
Formally Testing Liveness by Means of Compression
Rates�

César Andrés, Ismael Rodrı́guez, and Fernando Rubio

Dept. Sistemas Informáticos y Computación
Facultad de Informática, Universidad Complutense

c.andres@fdi.ucm.es,{isrodrig,fernando}@sip.ucm.es

Abstract. We present a formal method to determine whether there exist living
creatures in a given computational environment. Our proposal is based on study-
ing the evolution of the entropy of the studied system. In particular, we check
whether there exist entities decreasing the entropy in some parts, while increas-
ing it in the rest of the world, which fits into the well-known maximum entropy
production principle. The entropy of a computational environment is measured
in terms of its compression rate with respect to some compression strategy. Some
life-related notions such as biodiversity are quantified as well. These ideas are
presented by means of formal definitions. A toy example where a simple living
structure is identified in a video stream is presented, and some results are reported.

Keywords: Artificial Life, Maximum Entropy Principle, Compression
Algorithms.

1 Introduction

Whenever the important question of what is life is considered, the controversy eventu-
ally arises. For elementary school students, the answer is rather simple: Live beings are
those which feed themselves, relate with the environment, and reproduce. However, this
definition is neither operative nor precise enough in practice. On the one hand, defining
notions such as feeding, relating, and reproducing with enough generality to embrace
all kinds of living beings existing in Nature is not easy. Moreover, if Artificial Life is
considered [1,5,7,8,16], then defining these concepts is even more challenging. On the
other hand, the previous definition of life ignores some living beings that do not fulfill
some of the proposed conditions (e.g., mules do not reproduce).

In this regard, we may consider the Maximum Entropy Production Principle (see
e.g. [2,3,9,11]). Grossly speaking, this principle states the following ideas: (a) Due to
the Thermodynamics laws, the entropy of any environment must increase along time;
(b) living beings are repetitive patterns that increase the order in their environment by
their simple existence: Species are made of repetitive patterns (living individuals), and
the parts of a living being are repetitive themselves (organs, cells, etc); so, (c) if (a) and
(b) are not contradictory then living beings must generate more entropy around them
than the entropy reduced by the existence of their bodies themselves. That is, living
beings are entities with low entropy that increase the entropy around them as they live.

� Supported by projects TIN2006-15578-C02-01, PAC06-0008-6995, MRTN-CT-2003-505121.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 347–357, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

348 C. Andrés, I. Rodrı́guez, and F. Rubio

Let us note that the definition of entropy actually depends on the kind of environment
we are considering. In a chemical environment, Thermodynamics provides appropriate
entropy notions. In an information environment, several notions of order and entropy
are available. For instance, Shannon’s Theorem [12] provides a classical definition of
entropy. This notion is restricted to a memoryless source, i.e. the probability of each
symbol is assumed to be independent of the symbols entering the remaining sites in the
chain. While being appropriate for some cases, this assumption is unrealistic in most
approaches. More generally, given two sequences of bits α1 and α2, we can find two
formal criteria C1 and C2 to measure the information entropy such that α1 is more
ordered than α2 for C1, and it is the other way around for C2. For instance, let us
suppose that C1 (respectively, C2) measures the order degree of a sequence of bits in
terms of the compression rate we achieve by applying a compression algorithm A1
(resp. A2) to the sequence. If the resulting compressed sequence is short then it means
that the compression algorithm finds repetitive patterns and regularities in the original
sequence, i.e. the original sequence is highly ordered. If the compressed sequence is
long then the original sequence represents a chaotic piece of information, i.e., a high
entropy environment is detected. Depending on whether A1 or A2 are applied, some
kinds of patterns will be detected as repetitive while some others will not (actually,
there does not exist any perfect compression strategy). Hence, if a general approach is
considered then the information entropy is a relative notion indeed.

In this paper we present a formal framework to detect living beings in information
streams. Following the Maximum Entropy Production Principle, we seek for low en-
tropy structures that increase the entropy around them. Compression algorithms are
used to define order and chaos in each case. In fact, the proposed method to detect
life is parameterized by the definition of entropy we wish to consider, i.e. by the spe-
cific compression algorithm we are considering. Several formal notions to detect life
and classify it, as well as to assess the biodiversity of the analyzed environment, are
considered. In addition, a toy example is considered and some experimental results are
reported. In particular, we search for structures fulfilling our definition of life within a
video stream representing an execution of the classical Snake game.

The rest of the paper is structured as follows. In the next section we present some
preliminary concepts and we use them to define Life in terms of compression rates
according to the Maximum Entropy Production Principle. Besides, we present some
concepts concerning the biodiversity of artificial ecosystems, and we deal with the no-
tions of births and deaths in our framework. In Section 3, we present an example where
we apply some of the proposed concepts to detect life in a game execution. Finally,
some conclusions and future work are given in Section 4.

2 Formal Model

In this section we present some basic notions to define and manipulate information in
our framework. We denote by world the information source where we search for living
structures. In formal terms, a world is a set of points located in the space and time where
each point has attached a binary value. We represent these sets by means of a function,
as shown below.

Formally Testing Liveness by Means of Compression Rates 349

Definition 1. An n−world is a partial function w : INn−→ {0, 1} with finite domain.
We say that the scope of w is the domain of w, and we denote it by Sw.

We denote by n-Worlds the set of all possible n−worlds. ��

Let us note that the previous definition uses n dimensions without making any special
difference to represent the time. In fact, we may assume that the time is just one of the n
dimensions. Thus, we can trivially represent dynamic worlds evolving in time. Next we
define the parts of a world. This notion will be required later to identify living structures
within a world. In addition, we represent some algebraic operators that will be used to
combine worlds.

Definition 2. Let w, w′ be two n−worlds. We say that w′ is a subworld of w, denoted
by w′ ⊆ w, if Sw′ ⊆ Sw and for all x ∈ Sw′ we have w′(x) = w(x).

Let w1, w2 be two n−worlds such that Sw1 ∩ Sw2 = ∅. The union of worlds w1
and w2, denoted by w1 ∪ w2, is a new world w with scope Sw = Sw1 ∪ Sw2 such that
w(x) = w1(x) if x ∈ Sw1 and w(x) = w2(x) if x ∈ Sw2 . ��

Once we can deal with subparts of a world, we can present some preliminary notions
to identify repetitive patterns inside it. Since living beings are parts of the world where
they exist, we can use subworlds to delimit those parts of the world that actually denote
living structures.

Let us note that if a given structure appears several times then we can codify the
presence of all its instances with a representation shorter than if these structures were
different. Thus, repetitive patterns allow to reduce the length of the codification of the
whole world where they are. If we consider this argument the other way around, repet-
itive patterns can be identified in a world by applying a compression algorithm to the
world. Essentially, a compression strategy is just a codification. That is, it is a transfor-
mation of a world into a sequence of bits. These transformations induce a compression
rate, that is, the rate between the length of the compressed sequence of bits and the size
of the world.

Definition 3. A compression strategy for n−worlds is a function C where we have
C : n-Worlds → {0, 1}∗.

Let w ∈ n-Worlds. The compression rate of C for w is defined as length(C(w))
| Sw | ,

and it is denoted by CompRate(C, w). ��

Let us note that we are considering a very general notion of compression strategy. For
instance, if we restricted ourselves to e.g. Huffman codes [4] or algorithms such as
LZW [14] then the generality of the framework would be reduced. In contrast, searching
for redundancies in several different ways is allowed in the proposed framework. For
instance, we may search for decompositions of frequencies by using the discrete Fourier
transformation or the discrete cosine transformation (see e.g. [6,10]) (in particular, the
JPEG transformation will be considered in the example presented at the end of the
paper). The generality of the previous definition will allow us to search for life patterns
in a broader sense than usual. In particular, the criterion to detect repetitive patterns
will depend on the particular compression strategy considered in each situation. Thus,
a pattern under a certain strategy could not be a pattern under another one. This reflects

350 C. Andrés, I. Rodrı́guez, and F. Rubio

the fact that the interpretation given to the world strongly depends on the rational model
we use to describe that world. In our case, the considered rational model is denoted by
the compression strategy.

Next we define what a (living or not) repetitive pattern is. A pattern is a subworld
such that, when it is considered as part of a given world, the compression rate of the
world is reduced. In other words, a pattern allows to increment the order of the world
where it is inside. A subworld can be a pattern due to two different reasons. On the one
hand, a subworld can help to form redundancies in the world it belongs to. In this case,
we say that it is an exogenous pattern. On the other hand, a subworld can be a pattern
because it has many internal redundancies, in which case we say that it is an endogenous
pattern. In order to make such distinction, we take into account the compression rate of
the subworld as if it were isolated indeed.

Definition 4. Let w, w1, w2 be n−worlds such that w = w1 ∪ w2. We say that w1 is a
pattern in w under compression strategy C if CompRate(C, w) < CompRate(C, w2).

Besides, if CompRate(C, w1) ≥ CompRate(C, w2) then we say that w1 is an
exogenous pattern; if CompRate(C, w1) < CompRate(C, w2) then we say that w1 is
an endogenous pattern. ��

The previous definition does not imply that patterns have a low entropy level, but that
their entropy is low in relation with the entropy of the world where they exist. In fact,
even if a pattern is endogenous, it is not guaranteed that its entropy level is low, as the
rate is measured by taking into account the world it belongs to.

Patterns can be nested, that is, we can find life inside living entities. By introducing
this concept, we can manage notions such as cooperative living subentities constituting
global living entities. We assume that the same compression strategies are considered
at both nesting levels.

Definition 5. Let w1 be a pattern in w under compression strategy C and let w2 be
a pattern in w1 under compression strategy C. Then, we say that w2 is a subpattern
of w1. ��

Let us consider the notions of entropy and life. Intuitively, and following the ideas
shown in [9], a living creature is a structure that maintains low entropy inside it, while
increasing the entropy of the environment surrounding it. Thus, in order to decide
whether a pattern is a living pattern or not, we have to compare the entropy of the
pattern with that of its surroundings. We define the entropy of a subworld as the ratio
between the entropy of that subworld and that of the world it belongs to. Next we intro-
duce a notion of pattern which is parameterized by an entropy threshold. It allows us to
compare patterns in terms of their relative level of order with respect to their world.

Definition 6. Let w, w′ be two worlds such that w′ is a subworld of w. The entropy
level of w′ in w under compression strategy C, denoted by Entropy(C, w′, w), is

given by CompRate(C,w′)
CompRate(C,w) .

We say that w′ is an α−ordered pattern of w under compression strategy C if w′ is
a pattern of w under compression strategy C and Entropy(C, w′, w) < α for a given
constant α. ��

Formally Testing Liveness by Means of Compression Rates 351

Even if a pattern is ordered inside its world, this does not imply that the pattern is
a living pattern. We must also take into account that living entities must increase the
entropy around them. Thus, we need to detect if there exists an evolution towards higher
entropy. Reasoning about how some parameter evolves requires to identify a dimension
of the world (or linear combination of them) as the time dimension, i.e. we have to
define what is the direction of the evolution. Next we define sequences of increasing
entropy. We say that a pattern is alive if it keeps a low entropy level along the evolution
of its world and, simultaneously, the entropy level of its world increases along time.

Definition 7. Let w1, . . . , wn, w be worlds such that w =
⋃n

i=1 wi. We say that the
sequence w1 · · · wn is an evolution of entropy under compression strategy C if for any
i, j with 1 ≤ i < j ≤ n we have CompRate(C, wi) < CompRate(C, wj).

Let w, w′, w′′ be worlds such that w = w′ ∪ w′′ and w′ is an α−ordered pattern of
w under compression strategy C. Let w1 · · · wn with w =

⋃n
i=1 wi be an evolution of

entropy under compression strategy C. We say that w′ is an α−living pattern across
w1 · · · wn under C if there exist two sequences w′

1 · · ·w′
n with w′ =

⋃n
i=1 w′

i and
w′′

1 · · · w′′
n with w′′ =

⋃n
i=1 w′′

i , such that w′′
1 · · · w′′

n is an evolution of entropy under C
and for all 1 ≤ i ≤ n we have that wi = w′

i ∪ w′′
i and w′

i is an α−ordered pattern of wi

under C. ��

It is worth to point out that w′
1 · · · w′

n (that is, the sequence representing the evolution
of the living entity) could also be an evolution of entropy. That is, the internal entropy
of an alive creature could also be increasing, provided that it is still a pattern inside its
world. Intuitively, this implies that the tendency of the world towards chaos must be
faster than the tendency of the living entity itself.

As we said before, the evolution of the entropy is not constrained to follow a specific
direction. Since there are different ways to split a world into scenes, there exist several
possible interpretations of time, and all notions depend on this choice. This increases
the generality of the proposed framework. Let us remark that we are dealing with in-
formation, so our definition must be independent of the possible transformations being
applied to such information. For instance, let us suppose that the world represents a
video stream. Each temporal frame of the video could be located in a different part of
the x axis of the information stream (e.g., a file). The evolution of the video over time
is codified by locating each frame in a specific physical area of the stream. Hence, a
flexible way to identify the time dimension must be provided.

It is worth to point out that the previous definition does take into account one of
the factors considered critical for identifying life in terms of the Maximum Entropy
Production Principle [9]. According to this principle, living creatures generate entropy
in their surroundings. That is, they are the reason of the increment of entropy. In our
approach, we detect life by just observing information, that is, we do not interact with
it. Hence, we do not have the capability of changing the observing environment, which
would allow us to check an alternative scenario where the creature does not exist. This
would allow us to compare the evolution of the entropy in both cases, which is required
to determine if the existence of the creature causes it. Studying the case where it is
possible to interact with the analyzed environment is out of the scope of this paper and
is left as future research.

352 C. Andrés, I. Rodrı́guez, and F. Rubio

Once we have proposed our notion of life, we can use it to define some higher level
concepts. Next we consider the notion of subliving patterns. A subliving pattern is a
living entity inside another living entity. In particular, the world of a subliving entity is
the living entity it belongs to.

Definition 8. Let w′ be an α−living pattern across w1 · · · wn under the compression
strategy C, and let w′′ be an α−living pattern across w′

1 · · · w′
n under the compression

strategy C such that w′ =
⋃n

i=1 w′
i and for all 1 ≤ i ≤ n we have w′

i ⊆ wi. Then, we
say that w′′ is an α−subliving pattern of w′ across w1 · · ·wn under C. We say that w′ is
a fully α−living pattern across w1 · · · wn if there exist m worlds w′

1, . . . , w
′
m (m ≥ 2)

such that w′ =
⋃m

i=1 w′
i and for all 1 ≤ i ≤ m we have that w′

i is an α−subliving
pattern of w′ across the evolution w1 · · · wn. ��

As stated in [13], the biological diversity is the variety and variability among living
organisms and the ecological environments in which they occur. Thus, the diversity
can be defined as the number of different items and their relative frequency. In order
to calculate the biodiversity of a world in our framework, we have to consider the life
existing in it. Nevertheless, since diversity is required, the biodiversity does not increase
by considering very similar living beings. On the contrary, the diversity is high only if it
is possible to find a subset of the world such that its diversity is high. This subset should
be defined in such a way that its members are canonical representatives of the different
models of life appearing in the ecosystem. Then, the biodiversity will be calculated
by considering two factors: The internal diversity of the subset (which indicates that
present models are different among them) and its size (which indicates the amount
of diverse life in the ecosystem). Hence, we calculate the biodiversity of a world by
selecting the set that maximizes both factors together.

Definition 9. Let w1 · · · wn be an evolution of entropy under C, and let w =
⋃n

i=1 wi.
The α−biodiversity of w1 · · · wn under the compression strategy C is defined as:

max
{

| Sw′ |
| Sw | · CompRate(C, w′)

∣
∣
∣
∣ w′ =

m⋃

i=1

w′
i ∧ ∀ 1 ≤ i ≤ m : w′

i ∈ L

}

where L denotes the set of all α−living patterns across w1 · · · wn under the compression
strategy C. ��

In the previous definition, we search the set of living beings such that, considering this
set as a whole, the compression rate is the highest (which indicates that the diversity is
high). At the same time, we search for the set whose size is as closer as possible to the
size of the whole world (which indicates that the amount of diverse life is high). The
multiplication of both factors provides our measure of biodiversity. Let us remark that
the biodiversity is monotonic non-decreasing with respect to α. This is because higher
values of α increase the freedom to choose living patterns, which allows to maximize
the biodiversity value. In particular, those sets we can consider with a lower α can also
be selected with a higher one.

The proposed formal framework also allows to define the notions such as births and
deaths for living entities. For the sake of clarity, in previous definitions we assumed that

Formally Testing Liveness by Means of Compression Rates 353

each alive entity is alive during the whole considered period (i.e., during the considered
evolution of entropy). Nevertheless, we can extend the previous concepts to deal with a
more general situation where creatures are born and die.

In the following definition we introduce the concepts of birth and death. Let us re-
mark that both concepts are relative to the entropy level α required in each case to
determine if patterns are alive.

Definition 10. Let w1 · · · wm be an evolution of entropy under the compression strat-
egy C and let w′ be an α−living pattern across wk · · · wn under the compression strat-
egy C, where 1 ≤ k ≤ n ≤ m. Finally, let w =

⋃n
i=k wi.

We say that the α−birth date of w′ is wk if there does not exist w′′ ⊆ wk−1 such that
w′′ is an α−ordered pattern of wk−1 under the compression strategy C and w′ ∪ w′′ is
an α−ordered pattern of wk−1 ∪ w under the compression strategy C.

We say that the α−death date of w′ is wn if there does not exist w′′ ⊆ wn+1 such
that w′′ is an α−ordered pattern of wn+1 under the compression strategy C and w′∪w′′

is an α−ordered pattern of wn+1 ∪ w under the compression strategy C. ��

The intuitive idea behind the dates of birth and death is that they are dates such that it
is not possible to extend the life of the creature after its death or before its birth.

3 Experiments

In this section we present an example of the framework presented in this paper by using
a classical software game. This game is Snake. Essentially, the goal of this game consists
in making the snake to grow up as much as possible by eating all the food it finds in the
world. The snake dies either if it crashes against a part of its own body or against one
of the walls surrounding the world. In addition to the original rules of the classic game,
we introduce a new concept that will be necessary to deal with the proposed notion
of life: Rubbish. When the snake eats something, it randomly produces rubbish in the
surroundings next to it. This simulates the degradation of the environment caused by
life. Since our notion of life requires that the entropy of the environment grows along
time, a kind of degradation will be required to find life in this system.

We represent an execution of this game by means of a world. According to
Definitions 1, 2, and 3, we consider a 3-world (2 spacial dimensions plus the time)
where the size of each spacial dimension is 512. A frame of the scene (that is, the infor-
mation of the world for a specific time) is shown in Figure 3 (left). The food is shown
in blue color and the snake is green. In the following, we will use w to represent a
subworld denoting a single frame.

Living structures are images moving across the screen along time, so we must be able
to systematically search for parts of the image to be considered as possible living struc-
tures. In order to do it, we present an algorithm that automatically considers different
ways to split the screen into pieces of different size and assesses the suitability of each
piece to denote a living structure. The main part of the algorithm is depicted in the adja-
cent figure. This heuristic greedy algorithm looks for a square whose size is a divisor of
n, being n the length of each spatial dimension. The cost of the algorithm is O(log(n)).
Intuitively, the algorithm works as follows: First, we split the image into four quadrants.

354 C. Andrés, I. Rodrı́guez, and F. Rubio

Fig. 1. A world representing an image (left) and the evolution of compression rate (c.r.) of the
world and the snake (right)

We choose the quadrant where the conditions required to find life are best suited (that
is, the square has low entropy but, at the same time, the entropy evolves along time
in the rest of the frame). The function BestComp abstracts the criterion used to make
this selection. Next, this quadrant is split again into four quadrants, and so on. When the
process finishes, that is, when the minimal size is reached, the best square considered
so far (regardless of its size) is identified. For the sake of clarity, some subsequent oper-
ations of the algorithm are not depicted in the figure. In order to extend the best square
in some directions, other squares adjacent to it are considered. If the figure resulting
by adding an adjacent square is better suited, then we take it as new best figure, and
we repeat the same process for some additional turns. In this way, more complex forms
(not just squares) can be formed. More formally, given a subworld w denoting a frame,
the algorithm chooses two different subworlds w1 and w2, that is, subsets of w, fulfill-
ing the following conditions. The first subworld, w1, is the rectangular area chosen by
applying the algorithm depicted in Figure 2. We define w2 as the the rest of the frame,
that is, we have w = w1 ∪ w2 with Sw1 ∩ Sw2 = ∅.

As we said before, we consider that the entropy of a subworld is the ratio between the
compression rate of that subworld and that of the world it belongs to. So, our notion of
entropy is a notion of relative order between a subworld and the world this subworld is
inside. Following this idea, we perform an experiment to determine whether the snake
should be considered an (artificial) alive creature according to the proposed notions.
We use the JPEG compression algorithm to measure the entropy along time: Each in-
dividual frame is compressed by using this algorithm, and the evolution of resulting
compression rates are considered. As we said before, other compression algorithms
lead to different implicit definitions of what should be considered an ordered pattern
and what should not.

In Figure 3 (right) we can observe the evolution of the entropy along the time of w1
(the snake) and w (the world). Since the snake represents a simple repetitive pattern, the
complexity of its JPEG codifications (that is, the size of the compressed images repre-
senting its frames along time) do not significantly increase along time. On the contrary,

Formally Testing Liveness by Means of Compression Rates 355

input : An n-world represented by a Bitmap Matrix H of size
n × n.

output: A bitmap denoting a good life candidate within the
world.

n ← (n DIV 2) × 2 ;
size ← n

2 ;
B ← MAXINT; left ← 1; right ← n; up ← 1; down ← n;
while (size ≥ 1) do

leftnew ← left;
rightnew ← right;
upnew ← up;
downnew ← down;
if (B ≥ BestComp(H ,left, right

2 , up, down
2)) then

leftnew ← left;
rightnew ← right

2 ;
upnew ← up;
downnew ← down

2 ;
B ← BestComp(H ,left, right

2 , up, down
2);

end
if (B ≥ BestComp(H , right

2 ,right, up, down
2)) then

leftnew ← right
2 ;

rightnew ← right;
upnew ← up;
downnew ← down

2 ;
B ← BestComp(H , right

2 ,right, up, down
2);

end
(. . . continue);

end

input : An n-world represented by a Bitmap Matrix H of size
n × n.

output: A bitmap denoting a good life candidate within the
world.

n ← (n DIV 2) × 2 ;
size ← n

2 ;
B ← MAXINT; left ← 1; right ← n; up ← 1; down ← n;
while (size ≥ 1) do

(. . . continue);
if (B ≥ BestComp(H , right

2 ,right, down
2 , down)) then

leftnew ← right
2 ;

rightnew ← right;
upnew ← down

2 ;
downnew ← down;
B ← BestComp(H , right

2 ,right, down
2 , down);

end
if (B ≥ BestComp(H ,left, right

2 , down
2 , down)) then

leftnew ← left;
rightnew ← right

2 ;
upnew ← down

2 ;
downnew ← down;

end
left ← leftnew;
right ← rightnew;
up ← upnew ;
down ← downnew ;
size ← size

2 ;
end

Fig. 2. Searching good life candidate in an image

the JPEG codifications of frames representing the world become longer as time passes.
Since the snake increases the rubbish every time it eats, the amount of rubbish increases
along time, and representing this information in the compressed format requires more
bits. Since the entropy of the snake remains low and the entropy of its world increases
along time, we can conclude that the snake represents an alive pattern according to the
notions presented in previous sections. Let us note that, as we have already commented
before, we need that the amount of rubbish increases as the snake eats and grows. Oth-
erwise, the world would reduce its entropy along time. Let us note that the compression
rate of an empty world is better (uniformly colored areas are easier to compress). Thus,
if the rubbish were not generated then the world of the snake would not be globally tend
towards chaos according to the selected compression strategy.

4 Conclusions and Future Work

In this paper we have presented a formal framework to identify living entities inside an
abstract information environment. Following the Maximum Entropy Production Prin-
ciple, the proposed method is based on the analysis of the entropy of the components
of the system. More precisely, we have compared the entropy of entities with the evo-
lution of the entropy of the world they belong to. The entropy is measured in terms
of compression rates. This allows us to measure the order degree of some informa-
tion in a computational environment. Other related concepts, including notions such
as death, biodiversity, or biologic families, have been discussed. We have illustrated
the proposed concepts with a toy example where a living entity is detected in a simple

356 C. Andrés, I. Rodrı́guez, and F. Rubio

game execution. Since the compression rate degrades but, simultaneously, the analyzed
pattern remains ordered along time, we have concluded that this entity constitutes an
alive entity according to the Maximum Entropy Production Principle.

As future work, we want to apply the proposed formal framework to analyze the
presence of life in classical artificial environments. In particular, we wish to compare
our definition of Life with Class IV considered by [15] and the Lambda metric pro-
posed by [7] in the specific context of Cellular Automata. Besides, we wish to define
alternative life detection notions. Contrarily to the formal notions presented in this pa-
per, which are based on the simple observation of the environment, we wish to consider
an alternative framework where we could extract conclusions by interacting with the
analyzed environment.

Acknowledgments. We would like to thank Manuel Núñez and Natalia López for
their interesting suggestions, as well as the anonymous reviewers for their valuable
comments.

References

1. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical Plays.
Academic Press, London (1982)

2. Bruers, S.: A discussion on maximum entropy production and information theory. Journal of
Physics A: Mathematical and Theoretical 40(27), 7441–7450 (2007)

3. Dewar, R.: Information theory explanation of the fluctuation theorem, maximum entropy pro-
duction and self-organized criticality in non-equilibrium stationary states. Journal of Physics
A: Mathematical and General 36(3), 631–641 (2003)

4. Huffman, D.A.: A method for the construction of minimum redundancy codes. Proceedings
of the Institute of Radio Engineers 40(9), 1098–1101 (1952)

5. Kim, K.-J., Cho, S.-B.: A comprehensive overview of the applications of artificial life. Arti-
ficial Life 12(1), 153–182 (2006)

6. Kok, C.W.: Fast algorithms for computing discrete cosine transform. IEEE Transactions on
Signal Processing 45, 757–760 (1997)

7. Langton, C.: Studying artificial life with cellular automata. Physica D 22, 120–149 (1986)
8. Langton, C.: Artificial Life: An Overview. MIT Press, Cambridge (1995)
9. Prigogine, I., Stengers, I.: Order Out of Chaos. Bantam Books (1984)

10. Rafiei, D., Mendelzon, A.: Efficient retrieval of similar time sequences using DFT. In: 5th In-
ternational Conference on Foundations of Data Organization and Algorithms (FODO 1998)
(November 1998)

11. Schneider, E.D., Kay, J.J.: Life as a manifestation of the second law of thermodynamics.
Mathematical and Computer Modelling 19(6-8), 25–48 (1994)

12. Shannon, C.E.: A mathematical theory of communication. Bell Systems Technical Jour-
nal 27, 379–423 (1948)

Formally Testing Liveness by Means of Compression Rates 357

13. Office of Technology Assessment U.S. Congress. Technologies to mantain bi-
ological diversity, OTA-F-330. U.S. Goverment Printing Office, Washington
(March 1987)

14. Welch, T.A.: A technique for high-performance data compression. IEEE Computer 17(6),
8–19 (1984)

15. Wolfram, S.: Cellular automata. Los Alamos Science 9, 2–21 (1983)
16. Wolfram, S.: Cellular Automata and Complexity. Addison-Wesley, Reading (1994)

	Formally Testing Liveness by Means of Compression Rates
	Introduction
	Formal Model
	Experiments
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

