
Ignoble Trails - Where Crossover Is Provably

Harmful

J. Neal Richter1, Alden Wright2, and John Paxton1

1 Montana State University,
richter@cs.montana.edu, paxton@cs.montana.edu

2 University of Montana,
alden.wright@umontana.edu

Abstract. Beginning with the early days of the genetic algorithm and
the schema theorem it has often been argued that the crossover operator
is the more important genetic operator. The early Royal Road functions
were put forth as an example where crossover would excel, yet mutation
based EAs were subsequently shown to experimentally outperform GAs
with crossover on these functions. Recently several new Royal Roads
have been introduced and proved to require expected polynomial time
for GAs with crossover, while needing exponential time to optimize for
mutation-only EAs. This paper does the converse, showing proofs that
GAs with crossover require exponential optimization time on new Ignoble
Trail functions while mutation based EAs optimize them efficiently.

1 Introduction

First proposed by Mitchell et al. [1], the well known Royal Road class of fitness
functions were designed to demonstrate the essential nature of the crossover
operator in genetic algorithms in optimizing that class of fitness functions. They
also showed that for an idealized GA ignoring the effects of hitchhiking, the
expected optimization time is O(2k log(n/k)). Somewhat unexpectedly, follow
up experimental studies by Forrest and Mitchell [2] show that some random
mutation hill-climbers outperform GAs with crossover on the Royal Road. This
prompted the same authors to define an open problem in [3].

– Define a family of functions and prove that genetic algorithms are essentially
better than evolutionary algorithms without crossover.

In [4] Jansen and Wegener proved that the expected optimization time of the
well known (1+1) EA on the classic Royal Road function is O(2k(n/k) log(n/k))
where n is the string length, k is the length of sub elements of the string and
1/n is the mutation rate. Recently in EA research there have been several fitness
functions built to meet this challenge in a rigorous way and are discussed in the
next section. The goal of this paper is to do the opposite, to provide a fitness
function where EAs with mutation alone are provably better at optimization
than GAs with crossover. We are not alone in seeking this result. Very recently
Poli et al. have produced a fitness function called OneMix [5] where crossover is
shown experimentally to be not helpful.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 92–101, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Ignoble Trails - Where Crossover Is Provably Harmful 93

2 Functions Hard for Mutation Based EAs

In this section we highlight past research on fitness functions hard to optimize
with mutation alone, while being much easier with the use of crossover.

The concatenated trap functions of Deb and Goldberg [6] consist of many
concatenations of smaller fully deceptive fitness functions. In a fully deceptive
function, all points in the space other than the optima give local advice to go in
the opposite direction of the optima. By concatenating these functions together,
they set up a situation to illustrate where the building block hypothesis [6] shines.
Mutation fails to optimize the function, while the crossover operator builds short
order sequences of highly fit bits and recombines these sequences to successfully
optimize the function.

One explanation for the failure of Royal Road functions to demonstrate the
necessity for crossover is that Royal Road functions are both separable and non-
deceptive. Watson [7,8] created a hierarchical fitness function called HIFF where
sub-blocks are interdependent and non-separable as well as being deceptive to
the mutation operator. Non crossover EAs require expected exponential time to
optimize the HIFF. Dietzfelbinger et al. [9] asymptotically analyzed a recombina-
tive hill-climber on the HIFF function and showed an expected time complexity
of Θ(n log n).

Jansen and Wegener [10] showed a unitation fitness function called JUMPm,n

with a deceptive quality. The function contains a false optimum with a neigh-
boring fitness canyon (of size m < n) with the true optimum on the other side of
the canyon. A steady-state hill-climber that accepts no fitness decreases, like the
(μ+1) EA, must simultaneously mutate m bits to cross the canyon. The waiting
time for this event is O(nm), while the waiting time for a steady state GA (with
uniform crossover) to optimize JUMPm,n is O(n2 log n) steps.

Jansen and Wegener [4] followed up by introducing Real Royal Road functions
where a steady state GA with both uniform and one-point crossover have poly-
nomial expected time. EAs without crossover take expected exponential time to
optimize these functions.

Storch and Wegener [11] showed additional Real Royal Roads for both uniform
and one-point crossover. Using the (2+1) GA with crossover they proved that
these fitness function are optimized in expected polynomial time, while the (2+1)
EA will take expected exponential time. The (2+1) EA and GA are redefined in
later sections.

One critique of the Real Royal Roads is that they are artificial constructs
designed to prove a point. Responding, other researchers have produced works
on more natural functions. Fischer and Wegener [12] show a mixed result in
the one-dimensional Ising Model where for a correctly chosen λ, the (1 + λ)EA
performs well compared to typical GAs. They do prove that a specialized GAs do
far better than the EA for both one and two point crossover. Sudholt [13] shows
that a GA requires polynomial time to optimize another Ising Model, while the
EA requires expected exponential time.

Finally, Doerr et al. [14] have an upcoming paper showing that crossover has a
provable modest advantage one a real world all pairs shortest path graph problem.

94 J.N. Richter, A. Wright, and J. Paxton

3 Minimal Population Evolutionary Algorithms

These algorithms are instances of steady-state evolutionary algorithms [15] where
the population is not fully replaced at each generation. A no-duplicates policy
is also in place, forcing a population of distinct strings.

3.1 The Steady-State (2+1) EA

Here we restate the (2+1) EA. It is an instance of the well-known (μ+1) EA,
studied among other places in [16].

Algorithm 1. The (2+1) EA

1. Initialization: Randomly choose two different individuals x, y ∈ {0, 1}n.
2. Search: Produce an individual z,

– with probability 1/2, z is created by mutate(x),
– with probability 1/2, z is created by mutate(y),

3. Selection: Create the new population P.
– If z = x or z = y, then P := {x, y}
– Otherwise, let a ∈ {x, y, z} be randomly chosen among individuals with

the worst f -value. Then P := {x, y, z} − {a}.
4. Goto Search

3.2 The Steady-State (2+1) GA

Here we redefine the simple steady-state GA from [11] that works on a population
size of 2, the smallest population size allowing crossover. Note that the usage of
equal probability 1

3 in the search step is arbitrary. The later results hold for any
constant probability ε where ε > 0.

Algorithm 2. The (2+1) GA

1. Initialization: Randomly choose two different individuals x, y ε {0, 1}n.
2. Search: Produce an individual z,

– with probability 1/3, z is created by mutate(x),
– with probability 1/3, z is created by mutate(y),
– with probability 1/3, z is created by mutate(crossover(x, y)).

3. Selection: Create the new population P.
– If z = x or z = y, then P := {x, y}
– Otherwise, let aε {x, y, z} be randomly chosen among individuals with

the worst f -value. Then P := {x, y, z :} − {a}.
4. Goto Search

4 Ignoble Trails

We now define a new class of functions called Ignoble Trails. These functions are
created for the purpose of rigorously proving that a given mutation based EA

Ignoble Trails - Where Crossover Is Provably Harmful 95

outperforms a given crossover based GA on these functions. Like the Real Royal
Roads and the HIFF functions, they are somewhat contrived to serve a specific
theoretical purpose. We make no claim that real world problems can be mapped
to these new functions.

4.1 Ignoble Trails vs. Uniform Crossover

The first function IT 1u
n(x) is a modification of the Ru

n(x) function of [11] for
uniform crossover. The symbol u refers to the uniform crossover operator. Most
of the details are the same as Ru

n(x) except for the addition of b∗∗. Assume a
bit-string length of n := 6m, where n and m are even integers. Also note that
‖x‖ refers to the number of ones in the string, |x| is the length in bits of x, and
H(x, y) is the Hamming distance of x and y.

IT 1u
n(x) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

16m x = b∗∗

15m x ∈ T

14m x = a∗

6m + i x = ai ∈ P1 ∪ P2

6m− ‖x‖ x ∈ R := {0, 1}n − P − T − {b∗∗}

The major features of IT 1u
n(x) are as follows. The base fitness of the set R is

defined to slope in increasing fitness towards the all zeros string. The path P is
a sequence of distinct strings a1, ..., ap such that consecutive strings on the path
have a Hamming distance of 1. P contains 7m+1 total points where ai = 0n−i1i

for i ≤ 6m, and ai = 1n−j0j for i = 6m + j. P is segmented into two subpaths
P1 and P2.

The P1 subpath is defined as points (a0, ..., a5m−1) and the P2 subpath is defined
as (a5m+1, a7m). The fitness for the total path is 6m + i, with the single exception
that a local optimum is created at point a∗ := a5m with fitness 14m. The other
local optimum of P is at the endpoint a∗∗ := a7m with fitness value 13m.

There also exists an area T defined to contain all points b14mc where the
substrings b and c obey |b| = |c| = m and ||b|| = ||c|| = m/2. In Ru

n(x) T
is the target and can be created with high probability with a population of
{a∗, a∗∗} :=

{
0m15m, 15m0m

}
via uniform crossover.

Our crucial modification to Ru
n(x) is to add a point b∗∗ with fitness greater

than the region T . This point is defined as a point with k bits different than a∗∗,
or H(a∗∗, b∗∗) = k. Here k is defined to be a constant where n = 6m is chosen
so that 3 < k < m/4. We define b∗∗ to be 1m0k14m−k0m.

4.2 Behavior of the EA and GA on Ignoble Trail 1

Referring to Figure 1, the initial random population of two distinct individu-
als will begin the process of traveling down R towards the initial point of P ,
P0 := 0n. Both algorithms will discover and optimize P unless exceptional luck
strikes and {T ∪ {b∗∗}} is discovered first. Since the selection method prohibits
duplicate strings, once they are on path P there is a leading point and a trailing

96 J.N. Richter, A. Wright, and J. Paxton

Fig. 1. Illustration of Ignoble Trail 1

point on P . They travel up P until such time as a∗ is found [there is a proba-
bility Θ(1/n) a∗ is skipped]. If a∗ is found, the behavior degenerates to mimic
the (1 + 1) EA as a∗ is fixed in the population and the other string is available
for continued optimization of P until a∗∗ is found.

Once the population becomes {a∗, a∗∗} the behavior of the two algorithms
diverges. The EA is very unlikely to discover T via mutation, and is likely to
find b∗∗ in O(nk) steps. Conversely the GA is very likely to discover T via
crossover before it discovers b∗∗. Once the GA has found T , it will accumulate
both individuals in T in short order. The expected waiting time to discover b∗∗

from T is exponential. Thus we refer to T as the ’trap’ rather than the ’target’
of Ru

n(x). Note that crossover is of little assistance in discovering b∗∗ from either
a∗∗ or T .

Figure 2 contains a visual representation of the results to follow and the high
likelihood optimization phases of both algorithms.

4.3 Time Complexity Results

Note that the next set of proofs take some arguments from [11] or [4]. The
addition of b∗∗ requires many additional steps to prove rigorous results, there
are many more good and bad events to account for above those from [11].

Lemma 1. The probability that (2 + 1) EA without crossover and the (2 + 1)
GA with uniform crossover find a point in P2 ∪ T ∪ {b∗∗} without discovering
path P1 within O(n2) steps is at least 1 − e−Ω(n).

Proof. Recall that k is a constant, and assume that n = 6m is chosen so that
3 < k < m/4. Let Q := P2 ∪ T ∪ {b∗∗} and note that all elements of Q have at
least 5m − k ones. Let R be the set of points not in P with at most 4m ones.
The probability of initializing a member of the population with more than 4m

Ignoble Trails - Where Crossover Is Provably Harmful 97

Fig. 2. Diagram of proofs of Lemmas and Theorems for IT1u
n(x) - Solid lines are events

associated with the (2+1) EA, dashed lines are events associated with the (2+1) GA.
The labels on each arc refer to the expected waiting time to transition from state to
state.

ones is e−Ω(n) by Chernoff’s bound [17]. Since Q is contained in that same set,
the same holds for Q. Each point of R has a better Hamming neighbor. The
probability of discovering that neighbor via mutation is at least p = 1/(3en).
Applying Chernoff bounds, the waiting time for at most n = 6m successful events
is O(n2), and the probability that this waiting time is exceeded is exponentially
small. The probability of producing a point in Q from R via mutation is at
most n−m+k = e−Ω(n) by Chernoff’s bound. Turning to the crossover operator,
the probability of producing a point in Q from two points in R via crossover is
e−Ω(n) by the following argument. Let d be the Hamming distance between the
two parent strings r1 and r2. Let s = ||r1 ∧ r2||, thus the expected number of
ones is s + d/2. Unless d > m− k, the child string can not have at least 5m− k
ones. Applying Chernoff’s bound on the differing bits of the parents, r1 ⊕ r2,
the probability to create at least d/2 + m − k ones is e−Ω(n). As for the joint
operator, the probability of producing a point in Q from two points in R via
crossover and mutation is e−Ω(n) as follows. Either crossover produces a point
with at least 9m/2 − k ones or it doesn’t. In the first case, the probability that
crossover produces a point with at least 9m/2−k ones is e−Ω(n) by the Chernoff
bounds on the the bits differing in the parents. In the other case, mutation must
go from a point with less than 9m/2 − k ones to a point with at least 5m ones,
and the probability that this happens n−m/2+k = e−Ω(n). Applying the union
bound, we see that the total failure probability is e−Ω(n). �	
Lemma 2. The (2 + 1) EA will optimize P and find {a∗∗ ∪ b∗∗} in O(n2) steps
with probability 1 − 2−Ω(n). The (2 + 1) EA will discover a point in T from P
with probability 2−Ω(n).

Proof. Beginning from Lemma 1, we assume the population contains a point
in P1. Each point on the path P has a better fitness Hamming neighbor. The
probability of discovering that neighbor via mutation is at least p = 1/(3en).
Inverting and substituting we get a waiting time of at most 7m (the length
of P) successful events of probability p. Applying Chernoff’s bound we get

98 J.N. Richter, A. Wright, and J. Paxton

the first result above. As for the second result, by the definitions of P and
T , the Hamming distance between them is at least m/2. The mutation hit-
ting probability is (1/n)m/2(1 − 1/n)n−m/2. However, there are

(
m

m/2

)2 points
in T , so the probability of hitting T is increased by this amount. Bounding the
number of points in T via a standard binomial coefficient inequality1, we get
(

m
m/2

)2 ≤ (2e)m/2. Thus we bound the probability of hitting T from pi ∈ P by
(1/n)m/2(1 − 1/n)n−m/2(2e)m/2 ≤ (2e/n)m/2 < 2−Ω(n). �	

Theorem 3. The (2+1) EA without crossover will optimize the IT 1u
n(x) func-

tion in expected O(nk) steps and within O(nk ln k) steps with probability 1 −
O(1/n).

Proof. Referring to Lemma 2, the next step is to establish the expected waiting
time to discover b∗∗ from a population of {a∗∗, pi ∈ P}. The Hamming distance
between a∗∗ and b∗∗ is defined to be constant k where n = 6m is chosen so that
3 < k < m/4. Thus the probability of mutating from a∗∗ to b∗∗ in one step
is p = (1/n)k(1 − 1/n)n−k. This is bounded below by 1/(enk), resulting in an
expected waiting time that is bounded above by enk = Θ(nk). Note that this
is the best case possibility of finding b∗∗ from any point on P as the Hamming
distance for all points in P is H(pi ∈ P, b∗∗) ≥ k. Applying Chernoff bounds,
the probability of finding b∗∗ within enk ln k steps is 1−O(1/n). From Lemma 2
we know that the probability of finding T from any point in P is exponentially
small. Thus the probability of finding T before finding b∗∗ is also exponentially
small. �	

Lemma 4. The (2 + 1) GA with uniform crossover will discover a point in
P2 ∪ T ∪ {a∗} in O(n2) steps with probability 1 − 2−Ω(n). The probability of the
(2+1) GA with uniform crossover finding {b∗∗} while searching for P2∪T ∪{a∗}
is 2−Ω(n).

Proof. Lemma 2 of [11] proves the first part of the result. For the second result,
note that b∗∗ contains 5m−k ones. Recall that k is a constant, and assume that
n = 6m is chosen so that 3 < k < m/4. We have already shown that as long as
the points in the population contain at least 4m ones, the probability of finding
b∗∗ is exponentially small. The remaining possibility is mutating to b∗∗ from a
point in the population pi ∈ {P1 − a∗} where a4m < pi < a5m. It is easy to see
that it is exponentially unlikely that the other point of the population is not
in {ai ∈ P1 i ≥ m}. The minimum Hamming distance between a point of the
population and b∗∗ is 2m− k, so the probability of finding b∗∗ by mutation is at
most 2−Ω(n). Turning to the crossover operator, recall that b∗∗ = 1m0k14m−k0m.
Both members of the population are of the form 0n−i1i for m ≤ i < 5m so both
points have 1s in the last m positions. Thus, it is impossible to cross the two
points in the population to produce a point with Hamming distance less than m
from b∗∗. �	
1

(
n
k

) ≤ (
en
k

)k
.

Ignoble Trails - Where Crossover Is Provably Harmful 99

Proposition 5. With probability O(1/n), the (2 + 1) GA will find a point in
P2 ∪ T ∪ {b∗∗} before finding a∗.

Proof. The proof of Theorem 4 of [11] shows this result without reference to b∗∗.
The Hamming distance from P1 to b∗∗ is exponential, and thus does not change
the result. �	
Lemma 6. If the population contains a∗, the (2 + 1) GA will find a point in T
in O(n2) steps with probability 1 − O(1/nk).

Proof. Lemma 3 of [11] shows the result with probability 1 − 2−Ω(n). We must
consider the possibility that b∗∗ is found before T . To start, we consider the
possibility of finding b∗∗ by crossover plus mutation from a population of a∗

and any other point ai ∈ P . For 0 ≤ i ≤ 5m this is exponentially unlikely via
the argument given in the proof of Lemma 4. For 5m < i ≤ 6m this results
in crossover on a∗ and ai setting the last m positions to 1. Yet b∗∗ has zeros
in these positions, so subsequent mutation must flip at least m bits. Finally, if
the other point is a6m+j = 1n−j0j for 0 < j ≤ m, then a∗ and a6m+j agree
in k + m − j bits different from the corresponding bits of b∗∗. Thus crossover
and subsequent mutation of at least those k + m − j bits is required, giving a
probability of discovering b∗∗ bounded above by O(1/nk+m−j). As long as ai is
not a∗∗, a better point on P will be discovered with probability 1/(3en). From
this and the bounds derived above, we can see that either a∗∗ or a point of T
will be found with probability 1 − O(1/nk).

Now assume the population {a∗, a∗∗}. The one-step probability of finding b∗∗

by either mutation or crossover followed by mutation is p = O(1/nk) whereas the
one-step probability of discovering T was shown to be q = Θ(1/n) in Lemma
3 of [11] by an application of Sterling’s formula. There is a sequence of in-
dependent trials until one or the other of these outcomes happens. A prob-
ability argument2 shows that the probability of finding b∗∗ over all trials is
p/(p + q) = O(1/nk)/(O(1/nk)+ O(1/n)) = O(1/nk)/O(1/n) = O(1/nk−1). �	
Lemma 7. The expected waiting time to hit b∗∗ from a population {ti∈T, tj ∈T }
is exponential for the (2+1) GA with uniform crossover.

Proof. It is possible for a crossover plus mutation operation to get b∗∗ from
two elements of T . Remember that b∗∗ := 1m0k14m−k0m. If the two population
elements of T are binary complements of each other in the b and c regions, and
if the crossover mask is chosen correctly, crossover could get the first and last m
bits of the child to match b∗∗. Then mutation would need to get the k bits of the
middle 14m bits to match b∗∗. The probability of getting the correct crossover
mask is 2−2m. Thus the probability of getting the correct mask and the correct
mutation is bounded above by O(2−2m).

Another possibility would be for crossover to get all but 0 ≤ j ≤ 2m of the
first and last m bits correct. These correspond to the substrings b and c from the
2 Given that either event A or B will eventually happen, let p := Pr[A], q := Pr[B]

and r := 1−p−q. The probability that A eventually happens is p/(1−r) = p/(p+q).

100 J.N. Richter, A. Wright, and J. Paxton

definition of T , b14mc where b and c contain exactly half 1s. It is not necessary for
these j bits of the crossover mask to be correct, thus the probability of choosing
the correct crossover mask is 2−2m+j. Following crossover, mutation must correct
k + j bits, with probability (1/n)k+j(1 − 1/n)n−k−j ≤ (1/n)k+j . Consequently,
the probability of getting the crossover mask right and the correct mutation is
≤ (1/n)k+j(1/2)2m−j ≤ (1/2)2m+j which is exponentially small. �	
Theorem 8. The (2+1) GA with uniform crossover will need exponential time
steps to optimize IT 1u

n(x) with probability 1 − O(1/n).

Proof. Beginning from Prop. 5 and Lemma 6 above, assume the population
contains a point in T . By the selection method of the GA, once a member of
T exists in the population we should only have to wait constant time O(1) for
both members of the population to be in T . Once the GA contains two members
of T , probability of crossover plus mutation or mutation alone discovering b∗∗ is
exponentially unlikely by Lemma 7. Of the various bad events, the probability
from Prop. 5 of skipping a∗ is maximal at O(1/n). �	

5 Conclusions

We believe we have shown for the first time a proven example of a situation
where a crossover based GA is expected to be exponentially outperformed by
an EA without the crossover operator. Future work will expand upon this result
with empirical studies and extensions to cover 1-point crossover. In addition it is
believed that examples can be created for large population EA/GAs showing this
exponential performance difference. An open problem would be to follow up on
[14] and produce a reasonable graph problem that where the GA is outperformed
by an EA.

Acknowledgments

The authors would like to thank Thomas Jansen, Ingo Wegener, Tomas Gedeon
and the anonymous reviewers for their encouragement and advice. We would also
like to thank the participants and organizers of the Theory of Evolutionary Al-
gorithms conference at Schloss Dagstuhl International Conference and Research
Center for Computer Science, where the seeds of this research were germinated.

References

1. Mitchell, M., Forrest, S., Holland, J.H.: The royal road for genetic algorithms:
Fitness landscapes and GA performance. In: Varela, F.J., Bourgine, P. (eds.) Pro-
ceedings of the First European Conference on Artificial Life. Toward a Practice of
Autonomous Systems, pp. 243–254. MIT Press, Cambridge (1992)

2. Forrest, S., Mitchell, M.: Relative building-block fitness and the building-block
hypothesis. In: Whitley, L.D. (ed.) Foundations of genetic algorithms 2, pp. 109–
126. Morgan Kaufmann, San Mateo (1993)

Ignoble Trails - Where Crossover Is Provably Harmful 101

3. Mitchell, M., Holland, J.H., Forrest, S.: When will a genetic algorithm outperform
hill climbing. In: Cowan, J.D., Tesauro, G., Alspector, J. (eds.) NIPS, pp. 51–58.
Morgan Kaufmann, San Francisco (1993)

4. Jansen, T., Wegener, I.: Real royal road functions–where crossover provably is
essential. Discrete Applied Mathematics 149(1-3), 111–125 (2005)

5. Poli, R., Wright, A.H., McPhee, N., Langdon, W.: Emergent behaviour, population-
based search and low-pass filtering. In: Proceedings of the Congress on Evolutionary
Computation (CEC) 2006, pp. 88–95. IEEE Press, Los Alamitos (2006)

6. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. In: Whitley, L.D.
(ed.) FOGA, pp. 93–108. Morgan Kaufmann, San Francisco (1992)

7. Watson, R.A.: Analysis of recombinative algorithms on a non-separable building-
block problem. In: Foundations of Genetic Algorithms 6, pp. 69–89. Morgan Kauf-
mann, San Francisco (2001)

8. Watson, R.A., Pollack, J.B.: Hierarchically consistent test problems for genetic
algorithms. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala,
A. (eds.) Proceedings of the Congress on Evolutionary Computation, Mayflower
Hotel, Washington D.C., USA, vol. 2, pp. 6–9. IEEE Press, Los Alamitos (1999)

9. Dietzfelbinger, M., Naudts, B., Hoyweghen, C.V., Wegener, I.: The analysis of a
recombinative hill-climber on h-iff. IEEE Trans. Evolutionary Computation 7(5),
417–423 (2003)

10. Jansen, T., Wegener, I.: The analysis of evolutionary algorithms - a proof that
crossover really can help. Algorithmica 34(1), 47–66 (2002)

11. Storch, T., Wegener, I.: Real royal road functions for constant population size.
Theor. Comput. Sci. 320(1), 123–134 (2004)

12. Fischer, S., Wegener, I.: The one-dimensional ising model: Mutation versus recom-
bination. Theor. Comput. Sci. 344(2-3), 208–225 (2005)

13. Sudholt, D.: Crossover is provably essential for the ising model on trees. In: GECCO
2005: Proceedings of the 2005 conference on Genetic and evolutionary computation,
pp. 1161–1167. ACM, New York (2005)

14. Doerr, B., Happ, E., Klein, C.: Crossover is provably useful in evolutionary com-
putation. In: GECCO 2008: Proceedings of the 2008 conference on Genetic and
evolutionary computation (to appear, 2008)

15. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York
(1991)

16. Rudolph, G.: Convergence Properties of Evolutionary Algorithms. Dr. Kovac, Ham-
burg (1997)

17. Motwani, R., Raghavan, P.: Randomized algorithms. Cambridge University Press,
New York (1995)

	Ignoble Trails - Where Crossover Is Provably Harmful
	Introduction
	Functions Hard for Mutation Based EAs
	Minimal Population Evolutionary Algorithms
	The Steady-State$ (2+1)$ EA
	The Steady-State $(2+1)$ GA

	Ignoble Trails
	Ignoble Trails vs. Uniform Crossover
	Behavior of the EA and GA on Ignoble Trail 1
	Time Complexity Results

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

