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Abstract. Hitting times of the global optimum for evolutionary algo-
rithms are usually available for simple unimodal problems or for simpli-
fied algorithms. In discrete problems, the number of results that relate
the convergence rate of evolution strategies to the geometry of the opti-
misation landscape is restricted to a few theoretical studies. This article
introduces a variant of the canonical (μ + λ)-ES, called the Poisson-ES,
for which the number of offspring is not deterministic, but is instead
sampled from a Poisson distribution with mean λ. After a slight change
on the rank-based selection for the μ parents, and assuming that the
number of offspring is small, we show that the convergence rate of the
new algorithm is dependent on a geometric quantity that measures the
maximal width of adaptive valleys. The argument of the proof is based
on the analogy of the Poisson-ES with a basic Mutation-or-Selection
evolutionary strategy introduced in a previous work.
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1 Introduction

Evolution Strategies (ES) have generated considerable interest during the last
decades, both in the practical and in the theoretical issues [3,5]. Until recently,
however, the number of mathematical results about the behaviour of ES has
remained rather limited, especially in the field of discrete optimisation. The early
theoretical analyses indeed concentrated on continuous optimisation problems,
and they were mainly based on the so-called rate-of-progress theory, examining
the average gain of the algorithm after a single step of the algorithm [4]. In
the continuous setting, global convergence results and results on hitting times
of the global optimum are now at least available for simple unimodal problems
like the sphere or quadratic functions [1,6], or for simplified algorithms like the
(1 + 1)-ES [15].

Regarding discrete or combinatorial optimisation, the convergence analysis of
evolutionary algorithms has also focused on simple cases, the most representative
of which may be the one-max problem [9]. Numerous studies have obtained deep
insights on such simple problems [18,19], like bounds for the runtime of simple
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EA on pseudo-boolean functions [20,21]. Although some remarkable progress
has been achieved for more complex problems [17], the transfer of results and
techniques to new problems remain an open question. At the exception of the
simulated annealing algorithm [14,19] and of a few variants of evolution strategies
that were based on mutation or selection instead of mutation plus selection
[10,12], few explicit results have linked hitting times of the global optimum to
the geometrical features of the discrete optimisation landscape for an arbitrary
optimisation problem. Nevertheless, these scarce results have revealed to be of
fundamental interest as they have emphasised the importance of the depths of the
adaptive valleys in the simulated annealing algorithm [14], and the importance
of their widths in rank-based selection evolutionary algorithms [10].

One difficulty with building a convergence theory for discrete optimisation
evolution strategies is the determinism of the selection schemes based on fitness
rankings. In this article, we introduce a stochastic variant of ES that converts
the usual deterministic offspring assumption made in these algorithms, into an
assumption of a stochastic number of offspring. We show that this modification
is crucial for characterising the convergence of evolution strategies by means of
geometrical quantities.

The article is organised as follows. In section 2, we introduce the Poisson-
Evolution Strategy (Poisson-ES) in which the number of offspring is randomly
sampled according to the Poisson distribution with mean λ. This modification
of the canonical ES will be accompanied by a slight change on the deterministic
rank-based selection for the parents, which objective is to prevent premature
convergence. Section 3 states our main results about hitting times of the global
optimum that are valid for small λ. These results underline the role of the width
of adaptive valleys for determining the rate of evolution toward the global opti-
mum. Section 4 presents a short simulation study illustrating the fact that the
theory can also predict the behaviour of the modified algorithm for values of λ
that are not close to zero.

2 The Poisson-ES

Consider a finite set, V , and assume that we seek the maximum of an injective
objective function f defined on V

f : V → R+ .

Here injectivity is more a convenient assumption than a necessary condition.
It facilitates proofs and leads to more elegant statements (see [12] for a more
general setting). The canonical (μ + λ)-ES is usually defined as follows. At each
generation, the algorithm generates a deterministic number of offspring, λ, from
μ parents, and simultaneously applies a mutation operator to the λ offspring.
Then, μ individuals are selected among the (μ+λ) parents plus offspring to form
the parental population in the next generation.

Here, we introduce a variant of the (μ + λ)-ES, that generates stochastic – in
place of deterministic – numbers of offspring in each generation. In the variant
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under consideration, the number of offspring, Λ, is sampled from a Poisson dis-
tribution with mean λ, for some value λ > 0. The probability that the algorithm
generates k offspring in a given generation is then equal to

Pr(generate k offspring) =
λke−λ

k!
, k ≥ 0 .

One key property of the Poisson distribution regarding the further analysis of
the stochastic dynamics of the algorithm is that

Pr(generate exactly 1 offspring) = λ + o(λ) ,

and
Pr(generate ≥ 2 offspring) = o(λ) .

In the perspective of a convergence analysis, λ will be thought of as being slowly
decreased to zero, like in the simulated annealing algorithm (see [19]). The con-
vergence of annealing schedules will be examined in the next section.

Since our state space V is an arbitrary finite state space, properly defining
a mutation operator requires a graph structure, (V, E), that represents how
offspring can be generated from the parents. To ensure the irreducibility of the
finite Markov chain model for the algorithm, we additionally assume that the
graph (V, E) is connected. The mutation operator can then be defined as any
particular random walk on the connected graph (V, E).

In the canonical ES, the selection of individuals present in the next generation
is usually performed after a deterministic ranking of the parents and offspring.
One possible issue with this mode of selection is that random walkers may get
trapped into sub-optimal solutions. For example, this can happen if no improve-
ment can be reached by random walking from the last-ranked graph vertex rep-
resented in the population. To avoid this issue, we use a slightly modified type
of rank-based selection. Instead of selecting μ parents, we actually select μ − Λ
parents according to their rank, and then we include the Λ offspring to form
the next generation population. This selection scheme requires that the Pois-
son sampling distribution is conditioned on the event Λ < μ, a condition which
does not change the above stated key property of the sampling distribution for
λ << μ.

To explain how the modified selection scheme approximates the traditional
(μ + λ)-ES, we can look at the intermediate generation. After the mutation is
applied but before selection is performed, the population consists of the parents
plus the offspring,

(a(1), . . . a(μ)) + Λ mutant individuals,

where the a(i) denote individuals ranked by decreased order of fitness values.
Since we are more specifically interested in the behaviour the algorithm for
small values of λ, we can approximate the parental population as μ copies of the
current best fit individual, a(1),

(a(1), . . . , a(1)) + Λ mutant individuals.
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Accordingly the loss in diversity when replacing μ parents by μ − Λ parents is
generally negligible, if not null. Strongly unfavorable mutations produce offspring
viable for one generation, but their carriers usually do not transmit their phe-
notypes in the subsequent generations. The algorithm behaves similarly to the
canonical ES except during peak shifts, which are likely to occur more rapidly
in the modified version. Finally, the Poisson-ES for discrete optimisation can be
summarised as follows.

The (λ + μ)-Poisson-ES. The algorithm iteratively applies the following steps
until some stopping criterion is met.

1. Conditional on Λ < μ, draw Λ ∼ Poisson(λ).
2. Generate Λ offspring from the μ parents and apply mutation to the offspring.
3. Select μ − Λ parents according to ranked-based selection.
4. Add the Λ mutant offspring to form the next generation population.

3 Convergence Results for the Poisson-ES

In this section, we describe our main results regarding the hitting time of the op-
timum for an arbitrary injective objective function f defined on a general search
space V when the parameter λ is small. When λ is close to zero, the dynamics
of the algorithm are strongly dominated by the selection process, which tends to
aggregate individuals into homogeneous (homozygous) populations. Mutations,
that usually occur at small rates, can essentially be viewed as perturbations
of the selection process [13]. In this context, the behaviour of the algorithm is
strongly related to S. Wright’s concept of a fitness landscape and to the presence
of adaptive valleys [22]. It has long been acknowledged that the widths and the
depths of the adaptive valleys may influence the convergence time of evolutionary
algorithms [16]. However, there is a lack of theoretical results that can quantify
the convergence rate of an algorithm by means of such geometrical quantities.

Let us represent the fitness landscape by the values of the objective function
for each vertex of the graph (V, E). In this section, we define a geometrical
quantity that intuitively measures the width of the largest adaptive valley in the
fitness landscape. For two vertices a and b, which are viewed as two evolutionary
distant individuals by the algorithm, let the distance d(a, b) be defined as the
length of the shortest path from a to b in (E, V ). In other words, the distance is
the minimal number of mutations required to transform a into b. The geometrical
quantity of interest is [10,12]

�∗ = max
a�=aopt

min
b:f(b)>f(a)

d(a, b) ,

where aopt is the (assumed unique) global optimum of f , and a can be restricted
to the set of locally sub-optimal phenotypes [10,12]. This quantity measures the
greatest distance between a locally optimal individual and a descendent with a
higher selective value.
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Our main result can be stated as follows.

Theorem 1. Let (E, V ) be a finite connected graph, and let f be an injective
function defined on V . Consider the Poisson-ES with parameters μ > λ. Let Topt

be the hitting time of the optimal solution aopt, and topt be its expected value

topt = Ev[Topt] ,

where v is identified to an arbitrary locally optimal population such that aopt /∈ v.
Then, we have

lim
λ→0

log(topt)
log(1/λ)

= �∗ .

In addition, the standard deviation of Topt is equivalent to the expected value

sd[Topt] ∼ topt , λ → 0 .

This theorem states that a rough approximation of the mean hitting time can
be formulated as

topt ≈ Cλ−�∗ ,

for some unknown constant C that depends on μ. Implicitly, the theorem tells us
that the spectral gap – that is, one minus the second eigenvalue – of the Markov
chain modeling the Poisson-ES is logarithmically equivalent to λ�∗ for small λ.
Remark that the constant C is not explicit, and may be very large depending on
the complexity of the problem under consideration. This happens for example
when �∗ = 1, a situation that corresponds to an enumerative sampling strategy.
This sort of limitation is also present in the simulated annealing algorithm,
where the enumerative strategy leads to a minimum critical depth [14]. In fact,
according to [12], and similarly to what has been obtained for the simulated
annealing algorithm, the theorem suggests that the convergence towards the
optimum can be controlled by a logarithmically decreasing number of offspring

λt = (1 + t)−γ , γ > �∗ , t ≥ 0 . (1)

To see this, we can introduce an artificial decreasing temperature schedule (Tt)
and perform the following change of parameter

λt = e−1/Tt .

According to [14,12], a necessary and sufficient condition for convergence of the
annealed algorithm to the global optimum is then

∞∑

t=1

λ�∗
t = ∞ ,

that justifies the form of equation (1) for λt.
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The proof of the theorem is based on the theory of large deviations applied
to Markov chains with rare transitions [13]. It makes use of the Laplace method
for computing sums of exponentials. The arguments for the mean hitting time
strictly parallel those given in [12] for the Mutation-or-Selection ES (see also
[8]). The result for the standard deviation, as well as other results that confirm
the geometric-like behaviour of the hitting times, can be derived from [7]. The
complete proof is too long to be reproduced here, and we can only give an outline
below.

The Mutation-or-Selection ES is based on the following steps. Let p be a
mutation probability. At generation t, let at = a denote the current population
which we also assume to be of fixed size, μ. To update the current state of the
population, the algorithm iterates the following operations

1. Select the best individual from the current population, a(1).
2. For each ai, i = 1, . . . , μ, either mutate the individual ai with probability p,

or replace it by a(1).

The connection between the MoS-ES and the Poisson-ES arises as the number
of offspring in the MoS-ES is also random, and it is distributed according to the
Binomial distribution, Bin(μ, p). Most of the large deviation analysis is based
on the Laplace method as p goes to zero, and makes use of the following key
property of the Bin(μ, p) distribution

Pr(generate exactly 1 offspring) = p + o(p) ,

and
Pr(generate ≥ 2 offspring) = o(p) ,

which is very similar to the property stated for the Poisson distribution in the
previous section. For the MoS-ES [12], we have previously shown that

lim
p→0

log(topt)
log(1/p)

= �∗ .

In fact, a rough justification of Theorem 1 would consist in setting λ = p/μ
and argueing that the Bin(μ, p) distribution can be replaced by a Poisson dis-
tribution of mean λ according to the classic Binomial-Poisson approximation in
probability theory. Although the guess is correct, the argument can easily be
seen to be flawed. However the result transfers to the Poisson-ES after a step by
step replication of the proof given in [12].

4 Numerical Illustration

To assess the value of the large-deviation approximation for intermediate values
of λ, that is,

topt ≈ Cλ−�∗ ,
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we performed a comparative evaluation of the performances of the Poisson-ES
and the MoS-ES on a very simple test problem. The design of experiments and
the fit of the simulated data to the large-deviation approximation can be done
using an experimental method based on regression, also described in [2,11].

In our example, the objective function was defined on the set of integers
V = [1, . . . , 60] as

f(x) = 1 + (103 − x)x + 120 sin(x) , x ∈ [1, . . . , 60] ,

and the mutations were implemented as the (reflected) random walk on V . We
added ±1 with equal probability to each ai in {2, . . . , 59}. The states 1 and 60
could be moved into 2 and 59, respectively. The corresponding fitness landscape
is represented in figure 1. This simple optimisation problem is illustrative of the
behaviour of the algorithm for a large class of toy problems. It is easy to predict
the behaviour of the algorithm, and to compute some geometrical quantities,
and can be generalised to many dimensions without difficulties. We used μ = 10
individuals, and the algorithms were started from the homogeneous population
a1 = (1, . . . , 1). In this example, the adaptive valleys were narrow and easy to
cross as we started from a1, but their width increased as the algorithms moved
toward the optimum. The critical parameter �∗ was computed as

�∗ = 5 .

In this test problem, the ES were then expected to improve quickly from the
starting population, but they were also expected to make slower progress as
they approached the global optimum.
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Fig. 1. The toy objective function: f(x) = 1 + (103 − x)x + 120 sin(x), x = 1, . . . , 60.
The optimum is reached at x = 52 and, the width of the largest additive valley is
represented by a dashed line. We have �∗ = 5.
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To evaluate the performances of the algorithms, we regressed the logarithm
of the hitting times on the logarithm of λ (or the logarithm of p) in order to
estimate �∗ as the slope of the regression

log(Topt) = log(C) + �∗ log(1/λ) + ε .

To obtain comparable results for the Poisson-ES and for the MoS-ES, we set
p = λ/μ, and we ran simulations for values of p in the interval (0.15, 0.4), where
p is the mutation probability. We obtained 250 replicates of the hitting times
for regularly spaced values of p. The corresponding values of λ fall in the in-
terval (1.5, 4). The fact that experimental values of λ were not close to zero
makes departures from the theoretical predictions rather likely. These values
were nevertheless more conform to standard user-defined ones than would have
been the very small values suggested by Theorem 1. Figure 2 shows that the
data fit the log-log regression rather well (R2 = 0.76, P ≈ 0 for the Poisson-ES,
and R2 = 0.81, P ≈ 0 for the MoS-ES), providing evidence that the log-hitting
times were actually explained by the logarithm of λ. The coarse approximation
topt ≈ Cλ−� could then considered valid for values of λ not close to zero. The
coefficients of the regression model were computed as 3.3 (intercept) and 4.2
(slope) for the Poisson-ES, and they were computed as 2.7 (intercept) and 5.9
(slope) in the MoS-ES. The slope values 4.2 and 5.9 were close to the value
�∗ = 5 predicted by the theory of large deviations. In this example, we noticed
that the Poisson-ES ran slightly faster than the MoS-ES to the population with
the highest selective values.
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Fig. 2. Regression of the log hitting time on log(1/p), where p is the mutation probabil-
ity. The slope of the regression corresponds to the critical quantity �∗. (A) Poisson-ES.
(B) MoS-ES, p = λ/μ, μ = 10.
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5 Discussion

This article has introduced a variant of the canonical ES in which the number of
offspring is not deterministic, but is instead sampled from a Poisson distribution
with mean λ. After a slight change on the rank-based selection for the μ parents,
we showed that the new ES resembles the basic Mutation or Selection-ES intro-
duced in [10]. The Poisson-ES and the MoS-ES provide interesting models for
obtaining in-depth insights on the convergence of evolutionary algorithms. Based
on the similarity between the two algorithms, we stated a convergence theorem
for arbitrary discrete optimization problems, that emphasises the role of the
width of the adaptive valleys. Yet, analogs of MoS-ES or of discrete Poisson-ES
have not been studied in continuous optimization problems, but it is natural
to expect that geometric quantities similar to those influencing the behaviour
of the discrete algorithms are likely to determine the convergence rate of the
continuous algorithms as well.

Stochastic parameters are the basis for designing adaptive or self-adaptive
algorithms. Since the cost of an algorithm is a function of the mutation load
through the number of fitness evaluations, an ES should end with λ ≈ 0 when
getting close to the optimum. In contrast, being far from the optimum would
probably require that the number of offspring is large λ >> 1. This idea can be
implemented in the Poisson-ES using an explicit convergent annealing scheme.
We also believe that this study opens new directions for self-adaptation in dis-
crete ES, because it indicates that increasing λ or performing faster walks in the
bottom of the valleys is likely to improve the convergence rate of the algorithm.

Acknowledgments

I wish to thanks Anne Auger for her comments on a previous draft of the
manuscript. This work is supported by a grant from the Agence Nationale de la
Recherche BLAN06-3146280.

References

1. Auger, A.: Convergence results for (1,λ)-SA-ES using the theory of ϕ-irreducible
Markov chains. Theor. Comput. Sci. 334, 35–69 (2005)

2. Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation – The
New Experimentalism. Natural Computing Series. Springer, Berlin

3. Beyer, H.-G.: The Theory of Evolution Strategies. Natural Computing Series.
Springer, Heidelberg (2001)

4. Beyer, H.-G., Schwefel, H.-P., Wegener, I.: How to analyse evolutionary algorithms.
Theor. Comput. Sci. 287, 101–130 (2002)

5. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies – A comprehensive introduction.
Natural Computing 1, 3–52 (2002)

6. Bienvenüe, A., François, O.: Global convergence for evolution strategies in spherical
problems: some simple proofs and difficulties. Theor. Comput. Sci. 306, 269–289
(2003)



30 O. François

7. Cercueil, A., François, O.: Sharp asymptotics for fixation times in stochastic
population genetics models at low mutation probabilities. Journal of Statistical
Physics 110, 311–332 (2003)

8. Cerf, R.: Asymptotic convergence of genetic algorithms. Adv. Appl. Probab. 30,
521–550 (1998)

9. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1 + 1) EA. Theor.
Comput. Sci. (276), 51–81 (2002)

10. François, O.: An evolutionary algorithm for global minimization and its Markov
chain analysis. IEEE Trans. Evol. Comput. 2, 77–90 (1998)

11. François, O., Lavergne, C.: Design of evolutionary algorithms: A statistical per-
spective. IEEE Trans. Evol. Comput. 5, 129–148 (2001)

12. François, O.: Global optimization with exploration/selection algorithms and sim-
ulated annealing. Ann. Appl. Probab. 12, 248–271 (2002)

13. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems.
Springer, New York (1984)

14. Hajek, B.: Cooling schedules for optimal annealing. Math. Oper. Research 13, 311–
329 (1988)

15. Jägersküpper, J.: Algorithmic analysis of a basic evolutionary algorithm for con-
tinuous optimization. Theor. Comput. Sci. 379, 329–347 (2007)

16. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge
(1996)

17. Neumann, F., Wegener, I., Randomized, I.: local search, evolutionary algorithms,
and the minimum spanning tree problem. In: Deb, K., et al. (eds.) GECCO 2004.
LNCS, vol. 3102, pp. 713–724. Springer, Heidelberg (2004)

18. Rudolph, G.: Finite Markov chain results in evolutionary computation: A tour
d’horizon. Fundam. Inform. 35, 67–89 (1998)

19. Schmitt, L.M.: Theory of genetic algorithms. Theor. Comput. Sci. 259, 1–61 (2001)
20. Wegener, I., Witt, C.: On the optimization of monotone polynomials by simple

randomized search heuristics. Combin. Probab. Comput. 14, 225–247 (2005)
21. Witt, C.: Runtime Analysis of the (μ+1) EA on Simple Pseudo-Boolean Functions.

Evol. Comput. 14, 65–86 (2006)
22. Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evo-

lution. In: Proceedings of the VI International Congress of Genetics, pp. 356–366
(1932)


	Convergence Analysis of Evolution Strategies with Random Numbers of Offspring
	Introduction
	The Poisson-ES
	Convergence Results for the Poisson-ES
	Numerical Illustration
	Discussion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




