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Abstract. Physics-based potential energy functions used in protein structure pre-
diction are composed of several energy terms combined in a weighted sum. ‘Mul-
tiobjectivization’ — splitting up the energy function into its components and op-
timizing the components as a vector using multiobjective methods — may have
beneficial effects for tackling these difficult problems. In this paper we investigate
the hypotheses that multiobjectivization can (i) reduce the number of local optima
in the landscapes, as seen by hillclimbers, and (ii) equalize the influence of differ-
ent energy components that range over vastly different energy scales and hence
usually swamp each other’s search gradients. The investigations use models of
two real molecules, the alanine dipeptide and Metenkephalin under the Amber99
energy function, and consider hillclimbers with a range of mutation step sizes.
Our findings support the hypotheses and also indicate that multiobjectivization is
competitive with alternative methods of escaping local optima.

1 Introduction

The accurate prediction of protein structure from sequence remains one of the biggest
challenges in computational biology [1,10,19]. Recent work has suggested tackling the
problem by decomposing the traditional physics-based energy function into two or more
energy components, and optimizing the resulting multiobjective function using multi-
objective EAs [3,4,18]. The principal argument offered for the attraction of this multiob-
jective approach is the observation of conflicts between some of the energy components
in physics-based energy functions and the fact that an ensemble of candidate solutions
rather than a single structure may be obtained [3]. In other words, these papers argue
that the set of Pareto optimal solutions, taken as an ensemble, is likely to provide a bet-
ter answer to the problem of protein structure prediction than would the single-objective
optimum, usually a single structure.

In this paper, we are interested in a different aspect of multiobjective optimization,
namely the way a decomposition of the energy function impacts on the difficulty of
the fitness landscape ‘seen’ by an optimization method. This is closely related to pre-
vious work on ‘multiobjectivization’ [2,9,12], which argues that the introduction of
additional objectives, or the decomposition of an objective into several, may influence
the difficulty of a problem, making it easier [2,9,12,14,17] or harder [2]. The approach
taken in this paper is an empirical one in which single- and multiobjective hillclimbers
present themselves as useful tools to investigate changes in the difficulty of a fitness
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landscape caused by a decomposition of the energy function. Such an empirical analy-
sis is useful, as general results about the changes in the fitness landscape only directly
apply to multiobjective algorithms without archives [7], whose use is rarely practicable
in real problems.1 Also, a straightforward visualization of the multiobjective landscape
is not possible even for a two-dimensional problem, as the Pareto dominance relation
provides us with a partial ranking of solutions only.

The remainder of the paper is structured as follows. Section 2 discusses the properties
of physics-based potential energy functions and the motivations behind their decompo-
sition, in terms of facilitating search. Section 3 discusses the main methods used in
this paper, including the two molecular structures considered and the hillclimbers used
to explore the resulting fitness landscapes. Experimental results are presented and dis-
cussed in Sections 4, 5 and 6. Section 7 considers the wider implications of these results
and concludes.

2 Decomposition of Physics-Based Potential Energy Functions

A prototypical physics-based potential energy function (here, Amber99 [5]) can be writ-
ten as a linear combination of six terms:

Es = Ebs + Eab + Eit + Eta + Evdw + Ecc,

where Ebs, Eab, Eit and Eta are the bonded terms constraining bond lengths, bond
angles, improper torsion angles and torsion angles respectively. Evwd and Ecc are the
non-bonded forces, which arise from van der Waals attractive and repulsive forces and
electrostatic interactions respectively. Es is to be minimized. A decomposition into non-
bonded and bonded components then considers a two-dimensional vector

Ev = (Evdw + Ecc, Ebs + Eab + Eit + Eta)T ,

rather than a single energy value. The set of solutions that are optimal with respect to
Es form a subset of those that are Pareto optimal with respect to Ev, so minimization
of Ev as a Pareto multiobjective optimization problem ([6], page 24) is a valid means
of finding a solution to Es.

The fitness landscapes described by physics-based potential energy functions are
highly rugged (multi-modal), which makes them very challenging to optimize. In addi-
tion, the scale of the variation within the different energy components differs strongly in
these functions: the variation in the non-bonded energies (especially the van der Waals
term) is several orders of magnitude larger than that of the bonded terms. Evidently, a
large variation in a given term implies the existence of large local gradients in the same
terms, which are bound to dominate the overall energy gradients in many areas of the
search space. A distinct effect of a decomposition of the function into bonded and non-
bonded components is, therefore, an increase in the influence of the bonded objective
in those areas of the search space, as the differences in the scales are annihilated and

1 In particular, [7] shows that multiobjectivization by decomposition causes the introduction
of plateaus of incomparable solutions, which can only result in the removal but not in the
introduction of local optima in the search space.
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the influence of bonded and non-bonded terms is effectively equalized. Importantly, the
same effect cannot easily be obtained through a scaling of the individual energy compo-
nents, as this would not guarantee to preserve the actual energy minimum. The bonded
term is smoother than the non-bonded term (as well as having a smaller energy range),
so amplifying its influence may help the search process.

The above observation raises the question of whether an increased influence of the
bonded components is something that is actually desirable during protein structure pre-
diction. This question can partly be answered through consideration of relevant work
in protein structure prediction. Several state-of-the-art prediction methods use mech-
anisms to suppress the dominating influence of non-bonded energies during the early
stages of the search. These measures range from the reformulation or capping of van
der Waals forces [19] to a division of forces into short- and long-range components,
where long-range components are only periodically updated [8]. The very existence of
such techniques suggests that increased guidance by means of bonded terms is seen as
favorable at least by some authors.

3 Methods

The Alanine Dipeptide. The alanine dipeptide is a well-known model system in the
protein structure prediction literature [15], with only two degrees of freedom. Despite
the simplicity of the peptide, its energy landscape already exhibits some fundamental
features of the energy landscape of proteins, such as their multimodality and the dom-
inant influence of non-bonded energies. Its small dimensionality, allows for extensive
experimental testing and enabled us to visualize directly the (single-objective) energy
landscape, algorithm trajectories and the location of local optima during the interpre-
tation of experiments. Due to space limitations these visualizations are not included in
the paper.

To create a model of the peptide suitable for optimization, the molecular modeling
software TINKER [16] was used to enumerate all possible integer values (from -179 to
180) for the two dihedral angles, and to determine the potential energy of the resulting
conformation using the Amber99 force field.

Metenkephalin. The molecule Metenkephalin was used as an example of a more com-
plex molecular structure. This protein consists of five amino-acids and has seventeen
flexible dihedral angles, which correspond to the degrees of freedom or decision vari-
ables in our problem. A complete enumeration of the search space, as done for the ala-
nine peptide, is no longer possible for this size of problem. Each evaluation therefore
requires an explicit call to the TINKER molecular modeling software, making these
experiments much more expensive, computationally. As a result, the global optimum
for this molecule under the Amber99 energy function was not explicitly identified.

Algorithms. Three different hillclimbers were used to explore the fitness landscapes
under integer coding using a standard Gaussian creep mutation operator2. The single-
objective hillclimber (SHC) always accepts the mutant solution if its objective is equal

2 We take the floor of the value to make it an integer.
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to or better than that of the parent solution. The multiobjective hillclimber (MHC) uses
the basic mechanisms described in [13]. It maintains an archive of non-dominated solu-
tions to avoid degradation of solutions (see [13]) and always accepts the mutant solution
if it is indifferent or incomparable to the current solution and if it is not dominated by
a solution in the archive. The third algorithm, a hybrid hillclimber (HHC), uses single-
objective optimization but maintains an archive (of non-dominated solutions under the
biobjective formulation) and switches to multiobjective optimization whenever it has
failed to find a valid move for 20 consecutive iterations. It switches back to single-
objective optimization as soon as an improvement upon the minimum energy value so
far has been found.

Experimental Details. In all our experiments (see Sections 4, 5, and 6) all three al-
gorithms were run from identical starting positions with a standard mutation rate of 1

n ,
where n is the number of decision variables, and for 10000 iterations. The multiob-
jective and hybrid hillclimbers used a large archive size of 1000 in order to simulate
an unbounded archive and remove any influence of the archive’s performance on the
search. All experiments were repeated from different starting positions 100 times for
the alanine peptide and (due to the much larger computational costs) 15 times for the
Metenkephalin molecule. Means of the minimum energy value found per run are re-
ported, and standard errors and p-values (obtained using the Wilcoxon paired rank sum
test) are included, where appropriate.

4 Comparative Performance of the Three Hillclimbers

Figure 1 shows the performance of the three hillclimbers for the alanine dipeptide as
a function of the standard deviation σ of the Gaussian mutation operator. For σ ≥ 35,
all three methods show reliable convergence to the global optimum of -16.98 indicating
that escape from all local optima is possible using this size of mutation operator. The
results also suggest that very large mutation sizes do not hinder convergence for any
of the algorithms, but this is likely to be an artifact resulting from the small size of the
search space for this particular problem.

Distinct differences between the algorithms can be observed in the regime for σ <
35. For this range of mutation sizes, the single-objective hillclimber converges to local
optima with the highest frequency. There are two possible explanations for this result:

1. The hillclimbers utilizing multiobjective optimization can escape local optima more
readily at a smaller mutation step size through the exploitation of plateaus of incom-
parable solutions. Analysis of the trajectories of the single-objective and hybrid
hillclimbers provides some evidence for the validity of this latter explanation: the
set of solutions accessed by the single-objective hillclimber is usually a subset of
those accessed by the hybrid hillclimber. In other words, the trajectories of the two
usually agree until a local optimum is met, where the single-objective hillclimber
remains while the hybrid hillclimber switches to Pareto optimization and escapes
(results not shown).

2. The multiobjective formulation (in particular the larger emphasis on the bonded
objective) provides better guidance in the search space and steers the multiobjec-
tive algorithm towards the global optimum and away from the local optima. The
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Fig. 1. Performance of the three hillclimbers as a function of the standard deviation σ of the
Gaussian mutation operator on the alanine dipeptide. Shown are the averages and the standard
error over 100 runs.
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Fig. 2. Performance of the three hillclimbers as a function of the standard deviation σ of the
Gaussian mutation operator on Metenkephalin. Shown are the averages over 15 runs. For σ < 15,
SHC and HHC outperform MHC with p-values of 0.0001370 and 3.073e-08, respectively. SHC
and HHC are not significantly different at the 0.01 level. For σ ≥ 15, MHC and HHC outperform
SHC with a p-value < 2.2e− 16. MHC and HHC are not significantly different at the 0.01 level.
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good performance of the hybrid hillclimber (which does not utilize multiobjective
optimization during the early stages of the search) gives some indication that this
is not happening. Nevertheless the validity of this explanation will be investigated
further in the next subsections.

In cases where several hillclimbers find the same local or global optimum, the single-
objective and hybrid hillclimber are usually more efficient at converging towards the
optimal solution than their multiobjective counterpart (results not shown). This is a
further side-effect arising from the introduction of plateaus of non-dominated solu-
tions, which cause the multiobjective hillclimber to spend time exploring regions away
from the global optimum. For Metenkephalin, this slower convergence actually results
in a performance advantage of the single-objective and hybrid hillclimber for small
mutation sizes, as shown in Figure 2. Overall, however, a performance advantage of
the hillclimbers using multiobjective optimization also remains for this more complex
molecule and can now mainly be observed for larger mutation step sizes.

5 Random Decompositions

The above experiments indicate a performance advantage of hillclimbers utilizing mul-
tiobjective optimization. As mentioned above, one may speculate that, in addition to
the presence of plateaus facilitating the escape from local optima, these methods may
benefit from the stronger emphasis on the bonded objective, which may help to direct
the search towards the global optimum (and away from local optima).

In order to test this hypothesis further, a set of control experiments were conducted
on the alanine dipeptide that compared the performance of a number of alternative de-
compositions of the overall energy function. In particular, we considered biobjective
formulations of the form:

F = (Ebs + Eab + Eit + Eta + Evdw + Ecc − r, r)T .

Evidently, Ev is a special case of such a decomposition, where r = Ebs + Eab + Eit +
Eta. The alternative definitions of r considered were:

1. r has the same properties as the bonded objective, but is uninformative. This effect
was obtained by choosing r to correspond to the bonded energy for a conformation
with interchanged phi and psi angles.

2. r is extremely rugged. This effect was obtained by choosing r to correspond to the
bonded energy with the phi and psi angles randomly permuted (a random mapping).

3. r presents a smooth gradient (in arbitrary direction). This effect was obtained by
choosing r as the sum of all decision variables.

Figure 3 compares the performance of the multiobjective hillclimber on the alanine
dipeptide using these alternative decompositions to that of the original multiobjective
and single-objective hillclimber. The results confirm that, on the alanine dipeptide, the
second objective acts as an escape mechanism: the degree of information provided by
r has very little impact and the performance of the hillclimbers is primarily influenced
by the ruggedness of r, as a smooth gradient along r provides the facility to ‘drift’
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Fig. 3. Performance of SHC and MHC, as well as MHC using three alternative decompositions, as
a function of the standard deviation σ of the Gaussian mutation operator on the alanine dipeptide.
Shown are the averages and the standard error over 100 runs.
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Fig. 4. Performance of SHC and MHC, as well as MHC using the smooth decomposition, as a
function of the standard deviation σ of the Gaussian mutation operator on the Metenkephalin
molecule. Shown are the averages over 15 runs. For σ < 15, SHC outperforms MHC and the
smooth decomposition with p-values of 0.0001370 and 1.234e-05, respectively. MHC and the
smooth decomposition are not significantly different from each other at the 0.01 level. For σ ≥
15, MHC outperforms SHC and the smooth decomposition with a p-value < 2.2e − 16. HHC
and the smooth decomposition are not significantly different at the 0.01 level.
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out of a local optimum in the first objective. Consequently, the decomposition based
on a smooth r turns out as the strongest performer in this comparison and was fur-
ther evaluated for the Metenkephalin molecule (see Figure 4). For small mutation step
sizes (σ ≤ 15), the experimental results on Metenkephalin appear to confirm those ob-
tained for the alanine dipeptide and the decomposition based on the smooth r performs
somewhat more robustly than the original decomposition (result not statistically signifi-
cant). However, for σ ≥ 15 the original decomposition shows a significant performance
advantage over the smooth decomposition, indicating that the method may, after all,
benefit from the additional guidance provided by the bonded objective. Together with
the good performance of the hybrid hillclimber, this result may indicate that increased
emphasis on the bonded objectives mainly matters during the escape from local optima.

6 Alternative Escape Mechanisms

Some of the success of the multiobjective and hybrid hillclimber can be attributed to the
introduction of plateaus that facilitate the escape from local optima. On the downside,
the presence of these plateaus slows down convergence speed, which is at the root of the
superior performance of the single-objective and hybrid hillclimbers on Metenkephalin
for small mutation step sizes. There is thus a trade-off to be met regarding the introduc-
tion of plateaus, and it is likely that more effective escape mechanisms than multiobjec-
tivization exist.
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Fig. 5. Performance of the three hillclimbers with macromutation as a function of the standard
deviation σ of the Gaussian mutation operator on the Metenkephalin molecule. Shown are the
averages and the standard error over 15 runs. For σ < 15, SHC outperforms MHC and HHC with
p-values of 4.534e-14 and 7.731e-11, respectively. MHC and HHC are not significantly different
from each other at the 0.01 level. For σ ≥ 15, MHC, SHC and HHC are not significantly different
at the 0.01 level.
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In a final experiment, we consider the relative performance of the three hillclimbers
if they are furnished with additional escape mechanisms. In particular, the mechanism
chosen here is the macromutation operator proposed in [11], which simulates uniform
crossover between the current and a random solution. The offspring that inherits more
than fifty per cent of its genes from the current solution is taken as the mutant solution.
This macromutation is applied with a probability of 0.7 in every iteration.

Figure 5 shows the results obtained for Metenkephalin. The results obtained show
a significant increase in the performance of the single-objective hillclimber for small
mutation step sizes. In contrast, the performance of the multiobjective and hybrid hill-
climbers suffers from the introduction of the macromutation, (which may appear sur-
prising given their increased performance for large mutation step sizes — see Figure 2).
This is probably because, for the multiobjective hillclimbers, the macromutation causes
them to spend too much time in plateaus (of non-dominated solutions) in the search
space, which affects the degree of convergence that can be achieved by them.

When comparing the results obtained using the best parameter settings for each of
the three types of hillclimbers (best overall averages are obtained by the single-objective
hillclimber with macromutation for σ = 4, the hybrid hillclimber without macromu-
tation with σ = 48 and the multiobjective hillclimber without macromutation with
σ = 32), no statistically significant difference can be observed.

7 Conclusion

This study has explored the impact of multiobjectivization on the potential energy func-
tions used in protein structure prediction. Compared with a simple hillclimber, a mul-
tiobjective hillclimber operating on a decomposed two-objective energy function finds
lower overall energy solutions for the same number of evaluations - and does so over
a range of mutation step sizes. Experiments to investigate this advantage indicate that
multiobjectivization achieves a reduction in the number of local optima in the landscape
whilst simultaneously maintaining some of the important “guidance” (or gradient) that
the landscape possesses.

When comparing multiobjectivization to more advanced search methods, namely the
inclusion of a well-respected macromutation operator to facilitate escape from local op-
tima, we find no advantage in terms of the minimal energy achieved at the best mutation
step-size settings. However, the multiobjective approach seems slightly more robust to
different step-size choices. More importantly, multiobjectivization finds the low energy
solutions at the same time as finding many other non-dominated trade-off solutions, and
at no extra cost in function evaluations. Whether or not these additional trade-offs are
valuable for identifying native structures is not considered here, but is the subject of our
future work.
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