How Single Ant ACO Systems Optimize
Pseudo-Boolean Functions

Benjamin Doerr, Daniel Johannsen, and Ching Hoo Tang

Max-Planck-Institut fiir Informatik
Saarbriicken, Germany

Abstract. We undertake a rigorous experimental analysis of the opti-
mization behavior of the two most studied single ant ACO systems on
several pseudo-boolean functions. By tracking the behavior of the under-
lying random processes rather than just regarding the resulting optimiza-
tion time, we gain additional insight into these systems. A main finding
is that in those cases where the single ant ACO system performs well, it
basically simulates the much simpler (141) evolutionary algorithm.

1 Introduction

In 1991, Dorigo, Maniezzo and Colorni [4] introduced the concept of Ant Colony
Optimization (ACO). Since then ACO algorithms have been applied successfully
to many kinds of combinatorial problems, e.g., the famous Travelling Salesman
Problem. See the book by Dorigo and Stiitzle [5] and the references therein.

In the last few years, theoretical research has been started to gain an un-
derstanding of why these methods are so successful. Since the probability space
describing a run of a typical ACO system is extremely complicated, theoretical
works concentrated on the runtime behavior of two ACO systems involving a
single ant only, namely 1-Ant and the Max—Min Ant System (MMAS).

The algorithm 1-Ant was proposed by Neumann and Witt [I]. It is an adap-
tion of the more general Graph-Based Ant System introduced by Gutjahr [7]
to allow optimizing (non-graph based) pseudo-boolean functions. Gutjahr and
Sebastiani [8] gave the first rigorous runtime analysis of the MMAS and showed
that on certain needle-in-a-haystack functions their ACO system beats the clas-
sical (1+1) evolutionary algorithm ((141) EA) (for both algorithms a version
was used that does not accept new solutions of equal fitness). Neumann and
Witt [I1] conducted the runtime analysis of 1-Ant on the pseudo-boolean func-
tion ONEMAX (counting the number of ones in an n-bit string). While obviously
a highly simplified problem, the analysis was far from simple. The main outcome
of the analysis is that the optimization time depends crucially on the major pa-
rameter, the so-called evaporation factor p. Here, crucially means that there is a
relatively sharp distinction between quite efficient optimization and exponential
run-time behavior. Additionally, it was observed that for p very close to one,
1-Ant exactly simulates the (14+1) EA, which was rigorously analyzed in [G]. In
[2] the pheromone model used in [I1] was replaced by a simpler, but equivalent

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 378 2008.
© Springer-Verlag Berlin Heidelberg 2008

How Single Ant ACO Systems Optimize Pseudo-Boolean Functions 379

model, in which the pheromone values equal the probabilities of ants walking
along a particular edge in the construction graph. In [3] an analysis of 1-Ant
was carried out for the functions LEADINGONES and BINARY VALUE. As in the
ONEMAX case, a phase transition from exponential to polynomial runtime with
a threshold evaporation value could be observed.

The algorithm MMAS by Stiitzle and Hoos [12] was studied by Gutjahr and
Sebastiani [§] and Neumann, Sudholt and Witt [9]. Roughly speaking, these
works show that several variants of the MMAS less critically depend on the
choice of the parameter p in the sense that there is no sharp phase transition
between polynomial and exponential runtime as observed with 1-Ant. More
recently, the benefits and shortcomings of hybridizations of the MMAS with
local search strategies have been investigated [10].

Some of the run-time analyses sketched above could be read as that single ant
ACO system are competitive approaches to optimize pseudo-boolean functions.
To further study this aspect, we conduct a rigorous experimental analysis of
these two single ant ACO systems on several pseudo-boolean fitness functions
(ONEMAX, LEADINGONES, and linear functions with random weights). To gain
an understanding how these algorithms work, we track a number of theory—
guided indicators (other than the resulting optimization time) during the runs
of 1-Ant [I1] and the MMAS [12]. For both algorithms we use the pheromone
system described in [2] which is equivalent to the one used in [], [T1], and [3].

Our main finding is that whenever one of the two ACO systems for a certain
choice of p has an at least roughly reasonable run-time, then its optimization
behavior is very similar to that of the (14+1) EA. This shows that the pessimistic
assumptions repeatedly used in the proofs of the results mentioned above are
real, and in consequence, indicates that the upper bounds on the optimization
time proven there probably cannot be improved. Our analysis of the optimization
behavior fits well to the fact that we rarely observe that one of the two single
ant ACO systems finds the optimum significantly faster than the (1+1) EA [I].

2 Single Ant ACO and the (1+1) EA

Given a fitness function f:{0,1}"™ — R on the bit-strings of length n, a single
ant ACO algorithm successively generates candidate solutions S(*) e {0,1}"
according to the pheromone values p*) € [0,1]™. We understand this sampling
process as a random walk of a single ant on the directed construction graph
depicted in Figure[ll At each vertex v;_1 the ant chooses one of the two outgoing

Fig. 1. Bit-strings are represented by ant walks on the simplified chain graph

380 B. Doerr, D. Johannsen, and C.H. Tang

edges e; or e; with probability equal to the]))heromone value pg)

respectively. If the ant chooses e;, we have S =1 and S = 0 otherwise.

or1— p(t)

7 9

AntWalk(p)
1 forie{l,...,n} do choose S; € {0,1} with Pr(S; =1) =p;
2 return S

Initially, all pheromone values are 1/2. Hence, the first ant performs a true
random walk. Later, updates to the pheromone values are triggered by certain
ant walks. In this case, a certain amount of pheromone evaporates from all edges
and then the pheromone values of the edges the ant traverses are reinforced. The
amount of both, evaporation and reinforcement, is governed by the algorithm’s
main parameter, the evaporation factor p € [0,1].

Update(p, S, p)

1 forie{l,...,n} do

2 if 5; =1 then p} := min{(1—p) - pi + p,1- .} else p; := max{(1—p) - pi, } }
3 endfor

4 return p’

In this theoretical investigation, we run both algorithms for a number of ¢, €
N generations and then return the best solution found so far. In practice, other
stopping criteria might be more appropriate.

1-Ant (f, tmax, p) MMAS (f, tmax, P)
1 p@=(1/2,..,1/2) 1 p®=(1/2,..,1/2)
2 Smax = AntWalk(p(())) 2 Shax = AntWalk(p<0))
3 pM .= Update(p(o), Smax, 0) 3 pM .= Update(p(o),Smax,p)
4 for t from 1 to tmax do 4 for t from 1 to tmax do
5 S® .= AntWalk(p®) 5 S® .= AntWalk(p")
6 if f(SY) > f(Smax) then 6 if f(SY)> f(Smax) then
7 Smax 1= S 7 Smax 1= SH
8 plth) = Update(p(), Smax, p) 8 endif
9 endif 9 pttY .= Update(p'?, Smax, p)
10 endfor 10 endfor
11 return Smax 11 return Smax

1-Ant and the MMAS both simulate one of two well-known randomized search
heuristics if the evaporation factor is zero or one. For p = 0, they simply per-
form random search, and for p = 1, they precisely simulate the (14+1) EA with
mutation probability 1/mn.

3 The Experimental Setup

The classical mean to measure the performance of a randomized search heuristic
is the optimization time T, which is the number of fitness evaluations needed to
find the optimal solution. For efficiency reasons, we introduce an artificial upper
bound of tyax = 1000000, i.e., T = min{t € N | f(S®) is optimal or t = tyax}.

How Single Ant ACO Systems Optimize Pseudo-Boolean Functions 381

To analyze the optimization behavior, we monitor a number of theory—guided
indicators measuring the algorithm’s progress at every single step ¢ € N of the
run. In particular we investigate the ﬁtnesb of the current solution f(S®), its
expectation u® = E[f(S®)] and Varlance V = Var[f(S®)], the fitness of the
best solutions so far fmax 1= maxy<t f () the number of pheromone values
mm = |{i | pg € {1/n,1 — 1/n}}| attaining one of the boundary values 1/n
and 1 — 1/n, and the probability P®) := Pr(f(S®) > fmax) of accepting the
current solution.

We also investigate the average values P, v, and mm of P®), v® and mm®
over the interval [0.257,0.75 7. This interval was chosen to eliminate possible
side-effects at the beginning and the end of a run.

We study the progress behavior of the two ant optimization algorithms 1-Ant
and the MMAS on different pseudo-boolean fitness functions f: {0,1}" — R. We
regard random linear functions f(S) = >, w;S;, where the weights wy, ..., wy,
are chosen independently and uniformly at random in (0, 1], and then nor-
malized to add up to n. Clearly, the normalization does not change the be-
havior of any of the algorithms, but eases comparing the results for different
functions. Furthermore, we regard the two classical pseudo-boolean test func-
tions ONEMAX(S) = 3" | S; and LEADINGONES(S) = Y7, [15, Si. Clearly,
S* = (1,...,1) is the unique maximum of all these functions having fitness
f(S*) = n. In the experiments, we use a problem size of n = 1000 for ONEMAX
and random linear functions, and a problem size of n = 200 for LEADINGONES.

Also, note that for LEADINGONES, () and v(!) as defined above are heavily
influenced by the fact that with probability around 1/e, one of the leading one—
bits (having pheromone value 1 — 1/n) will be set to zero. Since such a solution
will not be accepted anyway, for LEADINGONES we modify the definitions of y(*)
and v(®) to be the expectation and variance conditional on that none of these
leading bits is zero.

We omit the details on how to actually compute the progress indicators for
these test functions. In all but one case, this can be done efficiently in linear time
or via dynamic programming in quadratic time. For arbitrary linear function,
however, P(*) cannot be computed efficiently. In consequence, we cannot provide
P® and P for random linear functions.

We perform case studies to analyze the time-dependent indicators f(S)),
O 1u® O PO and mm®. That is, for all algorithms and test functions,
we conduct twenty runs each for at least twenty different p-values, graphically
depict the indicators and single out typical runs for representative values of p. In
all cases, we see that the indicators for random linear functions and ONEMAX
behave highly similar. For this reason, in the following two sections we present
and discuss plots for ONEMAX only, since here we also have the indicator P®).

To measure the average indicators v, P, and mm, we performed 20 runs
for both algorithms on all fitness functions and several values of p. We then
average the average indicators over all runs. Since the success of 1-Ant depends
sharply on p, we happen to never average over successful and unsuccessful runs
simultaneously. For unsuccessful runs we also record the final values of fiax and

382 B. Doerr, D. Johannsen, and C.H. Tang

P. For reasons of space, we can only present a tiny fraction of the data collected.
Much additional material can be accessed in [IJ.

4 Experimental Results for 1-Ant

In this section, we present our experimental work concerning the single ant ACO
system 1-Ant. In [I1] it was shown that the expected optimization time of 1-Ant
on ONEMAX is polynomial if p =1 — 1/n® with fixed e > 0 and in [2] that for
p = o(1/logn) it becomes super—polynomial. On the function LEADINGONES
the expected optimization time was shown [3] to be quadratic for constant p,
polynomial for p = £2(1/logn), and again super-polynomial for p = o(1/logn).
Note that p = 2np/(1 — p+ 2np) for the evaporation factor p in [8], [I1] and [3].

Since we argue that for efficient runs of 1-Ant the optimization behavior
strongly resembles that of the (1+1) EA, let us first present a typical run for the
(1+1) EA. Note that 1-Ant for p = 1 exactly simulates the (1+1) EA, so we can
reuse our test env1r0nment here. Figure 2 shows such a typical run as a chart of
the indicators £\, u®, v®, P® and mm®. As it is easy to see, the (1+1) EA
improves the fitness relatively fast. This is natural, since the probability P®*) of
finding an acceFtable solutlon remains very large during the whole run. For the
same reason, fmax and ,u are that close together.

We now analyze one representative run of 1-Ant on ONEMAX for each of the
values p = 0.4, 0.2, 0.1, and 0.05, which give a good overview of the different
behaviors of 1-Ant. The plots are depicted in Figure

For p = 0.4, we easily identify a behavior highly similar to that of the
(1+1) EA. In a very short initial phase of approximately 130 iterations, almost
all pheromone values are pushed to their extreme values and the variance drops
from its initial value of n/4 to a value close to one. Note that fiax remains
close to n/2 in this initial phase. In consequence, this means that half of the

1 1 ! | ! !
0
0 2000 4000 6000 8000 10000 12000 14000

t

Fig. 2. A typical run of the (14+1) EA on ONEMAX. Since v¥) = 1—1/n and mm? = n
for all ¢, these curves coincide with the lower and upper boundaries of the chart. Also,
fg;x and u(t) are too close to each other to be distinguished. In the chart we rescale
p® from [0,1] to [0, 1000].

How Single Ant ACO Systems Optimize Pseudo-Boolean Functions 383

pheromone values attain the maximum value and half the minimum. By sym-
metry, they are randomly chosen as is the initial solution in the (1+1) EA. From
this point on, the optimization behavior of the 1-Ant closely resembles the one
of the (1+1) EA. This is easily seen from the curves and the average values P,
mm and v. In the chart it seems that P(®) oscillates heavily, but as the average
P indicates, these downward dents are only short-term occurrences. They stem
mainly from the fact that after an improvement in the fitness, the pheromone
values affected take a few iterations until they hit the extreme values again.

The chart for p = 0.2 still shows many signs of an (14+1) EA-like behavior.
However, we also see first short phases of stagnation. At ¢ = 467, a solution
of value 663 is found (411 to the previous best). Due to the slower pheromone
update with p = 0.2, this increases the expected value of the next solution only
from 642 to 646, and spoils the probability of finding an acceptable solution
down to a mere 0.4%. In consequence, it takes the 1-Ant a long 450 iterations
to find an as good solution again (at time ¢t = 917).

For p = 0.1, the phenomenon just described becomes much more dominant.
We now have several long phases in which no solution is accepted. Finally, for
p = 0.05 this pattern is so strong that no solution is found within one million
iterations. With P around 2-107?, it is very hard to find an acceptable solution.
Recall that P®) = 2.10~° means that an expected number of 50.000 iterations
are necessary to generate a solution that is accepted.

p=0.4 (mm: 998.951, P: 0.354731, v: 1.08595) p =02 (mm: 988.227, P:0.20597, v: 1.90696)

1000 1000

T T T T T P ——— T T T

800 -

600 w frnax

!
400 ‘ mm -—-— 400-" mm -—-—
| i
200 - 200 H -
0 Il Il Il Il Il Il 0 IM ‘d Il Il Il Il
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000 16000
t t
p=0.1 (mm: 576.74, P: 0.00214304, v: 32.0377) p=0.05 (mm: 0, P: 2.09232¢-005, v: 227.957)
1000 T T T — 1000 T T T T
— =
800 |- o ! - 800 | -

600 |/ [B

400 [~ i mm ==
/
4 T
| e
200 (= i - 200 |- B
g -
Lo A
0 YT | 1 it 1 0 1 1 1 1
o 20000 40000 60000 80000 0 200000 400000 600000 800000 1e+006

t t

Fig. 3. Four typical runs of 1-Ant on ONEMAX for p = 0.4 (top left), 0.2 (top right),
0.1 (bottom left), and 0.05 (bottom right).

384 B. Doerr, D. Johannsen, and C.H. Tang

What we just extracted from the charts in Figure [is also visible from
Table 2l For both, random linear functions and ONEMAX, we observe the ex-
pected behavior. For p > 0.2, we have a (1+1) EA-like optimization behavior. All
but very few pheromone values are at their extreme values. Those who are not,
still are very close to the extreme values, as can be deduced from the variance.
For p < 0.1, finding acceptable solutions becomes increasingly hard. P values
of 1073 or less indicate that fewer than every thousandth solution generated is
actually accepted. From p < 0.06 on (p < 0.08 for linear functions), as few solu-
tions are accepted that (a) one million runs never sufficed to find the optimum,
(b) the variance is close to the maximum value of 250 (approx. 330 for random
linear functions), indicating that most pheromone values are close to their initial
values. To add a number, averaging over 20 runs with p = 0.05 we found that
less than 49 (of the one million generated) solutions are accepted.

We see very similar results if we use LEADINGONES as fitness function. For
reasons of space, we only present the data in table form (Table [I]). Again, we
see that for p > 0.2, most pheromone values are at their extreme values and
the optimization time is not much different from the case p = 1, which again is
the (1+1) EA. The phase transition happens for slightly smaller p values. Up to
p = 0.08, we see still reasonable optimization times. From then on, however, the
optimization time increases again drastically and P falls to ridiculously small

Table 1. Indicators for the behavior of 1-Ant optimizing LEADINGONES for different
values of p. For p = 1.0, 0.5, and 0.1 all runs find the optimum in at most 10° steps,
for p = 0.01, 0.005, and 0.001 none. We omit p = 0.05 to avoid the bias caused by T’
not reaching 10° in all of the runs.

ONEMAX linear functions

P T mm P v féfg)‘(a") p(tmax) T mm v féfg)‘(aﬁ
1.0 18246 1000 0.38 0.999 17773 1000 1.332
0.5 10953 998.8 0.36 1.104 16756 999.6 1.350
0.1 146895 352.4 1.82- 1072 66.038 579284 414.6 52.153

0.05 1000000 0 1.82-107°213.223 691 7.68-10~% 1000000 0 298.104 673
0.01 1000000 0 3.96-107% 248.732 582 1.95-10~% 1000000 0 332.857 595

Table 2. Results for 1-Ant optimizing the fitness functions ONEMAX and random
linear functions. All numbers are the averages over 20 runs. For p = 0.05 and p = 0.01,
where no run is successful, we also list the average optimum and acceptance probability
at tmax = 1000000.

P T mm P v f[(nq;zc P
1.0 34768 200 0.55 0.03
0.5 33964 197 0.54 0.06
0.1 35175 177 0.47 0.60

0.01 1000000 0 4.47-107%3.33 23 1.90-10"¢
0.005 1000000 0 3.52-107%2.49 22 1.64-10"6
0.001 1000000 0 3.20-107°2.09 21 1.09-10"¢

How Single Ant ACO Systems Optimize Pseudo-Boolean Functions

1000 T

385

800

600

400

200

1000

t

1000

1
0
0 2000 4000 6000 8000 10000 12000 14000 0

2000

4000

t

6000

81.961, P: 0.136073, v: 2.04978)

8000 10000

12000

800

600

|
400 il
200

1000

800

600

mm g 400 [

0 0
0 2000 4000 6000 8000 10000 12000 14000 0

t

R g

5000

10000

15000 20000

25000

Fig. 4. Four typical runs of the MMAS on ONEMAX for p = 0.4 (top left), 0.25 (top
right), 0.1 (bottom left), and 0.01 (bottom right)

Table 3. Indicators for the behavior of MMAS optimizing ONEMAX and random linear
functions (n = 1000), as well as LEADINGONES (n = 200) for different p values

ONEMAX
p T mm P v

1.0 16151 1000 0.38 0.999
0.5 13325 999.7 0.38 1.021
0.1 11972 997.1 0.33 1.184
0.05 14054 994.2 0.28 1.344
0.01 22504 980.0 0.12 2.159
0.005 30398 971.2 0.07 2.667
0.001 75076 952.5 0.02 3.757

linear functions

T mm v

18399 1000 1.336
17175 999.9 1.324
17454 998.9 1.356
19447 997.1 1.428
30966 987.9 1.813
44426 983.6 1.957
107027 970.2 2.509

p
1.0
0.5
0.1
0.05
0.01
0.005
0.001

LEADINGONES

T mm P v

34749
33481
32759
32714
32003
35719
66000

200
198
188
181
159
152
138

0.54 0.03
0.56 0.05
0.54 0.11
0.52 0.23
0.41 1.28
0.34 2.31
0.15 12.07

values. For p < 0.045, no run is successful, and final P®*) values in the 10~° to
1075 range show that some 100.000 iterations are necessary to find an acceptable
solution (which not necessarily leads to an increased fitness).

386 B. Doerr, D. Johannsen, and C.H. Tang

5 Experimental Results for the MMAS

We now analyze the optimization behavior observed for the MMAS. In [§] and [9],
O(p~tnlog(n)) and O(n?+p~'nlogn) expected optimization times were proven
for a variant MMAS on ONEMAX and LEADINGONES. This indicates that for
the MMAS the optimization time does not display such a delicate dependence on
p as previously seen for 1-Ant. Our experimental results verify this observation,
but again show that the MMAS strongly imitates the optimization behavior of
the (1+1) EA, in particular for the more efficient runs with larger p.

Our experimental results on the optimization behavior of the MMAS for linear
functions is summarized in Figure @l and Table Bl For random linear functions
and ONEMAX, all runs, even those for relatively small p values like 0.005, show
an optimization behavior strongly resembling that of the (14+1) EA. The average
number mm of pheromone values having one of the two extremal values is above
970. In other words, in average at least 97% of the bits of the newly generated
solution are determined in the same way as by the (1+1) EA. The remaining
pheromone values are also close to their extreme values, as witnessed by an
average variance v of less than 3. Not surprisingly, the optimization times are
similar to the (14+1) EA-case with a considerable slow-down for small p values.

In Figure @ we depict four typical runs for ONEMAX. We immediately notice
that the four graphs are much more similar than those for 1-Ant in Figure [3]
even though a wider range of p—values is covered.

For p = 0.4, 0.25 and 0.1 we observe an extremely short initial phase during
which the pheromone values rush towards their extreme values. After 14, 37, and
114 steps, respectively, 95% of the pheromone values are 1/n or 1 — 1 / n. After
this initial phase, in which fmax does not exceed 527 (559, 562, respectively),
all indicators are similar to what we see for the (14-1) EA. This is obvious for
mm(®) | which is close to n = 1000 all the time, and v, which is too small to be
distinguished from the t-axis. P(*) differs from the (1+1) EA setting for several
short periods of time. Whenever a newly generated solution different from the
previous best is accepted, it takes a while for the pheromone values to move
towards the extreme values. This results in the short downward dents visible in
the plots. During these times, P*) is smaller than in the (14+1) EA setting, but
these dents end quickly and the MMAS returns to the (14+1) EA-like behavior.

The chart for p = 0.01 differs from the other three in the respect that only
after ¢t = 2141 iterations 95% of the pheromone values reach the extreme values.
Also, P stays below 1/e most of the time. Still, the value of mm = 982
combined with a variance of v ~ 2 indicate that during the central part of the
run most pheromone values are either at their extreme values or at least very
close to them.

Further experiments for smaller values of p show that the effects observed for
p = 0.01 amplify. The variance v stays almost constant (v ~ 3.8 for p = 0.001)
indicating that most values of p(*) are close to the extreme values. The behavior
of the MMAS remains highly (1+1) EA-like, only the performance drops due
to the additional time needed for the pheromone values to reach the extreme
values again after an update.

How Single Ant ACO Systems Optimize Pseudo-Boolean Functions 387

For reasons of space, we are not able to discuss typical runs for the test
function LEADINGONES. However, the data displayed in Table [suffices to see
that the optimization behavior of the MMAS for LEADINGONES is very similar
to that of the (141) EA, both in terms of run-times and, more declaratively,
in that we have many pheromone values at or close to the extreme values of
1/n and 1 — 1/n, as witnessed by mm and v. This fact was already observed
in [9] and used to prove a lower bound on the optimization time of the MMAS.
Finally, also for non-leading bits there is a strong drift of the pheromone values
towards 1/n an 1 — 1/n. This observation strengthens the resemblance between
the MMAS and the (1+1) EA even more.

6 Conclusion

We analyzed the two existing single ant ACO approaches for three types of
fitness functions. Previous research shows that, at least for certain choices of the
evaporation factor p, both can optimize the functions ONEMAX and LEADING-
ONEs with optimization times of similar order of magnitude as the (14+1) EA.

By not only regarding the resulting optimization times, but by also monitor-
ing well-chosen theory-guided indicators during the runs of the ACO systems, we
showed that whenever the optimization time was reasonable, indeed the whole
optimization behavior strongly resembles that of the (141) EA. Our experi-
mental investigation also complements existing rigorous mathematical analyses
in that it produces actual numbers and not only orders of magnitude. Our ex-
periments indicate that, if existent, the advantage of single ant ACO systems
over classical and technically much simpler approaches has to be shown on more
advanced or non-pseudo-boolean optimization problems.

References

1. http://www.mpi-inf .mpg.de/publications/index.html

2. Doerr, B., Johannsen, D.: Refined runtime analysis of a basic ant colony optimiza-
tion algorithm. In: Proc. of the CEC 2007, pp. 501-507. IEEE Press, Los Alamitos
(2007)

3. Doerr, B., Neumann, F., Sudholt, D., Witt, C.: On the runtime analysis of the
1-ANT ACO algorithm. In: Proc. of GECCO 2007, pp. 33-40. ACM, New York
(2007)

4. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: An autocatalytic optimizing
process. Technical Report 91-016 Revised, Politecnico di Milano (1991)

5. Dorigo, M., Stiitzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

6. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. TCS 276, 51-81 (2002)

7. Gutjahr, W.J.: First steps to the runtime complexity analysis of ant colony opti-
mization. Comput. Oper. Res. 35, 2711-2727 (2008)

8. Gutjahr, W.J., Sebastiani, G.: Runtime analysis of ant colony optimization. Tech-
nical report, Mathematics department, Sapienza Univ. of Rome (2007)

http://www.mpi-inf.mpg.de/publications/index.html

388 B. Doerr, D. Johannsen, and C.H. Tang

9. Neumann, F., Sudholt, D., Witt, C.: Comparing variants of MMAS ACO algo-
rithms on pseudo-boolean functions. In: Stiitzle, T., Birattari, M., H. Hoos, H.
(eds.) SLS 2007. LNCS, vol. 4638, pp. 61-75. Springer, Heidelberg (2007)

10. Neumann, F., Sudholt, D., Witt, C.: Rigorous analyses for the combination of ant
colony optimization and local search. In: van der Poorten, A.J., Stein, A. (eds.)
ANTS-VIII 2008. LNCS, vol. 5011. Springer, Heidelberg (to appear, 2008)

11. Neumann, F., Witt, C.: Runtime analysis of a simple ant colony optimization
algorithm. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 618-627. Springer,
Heidelberg (2006)

12. Stiitzle, T., Hoos, H.: MAX-MIN ant system. Journal of Future Generation Com-
puter Systems, 889-914 (2000)

	How Single Ant ACO Systems Optimize Pseudo-Boolean Functions
	Introduction
	Single Ant ACO and the $(1+1)$ EA
	The Experimental Setup
	Experimental Results for 1--Ant
	Experimental Results for the MMAS
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

