
Lower Bounds for Evolution Strategies Using

VC-Dimension

Olivier Teytaud1 and Hervé Fournier2

1 TAO (Inria), LRI, UMR 8623 (CNRS - Univ. Paris-Sud), Bât 490
Univ. Paris-Sud 91405 Orsay, France

teytaud@lri.fr
2 Laboratoire PRiSM

CNRS UMR 8144 and Univ. Versailles St-Quentin en Yvelines
45 av. des États-Unis, 78035 Versailles, France

herve.fournier@prism.uvsq.fr

Abstract. We derive lower bounds for comparison-based or selection-
based algorithms, improving existing results in the continuous setting,
and extending them to non-trivial results in the discrete case. This is
achieved by considering the VC-dimension of the level sets of the fitness
functions; results are then obtained through the use of Sauer’s lemma. In
the special case of optimization of the sphere function, improved lower
bounds are obtained by bounding the possible number of sign conditions
realized by some systems of equations.

Keywords: Evolution Strategies, Convergence ratio, VC-dimension,
Sign conditions.

1 Introduction

Evolution strategies (ES), defined by Rechenberg [15], are a family of optimiza-
tion algorithms with nice robustness properties. Most ES use only comparisons
between fitness values and not the fitness values themselves. This fact has been
used in [18] in order to provide lower bounds that match some upper bounds
known for evolutionary algorithms [8,2,16]. The optimality of this comparison-
based principle for some robustness criterion was shown in [10] (see also [3,20,4]).
In [18] is provided a new tool for proving lower bounds for evolutionary algo-
rithms, but, as pointed out by the authors, some bounds are not tight and
in particular: (i) the discrete case provides essentially trivial results; (ii) the
bounds for the (μ, λ)-ES are far too large. In this work, we propose improved
lower bounds for evolution strategies of type (μ +, λ)-ES (i.e. upper bounds on
the convergence ratios of these algorithms) in terms of the VC-dimension of level
sets of the fitness functions. In the special case of optimization of the sphere func-
tion, improved upper bound on the convergence ratio of evolution strategies are
presented; they are obtained by bounding the number of sign conditions realized
by a system of equations. The paper is organized as follows. Basic definitions
and terminology of evolution strategies we consider are described in Section 2.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 102–111, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Lower Bounds for Evolution Strategies Using VC-Dimension 103

Lower bounds on (μ +, λ)-ES based on the branching factor, obtained in [18],
are recalled in Section 3. Improved lower bounds on (μ +, λ)-ES in terms of the
VC-dimension are presented in Section 4. At last, some questions are raised in
Section 5.

Notations. In all the paper, log(x) denotes the logarithm with basis 2, i.e.
log(2) = 1. The set of integers {1, 2, . . . , n} is denoted by [[1, n]].

2 Evolution Strategies of Type (μ +, λ)

We define in this section (μ +, λ)-algorithms – we refer to Beyer and Schwefel [6]
for a comprehensive introduction to evolution strategies. The aim of a (μ +, λ)-
algorithm is to find the minimum of a function f (called the fitness function)
defined over a domain D. This algorithm cannot evaluate the function f but
has to work only with comparisons: given two points x and y, the algorithm has
access to a black-box telling whether f(x) < f(y), f(x) = f(y) or f(x) > f(y).
Of course such an algorithm is not required to work for one fitness function
but for a whole family of fitness functions. In the following we denote by F
the set of fitness functions we consider. In the rest of the paper, we assume we
never have a case of equality f(x) = f(y) among the generated points. Let λ

Algorithm 1. SB-(μ, λ)-ES (resp. SB-(μ+λ)-ES), i.e. evolution strategies based
on selection, working on a fitness function f . The real number ω is a random
seed, uniform in [0, 1]. We do not specify the generation of the offspring, because
we work on the whole family of algorithms matching this framework.

Initialize I0 ∈ I, S−1 = ∅ and n = 0
while true do

Generate an offspring On of λ distinct points: On = generate(In, ω).
Selection: Use the fitness f in order to partition On (resp. On ∪Sn−1) in two sets
Sn of cardinal min(μ, Card(On)) and Rn such that

x ∈ Sn and y ∈ Rn ⇒ f(x) < f(y).

We denote this by Sn = select(On, f) (resp. Sn = select(On ∪ Sn−1, f)).
Update the internal state:

In+1 = update(In, f, On) = selectionUpdate(In, Sn, Rn) ∈ I.

x
(f)
ω,n+1 = proposal(In)

n = n + 1
end while

and μ bee two integers (subject to μ � λ in the (μ, λ) case). A SB-(μ +, λ)-ES
(Selection Based (μ +, λ)-ES) is an algorithm working as follows. There is a set I
of internal states and an initial state I0. At each iteration, the algorithm follows
these three successive steps. First generate a set of λ points, called the offspring.
Then select only the μ best ones, i.e. the μ points with lowest fitness values;

104 O. Teytaud and H. Fournier

Algorithm 2. (μ, λ)-ES (resp. (μ + λ)-ES) based on full ranking, working on
a fitness function f . The real number ω is a random seed, uniform in [0, 1].
Compared to Algorithm 1, Sn is now a vector of points, ordered with respect to
their fitness values. This family of algorithms is more general than Algorithm 1,
as we can use all the ranking information.

Initialize I0 ∈ I, S−1 = ∅ and n = 0
while true do

Generate an offspring On of λ distinct points: On = generate(In, ω).
Selection with ranking: Use the fitness f in order to partition On (resp. On ∪
Sn−1) in a vector Sn = (x′

1, . . . , x
′
cn

) of cardinal cn = min(μ, Card(On)) (resp.
cn = min(μ, Card(On ∪ Sn−1))) and a set Rn such that

∀i ∈ [[1, cn]], ∀y ∈ Rn, f(x′
i) < f(y),

and ∀i ∈ [[1, cn − 1]], f(x′
i) < f(x′

i+1).

We denote this by Sn = select(On, f) (resp. Sn = select(On ∪ Sn−1, f)).
Update the internal state:

In+1 = update(In, f, On) = fullRankUpdate(In, Sn, Rn) ∈ I.

x
(f)
ω,n+1 = proposal(In)

n = n + 1
end while

in the case of a SB-(μ, λ)-ES, points generated at previous stages are forgotten
and this selection is performed only among the offspring, while an algorithm
of type SB-(μ + λ)-ES selects the μ best points among the offspring and the
points selected at the previous step (hence these μ selected points are always
the μ points with lowest fitness values found so far). At last the internal state is
updated. General outlines of SB-(μ, λ)-algorithms (resp. SB-(μ + λ)-algorithms)
are summarized in Algorithm 1.

Algorithms with the ”+” are usually termed elitist ; this means that we always
keep the best individuals. Algorithms with the ”,” are termed non-elitist. Elitist
strategies are usually faster on easy fitness functions, but less robust; therefore,
non-elitist strategies are usually prefered.

At last we would like to explain a generalization of SB-(μ +, λ)-ES, called
(μ +, λ)-ES. Instead of just giving the best μ points (i.e. the μ points with the
lowest fitness values), we can consider a selection procedure which returns the
best μ points ordered with respect to their fitness. More precisely, given the
points (y1, . . . , yp) (On in the case of (μ, λ)-ES or On ∪ Sn−1 in the case of
(μ + λ)-ES), it returns μ distinct indices (i1, . . . , iμ) such that f(yi1) < . . . <
f(yiμ) and for all j �∈ {i1, . . . , iμ}, f(yiμ) < f(yj). We call full ranking this
kind of ”selection” [4,3,20]. The outline of these algorithms is summarized in
Algorithm 2.

Note that both Algorithms 1 and 2 define a class of algorithms: in order
to obtain an algorithm, one has to specify how generation of points is done,
what is the set of internal states as well as the update function. We assume
that all functions involved in these algorithms are measurable. A usual case is

Lower Bounds for Evolution Strategies Using VC-Dimension 105

retrieved when the offspring is randomly and independently drawn according
to a Gaussian distribution, with parameters (mean, variance and covariances)
depending on the internal state of the algorithm.

3 Branching Factor and Convergence Ratio

We consider a (possibly discrete) domain D ⊂ R
d and a norm ‖ · ‖ on R

d. For
ε > 0, we define N(ε) to be the maximum integer n such that there exist n
distinct points x1, . . . , xn ∈ D with ‖xi − xj‖ � 2ε for all i �= j. If each function
f ∈ F has one and only one optimum f∗, for any given optimization algorithm
as in Algorithm 2, and for ε > 0 and δ > 0, we let nε,δ be the minimum number
n of iterations such that with probability at least 1− δ, an optimum is found at
the n-th iteration within distance ε. I.e. nε,δ is minimal such that for all n � nε,δ

and for all f ∈ F ,
Pw∈[0,1][‖x(f)

ω,n − f∗‖ < ε] � 1 − δ.

For an algorithm of type (μ +, λ)-ES working over a set F of fitness functions,
we define the branching factor of any algorithm as in Algorithm 2 as

K = sup
I∈I,O

Card{update(I, f, O) | f ∈ F}.

Notice that in the case of selection based algorithms (any algorithm fitting
Algorithm 1), we have

K � sup
O

Card{select(O, f) | f ∈ F}

where the supremum holds for: (i) O any set of λ points in the case of SB-(μ, λ)-
ES; (ii) O any set of λ+μ points in the case of SB-(μ+λ)-ES. A similar remark
holds in the case of full ranking (μ +, λ)-ES, except that a bound on K is given by
the possible number of choices of selected points together with their order (with
respect to their fitness values). Let us recall the following result from Teytaud
and Gelly [18] (restricted here to our purpose) relating the convergence ratio
and the branching factor of a (μ +, λ)-ES.

Theorem 1 (Lower bound on the convergence ratio of (μ +, λ)-ES.).
Consider a (μ, λ)-ES or (μ + λ)-ES as in Algorithm 2. Consider a set F of
possible fitness functions on domain D, i.e. F ⊂ R

D, such that any fitness
function f ∈ F has only one min-argument f∗, and such that {f∗ | f ∈ F} = D.
Let ε > 0 and δ ∈]0, 1[. Let Ln(ω) be the number of different paths (when the
function f runs over F) followed by the algorithm on the random seed ω after n
steps of computation; then

Eω∈[0,1][Lnε,δ
(ω)] � (1 − δ)N(ε).

In particular, if K denotes the branching factor of the algorithm, then

nε,δ �
⌈

log(1 − δ)
log(K)

+
log(N(ε))
log(K)

⌉
.

106 O. Teytaud and H. Fournier

We can define the convergence ratio for both discrete and continuous domains
thanks to the following unified definitions. We want a definition of convergence
ratio which matches bounds of the form O(1/d) established in [13]; therefore, we
define the convergence ratio of an algorithm for precision ε as

CRε =
log N(ε)
dnε, 1

2

.

We also define the normalized convergence ratio (normalized by the number of
individuals generated per epoch) by

NCRε =
log N(ε)
dλnε, 1

2

.

The ratio CRε is relevant in the parallel setting (i.e. it is the convergence ratio
when working on a parallel computer, with parallel evaluation of the offspring),
while NCRε is relevant in the sequential setting, i.e. when individuals are eval-
uated sequentially.

Theorem 1 can be reformulated with these unified definitions of convergence
ratios as follows. Consider a (μ +, λ)-ES satisfying the hypothesis of Theorem 1.
Let α(ε) = 1/(1 − 1/N(ε)). Then

CRε � log K

d
· α(ε) and NCRε � log K

dλ
· α(ε). (1)

4 Sauer’s Lemma and VC-Dimension

Teytaud and Gelly [18] applied the bounds obtained in Section 3 in the following
way: the number of subsets of size μ of a set of λ points, is at most

(
λ
μ

)
�

(
λ

�λ/2�
)

�
(2λ/

√
2πλ) – see e.g. [7, p587] or [9] for these inequalities. This surely holds, but

it is a worst case on possible selections: if the fitness funtions are “nice”, many of
these subsets cannot be realized. This is precisely quantified by Sauer’s lemma in
the theory of VC-dimension. In this section, we show how this allows to obtain
more precise lower bounds on the convergence ratio of (μ +, λ)-ES.

Given a function f defined over D and r > 0, let Of,r = {x ∈ D | f(x) < r}.
We define the level sets LF of a set F of functions defined over the domain D as

LF = {Of,r | f ∈ F , r > 0}.

We now briefly recall the definition of VC-dimension and Sauer’s lemma [19,17]
– our presentation is based on [14]. A set system on a set A is a family S
of subsets of A. For B ⊆ A, we define the restriction of S to B as S|B =
{S ∩ B | S ∈ S}. The VC-dimension of the set system S defined over A is
defined as sup{|B| | S|B = 2B} where 2B denotes the powerset of B; in other
words, it is the size of the largest subset B of A such that any subset of B can be
obtained by intersecting B with an element of S. Given a set system S over A,

Lower Bounds for Evolution Strategies Using VC-Dimension 107

the shatter function πS is defined by πS(m) = max{|S|B | | B ⊆ A, |B| = m};
thus πS(m) is the maximum number of different subsets of A which can be
obtained by intersecting a single subset of size m of A with all elements of S.
We next recall Sauer’s lemma which gives an upper bound on πS in terms of the
VC-dimension of S.

Lemma 1 (Sauer’s lemma). For any set system S of VC-dimension d, then
for all integer m, it holds that πS(m) �

∑d
i=0

(
m
i

)
.

At last, let us recall the following classical bound [7] which is valid whenever
d � 3:

d∑
i=0

(
m

i

)
� min{md, 2m}. (2)

Note that the trivial bound 2m is tight when m � d. The interesting case hap-
pens when m is large with respect to the VC-dimension d: the bound becomes
polynomial in m in this case. This element is central for the difference between
the results in this paper and results in [18].

In the rest of the paper, we assume the VC-dimension of considered set systems
is always at least 3 (however, the case of VC-dimension smaller than 3 can be
handled in a similar way; the bound above has to be replaced with

∑d
i=0

(
m
i

)
�

md + 1).

4.1 Non-elitist Strategies

We first give an upper bound on the branching factor of a SB-(μ, λ)-ES in terms
of the VC-dimension of level sets.

Lemma 2. Consider a SB-(μ, λ)-ES as described in Algorithm 1. Let V � 3
be the VC-dimension of the level sets of the family F of fitness functions under
consideration. Then the branching factor of this algorithm satisfies K � λV .

Proof. Given a set of λ points P = {x1, . . . , xλ} in the domain D, and f ∈ F ,
let us define Mf (P) to be the subset Q of size μ of P correponding to the μ
points of P with lowest fitness values with respect to f . Note that the branching
factor satisfies

K � max
P⊂D, |P |=λ

|{Mf(P) | f ∈ F}|.

Now remark that for any P , the set Q of the μ points of P with lowest value (with
respect to the fitness function f) can be separated from P \ Q by an element
from the level sets: in other words, there exists O ∈ LF such that O∩P = Q. It
follows that

|{Mf(P) | f ∈ F}| � πLF (λ).

If the VC-dimension of LF is at most V , it follows from Sauer’s lemma and the
bound given in Equation 2 that πLF (λ) � λV . Thus K � λV .
�

108 O. Teytaud and H. Fournier

Theorem 2 (SB-(μ, λ)-ES). Consider a SB-(μ, λ)-ES (Algorithm 1) in a do-
main D ⊂ R

d, such that D = {f∗ | f ∈ F}. Let V � 3 be the VC-dimension of
the level sets of F . The convergence ratio of this algorithm satisfies

CRε � V log λ

d
· α(ε),

where α(ε) = 1/(1 − 1/N(ε)).

Proof. The result easily follows from the upper bound on the branching factor
given in Lemma 2, and from Theorem 1 as stated in Equation 1.
�

4.2 Non-elitist Strategies with Full Ranking

This subsection deals with algorithms of type full ranking (μ, λ)-ES. It is orga-
nized as follows:

– First we study to which extent lower bounds obtained for SB-(μ, λ)-ES are
modified when we use the full ranking information and not only selection
information (i.e. we move from Algorithm 1 to Algorithm 2);

– Although the bounds obtained in the general case do not forbid a linear
speed-up in λ, we show that the speed-up is asymptotically at most loga-
rithmic in the special case of the sphere function;

– At last, for the sphere function again, we remark that a convergence ratio
CRε = Θ(1) can be reached in the case λ = 2d; this is to be compared to
the best convergence ratio CRε = Θ(1/d) we are aware of for λ = O(1).

Keeping the full ranking information. Consider the case of Algorithm 2
instead of Algorithm 1; we have a wider family of algorithms as we can use all
the ranking information. There are evolutionary algorithms which use the full
ranking information of the selected points and not only selection; for example,
roulette-wheel with rank-based fitness assignment (stochastic sampling [4], rank-
based fitness assignment [3,20]), weighted recombination [11,1] or breda [10]. In
this case, an upper bound on the number of possible outcomes of the selection
step (including the ranking of children) is obtained by multiplying by μ! the
number of possible outcomes in the case of selection only. This gives CRε �
V log(λ)+μ log μ

d · α(ε). However, we can say better in the case where μ is large
with respect to the VC-dimension V of the level sets of the fitness functions.
(Proof of the following theorem is omitted due to space limitations.)

Theorem 3 (Full ranking (μ, λ)-ES). Consider a (μ, λ)-ES (Algorithm 2) in
a domain D ⊂ R

d, such that D = {f∗ | f ∈ F}. Let V � 3 be the VC-dimension
of the level sets of F . The convergence ratio of this algorithm satisfies

CRε � V (log λ + 4μ)
d

· α(ε),

where α(ε) = 1/(1 − 1/N(ε)).

Lower Bounds for Evolution Strategies Using VC-Dimension 109

The case of the sphere function: complexity bounds for λ large. For the
sphere function and the Euclidean norm, we next give an upper bound on the
convergence ratio of a selection-based algorithm using full ranking.

Proposition 1. Let d � 3. Consider a (μ, λ)-ES, as in Algorithm 2, optimizing
the sphere function in a domain D ⊂ R

d. Then CRε � 2 log(λ) · α(ε), where
α(ε) = 1/(1 − 1/N(ε)).

Proof. Given two distinct points p and q in R
d, we denote by Hp,q be the medi-

ator hyperplane of p and q, i.e. Hp,q = {x ∈ R
d | ‖x − p‖ = ‖x − q‖}.

At each iteration of the algorithm, an offspring of λ points {x1, . . . , xλ} is
generated and the algorithm receives the sequence of indices of the μ points
with lowest fitness values, ordered with respect to their fitness values. Obviously
the branching factor is maximal when μ = λ, i.e. when the algorithm is given
the full ordering of points with respect to their fitness values. This information
corresponds to giving the sign si,j of f(xi) − f(xj) for each 1 � i < j � λ; this
sign is positive or negative since we assumed equality never occurs. The number
of possible sign vectors s = (si,j)1�i<j�λ is exactly the number of cells of the
arrangement of hyperplanes {Hxi,xj | 1 � i < j � λ} in R

d. But it is known that
n hyperplanes in R

d define at most nd cells – see chapter 6 of [14]. Since there
are

(
λ
2

)
� λ2/2 hyperplanes here, we obtain K �

(
λ2/2

)d. Applying Equation 1
yields the announced bound on the convergence ratio.
�
When ε tends towards 0 and as N(ε) → ∞, this gives CRε � 2 logλ; this shows
that the upper bound given by Theorem 3 cannot be reached in this case.

The case of the sphere function: Fast convergence ratio with λ = 2d.
We point out here that for the specific case of the sphere function, a convergence
ratio CRε = Θ(1) can be reached with λ = 2d in the domain [0, 1]d by some
algorithm of type full ranking (μ, λ)-ES.

This convergence ratio is easily obtained with the following algorithm. Let ei

denote the vector (0, . . . , 0, 1, 0, . . . , 0) with a unique 1 in position i. First split
[0, 1]d into the 2d cells delimited by the d hyperplanes of equations xi = 1/2; the
full ranking of the 2d points {(1

2 , 1
2 , . . . , 1

2)+ η
2ei | 1 � i � n, η ∈ {−1, 1}} allows

to decide in which of these cells the optimum lies; then the algorithm proceeds
recursively. This is quite similar to the Hooke and Jeeves algorithm [12].

After n iterations, the point x
(f)
n proposed by this algorithm satisfies ‖x(f)

n −
f∗‖2 �

√
d/2n. Moreover, this distance is realized by some fitness functions. It

follows that nε, 1
2

= log 1
ε + 1

2 log d. On the other hand log(N(ε)) = Θ(d log 1
ε).

Thus, we have obtained:

For λ = 2d : CRε =
log N(ε)
d nε, 1

2

= Θ(1). (3)

4.3 Elitist Strategies

Results obtained in the case of (μ, λ) algorithms can be translated into the elitist
setting. Bounds obtained in these cases are given in Figure 1 (Section 5). Proofs
of these results are omitted due to space limitation.

110 O. Teytaud and H. Fournier

5 Summary of Results

Let’s apply the results obtained in the previous section to the simple framework
of the domain D = [0, 1]d with the Euclidean norm. Lower bounds obtained
in this setting are summarized in Figure 1. Higher values mean better possible
convergence ratios. However, it is not known when these convergence ratios can
be achieved. Indeed, result marked with (*) in Figure 1 is improved in the special
case of the sphere function in Section 4.2: this shows that at least in this case,
general bounds on convergence ratio derived from VC-dimension are not tight.
Discussion of these results follows.

SB-(μ, λ)-ES SB-(μ + λ)-ES Full ranking Full ranking Full ranking
(μ, λ)-ES (μ + λ)-ES (∞ + λ)-ES

CR V
d

log λ V
d

log(μ + λ) V
d
(log(λ) + 4μ) (*) V

d
(log(λ + μ) + 4μ) 4V λ

d

Fig. 1. Upper bound on the convergence ratio in the case of Euclidean norm in the
domain [0, 1]d, when the level sets of fitness functions have VC-dimension V

Asymptotic speed-up in the case of selection only, non-elitist. In the case of
evolution strategies based on selection only (algorithms of type SB-(μ, λ)-ES),
the linear speed-up of selection-based evolution strategies shown in [5] cannot be
obtained for λ large enough. Asymptotically, the speed-up obtained with such
an algorithm is at most logarithmic as shown in Theorem 2.

Selection based algorithms vs. full ranking. When moving from selection based
algorithms of type SB-(μ, λ)-ES to full ranking (μ, λ)-ES, upper bounds on the
convergence ratio obtained here in the general case do not forbid a strong im-
provement asymptotically; essentially, the speed-up that could be achieved moves
from logarithmic to linear in λ.

However, we know from Proposition 1 that the speed-up is at most logarithmic
for a full ranking (μ, λ)-ES in the special case of sphere function. This raises the
following question: for which kind of fitness functions is it interesting to keep
the full ranking information?

Acknowledgements. Many thanks to Anne Auger, Nikolaus Hansen and Fa-
bien Teytaud for constructive talks. This work was partially supported by the
Pascal Network of Excellence.

References

1. Arnold, D.V.: Optimal weighted recombination. In: Wright, A.H., Vose, M.D.,
De Jong, K.A., Schmitt, L.M. (eds.) FOGA 2005. LNCS, vol. 3469, pp. 215–237.
Springer, Heidelberg (2005)

2. Auger, A.: Convergence results for (1,λ)-SA-ES using the theory of ϕ-irreducible
Markov chains. Theoretical Computer Science 334(1-3), 35–69 (2005)

Lower Bounds for Evolution Strategies Using VC-Dimension 111

3. Bäck, T., Hoffmeister, F., Schwefel, H.-P.: Extended selection mechanisms in ge-
netic algorithms. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the Fourth
International Conference on Genetic Algorithms, pp. 92–99. Morgan Kaufmann
Publishers, San Mateo (1991)

4. Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: Proceed-
ings of the Second International Conference on Genetic Algorithms on Genetic
algorithms and their application, pp. 14–21. Lawrence Erlbaum Associates, Inc.,
Mahwah (1987)

5. Beyer, H.-G.: Toward a theory of evolution strategies: On the benefit of sex - the
(μ/μ, λ)-theory. Evolutionary Computation 3(1), 81–111 (1995)

6. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies: a comprehensive introduction.
Natural Computing 1(1), 3–52 (2002)

7. Devroye, L., Györfi, L., Lugosi, G.: A probabilistic Theory of Pattern Recognition.
Springer, Heidelberg (1997)

8. Droste, S.: Not all linear functions are equally difficult for the compact genetic
algorithm. In: Proc. of the Genetic and Evolutionary Computation COnference
(GECCO 2005), pp. 679–686 (2005)

9. Feller, W.: An introduction to Probability Theory and its Applications. Wiley,
Chichester (1968)

10. Gelly, S., Ruette, S., Teytaud, O.: Comparison-based algorithms are robust and
randomized algorithms are anytime. Evolutionary Computation Journal (MIT
Press), Special issue on bridging Theory and Practice 15(4), 411–434 (2007)

11. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9(2), 159–195 (2001)

12. Hooke, R., Jeeves, T.A.: ”Direct search” solution of numerical and statistical prob-
lems. Journal of the ACM 8(2), 212–229 (1961)

13. Jägersküpper, J., Witt, C.: Rigorous runtime analysis of a (μ+1)ES for the sphere
function. In: GECCO, pp. 849–856 (2005)

14. Matoušek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics,
vol. 212. Springer, Heidelberg (2002)

15. Rechenberg, I.: Evolutionstrategie: Optimierung Technischer Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Holzboog Verlag, Stuttgart
(1973)

16. Rudolph, G.: Convergence rates of evolutionary algorithms for a class of convex
objective functions. Control and Cybernetics 26(3), 375–390 (1997)

17. Sauer, N.: On the density of families of sets. Journal of Combinatorial Theory, Ser.
A 13(1), 145–147 (1972)

18. Teytaud, O., Gelly, S.: General lower bounds for evolutionary algorithms. In: Pro-
ceedings of PPSN, pp. 21–31 (2006)

19. Vapnik, V.N., Chervonenkis, A.Ya.: On the uniform convergence of relative fre-
quencies of events to their probabilities. Theory of Probability and its Applica-
tions XVI(2), 264–280 (1971)

20. Whitley, D.: The GENITOR algorithm and selection pressure: Why rank-based
allocation of reproductive trials is best. In: Schaffer, J.D. (ed.) Proceedings of
the Third International Conference on Genetic Algorithms, pp. 116–121. Morgan
Kaufmann, San Mateo (1989)

	Lower Bounds for Evolution Strategies Using VC-Dimension
	Introduction
	Evolution Strategies of Type μl
	Branching Factor and Convergence Ratio
	Sauer's Lemma and VC-Dimension
	Non-elitist Strategies
	Non-elitist Strategies with Full Ranking
	Elitist Strategies

	Summary of Results
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

