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Abstract. In this paper we investigate multiplicative noise models in the con-
text of continuous optimization. We illustrate how some intrinsic properties of
the noise model imply the failure of reasonable search algorithms for locating the
optimum of the noiseless part of the objective function. Those findings are rig-
orously investigated on the (1 + 1)-ES for the minimization of the noisy sphere
function. Assuming a lower bound on the support of the noise distribution, we
prove that the (1 + 1)-ES diverges when the lower bound allows to sample neg-
ative fitness with positive probability and converges in the opposite case. We
provide a discussion on the practical applications and non applications of those
outcomes and explain the differences with previous results obtained in the limit
of infinite search-space dimensionality.

1 Introduction

In many real-world optimization problems, objective functions are perturbed by noise.
Evolutionary Algorithms (EAs) have been proposed as effective search methods in such
contexts [5,10]. A noisy optimization problem is a rather general optimization problem
where for each point x of the search space, we can observe f(x) perturbed by a random
variable or in other words for a given x we can observe a distribution of possible objec-
tive values. The goal is in general to converge to the minimum of the averaged value of
the observed random variable. One type of noise encountered in real-world problems
is the so-called multiplicative noise where the noiseless objective function f(x) is per-
turbed by the addition of a noise term proportional to f , ie. the noisy objective function
F reads

F(x) = f(x)(1 + N ) (1)

where N is the noise random variable, sampled independently at each new evalua-
tion of a point. Such noise models are in particular used to benchmark robustness of
EAs with respect to noise [12]. The focus here is continuous optimization (that will
be minimization) where f maps a continuous search space, ie. a subset of R

d, into
R. The EAs specifically designed for continuous optimization are usually referred as
Evolution Strategies (ES), where a set of candidate solutions evolves by first applying
Gaussian perturbations (mutations) to the current solutions then selection. ES in noisy
environments have been studied by Arnold and Beyer [8,3,1]. Multiplicative noise has
been investigated in the case of N being normally distributed with a standard deviation
scaled by 1/d for a (1 + 1)-ES [4], (μ, λ)-ES [3,7], (μ/μI, λ)-ES [2] and f being the
sphere function f(x) = ‖x‖2. Under the assumption that d goes to infinity, Arnold and
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Beyer show, for f(x) = ‖x‖2, positive expected fitness gain for the elitist (1+1)-ES (if
the fitness of the parent is not reevaluated in the selection step which is the case of our
study). This implies a decrease of the expectation of the square distance to the optimum
(here zero). However, convergence of the (1 + 1)-ES to the optimum of the noiseless
part of the noisy objective function seems to be unlikely if the noise random variable
takes values smaller than −1 as we illustrate now on a simple example. Assume indeed
that N takes three distinct values (each with probability 1/3) +γ, 0 and −γ where γ
satisfies γ > 1. For a given x ∈ R

d, the objective function F(x) takes 3 different values
(each with probability 1/3) (1 + γ)‖x‖2, ‖x‖2, (1 − γ)‖x‖2. The last term is strictly
negative for x non equal to zero. Therefore, if one negative objective function value is
reached, the (1+1)-ES that can only accept solutions having a lower objective function
value will never accept solutions closer to the optimum since they have higher objec-
tive function values1. On the contrary the (1 + 1)-ES will diverge log-linearly2, i.e. the
logarithm of the distance to the optimum will increase linearly.

Starting from this observation, we investigate how the properties of the support of the
noise distribution relate to convergence or divergence of stochastic search algorithms
and can make the convergence to the optimum of the noiseless part of the objective
function hopeless for reasonable search algorithms. Compared to previous approaches,
we do not make use of asymptotic assumptions, trying to capture effects that were
not observed before [4]. In Section 2, we detail the noise model considered and show
experimentally on a (1 + 1)-ES that divergence and convergence is determined by the
probability to sample noise values smaller than −1. In Section 3, we provide some
simple proofs of convergence and divergence for the (1+1)-ES. In Section 4 we discuss
the results and explain where the difference with the results in [4] stems from.

2 Motivations

Elementary Remarks on the Noise Model. We investigate multiplicative noise mod-
els as defined in Eq. 1 where N is a random variable with finite mean and f(x) is
the noiseless function that we assume positive in the sequel. We also assume that
1 + E(N ) > 0 such that the argmin3 of the expected value of F(x) is the argmin
of f(x). Often, the distribution of N is assumed symmetric, implying then that 1 +
E(N ) = 1 > 0. Though one might think that this condition is sufficient such that mini-
mizing F(x) amounts to minimizing f(x), we sketch now, why divergence to ∞ of the
distance to the optimum happens if 1 + N can take negative values.

Assume that f(x) converges to infinity when ‖x‖ goes to ∞; typically f(x) can
be the famous sphere function f(x) = ‖x‖2 and assume that the random variable N
admits a density function pN (t), t ∈ R whose support is an interval [mN ,MN [, i.e.
N ∈ [mN ,MN [ and the probability that N ∈ [a, b] for any mN ≤ a < b ≤ MN is

1 Their absolute value is smaller though. However, trying to minimize the absolute value of F
instead is not a solution in general, consider for instance the function f(x) = (‖x‖2 + 1)
(1 + N ).

2 We will say that a sequence (dn)n diverges (resp. converges) log-linearly if there exists c > 0
(resp. c < 0) such that limn

1
n

ln(dn) = c.
3 The argmin of an objective function x �→ h(x) are defined as h(arg minx h) = minx h(x).
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strictly positive. The function gmN (x) = f(x)(1 + mN ) gives a lower bound of the
values that can be reached by the noisy fitness function for different instantiations of
the random variable N (because f is positive). For a given x, F(x) can take values with
positive probability in any open interval of ]gmN (x), f(x)[ (4).

In Fig. 1 are depicted a cut of f(x) = ‖x‖2 and gmN (x) = f(x)(1 + mN ) for
mN equals −0.5 and −1.5. The position ofmN with respect to −1 determines whether
gmN (x) is convex or concave: formN > −1, gmN (x) is convex, converging to infinity
when ‖x‖ goes to ∞ and for mN < −1, gmN (x) is concave, converging to minus
infinity when ‖x‖ goes to ∞. Minimizing gmN (x) in the case of mN < −1 means
that ‖x‖ is diverging to +∞ and gmN (x) is diverging to −∞ which is the opposite of
the behavior one would like since we are aiming at minimizing the non-noisy function
f(x) = ‖x‖2. Note that in the example sketched in the introduction with N taking

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

8

9

θ
−3 −2 −1 0 1 2 3

−5

0

5

10

A

Fig. 1. [Dashed Line] One dimensional cut of f(x) = ‖x‖2 along one arbitrary unit vector.
[Straight line] Left: One dimensional cut of g−0.5(x) = ‖x‖2(1− 0.5). Right: One dimensional
cut of g−1.5(x) = ‖x‖2(1 − 1.5). For a given x, the noisy-objective function can, in particular,
take any value between the dashed curve and the straight curve.

the values γ, −γ and 0, the plot of ‖x‖2 and (1 − γ)‖x‖2 for γ = 1.5 are the curves
represented in Fig 1 (right).

Experimental Observations. We investigate now numerically how the “shape” of the
lower bound might affect the convergence. For this purpose we use a (1, 5)-ES and a
(1 + 1)-ES using scale-invariant adaptation scheme for the step-size5.

We investigate the function Fs(x) = ‖x‖2(1 + N ) when the noise N is uniformly
distributed in the ranges [−0.5, 0.5] and [−1.5, 1.5] respecitvely denoted U[−0.5,0.5]

and U[−1.5,1.5]. This latter noise corresponds to the concave lower bound g−1.5(x) =
−0.5‖x‖2 plotted in Fig. 1. In Figure 2, the result of 10 independent runs of the (1, 5)-
ES (10 upper curves of each graph) in dimension d = 10 are plotted for the non-noisy
sphere (left), f(x) = ‖x‖2(1 +U[−0.5,0.5]) (middle) and f(x) = ‖x‖2(1 + U[−1.5,1.5])
(right). Not too surprisingly, we observe a drastic difference in the last two cases: the
algorithm converges to the optimum for the noise U[−0.5,0.5] whereas the distance to the

4 Note that gmN (x) < f(x) iff mN < 0.
5 In a scale-invariant ES, the step-size is set at each iteration as a (strictly positive) constant σ

times the distance to the optimum. This artificial adaption scheme (since in practice one does
not know the distance to the optimum!) allows to achieve optimal convergence rate for ES and
is therefore very interesting from a theoretical point of view. The algorithm is mathematically
defined in Section 3.
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Fig. 2. Distance to the optimum (in log-scale) versus number of evaluations. Ten independent
runs for the scale-invariant (1, 5)-ES (10 upper curves of each graph) and (1 + 1)-ES (10 lower
curves of each graphs) with d = 10 and σ = 1/d. Left: f(x) = ‖x‖2. Middle: f(x) = ‖x‖2(1+
U[−0.5,0.5]). Right: f(x) = ‖x‖2(1 + U[−1.5,1.5]).

optimum increases (log)-linearly for the noise having a lower bound smaller than −16.
Comparing the left and middle graphs we also observe, as expected, that the presence of
noise slows down the convergence. On the same figure (lower curves of the graphs), the
results of 10 independent runs of the (1+1)-ES are plotted for the three same functions.
As in the case of the comma strategy we observe that the (1 + 1)-ES diverges in the
case of the noise U[−1.5,1.5] and that, when convergence occurs, the convergence rate
is slower in presence of noise. Last, we investigate numerically the (1 + 1)-ES where
N is normally distributed and in particular unbounded. This corresponds to the case
investigated in [4]. We carry out tests for a standard deviation of the Gaussian noise
equals 0.1, 2 and 10. Results are presented in Fig. 3. We observe convergence when the
standard deviation of the noise equals 0.1 and divergence in the last two cases.
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Fig. 3. Ten independent runs for the scale-invariant (1+1)-ES with a normally distributed noise:
on f(x) = ‖x‖2(1 + σεN (0, 1)) with σε equals 0.1 (left), 2 (middle) and 10 (right) for d = 10
and σ = 1/d

3 Convergence and Divergence of the (1 + 1)-ES

In this section, we provide a simple mathematical analysis of the convergence and diver-
gence of the (1 + 1)-ES experimentally observed in the previous section. We focus for

6 However, contrary to what we will see for the (1 + 1)-ES, we do not state that “-1” is a limit
value between convergence and divergence in the case of (1, λ)-ES. Indeed convergence and
divergence depends on the intrinsic properties of the noise and on λ and σ as well (see [8]).
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the sake of simplicity on lower bounded noise, i.e. the support of the noise is included
in [mN ,+∞[. We prove that the (1 + 1)-ES minimizing the noisy sphere converges
if mN > −1 and diverges if mN < −1. The proofs are rather simple and rely on the
Borel-Cantelli Lemma. For the sake of readability we provide here a sketch of the demon-
strations and send the proofs with the technical details in the Appendix of the paper.

Mathematical Model for the (1 + 1)-ES. The (1 + 1)-ES is a simple ES which
evolves a single solution. At an iteration n, this solution denoted Xn, is called parent.
The minimization of a given function f mapping R

d (d ≥ 1) into R using the (1+1)-ES
algorithm is as follows: At every iteration n, the parent Xn is perturbated by a Gaus-
sian random variable σnNn, where σn is a strictly positive value called step-size and
(Nn)n ∈ R

d are independent realizations of a multivariate isotropic normal distribu-
tion on R

d denoted by N(0, Id) (7). The resulting offspring Xn + σnNn is accepted
if and only if its fitness value is smaller than the one of its parent Xn. One of the key
points in minimization using isotropic ES8 is how to adapt the sequence of step-sizes
(σn). Convergence of the (1 + 1)-ES is sub-log-linear bounded below by an explicit
log-linear rate. This lower bound for the convergence rate is attained for the specific
case of the sphere function and scale-invariant algorithm where the step-size is chosen
proportional to the distance to the optimum, i.e. σn = σ‖Xn‖ where σ is a strictly
positive constant [6,9]. The scale-invariant algorithm has a major place in the theory
of ES since it corresponds to the dynamic algorithm implicitly studied in the one-step
analysis computing progress rate or fitness gain [11,8]. Using this adaptation scheme,
the algorithm is referred to as the scale-invariant (1 + 1)-ES and the offspring writes as
Xn + σ‖Xn‖Nn. The noisy sphere function is denoted

Fs(x) = ‖x‖2(1 + N ) (2)

where we assume that the random variable N has a finite expectation such thatE(N ) >
−1 and admits a density function pN which lies in the range [mN ,MN [ where −∞ <
mN < MN ≤ +∞, MN > −1 and mN �= −1. The normalized noisy part N of the
noisy sphere function will be called normalized overvaluation of x. The term normal-
ized overvaluation was already defined in [4] where it corresponds to the opposite of
the quantity considered here up to a factor d/2. The minimization of this function using
the scale-invariant (1 + 1)-ES is mathematically modeled by the sequence of parents
(Xn) with their relative noisy fitnesses (Fs(Xn)) and normalized overvaluations (On).
At an iteration n, the fitness of the parent is Fs(Xn) = ‖Xn‖2 (1 +On) and the fit-
ness of an offspring equals ‖Xn + σ‖Xn‖Nn‖2 (1 + Nn) where (Nn)n is a sequence
of independent random variables with N as a common law. Let X0 ∈ R

d be the first
parent with a normalized overvaluation O0 sampled from the distribution of N . Then
the update of Xn for n ≥ 0 writes as:

Xn+1 = Xn + σ‖Xn‖Nn if ‖Xn + σ‖Xn‖Nn‖2 (1 + Nn) < ‖Xn‖2 (1 +On) ,
= Xn otherwise ,

(3)

7 N(0, Id) is the multivariate normal distribution with mean (0, . . . , 0) ∈ R
d and covariance

matrix the identity Id.
8 ES are called isotropic when the covariance matrix of the distribution of the random vectors
(Nn)n is Id.



On Multiplicative Noise Models for Stochastic Search 57

and the new normalized overvaluationOn+1 is then:

On+1 = Nn if ‖Xn + σ‖Xn‖Nn‖2 (1 + Nn) < ‖Xn‖2 (1 +On) ,
= On otherwise .

(4)

The (1+1)-ES algorithm ensures that the sequence relative to the function to minimize
(which is (Fs(Xn)) in our case) decreases. This property makes the theoretical study of
the (1 + 1)-ES easier than that of comma strategies. Our study shows that the behavior
of the scale-invariant (1 + 1)-ES on the noisy sphere function (2) depends on the lower
bound of the noise mN .

Theorem 1. The (1 + 1)-ES minimizing the noisy sphere (Eq. 2) defined in Eq. 3 con-
verges to zero if mN > −1 and diverges to infinity when mN < −1.

Proof. The proof of this theorem is split in two cases mN > −1 and mN < −1
respectively investigated in Proposition 1 and Proposition 2. �	
The proofs heavily rely on the second Borel-Cantelli Lemma that we recall below. But
first, we need a formal definition of ‘infinitely often (i.o.)’: Let qn be some statement,
eg. |an − a| > ε. We say (qn i.o.) if for all n, ∃m ≥ n such that qm is true. Similarly,
for a sequence of eventsAn in a probability space, (An i.o.) equals {w|w ∈ An i.o.} =
∩n≥0 ∪m≥n Am := lim An. The second Borel-Cantelli Lemma (BCL) states that:

Lemma 1. Let (An)n≥0 be a sequence of events in some probability space. If the events
An are independent and verify

�
n≥0 P (An) = +∞ then P (lim An) = 1.

Proposition 1 (Convergence for mN > −1). If mN > −1, the sequences (Fs(Xn))
and (‖Xn‖) converge to zero almost surely.

Sketch of the proof (see detailed proof in Appendix) The condition mN > −1 ensures
that the decreasing sequence (Fs(Xn)) is positive. Therefore it converges. Besides the
sequence (‖Xn‖) is upper bounded by θ := Fs(X0)/(1 + mN ) as shown in Fig. 1
(left). Consequently, the probability to hit, at each iteration n, a fixed neighborhood
of 0 is lower bounded by a strictly positive constant. Applying BCL we deduce the
convergence of the sequence (Fs(Xn)) (and then that of (‖Xn‖)) to zero. �	
Proposition 2 (Divergence for mN < −1). If mN < −1, the sequence (Fs(Xn))
diverges to −∞ almost surely and the sequence (‖Xn‖) diverges to +∞ almost surely.

Sketch of the proof (see detailed proof in Appendix) As 1 + mN < 0, the probability
to sample a noise Nn such that 1 + Nn < 0 is striclty positive. Therefore there exists
an integer n1 such that for all n ≥ n1, Fs(Xn) < 0. Consequently (‖Xn‖) is lower
bounded byA as illustrated in Fig. 1 (right) where the straight horizontal line represents
the slope y = Fs(Xn1). Besides, the probability to have Fs(Xn) as small as we want
is lower bounded by a strictly positive constant which gives with BCL the divergence
of the sequence (Fs(Xn)) to −∞, i.e. the sequence (‖Xn‖) diverges to +∞. �	
Remark that for the example sketched in the introduction where N takes the 3 different
values γ, 0 and −γ and under the condition γ > 1 the proof of divergence will follow
the same lines.
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4 Discussion and Conclusion

We conclude from Theorem 1 that what matters for convergence or divergence of the
(1 + 1)-ES in the case of noisy objective function with positive noiseless part is the
position of the lower bound mN of the noise distribution N with respect to −1 or in
other words the existence or not of possible negative fitness values. This result applies in
particular when N equals a truncated normal distribution, i.e. N = σεN (0, 1)1[−a,a]9

for any a and σε positive. Whenever σεa > 1, Proposition 2 applies and the (1 + 1)-ES
diverges.

Those results might appear in contradiction with those of Arnold and Beyer [4] prov-
ing that the expected fitness gain is positive−and therefore convergence in mean holds
for the scale-invariant ES−for a noise distributed according to a normal distribution. In
their model, Arnold and Beyer scale the standard deviation of the noise σε with 1/d,
i.e. when d → ∞, σε converges to 0. The largest value for the normalized σ∗

ε in [4,
Fig 5, 6, 8], for d = 80 corresponds to a standard deviation of 0.05 for which the
probability to have (1 + 0.05N ) < 0 is upper bounded by 10−88 (10), i.e. relatively
unlikely! Therefore though they consider some unbounded noise having a support in R,
the normalization of the standard deviation of the noise implies a so small probability to
sample 1 + N below −1 that the unbounded noise reduces to the case of convergence
where mN > −1. The same conclusion holds for the numerical example given in
Section 2, Fig. 3 (left) where the standard deviation of 0.1 corresponds to a probability
to have (1+0.1N ) < 0 lower bounded by 10−23. Therefore though the theory predicts
divergence as soon as mN < −1, what matters in practice is how likely the probability
to sample N < −1 is.

In conclusion, we have illustrated that convergence but also divergence can happen
for the multiplicative noise model. Those results are due to the probability to sample
1 + N smaller than 0 and are therefore intrinsic to the noise model and not to the ’+’
strategy. The probability that 1+N can be very small, in which case theory predicts di-
vergence that will not be observed in simulations. We decided to present simple proofs
relying on Borel-Cantelli Lemma. As a consequence, those proofs do not show the
log-linear convergence and divergence observed in Section 2. Obtaining the log-linear
behavior can be achieved using the theory of Markov chain on continuous state space.
Last, we did not include results concerning a translated sphere f(x) = ‖x‖2 + α with
α ≥ 0 for which our proofs of convergence can be extended but where linear conver-
gence does not hold anymore due to the fact that the variance of the noise distribution
does not reduce to zero close to the optimum.

Acknowledgments

The authors would like to thank Nikolaus Hansen for many valuable discussions. This
work receives partial supports from the ANR/RNTL project Optimisation Multidisci-
plinaire (OMD).
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exp(−x2/2)/|x|�(2π) for x < 0.
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Appendix

Proof of Proposition 1. The sequence (Fs(Xn)) is decreasing and is lower bounded
by 0 as Fs(Xn) ≥ ‖Xn‖2 (1 +mN ) ≥ 0 . Therefore it converges to a limit l ≥ 0. Let
us show that l = 0. Let ε > 0, we have to show that ∃ n0 ≥ 0 such that Fs(Xn) ≤ ε for
n ≥ n0. Since the sequence (Fs(Xn)) is decreasing, we only have to show that ∃ n0 ≥
0 such that Fs(Xn0) ≤ ε . Let β > 1 and such that [1+mN , β(1+mN )[⊂ supp(1+N ).
In Lemma 2, we have defined the event An,ε,β , shown that it is included in the event
{Fs(Xn+1) ≤ ε} and proved that the events (An,ε,β)n are independent. Moreover,
P (An,ε,β) = P (‖e1+σN‖2 ≤ ε

(1+β)θ2(1+mN ))P (1+N ≤ β(1+mN )) (where θ is de-

fined in Lemma 2) is a strictly positive constant for all n. Then
�+∞
n=0 P (An) = +∞.

This gives by BCL that P (lim An) = 1. Therefore P (lim {Fs(Xn+1) ≤ ε}) = 1, i.e.
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∃n0 such that ∀n ≥ n0, Fs(Xn) ≤ ε. Therefore Fs(Xn) converges to 0. The sequence
(‖Xn‖) converges also to 0 as ‖Xn‖2 ≤ Fs(Xn)

1+mN
. �	

Lemma 2. If mN + 1 > 0, the following points hold:

1. The sequence (‖Xn‖) is upper bounded by θ :=
�

Fs(X0)
1+mN > 0.

2. Let ε > 0 and β > 1 such that β(1 +mN ) ∈ supp(1 + N ). For n ≥ 0, the event

An,ε,β :=
����� Xn

‖Xn‖ + σNn

���2

≤ ε
(1+β)θ2(1+mN )

�
∩ {1 + Nn ≤ β(1 +mN )}

�
(11)

verifies An,ε,β ⊂ {Fs(Xn+1) ≤ ε}. Moreover, the events (An,ε,β)n are indepen-
dent.

Proof. 1. For n ≥ 0, Fs(Xn) = ‖Xn‖2 (1 +On) = ‖Xn‖2
	
1 + Nφ(n)



where φ(n)

is the index of the last acceptance (obviously φ(n) ≤ n). Then, for n ≥ 0
Fs(Xn) ≥ ‖Xn‖2 (1 +mN ) ≥ 0 and consequently ‖Xn‖2 ≤ Fs(Xn)

1+mN
≤ Fs(X0)

1+mN
.

2. Let ε > 0 and β > 1 such that [1 + mN , β(1 + mN )[⊂ supp(1 + N ) (with
βmN < MN if MN < +∞). For n ≥ 0, the event����� Xn

‖Xn‖ + σNn

���2

< ε
(1+β)θ2(1+mN )

�
∩ (1 + Nn < β(1 +mN ))

�
implies for the

offspring X̃n := Xn + σ‖Xn‖Nn created at the iteration n that

Fs(X̃n) = ‖Xn‖2
��� Xn

‖Xn‖ + σNn

���2

(1 + Nn) ≤ θ2 ε
(1+β)(1+mN )θ2β(1 +mN ) .

Then Fs(X̃n) ≤ β
β+1ε < ε. If this offspring is accepted then Fs(Xn+1) < ε, otherwise

the fitness is already less than ε and we have also Fs(Xn+1) < ε. Finally, the indepen-
dency of the events (An,ε,β)n result from Lemma 3 applied to the sequence (Xn). �	
Lemma 3. Let (Un) be a sequence of random vectors in R

d such that P (‖Un‖ =
0) = 0 and Nn independent random vectors distributed as N(0, Id). Then the variables

Yn :=
��� Un

‖Un‖ + σNn

��� are independent.

Proof. The independance of the random variables Yn is due to the fact that the mul-
tivariate Gaussian variable N(0, Id) is isotropic and is therefore invariant by rotation.
The length of the vector Un

‖Un‖ + σNn will therefore be independent of where we start

on the unit hypersphere, i.e., independent of the vector Un

‖Un‖ . �	

Proof of Proposition 2. Let n ≥ n1 (n1 defined in Lemma 4). We have to show that for
any m < Fs(Xn1) < 0, ∃ n ≥ n1 such that Fs(Xn) ≤ m, or equivalently |Fs(Xn)| ≥
|m|. Similarly to the proof of Proposition 1, by BCL we have (Bn,m,β i.o.) ((Bn,m,β
being defined in Lemma 4) therefore Lemma 4 gives that (Fs(Xn+1) ≤ m i.o.). Then
Fs(Xn) = ‖Xn‖2 (1 +On) tends to −∞. For all n ≥ n1, 0 ≥ 1 + On ≥ 1 + mN ,
then |Fs(Xn)|

|1+mN | ≤ ‖Xn‖2 for n ≥ n1. Consequently (‖Xn‖) converges to +∞ almost
surely. �	
Lemma 4. Assume that mN + 1 < 0. The following points hold:
11 The multivariate Gaussian distribution is absolutely continuous with respect to the Lebesgue

measure such that P (‖Xn‖ = 0) = 0 and then we can divide by ‖Xn‖ almost surely.
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1. There exists n1 ≥ 0 and A :=
�

|Fs(Xn1 )|
|1+mN | > 0 such that Fs(Xn) < 0 and

‖Xn‖ ≥ A for n ≥ n1 almost surely.
2. Let m < Fs(Xn1) < 0 and β > 1. For n ≥ n1, the event Bn,m,β defined

by Bn,m,β :=
	�

|1 − σ‖Nn‖|2 ≥ |m|
|mN+1|

β+1
A2

�
∩
�
1 + Nn ≤ 1+mN

β

�

verifies

Bn,ε,β ⊂ (Fs(Xn+1) ≤ m).

Proof. 1. We first prove that the event A := { ∃ n1 ≥ 0 such that ∀ n ≥ n1,
Fs(Xn) < 0} is equivalent to the event B := { ∃ p0 ≥ 0 such that Np0 < −1 }.
Proving that A ⊂ B is equivalent to show that Bc ⊂ Ac. Suppose that ∀p ≥ 0, Np ≥
−1. Then ∀p ≥ 0, Op ≥ −1. Therefore ∀p ≥ 0, Fs(Xp) = ‖Xp‖2 (1 +Op) ≥ 0.
Now we have to show that B ⊂ A: Suppose that ∃ p0 ≥ 0 such that Np0 < −1.
We denote p1 ≥ 0 the integer defined by p1 = min{p ∈ N such that Np < −1}. Then
Fs (Xp1) < 0 and Fs (Xp) ≥ 0 for all 0 ≤ p ≤ p1−1. Since (Fs (Xn)) is a decreasing
sequence, Fs(Xn) < 0 ∀ n ≥ p1. This implies that P (A) = P (B). Now, we have for
all n ≥ 0, P (Bc) = P (∩+∞

p=0 (Np ≥ −1)) ≤ Πn
p=0P (Np ≥ −1) = (P (N ≥ −1))n .

Let a := P (N ≥ −1)(12). As mN < −1, then a < 1 which gives P (Bc) = 0 and
therefore P (A) = 1. Then ∃ n1 ≥ 0 such that Fs(Xn) < 0 for n ≥ n1 almost surely.
The sequence (Fs(Xn))n is decreasing (because of the elitist selection). Then for n ≥
n1, Fs(Xn) ≤ Fs(Xn1) < 0 . This gives |Fs(Xn)| ≥ |Fs(Xn1)| > 0. It is easy to
see (from Eq. 4) that for all n ∈ N , On = Nψ(n) where ψ(n) is the last acceptance
index before the iteration n. Combining this with the fact if 1 +mN ≤ 1 + Nψ(n) < 0
one gets 0 < |Fs(Xn1)| ≤ |Fs(Xn)| = ‖Xn‖2|1 + Nψ(n)| ≤ ‖Xn‖2|1 +mN | . Then

‖Xn‖2 ≥ |Fs(Xn1 )|
|1+mN | > 0 .

2. By the first result of the Lemma, ∃ n1 ≥ 0, A > 0 such that Fs(Xn) < 0 and
‖Xn‖ ≥ A ∀n ≥ n1. We consider n ≥ n1, then ‖Xn‖ > A. We notice that ∀ y ∈
R
d\{(0, 0)},

��� y
‖y‖ + σN

��� ≥ |1 − σ‖N‖|. Let β > 1. As the upper bound MN verifies

1 + MN > 0, 1+mN
β ∈ supp(1 + N ) ∩ R

−. Suppose that we have |1 − σ‖Nn‖|2 ≥
(β+1)|m|
A2|1+mN | and |1 + Nn| ≥ |1+mN |

β , then the offspring X̃n := Xn + σ‖Xn‖Nn is such

that |Fs(X̃n)| = ‖Xn‖2
��� Xn

‖Xn‖+σNn

���2

|1+Nn| ≥ ‖Xn‖2|1−σ‖Nn‖|2|1+Nn| . Then

|Fs(X̃n)| ≥ β+1
β |m| > |m| which gives Fs(Xn+1) ≤ Fs(X̃n) ≤ m. Consequently, for

n ≥ n0, the event Bn,m,β :=
�
|1 − σ‖Nn‖2| ≥ (β+1)|m|

A2|1+mN |
�
∩
�
|1 + Nn| ≥ |1+mN |

β

�
is included in {Fs(Xn+1) ≤ m}. �	

12 We apply the same reasoning with a = 2/3 for the example given in the introduction where
N take values in {−γ, 0, γ} (with γ > 1) .
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