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Abstract. From the biological view, each component of a temporal sequence is 
represented by neural code in cortical areas of different orders. In whatever order 
areas, minicolumns divide a component into sub-components and parallel process 
them. Thus a minicolumn is a functional unit. Its layer IV neurons form a network 
where cell assemblies for sub-components form. Then layer III neurons are trig-
gered and feed back to layer IV. Considering the delay, through Hebbian learning 
the connections from layer III to layer IV can associate a sub-component to the 
next. One sub-component may link multiple following sub-components plus it-
self, but the prediction is deterministic by a mechanism involving competition and 
threshold dynamic. So instead of learning the whole sequence, minicolumns se-
lectively extract information. Information for complex concepts are distributed in 
multiple minicolumns, and long time thinking are in the form of integrated dy-
namics in the whole cortex, including recurrent activity. 

Keywords: Sequence prediction; Columnar architecture; Neocortex; Connec-
tionism; Associative memory. 

1   Introduction 

Most human and animal learning processes can be viewed as sequence learning. Sun 
and Giles summarize problems related to sequence learning into four categories: se-
quence prediction, sequence generation, sequence recognition, and sequential decision 
making [1]. The four categories are closely related [1], and sequence prediction is 
arguably the foundation of the other three. Sequence learning can be touched by vari-
ous disciplines, while typically it deals with sequences of symbols and is applied to 
language processing. In this problem, a temporal pattern is defined as a temporal 
sequence and each static pattern constituting it is defined as a component (Wang and 
Arbib, [2]). Because of the intrinsic complexity of language, a component usually 
cannot be determined solely by the previous component, but by a previous sequence 
segment defined as context [2]. To learn complex sequences, a short-term memory 
(STM) at least of the maximum degree of these sequences is inevitable. And at least 
one context detector is assigned to each context. So according to the model proposed 
by Wang and Yuwono in 1995 [3][4], a neural network with 2m+(n+1)r neurons (m 
context sensors, m modulators, n terminals each with a STM of length r) can learn an 
arbitrary sequence at most of length m and degree r, with at most n symbols. Starzyk 
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and He proposed a more complex model with hierarchical structure in 2007 [5]. To 
learn a sequence of length l with n symbols, the primary level network requires 
3nl+2n+2l+m neurons, where m is for the number of output neurons for the next hier-
archical level network (equals the number of symbols in the next level), and the total 
number of neurons should include all hierarchical levels [5]. Such expensive cost 
makes the application of sequence learning undesirable. 

Another problem is if we expand the discipline from language to others, for exam-
ple vision, the input is nearly a continuous time temporal sequence with continuous 
value components, as the time interval is in milliseconds and thousands of neurons are 
involved for the primary visual representation. This leads to an extremely large sym-
bol set, and extremely long sequence to be learn even within a few minutes. So it is 
obviously impossible to take the traditional sequence learning method aiming at re-
membering the whole sequence and the relationships from each context to its corre-
sponding component. 

So we have to think out other methods to solve these problems. And there is surely 
an answer, as the guarantee is just the existence of us ourselves. We do read piles of 
articles and indeed learn something from them. We receive tremendous amount of 
information from our sense organs throughout our lives, and even at the last moment 
of our life, we can recall some scenes in our earliest life stage. Obviously, what’s 
important is not only how to learn, but also what to learn. This article touches se-
quence learning from a different viewpoint—how to pick up useful information from 
the input sequences and store it in an organized way. This is defined as “information 
extraction”. Our idea is to solve this problem by studying the biological architecture 
of the nervous system. A mechanism for information extraction is hypothesized based 
on the hierarchical and columnar organization of the cerebral cortex in part 2. A neu-
ral network is built to simulate the function of a single minicolumn according to this 
hypothesis in part 3. Part 4 gives the conclusion and summarizes the significance of 
this model.  

2   The Mechanism for Information Extraction 

2.1   The Hierarchical Structure of Neocortex and Abstraction 

Take the visual pathway as example. Light enters the eyes and is transduced to elec-
trical signal in retina. The neural signal is transferred to primary visual areas via 
thalamus. Then information is submitted to secondary visual areas. For forming de-
clarative memory, further transfer is to medial temporal lobe memory system and 
back to higher order cortex areas [6][7][8]. Though the mechanism of declarative 
memory formation is not completely clear yet, it is widely accepted that forming 
abstract concepts requires high level integration of information. Along this pathway 
the integration level rises, so is the abstraction level. If we describe this pathway 
mathematically as a vector series V1, V2,…,Vn, where Vi is a Ni elements 0-1 vector, 
then a component of a temporal sequence is represented by a assignment to each vec-
tor in this vector series, instead of only one vector. Notice the higher footnote i is, the 
higher abstraction level Vi has. And Vi depends onVi-1 ( i=2, 3,…n). This structure is 
somewhat an analog of Starzyk and He’s hierarchical model [5], in the difference that 
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it deals with real neural code instead of symbols, and much more complex integration 
(computation) is applied between two hierarchical levels. 

2.2   The Columnar Organization of Neocortex and PDP 

The neocortex is horizontally divided into 6 layers. Layer IV contains different types 
of stellate and pyramidal cells, and is the main target of thalamocortical and intra-
hemispheric corticocortical afferents. Layers I through III are the main target of inter-
hemispheric corticocortical afferents. Layer III contains predominantly pyramidal 
cells and is the principal source of corticocortical efferents. Layer V and VI are effer-
ents to motor-related subcortical structures and thalamus separately [9]. Vertically 
neocortex is columnar organized with elementary module minicolumn. The minicol-
umn is a discrete module at the layers IV, II, and VI, but connected to others for most 
neurons of layer III [10].  

Considering the vector series V1, V2,…,Vn, vector Vi is divided into sub-vectors in 
corresponding minicolumns for any i. Each sub-vector represents a sub-component, 
and is processed independently in its minicolumn. Minicolumns transmit processed 
information to the next hierarchical level minicolumns. This accords with the idea of 
“Parallel Distributed Processing” (PDP) proposed by Rumelhart and McClelland 
[11][12].  

2.3   Minicolumn Architecture 

A model for the structure of a minicolumn is shown in figure 1. In this model, all py-
ramidal cells and stellate cells in layer IV of the minicolumn form a symmetrical Heb-
bian network. As neurons involved are limited and closely packed, we can assume any 
neuron is connected to all other neurons through short axons, whose transmission delay 
can be omitted. If the pyramidal cells connect to pyramidal cells directly, the connec-
tions are excitatory. If the pyramidal cells connect to other pyramidal cells through 
stellate cells, the connections are inhibitory. Thus this network contains both excitatory 
and inhibitory connections. Typical Hebbian learning in this network will form cell 
assemblies [13]. Each cell assembly stands for a sub-component. 

Signals are transmitted from layer IV pyramidal cells to layer III pyramidal cells 
through long axons. As layer III contains predominantly pyramidal cells, the connec-
tions are mainly excitatory. Thus layer III is not an idea place for forming cell assem-
blies, as without inhibitory connections two cell assemblies will intermingle with each 
other and become one if only they have very small overlapping. The representations 
in layer III are just corresponding to the cell assemblies in layer IV, and we can as-
sume no overlapping in layer III, as this can be automatically achieved through a 
winner-take-all (WTA) mechanism also used in Wang and Arbib’s model [2]. Signals 
are transmitted from layer III through long axons either to other minicolumns, or back 
to layer IV. 

2.4   Association in Minicolumns during Learning 

What’s important is the transmission from layer III back to layer IV (the feedback). 
Typically the function of a feedback is thought for refinement or synchronization, 
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Fig 1. Structure of a minicolumn. Focusing on layer IV (afferent) and layer III (efferent). Py-
ramidal cells and stellate cells in layer IV connect with each other through short axons, forming 
a network with both excitatory and inhibitory synapses. Layer IV pyramidal cells transmit 
signals to layer III pyramidal cells through long axons. Layer III pyramidal cells may transmit 
signals to layer IV pyramidal cells of other minicolumns through long axons, or transmit sig-
nals back to its own layer IV pyramidal cells through long axons, forming feedback loop (indi-
cated by the thick lines). 

for example in the model proposed by Korner etc. [14]. But in our view, the feedback 
loop along with the transmission delay is the base for associating a sub-component to 
the next sub-component. Notice the involved two sub-components are not input at the 
same time, but Hebbian learning based on the synapse plasticity requires the two 
involved neurons exciting at the same time [13][15-17]. This is solved by the trans-
mission delay of this feedback loop. The synapse modification can only happen in the 
synaptic junction, by the changes of the amount of neurotransmitter released by the 
presynaptic neuron, or the number of postsynaptic receptors [15-17].  Suppose the 
delay from the excitation of layer IV pyramidal cell bodies (dendrites) to the excita-
tion of layer III pyramidal cell axon terminals is Δt, and the lasting time of sub-
component A and sub-component B are t1 and t2 respectively (t1, t2>>Δt), B follows 
A. Then from time 0 to Δt, no Hebbian learning happens at the synaptic junctions 
between layer III pyramidal cell axons and layer IV pyramidal cell bodies (dendrites), 
for only the later is exciting. From Δt to t1, the Hebbian learning associates sub-
component A with itself, denoted as learning the ordered pair (A,A). From t1 to t1+Δt , 
the layer III pyramidal cell axon terminals still represent sub-component A, while the 
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layer IV pyramidal cell bodies (dendrites) already code for sub-component B. Hence 
the association is (A,B). From t1+Δt to t2, the association will be (B,B). 

2.5   Competition and Threshold Dynamic during Retrieval 

Suppose A, B, C, B, D, E, A, B, F, D, E, C, A, B denotes a sequence composed of 
sub-components of a temporal sequence in a minicolumn. Then after learning (A,B), 
(B,C), (B,D), (B,F), (C,B), (C,A), (D,E), (E,A), (E,C), (F,D)  plus (A,A), (B,B), 
(C,C), (D,D), (E,E), (F,F) are learned. Now input A (lasting time t> Δt ). The cell 
assembly for A in layer IV is evoked. From Δt to t, the feedback from layer III try to 
evoke both A and B. But A is exciting, supported by the exterior input. It will inhibit 
the exciting of cell assembly for B. Until the exterior input ceases at time t, the only 
remaining stimulation is from layer III, and this stimulation will last exactly Δt. Be-
cause cell assembly for A has excited, the threshold of its neurons raises, thus it can-
not be evoked again for quite a while (at least Δt). Thus cell assembly for B finally 
gets its chance to excite. After another Δt cell assembly for B ceases exciting and 
cannot be evoked again, and layer III feedback try to evoke three cell assemblies for 
C, D, F separately. They all want to excite and inhibit the other two, the competition 
leads to nothing excited (more accurately, the three may excite as a “flash” for inhibi-
tion is triggered by exciting, but this “flash” is so short compared with Δt and disap-
pears without further effect). Hence from the exterior performance of the minicolumn, 
only (A,B), (D,E), (F,D) are learned. 

2.6   Summary 

By the mechanism described above, an input temporal sequence is understood at dif-
ferent abstraction level in different hierarchical levels of the neocortex. In each hier-
archical level, the components (temporal sequences) are divided into sub-components 
(sub-temporal sequences) by minicolumns. Each minicolumn only extracts the deter-
ministic feature of the sub-temporal sequences: if sub-component A is always fol-
lowed by sub-component B and no other sub-components, the minicolumn learns A 
predicts B. 

3   The Neural Network Simulation of the Minicolumn 

We only built a small network containing 10 layer IV pyramidal cells and 10 layer III 
pyramidal cells for demonstration. Of course the network can be expanded to hun-
dreds of neurons to simulate the real minicolumn. Let binary arrays F[10] and T[10] 
denote the layer IV neurons and layer III neurons separately. For simplicity, we let 
T[i] = F[i], i=0, 1,…,9, though in real case the representations in layer III for cell 
assemblies in layer IV can be quite different and involve different numbers of neu-
rons. Thus a cell assembly 1111100000 is also represented 1111100000 in layer III in 
our network. Array Thresh[10] denotes the thresholds of the layer IV neurons, whose 
value is 1 initially and 21 after exciting, but returns to 1 after Δt. Intra[10][10] is the 
learning matrix for association among layer IV neurons, whose value is in [-300, 30]. 
(Negative means inhibitory. As one pyramidal cell can inhibit another through nu-
merous stellate cells, the inhibitory connection is thought to be much stronger.)  
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Inter[10][10] is the learning matrix for association from layer III to layer IV, whose 
value is in [0,2]  (only excitatory, thus the effect of layer III pyramidal cells on layer 
IV pyramidal cells are not as strong as it of layer IV pyramidal cells on themselves ). 

The sequence learning process takes discrete steps, and set Δt = 1 step (the delay in 
a minicolumn cannot be very long).  An input sequence is noted as A[10](a), 
B[10](b), C[10](c),…where A[10], B[10], C[10] are 10 element 0-1 vectors, and a, b, 
c are integers for the number of steps which the state lasts. At one step when the input 
is I[10](n) ( n>0 is the remaining time this state lasts), learning starts with setting F[i] 
= I[i]. The learning rule for updating intra[i][j] is 

 intra[i][j]=(intra[i][j]>=0) (F[i]F[j] 0.5 (30-intra[i][j])-F[i]F[j] 3)+

(intra[i][j]<=0) (F[i]F[j] 30-F[i]F[j] 0.5 (300 intra[i][j]))+intra[i][j]

× × × ×

× × × × +
 

The learning rule for updating inter[i][j] is  

 inter[i][j]=T[i]F[j] 0.5 (2-inter[i][j])+inter[i][j]× ×  

At each step, after updating both learning matrixes, the signal transmission from layer 
IV to layer III is denoted by T[i] = F[i]. The threshold refreshing rule is Thresh[i] = 
1+20F[i] . Finally set I[10](n) = I[10](n-1), and continue (when n = 1, the next state is 
loaded in). 

During retrieval, still suppose the stimulation is I[10](n). Retrieving starts with set-
ting F[i]=I[i]. The evoked neurons is determined by  
 

j i j

F[i]=1 ( F[j]intra[j][i] T[j]inter[j][i] thresh[i])
≠

× + >∑ ∑  

Notice in each step we need to repeat the above calculation until F[i] no longer 
changes (as newly evoked neurons can in turn evoke others). Then the result is the 
final evoked cell assembly. And let T[i] = F[i] simulating the information transmis-
sion. Refresh threshold by Thresh[i] = 1+20F[i]. Finally set I[10](n) = I[10](n-1) and 
continue (when n= 1, set I[i] = 0 and n = 1).  

Now look at an example. The temporal sequence 1111000000(16), 0000000001(24), 
0000111000(13), 1111000000(7), 0000000110(19) is input for 10 or more times 
(enough repeating times are necessary as the inter-state association can only happen 
once when one state changes to another). After learning, intra[10][10] approximates 

 

30 30 30 30 300 300 300 300 300 300

30 30 30 30 300 300 300 300 300 300

30 30 30 30 300 300 300 300 300 300

30 30 30 30 300 300 300 300 300 300

300 300 300 300 30 30 30 300 300 300

300 300 300 300 30 30 30 300 300 300

300

− − − − − −
− − − − − −
− − − − − −
− − − − − −

− − − − − − −
− − − − − − −
− 300 300 300 30 30 30 300 300 300

300 300 300 300 300 300 300 30 30 300

300 300 300 300 300 300 300 30 30 300

300 300 300 300 300 300 300 300 300 30

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟− − − − − −
⎜ ⎟

− − − − − − − −⎜ ⎟
⎜ ⎟− − − − − − − −
⎜ ⎟⎜ ⎟− − − − − − − − −⎝ ⎠

 

Inter[10][10] approximates 
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2 2 2 2 0 0 0 2 2 2

2 2 2 2 0 0 0 2 2 2

2 2 2 2 0 0 0 2 2 2

2 2 2 2 0 0 0 2 2 2

2 2 2 2 2 2 2 0 0 0

2 2 2 2 2 2 2 0 0 0

2 2 2 2 2 2 2 0 0 0

0 0 0 0 0 0 0 2 2 0

0 0 0 0 0 0 0 2 2 0

0 0 0 0 2 2 2 0 0 2

⎛ ⎞
⎜ ⎟
⎜ ⎟
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⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

Four cell assemblies 1111000000, 0000111000, 0000000110, 0000000001 are 
formed. The extracted information is (0000000001, 0000111000), and (0000111000, 
1111000000), thus input 0000000001 will return sequence 0000111000, 1111000000. 
0000000110 retrieves nothing as it is associated to nothing. 1111000000 retrieves 
nothing either, but it’s because it is associated to both 0000000110 and 0000000001.  

In this neural network, it is required that cell assemblies do not overlap. IF two cell 
assemblies in layer IV overlap, their representations in layer III also share a common 
part. This common part will try to evoke both cell assemblies no matter which of 
them causes this, leading to undesired results. This can be solved if another feed for-
ward learning is added for constructing the representations for cell assemblies in layer 
III, ensuring no overlapping (for example, the WTA mechanism used in Wang and 
Arbib’s model [2]). 

Rarely oscillation may happen during retrieval. This requires the input sequence it-
self ends with repeating circles, like the sequence A, B, C, D, C, D, C. Thus after 
learning this sequence, input C or D will lead to the oscillation with C and D alterna-
tively. But this situation is really rare as if the above sequence doesn’t end with C or 
D, for example A, B, C, D, C, D, C, A. Then C will not retrieve D (as it is associated 
to both D and A), and no oscillation can happen. 

4   Conclusion and Significance 

The model proposed in this article deals with the sequence learning problem from a 
different viewpoint: extracting information. Adopting this idea, what’s important is 
what information to extract rather than how to remember all information. The most 
significant advantage of this idea is that the memory capacity required is not propor-
tional to the sequence length and degree, but to the useful information (knowledge) 
contained in the sequence. Multiple different sequences may contain common knowl-
edge. The common knowledge appears as the same sub-sequences in the certain mini-
columns of certain hierarchical levels. For example, a stone, a tire, or a basket ball roll-
ing down a hill appear to be quite different scenes if considering every detail, but all of 
them are abstracted as the process of an round object rolling down a slope in physics. 
This is because the essence of abstraction is the process of extracting important common 
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features while omitting the other unimportant details. This process is fulfilled in our 
model by the complex connections among minicolumns of different hierarchical levels, 
which lead to complicated neural computation. Naturally, along with the increase of 
abstraction level, the knowledge is more and more general and the amount of informa-
tion is reduced, represented by decrease of the variation of sequences. It is arguable that 
in the high enough hierarchical levels, only few sequences repeat frequently. 

The learning is by forming associative memory in minicolumns. Each minicolumn 
associates a sub-component to itself and its immediate follower. But through competi-
tion and threshold dynamic, A evokes B if and only if B is the only possible follower 
of A. This means a minicolumn doesn’t consider a temporal sequence’s degree. Every 
temporal sequence is treated as a simple sequence. Thus a minicolumn can remember 
only a small portion of the sequence by itself, seemingly useless compared with Wang 
and Yuwono’s model [3][4] and Stazyk and He’s model [5]. But the advantage is that 
the neural network for a minicolumn is extremely simple, as described in part 3, with 
much less cost than Wang’s or Stazyk’s models. Thus it is very proper for being a 
functional unit. The complex tasks are hoped to be accomplished by the whole net-
work composed of millions of such functional units. 

Typically a sub-component in a minicolumn can only retrieve one or two following 
sub-components, and then this minicolumn ceases. But the retrieved sub-components 
are submitted to higher level minicolumns, and may trigger the retrieving in them. 
Repeating this activity, and by possible crosses or loops (recurrent activity), a sub-
component might trigger unlimited retrieving. This process must be consciously con-
trolled by concentration (a mysterious cognitive function not discussed in this article). 

Finally, the model has the following important features: 

1. higher hierarchical level minicolumns tend to learn more than lower hierarchical 
level minicolumns, as in high abstraction level sequence variation is reduced. 

2. two seemingly completely different objects may retrieve the same thing, if only 
they share some common feature and the concentration is on this common fea-
ture. For example, an elephant and the glacier both may retrieve the concept of 
“huge”. 

Acknowledgments. Thank Bertram E. SHI of dept of electronic & computer engi-
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