
Fitness Expectation Maximization

Daan Wierstra1, Tom Schaul1, Jan Peters3, and Jürgen Schmidhuber1,2

1 IDSIA, Galleria 2, 6298 Manno-Lugano, Switzerland
{daan,tom,juergen}@idsia.ch

2 TU Munich, Boltzmannstr. 3, 85748 Garching, München, Germany
3 Max Planck Institute for Biological Cybernetics, Tübingen, Germany

mail@jan-peters.net

Abstract. We present Fitness Expectation Maximization (FEM), a
novel method for performing ‘black box’ function optimization. FEM
searches the fitness landscape of an objective function using an instan-
tiation of the well-known Expectation Maximization algorithm, produc-
ing search points to match the sample distribution weighted according
to higher expected fitness. FEM updates both candidate solution pa-
rameters and the search policy, which is represented as a multinormal
distribution. Inheriting EM’s stability and strong guarantees, the method
is both elegant and competitive with some of the best heuristic search
methods in the field, and performs well on a number of unimodal and
multimodal benchmark tasks. To illustrate the potential practical appli-
cations of the approach, we also show experiments on finding the pa-
rameters for a controller of the challenging non-Markovian double pole
balancing task.

1 Introduction

Real-valued ‘black box’ function optimization is one of the major topics in mod-
ern applied machine learning research (e.g. see [1]). It concerns itself with opti-
mizing the continuous parameters of an unknown (black box) objective fitness
function, the exact analytical structure of which is assumed to be unknown or
unspecified. Specific function measurements can be performed, however. The
goal is to find a reasonably high-fitness candidate solution while keeping the
number of function measurements limited. The black box optimization frame-
work is crucial for many real-world domains, since often the precise structure of
a problem is either not available to the engineer, or too expensive to model or
simulate.

Now, since exhaustively searching the entire space of solution parameters is
considered to be infeasible, and since we do not assume we have access to a
precise model of our fitness function, we are forced to settle for trying to find
a reasonably good solution that satisfies certain pre-specified constraints. This,
inevitably, involves using a sufficiently intelligent heuristic approach, since in
practice it is important to find the right domain-specific trade-off on issues such
as convergence speed, expected quality of the solutions found and the algorithm’s
sensitivity to local suboptima on the fitness landscape.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 337–346, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

338 D. Wierstra et al.

A variety of algorithms has been developed within this framework, including
methods such as Simulated Annealing [2], Simultaneous Perturbation Stochastic
Approximation [3], the Cross-Entropy method [4,5], and evolutionary methods
such as Covariance Matrix Adaption (CMA) [6] and the class of Estimation of
Distribution Algorithms (EDAs) [7].

In this paper, we postulate the similarity and actual equivalence of black box
function optimization and one-step reinforcement learning. In our attempt to
create a viable optimization technique based on reinforcement learning, we fall
back onto a classical goal of reinforcement learning (RL), i.e., we search for a way
to reduce the reinforcement learning problem to a supervised learning problem.
In order to do so, we re-evaluate the recent result in machine learning, that rein-
forcement learning can be reduced onto reward-weighted regression [8] which is
a novel algorithm derived from Dayan & Hinton’s [9] expectation maximization
(EM) perspective on RL. We show that this approach generalizes from reinforce-
ment learning to fitness maximization to form Fitness Expectation Maximization
(FEM), a relatively well-founded instantiation of EDAs which relates to other
(EM-inspired) methods for optimization (e.g. see [10,11]).

This algorithm is tested on a set of unimodal and multimodal benchmark
functions, and is shown to exhibit excellent performance on both unimodal and
multimodal benchmarks. A defining feature of FEM is its adaptive search pol-
icy, which takes the form of a multinormal distribution that produces correlated
search points in search space. Its covariance matrix makes the algorithm invari-
ant across rotations in the search space, and enables the algorithm to fine-tune
its search appropriately, resulting in arbitrarily high-precision solutions. Further-
more, using the stability properties of the EM algorithm, the algorithm seeks
to avoid catastrophically greedy updates on the search policy, thus preventing
premature convergence in some cases.

The paper is organized as follows. The next section provides a quick overview
of the general problem framework of real-valued black box function optimiza-
tion. The ensuing sections describe the derivation of the EM-based algorithm,
the concept of ‘fitness shaping’, and the online instantiation of our algorithm.
The experiments section shows initial results with a number of unimodal and
multimodal benchmark problems. Furthermore, results with the non-Markovian
double pole balancing problem are discussed. The paper concludes with a discus-
sion on the advantages and problems of the method, and points to some possible
directions for future extensions.

2 Algorithm Framework

First let us introduce the algorithm framework and the corresponding notation.
The objective is to optimize the n-dimensional continuous vector of objective pa-
rameters x for an unknown fitness function f : R

n → R. The function is unknown
or ‘black box’, in that the only information accessible to the algorithm consists
of function measurements selected by the algorithm. The goal is to optimize
f(x), while keeping the number of function evaluations – which are considered

Fitness Expectation Maximization 339

costly – as low as possible. This is done by successively evaluating batches of a
number 1 . . .N of separate search points z1 . . . zN on the fitness function, while
using the information extracted from fitness evaluations f(z1) . . . f(zN) to ad-
just both the current candidate solution x and the search policy defined as a
Gaussian with mean x and covariance matrix Σ.

3 Expectation Maximization for Black Box Function
Optimization

At every point in time while running the algorithm, we want to optimize the
expected fitness J = Ez[f(z)] of the next batch, given the current batch of
search samples. We assume that every batch g is generated by search policy π(g)

parameterized by θ = 〈x,Σ〉, representing the current candidate solution x and
covariance matrix Σ.

In order to adjust parameters θ = 〈x,Σ〉 towards solutions with higher asso-
ciated fitness, we match the search distribution to the actual sample points,
but weighted by their utilities. Now let f(z) be the fitness at a particular
search point z, and, utilizing the familiar multivariate normal distribution,
let π(z|θ) = N (z|x,Σ) = 1

(2π)n/2|Σ|1/2 exp
[
− 1

2 (z − x)TΣ−1(z − x)
]

denote the
probability density of search point z given the current search policy π. The
expectation

J = Ez[f(z)] =
∫

π(z|θ)f(z)dz.

indicates the expected fitness over all possible sample points, weighted by their
respective probabilities under policy π.

3.1 Optimizing Utility-Transformed Fitness

While an objective function such as the above is sufficient in theory, algorithms
which simply optimize it have major disadvantages. They might be too aggressive
when little experience – few sample points – is available, and converge prema-
turely to the best solution they have seen so far. On the opposite extreme, they
might prove to be too passive and be biased by less fortunate experiences. Trad-
ing off such problems has been a long-standing challenge in reinforcement learn-
ing. However, in decision theory, such problems are surprisingly well-understood
[12]. In that framework it is common to introduce a so-called utility transfor-
mation u(f(z)) which has to fulfill the requirement that it scales monotonically
with f , is semi-positive and integrates to a constant. Once a utility transforma-
tion is inserted, we obtain an expected utility function given by

Ju (θ) =
∫

p(z|θ)u(f(z))dz. (1)

The utility function u(f) is an adjustment for the aggressiveness of the decision
making algorithms, e.g., if it is concave, it’s attitude is risk-averse while if it

340 D. Wierstra et al.

is convex, it will be more likely to consider a fitness more than a coincidence.
Obviously, it is of essential importance that this risk function is properly set
in accordance with the expected fitness landscape, and should be regarded as a
metaparameter of the algorithm. Notice the similarity to the selection operator
in evolutionary methods.

We have empirically found that rank-based shaping functions (rank-based se-
lection) work best for various problems, also because they circumvent the prob-
lem of extreme fitness values disproportionately distorting the estimation of the
search distribution, making careful adaptation of the forget factor during search
unnecessary even for problems with wildly fluctuating fitness. In this paper,
we will consider a simple rank-based utility transformation function, the piece-
wise linear uk = u(f(zk)|f(zk−1), . . . , f(zk−N)) which first ranks all samples
k − N, . . . , k based on fitness value, then assigns zero to the N − m worst ones
and assigns values linearly from 0 . . . 1 to the m best samples.

3.2 Fitness Expectation Maximization

Analogously as in [8,9], we can establish the lower bound

logJu (θ) = log
∫

q(z)
p(z|θ)u(f(z))

q(z)
dz (2)

≥
∫

q(z) log
p(z|θ)u(f(z))

q(z)
dz (3)

=
∫

q(z) [log p(z|θ) + log u(f(z)) − log q(z)] dz (4)

:= F (q, θ) , (5)

due to Jensen’s inequality with the additional constraint 0 =
∫

q(z)dz − 1. This
points us to the following EM algorithm:

Proposition 1. An Expectation Maximization algorithm for both optimizing ex-
pected utility and the raw expected fitness is given by

E-Step: qg+1(z) =
p(z|θ)u(f(z))∫
p(z̃|θ)u(f(z̃))dz̃

, (6)

M-Step Policy: θg+1 = arg max
θ

∫
qg+1(z) log p(z|θ)dz. (7)

Proof. The E-Step is given by q = argmaxqF (q, θ) while fulfilling the constraint
0 =

∫
q(z)dz − 1. Thus, we have a Lagrangian L (λ, q) = F (q, θ) − λ. When

differentiating L (λ, q) with respect to q and setting the derivative to zero,
we obtain q∗(z) = p(z|θ)u(f(z)) exp (λ − 1). We insert this back into the La-
grangian obtaining the dual function L (λ, q∗) =

∫
q∗(z)dz − λ. Thus, by setting

dL (λ, q∗) /dλ = 0, we obtain λ = 1 − log
∫

p(z|θ)u(f(z))dz, and solving for q∗

implies Eq (6). The M-steps compute θg+1 = argmaxθF (qg+1, θ).

Fitness Expectation Maximization 341

In practice, when using a Gaussian search distribution parameterized by θ(k) =
〈x,Σ〉, the EM process comes down to simply fitting the samples in every batch
to the Gaussian, weighted by the utilities.

4 Online Fitness Expectation Maximization

In order to speed up convergence, the algorithm can be executed online, that is,
sample by sample, instead of batch by batch. The online version of the algorithm
can yield superior performance since updates to the policy can be made at every
sample instead of just once per batch, and because doing so tends to preserve
sample diversity better than by using the batch version of the algorithm. Crucial
is that a forget factor α is now introduced to modulate the speed at which the
search policy adapts to the current sample. Batch size N is now only used for
utility ranking function u which ranks the current sample among the N last seen
samples. The resulting FEM algorithm pseudocode can be found in Algorithm 1.

Algorithm 1. Fitness Expectation Maximization
use shaping function u, batch size N , forget factor α
k ← 1
initialize search parameters θ(k) = 〈x,Σ〉
repeat

draw sample zk ∼ π(x,Σ)
evaluate fitness f(zk)
compute rank-based fitness shaping uk = u(f(zk)|f(zk−1), . . . , f(zk−N))
x ← (1 − αuk)x + αukx
Σ ← (1 − αuk)Σ + αuk (x − zk) (x − zk)T

k ← k + 1
until stopping criterion is met

5 Experiments

5.1 Standard Benchmark Functions

Good test functions should be easy to interpret, but scale up with n. They
must be highly nonlinear, non-separable, largely resistant to hill-climbing, and
preferably contain deceptive local suboptima. To test the performance of the
algorithm, we chose 6 unimodal functions (Sphere, Schwefel, Tablet, Cigar,
Different-Powers, Ellipsoid) and 4 multimodal functions (Ackley, Rastrigin,
Weierstrass and Griewank) from a set of benchmark functions from [13] and [6]
that are typically used in the literature, for comparison purposes and for com-
petitions. As those functions are designed to be minimized, we take the fitness
to be the negative function value. The multimodal functions were tested with
both FEM and the Covariance Matrix Adaptation (CMA) [6] algorithm – widely
regarded as one of the premier algorithms in this field – for comparison purposes.

342 D. Wierstra et al.

0 500 1000 1500 2000 2500 3000
number of evaluations

10-10

10-8

10-6

10-4

10-2

100

102

104

106

fi
tn

e
ss

Cigar
DiffPow
Elli
Schwefel
Sphere
Tablet

0 5000 10000 15000 20000 25000
number of evaluations

10-10

10-8

10-6

10-4

10-2

100

102

104

106

fi
tn

e
ss

Cigar
DiffPow
Elli
Schwefel
Sphere
Tablet

Fig. 1. Results for experiments on the unimodal benchmark functions. Left: dimen-
sionality 5, right: dimensionality 15.

In order to prevent potentially biased results, and to avoid trivial optima (e.g. at
the origin), we follow [13] and consistently transform (by a combined rotation and
translation) the functions’ inputs in order to make the variables non-separable.
This immediately renders many direct search method virtually useless, since they
cannot cope with correlated search directions, unlike FEM and CMA.

The tunable parameters of the FEM algorithm are comprised of batch size N ,
the fitness shaping function u applied on the fitness function f and forget factor
α. The parameters should be chosen by the expert to fit the expected ruggedness
of the fitness landscape. The forget factor must be low enough such that it does
not too quickly forget earlier successful search points. The shaping function must
be chosen such that enough randomness is preserved in the search policy after
every update, which entails including the lesser samples in utility attribution. For
all experiments, comprising both the benchmark unimodal/multimodal functions
and the non-Markovian double pole balancing task, initial Σ was set to the
identity matrix Σ = I and x was always randomly initialized as x ∼ N (0, I).

We ran FEM on the set of unimodal benchmark functions with dimensions 5
and 15 using a target precision of 10−10. Figure 1 shows the average number of
evaluations until success over 20 runs on the unimodal functions. The parameter
settings for dimensionality 5 were identical in all runs: α = 0.1 and N = 50,
parameter m for selecting the shaping function’s top m samples was set at m = 5.
The parameter settings for all runs in dimensionality 15 were: α = 0.02, N = 25
and m = 10. All runs converged. The number of evaluations was roughly equal
to that of CMA on the small dimensionality, and for most problems not more
than a factor 3 slower, even with dimensionality 15 [6].

On the multimodal benchmark functions we performed experiments while
varying the distance of the initial guess to the optimum between 1 and 100. As
with the unimodal functions, the problems were appropriately translated and
rotated, while the initial x was randomly initialized on the surface of the hyper-
sphere with radius 1, 10 or 100 and the optimum at its center. Those runs were
performed on dimension 2 with a target precision of 0.01, since here the focus

Fitness Expectation Maximization 343

Table 1. Results for the multimodal benchmark functions. Shown are percentages of
runs that found the global optimum, for both FEM and CMA, for varying starting
distances.

FEM CMA
Distance 1 10 100 1 10 100
Rastrigin 91% 87% 64% 13% 11% 14%
Ackley 100% 100% 0% 89% 70% 3%
Weierstrass 19% 9% 19% 90% 92% 92%
Griewank 100% 2% 0% 100% 2% 0%

was on avoiding local maxima. The parameter settings for the multimodal runs
were: α = 0.02, N = 25 and m = 10. Table 1 shows, for all multimodal functions,
the percentage of runs where FEM found the global optimum (as opposed to
it getting stuck in a local suboptimum) depending on the distance from the
initial guess to the optimum. The percentages are computed over 100 runs. For
comparison purposes we included the results for the CMA implementation of [6],
although it must be said that in all likelihood better results can be achieved for
CMA using population sizes that are larger than standard for that algorithm.

One additional, linear benchmark function f(z) =
∑

j zj was tested to verify
the expected premature convergence of the algorithm. Indeed, FEM converges
prematurely like EDAs typically do (e.g. [14]), while CMA performed well (see
e.g. [15]). This suggests the approach might not be applicable to all domains and
that it might benefit from a mutative approach modeling mutations instead of
weighted sample distributions.

Lastly, we performed experiments using a batch-based version of the algo-
rithm instead of the online version. We found the standard benchmark problems
could only be solved using large batch sizes (1000 and up), slowing down the
algorithm considerably. This might be due to the reduced sample diversity using
small batch sizes, which is ameliorated using an online update rule which only
gradually adjusts Σ values.

To summarize, our experiments on these standard black box optimization
benchmarks indicate that FEM is competitive with other high-performance al-
gorithms. The premature convergence on the simple linear test function was
expected and it remains to be seen whether this will affect the long-term viabil-
ity of the approach. Last, the superior performance of the online version of this
algorithm might indicate that the problem of diversity maintenance could prove
to be an important topic of future research on FEM and EDAs in general.

5.2 Non-markovian Double Pole Balancing

Non-Markovian double pole balancing [16] can be considered a difficult bench-
mark task for control optimization. We use the implementation as found in [17].
The FEM algorithm optimizes the parameters of the controller, which is im-
plemented as a simple neural network with three inputs, three hidden sigmoid
neurons, and one output neuron.

344 D. Wierstra et al.

Table 2. Results for non-Markovian double pole balancing. The table shows the
average number of evaluations for SANE [18], ESP [17], NEAT [19], CMA [20,6],
CoSyNE [21] and FEM.

Method SANE ESP NEAT CMA CoSyNE FEM
Evaluations 262, 700 7, 374 6, 929 3, 521 1, 249 2, 099

The algorithm’s parameters were set as follows: piecewise linear shaping func-
tion with m = 5 (top 5 selection), forget factor α = 0.05 and batch size N = 50.
A run was considered a success when the poles did not fall over for 100, 000 time
steps. The results on a total of 200 runs are, on average, 2099 evaluations until
success (standard deviation: 1505). Not included in these statistics are 49/200
runs that did not reach success within the limit of 10000 evaluations, which
compares badly with both CoSyNE and CMA which (almost) always converge.
Table 5.2 shows results of other premier algorithms applied to this task, includ-
ing CMA. All methods optimized the same type of recurrent neural network,
albeit with differing numbers of hidden neurons. FEM, when it converges, out-
performs all other methods except CoSyNE. Since our algorithm performs well
on this relatively hard control benchmark, we expect the algorithm to do well
on future real-world experiments.

6 Discussion

Fitness Expectation Maximization constitutes a simple, principled approach to
real-valued black box function optimization with a rather clean derivation from
first principles. Its theoretical relationship to the field of reinforcement learning
and in particular reward-weighted regression should be clear to any reader famil-
iar with both fields. We anticipate that rephrasing the black box optimization
problem as a reinforcement learning problem solvable by RL methods will spawn
a whole series of additional new algorithms exploiting this connection.

The experiments show that, on the unimodal and multimodal benchmarks,
FEM is competitive with respect to its the main ‘competitor’ algorithm CMA, at
least on lower dimensional problems. Taking into account the good results on the
pole balancing tasks, we envision that FEM might become a serious competitor
in the field of black box function optimization, especially for neuroevolution.

Future work on FEM will include a systematic study that must determine
whether it can be made to outperform other search methods consistently on
other typical benchmarks and real-world tasks. It remains to be seen how the
method scales up with increased dimensionality, especially compared to CMA.
We suggest extending the algorithm from a single multinormal distribution as
search policy representation to a mixture of Gaussians (which is a common pro-
cedure for ‘vanilla’ EM), thus further reducing its sensitivity to local suboptima.
Other pressing work includes a theoretical analysis of the shaping (selection)

Fitness Expectation Maximization 345

function, which should ideally be made to adapt automatically based on the data
instead of tuned manually.

The premature convergence on the linear test function is worrisome. Future
work will determine whether this phenomenon affects the practical applicability
to real-world problems such as neurocontrol. Alternatively, we must investigate
whether the introduction of a more mutative approach like CMA might be ben-
eficial.

7 Conclusion

We introduced Fitness Expectation Maximization to tackle the important class
of real-valued ‘black box’ function optimization problems. Reframing black box
optimization as a one-step reinforcement learning problem, we developed a
method similar in spirit to expectation maximization. Using a search policy
which matches samples weighted by their utilities, the algorithm performs com-
petitively on a standard benchmark set of unimodal and multimodal functions
and non-Markovian double pole balancing control.

Acknowledgments

This research was funded by SNF grants 200021-111968/1 and 200021-113364/1.

References

1. Spall, J., Hill, S., Stark, D.: Theoretical framework for comparing several stochastic
optimization approaches. Probabilistic and Randomized Methods for Design under
Uncertainty, 99–117 (2006)

2. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

3. Spall, J.C.: Stochastic optimization and the simultaneous perturbation method. In:
WSC 1999: Proceedings of the 31st conference on Winter simulation, pp. 101–109.
ACM, New York (1999)

4. Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method: A Unified Approach
to Monte Carlo Simulation, Randomized Optimization and Machine Learning.
Springer, Heidelberg (2004)

5. De Boer, P., Kroese, D., Mannor, S., Rubinstein, R.: A tutorial on the cross-entropy
method. Annals of Operations Research 134, 19–67 (2004)

6. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9(2), 159–195 (2001)

7. Larraanaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool
for Evolutionary Computation. Kluwer Academic Publishers, Norwell (2001)

8. Peters, J., Schaal, S.: Reinforcement learning by reward-weighted regression for op-
erational space control. In: Proceedings of the International Conference on Machine
Learning (ICML) (2007)

9. Dayan, P., Hinton, G.E.: Using expectation-maximization for reinforcement learn-
ing. Neural Computation 9(2), 271–278 (1997)

346 D. Wierstra et al.

10. Wolpert, D.H., Rajnarayan, D.G.: Parametric Learning and Monte Carlo Opti-
mization. ArXiv e-prints 704 (April 2007)

11. Gallagher, M., Frean, M., Downs, T.: Real-valued evolutionary optimization using
a flexible probability density estimator. In: Banzhaf, W., Daida, J., Eiben, A.E.,
Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the
Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, vol. 1,
pp. 840–846. Morgan Kaufmann, San Francisco (1999)

12. Chernoff, H., Moses, L.E.: Elementary Decision Theory. Dover Publications (1987)
13. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari,

S.: Problem definitions and evaluation criteria for the cec 2005 special session on
real-parameter optimization. Technical report, Nanyang Technological University,
Singapore (2005)

14. Gonzalez, C., Lozano, J.A., Larraanaga, P.: Mathematical modelling of umdac
algorithm with tournament selection. Behaviour on linear and quadratic functions.
International Journal of Approximate Reasoning 31(3), 313–340 (2002)

15. Hansen, N.: An analysis of mutative σ-self-adaptation on linear fitness functions.
Evolutionary Computation 14(3), 255–275 (2006)

16. Wieland, A.: Evolving neural network controllers for unstable systems. In: Pro-
ceedings of the International Joint Conference on Neural Networks, Seattle, WA,
pp. 667–673. IEEE, Piscataway (1991)

17. Gomez, F.J., Miikkulainen, R.: Incremental evolution of complex general behavior.
Adaptive Behavior 5, 317–342 (1997)

18. Moriarty, D.E., Miikkulainen, R.: Efficient reinforcement learning through symbi-
otic evolution. Machine Learning 22, 11–32 (1996)

19. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evolutionary Computation 10, 99–127 (2002)

20. Igel, C.: Neuroevolution for reinforcement learning using evolution strategies. In:
Congress on Evolutionary Computation (CEC 2003), vol. 4, pp. 2588–2595. IEEE
Press, Los Alamitos (2003)

21. Faustino Gomez, J.S., Miikkulainen, R.: Efficient non-linear control through neu-
roevolution. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006.
LNCS (LNAI), vol. 4212. Springer, Heidelberg (2006)

	Fitness Expectation Maximization
	Introduction
	Algorithm Framework
	Expectation Maximization for Black Box Function Optimization
	Optimizing Utility-Transformed Fitness
	Fitness Expectation Maximization

	Online Fitness Expectation Maximization
	Experiments
	Standard Benchmark Functions
	Non-markovian Double Pole Balancing

	Discussion
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

