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Abstract. In this work we present a new hybrid cellular genetic al-
gorithm. We take MOCell as starting point, a multi-objective cellular
genetic algorithm, and, instead of using the typical genetic crossover and
mutation operators, they are replaced by the reproductive operators used
in differential evolution. An external archive is used to store the nondom-
inated solutions found during the search process and the SPEA2 density
estimator is applied when the archive becomes full. We evaluate the re-
sulting hybrid algorithm using a benchmark composed of three-objective
test problems, and we compare the results with several state of the art
multi-objective metaheuristics. The obtained results show that our pro-
posal outperforms the other algorithms according to the two considered
quality indicators.

1 Introduction

Multi-objective optimization refers to optimizing problems whose formulation
involves two or more objectives, which are known as multi-objective optimization
problems (MOPs). The solution to these kinds of problem uses not to be a single
one; instead, a set of nondominated solutions has to be found. Each solution in
this set is said to be a Pareto optimum, and when they are plotted in the objective
space they are collectively known as the Pareto front.

In the last few years evolutionary algorithms (EAs) have become very popular
tools for solving MOPs since they are capable of obtaining the Pareto front in a
single run. As a consequence, many multi-objective EAs have appeared in recent
years, and the most well-known metaheuristics, such as NSGA-II [1], SPEA2 [2],
PAES [3], and many others [4][5], belong to this family of techniques. Most of
these algorithms are genetic algorithms (GA), a subclass into EAs.

Our starting point is MOCell [6], a multi-objective cellular GA (cGA) that
is characterized by the use of an external archive to store the non-dominated
solutions found during the search and a feedback mechanism in which solutions
from this archive randomly replaces existing individuals in the population after
each iteration. In order to manage the insertion of solutions in the archive with
the goal of obtaining a diverse set, MOCell includes a density estimator based
on the crowding distance of NSGA-II [1]. This measure is also used to remove
solutions from the archive when it becomes full. MOCell has proven to be very ef-
fective in solving bi-objective MOPs; in particular, it provides Pareto fronts with
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a remarkable uniformity (spread) of their solutions. However, preliminary exper-
iments have revealed that it has difficulties when dealing with three-objective
MOPs (namely, those belonging to the DTLZ problem family [7]).

In our research activity, we paid attention to differential evolution (DE) al-
gorithms [8], another kind of EA. DE has been successfully applied as a single-
objective optimizer in continuous search problems within the last few years [9],
and there are proposals which adapt it to multi-objective optimization [10,11,12].
In particular, we focused on the Generalized Differential Evolution 3 (GDE3) al-
gorithm [11]. Preliminary experiments with GDE3 showed that it was able to
reach solution sets which are very close to the Pareto front when solving some
DTLZ problems.

This work is aimed at designing a metaheuristic capable of producing the same
satisfactory results in three-objective MOPs as MOCell achieves in bi-objective
problems. Our proposal is a new hybrid metaheuristic, called CellDE, which
tries to combine the advantages of both MOCell (good diversity in bi-objective
MOPs) and GDE3 (good convergence in three-objective MOPs). The idea is
to use MOCell as search engine and hybridizing it with DE, by replacing the
typical genetic operators of crossover and mutation of GAs by the reproductive
mechanism used in DE.

To assess the performance of our algorithm, we have compared it to the tech-
niques it derives, MOCell and GDE3, and to NSGA-II and SPEA2, the reference
metaheuristics in the field. We have used a benchmark composed of the three-
objective formulation of the MOPs included in the DTLZ and WFG [13] problem
families.

The rest of the paper is organized as follows. In Section 2, we give an introduc-
tion to cellular GAs and DE. Our proposal is described in Section 3. Section 4 is
devoted to analyzing the obtained results in the experiments. Finally, Section 5
includes the conclusions and lines of future work.

2 Cellular GAs and Differential Evolution

GAs work on a set (population) of tentative solutions (individuals) which under-
goes stochastic operators (typically selection, crossover, and mutation) in order
to search for better solutions. The form in which this set of solutions is structured
yields to different kinds of GAs (see Fig. 1). On the one hand, those algorithms
that use a single population (panmixia) of individuals and apply operators to
them as a whole; on the other hand, the so-called structured GAs, in which
the population is decentralized somehow. Among the many types of structured
GAs [14], the distributed and cellular models are two popular variants.

Cellular GAs (cGAs) make use of the concept of (small) neighborhood in
the sense that one individual can only interact with individuals belonging to
its neighborhood in the breeding loop. These neighborhoods are defined among
tentative solutions in the algorithm, with no relation to the geographical neigh-
borhood definition in the problem space. The overlapped small neighborhoods of
cGAs help in exploring the search space: the induced slow diffusion of solutions
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(a) (b) (c)

Fig. 1. Panmictic (a), distributed (b), and cellular (c) GAs

through the population provides a kind of exploration (diversification), while
exploitation (intensification) takes place inside each neighborhood by genetic
operators.

Differential evolution [8] is an evolutionary technique which is gaining popu-
larity in recent years. Like many others EAs, DE uses a population of individuals
which are recombined to reach improved solutions. In DE the search process is
guided by generating a single offspring by adding a weighted difference vector
between two parents to a third parent.

DE works as follows. At each generation G, for each D dimensional solution
xi,G, i = 1, 2, . . . , N (N is the population size), a new trial solution u is obtained
as it is indicated in Algorithm 1, where CR controls the crossover operation and
F is the scaling factor for mutation. Both CR and F remain constant during
the execution of the algorithm. After that, the new solution ui,G is compared to
the old vector xi,G, and the latter is replaced by the former if this one has an
equal or better objective value.

3 Outline of CellDE

In this section we describe our proposal. The pseudocode of the algorithm is
shown in Algorithm 2. The basic behavior of CellDE is that of a cGA following
an asynchronous behavior, in the sense that all the cells are explored sequentially
(in synchronous cGAs the cells are explored in parallel). The MOCell version
taken as starting point is based on aMOCell3 [6], which is characterized by
using an external archive to store the non-dominated solutions found so far

Algorithm 1. Pseudocode of generating a new solution in DE.
1: // r1, r2, r3 ∈ {1, 2, . . . , N}, randomly selected, except mutually different from i
2: proc differentialEvolution(i, r1, r2, r3)
3: jrand =floor(randi[0, 1) ·D) + 1
4: for (j = 1; j � D; j = j + 1) do
5: if (randj[0, 1) < CR ∨ j = jrand) then
6: ui[j],G = xr3[j],G + F · (xr1[j],G − xr2[j],G

)

7: else
8: ui[j],G = xi[j],G

9: end if
10: end for
11: return ui,G

12: end proc differentialEvolution;
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Algorithm 2. Pseudocode of CellDE.
1: proc stepsUp(CellDE) //Algorithm parameters in ‘CellDE’
2: population ← randomPopulation() //Creates a random initial population
3: archive ← createFront() //Creates an empty Pareto front
4: while !terminationCondition() do
5: for individual ← 1 to CellDE.populationSize do
6: neighborhood←getNeighbors(population,position(individual));
7: parent1←selection(neighborhood);
8: parent2←selection(neighborhood);
9: // parent1 and parent2 may be different
10: while parent1=parent2 do
11: parent2←selection(neighborhood);
12: end while
13: offspring←differentialEvolution(position(individual), position(individual),

position(parent1), position(parent2));
14: evaluateFitness(offspring);
15: insert(position(individual),offspring,population);
16: addToArchive(individual);
17: end for
18: population←replaceIndividuals(population,archive);
19: end while
20: end proc stepsUp;

during the search and a feedback mechanism. The aMOCell3 algorithm was
originally engineered using the crowding distance as density estimator to manage
the diversity in the approximated Pareto front. As it has been reported in the
literature [15], this estimator does not perform well with MOPs having more
than two objectives. This leads us to use the density estimator of SPEA2 [2] in
CellDE and also in the aMOCell3 algorithm used in this work.

The main difference between CellDE and MOCell (we will refer aMOCell3 as
MOCell in the rest of the paper) arises in the creation of new individuals. Instead
of using the classical GA operators to generate new individuals, CellDE takes the
operator used in DE: three different individuals are chosen and the new offspring
solution is obtained based on the differences between them. Please, refer to [6]
for a detailed description of the methods that will be used next.

CellDE starts by creating a population of random solutions and an empty
Pareto front (lines 2 and 3 in Algorithm 2). Individuals are arranged in a
2-dimensional grid, defining neighborhood structures over the population. For
each individual xi,G, two different solutions of the neighborhood are selected
(lines 7 and 8) which, along with the current individual, are used as the three
parents to create the new offspring (line 13). This is a different approach to the
one used in DE, where the three parents exclude the current solution; we take
this scheme since it allows to enhance the intensification capabilities of the algo-
rithm. The newly generated offspring is evaluated (line 14) and then it replaces
the original solution if dominates it, or, if both are non-dominated, it replaces
the worst individual in the neighborhood (line 15). After that, the new individ-
ual is sent to the archive, where it is checked for its insertion (line 16). Finally,
after each generation, a feedback procedure is performed to replace a number
of randomly chosen individuals by a number of solutions taken from the archive
(line 18).
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Table 1. Parameterization (L = individual length)

Parameterization used in NSGA-II [1]
Population Size 100 individuals
Selection of Parents binary tournament + binary tournament
Recombination simulated binary, pc = 0.9
Mutation polynomial, pm = 1.0/L

Parameterization used in SPEA2 [2]
Population Size 100 individuals
Selection of Parents binary tournament + binary tournament
Recombination simulated binary, pc = 0.9
Mutation polynomial, pm = 1.0/L

Parameterization used in GDE3 [11]
Population Size 100 individuals
Recombination Differential Evolution, CR = 0.1, F = 0.5

Parameterization used in MOCell (aMOCell3) [6]
Population Size 100 individuals (10× 10)
Neighborhood 1-hop neighbors (8 surrounding solutions)
Selection of Parents binary tournament + binary tournament
Recombination simulated binary, pc = 0.9
Mutation polynomial, pm = 1.0/L
Archive Size 100 individuals
Feedback 20% of the population (20 individuals)

Parameterization used in CellDE
Population Size 100 individuals (10× 10)
Neighborhood 1-hop neighbors (8 surrounding solutions)
Selection of Parents binary tournament + binary tournament
Recombination differential evolution, CR = 0.1, F = 0.5
Archive Size 100 individuals
Feedback 20% of the population (20 individuals)

4 Computational Results

This section is devoted to the evaluation of CellDE. We have chosen several
test problems taken from the specialized literature, and, in order to assess how
competitive CellDE is, we have compared it to the two reference algorithms
in the field, namely NSGA-II and SPEA2, as well as to the base algorithms
used for designing CellDE, GDE3 and MOCell. All the algorithms have been
implemented in Java using the jMetal framework [16].

The parameter settings used in the experiments are summarized in Table 1.
The values are taken from the reference papers where the algorithms are de-
scribed. The stopping condition in all of them is to evaluate 25000 solutions.

The test problems we have used are the three-objective formulations of the
Deb-Thiele-Laumanns-Zitzler (DTLZ) benchmark [7] and the Walking-Fish-
Group (WFG) problems [13]. A total number of sixteen MOPs has been used
to evaluate the five metaheuristics. For assessing the performance of the algo-
rithms, we have used two Pareto-compliant indicators: hypervolume (HV ) [17]
and additive epsilon indicator (I1

ε+) [18]. The latter is an indicator measuring
the convergence of the resulting Pareto fronts, while the former measures both
convergence and diversity.

We have made 100 independent runs of each experiment, and we have ob-
tained the median, x̃, and interquartile range, IQR, as measures of location (or
central tendency) and statistical dispersion, respectively. Since we are dealing
with stochastic algorithms and we want to provide the results with confidence,
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Table 2. Median and interquartile range of the (additive) Epsilon (Iε) indicator

NSGA-II SPEA2 GDE3 MOCell CellDE
Problem x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR

DTLZ1 7.62e-2 7.2e−2 4.16e-2 8.4e−3 4.80e-2 6.6e−3 5.35e-1 5.1e−1 3.34e-2 3.3e−3 +
DTLZ2 1.24e-1 2.0e−2 8.20e-2 9.5e−3 1.17e-1 1.7e−2 7.99e-2 8.5e−3 7.62e-2 8.8e−3 +
DTLZ3 4.51e+0 2.7e+0 4.73e+0 3.0e+0 1.36e+1 5.2e+0 1.67e+1 7.8e+0 3.55e+0 3.3e+0 +
DTLZ4 1.12e-1 2.4e−2 7.93e-2 5.6e−1 1.08e-1 1.9e−2 6.92e-2 1.0e−2 6.77e-2 8.6e−3 +
DTLZ5 1.07e-2 2.6e−3 7.74e-3 1.5e−3 5.58e-3 4.8e−4 8.08e-3 1.6e−3 6.55e-3 1.1e−3 +
DTLZ6 8.57e-1 1.3e−1 7.82e-1 6.3e−2 5.10e-3 5.5e−4 1.72e+0 1.5e−1 6.00e-3 7.9e−4 +
DTLZ7 1.27e-1 4.5e−2 9.82e-2 1.2e−2 1.20e-1 3.6e−2 1.15e-1 3.0e−2 8.42e-2 1.6e−2 +
WFG1 5.66e-1 6.8e−2 6.56e-1 1.1e−1 7.76e-1 1.1e−1 6.30e-1 1.8e−1 1.03e+0 1.5e−1 +
WFG2 3.23e-1 6.4e−2 2.37e-1 3.4e−2 3.02e-1 4.5e−2 2.56e-1 3.8e−2 2.52e-1 3.9e−2 +
WFG3 1.24e-1 3.5e−2 9.22e-2 1.7e−2 1.08e-1 3.6e−2 8.57e-2 1.8e−2 1.04e-1 3.0e−2 +
WFG4 4.32e-1 7.8e−2 3.26e-1 3.8e−2 4.21e-1 1.0e−1 2.95e-1 4.3e−2 3.10e-1 4.1e−2 +
WFG5 4.71e-1 7.8e−2 3.52e-1 4.6e−2 4.34e-1 6.4e−2 3.44e-1 4.2e−2 3.30e-1 4.7e−2 +
WFG6 4.31e-1 6.7e−2 3.30e-1 4.9e−2 3.94e-1 6.2e−2 3.13e-1 4.4e−2 2.81e-1 3.6e−2 +
WFG7 4.65e-1 8.7e−2 3.37e-1 3.9e−2 4.57e-1 1.1e−1 3.07e-1 3.8e−2 2.95e-1 3.7e−2 +
WFG8 7.51e-1 9.2e−2 6.22e-1 1.4e−1 7.56e-1 5.4e−2 6.26e-1 1.6e−1 6.38e-1 3.3e−2 +
WFG9 4.39e-1 7.2e−2 3.28e-1 4.2e−2 4.25e-1 5.8e−2 3.13e-1 4.5e−2 3.14e-1 3.7e−2 +

Table 3. Non-successful statistical test of the Iε indicator

SPEA2 DTLZ3, DTLZ6
GDE3 DTLZ2, DTLZ4, DTLZ7,

WFG4, WFG5, WFG7, DTLZ1
WFG8, WFG9

MOCell
DTLZ7

DTLZ2, DTLZ5, WFG1, DTLZ3,
WFG5, WFG6, WFG8 DTLZ7

CellDE DTLZ3, WFG2, WFG4, DTLZ2, DTLZ4, WFG2,
DTLZ3 WFG5, WFG8 WFG3 WFG4, WFG5, WFG7,

WFG8, WFG9
NSGA-II SPEA2 GDE3 MOCell

the following statistical analysis has been performed in all this work [19]. Firstly,
a Kolmogorov-Smirnov test is applied in order to check whether the values of
the results follow a normal (gaussian) distribution or not. If the distribution is
normal, the Levene test checks for the homogeneity of the variances. If samples
have equal variance (positive Levene test), an ANOVA test is done; otherwise
a Welch test is performed. For non-gaussian distributions, the non-parametric
Kruskal-Wallis test is used to compare the medians of the algorithms. We always
consider a confidence level of 95% (i.e., significance level of 5% or p-value under
0.05) in the statistical tests. Successful tests are marked with ‘+’ symbols in the
last column in all the tables containing the results; conversely, ‘-’ means that
no statistical confidence was found (p-value > 0.05). The best result for each
problem has a gray colored background. For the sake of a better understanding
of the results, we have also used a clearer grey background to indicate the second
best result.

To further analyze the results statistically, we have also included a post-hoc
testing phase which allows for a multiple comparison of samples [20]. We have
used the multcompare function provided by Matlab c©. Tables 3 and 5 summarize
this comparison by including only those problems for which the differences are
not statistically different.

We start by analyzing the results of the Iε indicator, which are included in
Table 2. We observe that CellDE obtains the best (lowest) values in eight out of
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Table 4. Median and interquartile range of the HV indicator

NSGA-II SPEA2 GDE3 MOCell CellDE
Problem x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR

DTLZ1 7.22e-1 1.0e−1 7.69e-1 1.5e−2 7.62e-1 6.0e−3 0.00e+0 1.0e−1 7.86e-1 7.9e−4 +
DTLZ2 3.73e-1 8.3e−3 4.05e-1 2.6e−3 3.74e-1 6.3e−3 4.10e-1 2.0e−3 4.16e-1 1.3e−3 +
DTLZ3 − − − − − -
DTLZ4 3.74e-1 7.6e−3 3.98e-1 1.9e−1 3.71e-1 5.9e−3 4.05e-1 1.9e−3 4.07e-1 1.4e−3 +
DTLZ5 9.28e-2 3.0e−4 9.32e-2 1.9e−4 9.39e-2 7.0e−5 9.33e-2 1.7e−4 9.36e-2 6.9e−5 +
DTLZ6 − − 9.49e-2 4.8e−5 − 9.46e-2 8.1e−5 -
DTLZ7 2.80e-1 6.0e−3 2.90e-1 3.5e−3 2.92e-1 2.8e−3 2.81e-1 7.2e−3 3.03e-1 2.4e−3 +
WFG1 7.71e-1 5.2e−2 6.75e-1 7.4e−2 6.42e-1 5.4e−2 7.17e-1 1.3e−1 5.27e-1 1.1e−1 +
WFG2 9.01e-1 4.7e−3 9.13e-1 1.9e−3 9.05e-1 3.3e−3 9.12e-1 1.7e−3 9.14e-1 1.8e−3 +
WFG3 3.19e-1 2.5e−3 3.11e-1 2.7e−3 3.23e-1 1.5e−3 3.15e-1 1.6e−3 3.11e-1 4.6e−3 +
WFG4 3.65e-1 8.2e−3 3.92e-1 4.8e−3 3.52e-1 8.6e−3 4.07e-1 2.3e−3 3.95e-1 4.4e−3 +
WFG5 3.41e-1 9.4e−3 3.68e-1 6.9e−3 3.55e-1 4.0e−3 3.68e-1 4.8e−3 3.71e-1 1.9e−3 +
WFG6 3.64e-1 1.0e−2 3.91e-1 1.4e−2 3.81e-1 9.0e−3 3.97e-1 1.5e−2 4.16e-1 2.6e−3 +
WFG7 3.58e-1 1.0e−2 3.83e-1 5.5e−3 3.63e-1 7.8e−3 4.00e-1 3.2e−3 4.07e-1 2.5e−3 +
WFG8 2.42e-1 6.7e−3 2.69e-1 9.2e−3 2.40e-1 5.5e−3 2.69e-1 7.7e−3 2.59e-1 5.1e−3 +
WFG9 3.57e-1 7.2e−3 3.77e-1 3.8e−3 3.61e-1 5.4e−3 3.86e-1 5.9e−3 3.86e-1 2.7e−3 +

Table 5. Non-successful statistical test of the HV indicator

SPEA2 DTLZ4, DTLZ6
GDE3 DTLZ2, DTLZ4 DTLZ1, DTLZ4, DTLZ7

MOCell DTLZ6, DTLZ7, WFG8
DTLZ6, WFG1, WFG2,
WFG5, WFG6, WFG8

CellDE WFG2, WFG3
NSGA-II SPEA2 GDE3 MOCell

the sixteen problems evaluated and the second best results in five cases. MOCell
is the second best algorithm (three best results and seven second best values)
followed by SPEA2 (best value in two out of the sixteen problems evaluated and
the second best value in three other problems). GDE only yields the best values
in two problems. NSGA-II is the technique providing the poorest fronts, which
confirms the fact that this algorithm has difficulties when solving MOPs having
more than two objectives.

Table 3 contains, for each pair of algorithms, the MOPs for which no statistical
difference exists (at a confidence level of 95%) according to the Iε indicator. If
we focus on CellDE, we can see that the differences in the values in five and eight
problems with SPEA2 and MOCell, respectively, are not significant. This means
that both SPEA2 and MOCell produce similar Pareto fronts in those problems.

We analyze now the results obtained after applying the HV indicator (see
Table 4). It can be seen that CellDE clearly outperforms the other algorithms,
obtaining the best (highest) values in nine out of the sixteen MOPs evaluated,
yielding also the second best values in three other problems. MOCell can be
considered as the second most competitive algorithm according to HV since,
although it reaches the best HV value in only a single MOP, it is the second
best in eight out of the sixteen problems. GDE3 gets the best value in three
MOPs, and the second best value only in one case, while SPEA2 obtains the
best value in only one problem and the second best value in two cases. The least
algorithm with respect to this indicator is NSGA-II, which only reaches the best
value in one problem, yielding also the second best value in another one. As
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Fig. 2. Front obtained when solving DTLZ1. From left to right, from top to bottom:
NSGA-II, SPEA2, GDE3, MOCell, CellDE.

to GDE3 and MOCell, the base algorithms for CellDE, we can state that the
search capabilities of the new approach improves significantly those of the two
former ones according to HV . We explain now the meaning of the ‘−’ symbol
in Table 4. Since the HV indicator is not free from the arbitrary scaling of the
objectives, the resulting Pareto fronts of the algorithms have to be normalized.
In this normalization process, the nondominated solutions that are outside the
limits of the true Pareto front are not considered to compute the HV value
because, otherwise, the obtained values would be unreliable.

Table 5 contains, for each pair of algorithms, the MOPs for which no statistical
difference appears. The main conclusion that can be drawn from this table is
that the differences in the HV values of CellDE with respect to the values of the
other four algorithms are significant in all except two MOPs (WFG2 and WFG3
with SPEA2), thus providing our previous claims with statistical support.

To illustrate the search capabilites of CellDE, we include in Fig. 2 the Pareto
fronts reachedby the different algorithms evaluated when solving problemDTLZ1.
We observe that the fronts obtained by CellDE and SPEA2 have a better distribu-
tion of solutions than the other ones. Furthermore, in the case of CellDE, all the
solutions have converged towards the true Pareto front, while in the SPEA2 front
some solutions have not. We include in Fig. 3 the fronts obtained by CellDE for
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Fig. 3. Fronts obtained by CellDE when solving DTLZ2 (left) and WFG7 (right)

problems DTLZ2 and WFG7, where a uniform distribution of the solutions can be
observed.

5 Conclusions and Future Work

In this work we have proposed a new algorithm called CellDE, which hybridizes
the behavior of a cellular GA with a DE algorithm. It has been evaluated using
a benchmark composed of sixteen three-objective optimization problems.

To assess how competitive CellDE is, we have compared it to four state-of-
the-art algorithms, NSGA-II, SPEA2, MOCell, and GDE3, being the last two
ones the starting point to design our algorithm. The obtained results show that
CellDE clearly outperforms the other techniques according to the parameter
settings, problems, and quality indicators used.

A study of the behavior of CellDE when applied to problems having more
than three objectives is a matter of future work.
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