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Abstract. Swarm systems for multiagent control rely on natural models of be-
havior. Such models both predict simulated natural behavior and provide con-
trol instructions to the underlying agents. These two roles can differ when, for
example, controlling nonholonomic robots incapable of executing some control
suggestions from the system. We consider a simple physicomimetics system and
examine the effects of actuation constraint on that system in terms of its abil-
ity to stabilize in regular formations, as well as the impact of such constraints
on learning control parameters. We find that in the cases we considered, physi-
comimetics is surprisingly robust to certain types of actuation constraint.

1 Introduction

Swarm intelligence [1] is a popular and successful group of methods for controlling co-
ordinated multiagent teams. Of such approaches, those based on variations of artificial
physics models, physicomimetics [2], have particular appeal. The resulting behaviors
are quite intuitive; it is easily generalized to allow for modular, heterogeneous and scal-
able team behaviors [3]; and traditional analytical tools from physics can be used to help
diagnose and predict team behaviors[2]. Physicomimetics is particularly well-suited for
tasks that require stable geometric formations such as lattices or rings, and under the
proper circumstances one can show that teams will settle into “low-energy” positions
provided by such structures.

It is clear that control methods based on artificial physics models are performing
two essentially different tasks: 1) predicting motion of particles within a particle-based
physics model (particle model), and 2) producing control input to move agents in some
real or simulated world (environment). When agents are treated as simple point-mass
particles with no additional constraint on their motion, these roles do not conflict. How-
ever, for realistic control systems operating in the environment (e.g., nonholonomic
robotic platforms), a conflict between these roles occurs when the agents being manip-
ulated cannot move as requested. Analyses regarding the stabilization of regular for-
mations, for instance, rely on a temporal element — the dynamics of the particle model
itself. When there is a disconnect between model prediction and control, such analyses
are questionable since the dynamic will almost certainly differ, potentially quite radi-
cally. Additionally, though parameters for physicomimetics control systems are often
hand-coded, complex problems require some kind of learning, and it isn’t clear how the
disconnect between prediction and control affects the learning gradient.
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Still, physicomimetics has been successfully applied to a wide range of control prob-
lems including mobile robot formation [2], multi-robot chemical plume tracing [4], and
heterogeneous, multiagent in-port ship protection [3]. Moreover, in many cases con-
trol systems have been demonstrated both in simulation and on physical devices, where
actuation constraint varies widely.

We show artificial physics based control systems are affected by actuation con-
straints on the agents; however, physicomimetics is surprisingly robust to such pre-
diction / control disparities. We construct a common nonholonomic control system that
constrains agent motion in a number of ways and parameterizes the maximum allowable
turning speed and examine the effect of this parameter on lattice formation. Considering
a more complex covert tracking problem that requires learning, we discover that added
constraints affect properties of the system and influence the learning gradient. Only in
extreme cases are the behaviors qualitatively different.

The next section will discuss the control system we are using in detail. Section three
will discuss the effects of constraints on simple hexagonal lattice formation, while sec-
tion four will detail our efforts to learn physicomimetics based control solutions for a
covert tracking problem. We finish up with a short discussion of related work, as well
as our conclusions and future plans with this research.

2 Representing Agent Behaviors with Artificial Physics

2.1 Physicomimetics

Physicomimetics provides a framework for the control of multiple agents [2]. Each
agent has its own physicomimetics model, which is updated at each time step from that
agent’s knowledge of its environment, including the observed positions and velocities
of all observed agents. Agents are treated as point-mass (m) particles. Each particle has
a position, x, and velocity, v. We use a discrete time simulation, with time step Δt.
At each time step, the particle is repositioned based on the velocity and the size of the
step, Δx = vΔt. The change in velocity of the particles is determined by the artificial
forces operating on the particles, Δv = FΔt/m, where F is the aggregate force on
the particle as a result of interactions with other particles and the environment. Each
particle also has a coefficient of friction, cf ∈ [0, 1]. Velocity in the next step becomes
(v + Δv)cf , stabilizing the system [2]. When this new velocity is computed in the
physicomimetics model, the agent tries to the best of its ability to match it in its own
environment. The values of these masses, frictions, and force laws are what govern the
motion in this system, and are either hand selected or learned in some fashion.

There are two constraints: the magnitude of the force cannot exceed Fmax and the
magnitude of the velocity cannot exceed Vmax. These restrict acceleration and velocity
of particles in the model. Also, since there is an emphasis on local interactions, there
are further restrictions on the range of effect particles have on each other.

Advantageously, a variety of force laws can be employed to different effect. The pa-
rameters of the above model, coupled with the force law parameters, provide engineers
with mechanisms to adjust the behaviors of agents. Finally, since physicomimetics is
based on physics, practical analyses are possible using traditional physics techniques
such as force balance equations, conservation of energy and potential energy [2].
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A slight variation of the well-known Newtonian force law will be used in this paper:
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The magnitude of the force is determined by choice of gravitational constant, G.
The force law repels particles closer than R and attracts particles past that distance
but within the range of effect, E. The gradient of the force can be controlled using
d, and a can raise or lower the importance of mass on the force. In total, there are two
parameters associated with each particle (m and cf ) and five parameters associated with
their interactions (G, E, R, a, and d). Distance variable rij is an observed phenomenon.

2.2 Constraining Agent Motion

Our goal was to simulate a parameterized differentially steered device. We used a num-
ber of parameterized constraints on agent movement. Physical constraints such as max-
imum velocity Vmax, maximum acceleration amax, and maximum turning speed θmax

are placed upon the agents, and the physicomimetics control system is allowed to sug-
gest velocities without regard for these limits. At each time step, the agent will update
its orientation, velocity, and position according to the following algorithm:

1. The orientation and velocity of the agent is rotated by Δθ towards the suggested
velocity, where Δθ = min (θmax, θδ). θδ is the difference in orientation between
the current agent orientation and the orientation of the suggested velocity.

2. The magnitude of the agent’s current velocity is set to |v| = |vprev| · cos(Δθ),
where |vprev| is the magnitude of the velocity at the previous time step.

3. The suggested velocity is projected along the updated orientation vector, and agent
velocity is updated to as close to the projected suggested velocity as amax permits.

4. The magnitude of the agent’s velocity is constrained by the maximum velocity,
|v| = min (|v| , |Vmax|).

5. Agent position is updated according to the new computed velocity, Δx = vΔt.

Dampening the speed of the agent proportionately to Δθ in step 2 has a stabilizing
effect on the agents, which we use here in place of friction. It is for this reason that
an agent with a turning speed constraint of π is different from a traditional agent. Of
the thresholds discussed, the turning speed constraint θmax was chosen as the inde-
pendant variable in order to observe to what degree increasing constraints impact the
performance of both the agent and learning algorithms operating on that agent.

3 Constraining Motion in Simple Lattice Formations

One of the simplest and most natural formations obtainable by agents controlled via
physicomimetics is an hexagonal lattice. Straightforward swarm design methods can
produce solutions capable of settling into a regular isometric grid quickly and effi-
ciently. With appropriate parameters, one does not even need friction for the system
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to find equilibrium in such stable configurations because the low potential energy wells
of the system correspond with these structures.

We refer to our control group as the “traditional model”, described in section 2.1,
where there is no inconsistency between the environment and the particle model. In this
case, a swarm designer can affect lattice width via the R (attraction-repulsion boundary)
parameter. The effect range, E, is typically set at 1.5R to be less than the

√
3R factor

that allows second-tier points in the lattice to be visible. Our parameters follow those of
[2]: R = 50, E = 75, G = 1200, a = 1, d = 2, save that we use 100 particles (Spears
used 200), and we do not use friction. This system will settle into a hexagonal lattice.

We investigate two properties of the system: settling time and lattice quality. Settling
time is the time it takes the system to find a quiescent state. Lattice quality is a measure
of how faithfully the distributed agents replicate an isometric formation.

3.1 Settling Time

Under the right conditions, a particle model will lose energy as it converges on
a stable formation. When agents cannot move as dictated by their surrogate parti-
cles, unstable dynamics might be introduced in the physicomimetics system since
the criteria of the proofs for stability in [2] are not all met. To test this, we
considered control systems with varying constraints on turning speed (θmax ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 3.14} radians), as well as the traditional (non-
constrained) model. We ran each model 30 times and analyzed the dynamics in terms
of the average scalar acceleration magnitude of all agents each step.

Using our nonholonomic control system above, we find that the system not only
settles into a formation in all cases, but the damping factor for sharper turning seems to
help the system settle faster. The left panel in Figure 1 below illustrates averages over
the thirty trials of the settling behavior in four of the above groups. We examined all of
the above groups, and the basic curve characteristic is similar in all cases, and standard
deviations (not shown) indicate very little variability in this settling behavior.

To investigate this behavior more carefully, we consider the settling time of the sys-
tem: the number of time steps taken for the average magnitude of acceleration to drop
below an empirically selected threshold, 0.01 distance units per step squared. The right
side of Figure 1 shows these results for all experimental groups. Pair-wise t-tests using
Bonferoni adjustment indicates no statistical differences between any of the constrained
groups, but all constrained groups have a significantly lower settling time than the tra-
ditional model (95% confidence).

While constraining the motion of the agents undoubtedly affects the rate at which
they settle into a stable formation, our nonholonomic constraints do not prevent this
ability in general. Indeed, our differentially steered agents settle faster than the tradi-
tional approach because of the damping influence on sharp angle motions.

3.2 Lattice Quality

Arriving at a stable configuration quickly does not necessarily imply that the same
configuration is reached. Again, swarm design on the traditional system to produce
hexagonal lattices is predicated on a basic understanding of traditional physics. This
understanding is of questionable value when particles cannot move freely.
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Fig. 1. Left graph: four systems settling into a formation. Each curve is the average scalar accel-
eration magnitude of the system across thirty different simulations. Right graph: the settling time
for each of the groups. Points and wings represent means and 95% confidence intervals.

To investigate this, we again run the above experimental groups (θmax ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 3.14} and traditional case) for thirty trials
apiece and measure the average lattice quality for fifty steps after the system has settled
(acceleration magnitude has dropped below 0.01). Peaks in the acceleration graph rep-
resent the moment when agents are slipping into their minimal energy configurations.
Peak position is likely a function of the number of agents.

We found the lattice quality measure used in [2] too sensitive to the value of R for our
purposes. Instead, we compute the Delaunay triangularization [5] of the particles, then
measure the coefficient of variation in edge lengths in this graph. To reduce boundary
effects, we use only edges with points in the inner 85% of total area covered by the
agents. Figure 2 below illustrates the mean and confidence intervals for the quality
results for all groups.

Using the multi-way comparison previously described, we find that the lattice qual-
ity of the traditional group is significantly better than the constrained cases. Also, the
θmax = 0.1 case differs from all other cases. The 0.2 case differs from the 0.6, 0.7, 0.8,
0.9, and 3.14 cases. All other comparisons are statistically indistinguishable.

Fig. 2. Lattice quality for each group. Points and wings: means and 95% confidence intervals.



394 C. Ellis and R.P. Wiegand

While our nonholonomic agents form hexagonal lattices that are of marginally lower
quality than the traditional models, there is no doubt that the lattices are formed. Visu-
ally, they look very similar. A random dispersion of 100 points results in a lattice quality
of more than four times that of the worst of our groups; all groups formed lattices that
were significantly better from a statistical point of view. Moreover, the lattice quality is
fairly robust to the degree of constraint (in terms of θmax): using constraints marginally
decreases lattice quality, but the degree of constraint is not particularly important.

4 Constraining Motion in the Covert Tracking Problem

We are interested in a generalized form of a multi-target tracking problem, where our
coordinated team of agents learns to distribute the task of tracking various targets with
differing capabilities and with different objectives in mind. Such problem domains re-
quire fairly sophisticated swarm designs and (typically) some kind of learning.

However, it isn’t clear how portable swarm design methods are when there are pro-
found disconnects between how agents can move and how a swarm system directs them
to move. Moreover, it isn’t clear how such constraints impact learning performance. To
begin to answer this question, we focus on a simple form of our more general problem
and investigate how our constrained nonholonomic controller impacts learning, as well
as the final solution quality.

4.1 Covert Tracking

For this experiment we use a single tracker and a single target. The goal is for the tracker
to follow the target as closely as possible and not be seen by the target. The target has a
field of vision that consists of two concentric circles. The target will detect the tracker if
it is anywhere in the inner circle, 10 distance units. The outer radius (30 distance units)
is a 3

2π radians arc, such that the target has a “blind spot” directly behind its facing
direction. The target moves at a maximum velocity of 1 unit per step and is constrained
in a way similar to the tracker with a θmax = 0.05. It randomly wanders as follows:
with a probability of 0.05 each time step, it selects a new desired facing direction and
changes its velocity to match that preference (allowing for actuation constraints). The
new direction is chosen uniformly at random within a relative ±3 radians. The behavior
is fairly smooth, with occasional surprising turns.

Initial positions of the target and tracker are chosen uniformly at random in a rect-
angular area of 80 × 60 units in size. The tracker has a 2π radians field of view up to
80 distance units and has a maximum velocity of 2 units per step. It’s behavior is con-
trolled via physicomimetics as described above using three types of particles. The first
represents the target, the second the tracker, and the third a virtual particle — a particle
representing an unembodied concept to be used by the control system, described below.
Each step, the tracker constructs a particle model, placing a tracker particle in its own
position, a target particle in the position of the target (if it is seen), and a virtual particle
in a position computed using a relative range and bearing from the position of the target.
The offset bearing is relative to the bearing of the target, and the tracker estimates the
target bearing based on its change in position.
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The virtual particle is necessary if we hope to have the trackers exploit the blind spot
of the target. While our representation does not prescribe how this particle is used, the
most obvious solution is to place the particle in the blind spot. The learning system is
responsible for determining this.

The control system requires 23 parameters. The mass and coefficient of each of the
three particles (6), the force law parameters for each interaction (5 · 3), and a range
/ bearing offset for computing the position of the virtual particle. These are all repre-
sented as real values. The table below describes the permitted ranges for these values.

Table 1. Ranges for control system parameters, ε = 0.00001

Type of parameter Range Type of parameter Range
mass, m [0, 200] distance power, d [−10, 10]
friction, cf [0, 1000] mass power, a [−10, 10]
effect range, E [0 + ε, 480] virtual particle range, ρv [0, 60]
AR boundary, R [0 + ε, E] virtual particle bearing, θv [−π, π]
gravity, G [−1000, 1000]

4.2 Learning a Physics Model for Control

The 23 parameters just discussed were encoded into a real-valued genome, and a
(5+35)-ES was used for optimization. Gene values were in the range [0.0, 1.0], and
were scaled to the ranges of each individual parameter of the force laws the physi-
comimetics control system. Fitness for an individual was aggregated over 20 trials, for
600 timesteps per trial. Adaptive mutation was employed as in [6] with σinit = 0.25
and σ ∈ [0.005, 0.25]. Evolution took place over 50 generations, and the most fit in-
dividual found was then evaluated with a number of metrics for our empirical analysis
(described below).

Fitness at each time step for each individual was evaluated as follows.

F (a ∈ trackers, b ∈ targets) = Rα ·
(

sees(a, b)
D(a) − ra,b

D(a)

)Rβ

− Pα · sees(b, a)

sees(a, b ∈ agents) =
{

1 if agent a ‘sees’ agent b
0 otherwise

Here D(a) represents the vision range of agent a. There are three parameters Rα, Rβ ,
and Pα, used here to tune the ES towards different desired behaviors. Rα is the reward
scaling factor, Rβ is an exponent that changes the signifigance of the distance of the
trackers to the targets they see, and Pα is the penalty scaling factor. For the purposes
of our experiment, Rα = 1, Rβ = 1, and Pα = 3. This creates an environment where
the fitness reward increases linearly with the proximity of the tracker to its target. The
reward given per time step can be up to 1.0. A flat penalty of 3 is applied at each time
step if the tracker is seen by the target. Increasing the reward for smaller distances
causes the tracker to get as close as possible, while the penalty for being seen ensures
that the tracker will avoid the vision area of the target.
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4.3 Predicting vs. Controlling Agent Behavior

The first hypothesis that needs to be confirmed is that limitations on agent mobility
create a disconnect between the executed behaviors of the controlled agents and the
described behaviors of their analogous particles. If that is so then presumably the learn-
ing system will have to work with, or compensate for, those differences. Our suggested
position difference measure, Δpos confirms the first part of this reasoning.

At each time step the physicomimetics system suggests a velocity that the agent,
to the best of its ability, tries to execute. This yields a suggested position, x̂, and the
actual updated position the agent is capable of achieving, x. The suggested position
difference for a given time step is then the Euclidean distance between the suggested
and actual position for that step. The magnitude of this value represents the degree to
which the agent is incapable of matching the directions given by the control system. Our
measure aggregates this value over all time steps according to the following equation:

Δpos =
∑ T

t=1(‖x̂(t)‖−‖x(t)‖)
T .

The Δpos for the best of run for each of thirty trials of the EA were collected.
The results were aggregated over each value of θmax, and a Bonferroni-adjusted t-test
was applied to test for statistical differences between the results (see the left graph of
Figure 3). As is expected, as the turn speed constraint is relaxed, the overall trend of the
output of the physicomimetics model moves to more closely match the actual change
in location of the agent. However, even as the turn speed approaches the point where
an agent may turn any direction in a single time step, there is still a statistically signifi-
gant difference compared to the traditional agent. As expected, the constraints create a
disconnect between particle model prediction and the resulting executed behavior.

4.4 Effects on Learning Performance

Despite the fact that there is the disconnect discussed above, the learned solutions are
surprisingly good. Though the learned solution in the traditional case is significantly
better than all the others (in fact, all groups are significantly different from one another),
all but the most extreme cases learn the same basic behavior: Set the virtual particle
inside the blind spot of the target, then track the target from that position.

Consider the right plot in Figure 3, below. First, all values are reported in terms
of their average fitness per step. Second, the means and confidence intervals of the
best of run values for each experiment group are plotted. Finally, an incursion zone
is plotted as a shaded rectangle to highlight the efficacy of the learned solutions. This
zone represent distances smaller than the range of vision of the target, scaled to the

limit of the tracker’s range of vision
(

D(a)−ra,b

D(a)

)
. Fitness values within that range

must result from behaviors that stay within the outer range of the target’s range of
vision and receive no penalty from being seen (i.e., in the target’s blind spot). The wider
confidence wings on the 0.15 and 0.3 groups occur because some trials fail to discover
this, while others succeed. The learning gradient for placing the virtual particle becomes
particularly steep when the constraint is high.
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Fig. 3. Left graph: Suggested position difference for several experimental groups. Right graph:
Best of run fitnesses for all groups. The grey area represents values where trackers remain (on
average) in the blind spot of the target. Points and wings: means and 95% confidence intervals.

5 Related Work

There is an increasing wealth of literature that uses swarm intelligence for coordinated
control of groups of agents, such as physicomimetics [2,3,4], methods based on social
potential fields [7], or methods based on flocking and schooling behaviors in animals
[8]. These approaches rarely focus on the effects on actuation constraints on agents
under control, though the agents themselves are often nonholonomic.

Additionally, there are traditional control theory methods for formation control in
agents, typically based on a leader / follower paradigm [9]. In an interesting middle-
ground approach, [10] presents a method for designing cooperative formation control
systems for groups of mobile robots (both holonomic and nonholonomic) based on
potential functions. [11] examines three aspects of a behavior-based approach to co-
ordinated multiagent control that includes control of robots under differential steering.
These methods incorporate explicit notions of actuation constraint and (often) include
formal justifications for which certain patterns will stabilize; however, they lack the
intuition and simplicity of bottom-up, nature-based approaches.

6 Conclusions and Future Work

Though it is clear that actuation constraints can have potentially profound impacts on
how a multiagent system must be controlled to produce useful coordinated behavior, lit-
tle effort has been made to date to determine how swarm-based approaches are affected
by such constraints. We believe a closer look at when and how actuation constraints af-
fect swarm-based behaviors is therefore justified, and this paper presents a preliminary
empirical look into these effects in two simple domains: hexagonal lattice formation
and covert tracking. We examined a differential-like control system that allowed us to
vary the degree of constraint on agent movement.
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We found that while constraints do impact system performance, only in the most ex-
treme cases were the physicomimetics control methods unable to accomplish the basic
tasks at hand. The systems did not destabilize, nor did they alter the basic character
of the behavior implemented in the unconstrained cases. Simple, high-quality hexag-
onal lattices were formed even when maximum turn speed was quite low, using the
same parameters as successful unconstrained physicomimetics agents used to solve the
same problem. Constraints affected learning performance only minimally, save when
they were particularly severe. Our results provide some hope that for certain, simple
problems physicomimetics is fairly robust to these kinds of mobility limitations.

We believe that even when the constraints are severe, learning difficulties can be mit-
igated using transfer learning. In the most extreme case of the covert tracking problem,
the system never learns to place the virtual particle in a useful position and the agent
learns simply to stay outside the vision range. Our approach is to first learn the control
parameters in the traditional way, then use this to bias the search for behaviors when
the tracker cannot move so freely. Early results are encouraging.
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