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Abstract. This paper pursues the idea of a general multiobjective op-
timizer that can be flexibly adapted to arbitrary user preferences—
assuming that the goal is to approximate the Pareto-optimal set. It
proposes the Set Preference Algorithm for Multiobjective Optimization
(SPAM) the working principle of which is based on two observations:
(i) current multiobjective evolutionary algorithms (MOEAs) can be re-
garded as hill climbers on set problems and (ii) specific user preferences
are often (implicitly) expressed in terms of a binary relation on Pareto
set approximations. SPAM realizes a (1 + 1)-strategy on the space of
Pareto set approximations and can be used with any type of set prefer-
ence relations, i.e., binary relations that define a total preorder on Pareto
set approximations. The experimental results demonstrate for a range of
set preference relations that SPAM provides full flexibility with respect
to user preferences and is effective in optimizing according to the speci-
fied preferences. It thereby offers a new perspective on preference-guided
multiobjective search.

1 Motivation

By far most publications within the field of evolutionary multiobjective opti-
mization (EMO) focus on the issue of generating a suitable approximation of
the Pareto-optimal set, or Pareto set approximation for short. For instance, the
first book on EMO by Kalyanmoy Deb [1] is mainly devoted to techniques of
finding multiple trade-off solutions using evolutionary algorithms.

Taking this view, one can state that EMO in general deals with set problems:
the search space Ψ consists of all potential Pareto set approximations rather than
single solutions, i.e., Ψ is a set of sets. When applying an evolutionary algorithm
to the problem of approximating the Pareto-optimal set, the population itself
can be regarded as the current Pareto set approximation. The subsequent appli-
cation of mating selection, variation, and environmental selection heuristically
produces a new Pareto set approximation that—in the ideal case—is better than
the previous one. In the light of the underlying set problem, the population rep-
resents a single element of the search space which is in each iteration replaced
by another element of the search space. Consequently, selection and variation
can be regarded as a mutation operator on populations resp. sets. Somewhat
simplified, one may say that a classical multiobjective evolutionary algorithm
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(MOEA) used to approximate the Pareto-optimal set is a (1, 1)-strategy on a
set problem. Furthermore, MOEAs are usually not preference-free. The main
advantage of generating methods such as MOEAs is that the objectives do not
need to be aggregated or ranked a priori; but nevertheless preference information
is required to guide the search, although it is usually weaker and less stringent.
In the environmental selection step, for instance, an MOEA has to choose a sub-
set of individuals from the parents and the offspring which constitutes the next
Pareto set approximation. To this end, the algorithm needs to know the criteria
according to which the subset should be selected, in particular when all parents
and children are incomparable, i.e., mutually nondominating. That means the
generation of a new population usually relies on set preference information.

These observations led to the concept presented in this paper which separates
preference information and search method. Firstly, we regard preference informa-
tion as an appropriate order on Ψ required to fully specifiy the set problem—this
order will here be denoted as set preference relation. A set preference relation
provides the information on the basis of which the search is carried out; for any
two Pareto set approximations, it says whether one set is better or not. Secondly,
we propose a general, extended (1+1)-strategy for this set problem which is only
based on pairwise comparisons of sets in order to guide the search. The resulting
algorithm (SPAM) is fully independent of the set preference relation used and
thereby decoupled from the user preferences.

This complete separation of concerns is the novelty of the suggested approach.
It builds upon the idea presented in [2], but is is more general—as it is not
restricted to a single binary quality indicator—and possess in addition desirable
convergence properties. Furthermore, there are various studies that focus on
the issue of preference articulation in EMO, in particular integrating additional
preferences such as priorities, goals, and reference points [3,4,5,6,7,8,9]. However,
these studies mainly cover preferences on solutions and not preferences on sets,
and the search procedures used are based on hard-coded preferences.

In the following, we first discuss the issue of designing set preference relations
and then present the full SPAM method. Finally, simulation results are provided
and compared for several example set preference relations.

2 Set Preference Relations

Consider a multiobjective optimization problem with the decision space X , the
objective space Z, n objectives f1, . . . , fn to be minimized, and a relation ≤ on
Z, which induces a preference relation � on X with a � b :⇔ f(a) ≤ f(b) for
a, b ∈ X . This problem is transformed into a corresponding set problem where
the search space Ψ includes all possible solution sets A ⊆ X , i.e., Ψ = 2X .
The preference relation � can be used to define a corresponding set preference
relation � on Ψ where

A � B :⇔ ∀b ∈ B ∃a ∈ A : a � b

for all Pareto set approximations A, B ∈ Ψ . Here, we will assume that weak
Pareto dominance, represented by �par and �par, is the underlying preference
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relation resp. set preference relation. Most existing MOEAs are designed for such
a type of set problem where the goal is to find a good Pareto set approximation
A ∈ Ψ .

The set preference relation deduced from the preference relation on solutions
is usually not total, i.e., there are incomparable Pareto set approximations which
are hard to deal with by any optimization method. Therefore, additional pref-
erences are needed to refine � such that no incomparable pairs remain. Next,
we will discuss principles to design set preference relation that represent total
preorders and then provide several example relations.

2.1 Refinements and Sequences

Unary quality indicators are a possible means to construct set preference rela-
tions that are total preorders. They represent set quality measures that map
each set A ∈ Ψ to a real number I(A) ∈ R. Given an indicator I, one can define
the corresponding set preference relation as A �I B := (I(A) ≤ I(B)) where we
assume that smaller indicator values stand for higher quality, in other words, A is
as least as good as B if the indicator value of A is not larger than the one of B. For
instance, several recent approaches make implicitly use of the unary hypervolume
indicator in this way [10,11,12]. Alternatively, one may consider binary quality
indicators that assign a real value to ordered pairs of sets (A, B) with A, B ∈ Ψ .
Assuming that smaller indicator values stand for higher quality, a corresponding
set preference relation can be defined as A �I B := (I(A, B) ≤ I(B, A)). For
instance, IBEA [2] uses this type of preference information.

When defining set preference relations based on indicators (or using other
principles), we would like to guarantee that weak Pareto dominance is not vio-
lated, i.e., �I should refine �par. This can be formalized as follows.

Definition 2.1. Given a set Ψ . Then the preference relation �ref refines � if
for all A, B ∈ Ψ we have

(A � B) ∧ (B 
� A) ⇒ (A �ref B) ∧ (B 
�ref A)

That means a set that is strictly better than another set in the original set
preference relation should remain strictly better in the refined relation. The
hypervolume indicator [13,12], for instance, induces a refinement of weak Pareto
dominance, cf. [14,15]. Many other indicators only fulfill a weaker property which
we here denote as weak refinement.

Definition 2.2. Given a set Ψ . Then the set preference relation �ref weakly
refines � if for all A, B ∈ Ψ we have

(A � B) ∧ (B 
� A) ⇒ (A �ref B)

A weak refinement may make two sets A and B indifferent (A �ref B ∧ B �ref

A), although A is actually strictly better than B; this is for instance the case for
the unary epsilon indicator [15]. Nevertheless, a weak refinement never contra-
dicts the original order, i.e., B cannot be strictly preferable to A with regard to
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�ref, whenever A is strictly better than B regarding �. However, many practi-
cally interesting indicators do not induce a weak refinement of the weak Pareto
dominance relation.

For optimization purposes, it is desirable to have a set preference relation that
represents a refinement of the dominance relation because this is a prerequisite
to achieve convergence to the Pareto-optimal set, see [16]. The following con-
struction shows how such refinements can be defined on the basis of arbitrary
indicators; it resembles the concept of hierarchy used in [3] for pairs of solu-
tions, but here (a) we are dealing with preference relations on sets and (b) the
hierarchical construction is different.

Definition 2.3. Given a set Ψ and a sequence S of k preference relations over
Ψ with S = (�1, �2, . . . , �k). Then the preference relation �S associated with S
is defined as follows: Let A, B ∈ Ψ . Then A �S B if and only if ∃1 ≤ i ≤ k such
that the following two conditions are satisfied:

(i) (i < k ∧ (A �i B ∧ B 
�i A)) ∨ (i = k ∧ (A �k B))
(ii) ∀1 ≤ j < i : (A �j B ∧ B �j A)

With this definition, we can derive the following procedure to determine A �S B
for two sets A and B:

– Start from the first preference relation, i.e. j = 1. Repeat the following step:
If A and B are indifferent with respect to �j , then increase j to point to the
next relation in the sequence if it exists.

– If the final j points to the last preference relation (j = k), then set A �S

B ⇔ A �k B. Otherwise, set A �S B ⇔ A ≺k B.

This procedure allows to use indicators inducing only weak refinements or no
refinements at all in combination with refinements; the resulting set preference
relation is again a refinement.

Theorem 2.4. Given a sequence of preference relations according to Def. 2.3.
Suppose there is a k′ ≤ k such that �k′

is a refinement of a given preference
relation �. In addition, all relations �j, 1 ≤ j < k′ are weak refinements of �
and all relations �j, k′ < j ≤ k are preorders. Then �S is a refinement of �.

For reasons of space limitations, the proof for this theorem is omitted here; it is
provided in [16]. Fig. 1 visualizes the resulting construction principle. This will
be used in Section 2.2 to design indicators combinations representing different
types of preference information.

2.2 Design of Indicator-Based Relations

In the following, we present some examples for combined set preference relations
that illustrate different application scenarios. All of these relations are refine-
ments of the set preference relation �par.

The first combination is based on the unary epsilon indicator Iε1 [15] with
a reference set R in objective space which is defined as Iε1(A) = E(A, R) with
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weak
refinement

preorder

refinement

Fig. 1. Representation of the hierarchical construction of refinements according to
Theorem 2.4

E(A, R) = maxr∈R mina∈A ε(a, r) where ε(a, r) = max{fi(a) − ri | 1 ≤ i ≤ n}
and ri is the ith component of the objective vector r. Since this indicator induces
only a weak refinement of the weak Pareto-dominance relation �par, we will use
the hypervolume indicator to distinguish between sets indifferent with respect
Iε1. The resulting set preference relation is denoted as �ε1,H .

The second combination uses the R2 indicator proposed in [17] for which the
following definition is used here:

IR2(A) = R2(A, R) =
∑

λ∈Λ u∗(λ, R) − u∗(λ, f(A))
|Λ|

where the function u∗ is a utility function based on the weighted Tchebycheff
function u∗(λ, T ) = −minz∈T max1≤j≤n λj |z∗j − zj| and Λ is a set of weight
vectors λ ∈ R

n, R ⊂ Z is a reference set, and z∗ ∈ Z is a reference point. In
this paper, we will set R = {z∗}. Also the R2 indicator provides only a weak
refinement; as before, the hypervolume indicator is added in order to achieve a
refinement. This set preference relation will be denoted as �R2,H .

Third combination: The previous two indicator combinations couple a weak
refinement with a refinement. To demonstrate that also non-refining indicators
can be used, we propose the following sequence of indicators S = (IH , IC , ID)
where IC measures the largest distance of a solution to the closest minimal
element in a set and ID reflects the diversity of the solutions in the objective
space. The latter two indicators, which both do not induce weak refinements of
�par, are defined as follows: IC(A) = maxa∈A minb∈Min(A,�) dist(f(a), f(b)) and

ID(A) = max
a∈A

(
1

nn1(a, A \ {a}) +
1

nn2(a, A \ {a})
)

where nn1(a, B) = minb∈B dist(f(a), f(b)) gives the smallest and nn2(a, B) =
maxc∈B minb∈B\{c} dist(f(a), f(b)) the second smallest distance of a to any solu-
tion in B. For the distance function dist(z1, z2), Euclidean distance is used here,
i.e., dist(z1, z2) =

√∑
1≤i≤n(z1

i − z2
i )2. The IC indicator resembles the genera-

tional distance measure proposed in [18] and ID resembles the nearest neighbor
niching mechanism in SPEA2 [19]. We will refer to the overall set preference
relation as �H,C,D. According to Theorem 2.4, �H,C,D is a refinement of �par.

Finally, note that set preference relations may be insensitive to dominated
solutions in a set, i.e., adding dominated solutions to A or B does not affect
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the relation between these two sets. This holds for instance for the set prefer-
ence relations induced by the hypervolume indicator and other popular quality
indicators. Nevertheless, to guide the search efficiently it is crucial that prefered
solutions are taken into account. One possibiliy is to integrate indicators that are
sensitive to dominated solutions such as IC and ID defined above. Alternatively,
the sets can be partitioned into dominance classes to which the set preference re-
lation is applied subsequently. More precisely, we here use nondominated sorting
[20,21] for partitioning and then use the same construction as in Theorem 2.4:
to compare A and B with respect to � we first compare only the nondominted
fronts; if this comparison yields indifference, then the second level of nondomi-
nance is considered to decide whether A or B is better, and so forth. Whenever
this principle of partitioning is used, we write �minpart; note that �minpart is a
refinement of �.

3 A General Set Preference Guided Search Algorithm

In the following, we introduce the Set Preference Algorithm for Multiobjective
Optimization (SPAM) which can be used with any set preference relation and
resembles a standard hill climber with the difference that two new elements of
the search space Ψ are created using two types of mutation operators. The main
part of SPAM is given by Algorithm 1.

Starting with a randomly chosen set P ∈ Ψm of size m, first a random mutation
operator is applied to generate another set P ′. This operator should be designed
such that every element in Ψ could be possibly generated, i.e., the neighborhood
is in principle the entire search space. In practice, the operator will usually have
little effect on the optimization process; however, its property of exhaustivness
is important from a theoretical perspective, in particular to show convergence,
see [16].

Second, a heuristic mutation operator is employed. This operator mimics the
mating selection, variation, and environmental selection steps as used in most
MOEAs. The goal of this operator is to create a third set P ′′ ∈ Ψ that is bet-
ter than P in the context of a predefined set preference relation �. However, since
it is heuristic it cannot guarantee to improve P ; there may be situations where it

Algorithm 1. SPAM Main Loop
Require: set preference relation �
1: generate initial set P of size m, i.e., randomly choose A ∈ Ψm and set P ← A
2: while termination criterion not fulfilled do
3: P ′ ← randomSetMutation(P )
4: P ′′ ← heuristicSetMutation(P )
5: if P ′′ � P then
6: P ← P ′′

7: else if P ′ � P then
8: P ← P ′

9: return P
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is not able to escape local optima of the landscape of the underlying set problem.
Finally, P is replaced by P ′′, if the latter is weakly preferable to the former; other-
wise, P is either replaced by P ′ (if P ′ � P ) or remains unchanged. Note that in the
last step, weak preferability (�) and not preferability (≺) needs to be considered
in order to allow the algorithm to cross landscape plateaus, cf. [22].

For the mutation operators, we propose Algorithms 2 and 3. Algorithm 2 (ran-
dom set mutation) randomly chooses k decision vectors from X and uses them to
replace k elements in P .1 Algorithm 3 (heuristic set mutation) generalizes the iter-
ative truncation procedures used in NSGA-II [23], SPEA2 [19], and others. First,
k new solutions are created based on P ; this corresponds to mating selection plus
variation in a standard MOEA. While the variation is problem-specific, for mating
selection either uniform random selection (used in the following) or fitness-based
selection can be used (using the fitness values computed by Algorithm 4). Then,
these k solutions are added to P , and finally the resulting set of size m + k is iter-
atively truncated to size m by removing the solution with the worst fitness values
in each step. Here, the fitness value of a ∈ P reflects the loss in quality for the
entire set P if a is deleted: the lower the fitness, the larger the loss.

Algorithm 2. Random Set Mutation
1: procedure randomSetMutation(P )
2: randomly choose r1, . . . , rk ∈ X with ri �= rj

3: randomly select p1, . . . , pk from P with pi �= pj

4: P ′ ← P \ {p1, . . . , pk} ∪ {r1, . . . , rk}
5: return P ′

Algorithm 3. Heuristic Set Mutation
1: procedure heuristicSetMutation(P )
2: generate r1, . . . , rk ∈ X based on P
3: P ′′ ← P ∪ {r1, . . . , rk}
4: while |P ′′| > m do
5: for all a ∈ P ′′ do
6: δa ← fitnessAssignment(a, P”)

7: choose p ∈ P ′′ with δp = mina∈P ′′ δa

8: P ′′ ← P ′′ \ {p}
9: return P ′′

To estimate how useful a particular solution a ∈ P is, Algorithm 4 compares
all sets Ai ⊂ P with |Ai| = |P |−1 to P \ {a} using the predefined set preference
relation �. The fewer sets Ai are weakly preferable to P \ {a}, the better the set
P \ {a} and the less important is a. This procedure has a runtime complexity of
O((m + k)g), where g stands for the runtime needed to compute the preference
1 Note that for both mutation operators the same k is used here, although they can be

chosen independently. The safe version (k = m) for the random mutation operator
means that a random walk is carried out on Ψ .
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Algorithm 4. Fitness Assignment
1: procedure fitnessAssignment(a, P ′′)
2: δa ← 0
3: for all b ∈ P ′′ do
4: if P ′′ \ {b} � P ′′ \ {a} then
5: δa ← δa + 1

6: return δa

relation comparisons which usually depends on m+k and the number of objective
functions. It can be made faster, when using unary indicators, see [16].

4 Experiments

This section investigates the practicability of the proposed approach. The main
questions are: (i) can different user preferences be expressed in terms of set prefer-
ence relations, (ii) is it feasible to use a general search algorithm for arbitrary set
preference relations, i.e., is SPAM effective in finding appropriate sets, and (iii)
how well are set preference relations suited to guide the optimization process?
However, the purpose is not to carry out a performance comparison of SPAM to
existing MOEAs; the separation of user preferences and search algorithm is the
focus of our study.

In the following, we consider the different set preference relations presented
in Section 2.2 for integration in SPAM where �minpart

R2,H is parameterized to focus
on the outer regions of the Pareto front.2 In addition, the relations �minpart

H and
�minpart

ε induced by the unary hypervolume indicator resp. the binary epsilon
indicator are used. All of them are refinements of the set dominance relation �par.
As reference algorithms, NSGA-II [23] and IBEA3 [2] are used. The test problem
is DTLZ2 [24] with 20 decision variables and 2 resp. 5 objectives 4. To compare
the outcomes of the algorithms with respect to multiple runs (in this study 30
runs) statistically, we use the Mann-Whitney U test where the significance of the
test statistics U is calculated on the basis of the one-tailed normal approximation,
correcting the variance for ties, see [16] for details. Furthermore, multiple testing
issues need to be taken into account when comparing multiple algorithms with
each other; here, the significance levels are Bonferroni corrected.

Figure 2 shows the Pareto-set approximations generated by SPAM with three
selected set preference relations. The plots well reflect the chosen user prefer-
ences: (a) a set maximizing hypervolume, (b) focus on the extremes using cor-
responding weight combinations, and (c) closeness to a given reference set. This

2 The full parameterization of the indicators is given in [16].
3 With parameters κ = 0.05 and ρ = 1.1.
4 Other parameters: set size / population size m = 20 (visual comparisons) resp.

m = 50 (statistical comparisons); newly created solutions / offspring individuals
k = 20 resp. k = 50; number of iterations 1000; further details are provided in [16].
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Fig. 2. Pareto-set approximations found after 1000 generations on a biobjective DTLZ2
problem for a set size / population size of m = 20. All algorithms were started with
the same initial set / population.

demonstrates that SPAM is in principle capable of optimizing towards the user
preferences that are encoded in the corresponding set preference relation.

The quantitative comparisons for all set preference relations are provided in
Table 1. The hypothesis is that SPAM used in combination with a specific set
preference relation �A (let us say SPAM-A) yields better Pareto set approxima-
tions than if used with any other set preference relation �B (let us say SPAM-
B)—better here means with respect to �A. Ideally, for every set A generated by
SPAM-A and every set B generated by SPAM-B, it would hold A �A B or even
A ≺A B. Clearly, this describes an ideal situtation. A set preference relation
that is well suited for representing certain preferences may not be well suited
for search per se. With only few exceptions, the above hypothesis is confirmed:
using �A in SPAM yields the best Pareto-set approximations with regard to �A,
independently of the problem and the number of objectives under consideration.
These results are highly significant at a significance level of 0.001.

Concerning the exceptions, first it can be noticed that there is no significant
difference between �minpart

H and �H,C,D when used in SPAM—both times, the
hypervolume indicator value is optimized. This actually shows that dominance
class partitioning may be replaced by a corresponding sequence of quality indi-
cators. Second, the algorithm based on the set preference relation �ε using the
binary epsilon indicator performs slighlty worse than IBEA with respect to �ε.
This is not suprising since IBEA has been designed mainly for the epsilon indi-
cator and exploits certain characteristics; for instance, all population members
are compared to each other and not only those in the current front. In addi-
tion, SPAM with the binary epsilon indicator performs significantly worse than
SPAM with any of the two hypervolume-based relations �minpart

H and �H,C,D in
the case of two objectives. This may indicate that the binary epsilon indicator is
not sensitive enough to differentiate between small improvements. That means
that in Step 7 of Algorithm 3 too many solutions may achieve the minimum
δ-value, and therefore a choice needs to be done at random.
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Table 1. Pairwise statistical comparison of 30 runs per algorithm after 1000 gener-
ations. In the notation U : U ′, U (resp. U ′) stands for the number of times a set
generated by algorithm A (resp. B) beats a set of algorithm B (resp. A) with regard to
the test relation associated with the corresponding row. A star next to these numbers
indicates a significant difference, the few cases where this was not the case are shown in
bold. Per cell, the upper number pair corresponds to the biobjective DTLZ2 problem,
the lower number pairs to the 5-objective DTLZ2 problem.

�����alg. A
alg B. SPAM with set preference relation . . .

IBEA NSGA-II test
relation�minpart

H �minpart
R2,H �minpart

ε1,H �minpart
ε �H,C,D

S
P
A

M
w

it
h

se
t

p
re

fe
re

n
ce

re
la

ti
o
n

..
. �minpart

H - 900: 0* 900: 0* 900: 0* 456:444 900: 0* 900: 0* �H

- 900: 0* 900: 0* 900: 0* 445:455 900: 0* 900: 0*

�minpart
R2,H 900: 0* - 900: 0* 900: 0* 900: 0* 900: 0* 900: 0* �R2,H

900: 0* - 900: 0* 900: 0* 900: 0* 900: 0* 900: 0*

�minpart
ε1,H 900: 0* 900: 0* - 900: 0* 889: 1* 900: 0* 900: 0* �ε1,H

891: 9* 900: 0* - 900: 0* 897: 3* 900: 0* 900: 0*

�minpart
ε 63:837 900: 0* 900: 0* - 81:819 274:626 896: 4* �ε

60:840 900: 0* 900: 0* - 57:843 349:551 889: 11*
�H,C,D 444:456 900: 0* 900: 0* 853: 47* - 820: 80* 900: 0* �H,C,D

455:445 900: 0* 900: 0* 900: 0* - 900: 0* 900: 0*
* Preference is significant at the 0.001 level (1-tailed, Bonferroni-adjusted).

5 Conclusions

This paper proposed a general way to separate preference formalization from
algorithm design and presented SPAM, a flexible multiobjective optimizer, which
is basically a hill climber and generalizes the concepts found in most modern
MOEAs. SPAM can be used in combination with any type of set preference
relation and thereby offers full flexibility for the decision maker. Furthermore,
a novel scheme to design set preference relations by putting multiple quality
indicators in sequence was introduced.
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