. The algebraic degree of some of these predicates is quite high;
in particular, comparing two positions of the sweep plane is implemented with a
procedure of degree 168 in the Cartesian coordinates of the input vertices. See
[12] for details.

Number type. Our implementation follows the paradigm of exact computation;
we have implemented all predicates using the Filtered_exact number type
of CGAL (3.2.1) templated with CGAL interval arithmetic (based on double
number type) and the CORE library [4]. This means that the predicates are first
evaluated using interval arithmetic, and only when this fails are they evaluated

4 Note that both [17] and [2] report algorithms having time complexity O(n2k2 log n)
instead of O(n2k2 log k); the reason for this is that, in [17], the skeleton is recon-
structed which is not the case here and, in [2], the event queue may be of size Θ(n)
because the polytopes may intersect.

810 L. Zhang et al.

using the CORE exact number type. Using filtered exact computation ensures
that no predicate is ever incorrectly evaluated.

General position assumption. By polytopes in general position we mean that
no predicate evaluates to zero.5 In particular, this guarantees that each event
corresponds to a unique position of the sweep plane.6 It also implies more fa-
miliar assumptions such as that no two polytope faces are coplanar; see [2] for
more details. To the best of our knowledge, there exists no implementation of the
3D visibility skeleton that handles degeneracies, including the implementation
of Durand in which degeneracies were avoided by perturbing the input scenes
by hand (Duguet [7] proposed a method for handling degeneracies but, as pre-
viously noted, only for computing a section of the visibility skeleton, that is a
set of maximal free line segments that are supported by concurrent lines.) Our
code represents an improvement in the sense that we systematically detect all
degeneracies although the code to handle them remains unwritten.

Software validation. We verified the correctness of our implementation by
comparing its output with that of an implementation of the brute force algo-
rithm, the latter being straightforward, having only about a thousand lines of
code. We ran tests on twenty input scenes of up to 100 polytopes with up to
1 000 edges and obtained the same results for both implementations, that is, the
same list of vertices.

4 Experiments

The model. We generate the input scene by first generating k uniformly dis-
tributed disjoint unit spheres in a spherical universe with density μ. For each
sphere, we then uniformly generate a set of vertices on its surface and compute
their convex hull to generate our polytope scene. We note that the density of
the polytopes is somewhat less than the density μ of the spheres. We empha-
size that our objective is not to study uniformly distributed disjoint polytopes
approximating spheres. We have chosen this scene model because it provides a
simple way to generate large scenes containing disjoint polytopes. Furthermore,
it allows us to compare our results with the theoretical results of [6].

The experiments. We consider scenes of polytopes, as defined above, depend-
ing on three parameters, the number k of polytopes, the total number n of
polytope edges, and the scene density μ. We perform two suites of experiments
in which we measure the number of visibility skeleton vertices.

5 Note that filtered-exact arithmetic is still needed under this general position as-
sumption since predicates could still be evaluated incorrectly with a fixed-precision
floating-point arithmetic. It appears that, even in the random setting of our experi-
ments, predicates are evaluated incorrectly about 0.1% of the times when using the
double number type.

6 Actually, this guarantees that no two unrelated events correspond to the same posi-
tion of the sweep plane.

On the Size of the 3D Visibility Skeleton: Experimental Results 811

(a) (b) (c)

Fig. 1. Three sample scenes with scene density μ = 0.3 and k = 50 polytopes whose
number of edges, n/k, is approximately equal to (a) 6, (b) 42, and (c) 84

In Suite I, we fix the scene density μ and the number n/k of edges per polytope.
For different values of k, we generate scenes of k polytopes each having n/k edges.
We perform experiments for μ = 0.3, 0.05 and 0.01 and for n/k ≈ 6, 42 and 84.7
(A sample scene with k = 50 is shown in Fig. 1.) For each value of n/k, we
vary the number k of polytopes as follows: (a) when n/k ≈ 6, we vary k from
10 to 190 (giving n ∈ [75, 1 425]), (b) when n/k ≈ 42, we vary k from 10 to
130 (giving n ∈ [400, 5 200]), and (c) when n/k ≈ 84, k varies from 10 to 110
(giving n ∈ [850, 9 400]). As we will see, the number of visibility skeleton vertices
appears to be roughly Cμ k

√
nk in these experiments where Cμ is a constant

that depends on the density.
In Suite II of our experiments, we also fix the scene density μ to 0.3 and vary

the number n/k of edges per polytope for fixed numbers of polytopes. Namely,
we consider k = 30, 60, and 90 and vary n/k from 6 to 102. As we will see, these
experiments confirm that when n/k varies (in the given range), the complexity
observed in the first set of experiments holds.

Note that a scene with density μ = 0.3 is very dense (see Fig. 1 and recall
Kepler’s Theorem that the density of any sphere packing in 3D space is at most
π/3

√
2 ≈ 0.74). Density μ = 0.3 is close to the highest density we can reach in

a reasonable amount of time with our scene generation scheme.

Machine characteristics. All the experiments were done on an i686 machine
with a Pentium 2.80 GHz CPU, 2 GB of main memory, running Linux. Running
time was measured with the getrusage() command and the ru_utime attribute.

4.1 Experimental Results and Analysis

Number of skeleton vertices in terms of n and k. Fig. 2 shows the number
of skeleton vertices in terms of k

√
nk = k2

√
n/k. The number of these skeleton

7 In fact, we generate polytopes whose numbers of vertices range in [4, 6], [15, 17] and
[30, 32], respectively. The number of edges per polytope is thus not actually fixed but
varies slightly; the polytopes we generated have, on average, 7.5, 40, and 85 edges,
respectively.

812 L. Zhang et al.

0 2 4 6 8 10 12 14

x 10
4

0

1

2

3

4

5

6
x 10

5

sqrt(n / k) × k2

N
um

be
r

of
 A

ll
V

er
tic

es

μ = 0.3, 0.05, 0.01

μ = 0.3

μ = 0.05

μ = 0.01

n / k = 6
n / k = 42
n / k = 84

(a)

0 1 2 3 4 5 6 7 8 9

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

sqrt(n / k) × k2

N
um

be
r

of
 A

ll
V

er
tic

es

μ = 0.3

k = 30
k = 60
k = 90

(b)

Fig. 2. Total number of skeleton vertices in terms of k2
√

n/k when (a) the polytopes
have a constant (n/k) number of edges (Suite I) and (b) the number k of polytopes is
constant (Suite II)

vertices appears to be linear in this parameter with a constant that depends on
the scene density μ. For μ = 0.3, 0.05, and 0.01, the constant is roughly 5, 4, and
3. The constant appears to decrease in terms of μ which is consistent with the
intuition that the constant goes to zero as the scene density goes to zero (since
the probability that there exists a line transversal to three polytopes goes to zero
as the density goes to zero, and it can be argued that the number of vertices of
type VV is asymptotically negligible).

Note that, for any fixed density μ and any given value of k2
√
n/k, the number

of these skeleton vertices varies very little in terms of the polytope complexity
n/k (Fig. 2(a)) and in terms of the number of polytopes (Fig. 2(b)). This suggests
that Cμ k

2
√
n/k is a good predictor of the number of these skeleton vertices

regardless of the polytope complexity, at least for the scene density μ and the
ranges of n/k used here.

Our experiments thus indicate that, in our setting, the number of skeleton
vertices is roughly Cμ k

2
√
n/k, where Cμ is a constant that depends on the

density μ of the scene. The experiments hint that this constant is small and is a
decreasing function of μ.

This observed complexity is, as expected, much smaller than worst-casebounds.
Recall that, for k polytopes withn edges in total, the worst-casenumber of skeleton
vertices is Θ(n2k2) [2]. Also, if the silhouettes of the polytopes have size

√
n/k

in the worst case, the worst-case number of skeleton vertices is O(nk3
√
n/k) [15,

§6.7]. These worst-case bounds are much larger than our observed size (by a factor
n
√
nk and nk).
We analyze below the observed complexity of Cμ k

2
√
n/k in terms of (i) k

when the complexity of the polytopes is constant, and (ii) the silhouette size of
the polytopes when the number k of polytopes is constant.

On the Size of the 3D Visibility Skeleton: Experimental Results 813

Analysis of the number of skeleton vertices in terms of k. If each polytope has
constant complexity (i.e., n/k in Θ(1)), our experiments exhibit a quadratic
growth (in terms of k) of the number of skeleton vertices. This is consistent with
previous experiments [8,14] in which the scenes consist of polygons of constant
complexity and is also consistent with the best known theoretical expected upper
bound of O(k2) [6] corresponding to our setting. However, this contradicts the
intuitive linear bound of Θ(k) when n/k is constant; indeed, recall that for k
randomly distributed congruent spheres, the expected number of visibility events
is linear and, for constant-size polytopes of bounded aspect ratio inside such
spheres, the expected number of visibility events is linear for events that occur
sufficiently inside the universe but it is only upper bounded by O(k2) for events
near the boundary of the universe [6]. It is possible that the expected upper
bound of O(k2) is tight but it is also possible that our experiments did not reach
the asymptotic behavior. If this is the case, it is then reasonable to believe that
our experimental estimate of the complexity is an overestimate.

Analysis of the number of skeleton vertices in terms of the silhouette size of the
input polytopes. If we fix the number k of polytopes and vary the total number
n of edges, our experiments show that the number of skeleton vertices depends
linearly on

√
n/k. We argue below that this means that, in our setting, when k

is fixed, the number of skeleton vertices depends linearly on the silhouette size
of the input polytopes and explain why.

Recall that, for any polyhedron of size Θ(m), the size of its silhouette viewed
from a random point is O(

√
m) under some reasonable hypotheses [16] (see

also [18] for the special case of polyhedra that approximate spheres). Since the
vertices of the polytopes we consider are randomly distributed on a sphere, it is
reasonable to assume that the size of the silhouette does not depend much on
the choice of the viewpoint. In other words, for any polytope with n/k edges we
consider, it is reasonable to assume that its silhouette has size O(

√
n/k) from

any viewpoint. Hence, when k is fixed, the number of skeleton vertices depends
linearly on the silhouette size of the input polytopes.

We offer the following intuitive explanation of this observation. Consider the
arcs of type EEE of the skeleton. The endpoints of these arcs are vertices of type
VEE, FEE or EEEE. When the number k of polytopes is fixed and the number
n of edges tends to infinity, the polytopes tend to spheres and the segments
corresponding to vertices of type EEEE converge to segments that are tangent
to four spheres; hence, in our setting, the number of EEEE vertices converges to
a constant. Similarly, for those V EE vertices that correspond to intersections of
two arcs of types VE and EEE (thus corresponding to segments tangent to three
polytopes while lying in planes that are tangent to two of them). Moreover, in
the successive refinements of polytopes as n increases, each EEE arc incident
to an EEEE vertex or one of the above VEE vertices will become a sequence of
EEE arcs joined at VEE vertices (that is, subdivision vertices such that the sets
of supports are invariant along the subdivided arcs). For such a sequence of arcs,
the number of these VEE vertices is the number of polytope vertices encountered
by a maximal free line segment as it slides from the segment corresponding to one

814 L. Zhang et al.

0 2 4 6 8 10 12

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

sqrt(n / k) × k2

N
um

be
rs

 o
f V

er
tic

es
μ = 0.3

VEE

VV

others

n / k = 6
n / k = 42
n / k = 84

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
8

0

2

4

6

8

10

12
x 10

4

sqrt(n3) × k × logk

R
un

ni
ng

 T
im

e

μ = 0.3

n / k = 6
n / k = 42
n / k = 84

(b)

Fig. 3. Suite I (k polytopes having a constant, n/k, number of edges; μ = 0.3): (a)
proportion of number of vertices in terms of k2

√
n/k and (b) running time (in seconds)

in terms of n1.5 k log k

end of the sequence to the other, while remaining tangent to the three polytopes
(nearly spheres) involved. The number of such polytope vertices is, intuitively,
at most the worst-case size of the silhouette of each polytope, which we have
assumed to be in O(

√
n/k). As a polytope gets more complex and tends to a

sphere, the subset of lines in the line space that are tangent to the polytope on
its vertices tends towards the subset of lines that are tangent to the sphere. This
is also the case for lines tangent to the polytope on its faces. For this reason,
the number of FEE vertices is asymptotically the same as that of VEE vertices.
Thus, intuitively, we can expect that, for fixed k, (i) the number of vertices
of type EEEE converges to a constant as n goes to infinity, (ii) the number
of vertices of type VEE or FEE is in O(

√
n/k) times the number of EEEE

vertices, and thus that (iii) the number of VEE and FEE vertices is in O(
√
n)

(for k fixed). In experiments not reported here, we have observed (ii) and (iii),
but not (i). In Figure 3(a), the number of VEE vertices is much larger than the
number of EEEE vertices, which is consistant with the previous discussion, while
the convergence of EEEE is not seen in our experimental range.

Finally, the number of VV vertices is, intuitively, bounded by the product of
the number of pairs of polytopes that are mutually visible (which is asymptoti-
cally linear in k for any given density) and the size of the polytope silhouettes.
Hence the number of VV vertices is presumably in Θ(k

√
n/k). In our experi-

ments (Fig. 3(a)) we observe a complexity of roughly Θ(k2
√
n/k) because the

number of visible pairs of polytopes is quadratic in k in our experimental range.

Running time in terms of n and k. We study the running time of our
implementation in terms of n

√
nk log k for experiments in Suite I, and show

the results for scene density μ = 0.3 in Fig. 3(b) (our results for other densities
are omitted here). We observe that for a fixed polytope complexity n/k, the
running time seems linear in n

√
nk log k. More precisely, we observe a running

time of C′
μ n

√
n k log k seconds with C′

μ no more than 3 ·10−4 for the considered

On the Size of the 3D Visibility Skeleton: Experimental Results 815

densities. Note, however, that for density 0.3, the data we obtained from groups
n/k ≈ 42 and 84 fit the estimated time complexity well, whereas the data from
the group n/k ≈ 6 is a constant factor away.

The observed running time can be intuitively explained as follows. Note first
that n

√
nk log k is equal to n

√
n/k k

√
k log k. We dissect this expression as

follows. First, n is the number of sweeps performed by the algorithm. We observe
that the factor k

√
k is linearly related to the average over all sweeps of the

maximal number of bitangents encountered in the sweep plane during a sweep
(we omit here the presentation of these experiments). This is reasonable since
the number of bitangents in the sweep plane varies from Θ(k2), the trivial worst-
case bound, to Θ(k), the expected bound in the right setting [13]. Furthermore,
the factor

√
n/k naturally relates to the number of updates caused by each

bitangent during the sweep; indeed, following a bitangent during a sweep, the
bitangent will encounter vertices on each of the two polytopes supporting it; the
number of these vertices on each polytope is related and, intuitively, is less than
the worst-case size of the silhouettes of the polytopes which, as we argued above,
is in O(

√
n/k) in our setting. Finally, log k is the complexity of each update of

the event list.

5 Conclusion

We have presented here an implementation of the sweep-plane algorithm to com-
pute the visibility skeleton. Our experiments suggest that, in our setting, the
number of vertices of the 3D visibility skeleton is Cμ k

√
n k.The constant Cμ,

which depends on the scene density, is no more than 5 for n and k in our exper-
imental range, and for the various densities that we studied.

This is the first prediction of the actual size of the 3D visibility skeleton for
reasonably large n, and expressed in terms of both n and k. Assuming that
the size of the silhouette of a polytope with n/k edges is O(

√
n/k), our results

show that the size of the visibility skeleton is linear in the size of the silhouette
and quadratic in the number of polytopes. Surprisingly, the constant Cμ is rather
small; this indicates that there is no large constant hidden in the big-Oh notation.

The experiments also suggest that the expected running time of our imple-
mentation of the sweep plane algorithm is C′

μ n
√
nk log k seconds, where C′

μ

depends on the scene density but is, on our machine, no more than 3 · 10−4 for
the considered densities.

Our results indicate that the visibility skeleton is of reasonable size and can
be computed exactly in a reasonable length of time. Further work includes com-
pleting the implementation for degenerate situations. A major challenge is to
extend the sweep algorithm to handle general polyhedra.

References

1. Angelier, P., Pocchiola, M.: CGAL-based implementation of visibility complexes.
Technical Report ECG-TR-241207-01, Effective Computational Geometry for
Curves and Surfaces (ECG) (2003)

816 L. Zhang et al.

2. Brönnimann, H., Devillers, O., Dujmovic, V., Everett, H., Glisse, M., Goaoc, X.,
Lazard, S., Na, H.-S., Whitesides, S.: Lines and free line segments tangent to ar-
bitrary three-dimensional convex polyhedra. SIAM Journal on Computing 37(2),
522–551 (2007)

3. CGAL: Computational Geometry Algorithms Library, http://www.cgal.org
4. The CORE library, http://cs.nyu.edu/exact/
5. Demouth, J.: Événements visuels et limites d’ombres. PhD thesis, Université Nancy

2 (to appear, 2008)
6. Devillers, O., Dujmović, V., Everett, H., Goaoc, X., Lazard, S., Na, H.-S., Petit-

jean, S.: The expected number of 3D visibility events is linear. SIAM Journal on
Computing 32(6), 1586–1620 (2003)

7. Duguet, F., Drettakis, G.: Robust epsilon visibility. In: Hughes, J. (ed.) Proceedings
of ACM SIGGRAPH 2002, pp. 567–575. ACM Press / ACM SIGGRAPH (July
2002)

8. Durand, F., Drettakis, G., Puech, C.: The visibility skeleton: a powerful and effi-
cient multi-purpose global visibility tool. Computer Graphics Proceedings, Annual
Conference Series 31, 89–100 (1997); Proceedings of Siggraph 1997

9. Durand, F., Drettakis, G., Puech, C.: Fast and accurate hierarchical radiosity using
global visibility. ACM Transactions on Graphics 18(2), 128–170 (1999)

10. Durand, F., Drettakis, G., Puech, C.: The 3D visibility complex. ACM Transactions
on Graphics 21(2), 176–206 (2002)

11. Efrat, A., Guibas, L., Hall-Holt, O., Zhang, L.: On incremental rendering of silhou-
ette maps of a polyhedral scene. Comput. Geom.: Theory and App. 38(3), 129–138
(2007)

12. Everett, H., Lazard, S., Lenhart, B., Zhang, L.: On the degree of standard geometric
predicates for line transversals in 3D. Comput. Geom.: Theory and App. (to appear,
2008)

13. Everett, H., Lazard, S., Petitjean, S., Zhang, L.: On the expected size of the 2D
visibility complex. Int. J. of Comput. Geom. and App. 17(4), 361–382 (2007)

14. Glaves, L.: An exploration of the 3D visibility complex. Master’s thesis, Polytechnic
University, Brooklyn, NY (2007)

15. Glisse, M.: Combinatoire des droites et segments pour la visibilité 3D. PhD thesis,
Université Nancy 2 (October 2007)

16. Glisse, M., Lazard, S.: An upper bound on the average size of silhouettes. Discrete
and Computational Geometry (to appear, 2008)

17. Goaoc, X.: Structures de visibilité globales: tailles, calculs et dégénérescences. PhD
thesis, Université Nancy 2 (May 2004)

18. Kettner, L., Welzl, E.: Contour edge analysis for polyhedron projections. In:
Strasser, W., Klein, R., Rau, R. (eds.) Geometric Modeling: Theory and Practice,
pp. 379–394. Springer, Heidelberg (1997)

19. Plantinga, H., Dyer, C.: Visibility, occlusion, and the aspect graph. International
Journal of Computer Vision 5(2), 137–160 (1990)

20. Platonova, O.A.: Singularities of relative position of a surface and a line. Uspekhi
Mat. Nauk 36(1), 221–222 (1981); Russian Math. Surveys 36(1), 248–249 (1981)

21. Pocchiola, M., Vegter, G.: The visibility complex. Int. J. of Comput. Geom. and
App. 6(3), 279–308 (1996)

22. Schröder, A.: Globale Sichtbarkeitsalgorithmend. PhD thesis, Philipps-Universität
Marburg (June 2003)

23. Zhang, L., Everett, H., Lazard, S., Whitesides, S.: Towards an implementation of
the 3D visibility skeleton. In: Proceedings of the 23rd ACM Annual Symposium
on Computational Geometry (SoCG 2007), S. Korea, pp. 131–132 (2007); Video

http://www.cgal.org
http://cs.nyu.edu/exact/

An Almost Space-Optimal Streaming Algorithm

for Coresets in Fixed Dimensions

Hamid Zarrabi-Zadeh

School of Computer Science, University of Waterloo
Waterloo, Ontario, Canada, N2L 3G1

hzarrabi@uwaterloo.ca

Abstract. We present a new streaming algorithm for maintaining an ε-
kernel of a point set in Rd using O((1/ε(d−1)/2) log(1/ε)) space. The space
used by our algorithm is optimal up to a small logarithmic factor. This
substantially improves (for any fixed dimension d � 3) the best previous
algorithm for this problem that uses O(1/εd−(3/2)) space, presented by
Agarwal and Yu at SoCG’07. Our algorithm immediately improves the
space complexity of the best previous streaming algorithms for a number
of fundamental geometric optimization problems in fixed dimensions,
including width, minimum enclosing cylinder, minimum-width enclosing
annulus, minimum-width enclosing cylindrical shell, etc.

1 Introduction

The coreset framework has recently attracted considerable attention as a pow-
erful tool for approximating various measures of a geometric data set. In this
framework, a small subset of the input point set, called a coreset , is extracted
in such a way that solving the optimization problem on the coreset yields an
approximate solution to the entire set.

Agarwal et al. [2] developed a generic method for computing coresets for
various optimization problems by introducing the notion of ε-kernel. Roughly
speaking, a subset Q ⊆ P is called an ε-kernel of P if for every slab S containing
Q, the (1 + ε)-expansion of S contains P . The technique of Agarwal et al. yields
approximation algorithms for a wide range of shape-fitting problems.

The coreset framework also plays an essential role in designing approximation
algorithms operating under the data stream model. In this model, the input is
given to the algorithm as a stream over time, and the algorithm has to process
the input elements as they arrive in only one pass. Furthermore, the algorithm
has only a limited amount of working storage and cannot store the whole input
in its memory. This one-pass streaming model is attractive both in theory and
in practice due to emerging applications which involve massive data sets. The
coreset framework is useful here as it allows streaming algorithms to maintain
only a “sketch” of the input, which is typically small compared to the whole
data set. For example, see [1,9,11,12] on the growing literature of streaming
algorithms developed over the recent few years for various geometric problems
using the notion of coresets.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 817–829, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

818 H. Zarrabi-Zadeh

Table 1. Space complexity of various streaming algorithms for maintaining ε-kernels
in Rd

Algorithm Space Bound Ref

Agarwal, Har-Peled, and Varadarajan ’04 O((1/ε
d−1
2) logd n) [2]

Chan ’06 O((1/εd−(3/2)) logd(1/ε)) [9]

Agarwal and Yu ’07 O(1/εd−(3/2)) [6]

This work O((1/ε
d−1
2) log(1/ε)) Here

In this paper, we are interested in space-efficient streaming algorithms for main-
taining ε-kernels in Rd. Using the general dynamization technique of Bentley and
Saxe [8], Agarwal et al. [2] gave a streaming algorithm for maintaining an ε-kernel
of a stream of points in Rd using O((1/ε(d−1)/2) logd n) space and O(1/εd−1) time
per update, where n is the number of points in the stream. Chan [9] succeeded to
remove the dependency of the space bound to n and gave the first constant-space
streaming algorithm that uses onlyO([(1/ε) log(1/ε)]d−1) space and requiresO(1)
amortized time for processing each new point. He also showed how the space bound
can be improved to O((1/εd−(3/2)) logd(1/ε)) at the expense of increasing the up-
date time to O(1/

√
ε). Later on, Agarwal and Yu [6] removed the extra logarith-

mic factors and slightly improved the space complexity to O(1/εd−(3/2)), with
O(log(1/ε)) update time per input point. Agarwal and Yu’s algorithm is indeed
space-optimal in two dimensions, but is still far from optimal in dimensions higher
than two.

Our Results. Chan [9] left this question open whether the space bound for the
problem of maintaining ε-kernels in Rd can be brought down to nearO(1/ε(d−1)/2).
In this paper, we answer Chan’s question in the affirmative by providing a stream-
ing algorithm that uses a near optimal space. More precisely, our algorithm main-
tains an ε-kernel in Rd using only O((1/ε(d−1)/2) log(1/ε)) space and (1/ε)O(d)

update time per insertion. The space bound of our algorithm is optimal up to a
logarithmic factor, as one can easily verify that any ε-kernel for sufficiently many
points uniformly distributed on the surface of a d-dimensional hypersphere has
size Ω(1/ε(d−1)/2) [3]. Our algorithm differs from its predecessors [6,9] in that
the high level structure of our algorithm is not dimensionality-reduction (which
ultimately exploits efficient techniques in two dimensions), but rather a high-
dimensional partition of the input stream into d-dimensional “fat substreams”
for which ε-kernels can be maintained efficiently by a kind of bucketing scheme.
Our algorithm can be viewed as a generalization of the algorithm proposed by
Chan [9] in two dimensions, which also employs a version of the compression
technique used in [6]. See Table 1 for a comparison between the space complex-
ity of our algorithm and the previous ones.

Our algorithm immediately improves the space complexity of the best
previous streaming algorithms for a wide range of geometric problems in fixed di-
mensions, including width, minimum enclosing cylinder, minimum-width enclos-
ing annulus, minimum-width enclosing cylindrical shell, etc. The improvement

An Almost Space-Optimal Streaming Algorithm 819

obtained by our algorithm is substantial when the problem’s dimension is large.
However, the algorithm improves several previous results in lower dimensions
as well. For example, for the two-dimensional minimum-width spherical shell
problem, combined with the lifting technique of Agarwal et al. [2], our algorithm
requires only O((1/ε) log(1/ε)) space, while the best previous space bound for
this problem was O(1/ε3/2). As a byproduct of our algorithm, we also show how
to maintain an ε-kernel of a stream of points in Rd in an optimal time of O(1)
using O((1/εd−(3/2)) log(1/ε)) space, which improves the best previously known
time-optimal algorithm by Chan [9] that requires O([(1/ε) log(1/ε)]d−1) space.

2 Preliminaries

We first introduce the notation used in this paper. For a point set P ⊆ Rd

and a direction u ∈ Sd−1, the directional width of P along u is defined by
w(P, u) = maxp,q∈P 〈p− q, u〉, where 〈·, ·〉 denotes the inner product function. A
subset Q ⊆ P is called an ε-kernel of P , if for all u ∈ Sd−1,

w(Q, u) � (1 − ε)w(P, u).

We use the following result from Chan throughout this paper:

Theorem 1 (Chan [9]). Given a set P of n points in Rd, an ε-kernel of P of
size O(1/ε(d−1)/2) can be computed in O(n + 1/εd−(3/2)) time for d � 2, or in
O((n + 1/εd−2) log(1/ε)) time for d � 3.

Let S = {p1, . . . , pk} be a set of k points in Rd (k � d+1). We denote by F(S) the
flat spanned by S, i.e., F(S) =

{∑k
i=1 aipi | a1, . . . , ak ∈ R and

∑k
i=1 ai =1

}
.

Given a point p ∈ Rd and a flat F ∈ Rd, the orthogonal projection of p onto F

is defined as proj(F, p) = arg minp′∈F ‖pp′‖. The Euclidean distance between p
and its projection onto F is denoted by dF(p). Throughout this paper, we simply
use dS(p) instead of dF(S)(p) to refer to the distance of p to a flat defined by the
point set S. If S = ∅, then dS(p) = 0 by definition.

Let X = 〈x0, x1, . . . , xk〉 be a sequence of k + 1 points in Rd (k � d). We say
that a point p ∈ Rd is X-respecting , if for every 0 � i < k,

dXi(p) � 2 · dXi(xi+1),

where Xi = {x0, x1, . . . , xi}. If |X | � 1, then every point is X-respecting by
definition. The sequence X is called self-respecting, if for every 1 � j � k, xj is
〈x0, . . . , xj−1〉-respecting. Moreover, a point set P is called X-respecting, if for
every point p ∈ P , p is X-respecting.

3 Algorithm for Fat Substreams

In this section, we present a simple efficient algorithm for maintaining ε-kernels
of fat substreams to be used as a subroutine in Section 4. Let B be a hyperbox

820 H. Zarrabi-Zadeh

in Rd. A point set P ⊆ Rd is called fat with respect to B, if there exist a positive
constant α � 1 and two points v and v′ so that v + αB ⊆ conv(P) ⊆ v′ + B.
If P is fat with respect to some hyperbox B, then an ε-kernel of P of size
O(1/ε(d−1)/2) can be computed efficiently using a simple grid-rounding method
proposed in [9,14] based on Dudley’s construction [10]. Dudley’s method actually
works for the case where B is a hypercube. However, we can easily transform
B to a hypercube by an affine transform τ , and then compute an ε-kernel Q of
the set τ(P). The set τ−1(Q) is then an ε-kernel of P , as proved in [2]. In the
following, we show how this idea can be used for X-respecting substreams.

Let X = 〈x0, x1, . . . , xd〉 be a sequence of d+1 points in Rd. For each 1 � i � d,
we denote by x̂i the projection of xi onto F(Xi−1), where Xi = {x0, x1, . . . , xi}.
Let wi = ‖x̂ixi‖ and ui = (1/wi)

−−→
x̂ixi. We denote by BX the d-dimensional box

centered at x0, whose i-th side has length 4wi in direction ui (1 � i � d). The
following lemma (which is analogous to what is proved in [7] for three dimensions)
provides a connection between X-respecting and fat sets.

Lemma 1. Let X be a self-respecting sequence of d + 1 points in Rd. Given a
point set P ∈ Rd, if P is X-respecting, then P ∪X is fat with respect to BX .

Proof. Obviously, BX contains all the points of P ∪ X . In the following, we
show that conv(X) (and therefore, conv(P ∪ X)) contains a translated copy of
(1/4)dBX . Suppose by induction that conv(Xi−1) contains an (i−1)-dimensional
box Bi−1, whose j-th side has length wj/4i−1 in direction uj (1 � j < i). Now,
consider an i-dimensional pyramid Pi obtained by connecting xi to all facets
of Bi−1. Clearly, Pi ⊆ conv(Xi). We only need to show that Pi contains an
i-dimensional box Bi, whose j-th side has length at least wj/4i in direction uj

(1 � j � i).
Fix a k (1 � k < i), and consider the plane H through xix̂i parallel to uk (see

Fig. 1). The projection of Bi−1 onto H is a line segment ab of length wk/4i−1.
Let o be the orthogonal projection of x0 onto H. Then we have ‖oa‖, ‖ob‖ � wk

(because Bi−1 ⊂ conv(Xi−1)), and ‖ox̂i‖ � ‖x0xi‖ � 2wk (because X is self-
respecting).

Let a′ (respectively, b′) be a point on
←→
ab whose vertical distance (in direction

ui) from xia (respectively, from xib) is equal to wi/4i. We have ‖aa′‖, ‖bb′‖ �

Bi−1

ox̂i

xi

bb′

uk H

ui

F(Xi−1)
a

wi

a′

� wk

Fig. 1. Proof of Lemma 1

An Almost Space-Optimal Streaming Algorithm 821

3wk/4i, due to similarity of triangles, and because ‖ax̂i‖, ‖bx̂i‖ � 3wk. Let sk =
ab− (aa′ ∪ bb′). If one of the two angles ∠abxi and ∠baxi is obtuse, then one of
the segments aa′ and bb′ falls completely outside ab, and therefore ‖sk‖ � wk/4i.
If both ∠abxi and ∠baxi are at most π/2, then ‖aa′‖+ ‖bb′‖ = ‖ab‖/4 = wk/4i,
and therefore, ‖sk‖ = 3wk/4i � wk/4i. Now, we cut that portion of Bi−1 whose
projection onto H lies inside sk, and repeat this procedure for every 1 � k < i.
The remaining box, B′

i−1, has length at least wk/4i in each direction uk. If we
expand B′

i−1 by wi/4i units in direction ui, we obtain the desired i-dimensional
box Bi which completely remains inside Pi. �

Algorithm for Fat Streams. Let P be a point set in Rd which is fat with respect to
some hyperbox B. By a translation, we may assume that B is centered at origin.
Moreover, we may assume that B = [−1, 1]d by an affine transform. According
to Chan [9] and Yu et al. [14], one can easily compute an ε-kernel of P using
a simple grid method as follows: Let R be the set of points of a

√
ε-grid over

the boundary of the cube [−2, 2]d, and let ξS(r) denote the nearest neighbor of
a point r ∈ R in the set S. Then the set Q = {ξP (r) | r ∈ R} is an ε-kernel of
P (see Fig. 2). Obviously, |Q| � |R| = O(1/ε(d−1)/2). It just remains to show
how we can efficiently maintain Q when new points are inserted into P , while P
remains fat with respect to B.

Let Kernel(S) = {ξS(r) | r ∈ R}. The function Insert-Box described be-
low inserts a point p into the fat stream P (enclosed by B) and returns an
ε-kernel of P . The algorithm maintains two subsets Q0 and Q1 at each time,
which are initially empty.

B.Insert-Box(p):

1: Q1 ← Q1 ∪ {p}
2: if |Q1| > 1/ε(d−1)/2 then
3: Q0 ← Kernel(Q0 ∪Q1)
4: Q1 ← ∅
5: return Q0 ∪Q1

The algorithm divides the stream P into substreams of size
⌊
1/ε(d−1)/2

⌋
. When-

ever a substream is completely received, it is merged to the kernel maintained for
the previous substreams in order to obtain a single kernel for the whole stream
received so far. The correctness of the algorithm immediately follows from the
following two facts: (i) Kernel(P ∪ Q) ⊆ Kernel(P) ∪ Kernel(Q), and (ii)
Kernel(Kernel(P)) = Kernel(P). The kernel in line 4 can be computed
using Theorem 1 in O(n + 1/εd−(3/2)) or O((n + 1/εd−2) log(1/ε)) time, where
n = |Q0 ∪ Q1| = Θ(1/ε(d−1)/2). Therefore, the amortized update time charged
to each input point is max {O(1), O((1/ε(d−3)/2) log(1/ε))}. We conclude:

822 H. Zarrabi-Zadeh

R

PB

Fig. 2. Constructing an ε-kernel of a fat point set

Theorem 2. Given a stream of points P in Rd which is fat with respect to a
fixed hyperbox, an ε-kernel of P can be maintained using O(1/ε(d−1)/2) space
and max {O(1), O((1/ε(d−3)/2) log(1/ε))} amortized time per input point.

Remark. In two dimensions, Agarwal and Yu [6] used a balanced binary search
tree to maintain an ε-kernel of a fat stream in O(log(1/ε)) time. Theorem 2
immediately improves their method by providing an algorithm that requires
only O(1) amortized time. Meanwhile, our method is more direct and does not
require any extra data structure.

Corollary 1. Let X be a self-respecting sequence of d + 1 points in Rd. Given
an X-respecting stream P in Rd, an ε-kernel of P ∪X can be maintained using
O(1/ε(d−1)/2) space and max{O(1), O((1/ε(d−3)/2) log(1/ε))} amortized update
time.

4 The Main Algorithm

In this section, we describe the main algorithm for maintaining an ε-kernel of
a data stream P ⊆ Rd. The Insert function in Fig. 3 inserts a point p into
an X-respecting stream P and returns an ε-kernel Q of it. Each new point p is
inserted into the stream by calling P .Insert(p, 〈〉), where 〈〉 denotes the empty
sequence. In this algorithm, b = �log(1/ε)�, and φi (used in line 15) is a function
to be defined precisely at the end of this section.

The algorithm divides the inputX-respecting streamP into substreamsP1, . . . ,
Pi. Each substreamPi is (X+〈vi〉)-respecting, where v1 is the first point of P , and
each subsequent vi is chosen by the algorithm as the first point for which dX(vi) >
2 · dX(vi−1).

If the new input point p is (X + 〈vi〉)-respecting, we add p to the current
substream Pi by recursively calling the Insert function in line 6. When the
recursion in the size of X reaches |X | = d + 1 (line 3), the stream P is fat with
respect to BX , and therefore, we can use the Insert-Box function described in
Section 3 (Corollary 1) to compute an ε-kernel of P of size O(1/ε(d−1)/2).

An Almost Space-Optimal Streaming Algorithm 823

P .Insert(p,X):

1: if p is the first point of P then
2: i← 1, v1 ← p

3: if |X | = d + 1 then
4: return Q = BX .Insert-Box(p)
5: if dX(p) � 2 · dX(vi) then
6: Qi ← Pi .Insert(p,X + 〈vi〉)
7: else
8: if |Qi| > 1/ε(d−1)/2 then
9: Qi ← ε-Kernel(Qi)

10: Pi .Free()
11: i← i+ 1, vi ← p

12: Qi ← Pi .Insert(p,X + 〈vi〉)
13: if i− b > 0 then
14: for each q ∈ Qi−b do
15: q′ ← φ1 ◦ · · · ◦ φi(q)
16: Q′ ← P ′.Insert(q′, 〈〉)
17: Q0 ← {q | q′ ∈ Q′}
18: Pi−b .Free(), Qi−b ← ∅
19: return Q = ∪i

j=0Qj

Fig. 3. The main algorithm

If the new point p is not (X + 〈vi〉)-respecting, then we need to open a new
substream Pi+1 for p. But before that, we check the size of the ε-kernel Qi

currently maintained forPi, and if |Qi| > 1/ε(d−1)/2, we reduce it toO(1/ε(d−1)/2)
(in line 9) using Theorem 1. After this compression step, all kernels previously
maintained for Pi and its substreams are discarded by calling function Free in
line 10. Lines 11–12 increment i and create a new substream Pi initialized with
{p}. (See Fig. 4.)

Lines 13–18 ensure that only b coresets Qi−b+1, . . . , Qi are active; earlier ones
are mapped into a (d − 1)-dimensional substream P ′ whose coreset is main-
tained in Q′. The mapping φ1 ◦ · · · ◦ φi used in line 15 is defined as follows: let
v̂i = proj(F(X), vi), and let ui =

−−→
v̂ivi. We denote by H0 an arbitrary hyper-

plane through X , and for 1 � i � d, denote by Hi the hyperplane through X
perpendicular to ui. The function φi denotes the projection to Hi−1 parallel to
the direction ui (see Fig. 5). We keep the mapping function φ1 ◦ · · · ◦ φi in a
single matrix and update it only once whenever i is increased.

824 H. Zarrabi-Zadeh

0

1

2

d

d + 1

Q1Q2Q3

Q1 Q2

v1

v1

v5

v1

p

Q4
= p

v3 = p

← x0

← x1

v4

Fig. 4. An example of the execution of the algorithm. The new inserted point, p, is not
〈x0, x1, v4〉-respecting. As a result, the coreset maintained for the substream started at
v4 is compressed and stored in Q4, the subtree rooted at v4 is discarded, and a new
substream is created with p as its first point.

5 Analysis

In this section we prove the correctness of our algorithm, and analyze its space
and time complexity. The notation used here closely follows the one used in [9].
Let πi denote the orthogonal projection onto Hi. Note that πi is a weak inverse
of φi in the sense that πi ◦ · · ·◦π1 ◦φ1 ◦ · · ·◦φi = πi (see Fig. 5). In the following,
f denotes the final value of i, and ψ = πf ◦ · · · ◦ π1. We first prove two technical
lemmas.

Lemma 2. For every i � f and every direction u ∈ Sd−1, 〈vi − πi(vi), u〉 �
4dw(P ∪X,u).

Proof. Let X be a sequence of d + 1 points obtained as follows: starting from
X = X , we repeatedly add to X a point from P which is farthest from F(X),
until X has d + 1 points. Obviously, P is X-respecting and P ∪ X = P ∪ X .

Hi−2

Hi−1

Hi

q

φi−1 ◦ φi(q)
p

φi(q)

πi−1(p)

πi ◦ πi−1(p)

X

ui

Fig. 5. Mapping functions πi and φi

An Almost Space-Optimal Streaming Algorithm 825

Thus, by Lemma 1, conv(P ∪ X) is sandwiched between BX and a translated
copy of (1/4)dBX. Both vi and πi(vi) lie inside BX. Therefore, for each direction
u ∈ Sd−1,

〈vi − πi(vi), u〉 � w(BX, u) = 4dw((1/4)dBX, u) � 4dw(P ∪X,u). �

Lemma 3. Let q ∈ Qj−b for some b < j � f , and let q′ = φ1 ◦ · · · ◦φj(q). Then
for every direction u ∈ Sd−1, 〈q − ψ(q′), u〉 � 4d+1εw(P ∪X,u).

Proof. By the doubling property we have dX(q) � 2dX(vj−b) � 21−bdX(vj).
Moreover, 〈q − πi(q), u〉 /d(q,Hi) = 〈vi − πi(vi), u〉 /d(vi,Hi). Since dX(vi) =
d(vi,Hi) and dX(q) � d(q,Hi), we have

〈q − πi(q), u〉 � dX(q)
dX(vi)

〈vi − πi(vi), u〉 � dX(q)
dX(vi)

· 4dw(P ∪X,u), (1)

where the last inequality holds by Lemma 2. Now, define qj =q, and qt =πt−1◦· · ·◦
πj(q) for all t > j. It is clear that πi(qi) = qi+1. Therefore,

∑f
i=j 〈qi − πi(qi), u〉 =

∑f
i=j 〈qi − qi+1, u〉 � 〈qj − qf+1, u〉 . We have qf+1 = πf ◦ · · ·◦πj(q) = ψ(q′), due

to the weak-inverse relationship between πi’s and φi’s. Furthermore,

f∑

i=j

dX(qi)
dX(vi)

�
f∑

i=j

1
2(j−i)

· dX(qi)
dX(vj)

� 2 · dX(q)
dX(vj)

� 2(21−b) � 4ε.

Therefore, if we replace q by qi in (1) and sum up the inequality over i from j
to f , we get

〈q − ψ(q′), u〉 = 〈qj − qf+1, u〉 �
∑f

i=j 〈qi − πi(qi), u〉
�
∑f

i=j
dX(qi)
dX(vi)

· 4dw(P ∪X,u)
� 4d+1εw(P ∪X,u). �

Theorem 3. Given a stream of points P in Rd, an ε-kernel of P can be main-
tained using O((1/ε(d−1)/2) log(1/ε)) space and max {O(1), O((1/ε(d−3)/2)}
log(1/ε)) update time.

Proof. We show that for every X-respecting stream P , the set Q returned by
our algorithm is an ε-kernel of P ∪X . If |X | = d + 1, then the set Q computed
in line 4 is an ε-kernel of P ∪X by Corollary 1. Otherwise, |X | � d. Consider an
arbitrary point p ∈ P . The algorithm inserts p into a substream Pi (1 � i � f)
upon its arrival. If i = f , then the set Qi is an ε-kernel of Pi∪X by induction. If
f−b < i < f , then Qi has passed the compression step in lines 8–9, but it is still
active, i.e., is not merged into Q0. Therefore, Qi is a (2ε)-kernel of Pi∪X due to
the fact that an ε-kernel of a ε′-kernel of a set, is an (ε + ε′)-kernel of that set.
The only remaining case is when i � f − b. In this case, Qi is merged into Q0 in
lines 13–18. Since Qi is a (2ε)-kernel of Pi∪X before merging, there exists a point
q ∈ Qi such that for every direction u ∈ Sd−1, 〈q, u〉 � 〈p, u〉 − 2εw(Pi ∪X,u).

826 H. Zarrabi-Zadeh

The mapped point of q, q′, is inserted into P ′ in line 16. Since Q′ is an ε-kernel
of P ′, ψ(Q′) is an ε-kernel of ψ(P ′). Moreover, there exists a point r ∈ Q0 with
r′ ∈ Q′, such that 〈r′, u〉 � 〈q′, u〉 − εw(P ′, u), and hence

〈ψ(r′), u〉 � 〈ψ(q′), u〉 − εw(ψ(P ′), u). (2)

Let ρ = 4d+1. By Lemma 3, for every q ∈ Q1 ∪ · · · ∪Qf−b and its corresponding
q′ ∈ P ′,

〈q, u〉 − ρεw(P ∪X,u) � 〈ψ(q′), u〉 � 〈q, u〉 + ρεw(P ∪X,u),

which implies that w(ψ(P ′), u) � w(Q1 ∪ · · · ∪ Qf−b, u) + 2ρεw(P ∪ X,u) �
(1 + 2ρε)w(P ∪ X,u). Furthermore, by Lemma 3 we have 〈ψ(r′), u〉 � 〈r, u〉 +
ρεw(P ∪X,u) and 〈ψ(q′), u〉 � 〈q, u〉 − ρεw(P ∪X,u). Replacing in (2), we get

〈r, u〉 + ρεw(P ∪X,u) � 〈q, u〉 − ρεw(P ∪X,u)− ε[(1 + 2ρε)w(P ∪X,u)],

and hence, 〈r, u〉 � 〈q, u〉−O(ε)w(P ∪X,u). Since 〈q, u〉 � 〈p, u〉−2εw(P ∪X,u),
we have 〈r, u〉 � 〈p, u〉 −O(ε)w(P ∪X,u). Therefore, in any of the above cases,
there exists a point in ∪f

i=0Qi whose projected length along direction u differs
from that of p by at most O(ε)w(P ∪X,u), and hence, Q = ∪f

i=0Qi is an O(ε)-
kernel of P ∪X . (Note that in our proof, the algorithm returns an O(ε)-kernel
rather than an ε-kernel; but this is not a problem as the depth of the recursion
tree of our algorithm is d + 1, and therefore, we can adjust ε at the beginning
by a constant, depending only on d.)

Space Complexity. Let S(d, k) denote the space used by the algorithm to com-
pute an ε-kernel of the d-dimensional X-respecting stream P , where |X | = k.
Then, |Q0| = |Q′| = S(d − 1, 0), |Q1|, . . . , |Qf−b| = 0 by the merging step,
|Qf−b+1|, . . . , |Qf−1| = O(1/ε(d−1)/2) by the compression step, and |Qf | =
S(d, k + 1). Therefore, S(d, k) is upper-bounded by the following recurrence:

S(d, k) =

⎧
⎨

⎩

S(d, k + 1) + S(d− 1, 0) + log(1/ε)O(1/ε(d−1)/2) 0 � k � d,

O(1/ε(d−1)/2) k = d + 1,
O(1) d = 1,

which solves to S(d, k) = O((1/ε(d−1)/2) log(1/ε)), for every 0 � k � d.

Update Time. The compression step in line 9 can be done using Theorem 1 in
O(|Qi| + 1/εd−(3/2)) or O((|Qi| + 1/εd−2) log(1/ε)) time. Since |Qi| =
Θ(1/ε(d−1)/2)), we can charge an amortized time of max {O(1), O((1/ε(d−3)/2)}
log(1/ε)) to each point of Qi. In lines 14–16, each point is inserted into P ′

at most once. Therefore, the cost of insertion into the (d − 1)-dimensional
stream P ′ can be charged to each point upon its insertion to a Pi, which at
most doubles its total insertion cost. The main cost incurred by each point
is therefore the time needed to insert the point into a fat subset, which is
max {O(1), O((1/ε(d−3)/2) log(1/ε))} by Corollary 1. �

An Almost Space-Optimal Streaming Algorithm 827

6 Reducing Update Time

While the main focus in designing streaming algorithms is to optimize the work-
ing storage, the time needed to process each element is also of particular interest,
especially in applications where a huge amount of date arrives in a short period
of time. For the problem of maintaining ε-kernels in Rd, Chan [9] proposed a
streaming algorithm that processes each input point in O(1) time using a data
structure of size O([(1/ε) log(1/ε)]d−1). Here, we show how to improve the space
complexity of Chan’s algorithm for all fixed dimensions, while the optimal up-
date time, O(1), is preserved.

We provide a general framework to trade-off between time and space com-
plexity in our algorithm as follows: Let λ(ε) = Ω(1/ε(d−1)/2) be a function
of ε. We replace 1/ε(d−1)/2 by λ(ε) in line 2 of the Insert-box function and
in line 9 of the main Insert function. It is easy to verify that the amor-
tized update time of the new algorithm is O([1/εd−(3/2)]/λ(ε)) for d � 2, and
O(log(1/ε) + [(1/εd−2) log(1/ε)]/λ(ε)) for d � 3. Furthermore, the space com-
plexity of the algorithm is upper-bounded by the recurrence S(d, k) = S(d, k +
1) +S(d−1, 0) + log(1/ε)O(λ(ε)), with the base cases S(d, d+ 1) = O(λ(ε)) and
S(1, k) = O(1). The recurrence solves to S(d, k) = O(λ(ε) log(1/ε)). Setting
λ(ε) = 1/εd−(3/2), we immediately get the following result:

Theorem 4. Given a stream of points P in Rd, an ε-kernel of P can be main-
tained using O((1/εd−(3/2)) log(1/ε)) space and O(1) amortized update time.

7 Applications

In this section, we briefly review some of the implications of our result. Consider a
measure μ so that for any point set P ∈ Rd, an ε-kernel of P is an O(ε)-coreset for
P with respect to μ. Examples of such measures include diameter, width, volume
of the smallest enclosing box, and radius of the smallest enclosing cylinder. Theo-
rem 3 provides space-efficient streaming algorithms to maintain ε-approximation
to all these measures using near O(1/ε(d−1)/2) space. Note that O(1/ε(d−1)/2)-
space streaming algorithms were previously known for diameter [5], while the
best space bound for other measures was O(1/εd−(3/2)) [6]. Using the general
technique described in [2], our result implies improved streaming algorithms for
various other shape-fitting problems like minimum-width spherical shell/annulus
and minimum-width cylindrical shell. Improved results for kinetic versions of the
above problems (where input is a stream of moving points) are implied as well.

Our streaming algorithm can be also used in noisy environments, using the
“robust kernel” paradigm proposed in [4,13]. Roughly speaking, a subset Q ⊆ P
is called a (k, ε)-kernel of P , if Q ε-approximates the directional width of P ,
for any direction, when k outliers can be ignored in that direction. According
to [4], one can simultaneously run 2k + 1 instances of our streaming algorithm
to obtain the following result:

Corollary 2. Given a stream P of points in Rd and a parameter k � 0, a
(k, ε)-kernel of P can be maintained using O((k/ε(d−1)/2) log(1/ε)) space.

828 H. Zarrabi-Zadeh

The kernel size obtained by Corollary 2 substantially improves over the previous
known upper bound O(k/εd−(3/2)) [6], and is very close to the lower bound which
is proved to be O(k/ε(d−1)/2) in the worst case [13].

8 Conclusions

In this paper, we presented a streaming algorithm for maintaining an ε-kernel of
a stream of points in Rd using O((1/ε(d−1)/2) log(1/ε)) space. The space com-
plexity of our algorithm is optimal up to a log(1/ε) factor. In the special case
of two dimensions, Agarwal and Yu [6] proposed a rather involved technique to
remove this extra log factor at the expense of increasing update time from O(1)
to O(log(1/ε)). It remains open whether this small log factor can be removed in
any fixed dimension.

Acknowledgements. The author would like to thank Timothy M. Chan for his
valuable comments and helpful discussions.

References

1. Agarwal, P.K., Har-Peled, S.: Maintaining approximate extent measures of mov-
ing points. In: Proc. 12th ACM-SIAM Sympos. Discrete Algorithms, pp. 148–157
(2001)

2. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures
of points. J. ACM 51(4), 606–635 (2004)

3. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Geometric approximation via
coresets. In: Goodman, J.E., Pach, J., Welzl, E. (eds.) Combinatorial and Compu-
tational Geometry, Math. Sci. Research Inst. Pub., Cambridge (2005)

4. Agarwal, P.K., Har-Peled, S., Yu, H.: Robust shape fitting via peeling and grating
coresets. In: Proc. 17th ACM-SIAM Sympos. Discrete Algorithms, pp. 182–191
(2006)

5. Agarwal, P.K., Matoušek, J., Suri, S.: Farthest neighbors, maximum spanning trees
and related problems in higher dimensions. Comput. Geom. Theory Appl. 1(4),
189–201 (1992)

6. Agarwal, P.K., Yu, H.: A space-optimal data-stream algorithm for coresets in the
plane. In: Proc. 23rd Annu. ACM Sympos. Comput. Geom., pp. 1–10 (2007)

7. Barequet, G., Har-Peled, S.: Efficiently approximating the minimum-volume
bounding box of a point set in three dimensions. J. Algorithms 38(1), 91–109
(2001)

8. Bentley, J.L., Saxe, J.B.: Decomposable searching problems I: Static-to-dynamic
transformations. J. Algorithms 1, 301–358 (1980)

9. Chan, T.M.: Faster core-set constructions and data stream algorithms in fixed
dimensions. Comput. Geom. Theory Appl. 35(1–2), 20–35 (2006)

10. Dudley, R.M.: Metric entropy of some classes of sets with differentiable boundaries.
J. Approx. Theory 10, 227–236 (1974)

An Almost Space-Optimal Streaming Algorithm 829

11. Frahling, G., Sohler, C.: Coresets in dynamic geometric data streams. In: Proc.
37th Annu. ACM Sympos. Theory Comput., pp. 209–217 (2005)

12. Har-Peled, S., Mazumdar, S.: On coresets for k-means and k-median clustering.
In: Proc. 36th Annu. ACM Sympos. Theory Comput., pp. 291–300 (2004)

13. Har-Peled, S., Wang, Y.: Shape fitting with outliers. SIAM J. Comput. 33(2), 269–
285 (2004)

14. Yu, H., Agarwal, P.K., Poreddy, R., Varadarajan, K.R.: Practical methods for
shape fitting and kinetic data structures using core sets. In: Proc. 20th Annu.
ACM Sympos. Comput. Geom., pp. 263–272 (2004)

Deterministic Sampling Algorithms for Network

Design

Anke van Zuylen�

School of Operations Research and Information Engineering,
Cornell University, Ithaca, NY 14853

Fax: (607) 255-9129
avz2@cornell.edu

Abstract. For several NP-hard network design problems, the best known
approximation algorithms are remarkably simple randomized algorithms
called Sample-Augment algorithms in [11]. The algorithms draw a random
sample from the input, solve a certain subproblem on the random sample,
and augment the solution for the subproblem to a solution for the orig-
inal problem. We give a general framework that allows us to derandom-
ize most Sample-Augment algorithms, i.e. to specify a specific sample for
which the cost of the solution created by the Sample-Augment algorithm
is at most a constant factor away from optimal. Our approach allows us
to give deterministic versions of the Sample-Augment algorithms for the
connected facility location problem, in which the open facilities need to
be connected by either a tree or a tour, the virtual private network design
problem, 2-stage rooted stochastic Steiner tree problem with independent
decisions, the a priori traveling salesman problem and the single sink buy-
at-bulk problem. This partially answers an open question posed in Gupta
et al. [11].

1 Introduction

For several NP-hard network design problems, the best known approximation
algorithms are remarkably simple randomized algorithms. The algorithms draw
a random sample from the input, solve a certain subproblem on the random
sample, and augment the solution for the subproblem to a solution for the
original problem. Following [11], we will refer to this type of algorithm as a
Sample-Augment algorithm. We give a general framework that allows us to de-
randomize most Sample-Augment algorithms, i.e. to specify a specific sample for
which the cost of the solution created by the Sample-Augment algorithm is at
most a constant factor away from optimal. The derandomization of the Sample-
Augment algorithm for the single source rent-or-buy problem in Williamson and
Van Zuylen [21] is a special case of our approach, but our approach also extends
to the Sample-Augment algorithms for the connected facility location problem,
in which the open facilities need to be connected by either a tree or a tour [3],

� Supported by NSF grant CCF-0514628.

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 830–841, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Deterministic Sampling Algorithms for Network Design 831

the virtual private network design problem [12,11,1,2], 2-stage stochastic Steiner
tree problem with independent decisions [13], the a priori traveling salesman
problem [18], and even the single sink buy-at-bulk problem [12,11,9], although
for this we need to further extend our framework.

Generally speaking, the problems we consider are network design problems:
they feature an underlying undirected graph G = (V,E) with edge costs ce ≥ 0
that satisfy the triangle inequality, and the algorithm needs to make decisions
such as on which edges to install how much capacity or at which vertices to
open facilities. The Sample-Augment algorithm proceeds by randomly marking
a subset of the vertices, solving some subproblem that is defined on the set
of marked vertices, and then augmenting the solution for the subproblem to a
solution for the original problem. We refer the reader to the paper by Gupta,
Kumar, Pál and Ravi [11], which is the journal version of the papers which
first introduced Sample-Augment algorithms [12,10], for further discussions of
Sample-Augment algorithms for the problems we consider.

As an example, in the single source rent-or-buy problem, we are given a source
s ∈ V , a set of sinks t1, . . . , tk ∈ V and a parameter M > 1. An edge e can either
be rented for sink tj in which case we pay ce, or it can be bought and used by any
sink, in which case we pay Mce. The goal is to find a minimum cost set of edges
to buy and rent so that for each sink tj the bought edges plus the edges rented for
tj contain a path from tj to s. In the Sampling Step of the Sample-Augment al-
gorithm in Gupta et al. [12,11] we mark each sink independently with probability
1
M . Given the set of marked sinks D, the Subproblem Step finds a Steiner tree on
D ∪ {s} and buys the edges of this tree. In the Augmentation Step, the subprob-
lem’s solution is augmented to a feasible solution for the single source rent-or-buy
problem by renting edges for each unmarked sink tj to the closest vertex inD∪{s}.

To give a deterministic version of the Sample-Augment algorithm, we want to
find a set D such that for this set D the cost of the Subproblem Step plus the
Augmentation Step is at most the expected cost of the Sample-Augment problem.
A natural approach is to try and use the method of conditional expectation [4] to
achieve this. However, in order to do this we would need to be able to compute the
conditional expectation of the cost of the Sample-Augment problem, conditioned
on including / not including tj ∈ D. Unfortunately, we do not know how to do
this for any of the problems for which good Sample-Augment algorithms exist.

What we show is that we can find an upper bound on the cost of the Sub-
problem plus Augmentation Steps that can be efficiently computed. Suppose we
can show that the expectation of the upper bound under the sampling strategy
of the randomized Sample-Augment algorithm is at most βOPT , where OPT
is the optimal value and β > 1 is some constant. Then we can use this upper
bound and the method of conditional expectation to find a set D such that the
upper bound on the cost of the Subproblem Step plus the Augmentation Step is
not more than the expected upper bound for the randomized Sample-Augment
algorithm, and hence at most βOPT as well.

Our upper bound on the cost of the Subproblem Step will be obtained from a
particular feasible solution to a linear programming (LP) relaxation of the

832 A. van Zuylen

subproblem. We then use well-known approximation algorithms to obtain a so-
lution to the subproblem that comes within a constant factor of the subproblem
LP. We do not need to solve the LP relaxation of the subproblem: instead we show
that the optimal solution to an LP relaxation of the original problem defines a set
of feasible solutions to the subproblem’s LP relaxation. We note that for some of
the problems we consider, for example the virtual private network design problem,
this requires us to “discover” a new LP relaxation of the original problem.

Using this technique, we derive the best known deterministic approximation
algorithms for the 2-stage rooted stochastic Steiner tree problem with indepen-
dent decisions (2-stage Steiner), the a priori traveling salesman problem (a priori
TSP), the connected facility location problem in which the open facilities need
to be connected by a traveling salesman tour (CFL-tour), the virtual private net-
work design problem (VPND) and the single sink buy-at-bulk problem (SSBaB).
We thus partially answer an open question in Gupta et al. [11] (the only problem
in [11] that we do not give a deterministic algorithm for is the multicommodity
rent-or-buy problem). In addition, our analysis implies that the integrality gap
of an (even more) natural LP relaxation than the one considered in [7,20] for
the single-sink buy-at-bulk problem has integrality gap at most 27.72. We also
match the best known bounds by deterministic algorithms for the single source
rent-or-buy problem (SSRoB) and the connected facility location problem in
which open facilities need to be connected by a tree (CFL-tree), which were ob-
tained by applying the techniques from Williamson and Van Zuylen [21], which
is a special case of our approach. We summarize our results in Table 1.

We remark that our method is related to the method of pessimistic estimators
of Raghavan [17]: Raghavan also uses an efficiently computable upper bound in
combination with the method of conditional expectation to derandomize a ran-
domized algorithm, where he first proves that the expected “cost” of the ran-
domized algorithm is small. (We note that in the problem he considers, the cost
of the algorithm is either 0 (the solution is “good”) or 1 (the solution is “bad”)).

Table 1. The first column contains the best known approximation guarantees for the
problems, which are obtained by randomized Sample-Augment algorithms. The second
column gives the previous best known approximation guarantee by a deterministic
algorithm. Entries marked with ∗ are obtained by using the method in Williamson and
Van Zuylen [21], which is a special case of our approach. The third column shows the
approximation guarantees in this paper.

Problem randomized prev. best deterministic our result

SSRoB 2.92 [3] 4.2 [14], 3.28∗ [21,3] 3.28
2-stage Steiner 3.55 [13] log n [16] 8
a priori TSP 4 [18], O(1)[6] 8∗ [18] 6.5
CFL-tree 4 [3] 8.29 [15], 4.23∗ [3] 4.23
k-CFL-tree 6.85 [3] 6.98∗ [3] 6.98
CFL-tour 4.12 [3] - 4.12
VPND 3.55 [2] log n [5] 8.02
SSBaB 24.92 [9] 216 [20] 27.72

Deterministic Sampling Algorithms for Network Design 833

However, in Raghavan’s work the probabilities in the randomized algorithm de-
pend on a solution to a linear program, but the upper bounds are obtained by a
Chernoff-type bound. In our work, the probabilities in the randomized algorithm
are already known from previous works, but we demonstrate upper bounds on
the conditional expectations that depend on linear programming relaxations.

In the next section, we will give a general description of a Sample-Augment
algorithm, and give a set of conditions under which we can give a deterministic
variant of a Sample-Augment algorithm. In Section 3 we illustrate our method
using the single source rent-or-buy problem as an example. In Section 4 we
demonstrate how to obtain a deterministic version of the Sample-Augment type
algorithm for the a priori traveling salesman problem proposed by Shmoys and
Talwar [18], since this example illustrates some of the additional ideas we need to
apply our method to the other problems we consider. Due to space constraints,
we refer the reader to http://people.orie.cornell.edu/~anke/ESA08.pdf
for a discussion of our results for the 2-stage rooted stochastic Steiner tree prob-
lem with independent decisions, connected facility location problems, the virtual
private network design problem and the single sink buy-at-bulk problem. We
conclude with a brief discussion of some future directions in Section 5.

2 Derandomization of Sample-Augment Algorithms

We give a high-level description of a class of algorithms first introduced by
Gupta, Kumar and Roughgarden [12], which were called Sample-Augment algo-
rithms in [11]. Given a (minimization) problem P , the Sample-Augment algo-
rithm is defined by

(i) a set of elements D = {1, . . . , n} and sampling probabilities p = (p1, . . . , pn),
(ii) a subproblem Psub(D) defined for any D ⊂ D, and
(ii) an augmentation problem Paug(D, SolSub(D)) defined for any D ⊂ D and

solution Solsub(D) to Psub(D).

The Sample-Augment algorithm samples from D independently according to
the sampling probabilities p, solves the subproblem and augmentation problem
for the random subset, and returns the union of the solutions given by the
subproblem and augmentation problem. We give a general statement of the
Sample-Augment algorithm.

P-Sample-Augment(D, p,PSub,Paug)

1. (Sampling Step) Mark each element j ∈ D independently with proba-
bility pj. Let D be the set of marked elements.

2. (Subproblem Step) Solve Psub on D. Let Solsub(D) be the solution
found.

3. (Augmentation Step) Solve Paug on D, Solsub(D). Let
Solaug(D, Solsub(D)) be the solution found.

4. Return Solsub(D) and Solaug(D, Solsub(D)).

834 A. van Zuylen

We remark that we will consider Sample-Augment algorithms, in which the
Augmentation Step only depends on D, and not on Solsub(D).

In the following, we let OPT denote the optimal value of the problem we
are considering. Let Csub(D) be the cost of Solsub(D), and let Caug(D) be the
cost of Solaug(D, Solsub(D)). Let CSA(D) = Csub(D) + Caug(D). We will use
blackboard bold characters to denote random sets. For a function C(D), let
Ep

[
C(D)

]
be the expectation of C(D) if D is obtained by including each j ∈ D

in D independently with probability pj .
Note that, since the elements are included in D independently, the conditional

expectation of Ep

[
CSA(D)

]
given that j is included in D is Ep,pj←1

[
CSA(D)

]
, and

the conditional expectation, given that j is not included in D is Ep,pj←0

[
CSA(D)

]
.

By the method of conditional expectation [4], one of these conditional expecta-
tions has value at most Ep

[
CSA(D)

]
. Hence if we could compute the expectations

for different vectors of sampling probabilities, we could iterate through the el-
ements and transform p into a binary vector (corresponding to a deterministic
set D) without increasing Ep

[
CSA(D)

]
.

Unfortunately, this is not very useful to us yet, since it is generally not the
case that we can compute Ep

[
CSA(D)

]
. However, as we will show, for many

problems and corresponding Sample-Augment algorithms, it is the case that
Ep

[
Caug(D)

]
can be efficiently computed for any vector of probabilities p, and

does not depend on the solution Solsub(D) for the subproblem, but only on
the set D. The expected cost of the subproblem’s solution is more difficult to
compute. What we therefore do instead is replace the cost of the subproblem
by an upper bound on its cost: Suppose there exists a function Usub : 2D → R
such that Csub(D) ≤ Usub(D) for any D ⊂ D, and suppose we can efficiently
compute Ep

[
Usub(D)

]
and Ep

[
Caug(D)

]
for any vector p. If there exists some

vector p̂ such that

Ep̂

[
Usub(D)

]
+ Ep̂

[
Caug(D)

]
≤ βOPT (1)

then we can use the method of conditional expectation to find a set D such that
Usub(D) + Caug(D) ≤ βOPT , and hence also Csub(D) + Caug(D) ≤ βOPT .

Theorem 1. Given a minimization problem P and an algorithm P-Sample-
Augment, suppose the following four conditions hold:

(i) Ep

[
Caug(D)

]
depends only on D, not on Solsub(D), and can be efficiently

computed for any p.
(ii) There exists an LP relaxation Sub-LP(D) of Psub(D) and an algorithm for

Psub(D) that is guaranteed to output a solution to Psub(D) that costs at
most a factor α times the cost of any feasible solution to Sub-LP(D).

(iii) There exist known vectors b and r(j) for j = 1, . . . , n such that y(D) =
b+

∑
j∈D r(j) is a feasible solution to Sub-LP(D) for any D ⊂ D.

(iv) There exists a vector p̂ such that

Ep̂

[
Caug(D)

]
+ αEp̂

[
CLP (y(D))

]
≤ βOPT,

where CLP (y(D)) is the objective value of y(D) for Sub-LP(D).

Deterministic Sampling Algorithms for Network Design 835

Then there exists a deterministic β-approximation algorithm for P.

Proof. Let Usub(D) = αCLP (y(D)). If we use the algorithm from (ii) in the
Subproblem Step of P-Sample-Augment, then by (ii), Csub(D) ≤ Usub(D). By
(iii) Ep

[
Usub(D)

]
can be efficiently computed for any p, and by (iv) Equa-

tion (1) is satisfied. Hence we can use the method of conditional expectation
to find a set D such that Csub(D) + Caug(D) ≤ Usub(D) + Caug(D) ≤
βOPT .

�
In many cases, (i) is easily verified. In the problems we are considering here, the
subproblem looks for a Steiner tree or a traveling salesman tour, so that there
are well-known LP relaxations and algorithms such that α = 2 if the subproblem
is a Steiner tree problem [8], and α = 1.5 if the subproblem is a traveling sales-
man tour problem [22,19]. The solution y(D) = b+

∑
j∈D r(j) will be defined by

using the optimal solution to an LP relaxation of the original problem, so that
for appropriately chosen probabilities Ep̂

[
CLP (y(D))

]
is bounded by a constant

factor times OPT . Using the analysis for the randomized algorithm to bound
Ep̂

[
Caug(D)

]
, we can then show that (iv) holds.

Remark. In some cases, Psub and Paug are only defined for D
= ∅. In such
cases, we require that condition (i) holds for all p such that pj = 1 for some
j, and that condition (ii) holds for non-empty subsets D. Condition (iv) then
asks for p̂ such that p̂j = 1 for some j. The derandomization procedure will
not change this element, so that the Sample-Augment algorithm is always well
defined for the vectors p that we consider.

3 Single Source Rent-or-Buy

We illustrate Theorem 1 by showing how it can be used to give a determinis-
tic algorithm for the single source rent-or-buy problem. We note that this was
already done in [21]; however, we repeat this here because this is arguably the
simplest application of Theorem 1 and hence provides a nice illustration of the
more general approach.

In the single source rent-or-buy problem, we are given an undirected graph
G = (V,E), edge costs ce ≥ 0 for e ∈ E, a source s ∈ V and a set of sinks
t1, . . . , tk ∈ V , and a parameter M > 1. A solution is a set of edges B to buy,
and for each sink tj a set of edges Rj to rent, so that B ∪ Rj contains a path
from t to tj . The cost of renting an edge e is ce and the cost of buying e is
Mce. For a set T ⊆ E, we denote by c(T) =

∑
e∈T ce, hence the cost of solution

(B,R1, . . . , Rk) is Mc(B) +
∑k

j=1 c(Rj). For u, v ∈ V , we denote by �(u, v)
the lenght of the shortest path from u to v with respect to costs c, and we let
�(u, F) = minv∈F �(u, v).

Gupta, Kumar, and Roughgarden [12] propose the random sampling algorithm
given below, where they set pj = 1

M for all j = 1, . . . , k.

836 A. van Zuylen

SSRoB-Sample-Augment(G = (V,E), c, s, {t1, . . . , tk}, p)
1. (Sampling Step) Mark each sink tj with probability pj. Let D be the

set of marked sinks.
2. (Subproblem Step) Construct a Steiner tree on D ∪ {s} and buy the

edges of the tree.
3. (Augmentation Step) Rent the shortest path from each unmarked sink

to the closest terminal in D ∪ {s}.

Note that the expected cost of the Augmentation Step of SSRoB-Sample-
Augment does not depend on the tree bought in the Subproblem Step. Gupta et
al. [12] show that if each sink is marked independently with probability 1

M then
the expected cost of the Augmentation Step can be bounded by 2OPT .

Lemma 2 ([12]). If pj = 1
M for j = 1, . . . , k, then E

[
Caug(D)

]
≤ 2OPT .

Lemma 3 ([21]). There exists a deterministic 4-approximation algorithm for
SSRoB.

Proof. We verify that the four conditions of Theorem 1 hold. It is straightforward
to show that Ep

[
Caug(D)

]
, the expected cost incurred in the Augmentation Step,

can be computed for any vector of sampling probabilities p. Now consider the
subproblem on a given subset D of {t1, . . . , tk}. From Goemans and Bertsimas
[8] we know that we can efficiently find a Steiner tree on D∪{s} of cost at most
twice the optimal value (and hence the objective value of any feasible solution)
of the following Sub-LP:

min
∑

e∈E

Mceye

(Sub-LP(D)) s.t.
∑

e∈δ(S)

ye ≥ 1 ∀S ⊂ V : s
∈ S,D ∩ S
= ∅

ye ≥ 0 ∀e ∈ E.

We now want to define a feasible solution y(D) to Sub-LP(D) for any D ⊂ D,
such that y(D) can be written as b+

∑
tj∈D r(j), since this form will allow us to

efficiently compute Ep

[
CLP (y(D))

]
. To do this, we use an LP relaxation of the

single source rent-or-buy problem. Let be be a variable that indicates whether
we buy edge e, and let rj

e indicate whether we rent edge e for sink tj .

min
∑

e∈E

Mcebe +
∑

e∈E

k∑

j=1

cer
j
e

(SSRoB-LP) s.t.
∑

e∈δ(S)

(be + rj
e) ≥ 1 ∀S ⊂ V : tj ∈ S, s
∈ S

be, r
j
e ≥ 0 ∀e ∈ E, j = 1, . . . , k.

Deterministic Sampling Algorithms for Network Design 837

SSRoB-LP is a relaxation of the single source rent-or-buy problem, since the
optimal solution to the single source rent-or-buy problem is feasible for SSRoB-
LP and has objective value OPT . Let b̂, r̂ be an optimal solution to SSRoB-LP.
For a given set D ⊂ D and edge e ∈ E we let

ye(D) = b̂e +
∑

tj∈D

r̂j
e.

Clearly, y(D) is a feasible solution to Sub-LP(D) for any D.
Finally, we need to show the existence of a vector p̂ such that Ep̂

[
Caug(D)

]
+

2Ep̂

[
CLP (y(D))

]
≤ 4OPT . Let p̂j = 1

M for every tj ∈ D. Then by Lemma 2, the
expected cost of the Augmentation Step is at most 2OPT , and 2Ep̂

[
CLP (y(D))

]
is

2
∑

e∈E

Mce
(
b̂e +

k∑

j=1

1
M
r̂j
e

)
≤ 2OPT.

Hence, applying Theorem 1, we get that there exists a 4-approximation algorithm
for SSRoB. �

We note that it was shown in [21] that a better deterministic approximation
algorithm exists, by using the improved analysis of the randomized algorithm
given by Eisenbrand et al. [3], which allows us to more carefully balance the
charge against the optimal renting and the optimal buying costs. We refer the
reader to [21] for the details.

Lemma 4 ([21,3]). There exists a deterministic 3.28-approximation algorithm
for the single source rent-or-buy problem.

4 A Priori Traveling Salesman Problem with
Independent Decisions

In the a priori traveling salesman problem with independent decisions, we are
given a graph G = (V,E) with edge costs ce ≥ 0 and a set of terminals t1, . . . , tk,
where terminal tj is active independently of the other terminals with probability
qj . The goal is to find a so-called master tour on the set of all terminals, such that
the expected cost of shortcutting the master tour to the set of active terminals
is minimized.

Shmoys and Talwar [18] recently showed that a Sample-Augment type algo-
rithm for this problem is a 4-approximation algorithm. In the Sampling Step,
they randomly mark the terminals, where each terminal tj is marked indepen-
dently with probability pj = qj . (If there is no tj such that qj = 1, then they need
a revised Sampling Step to ensure at least one terminal is marked. We omit the
details here.) In the Subproblem Step they find a tour on the marked terminals
and finally, in the Augmentation Step they add two copies of the shortest path
from each unmarked terminal to the closest marked terminal.

838 A. van Zuylen

It is not hard to see that if at least one terminal is marked, then the Sample-
Augment algorithm finds an Euler tour on the terminals, and we can shortcut
the Euler tour to give the traveling salesman tour that will be the master tour.

To evaluate the expected cost of the shortcut tour on a set of active terminals
A, Shmoys and Talwar upper bound the cost of shortcutting the master tour on
A by assuming that for any A of size at least 2 we always traverse the edges found
in the Subproblem Step, and we traverse the edges found in the Augmentation
Step only for the active terminals. If |A| < 2, then the cost of the shortcut master
tour is 0.

Since we are interested in upper bounding the expected cost of the shortcut
tour, we can just consider the expectation of this upper bound. Let Q be the
probability that at least 2 terminals are active, and let q̃j be the probability
that tj is active conditioned on the fact that at least 2 terminals are active, i.e.

q̃j =
qj(1−

∏
i�=j(1−qi))

Q . The expected cost for an edge e in the tour constructed
by the Subproblem Step is Qce and the expected cost for an edge e that is added
for terminal j in the Augmentation Step is q̃jce.

Hence we can instead analyze the algorithm APTSP-Sample-Augment given
below. We note that the vector of sampling probabilities must have at least one
element set to 1, otherwise the Augmentation Step is not well defined. We will
therefore make sure that the vector p̂ with which we start the derandomization
of APTSP-Sample-Augment has at least one element equal to 1 (in fact, it will
have two elements set to 1).

APTSP-Sample-Augment(G = (V,E), c, Q, q̃, s, {t1, . . . , tk}, p)
1. (Sampling Step) Mark each terminal tj with probability pj . Let D be

the set of marked terminals.
2. (Subproblem Step) Construct a traveling salesman tour on D, and incur

cost Qce for each edge on the tour.
3. (Augmentation Step) Add two copies of the shortest path from each

unmarked terminal tj to the closest terminal in D and incur cost q̃jce
for each edge.

Shmoys and Talwar [18] show that if p̃j = qj for every terminal, and if we were
able to find a minimum cost solution to the subproblem, then Ep̃

[
Csub(D)

∣
∣|D| ≥

2
]
≤ OPT , and Ep̃

[
Caug(D)

∣
∣|D| ≥ 2

]
≤ 2OPT .

This implies that there is some non-empty set D∗ such that Csub(D∗) +
Caug(D∗) ≤ 3OPT . Let t∗ be one of the terminals in D∗, and set be = 1 for
each of the edges in the (minimum cost) subproblem’s solution on D∗, and let
rj
e = 1 for the edges added for terminal j in the Augmentation Step. Then b, r

defines a feasible solution to the following LP with objective value at most OPT
and hence APTSP-LP is an LP relaxation of the a priori Traveling Salesman
Problem.

min
1
3

∑

e∈E

(
Qcebe +

k∑

j=1

q̃jcer
j
e

)

Deterministic Sampling Algorithms for Network Design 839

(APTSP-LP) s.t.
∑

e∈δ(S)

(be + rj
e) ≥ 2 ∀S ⊂ V : t∗
∈ S, tj ∈ S

be, r
j
e ≥ 0 ∀e ∈ E, j = 1, . . . , k.

Note that we do not know t∗, but we can solve APTSP-LP for any t∗ ∈ {t1, . . . , tk}
and use the LP with the smallest objective value. Let b̂, r̂ be an optimal solution
to that LP. We let the Sub-LP on D be

min
∑

e∈E

Qceye

(Sub-LP(D)) s.t.
∑

e∈δ(S)

ye ≥ 2 ∀S ⊂ V : D\S
= ∅, D ∩ S
= ∅

ye ≥ 0 ∀e ∈ E.

Note that this satisfies condition (ii) in Theorem 1 with α = 1.5 by [22,19]. To
define solutions y(D) to Sub-LP(D), we let ye(D) = b̂e +

∑
tj∈D r̂j

e.

We now let p̃j = qj and consider the expectation of Ep̃

[
CLP (y(D))

∣
∣|D| ≥ 2

]

and Ep̃

[
Caug(D)

∣
∣|D| ≥ 2

]
. From Shmoys and Talwar we know that the second

term is at most 2OPT . Also, since the probability that tj is in D conditioned on
D having at least 2 elements is q̃j , we get

1.5Ep̃

[
CLP (y(D))

∣
∣|D| ≥ 2

]
= 1.5

(∑

e∈E

Qceb̂e +
k∑

j=1

Qq̃jcer̂
j
e

)

= 1.5
∑

e∈E

(
Qceb̂e +

k∑

j=1

qj(1 −
∏

i�=j

(1 − qi))cer̂j
e

)

≤ 1.5
∑

e∈E

(
Qceb̂e +

k∑

j=1

qjcer̂
j
e

)
≤ 4.5OPT (2)

where the last inequality holds since we showed that APTSP-LP is a relaxation
of the a priori Traveling Salesman Problem.

Finally, we want to get rid of the conditioning on |D| ≥ 2. By conditioning
on the two smallest indices in D and then using basic properties of conditional
expectation, one can show that there must exist two elements, say j1 < j2 such
that if we let p̂j1 = p̂j2 = 1, p̂j = 0 for all other j < j2 and p̂j = qj for all j > j2,
then

1.5Ep̂

[
CLP (y(D))

]
+Ep̂

[
Caug(D)

]
≤ 1.5Ep̃

[
CLP (y(D))

∣
∣|D| ≥ 2

]
+Ep̃

[
Caug(D)

∣
∣|D| ≥ 2

]
.

Hence we can try all possible choices of j1, j2, and we will find p̂ with at least
two elements equal to 1, so that condition (iv) of Theorem 1 holds with β = 6.5.
Hence we get the following result.

Lemma 5. There exists a deterministic 6.5-approximation algorithm for a pri-
ori Traveling Salesman Problem.

840 A. van Zuylen

Remark. Shmoys and Talwar [18] use the Steiner tree LP as the Sub-LP. Since
we can get a traveling salesman tour of cost at most twice the cost of a Steiner
tree, α = 4. They show that αEp̃

[
CLP (y(D))

∣
∣|D| ≥ 2

]
≤ 6OPT , instead of what

we find in (2), and thus get an 8-approximation algorithm.

5 Conclusion

We propose a specific method for derandomizing Sample-Augment algorithms,
and we successfully apply this method to all but one of the Sample-Augment al-
gorithms in Gupta et al. [11], and to the a priori traveling salesman problem and
the 2-stage rooted stochastic Steiner tree problem with independent decisions.
The question whether the Sample-Augment algorithm for multicommodity rent-
or-buy problem can be derandomized remains open. If we want to use Theorem
1, we would need to be able to compute Ep

[
Caug(D)

]
(or a good upper bound

for it) efficiently and it is unclear how to do this for the multicommodity rent-
or-buy algorithm, because unlike in the algorithms we discussed, Ep

[
Caug(D)

]

does depend on the subproblem solution, and not just on D. It may also be pos-
sible to extend our approach to the Boosted Sampling algorithms for stochastic
optimization problems [13], but here again it is not obvious how to determine
Ep

[
Caug(D)

]
.

Acknowledgements. The author would like to thank David P. Williamson and
Frans Schalekamp for helpful comments on earlier drafts of this paper.

References

1. Eisenbrand, F., Grandoni, F.: An improved approximation algorithm for virtual
private network design. In: SODA, pp. 928–932 (2005)

2. Eisenbrand, F., Grandoni, F., Oriolo, G., Skutella, M.: New approaches for virtual
private network design. SIAM J. Comput. 37(3), 706–721 (2007)

3. Eisenbrand, F., Grandoni, F., Rothvoß, T., Schäfer, G.: Approximating connected
facility location problems via random facility sampling and core detouring. In:
SODA, pp. 1174–1183 (2008)

4. Erdős, P., Spencer, J.: Probabilistic methods in combinatorics. Academic Press,
London (1974)

5. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. System Sci. 69(3), 485–497 (2004)

6. Garg, N., Gupta, A., Leonardi, S., Sankowski, P.: Stochastic analyses for online
combinatorial optimization problems. In: SODA, pp. 942–951 (2008)

7. Garg, N., Khandekar, R., Konjevod, G., Ravi, R., Salman, F.S., Sinha, A.: On
the integrality gap of a natural formulation of the single-sink buy-at-bulk network
design problem. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081,
pp. 170–184. Springer, Heidelberg (2001)

8. Goemans, M.X., Bertsimas, D.J.: Survivable networks, linear programming relax-
ations and the parsimonious property. Math. Program. 60(2, Ser. A), 145–166
(1993)

Deterministic Sampling Algorithms for Network Design 841

9. Grandoni, F., Italiano, G.F.: Improved approximation for single-sink buy-at-bulk.
In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 111–120. Springer, Heidel-
berg (2006)

10. Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximation via cost-sharing:
A simple approximation algorithm for the multicommodity rent-or-buy problem.
In: FOCS, pp. 606–615 (2003)

11. Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximation via cost sharing:
simpler and better approximation algorithms for network design. J. ACM 54(3),
11 (2007)

12. Gupta, A., Kumar, A., Roughgarden, T.: Simpler and better approximation algo-
rithms for network design. In: STOC, pp. 365–372 (2003)

13. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted sampling: approximation algo-
rithms for stochastic optimization. In: STOC, pp. 417–426 (2004)

14. Gupta, A., Srinivasan, A., Tardos, É.: Cost-sharing mechanisms for network design.
Algorithmica 50(1), 98–119 (2008)

15. Hasan, M.K., Jung, H., Chwa, K.-Y.: Approximation algorithms for connected
facility location problems. J. Comb. Optim. (to appear, 2008)

16. Immorlica, N., Karger, D., Minkoff, M., Mirrokni, V.S.: On the costs and benefits of
procrastination: approximation algorithms for stochastic combinatorial optimiza-
tion problems. In: SODA, pp. 691–700 (2004)

17. Raghavan, P.: Probabilistic construction of deterministic algorithms: approximat-
ing packing integer programs. J. Comput. System Sci. 37(2), 130–143 (1988)

18. Shmoys, D., Talwar, K.: A constant approximation algorithm for the a priori trav-
eling salesman problem. In: IPCO (2008)

19. Shmoys, D.B., Williamson, D.P.: Analyzing the Held-Karp TSP bound: A mono-
tonicity property with application. Inf. Process. Lett. 35, 281–285 (1990)

20. Talwar, K.: The single-sink buy-at-bulk LP has constant integrality gap. In: Cook,
W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 475–486. Springer,
Heidelberg (2002)

21. Williamson, D.P., van Zuylen, A.: A simpler and better derandomization of an
approximation algorithm for single source rent-or-buy. Oper. Res. Lett. 35(6), 707–
712 (2007)

22. Wolsey, L.A.: Heuristic analysis, linear programming and branch and bound. Math.
Prog. Study 13, 121–134 (1980)

Author Index

Acar, Umut A. 29
Afshani, Peyman 41
Agarwal, Pankaj K. 52, 64
Angelopoulos, Spyros 76
Arge, Lars 88
Aronov, Boris 100
Arya, Sunil 112

Babenko, Maxim A. 124
Bachmaier, Christian 136
Barequet, Gill 148
Bein, Wolfgang 161
Bläser, Markus 185
Blelloch, Guy E. 29
Bley, Andreas 198
Bomze, Immanuel 284
Bonifaci, Vincenzo 210
Bonsma, Paul 222
Brunner, Wolfgang 136

Caminiti, Saverio 234
Cederman, Daniel 246
Charles, Denis 259
Chellapilla, Kumar 259
Chen, Danny Z. 52, 271
Chimani, Markus 284
Christodoulou, George 297
Coleman, Tom 308
Csorba, Péter 320

de Berg, Mark 100, 173
Delling, Daniel 332
Djordjevic, Bojan 344
Dorn, Frederic 222

Efrat, Alon 356
Eppstein, David 148
Epstein, Leah 368, 381
Everett, Hazel 805

Farzan, Arash 393
Feige, Uriel 405
Fekete, Sándor P. 356
Felsner, Stefan 417
Finocchi, Irene 234

Fomin, Fedor V. 430
Fournier, Hervé 442

Gaddehosur, Poornananda R. 356
Ganjugunte, Shashidhara K. 52
Geraerts, Roland 1
Gfeller, Beat 454
Goldberg, Andrew V. 466
Goodrich, Michael T. 148
Gottlieb, Lee-Ad 478
Grandoni, Fabrizio 430
Gray, Chris 173
Gudmundsson, Joachim 344
Gulati, Ajay 490

Har-Peled, Sariel 503
Haverkort, Herman 515
Hiller, Benjamin 528
Hurkens, Cor A.J. 320

Ishaque, Mashhood 780
Iwama, Kazuo 161

Jacobs, Tobias 540
Jägersküpper, Jens 553

Kaplan, Haim 565
Karamouzas, Ioannis 1
Karzanov, Alexander V. 124
Kawahara, Jun 161
Kesselman, Alex 577
Khandekar, Rohit 589
Khuller, Samir 601
Király, Zoltán 623
Kirsch, Adam 611
Kleiman, Elena 368
Kogan, Kirill 577
Kortsarz, Guy 589
Koutsoupias, Elias 297
Kratsch, Dieter 430

Labarre, Anthony 635
Lam, Tak-Wah 647
Lammersen, Christiane 660
Lazard, Sylvain 805

844 Author Index

Lee, Lap-Kei 647
Levin, Asaf 381
Lorion, Yann 672
Luan, Shuang 271

Manthey, Bodo 185
Marchetti-Spaccamela, Alberto 210
Mestre, Julián 601
Mirrokni, Vahab 589
Misio�lek, Ewa 52
Mitchell, Joseph S.B. 356
Mitzenmacher, Michael 611
Mølhave, Thomas 88
Mount, David M. 112
Munro, J. Ian 393
Muthukrishnan, S. 503
Mutzel, Petra 284

Nguyen, Thành 684

Okanohara, Daisuke 696
Overmars, Mark 1

Penna, Paolo 708
Pergel, Martin 417
Petreschi, Rossella 234
Pham, Anh 344
Phillips, Jeff M. 64
Polishchuk, Valentin 356
Putz, Oliver 185

Roditty, Liam 478

Sadakane, Kunihiko 696
Salavatipour, Mohammad R. 589
Samoladas, Vasilis 720
Sanders, Peter 732
Saunderson, James 308
Schirra, Stefan 744
Schultes, Dominik 732
Segal, Michael 577
Shafrir, Nira 565
Shakhlevich, Natalia V. 756
Sharir, Micha 52
Shioura, Akiyoshi 756

Singh, Mohit 405
Sitters, René A. 768
Sohler, Christian 660
Stiller, Sebastian 210
Strusevich, Vitaly A. 756
Sul, Seung-Jin 793
Suomela, Jukka 356

Tang, Kai 52
Tangwongsan, Kanat 29
Tardos, Éva 684
Thite, Shripad 100
To, Isaac K.K. 647
Tóth, Csaba D. 780
Tsigas, Philippas 246
Türkoğlu, Duru 29

Valiant, Leslie G. 13
van Walderveen, Freek 515
van Zuylen, Anke 830
Varman, Peter 490
Vaxman, Amir 148
Ventre, Carmine 708
Vetter, Christian 732
Vidali, Angelina 297
Vigneron, Antoine 112, 442
Vredeveld, Tjark 528

Wang, Chao 271
Weibel, Christophe 805
Weinard, Maik 672
Whitesides, Sue 805
Wieder, Udi 611
Williams, Tiffani L. 793
Wirth, Anthony 308
Woeginger, Gerhard J. 320
Wolle, Thomas 344
Wong, Prudence W.H. 647

Xia, Jian 112

Zarrabi-Zadeh, Hamid 817
Zeh, Norbert 88
Zhang, Linqiao 805

	Title Page
	Preface
	Organization
	Table of Contents
	Flexible Path Planning Using Corridor Maps
	Introduction
	The Corridor Map
	The Original Corridor Map Method
	The Improved Approach
	Computing an Explicit Corridor Boundary Representation
	The Boundary Force
	The Steering Force

	Experiments
	Results

	Using Alternative Control Paths
	Conclusions
	References

	A Bridging Model for Multi-core Computing
	Introduction
	The Multi-BSP Model
	Work-Limited Algorithms
	General Lower Bounds
	Optimal Algorithms
	Associative Composition
	Matrix Multiplication
	Fast Fourier Transform
	Sorting

	References

	Robust Kinetic Convex Hulls in 3D
	Introduction
	Robust Motion Simulation on a Lattice
	Algorithm
	Implementation
	Experiments
	Conclusion
	References

	On Dominance Reporting in 3D
	Introduction
	Preliminaries
	Optimal Approximate Levels
	Solving the Dominance Reporting Problem
	The External Memory Model
	References

	Stabbing Convex Polygons with a Segment or a Polygon
	Introduction
	Complexity of \F for a Segment
	Complexity of \F for a Convex k-gon
	Computing Critical Placements
	Computing a Hitting Set
	References

	An Efficient Algorithm for 2D Euclidean 2-Center with Outliers
	Introduction
	Arrangement of Unit Disks
	Well-Separated Disks
	Nearly Concentric Disks
	References

	A Near-Tight Bound for the Online Steiner Tree Problem in Graphs of Bounded Asymmetry
	Introduction
	Preliminaries and Notation

	Outline of the Proof of Theorem 1 and Intuition
	Proof of Theorem 2
	Assignment of Terminals to Their Mates
	Properties of Runs and Labellings
	Bounding the Cost $C_{1,i}$
	Bounding $C_{2,i}$ and $C_{3,i}$
	Towards Bounding Cost $C_{4,i}$
	Adding Up the Individual Contributions

	References

	Cache-Oblivious Red-Blue Line Segment Intersection
	Introduction
	Vertically Sorting Non-intersecting Segments
	Red-Blue Line Segment Intersection
	Short-Long Intersections
	Long-Long Intersections
	References

	The Complexity of Bisectors and Voronoi Diagrams on Realistic Terrains
	Introduction
	Preliminaries
	TheBisector
	The Voronoi Diagram
	Conclusion
	References

	Space-Time Tradeoffs for Proximity Searching in Doubling Spaces
	Introduction
	Overview of Techniques

	Preliminaries
	The Well-Separated Pair Decomposition

	The Region-DAG
	Construction

	Approximate Voronoi Diagrams
	References

	A Scaling Algorithm for the Maximum Node-Capacitated Multiflow Problem
	Introduction
	Preliminaries
	Algorithm Outline
	Scaling Step
	Augmentation Step
	Extension Step

	Running Time
	References

	Linear Time Planarity Testing and Embedding of Strongly Connected Cyclic Level Graphs
	Introduction
	Preliminaries
	Cyclic Level Non-planarity Patterns
	Cyclic Level Planarity Testing and Embedding
	Summary and Open Problems
	References

	Straight Skeletons of Three-Dimensional Polyhedra
	Introduction
	Related Prior Work
	Our Results

	Voxel Polyhedra
	A Volume Proportional-Time Algorithm
	Output-Sensitive Voxel Sweep

	Orthogonal Polyhedra
	Definition
	Complexity Bounds
	Algorithms

	General Polyhedra
	Ambiguity
	A Combinatorial Lower Bound
	The Algorithm

	References

	Randomized Competitive Analysis for Two-Server Problems
	Introduction
	Our Approach
	Three Points on a Line
	Construction of the Finite Set of Triangles
	Concluding Remarks
	References

	Decompositions and Boundary Coverings of Non-convex Fat Polyhedra
	Introduction
	Decomposing the Interior
	Decompositions into Arbitrary Tetrahedra
	Decompositions and Coverings with Fat Tetrahedra

	Covering the Boundary
	Concluding Remarks
	References

	Approximating Multi-criteria Max-TSP
	Multi-criteria Traveling Salesman Problem
	Traveling Salesman Problem
	Multi-criteria Optimization
	New Results

	Outline and Idea
	Decompositions
	Existence of Decompositions
	Finding Decompositions

	Approximation Algorithms
	Multi-criteria Max-ATSP
	Multi-criteria Max-STSP

	Remarks
	References

	An Integer Programming Algorithm for Routing Optimization in IP Networks
	Introduction
	Notation and Preliminaries
	Integer Programming Algorithm
	Master Problem
	Client Problem
	Implementation

	Results
	References

	A Constant-Approximate Feasibility Test for Multiprocessor Real-Time Scheduling
	Introduction
	The Model
	A Feasibility Test
	An FPTAS for Load Estimation
	References

	Tight Bounds and a Fast FPT Algorithm for Directed Max-Leaf Spanning Tree
	Introduction
	Preliminaries
	A Faster FPT Algorithm for k-LOT
	A Fast FPT Algorithm for k-LOB
	Lower Bounds for the Number of Leaves
	Discussion
	References

	Engineering Tree Labeling Schemes: A Case Study on Least Common Ancestors
	Introduction
	Labeling Schemes for Least Common Ancestors
	Experimental Framework
	Experimental Results
	References

	A Practical Quicksort Algorithm for Graphics Processors
	Introduction
	The System Model
	The Algorithm
	Overview
	Detailed Description

	Experimental Evaluation
	Discussion

	Conclusions
	References

	Bloomier Filters: A Second Look
	Introduction
	The Construction
	A 1-Bit Bloomier Filter
	General k-Bit Bloomier Filters
	Mutable Bloomier Filters

	Reducing the Space Utilization
	Full Rank Sparse Matrices over a Finite Field
	The Algorithm

	Bucketing
	References

	Coupled Path Planning, Region Optimization, and Applications in Intensity-Modulated Radiation Therapy
	Introduction
	Unconstrained Coupled Path Planning (UCPP)
	The UCPP Problem Definition and Graph Modeling
	Speeding Up the Shortest Path Computation Using Geometry
	Extension

	Constrained Coupled Path Planning (CCPP)
	Computing the Set of All CCPP Problem Instances
	IMRT Applications
	References

	A New Approach to Exact Crossing Minimization
	Introduction
	TheOocm ILP Formulation
	Variables and Linear Ordering
	Kuratowski Constraints and Correctness of Oocm

	Branch-and-Cut-and-Price Algorithm
	Upper Bounds and Integer Interpretation
	Initial Constraints and Separation
	Combinatorial Column Generation
	Branching on K_5-Constraints

	FurtherRemarks
	Experiments
	References

	A Characterization of 2-Player Mechanisms for Scheduling
	Introduction
	Related Work
	The Characterization of Decisive Mechanisms for 2 Tasks
	The Case of Many Tasks
	Lower Bound for 2 Tasks
	References

	A Local-Search 2-Approximation for 2-Correlation-Clustering
	Introduction
	The 2CC Problem
	Related Work
	History of the 2CC Problem
	Layout of the Paper

	Algorithms to Solve 2CC
	Pick-a-Vertex Type Algorithms
	Local Search
	The PASTA-toss Algorithm
	A Spectral Algorithm
	The PTAS

	PASTA-toss Is a 2-Approximation
	Switching
	Switching-Invariant Algorithms
	Proof That PASTA-toss Is a 2-Approximation

	The PASTA-flip Algorithm
	Removing Bad Cycles
	The PASTA-flip Algorithm

	Experimental Work
	Algorithms Tested
	Datasets
	Results

	Conclusions
	Further Work
	References

	The Alcuin Number of a Graph
	Introduction
	Definitions and Preliminaries
	A Concise Characterization
	Small Boats Versus Big Boats
	An Algorithmic Result
	Hardness Results
	Special Graph Classes
	Chordal Graphs and Trees
	Bipartite Graphs
	Planar Graphs

	Conclusions
	References

	Time-Dependent SHARC-Routing
	Introduction
	Preliminaries
	Models and Basic Algorithms
	Exact Time-Dependent SHARC
	Time-Dependent Preprocessing
	Query

	Experiments
	Time-Dependent Timetable Information
	Time-Dependent Road Networks

	Conclusion
	References

	Detecting Regular Visit Patterns
	Introduction
	Optimally Solving LDS
	Given Offsets and Period Lengths
	Given Period Lengths (Approximate)
	Given Period Lengths (Exact)
	Nothing Given
	Concluding Remarks
	References

	Improved Approximation Algorithms for Relay Placement
	Introduction
	Blobs, Clouds, Stabs, Hubs, and Forests
	Steiner Forests and Spanning Forests with Neighbourhoods

	A 3.11-Approximation Algorithm
	Overview
	Clouds with Few Stabs
	Stitching a Cloud from \myC^{k+}
	Green Relays and Cloud Clusters
	Interconnecting the Clusters
	Analysis: Red and Green Relays
	Analysis: Yellow Relays

	Inapproximability of One-Tier Relay Placement
	References

	Selfish Bin Packing
	Introduction
	The Bin Packing Game
	Related Work and Our Contributions
	The Price of Stability
	The Price of Anarchy
	A Lower Bound: Construction
	An Upper Bound

	Bounding the SPoA and the SPoS
	Summary and Conclusions
	References

	Improved Randomized Results for That Interval Selection Problem
	Introduction
	The Algorithm
	Barely Random Algorithms

	The Lower Bound
	Concluding Remarks
	References

	Succinct Representations of Arbitrary Graphs
	Introduction
	Related Work

	Preliminaries
	Space Lower Bounds
	Lower Bound for the Moderate Case
	Lower Bound for the Sparse Case

	Upper Bound: The Representation
	The over Half Full Case
	The Dense Case
	The Moderate Case
	The Sparse Case

	Conclusion and Final Remarks
	References

	Edge Coloring and Decompositions of Weighted Graphs
	Introduction
	Previous Work
	Bipartite Versus General Graphs

	Edge-Coloring Weighted Bipartite Graphs
	Partitioning Bipartite Graphs
	References

	The Complexity of Sorting with Networks of Stacks and Queues
	Introduction
	Communicating Stacks
	The Upper Bound
	Lower Bounds
	Two Communicating Stacks

	General Networks
	Strong Substructures
	Almost Acyclic Networks
	Sequences of Looped Queues and Doublestacks

	Conclusion
	References

	Faster Steiner Tree Computation in Polynomial-Space
	Introduction
	Steiner Tree Via Steiner Separators
	A Refined Algorithm

	Branching on Small-Load Terminals
	Analysis
	A Refined Measure
	An Exponential-Space Algorithm

	References

	Fitting a Step Function to a Point Set
	Introduction
	Problem Formulations
	PreviousWork
	Our Results

	A Simple Optimal Algorithm for MIN-DIST with Unsorted Input
	Searching in a Sorted Matrix
	A Decision Algorithm for Sorted Input
	Optimization Algorithm

	Frederickson’s Algorithm for Min-Max Partitioning
	A Linear Time Algorithm for MIN-DIST with Sorted Input
	MIN-DIST withWeighted Inputs
	Handling Outliers
	References

	Faster Swap Edge Computation in Minimum Diameter Spanning Trees
	Introduction
	Terminology
	The Quality of a Swap Edge $f for a Failing Edge $e
	Best Swap Edges for Failing Diameter Edges
	Using Virtual Swap Edges

	Swap Edges for Failing Non-diameter Edges
	Relations between Groups for Different Non-diameter Edges
	Our Data Structure and Our Inductive Approach
	Transforming Non-tree Edges to Backedges

	References

	The Partial Augment–Relabel Algorithm for the Maximum Flow Problem
	Introduction
	Definitions and Notation
	The Push-Relabel Method
	PAR Algorithm
	Experimental Results
	Experiments with DIMACS Families
	Vision Instances

	Concluding Remarks
	References

	An Optimal Dynamic Spanner for Doubling Metric Spaces
	Introduction
	Hierarchical Partitions and Spanners
	Spanner Construction
	Motivation: An Incremental Spanner
	Step 1. Pruning the Spanning Tree
	Step 2. Creating a Better Hierarchy
	Step 3. A Spanner for the Intermediate Hierarchy
	Step 4. A Spanner for the Final Hierarchy

	Analysis of Degree for the Final Spanner
	Structural Lemma
	Proof of Low Degree

	References

	RFQ: Redemptive Fair Queuing
	Introduction
	Relation to PreviousWork
	Model and Definitions
	Scheduling Algorithm RFQ
	Proof of Correctness
	RFQ as a Pure Bandwidth Allocator

	Conclusions
	References

	Range Medians
	Introduction
	The Lower Bound
	Our Algorithm
	A Slow Algorithm
	Our Main Algorithm

	Concluding Remarks
	References

	Locality and Bounding-Box Quality of Two-Dimensional Space-Filling Curves
	Introduction
	Describing and Using Space-Filling Curves
	Quality Measures for Space-Filling Curves
	Lower Bounds
	Approximating the Worst-Case Measures
	Computational Results
	Conclusions
	References

	Probabilistic Analysis of Online Bin Coloring Algorithms Via Stochastic Comparison
	Introduction
	Problem Definition and Markov Chain Models
	Markov Chain Models
	A New Comparison Criterion
	Further Preliminaries

	\GreedyFit Is Better Than \OneBin: \MinMaxBC
	\GreedyFit Is Better Than \OneBin: \MinSumBC
	Concluding Remarks
	References

	On the Complexity of Optimal Hotlink Assignment
	Introduction
	Proof of NP-Hardness
	Hotlink Assignment to Leaves
	Conclusion
	References

	Oblivious Randomized Direct Search for Real-Parameter Optimization
	Introduction
	Related Work
	“Oblivious Randomized Direct Search” and its Analysis
	Discussion and Conclusion
	References

	Path Minima in Incremental Unrooted Trees
	Introduction
	Highlights of the Data Structure
	Incremental Trees and Partial Incremental Trees
	A Data Structure for Rooted Trees
	An $O(n+m\alpha(m,n)^2)$ Structure for Unrooted Trees
	References

	Improved Competitive Performance Bounds for CIOQ Switches
	Introduction
	ModelDescription
	β-Preemptive Greedy Switch Policy
	Analysis
	Conclusions
	References

	Two-Stage Robust Network Design with Exponential Scenarios
	Introduction
	PreviousWork
	Our Results

	A Constant Approximation for Robust Steiner Tree Problem
	The Algorithm
	The Analysis

	A Logarithmic Approximation for Robust Steiner Forest Problem
	Reduction to the Tree Metric

	APX-Hardness of the Robust Min-Cut Problem
	References

	An Optimal Incremental Algorithm for Minimizing Lateness with Rejection
	Introduction
	Alternative Problem Formulation and Notation
	An Incremental Solution
	Analysis
	Implementation
	Divide and Conquer
	Fast Incremental

	References

	More Robust Hashing: Cuckoo Hashing with a Stash
	Introduction
	Standard Cuckoo Hashing
	Generalized Cuckoo Hashing
	Some Simple Experiments
	Conclusion
	References

	Better and Simpler Approximation Algorithms for the Stable Marriage Problem
	Introduction
	Men Have Strictly Ordered Lists
	Hospitals/Residents with Strictly Ordered Residents’ Lists
	General Stable Marriage
	OpenProblems
	References

	Edit Distances and Factorisations of Even Permutations
	Introduction
	Notation and Definitions
	Basic Permutation Group Theory
	Genome Rearrangements and Prefix Operations

	A General Lower Bounding Technique
	Recovering Previous Results
	An Improved Lower Bound on the Prefix Transposition Distance
	A Tighter Lower Bound on the Prefix Transposition Diameter
	Experimental Results
	Conclusions
	References

	Speed Scaling Functions for Flow Time Scheduling Based on Active Job Count
	Introduction
	Definitions and Notations
	Clairvoyant Scheduling with Arbitrary Release Times
	Analysis of SRPT-AJC for the Infinite Speed Model
	Analysis of SRPT-AJC for the Bounded Speed Model

	Non-clairvoyant Scheduling of Batched Jobs
	Comparing WRR-AJW∗ against HDF-AJW∗
	Analysis of SJF-AJC∗
	Analysis of HDF-AJW∗

	References

	Facility Location in Dynamic Geometric Data Streams
	Introduction
	Preliminaries
	Construction of a Good Estimator
	Randomized Algorithm
	Streaming Algorithm
	References

	The Effects of Local Randomness in the Adversarial Queueing Model
	Introduction
	Proof of Instability
	First Phase
	Second Phase
	Third Phase
	Repeating the Three Phases

	Conclusion
	References

	Parallel Imaging Problem
	Introduction
	The Parallel Metric Labeling Problem
	The Problem with Linear Metric Is Solvable
	Constant Approximation Via Local Search
	References

	An Online Algorithm for Finding the Longest Previous Factors
	Introduction
	Preliminaries
	Rank and Select
	Range Minimum Query
	Suffix Arrays, BWT, FM-Index
	Hgt Array

	Algorithm
	B Update
	H Update
	Simulating the Window Buffer
	Output LZ-Factorization

	Overall Analysis
	Experiments
	Conclusion
	References

	Collusion-Resistant Mechanisms with Verification Yielding Optimal Solutions
	Introduction
	Our Contribution and RelatedWork
	Preliminaries

	A Class of Optimal Algorithms
	Collusion-Resistant Mechanisms for Single-Parameter Agents
	Sufficient Conditions for c-Truthfulness

	Truthful Mechanisms for Arbitrary Bounded Domains
	Arbitrary Domains as Coalitions of Single-Parameter Agents
	The Mechanism and Its Analysis

	References

	Improved BDD Algorithms for the Simulation of Quantum Circuits
	Introduction
	Related Work
	Binary Decision Diagrams
	Quantum Simulation

	Symbolic Representation of Quantum Operators
	Powermatrices and Powervectors
	Algebraic Construction of Quantum Operators
	Controlling from Below

	Algorithms for Quantum Simulation
	Boolean Projectors
	Applying QIT Operators
	Implementation Issues for MTBDD Algorithms

	Empirical Study
	Discussion
	Conclusions
	References

	Mobile Route Planning
	Introduction
	Contraction Hierarchies
	External-Memory Graph Representation
	Experiments
	Discussion
	Related Work
	Future Work

	References

	How Reliable Are Practical Point-in-Polygon Strategies?
	Introduction
	Related Work
	Experimental Setup
	Experimental Results
	Reliability and Numerical Stability
	Conclusions
	References

	Fast Divide-and-Conquer Algorithms for Preemptive Scheduling Problems with Controllable Processing Times – A Polymatroid Optimization Approach
	Introduction
	Divide-and-Conquer Technique for Polymatroid Optimization
	Single Machine with Arbitrary Release/Due Dates
	Identical Parallel Machines with the Same Release Dates and Different Due Dates
	Uniform Parallel Machines with the Same Release/Due Dates
	The First Algorithm
	The Second Algorithm

	References

	Approximability of Average Completion Time Scheduling on Unrelated Machines
	Introduction
	Approximability
	Proof of Theorem 1
	Release Dates
	Improving the Approximation Ratio

	Inapproximability
	References

	Relative Convex Hulls in Semi-dynamic Subdivisions
	Introduction
	Applications
	Related Results

	Tools
	Barriers and Geometric Partition Trees
	Data Structure
	Updates and Queries

	References

	An Experimental Analysis of Robinson-Foulds Distance Matrix Algorithms
	Introduction
	Computing the Robinson-Foulds Matrix
	Bipartition Representations
	HashRF
	PGM-Hashed

	Our Collection of Evolutionary Trees
	Overview
	Motivation for Using Artificial Trees
	Creating Artificial Tree Collections

	Experimental Results
	Conclusions and Future Work
	References

	On the Size of the 3D Visibility Skeleton: Experimental Results
	Introduction
	The Visibility Skeleton of a Set of Polytopes
	Algorithm and Implementation
	Experiments
	Experimental Results and Analysis

	Conclusion
	References

	An Almost Space-Optimal Streaming Algorithm for Coresets in Fixed Dimensions
	Introduction
	Preliminaries
	Algorithm for Fat Substreams
	The Main Algorithm
	Analysis
	Reducing Update Time
	Applications
	Conclusions
	References

	Deterministic Sampling Algorithms for Network Design
	Introduction
	Derandomization of Sample-Augment Algorithms
	Single Source Rent-or-Buy
	A $Priori$ Traveling Salesman Problem withIndependent Decisions
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

