
Openproof - A Flexible Framework for
Heterogeneous Reasoning

Dave Barker-Plummer1, John Etchemendy1, Albert Liu1, Michael Murray1,
and Nik Swoboda2

1 Stanford University
Stanford, CA, 94305-4101, USA

2 Universidad Politécnica de Madrid
Boadilla del Monte, Madrid, 28660, Spain

Abstract. In this paper we describe the Openproof heterogeneous rea-
soning framework. The Openproof framework provides support for the
implementation of heterogeneous reasoning environments, i.e., environ-
ments for writing arguments or proofs involving a number of different
kinds of representation. The resulting environments are in a similar spirit
to our Hyperproof program, though the Openproof framework goes be-
yond Hyperproof by providing facilities for the inclusion of a variety of
representation systems in the same environment. The framework serves
as the core of a number of widely used educational programs including
Fitch.

1 Introduction

In [1,2,3] our group pioneered the notion of formal heterogeneous deduction:
formally specified inference systems in which different representations are used
in concert to reach conclusions. This work resulted in the implementation of
Hyperproof [4], the first proof checker for a heterogeneous logic.

Hyperproof employs two representations: the sentential representation of first-
order logic (FOL), and a diagrammatic representation consisting of blocks on a
checkerboard. Our theory, however, is general and does not depend on these
two specific representations. The Openproof framework abstracts over the spe-
cific representations that are employed in the deduction. The framework can
be used to create heterogeneous (and homogeneous) proof environments for any
combination of representations by “plugging in” implementations of the spe-
cific representations. Aspects of this general architecture have been described
in [5,6,7,8] though this is the first description of the software implementation.

The Openproof framework is in use as the core of the Fitch application for
homogeneous deduction in FOL [9]. Additional Openproof modules are currently
being built for Block’s World, Euler/Venn [10], Position, and Coincidence Grid
diagrams [11], and for sentences in plain text. Here we will briefly describe the
different components of the Openproof framework.

G. Stapleton, J. Howse, and J. Lee (Eds.): Diagrams 2008, LNAI 5223, pp. 347–349, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

348 D. Barker-Plummer et al.

2 Framework

The Openproof framework consists of three tiers:

– Kernel – the Openproof kernel provides services including the loading of
components, saving and restoring files, and interfacing with the operating
system and Java environment.

– Tools – the second tier consists of tool kits which can be used to build mod-
ules and provide intra-module and inter-module communication. Examples
of tools provided by the framework include a tool kit to build basic diagram-
matic editors, and facilities for integrating changes in representations into a
proof.

– Modules – the third tier provides component-level interfaces for specifying
the particular kinds of modules that can be combined into a heterogeneous
proof environment. There are two kinds of modules, representation mod-
ules and proof modules. Representation modules have a common structure
consisting of:

• Representations in one of two flavors: sentential and diagrammatic.
• Editors to enable users to construct and manipulate those representa-

tions.
• Inference engines to support two kinds of reasoning: homogeneous and

heterogeneous. (Homogeneous engines involve only one representation,
while heterogeneous engines involve more than one.)

Proof modules also have a common structure consisting of:
• Editors to allow users to build and change proofs.
• Proof engines to support the logic behind the proof system.

Thus, the Openproof framework provides core services to allow the automatic
generation of heterogeneous reasoning systems. At the moment the framework
does not provide support for the construction of single proof environments in-
volving more than one proof system at the same time, but this is a possibility
which opens a number of interesting theoretical and practical questions.

2.1 The Role of interlingua

By design, the framework does not have a single common language into which
all representations in the system must be translated in order to perform or check
inferences, i.e., an interlingua. As discussed in [2], it is our belief that heteroge-
neous rules of inference need not be defined upon the basis of a translation into
an interlingua. Following this philosophy gives greater latitude to module design-
ers when thinking about the design of new components. In general, not requiring
an interlingua simplifies the design of homogeneous rules of inference (as they
can be defined directly from one instance of a representation system to another
without having to pass through a second kind of representation), and allows the
possibility for a range of heterogeneous rules to co-exist simultaneously.

While we do not require the use of interlingua, the framework supports the
partial or total use of implicit and explicit interlingua in particular heterogeneous

Openproof - A Flexible Framework for Heterogeneous Reasoning 349

systems. By implicit, we mean the use of an interlingua to define heterogeneous
rules of inference (a use which is transparent to the reasoner). For example, when
defining rules of inference in an Euler diagram module, internally the rules could
translate the Euler diagram into a Venn diagram and then rely upon already
defined Venn rules. By explicit, we mean the use of a single representation as
the “go-between” for a number of others. An example of this would be a system in
which exchanging information between any two different representations requires
translating the first into FOL and then translating from FOL into the second.

3 Conclusion

The Openproof framework will serve as a tool to free researchers interested
in heterogeneous reasoning systems from many of the mundane tasks involved
in developing such systems and thereby allow them to focus on the design of
individual representations and heterogeneous relations between those modules.

References

1. Barwise, J., Etchemendy, J.: Information, infons and inference. In: Situation The-
ory and Its Applications, pp. 33–78. CSLI Publications, Stanford (1990)

2. Barwise, J., Etchemendy, J.: Heterogeneous logic. In: Logical reasoning with dia-
grams, pp. 179–200. Oxford University Press, New York (1996)

3. Barwise, J., Etchemendy, J.: Visual information and valid reasoning. In: Logical
reasoning with diagrams, pp. 3–25. Oxford University Press, New York (1996)

4. Barwise, J., Etchemendy, J.: Hyperproof. CSLI Publications, Stanford (1994)
5. Barker-Plummer, D., Etchemendy, J.: Visual decision making: A computational

architecture for heterogeneous reasoning. In: Kovalerchuk, B., Schwing, J. (eds.)
Visual and Spatial Analysis: Advances in Data Mining, Reasoning and Problem
Solving, pp. 79–109. Springer, Berlin (2004)

6. Barker-Plummer, D., Etchemendy, J.: A computational architecture for hetero-
geneous reasoning. Journal of Theoretical and Experimental Artificial Intelli-
gence 19(3), 195–225 (2007)

7. Barker-Plummer, D., Etchemendy, J.: Applications of heterogeneous reasoning in
design. Machine Graphics and Vision 12(1), 39–54 (2003)

8. Swoboda, N., Allwein, G.: Modeling heterogeneous systems. In: Hegarty, M.,
Meyer, B., Narayanan, N.H. (eds.) Diagrams 2002. LNCS (LNAI), vol. 2317, pp.
131–145. Springer, Heidelberg (2002)

9. Barwise, J., Etchemendy, J., Allwein, G., Barker-Plummer, D., Liu, A.: Language
Proof and Logic. CSLI Publications, University of Chicago Press, Stanford (1999)

10. Swoboda, N., Allwein, G.: Heterogeneous reasoning with euler/venn diagrams con-
taining named constants and fol. Electronic Notes in Theoretical Computer Sci-
ence 134, 153–187 (2005)

11. Barker-Plummer, D., Swoboda, N.: A sequent based logic for coincidence grid. In:
CEUR Workshop Proceedings, vol. 274, pp. 1–12 (2007)

	Openproof - A Flexible Framework for Heterogeneous Reasoning
	Introduction
	Framework
	The Role of interlingua

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

