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Abstract. In this paper we show preliminary results of two efficiency
enhancements proposed for Extended Compact Genetic Algorithm.
First, a model building enhancement was used to reduce the complexity
of the process from O(n3) to O(n2), speeding up the algorithm by 1000
times on a 4096 bits problem. Then, a local-search hybridization was
used to reduce the population size by at least 32 times, reducing the
memory and running time required by the algorithm. These results are
the first steps toward a competent and efficient Genetic Algorithm.

Keywords: Estimation of Distribution Algorithms, ECGA, Model
Building, Efficiency Enhancement.

1 Introduction

Evolutionary Algorithms (EA) [1] [2] have been successfully used in several differ-
ent applications involving search, optimization and machine learning problems.
Goldberg [3] presents a design-decomposition methodology for successfully de-
signing scalable Genetic Algorithms (GAs). A GA that can solve hard problems
accurately, efficiently and reliably is called a competent GA. These GAs can
solve problems that are intractable for other algorithms in a tractable polyno-
mial time.

However, to solve large scale problems it is oftentimes necessary to enhance the
efficiency [4] of the algorithm. Some common approaches include parallelization
[5], hybridization [6] [7] [8], time continuation [9], and evaluation relaxation [10].

The recent success of the Compact Genetic Algorithm (cGA) [11] on solving a
billion bit noisy optimization problem [12] [13] has proven that GAs, if properly
designed and optimized, can solve difficult large problems.

The objective of this work is to reproduce this success, creating an efficient
and competent EA, capable of solving large scale difficult problems. Particularly,
we are interested in creating an algorithm that can deal efficiently with problem
sub-structures, solving a broader class of problems than the class the cGA can
handle. This paper presents a proof of principle on the importance of efficiency
enhancements for GAs. We present the first steps toward such efficient and
competent EA and discuss future directions for the next steps.
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2 The Extended Compact Genetic Algorithm

The Extended Compact Genetic Algorithm (ECGA) [14] is an evolutionary algo-
rithm in the class of Estimation of Distribution Algorithms (EDAs) [15]. These
algorithms substitute the selection-crossover-mutation process, common to GAs,
by a selection-model-building-sampling process. Some examples of EDAs include
the cGA [11], that uses probability vector as a model, and the Bayesian Opti-
mization Algorithm (BOA) [16] that uses a Bayesian Network as a model, being
able to represent which variables are linked together.

The ECGA uses the Marginal Product Model (MPM), which can be divided
into two components, (I) a partition over the variables, defining which variables
are independent and which variables are linked, and (II) a probability distribu-
tion over each partition.

The ECGA is based on the principle that the estimation of a good model for
the population is equivalent to the linkage learning [2] [14] process. It searches the
space of possible partitions to find an appropriate one and tunes the probability
distribution to match the data. The ECGA uses the minimum description length
(MDL) principle as learning bias, which means that the cost of representing
the whole population under the compression induced by the model (Compressed
Population Complexity - CPC), together with the cost of representing the model
itself (Model Complexity - MC) should be minimal.

The ECGA chooses a partition that appropriately models the sub-problem
structure by greedily optimizing the Combined Complexity Criterion (CCC)
using Algorithm 1, which assumes that each of the variables are indepen-
dent and them evaluates all possible pair wise merges and pick the best un-
til no merging can improve the CCC. After the partition is determined, the
probability distribution is estimated simply by counting the frequencies in the
population. For detailed information about the ECGA and the CCC, please
refer to [14].

The ECGA main loop can be summarized by the following steps. First, it gen-
erates a random population and then repeats the process of evaluation, selection,
model-building, and sampling until any convergence criteria is satisfied.

Algorithm 1. Greedy search for an appropriated model in the ECGA

1. Start assigning each variable to an independent partition
2. Repeat:
3. For each pair of partitions:
4. Merge that pair
5. Evaluate the CCC of the model
6. Undo the merging
7. Merge the pair that induced the smaller CCC if any
8. End the search if no improvement is possible
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3 Efficiency Enhancements for the ECGA

The methodology proposed by Goldberg [3] allows us to design competent GAs,
which can solve hard problems in polynomial time. The same methodology can
be used to design efficiency enhancements for GAs [4], which can be divided
in four main categories: Parallelization, hybridization, time continuation and
evaluation relaxation.

In a very superficial view, parallelization deals with the division of the GA in
several processors. Hybridization deals with the integration of GAs with other
search procedures. Time continuation deals with the tradeoff among using a
larger population for short time or smaller population for long time and evalua-
tion relaxation deals with the tradeoff among having a noisy and cheap evaluation
against an accurate and expensive one.

This paper proposes two extensions to improve the performance of the ECGA.
One of them follows the cited methodology; it is the hybridization of the ECGA
with a local search procedure that will work as a preprocessing mechanism. The
other extension addresses the model building process, which according to running
time profiling information consumes more than 90% of the computational time.
The profiling information was generated using the GNU gprof utility for UNIX
systems.

All results presented in this section use the mk-trap problem [9] with trap
size (k) of 4 as benchmark problem. The mk-trap is an additively separable
problem with m sub-problems, each of them being a trap function of k bits. The
tournament size was fixed to 16 for all experiments. The population size and
number of sub-problems (m) varies on the experiments.

3.1 Improving the Model Building Process

The ECGA is a competent genetic algorithm, but it is computationally expen-
sive. The first step to improve its performance was to profile the code and to
determine which are the most time consuming steps of the algorithm. The result
of such profiling showed that the model building process took more than 90% of
the computational time. This concerning aspect lead us into a search for model
building alternatives to reduce this time.

The first possible approach to that problem would be the use of a cache struc-
ture, already used on [17], which sacrifices memory to get runtime improvements.
However, this improvement is not sufficient for large problems and memory may
also become a limiting resource.

Reviewing Algorithm 1, we point that line 2 introduces a loop that depends
on the size of the chromosome (l). Line 3 introduces iteration over pairs of
variables in the string, which can be re-written as: “For each variable; For each
other variable”, introducing a order two iteration over l. The overall complexity
is O(l3).

One possible way to reduce the runtime would be to finish the loop in line 3
before it evaluate all pairs. Instead of searching for the best merging among
all pairs, it might be enough to accept any merge that improves the CCC and
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stop the loop. This approach works for tight coded problems [2], but fails for
loose coded ones when the population size is close to the minimum necessary for
the ECGA, since spurious relations among actually independent variables are
expected show up by just chance. Using a larger population is a way to bypass
this problem but this price overcomes the benefits.

A successful approach would have to reduce the overall complexity of the
algorithm. This is achieved using the Algorithm 2. Fundamentally, instead of
evaluating the CCC over all pairs of partitions, an O(l2) step, Algorithm 2
selects one partition (a) and evaluates the CCC only over the pairs that include
this partition, reducing the complexity of this step to O(l).

Algorithm 2. Improved greedy model building for the ECGA
1. Start assigning each variable to an independent partition
2. Repeat:
3. Choose a partition (a)
4. For each other partition (b):
5. Merge a and b
6. Evaluate the CCC of the model
7. Undo the merging
8. Merge the pair that induced the smaller CCC if any
9. With some small probability pb, break any partition
10. Cool down the breaking probability
11. End the search if no improvement is possible

As mentioned, spurious relations are expected to show up just by chance. To
overcome that problem, we used a random breaking mechanism that chooses
a random partition and divides it. However, the signal of spurious relations
decreases as the real relations are discovered. This fact motivated the adoption
of a cooling down mechanism to decrease the perturbation rate over time. This
local search/random perturbation mechanism was successfully applied on several
problems and is the basis of algorithms like Simulated Annealing.

Two items need further explanation. The selection of the partition (a) to be
merged (Line 3) and the setting of the breaking probability pb. The best results
were achieved using a round-robin policy for choosing a and a initial breaking
probability pb = 0.01, although for noisy problems a greater pb values would
produce more accurate results. To cool down, we assign pb = 0.9pb.

It is important to notice that decreasing the model building accuracy may have
undesired side effects on the ECGA. On the performed tests, the model building
accuracy for Algorithm 1 and for Algorithm 2 was the same. This is a general
property for trap functions but further experiments are necessary to confirm the
hypothesis that both methods have the same accuracy. Initial experiments show
that, for problems where proper mixing is fundamental for success (deceptive
problems), Algorithm 2 does not suffer from accuracy problems. Challenging
problems like noisy problems and exponentially scaled problems might offer more
difficulty and further refinements on Algorithm 2 might be necessary.
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Model Building with Reduced Complexity − O(n2)

Original Model Building − O(n3)
Original Model Building (Artificial Data)

Fig. 1. A comparison of the scalability of the Model Building with reduced complexity
and the Original Model Building shows that the proposed approach successfully reduces
the number of different partition to be evaluated in one order of complexity, resulting
in a speedup greater than 1000 times for individuals of size 4096 bits. The slope of the
lines indicates a reduction from cubic to quadratic order.

Figure 1 shows the scalability of the methods on a LogLog scale. On the x axis
we have the chromosome size and on the y axis we have the number of evaluations
of the CCC necessary to build the correct model. Both the old (original) and the
new method are straight lines, what means that they are governed by a power
law. The slope of the line for the new method is close to 2 and for the old method
close to 3, confirming the scalability hypothesis.

The improvement in the total runtime of the new method when compared to
the old one is of order of 10 times for a small problem instance (32 bits) and of
more than 1000 times for a 4096 bit problem.

3.2 Improving ECGA through Local Search

GAs are often able to operate over large and multi modal search spaces, presenting
a good global search nature. However, local search methods are, in general, more
efficient in tuning a solution and reaching the closest local optimum. These two
characteristics are desirable and several hybrid approaches have been proposed.
There are several ways to hybridize a GA with a local search method and each of
them is more suitable to a different class of problems. In this work we propose to
use the local search method as a pre-processing mechanism to the ECGA.

The reason for that decision is that the ECGA is very efficient at combin-
ing optimal sub-structures, but not so efficient at finding them. To bypass this
inefficiency, large population sizes are required to ensure the initial BB supply
[3]. Once that initial supply is provided, the ECGA can select promising solu-
tions and learn the appropriate decomposition, building a model that allows it
to combine the substructures properly.

The model-building process can become easier if the entropy of the partitions
is low, i.e., if we need the smallest number of bits possible to represent that
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partition. The lowest entropy happens when all non-optimal instances of a BB
have probability 0 and only one optimal solution is present. In this case, the
entropy is 0.

However, sub-problems may be difficult to solve even if a proper decomposition
is known. For instance, a trap function is a difficult function itself. We argue that
if it is impossible or too expensive to find the optimal solution to a sub-problem,
removing all non-locally-optimal solutions from the population still reduces the
entropy significantly1 and helps the model building process. A local search pre-
processing can easily remove such non-locally-optimal solutions.

A local hill climber that processes each variable separately like the one in
Algorithm 3, when applied to all individuals in the population, will have the
effect of taking every instance of a substructure located on a particular hill on the
search space to the peak of that hill. As an effect, all non-locally-optimal solutions
will be replaced by a particular local-optimum, reducing the entropy and easing
the model building process. Moreover, since fewer different instances of one sub-
structure need to be recombined, the overall performance of the ECGA as a
mixer of sub-structures will be improved (the mixing time is reduced [18]).

Algorithm 3. A hill climber to be used as a local search for the ECGA
1. Given an individual s of length l and fitness f:
2. For each position p in the chromosome:
3. Flip the bit at p to its complementary value
4. Evaluate the local change effect and calculate new fitness f’
5. If f’ is not better than f:
6. Flip the bit p back to the original value
7. else
8. f = f’
9. Return the resulting individual

This reasoning proved to be true. The application of local search as a pre-
processing to the ECGA reduces the population size required by the method, con-
sequently reducing the memory and runtime of the algorithm. Figure 2 compares
the minimal population size (determined according to the Bisection Method) re-
quired by the ECGA and by the Hybrid to solve problems of growing size (the
x axis represents the problem size l). The population size in ECGA scales as
O(l · log(l)) [9] for problems with constant BB size. Figure 2 shows that the
hybrid uses smaller population and scales no worse than the original method.

It is important to remark that the local search procedure is itself time con-
suming. We can use the locality and independence of the substructures to reduce
the cost of the function evaluations required by the hill climber, introducing the
concept of a local change evaluation, which evaluation calculates the fitness vari-
ation induced by a single bit change. In the mk-trap problem the cost of a local
change evaluation is 1/m of the cost of a complete function evaluation.

1 Given that the sub-problem is boundedly multimodal.
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Fig. 2. The Hybridization of the ECGA with a local search procedure reduces the
minimum population size required by the algorithm (determined using the bisection
method [10]), reducing the memory requirements and potentially the running time
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Fig. 3. The Hybridization of the ECGA also affects the number of function evaluations.
Considering the cost of a local evaluation as 1/m of the cost a complete evaluation we
have a significant improvement on the number of function evaluations required. Even
when local change evaluations are not available, the number of function evaluations for
the hybrid is no worse than the number of function evaluations for the original method.
The hybrid still reduces the population size and, consequently, memory and running
time.

Figure 3 show the scalability of the number of function evaluations required by
the ECGA (ECGA) and the Hybrid. For the latter, two lines where presented,
one of them (Hybrid - No Local) assumes that no local change evaluation is
available, counting each evaluation as a complete function evaluation. The other
line (Hybrid - Local) assumes the availability of local evaluations, counting m of
them as one function evaluation. The x axis represents the problem size l.

Figure 3 shows that even in the worst case, the hybrid is no worse than the
ECGA. When no local evaluation is available, the hybrid behaves very similar to
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the ECGA, but requires a smaller population, generating a smaller overhead for
model building, selection and other GA related processes, reducing both memory
and running time.

4 Future Work

This paper presents enhancements to the ECGA and successfully improves its
performance. However, in order to create an effective EA several other enhance-
ments are still necessary. In this section we point and describe some of the next
steps toward such effective EA. The proposed enhancements are useful steps,
but future work should not be restricted only to these options.

The proposed relaxed model builder shows no accuracy lost for trap functions.
Noisy or exponentially scaled problems might be more challenging, requiring
further enhancements to the algorithm.

Parallelization: Since the Hill Climber processes each individual independently
it is easy to distribute the population over several processors, achieving a speedup
near the number of processors for the pre-processing step. Parallelizing the model
building deserves special care, since this process centers the information dis-
tributed in the population.

Model building improvements: It is possible to further speed-up the algorithm
by avoiding unnecessary full model building steps. This can be achieved by three
different ways: (I) Sporadic model building [19], which builds the model only
after some generations or some important event, instead of every generation; (II)
Once and forever model building, which build the model in the first generation
and reuses it through the GA run and; (III) Incremental model building, which
changes the model using small incremental steps.

Hybridization with competent mutation operator: as discussed in [9], the mu-
tation is useful on deterministic problems, while crossover is useful on noisy
problems. A mutation-crossover hybrid can take advantage of both strengths, as
showed by [20].

Chromosome compression: compressing the chromosome as in [21] can also
improve the performance of the algorithm by reducing the chromosome length
and search space.

5 Conclusion

This work presents a proof of principle on the importance of efficiency enhance-
ments for practical GAs. We present two enhancements to the ECGA, a widely
used competent genetic algorithm. These enhancements successfully improved
performance of the algorithm, with speedups of more than 1000 times for large
problems.

The first enhancement, the change on the model building process, was able
to reduce significantly the time needed for the model building process. This step
represents more than 90% of the original algorithm’s runtime. The extension was
able to reduce one order of complexity in the model building process, inducing a
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speedup around 10 times faster for small instance (32 bits) and more than 1000
times faster for a 4096 bit problem.

The second enhancement, the hybridization with a local search preprocessing,
successfully reduced the population size required by the algorithm, reducing the
memory and runtime requirements. Using the hybrid we were able to solve the
same problem with a population at least 32 times smaller. This result holds for
small strings (such as 32 bits) and for the larger ones.

Although the results achieved by these enhancements are relevant, this work
is only the first step toward a competent and efficient EA, capable of solving
difficult large scale problems in practical time. We also pointed some of the next
steps toward such EA.
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