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Abstract. Many real-world optimization problems involve uncertainty.
In this paper, we consider the case of worst-case optimization, i.e., the
user is interested in a solution’s performance in the worst case only. If
the number of possible scenarios is large, it is an optimization problem
by itself to determine a solution’s worst case performance. In this paper,
we apply coevolutionary algorithms to co-evolve the worst case test cases
along with the solution candidates. We propose a number of new variants
of coevolutionary algorithms, and show that these techniques outperform
previously proposed coevolutionary worst-case optimizers on some simple
test problems.

1 Introduction

Many real life optimization problems involve some form of uncertainty, e.g., be-
cause they rely on forecasts, because they depend on an opponent’s move, or
because the solution eventually implemented is subject to manufacturing tol-
erances. In such cases, one typically searches for a robust solution. Often used
criteria are a good expected quality or a low variance (see, e.g., (3, p. 127)). In
the following, we consider the case that a user is interested only in a solution’s
worst-case performance, for example, because the application may include the
risk of very severe consequences, such as death or bankruptcy.

Possible applications of worst-case optimization include engineering design
(12), portfolio management (10) and scheduling (2, 6, 8)). There exist several
ways to approach worst-case optimization, e.g., the calculation of reliability (4)
or the use of an embedded EA to identify, for each solution, the worst-case (1).
The latter implies great computational efforts which may render the approach
infeasible in practice. An alternative and more efficient way to search for a robust
solution and for its worst case simultaneously is provided by coevolutionary
algorithms.

2 Coevolutionary Worst-Case Optimization

There exist several forms of coevolutionary algorithms (CEAs) but we consider
only competitive, test-based CEAs which comprise one population consisting of
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solution candidates and one population forming the test cases (see, e.g., (7, 13,
14) for some early work).

CEAs offer several amenities. They do not need an objective, external metric
to evaluate the solutions. Instead, individuals are evaluated by letting them
interact with each other. Therefore, CEAs are applicable to problems where
an objective criterion does not exist or cannot be computed. This is also the
case in worst-case optimization, since the worst-case scenario is unknown, and
a test with all possible scenarios may be impossible. CEAs are more efficient in
that they use only a limited number of test cases to evaluate a solution. The
population of test cases is furthermore selected adaptively because it coevolves
with the solution candidates and therefore increases in difficulty as the solutions
grow more powerful (5).

Over the course of research and application, CEAs have also shown some
shortcomings. The first is a direct consequence of the lack of an objective metric:
the real (objective) quality of a solution does not necessarily correspond to the
subjective quality, i.e., the quality perceived by the algorithm. Furthermore,
CEAs are susceptible to various pathologies such as evolutionary forgetting,
cycling, disengagement, or overspecialization. For a detailed analysis of these
pathologies as well as possible remedies, please refer to, e.g., (11).

CEAs have been applied to a wide range of problems but only few involve
worst-case optimization. In (15) a so-called ”nested minimax optimization” is
performed. One population consists of various designs for a neural controller. The
other population persists of plants, i.e., the scenarios in which the controller will
be utilized. (2) uses a CEA to solve constrained optimization problems, written
as min-max problems. One population evolves the parameter which is responsible
for the minimization, the other population represents the parameter which max-
imizes. (6) and (8) apply worst-case CEAs to the area of scheduling, trying to
find robust schedules. One population evolves the schedules, the other population
evolves difficult problem instances or possible machine failures. Furthermore, (9)
deals with the topic of worst-case optimization on a more theoretical level. We
will discuss the basic idea of fitness assignment in these approaches in Section 4.

3 Coevolutionary Algorithm and Test Problems

The basic coevolutionary algorithm considered here uses two populations PS

and PT . The solutions s ∈ PS attempt to minimize a function F (s, t), while the
test cases t ∈ PT are responsible for identifying the worst cases (i.e., attempt
to maximize F (s, t)). Each individual is a single real number, and a standard
(μ+λ) evolution strategy is used on both populations with mutation as the only
variation operator. The mutation operator is additive Gaussian, and mutation
probability is 100%.

We test the methods on two different functions. In each function, the solutions,
denoted as s, aim at minimizing F (s, t) while the test cases, t, aim at maximizing
F (s, t). The functions were designed in such way that the worst case is t = s
and the optimum solution is s = 0.
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F1(s, t) = 2st − t2, s ∈ [−50; 50], t ∈ [−50; 50] (1)

The optimum of function F1 is stable because the solution candidates have
no incentive to deviate from (0, 0).

F2(s, t) = s2 − s cos(3(s − π

2
)) − (3|s − t| − (s − t) cos(3((s − t) − π

2
))),

s ∈ [−10; 10], t ∈ [−10; 10] (2)

In contrast to function F1, F2 is much more rugged and since the point
(s = 0, t = 0) is not Nash, the optimum of F2 is not stable. Since the solution
candidates aim to minimize, they have a very strong incentive to deviate as soon
as the coevolutionary system comes close to (0, 0). Because the test cases follow
the solution candidates, both leave the optimum quickly (see Fig. 2).

For some visualizations of functions F1 and F2 see Figures 1 and 2.
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Fig. 1. Visualization of test functions F1 and F2
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Fig. 2. With Function F2, the solution candidates have an incentive to deviate from
the optimum (left panel) which as a consequence, causes the test cases to follow (right
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4 Fitness Assignment Methods

In this section, we examine various fitness assignment methods, i.e., methods
which calculate an individual’s fitness based on the results of testing all solutions
against all test cases, resulting in |PS | × |PT | function evaluations.

Let us denote the populations before selection as PS and PT , and the (smaller)
populations after selection as P ′

S and P ′
T . Then, we distinguish between three

different rankings/fitness values. By real ranking, we mean a ranking based on
the solution’s performance with respect to the true worst case (i.e., t = s). We
call the ranking based on the populations before selection as global ranking, and
the ranking based on the populations after selection the local ranking. W.l.o.g.,
best solutions have the lowest fitness, while for test cases, a higher fitness is
assumed to be better. Note that the local fitness is always at least as good as
the global fitness, as additional test cases can only worsen performance.

The solutions are always ranked according to their respective global worst
case performance (over all test cases).

fit(s) = max
t∈PT

F (s, t)

Furthermore, let us assume that solutions are numbered from 1 to n in order of
increasing fitness (increasing global worst case values), i.e., the currently best
perceived solution in the population is denoted by s1.

In the following, we first describe two fitness assignment methods from the
literature, namely the Maximin method and Jensen’s method. Then, we continue
to propose some new approaches.

Maximin Method. To rank the test cases, the classical approach is to also use
the minimax principle, see, e.g., (2, 6, 8, 15). Since they represent the opposite
perspective, the correct term is Maximin method.

fitMaximin(t) = min
s∈PS

F (s, t)

(8) shows, however, that this approach fails to find the optimum, if the concerned
function is not a saddle-point function.

Jensen’s Method. This approach is described in detail in (9). Jensen argues
that the fitness of a test case should not only rely on the performance of that
particular test case on PS , but also on other test cases in PT . If at least one
solution exists, for which a test case forms a very difficult (or the worst) case,
this test case should get a high fitness, even if it is easy to solve for the other
solutions. Therefore in Jensen’s approach, a test case’s fitness equals the highest
ranking it achieves if all test cases are ranked for each solution, the worst case
having the highest rank. If a test case achieves this highest rank for k > 1
solutions, its fitness is additionally increased.

fitJensen(t) = max
s∈PS

ranks(t) +
k

|PS | + 1
,

where ranks(t) is the rank of solution s according to test case t.
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The following methods are new, and select test cases one by one, in an iterative
and greedy manner, trying to maximize the information about the individuals
in PS that the selected test cases provide. These test cases implicitly serve as a
kind of memory, and influence the test cases future solutions will face.

Note that because we use a simple (μ + λ) selection strategy, the only rele-
vant decision is which test cases survive to the next generation. However, the
methods could be adapted to other selection methods in a straightforward way
by assigning them ranks according to the order in which they are selected. Also,
it is possible that the criterion to select the next test case is not unique. In this
case, one of the test cases is added randomly.

Worst Case Method. The underlying idea of this method is that it is most
important to keep the information about the worst cases of the best solutions (as
these will be used to generate offspring). The method starts by going through
all solutions s1 . . . sn in order of increasing fitness, and, in each iteration, adding
the corresponding worst case test case if it is not yet included.

Average Greedy Method. The Average Greedy method is based on the as-
sumption that the local performance reflected by the selected test cases should
be as close as possible to the global performance according to all test cases in
the population. Therefore, the method starts by selecting the worst case of s1.
Then, it iteratively adds as next test case the one which maximizes the average
local fitness of all solutions after adding the additional test case. More formally,
if B denotes the set of test cases selected so far, it adds the test case t′ ∈ PT

which maximizes
∑

s∈PS
maxt∈{B∪t′}F (s, t).

Distance Greedy Method. The Distance Greedy method is based on the
observation that a solution’s fitness can only deteriorate if additional, more dif-
ficult test cases are found. To avoid that the best solution is no longer best in
the subsequent iteration, it is attempted to maximize the difference in local fit-
ness between the best and the closest competitors. Again, the method starts by
selecting the worst case for s1. Then, it iteratively adds the test case which, if
added to the already selected solutions (B), maximizes the local fitness difference
between the best solution and the second best (according to the ranking based
on B). In case of ties, the difference between best and third best, fourth best,
etc. is used as a criterion. Usually, this method leads to a correct local ranking of
the best solutions, as the worst cases for these solutions are often selected first.

Ranking Greedy Method. Here, the motivation is to maintain the relative
ordering of all solutions in PS with only the selected solutions, i.e., to make
the local ranking as consistent as possible with the global ranking. Again, the
worst case of s1 is always selected. Then, iteratively the test case is added to B
that, if added, maximizes the correct number of relative orderings in the ranking
specified by B.

Table 1 demonstrates how the different methods rank the test cases. The
particular example consists of six solutions and six test cases, and assumes that
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Table 1. Left: Evaluation of six solutions by six test cases (smaller numbers are better).
Right: Fitness values assigned to test cases by the different methods (higher numbers
are better).

t1 t2 t3 t4 t5 t6
s1 3 5 8 9 11 10
s2 7 9 13 2 4 5
s3 4 6 7 9 3 2
s4 12 5 8 9 10 11
s5 5 6 7 8 2 3
s6 2 8 9 10 8 6

t1 t2 t3 t4 t5 t6
Maximin 2 5 7 2 2 2
Jensen 5 4 5 5.43 5 4.29

Worst Case 3 1 2 5 4 0
Average Greedy 3 1 4 5 2 0
Distance Greedy 1 4 2 5 3 0
Ranking Greedy 2 1 4 5 3 0

in the case of ties, always the test case with the smaller index is chosen. As
can be seen, the methods value the test cases quite differently, and it is not
obvious which ranking is best. In any case, note that the Maximin method gives
a very low evaluation to the test case causing worst case performance of the best
solution (t4, bold). Thus, it is likely that this test case does not survive to the
next iteration, which, from our experience, would be very important. Jensen’s
method gives this test case the highest evaluation in this example, although this
is not guaranteed in general. All our newly proposed methods include this test
case with highest priority in the next population.

5 Metrics

Various metrics are used to analyze the performance of the different fitness as-
signment methods. The most important one is the real fitness of the generation’s
perceived best solution. Applying the knowledge that the real worst case is t = s,
the real fitness can be calculated as F (s1, s1).

The correlation coefficient between the real fitness (F (s1, s1)) and the sub-
jective fitness of a solution (fit(s1)) indicates the method’s ability to keep real
and subjective fitness linked to each other. It’s measured across all individuals
of the population.

A similar metric we designed is called real quota. It measures the fraction of
the μ objectively (according to real fitness) best solutions the method succeeds
to identify by counting how many of them are among the μ subjectively best
solutions, i.e., whether the selection of μ parents is correct. A real quota of 1
means a perfect match.

Both metrics, correlation coefficient and real quota serve only for monitoring.
The information they use is not accessible to the CEA and thus cannot be used
to direct the fitness assignment process. A metric which uses only information
that is acquirable for the CEA is the global quota. It counts how many of the μ
subjective, i.e., global, best solutions are among the μ local best solutions. This
metric gives information about the fitness assignment process in the test case
population, which can be designed to optimize the global quota.
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6 Empirical Results - Fitness Assignment

Experimental Setup. In this section, we use a (10+20) evolutionary strategy
with Gaussian mutation and step size 0.35. All values are mean values over
400 runs. Unless specified otherwise, the plotted values depict mean value and
standard error of the respective metric.

Figure 3 displays the evolution of real fitness of the perceived best solution
over time for test function F1. As can be seen, all fitness assignment methods
except the method proposed by Jensen are able to converge to the optimum on
this simple problem. The minimax method converges significantly slower, the
newly proposed fitness assignments all perform similar. Additional experiments
have shown that Jensen is also able to converge on this problem when allowed a
larger population size.

The same plot, but for function F2, is shown in Figure 4. Here, the perfor-
mance differences are much more significant. None of the algorithms is able to
converge to the optimum, which was to be expected, since the function rewards
deviations from the optimum. Average Greedy and Ranking Greedy perform
best, followed by Distance Greedy and Jensen’s method. The Worst Case method
works very well in the first few iterations, but then suddenly deteriorates and
converges to a level much worse than what had been obtained before. The good
performance in the first phase can be explained by the uncompromising focus on
the worst cases, driving the solution values down. The following ascent may be
explained by an overspecialization in PT . Very few test cases form the complete
set of worst cases for all solutions, resulting in less than μ test cases with an
assigned fitness. Therefore, some test cases are chosen randomly, substantially
worsening the algorithm’s performance.

The Maximin approach actually diverges and results in solutions worse than
the random initial population.

Global Quota and Correlation Coefficient. The basic assumption behind
the greedy approaches was that the performance of the CEA could be improved
by maintaining, in the local information, as much of the global information
as possible. The success of this idea is reflected in the sound performance of
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Table 2. Correlation coefficient and global quota ± standard error in generation 100
for function F2

Method Correlation Coefficient Global Quota
Maximin 0.73 ± 0.017 0.54 ± 0.018
Jensen 0.8 ± 0.016 0.814 ± 0.007

Worst Case 0.71 ± 0.018 0.475 ± 0.018
Average Greedy 0.89 ± 0.01 0.87 ± 0.006
Distance Greedy 0.837 ± 0.013 0.84 ± 0.007
Ranking Greedy 0.9 ± 0.009 0.924 ± 0.006

the greedy methods on both problems. It can also be measured by the global
quota and the correlation coefficient as reported in Table 2. The Ranking Greedy
method was the last greedy method to be designed and it was especially devel-
oped to further improve the global quota, which was clearly successful. Never-
theless the Ranking Greedy method does not outperform the Average Greedy
method regarding the real fitness, indicating that the connection between global
quota, real quota and the correlation coefficient respectively seems to be more
complex than expected. Table 2 shows that Average Greedy and Ranking Greedy
have the same correlation coefficient, stating that both achieve about the same
correlation between subjective and objective fitness.

7 Empirial Results - Mutation Step Size

The difficulty of function F2 lies in the fact that once the test case population
converged to the worst case (t = s), the optimum is surrounded by a much more
attractive area for the solutions. Therefore, they mainly circle around (0, 0),
always followed by the test cases. In order to drive the solutions back to (0, 0),
the test cases must ”overtake” the solution value. This insight led us to test a
mutation step size for the test cases larger than the mutation step size for the
solutions.

To analyze the relation between the mutation step sizes of the two popula-
tions, the mutation step size of the solution population was fixed to a standard
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Fig. 5. Function F2: Best solution found in Generation 100. Mutation step size for PS

is fixed to 0.5 and varies for PT .

deviation σ = 0.5 while various values were tested for the test case population.
The real worst case fitness of the last generation’s perceived best solution was
plotted for each combination. The mean values over 400 runs can be seen in
Fig. 5. The standard errors are very small, and have been omitted in the plot
for clarity. Best performance is reached if the test cases’ mutation step size is a
bit more than double of the solutions’ step size. So, our initial assumption has
been confirmed. Increasing also the solution population step size to the higher
value again lead to worse performance (not shown).

8 Conclusion

Coevolutionary algorithms seem an efficient and promising approach to worst-
case optimization. In this paper, we have proposed and analyzed a number of
variants of coevolutionary algorithms. The focus of our study was on new ways
to determine the fitness of the test cases. Here, we proposed several greedy
mechanisms which aim at preserving as much worst-case information about the
good solutions as possible after selection. As has been shown empirically, the
new methods significantly outperform previously proposed fitness assignment
schemes on the suggested test functions.

Besides, we have experimented with different mutation rates for the solution
and test case populations, and found that it is beneficial to choose a higher
mutation rate for the test population than for the solution population.

Overall, this paper has proposed several novel and promising ways to improve
the performance of coevolutionary worst-case optimizers. As a next step, the
obtained results should be confirmed on a variety of additional test problems.
Also, it would be straightforward to use the various methods in a lexicographic
order, and switch from one to another in case of ties.
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