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Preface

The first major gathering of people interested in discussing natural paradigms
and their application to solve real-world problems in Europe took place at Dort-
mund, Germany, in 1990. What was planned originally as a small workshop with
about 30 participants finally grew into an international conference named Paral-
lel Problem Solving from Nature (PPSN) with more than 100 participants. The
interest in the topics of the conference has increased steadily ever since lead-
ing to the pleasant necessity of organizing PPSN conferences biennially within
the European region. After visiting Brussels (1992), Jerusalem (1994), Berlin
(1996), Amsterdam (1998), Paris (2000), Granada (2002), Birmingham (2004),
and Reykjavik (2006), PPSN returned to its birthplace in Dortmund to celebrate
its 10th anniversary in 2008.

Without any doubt the PPSN conference series evolved to be one of the most
respected and highly regarded conferences on natural computing. Therefore we
are very pleased to present the proceedings of the 10th International Conference
on Parallel Problem Solving from Nature (PPSN X) to the scientific community.
This year we received 206 submissions with authors from 26 countries spread over
Africa, America, Asia, Australia and Europe. From these submissions the Program
Chairs selected the top 114 papers after an extensive peer-review process. Not all
decisions were easy to make but in all cases we benefited greatly from the careful
reviews provided by the international Program Committee. We requested four re-
views for each submission leading to a total of 824 requests for reviews. Thanks to
these reviews we were able to decide about acceptance on a solid basis.

The papers included in these proceedings have been assigned to six fuzzy
clusters (formal theory, new techniques, experimental analysis, multiobjective
optimization, hybrid methods, and applications) that can hardly reflect the true
variety of research topics presented in the proceedings at hand. Following the
tradition and spirit of PPSN, all papers were presented as posters. The 8 poster
sessions consisting of about 14 papers each were compiled orthogonally to the
fuzzy clusters mentioned above to cover the range of topics as widely as possible.
As a consequence, participants with different interests would find some relevant
papers in every session and poster presenters were able to discuss related work
in sessions different to their own. As usual, the conference also included one day
with workshops (Saturday), one day with tutorials (Sunday), and three invited
plenary talks (Monday to Wednesday) for free.

Needless to say, the success of such a conference depends on authors, review-
ers, and organizers. We are grateful to all authors for submitting their best and
latest work, to all the reviewers for the generous way they spent their time and
provided their valuable expertise in preparing these reviews, to the workshop
organizers and tutorial presenters for their valorizing contributions to the con-
ference event, and to the local organizers who helped to make PPSN X happen.
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Last but not least, we would like to thank the Collaborative Research Center
‘Computational Intelligence’ (SFB 531) at the Dortmund University of Tech-
nology and the Deutsche Forschungsgemeinschaft (DFG) for financial support
as well as the Gesellschaft für Informatik (GI) for administrative support in
international monetary transactions.
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Thomas Jansen

Simon Lucas
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Thomas P. Runarsson Háskóli Íslands Reykjav́ık, Iceland
Marc Schoenauer INRIA Saclay – Île-de-France, France
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Abstract. This paper studies the behaviour of the (1 + 1)-ES when
applied to a linear problem with a single linear constraint. It goes beyond
previous work by considering constraint planes that do not contain the
gradient direction. The behaviour of the distance of the search point
from the constraint plane forms a Markov chain. The limit distribution
of that chain is approximated using an exponential model, and progress
rates and success probabilities are derived. Consequences for the working
of step length adaptation mechanisms based on success probabilities are
discussed.

1 Introduction

Constraint handling is an important aspect of numerical optimisation. See [6,
7, 10, 11, 14] and the references therein for examples of constraint handling
techniques that have been proposed in connection with evolution strategies. The
performance of new techniques is commonly evaluated using large and diverse
sets of test functions, such as the benchmark set compiled for the CEC 2006
Special Session on Constrained Real-Parameter Optimization [8]. Moreover, the
evaluation criteria used are relatively complex and involve various parameters,
such as the number of function evaluations allowed and different quality thresh-
olds. As a result, the observed outcomes are not always easy to interpret.

In contrast, in the realm of unconstrained optimisation there is a significant
body of work employing simple test functions that aims at arriving at a bet-
ter understanding of the behaviour of evolution strategies. See [1, 2, 5, 13] for
examples and further references. Starting from the simplest non-trivial strate-
gies and optimisation environments, the complexity of the scenarios studied has
increased over time, and today results are available for adaptive strategies and
problems with various degrees of ill-conditioning. The approach complements
observations for large and difficult test beds with results that are easy to in-
terpret, and that reveal scaling properties and the influence of parameters on
optimisation performance.

The Handbook of Evolutionary Computation [3, page B2.4:11f] lists a small
number of studies that use simple test functions and derive analytical results in
the realm of constrained optimisation with evolution strategies. Rechenberg [12]

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 1–10, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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studies the performance of the (1 + 1)-ES for the axis-aligned corridor model.
Schwefel [15] considers the performance of the (1, λ)-ES in the same environment.
Beyer [4] analyses the performance of the (1 + 1)-ES for a constrained function
he refers to as a “discus”. All of those have in common that the constraint planes
are oriented such that they contain the gradient vector of the objective function.
The goal of this paper is to take a step toward understanding the behaviour
of evolution strategies in environments where there are constraints that do not
contain the gradient direction. Specifically, we investigate the performance of
the (1 + 1)-ES for a linear problem with a single linear constraint.

An issue of particular significance in the context of real-valued evolutionary
optimisation is that of step length adaptation. In order to achieve good perfor-
mance, the mutation strength of an evolution strategy needs to be adapted in
the course of the search. For a linear problem with a single linear constraint, the
optimal long-term strategy is to increase the step length of the algorithm. The
mutation strength of the (1 + 1)-ES is typically adapted using the 1/5th success
rule [12]. Without considering this quantitatively, Schwefel [16, page 116f] points
out that using that rule, the presence of constraints may lead to the step length
being reduced in situations where the angle between the gradient direction and
the normal vector of the active constraint is small, leading to convergence to a
non-stationary point.

The remainder of this paper is organised as follows. Section 2 describes the
dynamical system formed by the operation of the (1+1)-ES for a linear problem
with a single linear constraint using Markov chain terminology. A balance condi-
tion is derived that determines the limit distribution of that chain. Section 3 uses
two approaches for obtaining an approximation to the limit distribution, and it
evaluates them by comparing the quality of the derived predictions with mea-
surements from runs of the strategy. Section 4 addresses the performance of step
length adaptation based on success probabilities. Finally, Section 5 concludes
with a brief discussion and suggestions for future work.

2 Dynamical System

Throughout this paper, we consider the problem of maximising1 a linear func-
tion f : RN → R, N ≥ 2, with a single linear constraint. We assume that the
gradient vector of the objective function does not lie in the constraint plane.
Without loss of generality, we choose a Euclidean coordinate system with its
origin located on the constraint plane, and with its axes oriented such that the
x1-axis coincides with the gradient direction ∇f , and the x2-axis lies in the two-
dimensional plane spanned by the gradient vector and the normal vector of the
constraint plane. The angle between those two vectors is denoted by θ as illus-
trated in Fig. 1, and it is referred to as the constraint angle. Constraint angles
of interest are in (0, π/2). The unit normal vector of the constraint plane ex-
pressed in the chosen coordinate system is n = 〈cos θ, sin θ, 0, . . . , 0〉. The signed
1 Strictly speaking, the task is one of amelioration rather than maximisation, as a

finite maximum does not exist. We do not make that distinction here.
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fitness gradient

constraint plane

x1

x2

θ
x

g(x)

n

Fig. 1. Linear objective function with a single linear constraint. The subspace spanned
by the x1- and x2-axes is shown. The search point x of the (1 + 1)-ES is at a distance
g(x) from the constraint plane. The shaded region consists of those points that are
feasible and not inferior to the search point in terms of their objective function values.

distance of a point x = 〈x1, x2, . . . , xN 〉 ∈ RN from the constraint plane is thus
g(x) = −n · x = −x1 cos θ − x2 sin θ, resulting in the optimisation problem

maximise f(x) = cx1 subject to g(x) ≥ 0.

Notice that due to the choice of coordinate system, variables x3, x4, . . . , xN enter
neither the objective function nor the constraint inequality.

Given a feasible initial candidate solution x(0), the (1 + 1)-ES generates a se-
quence x(t), t > 0, of further feasible candidate solutions — sometimes referred
to as search points — until some stopping criterion is satisfied. In time step t, off-
spring candidate solution y(t) ∈ RN is generated by sampling an N -dimensional
normal distribution with mean x(t) and with covariance matrix σ2I, where I is
the N ×N identity matrix. Parameter σ is referred to as the mutation strength
and determines the step length of the strategy. Until Section 4, it is assumed
to be constant. Vector z(t) = (y(t) − x(t))/σ is referred to as mutation vector.
Candidate solution x(t+1) equals y(t) if f(y(t)) ≥ f(x(t)) and g(y(t)) ≥ 0; it
equals x(t) otherwise.

The probability of accepting a newly generated offspring candidate solution
as well as the expected improvement in objective function value in time step t
depend on the distance g(x(t)) of the search point from the constraint plane.
The evolution of the normalised distance δ(t) = g(x(t))/σ is described by

δ(t+1) =

⎧⎪⎪⎨⎪⎪⎩
δ(t) − z

(t)
1 cos θ − z

(t)
2 sin θ if z(t)

1 ≥ 0
and δ(t) ≥ z

(t)
1 cos θ + z

(t)
2 sin θ

δ(t) otherwise

(1)

where z
(t)
1 and z

(t)
2 are the standard normally distributed components of mu-

tation vector z(t) = 〈z(t)
1 , z

(t)
2 , . . . , z

(t)
N 〉. Condition z

(t)
1 ≥ 0 holds iff f(y(t)) ≥

f(x(t)); condition δ(t) ≥ z
(t)
1 cos θ + z

(t)
2 sin θ holds iff y(t) is feasible. In what

follows, time superscripts are omitted where possible without causing confusion.
Equation (1) describes a continuous-state Markov process. In order to de-

rive conditions on its stationary limit distribution, consider random variable
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w = z1 cos θ + z2 sin θ. Clearly, w is normally distributed with zero mean and
unit variance. From the fact that z2 is standard normally distributed, it follows
that the likelihood function of z1 given an observation of w is

L(z1 = x |w = y) =
1√

2π sin θ
exp

(
−1

2

(
y − x cos θ

sin θ

)2
)
.

The posterior probability density of z1 given an observation of w is proportional
to the product of the prior density of z1 and that likelihood function:

p(z1 = x |w = y) =
C√
2π

e−
1
2 x2

L(z1 = x |w = y).

The normalising factor C can be obtained from the requirement that the integral

C

2π sin θ

∫ ∞

−∞
e−

1
2 x2

exp

(
−1

2

(
y − x cos θ

sin θ

)2
)

dx =
C√
2π

e−
1
2 y2

equal unity, yielding C =
√

2πey2/2. The posterior probability density is thus

p(z1 = x |w = y) =
1√

2π sin θ
e

1
2 y2

e−
1
2 x2

exp

(
−1

2

(
y − x cos θ

sin θ

)2
)

=
1√

2π sin θ
exp

(
−1

2

(
x− y cos θ

sin θ

)2
)
. (2)

According to Eq. (1), the normalised distance δ of the search point from the
constraint plane is updated by subtracting w if the result is nonnegative and
z1 ≥ 0; it is unchanged otherwise. The probability that an update w = y is
accepted is thus zero if δ < y; using Eq. (2), it equals

Prob(z1 ≥ 0 |w = y) =
∫ ∞

0

p(z1 = x |w = y) dx

= Φ
( y

tan θ

)
(3)

where Φ denotes the cumulative distribution function of the standard normal
distribution, if δ ≥ y.

The normalised distance δ(t+1) of the search point from the constraint plane
equals δ(t) if the offspring candidate solution is rejected; it equals δ(t) − w(t)

otherwise. Thus, δ(t+1) is in an interval of width dx centred at x if either δ(t) is
in that interval and the offspring is rejected, or if δ(t) − w(t) is in that interval
and the offspring candidate solution is accepted. The probability of the offspring
candidate solution being accepted can be computed by integrating the proba-
bility described by Eq. (3), weighted with the probability density of generating
the respective updates. Writing p(t)

δ for the probability density of the normalised
distance δ(t) of the search point from the constraint plane at time t, it follows
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p
(t+1)
δ (x) = p

(t)
δ (x)

[
1− 1√

2π

∫ ∞

0

e−
1
2 (x−y)2Φ

(
x− y

tan θ

)
dy
]

+
1√
2π

∫ ∞

0

p
(t)
δ (y)e−

1
2 (y−x)2Φ

(
y − x

tan θ

)
dy (4)

for the probability density of δ(t+1). The expression in square brackets is the
probability that the offspring candidate solution is rejected. Equation (4) is the
Chapman-Kolmogorov equation of the Markov process described by Eq. (1). A
necessary condition for the stationary limit distribution is that it is stable under
the update rule Eq. (1), i.e., that p(t+1)

δ ≡ p
(t)
δ . From Eq. (4), it follows that

pδ(x)
∫ ∞

0

e−
1
2 (x−y)2Φ

(
x− y

tan θ

)
dy =

∫ ∞

0

pδ(y)e−
1
2 (y−x)2Φ

(
y − x

tan θ

)
dy (5)

needs to hold for all x ≥ 0 in order for the distribution with density pδ to be
stable.

Macroscopic quantities of interest that can be computed if the limit distribu-
tion is known include the average normalised distance

δavg =
∫ ∞

0

xpδ(x) dx (6)

of the search point from the constraint plane. Similarly, the success probability,
i.e., the probability that an offspring candidate solution replaces its parent, can
be obtained by computing the expected value of the probability in Eq. (3):

Psucc =
1√
2π

∫ ∞

0

pδ(x)
∫ ∞

0

e−
1
2 (x−y)2Φ

(
x− y

tan θ

)
dy dx. (7)

Finally, the progress rate, i.e., the expected distance that the search point pro-
gresses in the direction of the gradient of the objective function per time step,
can be computed as

ϕ =
1√
2π

∫ ∞

0

pδ(x)
∫ ∞

0

ye−
1
2 y2

Φ

(
x− y cos θ

sin θ

)
dy dx (8)

where Φ((x − y cos θ)/ sin θ) equals the probability that an offspring candidate
solution with z1 = y is feasible given that δ = x.

3 Modelling the Limit Distribution

Unfortunately, it is not clear whether a closed form solution for the limit distri-
bution exists. Instead, this section uses and compares two simple approaches in
an attempt to arrive at a distribution that approximates the limit distribution.
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3.1 Dirac Delta Model

As a zeroth order approximation, let us assume that the limit distribution is
well characterised by its expectation, and that higher order moments can be
neglected. That is, we model the limit distribution as a (shifted) Dirac delta
function, and we obtain the mode of that distribution by requiring that

E
[
δ(t+1)

]
= δ(t). (9)

Using Eq. (4) to compute the expected value of δ(t+1) yields

E
[
δ(t+1)

]
=
∫ ∞

0

xp
(t+1)
δ (x) dx

= δ(t) − 1√
2π

[
Φ

(
δ(t)

sin θ

)
cos θ − e−

1
2 δ(t)2

Φ

(
δ(t)

tan θ

)]
. (10)

Together, Eqs. (9) and (10) can be used to solve numerically for δ(t) as the mode
of the delta distribution. Equations (7) and (8) yield the corresponding success
probability and progress rate. Figure 2 shows a comparison of the resulting
predictions with measurements made in runs of the (1 + 1)-ES. Each data point
has been obtained by running the evolution strategy, initialised at δ = 1, for 1,000
time steps in order to attain a distribution of distances from the constraint plane
that resembles the limit distribution. Then, distances from the constraint plane,
the number of successful mutations, and the progress in direction of the x1-axis
are measured for a further 106 time steps to yield the data points shown. It can
be seen that the agreement of the measured data points with the predictions
made on the basis of the delta model is not very good.

The approach of modelling unknown distributions using a delta distribution
and requiring that the expected value of a state variable remain unchanged
under the update rule of the system has been used extensively by Beyer [5].
It has been employed in a variety of situations where the variance of the limit
distribution tends to zero as the search space dimensionality increases, and where
the approach becomes increasingly exact for large N . Clearly, this is not the case
in the present situation. In order to obtain improved approximations in finite-
dimensional search spaces, Beyer [5] proposes modelling the limit distributions of
the state variables using the first k ≥ 1 terms of their Gram-Charlier expansions,
and to determine the unknown k moments by computing their values after a time
step and requiring that they equal their corresponding values before the time
step. The use of the delta model as described above is the application of that
approach for k = 1. While better approximations can potentially be achieved for
larger values of k, we do not pursue this approach here as it is unclear whether the
limit distribution is well described by any small number of lower order moments.

3.2 Exponential Model

Instead, motivated by the visual inspection of measured densities for several
constraint angles θ, we choose to model the limit distribution of the normalised
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Fig. 2. Average distance δavg of the search point from the constraint plane, success
probability Psucc, and progress rate ϕ plotted against the constraint angle θ. The
dashed and solid lines represent predictions using the delta and exponential models
from Sections 3.1 and 3.2, respectively. The dots mark measurements from runs of the
evolution strategy.
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Fig. 3. Parameter λ of the exponential distribution that minimises the Kullback-Leibler
divergence DKL and that divergence plotted against the constraint angle θ

distance of the search point from the constraint plane using an exponential dis-
tribution with density p(x) = λe−λx. The distribution parameter λ is determined
by minimising the Kullback-Leibler divergence

DKL =
∫ ∞

0

p
(t)
δ (x) log

p
(t)
δ (x)

p
(t+1)
δ (x)

dx

of the distribution of δ(t+1) from that of δ(t). Using the exponential model for
p
(t)
δ and Eq. (4) for p(t+1)

δ , it follows after rearranging terms that

DKL = −
∫ ∞

0

λe−λx

· log
(

1− 1√
2π

∫ ∞

0

e−
1
2 (x−y)2

[
1− Φ

(
y − x

tan θ

)(
1 + e−λ(y−x)

)]
dy
)

dx.

Solving for λ by minimising numerically and using the outcome in Eqs. (6), (7),
and (8) yields the results shown in Fig. 2 as solid curves. The agreement with
the values measured in runs of the (1 + 1)-ES is much better than for the delta
model from Section 3.1. The parameter λ of the exponential distribution that
minimises the Kullback-Leibler divergence along with the corresponding value
of the latter are shown in Fig. 3.

4 Step Length Adaptation

The mutation strength σ, which controls the step length of the (1 + 1)-ES, is
typically adapted based on the fraction of the most recently generated offspring
candidate solutions that have been accepted. If that fraction is small, the mu-
tation strength is reduced; if the fraction is large, the mutation strength is in-
creased. Based on investigations of two test functions, Rechenberg [12] suggests
that the success probability should ideally be in the vicinity of 20% (“1/5th
success rule”).
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As pointed out by Schwefel [16], adaptation of the mutation strength based on
success probabilities fails if the angle between the gradient vector of the objective
function and the normal vector of the constraint plane is too small. It can be
seen from Fig. 2 that for a given mutation strength, success probabilities in the
limit state are below 20% if θ < 0.634. For smaller constraint angles the step
length is reduced systematically and the strategy converges to a non-stationary
point. For larger constraint angles the success probability exceeds 20% and the
mutation strength is increased indefinitely (which is useful in the long term, as
the progress rate of the strategy increases with the mutation strength). Choosing
a different target success probability shifts the point where the breakdown of step
length control occurs, but it does not solve the problem.

Not shown here, experiments with a randomised, simulated annealing in-
spired acceptance rule suggest that convergence to a non-stationary point can
be avoided if inferior candidate solutions are accepted with a non-zero probabil-
ity. This is reminiscent of recent findings by Meyer-Nieberg and Beyer [9] who
show that noise can improve the performance of an evolution strategy employ-
ing mutative self-adaptation for the sharp ridge function by preventing it from
approaching the ridge too closely. Understanding the effects of randomised se-
lection as well as the exact behaviour of the strategy near the point where the
breakdown occurs remain as tasks for future work.

5 Summary and Discussion

To conclude, in this paper we have studied the behaviour of the (1 + 1)-ES for a
linear problem with a single linear constraint. For constant mutation strength,
the distance of the search point from the constraint plane is the state variable
of a one-dimensional Markov process. Approximations to the limit distribution
of that process have been obtained using two different models, and macroscopic
quantities such as the success probability and the progress rate of the strategy
have been derived.

The interaction between the step length adaptation mechanism of an evolution
strategy and its approach to handling constraints is of crucial importance for the
strategy’s potential to solve constrained optimisation problems. It is not immedi-
ately obvious that all of the combinations of constraint handling and step length
adaptation techniques that can be found in the literature are capable of achieving
good performance in an environment as simple as the one considered here, and
we would argue that a linear problem with a single linear constraint, along with
other simple functions, such as linearly constrained spheres, may be a useful test
case for real-valued evolutionary algorithms for constrained optimisation.

Clearly, this paper is but one step toward the goal of improving the un-
derstanding of constraint handling techniques in evolutionary computation by
investigating their behaviour for simple test functions. In future work, we plan
to derive formal convergence criteria that allow us to establish conditions on the
existence of stable limit distributions, both for the adaptive and non-adaptive
cases. It is also desirable to consider more complex types of evolution strategies
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that employ different step length adaptation mechanisms, different constraint
handling techniques, and further constrained test functions.
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tionärer Zustände in dynamischen Systemen. PhD thesis, Hochschule für Architek-
tur und Bauwesen, Weimar (1989)

[5] Beyer, H.-G.: The Theory of Evolution Strategies. Springer, Heidelberg (2001)
[6] Coello Coello, C.A.: Constraint-handling techniques used with evolutionary al-

gorithms. In: Proceedings of the 2007 Genetic and Evolutionary Computation
Conference — GECCO 2007, pp. 3057–3077. ACM Press, New York (2007)

[7] Kramer, O., Schwefel, H.-P.: On three new approaches to handle constraints within
evolution strategies. Natural Computing 5(4), 363–385 (2006)

[8] Liang, J.J., Runarsson, T.P., Mezura-Montes, E., Clerc, M., Suganthan, P.N.,
Coello Coello, C.A., Deb, K.: Problem definitions and evaluation criteria for the
CEC 2006 Special Session on Constrained Real-Parameter Optimization. Techni-
cal report, Nanyang Technological University, Singapore (2006)

[9] Meyer-Nieberg, S., Beyer, H.-G.: Why noise be good: Additive noise on the sharp
ridge. In: Proceedings of the 2008 Genetic and Evolutionary Computation Con-
ference — GECCO 2008, may, ACM Press, New York (to appear, 2008)

[10] Montes, E.M., Coello Coello, C.A.: A simple multi-membered evolution strategy
to solve constrained optimization problems. IEEE Transactions on Evolutionary
Computation 9(1), 1–17 (2005)

[11] Oyman, A.I., Deb, K., Beyer, H.-G.: An alternative constraint handling method
for evolution strategies. In: Proc. of the 1999 IEEE Congress on Evolutionary
Computation, pp. 612–619. IEEE Computer Society Press, Los Alamitos (1999)

[12] Rechenberg, I.: Evolutionsstrategie — Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Friedrich Frommann Verlag (1973)

[13] Rechenberg, I.: Evolutionsstrategie ’94. Friedrich Frommann Verlag (1994)
[14] Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary opti-

mization. IEEE Transactions on Evolutionary Computation 4(3), 274–283 (2000)
[15] Schwefel, H.-P.: Numerical Optimization of Computer Models. Wiley, Chichester

(1981)
[16] Schwefel, H.-P.: Evolution and Optimum Seeking. Wiley, Chichester (1995)



σ-Self-Adaptive Weighted Multirecombination

Evolution Strategy with Scaled Weights
on the Noisy Sphere

Hans-Georg Beyer and Alexander Melkozerov

Research Center Process and Product Engineering
Department of Computer Science

Vorarlberg University of Applied Sciences
Hochschulstr. 1, A-6850 Dornbirn, Austria

{hans-georg.beyer,alexander.melkozerov}@fhv.at

Abstract. This paper presents a performance analysis of the recently
proposed σ-self-adaptive weighted recombination evolution strategy (ES)
with scaled weights. The steady state behavior of this ES is investigated
for the non-noisy and noisy case, and formulas for the optimal choice of
the learning parameter are derived allowing the strategy to reach max-
imal performance. A comparison between weighted multirecombination
ES with σ-self-adaptation (σSA) and with cumulative step size adapta-
tion (CSA) shows that the self-adaptive ES is able to reach similar (or
even better) performance as its CSA counterpart on the noisy sphere.

1 Introduction

The σ-self-adaptive weighted multirecombination ES, short (λ)opt-σSA-ES, has
been proposed in [1] as a new ES which takes advantage of Arnold’s weighted
multirecombination [2] and σ-self-adaptation [3] at the same time. It has been
shown, considering the sphere model, that the (λ)opt-σSA-ES can outperform
Arnold’s (λ)opt-ES with cumulative step size adaptation (CSA) which was re-
garded as the most efficient ES with isotropic mutations [1].

While this performance advantage of the new (λ)opt-σSA-ES is rather small,
the remarkable aspect of this finding concerns the possible implications for more
advanced ES which rely on correlated mutations, such as the CMA-ES [4,5].
It seems that the general concept of (mutative) self-adaptation can be trans-
fered to algorithms, which rely on covariance matrix information without severe
performance degradation. While a proof of this statement must be deferred to
another paper (see [6] in this volume), the properties of the (λ)opt-σSA-ES on
simple fitness environments have not been sufficiently investigated up until now.
However, understanding the behavior of the new ES on simple test scenarios can
be regarded as a necessary building block for understanding and designing more
complex algorithms which rely on correlated mutations.

In this paper, we investigate the behavior of the (λ)opt-σSA-ES with scaled
weights on the noisy sphere. Usage of scaled weights allows for larger optimal

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 11–20, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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mutation strengths [2]. It can be beneficial in noisy fitness environments as the
ES will work with larger mutations [7], although strongly scaled weights can
deteriorate the maximal attainable progress rate in the non-noisy case (in finite-
dimensional search spaces). Besides the performance analysis of the (λ)opt-σSA-
ES under constant non-normalized noise strength conditions, we will also present
a comparison with the (λ)opt-CSA-ES.

The paper is organized as follows. Section 1.1 provides the description of the
(λ)opt-σSA-ES algorithm. Section 1.2 presents the derivation of the formula for
optimal learning parameter. Section 2 is devoted to the analysis of the behavior
in the constant non-normalized noise scenario. Part of this investigation is a
comparison of the (λ)opt-σSA-ES with the (λ)opt-CSA-ES on the noisy sphere
in Section 2.2. Section 3 summarizes the results obtained and draws conclusions.

1.1 The (λ)opt-σ-Self-adaptation-ES

The weighted multirecombination ES with σ-self-adaptation is a result of the
combination of the σ-self-adaptation technique with the (λ)opt-ES. The algo-
rithm of the (λ)opt-σ-self-adaptation-ES is given below [1]:

1 σp ← σinit

2 yp ← yinit

3 do
4 for l = 1 to λ
5 σ̃l ← σpe

τNl(0,1)

6 z̃l ← N l(0, I)
7 ỹl ← yp + σ̃lz̃l

8 f̃l ← f(ỹl)
9 end

10 〈σ〉 ← 1
μ

∑μ
m=1 σ̃m;λ

11 〈z〉ω ←
∑λ

l=1 ωl;λz̃l;λ

12 σp ← 〈σ〉
13 yp ← yp + 〈σ〉〈z〉ω
14 until termination criterion fulfilled

Fig. 1. The pseudocode of the (λ)opt-σ-self-adaptation-ES

In the algorithm, the parent state is initialized in lines 1 and 2. λ offspring are
generated from line 4 to line 9 in the following way: For each offspring, the muta-
tion of the mutation strength is performed in line 5 using the log-normal operator
eτNl(0,1), whereNl(0, 1) is a (0, 1) normally distributed random scalar. The learn-
ing parameter τ in the log-normal operator controls the self-adaptation rate. In
line 6, direction of the mutation vector σ̃lz̃l is determined by means of a (0, 1) nor-
mally distributed random vector N l(0, I). The offspring vector ỹl is generated in
line 7 and used in the calculation of the objective function value f̃l in line 8.

After creation, the λ offspring are ranked according to their objective func-
tion values and intermediate recombination of mutation strengths is performed
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in line 10 using the μ best individuals. In line 11, the weighted sum 〈z〉ω of mu-
tation vectors is calculated w.r.t. the fitness of each offspring. The superscript
(l;λ) refers to the lth-best of the λ offspring (the lth-smallest for minimization).
Weights ωl,λ are dependent on the rank of the individual in the set of all offspring
individuals [2]. The new parent state is obtained in lines 12 and 13.

After the termination criterion is fulfilled, the current parent state is consid-
ered as an approximation of the optimizer of the objective function f(y).

1.2 Performance Analysis of the (λ)opt-σSA-ES

The analysis of the (λ)opt-σSA-ES is done for the noisy quadratic sphere1 with
search space dimensionality N . Due to space limitation, we can only sketch the
derivation steps (see also [1]). Since the self-adaptation mechanism from the stan-
dard (μ/μI , λ)-σSA-ES is introduced in the (λ)opt-σSA-ES without any changes,
the following approximate formula for the self-adaptation response (SAR) of the
(μ/μI , λ)-σSA-ES obtained for N → ∞ and τ � 1 in [8] can be applied to the
analysis of the (λ)opt-σSA-ES

ψ(σ∗(g), σ∗(g)
ε ) ≈ τ2

⎛⎝1
2

+
(σ∗(g))2

(σ∗(g))2 + (σ∗(g)
ε )2

e1,1
μ,λ−

(σ∗(g))2√
(σ∗(g))2 + (σ∗(g)

ε )2
cμ/μ,λ

⎞⎠ ,

(1)
where ea,b

μ,λ is the generalized progress coefficient

ea,b
μ,λ =

λ− μ
√

2π
a+1

(
λ

μ

)∫ ∞

−∞
tbe−

a+1
2 t2Φ(t)λ−μ−1(1− Φ(t))μ−adt, (2)

with Φ(t) denoting the cumulative distribution function of the standard normal
variate and cμ/μ,λ is the progress coefficient, cμ/μ,λ = e1,0

μ,λ. The SAR function
describes the expected parental normalized relative σ∗-change2 given σ∗(g) = σ∗

p.
Besides the dependencies on parent and offspring population size μ and λ, it also
depends on the amount of (normalized) noise σ∗

ε = σεN/(2R2).
In order to obtain maximal (normalized) quality gain Δ∗ per generation (note,

Δ is the expected fitness gain per generation), optimal weights ωl,λ must be used.
The following choice of scaled weights has been shown to be optimal in noisy
fitness environments [2]

ωl,λ = El,λ/κ for l = 1, . . . , λ, (3)

where κ > 1 and El,λ is the expectation of the (λ + 1 − l)th order statistic of
the standard normal variate, El,λ = e0,1

l−1,λ. An asymptotically exact formula
for normalized quality gain of the (λ)opt-ES with the choice of weights (3) for

1 The noisy quadratic sphere reads f(y) = ‖ŷ−y‖2+ε, where ŷ ∈ RN is the optimizer
and ε ∼ N (0, σε) is an additive normally distributed noise term.

2 Note, σ∗ = σN/R, R is parental distance to the optimizer.
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the noisy sphere model has been obtained in [2] using several simplifications
(consideration of the asymptotic behavior for N → ∞, assumption that the
normalized mutation strength σ∗ is of O(1), Taylor series expansion)

Δ∗(σ∗(g), σ∗(g)
ε ) =

Wλ

κ

⎛⎝ (σ∗(g))2√
(σ∗(g))2 + (σ∗(g)

ε )2
− (σ∗(g))2

2κ

⎞⎠ , (4)

where Wλ =
∑λ

l=1 E
2
l,λ.

Note, Eq. (4) has been derived for given values of σ∗(g) and σ
∗(g)
ε , but, there

are μ parents with different values. However, this causes no problems in the
N → ∞ limit [1]. The deviations vanish asymptotically. Therefore, one can use
the normalized mean value s∗(g) = 〈σ〉∗ (i.e., the recombined σ of line 10 in
Fig. 1) instead of individual σ∗(g) in Eqs. (1) and (4). This simplifies the anal-
ysis considerably. Furthermore, in the limit case the normalized quality gain
Δ∗ becomes asymptotically equal to the normalized progress rate ϕ∗ [9], i.e.,
Δ∗(s∗(g))  ϕ∗(s∗(g)). The latter measures the expected distance gain per gen-
eration in the search space (note, this holds for the sphere model). Obviously,
the choice of scaled weights (3) provides optimal progress rate as well.

The normalized mutation strength of an evolution strategy with correctly
working σSA reaches a stationary state over time with s∗st = limg→∞ s∗(g), which
is described by the steady state condition [10]

ϕ∗(s∗(g)
st , s

∗(g)
ε )

N
= −ψ

(
s
∗(g)
st , s∗(g)

ε

)
. (5)

This equation relates the expected distance change of the parental centroid (to-
wards the optimizer) to the expected relative change of the mutation strength.
It is therefore a fundamental equation for the analysis of self-adaptation and will
be the basis for all considerations to come.

Let us first consider how to determine the optimal learning parameter τ in
the non-noisy case s∗(g)

ε = 0. Inserting (4) and (1) into (5) and using τ = α/
√
N

leads to
Wλ

κ

(
s∗st −

(s∗st)
2

2κ

)
= −α2

[
1
2

+ e1,1
μ,λ − s∗stcμ/μ,λ

]
. (6)

Note, the specific choice τ ∝
√
N has made (6) independent of N . Analytical

solution of the quadratic equation (6) gives

s∗st = κ

[
1−

κcμ/μ,λα
2

Wλ
+K

]
, (7)

with K =

√
1 + (1− 2κcμ/μ,λ + 2e1,1

μ,λ) α2

Wλ
+

κ2c2
μ/μ,λ

α4

W 2
λ

.
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If we take into account ϕ∗(s∗(g)) = Δ∗(s∗(g)) and insert the stationary mu-
tation strength (7) into the quality gain (4), we obtain the stationary progress
rate as a function of α

ϕ∗
st(α) =

Wλ

2

[
1−
(
κcμ/μ,λα

2

Wλ
−K

)2
]
. (8)

One can easily check that the quality gain Δ∗(s∗(g), 0) reaches its maximum
Δ∗

max = Wλ

2 at s∗Δmax
= κ. Therefore, obtaining maximal progress in the sta-

tionary state, one has to require s∗st = s∗Δmax
= κ. Using (7) this leads to

κ
[
1− κcμ/μ,λα

2
opt/Wλ +K

]
= κ and after a short calculation, one gets

αopt =

√
Wλ

2κcμ/μ,λ − 2e1,1
μ,λ − 1

. (9)

Formula (9) allows for calculating the optimal learning parameter τ (via τopt =
αopt/

√
N) corresponding to maximal progress rate in the non-noisy case. Note,

we did not take into account the noise in this calculation because in practice
the normalized noise strength is usually unknown. Instead, we will use (9) as a
fixed value even when noise is present. Actually, this choice overestimates τ for
non-vanishing noise strengths s∗(g)

ε .

2 Constant Non-normalized Noise Strength

2.1 Determining the Residual Location Error

For constant non-normalized noise sε = const, the normalized noise strength
increases while the ES approaches the optimizer ŷ (recall σ∗

ε = σεN/(2R2) and
R is the parental distance to the optimizer). Therefore, when the ES starts far
away from the optimizer, the influence of the noise on the objective function
values is small, but permanently increases with each step of the ES towards the
optimum. Finally the ES enters a stationary state. The values of the objective
function are completely shaded by the noise term ε and no further progress
towards the optimum is possible. The distance to the optimizer R fluctuates
around an expected value R∞, which is referred to as residual location error.
Furthermore, the mutation strength also converges to a stationary distribution.

The steady state behavior of the ES for constant non-normalized noise is
described using the steady-state conditions (neglecting fluctuations)

R(g+1) = R(g) = R∞, s∗(g+1) = s∗(g) = s∗st, (10)

which can also be written using progress rate and SAR functions as

ϕ (s∗st, s∗εst) = 0, ψ (s∗st, s∗εst) = 0. (11)
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Inserting Eq. (4) and Eq. (1) into (11), the resulting system of equations can
be solved for steady state normalized mutation strength and normalized noise
strength

s∗st = κ

√
2

2κcμ/μ,λ − e1,1
μ,λ

(12)

s∗εst = 2κ

√√√√ 1
2 + e1,1

μ,λ − 2κcμ/μ,λ

e1,1
μ,λ − 2κcμ/μ,λ

. (13)

Taking into account the normalization s∗ε = N

2(r(g))2 sε, the residual location error

is obtained
R∞ =

√
Nsε/(4s∗εst). (14)

Using (13) and (14), R∞ can be rewritten as

R∞ =

√√√√√Nsε

4κ

√√√√ e1,1
μ,λ − 2κcμ/μ,λ

1
2 + e1,1

μ,λ − 2κcμ/μ,λ

. (15)

The predictions of (15) are compared with the results of experiments in Fig. 2.
A start vector y(0) = 10, an initial mutation strength σ(0) = 1 and a noise
strength σε = 1 were used with μ = 4 and offspring number λ = 10. The learning
parameters τ were calculated using αopt obtained by means of (9). The residual
location error was obtained by collecting data starting from generation g0 =
100, 000 up to generation gmax = 200, 000.

The experimental results in Fig. 2 exhibit satisfactory agreements with residual
location error values calculated using Eq. (15) even for low search space dimen-
sionalities, although (15) was derived from Eq. (4) and Eq. (1) being approxima-
tions in the limit N →∞. The residual location error decreases with the increase
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Fig. 2. The residual location error R∞ of the (λ)opt-σSA-ES (μ = 4, λ = 10) for
different values of κ. The solid lines represent the results of (12) and (15). The points
indicate the results of experiments for N = 2, 5, 10 from bottom to top in subfigure a)
and for N = 40, 400, 4000 in subfigure b).
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of κ. The reason is that the (λ)opt-ES benefits from larger κ values by means of im-
plicit rescaling of the mutation strength, allowing the ES to use higher mutation
strengths in conjunction with smaller search point position changes [2].

2.2 Comparison of the (λ)opt-σSA-ES with the (λ)opt-CSA-ES

In order to compare the results of the (λ)opt-σSA-ES for constant non-normalized
noise strength with that of the (λ)opt-CSA-ES, the same experiments were con-
ducted for the (λ)opt-CSA-ES and the number of offspring λ = 10 (Fig. 3).
A start vector y(0) = 10, an initial mutation strength σ(0) = 1 and a noise
strength σε = 1 were used. The average quality gain for the (λ)opt-CSA-ES is [2]

Δ∗
avg =

⎧⎨⎩
√

2−1
2 Wλ

(
2−
(

s∗
ε

κ

)2
)

if s∗ε <
√

2κ,

0 otherwise.
(16)

The assumptions made for derivation of (16) in [2] do not allow us to directly
obtain the stationary noise strength, two limit conditions are used to bracket its
value:

1. Upper limit condition s∗ε =
√

2κ due to Eq. (16). Using (14), one obtains the
corresponding residual location error formula

R
′

∞ =
√
Nsε/(2

√
2κ), (17)

2. Lower limit condition ϕ (s∗, s∗ε ) = 0, s∗ = 0, which provides after resolving
Eq. (4) for s∗εst and using (14) the residual location error formula

R∞ =
√
Nsε/(4κ). (18)

Theoretical lines representing residual location error formulas for both limit
conditions are shown in Fig. 3.

The experimental results for the (λ)opt-CSA-ES are closer to the theoreti-
cal curve corresponding to the residual location error formula (18). This is an
observation that cannot be deduced from the CSA theory developed so far.

Let us now consider the influence of λ on the R∞-behavior of the strategies. As
λ gets larger, using a fixed truncation ratio 0 < μ/λ < 1, the inner square root in
(15) gets a constant. Furthermore, if κ is increased, this constant approaches 1,
thus, yielding (18). That is, theoretically an influence of λ can only be introduced
by choosing κ = f(λ), e.g. κ ∝ λ. Such investigations can be found in Fig. 4
for the (λ)opt-σSA-ES using (15) and for the (λ)opt-CSA-ES using (18) with
κ ∝ λ. The experimental results in Fig. 4 show that Eq. (15) provides satisfactory
predictions of the residual location error R∞ of the (λ)opt-σSA-ES for a wide
range of offspring numbers λ. The residual location error decreases with the
increase of the number of offspring λ. The selection of the particular truncation
ratio (μ/λ = 0.27 or μ/λ = 0.4) does not make a notable difference in the
residual location error decrease rate.



18 H.-G. Beyer and A. Melkozerov

N�40

N�400

N�4000

2 5 10 20 50
Κ

1

2

5

10

20

50
R�

Fig. 3. The residual location error R∞ of the (λ)opt-CSA-ES (λ = 10) for different
values of κ. The solid curves represent the results of (17), whereas dashed lines depict
the results of (18). The points indicate the results of experiments for N = 40, 400, 4000
from bottom to top.
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(b) σSA, μ/λ = 0.4
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(c) CSA, μ/λ = 0.27
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(d) CSA, μ/λ = 0.4

Fig. 4. The residual location error R∞ of the (λ)opt-σSA-ES and (λ)opt-CSA-ES for
different values of λ. The solid lines represent the results of (15) (σSA) and (18) (CSA)
for κ = λ, κ = 2λ, κ = 5λ from top to bottom. The points indicate the results of
experiments for N = 400.

Thecomparisonof the residual locationerrorR∞ of the (λ)opt-CSA-ESfordiffer-
ent values of λwith that of the (λ)opt-σSA-ES in Fig. 4 shows that neither the CSA
nor σ-self-adaptation have advantages over each other considering the task of re-
ducing the residual location error by means of increasing the number of offspringλ.
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Fig. 5. The f(β) plots for the (λ)opt-σSA-ES and (λ)opt-CSA-ES (μ = 4, λ = 10). The
solid curves represent the results of (15) with Eq. (19) applied. The points indicate the
results of experiments for N = 40 (crosses), N = 100 (stars) and N = 400 (circles).

The κ-scaling behavior of both strategies in Fig. 2 and 3 makes an impression
that choosing κ increasingly large one can get arbitrarily close to the optimizer
without any additional costs (note, λ = 10). This observation might be due to the
spherical symmetry of the sphere model. Investigations of other test functions
are needed to clarify things. However, for the time being we want to check
the limits of the theory developed. To this end, we introduce the scaling κ = βλ
(λ = const). If one inserts this in (18) and rearranges the expression, one obtains

2R∞
√
λ√

Nsε

=
1√
β

= f(β). (19)

That is, the left hand side of (19) should appear as a linear decreasing curve
in a double-logarithmic plot, which is independent of N (Fig. 5). Systematic
deviations from this linear curve may signalize a break-down of the theory.

The results for the (λ)opt-σSA-ES are presented in Fig. 5 up to β = 500 since
this ES is capable of positive progress toward the optimum for very large β. In
contrast, the results for the (λ)opt-CSA-ES are presented up to β < N since
this ES exhibits divergent behavior for β > N (no sharp bounds!). Therefore,
the σ-self-adaptation is to a certain extent more robust for large κ values which
allow for getting smaller R∞, while CSA fails to adapt the mutation strength
correctly in these extreme cases.

3 Summary and Conclusions

In this work, the behavior of the (λ)opt-σSA-ES with scaled weights has been
studied on the noisy sphere. At first, the stationary state condition of this ES
has been investigated for the non-noisy case and the optimal learning parameter
τ = αopt/

√
N has been obtained. The αopt formula does not require information

about noise strength, which is usually not known in real optimization tasks. This
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αopt can be used in practice, however, one should keep in mind that the ES’s
dynamical performance will not be optimal in noisy environments.

For constant non-normalized noise strength, theoretical formulas for steady
state mutation strength and residual location error were derived and compared
with experiments for different values of κ exhibiting satisfactory agreement with
theoretical predictions. Residual location error plots for different values of λ
were presented as well, showing that the particular truncation ratio (μ/λ = 0.27
or μ/λ = 0.4) does not make a notable difference in the residual location error
decrease rate and that neither the CSA nor σSA have advantages over each other
considering the task of reducing the residual location error by means of increasing
of the number of offspring λ. However, keeping λ = const, the (λ)opt-σSA-ES can
reach smaller residual location errors than its CSA counterpart when using large
κ values. Using very large κ values, the CSA fails to adapt the mutation strength
correctly. The question whether this observation can be confirmed for other test
functions with noise will be a direction of future investigations. Furthermore,
the constant normalized noise case should be considered, too.
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with Random Numbers of Offspring
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Abstract. Hitting times of the global optimum for evolutionary algo-
rithms are usually available for simple unimodal problems or for simpli-
fied algorithms. In discrete problems, the number of results that relate
the convergence rate of evolution strategies to the geometry of the opti-
misation landscape is restricted to a few theoretical studies. This article
introduces a variant of the canonical (μ + λ)-ES, called the Poisson-ES,
for which the number of offspring is not deterministic, but is instead
sampled from a Poisson distribution with mean λ. After a slight change
on the rank-based selection for the μ parents, and assuming that the
number of offspring is small, we show that the convergence rate of the
new algorithm is dependent on a geometric quantity that measures the
maximal width of adaptive valleys. The argument of the proof is based
on the analogy of the Poisson-ES with a basic Mutation-or-Selection
evolutionary strategy introduced in a previous work.

Keywords: Evolution Strategies, Discrete Optimisation, Convergence
Theory, Markov Chains, Large Deviations, Mutation or Selection.

1 Introduction

Evolution Strategies (ES) have generated considerable interest during the last
decades, both in the practical and in the theoretical issues [3,5]. Until recently,
however, the number of mathematical results about the behaviour of ES has
remained rather limited, especially in the field of discrete optimisation. The early
theoretical analyses indeed concentrated on continuous optimisation problems,
and they were mainly based on the so-called rate-of-progress theory, examining
the average gain of the algorithm after a single step of the algorithm [4]. In
the continuous setting, global convergence results and results on hitting times
of the global optimum are now at least available for simple unimodal problems
like the sphere or quadratic functions [1,6], or for simplified algorithms like the
(1 + 1)-ES [15].

Regarding discrete or combinatorial optimisation, the convergence analysis of
evolutionary algorithms has also focused on simple cases, the most representative
of which may be the one-max problem [9]. Numerous studies have obtained deep
insights on such simple problems [18,19], like bounds for the runtime of simple
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EA on pseudo-boolean functions [20,21]. Although some remarkable progress
has been achieved for more complex problems [17], the transfer of results and
techniques to new problems remain an open question. At the exception of the
simulated annealing algorithm [14,19] and of a few variants of evolution strategies
that were based on mutation or selection instead of mutation plus selection
[10,12], few explicit results have linked hitting times of the global optimum to
the geometrical features of the discrete optimisation landscape for an arbitrary
optimisation problem. Nevertheless, these scarce results have revealed to be of
fundamental interest as they have emphasised the importance of the depths of the
adaptive valleys in the simulated annealing algorithm [14], and the importance
of their widths in rank-based selection evolutionary algorithms [10].

One difficulty with building a convergence theory for discrete optimisation
evolution strategies is the determinism of the selection schemes based on fitness
rankings. In this article, we introduce a stochastic variant of ES that converts
the usual deterministic offspring assumption made in these algorithms, into an
assumption of a stochastic number of offspring. We show that this modification
is crucial for characterising the convergence of evolution strategies by means of
geometrical quantities.

The article is organised as follows. In section 2, we introduce the Poisson-
Evolution Strategy (Poisson-ES) in which the number of offspring is randomly
sampled according to the Poisson distribution with mean λ. This modification
of the canonical ES will be accompanied by a slight change on the deterministic
rank-based selection for the parents, which objective is to prevent premature
convergence. Section 3 states our main results about hitting times of the global
optimum that are valid for small λ. These results underline the role of the width
of adaptive valleys for determining the rate of evolution toward the global opti-
mum. Section 4 presents a short simulation study illustrating the fact that the
theory can also predict the behaviour of the modified algorithm for values of λ
that are not close to zero.

2 The Poisson-ES

Consider a finite set, V , and assume that we seek the maximum of an injective
objective function f defined on V

f : V → R+ .

Here injectivity is more a convenient assumption than a necessary condition.
It facilitates proofs and leads to more elegant statements (see [12] for a more
general setting). The canonical (μ+ λ)-ES is usually defined as follows. At each
generation, the algorithm generates a deterministic number of offspring, λ, from
μ parents, and simultaneously applies a mutation operator to the λ offspring.
Then, μ individuals are selected among the (μ+λ) parents plus offspring to form
the parental population in the next generation.

Here, we introduce a variant of the (μ+ λ)-ES, that generates stochastic – in
place of deterministic – numbers of offspring in each generation. In the variant
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under consideration, the number of offspring, Λ, is sampled from a Poisson dis-
tribution with mean λ, for some value λ > 0. The probability that the algorithm
generates k offspring in a given generation is then equal to

Pr(generate k offspring) =
λke−λ

k!
, k ≥ 0 .

One key property of the Poisson distribution regarding the further analysis of
the stochastic dynamics of the algorithm is that

Pr(generate exactly 1 offspring) = λ+ o(λ) ,

and
Pr(generate ≥ 2 offspring) = o(λ) .

In the perspective of a convergence analysis, λ will be thought of as being slowly
decreased to zero, like in the simulated annealing algorithm (see [19]). The con-
vergence of annealing schedules will be examined in the next section.

Since our state space V is an arbitrary finite state space, properly defining
a mutation operator requires a graph structure, (V,E), that represents how
offspring can be generated from the parents. To ensure the irreducibility of the
finite Markov chain model for the algorithm, we additionally assume that the
graph (V,E) is connected. The mutation operator can then be defined as any
particular random walk on the connected graph (V,E).

In the canonical ES, the selection of individuals present in the next generation
is usually performed after a deterministic ranking of the parents and offspring.
One possible issue with this mode of selection is that random walkers may get
trapped into sub-optimal solutions. For example, this can happen if no improve-
ment can be reached by random walking from the last-ranked graph vertex rep-
resented in the population. To avoid this issue, we use a slightly modified type
of rank-based selection. Instead of selecting μ parents, we actually select μ− Λ
parents according to their rank, and then we include the Λ offspring to form
the next generation population. This selection scheme requires that the Pois-
son sampling distribution is conditioned on the event Λ < μ, a condition which
does not change the above stated key property of the sampling distribution for
λ << μ.

To explain how the modified selection scheme approximates the traditional
(μ + λ)-ES, we can look at the intermediate generation. After the mutation is
applied but before selection is performed, the population consists of the parents
plus the offspring,

(a(1), . . . a(μ)) + Λ mutant individuals,

where the a(i) denote individuals ranked by decreased order of fitness values.
Since we are more specifically interested in the behaviour the algorithm for
small values of λ, we can approximate the parental population as μ copies of the
current best fit individual, a(1),

(a(1), . . . , a(1)) + Λ mutant individuals.
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Accordingly the loss in diversity when replacing μ parents by μ − Λ parents is
generally negligible, if not null. Strongly unfavorable mutations produce offspring
viable for one generation, but their carriers usually do not transmit their phe-
notypes in the subsequent generations. The algorithm behaves similarly to the
canonical ES except during peak shifts, which are likely to occur more rapidly
in the modified version. Finally, the Poisson-ES for discrete optimisation can be
summarised as follows.

The (λ + μ)-Poisson-ES. The algorithm iteratively applies the following steps
until some stopping criterion is met.

1. Conditional on Λ < μ, draw Λ ∼ Poisson(λ).
2. Generate Λ offspring from the μ parents and apply mutation to the offspring.
3. Select μ− Λ parents according to ranked-based selection.
4. Add the Λ mutant offspring to form the next generation population.

3 Convergence Results for the Poisson-ES

In this section, we describe our main results regarding the hitting time of the op-
timum for an arbitrary injective objective function f defined on a general search
space V when the parameter λ is small. When λ is close to zero, the dynamics
of the algorithm are strongly dominated by the selection process, which tends to
aggregate individuals into homogeneous (homozygous) populations. Mutations,
that usually occur at small rates, can essentially be viewed as perturbations
of the selection process [13]. In this context, the behaviour of the algorithm is
strongly related to S. Wright’s concept of a fitness landscape and to the presence
of adaptive valleys [22]. It has long been acknowledged that the widths and the
depths of the adaptive valleys may influence the convergence time of evolutionary
algorithms [16]. However, there is a lack of theoretical results that can quantify
the convergence rate of an algorithm by means of such geometrical quantities.

Let us represent the fitness landscape by the values of the objective function
for each vertex of the graph (V,E). In this section, we define a geometrical
quantity that intuitively measures the width of the largest adaptive valley in the
fitness landscape. For two vertices a and b, which are viewed as two evolutionary
distant individuals by the algorithm, let the distance d(a, b) be defined as the
length of the shortest path from a to b in (E, V ). In other words, the distance is
the minimal number of mutations required to transform a into b. The geometrical
quantity of interest is [10,12]

�∗ = max
a�=aopt

min
b:f(b)>f(a)

d(a, b) ,

where aopt is the (assumed unique) global optimum of f , and a can be restricted
to the set of locally sub-optimal phenotypes [10,12]. This quantity measures the
greatest distance between a locally optimal individual and a descendent with a
higher selective value.
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Our main result can be stated as follows.

Theorem 1. Let (E, V ) be a finite connected graph, and let f be an injective
function defined on V . Consider the Poisson-ES with parameters μ > λ. Let Topt

be the hitting time of the optimal solution aopt, and topt be its expected value

topt = Ev[Topt] ,

where v is identified to an arbitrary locally optimal population such that aopt /∈ v.
Then, we have

lim
λ→0

log(topt)
log(1/λ)

= �∗ .

In addition, the standard deviation of Topt is equivalent to the expected value

sd[Topt] ∼ topt , λ→ 0 .

This theorem states that a rough approximation of the mean hitting time can
be formulated as

topt ≈ Cλ−
∗ ,

for some unknown constant C that depends on μ. Implicitly, the theorem tells us
that the spectral gap – that is, one minus the second eigenvalue – of the Markov
chain modeling the Poisson-ES is logarithmically equivalent to λ
∗ for small λ.
Remark that the constant C is not explicit, and may be very large depending on
the complexity of the problem under consideration. This happens for example
when �∗ = 1, a situation that corresponds to an enumerative sampling strategy.
This sort of limitation is also present in the simulated annealing algorithm,
where the enumerative strategy leads to a minimum critical depth [14]. In fact,
according to [12], and similarly to what has been obtained for the simulated
annealing algorithm, the theorem suggests that the convergence towards the
optimum can be controlled by a logarithmically decreasing number of offspring

λt = (1 + t)−γ , γ > �∗ , t ≥ 0 . (1)

To see this, we can introduce an artificial decreasing temperature schedule (Tt)
and perform the following change of parameter

λt = e−1/Tt .

According to [14,12], a necessary and sufficient condition for convergence of the
annealed algorithm to the global optimum is then

∞∑
t=1

λ
∗
t = ∞ ,

that justifies the form of equation (1) for λt.
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The proof of the theorem is based on the theory of large deviations applied
to Markov chains with rare transitions [13]. It makes use of the Laplace method
for computing sums of exponentials. The arguments for the mean hitting time
strictly parallel those given in [12] for the Mutation-or-Selection ES (see also
[8]). The result for the standard deviation, as well as other results that confirm
the geometric-like behaviour of the hitting times, can be derived from [7]. The
complete proof is too long to be reproduced here, and we can only give an outline
below.

The Mutation-or-Selection ES is based on the following steps. Let p be a
mutation probability. At generation t, let at = a denote the current population
which we also assume to be of fixed size, μ. To update the current state of the
population, the algorithm iterates the following operations

1. Select the best individual from the current population, a(1).
2. For each ai, i = 1, . . . , μ, either mutate the individual ai with probability p,

or replace it by a(1).

The connection between the MoS-ES and the Poisson-ES arises as the number
of offspring in the MoS-ES is also random, and it is distributed according to the
Binomial distribution, Bin(μ, p). Most of the large deviation analysis is based
on the Laplace method as p goes to zero, and makes use of the following key
property of the Bin(μ, p) distribution

Pr(generate exactly 1 offspring) = p+ o(p) ,

and
Pr(generate ≥ 2 offspring) = o(p) ,

which is very similar to the property stated for the Poisson distribution in the
previous section. For the MoS-ES [12], we have previously shown that

lim
p→0

log(topt)
log(1/p)

= �∗ .

In fact, a rough justification of Theorem 1 would consist in setting λ = p/μ
and argueing that the Bin(μ, p) distribution can be replaced by a Poisson dis-
tribution of mean λ according to the classic Binomial-Poisson approximation in
probability theory. Although the guess is correct, the argument can easily be
seen to be flawed. However the result transfers to the Poisson-ES after a step by
step replication of the proof given in [12].

4 Numerical Illustration

To assess the value of the large-deviation approximation for intermediate values
of λ, that is,

topt ≈ Cλ−
∗ ,
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we performed a comparative evaluation of the performances of the Poisson-ES
and the MoS-ES on a very simple test problem. The design of experiments and
the fit of the simulated data to the large-deviation approximation can be done
using an experimental method based on regression, also described in [2,11].

In our example, the objective function was defined on the set of integers
V = [1, . . . , 60] as

f(x) = 1 + (103− x)x+ 120 sin(x) , x ∈ [1, . . . , 60] ,

and the mutations were implemented as the (reflected) random walk on V . We
added ±1 with equal probability to each ai in {2, . . . , 59}. The states 1 and 60
could be moved into 2 and 59, respectively. The corresponding fitness landscape
is represented in figure 1. This simple optimisation problem is illustrative of the
behaviour of the algorithm for a large class of toy problems. It is easy to predict
the behaviour of the algorithm, and to compute some geometrical quantities,
and can be generalised to many dimensions without difficulties. We used μ = 10
individuals, and the algorithms were started from the homogeneous population
a1 = (1, . . . , 1). In this example, the adaptive valleys were narrow and easy to
cross as we started from a1, but their width increased as the algorithms moved
toward the optimum. The critical parameter �∗ was computed as

�∗ = 5 .

In this test problem, the ES were then expected to improve quickly from the
starting population, but they were also expected to make slower progress as
they approached the global optimum.
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Fig. 1. The toy objective function: f(x) = 1 + (103 − x)x + 120 sin(x), x = 1, . . . , 60.
The optimum is reached at x = 52 and, the width of the largest additive valley is
represented by a dashed line. We have �∗ = 5.
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To evaluate the performances of the algorithms, we regressed the logarithm
of the hitting times on the logarithm of λ (or the logarithm of p) in order to
estimate �∗ as the slope of the regression

log(Topt) = log(C) + �∗ log(1/λ) + ε .

To obtain comparable results for the Poisson-ES and for the MoS-ES, we set
p = λ/μ, and we ran simulations for values of p in the interval (0.15, 0.4), where
p is the mutation probability. We obtained 250 replicates of the hitting times
for regularly spaced values of p. The corresponding values of λ fall in the in-
terval (1.5, 4). The fact that experimental values of λ were not close to zero
makes departures from the theoretical predictions rather likely. These values
were nevertheless more conform to standard user-defined ones than would have
been the very small values suggested by Theorem 1. Figure 2 shows that the
data fit the log-log regression rather well (R2 = 0.76, P ≈ 0 for the Poisson-ES,
and R2 = 0.81, P ≈ 0 for the MoS-ES), providing evidence that the log-hitting
times were actually explained by the logarithm of λ. The coarse approximation
topt ≈ Cλ−
 could then considered valid for values of λ not close to zero. The
coefficients of the regression model were computed as 3.3 (intercept) and 4.2
(slope) for the Poisson-ES, and they were computed as 2.7 (intercept) and 5.9
(slope) in the MoS-ES. The slope values 4.2 and 5.9 were close to the value
�∗ = 5 predicted by the theory of large deviations. In this example, we noticed
that the Poisson-ES ran slightly faster than the MoS-ES to the population with
the highest selective values.
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Fig. 2. Regression of the log hitting time on log(1/p), where p is the mutation probabil-
ity. The slope of the regression corresponds to the critical quantity �∗. (A) Poisson-ES.
(B) MoS-ES, p = λ/μ, μ = 10.
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5 Discussion

This article has introduced a variant of the canonical ES in which the number of
offspring is not deterministic, but is instead sampled from a Poisson distribution
with mean λ. After a slight change on the rank-based selection for the μ parents,
we showed that the new ES resembles the basic Mutation or Selection-ES intro-
duced in [10]. The Poisson-ES and the MoS-ES provide interesting models for
obtaining in-depth insights on the convergence of evolutionary algorithms. Based
on the similarity between the two algorithms, we stated a convergence theorem
for arbitrary discrete optimization problems, that emphasises the role of the
width of the adaptive valleys. Yet, analogs of MoS-ES or of discrete Poisson-ES
have not been studied in continuous optimization problems, but it is natural
to expect that geometric quantities similar to those influencing the behaviour
of the discrete algorithms are likely to determine the convergence rate of the
continuous algorithms as well.

Stochastic parameters are the basis for designing adaptive or self-adaptive
algorithms. Since the cost of an algorithm is a function of the mutation load
through the number of fitness evaluations, an ES should end with λ ≈ 0 when
getting close to the optimum. In contrast, being far from the optimum would
probably require that the number of offspring is large λ >> 1. This idea can be
implemented in the Poisson-ES using an explicit convergent annealing scheme.
We also believe that this study opens new directions for self-adaptation in dis-
crete ES, because it indicates that increasing λ or performing faster walks in the
bottom of the valleys is likely to improve the convergence rate of the algorithm.
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Abstract. The term ‘multiobjectivization’ refers to the casting of a single-objec-
tive optimization problem as a multiobjective one, a transformation that can be
achieved by the addition of supplementary objectives or by the decomposition of
the original objective function. In this paper, we analyze how multiobjectiviza-
tion by decomposition changes the fitness landscape of a given problem and af-
fects search. We find that decomposition has only one possible effect: to introduce
plateaus of incomparable solutions. Consequently, multiobjective hillclimbers us-
ing no archive ‘see’ a smaller (or at most equal) number of local optima on a
transformed problem compared to hillclimbers on the original problem. When
archived multiobjective hillclimbers are considered this effect may partly be re-
versed. Running time analyses conducted on four example functions demonstrate
the (positive and negative) influence that both the multiobjectivization itself, and
the use vs. non-use of an archive, can have on the performance of simple hill-
climbers. In each case an exponential/polynomial divide is revealed.

1 Introduction

The term ‘multiobjectivization’ was introduced in [10] to refer to the reformulation
of originally single-objective problems as multiobjective ones. Two approaches to this
reformulation can be taken, namely the decomposition of the original objective, or the
addition of new objectives. In both of these cases, it is a requirement that each of the
original optima becomes a Pareto optimum under the new set of objectives [10].

In [10] and in related work, both theoretical and practical [1,7,12,14] it has been
demonstrated that such reformulations of problems can in some cases lead to accel-
erated search performance (comparing broadly equivalent single-objective and mul-
tiobjective algorithms). Brockhoff et al. recently presented general theoretical results
for adding objectives to a problem, showing that it may have beneficial or detrimental
effects on the runtime for a given problem [1]. They show (ibid.) that the addition of ob-
jectives to an originally single-objective problem has only two effects on solution order-
ings: (a) solution pairs that are equal (‘indifferent’) with regard to the single-objective
formulation may become comparable (i.e., one dominates the other), or alternatively,
(b) solution pairs that are comparable with regard to the single-objective formulation
may become incomparable (i.e., neither dominates the other). Running time analy-
ses (ibid.) comparing a (1+1)-EA and the Global SEMO (Global Simple Evolution-
ary Multi-objective Optimizer) algorithm indicated that large performance differences

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 31–40, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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(a polynomial speedup and an exponential slowdown) can be observed for a single-
objective short path function (derived from SPCn [6]) when objectives are added.

Here, we are interested in multiobjectivization through decomposition of a single-
objective function, which has not been addressed in [1]. After the introduction of some
basic notation and algorithms in Section 2, Section 3 goes on to show that the num-
ber of possible effects of a decomposition is in fact reduced compared to the scenario
discussed in [1], and that this allows for additional inferences regarding the changes
to the fitness landscape. It also discusses why these theoretical results only directly
apply to algorithms that do not employ an archive. Section 4 of the paper introduces
four example problems: the first two illustrate that, despite the theoretical differences to
the scenario considered in [1], multiobjectivization through decomposition can equally
render a problem easier or harder. The last two are examples of problems where the
introduction of an archive makes the problem significantly easier or more difficult. Fi-
nally, Section 5 concludes.

2 Notation and Algorithms

Formally, an unconstrained single-objective (scalar) optimization problem is described
by the set of feasible solutionsX and an objective function f : X → R. Without loss of
generality, we assume minimization of f , so that the optimal solutions to the problem
are those that satisfy

argminx∈Xf(x). (1)

Multiobjectivization by decomposition reformulates the problem through the decompo-
sition of the original objective into two or more components. This is achieved through
the definition of k objectives fi : X → R, i ∈ 1..k, with the constraint that f(x) =∑k

i=1 fi(x), ∀x. This transforms the scalar optimization problem into a vector opti-
mization problem with every solution x ∈ X mapping to a k-tuple of objective val-
ues f(x) = (f1(x), . . . , fk(x))T . The optimal solutions to the problem are those that
satisfy

argminx∈Xf(x). (2)

In vector optimization problems such as (2), a partial ordering of the solutions can be
obtained using the concept of Pareto dominance. Solution x is said to dominate solution
y, denoted as f (x) ≺ f (y), iff ∀i ∈ 1..k : fi(x) ≤ fi(y) ∧ ∃j ∈ 1..k : fj(x) < fj(y).
The solutions x and y are said to be indifferent, denoted as f(x) = f (y), iff ∀i ∈
1..k : fi(x) = fi(y). Iff x and y are not indifferent and neither dominates the other,
they are said to be incomparable or mutually non-dominated, denoted as f (x) ∼ f (y).
Under the Pareto framework, the solution to a vector optimization problem is the set
of solutions S ⊆ X , which are not dominated by any other solutions in the search
space: S = {s ∈ X | �∃x ∈ X : f (x) ≺ f(s)}. The set of optimal solutions for (1)
form a subset of the set of Pareto optimal solutions for formulation (2). Problem (2) can
therefore be employed as an alternative formulation to find solutions to (1).

Hillclimbers. The optimizers considered in this paper are very basic single-objective
and multiobjective hillclimbers, defined thus:
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SOHC. Initialize a current solution at random. While not done {mutate the current
solution and accept the mutant iff it is not worse than the current } .
MOHC. Initialize a current solution at random. While not done {mutate the current
solution and accept the mutant iff it is not dominated by the current } .
MOHC+A. Initialize a current solution at random and copy it into the nondomi-
nated solutions archive. While not done {mutate the current solution and accept the
mutant iff it is not dominated by anything in the archive. If the mutant is accepted,
copy it to the archive. Remove from the archive any solutions that are dominated} .

The mutation operator used in all three algorithms is 1/n bit flip mutation, where n is
problem size. The single-objective hillclimber (SOHC) accepts moves to equal cost so-
lutions (cf. [6,2,8]). Equivalently, the basic multiobjective hillclimber (MOHC) rejects
the mutant solution only if its objective vector is dominated by the parent solution; it
accepts moves to incomparable solutions. For the archiving multiobjective hillclimber
(MOHC+A), a mutant solution is accepted only if it is not dominated by either the cur-
rent solution or a solution in the nondominated solutions archive (similarly to (1+1)-
PAES [11]). As discussed in [9] (pages 102–105), this way of using an archive yields a
negative efficiency preserving strategy [5], i.e., it prevents degradation of solutions. We
say there is degradation if the current solution is replaced at some later iteration by one
that it dominates. Such degradation prevents convergence and can lead to endless cy-
cling between solutions that are not mutually incomparable. N.B., the type of archiving
used in the GSEMO algorithm [1] is different because the archive is used as a population
from which to select solutions; we do not consider this type of archiving here.

3 Changes to the Fitness Landscape

This section studies the changes in the fitness landscape when moving from a scalar
optimization problem to the multiobjective problem obtained through a decomposition
of the fitness function as defined in Equation 2.

Definition 1. (Neighborhood) We define a neighborhood function as a function ν :
X → Xm, with the two properties, x ∈ ν(x), and x ∈ ν(y) ↔ y ∈ ν(x). Solu-
tions x and y are said to be neighbors if x ∈ ν(y) (and, equivalently, y ∈ ν(x)). The
neighborhood size is m.

Definition 2. (Connected sets) A set of solutions S is said to be connected, if ∀s, t ∈
S : ∃pi ∈ S : p1 = s ∧ pl = t ∧ ∀l−1

i=1pi+1 ∈ ν(pi).

Definition 3. (Local optima) A set of connected solutionsS is said to be locally optimal
under objective f and neighborhood function ν, iff ∀s ∈ S : ∀t ∈ ν(s) : f(s) <
f(t) ∨ (t ∈ S ∧ f(s) = f(t)). Equivalently, a set of connected solutions S is said
to be locally optimal under the set of objectives f and neighborhood function ν, iff
∀s ∈ S : ∀t ∈ ν(s) : f(s) ≺ f (t) ∨ (t ∈ S ∧ (f (s) = f(t) ∨ f(s) ∼ f (t)). Every
such set S is defined as one local optimum.

Definition 4. (Plateaus) A set of connected solutions S is said to form a plateau un-
der objective f and neighborhood function ν, iff ∀s ∈ S : ∀t ∈ S : ∃pi ∈ S :



34 J. Handl, S.C. Lovell, and J. Knowles

p1 = s ∧ pl = t ∧ ∀l−1
i=1(pi+1 ∈ ν(pi) ∧ f(pi+1) = f(pi)). Equivalently, a set of

connected solutions S is said to form a plateau under objective f and neighborhood
function ν, iff ∀s ∈ S : ∀t ∈ S : ∃pi ∈ S : p1 = s ∧ pl = t ∧ ∀l−1

i=1(pi+1 ∈
ν(pi) ∧ (f(pi+1) ∼ f(pi) ∨ f (pi+1) = f (pi))). A plateau is maximally sized iff
�∃s ∈ {X \ S} such that s ∪ S is a plateau.

Theorem 1 (Gradient cannot be introduced). If f(x) = f(y) then f(x) ∼ f (y) ∨
f(x) = f(y).

Proof. Assume that f(x) = f(y) and f(x) ≺ f(y). Then, by definition of domi-
nance, for each component of f , fi(x) ≤ fi(y) and there exists a component fj where
fj(x) < fj(y). As f(x) = f1(x)+f2(x)+ . . .+fk(x), this contradicts the assumption
that f(x) = f(y). Thus, if f(x) = f(y), then x does not dominate y. By a symmetric
argument, y does not dominate x either. Therefore, by definition of the dominance rela-
tions, either x and y are indifferent (the same in all components) or incomparable. ��

Theorem 2 (Gradient cannot be reversed). If f(x) ≺ f(y) then f(x) < f(y).

Proof. Assume that f (x) ≺ f(y). Then, by definition of dominance, the objective
value of x will be smaller than that of y under f , which, by definition, is the sum of the
components of f . ��

The implication of Theorem 1 and 2 is that decomposition of a scalar cost function has
a single consequence for solution orderings: to introduce plateaus.

We next prove that multiobjectivization by decomposition decreases or leaves un-
changed the number of local optima in a landscape. We first show that our definition of
local optimum ensures that local optima are disjoint sets. This is sufficient to ensure that
their number is well-defined. This holds in both the single-objective and the multiob-
jective spaces. We then show that for each optimum in the multiobjective space there is
at least one in the single-objective space. Taken together with the fact that local optima
are disjoint, this is sufficient to prove the theorem.

Lemma 1. The local optima are uniquely defined and are disjoint sets (both in the
single-objective and the multiobjective space).

Proof. The definitions of the local optima above ensure that each one is a maximally
sized set and all immediate neighbors of the set are worse. Two local optima cannot
contain the same solution because this would necessitate them being in the same opti-
mum; hence the sets are disjoint and uniquely defined. ��

Lemma 2. A locally optimal set in the multiobjective landscape contains at least one
locally optimal set in the single-objective landscape.

Proof. Let S be a set of connected solutions that is locally optimal under f . Then, we
know that ∀s ∈ S : ∀t ∈ ν(s) : f(s) ≺ f(t)∨ (t ∈ S ∧ (f(s) = f (t)∨ f (s) ∼ f(t)).
If t is not part of S, it follows that s dominates t and, by Theorem 1 and 2, the gradient
between s and t remains under the single-objective formulation: ∀s ∈ S : ∀t ∈ ν(s) :
f(s) < f(t) ∨ t ∈ S. The set S is then split into the following sets: S∗ = mins∈Sf(s)
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and T ∗ = S \ S∗. By definition, we know that ∀s ∈ S∗ : ∀t ∈ T ∗ : f(s) < f(t). It
follows that ∀s ∈ S∗ : ∀t ∈ ν(s) : f(s) < f(t)∨ (t ∈ S∗∧ (f(s) = f(t))). The set S∗

may consist of one or more sets of connected solutions, each of which corresponds to
one local optimum (additional optima on different fitness levels are also possible). ��

Theorem 3. The number of local optima under f is smaller or equal to the number of
local optima under f .

Proof. The result follows directly from the two previous lemmata. ��

How does this affect search? An increase in the number and size of plateaus may con-
tribute to making a problem more difficult, as, on such plateaus, optimization methods
have to succumb to random walk behavior. On the other hand, a reduction in the num-
ber of local optima may mitigate the difficulty of search. Both effects are intimately
linked, as the removal of local optima is only possible through the creation of a plateau:
it requires the creation of at least one path of incomparable solutions that crosses the fit-
ness barrier around the original local optimum. Whether a problem gets easier or more
difficult as a result of the decomposition will thus depend on the number and size of the
plateaus that are created and the parts of the fitness landscape they replace. In Section
4.1. and 4.2., we introduce two examples of decompositions that cause an exponential
increase or decrease in the runtime required by a multiobjective hillclimber compared
to the runtime required by a single-objective hillclimber on the corresponding single-
objective problem.

What about archives? The introduction of an archive (of the type used in MOHC+A)
has the effect of restricting movement along plateaus of incomparable solutions, depen-
dent upon what solutions are in the archive. On one hand, this means that, from the
point of view of the algorithm, some of the local optima removed by the decomposition
may again be perceived. On the other hand, degrading moves are prevented, which may
have a beneficial effect on search. In Section 4.3. and 4.4., we introduce functions that
are examples of problems where the introduction of an archive makes a multiobjective
function (alternately) harder or easier.

4 Four Example Functions

In this section, we consider functions f : {0, 1}n → R2 (with restrictions on n for some
problems), each being a decomposition of a different single objective function f . In our
discussion of these functions, we consider local optima as defined by the neighborhood
function ν(x) = {y|H(x, y) ≤ 1}, where H(x, y) is the Hamming distance of two
bit strings defined as H(x, y) =

∑n
i=1 |xi − yi|. We provide proof sketches1 regarding

the derivation of theoretical bounds on the runtime required by the different algorithms
to reach the global optimum and give empirical results on the number of evaluations
taken (means and standard errors over 20 runs; their approximate fitting with analytical
curves agreeing with the theoretical bounds on time complexity is also shown).

1 Proof details can be obtained from the first author.
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4.1 Decomposition Can Make a Problem Harder

We define the function slope(x) = (f1(x), f2(x))T over the set of binary strings x ∈
{0, 1}n:

f1(x) = |x|1 f2(x) = 2n− 2|x|1,

where |x|1 gives the number of ones in binary string x. The effect of multiobjectiviza-
tion in this example is the generation of a plateau of exponential size. A plot of the
function and empirical results are given in Figure 1.
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Fig. 1. Function slope(x). Left: Function for n = 20. Right: Empirical results.

We consider the runtime required by SOHC and MOHC to reach the global optimum
of f1(x)+f2(x) at |x|1 = n. SOHC reaches this optimum by hillclimbing (descending)
the monotonic slope towards it. The expected runtime for the problem is equivalent to
that of MAXONES, which is Θ(n logn) [6]. For MOHC every solution is incompa-
rable with respect to every other. Therefore, the expected waiting time for MOHC is
equivalent to that of the (1+1)-EA on the needle-in-a-haystack function, and is given
as Θ(2n) [3]. MOHC+A performs identically to MOHC, as degradation of solutions
cannot occur for this problem.

4.2 Decomposition Can Make a Problem Easier

The function we use here is inspired by the short path function defined in [6], which
was used as a basis for some other functions in [1].

We define the function shortpath(x) = (f1(x), f2(x))T over the set of binary
strings x ∈ {0, 1}n:

f1 =

⎧⎨⎩2|x|1 if x ∈ {1i0n−i, i ∈ 1..n} ∧ |x|1 ≤ n− 1
0 if x ∈ {1i0n−i, i ∈ 1..n} ∧ |x|1 = n
2n+ |x|1 otherwise,

f2 =
{
n− |x|1 if x ∈ {1i0n−i, i ∈ 1..n}
2n+ |x|1 otherwise.

The effect of multiobjectivization is the introduction of a plateau that is a short path and
the removal of the local optimum at |x|1 = 0. A plot of this crucial part of the function
and empirical results are given in Figure 2.
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We consider the runtime required by SOHC and MOHC to reach the global optimum
of f1(x)+f2(x) at |x|1 = n. MOHC behaves equivalently to the (1+1)-EA on function
SPCn [6] and its expected runtime is therefore bounded by O(n3). MOHC+A performs
identically to MOHC, as degradation of solutions cannot occur for this problem.2 Re-
garding the expected runtime of SOHC, a lower bound of nΩ(n) can be shown similarly
to the analysis of the (1+1)-EA on SPCn in [6].

4.3 An Archive Can Make a Problem Harder

We define the function barrier(x) = (f1(x), f2(x))T over the set of binary strings
x ∈ {0, 1}n for n mod 10 = 0:

f1(x) =
{
n− |x|1 if|x|1 ≤ 0.9n− 2
1.1n− |x|1 + 2 otherwise,

f2(x) =
{
n− |x|1 if|x|1 ≤ 0.9n− 1
1.1n− |x|1 + 1 otherwise.

The effect of the use of an archive is to make parts of a plateau inaccessible. A plot of
the function and empirical results are given in Figure 3.

We consider the runtime required by MOHC and MOHC+A to reach the global opti-
mum of f1(x) + f2(x) at |x|1 = n. Function barrier(x) has a plateau of incomparable
solutions at 0.9n − 2 ≤ |x|1 ≤ 0.9n. With probability exponentially close to 1, the
hillclimbers are initialized with a solution with |x|1 < 0.9n− 2 (this follows by Cher-
noff’s bounds, see [4,6]), and will need to cross the plateau to reach |x|1 = n. MOHC
will reach the plateau in expected time Θ (n logn). It will then perform a random walk
on the plateau until it succeeds in adding at least three more ones to the bit string.
A lower bound on the probability of this success can be obtained as the probability
of performing three drift moves to the right directly in sequence, which is given as∏0.1n+2

k=0.1n
k
n (n−1

n )(n−1). The waiting time for this event is O(1). Once the plateau has

2 The possibility of degradation can be readily introduced into a function of the same structure
through the adjustment of relative fitness levels between solutions that lie within and outside
of x ∈ {1i0n−i, i ∈ 1..n}, so that MOHC can fall off the short path. In that case, MOHC+A
will outperform MOHC.
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Fig. 3. Function barrier(x). Left: Function for n = 20. Right: Empirical results.

been crossed, any mutation that increases |x|1 will be accepted, and the probability of

such a mutation is at least Ω
(

n−|x|1
n

)
. If only such mutations were possible, the ex-

pected waiting time for reaching the global optimum would be O(n logn). However,
mutations reducing |x|1 to 0.9n − 2 ≤ |x|1 ≤ 0.9n − 1 can also be accepted: these
require at least k = |x|1 − 0.9n+ 1 simultaneous bit flips and have probability at most
O
(

1
k!

)
. At position |x|1, a lower bound on the probability of an increase in |x|1 to hap-

pen before a decrease in |x|1 is then given as pk = k!
k!+ n

0.1n−k+1
. Multiplying over all

0.9n + 1 ≤ |x|1 ≤ n − 1 yields
∏0.1n

k=2 pk, which converges. Therefore, the possible
returns to the plateau only increase the expected waiting time by a constant factor, and
the overall expected runtime of MOHC is O (n logn).

MOHC+A will reach the plateau in expected time Θ(n logn). The archive then pre-
vents the access of all the solutions with 0.9n ≤ |x|1 ≤ n − 1. In order to reach the
global optimum at |x|1 = n, it will need to set all remaining 0.1n+ 1 or 0.1n+ 2 bits
with value zero to one simultaneously. The probability of such a mutation is bounded
above by O(( 1

n )(0.1n+1)). The lower bound on the overall runtime of the MOHC+A is
therefore given as nΩ(n).

4.4 An Archive Can Make a Problem Easier

We define the function steps(x) = (f1(x), f2(x))T over the set of binary strings of
even size: x ∈ {0, 1}n for n mod 2 = 0.

f1(x) =
{

0.5n− 0.5|x|1 if|x|1 mod 2 = 0
0.5n− 0.5|x|1 + 1 otherwise,

f2(x) =
{

0.5n− 0.5|x|1 if|x|1 mod 2 = 0
0.5n− 0.5|x|1 − 2 otherwise.

The effect of the use of an archive is to prevent degradation on this plateau of neighbor-
ing non-dominated solutions. A plot of the function and empirical results are given in
Figure 4.

We consider the runtime required by MOHC and MOHC+A to reach the global op-
timum of f1(x) + f2(x) at |x|1 = n. In order to reach |x|1 = n, MOHC+A needs
to increase the number of ones and drift through the plateaus that separate it from the
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Fig. 4. Left: Function steps(x) for n = 20. Right: Empirical results.

global optimum. Alternatively, it can overcome each such plateau by two simultaneous
mutations and, at position |x|1, the probability of increasing the number of ones by
two is therefore bounded below by

(
n−|x|1

2

)
( 1

n )2(n−1
n )n−2. Summing over all values

of |x|1 then yields an upper bound of O(n2) on the expected runtime of MOHC+A (as∑n
|x|1=0

1
|x|21

converges).

In contrast to this, MOHC may drift back to |x|1 = 0 from any point in the search
space (using single bit flip mutations). In order to show exponential runtime we make
use of the drift theorem introduced by Oliveto and Witt [13]. Let �(i) denote the
random increase in the number of zeros when mutating a bit string with |x|1 = i.
We now need to identify an interval [a, b] of asymptotic size on 0 ≤ |x|1 ≤ n for

which it can be shown that (1) P (�(i) = −j) ≤ 1
1+δ

j−r for i > a and j ≥ 1
and (2) E(�(i)) > ε, for a < i < b, where δ, r and ε are constants. As shown
in [13], Condition 1 holds for the (1+1)-EA independently of i and of acceptance,
which also carries over to our analysis. For a = 2

3n and b = n, it can be shown
that E (�(i)) > 1

6e
−1, for a < i < b, which fulfills Condition 2. It follows that the

probability of finding the global optimum in 2cn steps is at most 2−Ω(n).

5 Conclusion

This paper has considered the transformation of scalar optimization problems into mul-
tiobjective ones. Where the multiobjective problem is obtained through a decomposi-
tion of the original objective function, this can cause only one type of change to solution
orderings: pairs of solutions that initially had different scalar objective values can be-
come incomparable. Running time analyses and empirical results for both archiving and
non-archiving algorithms show that, dependent on the function, a problem can become
easier or harder. This can be understood in terms of the introduction and removal of
plateaus and local optima.
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Abstract. In their seminal article [Theo. Comp. Sci. 276(2002):51–82] Droste,
Jansen, and Wegener present the first theoretical analysis of the expected run-
time of a basic direct-search heuristic with a global search operator, namely the
(1+1) Evolutionary Algorithm ((1+1) EA), for the class of linear functions over
the search space {0, 1}n. In a rather long and involved proof they show that, for
any linear function, the expected runtime of the (1+1) EA is O(n log n), i. e., that
there are two constants c and n′ such that, for n ≥ n′, the expected number
of iterations until a global optimum is generated is bound above by c · n log n.
However, neither c nor n′ are specified – they would be pretty large. Here we re-
consider this optimization scenario to demonstrate the potential of an analytical
method that makes use not only of the drift (w. r. t. a potential function, here the
number of bits set correctly), but also of the distribution of the evolving candidate
solution over the search space {0, 1}n: An invariance property of this distribu-
tion is proved, which is then used to derive a significantly better lower bound on
the drift. Finally, this better estimate of the drift results in an upper bound on the
expected number of iterations of 3.8 n log2 n + 7.6 log2 n for n ≥ 2.

1 Introduction

We consider the optimization of a pseudo-Boolean function f : {0, 1}n → R which is
given by a black box. That is, knowledge about f can solely be gathered by evaluating
f at a number of search points. Black-box optimization is also commonly referred to
as direct search. Randomized neighborhood search is a commonly used heuristic for
direct search in {0, 1}n. It is an iterative method which tries (in each iteration) to pick
a better solution from the neighborhood of the current candidate solution by choosing
one of the neighbors uniformly at random. Usually, the neighborhood of x ∈ {0, 1}n

consists of the Hamming neighbors of x, i. e. of all y ∈ {0, 1}n with a Hamming
distance H(x, y) = 1 (number of bits that differ). This heuristic is often called random-
ized local search (RLS). Obviously, RLS cannot escape a local optimum x∗ that is not
globally optimal and for which all neighbors have a worse function value. Naturally, a
different neighborhood could be chosen. As nothing is known about f , however, this is
hard choice to make. A different approach is to consider the complete search space as
the neighborhood, but to not sample uniformly at random any longer. One of these so-
called global methods is the (1+1) EA. It starts with a search point (called individual)
which is uniformly chosen from {0, 1}n. Then, in each iteration, a new candidate solu-
tion is generated by mutation, namely by independently flipping each bit of the current

� Supported by the German Research Foundation (DFG) through the collaborative research
center, Computational Intelligence” (SFB 531).
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candidate solution with a predefined probability p. Usually, p := 1/n is chosen, and this
mutation rate will also be considered here in the following. Iff the f -value of the mutant
is at least as good, then the mutant becomes the next iterate (otherwise the mutant is
discarded, so that the search stays where it was), which is called elitist selection.

Note that global convergence is trivially proved for the (1+1) EA: Since in each it-
eration a global optimum is sampled with probability at least pn, the expected number
of steps until a global optimum is generated is bounded above by p−n, namely by nn

for p = 1/n. So (global) convergence is not the point. The point is: How long does
it actually take? That is: What is the expected number of steps until a global optimum
is generated? It turned out that, because of its global search operator, the (1+1) EA is
often much harder to analyze than RLS. After first analyses (for simple functions like
ONEMAX) using Markov chain theory, cf. [1], a different analytical approach from
the field of classical algorithmics enabled a bunch of results for less trivial function
scenarios: the potential method. Instead of considering the f -value (of the evolving in-
dividual), a potential function is defined (w. r. t. the process), which takes its maximum
value if and only if the f -value is best. In many such analyses of the (1+1) EA, the num-
ber of bits set correctly is considered as the potential (of a search point). This technique
was used by Droste, Jansen, and Wegener [2] to prove, among other results, that the
expected number of iterations the (1+1) EA needs to generate the optimum of a linear
function isO(n log n). The expected change in the potential (per iteration) is commonly
called drift. Drift analysis has been put forward by He and Yao [3], for instance. Un-
fortunately, the application of their quite general approach to the scenario considered
here, namely the (1+1) EA using the standard mutation rate p = 1/n to maximize a lin-
ear function, contains a flaw [4], so that this fundamental scenario is not covered. Here
we reconsider this scenario and show how to prove a significantly better lower bound
on the potential’s drift using an invariance property of the distribution of the evolving
individual over the search space {0, 1}n during the optimization process.

The scenario. We consider the class of linear functions over {0, 1}n consisting of all
f : {0, 1}n → R with f(x) := c +

∑n
i=1 ci · xi, where x = xn · · ·x1. We assume

that f depends essentially on all n bits, i. e., we assume ci ∈ R \ {0}. The coefficient
ci will also be called the weight of the ith bit. Solely for better legibility, we assume
cn ≥ cn−1 ≥ · · · ≥ c1 > c = 0. Obviously, the ordering of the bits is irrelevant.
Moreover, because of the uniformly random initialization and the invariance property
of the mutation operator of the (1+1) EA (it does not care about whether a bit is 1 or 0),
these assumptions can be made without a loss of generality: The (1+1) EA behaves
identically on f and f⊕y(x) := f(x ⊕ y) for any fixed y ∈ {0, 1}n, in particular for y
the complement of the optimum (“⊕” denotes the bitwise XOR operation).

Two linear functions which are frequently considered are ONEMAX, where ci := 1
for each weight, and BINVALUE, where the bit-string is taken as the binary represen-
tation, i. e., ci := 2i−1. These are two extremes in the class of linear functions: In
ONEMAX all bits have the same weight, whereas in BINVALUE the weight of a single
bit (namely the nth) is larger than the total weight of the other n− 1 bits.

Unless stated differently, we consider the maximization of a linear function with
positive weights (non-decreasing from left to right; as described above) by the (1+1) EA
(as described above) using the standard mutation rate (bit-flip probability) p := 1/n.



A Blend of Markov-Chain and Drift Analysis 43

2 Invariance Property of the Individual’s Distribution over
{0, 1}n

In this section a particular – actually intuitive – property of the distribution of the evolv-
ing individual x over the search space {0, 1}n will be proved. This will be used in the
following Section 3 to prove that bad mutations, namely mutations that would result
in a loss of 1-bits if they were accepted, are likely to be such that they are discarded
by elitist selection. In Section 4 this observation will enable us to prove a significantly
better lower bound on the drift (expected change of the number of 1-bits), which is then
used to obtain our main result, a better upper bound on the expected optimization time.

Now, consider two bits xi and xj in x with j > i (not necessarily adjacent), so that
cj ≥ ci for their weights. First consider the case xjxi = 00. Assume that a mutation
flips xi, but not xj , and maybe some more bits. If this mutation is accepted, then the
mutation that flips the same bits except for xj instead of xi would also be accepted.
Note that the latter mutation occurs with the same probability. Now consider the case
xjxi = 11 and assume that a mutation flips xj , but not xi, and maybe some more bits. If
this mutation is accepted, then the mutation that flips the same bits except for xi instead
of xj would also be accepted. And again, the latter mutation occurs with exactly the
same probability. Thus, since cj ≥ ci, for xj a change from 0 to 1 is at least as probable
as for xi, whereas a change from 1 to 0 is at most as probable. All in, observing xj = 1
seems at least as probable as observing xi = 1 during the optimization – whatever the
number of iterations. This can be formulated more formally:

Theorem 1. Let x[t] denote the random individual (distributed over {0, 1}n) after t

iterations in our scenario. Then Prob(x[t]
n = 1) ≥ . . . ≥ Prob(x[t]

1 = 1) for t ≥ 0.

This invariance property of the distribution of the evolving individual over {0, 1}n will
be proved in the remainder of this section. The superscript in “x[t]” will be dropped
(unless necessary). Note that „Prob(xj = 1) ≥ Prob(xi = 1)“ is equivalent to
„Prob(xjxi = 10) ≥ Prob(xjxi = 01)“ since

Prob(xj = 1) = Prob(xjxi = 10) + Prob(xjxi = 11)
Prob(xi = 1) = Prob(xjxi = 01) + Prob(xjxi = 11)

Thus, to prove our conjecture we merely have to show that for any pair of adjacent bits
in x ∈ {0, 1}n , i. e. for i ∈ {0, . . . , n− 2}∑

X∈{0,1}i,Y ∈{0,1}n−2−i

Prob(x = X10Y ) ≥
∑

X∈{0,1}i,Y ∈{0,1}n−2−i

Prob(x = X01Y )

⇐⇒
∑

X∈{0,1}i,Y ∈{0,1}n−2−i

(
Prob(x = X10Y )− Prob(x = X01Y )

)
≥ 0 (1)

“XY ∈ {0, 1}j ” abbreviates “X,Y ∈ {0, 1}∗∧|X |+ |Y | = j ” in the following. Then

(∀XY ∈ {0, 1}n−2) Prob(x = X10Y )− Prob(x = X01Y ) ≥ 0
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is sufficient for each of the n− 1 sums in Eqn. (1) to be non-negative. Thus, our inter-
mediate objective is to prove that for the evolving individual x

(∀XY ∈ {0, 1}n−2) Prob(x[t] = X10Y ) ≥ Prob(x[t] = X01Y ) (2)

throughout the complete optimization process, i. e. for t ≥ 0. We will use induction
on the number t of iterations to prove Eqn. (2). For the induction step, recall that the
optimization of the (1+1) EA is a Markov chain with state space {0, 1}n. The transition
probabilities obviously depend on the function f to be maximized. Let H(·, ·) denote
the Hamming distance between two bit-strings and let p(h) = ph(1−p)n−h denote the
probability that a mutation flips exactly h bits at particlar positions in the string. Then
after iteration t ≥ 1 the Markov chain is in state y ∈ {0, 1}n with probability

Prob(x[t] = y) = Prob(x[t−1] = y) ·
∑

w∈{0,1}n : f(w)<f(y)

p(H(y, w)) (3)

+
∑

z∈{0,1}n : f(z)≤f(y)

Prob(x[t−1] = z) · p(H(z, y))

The first sum, weighted by Prob(x[t−1] = y), equals the probability to generate a worse
mutant from y, whereas the second sum equals the probability that the mutant of the
current state z in the ith step is y, where z can be any state not better than y. This
identity will be used in the induction step of the proof of Eqn. (2). Before we do so,
however, we take a closer look at the probability to generate a worse mutant.

Lemma 1. Let Mut : {0, 1}n → {0, 1}n denote the random mapping induced by the
mutation operator. Then in our scenario for all XYZ ∈ {0, 1}n−2:
Prob

(
f(Mut(X1Y 0Z))<f(X1Y 0Z)

)
≥ Prob

(
f(Mut(X0Y 1Z)) < f(X0Y 1Z)

)
.

This is almost obvious since X1Y 0Z and X0Y 1Z have the same number of 1-bits and
f(X1Y 0Y ) ≥ f(X0Y 1Z). A formal proof can be found in [5]. This result is now
used to estimate the transition probabilities in Eqn. (3) within the proof of the following
lemma (which implies Theorem 1, the invariance property).

Lemma 2. In our scenario, after any number of iterations, i. e. for t ≥ 0, the distribu-
tion of the evolving individual x[t] over {0, 1}n is such that for all XYZ ∈ {0, 1}n−2

Prob(x[t] = X1Y 0Z) ≥ Prob(x[t] = X0Y 1Z).

Proof. The induction basis is trivial: Since x[0] is uniformly distributed over {0, 1}n,
X1Y 0Z and X0Y 1Z are equiprobable after initialization. For the induction step let
XY Z ∈ {0, 1}n−2 be arbitrary, but fixed. Now consider Eqn. (3) for y := X0Y 1Z
and for y := X1Y 0Z , telling us the probabilities of the Markov chain being in state
X1Y 0Z resp. in state X0Y 1Z after t iterations (where p(h) = ph(1 − p)n−h is the
probability that a mutation flips exactly h particular bits, where p ∈ (0, 1/2) is the
bit-flip probability of the mutation operator). For the induction step we need to show
Prob(x[t] = X1Y 0Z) ≥ Prob(x[t] = X0Y 1Z). Lemma 1 actually tells us∑

u∈{0,1}n : f(u)<f(X1Y 0Z)

p
(
H(X1Y 0Z, u)

)
≥

∑
w∈{0,1}n : f(w)<f(X0Y 1Z)

p
(
H(X0Y 1Z,w)

)
,
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the induction hypothesis Prob(x[t−1] = X1Y 0Z) ≥ Prob(x[t−1] = X0Y 1Z), so that

Prob(x[t−1] = X1Y 0Z) ·
∑

u∈{0,1}n : f(X1Y 0Z)>f(u)

p
(
H(X1Y 0Z, u)

)
≥ Prob(x[t−1] = X0Y 1Z) ·

∑
w∈{0,1}n : f(X0Y 1Z)>f(w)

p
(
H(X0Y 1Z,w)

)
.

In other words, the probability of being in state X1Y 0Z and staying there (during the
tth iteration) is at least as large as it is for X0Y 1Z . It remains to be shown that getting
into state X1Y 0Z in the tth iteration is at at least as probable as getting into X0Y 1Z
in that step. Therefore note that flipping a set of i particular bits is more probable than
flipping a set of i + 2 particular bits when using a bit-flip probability of p ∈ (0, 1/2)
because 0 < p < 1/2 =⇒ (1−p)j−i > pj−i ⇐⇒ pi(1−p)n−i > pj(1−p)n−j for
0 ≤ i < j ≤ n. We focus on the rest of the summands, namely we are going to show
the following sufficient inequality:∑

u∈{0,1}n : f(u)≤f(X1Y 0Z)

Prob(x[t−1] = u) · p
(
H(u,X1Y 0Z)

)
=: S10

≥
∑

w∈{0,1}n : f(w)≤f(X0Y 1Z)

Prob(x[t−1] = w) · p
(
H(w,X0Y 1Z)

)
=: S01

Note that any index w in S01 occurs also as u in S10 since f(w) ≤ f(X0Y 1Z) ≤
f(X1Y 0Z). In the following A ∈ {0, 1}|X|, B ∈ {0, 1}|Y |, C ∈ {0, 1}|Z| and h :=
H(ABC,XY Z). We consider different cases for the summation index w in S01:

w = A0B0C: Since ABC ∈ {0, 1}n−2 such that f(A0B0C) ≤ f(X0Y 1Z), and
since f(X0Y 1Z) ≤ f(X1Y 0Z), also f(A0B0C) ≤ f(X1Y 0Z), so that u=A0B0C
is an index in S10, too. Finally, the Hamming distance ofA0B0C fromX0Y 1Z as well
as from X1Y 0Z equals h + 1, respectively, so that the summand associated with the
index A0B0C in S10 equals the summand associated with A0B0C in S10.

w = A1B1C: This case is analogous to the case w = A0B0C above.

w = A1B0C: This implies that w = A0B1C is also an index in S01. Furthermore,
recall that these two indices necessarily occur in S10, too. Thus, in this case

Prob(x[t] = X0Y 1Z | x[t−1] ∈ {A0B1C, A1B0C})

≤ Prob(x[t] = X1Y 0Z | x[t−1] ∈ {A0B1C, A1B0C})

⇔ Prob(x[t−1] = A0B1C) · p(h) +

Prob(x[t−1] = A1B0C) · p(h + 2)

}
≤
{

Prob(x[t−1] = A0B1C) · p(h + 2) +

Prob(x[t−1] = A1B0C) · p(h)

⇔ Prob(x[t−1]=A0B1C) · (p(h) − p(h+2)) ≤ Prob(x[t−1]=A1B0C) · (p(h) − p(h+2))

where the last inequality holds because of the induction hypothesis and p(h) > p(h+2),
i. e., p(h)− p(h+ 2) > 0 as seen above. In other words, the two summands associated
with the indices A0B1C and A1B0C result in a total value in S10 that is at least as
large as the value of the two summands corresponding to these two indices in S01.
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w = A0B1C and f(A1B0C) > f(X0Y 1Z): In this case, A0B1C is an index in S01,
but A1B0C is not. As f(A0B1C) ≤ f(X0Y 1Z) ⇒ f(A1B0C) ≤ f(X1Y 0Z),
however, in S10 not only u = A0B1C is an index, but also u = A1B0C is an index. As
H(A0B1C,X0Y 1Z) = H(A1B0C,X1Y 0Z) and, due to the induction hypothesis,
Prob(x[t−1] = A0B1C) ≤ Prob(x[t−1] = A1B0C), the summand in S10 associated
with u = A1B0C is at least as large as the summand in S01 associated with w =
A0B1C. (Even more, in contrast to S01 where A1B0C is not an index, in S10 there is
an additional summand associated with u = A0B1C.)

All in all, in S10 there are as many summands as in S01 and they sum to an over-all
value at least as large as the value of S01. As seen above, this finishes the induction. ��

It is easily seen (using the argument given right after Theorem 1) that this result directly
implies Theorem 1, the invariance property of the evolving individual’s distribution.

3 On the Probability of Bad Mutations

Now, this result on the distribution of the ones in the evolving individual allows us
to obtain better bounds on the drift in the potential, namely the number of 1-bits in
the individual. For instance, in the case when a mutation flips two bits xi and xj ,
where j > i (so that cj ≥ ci > 0 for their weights), then Prob(xj = 1 ∧ xi = 0) ≥
Prob(xj = 0 ∧ xi = 1). This holds for arbitrarily chosen i, j such that n ≥ j > i ≥ 1.
Thus, whenever a mutation flips exactly two bits, then the sub-string flipped is „10“ as
least as probable as it is „01.“ For shorter notation, we introduce the following notions:

Definition 1. Consider the mutation of a given individual x ∈ {0, 1}n.

B-mutation. Let B ∈ {0, 1}∗ be the substring in/of x consisting of the bits chosen to
be mutated/flipped. Then we call the mutation of x a “B-mutation.”

z-zeros-k-ones mutation. A mutation that flips exactly z zeros and exactly k ones in x.
z-zeros mutation. A mutation that flips exactly z zeros (and possibly some ones) in x.
surely unacceptable mutation. A mutation that flips more ones than zeros such that

each flipping 0-bit can be mapped one-to-one to a flipping 1-bit with a weight at
least as large as the weight of the associated zero, respectively.

potentially acceptable mutation. A mutation that is not surely unacceptable.

In the example preceding the definition, we noticed that a 1-zero-1-one mutation is at
least as probable a 10-mutation as it is a 01-mutation. More general, since the random
choice of the bits to be flipped is independent of the individual (’s distribution over
{0, 1}n), we obtain for our scenario as a direct consequence of Lemma 2 the following:

Corollary 1. Let J,K,L ∈ {0, 1}∗. In our scenario the mutation observed in an arbi-
trary but fixed step is at least as probable a J1K0L-mutation as a J0K1L-mutation.

To make actual use of this result, consider the relationR ⊂ ∪k∈{2,...,n}{0, 1}k×{0, 1}k

defined by (A,B) ∈ R :⇔ (∃J,K,L ∈ {0, 1}∗) A = J0K1L ∧ B = J1K0L.
“(A,B) ∈ R" is written as “A ≤R B". Furthermore, we let R∗ denote the transitive hull
of the relation R. Then the above corollary extends to the following:
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Corollary 2. Let A,B ∈ {0, 1}k, 2 ≤ k ≤ n, such that A ≤R∗ B. In our scenario, in
an arbitrary but fixed step, a B-mutation occurs at least as probable as an A-mutation.

Our intermediate objective is to show that, whenever a mutation flips more ones than
zeros – which would result in a loss of ones if the mutation was accepted – then this
bad mutation is rather likely to be an unacceptable one, so that the loss of ones is not
accepted. By this, the drift w. r. t. the potential (#ones in the individual) is supposed to
become larger, hopefully Ω(1/# zeros). The following result will be utilized therefor.

Lemma 3. In our scenario for k ≥ 2: Whenever a 1-zero-k-ones mutation occurs in a
step, then this mutation is accepted at most with probability 1/(k + 1).

Proof. As the bits’ weights decrease from left to right, R∗ induces a total order on the
1-zero-k-ones mutations because 01k ≤R 101k−1 ≤R 1101k−2 ≤R . . . ≤R 1k0. For
k ≥ 2, a 1-zero-k-ones mutation is potentially acceptable only if it is an 01k-mutation.
The other k of the

(
k+1
1

)
= k + 1 different mutation types are surely unacceptable.

Using the preceding corollary, we know that each of these surely unacceptable types
occurs at least as probable as a 01k-mutation, so that the latter occurs at most with a
probability of 1/(k + 1) (given that a 1-zero-k-ones mutation occurs). ��

Analogous results for mutations that flip two (or more) 0-bits can be obtained. For our
scenario, however, 1-zero mutations are the crucial ones, so that we focus on these.

4 Better Estimate of the Drift – Better Bound on the Runtime

Let Γ denote the power-set of {1, . . . , n} and p(b) := pb(1−p)n−b the probability that
a mutation flips exactly b bits. Let Mut(x, I) denote the mutant obtained by flipping the
bits in x ∈ {0, 1}n that are determined by the index set I ∈ Γ . Then the drift equals∑

I∈Γ

p(#I) ·
(
#{i ∈ I |xi = 0} −#{i ∈ I |xi = 1}

)
· [f(Mut(x, I)) ≥ f(x)] , (4)

where [·] is an indicator variable that resolves to 1 if the predicate is true, and to 0
otherwise. In the following, the summands will be grouped according to the number
z ∈ {0, . . . , n} of zeros that are flipped. If a z-zeros-k-ones mutation is accepted, the
number of ones changes by z − k. The probability that exactly z zeros and k ones
are flipped in x ∈ {0, 1}n equals Px,p(z, k) :=

(|x|0
z

)
·
(|x|1

k

)
· pz+k · (1− p)n−(z+k).

For k > z ≥ 1, let Ax,p(z, k) denote an upper bound on the probability that a z-zeros-
k-ones mutation of x ∈ {0, 1}n is accepted. Let z ≥ 1 be fixed. For k > z, the
summands in Eqn. (4) for which I corresponds to a z-zeros-k-ones mutation sum up to a
negative value not smaller than Px,p(z, k)·Ax,p(z, k)·(z−k). A z-zero-0-ones mutation
is always accepted and increases the number of ones by z (≥ 1). All summands for
which I corresponds to a z-zeros-0-ones mutation sum up to Px,p(z, 0) ·z. Thus, for the
fixed number z ≥ 1 of flipping zeros, the contribution of all possible z-zero mutations
to the drift (the expected change in the number of 1-bits) is at least

Δx,p(z) := Px,p(z, 0) · z +
∑

z<k≤|x|1Px,p(z, k) · Ax,p(z, k) · (z − k) . (5)
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Up to now, z ≥ 1 was assumed. For z = 0, note that in our scenario a mutation that does
not flip a 0-bit cannot change the individual, so that the total drift is bounded below by
Δx,p :=

∑|x|0
z=1 Δx,p(z). For z ≥ 1 the formula for Δx,p(z) can be transformed into

z ·
(
P (z, 0) +

∑
z<k≤|x|1

P (z, k) · A(z, k) · z − k

z

)

= z ·
(
|x|0
z

)
·
(
pz · (1 − p)n−z +

∑
z<k≤|x|1

(
|x|1
k

)
· pz+k · (1 − p)n−(z+k) · A(z, k) · z − k

z

)

= z ·
(
|x|0
z

)
· pz(1 − p)n−z ·

(
1 +
∑

z<k≤|x|1

(|x|1
k

)
·
(

p

1 − p

)k

· A(z, k) · z − k

z

)
. (6)

The sign of Δx,p(z) is determined by the sign of the rightmost factor (in big parenthe-
ses). We now show that Δx(z) := Δx,1/n(z) is non-negative for all z when p = 1/n.

Lemma 4. In our scenario, where the mutation rate p = 1/n is used, for any fixed
individual x ∈ {0, 1}n: Δx(z) ≥ 0 for z ∈ {1, . . . , |x|0}.

Proof. Obviously, z ·
(|x|0

z

)
· pz(1 − p)n−z ≥ 0, so that we have to show that the

rightmost factor (1 +
∑
. . . ) in Eqn. (6) is non-negative. A(z, k) := 1 is a trivial up-

per bound on the probability that a (bad) mutation is accepted, so that we concentrate on

∑
z<k≤|x|1

(
|x|1
k

)
·
(

p

1− p

)k

· −(z − k)
z

≤ 1. (7)

We take a closer look at the summands:
(

p
1−p

)k

=
(

1
n·(1−1/n)

)k

= (n − 1)−k and(|x|1
k

)
≤ (n−1)k

k! since |x|1 =≤ n − 1. Thus, the sum in Eqn. (7) is bounded above by

∑
z<k≤|x|1

(n− 1)k

k!
· (n− 1)−k · k − z

z
=

∑
z<k≤|x|1

k − z

k! · z ≤
∑
k≥2

k − 1
k!

(8)

since z ≥ 1 is assumed. The rightmost sum equals
∑

k≥2

(
1

(k−1)! −
1
k!

)
= 1

(2−1)! = 1,

which proves the inequality Eqn. (7) and with it the claimed inequality Δx(z) ≥ 0. ��

So, now we know that Δx(z) is non-negative for any number z of zeros that may be
flipped by a mutation – whatever the mutated individual x. Consequently, we know that
throughout the optimization process the drift is non-negative in each iteration. For a
good upper bound on the runtime, however, we need a positive lower bound on the drift.
In fact, the larger the lower bound on the drift, the better. Since for p = 1/n the expected
number of bits that flip equals one, we take a second look at Δx(1) to derive a better
estimation for the contribution of 1-zero mutations to the drift. In Eqn. (6) the sum over
k has been estimated for z = 1 using the trivial estimate Ax,p(z, k) = 1. Now, making
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use of our knowledge about the distribution of the evolving individual x over {0, 1}n,
namely by Lemma 3, we know that for k ≥ 2 a 1-zero-k-ones mutation is accepted at
most with probability 1/(k + 1), so that for our scenario A(1, k) := 1/(k + 1) can be
used instead of the distribution-independent/trivial upper bound Ax,p(1, k) = 1.

Lemma 5. For p := 1/n, A(1, k) := 1/(k+ 1), z := 1 the following inequality holds:∑
z<k≤n

(|x|1
k

)
·
(

p
1−p

)k

· A(z, k) · k−z
z < 0.282.

Proof. As in proof of the previous lemma, the sum to be bounded from above is at most∑
z<k≤n

1
k! ·A(z, k) · k−z

z . For the settings of the lemma we obtain∑
z<k≤n

1
k!
· A(z, k) · k − z

z
≤
∑
k≥2

1
k!
· 1
k + 1

· (k − 1) =
∑
k≥2

k − 1
(k + 1)!

=
∑
k≥3

k − 2
k!

=
∑
k≥2

1
k!
−
∑
k≥3

2
k!

= (e− 2)− 2(e− 2.5)

using
∑

k≥1 1/k! = e− 1. Finally, (e− 2)− 2(e− 2.5) = 3− e < 0.282. ��

Plugging the estimate of the preceding Lemma 5 into Eqn. (6) for z := 1, we obtain

Δ(1) ≥ |x|0 ·
1
n

(
1− 1

n

)n−1

· (1 − 0.282) ≥ |x|0
n
· 0.718

e
>
|x|0
n
· 0.264

(Recall thatΔ(z) ≥ 0 for all z.) This better estimation of the contribution of 1-zero mu-
tations to the drift utilizing the individual’s distribution over the search space {0, 1}n is
crucial: Now the lower bound on the drift is Δ ≥ Δ(1) ≥ |x|0

n ·0.264 = Ω(#zeros/n).
When we consider the number of zeros as the approximation error (the Hamming dis-
tance from the optimum), then the result on the drift reads: As long as there are zeros
in x, in each step we expect the approximation error to decrease by a factor smaller (i. e.
better) than 1− 0.264/n. Since (1− 0.264/n)(n/0.264)·ln2 � 1/2, the number of steps
until we expect the progress to be such that the approximation error is halved is less
than (n/0.264) · ln 2 < 2.63n. The actual question is, however: What is the expected
number of steps to actually halve the approximation error? The following lemma helps
us to turn our lower bound on the drift into an upper bound on the expected runtime:

Lemma 6. Let X1, X2, . . . denote random variables with bounded support and S the
random variable defined by S := min{ t | X1 + · · · + Xt ≥ g} for a given g > 0.
Given that S is a stopping time (i. e., the event {S = k} depends solely onX1, . . . , Xk),
if E[S] <∞ and E[Xi | S ≥ i ] ≥ � > 0 for all i, then E[S] ≤ E[X1 + · · ·+XS ]/�.

Proof. Note that the Xi need not be independent and that, since the Xi are bounded,
the precondition E[S] <∞ implies E[X1 + · · ·+XS ] <∞. We use

E[X1 + · · ·+XS ] =
∞∑

i=1

Prob{S ≥ i }·E[Xi|S ≥ i ] ≥
∞∑

i=1

Prob{S ≥ i }·� = E[S]·�

where the first equation is the major part of the proof of Wald’s equation (a proof can
be found in [6, Apx. B] for instance). ��
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We concentrate on the expected number of steps to halve the approximation error, and
thus, in the application of the preceding lemma we let Xi denote the increase in the
number of ones in the ith iteration and choose g := z/2 and � := (z/2) · 0.264/n,
where we use that 0 ≤ Xi ≤ n in our scenario, and that the condition {S ≥ i} merely
means that the approximation error has not been halved within the first i− 1 iterations.
Finally, we use E[X1 + · · ·+XS ] ≤ z/2 + z/n, where “+z/n” is a rough general
upper bound on the expected increase in the number of ones (in a step), namely the
expected number of flipping zeros, which is z · p = z/n since p = 1/n. Thus, the
application of the previous lemma yields the following upper bound on the expectation
of the number S of steps to halve the approximation error, i. e. the number of 0-bits:

E[S] ≤ E[X1 + · · ·+XS ]
�

≤ z/2 + z/n

(z/2) · 0.264/n
≤ 3.79n+ 7.58.

With this bound on the zeros’ expected half-life we can finally derive our main result.

Theorem 2. Let the (1+1) EA using the mutation rate (bit-flip probability) 1/n maxi-
mize a linear function f : {0, 1}n → R, n ≥ 2. Then the expected number of steps until
the evolving individual has maximum f -value is smaller than 3.8n log2 n+ 7.6 log2 n.

Proof. Without loss of generality we may assume that all coefficients are positive, so
that the all-ones string has maximum function value. As the expected number of 0-bits
in the initial individual equals n/2, after "log2(n/2)#+ 1 ≤ log2 n halvings (in expec-
tation w. r. t. the initialization) there is less than one 0-bit left, i. e., the optimal all-ones
bit-string has been generated. Since the expected number of iterations to halve the num-
ber of zeros is smaller than 3.8n + 7.6 (independently of the initialization), we obtain
an upper bound of (3.8n+ 7.6) · log2 n on the expected number of iterations. ��

5 Conclusions

We have exemplarily shown for the fundamental scenario “standard (1+1) EA on linear
functions” how knowledge about the distribution of the evolving individual over the
search space can significantly improve (upper) bounds on the expected runtime until an
optimum is generated. The invariance property of the individual’s distribution proved
and then utilized here is actually quite intuitive. Interestingly, its proof is quite straight-
forward and not that sophisticated. Nonetheless, it enables a remarkable improvement
of the estimation of the drift (and, thus, of the runtime). For other scenarios, a suit-
able invariance property may be harder to find – experiments may actually give useful
hints – and probably even harder to prove. But, as we have demonstrated here, these
efforts may indeed pay off. Actually, in some situations such knowledge is necessary
to obtain an asymptotically tight bound. Then the use of an invariance property of the
evolving individual’s distribution over the search space can actually be an elegant tool.

Naturally, for more advanced (evolutionary) algorithms that use a population, the
distribution of the population over the search space may be considered. In [7] a similar
approach is followed for the analysis of a (μ+1) evolution strategy, showing that this
technique can indeed make sense for the analysis of population-based algorithms.
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Abstract. In this paper we investigate multiplicative noise models in the con-
text of continuous optimization. We illustrate how some intrinsic properties of
the noise model imply the failure of reasonable search algorithms for locating the
optimum of the noiseless part of the objective function. Those findings are rig-
orously investigated on the (1 + 1)-ES for the minimization of the noisy sphere
function. Assuming a lower bound on the support of the noise distribution, we
prove that the (1 + 1)-ES diverges when the lower bound allows to sample neg-
ative fitness with positive probability and converges in the opposite case. We
provide a discussion on the practical applications and non applications of those
outcomes and explain the differences with previous results obtained in the limit
of infinite search-space dimensionality.

1 Introduction

In many real-world optimization problems, objective functions are perturbed by noise.
Evolutionary Algorithms (EAs) have been proposed as effective search methods in such
contexts [5,10]. A noisy optimization problem is a rather general optimization problem
where for each point x of the search space, we can observe f(x) perturbed by a random
variable or in other words for a given x we can observe a distribution of possible objec-
tive values. The goal is in general to converge to the minimum of the averaged value of
the observed random variable. One type of noise encountered in real-world problems
is the so-called multiplicative noise where the noiseless objective function f(x) is per-
turbed by the addition of a noise term proportional to f , ie. the noisy objective function
F reads

F(x) = f(x)(1 +N ) (1)

where N is the noise random variable, sampled independently at each new evalua-
tion of a point. Such noise models are in particular used to benchmark robustness of
EAs with respect to noise [12]. The focus here is continuous optimization (that will
be minimization) where f maps a continuous search space, ie. a subset of Rd, into
R. The EAs specifically designed for continuous optimization are usually referred as
Evolution Strategies (ES), where a set of candidate solutions evolves by first applying
Gaussian perturbations (mutations) to the current solutions then selection. ES in noisy
environments have been studied by Arnold and Beyer [8,3,1]. Multiplicative noise has
been investigated in the case ofN being normally distributed with a standard deviation
scaled by 1/d for a (1 + 1)-ES [4], (μ, λ)-ES [3,7], (μ/μI, λ)-ES [2] and f being the
sphere function f(x) = ‖x‖2. Under the assumption that d goes to infinity, Arnold and

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 52–61, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Beyer show, for f(x) = ‖x‖2, positive expected fitness gain for the elitist (1+1)-ES (if
the fitness of the parent is not reevaluated in the selection step which is the case of our
study). This implies a decrease of the expectation of the square distance to the optimum
(here zero). However, convergence of the (1 + 1)-ES to the optimum of the noiseless
part of the noisy objective function seems to be unlikely if the noise random variable
takes values smaller than −1 as we illustrate now on a simple example. Assume indeed
that N takes three distinct values (each with probability 1/3) +γ, 0 and −γ where γ
satisfies γ > 1. For a given x ∈ Rd, the objective functionF(x) takes 3 different values
(each with probability 1/3) (1 + γ)‖x‖2, ‖x‖2, (1 − γ)‖x‖2. The last term is strictly
negative for x non equal to zero. Therefore, if one negative objective function value is
reached, the (1+1)-ES that can only accept solutions having a lower objective function
value will never accept solutions closer to the optimum since they have higher objec-
tive function values1. On the contrary the (1 + 1)-ES will diverge log-linearly2, i.e. the
logarithm of the distance to the optimum will increase linearly.

Starting from this observation, we investigate how the properties of the support of the
noise distribution relate to convergence or divergence of stochastic search algorithms
and can make the convergence to the optimum of the noiseless part of the objective
function hopeless for reasonable search algorithms. Compared to previous approaches,
we do not make use of asymptotic assumptions, trying to capture effects that were
not observed before [4]. In Section 2, we detail the noise model considered and show
experimentally on a (1 + 1)-ES that divergence and convergence is determined by the
probability to sample noise values smaller than −1. In Section 3, we provide some
simple proofs of convergence and divergence for the (1+1)-ES. In Section 4 we discuss
the results and explain where the difference with the results in [4] stems from.

2 Motivations

Elementary Remarks on the Noise Model. We investigate multiplicative noise mod-
els as defined in Eq. 1 where N is a random variable with finite mean and f(x) is
the noiseless function that we assume positive in the sequel. We also assume that
1 + E(N ) > 0 such that the argmin3 of the expected value of F(x) is the argmin
of f(x). Often, the distribution of N is assumed symmetric, implying then that 1 +
E(N ) = 1 > 0. Though one might think that this condition is sufficient such that mini-
mizing F(x) amounts to minimizing f(x), we sketch now, why divergence to∞ of the
distance to the optimum happens if 1 +N can take negative values.

Assume that f(x) converges to infinity when ‖x‖ goes to ∞; typically f(x) can
be the famous sphere function f(x) = ‖x‖2 and assume that the random variable N
admits a density function pN (t), t ∈ R whose support is an interval [mN ,MN [, i.e.
N ∈ [mN ,MN [ and the probability that N ∈ [a, b] for any mN ≤ a < b ≤ MN is

1 Their absolute value is smaller though. However, trying to minimize the absolute value of F
instead is not a solution in general, consider for instance the function f(x) = (‖x‖2 + 1)
(1 + N ).

2 We will say that a sequence (dn)n diverges (resp. converges) log-linearly if there exists c > 0
(resp. c < 0) such that limn

1
n

ln(dn) = c.
3 The argmin of an objective function x �→ h(x) are defined as h(arg minx h) = minx h(x).
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strictly positive. The function gmN (x) = f(x)(1 + mN ) gives a lower bound of the
values that can be reached by the noisy fitness function for different instantiations of
the random variableN (because f is positive). For a given x, F(x) can take values with
positive probability in any open interval of ]gmN (x), f(x)[ (4).

In Fig. 1 are depicted a cut of f(x) = ‖x‖2 and gmN (x) = f(x)(1 + mN ) for
mN equals−0.5 and−1.5. The position of mN with respect to−1 determines whether
gmN (x) is convex or concave: for mN > −1, gmN (x) is convex, converging to infinity
when ‖x‖ goes to ∞ and for mN < −1, gmN (x) is concave, converging to minus
infinity when ‖x‖ goes to ∞. Minimizing gmN (x) in the case of mN < −1 means
that ‖x‖ is diverging to +∞ and gmN (x) is diverging to −∞ which is the opposite of
the behavior one would like since we are aiming at minimizing the non-noisy function
f(x) = ‖x‖2. Note that in the example sketched in the introduction with N taking
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Fig. 1. [Dashed Line] One dimensional cut of f(x) = ‖x‖2 along one arbitrary unit vector.
[Straight line] Left: One dimensional cut of g−0.5(x) = ‖x‖2(1− 0.5). Right: One dimensional
cut of g−1.5(x) = ‖x‖2(1 − 1.5). For a given x, the noisy-objective function can, in particular,
take any value between the dashed curve and the straight curve.

the values γ, −γ and 0, the plot of ‖x‖2 and (1 − γ)‖x‖2 for γ = 1.5 are the curves
represented in Fig 1 (right).

Experimental Observations. We investigate now numerically how the “shape” of the
lower bound might affect the convergence. For this purpose we use a (1, 5)-ES and a
(1 + 1)-ES using scale-invariant adaptation scheme for the step-size5.

We investigate the function Fs(x) = ‖x‖2(1 +N ) when the noise N is uniformly
distributed in the ranges [−0.5, 0.5] and [−1.5, 1.5] respecitvely denoted U[−0.5,0.5]

and U[−1.5,1.5]. This latter noise corresponds to the concave lower bound g−1.5(x) =
−0.5‖x‖2 plotted in Fig. 1. In Figure 2, the result of 10 independent runs of the (1, 5)-
ES (10 upper curves of each graph) in dimension d = 10 are plotted for the non-noisy
sphere (left), f(x) = ‖x‖2(1 +U[−0.5,0.5]) (middle) and f(x) = ‖x‖2(1 + U[−1.5,1.5])
(right). Not too surprisingly, we observe a drastic difference in the last two cases: the
algorithm converges to the optimum for the noise U[−0.5,0.5] whereas the distance to the

4 Note that gmN (x) < f(x) iff mN < 0.
5 In a scale-invariant ES, the step-size is set at each iteration as a (strictly positive) constant σ

times the distance to the optimum. This artificial adaption scheme (since in practice one does
not know the distance to the optimum!) allows to achieve optimal convergence rate for ES and
is therefore very interesting from a theoretical point of view. The algorithm is mathematically
defined in Section 3.
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Fig. 2. Distance to the optimum (in log-scale) versus number of evaluations. Ten independent
runs for the scale-invariant (1, 5)-ES (10 upper curves of each graph) and (1 + 1)-ES (10 lower
curves of each graphs) with d = 10 and σ = 1/d. Left: f(x) = ‖x‖2. Middle: f(x) = ‖x‖2(1+
U[−0.5,0.5]). Right: f(x) = ‖x‖2(1 + U[−1.5,1.5]).

optimum increases (log)-linearly for the noise having a lower bound smaller than −16.
Comparing the left and middle graphs we also observe, as expected, that the presence of
noise slows down the convergence. On the same figure (lower curves of the graphs), the
results of 10 independent runs of the (1+1)-ES are plotted for the three same functions.
As in the case of the comma strategy we observe that the (1 + 1)-ES diverges in the
case of the noise U[−1.5,1.5] and that, when convergence occurs, the convergence rate
is slower in presence of noise. Last, we investigate numerically the (1 + 1)-ES where
N is normally distributed and in particular unbounded. This corresponds to the case
investigated in [4]. We carry out tests for a standard deviation of the Gaussian noise
equals 0.1, 2 and 10. Results are presented in Fig. 3. We observe convergence when the
standard deviation of the noise equals 0.1 and divergence in the last two cases.
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Fig. 3. Ten independent runs for the scale-invariant (1+1)-ES with a normally distributed noise:
on f(x) = ‖x‖2(1 + σεN (0, 1)) with σε equals 0.1 (left), 2 (middle) and 10 (right) for d = 10
and σ = 1/d

3 Convergence and Divergence of the (1 + 1)-ES

In this section, we provide a simple mathematical analysis of the convergence and diver-
gence of the (1 + 1)-ES experimentally observed in the previous section. We focus for

6 However, contrary to what we will see for the (1 + 1)-ES, we do not state that “-1” is a limit
value between convergence and divergence in the case of (1, λ)-ES. Indeed convergence and
divergence depends on the intrinsic properties of the noise and on λ and σ as well (see [8]).
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the sake of simplicity on lower bounded noise, i.e. the support of the noise is included
in [mN ,+∞[. We prove that the (1 + 1)-ES minimizing the noisy sphere converges
if mN > −1 and diverges if mN < −1. The proofs are rather simple and rely on the
Borel-Cantelli Lemma. For the sake of readability we provide here a sketch of the demon-
strations and send the proofs with the technical details in the Appendix of the paper.

Mathematical Model for the (1 + 1)-ES. The (1 + 1)-ES is a simple ES which
evolves a single solution. At an iteration n, this solution denoted Xn, is called parent.
The minimization of a given function f mapping Rd (d ≥ 1) into R using the (1+1)-ES
algorithm is as follows: At every iteration n, the parent Xn is perturbated by a Gaus-
sian random variable σnNn, where σn is a strictly positive value called step-size and
(Nn)n ∈ Rd are independent realizations of a multivariate isotropic normal distribu-
tion on Rd denoted by N(0, Id) (7). The resulting offspring Xn + σnNn is accepted
if and only if its fitness value is smaller than the one of its parent Xn. One of the key
points in minimization using isotropic ES8 is how to adapt the sequence of step-sizes
(σn). Convergence of the (1 + 1)-ES is sub-log-linear bounded below by an explicit
log-linear rate. This lower bound for the convergence rate is attained for the specific
case of the sphere function and scale-invariant algorithm where the step-size is chosen
proportional to the distance to the optimum, i.e. σn = σ‖Xn‖ where σ is a strictly
positive constant [6,9]. The scale-invariant algorithm has a major place in the theory
of ES since it corresponds to the dynamic algorithm implicitly studied in the one-step
analysis computing progress rate or fitness gain [11,8]. Using this adaptation scheme,
the algorithm is referred to as the scale-invariant (1 + 1)-ES and the offspring writes as
Xn + σ‖Xn‖Nn. The noisy sphere function is denoted

Fs(x) = ‖x‖2(1 +N ) (2)

where we assume that the random variableN has a finite expectation such thatE(N ) >
−1 and admits a density function pN which lies in the range [mN ,MN [ where −∞ <
mN < MN ≤ +∞, MN > −1 and mN �= −1. The normalized noisy part N of the
noisy sphere function will be called normalized overvaluation of x. The term normal-
ized overvaluation was already defined in [4] where it corresponds to the opposite of
the quantity considered here up to a factor d/2. The minimization of this function using
the scale-invariant (1 + 1)-ES is mathematically modeled by the sequence of parents
(Xn) with their relative noisy fitnesses (Fs(Xn)) and normalized overvaluations (On).
At an iteration n, the fitness of the parent is Fs(Xn) = ‖Xn‖2 (1 +On) and the fit-
ness of an offspring equals ‖Xn + σ‖Xn‖Nn‖2 (1 +Nn) where (Nn)n is a sequence
of independent random variables with N as a common law. Let X0 ∈ Rd be the first
parent with a normalized overvaluation O0 sampled from the distribution of N . Then
the update of Xn for n ≥ 0 writes as:

Xn+1 = Xn + σ‖Xn‖Nn if ‖Xn + σ‖Xn‖Nn‖2 (1 +Nn) < ‖Xn‖2 (1 +On) ,
= Xn otherwise ,

(3)

7 N(0, Id) is the multivariate normal distribution with mean (0, . . . , 0) ∈ Rd and covariance
matrix the identity Id.

8 ES are called isotropic when the covariance matrix of the distribution of the random vectors
(Nn)n is Id.
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and the new normalized overvaluationOn+1 is then:

On+1 = Nn if ‖Xn + σ‖Xn‖Nn‖2 (1 +Nn) < ‖Xn‖2 (1 +On) ,
= On otherwise .

(4)

The (1+1)-ES algorithm ensures that the sequence relative to the function to minimize
(which is (Fs(Xn)) in our case) decreases. This property makes the theoretical study of
the (1 + 1)-ES easier than that of comma strategies. Our study shows that the behavior
of the scale-invariant (1 + 1)-ES on the noisy sphere function (2) depends on the lower
bound of the noise mN .

Theorem 1. The (1 + 1)-ES minimizing the noisy sphere (Eq. 2) defined in Eq. 3 con-
verges to zero if mN > −1 and diverges to infinity when mN < −1.

Proof. The proof of this theorem is split in two cases mN > −1 and mN < −1
respectively investigated in Proposition 1 and Proposition 2. ��
The proofs heavily rely on the second Borel-Cantelli Lemma that we recall below. But
first, we need a formal definition of ‘infinitely often (i.o.)’: Let qn be some statement,
eg. |an − a| > ε. We say (qn i.o.) if for all n, ∃m ≥ n such that qm is true. Similarly,
for a sequence of eventsAn in a probability space, (An i.o.) equals {w|w ∈ An i.o.} =
∩n≥0 ∪m≥n Am := lim An. The second Borel-Cantelli Lemma (BCL) states that:

Lemma 1. Let (An)n≥0 be a sequence of events in some probability space. If the events
An are independent and verify

�
n≥0 P (An) = +∞ then P (lim An) = 1.

Proposition 1 (Convergence for mN > −1). If mN > −1, the sequences (Fs(Xn))
and (‖Xn‖) converge to zero almost surely.

Sketch of the proof (see detailed proof in Appendix) The condition mN > −1 ensures
that the decreasing sequence (Fs(Xn)) is positive. Therefore it converges. Besides the
sequence (‖Xn‖) is upper bounded by θ := Fs(X0)/(1 + mN ) as shown in Fig. 1
(left). Consequently, the probability to hit, at each iteration n, a fixed neighborhood
of 0 is lower bounded by a strictly positive constant. Applying BCL we deduce the
convergence of the sequence (Fs(Xn)) (and then that of (‖Xn‖)) to zero. ��

Proposition 2 (Divergence for mN < −1). If mN < −1, the sequence (Fs(Xn))
diverges to −∞ almost surely and the sequence (‖Xn‖) diverges to +∞ almost surely.

Sketch of the proof (see detailed proof in Appendix) As 1 + mN < 0, the probability
to sample a noise Nn such that 1 +Nn < 0 is striclty positive. Therefore there exists
an integer n1 such that for all n ≥ n1, Fs(Xn) < 0. Consequently (‖Xn‖) is lower
bounded byA as illustrated in Fig. 1 (right) where the straight horizontal line represents
the slope y = Fs(Xn1). Besides, the probability to have Fs(Xn) as small as we want
is lower bounded by a strictly positive constant which gives with BCL the divergence
of the sequence (Fs(Xn)) to −∞, i.e. the sequence (‖Xn‖) diverges to +∞. ��
Remark that for the example sketched in the introduction whereN takes the 3 different
values γ, 0 and −γ and under the condition γ > 1 the proof of divergence will follow
the same lines.
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4 Discussion and Conclusion

We conclude from Theorem 1 that what matters for convergence or divergence of the
(1 + 1)-ES in the case of noisy objective function with positive noiseless part is the
position of the lower bound mN of the noise distribution N with respect to −1 or in
other words the existence or not of possible negative fitness values. This result applies in
particular when N equals a truncated normal distribution, i.e. N = σεN (0, 1)1[−a,a]

9

for any a and σε positive. Whenever σεa > 1, Proposition 2 applies and the (1 + 1)-ES
diverges.

Those results might appear in contradiction with those of Arnold and Beyer [4] prov-
ing that the expected fitness gain is positive−and therefore convergence in mean holds
for the scale-invariant ES−for a noise distributed according to a normal distribution. In
their model, Arnold and Beyer scale the standard deviation of the noise σε with 1/d,
i.e. when d → ∞, σε converges to 0. The largest value for the normalized σ∗

ε in [4,
Fig 5, 6, 8], for d = 80 corresponds to a standard deviation of 0.05 for which the
probability to have (1 + 0.05N ) < 0 is upper bounded by 10−88 (10), i.e. relatively
unlikely! Therefore though they consider some unbounded noise having a support in R,
the normalization of the standard deviation of the noise implies a so small probability to
sample 1 +N below −1 that the unbounded noise reduces to the case of convergence
where mN > −1. The same conclusion holds for the numerical example given in
Section 2, Fig. 3 (left) where the standard deviation of 0.1 corresponds to a probability
to have (1+0.1N ) < 0 lower bounded by 10−23. Therefore though the theory predicts
divergence as soon as mN < −1, what matters in practice is how likely the probability
to sampleN < −1 is.

In conclusion, we have illustrated that convergence but also divergence can happen
for the multiplicative noise model. Those results are due to the probability to sample
1 + N smaller than 0 and are therefore intrinsic to the noise model and not to the ’+’
strategy. The probability that 1+N can be very small, in which case theory predicts di-
vergence that will not be observed in simulations. We decided to present simple proofs
relying on Borel-Cantelli Lemma. As a consequence, those proofs do not show the
log-linear convergence and divergence observed in Section 2. Obtaining the log-linear
behavior can be achieved using the theory of Markov chain on continuous state space.
Last, we did not include results concerning a translated sphere f(x) = ‖x‖2 + α with
α ≥ 0 for which our proofs of convergence can be extended but where linear conver-
gence does not hold anymore due to the fact that the variance of the noise distribution
does not reduce to zero close to the optimum.
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9 The indicator function 1[−a,a](x) equals 1 if x ∈ [−a, a] and 0 otherwise.
10 For computing the lower bound we use the fact that P (N (0, 1) < x) ≤

exp(−x2/2)/|x|
�

(2π) for x < 0.
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Appendix

Proof of Proposition 1. The sequence (Fs(Xn)) is decreasing and is lower bounded
by 0 as Fs(Xn) ≥ ‖Xn‖2 (1 +mN ) ≥ 0 . Therefore it converges to a limit l ≥ 0. Let
us show that l = 0. Let ε > 0, we have to show that ∃ n0 ≥ 0 such that Fs(Xn) ≤ ε for
n ≥ n0. Since the sequence (Fs(Xn)) is decreasing, we only have to show that ∃ n0 ≥
0 such thatFs(Xn0) ≤ ε . Let β > 1 and such that [1+mN , β(1+mN )[⊂ supp(1+N ).
In Lemma 2, we have defined the event An,ε,β , shown that it is included in the event
{Fs(Xn+1) ≤ ε} and proved that the events (An,ε,β)n are independent. Moreover,
P (An,ε,β) = P (‖e1+σN‖2 ≤ ε

(1+β)θ2(1+mN ))P (1+N ≤ β(1+mN )) (where θ is de-

fined in Lemma 2) is a strictly positive constant for all n. Then
�+∞

n=0 P (An) = +∞.
This gives by BCL that P (lim An) = 1. Therefore P (lim {Fs(Xn+1) ≤ ε}) = 1, i.e.



60 M. Jebalia and A. Auger

∃n0 such that ∀n ≥ n0, Fs(Xn) ≤ ε. ThereforeFs(Xn) converges to 0. The sequence
(‖Xn‖) converges also to 0 as ‖Xn‖2 ≤ Fs(Xn)

1+mN
. ��

Lemma 2. If mN + 1 > 0, the following points hold:

1. The sequence (‖Xn‖) is upper bounded by θ :=
�

Fs(X0)
1+mN

> 0.

2. Let ε > 0 and β > 1 such that β(1 + mN ) ∈ supp(1 +N ). For n ≥ 0, the event

An,ε,β :=
����� Xn

‖Xn‖ + σNn

���2

≤ ε
(1+β)θ2(1+mN )

�
∩ {1 +Nn ≤ β(1 +mN )}

�
(11)

verifies An,ε,β ⊂ {Fs(Xn+1) ≤ ε}. Moreover, the events (An,ε,β)n are indepen-
dent.

Proof. 1. For n ≥ 0, Fs(Xn) = ‖Xn‖2 (1 +On) = ‖Xn‖2
	
1 +Nφ(n)



where φ(n)

is the index of the last acceptance (obviously φ(n) ≤ n). Then, for n ≥ 0
Fs(Xn) ≥ ‖Xn‖2 (1 +mN ) ≥ 0 and consequently ‖Xn‖2 ≤ Fs(Xn)

1+mN
≤ Fs(X0)

1+mN
.

2. Let ε > 0 and β > 1 such that [1 + mN , β(1 + mN )[⊂ supp(1 + N ) (with
βmN < MN if MN < +∞). For n ≥ 0, the event����� Xn

‖Xn‖ + σNn

���2

< ε
(1+β)θ2(1+mN )

�
∩ (1 +Nn < β(1 +mN ))

�
implies for the

offspring X̃n := Xn + σ‖Xn‖Nn created at the iteration n that

Fs(X̃n) = ‖Xn‖2
��� Xn

‖Xn‖ + σNn

���2

(1 +Nn) ≤ θ2 ε
(1+β)(1+mN )θ2β(1 +mN ) .

Then Fs(X̃n) ≤ β
β+1ε < ε. If this offspring is accepted then Fs(Xn+1) < ε, otherwise

the fitness is already less than ε and we have also Fs(Xn+1) < ε. Finally, the indepen-
dency of the events (An,ε,β)n result from Lemma 3 applied to the sequence (Xn). ��

Lemma 3. Let (Un) be a sequence of random vectors in Rd such that P (‖Un‖ =
0) = 0 and Nn independent random vectors distributed as N(0, Id). Then the variables

Yn :=
��� Un

‖Un‖ + σNn

��� are independent.

Proof. The independance of the random variables Yn is due to the fact that the mul-
tivariate Gaussian variable N(0, Id) is isotropic and is therefore invariant by rotation.
The length of the vector Un

‖Un‖ + σNn will therefore be independent of where we start

on the unit hypersphere, i.e., independent of the vector Un

‖Un‖ . ��

Proof of Proposition 2. Let n ≥ n1 (n1 defined in Lemma 4). We have to show that for
any m < Fs(Xn1) < 0, ∃ n ≥ n1 such that Fs(Xn) ≤ m, or equivalently |Fs(Xn)| ≥
|m|. Similarly to the proof of Proposition 1, by BCL we have (Bn,m,β i.o.) ((Bn,m,β

being defined in Lemma 4) therefore Lemma 4 gives that (Fs(Xn+1) ≤ m i.o.). Then
Fs(Xn) = ‖Xn‖2 (1 +On) tends to −∞. For all n ≥ n1, 0 ≥ 1 + On ≥ 1 + mN ,
then |Fs(Xn)|

|1+mN | ≤ ‖Xn‖2 for n ≥ n1. Consequently (‖Xn‖) converges to +∞ almost
surely. ��
Lemma 4. Assume that mN + 1 < 0. The following points hold:
11 The multivariate Gaussian distribution is absolutely continuous with respect to the Lebesgue

measure such that P (‖Xn‖ = 0) = 0 and then we can divide by ‖Xn‖ almost surely.
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1. There exists n1 ≥ 0 and A :=
�

|Fs(Xn1 )|
|1+mN | > 0 such that Fs(Xn) < 0 and

‖Xn‖ ≥ A for n ≥ n1 almost surely.
2. Let m < Fs(Xn1) < 0 and β > 1. For n ≥ n1, the event Bn,m,β defined

by Bn,m,β :=
	�
|1− σ‖Nn‖|2 ≥ |m|

|mN+1|
β+1
A2

�
∩
�

1 +Nn ≤ 1+mN
β

�

verifies

Bn,ε,β ⊂ (Fs(Xn+1) ≤ m).

Proof. 1. We first prove that the event A := { ∃ n1 ≥ 0 such that ∀ n ≥ n1,
Fs(Xn) < 0} is equivalent to the event B := { ∃ p0 ≥ 0 such thatNp0 < −1 }.
Proving that A ⊂ B is equivalent to show that Bc ⊂ Ac. Suppose that ∀p ≥ 0, Np ≥
−1. Then ∀p ≥ 0, Op ≥ −1. Therefore ∀p ≥ 0, Fs(Xp) = ‖Xp‖2 (1 +Op) ≥ 0.
Now we have to show that B ⊂ A: Suppose that ∃ p0 ≥ 0 such that Np0 < −1.
We denote p1 ≥ 0 the integer defined by p1 = min{p ∈ N such that Np < −1}. Then
Fs (Xp1) < 0 andFs (Xp) ≥ 0 for all 0 ≤ p ≤ p1−1. Since (Fs (Xn)) is a decreasing
sequence, Fs(Xn) < 0 ∀ n ≥ p1. This implies that P (A) = P (B). Now, we have for
all n ≥ 0, P (Bc) = P (∩+∞

p=0 (Np ≥ −1)) ≤ Πn
p=0P (Np ≥ −1) = (P (N ≥ −1))n .

Let a := P (N ≥ −1)(12). As mN < −1, then a < 1 which gives P (Bc) = 0 and
therefore P (A) = 1. Then ∃ n1 ≥ 0 such that Fs(Xn) < 0 for n ≥ n1 almost surely.
The sequence (Fs(Xn))n is decreasing (because of the elitist selection). Then for n ≥
n1, Fs(Xn) ≤ Fs(Xn1) < 0 . This gives |Fs(Xn)| ≥ |Fs(Xn1)| > 0. It is easy to
see (from Eq. 4) that for all n ∈ N , On = Nψ(n) where ψ(n) is the last acceptance
index before the iteration n. Combining this with the fact if 1 +mN ≤ 1 +Nψ(n) < 0
one gets 0 < |Fs(Xn1)| ≤ |Fs(Xn)| = ‖Xn‖2|1 +Nψ(n)| ≤ ‖Xn‖2|1 + mN | . Then

‖Xn‖2 ≥ |Fs(Xn1 )|
|1+mN | > 0 .

2. By the first result of the Lemma, ∃ n1 ≥ 0, A > 0 such that Fs(Xn) < 0 and
‖Xn‖ ≥ A ∀n ≥ n1. We consider n ≥ n1, then ‖Xn‖ > A. We notice that ∀ y ∈
Rd\{(0, 0)},

��� y
‖y‖ + σN

��� ≥ |1− σ‖N‖|. Let β > 1. As the upper bound MN verifies

1 + MN > 0, 1+mN
β ∈ supp(1 + N ) ∩ R−. Suppose that we have |1 − σ‖Nn‖|2 ≥

(β+1)|m|
A2|1+mN | and |1 +Nn| ≥ |1+mN |

β , then the offspring X̃n := Xn + σ‖Xn‖Nn is such

that |Fs(X̃n)| = ‖Xn‖2
��� Xn

‖Xn‖ +σNn

���2

|1+Nn| ≥ ‖Xn‖2|1−σ‖Nn‖|2|1+Nn| . Then

|Fs(X̃n)| ≥ β+1
β |m| > |m|which givesFs(Xn+1) ≤ Fs(X̃n) ≤ m. Consequently, for

n ≥ n0, the event Bn,m,β :=
�
|1− σ‖Nn‖2| ≥ (β+1)|m|

A2|1+mN |

�
∩
�
|1 +Nn| ≥ |1+mN |

β

�
is included in {Fs(Xn+1) ≤ m}. ��

12 We apply the same reasoning with a = 2/3 for the example given in the introduction where
N take values in {−γ, 0, γ} (with γ > 1) .
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Abstract. The optimum of numerical problems quite often lies on the
constraint boundary or even in a vertex of the feasible search space.
In such cases the evolutionary algorithm (EA) frequently suffers from
premature convergence because of a low success probability near the
constraint boundaries. We analyze premature fitness stagnation and the
success rates experimentally for an EA using self-adaptive step size con-
trol. For a (1+1)-EA with a Rechenberg-like step control mechanism
we prove premature step size reduction at the constraint boundary. The
proof is based on a success rate analysis considering a simplified muta-
tion distribution model. From the success rates and the possible state
transitions, the expected step size change can be derived at each step.
We validate the theoretical model with an experimental analysis.

Keywords: Premature Convergence, Constrained Real-Parameter Op-
timization, Evolution Strategies, Self-Adaptation.

1 Introduction

Whenever the search space is restricted due to constraints of the underlying prob-
lem, the EA has to make use of heuristic extensions which are called constraint
handling methods. Constraint handling is very relevant to practical applications.
Although the effect of premature convergence at the constraint boundary is al-
ready known, to the best of our knowledge no theoretical investigation on this
topic has been published yet. Premature convergence at the constraint boundary
is experimentally analyzed in section 2 and proven theoretically for simplified
conditions in section 3.

1.1 Constrained Real-Parameter Optimization

A constraint is a restriction on possible value combinations of variables. In the
N -dimensional search space IRN the task is to find an optimal solution x which
minimizes f(x) with subject to

inequalities gi(x) ≤ 0, i = 1, . . . , n1, and
equalities hj(x) = 0, j = 1, . . . , n2.

(1)

A feasible solution x satisfies all n1 inequality and n2 equality constraints.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 62–71, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Premature Convergence in Constrained Continuous Search Spaces 63

1.2 Premature Convergence

Premature convergence of the mutation strength belongs to the most frequent
problems of self-adaptive ES. As evolution rewards short term success the evolu-
tionary process can get stuck in local optima and suffer from premature
convergence. The problem is well known and experimentally proved. Only few
theoretical works concentrate on this phenomenon, e.g. from Rudolph [8]. Stone
and Smith [10] came to the conclusion that low mutation rates and high selection
pressure result in low diversity. Another reason for premature convergence was
revealed by Liang et al. [6], who point out that a solution with a high fitness
but a far too small step size in one dimension is able to cause stagnation by
inheriting this mutation strength to all descendants. Meyer-Nieberg and Beyer
[7] point out that the reason for premature convergence could be that the oper-
ators do not fulfill the postulated requirements for mutation operators. Hansen
[2] examined the conditions under which self-adaptation fails, in particular the
inability of the step sizes to increase. He tries to answer the question whether a
step size increase is affected by a bias of the genetic operators or due to the link
between objective and strategy parameters.

2 Experimental Analysis

ES on constrained optimization problems may suffer from premature convergence
in case of active inequality constraints. Broadly speaking, the reason for the
premature step size reduction is the fact that the constrained region cuts off the
mutative success area. Consequently, the self-adaptation process favors smaller
step sizes, whose success area is not cut off.

2.1 Premature Convergence at the Constraint Boundary

The premature step size reduction has already been shown experimentally by
Kramer and Schwefel [4] and for the motivation of biased mutation for ES [5].
Here, we reappraise the experiments on Schwefel’s problem 2.40 [9] for the death
penalty method1 and the dynamical penalty function by Joines and Houck [3], see
Table 1, in order to emphasize the success rate situation. Problem 2.40 minimizes
F (x) = −

∑5
i=1 xi subject to the constraints

Gj(x) =

⎧⎨⎩
xj ≥ 0, for j = 1, ..., 5

−
5∑

i=1

(9 + i)xi + 50000 ≥ 0, for j = 6.
(2)

with minimum x∗ = (5000, 0, 0, 0, 0)T and F (x∗) = −5000. Each row of Table 1
shows the results of a (15,100)-ES after 50 runs. As termination condition fit-
ness stagnation is chosen: If the difference between the fitness value of the best
individual of a generation and the best of the following generation is smaller
1 Death penalty produces mutations until λ feasible exist.
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Table 1. Experimental results of death penalty (DP) and the dynamic penalty function
by Joines and Houck (Dyn) on Schwefel’s problem 2.40 [9]. None of both techniques is
able to approximate the optimum in any run.

best mean worst dev
DP -4948.079 -4772.338 -4609.985 65.2
Dyn -4780.554 -4559.129 -4358.446 85.0

than a θ = 10−12, then the ES terminates as the magnitude of the steps sizes
is too small to effect further improvements. The ES makes use of uncorrelated
mutation with N step sizes, intermediate recombination and initializes the so-
lutions at the point x(0) = (250, 250, 250, 250, 250)T. Both constraint-handling
methods are not able to approximate the optimum of the problem satisfactorily.
The standard deviations dev show that the algorithms produce different results
in the various runs.

2.2 Success Rate Analysis

An experimental analysis of the success rates at the constraint boundary of
2.40 help to understand the situation. The success rate ps is the ratio of suc-
cessful, i.e. feasible and better mutations S, and all mutations A: (ps) = |S|

|A| .

Figure 1 shows the success probabilities to produce feasible offspring (1), to pro-
duce better offspring (2) and to produce feasible better (3) offspring, i.e. (ps), in
the neighborhood of the constraint boundary. On the feasible surface of a hyper-
sphere with radius r around the optimum x(∗), 1000 points have been generated.
Around every generated point 1000 samples were generated on the surface of
a hypersphere with radius σ̂ · r. The success rate situation can be generalized
because of the linearity of the fitness and the constraint functions: it depends
on the ratio r/σ̂. The probability for feasibility is almost one for σ̂ < 0.001 and
decreases to zero between 0.001 < σ̂ < 1. Consequently, the success rate (ps)
decreases within the same interval.
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step size s

Fig. 1. The success probabilities ps in the neighborhood of the constraint boundary on
Schwefel’s problem 2.40
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From this success probability analysis and experimentally determined suc-
cessful μ/λ-rates we try to ascertain an optimal normalized step size σ̂. An
increase of the number of offspring yields the rate μ

λ = 15
700 , i.e. from λ > 700

premature convergence can be prevented with μ = 15 on problem 2.40 in every
run. A (15,700)-ES achieves the approximation with an normalized2 step size of
σ̂ ≈ 0.12. This observation corresponds to the success rate analysis of plot 1.
The success rate of (ps) = 15

700 ≈ 0.021 yields a normalized step size between 0.1
and 0.5, which matches the observation σ̂ ≈ 0.12. Interestingly, this resembles to
the optimal normalized step size σ̂ ≈ 0.12 which could be shown for the sphere
function [1], but with a success rate of (ps) ≈ 0.27.

3 Theoretical Analysis

In this section we analyze the premature convergence at the constraint boundary
with a simple (1+1)-EA using a Rechenberg-like step size adaptation method.
From an analysis of the success rates with linear constraints and a linear fitness
function we can describe the behavior of a Markov model of the (1+1)-EA con-
trolling the step sizes. After the proof of premature convergence we validate the
model experimentally using Gaussian mutation.

3.1 A Proof of Premature Convergence for a (1+1)-EA

We consider the two dimensional case of a linear objective function and one
linear constraint with the angle β between the latter and the contour lines of
the fitness function at the location where the EA first encounters the constraint
boundary. We assume that the optimum is not located at the same position and
that the EA has to move along the constraint boundary to converge. Figure 2
shows the success rate situations of individual x with distance d to the constraint
boundary for the three cases: 1. σ < d, i.e. not constrained, and constrained 2.
σ > d, σ < s and 3. σ > d, σ > s. We analyze the behavior of a (1+1)-EA with
adaptive step sizes modeled3 by the Markovian process (Xt, σt)t≥0 generated by

Xt+1 =

⎧⎨⎩
Xt + σtZt if f(Xt + σtZt) < f(Xt)

∧g(Xt + σtZt) = 0
Xt otherwise

(3)

and

σt+1 =

⎧⎨⎩γσt if f(Xt + σtZt) < f(Xt)
∧g(Xt + σtZt) = 0

γ−1σt otherwise
(4)

with step size σt and mutation parameter γ > 1. The function g measures the
constraint violation. Each random vector Zt, t ≥ 0 is independent and identically
2 Ratio between average step sizes of μ parents and the distance to optimum.
3 As Rudolph [8] states, this EA does not exactly match a (1+1)-EA with self-adaptive

step size control, but it can be transferred to a broader class of EAs.
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Fig. 2. Success rates at the boundary of the feasible search space. Three cases have to
be considered, i.e. 1. σ < d, 2. σ > d, σ < s and 3. σ > d, σ > s. The bold circular arcs
are the regions where successful mutations are produced.

distributed in the following way: We assume that mutations σtZt are produced
on the edge of the circle around Xt with radius σt. When a successful mutation
is produced, the step length σt is increased and decreased otherwise. We are
interested in the development of the step size σt and the distance dt to the
constraint boundary. For the sake of better readability we write σ instead of
σt and d instead of dt where possible. In the following lemma 1 we analyze the
success probabilities for the three cases.

Lemma 1. Let (ps) be the success probability for individual Xt of the (1+1)-
EA, with step size σ and distance d to the constraint boundary. Then it holds
(ps)σ<d = 1/2 and (ps)σ>d < 1/2. For d/σ → 0 it holds (ps)σ>d → β/(2π).

Proof. The analysis of the probabilities for changing through the states is based
on a success rates analysis of the circle model for the three mentioned cases, see
figure 2. In our model the success rate ps is the relation between the length of
the circular arc l = 2πrα/(2π) and the circumference 2πr:

(ps) = α/(2π). (5)

The EA starts its run in the feasible part of the search space, σ < d. As the
fitness function is linear and the constraint boundary does not cut off the circle,
the angle over the circular arc with successful mutations is α = π. Hence,



Premature Convergence in Constrained Continuous Search Spaces 67

(ps)σ<d = 1/2 (6)

The step sizes are increased with probability 1/2 and decreased with probability
1/2. For σ > d we have to distinguish two cases:

1. σ < s, i.e. the circle cuts its contour line within the feasible region. Distance
s is the segment of the contour line between x and the constraint boundary
with s = (d/ sinβ). The success area on the edge of the circle is the cir-
cular arc over α and the circular arc in the opposite direction. The success
probability (ps)σ>d,σ<s can also be expressed with the help of ϑ

(ps)σ>d,σ<s = 1/2− ϑ/π (7)

The triangle with a right angle yields cos(ϑ) = d/σ and the success proba-
bility becomes

(ps)σ>d,σ<s = 1/2− arccos(d/σ)/π (8)

As 0 < (d/σ) < 1, it holds 0 < arccos(d/σ) < π/2 and the desired property

(ps)σ>d,σ<s < 1/2 (9)

The success probability (ps)σ>d,σ<s is comparatively small. Analyzing the
asymptotic behavior we get

(ps)σ>d,σ<s → 0 for d/σ → 0, (10)

i.e. for small distances d → 0 or huge step sizes σ → ∞ the success proba-
bility becomes 0. But one have to keep in mind that a small d/σ implies a
small angle β as σ < s. It is obvious that (ps)σ>d,σ<s ≥ (ps)σ>d,σ>s, hence
the analysis of the case σ > s is more interesting as it considers β.

2. σ > s, i.e. the circle cuts its contour line beyond the constraint boundary.
The angle α is π − (ξ + ϑ). In the triangle of β and ξ it holds ξ = π/2− β,
we get α = β + π/2− arccos(d/σ). Hence, the success probability is

(ps)σ>d,σ>s = α/(2π) = β/(2π) + (π/2− arccos(d/σ))/(2π) (11)

Again, for 0 < d/σ < 1, it holds 0 < arccos(d/σ) < π/2 and as we postulated
β = π/2, we get

(ps)σ>d,σ>s < 1/2 (12)

As (ps)σ>d,σ<s ≥ (ps)σ>d,σ>s for a small distance d or a big step size σ, we
can assert the asymptotic behavior

(ps)σ>d → β/(2π) for d/σ → 0 (13)

Furthermore, (ps)σ>d decreases for smaller β. ��
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To illustrate the success rate situation, we assume β = π/4 and d/σ = 1/2.
As 2d > (d/ sinβ), we have to consider the case σ > s. The success rate becomes
(ps)σ>d,σ>s = 5/24. As the probability for a small step size (ps)σ<d = 1/2 is
much bigger, it will in particular be preferred by a self-adaptive mechanism.

We continue to prove the step size reduction for our (1+1)-EA. As the opti-
mum lies at the constraint boundary, the EA will encounter the latter, σ > d.
Theorem 1 describes the behavior of the (1+1)-EA at the constraint boundary
by stating the expected mutation change E(γt+1) in each iteration, lemma 1 pro-
vides a quantitative analysis stating the success rate (ps)σ>d, in the following
denoted as p.

Theorem 1 (Premature Step Size Reduction). Let f be a linear fitness
function and g a linear constraint boundary with angle β < π/2 between f and
g. In the vicinity of the constraint boundary σ > d, the above modeled (1+1)-EA

with γ > 2 reduces its step size σ in each iteration by E(γt+1) = γ
1

(1−p)−
1
p

t < 1
with p < 1/2.

Proof. We distinguish two states Γ1 and Γ2 for an individual Xt in the neigh-
borhood of the constraint boundary, σ > d. State Γ1 denotes the situation of
success, i.e. f(Xt + σtZt) < f(Xt) ∧ g(Xt + σtZt) = 0. Γ2 denotes the failure
f(Xt + σtZt) > f(Xt) ∨ g(Xt + σtZt) > 0. Lemma 1 shows that the probability
for a success is small, at most smaller than 1/2 and converges to β/(2π) for
d/σ → 0. The state transitions between the two states Γ1 and Γ2 are analyzed
in the following.

– Γ1 → Γ1. The probability for a success is p, which is relatively low, see
lemma 1. A success results in a step size increase σt+1 = γσt. A successful
mutation may lie arbitrarily close to the constraint boundary (d/σ → 0) and
therefore decrease the success probability p rapidly. But a success may also
lead to an increase of the distance to the constraint boundary, at most by
σ sinβ (dotted line). The constrained case is not left, if the step size increase
is higher than the distance increase to guarantee d/σ < 1:

d + σ sinβ
σγ

< 1 ≡ 2 < γ (14)

As d/σ < 1 it must hold γ > 2 to fulfill the above condition for the proof of
step size reduction. So, the probability for staying in state Γ1 is

P (Γ1 → Γ1|Γ1) = p, σt+1 = γσt. (15)

– Γ2 → Γ1: The probability for a success if the last step was a failure is again p,
the step size is increased and the constrained case is not left for γ > 1+tanβ.

P (Γ2 → Γ1|Γ2) = p, σt+1 = γσt. (16)

– Γ1 → Γ2: The probability for a failure is 1 − p. It results in a step decrease
σt+1 = γ−1σt. If the step decrease leads to d/σt+1 > 1, the constraint
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boundary is left. In this case step size decrease and increase occur with the
same probability and the expected change of σ becomes E(γt+1) = γt ·γ−1

t =
1. But the constraint boundary will be reached again within the following
steps. Hence, we summarize

P (Γ1 → Γ2|Γ1) = 1− p, σt+1 = γ−1σt. (17)

– Γ2 → Γ2: Similar to transition Γ1 → Γ2 the probability to stay in the state
Γ2 is the probability 1− p for a failure.

P (Γ2 → Γ2|Γ2) = 1− p, σt+1 = γ−1σt. (18)

This yields the following state transition probability matrix T for states Γ1

and Γ2:

T =
(
p (1− p)
p (1− p)

)
(19)

It is worth to mention that in the case of a success with an overwhelming pro-
bability of p′ = (1 − β/(2π)) → 1 for β → 0, the distance d to the constraint
boundary is decreased. This condition also contributes to an iterative reduction
of the distance to the constraint boundary before reaching the optimum. From
the probability of each state transition and the step size change, an expected
step size change can be derived. Figure 3 shows the probabilities for the state
transitions of Γ1 and Γ2, together with the change of step size σ for each transi-
tion. In each state, there are only two possibilities: staying in the same state or

1 2

Fig. 3. The state transitions of Γ1 and Γ2, its probabilities at the constraint boundary
and the influence on the step size σ

leaving the state. Hence, the state transitions are geometrically distributed. We
are able to determine the expected change of the step sizes. The probability to
leave state Γ1 is 1− p, so the expected number of iterations to stay is 1/(1− p).
Each iteration the step size is increased by γ. When leaving to state Γ2 the step
size is decreased by γ−1. The probability to leave state Γ2 is p, so the expected
number of iterations to stay is 1/p with a step decrease by γ−1. Returning to
state Γ1 leads to a step increase by γ. From these considerations we can now
determine the expected development of γ by

E(γt+1) = γ
1

1−p

t · γ−1
t · γ−

1
p

t · γt = γ
1

1−p− 1
p

t . (20)
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Fig. 4. Experimental validation for the step size reduction of the (1+1)-EA at the con-
straint boundary. The left plot shows the fitness development, the right plot confirms
the reduction of σ. In generation t ≈ 12 the EA reaches the constraint boundary.

Lemma 1 has proven that p < 1/2, so 1
1−p −

1
p < 0 and

E(γt+1) = γ
1

1−p− 1
p

t < 1 (21)

The expected change of step size σ is E(γt+1) < 1 in each generation, so the
steps are decreasing at the constraint boundary. For small success probabilities,
see lemma 1, the decrease becomes quite high. ��

3.2 Experimental Model Validation

In order to verify the theoretical model, we implemented the (1+1)-EA specified
by equations 3 and 4, but based on Gaussian mutation with one step size σ.
We tested various settings for γ and initializations for σ to minimize the linear
function

f(x) = −x2 with g(x) = −x1 + x2 < 0, (22)

starting from point x(0) = (5,−5)T . For N = 2, σ(0) = 1 and γ = 1.2 we
observed the fitness stagnation in every of 100 runs. The stagnation could also
be observed with other parameterizations. The EA is not able to move along
the constraint boundary while constantly minimizing f(x). Instead, it decreases
the step size when reaching the vicinity of the constraint boundary − like the
theoretical model predicts. Figure 4 shows the fitness development and the σ-
reduction of a typical run for 100 generations. We observed the same behavior
of the EA for higher dimensions.

4 Summary and Outlook

For the mutation strength control of ES, the premature fitness stagnation could
be shown experimentally. We proved step size reduction for a (1+1)-EA under
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simplified conditions. The proof is based on a success rate analysis consider-
ing a simplified EA model on linear functions. The situation at the constraint
boundary can be modeled by two different states. From the success rates and
the possible state transitions, the expected step size changes in every step can
be derived. We validated the (1+1)-model with a Rechenberg-like step size rule
experimentally for the postulated linear conditions. From the above analysis we
must conclude that we have to control the mutation rates with care and sense
for the success probabilites at the constraint boundary. In the future we will try
to extend the proof to more than two dimensions and for other mutation distri-
bution functions. The model may be feasible for p < 1/2 which surely holds for
other symmetric distributions, because a part is cut off by the constraint bound-
ary. The question is whether the state transitions for the Markovian model can
also be guaranteed for N > 2. We also plan to extend the argumentation to
nonlinear constraints and nonlinear fitness landscapes.
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Abstract. It has been shown that simple evolutionary algorithms are
able to solve the minimum cut problem in expected polynomial time
when using a multi-objective model of the problem. In this paper, we
generalize these ideas to the NP-hard minimum multicut problem. Given
a set of k terminal pairs, we prove that evolutionary algorithms in com-
bination with a multi-objective model of the problem are able to obtain
a k-approximation for this problem in expected polynomial time.

1 Introduction

Evolutionary algorithms and other kinds of metaheuristics have become very
popular for solving combinatorial optimization problems. In recent years, a lot
of progress has been made in understanding this kind of algorithms with respect
to their runtime behavior. Most of these results are on classical polynomially
solvable problems such as minimum spanning trees [19] or shortest paths [9,20].
One goal of such studies on easy problems is to get an understanding how the
heuristics work in order to analyze difficult problems in the future. Later on, such
studies have served as a basis for analyzing evolutionary algorithms on NP-hard
problems [10,16,22].

Recently, it has been shown in [17] that the minimum cut problem cannot be
solved by simple single-objective evolutionary algorithms. In contrast to this a
multi-objective approach has been presented which provably solves the problem
in expected polynomial time. The algorithms analyzed in this paper use the
dual problem, i. e., the maximum flow problem, as a subroutine. The goal of
this study was to gain new insights into the behavior of evolutionary algorithms
when considering cutting problems and to express the usefulness of the original
problem and its dualization with respect to the optimization by evolutionary
algorithms. The study carried out in the present paper extends the mentioned
results to the NP-hard minimum multicut problem. In this problem a set of k
pairs of nodes (si, ti), 1 ≤ i ≤ k is given and the goal is to find a cut of minimum
cost such that all (si, ti) pairs are separated. This problem has been shown to
� This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part
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be MAX SNP-hard [3,7,8,21]. As a consequence, there is no polynomial time
approximation scheme (unless P = NP) [2].

Due to the results obtained in [17], we consider multi-objective models for the
multicut problem using flow computations which can be carried out in polyno-
mial time as a subroutine. It is our aim to examine how such an approach can
approximate an optimal solution for this problem. We study an evolutionary al-
gorithm called Global SEMO (GSEMO) which has been widely used for the run-
time analysis of evolutionary multi-objective algorithms (see e.g. [4,10,17,18]).
Our analysis points out that this algorithm achieves a factor k-approximation in
polynomial time as long as the weights on the edges of the given graph are poly-
nomially bounded in the size of the input. The requirement on the edge weights
is necessary since the population size of GSEMO may become as large as a poly-
nomial in the largest edge weight [13]. One way to deal with this circumstance
is to incorporate the concept of ε-dominance [14] into the algorithm. Using this
mechanism in a similar way as done in [13,17], we prove that a k-approximation
can be achieved in expected polynomial runtime even if the weights of the given
graph are not polynomially bounded.

The paper is organized as follows. In Section 2, we present the model of the
multicut problem and the algorithms that are analyzed in this paper. The results
for GSEMO are presented in Section 3. In Section 4 we improve these results
by incorporating the ε-dominance approach into the algorithm. Finally, we give
some concluding remarks.

2 Problem Definition

Weconsider the following problem.Given a connecteddirected or undirected graph
G = (V, E) on n vertices andm edges and a cost function c : E &→ N+ that imposes
positive integer weights on the edges. Let {(s1, t1), . . . , (sk, tk)} be a set of k pairs
with si �= ti, 1 ≤ i ≤ k. The source of commodity i is given by si, the target by ti.
We denote by cmax = maxe∈E c(e) the largest cost among all edges.

A multicut S ⊆ E is a set of edges such that there is no path from si to ti in
(V,E \ S) for any commodity i. The cost of a subset of E is defined as the sum
of the costs of its elements. The goal is to find a multicut S ⊆ E of minimum
cost. For k = 1, we obtain the minimum s-t-cut problem as a special case.

The dual of this problem is the maximum-value multicommodity flow problem.
This problem asks for an si-ti-flow for each commodity i such that the sum of
all flow values is maximum. The flow for each commodity i has to satisfy the
flow conservation constraints at every node except si and ti, and the sum of all
k flows has to obey the capacities given by the cost function c.

Let Fi denote the value of a maximum si-ti-flow in G and define F :=
∑

i Fi.
Let F ∗ denote the sum of all flow values of a maximum multicommodity flow in
G and let C∗ denote the cost of a minimum multicut of G. Note that F ∗ ≤ C∗ ≤
C := m · cmax. Furthermore we have F ∗ ≤ F =

∑
i Fi ≤ k · F ∗ ≤ k · C∗ ≤ k · C.

For the undirected case it has been shown [11] that C∗ ∈ O(log(k) · F ∗). The
proof is constructive and leads to an O(log k)-approximation algorithm for the
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minimum multicut problem. This bound is tight, i. e., there are graph classes for
which C∗ ∈ Ω(log(k) · F ∗) holds. In the directed case, the gap between F ∗ and
C∗ can be as large as Ω̃(n1/7) [6] and is at most O(

√
n log(k + 1)) [5]. In the

special case k = 1 we have F ∗ = C∗ by the max-flow-min-cut theorem [1].
Based on the results in [17], we consider an edge-based approach. We work

with bit strings of length m = |E|. For a search point x ∈ {0, 1}m, the set
E(x) := {ei ∈ E | xi = 1} denotes the subset of E corresponding to the 1’s in
x. Note, that not every search point represents a multicut, i. e., not every search
point is a feasible solution.

Due to the results for the special case of the minimum s-t-cut problem [17],
we do not consider single-objective evolutionary algorithms at all. Instead we
focus on multi-objective evolutionary algorithms. Examples for simple multi-
objective evolutionary algorithms that have been analyzed before are SEMO
and GSEMO [12,15,18]. The GSEMO algorithm can be described as follows.
Note that the fitness function f is vector-valued and the ≤-comparison is to be
understood component-wise.

Algorithm 1. GSEMO (Global Simple Evolutionary Multi-objective Optimizer)
1. Choose x ∈ {0, 1}m uniformly at random.
2. Determine f(x) and initialize P := {x}.
3. Repeat

– choose x ∈ P uniformly at random.
– create an offspring y by flipping each bit of x independently with proba-

bility 1/m.
– let P unchanged, if there is an z ∈ P such that f(z) ≤ f(y) and f(z) �=
f(y).

– otherwise, exclude all z with f(y) ≤ f(z) and add y to P .

We consider the fitness function f : {0, 1}m &→ N2, f(x) = (cost(x), f low), where
cost(x) =

∑
e∈E(x) c(e), flow(x) :=

∑
i flowi(x) and flowi(x) denotes the value

of a maximum si-ti-flow in G(x) := (V,E \ E(x)).
Note that the values of both components cost(·) and flow(·) of the fitness

function can be exponential in the input size, which implies that GSEMO has
to cope with a Pareto front of exponential size.

Therefore, we also investigate a variation of GSEMO which uses the concept
of ε-dominance [14]. It has already been shown in [13,17] that such an approach
may be provably helpful when dealing with exponentially large Pareto fronts.
We consider the DEMO algorithm (Diversity Evolutionary Multi-objective Op-
timizer) which differs from GSEMO by using a function b that assigns the same
function value to search points with similar objective vectors. During the run
of the algorithm at most one search point for any fixed function value of b is
present in the population.

We examine DEMO partitioning the objective space into boxes by using
the function b : {0, 1}m &→ N2 with b1(x) :=

⌊
log(1+cost(x))

log(1+ε)

⌋
and b2(x) :=⌊

log(1+flow(x))
log(1+ε)

⌋
, where ε > 0 is a parameter that determines the size of the

boxes. The algorithm has the following description.
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Algorithm 2. DEMO (Diversity Evolutionary Multi-objective Optimizer)
1. Choose x ∈ {0, 1}m uniformly at random.
2. Determine f(x) and initialize P := {x}.
3. Repeat

– choose x ∈ P uniformly at random.
– create an offspring y by flipping each bit of x independently with proba-

bility 1/m.
– let P unchanged, if there is an z ∈ P such that b(z) ≤ b(y) and (b(z) �=
b(y) or cost(z) + flow(z) < cost(y) + flow(y)).

– otherwise, exclude all z with b(y) ≤ b(z) and add y to P .

The DEMO algorithm discards a new search point y if the corresponding box
b(y) is dominated by the box b(z) of some search point z ∈ P (and y and z do
not fall into the same box). If b(y) = b(z), the algorithm discards y if its sum
of cost and flow value is larger than that of z. Otherwise, all search points in
dominated boxes are removed from the population and y is included into the
population.

Due to Laumanns et al. [14], the following upper bound on the population
size can be given.

Lemma 1. The population size |P | of DEMO is upper bounded by

B :=
log(1 + C)
log(1 + ε)

= O(ε−1 logC) = O(ε−1(logn + log cmax)).

The algorithms described in this section do not use any stopping criteria. For
theoretical investigations it is common to consider the algorithms as infinite
stochastic processes and to use the number of fitness evaluations as a measure
of the runtime. Our goal is to bound the expected number of fitness evalua-
tions (also called expected runtime) until the algorithms have obtained a good
approximation for the multicut problem.

We point out that we use the sum of single-commodity flow values instead of
the value of a multi-commodity flow as second component of the fitness func-
tion. While the multi-commodity flow value would probably lead to a stronger
approximation bound, the computation of a multi-commodity flow requires linear
programming as there is no combinatorial algorithm known. On the other hand,
single-commodity flows can be efficiently computed using different well-studied
algorithms [1]. Furthermore, an oracle for the multi-commodity flow value is a
rather strong oracle as it provides the value of the dual problem.

3 Analysis of GSEMO

The goal of this section is to prove a pseudopolynomial upper bound on the
runtime of GSEMO until it has achieved an F/C∗-approximation for the multicut
problem. Note that F/C∗ ≤ k, hence in the worst case we get a k-approximation.
We denote by L = {x ∈ {0, 1}m | cost(x)+flow(x) ≤ F} the set of search points
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F

C∗

F ∗

F ∗ C∗ Ck · C∗k · F ∗ cost(x)F

L

flow(x)

f(x∗)

f(0m)

Fig. 1. Objective space of the fitness function f(x) = (cost(x), flow(x)). The sketch
depicts the case that the sequence F ∗, C∗, F , k · F ∗, k · C∗ is strictly increasing.
Note that subsequent values may coincide and that C can be as small as C∗. Optimal
multicuts x∗ have objective vector (C∗, 0), k-approximations lie on the the segment
from (C∗, 0) to (min{k · C∗, C}, 0).

whose objective vectors lie on or below the line given by the two objective values
(0, F ) and (F, 0). Figure 1 shows a graphical representation of the objective
space. The following proposition shows that the search points of L represent
subsets of F/C∗-approximations of minimum multicuts.

Proposition 1. Let x ∈ L. Then E(x) is a subset of an F/C∗-approximation
of a minimum multicut of G.

Proof. Since x ∈ L we have cost(x) + flow(x) ≤ F . Let S denote a minimum
multicut of G(x). Then E(x) ∪̇ S is a multicut of G with cost(E(x) ∪̇ S) =
cost(x) + cost(S). Since S is a minimum multicut of G(x), its cost is not larger
than the sum of the cost of the individual minimum si-ti-cuts, i. e., cost(S) ≤
flow(x). Hence, we have cost(E(x)∪̇S) ≤ cost(x)+flow(x) ≤ F ≤ k·F ∗ ≤ k·C∗,
which implies that E(x) ∪̇ S is an F/C∗-approximation of a minimum multicut
of G. ��

The preceding proposition implies the following condition for F/C∗-approximate
solutions which will be essential for the analysis of the algorithms.

Corollary 1. Let x ∈ {0, 1}m such that flow(x) = 0. Then E(x) is an F/C∗-
approximation of a minimum multicut of G if and only if x ∈ L.

We remark that the converse of Proposition 1 is not true in general, in contrast
to the single-commodity case k = 1.

For x ∈ {0, 1}m and e ∈ E define x+e ∈ {0, 1}m by x+e(e) = 1 and x+e(e′) =
x(e′) for e′ �= e. We can bound flow(x+e) in terms of flow(x) as follows.

Proposition 2. Let x ∈ {0, 1}m and e ∈ E. Then flow(x+e) ≥ flow(x)−kc(e).

Proof. By the (single-commodity) max-flow min-cut theorem we have flowi

(x+e) ≥ flowi(x) − c(e) for each commodity i. Summation over i yields the
claimed result. ��
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Proposition 3. Let x ∈ {0, 1}m such that flowi(x) > 0 for some commodity i.
Let e ∈ E \ E(x) an edge of a minimum si-ti-cut of G(x). Then flow(x+e) ≤
flow(x)− c(e) and cost(x+e) + flow(x+e) ≤ cost(x) + flow(x).

Proof. Since flowi(x) > 0 the minimum si-ti-cut of G(x) is not the empty
set. Let x ∈ E \ E(x) an edge from such a minimum si-ti-cut. By the (single-
commodity) max-flow min-cut theorem we have flowi(x+e) = flowi(x) − c(e).
Furthermore, flowj(x+e) ≤ flowj(x) holds for j �= i. Summation over i yields
the first claim.

Since cost(x+e) = cost(x) + c(e), the second claim follows directly from the
first one. ��

The following corollary is an immediate consequence of the preceding proposition
and the definition of L.

Corollary 2. Let x ∈ L a search point such that flow(x) > 0. Then there exists
a 1-bit flip leading to a search point x′ ∈ L with flow(x′) < flow(x).

Now we are able to prove the following theorem which shows that the expected
runtime of GSEMO is pseudopolynomial with respect to the given input.

Theorem 1. The expected time until GSEMO working on the fitness function
f constructs an F/C∗-approximation of a minimum k-commodity multicut is
O(F (log n+ log cmax)).

Proof. The size of the population P is at most F as GSEMO keeps at each time
at most one solution per fixed flow value. First we consider the time until 0m ∈ L
has been included into the population. Note that cost(0m) = 0. Afterwards we
study the time until x ∈ L with flow(x) = 0 has been included. By Corollary 1
the edge set E(x) is an F/C∗-approximation of a minimum multicut.

The expected time until GSEMO working on the fitness function f constructs
0m is O(F (log n + log cmax)). This can be proved using the technique of the
expected multiplicative cost decrease with respect to minx∈P cost(x). The proof
is analogue to the single-commodity case k = 1 (see proof of Theorem 3 in [17]).

Now we bound the time until a minimum cut has been constructed. Once
again we apply the method of the expected multiplicative cost decrease, now
with respect to the flow value. Let x be the solution with the smallest flow value
in P∩L. Note that minx∈P∩L flow(x) does not increase during a run of GSEMO.

Consider a mutation step that selects x and performs an arbitrary 1-bit flip.
Such a step is called a good step. The probability of a good step is lower bounded
by Ω(1/F ). By Proposition 1, E(x) is a subset of an F/C∗-approximation of a
minimum multicut, which can be obtained by including the remaining edges
one by one. Therefore, a randomly chosen 1-bit flip decreases the minimum flow
value in P ∩ L on average by a factor of at least 1− 1/m.

Hence, after N good steps, the expected minimum flow value is bounded from
above by (1 − 1/m)N · flow(x). Since flow(x) ≤ F ≤ k · C, we obtain the
upper bound (1 − 1/m)N · k · C. Using the method of the multiplicative cost
decrease the expected time until x′ ∈ L with flow(x′) = 0 has been discovered
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is O(Fm(log n+ log cmax + log k)). By Corollary 1, x′ is an F/C∗-approximation
of a minimum multicut. ��

4 Analysis of DEMO

The upper bound given in Theorem 1 is polynomial as long as the weights
are polynomially bounded with respect to the input size. For larger, i. e., expo-
nential, weights the population size may become too large to obtain an F/C∗-
approximation in expected polynomial time. To deal with this issue, we consider
DEMO with an appropriate choice of ε such that the population size is always
polynomially bounded with respect to the size of the given input.

To obtain the upper bound on the runtime of DEMO, we first consider the
time until the search point 0m has been included into the population and analyze
the time to achieve an F/C∗-approximation afterwards.

Proposition 4. Let ε ≤ 1/m and x ∈ {0, 1}m a search point such that cost(x) >
0. Then there exists a 1-bit flip leading to a search point x′ ∈ {0, 1}m with
b1(x′) < b1(x).

Proof. Consider all 1-bit flips that remove a single edge from E(x). Among all
resulting search points, consider a point x′ that minimizes y′ := cost(x′). Let
y := cost(x).

The repeated removal of edges in E(x) yields the search point 0m. Let � :=
|E(x)| ≤ m. Since y′ was minimal, y′ ≤ (1 − 1


 )y holds. Since ε ≤ 1
m ≤ 1


 and
� ≤ y, we have

(1 + ε)(1 + y′) ≤ 1 + ε + (1 + ε)
(

1− 1
�

)
y

≤ 1 +
y

�2
+
(

1 +
1
�

)(
1− 1

�

)
y = 1 + y .

This implies

1 +
log(1 + y′)
log(1 + ε)

≤ log(1 + y)
log(1 + ε)

,

and finally b1(x′) < b1(x). ��

In the following, we bound the expected time until DEMO has produced the
search point 0m. Later on, we will show how the algorithm can proceed to obtain
an F/C∗-approximation.

Lemma 2. The expected time until DEMO working on the fitness function f
includes the search point 0m into the population is O(mε−2(log2 n+ log2 cmax)).

Proof. The archiving strategy of DEMO guarantees that whenever a non-empty
box becomes empty, another search point whose box dominates the considered
box is included into the population. Therefore, minx∈P b1(x) will never increase
during the run of the algorithm.
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Since the population size is bounded by B, the probability of picking a search
point x ∈ P with minimal b1-value is Ω(1/B). By Proposition 4, there exists
at least one 1-bit flip leading to a search point x′ with b1(x′) < b1(x). The
probability to generate such a search point x′ is Ω(1/m). After at most B such
steps, the b1-value is zero implying that we have found the search point 0m.
Hence, the expected time to include 0m into the population is

O(B2m) = O(mε−2 log2 C) = O(mε−2(log2 n+ log2 cmax)).

This concludes the proof. ��

To come up with an upper bound for DEMO, it is necessary to examine how
the algorithm may progress from a solution x ∈ L to a solution of x′ ∈ L with
b2(x′) < b2(x). The following proposition points out that this is possible by
carrying out a special 1-bit flip.

Proposition 5. Let ε ≤ 1/m and x ∈ L a search point such that flow(x) > 0.
Then there exists a 1-bit flip leading to a search point x′ ∈ L with b2(x′) < b2(x).

Proof. By Corollary 2, there exists at least one 1-bit flip leading to a search
point x′ ∈ L with flow(x′) < flow(x). Among all such search points, consider
a point x′ that minimizes y′ := flow(x′). Let y := flow(x).

The repeated application of Corollary 2 yields an F/C∗-approximation E(x∗)
of a minimum multicut ofG. Let � := |E(x∗)|−|E(x)| ≤ m. Since y′ was minimal,
y′ ≤ (1 − 1


 )y holds. Since ε ≤ 1
m ≤ 1


 and � ≤ y, we have b2(x′) < b2(x) by the
same calculation as in the proof of Proposition 4. ��

Finally, we are able to prove the following theorem which shows that the ex-
pected runtime of DEMO with an appropriate choice of ε is always polynomially
bounded with respect to the given input.

Theorem 2. Choosing ε ≤ 1/m, the expected time until DEMO working on the
fitness function f constructs an F/C∗-approximation of a minimum multicut is
O(mε−2(log2 n+ log2 cmax)).

Proof. Due to Lemma 2 the search point 0m ∈ L has been included into the pop-
ulation after an expected number of O(mε−2(log2 n + log2 cmax)) steps. Hence,
it is sufficient to consider the search process after having found a search point
x ∈ L.

The archiving strategy of DEMO guarantees that whenever a non-empty box
becomes empty, another search point whose box dominates the considered box
is included into the population. Moreover, the tie-break rule ensures that a non-
empty box with a search point x ∈ P ∩ L will never exchange that search point
for a search point x′ �∈ L. Therefore, minx∈P∩L b2(x) will never increase during
the run of the algorithm.

Since the population size is bounded by B, the probability of picking a search
point x ∈ L with minimal b2-value among the search points in L is Ω(1/B).
By Proposition 5, there exists at least one 1-bit flip leading to a search point
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x′ ∈ L with b2(x′) < b2(x). The probability to generate such a search point x′
is Ω(1/m). After at most B such steps, the b2-value is zero implying that we
have found a multicut. Since x′ ∈ L, this multicut is an F/C∗-approximation of
a minimum cut. Hence, the expected time to obtain an F/C∗-approximation of
a minimum multicut is

O(B2m) = O(mε−2 log2 C) = O(mε−2(log2 n+ log2 cmax)).

This concludes the proof. ��

5 Conclusions

The multicut problem is an NP-hard generalization of the minimum cut prob-
lem. We have shown how the correlation between flows and cuts can be used
to come up with efficient evolutionary algorithms for the approximation of the
minimum multicut problem. Our multi-objective approach using flow compu-
tations and the concept of ε-dominance is able to achieve a k-approximation
in expected polynomial time. Further studies will consider how the theoretical
results obtained in this paper can be used to come up with good evolutionary
algorithms for the multicut problem by using our model in well-known evolu-
tionary multi-objective algorithms.
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Abstract. Drift analysis is a powerful tool used to bound the opti-
mization time of evolutionary algorithms (EAs). Various previous works
apply a drift theorem going back to Hajek in order to show exponential
lower bounds on the optimization time of EAs. However, this drift theo-
rem is tedious to read and to apply since it requires two bounds on the
moment-generating (exponential) function of the drift. A recent work
identifies a specialization of this drift theorem that is much easier to ap-
ply. Nevertheless, it is not as simple and not as general as possible. The
present paper picks up Hajek’s line of thought to prove a drift theorem
that is very easy to use in evolutionary computation. Only two condi-
tions have to be verified, one of which holds for virtually all EAs with
standard mutation. The other condition is a bound on what is really rel-
evant, the drift. Applications show how previous analyses involving the
complicated theorem can be redone in a much simpler and clearer way.
Therefore, the simplified theorem is also a didactical contribution to the
runtime analysis of EAs.

1 Introduction

Theoretical studies of the computational complexity of Evolutionary Algorithms
(EAs) have appeared since the 1990s (see Oliveto, He and Yao [1]). Since then
various mathematical techniques for the analysis of EAs have been constructed.
An overview of many important tools can be found in Wegener [2].

Recently drift analysis, a technique that goes back to the 1940s (cf. the intro-
duction in [3]), was introduced for the analysis of EAs by He and Yao [4,5]. The
authors concentrated on the obtainment of both lower and upper bounds on the
expected runtime of EAs. Concerning lower bounds, Giel and Wegener [6] point
out that a drift theorem on the success probability may also be obtained rather
than only the expected waiting time. In this form the drift theorem has been
used several times (e. g., Giel and Wegener [6] for maximum matching, Oliveto,
He and Yao [7] for vertex cover, Friedrich, Oliveto, Sudholt and Witt [8] for
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analyzing population-based EAs with diversity mechanisms etc.) to prove ex-
ponential lower bounds on optimization times that even hold with probabilities
exponentially close to 1. Although the mentioned drift theorem has turned out to
be very useful, it often leads to tedious and complicated calculations. This seems
to be the price to pay for the sake of keeping the drift theorem as general as
possible. However, by considering the characteristics of the stochastic processes
defined by EAs, it is possible to derive conditions which are more restrictive but
considerably easier to verify. In fact, with similar motivations, Happ, Johannsen,
Klein and Neumann [9] have recently introduced a simplified drift theorem.

In this paper we present a further simplification of the drift theorem which
is particularly suited for the analysis of EAs. Our proof resembles the argu-
mentation used by Hajek to verify the conditions of its complicated but general
theorem. It seems that, to a certain extent, many applications of the complicated
theorem rely on a historical accident. Hajek himself states simpler but more re-
strictive conditions which he claims to be useful in applications. We only slightly
tweak these conditions to make them even easier to verify in the analysis of EAs.

The rest of the paper is structured as follows. Section 2 presents some back-
ground on drift analysis and the simplified drift theorem. Afterwards, we study
some exemplary applications to show the strength and elegance of the new ap-
proach. Section 3 contains a warm-up example. In Section 4 we show that the
simplified drift theorem can also be used in the setting of Happ et al. [9] and that
even significantly stronger results are obtained with shorter proofs. In Section 5
we study the maximum matching problem as an advanced application to show
that proofs are considerably simplified. We finish with some conclusions.

2 Previous Work and the Simplified Drift Theorem

Hajek introduced the following theorem to provide a flexible technique for prov-
ing the stability of processes frequently encountered in queuing systems [3]. Since
then, it has been restated in different forms several times (e. g., He and Yao [4]
and Giel and Wegener [6]) to adapt it for the analysis of EAs. With the aim of
proving exponential lower bounds on first hitting times, usually four conditions
to be fulfilled are listed. Interestingly, in essence, there is only a single inequal-
ity, namely a bound on the moment-generating function of the one-step drift,
to be checked for the final statement of the theorem to hold. By analyzing the
original proof, it follows that the remaining conditions can be either rephrased
or removed. In particular, there is no need for the following values λ(�) and
D(�) to be constant or p(�) to be polynomial. In any case, for the theorem to be
meaningful, it has to be assured that D(�) is defined.

Theorem 1 (Hajek [3]). Let X0, X1, X2, . . . be the random variables describ-
ing a Markov process over a state space S and g : S → R+

0 a function mapping
each state to a non-negative real number. Pick two real numbers a(�) and b(�)
depending on a parameter � such that 0 ≤ a(�) < b(�) holds. Let T (�) be the
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random variable denoting the earliest point in time t ≥ 0 such that g(Xt) ≤ a(�)
holds. If there are λ(�) > 0 and p(�) > 0 such that the condition

E
(
e−λ(
)·(g(Xt+1)−g(Xt)) | a(�) < g(Xt) < b(�)

)
≤ 1− 1

p(�)
for all t ≥ 0 (∗)

holds then for all time bounds L(�) ≥ 0

Prob
(
T (�) ≤ L(�) | g(X0) ≥ b(�)

)
≤ e−λ(
)·(b(
)−a(
)) · L(�) ·D(�) · p(�),

where D(�) = max
{

1, E
(
e−λ(
)·(g(Xt+1)−b(
)) | g(Xt) ≥ b(�)

)}
.

In the typical applications of Theorem 1 cited above, the main drift Condition (∗)
is proved with p(�) being a polynomial. Having accomplished this, it often easily
follows that D(�) does not grow with �. The values a(�) and b(�) are frequently
chosen linear in the dimension of the search space n such that b(�)−a(�) = Ω(n)
and � = Ω(n) while λ(�) is chosen constant. Consequently, choosing L(�) = 2cn,
where c is a sufficiently small constant, the final statement of the theorem boils
down to Prob(T (�) ≤ 2cn) ≤ 2−Ω(n). This is as desired: even given exponential
time, the probability of finding the optimum (i. e., g(Xt) ≤ a) is exponentially
small w. r. t. the problem dimensionality.

Happ et al. [9] present a simplified version of the drift theorem called “Global
Gambler’s Ruin” with conditions that are much easier to check. The main sim-
plification introduced to prove Condition (∗) of the original theorem is as follows:
assuming S = N0 and g = id, they demand the existence of a constant δ > 1 such
that, given Xt = i, the condition Prob(Xt+1 = i + j) ≥ δj Prob(Xt+1 = i − j)
holds for all j ≥ 1. Intuitively, this means that for every step length j, there
is a bias (drift) towards increasing the state by j compared to decreasing it
by j; moreover, this bias increases exponentially w. r. t. j. In an application to
an EA with fitness-proportional selection, it turns out that the new condition is
relatively easy to verify. The drawback is that a(�) and b(�) have to be chosen
carefully to establish the exponential bias δj for all j. Moreover, the new the-
orem by Happ et al. [9] contains an additional condition on – in essence – the
moment-generating function E(δ−(Xt+1−Xt) | Xt ≥ b(�)) in order to bound the
value D(�) of the original theorem. Despite being relatively easy to verify, both
conditions seem stronger than needed for our purpose.

Our main contribution is another simplification of the drift theorem, which
is particularly suited for the stochastic processes described by evolutionary al-
gorithms and even easier to apply than the version by Happ et al. [9]. With the
aim of proving that the process does not pass the interval [a, b] in exponential
time if started above state b, we intuitively need the following two conditions:

– Assuming to be in the interval at time t, there must be a drift, an expected
displacement, towards increasing the state, more precisely, there must be
some constant ε > 0 such that

∑
j∈Z

j · Prob(Xt+1 = i+ j | Xt = i) ≥ ε for
all i in the interval. There seems to be no need for the drift to be bounded
in the same manner for every j or even to increase with j.
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– Drift alone is not enough. Considering exponentially long phases, the probabil-
ity must be exponentially small to leave the interval towards the optimum using
large jumps. The random step length towards the optimum has to exhibit an ex-
ponential decay. This follows from Prob(Xt+1 = i− j | Xt = i) ≤ 1/(1+δ)j−r

for constants δ, r > 0 and all i > a, i. e., within and outside the interval. We
will see that this second condition always holds for standard bit flip mutations.

Besides, we will need a technical condition regarding the absolute convergence of
the power series appearing in the following proof. Since we usually consider finite
search spaces, we restrict the state space of the Markov process to {0, 1, . . . , N}
for an arbitrarily large integer N and obtain such convergence for free. Weaker
conditions could be proven if applications in infinite search spaces are desired.

We are ready to state and prove our simplified drift theorem. Note an addi-
tional difference to the version by Happ et al. [9]: a and b do not need to be
linear in the dimension of the search space.

Theorem 2 (Simplified Drift Theorem). Let Xt, t ≥ 0, be the random vari-
ables describing a Markov process over the state space S := {0, 1, . . . , N} and de-
note Δt(i) := (Xt+1 −Xt | Xt = i) for i ∈ S and t ≥ 0. Suppose there exist an
interval [a, b] of the state space and three constants δ, ε, r > 0 such that for all t ≥ 0

1. E(Δt(i)) ≥ ε for a < i < b

2. Prob(Δt(i) = −j) ≤ 1/(1 + δ)j−r for i > a and j ≥ 1

then there is a constant c∗ > 0 such that for T ∗ := min{t ≥ 0: Xt ≤ a | X0 ≥ b}
it holds Prob(T ∗ ≤ 2c∗(b−a)) = 2−Ω(b−a).

Proof. Define � := b − a and note that � ≤ N . We will apply Theorem 1 for
suitable choices of its variables. Some of these might depend on the parametersN
and �. As will be shown later, only L(�) depends on a parameter (namely �), hence
we will omit any indices from the remaining parameters λ, D and p. Moreover,
we set g := id. The following argumentation is also inspired by Hajek’s work [3].

Fix t ≥ 0 and some i such that a < i < b and denote pj := Prob(Δt(i) = j).
To prove Condition (∗), it is sufficient to identify a constant λ > 0 such that

S(λ) :=
∑
j∈Z

eλjp−j < 1.

Using the series expansion for eλj =
∑∞

k=0(λj)k/k!, we have

S(λ) =
∑
j∈Z

∞∑
k=0

(λj)k

k!
p−j = 1 +

∑
j∈Z

(λj) · p−j +
∞∑

k=2

∑
j∈Z

(λj)k

k!
p−j ,

where all series converge absolutely for any λ > 0 since pj = 0 for |j| > N ;
however, their limits might depend on N . Identifying E(Δt(i)) and using the
first condition of the theorem, the bound on the drift, we obtain for all γ ≥ λ

S(λ) ≤ 1− λE(Δt(i)) +
λ2

γ2

∞∑
k=2

∑
j∈Z

(γj)k

k!
p−j ≤ 1− λε + λ2 ·

∑
j∈Z

eγjp−j

γ2︸ ︷︷ ︸
=:C(γ)

.
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Given any γ > 0, choosing λ := min{γ, ε/(2C(γ))} results in

S(λ) ≤ 1− λε+ λ · ε

2C(γ)
· C(γ) = 1− λε

2
< 1

as desired. Choosing γ := ln(1 + δ/2), which does not depend on � and N , and
exploiting the second condition yields

C′(γ) :=
∑
j∈Z

eγjp−j ≤
∑
j≤0

(1 + δ/2)j +
∑
j≥1

(1 + δ/2)j

(1 + δ)j−r
≤ (1 + δ)r

(
2 +

4
δ

)
,

hence C(γ) ≤ (1 + δ)r(3 + 4/δ)/ln2(1 + δ/2), which does not depend on � and N
either. Since, moreover, ε, δ, r do not depend on these parameters, neither will
C(γ), γ, λ, nor our bound on S(λ). This establishes Condition (∗) of Theorem 1
for p = O(1) and λ = Ω(1).

To bound the probability of a success within L(�) steps, we still need a bound
on D = max{1, E(e−λ(Xt+1−b) | Xt ≥ b)}. Since λ ≤ γ and Xt ≥ b, we have
D ≤ E(e−λ(Xt+1−b)) ≤ E(e−γ(Xt+1−Xt)) =

∑
j∈Z

eγj · Prob(Δt(i) = −j) for
i ≥ b. Note that the calculation leading above to C′(γ) = O(1) holds for arbitrary
i ≥ a due to the second condition. Hence, D = O(1), which does not depend on
a parameter either. Altogether, we have e−λ
Dp = 2−Ω(
) = 2−Ω(b−a). Choosing
L(�) = 2c∗(b−a) for some sufficiently small constant c∗ > 0, Theorem 1 yields
Prob(T (�) ≤ L(�)) ≤ L(�) · 2−Ω(b−a) = 2−Ω(b−a), which proves the theorem. ��

Our drift theorem can easily be applied to Randomized Local Search (RLS) on
the search space {0, 1}n, which flips only one bit per iteration. Then Condition 2
is trivial and the theorem resembles the well-known Gambler’s Ruin Theorem
(see also [9]). However, the generalized drift technique was previously used to
obtain lower bounds on the first hitting time of the (1+1)-EA, which can flip
several bits in a step. Then the original Gambler’s Ruin Theorem does not apply.
For maximization problems, the (1+1)-EA is defined as follows.

(1+1)-EA
– Choose uniformly at random an initial bit string x ∈ {0, 1}n;
– Repeat the following steps until a termination criterion is satisfied:

1. Create x′ by flipping each bit in x with probability pm := 1/n;
2. Replace x with x′ if f(x′) ≥ f(x);

In the rest of the paper we will show that proofs regarding lower bounds on the
runtime of the (1+1)-EA that hold with overwhelming probability 1− 2−Ω(b−a)

are really easy to obtain by using the proposed drift theorem. Our proofs are
universal enough to apply, after some tiny changes, also for RLS. This is however
not everywhere made explicit due to space limitations.

3 An Application for the (1+1)-EA

In this section we present a first application of Theorem 2. We choose the Needle-
in-a-haystack function which is well known to be hard for EAs [10] and show that
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the (1+1)-EA is even at distance almost n/2 from its optimum for an exponential
number of steps. The whole search space consists of a plateau except for one
point representing the global optimum. W. l. o. g. we choose the optimum to be
the point represented by the bit string of all ones. The function is the following:

Needlen(x) =
{

1 if x = 1n, and
0 otherwise.

Theorem 3. Let η > 0 be constant. Then there is a constant c > 0 such that
with probability 1−2−Ω(n) the (1+1)-EA on Needlen creates only search points
with at most n/2 + ηn ones in 2cn steps.

Proof. Let Xt denote the number of zeroes in the bit string at time step t. We
set a := n/2 − 2γn and b := n/2 − γn, where γ := η/2. Such a value for b is
suitable because by Chernoff bounds the probability that the initial bit string
has less than n/2 − γn zeroes is 2−Ω(n). Now we use the proposed simplified
drift theorem for the rest of the proof. It therefore remains to check that the two
conditions of Theorem 2 hold.

Given a string in state i < n/2− γn, i. e., with i zeroes, let Δ(i) denote the
random increase of the number of zeroes. Condition 1 holds if E(Δ(i)) ≥ ε for
some constant ε > 0. Since the (1+1)-EA flips 0-bits and 1-bits independently,
an expected number of i/n 0-bits and (n− i)/n 1-bits is flipped. Hence,

E(Δ(i)) =
n− i

n
− i

n
=

n− 2i
n

≥ 2γ

So we can choose ε = 2γ.
Condition 2 is: Prob(Δ(i) = −j) ≤ 1/(1 + δ)j−r . In order to reach state i− j

from state i, at least j bits have to flip. Hence Prob(Δ(i) = −j) ≤
(
n
j

)
(1/n)j ≤

1/j! ≤ (1/2)j−1, which proves the condition for δ = 1 and r = 1 even indepen-
dently of i and of selection. So from Theorem 2 it follows for a constant c∗ > 0
that the global optimum is found in 2c∗(b−a) = 2cn steps, where c := c∗(b−a)/n >
0 is a different constant, with probability at most 2−Ω(b) = 2−Ω(n). ��

4 An Application for the (1+1)-EA with
Fitness-Proportional Selection

Recently Happ et al. [9] have presented a simplified drift theorem called Global
Gambler’s Ruin. They introduced the new theorem to prove that the (1+1)-EA
using fitness-proportional selection requires exponential runtime for optimizing
Onemax and linear functions in general. The algorithm works as follows:

(1+1)-EA with Fitness-proportional Selection ((1+1)-EAprop)
– Choose uniformly at random an initial bit string x ∈ {0, 1}n;
– Repeat the following steps until a termination criterion is satisfied:

1. Create x′ by flipping each bit in x with probability pm := 1/n;
2. Replace x with x′ with probability f(x′)/(f(x′) + f(x));

A function f : {0, 1}n → R is linear if it can be written as f(x1, . . . , xn) =
w0 + w1x1 + · · ·+ wnxn with coefficients wi ≥ 0, 0 ≤ i ≤ n. In the special case



88 P.S. Oliveto and C. Witt

w1 = · · · = wn = 1 and w0 = 0 we obtain the OneMax function counting the
number of ones of the bit string. Concerning linear functions, Happ et al. [9]
prove that with overwhelming probability only search points with at most 0.97n
ones are created by the (1+1)-EAprop after an exponential number of steps.
We show that Theorem 2 can be used for this purpose and that it can lead to
significantly stronger results. We remark that the following proof also holds for
fitness-proportional RLS, where the stronger statement is already known [9].

Theorem 4. Let 0 < η ≤ 1/4 and η be constant. Then there is a constant
c > 0 such that with probability 1−2−Ω(n) the (1+1)-EAprop for linear functions
(for OneMax) only creates search points with at most 2n/3 + ηn (resp. at most
n/2 + ηn) ones in 2cn steps.

Proof. Setting a := n/3 − 2γn and b := n/3 − γn, where γ := η/2 ≤ 1/8, and
given a current number of a < i < b zeroes, let Δ(i) and Δsel(i) denote the
random change in this number before and after selection, respectively. Using the
arguments from the proof of Theorem 3, we get E(Δ(i)) = (n−2i)/n ≥ 1/3+2γ.
E(Δ(i)) is mostly determined by small steps. Choosing r := γn/4, define

1r := 1{|Δ(i)| ≤ r} as the indicator r. v. for the event |Δ(i)| ≤ r. Since flipping
at least k bits in a step has probability at most 1/k! and at most n bits flip,

E
(
Δ(i) · 1r) ≥ E(Δ(i)) − 1

(γn/4)!
· n = E(Δ(i)) − 2−Ω(n)

and accordingly for E(Δsel(i)). By concentrating on steps of length at most r,
we therefore introduce only an exponentially small error.
Δ(i) can be decomposed according to Δ(i) := Δ+(i)−Δ−(i), where Δ+(i) :=

Δ(i) · 1{Δ(i) > 0} and Δ−(i) := −Δ(i) · 1{Δ(i) < 0}. By considering only the
flipping 0-bits, we get E(Δ−(i)) ≤ 1/3−γ. Using E(Δ(i)) ≥ 1/3+2γ, we obtain
E(Δ+(i))/E(Δ−(i)) = (E(Δ(i)) +E(Δ−(i)))/E(Δ−(i)) ≥ 2 + 3γ.

We get a lower bound on E(Δsel(i)) by weighting Δ−(i) with upper bounds
(here 1) on the selection probability and Δ+(i) with lower bounds. For the lower
bounds, we pessimistically assume all zeroes of the current string x to have
coefficients 0 and w0 = 0. Then f(x′) ≤ f(x) for all offspring x′ of x and the
selection probability is at least f(x′)

f(x′)+f(x) ≥
f(x′)
2f(x) , which is linear w. r. t. f(x′).

We assume at most r flipping bits. If a random subset of r out of n− i ≥ n
2 ones

flips, each bit flips with probability r
n−i . Using the linearity of expectation and

of f , the expected offspring value e(x′) is at least f(x)(1− r
n−i). Thus, using the

law of total probability, the selection probability for the random x′ is at least
e(x′)/(2f(x)) ≥ 1

2 −
r

2(n−i) ≥
1
2 −

γ
4 . Since the bound is independent of Δ(i) ·1r ,

E(Δsel(i)) ≥
(

1
2
− γ

4

)
E(Δ+(i) · 1r)− E(Δ−(i) · 1r)− 2−Ω(n)

≥
(

1
2
− γ

4

)
(2 + 3γ)E(Δ−(i) · 1r)− E(Δ−(i) · 1r)− 2−Ω(n)

≥
(
γ − 3γ2

4

)
E(Δ−(i) · 1r)− 2−Ω(n) ≥ 29γ

32
· 1

36
− 2−Ω(n) ≥ γ

40
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Fig. 1. The Gh,� graph (in this case h = 3 and � = 11) with an almost perfect matching
and its augmenting path between u and v

for n large enough, where we have used that γ ≤ 1/8 along with E(Δ−(i)) ≥
(1/3−2γ)(1−1/n)n−1 ≥ (1/3−2γ)/e ≥ 1/36, which follows by considering only
1-bit mutations. This bounds the drift for general linear functions by a constant.

With OneMax, the situation is even simpler. Since then f equals the number
of ones, we can bound the probability of accepting a string x′ with up to r more
ones than x by f(x′)/(2f(x)) ≤ (f(x) + r)/(2f(x)) ≤ f(x)(1 + γ/2)/(2f(x)) =
1/2 +γ/4 using f(x) ≥ n/2. Setting a := n/2−2γn and b := n/2−γn, a similar
calculation as in the third paragraph of this proof yields E(Δ+(i))/E(Δ−(i)) ≥
1 + 2γ. Finally, we obtain E(Δsel(i)) ≥ ((1/2 − γ/4)(1 + 2γ) − (1/2 + γ/4)) ·
E(Δ−(i))− 2−Ω(n) ≥ γ/100 for n large enough in the same manner as above.

The rest of the argumentation, in particular the proof of Condition 2 of
Theorem 2 carries over from the proof of Theorem 3. ��

5 An Advanced Application: Maximum Matching

Giel and Wegener [6] considered the graph depicted in Figure 1 to prove that
the (1+1)-EA has an expected runtime which is exponential in the number of
graph edges for the well known maximum matching problem in the worst case.
One of the crucial parts of their proof is represented by the following theorem.

Theorem 5. Starting with an almost perfect matching with an augmenting path
of length �, the probability that the (1+1)-EA finds the perfect matching of the
Gh,
 graph within 2c
 steps, c > 0 an appropriate constant, is bounded by 2−Ω(
)

if h ≥ 3.

Proof. An almost perfect matching is just one fitness level away from the global
optimum. In order to find the maximum matching, the edges of the only aug-
menting path in the graph have to be either inverted or the path has to be short-
ened to its minimum (i. e., three adjacent edges not belonging to the matching
are obtained). If the latter case happens, then the extra edge may be added by
just using one bit flip. Given an almost perfect matching, a move of length j = 1
occurs if at least two adjacent edges flip on either side of the augmenting path.
The augmenting path may be lengthened or shortened. In the former case the
process drifts away from the optimum while in the latter case it heads towards
it. To apply Theorem 2, we set a := 0, the minimum augmenting path length
and b := �− 1 where � is its maximum length.
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Usually there are 2h edges adjacent to the augmenting path, h at each side,
that flipped together with the first edge belonging to the path would lengthen
it. However, if the augmenting path starts at the beginning of the graph (or at
the other end), then there are only h such edges (actually this shows that the
length of the augmenting path is not enough to describe the underlying Markov
process exactly, yet it gives good enough bounds). In this case, the probability of
performing a move of length 1 lengthening the augmenting path of length i is only
bounded by p1(i) ≥ (h/m2)(1−1/m)m−2, where m is the number of edges of the
graph. On the other hand, the probability to shorten the augmenting path with a
move of length 1 is bounded from above by p−1(i) ≤ (2/m2)(1−1/m)m−2+3/m4

(see [6]). Since most other mutations of the (1+1)-EA due to worse fitness will be
rejected in this setting, we use the condition R that a step is relevant, meaning
it is accepted and changes the current state. The probability prel of a relevant
step is bounded by (1/m2)(1− 1/m)m−2 ≤ prel ≤ (2h+ 2)/m2.

Let R(i) = (Δ(i) | R) denote the random increase of the path length in
relevant steps for a current length i. It suffices to concentrate on the contribution
of steps of length 1, i. e., we consider R1(i) := R(i) · 1{|R(i)| ≤ 1}. We obtain

E(R1(i)) =
p1(i)
prel

− p−1(i)
prel

≥ h− 2− O(m−2)
2h+ 2

≥ 1
8
−O(m−2)

since h ≥ 3 while the unconditional decrease Δ−
>1(i) = −Δ(i) · 1{Δ(i) < −1},

for negative steps of length greater than 1, in expectation is at most

E(Δ−
>1(i)) ≤

∞∑
j=2

j ·p−j(i) ≤
∞∑

j=2

j · (j+ 1)
1
m2j

≤ 6
m4

+
∞∑

j=3

2m2

m2j
= O(m−4)

because p−j ≤ (j + 1)/m2j [6].
Hence, the total conditional drift is

E(R(i)) ≥ E(R1(i))− E(Δ−
>1(i))
prel

≥ 1
8
−O(m−2)−O(m−4) ·em2 =

1
8
−O(m−2)

and Condition 1 is proved. Condition 2, with δ = 1 and r = 3, follows from

p−j

prel
≤ min

{
1,
j + 1
m2j

· em2

}
≤ min

{
1,

1
m2j−7

}
≤
(

1
2

)j−3

for m ≥ 2. From Theorem 2, the proof follows. ��
The bounds on pj(i) by Giel and Wegener [6] do not imply pj(i) ≥ p−j(i) for
every j, hence the theorem by Happ et al. [9] does not apply with these bounds.
Without further work on the bounds for pj(i), it is crucial but also sufficient to
focus on the effect of steps of length 1.

6 Conclusion

A simplified drift-analysis theorem has been introduced for proving lower bounds
on the runtime of EAs that hold with high probability. The two hypotheses of the
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theorem are easy to check for stochastic processes such as those described by EAs.
The first condition holds if the distance to the optimum increases in expectation by
at least a constant amount. In other terms, there is a drift leading away from the
optimum. The second condition describes an exponential decay in the probabilities
of advancing towards the optimum that depends on the step size. Such a condi-
tion is trivially fulfilled for the (1+1)-EA with standard mutation and many other
EAs with a mutation operator that exhibits enough locality. The simplified drift
theorem allowed us to redo previous analyses with significantly reduced effort.

For scenarios where bounding the drift directly is more intricate a corollary
of the simplified theorem might be mentioned. It is sufficient to decompose the
drift into the effects of steps of a given length and to prove a bias leading away
from the optimum for every step length. In fact, also Happ et al. [9] exploited
a similar idea. Our corollary, though, seems to be easier to verify since we do
not require the bias to increase with the step length. Moreover, compared to
the latter work, we do not require that the length of the drift interval [a, b] is
Ω(n). Our generalization is necessary, for example, in the study by Friedrich et
al. [8] where b− a = 3

√
n. To the best of our knowledge all previous applications

of drift analysis to evolutionary computation can be proven in a considerably
simpler shape with the proposed simplified drift theorem. As a result, not only
is Theorem 2 considered as an important didactical contribution to the runtime
analysis of EAs, but we also believe it will turn out to be useful in future work.
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Abstract. Beginning with the early days of the genetic algorithm and
the schema theorem it has often been argued that the crossover operator
is the more important genetic operator. The early Royal Road functions
were put forth as an example where crossover would excel, yet mutation
based EAs were subsequently shown to experimentally outperform GAs
with crossover on these functions. Recently several new Royal Roads
have been introduced and proved to require expected polynomial time
for GAs with crossover, while needing exponential time to optimize for
mutation-only EAs. This paper does the converse, showing proofs that
GAs with crossover require exponential optimization time on new Ignoble
Trail functions while mutation based EAs optimize them efficiently.

1 Introduction

First proposed by Mitchell et al. [1], the well known Royal Road class of fitness
functions were designed to demonstrate the essential nature of the crossover
operator in genetic algorithms in optimizing that class of fitness functions. They
also showed that for an idealized GA ignoring the effects of hitchhiking, the
expected optimization time is O(2k log(n/k)). Somewhat unexpectedly, follow
up experimental studies by Forrest and Mitchell [2] show that some random
mutation hill-climbers outperform GAs with crossover on the Royal Road. This
prompted the same authors to define an open problem in [3].

– Define a family of functions and prove that genetic algorithms are essentially
better than evolutionary algorithms without crossover.

In [4] Jansen and Wegener proved that the expected optimization time of the
well known (1+1) EA on the classic Royal Road function is O(2k(n/k) log(n/k))
where n is the string length, k is the length of sub elements of the string and
1/n is the mutation rate. Recently in EA research there have been several fitness
functions built to meet this challenge in a rigorous way and are discussed in the
next section. The goal of this paper is to do the opposite, to provide a fitness
function where EAs with mutation alone are provably better at optimization
than GAs with crossover. We are not alone in seeking this result. Very recently
Poli et al. have produced a fitness function called OneMix [5] where crossover is
shown experimentally to be not helpful.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 92–101, 2008.
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2 Functions Hard for Mutation Based EAs

In this section we highlight past research on fitness functions hard to optimize
with mutation alone, while being much easier with the use of crossover.

The concatenated trap functions of Deb and Goldberg [6] consist of many
concatenations of smaller fully deceptive fitness functions. In a fully deceptive
function, all points in the space other than the optima give local advice to go in
the opposite direction of the optima. By concatenating these functions together,
they set up a situation to illustrate where the building block hypothesis [6] shines.
Mutation fails to optimize the function, while the crossover operator builds short
order sequences of highly fit bits and recombines these sequences to successfully
optimize the function.

One explanation for the failure of Royal Road functions to demonstrate the
necessity for crossover is that Royal Road functions are both separable and non-
deceptive. Watson [7,8] created a hierarchical fitness function called HIFF where
sub-blocks are interdependent and non-separable as well as being deceptive to
the mutation operator. Non crossover EAs require expected exponential time to
optimize the HIFF. Dietzfelbinger et al. [9] asymptotically analyzed a recombina-
tive hill-climber on the HIFF function and showed an expected time complexity
of Θ(n log n).

Jansen and Wegener [10] showed a unitation fitness function called JUMPm,n

with a deceptive quality. The function contains a false optimum with a neigh-
boring fitness canyon (of size m < n) with the true optimum on the other side of
the canyon. A steady-state hill-climber that accepts no fitness decreases, like the
(μ+1) EA, must simultaneously mutate m bits to cross the canyon. The waiting
time for this event is O(nm), while the waiting time for a steady state GA (with
uniform crossover) to optimize JUMPm,n is O(n2 log n) steps.

Jansen and Wegener [4] followed up by introducing Real Royal Road functions
where a steady state GA with both uniform and one-point crossover have poly-
nomial expected time. EAs without crossover take expected exponential time to
optimize these functions.

Storch and Wegener [11] showed additional Real Royal Roads for both uniform
and one-point crossover. Using the (2+1) GA with crossover they proved that
these fitness function are optimized in expected polynomial time, while the (2+1)
EA will take expected exponential time. The (2+1) EA and GA are redefined in
later sections.

One critique of the Real Royal Roads is that they are artificial constructs
designed to prove a point. Responding, other researchers have produced works
on more natural functions. Fischer and Wegener [12] show a mixed result in
the one-dimensional Ising Model where for a correctly chosen λ, the (1 + λ)EA
performs well compared to typical GAs. They do prove that a specialized GAs do
far better than the EA for both one and two point crossover. Sudholt [13] shows
that a GA requires polynomial time to optimize another Ising Model, while the
EA requires expected exponential time.

Finally, Doerr et al. [14] have an upcoming paper showing that crossover has a
provable modest advantage one a real world all pairs shortest path graph problem.
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3 Minimal Population Evolutionary Algorithms

These algorithms are instances of steady-state evolutionary algorithms [15] where
the population is not fully replaced at each generation. A no-duplicates policy
is also in place, forcing a population of distinct strings.

3.1 The Steady-State (2+1) EA

Here we restate the (2+1) EA. It is an instance of the well-known (μ+1) EA,
studied among other places in [16].

Algorithm 1. The (2+1) EA

1. Initialization: Randomly choose two different individuals x, y ∈ {0, 1}n.
2. Search: Produce an individual z,

– with probability 1/2, z is created by mutate(x),
– with probability 1/2, z is created by mutate(y),

3. Selection: Create the new population P.
– If z = x or z = y, then P := {x, y}
– Otherwise, let a ∈ {x, y, z} be randomly chosen among individuals with

the worst f -value. Then P := {x, y, z} − {a}.
4. Goto Search

3.2 The Steady-State (2+1) GA

Here we redefine the simple steady-state GA from [11] that works on a population
size of 2, the smallest population size allowing crossover. Note that the usage of
equal probability 1

3 in the search step is arbitrary. The later results hold for any
constant probability ε where ε > 0.

Algorithm 2. The (2+1) GA

1. Initialization: Randomly choose two different individuals x, y ε {0, 1}n.
2. Search: Produce an individual z,

– with probability 1/3, z is created by mutate(x),
– with probability 1/3, z is created by mutate(y),
– with probability 1/3, z is created by mutate(crossover(x, y)).

3. Selection: Create the new population P.
– If z = x or z = y, then P := {x, y}
– Otherwise, let aε {x, y, z} be randomly chosen among individuals with

the worst f -value. Then P := {x, y, z :} − {a}.
4. Goto Search

4 Ignoble Trails

We now define a new class of functions called Ignoble Trails. These functions are
created for the purpose of rigorously proving that a given mutation based EA
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outperforms a given crossover based GA on these functions. Like the Real Royal
Roads and the HIFF functions, they are somewhat contrived to serve a specific
theoretical purpose. We make no claim that real world problems can be mapped
to these new functions.

4.1 Ignoble Trails vs. Uniform Crossover

The first function IT 1u
n(x) is a modification of the Ru

n(x) function of [11] for
uniform crossover. The symbol u refers to the uniform crossover operator. Most
of the details are the same as Ru

n(x) except for the addition of b∗∗. Assume a
bit-string length of n := 6m, where n and m are even integers. Also note that
‖x‖ refers to the number of ones in the string, |x| is the length in bits of x, and
H(x, y) is the Hamming distance of x and y.

IT 1u
n(x) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

16m x = b∗∗

15m x ∈ T
14m x = a∗

6m+ i x = ai ∈ P1 ∪ P2

6m− ‖x‖ x ∈ R := {0, 1}n − P − T − {b∗∗}

The major features of IT 1u
n(x) are as follows. The base fitness of the set R is

defined to slope in increasing fitness towards the all zeros string. The path P is
a sequence of distinct strings a1, ..., ap such that consecutive strings on the path
have a Hamming distance of 1. P contains 7m+1 total points where ai = 0n−i1i

for i ≤ 6m, and ai = 1n−j0j for i = 6m+ j. P is segmented into two subpaths
P1 and P2.

TheP1 subpath is defined as points (a0, ..., a5m−1) and theP2 subpath is defined
as (a5m+1, a7m). The fitness for the total path is 6m+ i, with the single exception
that a local optimum is created at point a∗ := a5m with fitness 14m. The other
local optimum of P is at the endpoint a∗∗ := a7m with fitness value 13m.

There also exists an area T defined to contain all points b14mc where the
substrings b and c obey |b| = |c| = m and ||b|| = ||c|| = m/2. In Ru

n(x) T
is the target and can be created with high probability with a population of
{a∗, a∗∗} :=

{
0m15m, 15m0m

}
via uniform crossover.

Our crucial modification to Ru
n(x) is to add a point b∗∗ with fitness greater

than the region T . This point is defined as a point with k bits different than a∗∗,
or H(a∗∗, b∗∗) = k. Here k is defined to be a constant where n = 6m is chosen
so that 3 < k < m/4. We define b∗∗ to be 1m0k14m−k0m.

4.2 Behavior of the EA and GA on Ignoble Trail 1

Referring to Figure 1, the initial random population of two distinct individu-
als will begin the process of traveling down R towards the initial point of P ,
P0 := 0n. Both algorithms will discover and optimize P unless exceptional luck
strikes and {T ∪ {b∗∗}} is discovered first. Since the selection method prohibits
duplicate strings, once they are on path P there is a leading point and a trailing
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Fig. 1. Illustration of Ignoble Trail 1

point on P . They travel up P until such time as a∗ is found [there is a proba-
bility Θ(1/n) a∗ is skipped]. If a∗ is found, the behavior degenerates to mimic
the (1 + 1) EA as a∗ is fixed in the population and the other string is available
for continued optimization of P until a∗∗ is found.

Once the population becomes {a∗, a∗∗} the behavior of the two algorithms
diverges. The EA is very unlikely to discover T via mutation, and is likely to
find b∗∗ in O(nk) steps. Conversely the GA is very likely to discover T via
crossover before it discovers b∗∗. Once the GA has found T , it will accumulate
both individuals in T in short order. The expected waiting time to discover b∗∗

from T is exponential. Thus we refer to T as the ’trap’ rather than the ’target’
of Ru

n(x). Note that crossover is of little assistance in discovering b∗∗ from either
a∗∗ or T .

Figure 2 contains a visual representation of the results to follow and the high
likelihood optimization phases of both algorithms.

4.3 Time Complexity Results

Note that the next set of proofs take some arguments from [11] or [4]. The
addition of b∗∗ requires many additional steps to prove rigorous results, there
are many more good and bad events to account for above those from [11].

Lemma 1. The probability that (2 + 1) EA without crossover and the (2 + 1)
GA with uniform crossover find a point in P2 ∪ T ∪ {b∗∗} without discovering
path P1 within O(n2) steps is at least 1− e−Ω(n).

Proof. Recall that k is a constant, and assume that n = 6m is chosen so that
3 < k < m/4. Let Q := P2 ∪ T ∪ {b∗∗} and note that all elements of Q have at
least 5m − k ones. Let R be the set of points not in P with at most 4m ones.
The probability of initializing a member of the population with more than 4m
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Fig. 2. Diagram of proofs of Lemmas and Theorems for IT1u
n(x) - Solid lines are events

associated with the (2+1) EA, dashed lines are events associated with the (2+1) GA.
The labels on each arc refer to the expected waiting time to transition from state to
state.

ones is e−Ω(n) by Chernoff’s bound [17]. Since Q is contained in that same set,
the same holds for Q. Each point of R has a better Hamming neighbor. The
probability of discovering that neighbor via mutation is at least p = 1/(3en).
Applying Chernoff bounds, the waiting time for at most n = 6m successful events
is O(n2), and the probability that this waiting time is exceeded is exponentially
small. The probability of producing a point in Q from R via mutation is at
most n−m+k = e−Ω(n) by Chernoff’s bound. Turning to the crossover operator,
the probability of producing a point in Q from two points in R via crossover is
e−Ω(n) by the following argument. Let d be the Hamming distance between the
two parent strings r1 and r2. Let s = ||r1 ∧ r2||, thus the expected number of
ones is s+ d/2. Unless d > m− k, the child string can not have at least 5m− k
ones. Applying Chernoff’s bound on the differing bits of the parents, r1 ⊕ r2,
the probability to create at least d/2 + m − k ones is e−Ω(n). As for the joint
operator, the probability of producing a point in Q from two points in R via
crossover and mutation is e−Ω(n) as follows. Either crossover produces a point
with at least 9m/2− k ones or it doesn’t. In the first case, the probability that
crossover produces a point with at least 9m/2−k ones is e−Ω(n) by the Chernoff
bounds on the the bits differing in the parents. In the other case, mutation must
go from a point with less than 9m/2− k ones to a point with at least 5m ones,
and the probability that this happens n−m/2+k = e−Ω(n). Applying the union
bound, we see that the total failure probability is e−Ω(n). ��

Lemma 2. The (2 + 1) EA will optimize P and find {a∗∗ ∪ b∗∗} in O(n2) steps
with probability 1 − 2−Ω(n). The (2 + 1) EA will discover a point in T from P
with probability 2−Ω(n).

Proof. Beginning from Lemma 1, we assume the population contains a point
in P1. Each point on the path P has a better fitness Hamming neighbor. The
probability of discovering that neighbor via mutation is at least p = 1/(3en).
Inverting and substituting we get a waiting time of at most 7m (the length
of P ) successful events of probability p. Applying Chernoff’s bound we get
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the first result above. As for the second result, by the definitions of P and
T , the Hamming distance between them is at least m/2. The mutation hit-
ting probability is (1/n)m/2(1 − 1/n)n−m/2. However, there are

(
m

m/2

)2 points
in T , so the probability of hitting T is increased by this amount. Bounding the
number of points in T via a standard binomial coefficient inequality1, we get(

m
m/2

)2 ≤ (2e)m/2. Thus we bound the probability of hitting T from pi ∈ P by
(1/n)m/2(1 − 1/n)n−m/2(2e)m/2 ≤ (2e/n)m/2 < 2−Ω(n). ��

Theorem 3. The (2+1) EA without crossover will optimize the IT 1u
n(x) func-

tion in expected O(nk) steps and within O(nk ln k) steps with probability 1 −
O(1/n).

Proof. Referring to Lemma 2, the next step is to establish the expected waiting
time to discover b∗∗ from a population of {a∗∗, pi ∈ P}. The Hamming distance
between a∗∗ and b∗∗ is defined to be constant k where n = 6m is chosen so that
3 < k < m/4. Thus the probability of mutating from a∗∗ to b∗∗ in one step
is p = (1/n)k(1 − 1/n)n−k. This is bounded below by 1/(enk), resulting in an
expected waiting time that is bounded above by enk = Θ(nk). Note that this
is the best case possibility of finding b∗∗ from any point on P as the Hamming
distance for all points in P is H(pi ∈ P, b∗∗) ≥ k. Applying Chernoff bounds,
the probability of finding b∗∗ within enk ln k steps is 1−O(1/n). From Lemma 2
we know that the probability of finding T from any point in P is exponentially
small. Thus the probability of finding T before finding b∗∗ is also exponentially
small. ��

Lemma 4. The (2 + 1) GA with uniform crossover will discover a point in
P2 ∪ T ∪ {a∗} in O(n2) steps with probability 1− 2−Ω(n). The probability of the
(2+1) GA with uniform crossover finding {b∗∗} while searching for P2∪T ∪{a∗}
is 2−Ω(n).

Proof. Lemma 2 of [11] proves the first part of the result. For the second result,
note that b∗∗ contains 5m−k ones. Recall that k is a constant, and assume that
n = 6m is chosen so that 3 < k < m/4. We have already shown that as long as
the points in the population contain at least 4m ones, the probability of finding
b∗∗ is exponentially small. The remaining possibility is mutating to b∗∗ from a
point in the population pi ∈ {P1 − a∗} where a4m < pi < a5m. It is easy to see
that it is exponentially unlikely that the other point of the population is not
in {ai ∈ P1 i ≥ m}. The minimum Hamming distance between a point of the
population and b∗∗ is 2m− k, so the probability of finding b∗∗ by mutation is at
most 2−Ω(n). Turning to the crossover operator, recall that b∗∗ = 1m0k14m−k0m.
Both members of the population are of the form 0n−i1i for m ≤ i < 5m so both
points have 1s in the last m positions. Thus, it is impossible to cross the two
points in the population to produce a point with Hamming distance less than m
from b∗∗. ��
1
(

n
k

)
≤
(

en
k

)k
.
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Proposition 5. With probability O(1/n), the (2 + 1) GA will find a point in
P2 ∪ T ∪ {b∗∗} before finding a∗.

Proof. The proof of Theorem 4 of [11] shows this result without reference to b∗∗.
The Hamming distance from P1 to b∗∗ is exponential, and thus does not change
the result. ��

Lemma 6. If the population contains a∗, the (2 + 1) GA will find a point in T
in O(n2) steps with probability 1−O(1/nk).

Proof. Lemma 3 of [11] shows the result with probability 1− 2−Ω(n). We must
consider the possibility that b∗∗ is found before T . To start, we consider the
possibility of finding b∗∗ by crossover plus mutation from a population of a∗

and any other point ai ∈ P . For 0 ≤ i ≤ 5m this is exponentially unlikely via
the argument given in the proof of Lemma 4. For 5m < i ≤ 6m this results
in crossover on a∗ and ai setting the last m positions to 1. Yet b∗∗ has zeros
in these positions, so subsequent mutation must flip at least m bits. Finally, if
the other point is a6m+j = 1n−j0j for 0 < j ≤ m, then a∗ and a6m+j agree
in k + m − j bits different from the corresponding bits of b∗∗. Thus crossover
and subsequent mutation of at least those k + m − j bits is required, giving a
probability of discovering b∗∗ bounded above by O(1/nk+m−j). As long as ai is
not a∗∗, a better point on P will be discovered with probability 1/(3en). From
this and the bounds derived above, we can see that either a∗∗ or a point of T
will be found with probability 1−O(1/nk).

Now assume the population {a∗, a∗∗}. The one-step probability of finding b∗∗

by either mutation or crossover followed by mutation is p = O(1/nk) whereas the
one-step probability of discovering T was shown to be q = Θ(1/n) in Lemma
3 of [11] by an application of Sterling’s formula. There is a sequence of in-
dependent trials until one or the other of these outcomes happens. A prob-
ability argument2 shows that the probability of finding b∗∗ over all trials is
p/(p+ q) = O(1/nk)/(O(1/nk) +O(1/n)) = O(1/nk)/O(1/n) = O(1/nk−1). ��

Lemma 7. The expected waiting time to hit b∗∗ from a population {ti∈T, tj∈T }
is exponential for the (2+1) GA with uniform crossover.

Proof. It is possible for a crossover plus mutation operation to get b∗∗ from
two elements of T . Remember that b∗∗ := 1m0k14m−k0m. If the two population
elements of T are binary complements of each other in the b and c regions, and
if the crossover mask is chosen correctly, crossover could get the first and last m
bits of the child to match b∗∗. Then mutation would need to get the k bits of the
middle 14m bits to match b∗∗. The probability of getting the correct crossover
mask is 2−2m. Thus the probability of getting the correct mask and the correct
mutation is bounded above by O(2−2m).

Another possibility would be for crossover to get all but 0 ≤ j ≤ 2m of the
first and last m bits correct. These correspond to the substrings b and c from the
2 Given that either event A or B will eventually happen, let p := Pr[A], q := Pr[B]

and r := 1−p−q. The probability that A eventually happens is p/(1−r) = p/(p+q).
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definition of T , b14mc where b and c contain exactly half 1s. It is not necessary for
these j bits of the crossover mask to be correct, thus the probability of choosing
the correct crossover mask is 2−2m+j. Following crossover, mutation must correct
k + j bits, with probability (1/n)k+j(1 − 1/n)n−k−j ≤ (1/n)k+j . Consequently,
the probability of getting the crossover mask right and the correct mutation is
≤ (1/n)k+j(1/2)2m−j ≤ (1/2)2m+j which is exponentially small. ��

Theorem 8. The (2+1) GA with uniform crossover will need exponential time
steps to optimize IT 1u

n(x) with probability 1−O(1/n).

Proof. Beginning from Prop. 5 and Lemma 6 above, assume the population
contains a point in T . By the selection method of the GA, once a member of
T exists in the population we should only have to wait constant time O(1) for
both members of the population to be in T . Once the GA contains two members
of T , probability of crossover plus mutation or mutation alone discovering b∗∗ is
exponentially unlikely by Lemma 7. Of the various bad events, the probability
from Prop. 5 of skipping a∗ is maximal at O(1/n). ��

5 Conclusions

We believe we have shown for the first time a proven example of a situation
where a crossover based GA is expected to be exponentially outperformed by
an EA without the crossover operator. Future work will expand upon this result
with empirical studies and extensions to cover 1-point crossover. In addition it is
believed that examples can be created for large population EA/GAs showing this
exponential performance difference. An open problem would be to follow up on
[14] and produce a reasonable graph problem that where the GA is outperformed
by an EA.
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Abstract. We derive lower bounds for comparison-based or selection-
based algorithms, improving existing results in the continuous setting,
and extending them to non-trivial results in the discrete case. This is
achieved by considering the VC-dimension of the level sets of the fitness
functions; results are then obtained through the use of Sauer’s lemma. In
the special case of optimization of the sphere function, improved lower
bounds are obtained by bounding the possible number of sign conditions
realized by some systems of equations.

Keywords: Evolution Strategies, Convergence ratio, VC-dimension,
Sign conditions.

1 Introduction

Evolution strategies (ES), defined by Rechenberg [15], are a family of optimiza-
tion algorithms with nice robustness properties. Most ES use only comparisons
between fitness values and not the fitness values themselves. This fact has been
used in [18] in order to provide lower bounds that match some upper bounds
known for evolutionary algorithms [8,2,16]. The optimality of this comparison-
based principle for some robustness criterion was shown in [10] (see also [3,20,4]).
In [18] is provided a new tool for proving lower bounds for evolutionary algo-
rithms, but, as pointed out by the authors, some bounds are not tight and
in particular: (i) the discrete case provides essentially trivial results; (ii) the
bounds for the (μ, λ)-ES are far too large. In this work, we propose improved
lower bounds for evolution strategies of type (μ +, λ)-ES (i.e. upper bounds on
the convergence ratios of these algorithms) in terms of the VC-dimension of level
sets of the fitness functions. In the special case of optimization of the sphere func-
tion, improved upper bound on the convergence ratio of evolution strategies are
presented; they are obtained by bounding the number of sign conditions realized
by a system of equations. The paper is organized as follows. Basic definitions
and terminology of evolution strategies we consider are described in Section 2.
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Lower bounds on (μ +, λ)-ES based on the branching factor, obtained in [18],
are recalled in Section 3. Improved lower bounds on (μ +, λ)-ES in terms of the
VC-dimension are presented in Section 4. At last, some questions are raised in
Section 5.

Notations. In all the paper, log(x) denotes the logarithm with basis 2, i.e.
log(2) = 1. The set of integers {1, 2, . . . , n} is denoted by [[1, n]].

2 Evolution Strategies of Type (μ +, λ)

We define in this section (μ +, λ)-algorithms – we refer to Beyer and Schwefel [6]
for a comprehensive introduction to evolution strategies. The aim of a (μ +, λ)-
algorithm is to find the minimum of a function f (called the fitness function)
defined over a domain D. This algorithm cannot evaluate the function f but
has to work only with comparisons: given two points x and y, the algorithm has
access to a black-box telling whether f(x) < f(y), f(x) = f(y) or f(x) > f(y).
Of course such an algorithm is not required to work for one fitness function
but for a whole family of fitness functions. In the following we denote by F
the set of fitness functions we consider. In the rest of the paper, we assume we
never have a case of equality f(x) = f(y) among the generated points. Let λ

Algorithm 1. SB-(μ, λ)-ES (resp. SB-(μ+λ)-ES), i.e. evolution strategies based
on selection, working on a fitness function f . The real number ω is a random
seed, uniform in [0, 1]. We do not specify the generation of the offspring, because
we work on the whole family of algorithms matching this framework.

Initialize I0 ∈ I, S−1 = ∅ and n = 0
while true do

Generate an offspring On of λ distinct points: On = generate(In, ω).
Selection: Use the fitness f in order to partition On (resp. On∪Sn−1) in two sets
Sn of cardinal min(μ, Card(On)) and Rn such that

x ∈ Sn and y ∈ Rn ⇒ f(x) < f(y).

We denote this by Sn = select(On, f) (resp. Sn = select(On ∪ Sn−1, f)).
Update the internal state:

In+1 = update(In, f, On) = selectionUpdate(In, Sn, Rn) ∈ I.

x
(f)
ω,n+1 = proposal(In)

n = n + 1
end while

and μ bee two integers (subject to μ � λ in the (μ, λ) case). A SB-(μ +, λ)-ES
(Selection Based (μ +, λ)-ES) is an algorithm working as follows. There is a set I
of internal states and an initial state I0. At each iteration, the algorithm follows
these three successive steps. First generate a set of λ points, called the offspring.
Then select only the μ best ones, i.e. the μ points with lowest fitness values;
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Algorithm 2. (μ, λ)-ES (resp. (μ + λ)-ES) based on full ranking, working on
a fitness function f . The real number ω is a random seed, uniform in [0, 1].
Compared to Algorithm 1, Sn is now a vector of points, ordered with respect to
their fitness values. This family of algorithms is more general than Algorithm 1,
as we can use all the ranking information.

Initialize I0 ∈ I, S−1 = ∅ and n = 0
while true do

Generate an offspring On of λ distinct points: On = generate(In, ω).
Selection with ranking: Use the fitness f in order to partition On (resp. On ∪
Sn−1) in a vector Sn = (x′

1, . . . , x
′
cn

) of cardinal cn = min(μ, Card(On)) (resp.
cn = min(μ, Card(On ∪ Sn−1))) and a set Rn such that

∀i ∈ [[1, cn]], ∀y ∈ Rn, f(x′
i) < f(y),

and ∀i ∈ [[1, cn − 1]], f(x′
i) < f(x′

i+1).

We denote this by Sn = select(On, f) (resp. Sn = select(On ∪ Sn−1, f)).
Update the internal state:

In+1 = update(In, f, On) = fullRankUpdate(In, Sn, Rn) ∈ I.

x
(f)
ω,n+1 = proposal(In)

n = n + 1
end while

in the case of a SB-(μ, λ)-ES, points generated at previous stages are forgotten
and this selection is performed only among the offspring, while an algorithm
of type SB-(μ + λ)-ES selects the μ best points among the offspring and the
points selected at the previous step (hence these μ selected points are always
the μ points with lowest fitness values found so far). At last the internal state is
updated. General outlines of SB-(μ, λ)-algorithms (resp. SB-(μ+λ)-algorithms)
are summarized in Algorithm 1.

Algorithms with the ”+” are usually termed elitist ; this means that we always
keep the best individuals. Algorithms with the ”,” are termed non-elitist. Elitist
strategies are usually faster on easy fitness functions, but less robust; therefore,
non-elitist strategies are usually prefered.

At last we would like to explain a generalization of SB-(μ +, λ)-ES, called
(μ +, λ)-ES. Instead of just giving the best μ points (i.e. the μ points with the
lowest fitness values), we can consider a selection procedure which returns the
best μ points ordered with respect to their fitness. More precisely, given the
points (y1, . . . , yp) (On in the case of (μ, λ)-ES or On ∪ Sn−1 in the case of
(μ + λ)-ES), it returns μ distinct indices (i1, . . . , iμ) such that f(yi1) < . . . <
f(yiμ) and for all j �∈ {i1, . . . , iμ}, f(yiμ) < f(yj). We call full ranking this
kind of ”selection” [4,3,20]. The outline of these algorithms is summarized in
Algorithm 2.

Note that both Algorithms 1 and 2 define a class of algorithms: in order
to obtain an algorithm, one has to specify how generation of points is done,
what is the set of internal states as well as the update function. We assume
that all functions involved in these algorithms are measurable. A usual case is
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retrieved when the offspring is randomly and independently drawn according
to a Gaussian distribution, with parameters (mean, variance and covariances)
depending on the internal state of the algorithm.

3 Branching Factor and Convergence Ratio

We consider a (possibly discrete) domain D ⊂ Rd and a norm ‖ · ‖ on Rd. For
ε > 0, we define N(ε) to be the maximum integer n such that there exist n
distinct points x1, . . . , xn ∈ D with ‖xi − xj‖ � 2ε for all i �= j. If each function
f ∈ F has one and only one optimum f∗, for any given optimization algorithm
as in Algorithm 2, and for ε > 0 and δ > 0, we let nε,δ be the minimum number
n of iterations such that with probability at least 1− δ, an optimum is found at
the n-th iteration within distance ε. I.e. nε,δ is minimal such that for all n � nε,δ

and for all f ∈ F ,
Pw∈[0,1][‖x(f)

ω,n − f∗‖ < ε] � 1− δ.

For an algorithm of type (μ +, λ)-ES working over a set F of fitness functions,
we define the branching factor of any algorithm as in Algorithm 2 as

K = sup
I∈I,O

Card{update(I, f, O) | f ∈ F}.

Notice that in the case of selection based algorithms (any algorithm fitting
Algorithm 1), we have

K � sup
O

Card{select(O, f) | f ∈ F}

where the supremum holds for: (i) O any set of λ points in the case of SB-(μ, λ)-
ES; (ii) O any set of λ+μ points in the case of SB-(μ+λ)-ES. A similar remark
holds in the case of full ranking (μ +, λ)-ES, except that a bound on K is given by
the possible number of choices of selected points together with their order (with
respect to their fitness values). Let us recall the following result from Teytaud
and Gelly [18] (restricted here to our purpose) relating the convergence ratio
and the branching factor of a (μ +, λ)-ES.

Theorem 1 (Lower bound on the convergence ratio of (μ +, λ)-ES.).
Consider a (μ, λ)-ES or (μ + λ)-ES as in Algorithm 2. Consider a set F of
possible fitness functions on domain D, i.e. F ⊂ RD, such that any fitness
function f ∈ F has only one min-argument f∗, and such that {f∗ | f ∈ F} = D.
Let ε > 0 and δ ∈]0, 1[. Let Ln(ω) be the number of different paths (when the
function f runs over F) followed by the algorithm on the random seed ω after n
steps of computation; then

Eω∈[0,1][Lnε,δ
(ω)] � (1 − δ)N(ε).

In particular, if K denotes the branching factor of the algorithm, then

nε,δ �
⌈

log(1− δ)
log(K)

+
log(N(ε))

log(K)

⌉
.
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We can define the convergence ratio for both discrete and continuous domains
thanks to the following unified definitions. We want a definition of convergence
ratio which matches bounds of the form O(1/d) established in [13]; therefore, we
define the convergence ratio of an algorithm for precision ε as

CRε =
logN(ε)
dnε, 1

2

.

We also define the normalized convergence ratio (normalized by the number of
individuals generated per epoch) by

NCRε =
logN(ε)
dλnε, 1

2

.

The ratio CRε is relevant in the parallel setting (i.e. it is the convergence ratio
when working on a parallel computer, with parallel evaluation of the offspring),
while NCRε is relevant in the sequential setting, i.e. when individuals are eval-
uated sequentially.

Theorem 1 can be reformulated with these unified definitions of convergence
ratios as follows. Consider a (μ +, λ)-ES satisfying the hypothesis of Theorem 1.
Let α(ε) = 1/(1− 1/N(ε)). Then

CRε � logK
d

· α(ε) and NCRε � logK
dλ

· α(ε). (1)

4 Sauer’s Lemma and VC-Dimension

Teytaud and Gelly [18] applied the bounds obtained in Section 3 in the following
way: the number of subsets of size μ of a set of λ points, is at most

(
λ
μ

)
�
(

λ
�λ/2�

)
�

(2λ/
√

2πλ) – see e.g. [7, p587] or [9] for these inequalities. This surely holds, but
it is a worst case on possible selections: if the fitness funtions are “nice”, many of
these subsets cannot be realized. This is precisely quantified by Sauer’s lemma in
the theory of VC-dimension. In this section, we show how this allows to obtain
more precise lower bounds on the convergence ratio of (μ +, λ)-ES.

Given a function f defined over D and r > 0, let Of,r = {x ∈ D | f(x) < r}.
We define the level sets LF of a set F of functions defined over the domain D as

LF = {Of,r | f ∈ F , r > 0}.

We now briefly recall the definition of VC-dimension and Sauer’s lemma [19,17]
– our presentation is based on [14]. A set system on a set A is a family S
of subsets of A. For B ⊆ A, we define the restriction of S to B as S|B =
{S ∩ B | S ∈ S}. The VC-dimension of the set system S defined over A is
defined as sup{|B| | S|B = 2B} where 2B denotes the powerset of B; in other
words, it is the size of the largest subset B of A such that any subset of B can be
obtained by intersecting B with an element of S. Given a set system S over A,
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the shatter function πS is defined by πS(m) = max{|S|B | | B ⊆ A, |B| = m};
thus πS(m) is the maximum number of different subsets of A which can be
obtained by intersecting a single subset of size m of A with all elements of S.
We next recall Sauer’s lemma which gives an upper bound on πS in terms of the
VC-dimension of S.

Lemma 1 (Sauer’s lemma). For any set system S of VC-dimension d, then
for all integer m, it holds that πS(m) �

∑d
i=0

(
m
i

)
.

At last, let us recall the following classical bound [7] which is valid whenever
d � 3:

d∑
i=0

(
m

i

)
� min{md, 2m}. (2)

Note that the trivial bound 2m is tight when m � d. The interesting case hap-
pens when m is large with respect to the VC-dimension d: the bound becomes
polynomial in m in this case. This element is central for the difference between
the results in this paper and results in [18].

In the rest of the paper, we assume the VC-dimension of considered set systems
is always at least 3 (however, the case of VC-dimension smaller than 3 can be
handled in a similar way; the bound above has to be replaced with

∑d
i=0

(
m
i

)
�

md + 1).

4.1 Non-elitist Strategies

We first give an upper bound on the branching factor of a SB-(μ, λ)-ES in terms
of the VC-dimension of level sets.

Lemma 2. Consider a SB-(μ, λ)-ES as described in Algorithm 1. Let V � 3
be the VC-dimension of the level sets of the family F of fitness functions under
consideration. Then the branching factor of this algorithm satisfies K � λV .

Proof. Given a set of λ points P = {x1, . . . , xλ} in the domain D, and f ∈ F ,
let us define Mf (P ) to be the subset Q of size μ of P correponding to the μ
points of P with lowest fitness values with respect to f . Note that the branching
factor satisfies

K � max
P⊂D, |P |=λ

|{Mf(P ) | f ∈ F}|.

Now remark that for any P , the set Q of the μ points of P with lowest value (with
respect to the fitness function f) can be separated from P \ Q by an element
from the level sets: in other words, there exists O ∈ LF such that O∩P = Q. It
follows that

|{Mf(P ) | f ∈ F}| � πLF (λ).

If the VC-dimension of LF is at most V , it follows from Sauer’s lemma and the
bound given in Equation 2 that πLF (λ) � λV . Thus K � λV . ��
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Theorem 2 (SB-(μ, λ)-ES). Consider a SB-(μ, λ)-ES (Algorithm 1) in a do-
main D ⊂ Rd, such that D = {f∗ | f ∈ F}. Let V � 3 be the VC-dimension of
the level sets of F . The convergence ratio of this algorithm satisfies

CRε � V logλ
d

· α(ε),

where α(ε) = 1/(1− 1/N(ε)).

Proof. The result easily follows from the upper bound on the branching factor
given in Lemma 2, and from Theorem 1 as stated in Equation 1. ��

4.2 Non-elitist Strategies with Full Ranking

This subsection deals with algorithms of type full ranking (μ, λ)-ES. It is orga-
nized as follows:

– First we study to which extent lower bounds obtained for SB-(μ, λ)-ES are
modified when we use the full ranking information and not only selection
information (i.e. we move from Algorithm 1 to Algorithm 2);

– Although the bounds obtained in the general case do not forbid a linear
speed-up in λ, we show that the speed-up is asymptotically at most loga-
rithmic in the special case of the sphere function;

– At last, for the sphere function again, we remark that a convergence ratio
CRε = Θ(1) can be reached in the case λ = 2d; this is to be compared to
the best convergence ratio CRε = Θ(1/d) we are aware of for λ = O(1).

Keeping the full ranking information. Consider the case of Algorithm 2
instead of Algorithm 1; we have a wider family of algorithms as we can use all
the ranking information. There are evolutionary algorithms which use the full
ranking information of the selected points and not only selection; for example,
roulette-wheel with rank-based fitness assignment (stochastic sampling [4], rank-
based fitness assignment [3,20]), weighted recombination [11,1] or breda [10]. In
this case, an upper bound on the number of possible outcomes of the selection
step (including the ranking of children) is obtained by multiplying by μ! the
number of possible outcomes in the case of selection only. This gives CRε �
V log(λ)+μ log μ

d · α(ε). However, we can say better in the case where μ is large
with respect to the VC-dimension V of the level sets of the fitness functions.
(Proof of the following theorem is omitted due to space limitations.)

Theorem 3 (Full ranking (μ, λ)-ES). Consider a (μ, λ)-ES (Algorithm 2) in
a domain D ⊂ Rd, such that D = {f∗ | f ∈ F}. Let V � 3 be the VC-dimension
of the level sets of F . The convergence ratio of this algorithm satisfies

CRε � V (logλ+ 4μ)
d

· α(ε),

where α(ε) = 1/(1− 1/N(ε)).
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The case of the sphere function: complexity bounds for λ large. For the
sphere function and the Euclidean norm, we next give an upper bound on the
convergence ratio of a selection-based algorithm using full ranking.

Proposition 1. Let d � 3. Consider a (μ, λ)-ES, as in Algorithm 2, optimizing
the sphere function in a domain D ⊂ Rd. Then CRε � 2 log(λ) · α(ε), where
α(ε) = 1/(1− 1/N(ε)).

Proof. Given two distinct points p and q in Rd, we denote by Hp,q be the medi-
ator hyperplane of p and q, i.e. Hp,q = {x ∈ Rd | ‖x− p‖ = ‖x− q‖}.

At each iteration of the algorithm, an offspring of λ points {x1, . . . , xλ} is
generated and the algorithm receives the sequence of indices of the μ points
with lowest fitness values, ordered with respect to their fitness values. Obviously
the branching factor is maximal when μ = λ, i.e. when the algorithm is given
the full ordering of points with respect to their fitness values. This information
corresponds to giving the sign si,j of f(xi)− f(xj) for each 1 � i < j � λ; this
sign is positive or negative since we assumed equality never occurs. The number
of possible sign vectors s = (si,j)1�i<j�λ is exactly the number of cells of the
arrangement of hyperplanes {Hxi,xj | 1 � i < j � λ} in Rd. But it is known that
n hyperplanes in Rd define at most nd cells – see chapter 6 of [14]. Since there
are
(
λ
2

)
� λ2/2 hyperplanes here, we obtain K �

(
λ2/2

)d. Applying Equation 1
yields the announced bound on the convergence ratio. ��
When ε tends towards 0 and as N(ε) →∞, this gives CRε � 2 logλ; this shows
that the upper bound given by Theorem 3 cannot be reached in this case.

The case of the sphere function: Fast convergence ratio with λ = 2d.
We point out here that for the specific case of the sphere function, a convergence
ratio CRε = Θ(1) can be reached with λ = 2d in the domain [0, 1]d by some
algorithm of type full ranking (μ, λ)-ES.

This convergence ratio is easily obtained with the following algorithm. Let ei

denote the vector (0, . . . , 0, 1, 0, . . . , 0) with a unique 1 in position i. First split
[0, 1]d into the 2d cells delimited by the d hyperplanes of equations xi = 1/2; the
full ranking of the 2d points {(1

2 ,
1
2 , . . . ,

1
2 )+ η

2ei | 1 � i � n, η ∈ {−1, 1}} allows
to decide in which of these cells the optimum lies; then the algorithm proceeds
recursively. This is quite similar to the Hooke and Jeeves algorithm [12].

After n iterations, the point x(f)
n proposed by this algorithm satisfies ‖x(f)

n −
f∗‖2 �

√
d/2n. Moreover, this distance is realized by some fitness functions. It

follows that nε, 1
2

= log 1
ε + 1

2 log d. On the other hand log(N(ε)) = Θ(d log 1
ε ).

Thus, we have obtained:

For λ = 2d : CRε =
logN(ε)
d nε, 1

2

= Θ(1). (3)

4.3 Elitist Strategies

Results obtained in the case of (μ, λ) algorithms can be translated into the elitist
setting. Bounds obtained in these cases are given in Figure 1 (Section 5). Proofs
of these results are omitted due to space limitation.
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5 Summary of Results

Let’s apply the results obtained in the previous section to the simple framework
of the domain D = [0, 1]d with the Euclidean norm. Lower bounds obtained
in this setting are summarized in Figure 1. Higher values mean better possible
convergence ratios. However, it is not known when these convergence ratios can
be achieved. Indeed, result marked with (*) in Figure 1 is improved in the special
case of the sphere function in Section 4.2: this shows that at least in this case,
general bounds on convergence ratio derived from VC-dimension are not tight.
Discussion of these results follows.

SB-(μ, λ)-ES SB-(μ + λ)-ES Full ranking Full ranking Full ranking
(μ, λ)-ES (μ + λ)-ES (∞ + λ)-ES

CR V
d

log λ V
d

log(μ + λ) V
d
(log(λ) + 4μ) (*) V

d
(log(λ + μ) + 4μ) 4V λ

d

Fig. 1. Upper bound on the convergence ratio in the case of Euclidean norm in the
domain [0, 1]d, when the level sets of fitness functions have VC-dimension V

Asymptotic speed-up in the case of selection only, non-elitist. In the case of
evolution strategies based on selection only (algorithms of type SB-(μ, λ)-ES),
the linear speed-up of selection-based evolution strategies shown in [5] cannot be
obtained for λ large enough. Asymptotically, the speed-up obtained with such
an algorithm is at most logarithmic as shown in Theorem 2.

Selection based algorithms vs. full ranking. When moving from selection based
algorithms of type SB-(μ, λ)-ES to full ranking (μ, λ)-ES, upper bounds on the
convergence ratio obtained here in the general case do not forbid a strong im-
provement asymptotically; essentially, the speed-up that could be achieved moves
from logarithmic to linear in λ.

However, we know from Proposition 1 that the speed-up is at most logarithmic
for a full ranking (μ, λ)-ES in the special case of sphere function. This raises the
following question: for which kind of fitness functions is it interesting to keep
the full ranking information?
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3. Bäck, T., Hoffmeister, F., Schwefel, H.-P.: Extended selection mechanisms in ge-
netic algorithms. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the Fourth
International Conference on Genetic Algorithms, pp. 92–99. Morgan Kaufmann
Publishers, San Mateo (1991)

4. Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: Proceed-
ings of the Second International Conference on Genetic Algorithms on Genetic
algorithms and their application, pp. 14–21. Lawrence Erlbaum Associates, Inc.,
Mahwah (1987)

5. Beyer, H.-G.: Toward a theory of evolution strategies: On the benefit of sex - the
(μ/μ, λ)-theory. Evolutionary Computation 3(1), 81–111 (1995)

6. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies: a comprehensive introduction.
Natural Computing 1(1), 3–52 (2002)

7. Devroye, L., Györfi, L., Lugosi, G.: A probabilistic Theory of Pattern Recognition.
Springer, Heidelberg (1997)

8. Droste, S.: Not all linear functions are equally difficult for the compact genetic
algorithm. In: Proc. of the Genetic and Evolutionary Computation COnference
(GECCO 2005), pp. 679–686 (2005)

9. Feller, W.: An introduction to Probability Theory and its Applications. Wiley,
Chichester (1968)

10. Gelly, S., Ruette, S., Teytaud, O.: Comparison-based algorithms are robust and
randomized algorithms are anytime. Evolutionary Computation Journal (MIT
Press), Special issue on bridging Theory and Practice 15(4), 411–434 (2007)

11. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9(2), 159–195 (2001)

12. Hooke, R., Jeeves, T.A.: ”Direct search” solution of numerical and statistical prob-
lems. Journal of the ACM 8(2), 212–229 (1961)
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Abstract. Artificial Immune Systems (AIS) are an emerging new field
of research in Computational Intelligence that are applied to many areas
of application, e.g., optimization, anomaly detection and classification.
For optimization tasks, the use of hypermutation operators constitutes
a common concept in AIS. By now, only little theoretical work has been
done in this field. In this paper, we present a detailed theoretical run-
time analysis that gives an insight into the dynamics of fitness based
hypermutation processes. Two specific mutation rates are considered us-
ing a simple immune inspired algorithm. Our main focus lies thereby on
the influence of parameters embedded in popular immune inspired hy-
permutation operators from the literature. Our theoretical findings are
accompanied by some empirical results.

1 Introduction

Immune Algorithms (IAs) are a special class of biologically inspired algorithms,
which are based on the immune system of vertebrates. In contrast to Evolution-
ary Algorithms (EAs), which emerged from a single main concept, IAs derive
from various immunological theories, namely the clonal selection principle, neg-
ative selection, immune networks or the danger theory [1,2,3].

The field of IAs is a relatively new area of research, but has achieved various
promising results in different areas of application. Like EAs, they are often ap-
plied to optimization. In this paper, we focus on algorithms based on the clonal
selection principle [4], a theory used to describe the basic features of an adaptive
immune response to invading pathogens (antigens). Due to this theory only im-
mune cells, which recognize an antigen, proliferate and undergo a hypermutation
process called affinity maturation.

During the last years, many clonal selection algorithms to tackle optimization
problems have been developed, like, e.g., CLONALG [5], OPT-IA [6], the B-
Cell-Algorithm [7] and MISA [8]. All these algorithms are population based.
The input is usually represented by a population of antigens; a population of
immune cells represents candidate solutions of the considered problem. During
the clonal selection process, the clone rate of an immune cell is proportional to
its fitness, i.e., its affinity to the presented antigen, whereas the mutation rate
is inversely proportional to the fitness.
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Until now, little theoretical work has been done for IAs. As pointed out by
Timmis [9] and Hart and Timmis [10] one challenge for the future of IAs is
the development of a theoretical basis for IAs as much work so far has been
concentrated on direct application of known immune principles. Timmis et al.
give an overview on existing theoretical work in the field of IAs [11]. For clonal
selection algorithms the work done mainly covers convergence analysis [12,13,14].
Thus, the analysis of the performance of IAs on specific problems and the impact
of mutation operators or other features of the algorithms is stated to be a “major
theoretical challenge for the future” [11]. This work contributes a theoretical
analysis for hypermutation operators frequently employed in IAs.

In the field of EAs often a constant, standard mutation rate of 1/n, where n is
the length of the bit string, is used. Jansen and Wegener [15] showed that using
an appropriate mutation rate is essential for the performance of the algorithms.
Jansen and Sudholt [16] and Doerr et al. [17] investigated the use of asymmet-
ric mutation operators. In this paper, we theoretically analyze the runtime of
inversely fitness proportional hypermutation operators on a simple toy problem.
Note, that these operators are somehow similar to evolution strategies [18] as
they employ self-adapting mechanisms.

The paper is organized as follows. In Section 2 we describe a simple IA and the
framework for our analysis. Section 3 introduces a hamming distance based muta-
tion rate while in Section 4 we present the theoretical analysis for immune inspired
hypermutation operators. We complement our analysis by some experimental re-
sults in Section 5. Conclusion and proposals for future work are made in Section 6.

2 A Simple Immune Algorithm

In this section, we describe a simple IA based on the clonal selection theory that
maximizes some objective function f : {0, 1}n → R. As we focus on the effect
of mutation rates that are inversely proportional to the fitness of the current
individual, we omit other possible operators (e.g., cloning or aging), reducing
the size of our population of immune cells to one. This leads to the following
simple IA that due to its similarity to the (1+1) EA [19] we call the (1+1) IA:

Algorithm 1. ((1+1) Immune Algorithm)

1. Choose x ∈ {0, 1}n uniformly at random.
2. Create offspring y := x.
3. Flip each bit in y independently with probability α(f(x)).
4. If f(y) ≥ f(x): Set x := y.
5. Continue at 2.

We analyze how long the (1+1) IA takes to find an optimal solution starting
from a randomly initialized solution. For this purpose we have chosen a classical
toy problem for evolutionary algorithms, in which the objective is to maximize
the number of ones in a bit string:

ONEMAX(x) =
n∑

i=1

xi, (1)
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where n is the length of the bit string x. The (1+1) EA with mutation probability
1/n solves ONEMAX in time Θ(n log n) [19].

3 A Hamming Distance Based Mutation Rate

We start our analysis with a simple, hamming distance based mutation rate
αh(v), which is defined as

αh(v) =
n− v

n
, (2)

where n is the length of the bit string x. Let v = f(x). Then, n − v equals the
hamming distance between the fitness of an individual x and the optimal fitness
function value of ONEMAX. As the expected number of flipping bits for this op-
erator is n− v, such a mutation rate is optimal if the objective is to maximize the
probability to find the global optimum of ONEMAX in a single mutation step.

We first prove that with a probability close to 1, the (1+1) IA with hamming
distance based mutation rate will not find the optimum of ONEMAX within a
polynomial number of iterations. Let M0 be the number of flipping zeros and M1

the number of flipping ones, respectively. Then, for k = n− v we have E(M0) =
k2

n and E(M1) = k − k2

n . Thus, the expected progress equals E(M0 −M1) =
2·k2

n − k. Note, that for an individual x with f(x) ≤ n
2 we have αh(f(x)) ≥ 1

2 .

Theorem 1. The probability that the (1+1) IA with hamming distance based
mutation rate αh(v) = n−v

n will not find the optimum of ONEMAX within ec·n

iterations (c > 0 constant, sufficiently small) is bounded below by 1− e−Ω(n).

Proof. By Chernoff bounds [20], we have Prob(n
3 ≤ f(x0) ≤ 2n

3 ) = 1 − e−Ω(n)

for the initial bit string x0. Then, as long as f(x) ≤ 2n
3 , we have Prob(f(y) >

2n
3 ) = e−Ω(n) as the following case inspection shows.

Case 1. For (1
2 + δ) · n ≤ f(x) ≤ 2n

3 (0 < δ < 1
6 constant) the probability to

have f(y) > f(x) is bounded above by Prob(M0 > M1) ≤ Prob(M0 > (1 + δ) ·
E(M0)) ·Prob(M1 < (1− δ) ·E(M1)) = e−Ω(n) as for k = n− f(x) ≤ (1

2 − δ) ·n

(1 + δ) ·E(M0)− (1 − δ) · E(M1) = (1 + δ) · k2

n − (1− δ) ·
(
k − k2

n

)
= k ·

(
2k
n

+ δ − 1
)
≤ k ·

(
2 · (1

2 − δ) · n
n

+ δ − 1
)

= −δ · k < 0

Case 2. For n
3 ≤ f(x) ≤ (1

2 − δ) · n (0 < δ < 1
6 constant) the probability for

having f(y) > 2n
3 is maximal for f(x) = n

3 . For this case, however, again Chernoff
bounds yield Prob(f(y) > 2n

3 ) = e−Ω(n) as E(M0) = n
9 and E(M1) = 2n

9 .
Thus, we have Prob(f(y) > 2n

3 ) = e−Ω(n) if n
3 ≤ f(x0) ≤ 2n

3 . Together this
shows that with probability 1−e−Ω(n) even in ec·n iterations the global optimum
of ONEMAX is not found (c > 0 constant, sufficiently small). ��
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We have shown that the hamming distance based mutation rate αh(v) = n−v
n

with a randomly chosen initial bit string x0 yields an exponential lower bound
for the optimization time and thus, we get an exponential lower bound for the
(1+1) IA with this operator. Suppose the initial bit string is located in some
specific region of the search space. The next theorem proves that then, we can
achieve a polynomial time bound with probability converging to 1 for n→∞.

Theorem 2. If f(x0) = O(log n) or f(x0) = n − O(log n) for the initial bit
string x0, the (1+1) IA with hamming distance based mutation rate αh(v) = n−v

n
will find the optimum of ONEMAX within a polynomial number of iterations with
probability 1− n−ω(1).

Proof. Let M = M0 + M1 and M = n − M . For f(x0) = O(log n) we have
E(M) = O(log n). Suppose M1 = O(log n) and M = ω(logn). By Chernoff, the
probability that (1 + (ω(1)− 1)) ·O(log n) = ω(logn) bits do not flip is bounded
above by n−ω(1). Thus, we have f(y) = n−O(logn) with probability 1−n−ω(1).

For f(x0) = n−O(log n) we estimate the success probability, i.e., the proba-
bility to flip more zeros than ones, as follows. Let k = n− f(x0). Then,

P (M0 > M1)

=
k∑

i=1

(
k

i

)
·
(
k

n

)i

·
(

1− k

n

)k−i

·

⎛⎝i−1∑
j=0

(
n− k

j

)
·
(
k

n

)j

·
(

1− k

n

)n−k−j
⎞⎠

≥
k∑

i=1

(
k

i

)
·
(
k

n

)i

·
(

1− k

n

)k−i

·

⎛⎝i−1∑
j=0

(
n− k

k

)j

·
(
k

n

)j

·
(

1− k

n

)n−k−j
⎞⎠

=
k∑

i=1

(
k

i

)
·
(
k

n

)i

·
(

1− k

n

)k−i

·

⎛⎝i−1∑
j=0

(
1− k

n

)n−k
⎞⎠

=
(

1− k

n

)n−k

·
k∑

i=1

i ·
(
k

i

)
·
(
k

n

)i

·
(

1− k

n

)k−i

≥
(

1
e

)k

· k
2

n

Thus, with k = O(log n) ⇔ f(x0) = n − O(log n) or f(x0) = O(log n) we find
the global optimum in O(nO(1)) iterations with probability 1− n−ω(1). ��

4 Analysis of Immune Inspired Mutation Rates

Different types of immune inspired hypermutation operators have been proposed
in the literature, e.g., proportional hypermutation, inversely proportional hyper-
mutation and Hypermacromutation [6]. As already mentioned, in this paper, we
focus on mutations rates, which are inversely proportional to the fitness of the
current individual. Let

α1(v) = e−ρ·v and α2(v) = 1
ρ · e

−v, (3)
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where ρ is a parameter that controls the decay of the inverse exponential function
and v is a fitness function value normalized in [0, 1]. The first equation has been
originally introduced for CLONALG [5]. The second one has been proposed
for an optimization version of aiNet [21]. Both functions have been analyzed
experimentally on ONEMAX for a bit string length of n = 100 [22]. In this
paper, we focus on the theoretical analysis of α1(v) as a better performance for
this mutation type on ONEMAX has been reported [22].

In population based IAs the fitness function value is normalized by dividing
the fitness of an individual by the fitness of the best current individual (for a
maximization problem). As our population consists of a single individual, we use
the optimal value n of the considered objective function and thus obtain:

α′
1(v) = e−ρ· v

n (4)

In real applications one could alternatively use an upper bound for the optimal
value. Note, that using an upper bound for the optimum leads to larger mutation
rates, whereas the use of the fitness of the best current individual in a population
yields smaller mutation rates.

The following theorems show that the choice of the parameter ρ is essential
for the performance of the mutation operator. We first analyze the two extreme
cases ρ = 1 and ρ = Ω(n) and prove that with a probability close to 1 for both
parameters the (1+1) IA with mutation rate α′

1(v) = e−ρ· v
n will not find the

optimal value of ONEMAX within a polynomial number of iterations.
Let again M0 be the number of flipping zeros and M1 the number of flipping

ones, respectively. Then, for an individual x we haveE(M0) = (n−f(x))·e−ρ· f(x)
n

and E(M1) = f(x)·e−ρ· f(x)
n . The expected progress equals (n−2 ·f(x))·e−ρ· f(x)

n .

Theorem 3. The probability that the (1+1) IA with mutation rate α′
1(v) =

e−ρ· v
n and ρ = 1 will not find the optimum of ONEMAX within ec·n iterations

(c > 0 constant, sufficiently small) is bounded below by 1− e−Ω(n).

Proof. The proof follows the line of thought of Theorem 1. Again, we have
Prob(n

3 ≤ f(x0) ≤ 2n
3 ) = 1− e−Ω(n) for the initial bit string x0 due to Chernoff

bounds. Then, analogous to Theorem 1, we show Prob(f(y) > 2n
3 ) = e−Ω(n) as

long as f(x) ≤ 2n
3 .

Case 1. For (1
2 + δ) · n ≤ f(x) ≤ 2n

3 (0 < δ < 1
6 constant) we have

(1 + δ)E(M0)− (1− δ)E(M1) = e−
f(x)

n · [(1 + δ) · (n− f(x))− (1 − δ) · f(x)]

≤ e−
f(x)

n ·
[
(1 + δ) · (1

2 − δ) · n− (1− δ) · (1
2 + δ) · n

]
≤ −δ · n < 0

and thus, the probability to have f(y) > f(x) is bounded above by Prob(M0 >
M1) ≤ Prob(M0 > (1 + δ) · E(M0)) · Prob(M1 < (1− δ) ·E(M1)) = e−Ω(n).

Case 2. For n
3 ≤ f(x) ≤ (1

2 − δ) · n (0 < δ < 1
6 constant) again the probability

for having f(y) > 2n
3 is maximal for f(x) = n

3 . In this case, Chernoff bounds
yield Prob(f(y) > 2n

3 ) = e−Ω(n) as E(M0) = 2n
3· 3√e

and E(M1) = n
3· 3√e

.
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Thus, we have Prob(f(y) > 2n
3 ) = e−Ω(n) if n

3 ≤ f(x0) ≤ 2n
3 and the theorem

follows. ��

We remark, that for ρ = 1 we cannot show a polynomial bound for specific
regions of the search space (cf. Theorem 2), as, e.g., for f(x0) = n−O(log n) or
even f(x0) = n−O(1) the expected progress equals O(log n)− n and O(1)− n,
respectively. The results above hold for all ρ = O(1). Thus, we can conclude that
the parameter ρ should depend on the length n of the bit string.

Theorem 4. For n → ∞ the (1+1) IA with mutation rate α′
1(v) = e−ρ· v

n and
ρ = Ω(n) yields an exponential expected waiting time for a mutation actually
changing a bit.

Proof. With ρ = Ω(n) the mutation rate equals α′
1(v) = e−Ω(n)· v

n = e−Ω(v). By
Chernoff bounds, we have Prob(n

3 ≤ f(x0) ≤ 2n
3 ) = 1− e−Ω(n) for the initial bit

string x0. The mutation rate then equals α′
1(v) = e−Ω(n). Thus, the expected

number of flipping bits in an iteration is n
eΩ(n) and the theorem follows. ��

Note, that already for f(x0) = ω(logn) we have a mutation rate α′
1 = e−ω(log n) =

n−ω(1). Then, the expected number of flipping bits in an iteration is n
nω(1) , con-

verging to 0 for n→∞.
We have seen, that on the one hand for ρ = Ω(n) the mutation rate α′

1(v) =
e−ρ· v

n becomes exponentially small and yields an exponential expected waiting
time for a mutation actually changing a bit. On the other hand for ρ = 1
we will not find the optimum of ONEMAX within a polynomial number of
iterations with probability converging to 1 exponentially fast. The latter results
from the fact that for f(x) > n

2 and f(x) → n we have a large negative drift and
additionally for the relevant values of f(x) the probability for a one bit mutation
is exponentially small as 1

e ≤ α′
1(v) ≤ 1.

For this reason, we now choose a value for ρ, which is in between these two
extreme cases, namely ρ = lnn. For ρ = lnn, we have α′

1(v) = n− v
n and thus,

1
n ≤ α′

1(v) < 1
2 if v > n

log . Hence, in this case we get, in contrast to ρ = 1 and
ρ = Ω(n), reasonable values for the mutation probability.

The next theorem shows that for ρ = lnn we get indeed a similar result as for
ρ = 1, but in praxis ρ = lnn shows a much better performance (cf. Section 5) as
the probability that the (1+1) IA will not find the optimum within a polynomial
number of iterations converges much more slowly to 1 than it does for ρ = 1.

Theorem 5. The probability that the (1+1) IA with mutation rate α′
1(v) = n− v

n

will not find the optimum of ONEMAX within ed·nc

iterations is bounded below
by 1− e−Ω(nc) (for constants 0 < c < 1

2 and d > 0 sufficiently small).

Proof. The proof follows the line of thought of Theorem 1. Again, we have
Prob(n

3 ≤ f(x0) ≤ 2n
3 ) = 1− e−Ω(n) for the initial bit string x0 due to Chernoff

bounds. Let f(x) = c · n. Then, E(M0) = (1 − c) · n1−c and E(M1) = c · n1−c.
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Analogous to Theorem 1 we show Prob(f(y) > 2n
3 ) = e−Ω(nc) (0 < c < 1

2
constant) as long as f(x) ≤ 2n

3 by the following case inspection.

Case 1. Similarly to Theorem 3 we can prove that

(1 + δ) ·E(M0)− (1 − δ) · E(M1) ≤ − δ · n
n

f(x)
n

≤ − δ · n

n
1
2+δ

= −δ · n
1
2−δ < 0

and thus, for (1
2 + δ) · n ≤ f(x) ≤ 2n

3 (0 < δ < 1
6 constant) the probability

to have f(y) > f(x) is bounded above by Prob(M0 > M1) ≤ Prob(M0 >

(1 + δ) ·E(M0)) · Prob(M1 < (1− δ) ·E(M1)) = e−Ω(n
1
2−δ).

Case 2. For n
3 ≤ f(x) ≤ (1

2 − δ) · n (0 < δ < 1
6 constant) the probability

for having f(y) > 2n
3 is again maximal for f(x) = n

3 . For this case, Chernoff

bounds yield Prob(f(y) > 2n
3 ) = e−Ω(n) as E(M0) = 2n

2
3

3 , E(M1) = n
2
3

3 and
n
3 + (1 + ε) · E(M0)− (1 − ε) · E(M1) > 2n

3 for ε > 1
3 · (n

1
3 − 1).

Together this shows that with probability 1− e−Ω(nc) even in ed·nc

iterations
the optimum of ONEMAX is not found (0 < c < 1

2 , d > 0 sufficiently small,
constant). ��

Similarly to our analysis in Section 3 we can show, that for some regions of the
search space we achieve a polynomial time bound.

Theorem 6. If f(x0) = n−O( n
log n ) for the initial bit string x0, the (1+1) IA

with mutation rate α′
1(v) = n− v

n will in expectation find the optimum of
ONEMAX within a polynomial number of iterations.

Proof. Let k = n − f(x0). For k = O( n
log n ) we get an upper bound for the

mutation rate by 1

n
n−k

n

= n
k
n

n = e
ln n·k

n

n = eO(1)

n . Moreover, we have the trivial

lower bound 1

n
n−k

n

≥ 1
n . The probability for a one bit mutation can then be

estimated by (
k

1

)
· 1

n
n−k

n

·
(

1− 1

n
n−k

n

)n−1

≥ k

n
·
(

1− eO(1)

n

)n−1

≥ k

n
· e−

eO(1)·(n−1)

n−eO(1) ≥ k

n
· e−eO(1) k=O( n

log n )
=

O(1)
eeO(1) · logn

Thus, for f(x0) = n−O( n
log n ) the optimum is found in expected O(n) iterations

and the theorem follows. ��

From the above theorems we can conclude that on the one hand ρ = lnn yields
a smaller negative drift and thus, the probability that the global optimum of
ONEMAX is not found converges much more slowly to 1 than for ρ = 1 or the
hamming distance based mutation rate αh(v). Moreover, the regions of the search
space, in which we have an expected polynomial optimization time, is larger for
ρ = lnn. Figure 1 visualizes this effect for different values of n, where O(log(n))
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Fig. 1. The relative size of significant regions in the search space

corresponds to the hamming distance based mutation rate αh(v) and O( n
log n )

belongs to α′
1(v) with ρ = lnn. By Chernoff bounds, the probability that the

initial bit string x0 contains n
2 ± O(

√
n) ones is bounded below by 1 − e−ω(1).

Numerical values for functions O(f(n)) are obtained by simply calculating f(n).
We recognize that for small values of n, we have n

2 −
√
n < n

log n < logn,
whereas for large n we have the reverse order as O(log n) = O( n

log n ) = n
2 −

O(
√
n). As our results are asymptotical, the behavior presented in the foregoing

theorems rather corresponds to large n and thus, for n small enough the (1+1) IA
yields suitable performance that we further investigate in the next section.

We remark, that for α2(v) = 1
ρ · e−v, where v is a fitness function value

normalized in [0, 1] by the approach described above, probably similar results
can be shown. For ρ = 1 we have α1(v) = α2(v) while ρ = Ω(n) yields mutation
probabilities < 1

n for k ≤ n− ln(1/c)·n (0 < c < 1 const.) and finally for ρ = lnn
we have 1

e·ln n ≤ α2(v) ≤ 1
ln n . Due to this properties of the mutation probability

we expect a worse behavior in accordance to the results previously reported [22].

5 Experimental Results

Finally, we present some empirical results for the mutation operators discussed
in the foregoing sections. In our experiments we studied how many iterations are
actually needed to optimize ONEMAX for a given bit string length n. For each
n 100 independent runs were performed.

Figure 2(a) visualizes the median, lower and upper quartile as well as the
smallest and largest value observed for the (1+1) IA with mutation rate α′

1(v) =
e−ρ· v

n and ρ = lnn using a boxplot diagram. For the purpose of comparison, we
additionally illustrate the corresponding values for the (1+1) EA with standard
mutation rate 1/n in Figure 2(b). Note, that in both plots we use logarithmic
scales for x- and y-axis. We observe, that for n ≤ 105 the runtime of the (1+1) EA
is quite similar to that of the (1+1) IA with α′

1(v) = e−ρ· v
n and ρ = lnn, while

afterwards the differences in runtime become obvious.
We omit a graphical presentation for the other mutation operators as for ρ = 1

already n = 40 leads to approximately 108 iterations. For ρ = n the performance
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(b) Standard mutation 1/n

Fig. 2. Experimental results for different bit string lengths n

is even worse as around 108 iterations are needed for n = 20. With ρ = n/2 we
have again 108 iterations if n = 40. For the hamming distance based mutation
rate αh(v) = n−v

n a bit string length of n = 300 results in 109 iterations. Note,
that with α′

1(v) = e−ρ· v
n and ρ = lnn or the (1+1) EA with standard mutation

rate 1/n, we can solve instances of n = 105 in approximately 106 iterations. Thus,
from a practical point of view, the (1+1) IA yields comparable performance for
α′

1(v) and ρ = lnn if n is not too large, while the other hypermutation operators
are unsuitable for the problem considered in this paper.

6 Conclusion and Future Work

In this paper, we presented a detailed theoretical runtime analysis for different
inversely fitness proportional mutation operators. We introduced a simple im-
mune inspired algorithm and proved that maximizing the probability to find the
global optimum in a single iteration yields an exponential optimization time.
Furthermore, we showed that for immune inspired mutation rates the choice of
the parameter ρ is essential as an inappropriate value leads to unreasonable mu-
tation probabilities. Although we proved asymptotically exponential runtimes
for all mutation rates considered, our experimental analysis shows that with an
appropriate parameter choice the performance of the (1+1) IA is comparable to
that of the (1+1) EA with standard mutation rate 1/n if n is not too large.

Our results contribute a first insight into the behavior of inversely fitness
proportional hypermutation operators. Nevertheless, much work remains for the
future. We did not consider Hypermacromutation and mutation potentials [6].
Moreover, an analysis for population based algorithms and other toy or real world
problems is necessary to get a deeper understanding of the underlying dynamics.
In particular, dynamic problems seem to be worthwhile as IAs showed promising
results in these applications.
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Abstract. The covariance matrix adaptation evolution strategy (CMA-ES) rates
among the most successful evolutionary algorithms for continuous parameter op-
timization. Nevertheless, it is plagued with some drawbacks like the complex-
ity of the adaptation process and the reliance on a number of sophisticatedly
constructed strategy parameter formulae for which no or little theoretical sub-
stantiation is available. Furthermore, the CMA-ES does not work well for large
population sizes. In this paper, we propose an alternative – simpler – adapta-
tion step of the covariance matrix which is closer to the “traditional” mutative
self-adaptation. We compare the newly proposed algorithm, which we term the
CMSA-ES, with the CMA-ES on a number of different test functions and are able
to demonstrate its superiority in particular for large population sizes.

1 Introduction

State-of-the-art Evolutionary Algorithms (EA) in real-valued search domains use non-
isotropic mutation distributions in order to explore the search space. The Covariance
Matrix Adaptation Evolution Strategy (CMA-ES), proposed by Hansen, Ostermeier,
and Gawelczyk [1] and further developed in [2, 3], is currently the most widely used,
and in its restart version [4] arguably the best performing EA for continuous optimiza-
tion on a (sub-)set of test functions [5].1

At the same time, the CMA-ES is also plagued with a couple of drawbacks which
we want to address in this paper by proposing an alternative adaptation scheme incor-
porating mutative self-adaptation. As we will see in the next section, the adaptation
process in the CMA-ES is rather complex and involves a number of free parameters
which have to be set with no or little theoretical guidance. Although thorough empirical
investigations have been performed to identify suitable parameter settings [2, 3], still
the application of the algorithm relies on ad hoc rules.

Secondly, the performance of the CMA-ES does not scale well with increasing pop-
ulation size. This problem has been alleviated by the introduction of the hybrid version

1 According to “Tutorial: Covariance Matrix Adaptation (CMA) Evolution Strategy”, presented
by N. Hansen at PPSN Conference, Sep. 8, 2006, Reykjavik.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 123–132, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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of the CMA-ES [3] with direct covariance matrix estimation, which will be our starting
point in the next section and which will be used for comparison with our suggested
algorithm.

Additionally, due to the cumulative step size adaptation the CMA-ES experiences
problems when the fitness information is disturbed by heavy noise (noisy objective
functions) [6, 7] and instabilities can occur when very large populations are needed [8].

Extensions of the CMA-ES and alternative approaches to covariance matrix adapta-
tion have been proposed in the literature. Auger et al. [9] proposed an alternative method
to calculate the covariance matrix by locally estimating the Hessian matrix (Taylor ex-
pansion), however, at the expense of a large computational overhead of O(N6). A first
multi-objective (1 + λ)-CMA-ES has been described in [10] that uses the ”traditional”
1/5-rule for controlling the global step size.

In this paper, we will proceed in a different direction and revisit the mutative self-
adaptation process in the context of covariance matrix adaptation. In the next section,
we will briefly recall the CMA-ES and propose our new algorithm in Section 3. The
empirical comparison between both algorithms will be described in Section 4 followed
by the conclusion in the last section.

2 The (μ/μW , λ)-CMA-ES

In Figure 1 the basic (μ/μW , λ)-CMA-ES is presented. This is done at a level that
assumes that the reader is already acquainted with the (hybrid) CMA-ES as described
in [3].

The CMA-ES uses weighted recombination which is indicated by the subscript “W ”
in the strategy parentheses. The correlated mutations are generated in a two-step process
where at first a vector Nl(0, I) of i.i.d. standard normal random components is trans-
formed by the matrix

√
C in step (L1). The resulting random vectors z =

√
CN(0, I)

are N(0,C) distributed. The matrix
√

C may be interpreted as the “square root” of the
covariance matrix C. The standard way in CMA-ES [2, 3] to obtain

√
C is based on

eigenvalue decomposition solving the eigenvalue problem. After producing the corre-
lated Gaussian vector s, it is scaled in length in (L2), thus, representing the mutation
σs which is finally added to the old parental state producing the offspring in (L2). The
offspring’s fitness is evaluated in (L3). The new parental state is calculated in (L4) by
recombination of the μ best offspring realized by weighted averaging. The adaptation of
C is performed in (L6) using a cumulated p vector and the generational cross momen-
tum matrix estimate 〈ssT〉w weighted by the μ−1

eff factor. (L6) performs an exponential
smoothing (averaging) where the C “memory” decays with (1− τ−1

c )g (g - generation
counter). The quantity τc can be interpreted as a decay time constant determining the
number of generations g needed to “forget” the initial C matrix. It is quite clear that τc

must be a function of the endogenous strategy parameters and the problem dimension-
ality N . In (L5) exponential smoothing is used to update the p vector with the direction
〈s〉w of the actually taken step from parent y at generation g to g + 1 which has taken
place in (L4). Therefore, p may be regarded as the average search step. The update of
the covariance matrix C via the p vector is done in such a way that selected steps from
the past on average are also preferred in future. This resembles the momentum term
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(μ/μW , λ)-CMA-ES (one generation cycle)

For l = 1 To λ

sl ←
√

CNl(0, I) (L1)

yl ← y + σsl (L2)

fl ← f(yl) (L3)

End

y ← y + σ〈s〉w (L4)

p ←
(

1 − 1

τp

)
p +

√
1

τp

(
2 − 1

τp

)
√

μeff 〈s〉w (L5)

C ←
(

1 − 1

τc

)
C +

1

τc

[
1

μeff
ppT +

(
1 − 1

μeff

)
〈ssT 〉w

]
(L6)

pσ ←
(

1 − 1

τσ

)
pσ +

√
1

τσ

(
2 − 1

τσ

)
√

μeff 〈N(0, I)〉w (L7)

σ ← σ exp

[
‖pσ‖ − χN

d χN

]
(L8)

Fig. 1. The algorithmic “essence” of the CMA-ES. Endowed with initialization an outer genera-
tion loop and an appropriated termination condition, an approximation of the optimizer is given
by the final result of the parent y. In general weighted recombination, denoted by “〈·〉w”, is used.
Note, the individuals’ N vectors used in (L7) are from the selected individuals that have been
generated in (L1). χN = E[χN ] is the expected value of the χ distribution with N degrees of
freedom being the search space dimensionality. Initially, C =

√
C = I, pσ = 0, and p = 0.

Basically, the following parameters have to be chosen d, τσ, τc, τp, and μeff .

approach in nonlinear programming. Therefore, the original form of the CMA-ES [2]
can also be regarded as a randomized momentum term strategy.

3 The (μ/μI, λ)-CMA-σ-SA-ES

There are two main ingredients to build an efficient ES that works well on arbitrarily
rotated ellipsoidal success domains:

1. A covariance matrix adaptation algorithm which is able to learn the shape of the
success domain sufficiently exact and fast,

2. A routine that adapts a global step size σ

As we mentioned already in the introduction, the disadvantage of the different versions
of the CMA-ES presented in the literature is the large number of exogenous strategy
parameters needed. There are five main parameters (d, τσ , τc, τp, and μ−1

eff ) interacting
with each other dynamically. While the effect of d and τσ has been analyzed on the
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sphere model [11], the interaction with the other time constants remains unclear. Fur-
thermore, the CMA-ES does not always behave well in robust optimization scenarios
[8, 12] when the number of offspring λ is significantly larger than the parameter space
dimension.

3.1 The (μ/μI, λ)-CMA-σ-SA-ES Algorithm

In the following, the CMSA-ES will be proposed based on a radical simplification of the
covariance learning rule and a revival of the well-known σ-self-adaptation (σSA) ap-
proach. Figure 2 shows the contents of the generation loop. As customary in

(μ/μI , λ)-CMA-σ-SA-ES (one generation cycle)

For l = 1 To λ

σl ← 〈σ〉eτNl(0,1) (R1)

sl ←
√

CNl(0, I) (R2)

zl ← σlsl (R3)

yl ← y + zl (R4)

fl ← f(yl) (R5)

End

y ← y + 〈z〉 (R6)

C ←
(

1 − 1

τc

)
C +

1

τc
〈ssT 〉 (R7)

Fig. 2. Contents of the generation loop of the self-adaptive CMA-ES. Recombination, expressed
by the “〈·〉” notation, is done (in the simplest case) by mean value calculation. The covariance
matrix is initially chosen to be the identity matrix, i.e. C =

√
C = I. For the choice of the

strategy parameters τ and τc, see the text.

self-adaptation ES, each of the λ offspring individuals has its own mutation strength
σl which is generated by the log-normal rule in line (R1). The generation of the object
parameter yl is done consecutively in line (R2 – R4). First, correlated random direction
sl is generated in (R2). This random direction is scaled in length by the individual’s mu-
tation strength σl in (R3) and finally added to the parental state y in line (R4) producing
the offspring’s object parameter vector y. Its fitness fl is evaluated in (R5).

In line (R6), recombination of the μ best offspring is performed. In the experiments
done so far, wm = 1/μ appeared as a reasonable choice, i.e., the angular bracket oper-
ation 〈·〉 is simply an averaging over the μ best offspring individuals.

The covariance matrix adaptation takes place in (R7). Comparing with the rules used
in the hybrid CMA-ES in lines (L5) and (L6), Fig. 1, one sees how simple this new
rule is. Actually, it could be recovered from (L6) for μeff → ∞. As will be shown in
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the experimental Section 4, this CMA rule together with σ-self-adaptation yields com-
parable and even better results. As in the case of the object parameter recombination,
recombining the generational cross momentum matrices smsT

m is done with uniform
weights (i.e., simple averaging over the contribution of the μ best individuals).

Due to the simplicity of the newly proposed self-adaptive CMSA-ES, there is a cer-
tain chance to put the choice of the (only) two endogenous strategy parameters, the
learning rate τ and the covariance cumulation time constant τc, on a theoretically moti-
vated basis.

3.2 Parameter Settings for the CMSA-ES

The Learning Parameter τ . This parameter basically influences the time needed to
learn the global step size σ and its accuracy. Assuming a locally ellipsoidal fitness
landscape and provided that the covariance is adapted correctly, the σNl(0, I) vectors
in the CMSA-ES of Fig. 2 “experience” conditions similar to a spherical landscape.
That is, under steady state conditions, one can use the τ which maximizes the steady
state progress rate on the sphere model. As can be shown (due to space restrictions the
derivation is beyond the scope of this paper) for sufficiently large μ, λ, and N this is
the case for

τopt =
1√
2N

. (1)

This value has been used in the simulations of the CMSA-ES presented below. Note,
this choice is not the optimal one for the initial phase of covariance adaptation. If one
wants to increase the speed by which the C matrix is adapted, smaller values (e.g.
τ = τopt/2) should be used. A strategy that provides a “second order” adaptation of τ
could be envisioned, but has not been tested yet.

The τc Time Constant. The covariance learning rule (R7) contains the covariance
learning time constant τc, the choice of which can be derived by information theoretical
means. There are two aspects that must be considered: (1) the information dynamics of
the covariance update; and (2) the minimum information needed to determine a covari-
ance matrix. Again we must defer the derivation steps to an upcoming paper. The final
result of the derivation is

τc = 1 +
N(N + 1)

2μ
. (2)

This formula will be used in the simulations of the CMSA-ES in Section 4.

An Alternative Approach to
√

C. Calculating
√

C via spectral decomposition re-
quires the solution of the eigenvalue problem. While that approach provides additional
information w.r.t. the sensitivity of the fitness landscape in the vicinity of the optimizer
state, it is computationally demanding and not always required. Dropping the symmetry
of the

√
C matrix, the Cholesky decomposition offers a much simpler alternative which

does not need the eigenvalue decomposition. Standard Cholesky decomposition yields
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a upper triangular matrix inO(N3) floating point operations the outcome of which can
directly be used as

√
C

T
. That is, the s vectors are obtained by matrix multiplication

of the transposed outcome of the Cholesky algorithm with the standard normal vector
N(0, I).

4 Comparison between CMSA-ES and CMA-ES

In order to demonstrate the effectiveness of the C adaptation rule (R7) in Fig. 2 and the
choice of the parameters, empirical investigations are necessary to evaluate the behavior
of the CMSA-ES and to compare it with the state-of-the-art (μ/μW , λ)-CMA-ES [13].

The CMSA-ES is a straightforward implementation of the algorithm in Fig. 2 using
(2) and (1) for τc and τ , respectively. A truncation ratio of μ/λ = 1/4 has been used
throughout the simulations. This may be regarded as a compromise w.r.t. the progress
rate under non-noisy conditions and final fitness error under additive symmetric fitness
noise with constant strength (e.g. constant standard deviation) [8]. Furthermore, this
choice is consonant with Hansen’s recommendation to use “variance effective selection
mass” μeff = λ/4 in the hybrid CMA-ES which transfers to μ = λ/4 in the case of
intermediate (uniformly weighted) recombination.

4.1 Test Functions

Tests have been performed on 12 test functions belonging to different problem classes.
We will report results for four of them displayed in Tab. 1 each representing one class.
The results of the other eight functions are qualitatively similar to these classes. We
chose the sphere function as a kind of baseline for all continuous optimization tasks,
the Schwefel ellipsoid because of the required adaptation of the covariance matrix and
its special spectrum, the Rosenbrock function because it requires continuous change of
the covariance matrix and the Rastrigin function because of its multi-modality.

Table 1. Test functions, initialization, and stop criterion for the evaluation of the CMA-ES

Name Function yinit σinit fstop

Sphere fSp(y) :=
N∑

i=1

y2
i (1, . . . , 1) 1 10−10

Schwefel Ellipsoid fSch(y) :=

N∑
i=1

(
i∑

j=1

yi

)2

(1, . . . , 1) 1 10−10

Rosenbrock fRos(y) :=

N−1∑
i=1

(
100(y2

i − yi+1)
2 + (yi − 1)2

)
(0, . . . , 0) 0.1 10−10

Rastrigin fRas(y) := 10N +

N∑
i=1

(
y2

i − 10 cos(2πyi)
)

‖y‖ = 10 5 10−10

Note, all test functions except Rastrigin’s use a deterministic initialization for the ob-
ject parameter vector y. In the case of Rastrigin’s function, the initial vector is randomly
initialized on a hypersphere with given radius ‖y‖.
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4.2 Simulation Settings

The simulation settings are directly taken from [13]. Both algorithms are compared for
search space dimensionalities N = 2, 3, 5, 10, 20, 40, 80, and 160 considering offspring
populations sizes λ = 8, λ = 4N , and λ = 4N2. For the latter population sizes, the
maximum dimensionality of N = 80 has been chosen in order to keep the simulation
time within reasonable limits. For each N -λ-combination, 20 independent runs have
been used to obtain the average number of generations to reach fstop (given in Tab. 1).
These average generation numbers together with the corresponding standard deviation
(displayed as error bars) vs. search space dimensionality N are displayed in the plots.

4.3 Results

The somewhat surprising results for the sphere function are presented in Fig. 3. Usually
it is expected that the CMA-ES works better than self-adaptive ES on the sphere model
due to the use of cumulative step length adaptation (CSA) in the CMA-ES [6]. Since
both CMA and CMSA start with an initial covariance matrix C = I, i.e., with isotropic
mutations, the superiority of CSA must be questioned. This is consonant with obser-
vations that the CMA-ES does not work well with population sizes λ ( N . However,
even more remarkable is the observation that the new self-adaptive CMSA-ES works
comparably well in the small population and small search space dimensionality regime.

 100

 1000

 10  100

# 
G

en
er

at
io

ns
 (

Sp
he

re
)

Dimensionality N

λ = 8

CMSA

CMA

 100

 1000

 10  100

# 
G

en
er

at
io

ns
 (

Sp
he

re
)

Dimensionality N

λ = 4N

CMSA

CMA

 100

 1000

 10  100

# 
G

en
er

at
io

ns
 (

Sp
he

re
)

Dimensionality N

λ = 4N2

CMSA

CMA

 100

 1000

 10000

 100000

 10  100

# 
G

en
er

at
io

ns
 (

Sc
hw

ef
el

)

Dimensionality N

λ = 8
CMSA

CMA

Fig. 3. Top row and bottom left: performance comparison on the sphere test function. Bottom
right: performance comparison on Schwefel’s Ellipsoid test function for constant λ = 8.
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Fig. 4. Detailed performance comparison on Schwefel’s Ellipsoid test function
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Fig. 5. Detailed performance comparison on Rosenbrock’s test function and on Rastrigin test
function (bottom right figure)

Originally, the CMA-ES and its recent hybrid versions were designed to adapt to
arbitrary quadratic test functions. Therefore, the comparison of the performance on
the ellipsoidal test function class provides a good basis to evaluate the different strate-
gies. “Schwefel’s Ellipsoid” is a rotated ellipsoid with moderately increasing eigenvalue
spectrum (w.r.t. N ), but an isolated largest eigenvalue. As can be seen in the left graph
of Fig.4, the performance of the CMSA changes to the worse (compared to CMA) if
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N gets larger. This is due to the increasing condition number of the mixing matrix in
the ellipsoid function when N gets larger. However, as to large population sizes (right
graph in Fig.4), CMSA performs better.

The Rosenbrock function seems to be somewhat harder for the CMSA-ES as can
be seen in Fig. 5 in the case of constant and linear population sizing. In the case of
quadratic population sizing both strategies perform nearly equally well. It seems that
the path cumulation with decay rates proportional to 1/N (or larger) is a necessary in-
gredient in CMA-ES to effectively change the covariance matrix. This cannot be accom-
plished by the simple update rule (R7) used in our CMSA-ES when using population
sizes of O(N).

For Rastrigin’s function, only the quadratic population sizing has been used because
the constant λ = 8 and the linear population sizing λ = 4N does not ensure conver-
gence to the global optimizer. It is to be mentioned that the quadratic population sizing
λ = 4N2 is not the optimal population sizing for this problem class. Actually, the op-
timal population sizing is weakly sublinear so that λ ∝ N would be the better choice.
However, the proportionality factor is rather large. That is why, one observes conver-
gence to local optima in runs with λ = 4N2 for small N . This is also reflected in the
larger standard deviations of the generation numbers in Fig. 5 (bottom right). As to the
performance, one sees that the CMSA-ES clearly beats the CMA-ES. Similar behav-
ior can be expected for other multi-modal test functions where the global optimizer is
surrounded by a huge number of local optima.

5 Summary and Conclusion

In this paper, we have outlined the new (μ/μI , λ)-CMA-σ-SA-ES algorithm that uses
mutative self-adaptation instead of cumulative step length adaptation to adjust the global
step size σ during search. Compared to the standard CMA-ES which has (at least) four
exogenous strategy parameters to be fixed, our new strategy contains only two, the time
constants τ and τc. While the choice of some of those strategy parameters in CMA-ES
is based on extensive empirical investigations, the new CMSA-ES time constants rely
on information theoretical considerations.

The comparison of the CMSA-ES with the current state-of-the-art Evolution Strategy
for real-valued parameter optimization, revealed a general pattern. While the CMA-
ES performed slightly better for small population sizes, the newly proposed CMSA-
ES achieved considerably better results for large population sizes. Surprisingly, for the
sphere function both algorithms worked equally well even for small population sizes.
Generally, we believe that due to its improved clarity and simplicity, the newly proposed
algorithm is a serious competitor to the established CMA-ES. In case of large popula-
tions, we clearly recommend to employ the CMSA-ES. Large populations are required
in particular in the context of robust optimization [8, 12]. Even for practical applications
large populations can be feasible, e.g. in the context of massive parallelization or rapid
serialization of experiments like in quantum control [14]. Therefore, the increased per-
formance for larger population sizes of the proposed CMSA-ES has potential practical
implications.
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Abstract. Many Estimation–of–Distribution Algorithms use maximum-
likelihood (ML) estimates. For discrete variables this has met with great
success. For continuous variables the use of ML estimates for the nor-
mal distribution does not directly lead to successful optimization in most
landscapes. It was previously found that an important reason for this is
the premature shrinking of the variance at an exponential rate. Remedies
were subsequently successfully formulated (i.e. Adaptive Variance Scaling
(AVS) and Standard–Deviation Ratio triggering (SDR)). Here we focus on
a second source of inefficiency that is not removed by existing remedies.
We then provide a simple, but effective technique called Anticipated Mean
Shift (AMS) that removes this inefficiency.

1 Introduction

Estimation–of–Distribution Algorithm (EDAs) are a specific type of Evolution-
ary Algorithm (EA). EDAs are characterized by the way in which new solutions
are generated. The information in all selected solutions is combined at once. To
this end, an interim representation that compresses and summarizes this infor-
mation is used: a probability distribution over the solution space. New solutions
are generated by sampling the distribution.

Efficient optimization is guaranteed under suitable conditions [14]. In practice
it is however impossible to meet these conditions because arbitrarily complex
distributions are required. Hence, practical techniques are required. In this paper,
we focus on optimization of numerical functions using continuous distributions.
The use of the normal distribution or combinations thereof is the most commonly
adopted choice. It has already been so since the first EDAs in continuous spaces
were introduced [4,11,17,18]. An important question is how efficient EDAs are
in the continuous domain using such practical distributions.
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Recently, it was shown that without precaution, premature convergence is
likely to occur with these approaches, even on slope–like regions of the search
space [7,8,9]. The main reason for this is that the variance decreases too fast at
an exponential rate. The current state of the art exists of techniques that at-
tempt to remedy premature convergence (e.g. adaptive variance scaling [2,8,15]).
Here we show that another source of inefficiency however exists that cannot be
removed by these remedies. The use of ML estimates results in a distribution
that describes the set of selected solutions well. On a slope however, it is not the
set of selected solutions that is interesting, but it is the direction of descent. Ef-
ficient sampling along the direction of descent is therefore not guaranteed, even
if the covariance matrix is scaled. We shall illustrate this problem further in this
paper and present a remedy that we call AMS (Anticipated Mean Shift). The
use of AMS improves performance, even if no covariances are estimated. Also,
the resulting EDA still only uses ML estimates, which are a well–understood
and sensible way of estimating parameters from data. We call the new EDA
AMaLGaM–IDEA (Adapted Maximum–Likelihood Gaussian Model — Iterated
Density–Estimation Evolutionary Algorithm) or just AMaLGaM for short. We
compare the results of AMaLGaM with CMA–ES, currently the most efficient
evolution strategy for continuous optimization.

2 Maximum–Likelihood Estimations, AVS and SDR

2.1 Maximum–Likelihood Estimations

We introduce a random variable Xi for each real–valued problem variable xi, i ∈
{0, 1, . . . , l − 1} where l is the problem dimensionality. The normal distribution
PN

(μv ,Σv)(Xv) for a vector of random variables Xv = (Xv0 , Xv1 , . . . , Xv|v|−1) is
parametrized by a vector μv of means and a symmetric covariance matrix Σv:

PN
(μv,Σv)(Xv =x) =

(2π)−
|v|
2

(det Σv)
1
2
e−

1
2 (x−μv)T (Σv)−1(x−μv) (1)

In an EDA, the distribution parameters are estimated from the vector of se-
lected solutions S. Maximum–likelihood (ML) estimation is a principled and
commonly–adopted approach. ML estimates for the mean and covariance ma-
trix are given by the sample average and sample covariance matrix respectively:

μ̂v =
1
|S|

|S|−1∑
j=0

(Sj)v Σ̂
v

=
1
|S|

|S|−1∑
j=0

((Sj)v − μ̂v)((Sj)v − μ̂v)T (2)

To reduce the effort in learning the joint distribution, factorizations are com-
monly used. A factorization factors the joint distribution into a product of
smaller joint (possibly conditional) distributions [12]. Learning effort is reduced
the most using the well–known univariate factorization in which all variables
are independent, i.e. the distribution is written as

∏l−1
i=0 P (Xi). In the case of

the normal distribution this means that all covariances are zero. Allowing for all
possible dependencies implies use of the full covariance matrix. As an intermedi-
ate choice, a greedy algorithm can be used to determine and use only the most
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important dependencies. To this end, Bayesian factorizations are typically used
in EDAs [13,16]. To briefly recall Bayesian factorizations, recall that the vector
of random variables indicated by Xπi on which Xi is conditioned is called the
vector of parents of Xi and that the distribution is written

∏l−1
i=0 P (Xi|Xπi

). Let
W j be the inverse of the symmetric covariance matrix, i.e. W j = (Σj)−1. ML
estimates of PN (Xi|Xπi

) can be expressed in terms of Equation 2 [4]:

P̂N (Xi =xi | Xπi
=xπi

) =
1

(σ̆i

√
2π)

e
−(xi−μ̆i)

2

2σ̆2
i (3)

where

⎧⎪⎪⎨⎪⎪⎩
σ̆i = 1√

Ŵ
(i,πi)
00

μ̆i =
μ̂iŴ

(i,πi)
00 −

∑ |πi|−1
j=0 (x(πi)j −μ̂(πi)j

)Ŵ
(i,πi)
(j+1)0

Ŵ
(i,πi)
00

Because Equation 3 has the form of a single–dimensional normal distribution,
sampling from the Bayesian factorization is again straightforward once all rele-
vant computations have been performed. Depending on the independencies ex-
pressed by the factorization, the density ellipsoids can be aligned with any axis.
Use of the complete covariance matrix corresponds to a Bayesian factorization
in which each Xi is conditioned on all Xj with j > i.

The full covariance matrix requires the most data to learn properly because
all covariances need to be estimated. Although this argument advocates the uni-
variate factorization, the use of it in an EDA brings about important limitations.
The ellipsoid–shaped density contours can only be aligned with the main axes.
This means that a function such as the Ellipsoid function (

∑l−1
i=0 106 i

l−1 x2
i ) can be

optimized efficiently. However, a rotated version of the same function introduces
strong dependencies between the variables because each quadratic form is scaled
differently. The contours of the function can no longer be matched by the con-
tours of the univariately factorized normal distribution and optimization fails.
Hence, a full covariance matrix is required to ensure rotation–invariance [10].

2.2 AVS

To remedy the problem of the prematurely vanishing variance, the variance can
be scaled beyond its ML estimate [15]. One successful scheme for doing so is
called adaptive variance scaling (AVS) [8]. This scheme allows the EDA to solve
problems that it couldn’t solve without scaling the variance.

In AVS, a variance multiplier cAVS is maintained. For sampling, cAVSΣ̂ is used
instead of Σ̂. If the best fitness value improves, then the current size of the vari-
ance allows for progress. Hence, a further enlargement of the variance may allow
further improvement in the next generation. To fight the variance–diminishing
effect of selection, cAVS is scaled by ηINC > 1. If there is no improvement, the ex-
ploration range may be too large and cAVS. is decreased by a factor ηDEC ∈ [0, 1].
For symmetry, ηDEC = 1/ηINC. As the objective of the AVS scheme is to enlarge
the variance to prevent premature convergence, cAVS ≥ 1 is enforced.
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2.3 SDR

With AVS, improvements increase cAVS. If the mean is already near the opti-
mum, no further variance enlargement is necessary however. Let xIMP(t) denote
the average of improvements in generation t. Further enlargement of cAVS in
generation t + 1 is triggered whenever xIMP(t) lies further away from μ̂(t) than
a single standard deviation. To this end, the standard–deviation ratio (SDR)
needs to be computed. The SDR is the ratio a/b of the distance to the mean of
a) xIMP,i(t) and b) the contour line of one standard deviation in the same direc-
tion. The SDR is independent of the sample range and has a fixed, predefined
notion of being “close” to the mean [2].

3 Anticipated Mean Shift

3.1 Motivation

Most EDAs have been benchmarked using initialization ranges (IRs) centered
around the optimum. An EDA based on the normal distribution with ML es-
timates focuses its search by contracting the region of exploration towards the
mean. Hence, problems and the search bias of the EDA are favorably matched,
leading to possibly overenthousiastic conclusions. This is already known to be
the case for other contractive operators such as intermediate recombination [5].
Hence, it is important to specifically investigate the non–symmetric case.

A simple opposite of a symmetric function is the linear slope. Previous research
focused on the one–dimensional case [2,9]. Here, we consider two dimensions, i.e.
f(x) = x0 + x1. Use of the univariate factorization on this problem corresponds
to the same situation of a single dimension studied earlier. We therefore focus
on the case in which covariances are estimated also. The direction u of steepest
descent obeys u0 = u1 and ui ≤ 0. Thus, it is most efficient to have the density
ellipsoids parallel to and elongated along the line x0 = x1. Conversely, the worst
alignment is parallel to and elongated along x0 = −x1.

Figure 1 shows the density contours in the case of the full covariance matrix
for the first six subsequent generations. The density contours shown are the
95% error ellipses. When ML estimates are used only, the normal distribution
quickly contracts. Initially, the population is spread uniformly in a square. On
a two–dimensional slope the selected solutions form a triangle. Fitting a normal
distribution with ML results in density contours aligned in the worst way. Scaling
the covariance matrix almost solely increases search effort in the futile direction
perpendicular to the best direction.

This effect was first noted in [19]. The same study proposed a first remedy.
The remedy employs minimization of cross–entropy in which both the selected
solutions and the population are used. Although the problem at hand was alle-
viated by this remedy, the resulting scaling behavior was reported in that same
study to be inferior to AVS when symmetric initialization is used. Also, the
well–known ML estimates can no longer be used. Here, we provide a simple, yet
elegant and intuitive alternative way to overcome the inefficiency at hand that
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Fig. 1. Estimated normal distribution in the first 6 generations of typical runs with
(from left to right): ML estimates, SDR–AVS, AMS and AMaLGaM on the two–
dimensional slope f(x) = x0 + x1 with IR [−5; 5]× [−5; 5]. The density contours are
the 95% error ellipses. Also shown are the population and selection in generation 0.

ultimately leads even to improvements over the use of SDR–AVS alone in the
case of symmetric initialization.

3.2 Technique

The difference of the means in two subsequent generations indicates the direction
in which the solutions are moved to obtain better fitness. Let μ̂Shift(t) denote for
generation t the mean shift for generations t− 1 and t:

μ̂Shift(t) = μ̂(t)− μ̂(t− 1) (4)

Note that our definition of mean shift differs from the one used in the mean–
shift clustering algorithm that was studied in relation to EDAs elsewhere [6]. A
straightforward anticipation of the mean shift that is required to obtain further
improvements in generation t+1 is μ̂Shift(t). It is therefore sensible to alter 100α%
of all newly sampled solutions x in generation t by moving them a certain fraction
δ in the direction of the previously observed the mean shift, i.e.:

x ← x + δμ̂Shift(t) (5)

We call this operation Anticipated Mean Shift (AMS).
When centered over an optimum, μ̂(t) ≈ μ̂(t− 1) and therefore μ̂Shift(t) ≈ 0,

leaving the original approach unchanged. On a slope, AMS causes an important
adjustment of Σ̂ that is estimated still using only ML. Solutions are selected
from three sets: I) previously selected solutions (i.e. elitist solutions), II) new
solutions without AMS and III) new solutions with AMS. Since set II is generated
from a model that was estimated with ML from set I, these two sets share a
similar region. Set III is further down the slope. If selection now selects solutions
from both regions, the density contours are re–aligned, see Figure 1. Note that
if the mean is nearing a peak and AMS overshoots the optimum, the mean
shift in the next generation will be much smaller because the mean shift will
be caused again mostly by the non–anticipated solutions. This thus resets the
approach.
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Number of adaptations (setting α). We assume that the best τn solutions
are selected, where n is the population size. Moreover, the selected solutions
survive and (1− τ)n new solutions are generated to refill the population.

On a slope, all of the α(1−τ)n altered solutions will be better and get selected.
Now, if τ ≥ α only the altered solutions are selected, leaving the orientation of
the density contours unchanged. For a change to occur, the selected solutions
must consist of both unaltered and altered solutions. Ideally, these proportions
are equally sized, which gives α(1 − τ)n = 1

2τn and thus α = τ
2−2τ . As using

information about the anticipated mean shift is still only predictive, we want
to alter no more than 50% of the newly sampled solutions, i.e. α ≤ 0.5. This
restricts the selection percentile: α ≤ 0.5 ⇔ τ

2−2τ ≤ 0.5 ⇔ τ ≤ 0.5.

Adaptation length (setting δ). On a slope, set III in generation t constitutes
50% of the selected solutions in generation t + 1. The other 50% comes from
sets I and II. The mean of the latter two sets is μ̂(t). The mean of set III is
μ̂(t) + δμ̂Shift(t). For the suggested value of α, the mean of the selected set in
generation t+1 is1 μ̂(t+1) = 1

2

(
μ̂(t) + μ̂(t) + δμ̂Shift(t)

)
= μ̂(t)+ δ

2 μ̂Shift(t). The
mean shift in generation t + 1 is then μ̂Shift(t+1) = μ̂(t+1)− μ̂(t) = δ

2 μ̂Shift(t).
Hence, for any δ < 2 the mean shift is expected to become smaller. Because the
newly estimated mean falls in between the two sets, an ML estimate captures
also the variance between the two sets. This causes the density to be aligned
more favorably with the direction of descent. With repetition, the re–aligned
density can result in a larger mean–shift. Hence a value of δ = 2 suffices. The
illustrations in Figure 1 were obtained using δ = 2.

4 Combining SDR, AVS and AMS: AMaLGaM

On a slope it makes sense to accelerate the search. The AVS scheme provides a
principled way to achieve this. If improvements occur far away from the mean
in subsequent generations, cAVS is enlarged. This relation between cAVS and im-
provements allows cAVS to be seen as a general accelerator. We therefore rename
the variance multiplier cAVS to distribution multiplier cMultiplier. Not only do we
use cMultiplierΣ̂ instead of Σ̂ upon sampling the distribution, we also use

x ← x + cMultiplierδμ̂Shift(t) (6)

upon applying AMS. This accelerates descent on a slope. In Figure 1 the effect
of combining AVS with AMS can be seen when traversing the slope in two
dimensions. The distribution gets rotated and elongated along the direction of
improvement much faster than without the use of the distribution multiplier
(note the difference in scale on both axes).

The combination of SDR, AVS and AMS adaptively changes both the covariance
matrix and the mean–shift. It prevents premature convergence due to inefficient
sampling that results from fitting only the set of selected solutions without consid-
ering the direction of descent. We name this composite AMS–SDR–AVS technique
1 Equality only holds for an infinite population size, it is an approximation otherwise.
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AMaLGaM (Adapted Maximum–Likelihood Gaussian Model). Pseudo–code may
be found in a technical report [3].

5 Guidelines and Comparison with CMA–ES

It is important to compare results with literature. It is equally important to
have guidelines to use in subsequent applications and research. We therefore
first derive guidelines and then use them to compare AMaLGaM with CMA–
ES, currently the most efficient evolution strategy for continuous optimization.

5.1 Guidelines

To derive guidelines, we use 10 benchmark functions to be minimized taken from
literature [8,10]. A function is considered to be optimized if the best solution has
reached a certain value–to–reach (VTR). The VTR for all functions except the
ridge functions is 10−10. For the two ridge functions the VTR is −1010.

Name Definition

Sphere
∑l−1

i=0 x2
i

Ellipsoid
∑l−1

i=0 106 i
l−1 x2

i

Cigar x2
0 +
∑l−1

i=1 106x2
i

Tablet 106x2
1 +
∑l−1

i=1 x2
i

Cigar Tablet x2
0 +
∑l−2

i=1 104x2
i + 108x2

l−1

Name Definition

Two Axes
∑�l/2�−1

i=0 106x2
i +
∑l−1

i=�l/2�−1 x2
i

Different Powers
∑l−1

i=0 |xi|2+10 i
l−1

Rosenbrock
∑l−2

i=0

(
100 · (x2

i − xi+1)2 + (xi − 1)2
)

Parabolic Ridge −x1 + 100
∑l−1

i=1 x2
i

Sharp Ridge −x1 + 100
√∑l−1

i=1 x2
i

We determined the optimal population size for AMaLGaM in the naive variant
(i.e. univariate factorization), the learning variant (i.e. Bayesian factorization)
and the full covariance matrix variant (i.e. unfactorized). For the full covariance
matrix variant we used the functions as provided above as well as their rotated
variants. With rotation each pair of variables in a solution is rotated 45 degrees
before function evaluation takes place (for more details, see [3]).

IRs of [−7.5; 7.5] (symmetric around optimum), [−10, 5] (asymmetric) and
[−115,−100] (far–away) were used. We combined all scalability plots and deter-
mined on the basis thereof a guideline for the population size. For each variant,
a minimal population size of 20 for l = 1 was determined. The guidelines and
the combined scalability plots are presented in Figure 2.

Because AMaLGaM solves problems that can’t be solved if only SDR–AVS
or ML–estimates are used, no comparison is presented here with SDR–AVS or
ML–estimates. It was found though, that AMaLGaM requires on average 0.67
times the evaluations of SDR–AVS. Hence, not only does AMaLGaM enlarge the
class of problems that can be solved by the EDA, it also improves its efficiency.
We also note that using the full covariance matrix no significant difference could
be detected in solving rotated and unrotated versions of the problems. Hence,
AMaLGaM can be said to be robust to rotations of the search space. More details
on these additional results may be found in the technical report [3].
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Fig. 2. Observed and guideline population size that leads to the minimum number of
evaluations for AMaLGaM to reach the VTR, averaged over 100 independent runs.
The gray areas are the observed population sizes for all problems.

5.2 Comparisons
We used the guidelines defined in Section 5.1 and ran AMaLGaM 100 indepen-
dent times on each of the benchmark problems. For the parameter settings of the
CMA–ES, we used the guidelines provided in the literature also [10]. To prevent
biased results from symmetric initialization, we used the far–away IR.

Scalability. We computed a least–squares fit to αlβ + γ for the number of
required evaluations. The fit was always found to be highly accurate. The results
are summarized in Figure 3.

Comparing naive, learning and full covariance matrix. The naive variant
scales better than the Bayesian variant, which in turn scales better than the vari-
ant that uses the full covariance matrix. However, this only holds for functions

Function Algorithm β α γ

Sphere AMaLGaM–N 1.23 2.74·102 9.46·100

AMaLGaM–L 1.34 2.46·102 1.63·102

AMaLGaM–F 2.05 1.09·102 4.08·102

CMA–ES 0.94 2.38·102 3.17·102

Ellipsoid AMaLGaM–N 1.24 3.33·102 8.20·100

AMaLGaM–L 1.36 2.90·102 1.31·102

AMaLGaM–F 2.09 1.14·102 4.87·102

CMA–ES 1.92 6.40·101 1.79·103

Cigar AMaLGaM–N 1.25 3.40·102 -2.30·101

AMaLGaM–L 1.35 3.20·102 4.48·101

AMaLGaM–F 2.08 1.30·102 4.14·102

CMA–ES 0.90 7.18·102 -2.16·102

Tablet AMaLGaM–N 1.22 2.95·102 1.12·102

AMaLGaM–L 1.32 2.77·102 1.80·102

AMaLGaM–F 2.04 1.13·102 5.24·102

CMA–ES 1.64 1.17·102 1.59·103

Cigar AMaLGaM–N 1.22 3.54·102 -4.14e-01
tablet AMaLGaM–L 1.34 3.21·102 8.52·101

AMaLGaM–F 2.07 1.23·102 4.93·102

CMA–ES 1.40 2.16·102 1.48·103

Function Algorithm β α γ

Two AMaLGaM–N 1.27 3.06·102 4.62·101

axes AMaLGaM–L 1.37 2.86·102 1.18·102

AMaLGaM–F 2.10 1.11·102 5.08·102

CMA–ES 2.00 7.91·101 1.68·103

Different AMaLGaM–N 1.39 1.49·102 1.98·102

powers AMaLGaM–L 1.41 1.70·102 1.94·102

AMaLGaM–F 2.09 7.75·101 3.78·102

CMA–ES 1.65 1.55·102 1.14·103

Rosenbrock AMaLGaM–N 1.55 5.94·103 -7.59·103

AMaLGaM–L 1.70 2.42·102 1.43·103

AMaLGaM–F 2.57 5.58·101 2.35·103

CMA–ES 1.92 7.25·101 2.52·103

Parabolic AMaLGaM–N 1.02 2.00·102 1.57·102

ridge AMaLGaM–L 1.13 2.75·102 1.14·102

AMaLGaM–F 2.01 1.06·102 3.38·102

CMA–ES 1.01 4.29·102 3.43·102

Sharp AMaLGaM–N 0.95 1.70·102 2.02·102

ridge AMaLGaM–L 1.08 1.57·102 2.20·102

AMaLGaM–F 1.87 7.33·101 3.35·102

CMA–ES 0.78 2.80·103 -9.00·103

Fig. 3. Scalability regression coefficients on all benchmark problems averaged over 100
independent runs using the guidelines. The IR is [−115,−100] for each variable.
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that fit the model used. The naive method for instance cannot solve problems
with many dependencies (e.g. rotated versions of the benchmark problems).

In additional experiments (for details, see the technical report [3]) it was
found that the scalability of AMaLGaM does not change significantly when
moving from asymmetric initialization to far–away initialization. This leads to
the conclusion that AMaLGaM is also robust to translations, a property that
earlier EDAs with ML estimates and even adaptive variance scaling do not have.

Comparing AMaLGaM and CMA. The scalability of CMA–ES ranges be-
tween the different variants of AMaLGaM. For some functions (e.g. Sphere),
CMA–ES has a better scalability than even the naive variant of AMaLGaM.
For other functions (e.g. Two axes) it has a scalability similar to the full variant
of AMaLGaM. The scalability results of AMaLGaM are less variable, causing
CMA–ES to be better on some functions and AMaLGaM to be better on other
functions. CMA–ES has the upper hand in the comparison, especially if rotation
invariance is desired. This requires use of the full covariance matrix. AMaLGaM
then however has a scalability that is at most similar (e.g. Two axes).

Runtime. The number of required evaluations is important, especially if evalu-
ations are time–consuming. The overall running time is however also important.
With higher model complexity comes a larger learning and sampling time. Use
of the full covariance matrix requires O(l3) time. Assuming bounded complexity
for the Bayesian network, the same asymptotic bound holds for the learning case
with the commonly used greedy algorithm [4,16]. Hence, room for improvement
exists to increase benefits from learning over using the full covariance matrix.
Modelling time for the univariate factorization is only O(l). Detailed run–times
per benchmark function and per algorithm are given in the technical report [3].

6 Summary, Discussion and Future Work

Using maximum–likelihood (ML) estimates for the normal distribution in an
EDA, premature convergence is likely to occur. Optimization is only performed
properly if the initialization range brackets the optimum. Optimization then
mainly proceeds by contraction. Methods of adaptive variance scaling (AVS)
provide a way to control the rate of contraction and turn it into expansion. Be-
cause ML estimates shape the density similar to the configuration of the selected
solutions, the density contours can however be misaligned with the direction of
descent. The variance then needs to be scaled to excessively large values to still
make progress. We have proposed a simple, yet effective approach called antici-
pated mean shift (AMS) that removes this inefficiency. AMS advances sampled
solutions in the direction of the mean shift of the previous generation. We ana-
lyzed this technique and provided rational settings for its parameters. We called
the resulting EDA Adapted Maximum–Likelihood Gaussian Model — Iterated
Density–Estimation Evolutionary Algorithm (AMaLGaM–IDEA or AMaLGaM
for short). An experimental scalability analysis showed that AMaLGaM is ro-
bust to rotations and translations of the search space and is competitive with
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CMA–ES under certain conditions. AMaLGaM therefore makes an important
step in the progression of continuous EDAs for numerical optimization.

Adaptivity in real–valued optimization has long been acknowledged to be im-
portant [1]. Its use in ES has led to the development of CMA–ES. Both AMaL-
GaM and CMA–ES adapt a Gaussian model using various techniques. The view
upon the Gaussian model is different however. In CMA–ES directions are mod-
elled and thus the Gaussian mainly serves as a mutation operator. In EDAs the
region of interest is directly modelled and thus the Gaussian mainly serves as a
recombination operator. The type of adaptation required is therefore different.
It is important to research and take note of results along both lines.

The practical applicability of AMaLGaM and CMA–ES depends on the prob-
lem dimensionality. Using the full covariance matrix, only problems of relatively
small dimensionality can be tackled due to the high required computing time.
This leaves only methods that consider a few dependencies or no dependencies at
all (i.e. the naive AMaLGaM). Certainly, if there are many strong dependencies
in the problem, the algorithm can’t find the optimum. Still, due to its simplicity,
speed, and effectiveness the naive AMaLGaM can well serve as a baseline EDA
to be used for future comparison and for applications with many variables.

One important direction of future work that we are currently pursuing is a
reduction of the required population size. To ensure the full covariance matrix is
well–conditioned for inversion, the required population size is quite large. This
requires many samples in the generation–wise ML estimate. CMA–ES on the
other hand convolutes the covariance matrix over multiple generations. This re-
duces the required population size and directly leads to less function evaluations.
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Abstract. Many real-world optimization problems involve uncertainty.
In this paper, we consider the case of worst-case optimization, i.e., the
user is interested in a solution’s performance in the worst case only. If
the number of possible scenarios is large, it is an optimization problem
by itself to determine a solution’s worst case performance. In this paper,
we apply coevolutionary algorithms to co-evolve the worst case test cases
along with the solution candidates. We propose a number of new variants
of coevolutionary algorithms, and show that these techniques outperform
previously proposed coevolutionary worst-case optimizers on some simple
test problems.

1 Introduction

Many real life optimization problems involve some form of uncertainty, e.g., be-
cause they rely on forecasts, because they depend on an opponent’s move, or
because the solution eventually implemented is subject to manufacturing tol-
erances. In such cases, one typically searches for a robust solution. Often used
criteria are a good expected quality or a low variance (see, e.g., (3, p. 127)). In
the following, we consider the case that a user is interested only in a solution’s
worst-case performance, for example, because the application may include the
risk of very severe consequences, such as death or bankruptcy.

Possible applications of worst-case optimization include engineering design
(12), portfolio management (10) and scheduling (2, 6, 8)). There exist several
ways to approach worst-case optimization, e.g., the calculation of reliability (4)
or the use of an embedded EA to identify, for each solution, the worst-case (1).
The latter implies great computational efforts which may render the approach
infeasible in practice. An alternative and more efficient way to search for a robust
solution and for its worst case simultaneously is provided by coevolutionary
algorithms.

2 Coevolutionary Worst-Case Optimization

There exist several forms of coevolutionary algorithms (CEAs) but we consider
only competitive, test-based CEAs which comprise one population consisting of
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solution candidates and one population forming the test cases (see, e.g., (7, 13,
14) for some early work).

CEAs offer several amenities. They do not need an objective, external metric
to evaluate the solutions. Instead, individuals are evaluated by letting them
interact with each other. Therefore, CEAs are applicable to problems where
an objective criterion does not exist or cannot be computed. This is also the
case in worst-case optimization, since the worst-case scenario is unknown, and
a test with all possible scenarios may be impossible. CEAs are more efficient in
that they use only a limited number of test cases to evaluate a solution. The
population of test cases is furthermore selected adaptively because it coevolves
with the solution candidates and therefore increases in difficulty as the solutions
grow more powerful (5).

Over the course of research and application, CEAs have also shown some
shortcomings. The first is a direct consequence of the lack of an objective metric:
the real (objective) quality of a solution does not necessarily correspond to the
subjective quality, i.e., the quality perceived by the algorithm. Furthermore,
CEAs are susceptible to various pathologies such as evolutionary forgetting,
cycling, disengagement, or overspecialization. For a detailed analysis of these
pathologies as well as possible remedies, please refer to, e.g., (11).

CEAs have been applied to a wide range of problems but only few involve
worst-case optimization. In (15) a so-called ”nested minimax optimization” is
performed. One population consists of various designs for a neural controller. The
other population persists of plants, i.e., the scenarios in which the controller will
be utilized. (2) uses a CEA to solve constrained optimization problems, written
as min-max problems. One population evolves the parameter which is responsible
for the minimization, the other population represents the parameter which max-
imizes. (6) and (8) apply worst-case CEAs to the area of scheduling, trying to
find robust schedules. One population evolves the schedules, the other population
evolves difficult problem instances or possible machine failures. Furthermore, (9)
deals with the topic of worst-case optimization on a more theoretical level. We
will discuss the basic idea of fitness assignment in these approaches in Section 4.

3 Coevolutionary Algorithm and Test Problems

The basic coevolutionary algorithm considered here uses two populations PS

and PT . The solutions s ∈ PS attempt to minimize a function F (s, t), while the
test cases t ∈ PT are responsible for identifying the worst cases (i.e., attempt
to maximize F (s, t)). Each individual is a single real number, and a standard
(μ+λ) evolution strategy is used on both populations with mutation as the only
variation operator. The mutation operator is additive Gaussian, and mutation
probability is 100%.

We test the methods on two different functions. In each function, the solutions,
denoted as s, aim at minimizing F (s, t) while the test cases, t, aim at maximizing
F (s, t). The functions were designed in such way that the worst case is t = s
and the optimum solution is s = 0.
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F1(s, t) = 2st− t2, s ∈ [−50; 50], t ∈ [−50; 50] (1)

The optimum of function F1 is stable because the solution candidates have
no incentive to deviate from (0, 0).

F2(s, t) = s2 − s cos(3(s− π

2
)) − (3|s− t| − (s− t) cos(3((s− t)− π

2
))),

s ∈ [−10; 10], t ∈ [−10; 10] (2)

In contrast to function F1, F2 is much more rugged and since the point
(s = 0, t = 0) is not Nash, the optimum of F2 is not stable. Since the solution
candidates aim to minimize, they have a very strong incentive to deviate as soon
as the coevolutionary system comes close to (0, 0). Because the test cases follow
the solution candidates, both leave the optimum quickly (see Fig. 2).

For some visualizations of functions F1 and F2 see Figures 1 and 2.
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4 Fitness Assignment Methods

In this section, we examine various fitness assignment methods, i.e., methods
which calculate an individual’s fitness based on the results of testing all solutions
against all test cases, resulting in |PS | × |PT | function evaluations.

Let us denote the populations before selection as PS and PT , and the (smaller)
populations after selection as P ′

S and P ′
T . Then, we distinguish between three

different rankings/fitness values. By real ranking, we mean a ranking based on
the solution’s performance with respect to the true worst case (i.e., t = s). We
call the ranking based on the populations before selection as global ranking, and
the ranking based on the populations after selection the local ranking. W.l.o.g.,
best solutions have the lowest fitness, while for test cases, a higher fitness is
assumed to be better. Note that the local fitness is always at least as good as
the global fitness, as additional test cases can only worsen performance.

The solutions are always ranked according to their respective global worst
case performance (over all test cases).

fit(s) = max
t∈PT

F (s, t)

Furthermore, let us assume that solutions are numbered from 1 to n in order of
increasing fitness (increasing global worst case values), i.e., the currently best
perceived solution in the population is denoted by s1.

In the following, we first describe two fitness assignment methods from the
literature, namely the Maximin method and Jensen’s method. Then, we continue
to propose some new approaches.

Maximin Method. To rank the test cases, the classical approach is to also use
the minimax principle, see, e.g., (2, 6, 8, 15). Since they represent the opposite
perspective, the correct term is Maximin method.

fitMaximin(t) = min
s∈PS

F (s, t)

(8) shows, however, that this approach fails to find the optimum, if the concerned
function is not a saddle-point function.

Jensen’s Method. This approach is described in detail in (9). Jensen argues
that the fitness of a test case should not only rely on the performance of that
particular test case on PS , but also on other test cases in PT . If at least one
solution exists, for which a test case forms a very difficult (or the worst) case,
this test case should get a high fitness, even if it is easy to solve for the other
solutions. Therefore in Jensen’s approach, a test case’s fitness equals the highest
ranking it achieves if all test cases are ranked for each solution, the worst case
having the highest rank. If a test case achieves this highest rank for k > 1
solutions, its fitness is additionally increased.

fitJensen(t) = max
s∈PS

ranks(t) +
k

|PS |+ 1
,

where ranks(t) is the rank of solution s according to test case t.
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The following methods are new, and select test cases one by one, in an iterative
and greedy manner, trying to maximize the information about the individuals
in PS that the selected test cases provide. These test cases implicitly serve as a
kind of memory, and influence the test cases future solutions will face.

Note that because we use a simple (μ + λ) selection strategy, the only rele-
vant decision is which test cases survive to the next generation. However, the
methods could be adapted to other selection methods in a straightforward way
by assigning them ranks according to the order in which they are selected. Also,
it is possible that the criterion to select the next test case is not unique. In this
case, one of the test cases is added randomly.

Worst Case Method. The underlying idea of this method is that it is most
important to keep the information about the worst cases of the best solutions (as
these will be used to generate offspring). The method starts by going through
all solutions s1 . . . sn in order of increasing fitness, and, in each iteration, adding
the corresponding worst case test case if it is not yet included.

Average Greedy Method. The Average Greedy method is based on the as-
sumption that the local performance reflected by the selected test cases should
be as close as possible to the global performance according to all test cases in
the population. Therefore, the method starts by selecting the worst case of s1.
Then, it iteratively adds as next test case the one which maximizes the average
local fitness of all solutions after adding the additional test case. More formally,
if B denotes the set of test cases selected so far, it adds the test case t′ ∈ PT

which maximizes
∑

s∈PS
maxt∈{B∪t′}F (s, t).

Distance Greedy Method. The Distance Greedy method is based on the
observation that a solution’s fitness can only deteriorate if additional, more dif-
ficult test cases are found. To avoid that the best solution is no longer best in
the subsequent iteration, it is attempted to maximize the difference in local fit-
ness between the best and the closest competitors. Again, the method starts by
selecting the worst case for s1. Then, it iteratively adds the test case which, if
added to the already selected solutions (B), maximizes the local fitness difference
between the best solution and the second best (according to the ranking based
on B). In case of ties, the difference between best and third best, fourth best,
etc. is used as a criterion. Usually, this method leads to a correct local ranking of
the best solutions, as the worst cases for these solutions are often selected first.

Ranking Greedy Method. Here, the motivation is to maintain the relative
ordering of all solutions in PS with only the selected solutions, i.e., to make
the local ranking as consistent as possible with the global ranking. Again, the
worst case of s1 is always selected. Then, iteratively the test case is added to B
that, if added, maximizes the correct number of relative orderings in the ranking
specified by B.

Table 1 demonstrates how the different methods rank the test cases. The
particular example consists of six solutions and six test cases, and assumes that
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Table 1. Left: Evaluation of six solutions by six test cases (smaller numbers are better).
Right: Fitness values assigned to test cases by the different methods (higher numbers
are better).

t1 t2 t3 t4 t5 t6
s1 3 5 8 9 11 10
s2 7 9 13 2 4 5
s3 4 6 7 9 3 2
s4 12 5 8 9 10 11
s5 5 6 7 8 2 3
s6 2 8 9 10 8 6

t1 t2 t3 t4 t5 t6
Maximin 2 5 7 2 2 2
Jensen 5 4 5 5.43 5 4.29

Worst Case 3 1 2 5 4 0
Average Greedy 3 1 4 5 2 0
Distance Greedy 1 4 2 5 3 0
Ranking Greedy 2 1 4 5 3 0

in the case of ties, always the test case with the smaller index is chosen. As
can be seen, the methods value the test cases quite differently, and it is not
obvious which ranking is best. In any case, note that the Maximin method gives
a very low evaluation to the test case causing worst case performance of the best
solution (t4, bold). Thus, it is likely that this test case does not survive to the
next iteration, which, from our experience, would be very important. Jensen’s
method gives this test case the highest evaluation in this example, although this
is not guaranteed in general. All our newly proposed methods include this test
case with highest priority in the next population.

5 Metrics

Various metrics are used to analyze the performance of the different fitness as-
signment methods. The most important one is the real fitness of the generation’s
perceived best solution. Applying the knowledge that the real worst case is t = s,
the real fitness can be calculated as F (s1, s1).

The correlation coefficient between the real fitness (F (s1, s1)) and the sub-
jective fitness of a solution (fit(s1)) indicates the method’s ability to keep real
and subjective fitness linked to each other. It’s measured across all individuals
of the population.

A similar metric we designed is called real quota. It measures the fraction of
the μ objectively (according to real fitness) best solutions the method succeeds
to identify by counting how many of them are among the μ subjectively best
solutions, i.e., whether the selection of μ parents is correct. A real quota of 1
means a perfect match.

Both metrics, correlation coefficient and real quota serve only for monitoring.
The information they use is not accessible to the CEA and thus cannot be used
to direct the fitness assignment process. A metric which uses only information
that is acquirable for the CEA is the global quota. It counts how many of the μ
subjective, i.e., global, best solutions are among the μ local best solutions. This
metric gives information about the fitness assignment process in the test case
population, which can be designed to optimize the global quota.
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6 Empirical Results - Fitness Assignment

Experimental Setup. In this section, we use a (10+20) evolutionary strategy
with Gaussian mutation and step size 0.35. All values are mean values over
400 runs. Unless specified otherwise, the plotted values depict mean value and
standard error of the respective metric.

Figure 3 displays the evolution of real fitness of the perceived best solution
over time for test function F1. As can be seen, all fitness assignment methods
except the method proposed by Jensen are able to converge to the optimum on
this simple problem. The minimax method converges significantly slower, the
newly proposed fitness assignments all perform similar. Additional experiments
have shown that Jensen is also able to converge on this problem when allowed a
larger population size.

The same plot, but for function F2, is shown in Figure 4. Here, the perfor-
mance differences are much more significant. None of the algorithms is able to
converge to the optimum, which was to be expected, since the function rewards
deviations from the optimum. Average Greedy and Ranking Greedy perform
best, followed by Distance Greedy and Jensen’s method. The Worst Case method
works very well in the first few iterations, but then suddenly deteriorates and
converges to a level much worse than what had been obtained before. The good
performance in the first phase can be explained by the uncompromising focus on
the worst cases, driving the solution values down. The following ascent may be
explained by an overspecialization in PT . Very few test cases form the complete
set of worst cases for all solutions, resulting in less than μ test cases with an
assigned fitness. Therefore, some test cases are chosen randomly, substantially
worsening the algorithm’s performance.

The Maximin approach actually diverges and results in solutions worse than
the random initial population.

Global Quota and Correlation Coefficient. The basic assumption behind
the greedy approaches was that the performance of the CEA could be improved
by maintaining, in the local information, as much of the global information
as possible. The success of this idea is reflected in the sound performance of
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Table 2. Correlation coefficient and global quota ± standard error in generation 100
for function F2

Method Correlation Coefficient Global Quota

Maximin 0.73 ± 0.017 0.54 ± 0.018
Jensen 0.8 ± 0.016 0.814 ± 0.007

Worst Case 0.71 ± 0.018 0.475 ± 0.018
Average Greedy 0.89 ± 0.01 0.87 ± 0.006
Distance Greedy 0.837 ± 0.013 0.84 ± 0.007
Ranking Greedy 0.9 ± 0.009 0.924 ± 0.006

the greedy methods on both problems. It can also be measured by the global
quota and the correlation coefficient as reported in Table 2. The Ranking Greedy
method was the last greedy method to be designed and it was especially devel-
oped to further improve the global quota, which was clearly successful. Never-
theless the Ranking Greedy method does not outperform the Average Greedy
method regarding the real fitness, indicating that the connection between global
quota, real quota and the correlation coefficient respectively seems to be more
complex than expected. Table 2 shows that Average Greedy and Ranking Greedy
have the same correlation coefficient, stating that both achieve about the same
correlation between subjective and objective fitness.

7 Empirial Results - Mutation Step Size

The difficulty of function F2 lies in the fact that once the test case population
converged to the worst case (t = s), the optimum is surrounded by a much more
attractive area for the solutions. Therefore, they mainly circle around (0, 0),
always followed by the test cases. In order to drive the solutions back to (0, 0),
the test cases must ”overtake” the solution value. This insight led us to test a
mutation step size for the test cases larger than the mutation step size for the
solutions.

To analyze the relation between the mutation step sizes of the two popula-
tions, the mutation step size of the solution population was fixed to a standard
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Fig. 5. Function F2: Best solution found in Generation 100. Mutation step size for PS

is fixed to 0.5 and varies for PT .

deviation σ = 0.5 while various values were tested for the test case population.
The real worst case fitness of the last generation’s perceived best solution was
plotted for each combination. The mean values over 400 runs can be seen in
Fig. 5. The standard errors are very small, and have been omitted in the plot
for clarity. Best performance is reached if the test cases’ mutation step size is a
bit more than double of the solutions’ step size. So, our initial assumption has
been confirmed. Increasing also the solution population step size to the higher
value again lead to worse performance (not shown).

8 Conclusion

Coevolutionary algorithms seem an efficient and promising approach to worst-
case optimization. In this paper, we have proposed and analyzed a number of
variants of coevolutionary algorithms. The focus of our study was on new ways
to determine the fitness of the test cases. Here, we proposed several greedy
mechanisms which aim at preserving as much worst-case information about the
good solutions as possible after selection. As has been shown empirically, the
new methods significantly outperform previously proposed fitness assignment
schemes on the suggested test functions.

Besides, we have experimented with different mutation rates for the solution
and test case populations, and found that it is beneficial to choose a higher
mutation rate for the test population than for the solution population.

Overall, this paper has proposed several novel and promising ways to improve
the performance of coevolutionary worst-case optimizers. As a next step, the
obtained results should be confirmed on a variety of additional test problems.
Also, it would be straightforward to use the various methods in a lexicographic
order, and switch from one to another in case of ties.
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Abstract. In this paper, we report a novel and efficient algorithm for
searching P2P networks having a power law topology. Inspired by the
natural immune system, it is a completely decentralized algorithm where
each peer searches by sending out random walkers to a limited number of
neighbors. As it finds other peers having similar content, it restructures
its own neighborhood with the objective of bringing them closer. This re-
structuring leads to clustering of nodes with similar content, thus forming
P2P communities. Alongside, the search algorithm also adapts its walk
strategy in order to take advantage of the community thus formed. This
search strategy is more than twice as efficient as pure random walk on
the same network.

1 Introduction

Due to the dynamic nature of large scale peer-to-peer(P2P) networks, the search
algorithms used for such system need to be decentralized, self-adjusting and ro-
bust against rapidly changing system environments. Borrowing ideas from the
living nature has long been a fruitful research theme in various fields of commu-
nication engineering. The inspiration of design patterns from biological systems
has been well exploited in our work [4], where we have introduced practically
relevant algorithms for distributed computing that naturally inherit the desir-
able properties of biological systems including adaptivity and robustness. In this
paper, we have taken inspiration from different properties of the humoral and
secondary immune system to design and test different random walk and pro-
liferation based search and community formation algorithms in power law P2P
networks.

The idea of forming P2P communities to improve search efficiency is an on-
going research field. Many groups have explored this concept with very specific
types of networks (distributed libraries for example [6]) while other have applied
it to Erdos-Renyi networks [7]. However, except some of our previous works [1],
there has hardly been work on algorithms where the search process itself trig-
gers community formation. The idea is that the network as a whole gets trained/
acquires memory as search progresses.

Our previous work [1] was based on a grid-based topology. The algorithms
developed there could not be ported in a more realistic power law network[8].

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 154–164, 2008.
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Here we present completely new algorithms that have been developed based
upon a much more thorough understanding of the effect of various dynamics
performed on the network. We first apply different varieties of random and greedy
search mechanisms in order to understand the dynamics. Finally, we suggest an
algorithm which consists of a healthy mix of random and greedy walking. We
show that it performs far better then conventional random walk schemes.

Section 2 discusses in detail the behavior of the immune system and our
inspirations from it. Section 3 describes the model of the P2P network that we
use and the details of the various algorithms. Their performance in simulations is
analyzed in section 4 and a final algorithm based on these results is proposed in
section 5. Finally, we conclude in section 6 with the possible ways of improving
these results.

2 Biological Inspiration: The Immune System

The immune system displays a number of amazing behaviors and attributes
that can be an inspiration in providing robust solutions to a number of well
known technological problems. The behavior can be distinctly attributed to two
different parts of the immune system - the humoral (innate) immune system and
the secondary immune system. Each of them has been a source of inspiration as
described in the following section.

2.1 Humoral Immune System

In our earlier works [1],[2],[4] we had proposed a search algorithm for peer-to-peer
networks that is inspired by the simple and well known mechanism of the humoral
immune system where B cells upon stimulation by a foreign agent (antigen)
undergo proliferation generating antibodies. Proliferation helps in increasing the
number of antibodies while mutation implies a variety of generated antibodies.
Consequently the antibodies can efficiently track down the antigens (foreign
bodies). This is modeled by considering the query message packet as an antibody
which is generated by the node initiating a search whereas antigens are the
searched items hosted by other constituent members (nodes) of the P2P network.
Similar to the natural immune system, the packets walk through the network
followed by proliferation based upon the affinity measure between the message
packets and the contents of the node visited.

In our current work, we have analyzed the dynamics of the packet movement
in greater detail, in order to determine the parameters that control the degree of
movement. The movement of the antibodies can either be a purely random walk
or it maybe a biased random walk similar to the adhesion-based movements of
cells within the extracellular matrix (ECM) [5]. This phenomenon of cell move-
ment guided by adhesion is called Haptotaxis, and the movement of the query in
a P2P network resembles a haptotactic cell movement in the ECM [4]. Based on
this phenomenon, we model the two basic types of movement strategies as random
(unbiased movement) or greedy (movement biased by properties of the neighbor-
hood), respectively. The query movement itself can be subdivided into two distinct
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phases - general movement / walk and proliferation, each of which can be indepen-
dently performed either randomly or greedily. The details of the four algorithms
inspired from such random and greedy approaches will be discussed in section 3.

2.2 Secondary Immune System

We have also taken inspiration from the secondary immune response mechanism,
which has the capability to develop memory over time and accordingly the an-
tibodies produce a quicker response [3]. This decentralized memory is modeled
in our P2P network by restructuring the connections in the network in order to
form virtual communities of nodes having similar items (antigens). Each search
initiates a rewiring of the network towards community formation based upon
the information content of the participating nodes. Due to this community for-
mation, the network gets trained with time to find similar nodes with greater
efficiency. In essence, the entire network acts as a large memory which is able
to optimize the search process. The exact details of the community formation
process are dealt with in section 3.

Based on these inspirations we were motivated to test out the concepts and
understand the underlying dynamics in order to decide what level of randomness
or greediness is optimal for best performance in P2P networks.

3 Model and Algorithms

In this section we first define the model of the P2P network that we will use
in the following, then we discuss the detailed implementation of the search and
community formation algorithms.

3.1 Peer-to-Peer Model

We assume a realistic power-law topology for the P2P network (as most of the
existing P2P networks exhibit a similar topology). Also, in order to form content-
based communities, we have classified the information content of the peers into
abstract subcategories. The details are provided below.

Topology and Network Load. According to the characteristic heavy tailed
nature of power law networks, few nodes have high degrees while the majority
of the nodes have low degrees. These initial connections are assumed to form
a connectivity layer among the nodes and are hence termed as Connectivity
Edges. New edges that are added to the network with the intention of forming
community structures over the connectivity layer are called Community Edges.

For the purpose of our analysis, we consider the degree of a node as a measure
of its continuous bandwidth usage, assuming that a low bandwidth consuming
gossip protocol maintains the communication between the neighbors. Hence,
there is a limit to the total number of edges it can have. In other words, each
node can sustain only a limited number of new community edges. This increase
in network load is measured relative to the initial network degree (that is, the
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degree corresponding to its connectivity edges). This measure is termed as X
where X = New Degree − Initial Degree

Initial Degree . The maximum network load that each
node can tolerate is assumed to be Xmax times the initial network load (that is,
the initial degree). Also, during the search protocol, there will be bursts of high
bandwidth usage when a node needs to communicate with its neighbors. This is
also limited by a maximum number of neighbors that a node can contact in a
single burst of communication. Let this limit be known as Ymax.

Profile Distribution. In a file sharing P2P network, each node shares some data
with other nodes in the network. These data are categorized into abstract categories
called Information Profiles. The profiles (PI) therefore reflect the informational
content as well as the informational interest of the user. A profile is represented in
our system as a m-bit binary value, thus producing 2m distinct categories. These
profiles are distributed among the nodes following Zipf’s law[8] with the idea that
some categories of data are highly popular whereas others are not.

Search and Matching. A search query is defined as a m-bit binary value,
which is taken to be equal to the information profile PI of the node that is initi-
ating the search. This is based on the simple idea that the user of the node would
like to search for items that fall into the same category as his own information
content. In order to find nodes having similar content, the query packet is for-
warded in the network according to the rules set by the search algorithm. Each
node that encounters the query packet tries to match its own profile with the
queried profile. When a node is found whose information profile exactly matches
the query profile, it is said to be a search hit and the initiator node and matched
node are said to be similar nodes.

3.2 Algorithms

As indicated in section 2, we would like to test out the four major types of the
proliferation-based search algorithms – named RR, RG, GR and GG. In this
section, we describe these algorithms in full detail. As mentioned earlier, there
are two distinct processes in the algorithms – Search and Community Formation.

Search — Any node in the networks can start a search query. Let us say, it is
initiated at a node U . It sends a search query message M to a few of its randomly
selected (at most Ymax) neighbors, carrying the information profile (PI) of U as the
query profile to be searched. This message packet walks through the network until
it comes across a node whose information profile matches with the queried profile.
Then it is said to have made a search hit. Let that node be called node A. Following
the search hit, A performs two operations - Proliferation and Community Forma-
tion. A proliferates (replicates) the query to a number of its neighbors (at most
Ymax neighbors) with the aim of making a more intensified search in its vicinity.
This is done to exploit the fact that due to community formation, nodes similar to
A (hence similar to U) should be present in the neighborhood of A. Moreover, the
general walk is further optimized by making each query packet store the nodes it
has traversed through, so that they are avoided while forwarding the packets.
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Table 1. Neighbor selection strategies in different search algorithms

Search algorithms
Neighbor selection strategy RR GR RG GG
During query forwarding Random Greedy Random Greedy
During proliferation Random Random Greedy Greedy

The neighbor selection process for general walking and proliferation decides
the randomness / greediness of the overall walk mechanism. The neighbors for
the general query forwarding as well as during proliferation can be selected in two
ways: Random - neighbors are chosen randomly without any bias i.e. without
considering the type of edge through which it is connected; Greedy - neighbors
connected by community edges are preferred for selection over other neighbors.
In case of query forwarding, only one neighbor is selected in this manner, whereas
multiple neighbors are selected in case of proliferation.

Various permutations of these general walk and proliferation schemes lead to
four different types of searches. As shown in table 1, they have been named by two
letters based on the Random or Greedy scheme used. The first letter represents
the scheme used for general walk and second letter for the proliferation scheme.
We next explain the latter process, that is, Community Formation.

Community Formation — Whenever there is a search hit, we want to evolve
the topology in order to increase the probability of the next query reaching the
node A from U . This can be ensured simply by connecting the similar nodes
U and A with a new community edge. This brings the similar nodes within
one hop distance of each other, thus increasing the probability of reaching it in
the next search attempt. On the other hand, due to the network load limit of
Xmax, the algorithm is forced to delete edges when a new edge AB causes the
network load of A and/or B to exceed its limit. Hence, we delete the edge with
the following strategy. If both A and B exceed limits because of the new edge
AB, then this edge is removed. If either A or B exceeds the limit, then another
community edge is randomly selected for deletion from the corresponding node.
Furthermore, each edge is added with a probability of Probadd. This regulates
the speed of addition and prevents the network load of each node from reaching
its limit very fast. Hence each node gets ‘time’ to learn and the network does
not unnecessarily undergo a huge amount of churn to stabilize. It must also be
noticed that we are churning only the community edges, and not the connectivity
edges, which ensures that the whole network remains connected at all times.

3.3 Evaluation Criteria

We will like to evaluate the performance of these algorithms based on the fol-
lowing criteria.

Search related metrics. Let us assume that the ith search produces a total of
hi search hits using a total of pi packets. Let the total number of nodes similar
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to the initiator node (that is the maximum possible search hits) be Hi. Let the
search be performed n times. The search-related metrics are defined as follows:

Total Hit Count: Average number of hits (similar nodes) found in each search,
i.e. 1

n

∑
i hi

Efficiency: Average number of hits per search packet, i.e. 1
n

∑
i

hi

pi

Similar Node Coverage: Average fraction of all the similar nodes present in the
network that is returned in each search, i.e. 1

n

∑
i

hi

Hi
× 100.

Metrics related to community formation. The community edges make
connections between similar nodes only. If we consider nodes of a particular
profile, then these edges form a community overlay network over these nodes.
The size of the largest connected component (LCC) in a network is generally
considered as a measure of its connectedness. Since, we desire that all the nodes
of a profile are well connected by the community overlay network, we take the
LCC of the network as a measure of the ‘goodness ’ of the community structure.
It is expressed in terms of the percentage of nodes of each particular profile that
lie within the LCC. This is averaged over all the profiles in the system, and is
termed as Average LCC of the community structure.

4 Simulation and Results

In order to test out the performance of the proposed algorithms, we resorted to
simulations whose details are as follows.

4.1 Simulation Scheme

For simulating our algorithm, we took a power-law network of 1000 nodes, gen-
erated using the Barabasi-Albert preferential attachment method, which gave us
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a gamma of approx 2.0. 16 profiles (m = 4) were distributed among the nodes
by Zipf’s law with a gamma of 0.8. Each search query is propagated in this net-
work up to 15 hops. A set of search queries (generally 200) executed on random
nodes constitute a generation and all performance metrics were averaged over
a generation. Edge addition probability Probadd is 0.3, while the network load
limit Xmax is 1.5. Ymax was chosen to be 3 nodes. A number of generations
performed on the same network constitute a simulation. Multiple simulations
are performed on different profile distributions for averaging the performance of
the algorithm.

In order to prove the importance of community formation, we performed a
fairness test by comparing the performance of network formed through commu-
nity edge addition (CEA) with an equivalent network. In this equivalent network,
we start from the same initial power law network as the actual simulated net-
work, and we compensate for the increase in the edge count of the latter (due to
community edge addition) by randomly adding an equal number of edges (that
is, random edge addition (REA)) in the equivalent network.

4.2 Results and Analysis

First of all, we present the performance of RR with community edge addition
versus random edge addition on an equivalent graph. Figure 1(a) shows that as
generations of search progress, the total number of hits returned by community
edge addition increases steeply compared to random edge addition, finally pro-
ducing an average of 20 hits compared to 11 by the latter. In terms of efficiency,
the former performs up to 20% better than the latter (Fig. 1(b)). This clearly
proves that strategic addition of edges by community formation improves the
search efficiency, unlike random addition edges.

Next we present the performance ofRG and GG (we omit the result of GR due
to lack of interesting inferences). All these cases undergo community edge addi-
tion. Figure 2(a) shows that on average, the number of results brought by both
types of greedy-proliferation based searches are comparable, while being more
than 2.6 times better than that of RR. In terms of search efficiency, GG and RG
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perform about 30% and 50% better than RR, respectively. Also, GG saturates
much slower compared to RG. Both these figures confirm without doubt the
importance of greedy walking in proliferation. This is actually obvious – only by
greedily choosing the community edges can the already formed community be
efficiently searched.

The most obvious question that arises is - what produces the difference in the
search efficiencies of GG and RG? This is primarily because of the extent of com-
munity formation in both cases. To quantitatively measure the community formed
between nodes of a particular profile, we calculate the size of the largest connected
component (LCC) in terms of the fraction of the similar nodes it contains. The
larger this fraction, the more well connected they are. Referring to Fig. 3(a), we
see that the LCC in case of RG encompasses around 80% of all the similar nodes
while it is just 40% in case of GG. Greedy general walking in GG is unable to pro-
duce as good a community structure as the random walking inRG, since it directs
all the query packets into already discovered areas of the network and hence in-
hibiting the exploration (that is, node discovery). But on the other hand, RG is
also not able to exploit the good community structure created, as it is returning
a smaller fraction of similar nodes compared to that present in the LCC. Refer
Fig. 3(b), GG is finding almost all (95%) the nodes that constitute the LCC (36%),
whileRG returns just around 60% of all such nodes in LCC (79%). To summarize,
while a random general walk has a better performance in terms of node discov-
ery and node retrieval, greedy general walk is better at efficiently searching the
already discovered nodes. Hence, it will be beneficial if we are able to develop a
search algorithm that embraces the best of both.

5 An Approach to Self-Adjusting Search (SA)

Extending the idea of antigens and antibodies further, we want to design an
algorithm that has the intelligence to adjust itself between two phases - Ex-
ploratory Phase and Search Phase [9]. In the former phase, the antibodies would
explore the entire network in order to find the location of antigens. In the latter
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phase, when the antigens have been located, it would like to redirect all its ef-
fort towards the affected areas. In terms of our problem, our search algorithm
should, in the initial stages, explore the graph with maximum probability (for
developing the best community structure as soon as possible) and in the later
stages search the network with maximum efficiency. In other words, it must be
able to identify automatically whether it should put the maximum effort in ex-
ploring the network or in searching the network efficiently. We propose such an
algorithm in the next section.

5.1 Algorithm

As evident in earlier results, RG performs a better exploration of the network,
while GG performs a better search of the already explored regions. Each of the
algorithms is individually suited for each of the two phases, respectively. So we
need to design an algorithm that can adjust itself based on the phase of the
system, in a decentralized manner. The key requirement for designing such an
algorithm is to identify a property / parameter in the network based on which
we can control the randomness / greediness of the search process.

In order to make the search tunable to random or greedy schemes, each query
packet now holds another parameter - Random Walk Probability (P ). At the
time of initiation of the search, the value of the probability is set by the initiator
node. This probability is also copied to the new packets created at the time
of proliferation. Based on this probability, the non-matching nodes, through
which the packets pass, will either forward the packet randomly (like R∗) or
greedily (G∗). In the matching nodes, the behavior is always the same - greedy
proliferation (as in ∗G). The probability can be set to different values between
0.0 and 1.0 to get a behavior in between pure RG and pure GG.

Next, we need to choose a suitable parameter for determining the phase of
the system in a decentralized manner. We have chosen this to be the X value of
the node. If X is low, then it means that the node has the capacity of accepting
new community edges and expanding the community structure. In that case, it
should try to explore the network for previously undiscovered similar nodes with
a higher probability. Conversely, when X is high and near its limiting value,
its capacity of adding to the community structure is low. Therefore, instead of
exploring, it should try to efficiently search the community structure that has
already been formed around it. More formally, the probability of random walk
is calculated as Probrandom = 1 − XA

Xmax
where XA = X of the node A that is

initiating the search. The overall behavior would be as we desire - initially, when
X is 0 for all the nodes, it will behave like pure RG. Later as the X of all the
nodes reach Xmax, the probability of random walk reduces to zero, that is, it
performs pure GG on an optimal community structure.

5.2 Simulation Results

Figures 4(a) and 4(b) reflect the superiority of SA scheme. The scheme is able
to produce the best possible community structure as fast as RG. Side by side, it
overcomes the shortcomings of RG by being able to find almost all the similar
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Fig. 4. Performance of Self-Adjusting Search

nodes in the LCC. Refer Fig. 4(a), SA is finding around 90% of the similar
nodes that constitute the LCC, while RG returns just around 60% of all such
nodes, thus producing almost 50% improvement. Finally, we find that the search
efficiency of SA is about 30% better than RG (and more than 130% better than
RR with REA).

6 Conclusion and Future Work

This paper has presented a community-based search algorithm applicable on
power-law network which derives its inspiration from natural immune systems.
Detailed study of the dynamics of the walk has been done which resulted in an
elegant time-varying algorithm. The final algorithm, like the immune system,
consists of exploration and search (healing) phase. The algorithm outperforms
by far any conventional system and may have far reaching impact in designing
efficient P2P communities in the future. A rigorous testing and fine tuning of
the algorithm will be the main focus of our future work.
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Abstract. In this paper we show preliminary results of two efficiency
enhancements proposed for Extended Compact Genetic Algorithm.
First, a model building enhancement was used to reduce the complexity
of the process from O(n3) to O(n2), speeding up the algorithm by 1000
times on a 4096 bits problem. Then, a local-search hybridization was
used to reduce the population size by at least 32 times, reducing the
memory and running time required by the algorithm. These results are
the first steps toward a competent and efficient Genetic Algorithm.

Keywords: Estimation of Distribution Algorithms, ECGA, Model
Building, Efficiency Enhancement.

1 Introduction

Evolutionary Algorithms (EA) [1] [2] have been successfully used in several differ-
ent applications involving search, optimization and machine learning problems.
Goldberg [3] presents a design-decomposition methodology for successfully de-
signing scalable Genetic Algorithms (GAs). A GA that can solve hard problems
accurately, efficiently and reliably is called a competent GA. These GAs can
solve problems that are intractable for other algorithms in a tractable polyno-
mial time.

However, to solve large scale problems it is oftentimes necessary to enhance the
efficiency [4] of the algorithm. Some common approaches include parallelization
[5], hybridization [6] [7] [8], time continuation [9], and evaluation relaxation [10].

The recent success of the Compact Genetic Algorithm (cGA) [11] on solving a
billion bit noisy optimization problem [12] [13] has proven that GAs, if properly
designed and optimized, can solve difficult large problems.

The objective of this work is to reproduce this success, creating an efficient
and competent EA, capable of solving large scale difficult problems. Particularly,
we are interested in creating an algorithm that can deal efficiently with problem
sub-structures, solving a broader class of problems than the class the cGA can
handle. This paper presents a proof of principle on the importance of efficiency
enhancements for GAs. We present the first steps toward such efficient and
competent EA and discuss future directions for the next steps.
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2 The Extended Compact Genetic Algorithm

The Extended Compact Genetic Algorithm (ECGA) [14] is an evolutionary algo-
rithm in the class of Estimation of Distribution Algorithms (EDAs) [15]. These
algorithms substitute the selection-crossover-mutation process, common to GAs,
by a selection-model-building-sampling process. Some examples of EDAs include
the cGA [11], that uses probability vector as a model, and the Bayesian Opti-
mization Algorithm (BOA) [16] that uses a Bayesian Network as a model, being
able to represent which variables are linked together.

The ECGA uses the Marginal Product Model (MPM), which can be divided
into two components, (I) a partition over the variables, defining which variables
are independent and which variables are linked, and (II) a probability distribu-
tion over each partition.

The ECGA is based on the principle that the estimation of a good model for
the population is equivalent to the linkage learning [2] [14] process. It searches the
space of possible partitions to find an appropriate one and tunes the probability
distribution to match the data. The ECGA uses the minimum description length
(MDL) principle as learning bias, which means that the cost of representing
the whole population under the compression induced by the model (Compressed
Population Complexity - CPC), together with the cost of representing the model
itself (Model Complexity - MC) should be minimal.

The ECGA chooses a partition that appropriately models the sub-problem
structure by greedily optimizing the Combined Complexity Criterion (CCC)
using Algorithm 1, which assumes that each of the variables are indepen-
dent and them evaluates all possible pair wise merges and pick the best un-
til no merging can improve the CCC. After the partition is determined, the
probability distribution is estimated simply by counting the frequencies in the
population. For detailed information about the ECGA and the CCC, please
refer to [14].

The ECGA main loop can be summarized by the following steps. First, it gen-
erates a random population and then repeats the process of evaluation, selection,
model-building, and sampling until any convergence criteria is satisfied.

Algorithm 1. Greedy search for an appropriated model in the ECGA

1. Start assigning each variable to an independent partition

2. Repeat:

3. For each pair of partitions:

4. Merge that pair

5. Evaluate the CCC of the model

6. Undo the merging

7. Merge the pair that induced the smaller CCC if any

8. End the search if no improvement is possible
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3 Efficiency Enhancements for the ECGA

The methodology proposed by Goldberg [3] allows us to design competent GAs,
which can solve hard problems in polynomial time. The same methodology can
be used to design efficiency enhancements for GAs [4], which can be divided
in four main categories: Parallelization, hybridization, time continuation and
evaluation relaxation.

In a very superficial view, parallelization deals with the division of the GA in
several processors. Hybridization deals with the integration of GAs with other
search procedures. Time continuation deals with the tradeoff among using a
larger population for short time or smaller population for long time and evalua-
tion relaxation deals with the tradeoff among having a noisy and cheap evaluation
against an accurate and expensive one.

This paper proposes two extensions to improve the performance of the ECGA.
One of them follows the cited methodology; it is the hybridization of the ECGA
with a local search procedure that will work as a preprocessing mechanism. The
other extension addresses the model building process, which according to running
time profiling information consumes more than 90% of the computational time.
The profiling information was generated using the GNU gprof utility for UNIX
systems.

All results presented in this section use the mk-trap problem [9] with trap
size (k) of 4 as benchmark problem. The mk-trap is an additively separable
problem with m sub-problems, each of them being a trap function of k bits. The
tournament size was fixed to 16 for all experiments. The population size and
number of sub-problems (m) varies on the experiments.

3.1 Improving the Model Building Process

The ECGA is a competent genetic algorithm, but it is computationally expen-
sive. The first step to improve its performance was to profile the code and to
determine which are the most time consuming steps of the algorithm. The result
of such profiling showed that the model building process took more than 90% of
the computational time. This concerning aspect lead us into a search for model
building alternatives to reduce this time.

The first possible approach to that problem would be the use of a cache struc-
ture, already used on [17], which sacrifices memory to get runtime improvements.
However, this improvement is not sufficient for large problems and memory may
also become a limiting resource.

Reviewing Algorithm 1, we point that line 2 introduces a loop that depends
on the size of the chromosome (l). Line 3 introduces iteration over pairs of
variables in the string, which can be re-written as: “For each variable; For each
other variable”, introducing a order two iteration over l. The overall complexity
is O(l3).

One possible way to reduce the runtime would be to finish the loop in line 3
before it evaluate all pairs. Instead of searching for the best merging among
all pairs, it might be enough to accept any merge that improves the CCC and
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stop the loop. This approach works for tight coded problems [2], but fails for
loose coded ones when the population size is close to the minimum necessary for
the ECGA, since spurious relations among actually independent variables are
expected show up by just chance. Using a larger population is a way to bypass
this problem but this price overcomes the benefits.

A successful approach would have to reduce the overall complexity of the
algorithm. This is achieved using the Algorithm 2. Fundamentally, instead of
evaluating the CCC over all pairs of partitions, an O(l2) step, Algorithm 2
selects one partition (a) and evaluates the CCC only over the pairs that include
this partition, reducing the complexity of this step to O(l).

Algorithm 2. Improved greedy model building for the ECGA
1. Start assigning each variable to an independent partition

2. Repeat:

3. Choose a partition (a)

4. For each other partition (b):

5. Merge a and b

6. Evaluate the CCC of the model

7. Undo the merging

8. Merge the pair that induced the smaller CCC if any

9. With some small probability pb, break any partition

10. Cool down the breaking probability

11. End the search if no improvement is possible

As mentioned, spurious relations are expected to show up just by chance. To
overcome that problem, we used a random breaking mechanism that chooses
a random partition and divides it. However, the signal of spurious relations
decreases as the real relations are discovered. This fact motivated the adoption
of a cooling down mechanism to decrease the perturbation rate over time. This
local search/random perturbation mechanism was successfully applied on several
problems and is the basis of algorithms like Simulated Annealing.

Two items need further explanation. The selection of the partition (a) to be
merged (Line 3) and the setting of the breaking probability pb. The best results
were achieved using a round-robin policy for choosing a and a initial breaking
probability pb = 0.01, although for noisy problems a greater pb values would
produce more accurate results. To cool down, we assign pb = 0.9pb.

It is important to notice that decreasing the model building accuracy may have
undesired side effects on the ECGA. On the performed tests, the model building
accuracy for Algorithm 1 and for Algorithm 2 was the same. This is a general
property for trap functions but further experiments are necessary to confirm the
hypothesis that both methods have the same accuracy. Initial experiments show
that, for problems where proper mixing is fundamental for success (deceptive
problems), Algorithm 2 does not suffer from accuracy problems. Challenging
problems like noisy problems and exponentially scaled problems might offer more
difficulty and further refinements on Algorithm 2 might be necessary.
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Model Building with Reduced Complexity − O(n2)

Original Model Building − O(n3)
Original Model Building (Artificial Data)

Fig. 1. A comparison of the scalability of the Model Building with reduced complexity
and the Original Model Building shows that the proposed approach successfully reduces
the number of different partition to be evaluated in one order of complexity, resulting
in a speedup greater than 1000 times for individuals of size 4096 bits. The slope of the
lines indicates a reduction from cubic to quadratic order.

Figure 1 shows the scalability of the methods on a LogLog scale. On the x axis
we have the chromosome size and on the y axis we have the number of evaluations
of the CCC necessary to build the correct model. Both the old (original) and the
new method are straight lines, what means that they are governed by a power
law. The slope of the line for the new method is close to 2 and for the old method
close to 3, confirming the scalability hypothesis.

The improvement in the total runtime of the new method when compared to
the old one is of order of 10 times for a small problem instance (32 bits) and of
more than 1000 times for a 4096 bit problem.

3.2 Improving ECGA through Local Search

GAs are often able to operate over large and multi modal search spaces, presenting
a good global search nature. However, local search methods are, in general, more
efficient in tuning a solution and reaching the closest local optimum. These two
characteristics are desirable and several hybrid approaches have been proposed.
There are several ways to hybridize a GA with a local search method and each of
them is more suitable to a different class of problems. In this work we propose to
use the local search method as a pre-processing mechanism to the ECGA.

The reason for that decision is that the ECGA is very efficient at combin-
ing optimal sub-structures, but not so efficient at finding them. To bypass this
inefficiency, large population sizes are required to ensure the initial BB supply
[3]. Once that initial supply is provided, the ECGA can select promising solu-
tions and learn the appropriate decomposition, building a model that allows it
to combine the substructures properly.

The model-building process can become easier if the entropy of the partitions
is low, i.e., if we need the smallest number of bits possible to represent that
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partition. The lowest entropy happens when all non-optimal instances of a BB
have probability 0 and only one optimal solution is present. In this case, the
entropy is 0.

However, sub-problems may be difficult to solve even if a proper decomposition
is known. For instance, a trap function is a difficult function itself. We argue that
if it is impossible or too expensive to find the optimal solution to a sub-problem,
removing all non-locally-optimal solutions from the population still reduces the
entropy significantly1 and helps the model building process. A local search pre-
processing can easily remove such non-locally-optimal solutions.

A local hill climber that processes each variable separately like the one in
Algorithm 3, when applied to all individuals in the population, will have the
effect of taking every instance of a substructure located on a particular hill on the
search space to the peak of that hill. As an effect, all non-locally-optimal solutions
will be replaced by a particular local-optimum, reducing the entropy and easing
the model building process. Moreover, since fewer different instances of one sub-
structure need to be recombined, the overall performance of the ECGA as a
mixer of sub-structures will be improved (the mixing time is reduced [18]).

Algorithm 3. A hill climber to be used as a local search for the ECGA
1. Given an individual s of length l and fitness f:

2. For each position p in the chromosome:

3. Flip the bit at p to its complementary value

4. Evaluate the local change effect and calculate new fitness f’

5. If f’ is not better than f:

6. Flip the bit p back to the original value

7. else

8. f = f’

9. Return the resulting individual

This reasoning proved to be true. The application of local search as a pre-
processing to the ECGA reduces the population size required by the method, con-
sequently reducing the memory and runtime of the algorithm. Figure 2 compares
the minimal population size (determined according to the Bisection Method) re-
quired by the ECGA and by the Hybrid to solve problems of growing size (the
x axis represents the problem size l). The population size in ECGA scales as
O(l · log(l)) [9] for problems with constant BB size. Figure 2 shows that the
hybrid uses smaller population and scales no worse than the original method.

It is important to remark that the local search procedure is itself time con-
suming. We can use the locality and independence of the substructures to reduce
the cost of the function evaluations required by the hill climber, introducing the
concept of a local change evaluation, which evaluation calculates the fitness vari-
ation induced by a single bit change. In the mk-trap problem the cost of a local
change evaluation is 1/m of the cost of a complete function evaluation.

1 Given that the sub-problem is boundedly multimodal.
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Fig. 2. The Hybridization of the ECGA with a local search procedure reduces the
minimum population size required by the algorithm (determined using the bisection
method [10]), reducing the memory requirements and potentially the running time
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Fig. 3. The Hybridization of the ECGA also affects the number of function evaluations.
Considering the cost of a local evaluation as 1/m of the cost a complete evaluation we
have a significant improvement on the number of function evaluations required. Even
when local change evaluations are not available, the number of function evaluations for
the hybrid is no worse than the number of function evaluations for the original method.
The hybrid still reduces the population size and, consequently, memory and running
time.

Figure 3 show the scalability of the number of function evaluations required by
the ECGA (ECGA) and the Hybrid. For the latter, two lines where presented,
one of them (Hybrid - No Local) assumes that no local change evaluation is
available, counting each evaluation as a complete function evaluation. The other
line (Hybrid - Local) assumes the availability of local evaluations, counting m of
them as one function evaluation. The x axis represents the problem size l.

Figure 3 shows that even in the worst case, the hybrid is no worse than the
ECGA. When no local evaluation is available, the hybrid behaves very similar to



172 T.S.P.C. Duque, D.E. Goldberg, and K. Sastry

the ECGA, but requires a smaller population, generating a smaller overhead for
model building, selection and other GA related processes, reducing both memory
and running time.

4 Future Work

This paper presents enhancements to the ECGA and successfully improves its
performance. However, in order to create an effective EA several other enhance-
ments are still necessary. In this section we point and describe some of the next
steps toward such effective EA. The proposed enhancements are useful steps,
but future work should not be restricted only to these options.

The proposed relaxed model builder shows no accuracy lost for trap functions.
Noisy or exponentially scaled problems might be more challenging, requiring
further enhancements to the algorithm.

Parallelization: Since the Hill Climber processes each individual independently
it is easy to distribute the population over several processors, achieving a speedup
near the number of processors for the pre-processing step. Parallelizing the model
building deserves special care, since this process centers the information dis-
tributed in the population.

Model building improvements: It is possible to further speed-up the algorithm
by avoiding unnecessary full model building steps. This can be achieved by three
different ways: (I) Sporadic model building [19], which builds the model only
after some generations or some important event, instead of every generation; (II)
Once and forever model building, which build the model in the first generation
and reuses it through the GA run and; (III) Incremental model building, which
changes the model using small incremental steps.

Hybridization with competent mutation operator: as discussed in [9], the mu-
tation is useful on deterministic problems, while crossover is useful on noisy
problems. A mutation-crossover hybrid can take advantage of both strengths, as
showed by [20].

Chromosome compression: compressing the chromosome as in [21] can also
improve the performance of the algorithm by reducing the chromosome length
and search space.

5 Conclusion

This work presents a proof of principle on the importance of efficiency enhance-
ments for practical GAs. We present two enhancements to the ECGA, a widely
used competent genetic algorithm. These enhancements successfully improved
performance of the algorithm, with speedups of more than 1000 times for large
problems.

The first enhancement, the change on the model building process, was able
to reduce significantly the time needed for the model building process. This step
represents more than 90% of the original algorithm’s runtime. The extension was
able to reduce one order of complexity in the model building process, inducing a
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speedup around 10 times faster for small instance (32 bits) and more than 1000
times faster for a 4096 bit problem.

The second enhancement, the hybridization with a local search preprocessing,
successfully reduced the population size required by the algorithm, reducing the
memory and runtime requirements. Using the hybrid we were able to solve the
same problem with a population at least 32 times smaller. This result holds for
small strings (such as 32 bits) and for the larger ones.

Although the results achieved by these enhancements are relevant, this work
is only the first step toward a competent and efficient EA, capable of solving
difficult large scale problems in practical time. We also pointed some of the next
steps toward such EA.
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Abstract. Credit Assignment is an important ingredient of several pro-
posals that have been made for Adaptive Operator Selection. Instead of
the average fitness improvement of newborn offspring, this paper proposes
to use some empirical order statistics of those improvements, arguing that
rare but highly beneficial jumps matter as much or more than frequent but
small improvements. An extreme value based Credit Assignment is thus
proposed, rewarding each operator with the best fitness improvement ob-
served in a sliding window for this operator. This mechanism, combined
with existing Adaptive Operator Selection rules, is investigated in an EC-
like setting. First results show that the proposed method allows both the
Adaptive Pursuit and the Dynamic Multi-Armed Bandit selection rules to
actually track the best operators along evolution.

1 Introduction

Evolutionary Algorithms (EAs) have demonstrated their ability to solve chal-
lenging optimization problems that resisted the standard optimization methods,
thanks to their flexibility: EAs can handle structured and mixed search spaces,
irregular, noisy, or highly constrained objective functions. However, EAs are still
a long way from being part of the standard optimization toolboxes; paradoxical
as it may seem, the main reason for that is their high flexibility. Indeed, most
EAs provide the user with quite a few levers to tackle problem difficulties; al-
though knowledgeable users can benefit from this diversity and take the most
out of the Evolutionary approach, the naive user will generally fail to appropri-
ately tune the EA in a reasonable amount of time. Therefore, a mandatory step
for EAs to “cross the chasm”and make it out of the research labs is to offer some
automatic parameter tuning capabilities.

Parameter setting was and remains one of the most active research directions
in EC (see e.g. [1]). Statistical methods derived from Design Of Experiments
have been adapted to the off-line setting of EA parameters [2,3,4,5]; while they
are more efficient than classical ANOVA, these methods however require exten-
sive experiments. Online tuning seems another promising way of tackling the
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EA parameter control, and in particular, handling the selection of the varia-
tion operators. When addressing a new problem, the user can usually define a
variety of crossover and mutation operators, fulfilling different roles in the ex-
ploitation/exploration dilemma; how to find a strategy for their combined usage
is a prominent part of the user’s burden. This strategy however most often boils
down to a set of static user-defined probabilities, or relative weights, that depend
on the user’s experience and intuition. After [6], the only dynamic parameter set-
ting strategy widely used in practice concerns the continuous mutation step size
adaptation in Evolution Strategies (see references in [6]).

The work presented in this paper is concerned with on-line tuning of op-
erator selection in an EA. Designing an Adaptive Operator Selection (AOS)
method involves two main ingredients: the credit assignment mechanism, which
associates to each operator a reward, modelling its impact on the progress of
evolution; the selection rule, which determines the operator to be used at each
time step, depending on the operator rewards. The credit assignment mecha-
nism and the selection rule must be geared to each other to achieve some explo-
ration/exploitation tradeoff in the operator landscape; typically, if the reward
provides an instant feedback, modelling the immediate benefits of applying the
operator, then the selection rule must ensure that operators with low current
benefits can still be explored at a later stage of evolution. Section 2 will present
a brief survey of the state of the art, summarizing the credit assignment mecha-
nisms presented in the literature and detailing the selection rules. In particular,
the Probability Matching (PM) [7] and Adaptive Pursuit (AP) [8] will be de-
scribed, together with the Dynamic Multi-Armed Bandit (D-MAB) proposed in
[9]. In [9], these three AOS methods have been compared within an artificial
setting originally proposed by [8], involving pre-defined rewards whose dynamics
are independent from any fitness landscape.

The main contribution of the paper is an original credit assignment mechanism
termed EXtreme value-based Adaptive Operator Selection (ExAOS, described in
Section 3), based on empirical order-statistics of the fitness improvement. This
mechanism is combined with the above mentioned selection rules and experimen-
tally investigated in an EC-like setting, where the operator rewards computed
by ExAOS actually follow the dynamics of the evolution trajectory in the fit-
ness landscape (Section 4). This setting considers the eternal OneMax problem;
such a simple setting enables to compare the experimental behavior of the online
adaptation scheme with the optimal behavior, and to understand the interac-
tion between the dynamics of the fitness landscape, the variance in the operator
reward, and the exploration strength in the selection rules. The paper reports
on the empirical results in Section 5, and Section 6 concludes with a discussion
of the perspectives for further research.

2 Credit Assignment and Adaptive Operator Selection

Credit Assignment. Starting back in the late 80s [10], several methods to as-
sign credit (or reward) to variation operators have been proposed in the literature.
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They differ in how they compute the credit of an operator for each newborn off-
spring. Most methods only use the fitness of the new individual, compared with
a reference fitness value: that of the individual parents [11,12,13], of the current
best [10] or median [14] individuals. Individuals which do not improve on the ref-
erence fitness result in a null credit for the operator. Admittedly, no clear conclu-
sive result can be gathered from those works. Some recent work [15] proposes to
use a more sophisticated statistical measure that aims at detecting outliers in the
fitness distribution. Reported comparative results with other credit assignment
techniques are conclusive, indicating the superiority of this approach over a set of
continuous benchmark problems. Though calling to another measure, the method
proposed here borrows the idea of detecting beneficial but rare events.

Another distinguishing feature is whether the credit assignment mechanism
rewards the operators used to generate the ancestors of the current individual,
e.g. using some bucket brigade algorithm [10,14]; creating efficient parents is
indeed as important as creating improved offspring. Some authors however do
not consider ancestors [11,12] and some even suggest that it sometimes degrades
the results [13]. In the rest of the paper, the genealogy of the fit individuals
will not be considered. Instant operator credit is computed for each generated
offspring, and aggregated through an operator selection rule.

Operator Selection Rules. Most Operator Selection Rules attach a probabil-
ity to each operator and use a roulette wheel-like process to select the operator
to be applied, based on these probabilities1. Two such selection rules, namely
Probability Matching (PM) and Adaptive Pursuit (AP), are detailed below.

Let K denote the number of variation operators. Both PM and AP maintain
a probability vector (si,t)i=1,K , and an estimate of the current operator reward
noted p̂i,t. At each time t:

• Operator i is selected with probability si,t

• The corresponding reward rt is computed using the credit assignment at hand
• The reward estimate p̂i,t of the selected operator is updated after rt, using an
additive relaxation mechanism with learning rate α (0 < α ≤ 1). It controls the
memory of the reward estimate (forgettingness increases with α):

p̂i,t+1 = (1− α)p̂i,t + α rt (1)

Probability Matching, a very popular AOS method [7,11,13], aims to making
si,t proportional to p̂i,t, while enforcing a minimal amount of Exploration. More
formally, let pmin denote the minimal probability of selection of any operator,
then:

si,t+1 = pmin + (1−K ∗ pmin)
p̂i,t+1∑K

j=1 p̂j,t+1

(2)

Note that if some operator gets no reward (respectively the maximal reward) for
some time, its expected reward will go to pmin (resp. 1 −K ∗ pmin). However,
1 Methods that recompute those probabilities from scratch from the most recent re-

wards [14,12] will not be considered here.
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this convergence is very slow; experimentally, all mildly relevant operators keep
being selected, thus hindering the performance of Probability Matching [8].

This drawback is partly addressed by the Adaptive Pursuit: Originally pro-
posed for learning automata, this method follows a winner-take-all strategy, se-
lecting at each time step the operator i∗t with maximal reward, and accordingly
increasing its selection probability:⎧⎨⎩

i∗ = argmax{p̂i,t , i = 1 . . .K}
si∗,t+1 = si∗,t + β (1− (K − 1)pmin − si∗,t) , (β > 0),
si,t+1 = si,t + β (pmin − si,t) , for i �= i∗

(3)

Both PM and AP thus involve the pmin parameter to guarantee a sufficient explo-
ration of the operators; AP additionally involves the learning rate β, controlling
the greediness of the winner-take-all strategy.

Multi-Armed Bandit Methods. Another approach is inspired from the
Multi-Armed Bandit framework, first introduced in the context of Operator Se-
lection by the authors [9]. Multi-Armed Bandit algorithms have been initially
proposed as decision making algorithms in uncertain environments.

The so-called Upper Confidence Bound (UCB) algorithm devised by Auer
et al. [16] achieves the optimal cumulative reward through an Exploration vs
Exploitation-based criterion: Let ni,t denote the number of times the i-th arm
has been played up to time t, and let p̂i,t denote the average corresponding
reward. UCB1 selects in each time step t the arm maximizing:

p̂j,t + C

√
log
∑

k nk,t

nj,t
(4)

where C is the Scaling factor, controlling the exploration/exploitation tradeoff:
the left term in Eq. (4) favors the option with best reward (exploitation) while
the right term ensures that each arm is selected infinitely often (exploration).
The efficiency of this rule follows from the fact that the lapse of time between
two selections of under-optimal arms increases exponentially.

Unfortunately, MABs are not suited to dynamic environments: if the current
best option becomes less efficient at some later stage, and happens to be outper-
formed by another one, it will take a long time before the latter option catches up.
A Dynamic Multi-Armed Bandit algorithm (D-MAB) was thus proposed in [9],
that combines MAB ideas with a specific statistical test known as Page-Hinkley
(PH) [17], which is used to detect the changes in the reward distribution, and,
upon such a detection, restart the MAB.

More precisely, let r̄� denote the average of r1, . . . r� and let e� denote the
difference r� − r̄� + δ, where δ is a tolerance parameter. The PH test considers
the random variable mt =

∑t
1 ei. When the difference between Mt = maxi≤t mi

and mt is greater than some user-specified threshold γ, the PH test is triggered.
The PH test involves two parameters. Parameter γ controls the trade-off be-

tween false alarms and un-noticed changes. Parameter δ enforces the robustness
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of the test when dealing with slowly varying environments. Following initial ex-
periments in [9], δ was set to 0.15 in all experiments here.

3 EXtreme Value-Based Adaptive Operator Selection

This section presents a proposal for Credit Assignment, to be combined with a
selection rule to achieve an Adaptive Operator Selection. Let F , o and x respec-
tively denote the fitness function (to be maximized), a variation operator, and
an element of the current population. As discussed in Section 2, the proposed
credit assignment will only take into account the non-negative fitness differences
(F(o(x)) − F(x))+. The proposed mechanism is inspired from the following re-
mark. Let us consider an operator bringing frequent small improvements, and
compare it with an operator bringing rare large improvements. The latter one will
hardly be considered if the reward reflects the average fitness improvement, for the
average estimated after a few trials is likely to be 0, implying that very few further
trials will take place. Hence, in agreement with [15], attention should be payed to
extreme, rather than average, events. Incidentally, the role of extreme events in
design has long been acknowledged in numerical engineering (e.g. taking into ac-
count rogue waves when dimensioning an oil rig); it receives an ever growing atten-
tion in the domain of complex systems, as extreme events govern diffusion-based
processes ranging from epidemy propagation to financial markets.

The proposed credit assignment mechanism, referred to as EXtreme value-
based Adaptive Operator Selection (ExAOS), proceeds as follows. When operator
o is selected after the selection rule under examination (PM, AP or D-MAB), o
is applied on the current individual x; the fitness of the offspring is computed
and the current improvement is added to the window (FIFO order, with window
of size W ); lastly, the operator reward is set to the maximal fitness improvement
in this time window. Formally, let t be the current time step, and t1 (respectively
tk) denote the time step where operator o was used for the last time (resp., the
last time before tk−1). If δ(t) denotes the fitness improvement observed at time
t, then the expected reward for operator o is computed as:

p̂t = argmax{δ(ti), i = 1 . . .W} (5)

Hence, the EXtreme value-based Adaptive Operator Selection mechanism involves
a single parameter W , the window size. This parameter W is meant to reflect
the time scale of the process; if too large, operators will be applied after their
optimal epoch and the switch from the previous best operator to the next best
one will be delayed. If W is too small, operators causing large but infrequent
jumps will be ignored (as successful events will not be observed at all in the first
place) or too rapidly forgotten.

4 Experimental Setting

The artificial setting first proposed in [8] and used in [9] to compare PM, AP
(and D-MAB) involved two main simplifications. Firstly, the reward associated
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to each operator is assumed to be uniform in a given interval. Secondly, the
average reward of every operator is subject to abrupt periodic modifications,
jumping from one given interval to another.

The experiments below consider a more realistic environment, embedding the
ExAOS and the adaptive operator selection rules in an actual EA; rewards are
computed after the ExAOS mechanism, and their dynamics depends on the
evolution trajectory and the fitness landscape. It involves the OneMax problem
(the “Drosophila of EC”), with N = 10, 000 bits. Only mutation operators are
considered, ranging from the standard bit-flip operator (every bit is flipped with
probability 1/N) to the b-bit mutations (flipping exactly b randomly chosen bits)
with b = 1, 3, 5. A standard (1 + λ)-EA is used (λ offspring are created from the
current parent; next parent is the best among the current offspring and parent).
One main advantage of this setting is to enable the assessment of the approach
by comparison with the known optimal behavior.

In many respects, the considered setting is still far from being realistic evo-
lutionarily speaking (applying a (1 + λ)-EA, λ > 1 with b-bit mutations is
meaningless on the OneMax problem – though it might make more sense on
multi-core architectures). It nevertheless confronts the proposed approach with
the actual difficulties of taming a dynamic system, where the decisions made
govern the expected benefits of further decisions (the selected operators deter-
mine the position of the population and hence the improvement expectation of
the operators at further stages), as opposed to [8,9]. The considered setting is
thus meant to be a “sterile EC-like” environment.

The ExAOS mechanism is independently investigated in combination with the
three selection rules, AP, PM and D-MAB. The goal of the experiments is to
assess the relevance of ExAOS in interaction with the three selection rules. The
main criterion of performance clearly is the average time-to-solution, though the
ability of the adaptive scheme to track the best operator is also considered. In
all reported experiments, the initial individual is set to (0, . . . , 0). However, as
PM was found significantly outperformed in all pairwise tests, its results are
not presented here. Every selection rule is used with its optimal setting, deter-
mined after a preliminary DOE campaign [9]. All results are validated using 11
independent runs and followed by a one-way ANOVA with α = 0.05, eventually
followed by pairwise Scheffé tests.

5 Experimental Validation

The optimal baseline is provided by the optimal behavior of all operators (com-
puted by a Monte-Carlo simulation). Fig. 1 depicts the operator landscape from
the perspective of a (1 + 50)-EA; for each fitness we report the fitness gain for
the best out of 50 offsprings generated respectively with the 1-,3-,5-bit or bit-flip
mutation (averaged on 100 runs).

The trajectory of evolution involves distinct phases. In stable phases, the
optimal operator remains the same (though its performance might decrease). For
instance, while the 5-bit mutation dominates all other operators while F(x) <



Extreme Value Based Adaptive Operator Selection 181

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−4

−3

−2

−1

0

1

2

3

4

5

OneMax: b−bit operators vs. bit−flip. Measurements repeated 100 times

Fitness of the chromosome [0,9999]

Me
an

 of
 m

axi
mu

m 
imp

rov
em

en
t o

n 1
00

 tri
es

1−bit,

3−bit,

5−bit,

1/n−bitflip,

Fig. 1. Average fitness gain with 1-bit, 3-bit, 5-bit and bit-flip mutations within (1 +
50)-EA vs fitness of parent. The best operators are: 5-bit mutation in [0, 6579]; 3-bit
mutation in [6580, 8400]; bit-flip for [8401, 8600]; and 1-bit for fitness > 8600.

6579, its performance decreases as the fitness increases after F(x) = 5300. In
transition phases, the established best operator becomes dominated by another
one; the 3-bit mutation outperforms the 5-bit after F(x) = 6579 and the 1-bit
mutation outperforms the 3-bit after F(x) = 8601. The last phase is a desert,
where hardly any operator brings any improvement.

Such an operator landscape enables to assess the basic skills of an Adaptive
Operator Selection mechanism: the ability to pick up the best operator and stick
to it in stability phases; to swiftly switch to the next best operator in transition
phases; and to remain efficient during the desert phases.

Scenario 1. The first experiment considers only the 1-bit and bit-flip mutations,
examining the operator rates adapted by ExAOS (W = 50), AP and D-MAB
selection rules, comparatively to the optimal decisions.

At the beginning of the trajectory (from (0, . . . , 0)), the 1-bit mutation brings
a constant improvement of 1 (independently of λ) whereas the average expected
reward of bit-flip increases with λ, but with a high variance. This intuition is
confirmed by simulations with λ = 1, 5, and 10. When λ = 1, bit-flip outperforms
1-bit only until fitness=7, but until fitness=4753 when λ = 5, fitness=6469 when
λ = 10, and until fitness=8722 when λ = 50. Therefore, the optimal decision in
a (1 + λ)-EA would be to always start with the bit-flip mutation, and to switch
to 1-bit afterwards (e.g. at fitness = 8722 for λ = 50).

The experimental results (Fig. 2.a) demonstrate a good agreement with the
optimal rates; the bit-flip rate is close to 1 in the early stages of evolution and
switches to pmin shortly after the transition point. In the desert phase where
rewards are extremely rare, the selection rule consistently selects the 1-bit mu-
tation in the majority of cases, although a high level of exploration is still per-
formed (and would allow any beneficial operator to eventually catch up).

Principled investigations varying λ and W are reported in Table 1, using the
best naive strategy (among different fixed mixtures of operators, including using
each operator alone) as basline. Firstly. AP and D-MAB obtain comparable
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Table 1. Comparative results on both scenarios for AP and D-MAB. The figures are
the mean number of generations (std. dev.) to reach the global optimum. The best
naive strategy is chosen among 1-bit alone, bit-flip alone or a uniform mixture of both.

Scenario 1 Scenario 2 Best

λ W AP D-MAB AP D-MAB naive

1 1 93720 (5158) 95296 (6224) 91221 (7738) > 100k 1-bit

50 93890 (7363) 98871 (3704) 92700 (6800) 98467 (4067) 94928 (4776)

2 1 51629 (2910) 54880 (6379) 49609 (4159) 67085 (7911) 1-bit

50 52905 (5667) 58514 (6087) 48950 (6352) 59496 (9780) 51817 (3760)

5 1 25284 (1128) 26230 (3096) 21536 (1640) 27421 (2500) 1-bit

50 24668 (1954) 25683 (1180) 21225 (1776) 24966 (5161) 25715 (1392)

10 1 16558 (980) 16437 (1174) 12769 (1035) 15068 (1230) 1-bit

50 14521 (1165) 15265 (1011) 12517 (967) 14256 (1748) 16740 (597)

25 1 10285 (326) 10343 (720) 7937 (501) 7778 (591) Uniform

50 8830 (493) 8733 (529) 7393 (614) 7728 (768) 10752 (309)

50 1 7882 (245) 7547 (318) 5715 (212) 5786 (364) Uniform

50 6619 (285) 6460 (285) 5476 (248) 5513 (431) 7329 (147)

performances on this scenario, not significantly better than the best of the naive
strategies: ANOVA rejects the null hypothesis, but all pairwise Scheffé tests fail,
even though the means of AP and D-MAB are slightly better than the others.

Secondly, the improvement of using memory (W = 50) is found significant for
λ ≥ 10 (with decreasing p-values for increasing λ). Indeed, the instant reward
(W = 1) gives little information on the expected fitness gain out of λ offspring
(or even λ/2 offspring during the exploration phase).

Scenario 2. Scenario 2 presents the AOS mechanism with two additional dif-
ficulties. Firstly, it considers all four mutation operators (1,3,5-bit and bit-flip),
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and thus expectedly requires a higher amount of exploration. Secondly, the op-
erator landscape involves several transition points (Fig. 1): the 5-bit mutation is
the best one until F(x) = 6579, the 3-bit mutation until F(x) = 8400, then the
bit-flip until F(x) = 8722, and finally the 1-bit dominates until the end. Qual-
itatively, the experimental results of Adaptive Pursuit (Fig. 2.b) and D-MAB
(not shown) closely match the above optimal behavior for W = 50.

Again, Table 1 reports on the performances of AP and Dynamic Multi-Armed
Bandit for different values of λ and W . The results are statistically similar to
those of scenario 1: ANOVA rejects the null hypothesis, but no pair-wise differ-
ence can be found significant between AP, D-MAB and the best naive strategy,
even though AP and D-MAB have larger means for large values of λ (AP slightly
outperforming here D-MAB). Regarding the effect of memory, setting W = 50
does bring, here again, some improvements of the mean performances, but these
differences are found significant only in the case of AP with λ = 50.

6 Discussion and Perspectives

Compared to earlier work related to Adaptive Operator Selection [8,9], this pa-
per presents two extensions. The first one is a new credit assignment method,
EXtreme value-based Adaptive Operator Selection, translating the fitness gains
brought by an operator into actionable rewards, to be exploited by selection rules
such as Adaptive Pursuit or Dynamic Multi-Armed Bandit. Along the same lines
as [15], ExAOS is driven by the extreme fitness gains brought by an operator, as
opposed to the average fitness gain. The rationale is that EC must be able to ex-
plore “risky” operators, providing rare and large jumps, while average gain-based
rewards are strongly biased toward conservative strategies.

The second contribution of the paper is an experimental setting enabling to
investigate the AOS behavior in situ; although it is still a long way from being
evolutionarily challenging, this setting definitely improves on the one considered
in [8,9], as it actually couples AOS with an evolutionary-driven system. Within
this setting, experiments demonstrate that the adapted operator rates satisfac-
torily match the optimal ones. However, some problems remain, regarding the
(meta-)parameter setting of those methods: The best results of PM and AP were
obtained using pmin=0, contradicting its definition; Similarly, the performances
of D-MAB using ExAOS could be improved by a better understanding of the
interaction between the scaling factor C (Eq. 4), the PH threshold γ (see Section
2, or [9]), λ and W . Hopefully, the proposed experimental setting will help us in
that respect, using other well-known benchmark functions.

Further research is concerned with assessing the respective roles of the time
window and the maximum improvement. Furthermore, it has been emphasized
that one of EC strengths is to be a rank-based optimization method [18,19].
Accordingly, the reward associated to an operator might consider the top rank
of the last fitness gains, as opposed to, its extreme value. Another perspective is
to use the extreme value statistics to online adapt the λ parameter in (1+λ)-EA;
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exceptional offspring (wrt extreme gains) can immediately replace the parent
without waiting for all λ offspring to be generated.
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Abstract. We consider evolutionary model selection for support vec-
tor machines. Hold-out set-based objective functions are natural model
selection criteria, and we introduce a symmetrization of the standard
cross-validation approach. We propose the covariance matrix adaptation
evolution strategy (CMA-ES) with uncertainty handling for optimizing
the new randomized objective function. Our results show that this search
strategy avoids premature convergence and results in improved classifi-
cation accuracy compared to strategies without uncertainty handling.

1 Introduction

Support vector machines (SVMSs) are powerful algorithms for supervised learn-
ing, especially for binary classification [1,2]. However, their performance crucially
depends on appropriate model selection, that is, the choice of the right kernel and
the right regularization parameter. If a parametrized family of kernel functions
is considered, model selection reduces to real-valued optimization. We propose
evolution strategies (ES) for solving the resulting optimization problem (see [3,4]
and references therein), in particular if the model selection criterion is not dif-
ferentiable and using grid-search is not possible because of the dimensionality.

Cross-validation is regularly applied as a model selection criterion to estimate
the quality of a parameter vector (i.e., as a fitness function). We argue that
the cross-validation procedure suffers from its fixed partition of the available
data into training and validation sets. Especially for small datasets this has a
considerable influence on the objective function and the locations of its minima.
Therefore we propose to average over all possible dataset partitions to increase
reliability. The resulting fitness function is only of theoretical interest because
of the complexity of its computation. We avoid this computational problem by
sampling, but at the cost of introducing uncertainty. Another advantage of this
averaging is that the performance measure gets more fine-grained when using the
0-1-loss and therefore provides additional information for the search algorithm.

The aim of the present paper is to assess the effects of noise introduced into
the SVM model selection due to this sampling. We apply the highly efficient co-
variance matrix adaptation ES (CMA-ES) to the minimization of the new fitness
function [5,6]. Recently, a simple and efficient uncertainty handling mechanism
has been proposed for the CMA-ES [7,8], which we employ to handle the uncer-
tainty in our model selection criterion.
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The paper is organized as follows. In the next section we introduce the CMA-
ES and the noise-handling technique. In Section 3 we briefly review SVMs for
binary classification. Then we motivate our model selection objective function.
An empirical evaluation is presented in Section 5, and we conclude with a short
summary.

2 Handling Uncertainty in Evolution Strategies

We first briefly describe the CMA-ES [5,6,8] and then its extension to adaptive
reevaluation for noisy optimization proposed in [7,8].

CMA-ES. In each generation of the CMA-ES λ offspring are generated. Their fit-
ness is evaluated and the μ = "λ/2# best form the next parent population. In each
iteration, the kth offspring xk ∈ Rn is created by multi-variate Gaussian muta-
tion and weighted global intermediate recombination: xk = 〈xparents〉w + σzk,
where zk ∼ N(0, C) and 〈xparents〉w =

∑μ
i=1 wixith-best-parent (wi ∝ ln(μ +

1) − ln(i), ‖w‖1 = 1). The CMA-ES is a variable metric algorithm adapt-
ing both the n-dimensional covariance matrix C of the normal mutation dis-
tribution as well as the global step size σ ∈ R+. In the basic algorithm, a
low-pass filtered evolution path p of successful (i.e., selected) steps is stored,
p ← η1 p + η2 (〈xnew parents〉 − 〈xold parents〉), and C is changed to make steps
p more likely: C ← η3 C + η4 ppT (this rank-one update of C is augmented by
a rank-μ update, see [6]). The variables η1, . . . , η4 denote fixed learning rates
and normalization constants set to default values [8]. The global step size σ
is adapted on a faster timescale. It is increased if the selected steps are larger
and/or more correlated than expected and decreased if they are smaller and/or
more anticorrelated than expected. The highly efficient use of information and
the fast adaptation of σ and C makes the CMA-ES one of the best direct search
algorithms for real-valued optimization [9].

Uncertainty Handling. Evolution algorithms are well suited for optimization
in noisy environments, see [10] for a general overview and [11] for a book on
ESs for noisy optimization. The population-based approach, the averaging in
the recombination process, and the rank-based, non-elitist selection are inherent
features that make the CMA-ES less vulnerable to noise. However, if the signal
to noise ratio is too small, special uncertainty handling is required. Here we use
a slightly simplified version of the uncertainty handling proposed in [7,8]. It is
called UH-CMA-ES and relies on adaptive reevaluation of solutions.

Because the selection process is rank-based, we only care about noise if it
changes the ranking of offspring. In our scenario, individuals can be reevaluated
and computing the mean or median of several evaluations reduces the noise level.
However, the signal to noise ratio changes in the course of evolution. Because
every fitness evaluation is time consuming, we implement a strategy that adapts
the number of evaluations per individual such that individuals are not evalu-
ated too often, but still often enough so that the fitness values can guide the
optimization.
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We use an algorithm to detect the effective noise by monitoring the stability of
the ranking of the offspring. Following [7,8], we consider a population L composed
of two copies of the current offspring population (i.e., each offspring is contained
twice in L) and reevaluate λreev of them. Then we sort L twice using the new and
the old fitness values (fnew

i and fold
i , i = 1 . . . , 2λ), respectively, and determine

the ranks rank(fnew
i ) and rank(fold

i ), respectively, of each reevaluated individual
xi. Then we compute the rank change

Δi = | rank(fnew
i )− rank(fold

i )| − 1 .

The uncertainty level s is now defined by

s =
1

λreev

∑
i,xiwas reevaluated

(
2Δi −Δlim

θ (rank(fnew
i )− I{fnew

i > fold
i })

−Δlim
θ (rank(fold

i )− I{fold
i > fnew

i })
)

.

The indicator function I is one if its argument is true and zero otherwise. The
parameter θ ∈ [0, 1] (here set to 0.2) controls the level of noise we tolerate and
Δlim

θ (r) denotes the θ× 50 percentile of the possible rank changes (given by the
2λ− 1 values |1− r|, |2− r|, . . . , |2λ− 1− r|) when having the original rank r.

If s > 0 we increase the number of evaluations in the computation of a fitness
value by a factor of α. Otherwise we decrease the number of evaluations by 1/α.

The reevaluation is done before the environmental selection in the standard
CMA-ES, which uses the median of the fitness values of the reevaluated indi-
viduals for ranking. The additional fitness evaluations increase the computa-
tional costs per generation. However, we reevaluate on average only λreev =
max(λ/10, 2) individuals in each generation.

3 Support Vector Machines

Support vector machines are considered state-of-the art in machine learning for
pattern recognition, in particular for binary classification [1,2].

In supervised learning we consider an input space X and an output space Y =
{−1, 1}. The learning is driven by sample data S = {(x1, y1), . . . , (x�, y�)} with
xi ∈ X and labels yi ∈ Y for 1 ≤ i ≤  drawn independently from some
fixed unknown distribution p over X × Y . The goal of binary classification is
to infer from S a hypothesis h : X → Y minimizing the expected loss Rp(h) =∫
X×Y

L(y, h(x)) dp(x, y) corresponding to the generalization error. We consider

the 0-1-loss given by L(y, h(x)) = (−h(x)y + 1)/2 (i.e., the classification error).
Support vector machines transfer the input data to a feature space and per-

form linear classification in that space. Given a positive semi-definite kernel func-
tion k : X × X → R (∀x, x′ ∈ X, ∀c1, . . . , cm ∈ R :

∑m
i,j=1 cicjk(x, x′) ≥ 0),

we consider the feature space Hk = span{k(x, ·) |x ∈ X} and the function class
Hb

k = {f(x) = g(x) + b | g ∈ Hk, b ∈ R}. We classify according to the sign of a
function f ∈ Hb

k. The decision boundary induced by f is a hyperplane in Hk.
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Then the hypothesis generated by a 1-Norm Soft Margin SVM corresponds
to a solution of

minimize
f∈Hb

k

1


�∑
i=1

Lhinge(yi, f(xi)) +
γ�

2
‖f‖2k

where γ� = (C)−1 and the (semi-)norm ‖.‖k is inherited from Hk to Hb
k. The

loss function is given by Lhinge(y, f(x)) = max(0, 1− yf(x)). That is, we do not
only penalize if a pattern x is classified wrongly (i.e., yf(x) < 0), but also if
the pattern is too close to the separating hyperplane in the sense that f(x) does
not meet the functional target margin (i.e., |f(x)| < 1). The parameter C > 0
controls the trade-off between the optimization goals of reducing the empirical
loss measured by Lhinge and the complexity of the hypothesis measured by ‖.‖k.

The most frequently used kernel (for X ⊂ Rn) is the radial Gaussian ker-
nel k(x, x′) = exp(−γ‖x − x′‖2) with a single bandwidth parameter γ > 0.
A standard extension is the Gaussian kernel with feature scaling k(x, x′) =
exp
(
−
∑n

i=1 γi(xi − x′
i)

2
)
, which is also known as automatic relevance detection

(ARD) kernel and has as many degrees of freedom as the input space has dimen-
sions. The regularization parameter C and the parameters of the kernel function
are called hyperparameters. Their proper selection is the model selection prob-
lem for SVMs.

4 A Fitness Function for SVM Model Selection

In this section we introduce a natural objective function for SVM model se-
lection. Because the objective function is impractical to compute we propose a
randomized variant, which allows to trade-off accuracy and time to compute the
objective function value.

4.1 Hold-Out Sets and Cross-Validation

The probably most simple type of objective function for model selection is the
error on a hold-out set. Assume we use a fraction of, for example, 1/5 of the
training data as a hold-out set. Then we train a learning machine on the re-
maining 4/5 of the data and compute the fraction of errors on the hold-out set.
This error measure is an unbiased estimate of the generalization error of a ma-
chine trained on a dataset of size (4/5) sampled i.i.d. from the data generating
distribution p. Usually the optimal parameters for this machine will be quite
good for a machine trained on the whole dataset of size , such that this objec-
tive function seems to be a simple and appropriate criterion for model selection.
But it turns out that the hold-out error has a high variance, in the sense that
it strongly depends on the particular partition of the dataset into training and
validation sets. This effect is very pronounced for small datasets and for small
hold-out sets. On the other hand, the larger the hold-out set the smaller becomes
the remaining training set, and this in turn imposes a larger bias in the estima-
tion of the generalization error, because fewer examples are used for training.



Uncertainty Handling in Model Selection for Support Vector Machines 189

Furthermore, the asymmetry between the roles of the reduced training set and
the hold-out set is dissatisfactory.

Cross-validation is a simple procedure which improves on these points. How-
ever, the partition of the data into training and hold-out sets remains arbitrary.
In a k-fold cross-validation procedure the data S are split into k disjoint subsets
S1, . . . , Sk of roughly equal size. Then for each i ∈ {1, . . . , k} a machine is trained
on the dataset S \ Si and the error Ei on the corresponding hold-out set Si is
computed. Finally the total error

∑k
i=1 Ei is the so-called k-fold cross-validation

error. In this procedure the underlying loss function is evaluated exactly once
on each training example. In the machine learning literature, common values for
the parameter k range from three to ten, and the choice k = 5 can be considered
a default value [12].

Compared to the simple hold-out error the variance of the generalization error
estimate is reduced, but because the data used in the different partitions are of
course not independent the reduction of the variance is not by a factor of 1

k .
In general the cost for the computation of the cross-validation error is k times
the cost of the computation of the hold-out error. Especially for small datasets
the cross-validation error can heavily depend on the partition S1, . . . , Sk of the
dataset and thus has a relatively high variance w.r.t. the choice of the partition.
This is an unsatisfactory situation as there is no such thing as a canonical data
partition.

4.2 Bootstrapping

Conceptually it is straight-forward to avoid the problem of having an a priori
fixed partition of the data. We define the set Jn =

{
I ⊂ {1, . . . , }

∣∣∣ |I| = n
}

of index subsets of size n, leading to the objective function

B̄ =
1
|Jn|

∑
I∈Jn

(∑
i∈IC

L(yi, hI(xi))

)

where L is a loss function and hI is the hypothesis constructed from the data
indexed by I. Each summand of this objective function computes the hold-out
error of the hold-out set IC := {1, . . . , } \ I, evaluated on the hypothesis hI .
In the style of the k-fold cross-validation procedure we can choose n = "k−1

k #,
and, as usual, we consider k = 5 as the default.

This objective function has the conceptual advantage to be completely sym-
metric w.r.t. the partition of the dataset into training and hold-out set and
computes the probably best possible estimate of the generalization error of a
machine trained on n examples. It has the disadvantage that the set Jn grows
according to |Jn| =

(
�
n

)
which is clearly computationally intractable.

Therefore, we introduce the random variable

B̂ : Jn → R I �→
∑
i∈IC

L(yi, hI(xi))
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Cγ

5-fold cross-validation

Cγ

bootstrap error

Cγ

test error

Fig. 1. The plots show the error landscapes for an instance of the chess problem
with 
 = 200 training points (see Section 5) with the radial Gaussian kernel over an
equidistant grid on the logarithmic scale for C and γ. Here, the bootstrap error was
approximated by averaging over 100 i.i.d. drawn dataset partitions I ∈ Jn per grid
point.

with the uniform distribution for I ∈ Jn. For each fixed index set I we get the
hold-out error function B̂(I), which is a function of the SVM hyperparameters.
We write B̂ for the randomized objective function that picks a random I ∈ Jn

for each of its evaluations. It clearly holds E[B̂] = B̄. This way we are able to
avoid a systematic bias resulting from a fixed partition of the data like in the
cross-validation procedure, at the cost of a randomized objective function. We
will refer to this objective function as the bootstrapping error and use it with
the standard 0-1-loss (counting misclassified test patterns).

For the minimization of B̄ based on evaluations of B̂ we need a search strat-
egy that can deal with a non-differentiable and noisy objective function. This
randomized objective function takes as long to evaluate as the simple hold-out
error, but we have to be prepared for relatively long optimization runs due to the
need for the search algorithm to handle the uncertainty in the objective function
evaluations, for example when it is necessary to compute statistics over many
evaluation in order to obtain sufficiently reliable information.

Of course there are a lot of possible criteria in between the randomized hold-
out error B̂, standard cross-validation, and full bootstrapping. We can choose
a subset of Jn of considerably smaller size (which should be as symmetric as
possible), or take the mean over a few index sets sampled from Jn. The most
straight-forward example is to randomly pick a new partition of the dataset
for each evaluation of the cross-validation error, which requires a search strategy
that can deal with uncertain function evaluations as needed for the minimization
of B̂. We could even define a (weighted) mean over all choices of n. This leads
to a large number of deterministic or randomized objective functions, but for
the sake of clarity and for conceptual reasons we stick to the basic randomized
hold-out error B̂.

The plots in Fig. 1 illustrate the difference between cross-validation and boot-
strap error. It is obvious that minimization of the newly proposed bootstrap error
gives much more reliable results than cross-validation with a fixed partition of
the data.
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5 Experimental Evaluation

The focus of our experiments is to assess the effect of uncertainty handling via
self-adaptation in the CMA-ES in combination with our new model selection
criterion. As discussed above, the UH-CMA-ES algorithm decides automatically
how many averages it computes to make its fitness evaluations sufficiently reli-
able. We compare this strategy to the standard variant of the CMA-ES. Because
the standard CMA-ES has no special uncertainty handling, we incorporate the
averaging into the objective function simply by computing the statistics over a
fixed number of realizations in each evaluation. Thus, we ask for the differences
of averaging at the level of the objective function or the search algorithm. Fur-
thermore, we demonstrate that the standard cross-validation procedure indeed
suffers from its fixed partition of the data.

5.1 Setup

We consider four experimental setups. The first and most näıve strategy (referred
to as CMA-1×) is to apply the standard CMA-ES to the randomized bootstrap-
ping objective function B̂, ignoring its uncertainty. A second strategy (CMA-5×)
is to use a fixed average of k evaluations of B̂ as a fitness function for the CMA-
ES. In the style of cross-validation we use k = 5 evaluations in our experiments.1

The third strategy in the comparison, CMA-CV, is 5-fold cross-validation without
uncertainty, that is, using a random but fixed partitioning of the data. Again,
the CMA-ES is used to minimize the resulting error function. We compare these
strategies to the UH-CMA-ES applied to the B̂ objective function.

As a proof of concept, the experiments are carried out on four benchmark
datasets. In the chess board problem we consider the input space X = [0, 4)2 and
sample x from the uniform distribution on X . Then we assign a label according
to the fixed rule y = (−1)

∑2
i=1�xi�. This rule assigns labels according to the

colors of the fields of a chess board of size 4 × 4 [13]. This distribution will be
referred to as the chess problem. We use the radial Gaussian kernel for this
problem. The next task is called sparse coordinate problem (sparse problem for
short). To generate a sample we draw n ∈ {1, . . . , 6} uniformly at random and
set S = {1, . . . , 20} \ {n}. For n ≤ 3 we assign the positive label y = +1, and set
y = −1 otherwise. Then we randomly remove four more elements from the set S.
The final representation is chosen to be x ∈ R20 with xi = 0 if x ∈ S and xi = 1
otherwise. We apply the Gaussian ARD kernel to this problem. It should identify
the first six coordinates as highly discriminative, while the remaining coordinates
provide no useful information. In addition to the artificial distributions chess
and sparse, we consider the benchmark problems banana and image from the
benchmark collection introduced by [14] and apply SVM classifiers with radial
Gaussian kernels to these problems.
1 We could instead use any other number of averages, or use a fixed rule how the

number of averages changes over time. However, any such strategy requires problem
specific knowledge. Because we aim at a general and automated solution we will
assume such expert knowledge to be not available in this study.
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The search space for the evolutionary algorithms is a low-dimensional vector
space, and we use the parameterization log(C) and log(γ) (or log(γi) for the
Gaussian ARD kernel) of regularization and kernel parameters. This allows for
unconstrained optimization. All parameters of the CMA-ES are set to default
values [8], the initial global step size is set to σ = 1.

Each strategy is given 100, 000 evaluations of B̂. This relatively high (in prac-
tice presumably too high) number of evaluations is chosen because it is sufficient
for the CMA-ES without uncertainty handling to converge. To generate reli-
able results, we conducted 1000 trials for all experiments and evaluated the
classification performance of the resulting machines with a Mann-Whitney U-
test. Of course, this requires that the trials are statistically independent. Due
to a lack of data this is impossible to ensure on standard benchmark datasets,
because there is no alternative to re-using the same data in each trial. The
possibility to sample arbitrary amounts of data and thus to ensure statisti-
cal independence is the main motivation for the consideration of artificial test
problems such as chess and sparse. All four methods in the comparison are
reasonable strategies for SVM model selection. Therefore we expect the dif-
ferences to be small. Furthermore, the fitness function and the function used
to judge the final parameters differ. The objective function of model selection
is, of course, the generalization error, which is estimated by the test error.

Table 1. Absolute and relative performance of the classifiers resulting from the pa-
rameters found by the different strategies. The errors are given as 25%, 50%, and
75% quantiles over 1000 trials. The comparison matrix on the right uses the symbols
<, <<, and <<< to indicate that the method in this row performs significantly better
than the method in this column with significance levels 0.05, 0.01, and 0.001, respec-
tively. A one-sided Mann-Whitney U-Test (also known as Wilcoxon rank sum test) is
used for the comparison. Analogously, the symbols >, >>, and >>> indicate that the
method in that row performs significantly worse with the corresponding significance
level. If the differences are not significant at a level of at least 0.05 the significance level
is reported. Note that for the fixed size datasets banana and image the trials are not
independent, such that the “true” significance levels are in general worse.

chess sparse

method q25 q50 q75 (1) (2) (3) (4) q25 q50 q75 (1) (2) (3) (4)

(1) CMA-1× 0.149 0.168 0.187 — >>> >> >>> 0.257 0.274 0.295 — >>> >>> >>>
(2) CMA-5× 0.146 0.162 0.181 <<< — 0.13 >> 0.250 0.262 0.281 <<< — 0.44 >>>
(3) CMA-CV 0.147 0.163 0.183 << 0.87 — >>> 0.251 0.263 0.278 <<< 0.56 — >>>
(4) UH-CMA 0.143 0.159 0.178 <<< << <<< — 0.249 0.258 0.274 <<< <<< <<< —

banana image

method q25 q50 q75 (1) (2) (3) (4) q25 q50 q75 (1) (2) (3) (4)

(1) CMA-1× 0.126 0.138 0.158 — >>> >>> >>> 0.119 0.133 0.154 — >>> >>> >>>
(2) CMA-5× 0.124 0.135 0.149 <<< — 0.62 > 0.116 0.129 0.144 <<< — 0.52 0.38
(3) CMA-CV 0.124 0.134 0.149 <<< 0.38 — > 0.116 0.129 0.144 <<< 0.48 — 0.34
(4) UH-CMA 0.123 0.132 0.147 <<< < < — 0.116 0.129 0.145 <<< 0.62 0.66 —
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In contrast, we have no alternative to fitness functions computable from the
available training data. This difference between the functions used for train-
ing and for evaluation is an additional source of perturbations in the results.
These two reasons make clear that we need a relatively large number of trials
in order to obtain statistically significant results. We used training datasets of
size  = 100. For the artificial problems we sampled test sets of size 100, 000,
giving extremely reliable estimates of the generalization error. For the fixed size
benchmark problems we used the remaining examples for testing, which amounts
to 5, 000 test examples for the banana benchmark and 2, 210 for the image
problem.

5.2 Results and Discussion
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Fig. 2. Typical evolution of the number of
averages over the generations of the UH-
CMA-ES. Usually only few generations can
be evaluated with a limit of 100,000 evalua-
tions of B̂.

The results are summarized in
Table 1. The significant differences
between the methods clearly indicate
that averaging over several evalua-
tions of B̂ improves the solution. The
CMA-ES profits from automatic un-
certainty handling. The UH-CMA-
ES method performs clearly best,
although it evaluates only a com-
paratively small number of search
points. For the SVM model selec-
tion problem, and in particular for
the fine-tuning of the SVM hyperpa-
rameters, the reliable evaluation of
a small number of candidates turns
out to be more successful than the
cheap but unreliable evaluation of a
large number of search points. Fur-
thermore, the experiments indicate that the robust estimation of the gener-
alization error requires a large number of averages over simple hold-out error
evaluations.

The plot in Fig. 2 clearly reveals that there is no uniformly best number of
averages for all search points, but that the number of averages grows to large
numbers if needed. This result is not surprising. Of course, the closer the CMA-
ES comes to a local optimum, the worse gets the signal-to-noise ratio. This drives
the UH-CMA-ES algorithm to large numbers of averages in late generations.
The algorithm very quickly identifies the region of well-generalizing classifiers,
and then gradually switches over to fine-tuning of the hyperparameters which
requires a large sample per individual.

In our experiments, the bootstrap error B̄ is clearly superior to the cross-
validation error if the uncertainty of B̂ is handled properly.
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6 Conclusion

We applied the CMA-ES with and without uncertainty handling mechanism to
the problem of model selection for SVMs. As a new model selection criterion, we
proposed the minimization of the bootstrapping error B̄ based on evaluations
of its estimate B̂. There are good arguments to prefer this objective function
over standard cross-validation. Our experiments support these theoretical con-
siderations and show the advantage of automatic uncertainty handling for this
problem. The small overhead of the uncertainty handling for the re-evaluation of
some individuals is clearly justified by the resulting improvement in performance.
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Abstract. In the field of Genetic Algorithms, niching techniques have
been invented with the aim to induce speciation on multimodal fitness
landscapes. Unfortunately, they often rely on a problem-dependent niche
radius parameter. This is the niche radius problem. In recent research,
the possibilities to transfer niching techniques to the field of Evolution
Strategies (ES) have been studied. First attempts were carried out to
learn a good value for the niche radius through self-adaptation. In this
paper we introduce a new niching method for ES with self-adaptation
of the niche radius: asymmetric sharing. It is a form of fitness sharing.
In contrast to earlier studies, it does not depend on coupling the niche
radius to other strategy parameters. Experimental results indicate that
asymmetric sharing performs well in comparison to traditional sharing,
without relying on problem-dependent parameters.

1 Introduction

In the history of Evolutionary Algorithms (EAs), there have been many attempts
to promote population diversity. Sometimes the goal was not just to maintain
a higher degree of diversity, but to set off a process of speciation, where a mul-
titude of different species evolve simultaneously, as seen in nature. Techniques
developed with this goal in mind became known as niching methods. They allow
an EA to find and maintain multiple local optima, an outcome which is normally
prevented by loss of diversity caused by genetic drift [7], [12]. One of them is
fitness sharing. It is was first introduced by Holland [6], and further developed
by Goldberg and Richardson [8].

Niching stems from the ecological niche concept from biology. A biological
niche relates to a complex set of factors that allow the survival of species adapted
to it. It includes environmental factors, available resources and behavioral
patterns.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 195–204, 2008.
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In an EA there are no resources, nor is there a direct equivalent of niches.
There is only an objective function, mapping an abstract phenotype to an ab-
stract fitness value. The niching approach, however, is to regard the local optima
of a multimodal objective function as niches.

Fitness sharing promotes diversification by adjusting fitness values. The idea
is to treat fitness as a resource and force all individuals in a niche to share the
fitness of the niche with each other. The raw fitness of each individual a, f(a),
is divided by its niche count, m, as in Eq. 1. The niche count of an individual
is a measure of the number of individuals that are located in its proximity, that
can be considered as its niche. The resulting adjusted fitness value, denoted as
f ′(a), is called the shared fitness of individual a.

f ′(a) =
1

m(a)
· f(a) (1)

Shared fitness now becomes the new criterion for selection. Thereby, individu-
als in overpopulated niches are heavily penalized and migration toward more
vacant niches is stimulated. However, there is no direct way to measure the
number of individuals occupying a niche. The niche count of an individual can
only be estimated. This can be carried out by the utilization of a sharing func-
tion. A sharing function receives the distance between two individuals as input
and returns their sharing value, which is the degree to which they must share
their fitness. The most commonly used sharing function is the triangular sharing
function, as shown in Eq. 2. The sharing function relies on a threshold distance
σshare, referred to as the sharing radius or the niche radius. It is a parameter
of the algorithm, and roughly speaking it corresponds to the expected distance
between the niches.

Let d be the distance between two individuals, which is either genotypic- or
phenotypic-based, then the triangular sharing function is explictly given by:

sh(d) =

{
1−
(

d
σshare

)
, if d < σshare;

0 , otherwise.
(2)

The total niche count, estimating the population of the niche of an individual,
is then defined as the sum of all of its sharing values:

m(a) =
∑
i∈P

sh (d(a, i)) (3)

The problem of finding the optimal value for σshare in fitness sharing, the value
which results in the maximal number of maintained niches, is known as the niche
radius problem.

The standard approach is to assume an even distribution of the peaks over
the search space, and then the value of σshare can be approximated from the
expected number of peaks (see, e.g., [9]). However, the number of expected peaks
is also generally unknown.

Fitness sharing so far has mainly been applied in the field of Genetic Al-
gorithms (GAs). In the work presented here fitness sharing will be applied to
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Evolution Strategies (ES). An overview of Evolution Strategies can be found
in the literature [1,2,3,4]. At the same time, the niche radius problem will be
addressed in this paper. Section 2 provides the reader with an overview of the
work in this area of research so far. Section 3 introduces a new sharing scheme
designed for ES, namely asymmetric sharing. In section 4, asymmetric sharing
is applied to a test-bed of artificial benchmark problems, and its performance
is evaluated. In addition, the same Evolution Strategy is tested with a tradi-
tional form of fitness sharing, continuously updated sharing [10], as a reference
for comparison. The results are summarized and their implications are discussed
in section 5. Finally, section 6 offers a brief summary and points out possible
directions for future work.

2 Related Work

One way to handle the niche radius problem is to use a clustering scheme instead
of a sharing function [11]. A clustering scheme is more flexible than the standard
approach, since it does not assume an even distribution of peaks over the search
space. However, clustering schemes still depend on problem specific parameters.

A different approach was the development of algorithms that learn the loca-
tions of the niches during the course of the evolution. Two such algorithms are
dynamic niche sharing [13] and coevolutionary shared niching [14].

The ES dynamic niching algorithm [16] was inspired by dynamic niche shar-
ing. It had a similar ability to identify the locations of niches dynamically. An
interesting extension to the ES dynamic niching algorithm was to replace the
global, fixed niching radius with an individual, self-adapted niching radius [17].
It was coupled to the self-adapted global step-size, which governs the mutation
strength. However, this algorithm introduces a new problem-dependent param-
eter α. A further refinement was to replace the standard, Euclidian distance
measure with the Mahalanobis metric [18].

3 Asymmetric Sharing

3.1 An Additional Strategy Parameter

The basic idea of asymmetric sharing is to add an individual sharing radius
to the genetic code as an independent new strategy parameter, which will be
denoted as ν. It is not coupled to any other existing strategy parameter. An
individual a can now be denoted as:

a = (xa, sa, νa), (4)

where xa are the object variables and sa is the set of strategy parameters that are
responsible for the variation operators. The new strategy parameter ν requires
its own update rules for recombination and mutation. Let P denote a set of ρ
parent individuals, let a′ be a recombined individual and let a′′ be a mutated
individual. We propose the following update rules for individual sharing radii:
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νa′ =

(∏
i∈P

νi

) 1
ρ

, (5)

νa′′ = νa′eN(0,τ2), (6)

where τ is the learning parameter, which will be set to 1√
n

, and where n is search
space dimensionality.

The update rule of the mutant in Eq. 6 is generally referred to as lognormal
mutation. It allows exponential growth or decay of the niche radius, so that
individuals can adapt themselves quickly.

The update rule for the recombinant in Eq. 5 is known as geometric recom-
bination. As argued by Hansen in [5], when using lognormal mutation, using
geometric recombination for the same parameter avoids a bias toward either
increasing or decreasing values of that parameter over time.

3.2 Inner and Outer Niche Count

Upon the introduction of an individual niche radius, the question turns up how
to calculate the niche count m. The sharing function can no longer rely on a
global, fixed radius σshare. Instead, the sharing function now takes an additional
parameter, ν. The triangular sharing function in Eq. 2 is transformed into:

sh(d, ν) =
{

1−
(

d
ν

)
, if d < ν;

0 , otherwise.
(7)

In standard fitness sharing, there exists an implicit symmetry. Since d(a, b) =
d(b, a), we also have sh(d(a, b)) = sh(d(b, a)). That made it possible to associate
a single, unique sharing value with every pair of individuals (a, b). However, the
introduction of individual niche radii makes it no longer possible. A pair of indi-
viduals a and b is now associated with two different sharing values, sh(d(a, b), νa)
and sh(d(a, b), νb): the symmetry is thus broken.

In order to find a way out of this dilemma, consider the following two new
types of niche count: the inner niche count, corresponding to the niche count of
individual a as measured by νa, versus the outer niche count, corresponding to
the niche count as measured by all of the other radii.

min(a) =
∑

i∈P sh (d(a, i), νa)

mout(a) =
∑

i∈P sh (d(a, i), νi)
(8)

If we choose the inner niche count as the new niche count to calculate shared
fitness, there will be no stimulus to evolve a niche radius greater than zero. A
large niche radius would only reduce fitness. However, should we choose to use
the outer niche count to calculate shared fitness, a large niche radius would be a
pure advantage in the evolution. The greater the niche radius of an individual,
the more the niche counts of competing individuals are increased.
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We present asymmetric sharing here as an attempt to balance these conflicting
forces. In asymmetric sharing, the niche count used for the evaluation of the shared
fitness is a weighted average of the inner niche count and the outer niche count:

m(a) = win ·min(a) + wout ·mout(a) (9)

Now the weights win and wout are chosen in such a way, that the niche radius
of a contributes as much to the niche count of a as it contributes, on average,
to the niche count of other individuals. Formally, they are chosen to satisfy the
following equation:

wout ·
∑

i∈(P\{a}) sh(d(a, i), νa)

|(P \ {a})| = win ·
∑

i∈(P\{a})
sh(d(a, i), νa) (10)

The left-hand side of Eq. 10 is the average contribution of νa to the niche count
of other individuals. The right-hand side is the contribution of νa to the niche
count of a itself. With the sum of the weights normalized to 1, eq. 10 can be
solved for win and wout, yielding:

win = 1
|P |

wout = 1− 1
|P |

(11)

Substituting these values into Eq. 9 results in the final niche count calculation:

m(a) =
1
|P | ·min(a) +

(
1− 1

|P |

)
·mout(a) (12)

3.3 Bottom-Up Sharing

Evolution Strategies typically employ truncation selection, which is a special case
of tournament selection. As shown in [10], a naive combination of fitness sharing
and tournament selection leads to rapid loss of diversity. A special tournament
selection scheme, continuously updated sharing, avoids the problem. Individuals
are selected for survival one by one, updating niche counts in each step.

However, continuously updated sharing interferes with the niche count cal-
culation of asymmetric sharing in a harmful way. The problem is that prior to
selection of an individual, its niche radius only affects its own niche count. Its
contribution to the niche count of competitors does not come into effect before
selection.

Therefore we propose to use a variant of continuously updated sharing, bottom-
up sharing. It was first introduced in [15]. The shared fitness of each candidate
individual is calculated. Then the worst one is eliminated from the population and
the remaining population stops sharing with it. The individuals are compared on
their new shared fitness and the process is repeated until μ individuals remain.

When implementing asymmetric sharing with bottom-up sharing, special care
has to be taken to keep the time complexity at O(n2). This can be realized by
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storing the total outer and inner niche count for each individual at each step.
Both the niche counts and the weights are continuously updated. The resulting
algorithm is given as Algorithm 1.

Algorithm 1. Asymmetric sharing in pseudocode.

do while |P| > μ
for each i ∈ P do

mi ⇐ 1
|P|min,i + (1− 1

|P| )mout,i
od

worst ⇐ individual with lowest shared fitness in P

P ⇐ P \ {worst}
for each i ∈ P do

min,i ⇐ min,i − sh(d(i, worst), νi)
mout,i ⇐ mout,i − sh(d(i, worst), νworst)

od

od

3.4 Asymmetric Restricted Mating

In niching, when two individuals from different niches are recombined into a
highly unfit hybrid, this is know as lethal recombination. In the context of evo-
lution strategies, lethal recombination will not only be caused by bad recom-
bination of object parameters, as usual. Inconsistent strategy parameters are
a second cause of lethal recombination. For asymmetric sharing, the inherited
niche radius ν of a hybrid is likely to be inconsistent with the object parameters.
So there is good reason to expect a high degree of lethal recombination.

If an Evolution Strategy with comma selection suffers from a high degree of
lethal recombination, the algorithm can become unstable, since comma selection
requires at least μ offspring with high fitness in each generation. A restricted
mating scheme has been shown to be an effective way to prevent lethal recombi-
nation in GA’s [9]. A restricted mating scheme is proposed here for asymmetric
sharing: asymmetric restricted mating.

A single random individual a is selected for mating. Now the set of mutual
attraction of a, M(a), is constructed. It contains all individuals b (including a
itself) at a distance smaller than both niche radii, νa and νb. From the set of
mutual attraction, ρ individuals are drawn at random for recombination. If the
size of M(a) is smaller than ρ, the whole set is used for recombination.

Unfortunately, restricted mating also has a drawback. While it reduces lethal
recombination, it restricts exploration of the search space. As Mahfoud stated
in [12], page 50: ”both interspecies and intraspecies crosses may be beneficial.”

Therefore, in this paper a direct trade-off between standard mating and a
restricted mating scheme is used: semi-restricted mating. When a new individual
is created, restricted mating is applied with a fifty percent chance. Otherwise,
the standard mating scheme is applied.
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4 Experiments

The methods and techniques proposed so far are tested here on four fitness shar-
ing algorithms. Each of them is a standard (μ/ρ, λ)-ES with correlated mutations
(see, e.g., [3,4]). The first algorithm, CUS, employs continuously updated shar-
ing with a fixed niche radius, as proposed in [10]. The second algorithm, AS,
employs asymmetric sharing (with the bottom-up sharing scheme), as proposed
in section 3. The third algorithm, ASR, employs both asymmetric sharing as
well as the asymmetric restricted mating scheme, as proposed in section 3.4.
The fourth algorithm, ASSR, is identical to ASR, except that it employs semi-
restricted mating, as proposed in section 3.4.

In all of these algorithms, the number of recombinant parents is set to ρ = 2.
Initially, the population is distributed randomly with a uniform distribution over
the search space. Mutative step-sizes are all initialized at

√
n · l/3, where n is the

problem dimension and l is the diameter of the search space. Rotation angles
are initialized randomly, subject to uniform distribution, in [−π, π]. Niche radii
are initially set to

√
n · l/3. The evolution is stopped after a fixed number of

generations.
The set of test cases contains five maximization problems: M1 to M5 . Of these,

M1 and M2 have a uniform distribution of local optima. Their main purpose is to
investigate if asymmetric sharing is able to overcome the lack of a priori knowledge
in comparison to sharing with a fixed radius. The other functions have a clearly
non-uniform distribution of local optima. The purpose of these functions is to test
if asymmetric sharing can improve on the performance of sharing with a fixed ra-
dius, in such cases. The maximum number of generations, the values of σshare for
CUS, as well as μ and λ, are given in Table 1. The value of σshare was set by
assuming an even distribution of the niches over the search space. The one excep-
tion is M3 , where the value of σshare has been tuned manually. Some functions
are tested multiple times, with different dimensionality n.

Function M3 has the most widely varying niche distances and sizes among
these test functions. The widest peak is about ten thousand times wider than

Table 1. The set of test functions and their associated problem dependent parameter
settings. σshare is only used by the CUS algorithm.

Name function n domain niches μ λ maxGen σshare

M1 1

∏n
i=1 sin(5πxi)

6 1 [0, 1]n 5n 15 100 20 0.2

M1 30

∏n
i=1 sin(5πxi)

6 30 [0, 1]n 5n 30 210 200 0.2

M2 exp(−2 log(2)(x−0.1
0.8

)2) sin(5πx)6 1 [0, 1] 5 15 100 50 0.2

M3 sin6(log1.2(x)) 1 [0.01,100] 16 50 350 500 1

M4 1

∑10
i=1

1
ci+(ki(x−ai))

2 1 [0, 10]n 8 30 210 100 1.25

M4 2

∑10
i=1

1

ci+
∑2

j=1(ki(xj−ai))
2 2 [0, 10]n 8 30 210 100 1.76

M4 5

∑10
i=1

1

ci+
∑5

j=1(ki(xj−ai))
2 5 [0, 10]n 8 30 210 100 2.80

M5
∑10

i=1
1

ci+
∑4

j=1(xj−Tij)2
4 [0, 10]n 10 30 210 100 5.62
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the smallest peak. This makes it especially attractive to investigate the niche
radius problem.

Function M4 is a Shekel function suggested in [19]. All its local optima are
located on a line. Function M5 is a four dimensional Shekel function, for which
this is not the case. The values of the matrix T and the vector c in M5 can be
found in the appendix.

Each test involves 100 runs of the algorithm on a given test problem. The
quality measured is the number of niches that has been attained in the end of
the run, averaged over all runs. A niche is considered to be ‘attained’ if at least
one individual is located in the local region of at least 80% fitness.

5 Results and Discussion

The average final results are summarized in Table 2.

Table 2. Number of peaks attained, aver over 100 runs

function CUS AS ASR ASSR

M1 1 5.00 4.97 4.79 4.82

M1 30 29.65 23.48 1.31 2.49

M2 4.65 3.91 3.41 3.53

M3 8.62 8.90 14.86 15.82

M4 1 6.93 7.80 7.14 7.13

M4 2 4.70 5.17 5.41 5.34

M4 5 1.00 1.95 3.30 3.32

M5 5.79 6.01 6.41 7.54

Table 2 shows that, first of all, AS and variants have a reasonable niching ca-
pability, without needing a fixed niche radius. The number of maintained peaks
does, on average, not collapse to one on any of the test functions. On the func-
tions with uniform niche distributions, M1 and M2 , AS, the algorithm without
any mating restriction, approaches the performance of CUS most closely. The
data suggests that restricted mating is not an advantage on this type of function.

On the functions with non-uniform niche distributions, however, restricted
mating yields more promising results. When comparing the strictly restricted
mating scheme of ASR to the semi-restricted mating scheme of ASSR, the
latter comes out best quite convincingly. This supports the hypothesis that find-
ing some kind of balance between interspecies mating and intraspecies mating
is desired.

6 Summary and Outlook

In this paper we introduced assymetric sharing as a new variant of niching
algorithms in ES, which aims at treating the niche radius problem. The new
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methods avoid the need for a niche radius parameter or similar parameters to
be set.

The behavious of those variants have been tested on a number of benchmark
functions. The results indicate that assymetric sharing has the potential to al-
low niching on certain classes of fitness landscapes. The results look especially
promising on functions where the niches vary dramatically in size.

Future research will be required to investigate how the approach behaves in
combination with more advanced, derandomized forms of ES and to test it on
higher dimensional landscapes, artificial as well as real-world based.
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Appendix: Data Associated with M5

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 1 4 1
5 9 2 6
5 3 5 8
9 7 9 3
2 3 8 4
6 2 6 4
3 3 8 3
2 7 9 5
0 2 8 8
4 1 9 7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
c = (1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9)
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Abstract. This paper describes a method for rendering search coordinate system
independent, Adaptive Encoding. Adaptive Encoding is applicable to any iterative
search algorithm and employs incremental changes of the representation of solu-
tions. One attractive way to change the representation in the continuous domain
is derived from Covariance Matrix Adaptation (CMA). In this case, adaptive en-
coding recovers the CMA evolution strategy, when applied to an evolution strat-
egy with cumulative step-size control. Consequently, adaptive encoding provides
the means to apply CMA-like representation changes to any search algorithm in
the continuous domain. Experimental results confirm the expectation that CMA-
based adaptive encoding will generally speed up a typical evolutionary algorithm
on non-separable, ill-conditioned problems by orders of magnitude.

1 Introduction

In optimization or search, the problem encoding, that is the choice of the represen-
tation of the optimization problem is of utmost importance. A good representation,
if available, can render any search problem trivial—finding a proper representation
means essentially solving the problem. In an iterative search procedure, in principle,
a good problem representation can be iteratively approached, just as a good solution to
the problem is approached in the iteration sequence. Indeed, variable metric methods
like quasi-Newton methods [2], covariance matrix adaptation (CMA) [7], or estima-
tion of distribution algorithms [8] implicitly conduct a representational change. In case
of an additive modification of solutions, as for example a mutation in an evolution-
ary algorithm, a linear change of representation is equivalent with an appropriate linear
transformation of the additive mutation [3]. Linear transformations of additive mutation
operators, parameterized in step-sizes or covariance matrices, are well studied in evolu-
tionary algorithms [1,8].

In this paper, we sketch an explicit framework for an iterative incremental repre-
sentation change, denoted as adaptive encoding. The framework by itself is just about
trivial. While the framework is very general, this paper considers subsequently only
linear changes of the representation in the continuous domain.

Searching for a linear representational change in the continuous domain comple-
ments the original n-dimensional search problem with a second search problem of size
n2. The advantage from adaptive encoding is that these two search problems are de-
coupled. Consequently, an effective adaptation of the representation (which can dra-
matically improve the algorithms performance) can be applied to any underlying search
procedure.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 205–214, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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In the next section we give the preliminary notations and definitions. In Section 3 the
general idea of adaptive encoding is introduced. Section 4 proposes an update rule for
the representation, AECMA, derived from CMA. We can prove that AECMA applied to
CSA-ES recovers CMA-ES. Section 5 conducts another experimental proof of concept
and Section 6 gives a summary and conclusions.

2 Preliminary Notations and Definitions

Let f : Rn → R be an objective function to be minimized. Let a (baseline) search
algorithm propose new candidate solutions, x, in an iterated procedure and typically
evaluate them on f . Let further denote

S the state space of the search algorithm;
A : S → S an iteration step of the search algorithmA;
TB : S → S an invertible transformation, the decoding of the state space, the change

of representation. The TB is parameterized by a matrix B and therefore uniquely
depends on B;

B ∈ Rn×n a full rank matrix, representing (i) a new coordinate system and a coor-
dinate system transformation in Rn, and (ii) a problem representation and linear
decoding of candidate solutions B : x �→ Bx;

U : Rn×n × S → Rn×n, (B, s) �→ U(B, s) the change of representation by updating
the matrix B. For convenience, we assume that all necessary information to update
B is included in the algorithm state s and we may write U(B) instead of U(B, s);

From these definitions we first remark, that an iteration step of an algorithm can be
surrounded by an encoding-decoding step according to

AB ≡ TB ◦ A ◦ T−1
B , (1)

defining algorithm AB : S → S, s �→ TB(A(T−1
B (s))). If TB is the identity we have

AB ≡ A.
By definition, decoded solutions (phenotypes) are represented in the given coordinate

system, where also f is evaluated. Accordingly, the algorithm operates, by definition,
on encoded solutions (genotypes). We usually assume, for convenience and w.l.o.g.,
that recently evaluated solutions are part of the algorithms state.

Remark 1 (Evaluation of solutions). In order to make use of Eq. (1), we have to ensure
that candidate solutions are utilized in their original representation. The solutions must
be decoded for evaluation. In other words, A in Eq. 1 operates on f ◦B.

Considering Remark 1, we can execute the algorithm A in any coordinate system of
our choice. The new coordinate system, where the operations of A are effectively con-
ducted, is defined by B. Optimizing f ◦B instead of f already rendersA independent
of the given coordinate system (if B is chosen independent of the given coordinate sys-
tem). Eq. (1) becomes meaningful when we also adapt B. We shall choose TB such
that changes of B do not change solutions after they are decoded to their original rep-
resentation (phenotype).
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Finally, we assume to have a performance measure when running an algorithm on an
objective function f . The performance measure determines whether one algorithm is
better than another. For example, a typical, quantitatively useful measure is the number
of candidate solutions evaluated on f until a target function value is achieved.

3 Adaptive Encoding

Equation (1) represents an iteration step of a search algorithm with an additional en-
coding-decoding procedure. The encoding is, throughout this paper, parameterized by
a n× n-matrix; it therefore adds n2 degrees of freedom. Obviously, the idea is to find
a good encoding for algorithmA.

Aim 1 (static encoding). The goal of finding a good encoding is to find a transforma-
tion TB, such that

TB ◦ A ◦ T−1
B outperformsA on f

The static encoding is usually part of the design of the objective function. Equivalently,
the algorithm can be modified specifically in regard to the given objective function (the
encoding-decoding can certainly be interpreted as part of the algorithm). The formalism
of Aim 1 is not very interesting. To get a more interesting situation, we need to consider
an update or adaptation of the encoding TB .

Definition 1. (Adaptive Encoding) Given an algorithm, A, an encoding, TB, and an
update, U , the iteration step of an adaptively encoded algorithm in state s ∈ S is
defined as

s ← TB ◦ A ◦ T−1
B (s) (2)

B ← U(B, s) (3)

where ← denotes the assignment operator and TB ◦ A ◦ T−1
B (s) = TB(A(T−1

B (s))).
We write TB ◦ A ◦ T−1

B ; U(TB) to denote the iteration step of Equations (2) and (3).

Obviously, any iterative algorithm A can be plugged into the adaptive encoding
mechanism.

Proposition 1. (Adaptive Encoding is universal) The Adaptive Encoding from Defini-
tion 1 can be applied to any search algorithm.

Proof. The proposition follows directly from the definition of TB as invertible mapping
from S to S.

Even though Proposition 1 is just about trivial, it is of utmost importance for the im-
plications of our results, because it establishes the general applicability of any effective
adaptive encoding.

Analogous to Aim 1, we consider the merits of an adaptive encoding.

Aim 2 (adaptive encoding). Find an update U , such that for a given T0 and a given
(initial) TB .
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TB ◦ A ◦ T−1
B ; U(TB) outperforms T0 ◦ A ◦ T−1

0 on f .

The left iteration step updates the encoding, the right iteration step applies a constant
encoding, T0, to algorithmA.

Taking only a single iteration step, Aim 2 does not depend on the updateU and it reduces
to Aim 1. Consequently, Aim 2 becomes only interesting, when an iteration sequence
is considered. Indeed, in a realistic automated scenario, Aim 2 can only be achieved in
the iteration sequence.

Finally, we define two cases/scenarios when considering Aim 2.

Scenario 1. (Standard scenario) The initial TB equals to T0. Aim 2 shall be satisfied
for most given T0.

Scenario 2. (Ambitious scenario) The initial TB equals to T0. Aim 2 shall be satisfied
for all given T0.

Satisfying the ambitious scenario implies that no fixed optimal encoding TB exists and
a changing encoding can, in principle, be better than any fixed encoding. Both, the
standard and the ambitious scenario are reasonable objectives, depending on the given
objective function.

The remainder of this paper proposes and investigates an effective way to implement
adaptive encoding as given in Definition 1.

4 Adaptive Encoding Based on Covariance Matrix Adaptation

In order to define an adaptive encoding, we need to specify the encoding of the algo-
rithms state space, TB : S → S, and the update of the encoding, U . In this section, our
aim is to obtain an efficient update U , leaving the choice of TB as only remaining, algo-
rithm specific design issue. The update is derived from the equations for the covariance
matrix update in the (μ/μW, λ)-CMA-ES [4,7], denoted as AECMA in the following, and
explicated in Algorithm 1 AECMA-Update.

The parameters of AECMA-Update are chosen to α0 =
√

n
‖B−1(m−m−)‖ , with li =

‖B−1(xi −m−)‖ we have αi =
√

n max
(

li
β , median

j=1,...,μ
(lj)
)−1

, for i = 1, . . . , μ and

β = 2, αp = 1, cp = 1√
n

, wi = ln(μ+1)−ln i
μ ln(μ+1)−

∑μ
j=1 ln j

, for i = 1, . . . , μ, and μ is

half of the overall generated number of solutions per iteration (before selection), c1 =

αc
0.2

(n+1.3)2+μW
, cμ = αc

0.2 (μW−2+ 1
μW

)
(n+2)2+0.2μW

with μW = 1∑μ
i=1 w2

i
≥ 1. Finally αc ≈ 1 must

be chosen positive and such that c1 + cμ ≤ 1. Too large values for αc potentially lead
to a failure. Too small values slow down the adaptation. In any case, a parameter study
for αc is recommended, as conducted below. All parameters are detailed in [5].

The state variables are m, p and C. The mean m is initialized to the initial solution
mean of the search algorithm to which AECMA-Update is applied, and initially p = 0
and C = I .

Proposition 2. Let σ denote a step-size and μ−1
W =

∑μ
i=1 w2

i . Let αp = 1, α0 =√
μW

σ and αi = σ−1, for i = 1, . . . , μ. Then, the procedure AECMA-Update implements
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Algorithm 1. AECMA-Update({x1, . . . , xμ})
updates the encoding matrix B using the μ recent best-ranked candidate solutions

given parameters wi, cp, c1, cμ, see text1

given m ∈ Rn, p ∈ Rn and C ∈ Rn×n from last iteration2

let matrices B◦ orthogonal, and D diagonal, with diagonal elements sorted in ascending3

order , “←” assigns accordingly
m− = m4

m ←
∑μ

i=1 wixi // Eq.(3) in [4]5

set scalars αi ≥ 0, for i = 0, . . . , μ, see text6

p ← (1 − cp)p +
√

cp (2 − cp)α0(m − m−) // Eq.(17) in [4]7

Cμ =
∑μ

i=1 wi α2
i (xi − m−)(xi − m−)T // rank-μ matrix8

set scalar αp ≥ 0, see text9

C ← (1 − c1 − cμ) C + c1αp ppT + cμCμ // Eq.(22) in [4]10

B◦DDB◦ ← C // eigendecomposition11

optionally normalize D12

B ← B◦D // encoding matrix13

the update equations for the evolution path, p, and the covariance matrix, C, in the
(μ/μW, λ)-CMA-ES.

Proof. Assuming that x1, . . . , xμ are the μ best solutions in the recent iteration step,
line 5 computes m according to Eq. (3) in [4]. Lines 7 and 10 of AECMA-Update repli-
cate the covariance matrix update equations (17) and (22) in [4] with added or renamed
normalization coefficients, denoted with α. Substituting the coefficients as given above
results in the original equations.

The AECMA-Update implements the covariance matrix update of CMA-ES with ad-
ditional coefficients α to be specified. Within CMA-ES, this update was designed to
operate reliably for any choice of μ [4].

Depending on the application of AECMA-Update, a slow change of B might be de-
sirable. While C will only change slowly, as long as c1 and cμ are small, the decom-
position of C does not ensure a similar behavior for B◦ and D. For this reason, the
diagonal elements in D are sorted. As an approximation, it might even be sufficient
to only decode the solutions for the function evaluation and completely abandon the
encoding-decoding of the algorithms state.

AECMA Recovers CMA-ES. We apply AECMA (Algorithm 1) to an evolution strategy
with cumulative step-size adaptation (CSA, sometimes also denoted as path length con-
trol). The AECMA-(μ/μW, λ)-CSA-ES is given in Algorithm 2, where the begin-end
block marks the original (μ/μW, λ)-CSA-ES. The following invertible encoding for the
state variables in CSA-ES is used.

TB : (m, pσ, σ) �→ (Bm, B◦pσ, σ) (4)

Additionally, the μ best solutions are used as input to AECMA-Update (line 16 in Algo-
rithm 2). The encoding TB solely depends on B, as B◦ can be computed from B by
normalizing its columns to one. Applying AECMA-Update to CSA-ES we find.
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Algorithm 2. AECMA-CSA-ES
N (0, I) ∈ Rn indicates a (0, 1)-normal distribution in each coordinate
i(f) indicates the index of the i-th best solution, e.g., x1(f) = arg min

i=1,...,λ
{f(xi)}

Shaded areas implement the adaptive encoding, AECMA, also updating B and B◦

The begin-end block embraces the original CSA-ES minimizing f ◦B

initialize m ∈ Rn (distribution mean), pσ = 0 (evolution path), σ > 0 (step-size)1

initialize B = B◦ = I (encoding matrices)2

repeat3

m ← B−1m4

pσ ← B◦Tpσ5

begin6

xi = m + σ Ni (0, I) , for i = 1, . . . , λ7

fi = f ◦B (xi) = f(B xi) , for i = 1, . . . , λ // decode to evaluate8

m− = m9

m ←
∑μ

i=1 wi xi(f)10

pσ ← (1 − cσ) pσ +
√

cσ (2 − cσ)μW
1
σ
(m − m−)11

σ ← σ exp
(

cσ
dσ

(
‖pσ‖

E‖N(0,I)‖ − 1
))

12

end13

m ← Bm14

pσ ← B◦pσ15

B, B◦ ← AECMA-Update({Bx1, . . . , Bxμ}) // update B and B◦
16

until stopping criterion is met17

Theorem 1 (Recovery of CMA-ES). Let TB given in Eq. (4) and the scalars for
AECMA-Update in each iteration given in Proposition 2, then the AECMA-(μ/μW, λ)-
CSA-ES (Algorithm 2) implements the (μ/μW, λ)-CMA-ES.

Proof. Due to the space limitations, the proof is provided in [5].

Theorem 1 supports the hypothesis that AECMA-Update is an effective way to update
the representation matrix B in evolutionary search algorithms, as CMA-ES efficiently
adapts the principle axes of the coordinate system, where the independent sampling
takes place. In the next section, another application of AECMA-Update is realized.

5 Yet Another Experimental Proof of Concept

While AECMA-Update has proved to be effective with CSA-ES [7], in this section we
provide another case study. To underline the general applicability of AECMA-Update we
consider a baseline algorithm that (i) exploits the given coordinate system, and (ii) gen-
erates distributions that are rather different from Gaussians, providing a test scenario
that is rather different from CSA-ES. We use a simple but functional algorithm that uti-
lizes a Cauchy distribution in a derandomized adaptation framework, denoted as (1, λ)-
Cauchy-ES, with λ = 10 (see the begin-end block in Algorithm 3). Despite this choice
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Algorithm 3. AECMA-(1, λ)-Cauchy-ES
The begin-end block embraces the (1, λ)-Cauchy-ES minimizing f ◦B
Shaded areas implement the adaptive encoding
Ri ∈ Rn is standard Cauchy distributed in each component
1(f) indicates the index of the best solution x1(f) = arg mini=1,...,λ {f(xi)}

initialize x ∈ Rn and diagonal matrix σ (step-size matrix)1

initialize B = I (encoding matrix)2

repeat3

x ← B−1x4

begin5

xi = x + σRi, for i = 1, . . . , λ6

fi = f ◦B (xi) = f(B xi) , for i = 1, . . . , λ // decode to evaluate7

x ← x1(f)8

σjj ← σjj exp
(

1
2 n

(
1
2

sign(|R1(f),j | − 0.9) + sign
n∑

i=1

sign(|R1(f),i| − 1)
))

9

end10

x ← Bx11

B ← AECMA-Update({Bx1, . . . , Bxμ}) // update B12

until stopping criterion is met13

(lead by simplicity and personal preference), neither comma-selection (non-elitism) nor
derandomization nor a small population size are fundamental prerequisites for applying
AECMA. The (1, λ)-Cauchy-ES samples new solutions without dependencies between
variables in the given coordinate system, because σ is a diagonal matrix. Rendering the
(1, λ)-Cauchy-ES coordinate system independent results in correlations between vari-
ables (even if σ = I), because the Cauchy distribution is highly anisotropic [6]. The
invertible encoding

TB : (x, σ) �→ (Bx, σ) (5)

is used, where the step-size matrix σ is not transformed. An appropriate mapping for
a covariance matrix σ2 �→ Bσ2BT would not preserve the diagonal property, while
arguably T−1

B : C �→ diag(BTCB) could be used. In contrast, using Bdiag(σ)
as mapping for only the diagonal of σ cannot be recommended, because very small
diagonal entries can occur accidentally. Because σ is not encoded, it is important that
changes of B remain modest.

Using B◦ instead of B in Eq. (5) is a possible alternative and investigated below. In
this case, the step-size matrix σ needs to learn the scaling that can be otherwise provided
by the diagonal matrix D in Algorithm 1.

Test functions. Testing on a number of functions, we always found the expected effect
from AECMA. Exemplarily, we show simulations on two quadratic test functions, falling
into Scenario 1 from Section 3.

felli(x) =
n∑

i=1

106 i−1
n−1 y2

i and fcigtab(x) = y2
1 + 104

n−1∑
i=2

y2
i + 108y2

n , (6)
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Fig. 1. Simulation of the AECMA-(1, λ)-Cauchy-ES. Left: number of function evaluations to reach
function value 10−9 on the rotated felli versus the multiplier αc for the learning rate of B in 3-,
10- and 30-D (from bottom to top). Symbols × = B and © = B◦. For each set-up two trials
were conducted. Right: time evolution on the rotated fcigtab in 10-D, shown are the objective
function value (bold single graph), diagonal elements of the step-size matrix σ (lower group of
curves) and diagonal elements of D in Algorithm 1 (smooth upper graphs).

where y := Ox and O = [o1, . . . , on] implements an angle-preserving, linear transfor-
mation, i.e. O is orthogonal. The basis O was either chosen as identity I (axis-parallel
case), or each column was sampled uniformly distributed on the unit hypersphere, or-
thogonalized to the previous columns and normalized to one (rotated case). For each
trial a new basis was sampled. Further initial values were x = (1, . . . , 1)T and σ = I .
In the following, if a single trial is shown, it represents a typical trial.

Choosing parameters for AECMA. For applying AECMA to the (1, λ)-Cauchy-ES, we
conduct a minimalistic parameter study for the multiplier, αc, of the learning rate for the
matrix B. Further parameters for the AECMA-Update follow the settings from Section 4,
accordingly, we use μ = λ/2 = 5. We test two cases, (i) using Eq. (5) and (ii) replacing
B with B◦ in Eq. (5). The remaining set-up is minimalistic. We test on the rotated felli

in 3-, 10- and 30-D, vary αc by factors of 2 and 1/2 and measure the number of function
evaluations to reach function value 10−9, twice for each set-up. Results are shown in
Figure 1, left. Missing points for large values of αc (to the right) indicate that at least
one run did not succeed. Large values lead to a failure, because the condition number of
matrix D (line 11 in Algorithm 1) diverges. Using B◦ is less prone to a failure. When
reducing αc to small values, the number of function evaluations will increase at most
linearly with αc

−1.
Only for large values of αc the performance is remarkably different for B and B◦.

With increasing αc, first B◦ becomes worse, but finally B fails earlier than B◦. Nev-
ertheless, the designated default value αc = 1 is applicable in both cases: the value is
more than ten times larger than a value that leads to a failure and the performance loss
to the best setting, does not exceed a factor of two. We retain using B as in Eq. (5) in
the following.
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Fig. 2. Simulation of AECMA-(1, λ)-Cauchy-ES (bold) and (1, λ)-Cauchy-ES (light) on the axis-
parallel (solid) and the rotated (dashed) felli in 10-D (left) and 30-D (right). Shown is the objec-
tive function value of respectively 3 trials over time. In the rotated case, the AECMA improves the
performance by a factor of roughly one thousand.

Figure 1 (right) shows a single run on the rotated fcigtab in 10-D. The function topol-
ogy is successfully adapted as the optimum is approached quickly after about 5000
function evaluations. The single large dispersion value in the distribution, relating to y1

in Eq. (6), is mainly represented in the matrix D (upper graph), while the single small
value, relating to yn, is mainly represented in σ, in particular in the early stage.

The comparison. Completing the picture, we compare the AECMA-(1, λ)-Cauchy-ES
with the (1, λ)-Cauchy-ES on felli. In Figure2, three runs are shown for each algorithm
on the axis-parallel and on the rotated function in 10-D (left) and 30-D (right).

The performance of the AECMA-(1, λ)-Cauchy-ES is virtually independent of rota-
tion (only the initialization is still different in both cases). On the axis-parallel function,
AECMA-(1, λ)-Cauchy-ES becomes about two to ten times slower than (1, λ)-Cauchy-
ES (for reaching function value 10−10 in 10-D and function value 100 in 30-D re-
spectively). On the rotated function, AECMA-(1, λ)-Cauchy-ES becomes between 200
and 2000 times(!) faster (for reaching function value 10−1 in 30-D and function value
10−10 in 10-D respectively). The application of the AECMA was apparently successful
(the CMA-ES is still roughly four times faster in this particular case). The trade-off
when AECMA is applied with the axis-parallel function is comparatively small, but in-
creases with increasing dimension. By fixing the transformation B for some time in the
beginning of the optimization, this trade-off can be eliminated.

6 Summary and Conclusions

We have outlined an adaptive change of representation in iterative search, denoted as
adaptive encoding (AE): after each iteration step, (i) the algorithms state is “decoded”,
(ii) the encoding mechanism is adapted, and (iii) the algorithms state is “encoded” again
for the next iteration. Additionally, candidate solutions are decoded for their evaluation
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on the objective function. In the continuous search domain, practical implications from
this simple procedure are surprisingly far-reaching. The sophisticated update of the
covariance matrix in the CMA-ES can be entirely formulated as a change of represen-
tation of an encoding matrix B (Proposition 2). Applying this representation change,
AECMA, to an evolution strategy with cumulative step-size control, the CMA-ES is re-
covered (Theorem 1)—proving that an effective representation change can be entirely
decoupled from the underlying search algorithm. Addressing an important open prob-
lem in evolutionary computation [9], the representation change implicitly induced by
the covariance matrix adaptation in the CMA-ES becomes available for any continuous
domain search algorithm—AECMA can render any search algorithm independent of the
coordinate system, in particular rotationally invariant.

We conjecture that on various non-separable ill-conditioned problems AECMA will
typically speed up population-based search methods by orders of magnitude. A case
study of AECMA supports our conjecture: the baseline algorithm has become roughly
thousand times faster on the non-separable problems. While the principle of adaptive en-
coding is quite general, we anticipate successful applications (e.g. using Algorithm 1) in
particular for population-based, stochastic search algorithms in the continuous domain.
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Abstract. A possible alternative to topology fine-tuning for Neural Net-
work (NN) optimization is to use Echo State Networks (ESNs), recurrent
NNs built upon a large reservoir of sparsely randomly connected neu-
rons. The promises of ESNs have been fulfilled for supervised learning
tasks, but unsupervised ones, e.g. control problems, require more flexi-
ble optimization methods – such as Evolutionary Algorithms. This paper
proposes to apply CMA-ES, the state-of-the-art method in evolutionary
continuous parameter optimization, to the evolutionary learning of ESN
parameters. First, a standard supervised learning problem is used to vali-
date the approach and compare it to the standard one. But the flexibility
of Evolutionary optimization allows us to optimize not only the outgo-
ing weights but also, or alternatively, other ESN parameters, sometimes
leading to improved results. The classical double pole balancing control
problem is then used to demonstrate the feasibility of evolutionary (i.e.
reinforcement) learning of ESNs. We show that the evolutionary ESN ob-
tain results that are comparable with those of the best topology-learning
methods.

Keywords: Neural networks, Evolutionary algorithms, Control.

1 Introduction

It has long been known to Neural Networks practitioners that a good design for
the topology of the network is an essential ingredient for a successful application
of Neural Networks to a given learning task. The critical issue then becomes
that of learning the appropriate weights. Echo State Networks (ESNs) [12], that
were recently proposed for supervised learning of time series, can be seen as an
alternative approach based on a large reservoir of neurons with random, constant
(non-learned) and sparse connectivity. Learning is thus restricted to the outgoing
connections only. In the supervised learning case, this efficiently transforms the
learning process into a simple quadratic optimization problem. The situation
changes dramatically with unsupervised learning tasks, such as control ones:
no input-output example being available, the learning problem can no longer be
set as quadratic. Evolutionary Computation provides a possible solution for such
situations, as long as some fitness is available. This paper addresses the following
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issues: are Evolutionary Algorithms (EAs) a viable method to train ESNs in
general and on reinforcement learning tasks in particular? Furthermore, are ESNs
an alternative to topology learning in the framework of control problems? Finally,
Evolutionary Algorithms can learn to adjust more than just the weights of the
outgoing connections of the ESN. Does this improve the learning power of ESNs?

The paper is organized as follows. Section 2 introduces ESNs and our evolu-
tionary algorithm. The supervised task case (time-series prediction) is addressed
in Section 3. Moreover, Evolutionary Learning opens up the field of reinforce-
ment learning to ESNs. We address this issue with a canonical example, the
double pole balancing problem [17,10,4], in Section 4. Finally, Section 5 sums up
the paper and sketches directions for on-going and further researches.

2 Background

2.1 Echo State Networks

Echo state networks (ESN) are discrete time, continuous state, recurrent neural
networks using a sigmoidal activation function for all neurons [12]. A typical ESN
is shown in figure 1: the input layer is totally connected to the hidden layer (the
reservoir) whose neurons are themselves totally connected to the output layer.
Note that the output layer can also be connected backward to the reservoir.
To generate the reservoir, one connects N neurons randomly (with independent
uniform distribution) up to a user-defined connection density α. The weight of
these connections are randomly chosen, then scaled so that the spectral radius of
the reservoir, ρ (i.e. the largest modulus among the eigenvalues of the reservoir
weight matrix) is less than a prescribed value < 1 (see e.g. [13]). The main point
in ESN is that only the weights from the reservoir nodes to the output ones
are to be learned. Any supervised learning problem using some mean-square
error objective thus reduces to a quadratic optimization problem that can be

Fig. 1. Schematic view of an Echo State Network. Plain arrows stand for weights that
are randomly chosen and remain fixed, while dashed arrows represent the weights to
be optimized.
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quickly solved by any deterministic optimization procedure, even for very large
values of N . ESNs have been shown to perform surprisingly well in the context
of supervised learning, in particular for time series prediction. They have also
been successfully used in the context of (supervised) robot control learning [14].
The idea beyond Evolutionary Learning for Echo State Networks is to replace
the gradient descent used to optimize the outgoing weights in Jaeger’s approach
[13] by an Evolutionary Algorithm (EA). We first present the Evolutionary Algo-
rithm that will be used throughout the paper, the Covariance Matrix Adaptation
Evolution Strategy, aka CMA-ES.

2.2 CMA-ES

The CMA-ES is a well-established and state-of-the-art Evolutionary Algorithm
in continuous domain evolutionary computation [8,9,7]. At iteration step t, λ > 1
offspring individuals x ∈ Rn are generated by sampling a multi-variate normal
distribution: x = mt + σt ×N (0, Ct), where mt is the average of the best indi-
viduals of the previous generation, N (0, Ct) is a normally distributed variable
with mean 0 and n×n covariance matrix Ct, and σt > 0 is a scaling parameter,
the step-size. After those λ individuals have been sampled, evaluated on f , and
sorted according to their objective function values, the distribution parameters
mt, σt, and Ct are updated for a new iteration step using the sorted popula-
tion and cumulated information about the whole optimization path. It has been
shown experimentally that the covariance matrix Ct approximates the inverse
of the Hessian matrix of the problem at hand near the optimum, and CMA-ES
can hence be considered a quasi-second order optimization method. Importantly,
CMA-ES is almost a parameter-free algorithm. Only the number of offsprings λ
is crucial to the evolution success and must possibly be adapted to account for
the ruggedness of the fitness landscape at hand. In our case, the default value
[9], that increases logarithmically with the dimension n of the problem (number
of unknown parameters): λ = 4 + 3 ln(n), was found to be well adapted.

3 Supervised Learning of ESN

In order to validate the Evolutionary approach to ESN learning, we first replicate
Jaeger’s initial setting [12], but using an Evolutionary Algorithm in lieu of its
gradient-based quadratic optimization procedure.

3.1 The Original Settings

In this toy example, the aim is to train the network to produce a univariate time-
series output, yteach(n) = 1

2u
7(n) (where n is time) from a univariate input given

byu(n) = sin(n/5). The network output is given by y(n) = f(
∑N

i=1 w
out
i × xi(n)),

where wout
i denotes the weight of the i-th output connection, xi(n) is the state of

the i-th neuron, f(x) = (1− e−ax)/(1 + e−ax) and a is the half-slope of f at zero
activation. Like in Jaeger’s original paper, the reservoir consists of N = 100 ran-
domly connected neurons (independent uniform distribution). Its weights are set
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to 0, +0.4 or -0.4 with probabilities 0.95, 0.025, 0.025 respectively (sparse connec-
tivity of 5%). They are then scaled so that the spectral radius of the reservoir is
ρ ≈ 0.88. The input weights (from the input to all neurons in the reservoir) are set
to +1 or −1 with equal probability. Direct links from inputs to outputs or back-
ward links from outputs to the reservoir are not used here. The fitness to minimize
is the Mean Square Error of the network, computed between time steps 101 and
300: msetrain = 1/200

∑300
n=101 (y(n)− atanh(yteach(n)))2.

3.2 Which Parameter to Optimize?

In Jaeger’s original paper [12], the output weights were optimized with a gradient
method, resulting in a reported error mse ≈ 3.5 × 10−15 [12]. But a critical
parameter in ESN tuning seems to be the spectral radius, that is usually advised
to be < 1 [12] though different values have been proposed in the literature
for different problems. Hence it seems a good idea to use the spectral radius
as a free parameter to be optimized by CMA-ES: it only adds one dimension
to the problem. The procedure goes as follows: the weights of the recurrent
connections within the reservoir are first scaled so that the spectral radius of
the connection matrix takes the value prescribed by the additional optimized
parameter. The weights are of course set back to their original values before
the evaluation of next individual. Jaeger’s original sigmoidal function was tanh,
corresponding to the case a = 2 for the transfer function f above. However, if
both the output weights and the sigmoid slopes a are optimized, the dimension
of the optimization problem is twofold. Hence, we examined the case where only
the slopes a are optimized.

3.3 Comparative Measures

Because CMA-ES, like all EAs, is a stochastic optimization procedure, no strong
conclusion can be drawn in absence of a thorough statistical analysis of the
performances. Here 15 different networks have been used, and for each network, 5
runs of CMA-ES were launched with different random seeds (and hence starting
points). To have a global performance measure, we used an estimator of the
success performance called the “SP1 measure” [7,1], which is the number of
evaluation of the fitness function that is needed to reach a given fitness level,
divided by the fraction of runs that did reach that fitness value. SP1 can thus be
viewed as the computational effort required to reach a given performance level.

3.4 Results

Three variants of the ESN evolutionary optimization have thus been compared:
(i) optimizing the output weights only, denoted Std in the following; (ii) op-
timizing the output weights plus the spectral radius, denoted Rho; and (iii)
optimizing the sigmoidal slopes only, denoted Slopes. Figure 2 shows the SP1
plots for a 100 neuron reservoir and confirms that CMA-ES (Std) can be as
precise as the gradient method reported in [12] (i.e. with a mse of the order
of 10−15), though undoubtedly requiring a much greater computational effort.
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Fig. 2. Comparative SP1 measures for the case N = 100, in log-log scale

Interestingly, the results show that optimizing only the reservoir slopes (Slopes)
yields precisions that are also similar to the original ESN learning method. Note
however that with smaller reservoir sizes (e.g. N = 30), optimizing the reser-
voir neuron slopes (Slopes variant) yielded even better fitness than the standard
procedure (not shown). This, however, has a cost and requires almost 100-folds
more evaluations, due to the fact that very few runs do find such low fitness
values. Finally, Figure 2 also evidences that increasing the search space fails to
improve precision: the Rho variant yields the worst precision in this supervised
task. Taken together, these results validate the use of Evolutionary Learning for
supervised tasks. We now turn to the study of a reinforcement learning task.

4 Reinforcement Learning of ESN

The double pole balancing problem without velocity information is a benchmark
learning task for the evaluation of neuroevolution methods - i.e. methods that
evolve both the topology and the weights of neural networks [17,6,5,10,4]. Albeit
they don’t belong to supervised learning methods, evolutionary methods are
based on the evaluation of some individual fitness. This fitness can be considered
as a feedback or a kind of reward emitted by the environment, so that such
neuroevolution methods are considered as reinforcement learning methods. The
system consists of a cart (mass =1 kg) moving along the x axis, and two poles of
different lengths (l1 = 1 m, l2 = 0.1 m) and masses (m1 = 0.1 kg, m2 = 0.01 kg)
that are connected to the cart by a hinge. The poles have a single degree of
freedom (their angle θ1 and θ2 w.r.t. the vertical). The challenge is to keep
both poles up (i.e. within given bounds for their angles) as long as possible
using the ESN output, which is interpreted as a force Fx applied to the cart
(Fx ∈ [−10 N, 10 N]). In all experiments (in this paper as well as in previous
works), the dynamics of this mechanical system was solved using fourth-order
Runge-Kutta method with a step size of 0.01 s.
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4.1 Fitness(es)

To avoid heavy computational cost many, if not all, previous works in the evo-
lutionary literature addressing the double pole balancing problem [6,5,17,10,4]
have used a simplified fitness (thereafter referred to as Fcheap): a single trial is
run for every individual in the population, starting from the same state (θ1(0) =
4.5o, θ̇1(0) = θ2(0) = θ̇2(0) = x(0) = ẋ(0) = 0). The simulation stops if one of
the poles falls, i.e. the system leaves the success domain x ∈ [−2.4 m, 2.4 m] and
θ1, θ2 ∈ [−36o, 36o] (no solution found) or if the poles remain up for 1, 000 time
steps (successful individual). The fitness function Fcheap is then:

Fcheap = 10−4t+ 0.9fstable, with

fstable =

⎧⎨⎩
0 if t < 100

0.75∑t
i=t−100 (|x(i)| + |ẋ(i)|+ |θ1(i)|+ |θ̇1(i)|)

otherwise

where t denotes the number of time steps during which the system remained
inside the success domain and fstable quantifies the cart stability during the
last 100 time steps. At every generation, the best individual for fitness Fcheap

undergoes two generalization tests. The first test is passed if the individual keeps
the system within the success domain during 100, 000 further time steps. The
second test is passed if the individual as well succeeds in balancing the system for
1, 000 time steps starting from 625 different initial positions. When one individual
succeeds for at least 200 of those 625 trials, the run is stopped and this individual
is returned as the solution.

However, though this simplified fitness does save a lot of computational re-
sources, it is a poor fitness with respect to the overall goal of the optimiza-
tion. For instance, individuals are commonly obtained that have a very high
fitness but never pass the first generalization test, while some others pass all
generalization tests but with a rather low Fcheap. Hence we propose here a
new fitness (Fgen.) that takes into account all 3 tests described above: Fgen. =
Fcheap + 10−5nI + 30nS/625 where nI is the number of iterations where the
system was maintained within the success domain during the first generalization
test, and nS is the number of generalization trials passed by the controller during
the second one. The constants 10−5 and 30 were chosen by trial and error.

4.2 Experimental Conditions

The size of the reservoir was fixed here to N = 20: initial experiments indicated
that larger reservoirs did not improve the results. To study the variability with
respect to the reservoir topology, 20 different reservoirs were generated and 11
independent runs of CMA-ES were made for each reservoir. Each reservoir was
initialized as described in section 3.1, except for the fixed weights: here, the
reservoir connectivity was 10% and non-zero weights were randomly initialized
between [−1, 1]. At the beginning of each run, the activity of all neurons in the
reservoir was zeroed, and the network was run for 20 iterations before control
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actually began and the fitness started to accumulate. As mentioned in Section
2.2, CMA-ES is almost a parameter-free algorithm. However, Igel advises in
his paper [10] to impose a lower bound on the actual lower eigenvalue of the
covariance matrix during CMA-ES runs. Indeed, our preliminary results con-
firmed that, without this constraint, the solutions systematically evolves toward
“Bang-Bang” types of motor control, that do not seem very efficient for the task
at hand. We were able to solve this issue by imposing a lower bound of 0.05 on
the step-size σ. Finally, the presented results were obtained with the Std and
Rho variants of the evolutionary ESN learning (Section 3.2).

4.3 Results and Discussion

All results are summarized in Table 1. Every line in the table gives the results of
one variant of the algorithm (two spectral radii, 0.6 and 0.95 were tried for the
Std variant, and variant Std - Opt will be discussed later). For each variant, the
220 runs (11 runs for each of the 20 different reservoir initializations) are here
grouped together. Each sub-table shows the average number of needed evalua-
tions averaged over the successful runs (column Avg Eval.), its standard
deviation (Std Dev.), the number of tests (out of 625) passed during the third
generalization test (Generalization), and, most importantly, the percentage of
success (% success), i.e. of runs where the best individual did pass the 3 tests.
Using the “cheap” fitness Fcheap, a first striking result is the very low perfor-
mance of the Std variants (whatever the spectral radius): less than 7% of the runs
did pass the 3 generalization tests in these cases. Things are better for the Rho
variant: more than half of the runs succeeded, with an average cost of 23, 571
evaluations, which amounts to an SP1 value of about 45, 300. This value is still
worse than NEAT (≈ 33, 000 evaluations [17]) and AGE (≈ 25, 000 evaluations
[4]), but within the same order of magnitude.

As expected, the results really improve when using the new fitness, that takes
into account the generalization ability of the network: the Rho variant almost
always find a solution (except for one run out of 220). Even the Std ones improve
a lot over their results with the cheap fitness. More importantly, using the new
fitness allows all variants to reach performances that are comparable to those of
NEAT (≈ 33, 000 evaluations [17]) and AGE (≈ 25, 000 evaluations [4]), though
of course those results can hardly be compared, as they were obtained using a
different fitness. Indeed, the found SP1 values for Std-0.60, Std-0.95, and Rho
variants respectively were 19, 342, 19, 808 and 21, 658.

Spectral Radius. It has always been advocated by ESN pioneers that the
upper bound on the spectral radius was important for successful ESN use, and
the results for both Std variants with different spectral radius seem to confirm
this. However, the most remarkable fact here is that for all settings, the Rho
variant, that explicitly optimizes the spectral radius, almost always gives the
best results. This is surprising when compared to the situation in the supervised
context (Section 3.4), where the Rho variant performed the worst of all.

Further experiments were run, using the Std variant but fixing the spectral
radius to the final value found by the Rho method (see the lines “Std – Opt” in
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Table 1. Experimental results for the double pole balancing

Cheap Fitness New Fitness

Method Avg. Std. Genera- % Avg. Std. Genera- %
Eval. Dev. lization success Eval. Dev. lization success

Std - 0.95 14960 6291 234 6.8% 16303 11511 209 82.3%
Std - 0.60 16639 17037 225 6.8% 16886 11073 211 87.3%
Rho 23571 10175 241 52.7% 19796 6770 224 91.4%
Std - Opt 19168 21782 232 9.5% 15965 11813 208 86.8%

Table 1). Though it generally slightly improves the results over an arbitrary value
like 0.6 or 0.95, it does not allow to reach the same level of performance as the
Rho method itself. The important feature is thus that ρ is allowed to vary during
the optimization, and not the final value it reaches. A final advantage about the
Rho variant, is that it seems to be able to provide controllers that generalize
very well, if evolution (using the new fitness) is continued after the first network
has passed the 200-tests of the last generalization test: all resulting networks are
able to successfully solve more than 500 out of the 625 test cases, with a peak
at 555 for one network. Unfortunately, the previously published studies do not
report this kind of result, except for one sentence in [4] that mentions that one
network successfully solved 525 test cases.

Reservoir topologies. The results obtained with the the double pole problem
were found to vary a lot among the different (random) realizations of the con-
nections (i.e. the non-zero weights) in the reservoir, for the same value of the
density of connection. Indeed, in the case of methods with low performance, all
the successful runs often stem from a small number of initial reservoir topolo-
gies, while a majority the initial reservoir topologies fail to generate even a single
success. Together with the differences noted in the supervised learning context,
this makes a clear picture that the topology of the reservoir matters. Why, and
how to take advantage of this fact, is left to further work.

The question is now open: whereas reservoir computing has been proposed as a
possible alternative to fine tuning of the weights in Neural Networks, it might be the
case that tuning the topology of the reservoir allows to obtain more efficient ESNs.
Further work will address this research question, and two main directions can be
imagined. The network can be built using different topological classes (e.g. small
world, scale free, . . . ); identifying classes of networks that are efficient for a given
type of problem (i.e. such that randomly built networks from this class have a very
high probability to solve the problem at hand) would indeed relieve the programmer
from the task of optimizing the topology, restricting the search space to a fraction
of the parameter space, where CMA-ES proved to be an efficient tool. It might be
the case, however, that for reservoir computing, problem-specific topology tuning
is nevertheless required anew for each problem. The main difficulty will then be
to design efficient techniques for tuning the topology of large networks, as most
existing methods do not really scale up to hundreds of neurons or more. Some hints
have been recently given with Hyper-NEAT [16] on the one hand, and with the
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different approaches based on Genetic Regulatory Networks, starting with AGE,
though other GRN approaches can be envisioned, too (see e.g. [2]).

5 Conclusion

Several recent studies have attempted to couple EAs with ESNs, mostly using
supervised learning [15]. A limited number of works have used reinforcement
learning to optimize ESNs with EAs, in which the network tasks were time series
predictions [18,11] or robust spatial pattern formation (“flag” problems [3]). To
our knowledge, our study is the first one to show the feasibility of the EA-
ESN couple for motor control tasks. On addition, previous articles restricted
evolutionary optimization to the reservoir weights [15] or more frequently the
outgoing weights of the ESN. Here we show that optimizing additional ESN
parameters could indeed be efficient.

In a supervised context, the results on a standard time series prediction prob-
lem reach the same precision when optimizing the output weights than the origi-
nal results obtained using quadratic optimization, and further optimizations fail
to improve this precision. For reinforcement learning tasks, the good news is
that the Evolutionary Learning of ESNs works. Moreover, optimizing more than
just the outgoing weights does improve the results. Furthermore, there seems to
be a high dependency of the results on the topology of the reservoir, at least
for the small sizes experimented with here. Hence, the results presented here
do not satisfactorily answer the question of where ESNs stand between the two
extremes of neuroevolution today: evolutionary optimization of the weights of a
fully recurrent neural network (as proposed in [10]) and carefully crafted devel-
opmental systems that evolve the topology of highly efficient NNs for a given
task [17,4]. Further experiments using more reliable test problems, and larger
reservoir sizes, are needed to definitely address this issue. Additionally, a side
take-home lesson from this paper concerns the usefulness of the double pole bal-
ancing problem as a benchmark for evolutionary control in general: the answer
is clearly negative for us now (but had been claimed by others before), at last
with the kind of fitness used up to now to tackle the problem.
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Abstract. We propose an innovative cooperative co-evolutionary com-
putation framework, Dynamic Cooperative Coevolution (DCC), which
provides dynamic coupling of neighboring species for the fitness evalua-
tion of individuals. One feature of DCC is the utilization of local fitness to
achieve a global optimum, which makes it possible for co-evolutionary al-
gorithms to be applied in localized distributed environments, such as net-
work computing. This work is motivated by our interest in autonomous
sensor deployment, where a sensor can only communicate with those
within a limited range. Our experiments show that DCC is effective in
obtaining good solutions under such distributed and localized conditions.

1 Introduction

A wireless sensor network consists of a large number of sensor nodes distributed
over an area of interest. Such networks are capable of observing and sensing the
environment and sending the collected data to a data sink for further processing.
Sensors must be deployed before they can transmit data. The deployment of
static or mobile sensors, hence, is an important basis for sensor networking. A
good placement yields high utilization of the network resources.

Two metrics are frequently used to evaluate the quality of sensor placement.
The first one is sensing coverage, which is the area that the sensors in the network
can monitor collectively. The second one is energy consumption during the sensor
deployment. The energy cost in operating a sensor network includes moving
nodes, sensing events in the environment, and transferring information. The
lifetime of a sensor network is limited by the battery capacity of the nodes. In
many applications where the replacement of battery is impossible, minimizing
energy consumption during the sensors deployment is extremely important.

Autonomous sensor deployment has been studied using a variety of techniques.
Howard et al. [2] described an incremental algorithm which deployed one sensor
at a time. Each sensor node used the positions of previously deployed nodes to
determine its own position. Zou and Chakrabarty [13] proposed a virtual force
based algorithm to expand sensing coverage after the initial random deployment.
The sensor movements were determined by the combined attractive and repul-
sive forces and the movements were coordinated by a cluster head. Wang et al. [9]
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focused on repairing coverage holes when calculating sensors target positions us-
ing three Voronoi diagram based deployment protocols, VEC, VOR, and Mini-
Max. Chellappan et al. [1] proposed a flip-based algorithm to optimize both the
coverage and the total number of flips. More recently, it has been demonstrated
that computational intelligence techniques, such as fuzzy logic [8] and swarm in-
telligence [12] can be effective in sensor deployment.

In this paper, we propose DCC, a dynamic cooperative co-evolutionary frame-
work, for autonomous sensor deployment. The algorithm facilitates sensors to
construct partial network structures based on the local information exchanged
by sensors within their neighborhood, i.e. communication range. Step by step,
the global network structure is constructed to achieve the goal of sensing cover-
age maximization and energy consumption minimization. The paper is organized
as follows. We first give a brief background of cooperative co-evolutionary algo-
rithms in Section 2. In Section 3, the features of DCC are introduced, followed by
a detailed description in Section 4. Simulation studies are presented with results
analyzed in Section 5. Finally, we conclude this paper in Section 6.

2 Cooperative Co-Evolutionary Algorithms

Cooperative co-evolutionary algorithm (CCEA) is a special evolutionary algo-
rithm proposed in [3,7]. Unlike the traditional EA [6], which solves a problem
by searching the entire solution space, CCEA divides the problem into subprob-
lems and searches the sub-solution spaces simultaneously. Since the sub-solution
space is smaller, the algorithm may find better solutions faster.

In CCEA, multiple separate populations are created with their genotypic rep-
resentations having no functional overlapping. Each population represents a dif-
ferent species and an individual therein represents a solution to the subproblem.
Only the individuals of the same species can mate to produce offspring. How-
ever, the fitness of an individual is evaluated on the combination of its genotype
and the representative genotypes of all other species. Each population evolves
for a certain number of generations, which is equivalent to one ecosystem gen-
eration. At the end of each ecosystem generation, one representative is selected
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from each population and their genotypes are shared with other populations for
fitness evaluation. The high-level flow of CCEA is given in Fig. 1, where Ri is
the representative of species i.

There are researchers investigating problem decomposition and the efficiency
of single-best collaboration during the evolution. Wiegand and colleagues [11]
argued that when a problem is divided in such a way that there exists contra-
dictory cross-population epistasis (inter-dependency), single-best collaboration
would not produce good solution. To address the inter-dependency issue, We-
icker and Weicker [10] proposed dynamically merging the species when inter-
dependency of variables in cross populations was detected. Kim and Ryu [5]
went farther by allowing not only merging but also splitting the species when
the inter-dependency no longer exist during the evolution. Our cooperative co-
evolutionary framework also provides dynamic division of species. The main
features of the framework are described in the following section.

3 Dynamic Cooperative Coevolution Framework

DCC is a completely localized distributed algorithm in that each population
only collaborates with populations within its neighborhood for fitness evaluation.
This is an essential requirement for distributed computing where every node in
the system only has a local view of the environment. Global broadcasting of
messages is possible but is considered infeasible due to the high computation
overhead required. To work with such constraints, the following mechanisms have
been developed so that co-evolutionary algorithms can be applied effectively in
localized and distributed environments, such as network computing. The DCC
framework is depicted in Fig. 2.

1. Flexible and dynamic problem division. Under distributed environ-
ments where the location of each node may change dynamically, the parti-
tioning of the problem (i.e. the sub-solution that each population evolves)
also changes. This is contrast to the CCEA where the solution each pop-
ulation evolves is fixed throughout the execution of the algorithm. One
consequence of this dynamic problem division is that the populations that
collaborate for fitness evaluation also change during the algorithm execution.

2. Energy efficient partial fitness evaluation. Because each population
can only assume the availability of local information within its proximity, the
fitness evaluation must tolerate the missing input from beyond the neighbor-
hood. This is a salient contrast to CCEA, where fitness cannot be evaluated
without the information from all other populations.

3. Two operation modes for effective and efficient evolutionary search.
In spirit, the first mode (mode I) is similar to the splitting species proposed
in [5] and the second mode (mode D) is similar to the merging species pro-
posed in [10]. If evolutionary search reaches a local optimum, merging species
helps escaping the local optimum and making the search more effective. If evo-
lutionary search reaches the basin of a global optimum after escaping a local
optimum, splitting species helps the search find the global optimum faster. We
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developed a simple method to detect that a population might have reached a
local optimum by checking the existence of coverage holes in the neighbor-
hood. If one or more holes exist, operation is switched to mode D for 1 ecosys-
tem generation cycle. Alternating these two modes can accelerate the search
process while avoiding local optima.

4 Algorithm Design for Autonomous Sensor Deployment

We have implemented the DCC concept to solve the autonomous sensor de-
ployment problem1. DCC consists of 3 major stages: planning, computing, and
moving. A complete pass of the 3 steps is called an ecosystem cycle. In the
planning stage, a sensor first divides the problem and prescribes a search space
within its proximity in which it will find a target position and move to it at the
end of the current ecosystem cycle. In the computing stage, the sensor executes
a local EA within its search space to calculate the best target position using a
fitness calculated from local information. Finally it moves to the target position
in the moving stage. Once the movement is completed, the new search space for
each sensor is calculated. The sensor may switch its operation mode (described
in the following paragraph) if needed and then starts a new ecosystem cycle to
search for the next position that the sensor would move to next. This process
repeats many times until the specified number of ecosystem cycles is reached.
Fig. 3 gives the high-level flow of the implementation.

After the sensors are randomly distributed in the field initially, one local popu-
lation is used to evolve one sensor’s target position. Each local population can be
executed using one of two operation modes: mode I (Independent) evolves only a
sensor’s position and mode D (Dynamic) evolves the positions of a sensor and
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1 The source code is located in http://www.cs.mun.ca/∼xingyan/ppsn/DCC.tar.gz
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its neighboring sensors. In the first case, the fitness of an individual is evaluated
on the combination of its genotype and the representative genotypes from the
neighboring sensor populations. In the latter case, the fitness of an individual is
evaluated on its own genotype, which contains the positions of a sensor and its
neighboring sensors. Regardless of the operation mode, the fitness of an individ-
ual only covers a partial network of the entire sensor network.

Under mode I, the search space of a local population is two-dimensional: the
x, y location of a sensor. With each local population searching a 2-dimensional
space separately and simultaneously, the global sensor network can be obtained
reasonably fast. However, occasionally sensors may get stuck in a local optimum.
For example, in Fig. 4, S1, S2, . . . , S6 are 6 sensors used to cover an area, where
S4, S5 and S6 have identical location2. It is obvious that the sensing coverage
would increase if some sensors move to the left or the lower region of the field.
However, this would never happen because the current sensor locations give
the best coverage (the union of the sensing region of all sensors), based on the
neighboring sensor positions provided at the beginning of the ecosystem cycle.
In order to obtain locations that give a better coverage than the current ones do,
the neighboring sensors need to have different locations. Mode D provides this
flexibility by allowing both the locations of a sensor and its neighboring sensors
to evolve and helps the populations escape the local optimum.

In mode D, the search space of a local population is multiple-dimensional:
the x, y locations of a sensor and its neighboring sensors. Unlike mode I where
the neighboring sensor locations that are used for fitness evaluation are fixed
throughout the ecosystem cycle, the neighboring sensor locations also evolve.
It models the potential local interactions and uses that to improve the local
estimate of fitness. Note that the evolved neighboring sensor positions are only
used for fitness evaluation. They have no impact on the neighboring sensors’ new
positions, which are only decided by the ”fittest” individual in the neighboring
sensor populations.

The implementation is based on the following assumptions: 1) each sensor
knows its own location. 2) a sufficient number of sensors are deployed so that
they can potentially cover the entire area. 3) each sensor has a sensing range, Rs,
a communication range, Rc, and Rc ≥ 3Rs. DCC algorithm executes a sequence
of ecosystem cycles, where each cycle consists of 3 steps: planning, computing,
and moving. We explain each step in the following sub-sections.

2 We use a square area to indicate a sensor’s sensing region for simplicity.
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4.1 Planning: Problem Division

At the beginning of each ecosystem cycle, the entire deployment area is parti-
tioned based on the current sensor locations in the network: each sub-area is the
sensing region of a sensor, i.e. the circle of radius Rs centered at the position of
the sensor. A local evolutionary algorithm is executed for each sensor to locate
a new position within the region where the sensor will move to at the end of the
cycle. Under the assumption that Rc ≥ 3Rs, the new coverage of a sensor and its
non-neighboring sensors would never overlap no matter where they move to. For
example, in Fig. 5 node a has a communication range Rc = 3Rs and centered
at itself are three circles of radii Rs, 2Rs and 3Rs, denoted by C1, C2, and C3,
respectively. The search space restricts node a to move within C1, which implies
that its new coverage will be restricted to C2. For a non-neighboring node b,
which is out of C3, its sensing coverage will not overlap with the new coverage
of node a, no matter where it moves to within the range of its search space. This
restriction is important for the fitness evaluation described in Section 4.2.

For each local population, the individual with the highest fitness at the end
of each cycle is selected and the sensor position information is exchanged with
all its neighboring sensors (i.e., those within its communication range) popu-
lations through a reliable wireless communication channel. At the initial cycle
where individuals in the population were randomly generated, representatives
are selected randomly.

4.2 Computing: New Position Exploration

This section describes each component of the evolutionary algorithm.

Representation. We used a fixed length array of n elements to represent the
genotype of an individual, where n is the total number of sensors in the net-
work. Each element i (i = 1, 2, . . . , n) is the position {xi, yi} of sensor i in the
deployment area (see top diagram of Fig. 6). Since a sensor only has position in-
formation of its neighboring sensors, the elements in the genotype corresponding
to non-neighboring sensors contain invalid values. To distinguish a neighboring
sensor from a non-neighboring one, a second non-evolvable chromosome of length
n is used (see bottom diagram of Fig. 6). There, a value 0 indicates that the
corresponding element in the first chromosome is a non-neighbor while 1 indi-
cates that it is a neighbor and � indicates the sensor itself. This 2-chromosome
genotype representation provides the flexibility to facilitate the dynamic prob-
lem division explained in Section 3. When a sensor is switched from being a
neighbor to a non-neighbor (or vice visa) for a particular sensor after movement,
an update of the second chromosome can reflect such change.

*

x yx2 y2 y31 x31x y n n

......

......

1 1 0

Fig. 6. The 2-chromosome genotype representation
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Fitness Evaluation. The fitness of an individual (sensor position) is deter-
mined by the total sensing coverage induced by the position and the travel
distance between this and the current position of the sensor. Assume the sens-
ing region of node i is Ai (i = 1, 2, . . . , n), each Ai is a subset of the entire
deployment area U , i.e. the universe. For a given node, the sensing coverage is
the union of its sensing area and the sensing areas of its neighboring sensors.
Let H = 〈h1, h2, . . . , hn〉 be the second chromosome of the sensor’s genotype. To
calculate its coverage, we define a companion vector H = 〈h1, h2, . . . , hn〉, where
hi ∈ {∅, U}, for each H. Specifically, hi = U if hi ∈ {1, �} and hi = ∅ if hi = 0.
Thus, the coverage unioned over the neighborhood of a sensor is:

n⋃
i=1

(
hi ∩Ai

)
For an individual with sensor position which is d away from the current position,
its fitness F is:

F =

∣∣∣∣∣
n⋃

i=1

(
hi ∩Ai

)∣∣∣∣∣− w × d,

where w is a weight parameter to adjust the tradeoff between coverage and
movement. Although the fitness evaluation of DCC only uses local information
from its neighboring nodes, it will be shown (see Section 5) that the computed
fitness value is able to drive the evolutionary search to find target positions that
give good overall coverage and requires a small amount of energy consumption.

Selection and Genetic Operations. Among a population of P individuals,
the |Q| fittest are selected as parents, denoted by Q, to reproduce the same
number of offspring Q′ via arithmetic crossover. The Q individuals are paired
based on their ranks: the first rank is paired with the second rank, the second
rank is paired with the third rank and so on. The arithmetic crossover takes the
average of the two parents’ gene values as the gene value of its offspring.

Out of P ∪ Q′, the |P | fittest individuals survive and are carried over to
the next generation. This process continues for g generations and the fittest
individual at the end is the target position where the sensor moves itself to.

4.3 Moving: Automatic Sensor Relocation

Once the new position of a sensor is determined, the sensor moves to that location
automatically using its actuation component. Then it broadcasts its new position
and prepares for the next cycle. In some network scenarios, the assumption
of Rc ≥ 3Rs can not be satisfied. In this case, the local coverage can not be
calculated precisely. To alleviate this situation, an additional broadcast of the
new location is necessary before the sensor starts to move to the new location.
Further, a limited-scope flooding could be used alternatively.

5 Experimental Analysis

We used the implemented DCC algorithm to simulate the autonomous sensor
deployment under various initial conditions: sensors are distributed uniformly
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Table 1. Simulation parameters

Parameter Setting Parameter Setting

Deployment area size U 1002, 2002, 3002(m2) Sensing range Rs 20m
No. of sensor nodes n Communication range Rc 60m
area 1002m2 10, 12, 14, 16; Population size |P | 10
area 2002m2 40, 50, 60, 70; No. of offspring |Q| 5
area 3002m2 70, 80, 90, 100 No. of runs 30
No. of eco cycles ge 30 No. of gen in each eco cycle g 5

to three different sizes of field: 100 × 100m2 (small), 200 × 200m2 (medium)
and 300 × 300m2 (large). For the small size field, 10, 12, 14 and 16 sensors are
deployed; for the medium size field, 40, 50, 60 and 70 sensors are deployed; for
the large size field, 70, 80, 90 and 100 sensors are deployed. Table 1 summarizes
the parameter values used to carry out our simulation.

We use 3 metrics to evaluate the experimental results averaged over 30 runs:
moving distance, convergence time and sensing coverage. Moving distance is
the average distance that a sensor in the network has to travel from its initial
to final position. Convergence time is the number of ecosystem cycles it takes
for all sensor populations to converge, i.e. the best individual fitness stopped
improving. Sensing coverage is the percentage of the deployment field that is
covered by the deployed sensors. Also, to select a weight parameter (w) that
balances the evolutionary force toward solutions that give large coverage and
small moving distance, we conducted a preliminary study and chosen w = 1 [4].

5.1 Simulation under Mode I Only

We study mode I performance under different network sizes (small, medium,
large) using a different number of sensors as that given in Table 1. Fig. 7 shows
that the global network coverage improves rapidly during the first few ecosystem
cycles and the populations converge around generation 7. Fig. 8 gives the global
network coverage and the moving distance over time for one run on a medium size
field. It shows that the coverage increases while the moving distance decreases as
the evolution progresses. The selected w (1) is able to balance the two conflicting
objectives and direct the evolutionary search to find a good solution.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  1  2  3  4  5  6  7  8  9  10

Co
ve

rag
e

Number of ecosystem cycles

100x100 vs 12
200x200 vs 50
300x300 vs 80

Fig. 7. Coverage improvement

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  1  2  3  4  5  6  7  8  9  10
 0

 100

 200

 300

 400

 500

Ne
tw

or
k 

co
ve

ra
ge

M
ov

in
g 

di
st

an
ce

Number of ecosystem cycles

Coverage
Moving distance

Fig. 8. Coverage vs. moving distance



Dynamic Cooperative Coevolutionary Sensor Deployment 233

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

10/40/70 12/50/80 14/60/9016/70/100

C
ov

er
ag

e

Number of sensors

(a) Coverage

 0

 2

 4

 6

 8

 10

 12

 14

10/40/70 12/50/80 14/60/90 16/70/100

E
co

sy
st

em
 c

yc
le

s

Number of sensors

(b) Convergence time

 0

 5

 10

 15

 20

 25

 30

10/40/70 12/50/80 14/60/90 16/70/100

M
ov

in
g 

di
st

an
ce

Number of sensors

(c) Moving distance
100x100_area
200x200_area
300x300_area

Fig. 9. Performance of Mode I evaluated by 3 different metrics

When the best individual in all populations stopped improving, the 3 metrics
were evaluated (see Fig. 9). The general observation from these experiments is
that, as the sensor nodal density increases, so does the induced network coverage,
while the convergence time and moving distance decrease. This is reasonable as
a larger number of sensors in the network makes it easier to cover a wider area
of the deployed field under a smaller amount of time and moving distance.

5.2 Simulation under the Alternation of Mode I & D

To investigate the benefit of mode D in helping the populations escape local op-
tima and deliver better solutions, we carried out two sets of experiments: one op-
erated mode I only and the other alternated mode I & D with 5 and 1 ecosystem
cycles intervals, i.e. 5 mode I cycles followed by 1 possible mode D cycle. This al-
ternation was selected because a population is not likely to reach a local optimum
during the first 5 cycles, hence should be operated under mode I. At the end of the
5th cycle, the best individual in each population is checked for coverage holes (an
area that is not covered by any sensor in its neighborhood). If there is any hole,
the local GA is switched to mode D for 1 cycle and switched back to mode I the
following cycle, since mode I runs faster than mode D (see Section 4). This check
is carried out for each sensor population. The average coverage of 30 runs and the
numbers of runs achieving 100% coverage are given in Table 2. Overall, both se-
tups provide very good coverage. Nevertheless, alternating mode I & D delivers a
higher number of runs that produced 100% coverage.

To validate our hypothesis that mode D improves performance by helping
the populations escape local optima, we conducted another experiment with

Table 2. Coverage Comparison Between Mode I and Mode I & D

Mode I Mode I & D

sensors coverage 100% cover coverage 100% cover

40 98.50% 0 99.33% 1

50 99.44% 0 99.88% 15

60 99.63% 0 99.98% 25

70 99.73% 0 99.99% 27
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10 sensors initialized to locations that give a local optimum coverage (64%)
and deploying them to a medium size field. The simulation was carried out by
alternating 2 cycles of mode I followed by 1 possible cycle of mode D. The best
global fitness (see Fig. 10) shows that after 2 cycles of no fitness improvement, the
fitness declined after the execution of mode D, which is caused by a large moving
distance (see Fig. 11), indicating the sensor has escaped the local optimum. After
that, the global fitness starts to climb and eventually reaches 100% coverage.

6 Conclusions

We have presented an innovative cooperative coevolutionary framework, DCC,
for optimization tasks in localized and distributed environments. By supporting
dynamic problem division, partial fitness evaluation and 2 operation modes, DCC
is shown to be effective in the autonomous sensor deployment task, where high
coverage and low energy consumption were achieved in a short period of time.
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P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002.
LNCS, vol. 2439, pp. 257–268. Springer, Heidelberg (2002)

12. Wu, X., Cho, J., d’Auriol, B.J., Lee, S.: Mobility-assisted relocation for self-
deployment in wireless sensor networks. IEICE Trans. 90-B(8), 2056–2069 (2007)

13. Zou, Y., Chakrabarty, K.: Sensor deployment and target localization based on
virtual forces. In: Proceedings of IEEE INFOCOM, pp. 1293–1303 (2003)



On the Run-Time Dynamics of a Peer-to-Peer

Evolutionary Algorithm

J.L.J. Laredo1, A.E. Eiben2, M. van Steen2, and J.J. Merelo1

1 Department of Architecture and Computer Technology
University of Granada, Spain

{juanlu,jmerelo}@geneura.ugr.es
2 Department of Computer Science

Vrije Universiteit Amsterdam, The Netherlands
{gusz,steen}@cs.vu.nl

Abstract. In this paper we propose an improvement on a fully dis-
tributed Peer-to-Peer (P2P) Evolutionary Algorithm (EA) based on au-
tonomous selection. Autonomous selection means that individuals decide
on their own state of reproduction and survival without any central con-
trol, using instead estimations about the global population state for de-
cision making. The population size varies at run-time as a consequence
of such a decentralized reproduction and death of individuals. In order
to keep it stable, we propose a self-adjusting mechanism which has been
shown successful in three different search landscapes. Key are the estima-
tions about fitness and size of the population as provided by a gossiping
algorithm. Such an algorithm requires several rounds to collect the in-
formation while the individuals have to wait for synchronization. As an
improvement, we propose a completely asynchronous EA which does not
need waiting times. The results show that our approach outperforms
quantitatively the execution time of the synchronous version.

1 Introduction

Spare cycles among interconnected nodes constitute a free and powerful source
for high performance computing, Peer-to-Peer (P2P) systems form an alternative
to jointly constitute a single virtual computer. Nowadays, there are successful
cases of virtual supercomputers based on volunteers sharing their CPU idle cycles
(e.g. the BOINC project [1]).

However, Evolutionary Computing has just recently entered this arena and
there are still many challenging issues. The DREAM project was one of the
pioneers on distributed P2P EAs coming up in [2] with the equally named
DREAM framework. Despite the P2P approach, the island-based parallelization
of DREAM was shown in [9] to be insufficient for tackling large-scale decentral-
ized scenarios.

Two of our most recent works, [12] and [8], have moved the focus from dis-
tributed P2P EAs into finer-grained approaches within the field of spatially
structured EAs. As stated in [11], a spatially structured EA can be modeled as

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 236–245, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



On the Run-Time Dynamics of a Peer-to-Peer Evolutionary Algorithm 237

a graph in which the vertices are individuals and edges represent relationships
between them. Obviously, a graph can be easily mapped to a network topology
and consequently a spatially structured EA can be easily distributed.

In this paper, we analyse a distributed P2P EA in which the population
structure is defined by a P2P overlay network. The network keeps small-world
properties by means of the gossiping protocol Newscast [6]. Such a kind of small-
world graphs have been shown, by Giacobini et al. in [4], to be suitable as
population structure for an EA, outperforming panmictic approaches.

But population structure is not the only issue in a P2P EA. The absence of
a central control requires a mechanism to convey global estimations into each
local individual. This way, individuals can make local decisions about their status
in a decentralized evolution. In order to get estimates about population fitness
and size, we follow the counting algorithm proposed in [12] which deploys the
aggregation protocol described in [5]. It consists of an iterative gathering of
information that after several time steps (or rounds) becomes accurate enough
to proceed with local decision making.

Making a local decision in EAs is not straightforward when the parallelization
grain is a single individual. Despite crossover and mutation operators requiring
one or two individuals, selection involves all of them, or at least a few (such as
in tournament selection).

In fact, the autonomous selection presented by Eiben et al. in [3] uses lo-
cally available information about global estimations (e.g. those provided by the
counting algorithm) and determines the selection probabilities for each individ-
ual with a locally executable function based on its own fitness against averaged
global fitness. Subsequently, the fittest individuals survive for reproduction while
the worst are erased from population. The consequence of such a decentralized
process may lead to a run-time population resizing which could get out of control.

In [12], the authors overcame the issue of population size implosions/explosions
using an self-adjusting mechanism for controlling the parameters of a sigmoid
function (i.e. the seminal function for autonomous selection). Unfortunately, pre-
liminary experiments in different search landscapes have shown sigmoid to be very
sensitive under different roughness conditions. Hence, it turns out that keeping
the population size under control requires of a hand-made calibration of the self-
adjusting mechanism.

Our proposal focuses on the following improvements over the work presented
in [12]:

1. We propose a self-adjusting mechanism able to keep the population size
stable in different search landscapes. Instead of the sigmoid, we use a simple
linear function and a single adjustable parameter, ρ, which self-regulates the
local selection pressure by controlling the function slope.

2. In order to get accurate global estimations, the counting algorithm spends
several rounds in which the adaptation stage has to wait. In spite of such
a necessary synchronization for autonomous selection, we propose an asyn-
chronous EA that uses the counting rounds to evolve a population of indi-
viduals’ replicas. Each replica evolves with those in its neighbourhood using
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tournament selection. If the original individual survives the autonomous se-
lection process, the evolved replica replaces it. As a consequence of reducing
the ratio of rounds per evaluations, the execution time of the algorithm is
improved.

The efficiency of our approach quantitatively outperforms previous large-scale
distributed EAs. The key is the combination of local evolution of individuals’
replicas and global resynchronization of the decentralized EA.

The rest of the paper is structured as follows. The overall model is presented
in Section 2. We propose, in Section 3, a test suite composed of three real-coding
functions with different roughness degree. In Section 4, we deduce from the run-
time dynamics that the accuracy of the estimations is good enough to keep the
population size stable. Finally, we reach some conclusions and propose some
future work lines in Section 5.

2 Proposed Model

Algorithms 1 and 2 show respectively the pseudo-code of the algorithm and the
work-flow of an iteration.

Algorithm 1. Outline of the self-adjusting distributed evolutionary algorithm
initialize individual
individualreplica ⇐ individual
repeat

if adaptation stage then
exchange information by gossiping
estimate population size, average fitness and best fitness
evolve individualreplica within the neighbourhood
update selection parameters by adaptation

end if
if resetting stage then

if individual is not able to survive then
die

else
individual ⇐ individualreplica

new individual ⇐ reproduction(individual + random individual)
end if

end if
until die or another stop criterion

During the adaptation stage (n+1 first rounds), each individualreplica evolves
within its neighbourhood using tournament selection. This stage is required for
estimations over the decentralized population. In the resetting stage (n+ 2 time
step), the fittest individuals survive, acquire the evolved genome of their own
individualreplica and generate a new individual. Additionally, the values of the
counting algorithm are reset and the number of rounds (n) is estimated for the
next iteration.

2.1 Counting Algorithm

The counting algorithm described in algorithm 3 was presented in [12] and ex-
tends a P2P aggregation mechanism described in [5]. It provides estimations
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Algorithm 2. Outline of an iteration of the distributed algorithm
1 to n time steps: Gossiping rounds

Exchange information with neighbours
evolve individualreplica within the neighbourhood
Perform the counting algorithm

n + 1 time step: Adaptation
Call the adaptation process
Update the parameters for selection

n + 2 time step: Resetting
Call survive process
Either die or individual ⇐ individualreplica

Reset the values for the counting algorithm
Calculate steps needed (n) for next iteration

about the current best fitness, average fitness and total size of the population
to each individual. The information is iteratively flooded among the nodes (in-
dividuals) and after several iterations (rounds) estimations are available to the
nodes. The number of rounds needed is estimated as a logarithmic function of
the total size of the population, growing as the size increases (i.e. a population
size of 100 individuals would need 12 rounds for estimations while 1000 would
need of 18).

Algorithm 3. Counting algorithm
initially
msg tag ← id /*all nodes have unique identifier*/
size est ← 1 /*initially a node knows that only it exists*/
avg est ← fitness value
compute estimates(size est, avg est, msg tag)
repeat

pull estimates(size estp, avg estp, msg tagp) from neighbor p
if (msg tag < msg tagp ) then

/*abort own counting process*/
msg tag ← msg tagp

size est ← 0
else if (msg tag > msg tagp ) then

/*abort other counting process*/
size estp ← 0

end if
size estp ← size est+size estp

2

avg estp ← avg est+avg estp
2

push estimates(size est, avg est, msg tag) to neighbor p
until desired number of gossiping rounds

Each node starts an estimation process for the system values but just the
process with the highest identifier survives.

2.2 Adaptation and Survival

The autonomous selection determines the probability of survival for each indi-
vidual by the following equation:

P (x) = linearρ(Δf(x)) =
1− ρ

Δf(xbest)
Δf(x) + ρ (1)
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Fig. 1. Linear function for different values of the adjustable parameter ρ

where Δf(x) is the deviation of the fitness with respect to the average fitness,
Δf(x) = f(x)− f . The function assigns a probability of survival equal to 1.0 for
the best individual P (Δf(xbest)) = 1.0.

Additionally, the slope of the linear function is determined by the average fit-
ness f , with Δf = f − f = 0, where the probability of survival is ρ, (P (Δf ) = ρ).
ρ is an adjustable parameter within the range [−0.1, 0.55]. This range has

been empirically calibrated in preliminary experiments to prevent population
implosions/explosions. The self-adjusting procedure is shown in algorithm 4.

Algorithm 4. Outline of the self-adjusting procedure
P ⇐ Initial Population Size
ρ ⇐ 0.5, ρ ∈ [−0.1, 0.55]
repeat

if adaptation stage then
Pestimated ⇐ Counting Algorithm
if Pestimated > P then

ρ = ρ − 0.1
else if Pestimated < P then

ρ = ρ + 0.1
end if

end if
until stop criterion

Initially ρ = 0.5, which would probabilistically maintain the population size
if we assume normality conditions in the fitness distribution. If the population
size is bigger than the initial population, ρ is decreased by 0.1, otherwise ρ is
increased by 0.1 (such a value has been empirically calibrated). From the different
values of ρ (as shown in Figure 1) the algorithm self-adjusts the ratio of survival
by changing the selection pressure.

3 Experimental Setup

In order to test the run-time dynamics of the algorithm, we have conducted
experiments in the P2P simulator PeerSim [7]. We have chosen as a benchmark
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three real-coding test functions from the test suite proposed by Suganthan et
al. in [10] (Shifted Sphere function, Schwefel function and Shifted Rotated Ras-
trigin’s function). This set includes different search landscapes derived from a
sphere, the Schwefel problem and the Rastrigin multimodal function. It is im-
portant to note that our research objective is not to outperform existing results.
Instead, we are initially interested in exploring the extent in which fully decen-
tralized solutions can be successful. Therefore, to consider an EA run successful
we allow an error margin of 1 for all test functions. Additionally, we have set
the size of the problem instances to a medium degree of difficulty for a GA (i.e.
chromosome sizes are 30, 10 and 10 respectively).

As a baseline for comparison, we have used the distributed P2P EA proposed
in [12] to which we will refer as synchronous version from here on, an asyn-
chronous version using a fixed population size and tournament selection and a
standard generational 1-elitism GA. The adaptation stage of the synchronous
version has been set with the self-adjusting mechanism proposed in Section 2.2,
the rest of the parameter setup is shown in Table 1.

Table 1. Parameters of the algorithms

Initial Population Size 200 individuals
Recombination BLX-0.5 Crossover, pc = 1.0
Mutation BGA, pm = 0.01
Initial value of ρ 0.5
Termination condition optimum found with the required accuracy

or 100000 evaluation spent
or population size = 0 or population size > 600

Selection Parents (original) Autonomous Selection
Selection Parents (replica) Binary Tournament + individual

4 Experimental Results

Figure 2 shows the dynamics of the counting algorithm and the self-adjusting
mechanism in the control of the population size.

On one hand, the counting algorithm provides accurate estimations about the
population size every n rounds (estimations are shown as circles). On the other
hand, the self-adjusting mechanism keeps the population size stable by fluctuat-
ing around the pre-established initial size. From the observation we can see how
the peaks grow when the algorithm is getting close to the problems’ optima (the
convergence is represented in Figure 3). The most probable hypothesis for these
peaks is that the distribution of Δfs is biased by the global optimum. Hence, the
distribution would lose normality conditions as it is getting close to the optimum
with the consequent lack of effectiveness in the self-adjusting mechanism.

There is an important difference between our proposal and the synchronous
version. In our approach, the population size is fixed during the evolution of in-
dividuals’ replicas. Afterwards, the population size adjusts in the resynchroniza-
tion period. Figure 2 shows that the population size does not explode/implode,
which is coherent with the previous formulated hypothesis: Once that the algo-
rithm is approaching the problem optimum, local evolution yields success before
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Fig. 2. Dynamic of the population size in the synchronous and asynchronous versions
during one run (left) and respective values from ρ (right). From top to bottom the
run-time adjustment for the three functions. Circles represent the averaged estimation
of the population size provided by the counting algorithm.

an explosion in the population size. In fact, such an hypothesis will have to be
validated in future works.

Not only is our method able to keep in check the population size, but it
is also able to find the optimum with the require accuracy. Figure 3 depicts
the convergence curves of the best and average fitness of our proposal and the
respective estimations by the counting algorithm. The counting algorithm shows
a very accurate estimation for the best fitness while the estimated average fitness
is not so accurate. The reason is that the decentralized aggregation of the average
fitness is a more complex process than a simpler flooding of the best solution by
gossiping. Nevertheless, it is important to note here that despite the estimation
errors, the algorithm is robust enough to converge to the problem solutions.

Finally, Figure 4 shows the best fitness curves of our asynchronous approach,
the globally synchronized one presented in [12], the distributed version using a
fixed population size and tournament selection and the standard GA. Each curve
depicts the number of rounds needed to improve the fitness (i.e. number of cycles
in simulator driven experiments). All approaches reach success criteria, however,



On the Run-Time Dynamics of a Peer-to-Peer Evolutionary Algorithm 243

0.5 1 1.5 2 2.5

x 10
4

−2

0

2

4

6

8

10
x 10

4 Sphere

F
it

n
es

s

Evaluations

 

 

0 2 4 6

x 10
4

−2

0

2

4

6

8
x 10

4 Schwefel

F
it

n
es

s
Evaluations

0.5 1 1.5 2 2.5 3

x 10
4

−350

−300

−250

−200

−150
Rastrigin

F
it

n
es

s

Evaluations

Optimum
Best Fitness
Avg. Fitness
Estimated fitness

Fig. 3. Convergence curves in the sphere, Schwefel and Rastrigin test functions. Circles
represent the averaged estimation of the best and average fitness.

our proposal needs ∼ 90% less time running than the synchronous approach
and ∼ 99% less than the standard GA which follows a sequential approach. In
fact, most of the cycles in [12] are employed in the counting algorithm, being
useless from an evolutionary point of view. Therefore, the improvement consists
in making those idle cycles useful, we use the local evolution of individuals’
replicas to that end. With respect to the distributed approach using a fixed
population size, the times are equivalent. Nevertheless, the main drawback of
the fixed population size approach is not being resilient to nodes failures.
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Fig. 4. Best fitness convergence curves for the asynchronous and synchronous versions,
a distributed approach using a fixed population size and a standard GA. From left to
right, the sphere, Schwefel and Rastrigin test functions. On the x-axis, simulator cycles
stand for the number of rounds that best fitness needs to improve.

5 Conclusions and Future Works

In this paper we have proposed an asynchronous and distributed Peer-to-Peer
Evolutionary Algorithm. The whole process is tackled in a decentralized manner
in which every individual decides on its own state of reproduction and survival



244 J.L.J. Laredo et al.

based on autonomous selection and global estimations. The variability on the
population size is adjusted by a self-adjusting mechanism that maintains the size
around the initial given value. In order to study the run-time dynamics of the
algorithm, we have proposed a test suite of three different search landscape with
different roughness degree. For all test functions our new EA (using adaptively
controlled selection) was able to find the optimum with the required accuracy.

The proposal also includes an asynchronous replica mechanism which avoids
the global synchronization presented in [12]. The execution time has been clearly
outperformed which is key in a parallel environment. Therefore, we conclude
that our proposal is a feasible approach towards a fully decentralized EA with
a special focus on P2P.

There are still many challenge to tackle concerning P2P EAs that will have
to be studied in future works. We plan to dive in the algorithmic performance
and compare our method with other spatially structured algorithms (not focused
in P2P necessarily). Additionally, a study on a real environment would provide
feedback on actual problems of full decentralization.
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Abstract. Mixed-Integer Evolution Strategies (MIES) are a natural ex-
tension of standard Evolution Strategies (ES) for addressing optimization
of various types of variables – continuous, ordinal integer, and nominal
discrete – at the same time. Like most Evolutionary Algorithms (EAs),
they experience problems in obtaining the global optimum in highly mul-
timodal search landscapes. Niching methods, the extension of EAs to
multimodal domains, are designed to treat this issue. In this study we
present a dynamic niching technique for Mixed-Integer Evolution Strate-
gies, based upon an existing ES niching approach, which was developed
recently and successfully applied to continuous landscapes. The new ap-
proach is based on the heterogeneous distance measure that addresses
search space similarity in a way consistent with the mutation operators
of the MIES. We apply the proposed Dynamic Niching MIES framework
to a test-bed of artificial landscapes and show the improvement on the
global convergence in comparison to the standard MIES algorithm.

1 Introduction

Evolutionary Algorithms (EAs) have the tendency to converge to a single solu-
tion [2,19], even if the search landscape has multiple globally optimal solutions.
This is due to effects such as genetic drift [12] , fast takeover [2], and disruptive
recombination [10]. Population diversity loss in EAs does not only make it diffi-
cult to obtain multiple global optima, but may also prevent the algorithm from
locating the global optimum.

Niching techniques have been proposed to counteract population diversity loss
in EAs. They support parallel convergence into multiple attraction basins in a
multimodal landscape within a single run. Niching techniques have been mainly
developed within the framework of Genetic Algorithms (GAs) in the past decades
(see, e.g. [16] and [19]), and have recently also received increasing attention from
the Evolution Strategies (ES) community [10,15,17,18].

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 246–255, 2008.
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The application of niching in ES proved to be very successful in improving
convergence reliability and solution diversity in multimodal continuous opti-
mization. However, it remains an open question, whether niching also can be
incorporated into mixed-integer search spaces, which are of great practical rele-
vance [3]. In this paper we investigate, whether niching is also beneficial in this
problem domain by combining the niching approach by Shir et al. [15] with the
Mixed-Integer Evolution Strategy (MIES) [4,7].

A crucial step will be the definition of an appropriate metric that is compatible
with the neighborhood structures used by the search operators of the Mixed-
Integer Evolution Strategies. Thereby we aim for a coherent algorithm design
which will make a theoretical analysis of the algorithm more accessible. It is
a known drawback that the MIES has difficulties to converge to global optima
of highly multimodal landscapes [6]. Based on selected test problems, such as
Mixed-Integer NK Landscapes [6] and Barrier Functions [7], we study whether
the introduction of niching improves the MIES performance on such landscapes.

The paper is structured as follows: In Section 2 we review the Dynamic Nich-
ing ES for continuous multimodal optimization. Then, in Section 3, the Mixed-
Integer Evolution Strategy is described. A combination of dynamic niching and
Mixed-Integer Evolution Strategies using heterogenous distance measures will
be proposed in Section 4. Experiments on multimodal mixed-integer landscapes
will be reported and discussed in Section 5. Finally, in Section 6, we summarize
conclusions and discuss open questions for future research.

2 Dynamic Niching Evolution Strategies

Next, we outline and discuss the Dynamic Niching ES Algorithm [14] in detail.
The algorithm starts with the initialization of q niches with μ individuals and
their evaluation. Then, the following loop is repeated until a termination criterion
is met: Firstly, for each niche the algorithm generates λ offspring based on the μ
parents. Depending on the instantiation of the algorithmic ES kernel, mutation
and recombination operators are employed for this purpose.

By restricting recombination to the dynamically updated niches, the algo-
rithm enforces a mating restriction scheme which allows competitive mating
only within the niches. This is done to prevent disruptive effects of the recombi-
nation operator [10]. The concept of fixed mating resources is strictly enforced:
For every niche the same number of offspring is generated, also referred to as the
niche hosting capacity. This measure is taken in order to prevent genetic drift
effects, as described e.g. in [12].

Upon the fitness evaluation of the new individuals, offspring and parent indi-
viduals are merged into one population comprising now q × (μ+ λ) individuals.
The algorithm then employs a sub-routine for dynamically identifying the vari-
ous fitness-peaks of every generation (which uniquely define the niches) and then
assigns each individual to a niche. The classification into niches is carried out in
a greedy manner, by means of the so-called Dynamic Peak Identification (DPI)
algorithm [9]. The latter is outlined as Algorithm 1.
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Besides the global selection phase taking place in the niche forming process,
which will be described later, a local environmental selection takes place within
each niche, that enables step-size adaptation to the local topography of the
niches. If the number of individuals in a peak set is less than μ, the algorithm
creates new samples in the search space and adds them to the niche until it
contains μ individuals. A summary of the algorithm is given in Algorithm 2.

Algorithm 1. Dynamic Peak Identification (DPI)
in: population Pop, # niches q, niche radius ρ, out: peak sets DPS

1: Sort Pop in decreasing fitness order
2: i := 1
3: NumPeaks := 0
4: DPS := ∅ {Set of peak elements in population}
5: while NumPeaks �= q and i ≤ popSize do
6: if Pop[i] is not within sphere of radius ρ around peak in DPS then
7: DPS := DPS ∪ {Pop[i]}
8: NumPeaks := NumPeaks + 1
9: end if

10: i := i + 1
11: end while

The number of expected niches, q, is given as input to the algorithm. The
distance calculation is implemented with the Euclidean metric in the decision
parameter space since all parameters are continuous. The niche radius ρ itself is
approximated a-priori with Eq. 1, and remains fixed during the run.

ρ =
r

n
√
q

with r =
1
2

√√√√ n∑
k=1

(xk,max − xk,min)2 (1)

with xk,min and xk,max the lower and upper boundary values of parameter xk.

3 Mixed-Integer Evolution Strategies

Mixed-Integer Evolution Strategies (MIES) are a special variant of ES, intro-
duced in [4], designed to tackle so-called mixed integer optimization problems
(MIOP). In MIOP different types of discrete and continuous optimization vari-
ables occur in combination. MIES deal with three variable types:

Continuous Variables. Floating point numbers the value of which can be ad-
justed gradually within a range.

Integer Variables. Parameter values that have one or two nearest neighbors
and thus a minimal variation can be defined.

Nominal Discrete Variables. There is no metric or ordering defined on the
finite domain of this discrete variable.
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Algorithm 2. Niching-ES.
in: Number of niches q, Niche radius ρ, out: optimized solution(s)

1: Initialize q equally-sized niches of size μ randomly
2: Evaluate all new individuals in all niches
3: while Termination criteria not full filled do
4: for every niche i = 1 . . . q do
5: generate λ offspring from μ parents
6: Evaluate fitness of λ offspring individuals
7: Update best found solution(s)
8: end for
9: Combine all μ + λ individuals from niches into one population

10: Compute the Dynamic Peak Set with DPI (Algo. 1)
11: Select μ best individuals per niche
12: for every niche i = 1 . . . q do
13: if μi = number of individuals in niche i < μ then
14: Generate and Evaluate μ − μi new individuals
15: end if
16: end for
17: end while

These variable types differ in two aspects: (1) The cardinality of their domain:
While the continuous domain contains over-countable many solution, the domain
of the integer parameters is either countable or finite, depending on the chosen
range, and the domain for the nominal parameters is finite. (2) The metrics that
are used to describe similarity of solution vectors. Unless further knowledge of
the problem is available, three distance measures seem appropriate for measuring
similarity between solution vectors in a straightforward manner: In the continu-
ous domain this is the Euclidean distance, for the integer domain the Manhattan
distance (i.e. the sum of absolute vector differences). For the nominal discrete
parameters the Hamming distance or overlap distance that counts the number
of positions in which two tuples of nominal discrete variables differ may serve as
a straightforward choice of a metric.

In order to deal with these different variable types Mixed-Integer Evolution
Strategies use specialized operators. In contrast to the mutation operator in
standard evolution strategies, the mutation procedure for mixed-integer spaces
works with a heterogeneous distribution when sampling an offspring solution
based on a parent solution, combining the �2 symmetric normal distribution for
continuous variables [13], the �1 symmetric difference of two geometric distri-
butions for integer variables [11], and a uniform distribution for the nominal
discrete values [2]. To scale mutation strength and enable self-adaptation, step
size variables are introduced for continuous and integer variables, and mutation
probabilities for the nominal discrete variables. For a more detailed description
of the MIES we refer the reader to [7].
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4 Dynamic Niching for Mixed-Integer ES

To incorporate MIES into the Dynamic Niching ES framework we must define
a proper distance metric for the mixed-integer space. For continuous spaces the
Euclidean metric seems to be a straightforward choice, while for nominal discrete
spaces an overlap metric seems suitable, as it does not assume any continuity of
the objective function w.r.t. a particular ordering of the domain. For two integer
parameter vectors the distance can be measured by means of the Manhattan
distance in a straightforward way. This is the accumulated distance when com-
puting the difference of single parameter values of the variables. In combination
with the MIES the choice of the Manhattan distance is also in conformity with
the symmetry assumptions used in the design of the mutation operator, which
generates samples from an �1 symmetric distribution. We combine the different
metrics using the Heterogeneous Euclidean-Overlap Metric (HEOM) approach
by Wilson and Martinez [20].

Let Δr(r, r′) =
∑nr

i=1(ri − r′i)
2, Δz(z) =

∑nz

i=1 |zi − z′i|, and Δd(d,d′) =∑nd

i=1 I(di �= d′i) with I(true) = 1, I(false) = 0.
Then the combined heterogeneous metric Δh for h = (r ◦ z ◦ d) reads:

Δh(h,h′) =
√
Δr(r, r′) +Δz(z, z′) +Δd(d,d′). (2)

By using the aforementioned heterogeneous metric, the niche radius ρ in
mixed-integer search space now can be approximated as follows:

ρ =
r

n
√
q

with r =
1
2

√√√√ n∑
k=1

Δx(xk,max, xk,min) (3)

Here xk,min and xk,max denote the lower and upper boundary values of param-
eter xk and q denotes the number of peaks in the solution space. We assumed
that every niche with radius ρ occupies 1

q -th of the entire volume of the space.

5 Test Functions and Experimental Results

To investigate the behavior of our algorithm, we applied it to two carefully
designed mixed-integer multimodal functions in various dimensions. Specifically,
we are interested in the global convergence. Performance comparison between
Dynamic Niching MIES with standard MIES is also presented.

5.1 Barrier Functions

Barrier functions, introduced in [7], create mixed-integer optimization problems
with a scalable degree of ruggedness (determined by parameter C) by generating
an integer array A using Algorithm 3.
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Algorithm 3. Algorithm to generate array A for the Barrier function.
A[i] = i, i = 0, . . . , 20
for k ∈ {1, . . . , C} do

j ← random number out of {0, . . . , 19}
swap values of A[j] and A[j + 1]

end for

The barrier function fbarrier is computed as:

fbarrier(r, z,d) =
nr∑
i=1

Ai["ri#]2 +
nz∑
i=1

Ai[zi]2 +
nd∑
i=1

Bi[di]2 → min (4)

nr = nz = nd = 5, r ∈ [0, 20]nr ⊂ Rnr ,

z ∈ [0, 19]nz ,d ∈ {0, . . . , 19}nd

Here,Bi[0], . . . , Bi[19] denotes a set of i permutations of the sequence 0, . . . , 19,
each of which is chosen randomly before the run. This is done to prevent the nom-
inal value di from being quantitatively (anti-)correlated with the value of the ob-
jective function fbarrier which would contradict with the assumption that di are
nominal values.

The ruggedness of the resulting barrier function with regard to the integer
space is controlled by parameter C with higher values of C resulting in more
rugged landscapes with many barriers. To illustrate the influence of C on the
geometry of the function we included plots for two-variable instantiations of the
barrier function in Figure 1.

To test the Dynamic Niching MIES and standard MIES algorithm we gener-
ated barrier functions for C = 20, C = 200, C = 2000 and C = 5000 and ran
both the Dynamic Niching MIES and a standard MIES algorithms 20 times with
different random seeds. For the Dynamic Niching MIES we used 5 niches with
μ = 15 and λ = 75 for each niche. For the MIES algorithm we used a (75 + 500)
strategy thereby making sure that the number of parents, offspring and fitness
evaluations per generation is the same for both algorithms.

The results of the experiments are displayed in Figure 2. Although the Dy-
namic Niching MIES converges a little slower than the standard MIES algorithm
it does reach the same performance in the end. In the case of C=2000 Dynamic
Niching MIES performs slightly better than the standard MIES on average. The
possible explanation is that the barrier function landscape with C=2000 is harder
than others. The standard MIES converges faster but Dynamic Niching MIES
has a better chance of getting rid of local traps at last.

5.2 Mixed-Integer NK Landscapes

NK landscapes (NKL, also referred to as NK fitness landscapes), introduced
by Kauffman [5], were devised to explore the way that epistasis controls the
‘ruggedness’ of an adaptive landscape. They are particularly used as test prob-
lem generators for Genetic Algorithms (GAs) to understand the dynamics of
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evolutionary search. The ruggedness and the degree of interaction between vari-
ables of NKL can be easily controlled by two tunable parameters: the number
of genes N and the number of epistatic links of each gene to other genes K.
Moreover, for given values of N and K, a large number of NK landscapes can
be created at random.

Mixed-Integer NK-Landscapes (MI-NKL) were introduced in [6] and are an
extension of NKL from the traditional binary case to a mixed variable case with
continuous, nominal discrete, and integer variables. The resulting test function
generator is a suitable test model for our dynamic niching Mixed-Integer Evolu-
tion Strategy.

In order to test our Dynamic Niching MIES algorithm we test it on dif-
ferent Mixed-Integer NK landscapes with 15 variables (5 continuous (range
[−10, 10]), 5 integer variables (also range [−10, 10]) and 5 nominal discrete vari-
ables (Boolean ({0, 1})). We generated 10 random MI-NKL for different levels
of K (2, 5, 10, and 14) to simulate different problem difficulties and both the
Dynamic Niching MIES and standard MIES algorithms were run 20 times on
each MI-NKL using different random seeds. We used a total population size
of 75 for both the standard MIES and Dynamic Niching MIES algorithm (15
individuals per niche) and an offspring size of 500 (100 per niche). To com-
pare (and average) the results of the different experiments we used the following
error-measure:

error = best found fitness - best possible fitness
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Fig. 1. 3-D shaded surface plot with contour plot of the barrier test function for two
integer variables Z1 and Z2, the control parameter C = 20, 200, 2000 and 5000. All
other variables were kept constant at a value of zero, Z1 and Z2 values were varied in
the range from 0 to 19.
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Fig. 2. Average best fitness results over 20 experiments for barrier functions with
C = 20, C = 200, C = 2000 and C = 5000 for both the Dynamic Niching MIES and
standard MIES algorithms
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Fig. 3. The error average of both Dynamic Niching MIES and standard MIES on
different mixed-integer NK landscape problems with N = 15

The results of the experiments are displayed in Figure 3. For K = 2 and
K = 5 we see, similar to the results of the barrier functions, that the standard
MIES algorithm converges faster. However, on the MI-NKL the Dynamic Niching
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MIES algorithm manages to achieve a better result on average. If we look at the
results for more rugged (and harder) MI-NKL with K = 10 and K = 14 we
see that the Dynamic Niching MIES outperforms the standard MIES algorithm
both in convergence speed and final solution quality.

We also compared the number of experiments the Dynamic Niching MIES
and MIES algorithms find the global optimum. For K = 2 the Dynamic Niching
MIES algorithm finds the optimum 174 times out of 200 (10 different MI-NKL
times 20 runs) while MIES finds it 143 times. As K increases both algorithms
find the optimum less often, which is expected since the difficulty increases. For
K = 5, 10 and 14 the Dynamic Niching MIES finds the optimum 92, 19 and 8
times respectively. MIES only manages to finds the optimum 67, 6 and 3 times
for K = 5, 10 and 14. Thus, the Dynamic Niching MIES algorithm does not
only result in a lower average error but also manages to find the global optimum
more often.

6 Conclusions and Outlook

Studies on artificial landscapes reveal that the proposed heterogeneous niching
can be a useful ingredient in highly rugged landscapes. On MI-NK Landscapes
it clearly improves the chances to obtain the global optimum. In more simple
landscapes it only slightly slows down the convergence speed compared with
standard MIES. In conclusion, it can be said that in case of simple problems the
usage of the new strategy will not be harmful and in the case of highly rugged
problems it can lead to solutions of better quality than standard MIES.

In the future the Dynamic Niching MIES should be tested on additional prob-
lems, including real-world applications. Moreover, a deepened understanding of
niche formation process in mixed-integer landscapes and the influence of strategy
parameters may help to further improve its performance.

Acknowledgements. This research is supported by the Netherlands Organi-
sation for Scientific Research (NWO).

References

1. Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2005, Ed-
inburgh, UK, September 2-4, 2005. IEEE, Los Alamitos (2005)
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Abstract. Parameter control is a key issue to enhance performances of
Genetic Algorithms (GA). Although many studies exist on this problem,
it is rarely addressed in a general way. Consequently, in practice, param-
eters are often adjusted manually. Some generic approaches have been
experimented by looking at the recent improvements provided by the op-
erators. In this paper, we extend this approach by including operators’
effect over population diversity and computation time. Our controller,
named Compass, provides an abstraction of GA’s parameters that al-
lows the user to directly adjust the balance between exploration and
exploitation of the search space. The approach is then experimented on
the resolution of a classic combinatorial problem (SAT).

1 Introduction

Genetic Algorithms (GA) are metaheuristics inspired by natural evolution, which
manage a population of individuals that evolve thanks to operators’ applications.
Since their introduction, GAs have been successfully applied to solve various
complex optimization problems. From a general point of view, the performance
of a GA is related to its ability to correctly explore and exploit the interesting
areas of the search space. Several parameters are commonly used to adjust this
exploration/exploitation balance (EEB), and the operator application rates are
probably among the most influential ones. A suitable control of parameters is
crucial to avoid two well-known problems: premature convergence, that occurs
when the population gets trapped in a local optima, and the loss of computation
time, due to the inability of the GA to detect the most promising areas of the
search space. Most of the efforts on this subject are only applicable to specific
algorithms, thus, in practice, parameter control is often achieved manually, sup-
ported by empirical observations. More recently, new methods have begun to rise
up, proposing more generic control mechanisms. In this trend, our motivation is
to design a new controller in which parameters could be handled by more general
and abstract concepts, in order to be used by a wide range of GAs.

Techniques for assigning values to parameters can be classified according to
the taxonomy proposed by Eiben et al. [1]. A general class, named Parameter
Setting [2], is divided in Parameter Tuning, where parameters are fixed before
the run, and Parameter Control, where parameters are modified during the run.
Parameter Control is further divided in Deterministic, where parameters are

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 256–265, 2008.
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modified according to a fixed and predefined scheduling; Adaptive, where the
current state of the search is used to modify parameters by means of rules;
and Self-Adaptive [3], where parameters are encoded in the genotype and evolve
together with the population.

Within adaptive control, the central issue is to design rules able to guide
the search and to make the suitable choices. A straightforward way consists in
performing test runs to extract pertinent information in order to feed the system.
However, this approach involves an extra computational time and does not really
correspond to the idea of an “automatic self-driven” algorithm.

A more sophisticated way to build a control system consists in adding a learn-
ing component, which is able to identify a correct control procedure. This reduces
prior effort and increases adaptation abilities, according to the needs of different
algorithms. In this context, two perspectives could be identified:

The first approach consists in modeling the behavior of the GA using dif-
ferent parameters, typically during a learning phase. [4] presents two methods
including a learning phase that tries different combinations of parameters and
encodes the results in tables or rules. A similar approach is presented in [5],
where population’s diversity and fitness evaluation are embedded in fuzzy logic
controllers. Later this controllers are used to guide the search according to a
high level strategy. [6] proposes an algorithm divided in periods of learning and
control of parameters, by adjusting central and limit values of them.

A second approach consists in providing a fast control, neglecting the mod-
eling aspect. [7] presents a controller that adjusts operators’ rates according to
recent performances. Similar ideas are presented in [8,9]. In [10], this approach is
extended by considering several statistics of individuals fitness and survival rate
to evaluate operator quality. In [11], the population is resized, depending of sev-
eral criteria based on the improvement of the best historical fitness. [12] presents
an algorithm that oscillates between exploration and exploitation phases when
diversity thresholds are crossed. [13] modifies parameters according to best fit-
ness value. Some methods in this class require special features from the GA,
such as [14], that maintains several populations with different parameter val-
ues, and moves the parameter’s values toward the value that produces the best
results. In [15], a forking scheme is used: a parent population is in charge of ex-
ploration, while several child populations exploit particular areas of the search
space. In [16], a parameterless GA gets rid of popsize parameter by comparing
the performance of multiple populations of different size.

In this paper, we investigate a combination of these two general approaches
in order to benefit from their complementary strengths, providing an original
abstract control of GAs’ operators. Our controller measures the variations of
population’s diversity and mean fitness resulting from an operator application,
as well as its execution time. A unique control parameter (Θ) allows us to ad-
just the desired level of EEB and determines the application rates assigned to
each operator. We have tested our approach on the resolution of the famous
boolean satisfaction problem (SAT) and compared it to other adaptive control
methods.
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The paper is organized as follows. Sect. 2 exposes our approach, Sect. 3 de-
scribes the experimental framework we have used, and Sect. 4 discusses results.
Finally, main conclusions and future directions are drawn in Sect. 5.

2 Method Overview

We consider here a basic steady-state GA: at each step an operator is selected
among several ones, according to a variable probability. Asexual operators are
applied to the best of two randomly chosen individuals of the population, and the
resulting individual replaces the worst one. Sexual operators work on two ran-
domly chosen individuals, modifying them directly. The parameters considered
here are therefore operators’ application rates.

As mentioned in the introduction, adaptive control can be considered from
two different points of view. In order to illustrate more precisely these differences,
we may detail two recent and representative approaches by comparing the work
of Thierens [7] and a method proposed by Wong et al. [6].

In [7], Adaptive Pursuit (AP) aims at adjusting the probabilities of associ-
ated operators, depending on their performances, measured typically by fitness
improvement during previous applications. This method is able to quickly adapt
these probabilities in order to award the most successful operators. AP does not
care about understanding the behavior of the algorithm and focuses immedi-
ately on the best values, in order to increase the performance. At this point, we
may remark that algorithms that are solely based on fitness improvement may
experience premature convergence.

In the APGAIN method [6], the search is divided in epochs, further divided
in two periods. The first one is devoted to the measurement of operators’ perfor-
mance by applying them randomly, and the second one applies operators accord-
ing to a probability which is proportional to the observed performance. Three
values (low, medium, high) are considered for each parameter, and adjusted by
moving them towards the most successful value. Finally, a diversification mech-
anism is included in the fitness function. Roughly a quarter of the generations
is dedicated to the first (learning) period, what could be harmful if there are
disrupting operators.

Here, we propose a new controller (Compass) based on the idea presented
in [5], that considers both diversity and quality as pertinent criteria to evaluate
algorithms’ performance. Parameters are abstracted, in order to guide the search
by inducing a required level of EEB. The operators are evaluated after each
application and, in addition to diversity and fitness variation, a third measure
–operator’s execution time– is also considered. To get rid of previous drawbacks,
we include some controllers’ features that adapt parameters’ rates during the
search [7,8,9], namely the speed of response, to update the model. Operators are
applied according to their application rate, which is updated at every generation.
Since we are interested in a controller which could be used by any GA, it must be
independent and placed at a different layer. We have then implemented Compass
in a C++ class, included by the GA.
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2.1 Operator Evaluation and Applications Rates Updating

Given an operator i ∈ [1 . . . k] and a generation number t, let dit, qit, Tit be,
respectively, the population’s mean diversity variation, mean quality (fitness)
variation, and mean execution time of i over the last τ applications of this
operator. At the beginning of the run, all operators can be applied with the
same probability.

We define a vector oit = (dit, qit) to characterize the effects of the operator over
the population in terms of variation of quality and diversity (axis ΔD and ΔQ of
Fig. 1). Note that, since both quality and diversity improvements correspond to
somewhat opposite goals, most vectors will lay on quadrants II (improvement of
quality but a decrease in diversity) and IV (increase in diversity and a reduction
of mean fitness), shown in Fig. 1a.

Algorithms that just consider the fitness improvement to adjust the operator
probabilities would only use the projection of oit over the y-axis (dotted lines
in Fig. 1b). On the other hand, if diversity is solely taken in account, measures
would be considered as the projection over the x-axis (Fig. 1c).

Our goal is to control these two criteria together by choosing a search direction
which will be expressed by a vector c (defined by its angle Θ ∈ [0, π

2 ]) that
characterizes also its orthogonal plane P (see Fig. 1d).

Since measures of diversity and quality usually have different magnitudes,
they are normalized as:

dn
it =

dit

maxi{|dit|}
and qn

it =
qit

maxi{|qit|}
We thus have vectors on

it = (dn
it, q

n
it). Rewards are then based on the projection

of vectors on
it over c, i.e., |oit|cos(αit), αit being the angle between oit and c. A

value of Θ close to 0 will encourage exploration, while a value close to π
2 will

favor exploitation. In this way, the management of application rates is abstracted
by the angle Θ, that guides the direction of the search as the needle of a compass
shows the north.

Projections are turned into positive values by subtracting the smallest one and
dividing them by execution time, in order to award faster operators (Fig. 1e).

δit =
|on

it|cos(αit)−mini{|on
it|cos(αit)}

Tit

Application rates are obtained proportionally to values of δit plus a constant ξt,
that ensures that the smallest rate is equal to a minimal rate, Pmin, preventing
the disappearance of the corresponding operator (Fig. 1f).

pit =
δit + ξt∑k
i=1 δit + ξt

2.2 Operator Application

Operators’ application rates are updated at every generation. An interesting phe-
nomenon, observed during previous experiments, is the displacement of points
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Fig. 1. (a) points (dit, qit) and corresponding vectors oit, (b) quality-based ranking, (c)
diversity-based ranking, (d) proposed approach, (e) values of δit, (f) final probabilities

(dn
it,q

n
it) in the graphic during execution. Consider for instance that Θ is set to π

4 ,
so an equal importance is given to ΔQ and ΔD. At the beginning of the search,
just after the population was randomly created, the population diversity is high
and mean fitness is low, thus it is easy for most operators to be situated in the
quadrant II. After some generations, the population starts to converge to some
optimum, so improvement becomes difficult, and points in II corresponding to
exploitative operators move near x-axis. When improvements in this zone are
exhausted, exploitation operators obtain worst rewards than exploration ones,
causing a shift of the search to diversification, and escaping from that optimum.
Such a visualization tool could be useful to understand the behavior of operators
as well as for debugging purposes.

3 Experimentation

For our experiments, we focus on the use of GAs for the resolution of combi-
natorial problems. Among the numerous possible classes, we have chosen the
Boolean satisfiability problem (SAT) [17], which consists in assigning values to
binary variables in order to satisfy a Boolean formula.

The first reason is that this is probably the most known combinatorial prob-
lem, since it has been the first to be proved NP complete and therefore it has
been used to encode and solve problems from many application areas. The sec-
ond reason is that there exists an impressive library [18] of instances and their
difficulty has been deeply studied with several interesting theoretical results
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(e.g., phase transition), which allows us to select different instances with various
search landscapes’ properties.

More formally, an instance of the SAT problem is defined by a set of Boolean
variables X = {x1, ..., xn} and a Boolean formula F : {0, 1}n → {0, 1}. The
formula is said to be satisfiable if there exists an assignment v:X → {0, 1}n

satisfying F and unsatisfiable otherwise. Instances are classically formulated in
conjunctive normal form (conjunctions of clauses) and therefore one has to sat-
isfy all these clauses.

To solve this problem, we consider a GA with a binary population that applies
one operator at each generation. The fitness function evaluates the number of
clauses satisfied by an individual and the associated problem is thus obviously
a maximization one. The diversity is classically computed as the Hamming dis-
tance entropy (see [19]).

In order to evaluate our control approach, we compare it with Adaptive Pur-
suit (AP) [7] and APGAIN [6]. As mentioned in Sect. 2, AP is representative
of many controllers that consider fitness improvement as their guiding crite-
rion while APGAIN is representative of methods that try to learn and model
the behavior of the operators. Additionally, we also included a uniform choice
(UC) among operators as the baseline of the comparison. In order to check the
robustness of our method –but restricted by the lack of space–, we present 13
different instances from the SATLIB repository [18], mixing problems of different
sizes and nature, including random-generated instances, graph coloring, logistics
planning and blocks world problems.

3.1 Operators

The goal of this work is to create an abstraction of operators, regardless of their
quality, and to compare controllers, and not to develop an efficient GA for SAT.
The idea is also to use non standard operators, whose effect over diversity and
quality is a priori unknown. Therefore, we propose six operators with different
features, more or less specialized with regards to the SAT problem.

One-point crossover chooses randomly two individuals and crosses them at
a random position. In this operator exclusively, the best child replaces the
worst parent.

Contagion chooses randomly two individuals, and the variables in false clauses
of the worst one are replaced with corresponding values of the best individual.

Hill climbing checks all neighbors by swapping one variable, moves to the bet-
ter one and repeats while improvement is possible.

Tunneling swaps variables without decreasing the number of true clauses ac-
cording to a tabu list of length equal to 1

4 of the number of variables.
Badswap swaps all variables that appear in false clauses.
Wave chooses the variable that appears in the highest number of false clauses

and in the minimum number of clauses only supported by it, and swaps it.
It repeats the same process at most 1

2 times the number of variables.
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In order to observe the effect of population size over the performance of con-
trollers, we performed experiments with populations of 3, 5, 10 and 20 indi-
viduals. 10.000 generations were processed, in order to observe the long-term
behavior of controllers.

3.2 Control Strategy

Previous experiments have shown that values of Θ around 0.25π produced good
results. To observe the sensitivity of this value, we ran experiments with values of
0.20π, 0.25π and 0.30π. Note that, even when the value of Θ remains fixed along
the run, it does not mean that Compass falls in the category of parameter tuning.
It is necessary to distinguish the parameters of the GA (operator’s application
rates) from the parameter(s) of the control strategy (θ in this case). Controller
parameters provide an abstraction of GA’s parameters. It is pertinent to wonder
whether it is worth replacing GA parameters by controller parameters. We think
that this substitution is beneficial in two cases:

– When the effect of controller parameters is less sensitive than GA’s parame-
ters. Consider, for instance, the case of mutation rate: small changes in this
parameter have a drastic effect over GA performances; so it is interesting to
use a controller which is able to wrap these parameters, providing a more
stable operation, even by including additional control parameters.

– When the controller provides a more comprehensible abstraction of GA pa-
rameters. This is the case in our approach: it is easier for a human to think in
terms of raising and lowering EEB instead of modifying multiple operators’
parameters, specially when their behavior is ill-known.

The parameter τ is set to 100, and Pmin to 1
3k (see Sect. 2.1). Each run,

consisting of a specific problem instance, population size, controller and Θ (just
for Compass), was replicated 30 times for significant statistical comparisons. AP
and APGAIN parameters were set to published values, or tuned to obtain good
performance. According to the notations used in [7,6], for AP: α = 0.8, β = 0.8,
Pmin = 1

2k . For APGAIN: vL = 0, vU = 1, δ = 0.05, σ = 700, ρ = σ
4 , ξ = 10,

φ = 0.045 (about 10% of re-evaluations).

4 Results and Discussion

The average number of false clauses obtained over 30 runs is shown in table 1.
Comparisons were done using a student-t test with a significance level of 5%.
Values are boldfaced when Compass outperforms UC, and italicized when UC
is better than Compass. No font modification means that results are statistically
indistinguishable. Cells are grey when Compass outperforms AP, and black
when AP outperforms Compass. White cells means indistinguishability. Finally,
Compass outperformed APGAIN in all cases, except in those indicated with
underlined values, where results are indistinguishable. Average execution times
of AP, APGAIN and Compass, relative to those of UC, are shown at the rightest
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Table 1. Average false clauses and comparative execution times
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UC 12.9 3.2 52.6 5.4 38.4 16.7 7.7 124.2 23.2 9.4 8.3 11.7 1.00
AP 7.5 2.1 37.7 3.4 19.6 8.9 3.5 71.3 16.2 3.3 5.6 8.3 0.86
APGAIN 11.8 3.3 51.6 5.0 27.5 14.0 5.4 109.2 20.6 6.0 8.8 10.8 0.97

3 C.2 5.8 2.1 25.5 2.1 13.2 8.1 2.0 41.6 13.7 1.3 3.3 5.5 0.88
C.25 6.4 1.6 26.7 2.3 11.7 8.1 2.0 38.4 13.4 1.8 3.6 5.9 0.89
C.3 6.1 1.6 26.8 2.8 15.9 8.1 3.0 47.2 15.5 2.2 4.3 6.4 0.73

UC 13.8 3.3 61.4 7.6 34.6 16.5 7.9 126.2 24.6 8.3 11.2 14.0 1.00
AP 8.9 3.0 47.4 4.8 23.3 11.3 4.9 88.2 18.4 4.5 8.3 10.2 0.88
APGAIN 11.2 4.9 60.1 6.6 31.1 14.0 6.4 118.7 20.1 6.0 9.8 13.6 1.09

5 C.2 6.2 2.2 27.5 3.0 15.5 9.1 2.6 45.0 15.0 2.8 4.6 6.7 0.89
C.25 6.3 1.9 27.2 2.7 16.2 8.8 2.6 43.4 14.8 2.9 4.4 7.1 0.91
C.3 7.8 2.5 36.5 4.2 20.0 9.0 3.5 66.7 16.8 3.4 5.9 10.3 0.80

UC 13.8 3.3 54.2 6.3 28.8 15.5 7.0 110.0 19.4 6.1 10.1 12.2 1.00
AP 9.9 3.9 55.2 5.0 26.3 12.9 5.7 98.6 18.1 5.9 9.3 12.2 1.00
APGAIN 11.7 4.8 66.0 5.8 30.4 16.3 6.2 120.4 18.8 6.8 11.3 13.9 0.62

10 C.2 8.3 3.5 44.9 3.9 21.9 11.3 4.5 72.5 17.9 4.3 7.5 10.4 0.92
C.25 8.0 2.9 42.7 4.4 23.1 11.2 4.2 72.6 17.8 4.6 7.2 9.5 0.83
C.3 9.1 3.7 49.3 5.7 24.7 11.5 5.1 96.8 19.1 5.9 9.1 12.6 0.78

UC 13.8 2.8 42.0 4.5 23.1 13.8 5.2 88.5 16.5 3.4 6.4 10.3 1.00
AP 9.1 2.4 54.1 4.9 26.0 14.6 5.3 102.6 17.2 5.7 8.4 11.3 1.28
APGAIN 11.3 4.3 68.0 5.5 30.0 17.8 6.2 120.1 18.7 6.3 11.1 13.7 2.38

20 C.2 9.1 3.5 55.2 4.8 26.0 13.3 5.2 90.4 18.9 6.2 8.1 12.5 0.92
C.25 9.2 3.3 53.2 4.8 25.2 13.3 4.8 90.6 17.8 6.2 8.7 13.2 0.93
C.3 9.4 3.9 58.6 4.9 27.5 13.4 6.2 99.2 18.7 6.1 10.4 12.4 0.88

Total clauses 47820 320 4250 449 2237 6718 953 3310 3100 3100 1065 1065

column of the table. Total number of clauses of each problem appear in the
bottom of the table. From now on we will refer as C.2, C.25, C.3 to Compass
with Θ values of 0.20π, 0.25π and 0.30π, respectively.

The mean number of generations required to reach the best values varies
between 1000 and 7000, therefore, the 10000 allowed generations seem sufficient
for all controllers to insure a fair comparison. Of course, the results are not
competitive with specific SAT evolutionary solvers, since we do not use the best
dedicated operators and neither try to optimize ours. Our purpose here is rather
to highlight the differences between controllers. Better results for SAT using GAs
were obtained by a hierarchical memetic algorithm [19]. However, given the early
stage of this research, we preferred a simpler GA that applies one operator each
time, in order to facilitate understanding. Further research will consider more
complex operator architectures.

The predominance of Compass, and specially C.25 over UC, AP and APGAIN
is noticeable, particularly for small populations. Something similar happens with
C.2, and, to some extent, with C.3. As mentioned previously, a value Θ = 0.25π
works well with all kind of problems.

Small populations lose diversity easily, so controlling diversity is a critical is-
sue. APGAIN does it by penalizing common individuals. However, when all indi-
viduals are the same, this penalization is not effective. It seems that in practice,
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diversity is mostly induced by the first period in APGAIN (operator evaluation).
AP controls diversity by defining a minimum application rate equal to 1

2k . This
value could be excessive if operators are mostly exploitative. A smaller value of
1
3k , used in Compass, grants the controller a greater range to balance EEB.

Small populations provide better results than larger ones. This is probably due
to the operators, that were inspired by local search heuristics: they are applied
more repetitively over the same individual in smaller populations than in large
ones, thus producing better results. Surprisingly, UC is quite competitive as
population size increases. It seems that applying operators of both low dit and
qit produce “bad” individuals that are able, however, to escape from local optima.
Nevertheless, this practice is beneficial only if the population is big enough to
keep their good elements at the same time.

Execution times of AP and APGAIN are shorter than those of UC for the
smallest populations. Compass has stable short execution times for different
population sizes. This is interesting because it means that the effort spent in
performing control induces savings in total execution time.

From an implementation point of view, we found that Compass and AP were
more independent from the logic of the GA than APGAIN, which introduces its
diversity control mechanism in the GA fitness function. Both AP and Compass
provide a separate layer of control. Parameterization of Compass is quite intu-
itive. We have already discussed the effect of Θ and Pmin. The last parameter,
τ , is quite stable, we have replicated experiments with several values for this
parameter without detecting a considerable influence over the performances.

5 Conclusions

In this paper we have presented Compass, a GA controller that provides an
abstraction of parameters and simplifies control by adjusting the level of explo-
ration/exploitation along the search. This controller measures operators’ effects
over population’s mean fitness, diversity and execution time. Compass is inde-
pendent from the GA, in order to provide an additional control layer that could
be used by other of population-based algorithms. Experiments were performed
using a 6-operators GA to solve instances of the SAT problem. Results were fa-
vorably compared against a basic uniform choice and state-of-the-art controllers.

The twofold evaluation of operators (quality and diversity variation) is co-
herent with the guiding principles of population-based search algorithms, i.e.
maximizing quality of solutions while avoiding the concentration of the popula-
tion, in order to benefit from their parallel nature. By considering both measures,
we observed a natural mechanism to escape from local optima.

The search direction is easily apprehensible by observing a dynamic vectorial
representation, thus Compass could also be used as a tool for understanding the
role of operators.

The management of nonstandard unknown operators also opens the perspec-
tive of using Compass to evaluate operators generated automatically, for example
by means of Genetic Programming.
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Abstract. In P2P and volunteer computing environments, resources are
not always available from the beginning to the end, getting incorporated
into the experiment at any moment. Determining the best way of us-
ing these resources so that the exploration/exploitation balance is kept
and used to its best effect is an important issue. The Intermediate Dis-
turbance Hypothesis states that a moderate population disturbance (in
any sense that could affect the population fitness) results in the max-
imum ecological diversity. In the line of this hypothesis, we will test
the effect of incorporation of a second population in a two-population
experiment. Experiments performed on two combinatorial optimization
problems, MMDP and P-Peaks, show that the highest algorithmic ef-
fect is produced if it is done in the middle of the evolution of the first
population; starting them at the same time or towards the end yields
no improvement or an increase in the number of evaluations needed to
reach a solution. This effect is explained in the paper, and ascribed to
the intermediate disturbance produced by first-population immigrants in
the second population.

1 Introduction

The volatility of resources is an important feature of some distributed compu-
tation environments, such as those based on P2P or voluntary computation:
resources appear and disappear in a continuous and unpredictable manner. For
instance, a new node might be added to an Evolving Agents (EvAg) [1] P2P
distributed evolutionary computation experiment, or a new client might down-
load the web page to start a browser-based evolutionary experiment [2,3]. Using
these high-churn computing environment efficiently so that their contribution to
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the common compute pool does not get lost is obviously an important issue, and
rules for using the node’s computing resources efficiently (or at all) have to be
researched. If the evolutionary experiment is sufficiently advanced, it might be
the case that computation performed in a certain way by the new node is use-
less, and it will be best devoted to a new experiment (or to help the experiment
in a different way). The same problem arises also in other heterogeneous and
asynchronous computing experiments: even if all nodes start at the same time,
those with less computing power will eventually lag behind, falling into a less
evolved state that might render them useless, churning out individuals whose
state would have made them eliminated in other nodes whose populations are
more advanced.

There are, in principle, two different ways of creating this initial popula-
tion: in a completely random way, or as an (imperfect) duplicate of the existing
population. If we look at the set of the two (new and old) populations as a
single one, it is obvious that these two ways correspond to tipping the explo-
ration/exploitation balance in one way or another. The introduction of a new
random population and the resulting application of the crossover operator would
correspond to a hyper or macromutation operator [4,5], tipping the balance to-
wards exploration, while a new population generated via application of genetic
operators would correspond to an exploitation around the point in search space
that has actually been reached. In any case, it is quite clear that the result of
putting individuals from an existing evolved population in common with a new
random one will result in a complex interaction, with varying results depending
on the problem: it might be the case that different problems or even different
phases in the execution of a problem will need different strategies.

In this paper, our objective is to find out what are the effects of the incorpora-
tion of a new population, at different times, into an existing evolution problem,
and to eventually propose some heuristic rules to handle it. Our expected result
will be some rule of thumb about when the addition of these new populations
is most profitable or, in any case, a measure of how high is its influence on the
final outcome.

As far as we know, the type of asynchrony this paper deals with has not been
analyzed in depth in the existing literature. Certainly, asynchronous distributed
genetic algorithms have been discussed extensively, for instance Giacobini et
al. studied the selection intensity in asynchronous evolutionary algorithms [6],
and Alba et al. compare them with synchronous parallel distributed genetic
algorithms in [7]; a similar approach applied to distributed genetic programming
was presented in [8]. In general, the conclusion is that asynchrony in evolution
does not affect algorithm performance; however, that conclusion applies only if
all computing nodes start at the same time, which is not the case that we want
to address in this work.

Cantú-Paz [9] found that the migration policy that causes the greatest reduc-
tion in total algorithmic work (expressed as total number of evaluations) is to
choose as migrants the best individuals and to replace the worse individuals in
the destination population, since this policy increases the selection pressure and
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may cause the algorithm to converge significantly faster. However, too fast a
convergence can lead to the algorithm’s failure, as he states referring to parallel
EAs: “rapid convergence is desirable, but an excessively fast convergence may
cause the EA to converge prematurely to a suboptimal solution”. In fact, Alba
and Troya [10] found that migration of a random string prevents the “conquest”
effect in the target island for small or medium sized sub-populations. In line with
this, we study here the trade-off between selection pressure and diversity when
we have nodes starting at different times; and since it has been proved the best
strategy, the two nodes will migrate the best individual.

The rest of the paper is organized as follows: the experimental setup is de-
scribed in Section 2, with results presented in Section 3. Finally, conclusions and
future work are commented in Section 4.

2 Experimental Setup

Two functions have been used for testing: the problem generator P-Peaks and
the massively multimodal deceptive problem (MMDP), two of the three discrete
optimization problems presented by Giacobini et al. in [11]. These problems,
while being both multimodal, represent different degrees of difficulty for parallel
evolutionary optimization, and will be described next.

MMDP [12] is deceptive (that is, approached via hill-climbing algorithms
would lead to a suboptimal solution) composed of k subproblems of 6 bits each.
Each subproblem is evaluated on the basis of its unitation as follows:

f(n) =

⎧⎪⎪⎨⎪⎪⎩
1.0 n ∈ {0, 6}
0.0 n ∈ {1, 5}
0.360384 n ∈ {2, 4}
0.640576 n = 3

The fitness value of a 6k-bit string is defined as

fMMDP (s) =
k−1∑
i=0

f

⎛⎝ 6∑
j=1

s6i+j

⎞⎠
Note that the number of local optima is quite large (22k), while there are only
2k global solutions. In this paper, we consider a single instance with k = 20
(120 bits).

On the other hand, the P-Peaks problem is a multimodal problem generator
proposed by De Jong in [13]; a P-Peaks instance is created by generating P
random N − bit strings where the fitness value of a string x is the number of
bits that x has in common with the nearest peak divided by N .

fP−PEAKS(x) =
1
N

max
1≤i≤p

{N −H(x, P eaki)} (1)

where H(x,y) is the Hamming distance between binary strings x and y. In the
experiments made in this paper we will consider P = 100 and N = 64. Note
that the optimum fitness is 1.0.
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These two problems have been implemented and integrated in the public-
domain Algorithm::Evolutionary[14] Perl library1. In order to simulate a par-
allel algorithm, the cooperative multitasking Perl module POE

2 has been used;
each node is represented by a POE session. Thus, in fact, the conclusions ob-
tained in this paper are algorithmic in nature; if runtime conclusions have to be
made, this experiment should be repeated in a true parallel environment. In this
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Fig. 1. Boxplot of the number of evaluations needed to find the solution in the P-Peaks
problem starting at different cycles. sync labels cases with the two nodes starting
synchronously: p512-sync with a population of 512, sync with 256, and p128-sync

with 128 individuals; 50 represents the behavior of the experiment in a single node,
since the algorithms finish before receiving any individual.

simulated parallel scenario we have implemented two nodes, each one applying
a rank-based substitution steady state algorithm [15] to a single population. We
do not think that using only two nodes represents a loss of generality, since mi-
grations are always performed between only two nodes, independently of how
many are running at a time. At the end of a preset number of generations (which
we will call a cycle), each node sends a single individual (the best one) to the
other in a theoretically synchronous manner (that is, both nodes evolve in lock-
step). Algorithmic efficiency will be measured summming up the total number
of evaluations performed in each node until the solution is found in one of them.

1 Freely available under the GPL license from http://tinyurl.com/3v4gj7. The pro-
gram, along with some configuration files and experiment results, can be downloaded
from http://tinyurl.com/4ttaow; released versions can also be downloaded from
your closest CPAN repository.

2 Perl Object Environment; also available from CPAN.

http://tinyurl.com/3v4gj7
http://tinyurl.com/4ttaow
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In order to simulate the asynchronous start of the second population, several
experiments were made in which the second population did not start until after
a certain number of cycles. Population 1 was left running for n cycles (with
g generations each), and then Population 2 started running and interchanging
individuals with it. This asynchronous starting point is fixed (does not depend
on the state the evolutionary algorithm is), so it could happen that Population
1 has already found the solution.

3 Experimental Results

Every configuration was run 30 times in order to obtain statistically significant
results. All experiments were performed in Linux desktop and laptop machines
(Ubuntu 7.04 and Fedora Core 6 and 8), with statistical analysis performed using
the open source statistical package R.

For the P-Peaks experiment we have chosen the evolutionary algorithm pa-
rameters shown in Table 1 (middle column). Figure 1 shows the results of the

Table 1. Evolutionary algorithm parameters used in the P-Peaks experiments. The
Algorithm::Evolutionary Perl library uses priorities for operators, that once normal-
ized, correspond to operator rates: to 40% mutation, 60 % crossover.

Parameter Value
P-Peaks MMDP

Chromosome length 64 120
Population 256 1024
Selection rate 20% 10%
Generations to migration (cycle size) 10
Mutation priority 2
2-point crossover priority 3

experiments performed with P-Peaks. For the sake of comparison, the total num-
ber of evaluations for the synchronous start experiments with population = 512
(leftmost box, labeled p512-sync) and population = 128 (rightmost box, labeled
p128-sync) have also been plotted. Comparing them with the sync experiment
(2 nodes, population = 256, synchronous start), it can be seen that lowering
the population size also improves the number of evaluations (y axis). However,
if we start by the p128-sync figure and proceed from right to left, we see that
splitting the population in two (that is, going from a single population with 256
individuals – start cycle = 503 – to two parallel populations with 128 individuals
does not yield any improvement) increases the number of evaluations needed to
find the solution. Once again, moving from that experiment to its left shows
what happens if, instead of letting a single population proceed, we introduce
a second population by the 25th cycle (25 × 10 generations). What we see is a
3 Which, in fact, would correspond to a single 256 individuals population, since by the

50th cycle, a single population has already reached the target fitness.
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decrease in the quality of the algorithm, i.e., an increase of the median number of
evaluations needed to reach target. A strikingly similar response is reached if the
second population starts any time before that: a higher number of evaluations
are going to be needed. Some other conclusions can be reached by looking at
this graph from left to right, and starting by the sync glyph (which represents
the behavior of two populations starting at the same time): whenever the second
population is started after the first one has already run a bit of its course, the
results are going to be better; however, the improvement is going to stall by the
time a few cycles have already run (in this case, after the 10th cycle – 100th

generation, when around 50% of the runs have already finished). The Wilcoxon
rank-sum test confirms that there is no difference among the four last experi-
ments, and that the difference among the three first and the rest is significative.

Let us check these results running again the distributed evolutionary algo-
rithm (parameters shown in Table 1, right-most column) with a more difficult
problem, MMDP. The picture is quite different here, although the trend is more or
less the same: there is an average trend towards decreasing the number of evalua-
tions when the start cycle of the second population is delayed, which stops when
the evolution of the first population is too advanced (in this case, after 50 cycles
or 500 generations). However, the situation is not exactly the same. The main dif-
ference arises from the fact that there is a non-null set of experiments (among the
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Fig. 2. Logarithmic boxplot of the number of evaluations needed to find the solution in
the MMDP, after those that have not found it have been eliminated. x labels indicate
the cycle when the second population has been inserted, with “single” indicating results
for a single population. Once again, the Wilcoxon rank-sum test confirms the differences
among the three first, and its abscense among the 4 last.
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30 runs for each parameter set) that does not find the solution before the maxi-
mum number of evaluations allowed (200000). The size of this set is represented in
Figure 3, which shows a rather jagged scenario, but if we look at it from right to
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Fig. 3. Percentage of runs, for different start cycles of the second population, where the
target fitness was not found in the MMDP problem

left, we see that it confirms the effect of the moment of introduction of the sec-
ond population on the total quality of results: from a single population (x label
= 100) to a late introduction of the second population (x = 75, 50), there is a
very small improvement (from 45% to 40%). The situation gets a bit better if the
second population is introduced at cycle # 20 or 30, but worsens again when it is
introduced too early (cycle # 10). In this case, the best worst-case scenario is given
by the synchronous population, although the best median number of evaluations
is found when the second population is introduced at cycle # 30. Putting both
effects together, we find that the best situation is in the intermediate area: lowest
number of evaluations, without an excessive raise in the number of unsuccessful
runs (which might be changed if the evaluation limit is set higher).

Find out the reason why this happens is a different problem, and the classical,
synchronous start, two-population distributed evolutionary algorithm comes out
as a worse algorithm. In order to check what is going on, we did several runs
with another program where we logged the diversity after each cycle in the P-
Peaks experiment. The results are plotted in Figure 4, which shows the different
evolution paths of phenotypic entropy (computed using the Shannon formula) in
an asynchronous (left) and synchronous (right) start experiment, in two typical
cases that finished in roughly the same amount of cycles (around 30). In time,
entropy tends to equalize; however, the level it reaches is that of the less diverse
population (Population 1, in both cases). However, it is interesting to see that
the highest effect in diversity is that of immigrants of Population 1 on Popu-
lation 2; in general, the effects of the less diverse (more converged, and thus,
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Fig. 4. Shannon Entropy (H(P ) = −
∑

g∈P p(f(g))logbp(f(g)), with g a member of
the population, f(g) its fitness, and p(f(g)) the frequency of that fitness) of both
populations in a typical run of the P-Peaks problem, with asynchronous start (right)
and second population starting at cycle 20 (left); Population 1 is plotted in black and
Population 2 in red or light color. Please note that the total number of evaluations will
be lower in the first case, since Population 2 will have performed less evaluations.

further up the evolution ladder) on the more diverse (less evolved) population.
The bend found before cycle 30 in both cases indicates a quick exploitation that
eventually finds the solution. This leads us to think that the reduction in the
number of evaluations is mainly due to the effect of highly-fit individuals falling
and eventually mating with a pool of highly-diverse ones. This effect does not
take place if both populations start at the same time (diversity and fitness de-
grees reached are more or less the same across all the experiment), and where
exploration and exploitation take place roughly synchronously (more exploita-
tion at the beginning, more exploration at the end); or if one population is
introduced too late into the simulation, where the combination of highly fit in-
dividual with low-fitness ones will amount to exploration, thus raising the total
number of evaluations. However, it is the combination of highly-fit individuals
with a diverse population with the right difference in fitness which produces the
best algorithmic result in the shape of the best median number of evaluations.

This result is interesting, being roughly in accordance with the Intermediate
Disturbance Hypothesis [16], which states that the right amount of disturbance
produces the maximum diversity in ecosystems. In this case, low disturbance
(migration among similar populations) and high disturbance (in-migration of
an individual too highly fit) yields worse results than a better-fit individual
introduced a pool of individuals that have already evolved for some time.

4 Conclusions

In this paper we have tested the influence that the introduction of a new pop-
ulation has on the fragile exploitation/exploration equilibrium that reigns in
a single population undergoing evolution. We have used a simulated two-node
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parallel population, with the second population introduced at different times and
tested it on two different discrete optimization problems: P-Peaks and MMDP.

The result has been rather counter-intuitive: introducing a second population
a little after the first population always improves the algorithmic efficiency of the
set, while doing it close to the end of evolution, as was our a priori hypothesis,
does no good algorithmically and might even impact negatively on the overall
performance. The cause of this effect has been studied and we have concluded
that it might be related to the intermediate disturbance hypothesis applied to
the second late-coming population (the effect of immigrants from the second
population to the first being rather negligible): receiving high-fitness immigrants
from the first, already evolved population will be beneficial only if the fitness
difference between that immigrant and the current genetic pool is just right. If it
is too high (first population highly evolved) or too low (first population started
at the same time), the increase in diversity (and thus the speedup in finding the
solution) in this second population will be negligible.

This yields the rule of thumb that additional populations should be started
later at regular (short) intervals, instead of at the same time; and that if there is
a new node arriving in a distributed computation experiment, it should be used
for outsourcing, by doing just fitness evaluations or some other expensive task,
and not for offshoring, by spawning a whole new population that will perform
its own evolution in parallel.

In the future, we will try to confirm the results obtained in these simulations
by applying it to more discrete and continuous optimization experiments, and
also using more simultaneous populations, although this addition should not
essentially alter the results. It would be also interesting to test them in a real
parallel environment, to match not only the algorithmic gain, but also the time
gain obtained by starting two populations asynchronously and in heterogeneous
computers. In principle, the effect of having a second population in a slow com-
puter would be akin to having a late-start second population, and the working
hypothesis would be that the effect could be beneficial if the performance differ-
ences are not too high, but this would have to be tested. Eventually, our intention
is to create a distributed computation framework that would self-adapt to late
comers, asynchrony and differences in performance extracting the most from it.
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Abstract. The paper describes a new approach, based on cell biology, to the 
uncapacitated examination timetabling problem. This approach begins with a 
single cell which is developed into a fully grown organism through the proc-
esses of cell division, cell interaction and cell migration. The mature organism 
represents a solution to the particular timetabling problem. The paper discusses 
the performance of this method on the Carter set of benchmark problems. This 
data set is comprised of real-world timetabling problems. The results obtained 
using the developmental approach are compared to that obtained by other bio-
logically inspired algorithms applied to the same set of benchmarks and the best 
results cited in the literature for the Carter data set.   

Keywords: biologically inspired algorithms, uncapacitated examination time-
tabling problem. 

1   Introduction 

The examination timetabling problem involves allocating a given set of examinations 
to a given number of exam periods in such a manner that the hard constraints of the 
problem are met and the soft constraints minimized. The hard constraints and soft 
constraints of the problem differ from one institution to the next ([11] and [14]). The 
most common hard constraint is each student is not required to write more than one 
examination during the same period, i.e. there are no clashes. If one or more students 
are required to write two exams at the same time this is referred to as a clash. A time-
table that meets all the hard constraints is referred to as a feasible timetable.  The soft 
constraints of the problem tend to be contradictory and hence this value is minimized. 
An example of a soft constraint is that the examinations are well spread for students 
or that examinations for larger classes are scheduled earlier in the timetable so as to 
facilitate marking. The uncapacitated version of the problem does not take room ca-
pacities into consideration while the capacitated version has the added hard constraint 
that the number of students allocated to a particular room during a specific period 
must not exceed the capacity of the room.  
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There has been much research into finding solutions to the uncapacitated examina-
tion timetabling problem and various techniques such as tabu search, simulated an-
nealing, constraint programming, evolutionary algorithms, ant colonization, variations 
of the great deluge algorithm and the variable neighborhood search algorithm have 
been investigated for this purpose ([14]). This paper evaluates a new biologically 
inspired method, namely the developmental approach (DA), as a means of finding 
solutions to the uncapacitated examination timetabling problem. The foundations of 
this methodology lie in cell biology and a solution to the problem is created by means 
of cell creation, cell division, cell interaction and cell migration. The DA is tested on 
12 of the Carter benchmark problems and its performance on these benchmarks are 
compared to other biologically inspired algorithms and the best results obtained thus 
far for the Carter benchmarks. 

The following section gives a brief account of other biologically inspired algo-
rithms that have been applied to the uncapacitated examination timetabling problem. 
Section 3 presents the developmental approach and section 4 describes the methodol-
ogy employed to test the performance of the DA in finding solutions to the uncapaci-
tated examination timetabling problem. Section 5 discusses the results obtained by 
this method and compares these values to that produced by other biologically inspired 
algorithms and the best results reported for the Carter benchmarks.  A summary of the 
findings of this study and future extensions of this work are presented in section 6. 

2   Previous Work 

Research into finding solutions to the uncapacitated examination timetabling problem 
was initiated by Carter et al. [14] who presented a heuristic-based sequential construc-
tion method with backtracking to find solutions to a number of real-world problems. 
This set of problems later become know as the Carter benchmark set and is generally 
used to compare the performance of different methodologies in solving the uncapaci-
tated examination timetabling problem.  Numerous methods including tabu search, 
simulated annealing, constraint programming and variable neighbourhood search have 
been applied to this problem.  Methodologies that are currently cited in the literature 
as producing the best result for one or more of the Carter benchmarks include the 
system implemented by Caramia et al. [6], the Flex-Deluge algorithm employed by 
Burke et al. [4] and the hybrid system developed by Burke et al. [5]. 

The system implemented by Caramia et al. [6] firstly uses a greedy scheduler to al-
locate examinations. Examinations are scheduled in sequence according to the num-
ber of conflicts each exam is involved in.  A penalty decreaser and penalty trader are 
used to further reduce the number of conflicts and soft constraint cost. The Flex-
Deluge algorithm implemented by Burke et al. is a variation of the Great Deluge algo-
rithm and incorporates hill-climbing. The hybrid system developed by Burke et al. [5] 
combines the use of variable neighbourhood search and genetic algorithms. The ge-
netic algorithm is used to choose a set of neighbourhoods during the variable 
neighbourhood search.  

Biological inspired methodologies that have been applied to the examination time-
tabling problem include memetic algorithms, evolutionary algorithms, and ant  
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colonization. Burke et al. [3] and Ozcan et al. [12] used memetic algorithms with hill-
climbing to induce timetables for the University of Nottingham and the Faculty of 
Engineering and Architecture at Yeditepe University respectively.  

Chu et al. [7] and Shebani [16] have conducted preliminary studies on test data to 
investigate the effectiveness of genetic algorithms in finding solutions to the unca-
pacitated examination timetabling problem. Burke et al. [2] and Ross et al. [15] em-
ploy genetic algorithms to evolve solutions to the capacitated examination timetabling 
problem and Wong et al. [18] have used a genetic algorithm to generate a solution for 
Ecole de Technologie Superieure. Erben et al. [10] have implemented a steady-state 
grouping algorithm to evolve exam timetables for the Cater benchmark set. However, 
the soft constraint cost is not reported. Ulker et al. [17] evaluate the effect of employ-
ing a genetic algorithm which uses linear linkage encoding for representation  
purposes. This algorithm was tested on some of the Carter benchmarks with the addi-
tional objective of using the minimum number of timeslots possible. 

Paquete et al. [13] employ a multi-objective evolutionary algorithm to create a 
timetable for the Unit of Exact and Human Sciences at the University of Algarve. 
Cote et al. [8] apply a hybrid multi-objective evolutionary algorithm (hMOEA) to the 
uncapacitated examination timetabling problem. The algorithm incorporates tabu 
search, variable neighborhood search and mutation operators. This algorithm has 
produced results comparative to the best results cited for the Carter benchmarks. 

Eley [9] uses a combination of a Max-Min ant system (MMAS) and hill-climbing 
to find solutions to the uncapacitated examination timetabling problem.  The best 
timetable constructed by m ants during n cycles is further improved using hill-
climbing.  This system was used to generate solutions to the Carter benchmarks. 

Azimi [1] compares the performance of simulated annealing, tabu search, genetic 
algorithms and ant colonization on a number of generated data sets for the examina-
tion timetabling problem. Ant colonization and tabu search were found to perform 
better than the other methodologies. 

The studies relevant to that presented in this paper are those conducted by Cote et 
al. [8] and Eley [9] as their methodologies have been tested on the same version of the 
Carter benchmarks and use the same objective function as that used in the study pre-
sented in this paper. A number of the studies described in this section have either 
solved this problem for specific schools and the data sets are not available. Section 5 
compares the performance of the DA to the hMOEA system and the MMAS system.  

3   The Developmental Approach (DA) 

The developmental approach creates a population of organisms, with each organism 
being developed by mimicking processes from cell biology. Each organism represents 
an examination timetable with each cell corresponding to a timetable period. In this 
study a population size of a hundred is used. The organism with the lowest hard con-
straint (although we do aim for a hard constraint cost of zero, due to the randomness 
associated with the method we may not always get a feasible timetable) and soft con-
straint cost is reported as the solution.  The algorithm employed to create an organism 
is depicted in Fig. 1.  
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Examinations are firstly sorted according to their saturation degree, i.e. the number 

of clash-free cells available for the exam. The overall process begins with the creation 
of a single cell. The examination with the lowest saturation degree is allocated to this 
cell. The position of the cell in the timetable is randomly chosen. If more than one 
clash-free cell is available when allocating an exam, the exam is added to the cell with 
the lowest soft constraint cost.  

Cell division occurs if there are no available clash-free cells for a particular exami-
nation. In this case the parent cell divides into two daughter cells with one cell  
containing the exam causing the clash and the other cell contains the rest of the ex-
aminations. If the maximum number of permitted cells has already been reached cell 
division cannot occur and the examination is randomly allocated to an existing cell. 

Cell migration involves the movement of a cell from one region of an organism to 
another. In the context of examination timetabling, cell migration results in the posi-
tion of the cell in the timetable being changed. During cell creation and division the 
position of each cell in the timetable is randomly chosen. Two types of cell migration 
have been studied, namely, random migration and stimulus-driven migration. In ran-
dom migration the position of a cell is randomly changed to a position not yet allo-
cated or swapped with the position of an existing cell. In stimulus-driven migration 
the swap or change in position only takes place if it results in an improvement in the 
quality of the organism, i.e. a reduction in the soft constraint cost of the timetable that 
the organism represents. Preliminary studies found stimulus-driven migration to be 
more effective than random migration and hence stimulus-driven migration is used in 
this study. Cell migration takes place during the development process as soon as the 
organism contains at least two cells. Once a complete organism has been created, it 
goes through a process of maturation which is basically a single iteration of cell  
migration. Fig.2. illustrates this process.  

Fig. 1. Algorithm to create an organism 

Procedure Create_Organism() 
Begin 

Sort the examinations in ascending order according to saturation degree 
Create a single cell and add the exam with lowest saturation degree to it 
While there are still examinations to be allocated 
Begin 
   Sort the remaining examinations in ascending order according to  
   saturation degree 
   If there are two or more cells perform cell migration  
   Determine the cost of adding the exam with the lowest saturation degree 
   to each of the cells created thus far 
   If there is one or more clash-free cell/s available  
     Add the exam to the cell with the minimum soft constraint cost 
   Else if the maximum number of cells permitted is not reached 
     Perform cell division 
   Else 
     Randomly allocate the exam to an existing cell   
   Perform cell interaction 
EndWhile 
Perform cell migration 

End 
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Fig. 2. Cell migration 

The positions of Cell1 and Cell3 have been swapped as this leads to a decrease in 
the soft constraint cost with no increase in the hard constraint cost.  Alternatively, the 
position of a cell could be changed to a position not yet used, e.g. 1, if this reduces the 
soft constraint cost of the organism. 

Cell interaction involves an exchange between cells as a result of a chemical stimu-
lus.  In the context of examination timetabling the stimulus is a reduction in the soft 
constraint cost.  Cell interaction occurs on each iteration of the development process 
and involves looking a the contents of each cell and determining if a change in the 
cell of an exam will result in a decrease in the hard constraint and soft constraint cost 
with the hard constraint cost having priority over the soft constraint cost.  The overall 
process is depicted in Fig. 3.  
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Fig. 3. Cell Interaction 
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Examination 1 has been moved from Cell1 to Cell2 as this change results in an im-
provement in the soft constraint cost with an improvement or no change to the hard 
constraint cost.  

4   Experimental Setup 

The developmental method was tested on the set of Carter benchmarks listed in  
Table 1 below.  

Table 1. Carter Benchmarks 

Data Institution Periods 
 

No. of  
Exams 

No.  of  
Students 

Density of  
Conflict 
Matrix 

car-f-92 I Carleton University, 
Ottawa 

32 543 18419 0.14 

car-s-91 I Carleton University, 
Ottawa 

35 682 16925 0.13 

ear-f-83 I Earl Haig Collegiate  
Institute, Toronto 

24 190 1125 0.27 

hec-s-92 I Ecole des Hautes Etudes 
Commerciales, Montreal 

18 81 2823 0.42 

kfu-s-93 King Fahd University of 
Petroleum and Minerals, 
Dharan 

20 461 5349 0.06 

lse-f-91 London School of  
Economics 

18 381 2726 0.06 

rye-s-93 Ryerson University,  
Toronto 

23 486 11483 0.08 

sta-f-83 I St Andrew’s Junior High 
School, Toronto 

13 139 611 0.14 

tre-s-92  Trent University, 
Peterborough, Ontario  

23 261 4360 0.18 

uta-s-92 I Faculty of Arts and 
Sciences, University of 
Toronto 

35 622 21266 0.13 

ute-s-92  Faculty of Engineering, 
University of Toronto 

10 184 2749 0.08 

yor-f-83 I York Mills Collegiate 
Institute, Toronto 

21 181 941 0.29 

 
Note that for some of the data sets more than one version exists, thus the version is 

also indicated, e.g. car-s-91I. The density of the conflict matrix is an estimate of the 
difficulty of the problem and is the ratio of the number of examinations involved in 
clashes and the total number of examinations.  

The hard constraint for the set of benchmarks is that there are no clashes, i.e. each 
student must not be scheduled to sit more than one exam in a given timeslot. Thus, the 
hard constraint cost for this problem is the number of clashes. A feasible timetable is 
one in which the hard constraint cost is zero, i.e. there are no clashes. 
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The soft constraint for each of the data sets is that the examinations must be widely 
spread for each student.  The soft constraint cost is a measure of the quality of the 
timetable and we aim to minimize this value. The soft constraint cost is calculated 
using equation 1 [14]: 

S

Neew ijji∑ − |)(|
 

(1)

where: 

1) |ei – ej| is the distance between the periods of each pair of examinations 
(ei,ej) with common students. 

2) Nij  is the number of students common to both examinations. 
3) S is the total number of students  
4) w(1) = 16, w(2) = 8, w(3) = 4, w(4) = 2 and w(5) = 1, i.e. the smaller the dis-

tance between periods the higher the weight allocated.  

The system was implemented in Java and simulations were run on a Windows XP 
machine with a 3000 Mhz Intel 4 HT processor.  

5   Results and Discussion 

The DA was able to induce a feasible timetable for all 12 of the data sets. Table 2 lists 
the best result obtained by the developmental approach over ten runs for each data set. 
The best timetable generated for each data set can be found at http://saturn.cs.unp. 
ac.za/~nelishiap/et/da-ue.htm.  

The runtime of the system varied from less than two minutes for the smaller data sets 
such as hec-s-92 to about 22 hours for the larger data sets such as car-f-92and car-s-91. 
Future extensions of the project will investigate ways to reduce the runtime for larger 
data sets. The table also lists the best results obtained by other biological inspired algo-
rithms applied to the same set of benchmark problems, namely, the hybrid multi-
objective evolutionary algorithm implemented by Cote et al.[8] and the Max-Min ant 
system (MMAS) used by Eley[9].  Both these systems are described in section 2. As all 
three methods have found feasible timetables, note that the best result is defined in 
terms of the quality of the timetable, i.e. the soft constraint cost. This cost is calculated 
using equation 1 defined in section 4. As the three different methods were run on ma-
chines with different technical specifications a comparison of the runtime is not pre-
sented. Furthermore, the methodologies that the DA  is being compared to employ very 
different search mechanisms from that used by the system and a direct comparison of 
the parameters, such as the number of runs, used is therefore not feasible. 

The results obtained by the developmental approach are comparative to that ob-
tained by the other biologically inspired methods. The last column of Table 2 lists the 
difference of the best soft constraint cost obtained by the DA and the best soft con-
straint cost obtained over all three biologically inspired algorithms. The developmental 
approach performed better than the other biologically inspired algorithms on six of the 
data sets. Furthermore, for the remaining data sets the results obtained by the DA are 
within range of the best result. 
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Table 2. Performance of the DA and other biological inspired algorithms on the Carter 
benchmarks 

Data Set DA hMOEA MMAS Difference 
car-f-92 I 4.1 4.2 4.8 - 
car-s-91 I 5.0 5.4 5.7 - 
ear-f-83 I 35.09 34.2 36.8 0.89 
hec-s-92 I 11.08 10.4 11.3 0.68 
kfu-s-93 14.1 14.3 15.0 - 
lse-f-91 10.59 11.3 12.1 - 
rye-s-93 9.17 8.8 10.2 0.37 
sta-f-83 I 157.28 157.0 157.2 0.28 
tre-s-92  8.33 8.6 8.8 - 
uta-s-92 I 3.31 3.5 3.8 - 
ute-s-92  26.5 25.3 27.7 1.2 
yor-f-83 I 39.4 36.4 39.6 3 

 
The methods that have produced the best quality timetable for one or more of the 

same version of the Carter benchmarks have been discussed in Section 2.  Table 3 
compares the best results obtained by the developmental method with the best result 
cited for each of the data sets.  The difference in these values is listed in the last col-
umn of Table 3. It is evident from Table 3 that the results obtained by the develop-
mental approach are very close to the best results cited for each of the benchmarks. 

Table 3. Performance of the DA and the best results cited for the Carter benchmarks 

Data Set DA Caramia 
et a. [6] 

Burke 
et al. [4] 

Burke et 
al. [5] 

Difference 

car-f-92 I 4.1 6.0 4.42 3.9 0.2 
car-s-91 I 5.0 6.6 3.74 4.6 1.26 
ear-f-83 I 35.09 29.3 32.76 32.8 5.79 
hec-s-92 I 11.08 9.2 10.15 10.0 1.88 
kfu-s-93 14.15 13.8 12.96 13.0 1.19 
lse-f-91 10.59 9.6 9.83 10.0 0.99 
rye-s-93 9.17 6.8 - - 2.37 
sta-f-83 I 157.28 158.2 157.03 156.9 0.38 
tre-s-92  8.33 9.4 7.75 7.9 0.58 
uta-s-92 I 3.31 3.5 3.06 3.2 0.25 
ute-s-92  26.5 24.4 24.82 24.8 2.1 
yor-f-83 I 39.4 36.2 34.84 34.9 4.56 

6   Conclusion and Future Work 

The main aim of the study presented in this paper is to test a new developmental ap-
proach, based on cell biology, to the uncapacitated examination timetabling problem. 
The developmental approach has performed well on the 12 Carter benchmarks. The 
results produced by the DA are comparative to those produced by other biologically 
inspired algorithms applied to the same set of benchmark problems and has performed 
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better than these algorithms on six of the problems. Furthermore, the results are 
within range of the best results cited for the benchmark set.  

This study has clearly established the potential of the developmental approach. Fu-
ture work will focus on further refining this methodology so as to improve both the 
quality of solutions produced and the runtime of the system. The processes of cell 
migration and cell interaction will be studied in detail to establish the effect that these 
processes have on the overall approach. One of the reasons for the long runtimes for 
the larger data sets is that all of the cells are involved in cell migration and cell inter-
action and both these processes are implemented on each iteration of the development 
of an organism. Investigations into the impact of this and effective frequencies for the 
application of cell migration and interaction will be conducted.  In the current version 
of the system, if a clash-free cell cannot be found for a particular examination and the 
maximum number of cells has been reached the exam is added to a randomly chosen 
cell which will result in a clash.  Future extensions of this study will examine a form 
of cell interaction to remove such a clash.  Furthermore, a more constrained set of 
problems have been made available by the organizers of the 2nd International Time-
tabling Competition (http://www.cs.qub.ac.uk/itc2007) and a variation of the DA has 
been applied to these problems and is currently being refined.  
 
Acknowledgments. The authors would like to thank the reviewers for their helpful 
comments and suggestions.  
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José Ramı́rez-Ruiz, Manuel Valenzuela-Rendón, and Hugo Terashima-Maŕın
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Abstract. This paper introduces the QFCS, a new approach to fuzzy
learning classifier systems. QFCS can solve the multistep reinforcement
learning problem in continuous environments and with a set of contin-
uous vector actions. Rules in the QFCS are small fuzzy systems. QFCS
uses a Q-learning algorithm to learn the mapping between inputs and
outputs. This paper presents results that show that QFCS can evolve
rules to represent only those parts of the input and action space where
the expected values are important for making decisions. Results for the
QFCS are compared with those obtained by Q-learning with a high dis-
cretization to show that the new approach converges in a way similar to
how Q-learning does for one-dimension problems with an optimal solu-
tion, and for two dimensions QFCS learns suboptimal solutions while it
is difficult for Q-learning to converge due to that high discretization.

Keywords: Learning Classifier Systems, Fuzzy Classifier Systems, Fuzzy
Logic, Genetic Algorithm, Induction Theory.

1 Introduction

Many works have been done around Learning Classifier Systems (LCSs) since
their introduction by Holland [1]. These systems learn by reinforcement to solve
problems using a set of rules that compete to determine the system’s behavior.
Periodically, bad rules are replaced for possible better ones by a steady-state
genetic algorithm (GA). In [2] Wilson introduced XCS, a LCS that uses a mod-
ified Q-learning [3,4] algorithm to learn a mapping between inputs and outputs,
and the GA evolves rules based on their accuracy to represent that mapping.
Wilson showed that XCS learns rules that represent maximal generalizations.
XCS was created to act in discrete problems, but many real world problems are
not discrete, therefore it is necessary to look for new algorithms that can tackle
continuous problems.

Modifications to the XCS to handle continuous inputs have been previously
proposed [5,6,7]. These were tested in the real n-multiplexor problem. This is a
problem with continuous inputs, but with a set of discrete actions; also the real
n-multiplexer is a one-step action problem.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 286–295, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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The XCSF is an XCS modified to learn continuous functions [8]. XCSF uses
the same machinery of the XCS, but with a change in rule representation. Rules
are activated over hyper-rectangular regions of the input space, and the values
of the expected payoff are calculated by adjusting a hyper-linear function by a
modified delta rule. The function is obtained from the learned mapping. The
XCSF has only one action that is not used to generate the output of the system,
therefore, it does not make rules compete. Lanzi et al. applied the XCSF to
a continuous navigation task in one dimension (the continuous linear corridor
problem) and two dimensions (the 2D continuous gridWorld problem) [9], In
these learning tasks, XCSF perceives a continuous input and chooses an action
from a set of discrete actions.

Wilson [10] proposes three different architectures that use combinations of two
XCSFs to deal with continuous inputs and outputs in a simple problem called
the frog problem, in which the system is reset after each action, and thus, it is
a one-step problem. This problem was also tackled modifying the XCSF [11] to
use two GAs.

LCSs that apply fuzzy logic (FL) have been studied [12] because of its capa-
bility to represent continuous variables. The first approaches [13,14,15] learned
functions by reinforcement. They use cooperation instead of competition among
rules to determine outputs. Bonarini presented a fuzzy classifier system that
combined competition and cooperation among rules to learn an action function
in multistep environments with continuous reward [16]. This methodology was
applied to a CAT robot so that it would learn to move through a corridor us-
ing a continuous reward function and with different learning schemes, such as
the bucket brigade algorithm, temporal differences and Q-learning [17,18]. These
works produced continuous actions from a continuous perception but with an
exponential number of fuzzy states to represent the perception state of the robot.

Reinforcement learning with continuous inputs and outputs is still an unsolved
problem for learning classifier systems. This paper proposes a new approach
to FCSs that uses Q-learning and FL in the rule representation to solve the
multistep problem with continuous inputs and outputs. The proposed approach
was tested on continuous navigation tasks in one and two dimensions with vectors
as actions. It was also applied to the frog problem defined in [10,11] and compared
with Q-learning with a high discretization.

2 QFCS

In QFCS, each classifier contains a small fuzzy system (SFS), a matrix that
contains the expected prediction, and a square subregion of activation over the
input space. The classifiers can only act over their subregion of activation. In that
subregion of activation, each fuzzy system proposes a continuous vector field as
an action by defuzzification. In that way, when an input vector enters the QFCS,
classifiers compete to place their actions according to their expected predictions.
A Q-learning algorithm is used to learn the task from the environment, i.e., the
learning of the continuous vector action function. This algorithm is used to
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change the values of the matrices of the expected predictions for each classifier
in the QFCS. A GA is applied to evolve rules based on their average expected
predictions. This GA only evolves the action parts of the fuzzy systems, therefore
there not exists generalization mechanism.

The components of the QFCS are a set of N classifiers, a performance com-
ponent, a learning component, and a discovery component:

Classifiers. Each classifier Cli contains a SFS over the input (x1, . . . , xn) and
output (y1, . . . , ym) spaces, and a square region Ri over that input space
defined as{

(x1, . . . , xn) | mini
x1
≤ x1 ≤ maxi

x1
, . . . ,mini

xn
≤ xn ≤ maxi

xn

}
(1)

where mini
xk

and maxi
xk

are constants, and a set of elements pi
b1,...,bn

with the
subscrips bk ∈ {1, . . . , b}, k = 1, . . . , n and b a constant that constitutes an
n-dimentional matrix. The classifiers can only act over their regions Ri. To
form these regions, the whole input space is divided into dn (d to the power
of n) uniform square regions Rd1,...,dn with the subscrips dl ∈ {1, . . . , d},
l = 1, . . . , n and d a constant that determines the number of divitions per
dimention. Then, classifiers can only take one out of them. Each Rd1,...,dn is
again divided into bn (b to the power of n) uniform square regions Δb1,...,bn

that are associated one by one with pi
b1,...,bn

.
Performance Component. This component determines the procedure the

QFCS follows to select actions as responses to the inputs. First, it receives
a real vector x0 as input; then, all classifiers that contain the input in their
own regions are activated to form a match set [M ]. At that time, the input
is fuzzified and is introduced into each SFS of the classifiers in [M ]. The
fuzzy inference machine of each SFS works to produce an output fuzzy set
that is defuzzified into an output vector yi = (y1, . . . , ym) proposed by each
classifier Cli in [M ]. Then, one of those yis is selected as the output of the
QFCS y0 in the following manner:

y0 =
{

max
yi∈[M ]

{
pi

b1,...,bn

}
| x0 ∈ Δi

b1,...,bn

}
(2)

Learning Component. This component makes the QFCS learn the task us-
ing Q-learning. QFCS receives, from the environment and for each input, a
reward R(x) that defines the task to achieve. At each time, QFCS decides
what to do exploiting the knowledge it has acquired or exploring new pos-
sible actions. The exploitation is done with probability Pexploitation, while
exploration is done with probability Pexploratation = 1 − Pexploitation. Ex-
ploitation is achieved by selecting y0 as in the performance component, and
exploration by selecting one of the possible yi ∈ [M ] at random. Each time,
pi

b1,...,bn
is adjusted as follows:

pi
b1,...,bn,t−1 ← pi

b1,...,bn,t−1 +β

[(
R (xt−1) + γpi

b1,...,bn,t

)
− pi

b1,...,bn,t−1

]
(3)
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where β, γ ∈ [0, 1] and

pi
b1,...,bn,t−1 =

{
pi

b1,...,bn
| xt−1 ∈ Δi

b1,...,bn
∧ Cli = Clt−1

}
(4)

pi
b1,...,bn,t =

{
pi

b1,...,bn
| xt ∈ Δi

b1,...,bn
∧ Cli = Clt

}
(5)

with xt−1 and Clt−1 that are the input and the classifier that was selected
by the performance component at time (t− 1), and xt and Clt that are the
input and the classifier that would be selected by exploitation (the one that
has the maximun expected prediction for the corresponding input) at time
t. β is variable throughout time depending on how old δi, the classifier Cli,
is. In other words:

β =

{[
β0−1

δ0

]
δi + 1, if δi < δ0;

β0, otherwise;
(6)

where δ0 is a constant. The age δi of the classifiers starts in 0 and is incre-
mented in one unit every time step.

Discovery Component. QFCS uses a GA to create new rules. The GA is
applied over [M ]. It only evolves the action parts of the fuzzy rules of the
SFSs. First, the pi value of each Cli ∈ [M ] is computed by averaging their
expected values pi

b1,...,bn
. Then the GA takes two classifiers from [M ] selecting

them with probability proportional to their pi. These classifiers are copied,
crossed-over with probability χ, and mutated with probability μ. Crossing
applies one-point crossover. Then, one of the two classifiers is inserted in [M ]
replacing another one in [M ] that is selected proportional to c/pi. The GA
is applied over [M ] on time intervals that are determined by the classifiers in
[M ]. For this, each classifier stores the last time ei in which it was involved
in a GA, so when [M ] happens, the average time e of its classifiers, for the
last application of the GA, is calculated by:

e =

∑
Cli∈[M ]

(t− ei)

|[M ]| , (7)

where |[M ]| represents the number of classifiers in [M ]. If e ≥ θGA the GA
is applied.

3 Structure, Parameters, and Experiments of QFCS

In all the experiments the input space is divided in regions Rd1,...,dn with d = 4
and with regions Rb1,...,bn with b = 5. The SFSs of classifiers are defined over
their regions Rd1,...,dn and the output space. Therefore, two fuzzy sets Ai

xq,1 and
Ai

xq,2 are defined with triangular membership functions per input variable xq as
follows:

μAi
xq,p

(xq) =

⎧⎪⎪⎨⎪⎪⎩
[

2
w

]
x+
[
1− 2ci

p

w

]
, if
[
cip − w

2

]
≤ x < cip;

−
[

2
w

]
x+
[
1 + 2ci

p

w

]
, if cip ≤ x <

[
cip + w

2

]
;

0, otherwise;

(8)
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where q ∈ {1, . . . , n}, p ∈ {1, 2}, w = (maxi
xq
−mini

xq
), ci1 = mini

xq
and ci1 =

maxi
xq

. In the output variables yq, the fuzzy sets Bi
yq,h are singletons defined by:

μBi
yq,h

(yq) =
{

1, if y = y0h
;

0, otherwise; (9)

where h ∈ {1, . . . , 5} and

y0h = minyq + (h− 1)
[

maxyq −minyq

4

]
, (10)

where minyq and maxyq are the lower and the upper limits of yq. By doing this,
the fuzzy rules have the next form:

IF
[
X i

1 = Ai
1 ∧ . . . ∧X i

n = Ai
n

]
THEN

[
Y i

1 = Bi
1, . . . , Y

i
m = Bi

m

]
(11)

where Ai
xq
∈ {Ai

xq,p} and Bi
yq

is a fuzzy disjunction (with maximum) of a subset
S of the fuzzy sets in T = {Bi

yq,h}. In the starting settings each possible fuzzy
set in T has a probability of 0.05 of being in S. The SFSs of each classifier use
all the possible combinations of their input fuzzy sets in the condition parts of
their fuzzy rules, therefore, there are 2n possible fuzzy rules in each classifier
Cli. Each SFS uses the minimum inference engine [12] with generalized modus
ponens inference and with Mamdani’s minimum implication. The input is fuzzi-
fied into an n-dimension singleton. The fuzzy output is defuzzified by the center
of gravity. In the learning component β0 = 0.2, γ = 0.1, Pexploitation = 0.7 and
Pexploration = 0.3. In the discovery component c = 0.5, χ = 0.8 and μ = 0.04.
The rest of the parameters θGA, N , n, m, and δi depend on the problem.

In our experiments, similarly to Lanzi et al. [9], we compared the results of
QFCS with those obtained using Q-learning with a high discretization. During
a learning run, QFCS is allowed a series of trials in the problem. Each trial
consists of 200 steps or less if the QFCS reaches the goal before that number of
steps. The number of steps given to reach the goal against trials during a run is
reported. These curves are an average over 20 runs of the QFCS with the same
problem. First, QFCS was proved on the frog problem introduced in [10]. Then,
the QFCS was evaluated on the n-environment problem, which we propose as a
more general learning task that requires continuous actions.

4 The Frog Problem

The frog problem [10,11] consists on a frog that lives in a continuous one-
dimensional space x ∈ [0, 2], and that can jump a distance a, i.e., its action,
where a ∈ [0, 1]. A fly is placed on xfly = 1 and the frog is placed in a position
x where x ∈ [0, 1]. The goal for the frog is to jump once and catch the fly. That
is considered a trial. The frog receives a reward given by:

R (x, a) =
{

x+ a, if x+ a ≤ 1;
2− (x+ a), otherwise. (12)
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To solve this problem, QFCS identifies the variables x1 and y1, with x and a
respectively. We set the QFCS with a classifiers population of N = 200, θGA =
1000, n = m = 1, δ0 = 500 and performed 500, 000 trials per run. Figure 1
shows the results obtained by QFCS and Q-learning. Q-learning was discretized
over 100 elements in x and a variables as in [9]. The results show that QFCS
learns a good approximation to the optimal continuous action with a smaller
error than Q-learning. Q-learning does not learn the optimal solution due to its
discretization.

Fig. 1. (a) Average over 20 runs for the action learned. (b) Average over 20 runs for
the obtained error during learning.

5 The n-Environment Problem

The n-environment is an n-dimensional continuous space that is determined by
a square region:

x =
{

(x1, . . . , xn) | xmin
1 ≤ x1 ≤ xmax

1 , . . . , xmin
n ≤ x1 ≤ xmax

n

}
(13)

where xmin
i and xmax

i represent the lower and the upper limits of the xi variable.
This environment has a set of n-dimensional continuous action vectors defined
as:

a =
{

(a1, . . . , an) | amin
1 ≤ a1 ≤ amax

1 , . . . , amin
n ≤ a1 ≤ amax

n

}
, (14)

where amin
i and amax

i represent the lower and the upper limits of the component
ai of a. The goal in the environment is defined as a sub-region Rg ∈ R. There
can be obstacles Oi that are also defined as sub-regions ROi ∈ R. Obstacles are
prohibited regions. The reward function is defined as:

R (x) =
{

10, if x ∈ Rg;
0, otherwise. (15)
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Figure 2 shows the results of the QFCS and Q-learning on a 1-environment
with xmin

1 = 0, xmax
1 = 10, amin

1 = −2, amax
1 = 2 and Rg = {x1 | 6 ≤ x1 ≤ 7}.

The given actions allow for left and right movement over the x axis. We can think
of this problem as a generalized frog problem, where the frog can jump forward
and backward more than one step to catch the fly. This is particularly important
because if the fly is too far away, it cannot be reached by the frog in a single step.
Variables x1 and y1 of QFCS were identified with the 1-environment variables x1

and a1. The parameters used by QFCS were N = 200, θGA = 1000, n = m = 1,
δ0 = 500 and 250, 000 trials were performed per run. Results show how in this
simple problem both systems, QFCS and Q-learning, converge equally fast, but
QFCS is a little bit more precise. This is due to the discretization of variables of
x1 and a1 in Q-learning. This discretization was done with 100 intervals in x1,
and 40 intervals in a1.

Fig. 2. (a) Average over 20 runs for the learned action. (b) Average over 20 runs of the
number of steps to reach goal after learning. (c) Average over 20 runs of the number
of steps to reach goal while learning.

Figure 3 shows the classifiers evolved by QFCS and their approximations
to the Q(x1, a1) function. Each classifier represents a curve in the combined
input-output space (x1, a1); an approximation to Q(x1, a1) is learned by those
classifiers only over those curves. These curves were initially equally distributed
over all the input-output space. Therefore, QFCS has obtained classifiers, that
are over the region, that represent the best actions according to the Q-learning
technique defined in Eqn. 2.

QFCS was also tested in two different 2-environment problems. The first one,
called World1, was defined by xmin

i = 0, xmax
i = 10, amin

i = −2, amax
i = 2 and
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Fig. 3. (a) Classifiers evolved by QFCS. (b) Function Q(x1, a1) learned by QFCS in a
gray scale over the classifiers evolved

Rg = {(x1, x2) | 3 ≤ x1 ≤ 4 ∧ 5 ≤ x2 ≤ 6}. The second one, called World2, was
with the same parameters except for Rg = {(x1, x2)|7 ≤ x1 ≤ 8 ∧ 2 ≤ x2 ≤ 3}
and that it had one obstacle RO1 = {(x1, x2)|3 ≤ x1 ≤ 5 ∧ 0 ≤ x2 ≤ 6}.
Variables xi and yi of QFCS were identified with the 2-environment variables xi

and ai. The parameters used by QFCS were N = 800, θGA = 5, 000, n = m = 2,
δ0 = 1000 and with a 1, 000, 000 trials per run. Q-learning was also done with a
discretization of 100×100 in the input space and with 40×40 in the output space
but it was observed that this algorithm does not converge after one million trials.
Therefore, we reduced the resolution to 25× 25 in the input and 10× 10 in the
output to get convergence. The problem is that, with low resolution, Q-learning
loses its accuracy and can learn only suboptimal solutions. Figure 4 shows that
QFCS converges at a speed similar to Q-learning and produces similar results.
Figure 5 shows the results obtained in the World2.

Fig. 4. (a) Average over 20 runs of the action vector field learned. (b) Average over 20
runs of the number of steps to reach goal while learning.
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Fig. 5. (a) Average over 20 runs of the action vector field learned. (b) Average over 20
runs of the number of steps to reach goal while learning.

6 Conclusions

We have shown how QFCS can deal with the n-Environment problem defined
above. This issue belongs to reinforcement learning problems. QFCS uses the
Q-function to determine its actions. In that way, QFCS evolved the classifiers
in those parts of the combined input and output space where the Q-function
is important to the decision process. Our approach focused on the use of fuzzy
logic since, as it has been shown, it is expressive enough for the task. This
approach can indeed represent continuous inputs and outputs, as shown in the
frog problem, a problem where this feature is more relevant.

Acknowledgments. This research was supported by the Tecnológico de Mon-
terrey (ITESM) under the Research Chair CAT-010.
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Abstract. This paper proposes a simple modification of the Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES) for high dimensional objective
functions, reducing the internal time and space complexity from quadratic to
linear. The covariance matrix is constrained to be diagonal and the resulting
algorithm, sep-CMA-ES, samples each coordinate independently. Because the
model complexity is reduced, the learning rate for the covariance matrix can be
increased. Consequently, on essentially separable functions, sep-CMA-ES sig-
nificantly outperforms CMA-ES. For dimensions larger than a hundred, even on
the non-separable Rosenbrock function, the sep-CMA-ES needs fewer function
evaluations than CMA-ES.

1 Introduction

The search space dimensionality, n, plays an essential role in real parameter Rn opti-
misation where a non-linear objective function, f : Rn → R, is to be minimised. Its
importance is emphasised by the notion of curse of dimensionality: the search space
volume increases exponentially with n, making space filling sampling intractable even
for moderate dimensionalities. Difficult real parameter optimisation problems also ex-
hibit essential dependencies between the parameters, and learning these dependencies
has been successfully addressed by covariance matrix adaptation (CMA) [2,4]. The
CMA learns all pair-wise dependencies between all parameters by updating a covari-
ance matrix for the sample distribution. The CMA was originally introduced for evo-
lution strategies (ESs) but recently applied also in Evolutionary Gradient Search [1].
Empirical results indicate that, in order to learn the complete covariance matrix, the
number of objective function evaluations usually scales sub-quadratically with n [3,4].

In what follows, we will assume a black-box scenario in which function evaluations
on f are the only way to gather insights into the nature of f (and therefore to make
a reasonable proposal for a solution vector with small function value). The number
of function evaluations to reach a target function value is regarded as search costs.
Furthermore, we call a function f separable if the parameters of f are independent in
that the global optimum can be obtained by n one-dimensional optimisation procedures
along the coordinate axes for any given initial point.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 296–305, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Motivation. A principle limitation of CMA results from the degrees of freedom, n2+n
2 ,

in the covariance matrix, also referred to as strategy parameters. The full learning task
scales roughly with n2 (see e.g. [4]) and can dominate the search costs (in this case,
the learning phase is much longer than the convergence phase). A second limitation lies
in the internal computational complexity. (i) Sampling a general multivariate normally
distributed random vector has a complexity of n2 (per sampled n-dimensional vector).
A matrix-vector multiplication needs to be conducted. (ii) Updating the covariance ma-
trix has a complexity of (μ + 1)n2 since the so-called rank-μ update [3] amounts to μ
covariance matrix updates. (iii) Factorising the covariance matrix C into AAT = C
has a complexity of n3. The factorisation is needed to sample the multivariate normal
distribution with covariance matrix C. Usually, this computation is postponed until af-
ter n/10 generations and slightly outdated distributions are sampled [4]. Consequently,
the complexity of this step becomes n2 per generation.1 In conclusion, several steps in
the CMA algorithm have a computational complexity of Θ

(
n2
)
.

The most obvious option toward improving the scaling behaviour for the search costs
is to reduce the degrees of freedom in the covariance matrix. We think of several ways
to reduce the degrees of freedom, resulting in a family of potentially useful modifica-
tions of CMA-ES which trade off model complexity for learning speed. As long as the
model complexity remains sufficient, search costs decrease because of a reduced learn-
ing period. In this paper, we pursue the arguably simplest modification of CMA that
reduces the degrees of freedom in the covariance matrix to n. Even though we interpret
this modification, sep-CMA, rather as a preliminary step, it reveals some interesting,
surprising and promising perspectives on its own.

Previous Works on Favourably Scaling CMA Variants. Some ESs, which were intro-
duced prior to CMA-ES, implement key features of the CMA-ES and scale linearly with
the dimension. In [8], a (1, λ)-ES with cumulation for individual step-size adaptation is
proposed.2 An extension of this derandomised step-size adaptation, denoted AII-ES in
[5], combines this individual step-size adaptation with the adaptation of one direction,
overall updating 2n strategy parameters.

The MVA-ES algorithm [9] adapts one main (mutation) vector. The time complexity
of the algorithm is n according to the size of the main vector. The MVA-ES is efficient
in the specific case of objective functions with a single preferred mutation direction. In
L-CMA-ES [6] a parameterm allows to control the dimensionality of the representation
of the mutation distribution. The learning is restrained to m ≤ n main components. For
the two extremes, ifm = 1, L-CMA-ES is somewhat similar to MVA-ES and if m = n,
it is equivalent to the original CMA-ES.

In this paper, we address another subspace of strategy parameters that can be easily
identified: the diagonal of the covariance matrix.

Objectives of this Paper. We address two main objectives. (i) Formulating a small-
est possible modification of CMA, denoted as sep-CMA, that can learn a scaling of

1 More precisely, the computation is postponed until after ccov
−1n−1/5 generations, where the

learning rate for the covariance matrix, ccov, equals approximately 2n−2 for small populations.
As the learning rate depends on the parent population size, the complexity becomes n2 per
parent vector.

2 The algorithm is very similar to (1, λ)-sep-CMA-ES.
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variables in linear time. The sep-CMA-ES is, to our knowledge, the first derandomised
evolution strategy with linear time complexity that can exploit a large population effec-
tively, just as the CMA-ES. (ii) Comparing the performance of sep-CMA-ES on both
separable and non-separable functions to CMA-ES and other previously proposed evo-
lutionary algorithms. Surprisingly, sep-CMA-ES will turn out to be advantageous not
only on separable, but also on significantly non-separable functions.

The remainder of this paper is organised as follows. Section 2 will introduce sep-
CMA-ES, derived from the original CMA-ES. In Section 3, test functions and the test
set-up are given. Results from the experiments are presented in Section 4 and provide
insights from which conclusions are drawn in the last section.

2 sep-CMA-ES

We begin by presenting the CMA-ES algorithm, introduced in [4]. The (μ/μW , λ)-
CMA-ES is described in Alg. 1. The description closely follows [2] in using weighted
recombination of offspring along with a rank-μ update of the covariance matrix such
that a large population size can be exploited.

For sep-CMA-ES, two simple changes are undertaken in the original CMA-ES.
(i) The covariance matrix C is in effect constrained to be diagonal, (ii) the learning
rate ccov is increased. When the covariance matrix is diagonal, the mutation distribution
is sampled independently in the given coordinate system using n individual variances.
The only modification in the CMA-ES appears in line 11 which is modified to be:

D =
√

diag(C) (1)

where diag(C) is a diagonal matrix with the same diagonal elements as C. The matrix
B remains I for all iterations.

Because only the diagonal elements of the covariance matrix are utilized, only the
diagonal of the covariance matrix must be updated in line 9 and the time complexity of
this step becomes linear in n. All other steps in the algorithm become at most linear,
because B = I can be removed from the equations.

In contrast to the CMA-ES, the sep-CMA-ES is not rotationally invariant. The de-
grees of freedom in the covariance matrix reduce from n+ n2−n

2 to n, thus the learning
rate in line 9 can be increased. Tests on standard functions using different values for
the learning rate ccov were done in [10]. For obtaining a similar behaviour than that of
CMA-ES when ccov varies, the learning rate for sep-CMA-ES had to be multiplied by
n+2

3 . In all following experiments, ccov = n+2
3 cdef

cov is used for sep-CMA-ES.

3 Test Functions and Methods

Test Functions All test functions are given in Table 1. We introduce the block-rotated
ellipsoid function, fβ,m

blockelli. It is the compound of an axis-parallel ellipsoid function
with an n× n matrix Q with m identical orthogonal matrices of size n

m × n
m along its

diagonal (m blocks). If the number of blocks m = n, the function is equivalent to the
axis-parallel ellipsoid function, for m = 1 block, it is equivalent to the rotated ellipsoid
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Parameter Setting:

λ = 4 + �3 ln(n)�, μ = �λ
2
�, wi = ln(μ+1)−ln(i)∑μ

j=1 ln(μ+1)−ln(j)
(i = 1, . . . , μ), μW = 1∑μ

i=1 w2
i

,

cσ = μW+2
n+μW+3

, dσ = 1 + 2max
(
0,
√

μW−1
n+1

− 1
)

+ cσ ,

cc = 4
n+4

, μcov = μW, ccov = cdef
cov = 1

μcov

2

(n+
√

2)2
+
(
1 − 1

μcov

)
min
(
1, 2μcov−1

(n+2)2+μcov

)
Initialisation: g = 0, B = I , D = I , pσ = (0, . . . , 0)T , pc = (0, . . . , 0)T , C = I . The initial
value of the parameters 〈x〉w ∈ Rn and the step-size σ ∈ R is problem-dependent.
Repeat until a stopping criterion is reached:

1. g ← g + 1

2. zi ∼ N (0, I) for i = 1, . . . , λ

3. xi = 〈x〉w + σBDzi

4. 〈x〉w =
∑μ

i=1 wixi:λ where xi:λ denotes the i-th best individual out of the λ

5. 〈z〉w =
∑μ

i=1 wizi:λ where zi:λ denotes the i-th best mutation vector

6. pσ ← (1 − cσ)pσ +
√

cσ(2 − cσ)
√

μWB〈z〉w

7. Hσ =

⎧⎨⎩1 if ‖pσ‖√
1−(1−cσ)2g

< (1.4 + 2
n+1

)E(‖ N (0, I) ‖)

0 otherwise (stalling the update of pc if pσ is large)

8. pc ← (1 − cc)pc + Hσ

√
cc(2 − cc)

√
μWBD〈z〉w

9. C ← (1 − ccov)C + 1
μcov

ccovpc (pc)
T

+ ccov

(
1 − 1

μcov

)∑μ
i=1 wiBDzi:λ (BDzi:λ)T

10. σ ← σ exp
(

cσ
dσ

(
‖pσ‖

E(‖N (0,I)‖) − 1
))

11. [B, D2] = eigendecomposition(C)

Algorithm. 1. The CMA-ES algorithm; = and ← denote left-hand assignments. Components
in N (0, I) ∈ Rn are independent (0,1)-normally distributed. eigendecomposition(C) returns
normalized, orthogonal eigenvectors as columns of B and the respective eigenvalue square roots
as diagonal elements of D. To achieve sep-CMA-ES, line 11 is replaced by D2 = diag(C)
according to Eq. (1), and ccov = n+2

3
cdef

cov.

function. The hyper-ellipsoid function, fhyperelli, is used in [8] and is biased to more
sensitive components than the ellipsoid function. We also use the well-known Rosen-
brock function, fRosen, which is non-convex and non-separable. The rotated Rosen-
brock function (Q �= I) is tested as well. The sum-of-different-powers (Diff-Pow)
function, fβ

diffpow, is unimodal and separable but reveals increasing differences in the
sensitivities when approaching the optimum.

CPU-time Experiments. The total CPU-time for a run with a given number of func-
tion evaluations is measured for different problem dimensions. For these experiments
we have implemented the sep-CMA-ES and CMA-ES from the purecmaes.m Mat-
lab code3. In the CMA-ES algorithm the eigendecomposition is postponed until after

3 http://www.bionik.tu-berlin.de/user/niko/purecmaes.m

http://www.bionik.tu-berlin.de/user/niko/purecmaes.m
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Table 1. Test functions. We have y = Qx and the orthogonal n × n matrix Q is either I
for the axis-parallel case or, for the (fully) rotated function, an angle-preserving transformation
generated according to [4]. For the block rotated ellipsoid function, Q equals to a block diagonal
matrix with an orthogonal n

m
× n

m
matrix repeated m times along its diagonal.

Name Function ftarget

Rosenbrock fRosen(x) =
∑n−1

i=1

(
100 (y2

i − yi+1)
2 + (yi − 1)2

)
10−9

Diff-Pow fβ
diffpow(x) =

∑n
i=1 |yi|2+β i−1

n−1 , β = 10 as default 10−14

Block-Rotated
fβ,m
blockelli(x) =

∑n
i=1 β

i−1
n−1 y2

i , β = 106 as default 10−9

Ellipsoid

Hyper-ellipsoid fhyperelli(x) =
∑n

i=1(i yi)
2 10−10

α(ccovn)−1 generations, with α in {0, 0.1, 1}. The number of function evaluations for
the time measurement is 5 × 104 when α is 0.1 or 1 and the dimension is larger than
320, otherwise 104, to make sure the eigendecomposition is computed at least ten times.
Three trials are done for each algorithm on each dimension. Two population sizes are
tested: λ = 4 + "3 lnn# and λ = 2n. Experiments were performed on a single (no
hyper-threading) Intel Core 2 processor 2.66GHz with 2GB RAM.

Performance Experiments. We measure the number of function evaluations to reach the
target function value from successful runs. For lower dimension (n < 100), 11 runs,
otherwise 2 runs are conducted. If the target function value given in Table 1 is reached
within 107 function evaluations, the run is considered successful. On the Rosenbrock
function, at most 30%, usually less, of the runs per set-up converged to the local opti-
mum with CMA-ES or sep-CMA-ES. These unsuccessful runs are disregarded in our
performance analysis. The rotation matrix Q is changed for every single run, the same
set of rotation matrices is used for testing both algorithms.

We use a Scilab version of the sep-CMA-ES and CMA-ES. For all problems, the
starting point 〈x〉(0)w is chosen uniformly in [−20, 80]n and the initial step-size σ(0) =
100/3 is one third of the interval width. In addition to the comparison of sep-CMA-ES
to CMA-ES, we also compare to previously published results where we use the same
starting point, initial step-size (when available) and population sizes as those described
in each of the works cited below.

4 Results and Discussion

CPU-time Experiments. Figure 1 displays the total CPU-time divided by the num-
ber of function evaluations versus dimension for sep-CMA-ES and CMA-ES. For the
default population size (left subfigure), sep-CMA-ES performs much faster. In larger
dimensions, the time complexity of sep-CMA-ES empirically scales like n1.2, the time
complexity of CMA-ES scales like n2.7 if the eigendecomposition in CMA-ES is done
at each iteration (α = 0) and becomes slightly sub-quadratic if outdated covariance
matrices are used (α = 0.1 and 1), but sep-CMA-ES is still faster by a factor of at least
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λ = 4 + �3 ln(n)� λ = 2n

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Dimension

C
pu

tim
e 

[s
] p

er
 F

un
ct

io
n 

E
va

lu
at

io
n sep−CMA−ES

CMA, alpha=1
CMA, alpha=0.1
CMA, alpha=0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Dimension

C
pu

tim
e 

[s
] p

er
 F

un
ct

io
n 

E
va

lu
at

io
n sep−CMA−ES

CMA, alpha=1
CMA, alpha=0.1
CMA, alpha=0

Fig. 1. CPU time per number of function evaluation for sep-CMA-ES (dark) and CMA-ES on the
axis-parallel ellipsoid function for two different population sizes λ. The eigendecomposition of
the covariance matrix in CMA-ES is postponed until after (ccovn)−1α generations. Lines show the
median of three trials, vertical error-bars show minimum and maximum (all indistinguishable).

six for n = 100 and at least a hundred for n = 1000. For λ = 2n (right subfigure), sep-
CMA-ES empirically achieves linear time complexity in larger dimensions whereas the
time complexity of CMA-ES is quadratic. Again, sep-CMA-ES is clearly faster than
CMA-ES by a factor of ten and forty for n = 100 and 1000 respectively.

Performance Experiments. Figure 2 shows the average number of function evaluations
to reach ftarget on different functions. On the separable Diff-Pow and ellipsoid function
(left subfigures), the sep-CMA-ES outperforms CMA-ES by a factor of ten in 100-D
and the performance gap widens as the dimension increases.

The performance of sep-CMA-ES deteriorates on the rotated functions: on the Diff-
Pow function no run reached the target function value. On the block-rotated ellipsoid
function, sep-CMA-ES does not succeed with 1 block (i.e. rotated ellipsoid function)
except for n = 2. As the number of blocks increases, the sep-CMA-ES performs grad-
ually better on the block-rotated ellipsoid function. For 2 blocks, sep-CMA-ES out-
performs CMA-ES in dimensions larger than 200. Already for 4 blocks, where the
condition number within the non-separable sub-problems equals to 106/4 ≈ 30, sep-
CMA-ES outperforms CMA-ES in all dimensions.

On the Rosenbrock function (non-rotated) the sep-CMA-ES is roughly 50 times
slower than the CMA-ES in small dimensions (cf. right of Fig. 2). With increasing
dimension the difference vanishes and, surprisingly, sep-CMA-ES outperforms CMA-
ES on the Rosenbrock function for dimension n > 100 while the success rates remain
close for both algorithms. This effect cannot be observed on the rotated Rosenbrock
function, where sep-CMA-ES is outperformed by CMA-ES at least by a factor of ten
up to 100-D.

The bottom-right of Fig. 2 investigates the advantage of sep-CMA-ES on cheap to
evaluate objective functions. By multiplying the number of function evaluations needed
on the Rosenbrock function by the CPU-time per function evaluation as given in Fig. 1,
we obtain the overall CPU-time for optimising the non-separable Rosenbrock function
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Fig. 2. Experimental results of sep-CMA-ES (×) on the Diff-Pow function (top-left), the block-
rotated ellipsoid (bottom-left) and Rosenbrock function (right), compared to CMA-ES (+). The
functions are tested in their axis-parallel version (dashed lines) and in their rotated version (plain
lines). Lines show median, vertical error-bars show quartiles of the number of evaluations of the
successful out of 11 runs on smaller dimension (n < 100), out of 2 runs otherwise.

(assuming the CPU-costs of the function evaluations are that of the axis-parallel ellip-
soid function as used in the experiments from Fig. 1). The sep-CMA-ES becomes faster
for dimensions larger than 20. In 100-D, sep-CMA-ES is already 50 times faster than
CMA-ES and the gap widens with increasing dimension. The bottom-right subfigure of
Fig. 2 is an optimistic scenario since the axis-parallel ellipsoid function is very cheap.
More CPU-expensive functions will narrow the gap and shift the point where the two
curves cross to the right, but never beyond n = 100.4

Comparison to Other Algorithms. Tables 2, 3 and 4 compare the performance of sep-
CMA-ES with previous works. On separable functions (felli, fhyperelli, fdiffpow), the
sep-CMA-ES performs comparable to indi-ES [8] and AII-ES [5] (Tables 2 and 3) and
greatly outperforms MVA-ES [9] and L-CMA-ES [6,7] (Tables 3 and 4), while the latter
are rotational invariant. On the Rosenbrock function, AII-ES and L-CMA-ES perform
better than sep-CMA-ES, because they can learn a limited number of correlations.

4 The reason sep-CMA-ES becomes faster is not only because of its smaller time complexity
but also because the search costs become lower.



A Simple Modification in CMA-ES Achieving Linear Time and Space Complexity 303

Table 2. Mean number of function evaluations [×103] to reach the target function value from
3 runs, plus-minus the standard deviation when available, n = 30. All functions are used in
their non-rotated version. On the hyper-ellipsoid and Diff-Pow function, σ(0) = 1, 〈x〉(0)w =

(1, ..., 1)T . On the Rosenbrock function, σ(0) = 0.1, 〈x〉(0)w = 0.

Function ftarget
indi-ES [8] CMA-ES sep-CMA-ES

(1, 10)-select. (7/7W , 14) (1, 10)-select. (7/7W , 14)

fhyperelli 10−10 6.6 13±3% 7.2±4% 5.9±4%

fn−1
diffpow 10−20 9.7 79±4% 19±3% 9.6±3%

fRosen 10−6 80 45±2% 81±2% 106±3%

Table 3. Mean number of function evaluations [×103] to reach given target function value 10−9

from 3 runs, plus-minus the standard deviation when available, n = 20. In the case of MVA-ES,
the range between maximum and minimum from 70 runs is displayed. All functions are used in
their non-rotated version. On the ellipsoid function, σ(0) = 1, 〈x〉(0)w = (1, . . . , 1)T . On the
Rosenbrock function, σ(0) = 0.1, 〈x〉(0)w = 0. No success was observed for MVA-ES on the
ellipsoid function (in 3.5 × 105 function evaluations).

Function
AII-ES [5] MVA-ES [9] CMA-ES sep-CMA-ES

(1, 10)-select. (1, 10)-select. (5, 35) (6/6W , 12) (1, 10)-select (6/6W , 12)

felli 12 no success no success 20±0.6% 7.6±2% 5.4±2%
fRosen 21 57±50% 78±45% 21±3% 78±3% 116±1%

Table 4. Mean number of function evaluations [×103] to reach the target function value 10−14

from 3 runs, plus-minus the standard deviation when available, n = 30, λ = 14. All functions are
used in their non-rotated version. On the ellipsoid function, 〈x〉(0)w is chosen randomly in [−5, 5]n,
σ(0) = 5. On the Rosenbrock function, 〈x〉(0)w is chosen randomly in [−2, 2]n , σ(0) = 2.

Function
L-CMA-ES [6,7] CMA-ES sep-CMA-ES

rank-1, m = 5 rank-1, m = 15 rank-1 default rank-1 default
felli 1900 700 46±0.4% 45±0.8% 11±7% 11±0.5%
fRosen 53 63 52±27% 51±5% 134±7% 191±2%

5 Summary and Conclusion

We presented the sep-CMA-ES algorithm, a simple modification of the CMA-ES that
reduces the n+ n2−n

2 degrees of freedom in the covariance matrix of the original algo-
rithm to only n diagonal components, where n is the problem dimension. Consequently,
in contrast to the CMA-ES, dependencies between variables are not captured and co-
ordinates are sampled independently. Just like CMA-ES, the sep-CMA-ES can exploit
a large population. The advantages of sep-CMA-ES are twofold: (i) it reduces the in-
ternal time and space complexity of CMA-ES from quadratic to linear. (ii) the learning
rate for the covariance matrix can be increased by a factor of about n

3 , considerably
accelerating the adaptation of axis-parallel distribution ellipsoids.
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Evaluation Results. We evaluated sep-CMA-ES on separable and non-separable test
functions by measuring numbers of function evaluations. Fully separable problems
mainly served to confirm a proper implementation. On separable functions sep-CMA-
ES significantly outperforms CMA-ES and the scale-up with the dimension is linear.

We introduced the block-ellipsoid, a convex-quadratic test function for which the
“degree of non-separability” can be controlled. For low and moderate degrees of non-
separability (relating to “non-separable condition numbers” of up to 30) the sep-CMA-
ES outperforms CMA-ES in all dimensions, roughly by a factor of n

10 + 1. For a larger
degree of non-separability (relating to a non-separable condition number of 1000) an
advantage can be observed only in larger dimension (n > 100). On the fully non-
separable ellipsoid, CMA-ES is always far superior.

The well-known Rosenbrock function exhibits relevant dependencies between the
variables posing no principle obstacle for sep-CMA-ES. In low dimensions, sep-CMA-
ES is about 50 times slower than CMA-ES. The performance difference diminishes with
increasing dimension and for dimensions n > 100, sep-CMA-ES becomes faster than
CMA-ES. This effect can be attributed to the given coordinate system: on the rotated
Rosenbrock function sep-CMA-ES never outperformed CMA-ES up to dimension 320.

Implications. We perceive two principle benefits from sep-CMA-ES. First, the study of
sep-CMA-ES allows to explicitly measure the benefits and drawbacks from learning de-
pendencies. We can quantify the gain or loss that can be attributed to the ability to adapt
the complete covariance matrix in CMA-ES. The sep-CMA-ES also allows insightful
cross-comparisons with other “separable” algorithms (with only coordinate-wise opera-
tions). Second, the application of sep-CMA-ES to real-world problems will be advan-
tageous (compared to CMA-ES) on high-dimensional objective functions, which either
do not have too intricate dependencies between the decision variables (as it is the case
for the Rosenbrock function) or are cheap to evaluate. In the first scenario, sep-CMA-
ES needs fewer function evaluations if the adaptation of the scaling of variables helps to
solve the function. The second scenario favors sep-CMA-ES, when the strategy inter-
nal time complexity becomes relevant, where CMA-ES is roughly n

10 + 1 times slower.
We presented natural examples for both scenarios, where sep-CMA-ES outperforms
CMA-ES by a factor of about ten already in 100-D.

For combining the advantages of CMA-ES and sep-CMA-ES in moderate or high
dimension, we propose a simple policy: using sep-CMA-ES for the first 100 to 200
times n/λ iterations and afterwards CMA-ES retaining the acquired diagonal covari-
ance matrix.5 The underlying rationale is that the first 100 to 200 times n/λ iterations
are almost negligible compared to the adaptation costs for the full covariance matrix
afterwards. In some cases, this policy will be adversarial. Using only CMA-ES will be
visibly better if most necessary dependencies can be learned quickly with the CMA-
ES in the beginning already. Sticking to sep-CMA-ES will be significantly better if the
necessary scaling continuously varies (like on fβ

diffpow) and therefore the fast learning
of sep-CMA remains beneficial.

5 Using sep-CMA can improve the sometimes slow progress of CMA-ES in the very beginning
of the optimisation which we ascribe partly to non-elitism and partly to the inability of CMA-
ES to quickly reduce variances in single coordinates.
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Finally, the sep-CMA will serve as a stepping stone to other variants of CMA with
linear time and space complexity that we plan to develop.
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Abstract. In this work we investigate the use of prediction mechanisms
in Evolutionary Algorithms for dynamic environments. These mecha-
nisms, linear regression and Markov chains, are used to estimate the
generation when a change in the environment will occur, and also to pre-
dict to which state (or states) the environment may change, respectively.
Different types of environmental changes were studied. A memory-based
evolutionary algorithm empowered by these two techniques was success-
fully applied to several instances of the dynamic bit matching problem.

1 Introduction

Evolutionary algorithms (EAs) have been applied successfully to a great vari-
ety of stationary optimization problems. However, most real-world applications
change over time and some modifications have been introduced in EAs in or-
der to deal with this kind of problems: the use of memory, the maintenance of
population’s diversity or the use of several populations. See ([1],[2]) for a review.

When the environment is dynamic, in some cases we can try to predict the
moment and the pattern of the change. Predicting modifications allows antic-
ipating the sudden decrease in performance of an evolutionary algorithm and
improve its adaptability. Our method involves the use of a memory of good past
individuals, besides the normal population. That memory interplays with two
other modules: one based on linear regression and the other supported by a
Markov chain. Linear regression is used to estimate when the next change in
the environment will happen; Markov chains are used to model what is known
about all possible environments and the transitions among them. The Markov
chain is used to predict which new environments will most probably appear in
the future. The output of the linear regression module is based on the time of
past changes. Once that moment is defined we use the Markov chain model to
predict how the new possible environments will look like. Before the predicted
moment of change we seek from memory good individuals for these new situ-
ations and inject them in the normal population. The main goal of this paper
is to investigate the effectiveness of using predictors based on linear regression
and Markov chains. We assume that the reader is familiar with the concepts of

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 306–315, 2008.
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linear regression and Markov chains. Also, due to lack of space we only present
a small part of the results we obtained. The interested reader should consult
[3]. The remaining text is organized as follows: section 2 describes related work
concerning prediction and anticipation used by EAs in the context of dynamic
environments. In section 3 we explain the overall architecture of an EA that uti-
lizes the Markov chain prediction and the linear regression module. In section 4
we present the experimental setup used to test the proposed ideas. Experimental
results are summarized in section 5. We conclude with some remarks and ideas
for future work.

2 Related Work

Recently, several studies concerning anticipation in changing environments us-
ing EAs have been proposed. Branke et al. ([4]) try to understand how the
decisions made at one stage influence the problems encountered in the future.
Future changes are anticipated by searching not only for good solutions but also
for solutions that additionally influence the state of the problem in a positive
way. These so-called flexible solutions are easily adjustable to changes in the
environment.

Stroud ([5]) used a Kalman-Extended Genetic Algorithm (KGA) in which
a Kalman filter is applied to the fitness values associated with the individuals
that make up the population. This is used to determine when to generate a
new individual, when to re-evaluate an existing individual, and which one to
re-evaluate. Van Hemert et al. ([6]) introduced an EA with a meta-learner to
estimate at time t how the environment will be at time t+Δ. This approach uses
two populations, one that searches the current optimum and another that uses
the best individuals in the past to predict the future best value. The prediction
about the future is made based on observations from the past using two types
of predictors: a perfect predictor and a noisy predictor.

Bosman ([7], [8]) proposed several approaches focused on the importance of
using learning and anticipation in online dynamic optimization. These works
analyse the influence of time-linkage present in problems such as scheduling and
vehicle routing. Bosman propose an algorithmic framework integrating evolu-
tionary computation with machine learning and statistical learning techniques
to estimate future situations.

Linear regression was used in [9] to improve local convergence in dynamic
problems.

3 System’s Overview

In this section we will detail each component of the proposed system, called
PredEA. The major components of the complete architecture are the following:
(1) a standard evolutionary algorithm; (2) memory of past good individuals; (3)
Markov chain model module; (4) linear regression module.
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The dynamics of the environment is defined off-line: the number of different
states, the possible environments, the sequence of environments to use during
the simulation and the initial state. We emphasize that all this information is
completely unknown by the EA, and that the Markov model is constructed
during the simulation. As the predictions made by the linear regression module
may not be exact, we use a parameter, called Δ, to control the maximum esti-
mated error, measured in terms of generations before the actual occurrence of
the change. More explicitly, if the predicted value returned by the linear regres-
sion module is generation g, at generation g−Δ, the Markov model ([10]) is used
to predict the next possible states. At that time individuals from the memory
are retrieved and introduced in the population, replacing the worst ones. The
selected memory individuals are those who were good solutions in the state(s)
that are considered to be the next possible ones by the Markov chain model.

Every time a change actually happens, the probabilities of the transition ma-
trix of the Markov chain are updated accordingly. This includes the case when a
new state appears. In that situation, the new state is included in the model and,
again, the transition matrix is updated. Notice that, during the earlier stages of
the simulation prediction is difficult, because the algorithm needs to experience
a learning phase to set up the values of the transition matrix. As we will see,
the anticipation based on the introduction of useful information from memory,
avoids the decrease of the algorithm’s performance. Each component will be
explained in detail now.

Evolutionary Algorithm. It’s a standard memory-based EA. One population
of individuals evolve by means of selection, crossover and mutation and is used
to find the best solution for the current environment. The memory population is
used to store the best current individual, which we do from time to time. When
a change happens or is predicted, the information stored in memory is retrieved
and used to help the EA to readapt to the new environment.

Memory. Memory is used to store best individuals of the current population.
It starts empty and has a limited size (20 individuals). An individual is stored
into memory in two situations: (1) if the environment changed in the meantime
and no individual related to this new environment was previously stored; (2)
if an individual already exists in memory for the current environment, but it is
worst than the current best, the latter individual replaces the former in memory.
If memory is full we replace the most similar individual, in terms of Hamming
distance, by the current best if it is better ([11]). This way we maximize the
capacity of the memory to keep an individual for each different environment.
This scheme, called generational replacing strategy, was proposed in [12] and
proved to be very efficient in memory-based EAs for changing environments.
Memory is also used to detect changes in the environment: a change occurs if at
least one individual of the memory has its fitness changed.

Markov Chain Module. In our approach, each state of the Markov chain
corresponds to a template that represents the global optimum for a certain
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environment. Initially, a maximum number of different states is defined as well
as the possible sequence of states that may occur during the algorithmic pro-
cess. The initial state is randomly chosen among the existing ones. Again we
stress that all this information is unknown to the algorithm, which works with
a Markov model that it builds dynamically. Ideally, after some generations and
environmental changes our algorithm will construct a Markov model identical
to the hidden one. From then on, the next state(s) can be correctly predicted
making possible the introduction of important information before the effective
change, allowing the continuous adaptation of the EA to the new conditions.
Our algorithm starts with its transition matrix filled with zeros. Each time a
transition is detected, say from state i to another state j, the probability values
involving state i and all the other states j are changed to take into account the
number of times the environment moved from i to j.

Linear Regression Module. Knowing the best moment to start using the pre-
dicted information provided by the Markov chain module can improve the adap-
tation’s capabilities of our EA. This moment is computed by calling
the Linear Regression Module. The method is simple: the first two changes of
the environment are stored after they happen (no prediction can be made yet).
Based on these two values, a first approximation of the regression line can be
built and the regression module starts providing the predictions about the next
possible moment of change. Then, each time a change occurs the regression line
is updated.

PredEA Pseudocode. Now that we have described the different components
we can present the pseudocode of PredEA.

PredEA(max, markov, initial-state)

1 Randomly create initial population
2 Create empty memory
3 Create the transition matrix with max states filled with zeros
4 repeat
5 Evaluate population
6 Evaluate memory
7 if Is time to update memory
8 then Store the best individual
9 Set next time to update memory

10 if An environmental change happens
11 then Store performance measures
12 Update the linear regression line
13 Predict g (next-change)
14 Update the algorithm’s Markov transition matrix
15 if g (next-change) is close (as defined by g − Δ)
16 then Predict next state(s) (using EA’s Markov model)
17 Search memory for best individual(s) for that(ese) state(s)
18 Introduce the selected individual(s) into population

� Standard EA steps
19 Perform selection, crossover and mutation
20 Define next population
21 until Stop-condition

max is the maximum number of states of the Markov chain, markov is the
Markov model defined off-line, and initial-state is the randomly chosen initial
state for the Markov model.
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4 Experimental Design

Experiments were carried out to compare the PredEA with a similar algorithm
without prediction capabilities (we will refer this second algorithm as noPre-
dEA). The latter algorithm is an EA with the direct memory scheme proposed
by [2]. Memory is updated using the same time method, but instead of the re-
placing strategy used by [2] a generational scheme is used instead: after a change
is detected, population and memory are merged and the best N−M individuals
are selected as a temporary population to go through crossover and mutation,
while the memory remains unaffected (N is the size of population, M is the
size of memory). The benchmark used was the dynamic bit matching problem:
given a binary template, the individual’s fitness is the number of bits matching
the specified template. A set of different binary templates is generated at the
beginning of the run. When a change happens, a different template is chosen
from that set.

Experimental Setup. In the Table 4 we summarize the EA’s settings used in
our experiments.

For each experiment, 30 runs were executed and the number of generations
was computed based in 200 environmental changes. The overall performance
used to compare the algorithms was the best-of-generation fitness averaged over
30 independent runs, executed with the same random seeds. The results were
statistically validated ([3]).

Usually, in papers related with the algorithms’ performance on changing en-
vironments (e.g. [11], [13], [2]), the measures are saved only after the change is
detected and some actions had been taken (as the introduction of information
from memory). This way, we don’t know what really happened to the EA’s per-
formance instantly after the change. In this work, the performance measure is
saved immediately after a change is detected. This way we can see if the infor-
mation introduced before the change, based on given predictions, is really useful
to the algorithm’s adaptability.

The number of different states (templates) used in the experimentation was
3, 5, 10, 20 and 50. The environmental transitions were of two kinds: deter-
ministic, i.e. the probability to change to the next state is always 1 (this kind

Table 1. Parameters’ settings

EA parameters value

individual’s representation binary
initialization uniform randomly created

population size 80
memory size 20

crossover uniform, probability 70%
mutation flip, probability 1%

parent’s selection tournament, size 2
survivors’ selection generational with elitism of size 1

stop criterion number of generations necessary for 200 environmental changes
goal maximize matching with template
Δ {5,10,25}
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of dynamics will be denoted by Pij = 1) or probabilistic, where, in certain
states, the transition can be made to different states (this kind of dynamics
will be denoted by Pij <> 1 ). The period was changed in two different ways:
periodically, every r generations or according to a fixed pattern. In periodic envi-
ronments the parameter r was used with four different values: 10, 50, 100 and 200
generations between changes. This type of changes will be called cyclic-periodic
environments. In the second case, a pattern was set and the moments of change
were calculated based on that pattern. Four different patterns were investigated:
5-10-5, 10-20-10 (fast), 50-60-70 (medium) and 100-150-100 (slow). This way
the intervals between changes are not always the same, but follow some pattern
making prediction possible. This means that we tested 80 different situations.
Only partial results will be shown (see [3]).

5 Results

Accuracy of Predicted Values using Linear Regression. When changes
occur every r generations, linear regression gives correct predictions, since all
the observed values are on the regression line. Using a pattern to generate the
periodicity of the change, we may have situations where the predicted values are
not precise. In the cases of patterns 5-10-5 and 10-20-10, there is an associated
error that slowly decreases over time. In these cases, the Δ constant assumed in
our implementation (5 generations), was sufficient to reduce to zero that error,
and the insertion of individuals in the population was always made before the
change occurs. That is not true for the patterns 50-60-70 and 100-150-100, and
we had to use an increased value of Δ to avoid a decrease in performance of our
algorithm PredEA.

PredEA versus noPredEA. Results obtained for cyclic-periodic environ-
ments (changing every r generations) are given in Table 2 . The best scores
are marked in bold.

We used a paired one-tailed t-test at a 0.01 level of significance to compare
the two algorithms. The results obtained with PredEA were always statistically
significantly better than the noPredEA. Using prediction to insert informa-
tion before change happens actually improves the EA’s performance. In rapidly
changing environments (r = 10), the improvements introduced with the antici-
pation of change are clearly positive. Besides, as the number of different states
increases, the noPredEA’s performance decreases faster than the PredEA’s.
Using 50 states the results were inferior since, in some cases, the algorithm has
not enough time to complete the ’learning phase’. In these cases, more time of
evolution is necessary.

Figure 1 shows the typical behavior of the algorithms in the first 5000 gener-
ations, using 10 different states with cyclic (Pij = 1) dynamics. PredEA has a
starting phase where the performance is very unstable with a decrease in fitness
every time there is an environmental change. This is the ’learning phase’ when
the algorithm is building the Markov chain model and its transition matrix.
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Table 2. Global Results for cyclic-periodic environments and change period r

Number of States

r Algorithm 3 5 10 20 50

10 PredEA (Pij = 1) 98.24 97.92 97.87 97.33 94.42
PredEA (Pij <> 1) 98.10 97.78 97.25 96.55 93.55
NoPredEA (Pij = 1) 89.41 84.90 80.04 74.87 69.69
NoPredEA (Pij <> 1) 89.64 85.41 80.58 75.40 70.38

50 PredEA (Pij = 1) 99.39 99.04 98.08 96.46 91.31
PredEA (Pij <> 1) 98.90 98.39 98.69 96.45 90.19
NoPredEA (Pij = 1) 98.72 98.39 97.66 95.40 88.29
NoPredEA (Pij <> 1) 98.71 98.39 97.65 95.76 89.28

100 PredEA (Pij = 1) 99.69 99.51 99.01 98.55 95.48
PredEA (Pij <> 1) 99.43 99.67 99.29 99.14 95.10
NoPredEA (Pij = 1) 99.38 99.24 98.90 98.29 94.11
NoPredEA (Pij <> 1) 99.37 99.24 98.91 98.29 94.70

200 PredEA (Pij = 1) 99.84 99.75 99.50 99.37 97.74
PredEA (Pij <> 1) 99.72 99.79 99.64 99.56 97.75
NoPredEA (Pij = 1) 99.69 99.62 99.45 99.15 97.04
NoPredEA (Pij <> 1) 99.69 99.62 99.46 99.15 97.34
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Fig. 1. PredEA versus NoPredEA, r = 200, 10 states, deterministic

After that initial phase the predictions are correctly made by the two pre-
dictor modules and the PredEA’s performance reaches an ’equilibrium phase’.
On the other hand, the behaviour of noPredEA is always very unstable. After
a change, we observe a decrease of the fitness and only after retrieving infor-
mation from memory, which is made immediately after a change happens, the
EA recovers. Similar results were obtained for cyclic-pattern environments. For
the patterns 50-60-70 and 100-150-100, the value of 5 for Δ constant was not a
good choice for the prediction modules. For these two situations, we repeated
the experiments adjusting the constant value to 10 and 25, respectively. That
way we always anticipated the actual moment of change. The results were bet-
ter, and since the levels of population’s diversity in the two cases are practically
the same, this increase in the performance is due to the introduction of retrieved
memory information before the change happens. Table 3 shows the global results
obtained in all the experiments carried out. Best results are marked with bold.
The statistical analysis of the obtained results can be found in [3].
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Table 3. Global Results for cyclic-pattern environments 5-10-5, 10-20-10, 50-60-70 and
100-150-100

Number of States

Pattern Algorithm 3 5 10 20 50

5-10-5 PredEAΔ5 (Pij = 1) 97.49 97.27 97.50 97.65 95.63
PredEAΔ5(Pij <> 1) 97.10 96.13 96.77 96.79 94.60
NoPredEA (Pij = 1) 91.98 90.35 85.89 79.36 72.62
NoPredEA (Pij <> 1) 93.18 90.58 86.01 79.90 73.57

10-20-10 PredEAΔ5 (Pij = 1) 98.36 98.11 97.95 97.46 94.64
PredEAΔ5 (Pij <> 1) 98.24 97.49 97.12 96.29 93.01
NoPredEA (Pij = 1) 91.26 92.25 88.13 80.97 73.40
NoPredEA (Pij <> 1) 94.71 91.52 87.89 81.67 74.51

50-60-70 PredEAΔ5 (Pij = 1)) 99.54 99.37 98.82 97.04 94.60
PredEAΔ5 (Pij <> 1)) 99.52 99.34 98.79 97.24 94.38
PredEAΔ10 (Pij = 1) 99.80 99.65 99.31 98.60 96.52
PredEAΔ10 (Pij <> 1) 99.79 99.61 99.15 98.23 95.92
NoPredEA (Pij = 1) 99.44 99.16 98.64 96.45 94.54
NoPredEA (Pij <> 1) 99.44 99.17 98.58 97.02 95.13

100-150-100 PredEAΔ5 (Pij = 1) 99.64 99.52 99.20 98.07 95.94
PredEAΔ5 (Pij <> 1) 99.65 99.53 99.23 98.17 96.45
PredEAΔ25 (Pij = 1) 99.89 99.79 99.65 99.29 98.25
PredEAΔ25 (Pij <> 1) 99.89 99.78 99.55 99.10 97.95
NoPredEA (Pij = 1) 99.71 99.59 99.27 98.31 97.24
NoPredEA (Pij <> 1) 99.71 99.59 99.29 98.52 97.56

Again, in rapidly changing environments (patterns 5-10-5 and 10-20-10) the
incorporation of prediction and the anticipation of change allowed outstanding
improvements in the algorithm’s performance. PredEA also ensures best scores
as the number of states increases. In the other two situations, using a suitable
value for the Δ constant, PredEA also achieves the best results. Figure 2 shows
the typical behavior of the algorithms in the first 5000 generations, using 10
different states with cyclic (Pij = 1) dynamics. As in the case of cyclic-periodic
environments we observe the presence of the learning and equilibrium phases
when using PredEA. noPredEA behaves in the same way as in previous cases.
In all situations, except when the PredEA has a Δ value of 5, the pattern
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Fig. 2. PredEAversus NoPredEA, pattern 100-150-100, 10 states, deterministic
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was 100-150-100 and the change deterministic, our algorithm was statistically
significantly better than NoPredEA.

6 Conclusions and Future Work

We have proposed the integration of prediction capabilities in a standard
memory-based evolutionary algorithm to cope with changing environments. Two
additional modules were used: one based on linear regression to predict when
next change will occur, the other uses a Markov chain which stores the environ-
mental information and is used to predict the next possible state(s).

Analyzing the obtained results, some conclusions can be stated: first, antic-
ipating the moment of change and using information gathered in the past to
prepare the algorithm for future environmental changes, significantly improves
the EA’s adaptability. Second, these improvements have more impact when the
environment changes faster. In these cases, if the prediction capabilities are re-
moved, the algorithm has a very poor performance. Third, PredEA is more
robust than noPredEA as the number of repeated states increases. Fourth, the
linear regression method, used to predict the moments of subsequent changes, is
suitable only for a restricted kind of changing periods. In fact, if there is an error
because the effective change occurred before the predicted one, the algorithm’s
performance is compromised. This is due to an untimely use of the solution
obtained from the Markov chain module, making the use of Markov chains pre-
dictions unhelpful. Finally, the use of a Markov chain to store the environmental
information proved to be a powerful mechanism to keep the history of the chang-
ing dynamics which allows the algorithm to learn and predict which states can
appear in the next step.

The major limitations of the proposed architecture are related to the linear
regression module. First, the use of linear regression to predict future change
points is feasible only for certain patterns. For more complex patterns, linear
regression may fail, due to large prediction errors. Second, the use of a fixed
value for the error interval (the Δ parameter) assumed in the linear regression
predicted values is not always effective. If an unsuitable value is used for this con-
stant, the algorithm’s performance considerably decreases. Some enhancements
are being introduced to improve this module: the use of non linear regression
and the dynamic adjustment of the Δ constant during the simulation. Other
landscapes are also being used to test the proposed ideas.
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Abstract. Iceformation phenomena can be observed in many natural
and technical processes. A naturally grown ice layer aspires in steady
state to a minimum of energy dissipation. Driven by this goal, this phe-
nomena can be used to optimize complex geometric configurations in a
natural manner. But since this state of minimum energy dissipation is
seldom the desired goal function in technical applications, this natural
experimental optimization method is combined with a subsequent classi-
cal numerical optimization using evolutionary algorithms at the example
of an internal cooling channel of a gas turbine blade.

1 Introduction

Optimization of complex geometries exposed to fluid flow is often challenging,
since local separation and re-attachment phenomena induce local vortices and
highly three dimensional flow characteristics. Each change of the geometry in-
fluences the flow characteristics, often in an unpredictable way.

For classical numerical optimization, the first choice to be made is the one
for the design variables that describe accurately the problem. According to the
description in [2], the next step is to formulate the constraints, the objective
function and the variable bounds. But this preliminary definition of restrictive
parameters, such as the number of the design variables, their position and the
entire design space, unfortunately limits the final result of the optimal geometry.
Since all classical numerical optimization methods are characterized by the steps
”selection” and ”variation” of the initial solution [11], the final optimum can only
be an offspring of that.

Taking as an example the traditional turbine blade optimization in turboma-
chinery, the geometry of the blade is described sufficiently by a definite num-
ber of characteristic aerodynamic and mechanical parameters such as the inlet
and outlet flow angle, trailing and leading edge radius, chord length, etc. [13].
Though the aerodynamic properties of the blade vary significantly in the opti-
mized result, the geometric shape remains always similar due to the restrictive
parameterization which is of course desired in this specific case.

However, if the general shape of the optimized geometry is not known a priori
or innovative shapes shall be found, an infinite amount of geometric parame-
ters is necessary in order to map all possible morphologies of a geometry. This
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would require then an unaffordable amount of computational power and time to
optimize such a system of indefinite variables.

The approach which is presented here shows instead a novel way of optimizing
a geometry according to the surrounding fluid flow conditions using a combina-
tion of the natural iceformation method and a subsequently applied numerical
optimization. The goal function for the natural process, i.e. the iceformation
process, is minimized energy dissipation [9], but this optimum represents only a
compromise between minimzed aerodynamic (hydrodynamic) drag and a mini-
mum in heat transfer. Since in technical applications it is often desired to min-
imize the pressure loss or the heat loss, this naturally pre-optimized geometry
is taken in a next step as starting configuration for a further numerical opti-
mization with the objective of minimized drag using evolutionary algorithms.
For this, the experimentally determined and parameterized ice contour defines
the definite number of design variables and the possible design space and can
therefore give an idea of how the optimized contour could look like, while at the
same time restrictive human control parameters are limited.

2 Natural and Numerical Optimization Methods

2.1 The Iceformation Method

The growth of an ice layer is a natural process that can be observed in many
natural and technical processes. Belonging to the natural optimization methods
means for the iceformation method that external human control which might in-
fluence the process restrictively, is reduced to a minimum. The ice layer growth
is rather based on a combination of heat transfer and momentum transfer phe-
nomena and their interaction with the wall, the latter consisting of the frozen
ice layer. The final ice contour is then determined at steady-state by a local heat
transfer equilibrium.

In the present study, the method is applied to optimize the shape of the sep-
arating web in a channel with a 180◦ bend as it is characteristic for the internal
cooling channels in gas turbine blades. Figure 1 shows a schematic sketch of such
a channel configuration as it was used for the investigated ice layer formation.

Hereby, the parent surface - represented by the separating web - is cooled to a
temperature below the freezing temperature of the circulating fluid. Due to this
cooling the parent surface is covered with an ice layer whose shape is adapted
to the fluid flow conditions. Restrictions are only made by choosing the degree
of cooling of the parent surface, the flow velocity and the channel geometry. The
boundary constraints in detail are:

TF . . . freezing temperature of the fluid (at 0 ◦C)
T0, ū0 . . . inlet temperature and mean inlet velocity of the fluid
TW . . . wall temperature of the cooled parent surface
W . . . channel width
Wel . . . tip-wall to web distance
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Fig. 1. Schematic sketch of the boundary conditions in the channel with the 180◦ bend
and its ice covered separating web

The circulating fluid and the ice contour are in a state of mutual interaction.
The contour then tends to a state of minimum energy dissipation. Since for tech-
nical applications often a different goal function such as minimized pressure loss
is more important, the contour is taken as starting configuration for a subse-
quent numerical optimization with a different objective function. But due to the
fact that the growth of an ice layer is a natural process, the method gives a hint
of how good candidates of web geometries look like and can therefore help to
enlarge the pool of possible solutions.

A detailed description of the experimental setup as well as a first numerical
analysis of the channel geometries and a comparison of experimental and numer-
ical results can be found in [17] and [18]. In these papers basic experimental and
numerical investigations on the change of the flow field caused by ice-formation
was conducted and the 2D channel configuration was optimized numerically. Due
to the 2D computation secondary flow effects like the Dean Vortices in the turn
are neglected. In the present paper however, the focus lies more on the optimiza-
tion algorithms and a result for a 3D channel configuration is presented since
this setup reflects more the experimental conditions.

2.2 Parameterization of the Starting Configuration for the
Numerical Optimization Process

Once in the experiment, the contour reaches steady-state, discrete points of the
ice layer are measured with a 2D-optical method. In order to use the contour
as a starting configuration for a numerical optimization, the measured points
must be converted into geometry defining points. This parameterization of the
geometry is done using a Bezier-curve approach. Bezier-curves are defined by a
control polygon whose points are called Bezier-points. The number of Bezier-
points controls the degree of the according polynomial curve. The first and the
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Fig. 2. Bezier points to determine the ice contour on the web

last point of polygon and curve are identical and the straight line between the
first two and the last two points of the polygon are tangential to the curve.
It is characteristic for this approach, that a change in the coordinates of one
single point in the polygon affects the whole curve band but leads always to
a smooth, continuous and derivable curve. In that way, wavy contours during
the optimization process that might lead to highly selective and not converging
individuals can be avoided. This approach was also formerly successfully used
to model airfoil optimization, e.g. by Selmin [15] or Sommerer [16].

Discrete points of the Bezier-curve are determined by applying the de Castel-
jau algorithm [5] while the number of these points can be chosen arbitrarily.
Figure 2 shows exemplarily the parameterized mapped ice contoured web that
was measured for one configuration of fluid flow velocity and cooling temper-
ature. The according twelve Bezier-points form the surrounding polygon and
therefore define the contouring curve, consisting of finally 60 points, which are
connected by splines.

For the presented geometry, the Bezier-curve approach leads then to an opti-
mization problem with 12 design variables, since the polygon points are varied
in y-direction but kept fixed in x-direction. Their limits are chosen such that the
resulting curve is not exceeding the channel’s geometric constraint.

Once parameterized, a grid is generated and the geometry is analyzed numer-
ically. Momentum and energy equation are solved using FLUENTTM 6.3.26 [6].
The geometry is classified according to its “fitness”, represented by the pressure
drop across the channel. The latter is determined by the difference of the aver-
aged static pressure between inlet and outlet of the channel: Δp = pin − pout.
The optimizer then creates a new set of parameters that represents a new web
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Fig. 3. Optimization procedure for one individual

geometry. This channel geometry is then again analyzed and classified. The pro-
cedure for one iteration is depicted in figure 3.

The links between all used programs were steered by a higher ranked shell
script. The intersect supply of the parameters was done using FLUENTTM’s
journaling features. One run in this process represents one iteration and the
process was stopped, when a predefined number of iterations was reached or the
pressure drop converged to a minimum.

3 Optimization Algorithms

For the presented problem, Evolutionary Algorithms are especially suitable since
the objective function can not be described analytically by a definite function
but is the result of a numerical simulation. The algorithm’s stochastic search in
the design space makes them capable of finding the global optimum in problems
with various local optima [3] and represent therefore an appropriate choice.

For this specific application, a combination of a real-coded Genetic Algorithm
(GA) from Deb [4] and a commercially available Evolution Strategy (ES) from
CAOneTM is chosen in order to combine the advantages of both algorithms to
a hybridized approach [14]. As Hoffmeister and Bäck stated in a comparison
of GA and ES [7], both implement the principles “population”, “mutation”,
“recombination” and “selection”. The GA however, sometimes tends to converge
to premature solutions while the ES, not suffering so significantly from this
problem, converges much slower than the GA. This phenomena also occurred
in the presented problem and can be seen in figure 4, where the convergence
for both algorithms, applied to the present problem of the minimization of the
pressure drop in a 2D internal gas turbine cooling channel, is depicted.
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Fig. 4. Convergence of the GA at different mutation rates and the ES

For the parameter study of the computated channel in 2D, the mutation rate
for the real coded GA was set from 0.02 to 0.2 and the crossover rate constant
to 0.8. The crossover probability for the Evolution Strategy was set to 1/3.
Its mutation rate was defined by a decreasing step width, i.e. the higher the
iteration, the closer the mutated offspring was positioned in the vicinity of the
parent solution.

The recombination method of the ES is done using a (λ, μ)−approach. This
means that from each of the parents μ = 4, there are λ = 4 children created. The
population size for both algorithms was set to 16. A further increase of the pop-
ulation size had no significant positive influence on the convergence behaviour
but was increasing the necessary CPU time.

For these settings, figure 4 shows the variation of the calculated pressure drop
across the channel for each of the around 900 simulated 2D web geometries. It
can be observed that the GA converges significantly faster than the ES, even
more so for the higher mutation rate, but not necessarily to the best solution.
For both mutation rates of the GA, the ES – though slower converging – finds
a better solution on the long run.

In order to reach still the best solution but with a lower amount of iterations,
both algorithms were combined to a hybrid approach in the following way: The
first thirteen generations, which correspond to the first 208 iterations, are cal-
culated using the Genetic Algorithm. The best solution of these iterations is
then taken as starting configuration for the ES, using the same setting as pre-
sented. Applying this combination, the necessary amount of iterations can be
decreased to around 600 while maintaining the solution’s quality, as shown in
figure 5.

The reason why the two algorithms can be combined in that way lies in the
different treatment of genetic information at the algorithms [7]. The concept
of “population” means for the GA that for a certain number individuals in
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Fig. 5. Convergence of GA and ES for a combined approach

the whole design space are created randomly. For the ES however, this only
defines how many children per parent are created by recombination and mainly
mutation. As a consequence, for the ES a real starting parent configuration
can be chosen from which the offspring approaches in each iteration a better
solution, whereas while using the GA, the starting configuration is determined
by the chosen design space.

4 Results and Discussion

Figure 6 shows the starting contour and the optimized web contour after 624 it-
erations for the previously described optimization approach but for a 3D channel
geometry. The starting configuration represents the parameterized ice contoured
web that had shown in the experiments a reduction in pressure drop of 15%
compared to the initial sharp edged web. The optimized web contour reaches fi-
nally a calculated pressure drop reduction in the bend of further 17% compared
to the starting configuration with an ice contoured web.

The main reason for the decreased pressure drop in the channel is the reduced
size of the separation bubble behind the bend. This flow recirculation is mainly
responsible for the losses according to Metzger et al. [12]. As a consequence, the
optimized contour has filled up the region of recirculation and therefore reduced
the losses caused by the flow separation behind the bend.

The optimized web geometry differs slightly from the one that was presented
in [17] where only a web contour in 2D was optimized. In the present case of
a 3D channel optimization also losses caused by secondary flows in the channel
are taken into account. The resulting geometry is also minimizing these and not
only the separation bubble behind the bend.
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Fig. 6. Velocity plot in the midspan of the starting ice-shaped web and the optimized
3D web contour

Generally, the result of the round web shape with a large radius is not surpris-
ing since previous investigations of Idelchik [8] or Metzger et al. [12] indicated
that these two factors have the most influence on the pressure drop. Therefore,
an experienced engineer would have probably almost guessed that the web tip
must have a round shape in order to minimize the pressure drop.

The presented approach here shows the following though: Firstly, the deter-
mination of the number of design variables by the parameterization of the ice
contour, secondly, starting the numerical optimization with an already good can-
didate and thirdly the presented combination of evolutionary algorithms, all this
together provides the possibility of a fast optimization process while at the same
time restrictive human control is reduced to a minimum.

Summarizing, it can be said that the application of the natural iceformation
method before a classical numerical optimization can help to provide innovative
geometries and create larger manifolds in the pool of possible solutions. Com-
bining the natural and numerical method as presented, leads to a web geometry
that performs far better in terms of pressure drop than the initial geometry. This
result also showed that the method has proven to be applicable in complex flow
conditions and can therefore also be applied at geometries where the optimum
has a highly three-dimensional and complicated shape. Further more, the used
algorithms are also applicable for multi-objective problems. That means that
the problem can be extended such, that not only pressure drop but also heat
transfer rates are taken into account.
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Abstract. [10,22] presented various ways for introducing quasi-random
numbers or derandomization in evolution strategies, with in some
cases some spectacular claims on the fact that the proposed technique
was always and for all criteria better than standard mutations. We
here focus on the quasi-random trick and see to which extent this
technique is efficient, by an in-depth analysis including convergence
rates, local minima, plateaus, non-asymptotic behavior and noise.
We conclude to the very stable, efficient and straightforward appli-
cability of quasi-random numbers in continuous evolutionary algorithms.

Keywords: Evolution Strategies; Derandomization.

1 Introduction

Whereas pseudo-random numbers are supposed to be as close as possible to pure
random numbers, quasi-random numbers are designed in order to be more ”uni-
formly” distributed than pure random numbers. Various criteria of uniformity
have been developed [9,14]. In some cases, a good value for a criterion ensures a
good behavior: for example, a good discrepancy implies a small integration er-
ror for numerical integration of functions with finite total variation [8] through
Koksma-Hlawka’s inequality. Sequences with good properties for these criteria
are mainly algebraic (quickly generated) methods [3,14,16,19,23,25]. As a conse-
quence of this important part of science, we can use fast and reliable generators
of points, with good uniformity properties. Thanks to scrambling and other
tricks (including randomization [11]) [1,2,5,6,12,13,15,17,20,24,26,27,28,29],
quasi-random points can be used also in high dimensionality with positive
results [18].

Quasi-random numbers have been a revolution basically in numerical integra-
tion [14], but it was also used in other areas: quasi-random search [14], path
planning [23], active learning [4], approximate dynamic programming [21].

[22], inspired by [10,14], has proposed the use of quasi-random numbers for
mutations in the continuous domain. The main results in [22] are about the
convergence rate of CMA [7], modified by such an algorithm. However, many
questions arised, about the generality of the results: as many people use random
numbers as a secure tool for exploration, it is not intuitive that random num-
bers can be removed from evolutionary algorithms without strong drawbacks

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 325–336, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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induced somewhere as a counterpart. We here provide an in-depth analysis of
quasi-random mutations, through robustness, local minima, needle functions,
noise, quality of the quasi-random number generator, and non-asymptotic prop-
erties. We conclude to the very wide applicability of quasi-random numbers in
continuous evolution strategies.

In all the paper, we use the fitness functions presented in the Matlab/Octave
implementation of CMA. When averages and standard deviations are presented,
number between ”(.)” are median values. Bold font indicate significant improve-
ments, for rank-based tests (Wilcoxon statistics). The result of each algorithm
is the best individual of the last generation.

The use of quasi-random mutations is quite straightforward. If your mutation
operator is in Algorithm 1, then you just replace it by Algorithm 2.

Algorithm 1. Standard mutation in the continuous domain, with σ a step size
and A a linear transformation.

Function x′ = Mutation(x, σ, A)
return x′ = x + σA.N

Algorithm 2. Quasi-random mutation in the continuous domain, with σ a step
size and A a linear transformation.

Function x′ = Mutation(x, σ, A)
return x′ = x + σA.Nqr

The only difference is the replacement of N , a standard multivariate Gaussian
variable, by N�∇, its quasi-random counterpart. If N is generated as in Algo. 3,
then you just have to replace it by Algo. 4 in your favorite program.

Algorithm 3. Usual algorithm for generating a standard multivariate Gaussian.
Function N = MultivariateStandardGaussian(dimension d)
for i ∈ {1, 2, . . . , d} do

xi = random (uniform in [0, 1])
end for
for i ∈ {1, 2, . . . , d} do
Ni = inverseGaussianPDF (xi)

end for

In the rest of this paper, DCMA is the standard CMA (covariance matrix
adaptation) algorithm, with the transformation above (from Algo. 3 to Algo. 4).

2 Quasi-random Mutations Need Good Quasi-random
Sequences

We compare a simple Halton sequence (without scrambling) and Sobol’s se-
quence. It is known that Sobol sequence is much better, in particular for large
dimensional problems, but the comparison is particularly impressive in the case
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Algorithm 4. Algorithm for generating quasi-random Gaussian numbers. Fi-
nally, only one simple loop is replaced by one call to a standard function.

Function N = MultivariateStandardGaussian(dimension d)
Apply x = Sobol(d).
for i ∈ {1, 2, . . . , d} do
Ni = inverseGaussianPDF (xi)

end for

of mutations of evolution strategies. Table 1 presents the comparison between
the normalized (see caption) log of the smallest fitness value found by the algo-
rithm in the case of Halton sequence compared to the random classical points
and Sobol sequence for 10 function evaluations in dimension 4 and 40 function
evaluations in dimension 16.

The explanation is clear on a typical plot of a random walk. Figure 1 (left)
shows the sum of quasi-random Gaussian numbers generated with the 3rd and

Table 1. d × log(fitness)/n (i.e. the lower the better) for n function evaluations in
dimension d, Comparison between standard CMA with random Gaussian numbers, and
CMA with Sobol Gaussian numbers for very small numbers of iterations in dimension
4 and 16. Sobol points are equivalent to random points, whereas Halton points (with-
out scrambling) lead to very poor results. Results in bold face are results in which a
statistical difference with the random case appeared in the good direction (better than
the random case); italic font is used for results in which a statistical difference occured
in favor of usual random points: the difference is most often in favor of random points
for Halton; and always in favor of Sobol except for the ”fschwefelmult” function.

Problem CMA DCMA (Halton) DCMA (Sobol)

10 function-evaluations in dimension 4

fsphere -0.169 0.00688 -0.209
fcigar 5.12 5.06 4.97

fstepsphere -2.2 -1.58 -2.84
fconcentric 0.126 0.15 0.0793
fgriewank -0.69 -0.565 -0.952
frastrigin 1.25 1.29 1.25

fschwefelmult 2.96 2.96 2.96
fsectorsphere 2.25 4.05 1.95

40 function-evaluations in dimension 16

fsphere 0.648±0.0499 0.677±0.169 0.547±0.0580
fcigar 6.18±0.020 6.2±0.182 6.14±0.0197

fstepsphere 0.865±0.0330 0.79±0.146 0.733±0.0585
fconcentric 0.32±0.0108 0.325±0.0405 0.297±0.0105
fgriewank -0.253±0.0365 -0.238±0.161 -0.351±0.0353
frastrigin 1.96±0.00719 1.98±0.0538 1.94±0.00641

fschwefelmult 3.52±8.38e-05 3.52±0.000283 3.52±6.72e-05
fsectorsphere 4.9±0.0912 4.96±1.17 4.93±0.0895
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Fig. 1. 100 points of typical quasi-random walks with Gaussian quasi-random numbers
generated with Halton (left) and Sobol (right). In the case of Halton, a strong short-
term bias appears: the quasi-random walk goes away to the south-west.

4th variables of a Halton sequence. As well known for Halton’s sequence (un-
scrambled version), we have long short term bias, leading to a quasi-random walk
going away from 0. Figure 1 (right) shows also a quasi-random walk, generated
with the partial sum of quasi-random Gaussian numbers generated with Sobol’s
sequence. The figure is very similar, visually, to what happens with a random
walk.

It has already been pointed out in [22] that randomly rotating quasi-random
Gaussian points at each offspring, in order to avoid some presumed bias, in
useless and in fact reduces the efficiency of quasi-random points. We therefore
here only use the standard version proposed above, without adding such rotation.

3 Quasi-random Mutations Improve the Probability of
Finding a Needle

It has been suggested that quasi-random points might be suitable only in regular
cases, as they might be just more able of benefiting from artificial symetries in the
problem. In order to test this assumption, we now consider the needle problem,
defined as follows:

– The fitness value of any point at distance � 1 of (1, . . . , 1) is 0.
– The fitness value of any other point is 1+R, where R is a random independent

uniform noise on [0, 1].

The needle is found if at least one point of null fitness is found. We also defined
the difficult needle problem, in which:
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Table 2. Results of quasi-random points on the needle functions: probability of finding
the needle (the higher the better). Quasi-random points work better.

Dimension Number of Probability Probability
fitness- of finding of finding

evaluations (CMA) (DCMA)

3 64 36%± 3% 49 % ±3%
4 64 9 %± 2% 14 % ±2%
5 64 2.6 %± 1.3 % 7.3 % ± 2.1%

Dimension Number of Probability Probability
and K fitness- of finding of finding

evaluations (CMA) (DCMA)

3, K = 3 64 0.8 % ± 0.4 % 2.4 % ± 0.6 %
4, K = 2 64 9.6 % ± 1.3 % 12.0 % ± 1.5%

Standard needle Difficult needle

– The fitness value of any point at distance � 1 of (K, K, . . . , K) is 0.
– the fitness value of any other point is 1+R, where R is a random independent

uniform noise on [0, 1].

As previously, the needle is found if at least one point of null fitness is found.
The results are presented in table 2.

4 Quasi-random Mutations Improve the Convergence
Rate

[22] has already strongly pointed out this fact, therefore we only briefly confirm
these results in Figure 2. Except for ”fschwefelmult”, significant (95% confi-
dence) results in favor of DCMA occur for all fitness functions for 2560 function-
evaluations. We also present in table 3 the average log of fitness values for 10240
fitness evaluations in dimension 4 to see the asymptotic behavior for some fitness
functions. Quasi-random points are better in all significant comparisons.
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Fig. 2. Convergence rate of CMA and DCMA with Sobol in dimension 16. Log(fitness)
vs thousands of function evaluations. These objective functions are to be minimized.
Standard deviations are not shown for the sake of readability; see text for significance.
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Table 3. Comparison of standard random numbers and quasi-random numbers from
the point of view of the convergence rate. The numbers are the average log of fitness
values (median between (.)); the quasi-random version is almost always significantly
better (the lower the better).

Problem CMA DCMA

fsphere -0.0140±0.000123 (-0.013) -0.0147±0.00014 (-0.0147)
fcigar -0.0139±0.000150 (-0.0139) -0.0150±0.000125 (-0.0149)

fstepsphere -0.00491±0.00128 (-0.00494) -0.00927±0.00061 (-0.00989)
fconcentric -0.00088±3.99e-05 (-0.0009) -0.00109±3.65e-05 (-0.00113)
fgriewank -0.0139±0.000175 (-0.0139) -0.0167±0.000174 (-0.0174)
frastrigin 8.41e-05±0.00018 (0.000427) -0.000144±0.000222 (0.000427)

fschwefelmult 0.00289±1.20e-07 (0.00289) 0.00289±2.37e-08 (0.00289)
fsectorsphere -0.0127±0.00012 (-0.0128) -0.0136±0.000147 (-0.0136)

fbaluja -0.00187±3.88e-05 (-0.00186) -0.0019±3.15e-05 (-0.00194)

5 Quasi-random Mutations Improve the Non-asymptotic
Behavior: No Log

Many papers consider the logarithm of the distance to the optimum, normal-
ized by the dimension and/or the number of iterations, as the main criterion
of quality of an optimization algorithm. The advantage of this approach is that
the asymptotic behavior of continuous optimization algorithms, which is usu-
ally linear for evolution strategies, is clearly visible on such plots. However, the
drawback of this approach is that the focus is on the convergence rate, and not
on the probability of finding a good optimum.

In order to clearly point out the weakness of this criterion for multimodal
optimization, let’s consider the use of this criterion for evaluating a standard
algorithm with known poor results for fitness functions with local minima.

Consider simply Newton’s method with random initial point. The log of the
distance εn (after n function evaluations) to the optimum is, for this algorithm,
exponential as a function of n, if the initial point is sufficiently good. Consider
p the probability of an initial point ensuring that the log-precision is at most
k−2n

, for some fixed k > 1. Then, the criterion − log(εn)/n has expectation at
least p log(εn)/n = −p2n log(k)/n. This criterion therefore tends to infinity for
this Newton algorithm as n → ∞, whenever the function is strongly non-convex
and p is close to 0! We have therefore shown that this criterion will prefer an
algorithm which converges with possibly very small probability, provided that n
is sufficiently large, in front of any algorithm with linear convergence ”only”.

On the other hand, criteria like the expected fitness value certainly not have
this behavior and show much more efficiently the probability of finding the opti-
mum, in particular in the non-asymptotic behavior. We therefore present below
the average fitness value for fixed dimensions and numbers of fitness-evaluations.
We point out that the same tables with the logarithm also lead to significant
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Table 4. Average fitness value after 40 function evaluations (the lower, the better)

Problem CMA DCMA

Dimension 2

fsphere 0.0898±0.0356 (0.0172) 0.0229±0.00762 (0.00436)
fcigar 21962.2±9678.1 (829.142) 2415.2±726.955 (192.588)
fstepsphere 0.0660±0.0170 (3.36e-12) 0.0294±0.0142 (2.44e-12)
fconcentric 0.28±0.0501 (0.242) 0.174±0.0432 (0.0972)
fgriewank 0.0282±0.0116 (0.00839) 0.00620±0.00221 (0.0009)
frastrigin 2.94±0.237 (1.90) 2.30±0.18 (1.51)
fschwefelmult 129.769±7.87 (100.287) 108.386±7.04 (81.0)
fsectorsphere 2564.66±1540.54 (0.180) 0.491±0.0555 (0.175)
fbaluja 19661.4±2082.63 (18688.9) 13146.7±1993.09 (8702.22)

Dimension 4

fsphere 0.399±0.0412 (0.191) 0.285±0.0425 (0.115)
fcigar 191315±34006.3 (83925.1) 120477±18146.6 (49928.2)
fstepsphere 0.543±0.129 (0.311) 0.188±0.0770 (0.0252)
fconcentric 0.243±0.0159 (0.177) 0.237±0.0143 (0.187)
fgriewank 0.069±0.0103 (0.0359) 0.0408±0.00580 (0.0202)
frastrigin 5.25±0.413 (3.94) 4.65±0.292 (3.28)
fschwefelmult 240.185±28.52 (196.578) 149.024±19.9 (134.868)
fsectorsphere 44113.8±24239.1 (2.25) 28279.3±12841.1 (1.23)
fbaluja 11035.8±652.625 (8418) 11828.5±741.584 (9322.88)

Dimension 16

fsphere 1.93±0.138 (1.44) 1.7±0.120 (1.186)
fcigar 1.99e+06±143401 (1.39e+06) 1.72e+06±131583 (1.14e+06)
fstepsphere 1.93±0.133 (1.28) 1.75±0.112 (1.2)
fconcentric 0.310±0.0483 (0.199) 0.199±0.0400 (0.134)
fgriewank 0.0689±0.00469 (0.0486) 0.0769±0.00493 (0.0570)
frastrigin 14.6±0.831 (11.5) 15.2±0.915 (11.6)
fschwefelmult 501.41±34.8 (351.154) 489.47±33.4 (324.699)
fsectorsphere 673136±57820.7 (414916) 595032±52901.3 (341269)
fbaluja 7774.31±507.891 (5136.37) 7646.29±483.262 (5719.69)

results in favor of DCMA - however, the results are more impressive with the
expected fitness values as presented below.

The results in table 4 are the non-asymptotic counterpart of results in
section 4 (which was convergence rate analysis). We here use 40 fitness-
evaluations, for various dimensionality. [14] has already pointed out the non-
asymptotic effect of quasi-random points in the simpler case of quasi-random
search.

6 Quasi-random Mutations Deal Efficiently with
Non-convex Functions

Non-convex functions (multimodal functions, but also monomodal functions with
plateaus and other non-convex functions like ”fbaluja”) are typically important
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Table 5. Efficiency of quasi-random points for non-convex functions from a non-
asymptotic point of view. The numbers are the average fitness values (the lower the
better). For fschwefelmult, the significance holds but is hidden in late digits.

Problem CMA DCMA

10 function evaluations

fstepsphere 1.5±0.146 (1) 1.06±0.10 (1)
fconcentric 1.32±0.0261 (1.33) 1.25±0.0259 (1.2)
fgriewank 0.209±0.0287 (0.143) 0.138±0.0225 (0.100)
frastrigin 24.6±0.642 (24.5) 24.3±0.541 (24.1)

fschwefelmult 1670.59±0.684 (1670.75) 1671.69±0.445 (1671.45)
fbaluja 99999.4±0.0267 (99999.4) 99999.3±0.0348 (99999.4)

40 function evaluations

Problem CMA DCMA

fstepsphere 1.5±0.32 (1) 0.5±0.18 (1e-11)
fconcentric 1.41±0.110 (1.37) 1.05 64±0.0981 (0.972)
fgriewank 0.188±0.0588 (0.0911) 0.054±0.0138 (0.0308)
frastrigin 26.9±1.00 (27.0) 23.9±0.876 (23.7)

fschwefelmult 1664.87±0.703 (1664.81) 1662.15±0.378 (1661.48)
fbaluja 99999.2±0.108 (99999.3) 99998.8±0.2 (99999.2)

160 function evaluations

fstepsphere 0.4±0.128 (1e-11) 0.125±0.0853 (1e-11)
fconcentric 0.7±0.096 (0.587) 0.51±0.0623 (0.400)
fgriewank 0.0042±0.0015 (0.00237) 0.000659±0.000481 (0.000153)
frastrigin 20.604±2.49 (21.5) 6.83±1.74 (4.16)

fschwefelmult 1660.21±0.014 (1660.22) 1660.16±0.00206 (1660.16)
fbaluja 99995.6±0.938 (99996.8) 99986.3±2.86 (99991.8)

640 function evaluations

fstepsphere 0.388±0.143 (1e-11) 0.0555±0.0555 (1e-11)
fconcentric 0.232±0.0394 (0.128) 0.120±0.0384 (0.0549)
fgriewank 0.000833±0.000411 (5.42e-11) 0.000245±0.000112 (1.51e-14)
frastrigin 5.57±0.427 (3.70) 3.64±0.204 (2.98)

fschwefelmult 1660.15±5.98e-09 (1660.15) 1660.15±6.90e-13 (1660.15)
fbaluja 94926.9±1036.12 (95873.5) 13597.7±2714.8 (10272.5)

fitness functions for which the convergence rate is moderately interesting: diver-
sity loss in a plateau (or in an almost plateau) or premature convergence in a
local minimum are a strong trouble. We here investigate the question of a pos-
sible loss of efficiency of quasi-random mutations for non-convex functions as a
counterpart of positive effects pointed out in other sections of this paper. Table 5
show the average fitness value (no log) of the best individual of the last offspring
for various non-convex fitness functions. Very strong improvements sometimes
appear with quasi-randomisation, and results were almost always significantly
improved. All results below hold in dimension 4.
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Table 6. Mean log(fitness) and mean fitness in the case of noise (see text for details).
The lower, the better. Quasi-random numbers are almost always better.

Problem CMA DCMA

fsphere -0.12±0.00788 -0.169±0.00469
fcigar 0.013±0.0022 -0.0205±0.00196

fstepsphere -0.341±0.00328 -0.344±0.00246
fconcentric -0.0252±0.00096 -0.030±0.00109
fgriewank -0.117±0.00490 -0.167±0.0048
frastrigin -0.00444±0.00283 -0.015±0.00413

fschwefelmult 0.053±0.00152 0.0580±0.0014
fsectorsphere -0.0391±0.0062 -0.0829±0.00481

fbaluja 0.111±0.00142 0.11±0.00141

Problem CMA DCMA

fsphere 0.000768±0.000372 5.78e-06±2.55e-06
fcigar 2819.93±2594.19 0.823±0.120

fstepsphere 0.0018±0.00138 0.00432±0.00422
fconcentric 0.207±0.0136 0.163±0.0146
fgriewank 0.00418±0.001 0.000492±0.000297
frastrigin 2.00±0.300 1.20±0.224

fschwefelmult 111.731±10.198 152.172±13.092
fsectorsphere 0.165±0.0641 0.00304±0.000894

fbaluja 12775.2±1035.92 17218±1348.25

log(fitness) fitness value

7 Quasi-random Mutations Deal Efficiently with Noise

Finally we tested fitness functions corrupted by noise. We just replaced the fitness
function by its product with a random independent uniform number in [0, 1], and
we get the table 6 of results in dimension 2 with 160 function-evaluations.

In fact, the results are more impressive than the results of the non-noisy case:
there’s no decay of performance in the noisy case. We tested both the log and
the no-log cases.

8 Conclusion

We have in this paper shown how general is the improvement induced by quasi-
random numbers. In particular, quasi-random mutations lead to better results,
not only from the point of view of the convergence rate , but also for several
notions of robustness:

– The improvement for the convergence rate scales from a few percents in the
case of the sphere function or the cigar function to 80 % of speed-up in the
case of the step-sphere function in dimension 4 - this suggests that is is much
more the behavior in front of plateaus or needles which is improved, and not
the behavior in a regular, smooth framework;

– The improvement remains when the fitness function is corrupted by noise; in
fact, all comparisons are seemingly much more impressive when the fitness
is corrupted by noise! Therefore, we claim that the effect ot quasi-random
numbers are not limited to artificial smooth cases.

– The improvement is much more impressive on expected fitness values than
on the convergence rate, because the quasi-random points improve the ro-
bustness and the probability of finding a solution as well as (and more than)
the asymptotic convergence rate;
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– In the case of small numbers of fitness values, one can also trust quasi-random
points; the non-asymptotic behavior for non-logarithmic views on the fitness
function (section 5) and small dimension provides impressive results: average
fitness values are divided by factors between 3.9 (sphere function) and 9.1
(cigar function) in dimension 2. The results are less impressive in higher
dimension (factor 1.16 in dimension 16 for the cigar function).

– Quasi-random points are not afraid of non-convex fitness functions; we see
51% of improvement for the Griewank function with 10 function-evaluations
in table 5, 3.2 for the step-sphere function and 53% for the Rastrigin func-
tion with 160 function-evaluations. In some other cases, the improvement is
negligible, but we point out that it is never a loss of efficiency.

– The probability of finding a needle is improved also; the more difficult the
needle problem, the higher the improvement; we conjecture that the im-
provement would be much higher with higher values of λ.

These results suggest that the improvement is due to (i) a better distribution
of mutations inside one offspring but also in a cumulative manner over multiple
steps as shown by earlier results in [22] (i.e., increasing independence between
offsprings by random rotations of each offspring reduces the efficiency) (ii) less
importantly, a better convergence rate by a better estimate of the position of
the optimum - but this effect is probably much bigger for higher values of λ.
We also tested the rate at which the covariance matrix is evaluated, but this
effect is seemingly very small - perhaps this could be improved by better update
rules. (i) includes/explains (a) the ”init” effect is we consider as initialization
the initial offsprings (b) the good ”needle” effect (the step-sphere function, on
which results are quite good, is typically a ”multiple” needle problem, whereas
(ii) explains the better convergence rate on the sphere function.

We also point out that replacing Monte-Carlo mutations by Quasi-Monte-
Carlo points is straightforward: if your Gaussian points are generated thanks
to the use of the reverse probability distribution function of the Gaussian on
random uniform points, then just replace random independent vectors uniform
on [0, 1] by some quasi-random good generator. In particular, Sobol’s sequence
is very efficient and as fast as random points.

A further work is the design of step-size adaptation rules adapted to Quasi-
Monte-Carlo mutations: the usual derivation of the cumulative step-size adapta-
tion is not adapted with quasi-random mutations. However, results in this paper
are quite stable and convincing without such adaptation; in all this paper we
have used a standard cumulative step-size adaptation.
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Abstract. We present Fitness Expectation Maximization (FEM), a
novel method for performing ‘black box’ function optimization. FEM
searches the fitness landscape of an objective function using an instan-
tiation of the well-known Expectation Maximization algorithm, produc-
ing search points to match the sample distribution weighted according
to higher expected fitness. FEM updates both candidate solution pa-
rameters and the search policy, which is represented as a multinormal
distribution. Inheriting EM’s stability and strong guarantees, the method
is both elegant and competitive with some of the best heuristic search
methods in the field, and performs well on a number of unimodal and
multimodal benchmark tasks. To illustrate the potential practical appli-
cations of the approach, we also show experiments on finding the pa-
rameters for a controller of the challenging non-Markovian double pole
balancing task.

1 Introduction

Real-valued ‘black box’ function optimization is one of the major topics in mod-
ern applied machine learning research (e.g. see [1]). It concerns itself with opti-
mizing the continuous parameters of an unknown (black box) objective fitness
function, the exact analytical structure of which is assumed to be unknown or
unspecified. Specific function measurements can be performed, however. The
goal is to find a reasonably high-fitness candidate solution while keeping the
number of function measurements limited. The black box optimization frame-
work is crucial for many real-world domains, since often the precise structure of
a problem is either not available to the engineer, or too expensive to model or
simulate.

Now, since exhaustively searching the entire space of solution parameters is
considered to be infeasible, and since we do not assume we have access to a
precise model of our fitness function, we are forced to settle for trying to find
a reasonably good solution that satisfies certain pre-specified constraints. This,
inevitably, involves using a sufficiently intelligent heuristic approach, since in
practice it is important to find the right domain-specific trade-off on issues such
as convergence speed, expected quality of the solutions found and the algorithm’s
sensitivity to local suboptima on the fitness landscape.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 337–346, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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A variety of algorithms has been developed within this framework, including
methods such as Simulated Annealing [2], Simultaneous Perturbation Stochastic
Approximation [3], the Cross-Entropy method [4,5], and evolutionary methods
such as Covariance Matrix Adaption (CMA) [6] and the class of Estimation of
Distribution Algorithms (EDAs) [7].

In this paper, we postulate the similarity and actual equivalence of black box
function optimization and one-step reinforcement learning. In our attempt to
create a viable optimization technique based on reinforcement learning, we fall
back onto a classical goal of reinforcement learning (RL), i.e., we search for a way
to reduce the reinforcement learning problem to a supervised learning problem.
In order to do so, we re-evaluate the recent result in machine learning, that rein-
forcement learning can be reduced onto reward-weighted regression [8] which is
a novel algorithm derived from Dayan & Hinton’s [9] expectation maximization
(EM) perspective on RL. We show that this approach generalizes from reinforce-
ment learning to fitness maximization to form Fitness Expectation Maximization
(FEM), a relatively well-founded instantiation of EDAs which relates to other
(EM-inspired) methods for optimization (e.g. see [10,11]).

This algorithm is tested on a set of unimodal and multimodal benchmark
functions, and is shown to exhibit excellent performance on both unimodal and
multimodal benchmarks. A defining feature of FEM is its adaptive search pol-
icy, which takes the form of a multinormal distribution that produces correlated
search points in search space. Its covariance matrix makes the algorithm invari-
ant across rotations in the search space, and enables the algorithm to fine-tune
its search appropriately, resulting in arbitrarily high-precision solutions. Further-
more, using the stability properties of the EM algorithm, the algorithm seeks
to avoid catastrophically greedy updates on the search policy, thus preventing
premature convergence in some cases.

The paper is organized as follows. The next section provides a quick overview
of the general problem framework of real-valued black box function optimiza-
tion. The ensuing sections describe the derivation of the EM-based algorithm,
the concept of ‘fitness shaping’, and the online instantiation of our algorithm.
The experiments section shows initial results with a number of unimodal and
multimodal benchmark problems. Furthermore, results with the non-Markovian
double pole balancing problem are discussed. The paper concludes with a discus-
sion on the advantages and problems of the method, and points to some possible
directions for future extensions.

2 Algorithm Framework

First let us introduce the algorithm framework and the corresponding notation.
The objective is to optimize the n-dimensional continuous vector of objective pa-
rameters x for an unknown fitness function f : Rn → R. The function is unknown
or ‘black box’, in that the only information accessible to the algorithm consists
of function measurements selected by the algorithm. The goal is to optimize
f(x), while keeping the number of function evaluations – which are considered
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costly – as low as possible. This is done by successively evaluating batches of a
number 1 . . .N of separate search points z1 . . . zN on the fitness function, while
using the information extracted from fitness evaluations f(z1) . . . f(zN ) to ad-
just both the current candidate solution x and the search policy defined as a
Gaussian with mean x and covariance matrix Σ.

3 Expectation Maximization for Black Box Function
Optimization

At every point in time while running the algorithm, we want to optimize the
expected fitness J = Ez[f(z)] of the next batch, given the current batch of
search samples. We assume that every batch g is generated by search policy π(g)

parameterized by θ = 〈x,Σ〉, representing the current candidate solution x and
covariance matrix Σ.

In order to adjust parameters θ = 〈x,Σ〉 towards solutions with higher asso-
ciated fitness, we match the search distribution to the actual sample points,
but weighted by their utilities. Now let f(z) be the fitness at a particular
search point z, and, utilizing the familiar multivariate normal distribution,
let π(z|θ) = N (z|x,Σ) = 1

(2π)n/2|Σ|1/2 exp
[
− 1

2 (z− x)TΣ−1(z− x)
]

denote the
probability density of search point z given the current search policy π. The
expectation

J = Ez[f(z)] =
∫

π(z|θ)f(z)dz.

indicates the expected fitness over all possible sample points, weighted by their
respective probabilities under policy π.

3.1 Optimizing Utility-Transformed Fitness

While an objective function such as the above is sufficient in theory, algorithms
which simply optimize it have major disadvantages. They might be too aggressive
when little experience – few sample points – is available, and converge prema-
turely to the best solution they have seen so far. On the opposite extreme, they
might prove to be too passive and be biased by less fortunate experiences. Trad-
ing off such problems has been a long-standing challenge in reinforcement learn-
ing. However, in decision theory, such problems are surprisingly well-understood
[12]. In that framework it is common to introduce a so-called utility transfor-
mation u(f(z)) which has to fulfill the requirement that it scales monotonically
with f , is semi-positive and integrates to a constant. Once a utility transforma-
tion is inserted, we obtain an expected utility function given by

Ju (θ) =
∫

p(z|θ)u(f(z))dz. (1)

The utility function u(f) is an adjustment for the aggressiveness of the decision
making algorithms, e.g., if it is concave, it’s attitude is risk-averse while if it
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is convex, it will be more likely to consider a fitness more than a coincidence.
Obviously, it is of essential importance that this risk function is properly set
in accordance with the expected fitness landscape, and should be regarded as a
metaparameter of the algorithm. Notice the similarity to the selection operator
in evolutionary methods.

We have empirically found that rank-based shaping functions (rank-based se-
lection) work best for various problems, also because they circumvent the prob-
lem of extreme fitness values disproportionately distorting the estimation of the
search distribution, making careful adaptation of the forget factor during search
unnecessary even for problems with wildly fluctuating fitness. In this paper,
we will consider a simple rank-based utility transformation function, the piece-
wise linear uk = u(f(zk)|f(zk−1), . . . , f(zk−N )) which first ranks all samples
k −N, . . . , k based on fitness value, then assigns zero to the N −m worst ones
and assigns values linearly from 0 . . . 1 to the m best samples.

3.2 Fitness Expectation Maximization

Analogously as in [8,9], we can establish the lower bound

log Ju (θ) = log
∫

q(z)
p(z|θ)u(f(z))

q(z)
dz (2)

≥
∫

q(z) log
p(z|θ)u(f(z))

q(z)
dz (3)

=
∫

q(z) [log p(z|θ) + log u(f(z))− log q(z)] dz (4)

:= F (q, θ) , (5)

due to Jensen’s inequality with the additional constraint 0 =
∫

q(z)dz− 1. This
points us to the following EM algorithm:

Proposition 1. An Expectation Maximization algorithm for both optimizing ex-
pected utility and the raw expected fitness is given by

E-Step: qg+1(z) =
p(z|θ)u(f(z))∫
p(z̃|θ)u(f(z̃))dz̃

, (6)

M-Step Policy: θg+1 = arg max
θ

∫
qg+1(z) log p(z|θ)dz. (7)

Proof. The E-Step is given by q = argmaxqF (q, θ) while fulfilling the constraint
0 =

∫
q(z)dz − 1. Thus, we have a Lagrangian L (λ, q) = F (q, θ) − λ. When

differentiating L (λ, q) with respect to q and setting the derivative to zero,
we obtain q∗(z) = p(z|θ)u(f(z)) exp (λ− 1). We insert this back into the La-
grangian obtaining the dual function L (λ, q∗) =

∫
q∗(z)dz−λ. Thus, by setting

dL (λ, q∗) /dλ = 0, we obtain λ = 1 − log
∫

p(z|θ)u(f(z))dz, and solving for q∗

implies Eq (6). The M-steps compute θg+1 = argmaxθF (qg+1, θ).
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In practice, when using a Gaussian search distribution parameterized by θ(k) =
〈x,Σ〉, the EM process comes down to simply fitting the samples in every batch
to the Gaussian, weighted by the utilities.

4 Online Fitness Expectation Maximization

In order to speed up convergence, the algorithm can be executed online, that is,
sample by sample, instead of batch by batch. The online version of the algorithm
can yield superior performance since updates to the policy can be made at every
sample instead of just once per batch, and because doing so tends to preserve
sample diversity better than by using the batch version of the algorithm. Crucial
is that a forget factor α is now introduced to modulate the speed at which the
search policy adapts to the current sample. Batch size N is now only used for
utility ranking function u which ranks the current sample among the N last seen
samples. The resulting FEM algorithm pseudocode can be found in Algorithm 1.

Algorithm 1. Fitness Expectation Maximization
use shaping function u, batch size N , forget factor α
k ← 1
initialize search parameters θ(k) = 〈x,Σ〉
repeat

draw sample zk ∼ π(x,Σ)
evaluate fitness f(zk)
compute rank-based fitness shaping uk = u(f(zk)|f(zk−1), . . . , f(zk−N ))
x ← (1 − αuk)x + αukx
Σ ← (1 − αuk)Σ + αuk (x − zk) (x− zk)T

k ← k + 1
until stopping criterion is met

5 Experiments

5.1 Standard Benchmark Functions

Good test functions should be easy to interpret, but scale up with n. They
must be highly nonlinear, non-separable, largely resistant to hill-climbing, and
preferably contain deceptive local suboptima. To test the performance of the
algorithm, we chose 6 unimodal functions (Sphere, Schwefel, Tablet, Cigar,
Different-Powers, Ellipsoid) and 4 multimodal functions (Ackley, Rastrigin,
Weierstrass and Griewank) from a set of benchmark functions from [13] and [6]
that are typically used in the literature, for comparison purposes and for com-
petitions. As those functions are designed to be minimized, we take the fitness
to be the negative function value. The multimodal functions were tested with
both FEM and the Covariance Matrix Adaptation (CMA) [6] algorithm – widely
regarded as one of the premier algorithms in this field – for comparison purposes.
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Fig. 1. Results for experiments on the unimodal benchmark functions. Left: dimen-
sionality 5, right: dimensionality 15.

In order to prevent potentially biased results, and to avoid trivial optima (e.g. at
the origin), we follow [13] and consistently transform (by a combined rotation and
translation) the functions’ inputs in order to make the variables non-separable.
This immediately renders many direct search method virtually useless, since they
cannot cope with correlated search directions, unlike FEM and CMA.

The tunable parameters of the FEM algorithm are comprised of batch size N ,
the fitness shaping function u applied on the fitness function f and forget factor
α. The parameters should be chosen by the expert to fit the expected ruggedness
of the fitness landscape. The forget factor must be low enough such that it does
not too quickly forget earlier successful search points. The shaping function must
be chosen such that enough randomness is preserved in the search policy after
every update, which entails including the lesser samples in utility attribution. For
all experiments, comprising both the benchmark unimodal/multimodal functions
and the non-Markovian double pole balancing task, initial Σ was set to the
identity matrix Σ = I and x was always randomly initialized as x ∼ N (0, I).

We ran FEM on the set of unimodal benchmark functions with dimensions 5
and 15 using a target precision of 10−10. Figure 1 shows the average number of
evaluations until success over 20 runs on the unimodal functions. The parameter
settings for dimensionality 5 were identical in all runs: α = 0.1 and N = 50,
parameter m for selecting the shaping function’s top m samples was set at m = 5.
The parameter settings for all runs in dimensionality 15 were: α = 0.02, N = 25
and m = 10. All runs converged. The number of evaluations was roughly equal
to that of CMA on the small dimensionality, and for most problems not more
than a factor 3 slower, even with dimensionality 15 [6].

On the multimodal benchmark functions we performed experiments while
varying the distance of the initial guess to the optimum between 1 and 100. As
with the unimodal functions, the problems were appropriately translated and
rotated, while the initial x was randomly initialized on the surface of the hyper-
sphere with radius 1, 10 or 100 and the optimum at its center. Those runs were
performed on dimension 2 with a target precision of 0.01, since here the focus
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Table 1. Results for the multimodal benchmark functions. Shown are percentages of
runs that found the global optimum, for both FEM and CMA, for varying starting
distances.

FEM CMA
Distance 1 10 100 1 10 100

Rastrigin 91% 87% 64% 13% 11% 14%
Ackley 100% 100% 0% 89% 70% 3%
Weierstrass 19% 9% 19% 90% 92% 92%
Griewank 100% 2% 0% 100% 2% 0%

was on avoiding local maxima. The parameter settings for the multimodal runs
were: α = 0.02, N = 25 and m = 10. Table 1 shows, for all multimodal functions,
the percentage of runs where FEM found the global optimum (as opposed to
it getting stuck in a local suboptimum) depending on the distance from the
initial guess to the optimum. The percentages are computed over 100 runs. For
comparison purposes we included the results for the CMA implementation of [6],
although it must be said that in all likelihood better results can be achieved for
CMA using population sizes that are larger than standard for that algorithm.

One additional, linear benchmark function f(z) =
∑

j zj was tested to verify
the expected premature convergence of the algorithm. Indeed, FEM converges
prematurely like EDAs typically do (e.g. [14]), while CMA performed well (see
e.g. [15]). This suggests the approach might not be applicable to all domains and
that it might benefit from a mutative approach modeling mutations instead of
weighted sample distributions.

Lastly, we performed experiments using a batch-based version of the algo-
rithm instead of the online version. We found the standard benchmark problems
could only be solved using large batch sizes (1000 and up), slowing down the
algorithm considerably. This might be due to the reduced sample diversity using
small batch sizes, which is ameliorated using an online update rule which only
gradually adjusts Σ values.

To summarize, our experiments on these standard black box optimization
benchmarks indicate that FEM is competitive with other high-performance al-
gorithms. The premature convergence on the simple linear test function was
expected and it remains to be seen whether this will affect the long-term viabil-
ity of the approach. Last, the superior performance of the online version of this
algorithm might indicate that the problem of diversity maintenance could prove
to be an important topic of future research on FEM and EDAs in general.

5.2 Non-markovian Double Pole Balancing

Non-Markovian double pole balancing [16] can be considered a difficult bench-
mark task for control optimization. We use the implementation as found in [17].
The FEM algorithm optimizes the parameters of the controller, which is im-
plemented as a simple neural network with three inputs, three hidden sigmoid
neurons, and one output neuron.
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Table 2. Results for non-Markovian double pole balancing. The table shows the
average number of evaluations for SANE [18], ESP [17], NEAT [19], CMA [20,6],
CoSyNE [21] and FEM.

Method SANE ESP NEAT CMA CoSyNE FEM

Evaluations 262, 700 7, 374 6, 929 3, 521 1, 249 2, 099

The algorithm’s parameters were set as follows: piecewise linear shaping func-
tion with m = 5 (top 5 selection), forget factor α = 0.05 and batch size N = 50.
A run was considered a success when the poles did not fall over for 100, 000 time
steps. The results on a total of 200 runs are, on average, 2099 evaluations until
success (standard deviation: 1505). Not included in these statistics are 49/200
runs that did not reach success within the limit of 10000 evaluations, which
compares badly with both CoSyNE and CMA which (almost) always converge.
Table 5.2 shows results of other premier algorithms applied to this task, includ-
ing CMA. All methods optimized the same type of recurrent neural network,
albeit with differing numbers of hidden neurons. FEM, when it converges, out-
performs all other methods except CoSyNE. Since our algorithm performs well
on this relatively hard control benchmark, we expect the algorithm to do well
on future real-world experiments.

6 Discussion

Fitness Expectation Maximization constitutes a simple, principled approach to
real-valued black box function optimization with a rather clean derivation from
first principles. Its theoretical relationship to the field of reinforcement learning
and in particular reward-weighted regression should be clear to any reader famil-
iar with both fields. We anticipate that rephrasing the black box optimization
problem as a reinforcement learning problem solvable by RL methods will spawn
a whole series of additional new algorithms exploiting this connection.

The experiments show that, on the unimodal and multimodal benchmarks,
FEM is competitive with respect to its the main ‘competitor’ algorithm CMA, at
least on lower dimensional problems. Taking into account the good results on the
pole balancing tasks, we envision that FEM might become a serious competitor
in the field of black box function optimization, especially for neuroevolution.

Future work on FEM will include a systematic study that must determine
whether it can be made to outperform other search methods consistently on
other typical benchmarks and real-world tasks. It remains to be seen how the
method scales up with increased dimensionality, especially compared to CMA.
We suggest extending the algorithm from a single multinormal distribution as
search policy representation to a mixture of Gaussians (which is a common pro-
cedure for ‘vanilla’ EM), thus further reducing its sensitivity to local suboptima.
Other pressing work includes a theoretical analysis of the shaping (selection)



Fitness Expectation Maximization 345

function, which should ideally be made to adapt automatically based on the data
instead of tuned manually.

The premature convergence on the linear test function is worrisome. Future
work will determine whether this phenomenon affects the practical applicability
to real-world problems such as neurocontrol. Alternatively, we must investigate
whether the introduction of a more mutative approach like CMA might be ben-
eficial.

7 Conclusion

We introduced Fitness Expectation Maximization to tackle the important class
of real-valued ‘black box’ function optimization problems. Reframing black box
optimization as a one-step reinforcement learning problem, we developed a
method similar in spirit to expectation maximization. Using a search policy
which matches samples weighted by their utilities, the algorithm performs com-
petitively on a standard benchmark set of unimodal and multimodal functions
and non-Markovian double pole balancing control.
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Abstract. We present a formal method to determine whether there exist living
creatures in a given computational environment. Our proposal is based on study-
ing the evolution of the entropy of the studied system. In particular, we check
whether there exist entities decreasing the entropy in some parts, while increas-
ing it in the rest of the world, which fits into the well-known maximum entropy
production principle. The entropy of a computational environment is measured
in terms of its compression rate with respect to some compression strategy. Some
life-related notions such as biodiversity are quantified as well. These ideas are
presented by means of formal definitions. A toy example where a simple living
structure is identified in a video stream is presented, and some results are reported.

Keywords: Artificial Life, Maximum Entropy Principle, Compression
Algorithms.

1 Introduction

Whenever the important question of what is life is considered, the controversy eventu-
ally arises. For elementary school students, the answer is rather simple: Live beings are
those which feed themselves, relate with the environment, and reproduce. However, this
definition is neither operative nor precise enough in practice. On the one hand, defining
notions such as feeding, relating, and reproducing with enough generality to embrace
all kinds of living beings existing in Nature is not easy. Moreover, if Artificial Life is
considered [1,5,7,8,16], then defining these concepts is even more challenging. On the
other hand, the previous definition of life ignores some living beings that do not fulfill
some of the proposed conditions (e.g., mules do not reproduce).

In this regard, we may consider the Maximum Entropy Production Principle (see
e.g. [2,3,9,11]). Grossly speaking, this principle states the following ideas: (a) Due to
the Thermodynamics laws, the entropy of any environment must increase along time;
(b) living beings are repetitive patterns that increase the order in their environment by
their simple existence: Species are made of repetitive patterns (living individuals), and
the parts of a living being are repetitive themselves (organs, cells, etc); so, (c) if (a) and
(b) are not contradictory then living beings must generate more entropy around them
than the entropy reduced by the existence of their bodies themselves. That is, living
beings are entities with low entropy that increase the entropy around them as they live.

� Supported by projects TIN2006-15578-C02-01, PAC06-0008-6995, MRTN-CT-2003-505121.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 347–357, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



348 C. Andrés, I. Rodrı́guez, and F. Rubio

Let us note that the definition of entropy actually depends on the kind of environment
we are considering. In a chemical environment, Thermodynamics provides appropriate
entropy notions. In an information environment, several notions of order and entropy
are available. For instance, Shannon’s Theorem [12] provides a classical definition of
entropy. This notion is restricted to a memoryless source, i.e. the probability of each
symbol is assumed to be independent of the symbols entering the remaining sites in the
chain. While being appropriate for some cases, this assumption is unrealistic in most
approaches. More generally, given two sequences of bits α1 and α2, we can find two
formal criteria C1 and C2 to measure the information entropy such that α1 is more
ordered than α2 for C1, and it is the other way around for C2. For instance, let us
suppose that C1 (respectively, C2) measures the order degree of a sequence of bits in
terms of the compression rate we achieve by applying a compression algorithm A1

(resp. A2) to the sequence. If the resulting compressed sequence is short then it means
that the compression algorithm finds repetitive patterns and regularities in the original
sequence, i.e. the original sequence is highly ordered. If the compressed sequence is
long then the original sequence represents a chaotic piece of information, i.e., a high
entropy environment is detected. Depending on whether A1 or A2 are applied, some
kinds of patterns will be detected as repetitive while some others will not (actually,
there does not exist any perfect compression strategy). Hence, if a general approach is
considered then the information entropy is a relative notion indeed.

In this paper we present a formal framework to detect living beings in information
streams. Following the Maximum Entropy Production Principle, we seek for low en-
tropy structures that increase the entropy around them. Compression algorithms are
used to define order and chaos in each case. In fact, the proposed method to detect
life is parameterized by the definition of entropy we wish to consider, i.e. by the spe-
cific compression algorithm we are considering. Several formal notions to detect life
and classify it, as well as to assess the biodiversity of the analyzed environment, are
considered. In addition, a toy example is considered and some experimental results are
reported. In particular, we search for structures fulfilling our definition of life within a
video stream representing an execution of the classical Snake game.

The rest of the paper is structured as follows. In the next section we present some
preliminary concepts and we use them to define Life in terms of compression rates
according to the Maximum Entropy Production Principle. Besides, we present some
concepts concerning the biodiversity of artificial ecosystems, and we deal with the no-
tions of births and deaths in our framework. In Section 3, we present an example where
we apply some of the proposed concepts to detect life in a game execution. Finally,
some conclusions and future work are given in Section 4.

2 Formal Model

In this section we present some basic notions to define and manipulate information in
our framework. We denote by world the information source where we search for living
structures. In formal terms, a world is a set of points located in the space and time where
each point has attached a binary value. We represent these sets by means of a function,
as shown below.
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Definition 1. An n−world is a partial function w : INn−→ {0, 1} with finite domain.
We say that the scope of w is the domain of w, and we denote it by Sw.

We denote by n-Worlds the set of all possible n−worlds. ��

Let us note that the previous definition uses n dimensions without making any special
difference to represent the time. In fact, we may assume that the time is just one of the n
dimensions. Thus, we can trivially represent dynamic worlds evolving in time. Next we
define the parts of a world. This notion will be required later to identify living structures
within a world. In addition, we represent some algebraic operators that will be used to
combine worlds.

Definition 2. Let w, w′ be two n−worlds. We say that w′ is a subworld of w, denoted
by w′ ⊆ w, if Sw′ ⊆ Sw and for all x ∈ Sw′ we have w′(x) = w(x).

Let w1, w2 be two n−worlds such that Sw1 ∩ Sw2 = ∅. The union of worlds w1

and w2, denoted by w1 ∪ w2, is a new world w with scope Sw = Sw1 ∪ Sw2 such that
w(x) = w1(x) if x ∈ Sw1 and w(x) = w2(x) if x ∈ Sw2 . ��

Once we can deal with subparts of a world, we can present some preliminary notions
to identify repetitive patterns inside it. Since living beings are parts of the world where
they exist, we can use subworlds to delimit those parts of the world that actually denote
living structures.

Let us note that if a given structure appears several times then we can codify the
presence of all its instances with a representation shorter than if these structures were
different. Thus, repetitive patterns allow to reduce the length of the codification of the
whole world where they are. If we consider this argument the other way around, repet-
itive patterns can be identified in a world by applying a compression algorithm to the
world. Essentially, a compression strategy is just a codification. That is, it is a transfor-
mation of a world into a sequence of bits. These transformations induce a compression
rate, that is, the rate between the length of the compressed sequence of bits and the size
of the world.

Definition 3. A compression strategy for n−worlds is a function C where we have
C : n-Worlds→ {0, 1}∗.

Let w ∈ n-Worlds. The compression rate of C for w is defined as length(C(w))
| Sw | ,

and it is denoted by CompRate(C, w). ��

Let us note that we are considering a very general notion of compression strategy. For
instance, if we restricted ourselves to e.g. Huffman codes [4] or algorithms such as
LZW [14] then the generality of the framework would be reduced. In contrast, searching
for redundancies in several different ways is allowed in the proposed framework. For
instance, we may search for decompositions of frequencies by using the discrete Fourier
transformation or the discrete cosine transformation (see e.g. [6,10]) (in particular, the
JPEG transformation will be considered in the example presented at the end of the
paper). The generality of the previous definition will allow us to search for life patterns
in a broader sense than usual. In particular, the criterion to detect repetitive patterns
will depend on the particular compression strategy considered in each situation. Thus,
a pattern under a certain strategy could not be a pattern under another one. This reflects
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the fact that the interpretation given to the world strongly depends on the rational model
we use to describe that world. In our case, the considered rational model is denoted by
the compression strategy.

Next we define what a (living or not) repetitive pattern is. A pattern is a subworld
such that, when it is considered as part of a given world, the compression rate of the
world is reduced. In other words, a pattern allows to increment the order of the world
where it is inside. A subworld can be a pattern due to two different reasons. On the one
hand, a subworld can help to form redundancies in the world it belongs to. In this case,
we say that it is an exogenous pattern. On the other hand, a subworld can be a pattern
because it has many internal redundancies, in which case we say that it is an endogenous
pattern. In order to make such distinction, we take into account the compression rate of
the subworld as if it were isolated indeed.

Definition 4. Let w, w1, w2 be n−worlds such that w = w1 ∪w2. We say that w1 is a
pattern in w under compression strategy C if CompRate(C, w) < CompRate(C, w2).

Besides, if CompRate(C, w1) ≥ CompRate(C, w2) then we say that w1 is an
exogenous pattern; if CompRate(C, w1) < CompRate(C, w2) then we say that w1 is
an endogenous pattern. ��

The previous definition does not imply that patterns have a low entropy level, but that
their entropy is low in relation with the entropy of the world where they exist. In fact,
even if a pattern is endogenous, it is not guaranteed that its entropy level is low, as the
rate is measured by taking into account the world it belongs to.

Patterns can be nested, that is, we can find life inside living entities. By introducing
this concept, we can manage notions such as cooperative living subentities constituting
global living entities. We assume that the same compression strategies are considered
at both nesting levels.

Definition 5. Let w1 be a pattern in w under compression strategy C and let w2 be
a pattern in w1 under compression strategy C. Then, we say that w2 is a subpattern
of w1. ��

Let us consider the notions of entropy and life. Intuitively, and following the ideas
shown in [9], a living creature is a structure that maintains low entropy inside it, while
increasing the entropy of the environment surrounding it. Thus, in order to decide
whether a pattern is a living pattern or not, we have to compare the entropy of the
pattern with that of its surroundings. We define the entropy of a subworld as the ratio
between the entropy of that subworld and that of the world it belongs to. Next we intro-
duce a notion of pattern which is parameterized by an entropy threshold. It allows us to
compare patterns in terms of their relative level of order with respect to their world.

Definition 6. Let w, w′ be two worlds such that w′ is a subworld of w. The entropy
level of w′ in w under compression strategy C, denoted by Entropy(C, w′, w), is

given by CompRate(C,w′)
CompRate(C,w)

.

We say that w′ is an α−ordered pattern of w under compression strategy C if w′ is
a pattern of w under compression strategy C and Entropy(C, w′, w) < α for a given
constant α. ��
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Even if a pattern is ordered inside its world, this does not imply that the pattern is
a living pattern. We must also take into account that living entities must increase the
entropy around them. Thus, we need to detect if there exists an evolution towards higher
entropy. Reasoning about how some parameter evolves requires to identify a dimension
of the world (or linear combination of them) as the time dimension, i.e. we have to
define what is the direction of the evolution. Next we define sequences of increasing
entropy. We say that a pattern is alive if it keeps a low entropy level along the evolution
of its world and, simultaneously, the entropy level of its world increases along time.

Definition 7. Let w1, . . . , wn, w be worlds such that w =
⋃n

i=1 wi. We say that the
sequence w1 · · ·wn is an evolution of entropy under compression strategy C if for any
i, j with 1 ≤ i < j ≤ n we have CompRate(C, wi) < CompRate(C, wj).

Let w, w′, w′′ be worlds such that w = w′ ∪ w′′ and w′ is an α−ordered pattern of
w under compression strategy C. Let w1 · · ·wn with w =

⋃n
i=1 wi be an evolution of

entropy under compression strategy C. We say that w′ is an α−living pattern across
w1 · · ·wn under C if there exist two sequences w′

1 · · ·w′
n with w′ =

⋃n
i=1 w′

i and
w′′

1 · · ·w′′
n with w′′ =

⋃n
i=1 w′′

i , such that w′′
1 · · ·w′′

n is an evolution of entropy under C
and for all 1 ≤ i ≤ n we have that wi = w′

i ∪w′′
i and w′

i is an α−ordered pattern of wi

under C. ��

It is worth to point out that w′
1 · · ·w′

n (that is, the sequence representing the evolution
of the living entity) could also be an evolution of entropy. That is, the internal entropy
of an alive creature could also be increasing, provided that it is still a pattern inside its
world. Intuitively, this implies that the tendency of the world towards chaos must be
faster than the tendency of the living entity itself.

As we said before, the evolution of the entropy is not constrained to follow a specific
direction. Since there are different ways to split a world into scenes, there exist several
possible interpretations of time, and all notions depend on this choice. This increases
the generality of the proposed framework. Let us remark that we are dealing with in-
formation, so our definition must be independent of the possible transformations being
applied to such information. For instance, let us suppose that the world represents a
video stream. Each temporal frame of the video could be located in a different part of
the x axis of the information stream (e.g., a file). The evolution of the video over time
is codified by locating each frame in a specific physical area of the stream. Hence, a
flexible way to identify the time dimension must be provided.

It is worth to point out that the previous definition does take into account one of
the factors considered critical for identifying life in terms of the Maximum Entropy
Production Principle [9]. According to this principle, living creatures generate entropy
in their surroundings. That is, they are the reason of the increment of entropy. In our
approach, we detect life by just observing information, that is, we do not interact with
it. Hence, we do not have the capability of changing the observing environment, which
would allow us to check an alternative scenario where the creature does not exist. This
would allow us to compare the evolution of the entropy in both cases, which is required
to determine if the existence of the creature causes it. Studying the case where it is
possible to interact with the analyzed environment is out of the scope of this paper and
is left as future research.
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Once we have proposed our notion of life, we can use it to define some higher level
concepts. Next we consider the notion of subliving patterns. A subliving pattern is a
living entity inside another living entity. In particular, the world of a subliving entity is
the living entity it belongs to.

Definition 8. Let w′ be an α−living pattern across w1 · · ·wn under the compression
strategy C, and let w′′ be an α−living pattern across w′

1 · · ·w′
n under the compression

strategy C such that w′ =
⋃n

i=1 w′
i and for all 1 ≤ i ≤ n we have w′

i ⊆ wi. Then, we
say that w′′ is an α−subliving pattern of w′ across w1 · · ·wn under C. We say that w′ is
a fully α−living pattern across w1 · · ·wn if there exist m worlds w′

1, . . . , w
′
m (m ≥ 2)

such that w′ =
⋃m

i=1 w′
i and for all 1 ≤ i ≤ m we have that w′

i is an α−subliving
pattern of w′ across the evolution w1 · · ·wn. ��

As stated in [13], the biological diversity is the variety and variability among living
organisms and the ecological environments in which they occur. Thus, the diversity
can be defined as the number of different items and their relative frequency. In order
to calculate the biodiversity of a world in our framework, we have to consider the life
existing in it. Nevertheless, since diversity is required, the biodiversity does not increase
by considering very similar living beings. On the contrary, the diversity is high only if it
is possible to find a subset of the world such that its diversity is high. This subset should
be defined in such a way that its members are canonical representatives of the different
models of life appearing in the ecosystem. Then, the biodiversity will be calculated
by considering two factors: The internal diversity of the subset (which indicates that
present models are different among them) and its size (which indicates the amount
of diverse life in the ecosystem). Hence, we calculate the biodiversity of a world by
selecting the set that maximizes both factors together.

Definition 9. Let w1 · · ·wn be an evolution of entropy under C, and let w =
⋃n

i=1 wi.
The α−biodiversity of w1 · · ·wn under the compression strategy C is defined as:

max
{
| Sw′ |
| Sw |

· CompRate(C, w′)
∣∣∣∣ w′ =

m⋃
i=1

w′
i ∧ ∀ 1 ≤ i ≤ m : w′

i ∈ L

}

where L denotes the set of all α−living patterns across w1 · · ·wn under the compression
strategy C. ��

In the previous definition, we search the set of living beings such that, considering this
set as a whole, the compression rate is the highest (which indicates that the diversity is
high). At the same time, we search for the set whose size is as closer as possible to the
size of the whole world (which indicates that the amount of diverse life is high). The
multiplication of both factors provides our measure of biodiversity. Let us remark that
the biodiversity is monotonic non-decreasing with respect to α. This is because higher
values of α increase the freedom to choose living patterns, which allows to maximize
the biodiversity value. In particular, those sets we can consider with a lower α can also
be selected with a higher one.

The proposed formal framework also allows to define the notions such as births and
deaths for living entities. For the sake of clarity, in previous definitions we assumed that
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each alive entity is alive during the whole considered period (i.e., during the considered
evolution of entropy). Nevertheless, we can extend the previous concepts to deal with a
more general situation where creatures are born and die.

In the following definition we introduce the concepts of birth and death. Let us re-
mark that both concepts are relative to the entropy level α required in each case to
determine if patterns are alive.

Definition 10. Let w1 · · ·wm be an evolution of entropy under the compression strat-
egy C and let w′ be an α−living pattern across wk · · ·wn under the compression strat-
egy C, where 1 ≤ k ≤ n ≤ m. Finally, let w =

⋃n
i=k wi.

We say that the α−birth date of w′ is wk if there does not exist w′′ ⊆ wk−1 such that
w′′ is an α−ordered pattern of wk−1 under the compression strategy C and w′ ∪ w′′ is
an α−ordered pattern of wk−1 ∪ w under the compression strategy C.

We say that the α−death date of w′ is wn if there does not exist w′′ ⊆ wn+1 such
that w′′ is an α−ordered pattern of wn+1 under the compression strategy C and w′∪w′′

is an α−ordered pattern of wn+1 ∪ w under the compression strategy C. ��

The intuitive idea behind the dates of birth and death is that they are dates such that it
is not possible to extend the life of the creature after its death or before its birth.

3 Experiments

In this section we present an example of the framework presented in this paper by using
a classical software game. This game is Snake. Essentially, the goal of this game consists
in making the snake to grow up as much as possible by eating all the food it finds in the
world. The snake dies either if it crashes against a part of its own body or against one
of the walls surrounding the world. In addition to the original rules of the classic game,
we introduce a new concept that will be necessary to deal with the proposed notion
of life: Rubbish. When the snake eats something, it randomly produces rubbish in the
surroundings next to it. This simulates the degradation of the environment caused by
life. Since our notion of life requires that the entropy of the environment grows along
time, a kind of degradation will be required to find life in this system.

We represent an execution of this game by means of a world. According to
Definitions 1, 2, and 3, we consider a 3-world (2 spacial dimensions plus the time)
where the size of each spacial dimension is 512. A frame of the scene (that is, the infor-
mation of the world for a specific time) is shown in Figure 3 (left). The food is shown
in blue color and the snake is green. In the following, we will use w to represent a
subworld denoting a single frame.

Living structures are images moving across the screen along time, so we must be able
to systematically search for parts of the image to be considered as possible living struc-
tures. In order to do it, we present an algorithm that automatically considers different
ways to split the screen into pieces of different size and assesses the suitability of each
piece to denote a living structure. The main part of the algorithm is depicted in the adja-
cent figure. This heuristic greedy algorithm looks for a square whose size is a divisor of
n, being n the length of each spatial dimension. The cost of the algorithm isO(log(n)).
Intuitively, the algorithm works as follows: First, we split the image into four quadrants.
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Fig. 1. A world representing an image (left) and the evolution of compression rate (c.r.) of the
world and the snake (right)

We choose the quadrant where the conditions required to find life are best suited (that
is, the square has low entropy but, at the same time, the entropy evolves along time
in the rest of the frame). The function BestComp abstracts the criterion used to make
this selection. Next, this quadrant is split again into four quadrants, and so on. When the
process finishes, that is, when the minimal size is reached, the best square considered
so far (regardless of its size) is identified. For the sake of clarity, some subsequent oper-
ations of the algorithm are not depicted in the figure. In order to extend the best square
in some directions, other squares adjacent to it are considered. If the figure resulting
by adding an adjacent square is better suited, then we take it as new best figure, and
we repeat the same process for some additional turns. In this way, more complex forms
(not just squares) can be formed. More formally, given a subworld w denoting a frame,
the algorithm chooses two different subworlds w1 and w2, that is, subsets of w, fulfill-
ing the following conditions. The first subworld, w1, is the rectangular area chosen by
applying the algorithm depicted in Figure 2. We define w2 as the the rest of the frame,
that is, we have w = w1 ∪w2 with Sw1 ∩ Sw2 = ∅.

As we said before, we consider that the entropy of a subworld is the ratio between the
compression rate of that subworld and that of the world it belongs to. So, our notion of
entropy is a notion of relative order between a subworld and the world this subworld is
inside. Following this idea, we perform an experiment to determine whether the snake
should be considered an (artificial) alive creature according to the proposed notions.
We use the JPEG compression algorithm to measure the entropy along time: Each in-
dividual frame is compressed by using this algorithm, and the evolution of resulting
compression rates are considered. As we said before, other compression algorithms
lead to different implicit definitions of what should be considered an ordered pattern
and what should not.

In Figure 3 (right) we can observe the evolution of the entropy along the time of w1

(the snake) and w (the world). Since the snake represents a simple repetitive pattern, the
complexity of its JPEG codifications (that is, the size of the compressed images repre-
senting its frames along time) do not significantly increase along time. On the contrary,



Formally Testing Liveness by Means of Compression Rates 355

input : An n-world represented by a Bitmap Matrix H of size
n × n.

output: A bitmap denoting a good life candidate within the
world.

n ← (n DIV 2) × 2 ;
size ← n

2
;

B ← MAXINT; left ← 1; right ← n; up ← 1; down ← n;
while (size ≥ 1) do

leftnew ← left;
rightnew ← right;
upnew ← up;
downnew ← down;
if (B ≥ BestComp(H ,left, right

2
, up, down

2
)) then

leftnew ← left;
rightnew ← right

2
;

upnew ← up;
downnew ← down

2
;

B ← BestComp(H ,left, right
2

, up, down
2

);
end
if (B ≥ BestComp(H , right

2
,right, up, down

2
)) then

leftnew ← right
2

;
rightnew ← right;
upnew ← up;
downnew ← down

2
;

B ← BestComp(H , right
2

,right, up, down
2

);
end
(. . . continue);

end

input : An n-world represented by a Bitmap Matrix H of size
n × n.

output: A bitmap denoting a good life candidate within the
world.

n ← (n DIV 2) × 2 ;
size ← n

2
;

B ← MAXINT; left ← 1; right ← n; up ← 1; down ← n;
while (size ≥ 1) do

(. . . continue);
if (B ≥ BestComp(H , right

2
,right, down

2
, down)) then

leftnew ← right
2

;
rightnew ← right;
upnew ← down

2
;

downnew ← down;
B ← BestComp(H , right

2
,right, down

2
, down);

end
if (B ≥ BestComp(H ,left, right

2
, down

2
, down)) then

leftnew ← left;
rightnew ← right

2
;

upnew ← down
2

;
downnew ← down;

end
left ← leftnew;
right ← rightnew;
up ← upnew ;
down ← downnew ;
size ← size

2
;

end

Fig. 2. Searching good life candidate in an image

the JPEG codifications of frames representing the world become longer as time passes.
Since the snake increases the rubbish every time it eats, the amount of rubbish increases
along time, and representing this information in the compressed format requires more
bits. Since the entropy of the snake remains low and the entropy of its world increases
along time, we can conclude that the snake represents an alive pattern according to the
notions presented in previous sections. Let us note that, as we have already commented
before, we need that the amount of rubbish increases as the snake eats and grows. Oth-
erwise, the world would reduce its entropy along time. Let us note that the compression
rate of an empty world is better (uniformly colored areas are easier to compress). Thus,
if the rubbish were not generated then the world of the snake would not be globally tend
towards chaos according to the selected compression strategy.

4 Conclusions and Future Work

In this paper we have presented a formal framework to identify living entities inside an
abstract information environment. Following the Maximum Entropy Production Prin-
ciple, the proposed method is based on the analysis of the entropy of the components
of the system. More precisely, we have compared the entropy of entities with the evo-
lution of the entropy of the world they belong to. The entropy is measured in terms
of compression rates. This allows us to measure the order degree of some informa-
tion in a computational environment. Other related concepts, including notions such
as death, biodiversity, or biologic families, have been discussed. We have illustrated
the proposed concepts with a toy example where a living entity is detected in a simple
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game execution. Since the compression rate degrades but, simultaneously, the analyzed
pattern remains ordered along time, we have concluded that this entity constitutes an
alive entity according to the Maximum Entropy Production Principle.

As future work, we want to apply the proposed formal framework to analyze the
presence of life in classical artificial environments. In particular, we wish to compare
our definition of Life with Class IV considered by [15] and the Lambda metric pro-
posed by [7] in the specific context of Cellular Automata. Besides, we wish to define
alternative life detection notions. Contrarily to the formal notions presented in this pa-
per, which are based on the simple observation of the environment, we wish to consider
an alternative framework where we could extract conclusions by interacting with the
analyzed environment.

Acknowledgments. We would like to thank Manuel Núñez and Natalia López for
their interesting suggestions, as well as the anonymous reviewers for their valuable
comments.
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Abstract. It has been shown that generative representations, which allow the 
reuse of code, perform well on problems with high regularity (i.e. where a  
phenotypic motif must be repeated many times). To date, however, generative 
representations have not been tested on irregular problems. It is unknown how 
they will fare on problems with intermediate and low amounts of regularity. 
This paper compares a generative representation to a direct representation on 
problems that range from having multiple types of regularity to one that is com-
pletely irregular. As the regularity of the problem decreases, the performance of 
the generative representation degrades to, and then underperforms, the direct 
encoding. The degradation is not linear, however, yet tends to be consistent for 
different types of problem regularity. Furthermore, if the regularity of each type 
is sufficiently high, the generative encoding can simultaneously exploit differ-
ent types of regularities.  

Keywords: Evolution, regularity, modularity, ANN, NEAT, HyperNEAT. 

1   Introduction 

While the field of evolutionary computation has produced impressive results, the 
complexity of its evolved solutions pales in comparison to organisms in the natural 
world. One of several likely reasons for this difference is that evolutionary computa-
tion typically uses a direct encoding (also known as direct representation), where, 
relative to some environment E, every part of the phenotype is coded for separately in 
the genome. Given that natural organisms can contain trillions of parts (e.g. cells in 
the human body), a direct representation of such an organism would require a genome 
with at least that many separate genetic elements. We do not find such inefficient 
genomes in nature. An alternative is a generative encoding (or generative representa-
tion), where, relative to E, elements in a genome can be reused to produce many parts 
of a phenotype [1-9]. For example, about 25,000 genes encode the information that 
produces the trillions of parts that make up a human [10]. Generative encodings allow 
evolution to search a genotype space with far fewer dimensions than that of the final 
phenotype. Further benefits of generative encodings are that the reuse of code facili-
tates the evolution of modular phenotypes and that mutations can produce coordinated 
phenotypic effects (e.g. one mutation lengthening all legs by the same amount).  
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Previous researchers have found that generative encodings produce more modular, 
complex phenotypes, higher fitnesses, and more beneficial mutations on average than 
direct encoding controls [1].    

While it has been shown that generative encodings can outperform direct encod-
ings [1-7], in every case the authors of this paper are aware of, the problem was 
nearly perfectly regular or the regularity of the problem was unspecified and ambigu-
ous. Gruau’s work evolving neural nets with the generative encoding called Cellular 
Encoding used problem domains of bit parity or bit symmetry [4], which are both 
highly regular, or pole-balancing [5], where the regularity of the problem is unknown. 
Even for the pole-balancing problem, however, there is left-right symmetry and just a 
few tasks (e.g calculating velocity) need to be repeated many times. Hornby [1] dem-
onstrated that a generative encoding based on L-systems outperformed a direct encod-
ing control when applied to the perfectly regular parity problem and to evolving tables 
and mobile creatures (where repeating similar leg modules gave huge fitness gains). 
The regularity of the Nothello game from [7] is unknown. Recently, a new generative 
encoding, called Hypercube-based NEAT (HyperNEAT), has been shown to outcom-
pete a direct encoding control on two problems that require the repetition of the same 
network motif [2,3].  

These works show that generative encodings do well on highly regular problems, 
but they raise the question of whether generative encodings achieve their increased 
performance in regular problem domains at the cost of performing poorly in irregular 
problem domains. For example, how good are generative encodings at producing an 
exception to the rule? Furthermore, do they provide advantages for low and interme-
diate amounts of regularity, or only when regularity is high? What is needed are tests 
of generative versus direct encodings on problems that allow us to explicitly vary only 
their regularity. Such investigations are conducted in this paper.  

2   The Experimental System 

This study uses a generative encoding that evolves neural nets, which is one of the 
common uses for generative encodings within the field of evolutionary computation 
[1-8]. HyperNEAT [2,3] was recently introduced as a generative representation that 
can evolve neural nets using the principles of the widely used NeuroEvolution of 
Augmenting Topologies (NEAT) algorithm [11]. HyperNEAT evolves Compositional 
Pattern Producing Networks (CPPNs), each of which is a function that takes an input 
and produces an output. The inputs to the CPPN function are a constant bias value 
and the locations on a Cartesian grid of both an input node (e.g. <x1=4, y1=4>) and an 
output node (e.g <x2=5, y2=5>). The function takes these five values (bias, x1, y1, x2, 
y2) as input and produces an output value that determines the weight of the link be-
tween the input and output node. All pairwise combinations of input and output nodes 
are iteratively passed as inputs to a given CPPN to determine what the weight value is 
between each input node and each output node. Thus the CPPN function is a genome 
that encodes for a neural network phenotype.  

Evolution proceeds in HyperNEAT by evolving a population of CPPN functions. 
Each CPPN is itself a directed graph network where each node is a math function 
comprised of the following functions: sine, sigmoid, cosine, Gaussian, square,  
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absolute root, linear, or one’s complement. The nature of the functions used can cre-
ate a wide variety of desirable properties, such as symmetry (e.g. an absolute value or 
Gaussian function) and repetition (e.g. a sine or cosine function) that evolution can 
take advantage of. That a directed network of functions is used allows nested coordi-
nate frames to develop, such that, for instance, a sine function used early in the net-
work can create a repeating theme that, when passed into the symmetrical absolute 
value function, creates a repeating series of symmetrical motifs. This is similar to how 
natural organisms develop. For example, many organisms set up a repeating coordi-
nate frame (e.g. body segments) within which are symmetrical coordinate frames (e.g. 
left-right body symmetry). The links between each node in a CPPN have a weight 
value that can magnify or diminish the values that pass along them. The ability to 
change these weights enables evolution to, for example, give strong weight to one part 
of the network generating symmetry while rendering the influence of another aspect 
of the network more subtle. When CPPNs are evolved artificially with humans doing 
the selection, the evolved shapes look surprisingly beautiful, complex and natural [9]. 
More importantly, they exhibit the desirable features of generative encodings, namely, 
the repetition of themes, symmetries and hierarchies, with and without variation. 

Variation in HyperNEAT occurs when mutations change the CPPN function net-
works. Mutations can add a node to the graph, which results in the addition of a func-
tion to the network, or change the weights of links within the network. The evolution 
of the population of CPPN networks occurs according to the principles of NEAT, 
which was originally designed to evolve neural nets. NEAT can be fruitfully applied 
to CPPNs because the population of CPPN networks is similar in structure to a popu-
lation of neural networks.  

The NEAT algorithm is unique in three main ways [11]. Initially, it starts with 
small genomes that encode simple networks and slowly ‘complexifies’ them via mu-
tations that add nodes and links to the network. This complexification enables the 
algorithm to evolve the network topology in addition to its weights. Secondly, it uses 
a fitness sharing mechanism that preserves diversity in the system and allows new 
innovations time to be tuned by evolution before forcing them to compete against 
rivals that have had more time to mature. Finally, it uses historical information to 
perform crossover in a way that is effective yet avoids the need for expensive topo-
logical analysis. A full explanation of HyperNEAT [2, 3] and NEAT [11] can be 
found elsewhere.  

It is helpful that a good direct encoding version of NEAT exists that can serve as a 
control. Perception NEAT (P-NEAT), so named because it evolves a series of percep-
trons, has been previously used to compare the generative encoding of HyperNEAT 
with a direct encoding that is similar to HyperNEAT in all ways, save its use of the 
generative CPPNs [2, 3]. P-NEAT directly evolves the neural net phenotypes. It is the 
same as NEAT without the complexification. In other words, P-NEAT uses evolution 
to tune the weights of a network with a fixed topology. Since in HyperNEAT the 
complexification is performed on the CPPN, but the resultant neural network topol-
ogy remains fixed, the topology of the P-NEAT neural network is also fixed. The rest 
of the elements from NEAT (e.g. fitness sharing) remain the same between  
HyperNEAT and P-NEAT, making the latter a good control.  

Following Gauci and Stanley (2007), a configuration is used that separates the inputs 
and outputs onto two separate planes. This configuration features a two dimensional,  
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n-by-n Cartesian grid of inputs and a corresponding n-by-n grid of outputs. There are no 
hidden nodes and recurrence is disabled, so each of the n2 inputs nodes has a link of a 
given weight to each of the n2 output nodes (although weights can be zero, functionally 
eliminating the link). The parameter configurations for HyperNEAT and PNEAT are 
the same as in Gauci and Stanley (2007), except that the probability of adding a link was 
30% (up from 10%) and the MutationPower, which controls the magnitude of weight 
mutations, was lowered from 2.5 to 0.1 after preliminary experiments revealed that this 
improved performance in the problem domains used in this paper. Every experimental 
trial within a treatment differed only in its random number generator seed, which influ-
enced stochastic events such as mutations and the creation of randomized targets (either 
maps or weights). HyperNEAT and P-NEAT trials with the same random number seed 
in each treatment had the same targets. 

3   Problem Domains and Results 

The first problem, which will be called ‘Bit Mirroring,’ is intuitively simple yet pro-
vides multiple types of regularities, each of which can be scaled independently. For 
each input a target output is assigned (e.g. the input <x1=3, y1=3> could be paired 
with output <x2=7, y2=7>). 1s and -1s ones are randomly provided to each input, and 
the fitness of an organism is incremented if that one or negative one is reflected in the 
target output. Outputs greater than zero are considered a one, and values less than or 
equal to zero are considered a negative one. To reduce the effect of the randomness of 
the inputs, every generation each organism is evaluated on ten different sets of ran-
dom inputs and these scores are summed to produce a fitness score for that organism. 
The max fitness is thus n2 (one potential right answer for each input) x 10. 

The correct wiring is to create a positive valued link between each input node and 
its target output and, importantly, to zero out all links between each input node and 
non-target output nodes. That there is a correct wiring motif that needs to be repeated 
for each input cell creates an ‘inherent regularity’ to the problem. However, this in-
herent regularity is constant for a given grid size. The Bit Mirroring problem is chal-
lenging for evolutionary algorithms because links between input nodes and non-target 
nodes are likely to exist in initial random configurations, crop up through mutation, 
and can complicate fitness landscapes. Imagine, for example, that a mutation switches 
the weight value on a link between an input node and its target output from zero to a 
positive number. The organism is now closer to the ideal wiring, but it may not re-
ceive a fitness boost if other incorrect links to that output node result in the wrong net 
output.  While the problem is intuitively simple, it is not trivial. 

Recall that highly regular problems are those where one motif must be repeated 
multiple times. One simple way to construct a highly regular Bit Mirroring problem  
is for the x and y values of the input and output nodes to be the same (i.e. the target is 
directly across). For example, <x1=5, y1=6> should connect to <x2=5, y2=6>. There 
are at least three types of regularity in this highly regular version of the Bit Mirroring 
problem: 1) inputs and output targets have the same x values (they are in the same 
column), 2) inputs and output targets have the same y values (they are in the  
same row), and 3) the inherent regularity in the Bit Mirroring problem (see above). 
Each type of regularity can be scaled from high to low.  



362 J. Clune, C. Ofria, and R.T. Pennock 

The first experiment uses a 7x7 grid and decreases the ‘within-column’ regularity 
by reducing the percentage of inputs whose target is constrained to be in the same 
column. Unconstrained nodes must have the same y value, but can have a different x 
value. 10 trials were performed for each treatment lasting 2000 generations. Fig. 1a 
reveals that the performance of HyperNEAT falls off as within-column regularity 
decreases. HyperNEAT is able to perfectly solve the problem in all but two trials of 
the most regular treatment, when the targets are all constrained to be directly across. 
As the within-column regularity decreases, the performance of HyperNEAT falls off 
fast. Interestingly, HyperNEAT does not benefit from the within-column regularity 
when 50% or fewer of its nodes are regularized in this way (only treatments with 60% 
or more column-constrained targets have fitnesses significantly better at a p<.05 level 
than fitness values from the treatment with 0% of nodes column-constrained; this and 
all future p values use Matlab’s Mann-Whitney U-test).   

The second experiment, which also involved 10 trials lasting 2000 generations and 
a 7x7 grid, scales a similar but different type of regularity by allowing all targets to be 
random with respect to column, but decreasing the percent that are constrained to be 
in the same row (Fig. 1b). In a sense, experiment two picks up where experiment one 
left off. In fact, the least regular treatment from experiment one and the most regular 
treatment from experiment two have identical constraints (although different ran-
domly generated mappings), which is why their distributions are similar. The  
performance of HyperNEAT also decreases as this type of regularity is diminished. 
Surprisingly, the pattern of degradation is similar to experiment one; HyperNEAT no 
longer provides a fitness boost due to within-row regularity once that regularity falls 
below 60% (p only <.05 comparing 0% row-constrained to >=60% row-constrained 
treatments). While it is possible that running experiment one and two longer would 
have allowed significant differences to develop between less-regular treatments, it is 
relevant that no significant difference was present after 2000 generations, which is a 
substantial number in the field of evolving neural nets. It is interesting that the range 
of fitness values is also correlated with the regularity of the problem for HyperNEAT. 
This might be because, when regularity is present, the generative representation either 
discovered and exploited it, which would result in high fitness values, or it failed to 
fully discover the regularity, at which point its fitness more closely resembles less 
regular treatments. 

Experiments one and two were also performed using P-NEAT, the direct represen-
tation control for HyperNEAT. As expected, the fitnesses produced by P-NEAT were 
not affected by the regularity of the problem. While for space constraints we only 
show P-NEAT values from experiment two (Fig. 1c), none of the P-NEAT treatments 
from experiment one were significantly different from P-NEAT treatments from ex-
periment two (p< .05). Furthermore, within both experiments, none of the treatments 
were significantly different than that experiment’s 0% constrained treatment (p >.05).  
All HyperNEAT treatments from experiment one do significantly better than P-NEAT 
treatments from experiment one, due to both the within-row regularity present 
throughout and the inherent regularity of the Bit Mirroring problem. In experiment 
two, the within-row regularity decreases, leaving only the inherent regularity. How-
ever, presumably due to the inherent regularity of the problem, HyperNEAT still 
significantly outperforms P-NEAT on all treatment conditions except for the 20% 
constrained treatment. Computational constraints prevented the performance of more 
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trials, which may have eliminated this overlap in performance on the 20% constrained 
trial. While it is possible that running the trials for more generations would have al-
lowed P-NEAT to catch up to HyperNEAT on irregular treatments in experiment two, 
viewing the fitness values across generations (not shown) suggests that, were this 
possible, the increase would have to be dramatic. 

 

Fig. 1. HyperNEAT and P-NEAT on the Bit Mirroring problem as regularity decreases. a) 
HyperNEAT’s performance in experiment one, where within-column constraints are relaxed 
but within-row constraints remain. b) HyperNEAT’s performance in experiment two, where 
within-column constraints are eliminated and within-row constraints are relaxed. c) P-NEAT’s 
performance in experiment two, which is statistically indistinguishable from its performance on 
experiment one.  

A third experiment continues the comparison of Hyper-NEAT to P-NEAT on prob-
lems of decreasing regularity. For this experiment trials lasted 2000 generations, as 
before, but we conducted 40 trials per treatment due to the high variance between 
trials. All targets in experiment three are random with respect to row and column, 
leaving only the regularity inherent in the Bit Mirroring problem. Since this inherent 
regularity stems from a motif that needs to be repeated for each input node (‘zero out 
links to all outputs but one’), the number of times this motif needs to be repeated 
decreases with the grid size. Unfortunately, there is no way to decrease this inherent 
regularity without also decreasing the problem complexity (i.e. the number of weights 
the algorithm is optimizing). Based solely on problem regularity, P-NEAT should 
perform better in comparison to HyperNEAT as this type of regularity is decreased. 
Fig 2. reveals that this is the case. The performance of HyperNEAT degrades to and 
then falls below that of P-NEAT as the grid size decreases. The overall decline is 
significant (p<.05 comparing the ratios on the 3x3 treatments vs. those 6x6 and 
greater). It is not clear why the trend is reversed on the smallest grid size. Note that 
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experiments one and two occurred on a 7x7 grid where the level of inherent regularity 
provided HyperNEAT an advantage over P-NEAT, even without within-column or 
within-row regularity, which explains HyperNEAT’s superiority for those treatments 
reported above. 

 

Fig. 2. Comparison of HyperNEAT to P-NEAT as the inherent regularity of the Bit Mirroring 
problem is decreased, which is accomplished by reducing grid size. Error bars show one stan-
dard error of the mean. Ratios are used instead of absolute differences because the allowable 
fitness ranges change with grid size. 

Experiment three shows that once problems are sufficiently irregular and simple, 
the direct encoding P-NEAT can outperform the generative encoding HyperNEAT. 
The likely explanation is that HyperNEAT is biased towards creating modular pheno-
types and has trouble when the problem features mostly exceptions and little rule. 
However, even the 3x3 version of the Bit Mirroring problem has some inherent regu-
larity left over. This paper next compares HyperNEAT to P-NEAT on a problem that 
can be scaled to complete irregularity and where problem complexity remains con-
stant. While there may always be regularities of which an experimenter is not aware, 
it seems that a completely irregular problem can be created if each link in the neural 
network phenotype has its own randomly chosen target value. In this ‘Target 
Weights’ problem, fitness measures how well the phenotype matches a pre-selected 
phenotype instead of evaluating a phenotype on a problem with inputs and outputs. A 
regular version of this problem can be constructed if all target weights are the same 
randomly chosen value. The regularity can be decreased by lowering the percent of 
weights that have a repeated target. For the treatment where 50% of the weights are 
repeated, for example, a ‘repeated value’ is randomly chosen and that value becomes 
the target weight for a randomly selected 50% of links. The remaining 50% of links 
each have a random target chosen independently. This experiment ran faster, allowing 
10 trials per treatment of 5000 generations on a 3x3 grid. 
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Fig. 3. Comparison of HyperNEAT to P-NEAT on 11 treatments of the Target Weights prob-
lem where the percent of targets repeated decreased by 10% from 100 to 0 percent. The initial 
average error of HyperNEAT (thin lines) is inversely related to the regularity of the treatment 
(e.g. the lowest line, with almost zero error throughout, is the most regular HyperNEAT treat-
ment, and the highest line is the most irregular HyperNEAT treatment), although Hyper-
NEAT’s performance on less regular treatments becomes conflated over time. The performance 
of P-NEAT (thick lines) was not affected by the regularity of the problem, which is why the 
lines are overlaid and indistinguishable.  

Fig 3 shows that HyperNEAT exploits the regularity of the Target Weights prob-
lem early on, but P-NEAT closes the gap fast and eventually outperforms Hyper-
NEAT on all but the most regular treatment. This experiment provides another kind of 
example where a direct encoding does better compared to a generative encoding as 
the problem regularity decreases. This experiment also serves as a further illustration 
both that the performance of HyperNEAT decreases with the regularity of the prob-
lem, and that the fitness values, at least at the end of the run, are statistically indistin-
guishable once the regularity of the problem falls below a relatively high threshold 
(p>.05 comparing the 0% repeat treatment to all but the 90 and 100 percent repeat 
treatments). However, the difference in HyperNEAT’s performance between treat-
ments early on complicates the story of how HyperNEAT’s performance flatlines 
below a certain regularity threshold, by making it depend on time. Fitness plots across 
generations from experiments one and two (not shown) do not tell a similar story; in 
those experiments the less regular treatments have similar fitness scores throughout. 
A further point of interest is the lack of progress HyperNEAT makes on the highly 
regular treatments (e.g. where 80 or 90 percent of the targets are repeated). While it 
exploits the regularity early on, HyperNEAT seems unable to make exceptions to the 
rule in order to encode the non-conforming link values, as evidenced by the lack of 
fitness improvements after the initial surge. Unsurprisingly, the P-NEAT trials from 
this experiment are statistically indistinguishable (p>.05). 

Each of the previous experiments have shown how HyperNEAT and P-NEAT per-
form as a single type of regularity is scaled from high to low. Fig. 4 shows how Hy-
perNEAT and P-NEAT perform as the number of concurrent types of regularity is 
decreased. It samples from the first four experiments. While it could have been the 
case that exploiting one type of regularity prevented the exploitation of others, Fig. 4  
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Fig. 4. Comparison of HyperNEAT to P-NEAT across experiments as regularity is decreased. 
a) All targets are constrained to be within the same column and row as their source on the 7x7 
Bit Mirroring problem (three types of concurrent regularity). b) Targets are only constrained to 
be in the same row on the 7x7 Bit Mirroring problem (two types of concurrent regularity) c) 
Targets are randomly chosen, leaving only the inherent regularity of the 7x7 Bit Mirroring 
problem (one type of regularity) d) Randomly chosen (no repeated) values on the Target 
Weights problem (no types of regularity). 

reveals that it is possible for HyperNEAT to simultaneously exploit multiple types of  
regularity. It also demonstrates that the performance of HyperNEAT degrades to, then 
falls below, that of P-NEAT as concurrent problem-regularity decreases. 

4   Discussion, Future Work and Conclusion 

The experiments in this paper, which cover four types of regularity from two different 
problems, paint a consistent picture despite some idiosyncrasies. In general, the Hy-
perNEAT generative encoding showed some difficulty in making exceptions to the 
rules it discovered. Its performance decreased as problem regularity decreased. Never-
theless, the generative encoding did provide a fitness boost over its direct encoding 
counterpart on regular problems. The generative encoding’s ability to simultaneously 
exploit concurrent types of regularities meant that the more types of regularity, the 
larger the boost. However, the generative encoding could only exploit a type of regu-
larity when the amount of regularity within that type was relatively high. This result is 
not obvious from theoretical considerations and, to the authors’ knowledge, has not 
been reported before. Future work is needed to see if the conclusions drawn from this 
generative encoding on these two problems apply to most generative encodings on 
many problems. It would also be interesting to test less extreme types of irregularity. 
Instead of non-constrained nodes being randomized, for example, they could be offset 
by a fixed amount. This would still test whether exceptions to the rule can be made, 
but would test a different, more regular, type of exception. Often the exceptions that 
need to be made to a rule do not involve radical departures from that rule, and genera-
tive encodings may do better at accommodating more subtle variations than those 
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tested here. Finally, while the direct encoding outperformed the generative encoding 
on irregular problems, as might be expected from the No Free Lunch theorem [12], it 
was not until the problem was relatively irregular that this transition occurred. P-
NEAT only excelled on very small versions of the Bit Mirroring problem and the 
Target weights problem, where concurrent regularities were few. In fact, it was chal-
lenging for the authors to come up with problems irregular enough to provide an ad-
vantage to the direct encoding. Even the 7x7 Bit Mirroring problem, which is simple 
compared to real-world problems, had multiple regularities that could be exploited. It 
is likely that on most difficult real-world problems, the existence of many types of 
regularities will provide an advantage to generative encodings. One interesting ques-
tion this paper raises, however, is whether the level of regularity within each type will 
be sufficient for a generative encoding to be able to exploit it.   
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Abstract. We provide strong evidence that sub-tree swapping crossover
when applied to tree-based representations will cause alleles (node labels)
to diffuse within length classes. For a-ary trees we provide further con-
firmation that all programs are equally likely to be sampled within any
length class when sub-tree swapping crossover is applied in the absence
of selection and mutation. Therefore, we propose that this form of search
is unbiased - within length classes - for a-ary trees. Unexpectedly, how-
ever, for mixed-arity trees this is not found and a more complicated form
of search is taking place where certain tree shapes, hence programs, are
more likely to be sampled than others within each class. We examine
the reasons for such shape bias in mixed arity representations and pro-
vide the practitioner with a thorough examination of sub-tree swapping
crossover bias. The results of this, when combined with crossover length
bias research, explain Genetic Programming’s lack of structural conver-
gence during later stages of an experimental run. Several operators are
discussed where a broader form of convergence may be detected in a
similar way to that found in Genetic Algorithm experimentation.

Keywords: Genetic Programming, Search, Crossover Bias, Allele Diffu-
sion, Convergence.

1 Introduction

An intrinsic feature of traditional Genetic Programming (GP) is its variable-size
tree-based representation [6,8]. Sub-tree swapping crossover has also, from the
inception of GP, been the predominant genetic operator [4,5]. It is essential,
therefore, for GP practitioners to understand the biases inherent in using this
form of representation and the primary variation operator applied to it.

Recent research has shown that sub-tree swapping crossover will sample ex-
ponentially more shorter programs for a-ary trees1 when applied to a flat fitness
landscape in the absence of mutation [7], i.e., when its bias is isolated. This was
extended by generalisation to mixed-arity trees in [2] and to true length-classes
1 Representations made up of internal nodes that have a single common arity, e.g., 2

for the case of Boolean induction problems which use the functions AND, OR, etc.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 368–377, 2008.
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(from internal node counts) in [3]. Strong empirical support has been found for
each generalisation.

One can divide the space of all possible programs into subsets. As we have
discussed, one way is to group programs by the number of nodes in the tree
representing them. We will call each such set a length class. A finer classifi-
cation would be to divide the programs by their tree shape. This is what we
will call a shape class. Each program shape is characterised by the number of
primitives/nodes of each arity it contains. This can provide a (non-unique) sig-
nature for the shape, which we will call an arity histogram. Of course, all shapes
with a particular arity histogram also have an identical number of nodes. So,
if we group programs by their arity histograms we obtain a sub-division of the
program space which is between the length class and the program shape in that
many shapes (but only one program size) can correspond to an arity histogram.2

An assumption (indirectly corroborated numerically) of the original hypothe-
sis in [7] was that all tree shapes within a particular length class for a-ary trees
would be equally likely, as all correlations present within the shapes would be
removed by the crossover operator. This implies a diffusive process where any
node is equally likely to be in any position within the tree shape. If this diffusion
process occurs we can assume that sub-tree swapping crossover is unbiased in
its exploration of the search space within each length class, i.e., it will explore
all programs with equal probability within each length.

The appropriateness of bias (or lack of) is problem dependent (see No Free
Lunch Theorems [11]). However, characterising the bias allows us to understand
why GP has been successful in solving certain problems or classes of problems.
Understanding such bias also allows us to explain how GP searches when areas
of neutrality are reached or when selection reduces fitness variance in the pop-
ulation during the later stages of a GP run. It also provides a starting point in
the analysis of the effects of combinations of GP operators.

Within Section 2 we briefly explain current findings for length bias. In Sec-
tion 3 we use a cartesian node reference system to identify all possible positions
within a tree. From this we provide evidence of a diffusion process showing that
all correlations between nodes are broken by repeated application of sub-tree
swapping crossover in the absence of selection and other reproduction operators.

We turn our attention to unique shapes within length classes in Section 4. As
predicted, shape classes are shown to have equal occurrence within each length
class for a-ary trees, although as predicted in [7] shapes within smaller lengths
are more widely sampled than those of larger lengths. Shapes within length classes
for mixed-arity trees, however, are not sampled equally. We find that only those
within each distinct arity histogram class are sampled in such a way. This extends
current research showing us that the repeated application of crossover distributes
trees according to their arity histogram. Earlier results for a-ary representations
are a special case of this more general result.

2 Naturally, the distinction between length-class and arity histogram disappears for a-
ary trees. Also, in both the single and the mixed-arity cases, the number of terminals
is always determined by the rest of the arity histogram.
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From our characterisation of crossover’s biases we are in a position to explain
the lack of structural convergence of GP solutions during experimentation [1,
page 278]. Structural convergence is an effect seen in other forms of evolutionary
search, notably, Genetic Algorithms (GAs) where it is often used as a stopping
criterion for runs. This is discussed in Section 5 along with potential broader
convergence detection measures, while in Section 6 we summarise our findings.

2 Length Distributions

In [7] we provided a mathematical model with strong experimental evidence
showing that the repeated application of standard sub-tree swapping crossover
with uniform selection of crossover points will push a population of a-ary trees
towards a limiting distribution of tree sizes called a Lagrange distribution of the
second kind. This distribution shows a strong tendency to sample programs of
small sizes, programs including only one terminal being sampled most often.3

This result was generalised in [2] to show that a similar distribution exists for
mixed arity trees. As an illustration, Figure 1 shows a theoretical distribution
with empirical verification for a population with a mix of internal nodes with
arities of 2, 2, and 3, i.e., for that of the Artificial Ant problem [4].

The predictive model used to produce the distribution in Figure 1 is

Prg{n} = (1− āpā)
Γ (ān + 2)

Γ ((ā− 1)n + 2)Γ (n + 1)
(1 − pā)(ā−1)n+1pn

ā (1)

where Prg{n} is the probability of selecting an individual with n internal nodes,
Γ () is the Gamma function, ā is the average of arities in the initial population
before crossover is applied, μ0 is the initial mean tree size within that population,
and pā is used to simplify the formula and is defined as follows

pā =
2μ0 + (ā− 1)−

√
((1− ā)− 2μ0)2 + 4(1− μ2

0)
2ā(1 + μ0)

(2)

For ā > 1 the function in Equation (1) is decreasing. It was shown in [2] that
increasing the initial mean program size reduces its slope, hence, reducing the
bias to sample smaller programs.

Finally, the distribution was generalised once more in [3] to provide predictions
based on exact lengths rather than internal nodes. While for a-ary trees there
is a one-to-one mapping between length and internal nodes, for mixed arity
trees there are occasional, if minor, discrepancies at shorter lengths and the
generalisation is approximate. Nonetheless, the match between the model and
experimental results is very good, any discrepancies disappearing as program size
increases. The reasons for the minor deviations at shorter lengths are explained
in the following sections.

3 The 90/10 node-selection policy commonly used in GP to counter this effect was
also shown in [2] to have little effect on the sampling of all but the smallest classes.
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Fig. 1. Comparison between empirical and predicted internal node distributions, in
the absence of selection and mutation, for trees made up of a mix of 2, 2, and 3
arity functions (ā=7/3) initialised with FULL method (depth = 3, initial mean size
μ0 = 21.48, mean size after 500 generations μ500 = 23.51). Population Size 100,000
individuals, empirical results averaged over 20 runs.

3 Allele Diffusion

Our first task is to test the assumption that crossover will remove any correlations
between nodes ensuring that all node labels are equally likely to be found at any
position within trees created purely from the application of crossover.

Earlier work provided theoretical and empirical evidence to support this claim
for linear GP [10], where only internal nodes of arity 1 were used. This, of course,
is a specific case of the a-ary assertion in [7].

We have chosen to implement the technique used in [10] where a node marker
or ‘dye’ is applied at specific positions within trees during initialisation. The
amount of dye is then recorded for each node position in subsequent generations.

With linear GP it is possible to compare directly node positions within length
classes. This is not true, however, for a-ary trees or those with mixed arities. We
have chosen, therefore, to implement a cartesian node reference system to assign
unique node positions for all possible trees based upon the maximum arity that
may be used. The exact method is described in [9]. However, it can simply be
described as producing a template based on a maximal tree, i.e., one where only
the largest arity is used without terminals up until a maximum depth. Each
node is assigned a unique integer number in the order of left-to-right breadth-
first traversal, 1 being the position of the root node.

For each set of experiments a population of 100,000 individuals was used.
Dye was placed either at reference 1 (the root node) or at reference 5. These
positions have been chosen carefully to ensure dye was applied once to every
tree during initialisation for all of our arity mixes, hence, simplifying theoretical
calculations. For all experimentation a flat fitness landscape was used and sub-
tree swapping crossover with uniform selection of crossover points was applied
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Fig. 2. Plots of the relative proportion of non-terminal dye alleles vs node references
for: (a) 2-ary programs of length 11, initial dye reference 1, (b) 3-ary programs of
length 13, initial dye reference 5, (c) mixed arity 1, 2, 3, 4 & 5 programs of length
11, initial dye reference 1, (d) mixed arity 2, 2 & 3 programs of length 13, inital dye
reference 5. Note, selected tree lengths are smaller than the smallest trees created by
the initialisation method hence data are not recorded for generation 0.

with no mutation or reproduction. All programs were initialised using the FULL
method with a depth of 3 (depth 0 being the root node) and all results have
been averaged over 20 independent runs.

In Figure 2a we can see that for the proportion of internal nodes with dye,
for 2-ary trees of length 11, we move rapidly to our expected value at each of
the first fifteen possible node references.4

For 2-ary trees initialised with the FULL method with depth 3, each tree will
have only one dye node for each of the possible seven internal nodes, hence,

4 Note, it is possible for internal nodes to reach a position of 31 using our reference
system for 2-ary trees of length 11. A limit of 15 was chosen for consistency across
experimentation.
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Fig. 3. Plots of the mean relative frequency of co-occurrence of pairs of non-terminal
alleles vs. generation for 2-ary (a) and mixed arity 1, 2, 3 , 4 & 5 (b) programs of length
11. Population initialised as Figure 2.

after diffusion has taken place we expect all positions to have a dye proportion
of 1/7 for internal nodes. Consistently similar results, i.e., convergence to pre-
determined predicted proportions are seen in additional experiments for 3-ary
trees, and mixed arity trees of 1, 2, 3, 4 & 5 and 2, 2 & 3 arity nodes.5 These
are shown in Figures 2b-d respectively.

We next turn our attention to co-occurrence of pairs of non-terminals, i.e.,
whether we can consistently see any correlation between dye positions. In or-
der to do this for each generation a 15 by 15 matrix is produced. Each row
and column records the first 15 positions within the node reference system.
For the first row we determine if the first node is dye or background then for
each column we then determine whether this matches for any of the other po-
sitions and record the match, or lack of, in the corresponding position in our
matrix, i.e., row determined by node under investigation, column for nodes
to be matched. Diagonals in the matrix are ignored as we will always ob-
tain a match. In Figure 3a we can see that for 2-ary trees initialised with
dye at the root position we quickly move to values predicted by a diffusive
process. Dye sits on the diagonal for the initial generation and hence is not
recorded but then we apply crossover and after approximately 20 generations
we have reached our theoretical proportions: (1/7)2 ≈ 0.020408 for dye match-
ing, (6/7)2 ≈ 0.73469 for background matching, and 2(1/7)(6/7) ≈ 0.24490
for no match. The same is true for our mixed arity trees. For example in
Figure 3b our population of 100,000 individuals was initialised with an average
of 1,297,856.85 internal nodes, 100,000 of which where marked with dye, our the-
oretical value for dye co-occurrence is (100, 000/1, 297, 856.85)2 ≈ (0.07705)2 ≈
0.00594. Background matching is, therefore, (1 − 0.07705)2 ≈ (0.92295)2 ≈
0.85184 and finally our no match value will be 2(0.07705)(0.92295) ≈ 0.14223.

5 All experimentation shown was subjected to a χ2
10% test which showed support for

the assertion that the first 15 positions, at generation 100, would each contain a
number of nodes determined by initial population proportions.



374 S. Dignum and R. Poli

Each of these values is also obtained within 10 to 20 generations. Similar results
were also found for our 3-ary and 2, 2 & 3 mixed arity experiments.6 See [10]
for similar results for linear GP, i.e., 1-ary trees.

4 Shape Bias

There is one final aspect of sub-tree swapping crossover that we can analyse
before we complete our picture: how we sample shapes within length classes. The
length distribution described in [7] is derived from an expectation that all shapes
will be sampled uniformly within length classes for a-ary trees. In Figure 4, we
can indeed provide experimental evidence for 2-ary trees for our length classes
chosen. However, looking at mixed arities we can see that there is a distinct
bias to sample certain shape classes within each length. It was found, however,
(see Table 1 as an example) that shapes with same arity histogram would be
sampled uniformly. This shape bias for mixed arities is easily explained if we look
at the dynamics of the proportion of primitives of each arity in the population.
On average this form of crossover will replace as much as it removes; this also
holds true for node arities. To illustrate, see Figure 5 as an example of how the
proportion of primitives of each arity stays constant in a population when sub-
tree swapping crossover only is applied for our mixed arity experiments described
earlier. There is, therefore, no bias to remove or resample certain higher or lower
arities. So, not only does average size remain constant under repeated application
of crossover, but also the proportions of each arity will remain constant within
the population. Therefore, any (note, highly sampled) smaller shapes without
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Fig. 4. Scatter plots of shape counts for 2-ary (a) and mixed arity 1, 2, 3, 4 & 5 (b)
programs, first 9 possible lengths at generation 500. Population initialised as Figure 2.
Note, there are far more possible shapes for larger length classes. Also, these classes
are sampled far less often than those of smaller lengths.

6 For all experiments tree lengths up to a maximum of 40 nodes were analysed, each
showed similar results.
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Table 1. Averaged counts at generation 500 for all program shapes for 2, 2 & 3 arity
programs of length 7. Population initialised as in Figure 2.

S-Expression Count

( 2 0 ( 2 0 ( 2 0 0 ) ) ) 407.10
( 2 0 ( 2 ( 2 0 0 ) 0 ) ) 407.95
( 2 ( 2 0 0 ) ( 2 0 0 ) ) 401.05
( 2 ( 2 0 ( 2 0 0 ) 0 ) ) 404.25
( 2 ( 2 ( 2 0 0 ) 0 ) 0 ) 410.40

( 3 0 0 ( 3 0 0 0 ) ) 258.75
( 3 0 ( 3 0 0 0 ) 0 ) 258.05
( 3 ( 3 0 0 0 ) 0 0 ) 258.75
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Fig. 5. Plots of the proportions of arities for each generation. (a) shows the first 500
generations for a population initialised with 2, 2 & 3 arities. (b) shows the first 100
generations of a population initialised with 1, 2, 3, 4 & 5 arities, note the highly reduced
scale in this example. Due to the reduced scaling terminals are not shown in (b) but
follow a consistent proportion as shown in (a) in this case centering tightly around a
proportion of 0.675. Populations initialised as in Figure 2.

an equal proportion of arities, or those that can be produced using only a single
arity, will reduce those node arities available for larger classes. Further work is
required to produce a model to exactly predict such proportions. However, we
do know that the generalised model for mixed arities (Equation 1) has been
corroborated by extensive empirical work, so such a model must explain why
such a generalisation has been successful.

5 Convergence

First suggested in [10], we can now provide strong evidence that GP’s inability
to structurally converge is caused primarily through crossover’s bias to first
distribute a population in terms of length and arity histogram and then to diffuse
node labels within those classes. As fitness converges during the later stages of a
run, crossover sampling will become predominant. Hence, the processes described
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in this paper will prevent any structural convergence taking place. No matter
how strong the selection scheme, e.g. even if the mating pool was populated solely
by copies of a single individual (say by using a tournament size equal to that
of the population), the resulting child population created by sub-tree swapping
crossover would first contain individuals of differing lengths and secondly node
labels would be dispersed within those individuals.7 This would not be true in
a GA system using n-point crossover acting on traditional fixed length vector
representations as there is no opportunity to alter individual lengths or to move
node labels to different locations.

Although GP using sub-tree swapping crossover will prevent convergence to a
single syntactic structure, it will start to search within ever tighter bounds and
begin to resample heavily smaller classes (see [3] for details). With this in mind
we can suggest possible run stopping criteria based solely on convergence as
found in GAs. A very simple method would be to determine the undue influence
of crossover by detecting a greater ratio of smaller programs. An inexpensive
resampling measure based on simple program hashes could also be used, possibly
causing run termination when a program has been resampled a pre-specified
number of times. Additional more sophisticated methods may look at the length
distribution as a whole, i.e., a convergence to the theoretical distribution or in
conjunction with fitness measures such as a corresponding reduction in fitness
variance.

6 Conclusions and Future Work

This paper has analysed the biases presented by GP sub-tree swapping crossover.
We have provided strong evidence that there is a diffusive process that takes place
within length classes when sub-tree swapping crossover is repeatedly applied to
a flat fitness landscape in the absence of selection. All node labels (alleles) are
equally likely to be found within any possible node position for each length class.

We now know that program shapes will be uniformly sampled within arity
histogram classes. a-ary trees are a special case in that there is only one arity
histogram per length class. Hence, programs will be sampled uniformly within
each length. This, however, is not true for mixed arities and a more sophisticated
process is taking place. The reasons for this lie within the constant population
proportions of each arity during each generation and the highly sampled smaller
programs with unequal arity proportions.

In the future we hope to be able to develop a mathematical model similar
to that described in [7] to provide the probability of an individual containing a
certain proportion of internal node arities. This model will need to explain the
theoretical and empirical results found within this paper and those presented
in [7,2,3].

Although we now know that GP using sub-tree swapping crossover is highly
unlikely to converge in terms of individual program structure, we do have an un-
derstanding of a broader, population based, form of structural convergence. This
7 Barring the unlikely situation where the same crossover points are chosen in all cases.
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allows us to propose a set of convergence measures that may be used for stop-
ping conditions similar to those found in GA experimentation. Further research
is required to establish the effectiveness of such measures.
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Abstract. We undertake a rigorous experimental analysis of the opti-
mization behavior of the two most studied single ant ACO systems on
several pseudo-boolean functions. By tracking the behavior of the under-
lying random processes rather than just regarding the resulting optimiza-
tion time, we gain additional insight into these systems. A main finding
is that in those cases where the single ant ACO system performs well, it
basically simulates the much simpler (1+1) evolutionary algorithm.

1 Introduction

In 1991, Dorigo, Maniezzo and Colorni [4] introduced the concept of Ant Colony
Optimization (ACO). Since then ACO algorithms have been applied successfully
to many kinds of combinatorial problems, e.g., the famous Travelling Salesman
Problem. See the book by Dorigo and Stützle [5] and the references therein.

In the last few years, theoretical research has been started to gain an un-
derstanding of why these methods are so successful. Since the probability space
describing a run of a typical ACO system is extremely complicated, theoretical
works concentrated on the runtime behavior of two ACO systems involving a
single ant only, namely 1–Ant and the Max–Min Ant System (MMAS).

The algorithm 1–Ant was proposed by Neumann and Witt [11]. It is an adap-
tion of the more general Graph–Based Ant System introduced by Gutjahr [7]
to allow optimizing (non-graph based) pseudo-boolean functions. Gutjahr and
Sebastiani [8] gave the first rigorous runtime analysis of the MMAS and showed
that on certain needle-in-a-haystack functions their ACO system beats the clas-
sical (1+1) evolutionary algorithm ((1+1) EA) (for both algorithms a version
was used that does not accept new solutions of equal fitness). Neumann and
Witt [11] conducted the runtime analysis of 1–Ant on the pseudo-boolean func-
tion OneMax (counting the number of ones in an n-bit string). While obviously
a highly simplified problem, the analysis was far from simple. The main outcome
of the analysis is that the optimization time depends crucially on the major pa-
rameter, the so-called evaporation factor ρ. Here, crucially means that there is a
relatively sharp distinction between quite efficient optimization and exponential
run-time behavior. Additionally, it was observed that for ρ very close to one,
1–Ant exactly simulates the (1+1) EA, which was rigorously analyzed in [6]. In
[2] the pheromone model used in [11] was replaced by a simpler, but equivalent

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 378–388, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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model, in which the pheromone values equal the probabilities of ants walking
along a particular edge in the construction graph. In [3] an analysis of 1–Ant
was carried out for the functions LeadingOnes and BinaryValue. As in the
OneMax case, a phase transition from exponential to polynomial runtime with
a threshold evaporation value could be observed.

The algorithm MMAS by Stützle and Hoos [12] was studied by Gutjahr and
Sebastiani [8] and Neumann, Sudholt and Witt [9]. Roughly speaking, these
works show that several variants of the MMAS less critically depend on the
choice of the parameter ρ in the sense that there is no sharp phase transition
between polynomial and exponential runtime as observed with 1–Ant. More
recently, the benefits and shortcomings of hybridizations of the MMAS with
local search strategies have been investigated [10].

Some of the run-time analyses sketched above could be read as that single ant
ACO system are competitive approaches to optimize pseudo-boolean functions.
To further study this aspect, we conduct a rigorous experimental analysis of
these two single ant ACO systems on several pseudo-boolean fitness functions
(OneMax, LeadingOnes, and linear functions with random weights). To gain
an understanding how these algorithms work, we track a number of theory–
guided indicators (other than the resulting optimization time) during the runs
of 1–Ant [11] and the MMAS [12]. For both algorithms we use the pheromone
system described in [2] which is equivalent to the one used in [8], [11], and [3].

Our main finding is that whenever one of the two ACO systems for a certain
choice of ρ has an at least roughly reasonable run-time, then its optimization
behavior is very similar to that of the (1+1) EA. This shows that the pessimistic
assumptions repeatedly used in the proofs of the results mentioned above are
real, and in consequence, indicates that the upper bounds on the optimization
time proven there probably cannot be improved. Our analysis of the optimization
behavior fits well to the fact that we rarely observe that one of the two single
ant ACO systems finds the optimum significantly faster than the (1+1) EA [1].

2 Single Ant ACO and the (1+1) EA

Given a fitness function f : {0, 1}n → R on the bit-strings of length n, a single
ant ACO algorithm successively generates candidate solutions S(t) ∈ {0, 1}n

according to the pheromone values p(t) ∈ [0, 1]n. We understand this sampling
process as a random walk of a single ant on the directed construction graph
depicted in Figure 1. At each vertex vi−1 the ant chooses one of the two outgoing

ene2e1
v0 v1 v2 vn−1 vn

ene2e1

Fig. 1. Bit-strings are represented by ant walks on the simplified chain graph
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edges ei or ei with probability equal to the pheromone value p
(t)
i or 1 − p

(t)
i ,

respectively. If the ant chooses ei, we have S
(t)
i = 1 and S

(t)
i = 0 otherwise.

AntWalk(p)
1 for i ∈ {1, . . . , n} do choose Si ∈ {0, 1} with Pr(Si = 1) = pi

2 return S

Initially, all pheromone values are 1/2. Hence, the first ant performs a true
random walk. Later, updates to the pheromone values are triggered by certain
ant walks. In this case, a certain amount of pheromone evaporates from all edges
and then the pheromone values of the edges the ant traverses are reinforced. The
amount of both, evaporation and reinforcement, is governed by the algorithm’s
main parameter, the evaporation factor ρ ∈ [0, 1].

Update(p, S, ρ)
1 for i ∈ {1, . . . , n} do
2 if Si = 1 then p′

i := min{(1−ρ) · pi + ρ, 1− 1
n
} else p′

i := max{(1−ρ) · pi,
1
n
}

3 endfor
4 return p′

In this theoretical investigation, we run both algorithms for a number of tmax ∈
N generations and then return the best solution found so far. In practice, other
stopping criteria might be more appropriate.

1–Ant (f, tmax, ρ)
1 p(0) := (1/2, ..., 1/2)
2 Smax := AntWalk(p(0))
3 p(1) := Update(p(0), Smax, ρ)
4 for t from 1 to tmax do
5 S(t) := AntWalk(p(t))
6 if f(S(t)) ≥ f(Smax) then
7 Smax := S(t)

8 p(t+1) := Update(p(t), Smax, ρ)
9 endif

10 endfor
11 return Smax

MMAS (f, tmax, ρ)
1 p(0) := (1/2, ..., 1/2)
2 Smax := AntWalk(p(0))
3 p(1) := Update(p(0), Smax, ρ)
4 for t from 1 to tmax do
5 S(t) := AntWalk(p(t))
6 if f(S(t)) ≥ f(Smax) then
7 Smax := S(t)

8 endif
9 p(t+1) := Update(p(t), Smax, ρ)

10 endfor
11 return Smax

1–Ant and the MMAS both simulate one of two well–known randomized search
heuristics if the evaporation factor is zero or one. For ρ = 0, they simply per-
form random search, and for ρ = 1, they precisely simulate the (1+1) EA with
mutation probability 1/n.

3 The Experimental Setup

The classical mean to measure the performance of a randomized search heuristic
is the optimization time T , which is the number of fitness evaluations needed to
find the optimal solution. For efficiency reasons, we introduce an artificial upper
bound of tmax = 1000000, i. e., T = min{t ∈ N | f(S(t)) is optimal or t = tmax}.
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To analyze the optimization behavior, we monitor a number of theory–guided
indicators measuring the algorithm’s progress at every single step t ∈ N of the
run. In particular, we investigate the fitness of the current solution f(S(t)), its
expectation μ(t) := E[f(S(t))] and variance ν(t) := Var[f(S(t))], the fitness of the
best solutions so far f

(t)
max := maxr≤t f(S(r)), the number of pheromone values

mm := |{i | p
(t)
i ∈ {1/n, 1 − 1/n}}| attaining one of the boundary values 1/n

and 1 − 1/n, and the probability P (t) := Pr(f(S(t)) ≥ f
(t)
max) of accepting the

current solution.
We also investigate the average values P , ν, and mm of P (t), ν(t), and mm(t)

over the interval [0.25 T, 0.75 T ]. This interval was chosen to eliminate possible
side-effects at the beginning and the end of a run.

We study the progress behavior of the two ant optimization algorithms 1–Ant
and the MMAS on different pseudo-boolean fitness functions f : {0, 1}n → R. We
regard random linear functions f(S) =

∑n
i=1 wiSi, where the weights w1, . . . , wn

are chosen independently and uniformly at random in (0, 1], and then nor-
malized to add up to n. Clearly, the normalization does not change the be-
havior of any of the algorithms, but eases comparing the results for different
functions. Furthermore, we regard the two classical pseudo-boolean test func-
tions OneMax(S) =

∑n
i=1 Si and LeadingOnes(S) =

∑n
k=1

∏k
i=1 Si. Clearly,

S∗ = (1, . . . , 1) is the unique maximum of all these functions having fitness
f(S∗) = n. In the experiments, we use a problem size of n = 1000 for OneMax

and random linear functions, and a problem size of n = 200 for LeadingOnes.
Also, note that for LeadingOnes, μ(t) and ν(t) as defined above are heavily

influenced by the fact that with probability around 1/e, one of the leading one–
bits (having pheromone value 1− 1/n) will be set to zero. Since such a solution
will not be accepted anyway, for LeadingOnes we modify the definitions of μ(t)

and ν(t) to be the expectation and variance conditional on that none of these
leading bits is zero.

We omit the details on how to actually compute the progress indicators for
these test functions. In all but one case, this can be done efficiently in linear time
or via dynamic programming in quadratic time. For arbitrary linear function,
however, P (t) cannot be computed efficiently. In consequence, we cannot provide
P (t) and P for random linear functions.

We perform case studies to analyze the time–dependent indicators f(S(t)),
f

(t)
max, μ(t), ν(t), P (t), and mm(t). That is, for all algorithms and test functions,

we conduct twenty runs each for at least twenty different ρ-values, graphically
depict the indicators and single out typical runs for representative values of ρ. In
all cases, we see that the indicators for random linear functions and OneMax

behave highly similar. For this reason, in the following two sections we present
and discuss plots for OneMax only, since here we also have the indicator P (t).

To measure the average indicators ν, P , and mm, we performed 20 runs
for both algorithms on all fitness functions and several values of ρ. We then
average the average indicators over all runs. Since the success of 1–Ant depends
sharply on ρ, we happen to never average over successful and unsuccessful runs
simultaneously. For unsuccessful runs we also record the final values of fmax and



382 B. Doerr, D. Johannsen, and C.H. Tang

P . For reasons of space, we can only present a tiny fraction of the data collected.
Much additional material can be accessed in [1].

4 Experimental Results for 1–Ant

In this section, we present our experimental work concerning the single ant ACO
system 1–Ant. In [11] it was shown that the expected optimization time of 1–Ant
on OneMax is polynomial if ρ = 1 − 1/nε with fixed ε > 0 and in [2] that for
ρ = o(1/ log n) it becomes super–polynomial. On the function LeadingOnes

the expected optimization time was shown [3] to be quadratic for constant ρ,
polynomial for ρ = Ω(1/ log n), and again super-polynomial for ρ = o(1/ log n).
Note that ρ = 2nρ̃/(1− ρ̃ + 2nρ̃) for the evaporation factor ρ̃ in [8], [11] and [3].

Since we argue that for efficient runs of 1–Ant the optimization behavior
strongly resembles that of the (1+1) EA, let us first present a typical run for the
(1+1) EA. Note that 1–Ant for ρ = 1 exactly simulates the (1+1) EA, so we can
reuse our test environment here. Figure 2 shows such a typical run as a chart of
the indicators f

(t)
max, μ(t), ν(t), P (t), and mm(t). As it is easy to see, the (1+1) EA

improves the fitness relatively fast. This is natural, since the probability P (t) of
finding an acceptable solution remains very large during the whole run. For the
same reason, f

(t)
max and μ(t) are that close together.

We now analyze one representative run of 1–Ant on OneMax for each of the
values ρ = 0.4, 0.2, 0.1, and 0.05, which give a good overview of the different
behaviors of 1–Ant. The plots are depicted in Figure 3.

For ρ = 0.4, we easily identify a behavior highly similar to that of the
(1+1) EA. In a very short initial phase of approximately 130 iterations, almost
all pheromone values are pushed to their extreme values and the variance drops
from its initial value of n/4 to a value close to one. Note that fmax remains
close to n/2 in this initial phase. In consequence, this means that half of the
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Fig. 2. A typical run of the (1+1) EA on OneMax. Since ν(t) = 1−1/n and mm(t) = n
for all t, these curves coincide with the lower and upper boundaries of the chart. Also,
f

(t)
max and μ(t) are too close to each other to be distinguished. In the chart we rescale

p(t) from [0, 1] to [0, 1000].
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pheromone values attain the maximum value and half the minimum. By sym-
metry, they are randomly chosen as is the initial solution in the (1+1) EA. From
this point on, the optimization behavior of the 1–Ant closely resembles the one
of the (1+1) EA. This is easily seen from the curves and the average values P ,
mm and ν. In the chart it seems that P (t) oscillates heavily, but as the average
P indicates, these downward dents are only short-term occurrences. They stem
mainly from the fact that after an improvement in the fitness, the pheromone
values affected take a few iterations until they hit the extreme values again.

The chart for ρ = 0.2 still shows many signs of an (1+1) EA-like behavior.
However, we also see first short phases of stagnation. At t = 467, a solution
of value 663 is found (+11 to the previous best). Due to the slower pheromone
update with ρ = 0.2, this increases the expected value of the next solution only
from 642 to 646, and spoils the probability of finding an acceptable solution
down to a mere 0.4%. In consequence, it takes the 1–Ant a long 450 iterations
to find an as good solution again (at time t = 917).

For ρ = 0.1, the phenomenon just described becomes much more dominant.
We now have several long phases in which no solution is accepted. Finally, for
ρ = 0.05 this pattern is so strong that no solution is found within one million
iterations. With P around 2 ·10−5, it is very hard to find an acceptable solution.
Recall that P (t) = 2 · 10−5 means that an expected number of 50.000 iterations
are necessary to generate a solution that is accepted.
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Fig. 3. Four typical runs of 1–Ant on OneMax for ρ = 0.4 (top left), 0.2 (top right),
0.1 (bottom left), and 0.05 (bottom right).
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What we just extracted from the charts in Figure 3 is also visible from
Table 2. For both, random linear functions and OneMax, we observe the ex-
pected behavior. For ρ ≥ 0.2, we have a (1+1) EA-like optimization behavior. All
but very few pheromone values are at their extreme values. Those who are not,
still are very close to the extreme values, as can be deduced from the variance.
For ρ ≤ 0.1, finding acceptable solutions becomes increasingly hard. P values
of 10−3 or less indicate that fewer than every thousandth solution generated is
actually accepted. From ρ ≤ 0.06 on (ρ ≤ 0.08 for linear functions), as few solu-
tions are accepted that (a) one million runs never sufficed to find the optimum,
(b) the variance is close to the maximum value of 250 (approx. 330 for random
linear functions), indicating that most pheromone values are close to their initial
values. To add a number, averaging over 20 runs with ρ = 0.05 we found that
less than 49 (of the one million generated) solutions are accepted.

We see very similar results if we use LeadingOnes as fitness function. For
reasons of space, we only present the data in table form (Table 1). Again, we
see that for ρ ≥ 0.2, most pheromone values are at their extreme values and
the optimization time is not much different from the case ρ = 1, which again is
the (1+1) EA. The phase transition happens for slightly smaller ρ values. Up to
ρ = 0.08, we see still reasonable optimization times. From then on, however, the
optimization time increases again drastically and P falls to ridiculously small

Table 1. Indicators for the behavior of 1–Ant optimizing LeadingOnes for different
values of ρ. For ρ = 1.0, 0.5, and 0.1 all runs find the optimum in at most 106 steps,
for ρ = 0.01, 0.005, and 0.001 none. We omit ρ = 0.05 to avoid the bias caused by T
not reaching 106 in all of the runs.

OneMax linear functions

ρ T mm P ν f(tmax)
max P (tmax) T mm ν f(tmax)

max

1.0 18246 1000 0.38 0.999 17773 1000 1.332

0.5 10953 998.8 0.36 1.104 16756 999.6 1.350

0.1 146895 352.4 1.82 · 10−3 66.038 579284 414.6 52.153

0.05 1000000 0 1.82 · 10−5 213.223 691 7.68 · 10−6 1000000 0 298.104 673

0.01 1000000 0 3.96 · 10−6 248.732 582 1.95 · 10−6 1000000 0 332.857 595

Table 2. Results for 1–Ant optimizing the fitness functions OneMax and random
linear functions. All numbers are the averages over 20 runs. For ρ = 0.05 and ρ = 0.01,
where no run is successful, we also list the average optimum and acceptance probability
at tmax = 1000000.

ρ T mm P ν f(T )
max P (T )

1.0 34768 200 0.55 0.03

0.5 33964 197 0.54 0.06

0.1 35175 177 0.47 0.60

0.01 1000000 0 4.47 · 10−6 3.33 23 1.90 · 10−6

0.005 1000000 0 3.52 · 10−6 2.49 22 1.64 · 10−6

0.001 1000000 0 3.20 · 10−6 2.09 21 1.09 · 10−6
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Fig. 4. Four typical runs of the MMAS on OneMax for ρ = 0.4 (top left), 0.25 (top
right), 0.1 (bottom left), and 0.01 (bottom right)

Table 3. Indicators for the behavior of MMAS optimizing OneMax and random linear
functions (n = 1000), as well as LeadingOnes (n = 200) for different ρ values

OneMax linear functions LeadingOnes

ρ T mm P ν T mm ν ρ T mm P ν

1.0 16151 1000 0.38 0.999 18399 1000 1.336 1.0 34749 200 0.54 0.03

0.5 13325 999.7 0.38 1.021 17175 999.9 1.324 0.5 33481 198 0.56 0.05

0.1 11972 997.1 0.33 1.184 17454 998.9 1.356 0.1 32759 188 0.54 0.11

0.05 14054 994.2 0.28 1.344 19447 997.1 1.428 0.05 32714 181 0.52 0.23

0.01 22504 980.0 0.12 2.159 30966 987.9 1.813 0.01 32003 159 0.41 1.28

0.005 30398 971.2 0.07 2.667 44426 983.6 1.957 0.005 35719 152 0.34 2.31

0.001 75076 952.5 0.02 3.757 107027 970.2 2.509 0.001 66000 138 0.15 12.07

values. For ρ ≤ 0.045, no run is successful, and final P (t) values in the 10−5 to
10−6 range show that some 100.000 iterations are necessary to find an acceptable
solution (which not necessarily leads to an increased fitness).
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5 Experimental Results for the MMAS

We now analyze the optimization behavior observed for the MMAS. In [8] and [9],
O(ρ−1n log(n)) and O(n2 +ρ−1n log n) expected optimization times were proven
for a variant MMAS on OneMax and LeadingOnes. This indicates that for
the MMAS the optimization time does not display such a delicate dependence on
ρ as previously seen for 1–Ant. Our experimental results verify this observation,
but again show that the MMAS strongly imitates the optimization behavior of
the (1+1) EA, in particular for the more efficient runs with larger ρ.

Our experimental results on the optimization behavior of the MMAS for linear
functions is summarized in Figure 4 and Table 3. For random linear functions
and OneMax, all runs, even those for relatively small ρ values like 0.005, show
an optimization behavior strongly resembling that of the (1+1) EA. The average
number mm of pheromone values having one of the two extremal values is above
970. In other words, in average at least 97% of the bits of the newly generated
solution are determined in the same way as by the (1+1) EA. The remaining
pheromone values are also close to their extreme values, as witnessed by an
average variance ν of less than 3. Not surprisingly, the optimization times are
similar to the (1+1) EA-case with a considerable slow-down for small ρ values.

In Figure 4, we depict four typical runs for OneMax. We immediately notice
that the four graphs are much more similar than those for 1–Ant in Figure 3,
even though a wider range of ρ–values is covered.

For ρ = 0.4, 0.25 and 0.1 we observe an extremely short initial phase during
which the pheromone values rush towards their extreme values. After 14, 37, and
114 steps, respectively, 95% of the pheromone values are 1/n or 1 − 1/n. After
this initial phase, in which f

(t)
max does not exceed 527 (559, 562, respectively),

all indicators are similar to what we see for the (1+1) EA. This is obvious for
mm(t), which is close to n = 1000 all the time, and ν, which is too small to be
distinguished from the t–axis. P (t) differs from the (1+1) EA setting for several
short periods of time. Whenever a newly generated solution different from the
previous best is accepted, it takes a while for the pheromone values to move
towards the extreme values. This results in the short downward dents visible in
the plots. During these times, P (t) is smaller than in the (1+1) EA setting, but
these dents end quickly and the MMAS returns to the (1+1) EA-like behavior.

The chart for ρ = 0.01 differs from the other three in the respect that only
after t = 2141 iterations 95% of the pheromone values reach the extreme values.
Also, P (t) stays below 1/e most of the time. Still, the value of mm ≈ 982
combined with a variance of ν ≈ 2 indicate that during the central part of the
run most pheromone values are either at their extreme values or at least very
close to them.

Further experiments for smaller values of ρ show that the effects observed for
ρ = 0.01 amplify. The variance ν stays almost constant (ν ≈ 3.8 for ρ = 0.001)
indicating that most values of p(t) are close to the extreme values. The behavior
of the MMAS remains highly (1+1) EA–like, only the performance drops due
to the additional time needed for the pheromone values to reach the extreme
values again after an update.
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For reasons of space, we are not able to discuss typical runs for the test
function LeadingOnes. However, the data displayed in Table 3 suffices to see
that the optimization behavior of the MMAS for LeadingOnes is very similar
to that of the (1+1) EA, both in terms of run-times and, more declaratively,
in that we have many pheromone values at or close to the extreme values of
1/n and 1 − 1/n, as witnessed by mm and ν. This fact was already observed
in [9] and used to prove a lower bound on the optimization time of the MMAS.
Finally, also for non-leading bits there is a strong drift of the pheromone values
towards 1/n an 1− 1/n. This observation strengthens the resemblance between
the MMAS and the (1+1) EA even more.

6 Conclusion

We analyzed the two existing single ant ACO approaches for three types of
fitness functions. Previous research shows that, at least for certain choices of the
evaporation factor ρ, both can optimize the functions OneMax and Leading-

Ones with optimization times of similar order of magnitude as the (1+1) EA.
By not only regarding the resulting optimization times, but by also monitor-

ing well-chosen theory-guided indicators during the runs of the ACO systems, we
showed that whenever the optimization time was reasonable, indeed the whole
optimization behavior strongly resembles that of the (1+1) EA. Our experi-
mental investigation also complements existing rigorous mathematical analyses
in that it produces actual numbers and not only orders of magnitude. Our ex-
periments indicate that, if existent, the advantage of single ant ACO systems
over classical and technically much simpler approaches has to be shown on more
advanced or non-pseudo-boolean optimization problems.

References

1. http://www.mpi-inf.mpg.de/publications/index.html

2. Doerr, B., Johannsen, D.: Refined runtime analysis of a basic ant colony optimiza-
tion algorithm. In: Proc. of the CEC 2007, pp. 501–507. IEEE Press, Los Alamitos
(2007)

3. Doerr, B., Neumann, F., Sudholt, D., Witt, C.: On the runtime analysis of the
1-ANT ACO algorithm. In: Proc. of GECCO 2007, pp. 33–40. ACM, New York
(2007)

4. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: An autocatalytic optimizing
process. Technical Report 91-016 Revised, Politecnico di Milano (1991)
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Abstract. Swarm systems for multiagent control rely on natural models of be-
havior. Such models both predict simulated natural behavior and provide con-
trol instructions to the underlying agents. These two roles can differ when, for
example, controlling nonholonomic robots incapable of executing some control
suggestions from the system. We consider a simple physicomimetics system and
examine the effects of actuation constraint on that system in terms of its abil-
ity to stabilize in regular formations, as well as the impact of such constraints
on learning control parameters. We find that in the cases we considered, physi-
comimetics is surprisingly robust to certain types of actuation constraint.

1 Introduction

Swarm intelligence [1] is a popular and successful group of methods for controlling co-
ordinated multiagent teams. Of such approaches, those based on variations of artificial
physics models, physicomimetics [2], have particular appeal. The resulting behaviors
are quite intuitive; it is easily generalized to allow for modular, heterogeneous and scal-
able team behaviors [3]; and traditional analytical tools from physics can be used to help
diagnose and predict team behaviors[2]. Physicomimetics is particularly well-suited for
tasks that require stable geometric formations such as lattices or rings, and under the
proper circumstances one can show that teams will settle into “low-energy” positions
provided by such structures.

It is clear that control methods based on artificial physics models are performing
two essentially different tasks: 1) predicting motion of particles within a particle-based
physics model (particle model), and 2) producing control input to move agents in some
real or simulated world (environment). When agents are treated as simple point-mass
particles with no additional constraint on their motion, these roles do not conflict. How-
ever, for realistic control systems operating in the environment (e.g., nonholonomic
robotic platforms), a conflict between these roles occurs when the agents being manip-
ulated cannot move as requested. Analyses regarding the stabilization of regular for-
mations, for instance, rely on a temporal element — the dynamics of the particle model
itself. When there is a disconnect between model prediction and control, such analyses
are questionable since the dynamic will almost certainly differ, potentially quite radi-
cally. Additionally, though parameters for physicomimetics control systems are often
hand-coded, complex problems require some kind of learning, and it isn’t clear how the
disconnect between prediction and control affects the learning gradient.
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Still, physicomimetics has been successfully applied to a wide range of control prob-
lems including mobile robot formation [2], multi-robot chemical plume tracing [4], and
heterogeneous, multiagent in-port ship protection [3]. Moreover, in many cases con-
trol systems have been demonstrated both in simulation and on physical devices, where
actuation constraint varies widely.

We show artificial physics based control systems are affected by actuation con-
straints on the agents; however, physicomimetics is surprisingly robust to such pre-
diction / control disparities. We construct a common nonholonomic control system that
constrains agent motion in a number of ways and parameterizes the maximum allowable
turning speed and examine the effect of this parameter on lattice formation. Considering
a more complex covert tracking problem that requires learning, we discover that added
constraints affect properties of the system and influence the learning gradient. Only in
extreme cases are the behaviors qualitatively different.

The next section will discuss the control system we are using in detail. Section three
will discuss the effects of constraints on simple hexagonal lattice formation, while sec-
tion four will detail our efforts to learn physicomimetics based control solutions for a
covert tracking problem. We finish up with a short discussion of related work, as well
as our conclusions and future plans with this research.

2 Representing Agent Behaviors with Artificial Physics

2.1 Physicomimetics

Physicomimetics provides a framework for the control of multiple agents [2]. Each
agent has its own physicomimetics model, which is updated at each time step from that
agent’s knowledge of its environment, including the observed positions and velocities
of all observed agents. Agents are treated as point-mass (m) particles. Each particle has
a position, x, and velocity, v. We use a discrete time simulation, with time step Δt.
At each time step, the particle is repositioned based on the velocity and the size of the
step, Δx = vΔt. The change in velocity of the particles is determined by the artificial
forces operating on the particles, Δv = FΔt/m, where F is the aggregate force on
the particle as a result of interactions with other particles and the environment. Each
particle also has a coefficient of friction, cf ∈ [0, 1]. Velocity in the next step becomes
(v + Δv)cf , stabilizing the system [2]. When this new velocity is computed in the
physicomimetics model, the agent tries to the best of its ability to match it in its own
environment. The values of these masses, frictions, and force laws are what govern the
motion in this system, and are either hand selected or learned in some fashion.

There are two constraints: the magnitude of the force cannot exceed Fmax and the
magnitude of the velocity cannot exceed Vmax. These restrict acceleration and velocity
of particles in the model. Also, since there is an emphasis on local interactions, there
are further restrictions on the range of effect particles have on each other.

Advantageously, a variety of force laws can be employed to different effect. The pa-
rameters of the above model, coupled with the force law parameters, provide engineers
with mechanisms to adjust the behaviors of agents. Finally, since physicomimetics is
based on physics, practical analyses are possible using traditional physics techniques
such as force balance equations, conservation of energy and potential energy [2].
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A slight variation of the well-known Newtonian force law will be used in this paper:

Fij =

⎧⎪⎪⎨⎪⎪⎩
−G

(mimj)
a

rd
ij

if rij ∈ [0, R)

G
(mimj)

a

rd
ij

if rij ∈ [R, E]

0 otherwise

(1)

The magnitude of the force is determined by choice of gravitational constant, G.
The force law repels particles closer than R and attracts particles past that distance
but within the range of effect, E. The gradient of the force can be controlled using
d, and a can raise or lower the importance of mass on the force. In total, there are two
parameters associated with each particle (m and cf ) and five parameters associated with
their interactions (G, E, R, a, and d). Distance variable rij is an observed phenomenon.

2.2 Constraining Agent Motion

Our goal was to simulate a parameterized differentially steered device. We used a num-
ber of parameterized constraints on agent movement. Physical constraints such as max-
imum velocity Vmax, maximum acceleration amax, and maximum turning speed θmax

are placed upon the agents, and the physicomimetics control system is allowed to sug-
gest velocities without regard for these limits. At each time step, the agent will update
its orientation, velocity, and position according to the following algorithm:

1. The orientation and velocity of the agent is rotated by Δθ towards the suggested
velocity, where Δθ = min (θmax, θδ). θδ is the difference in orientation between
the current agent orientation and the orientation of the suggested velocity.

2. The magnitude of the agent’s current velocity is set to |v| = |vprev| · cos(Δθ),
where |vprev| is the magnitude of the velocity at the previous time step.

3. The suggested velocity is projected along the updated orientation vector, and agent
velocity is updated to as close to the projected suggested velocity as amax permits.

4. The magnitude of the agent’s velocity is constrained by the maximum velocity,
|v| = min (|v| , |Vmax|).

5. Agent position is updated according to the new computed velocity, Δx = vΔt.

Dampening the speed of the agent proportionately to Δθ in step 2 has a stabilizing
effect on the agents, which we use here in place of friction. It is for this reason that
an agent with a turning speed constraint of π is different from a traditional agent. Of
the thresholds discussed, the turning speed constraint θmax was chosen as the inde-
pendant variable in order to observe to what degree increasing constraints impact the
performance of both the agent and learning algorithms operating on that agent.

3 Constraining Motion in Simple Lattice Formations

One of the simplest and most natural formations obtainable by agents controlled via
physicomimetics is an hexagonal lattice. Straightforward swarm design methods can
produce solutions capable of settling into a regular isometric grid quickly and effi-
ciently. With appropriate parameters, one does not even need friction for the system
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to find equilibrium in such stable configurations because the low potential energy wells
of the system correspond with these structures.

We refer to our control group as the “traditional model”, described in section 2.1,
where there is no inconsistency between the environment and the particle model. In this
case, a swarm designer can affect lattice width via the R (attraction-repulsion boundary)
parameter. The effect range, E, is typically set at 1.5R to be less than the

√
3R factor

that allows second-tier points in the lattice to be visible. Our parameters follow those of
[2]: R = 50, E = 75, G = 1200, a = 1, d = 2, save that we use 100 particles (Spears
used 200), and we do not use friction. This system will settle into a hexagonal lattice.

We investigate two properties of the system: settling time and lattice quality. Settling
time is the time it takes the system to find a quiescent state. Lattice quality is a measure
of how faithfully the distributed agents replicate an isometric formation.

3.1 Settling Time

Under the right conditions, a particle model will lose energy as it converges on
a stable formation. When agents cannot move as dictated by their surrogate parti-
cles, unstable dynamics might be introduced in the physicomimetics system since
the criteria of the proofs for stability in [2] are not all met. To test this, we
considered control systems with varying constraints on turning speed (θmax ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 3.14} radians), as well as the traditional (non-
constrained) model. We ran each model 30 times and analyzed the dynamics in terms
of the average scalar acceleration magnitude of all agents each step.

Using our nonholonomic control system above, we find that the system not only
settles into a formation in all cases, but the damping factor for sharper turning seems to
help the system settle faster. The left panel in Figure 1 below illustrates averages over
the thirty trials of the settling behavior in four of the above groups. We examined all of
the above groups, and the basic curve characteristic is similar in all cases, and standard
deviations (not shown) indicate very little variability in this settling behavior.

To investigate this behavior more carefully, we consider the settling time of the sys-
tem: the number of time steps taken for the average magnitude of acceleration to drop
below an empirically selected threshold, 0.01 distance units per step squared. The right
side of Figure 1 shows these results for all experimental groups. Pair-wise t-tests using
Bonferoni adjustment indicates no statistical differences between any of the constrained
groups, but all constrained groups have a significantly lower settling time than the tra-
ditional model (95% confidence).

While constraining the motion of the agents undoubtedly affects the rate at which
they settle into a stable formation, our nonholonomic constraints do not prevent this
ability in general. Indeed, our differentially steered agents settle faster than the tradi-
tional approach because of the damping influence on sharp angle motions.

3.2 Lattice Quality

Arriving at a stable configuration quickly does not necessarily imply that the same
configuration is reached. Again, swarm design on the traditional system to produce
hexagonal lattices is predicated on a basic understanding of traditional physics. This
understanding is of questionable value when particles cannot move freely.
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Fig. 1. Left graph: four systems settling into a formation. Each curve is the average scalar accel-
eration magnitude of the system across thirty different simulations. Right graph: the settling time
for each of the groups. Points and wings represent means and 95% confidence intervals.

To investigate this, we again run the above experimental groups (θmax ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 3.14} and traditional case) for thirty trials
apiece and measure the average lattice quality for fifty steps after the system has settled
(acceleration magnitude has dropped below 0.01). Peaks in the acceleration graph rep-
resent the moment when agents are slipping into their minimal energy configurations.
Peak position is likely a function of the number of agents.

We found the lattice quality measure used in [2] too sensitive to the value of R for our
purposes. Instead, we compute the Delaunay triangularization [5] of the particles, then
measure the coefficient of variation in edge lengths in this graph. To reduce boundary
effects, we use only edges with points in the inner 85% of total area covered by the
agents. Figure 2 below illustrates the mean and confidence intervals for the quality
results for all groups.

Using the multi-way comparison previously described, we find that the lattice qual-
ity of the traditional group is significantly better than the constrained cases. Also, the
θmax = 0.1 case differs from all other cases. The 0.2 case differs from the 0.6, 0.7, 0.8,
0.9, and 3.14 cases. All other comparisons are statistically indistinguishable.

Fig. 2. Lattice quality for each group. Points and wings: means and 95% confidence intervals.
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While our nonholonomic agents form hexagonal lattices that are of marginally lower
quality than the traditional models, there is no doubt that the lattices are formed. Visu-
ally, they look very similar. A random dispersion of 100 points results in a lattice quality
of more than four times that of the worst of our groups; all groups formed lattices that
were significantly better from a statistical point of view. Moreover, the lattice quality is
fairly robust to the degree of constraint (in terms of θmax): using constraints marginally
decreases lattice quality, but the degree of constraint is not particularly important.

4 Constraining Motion in the Covert Tracking Problem

We are interested in a generalized form of a multi-target tracking problem, where our
coordinated team of agents learns to distribute the task of tracking various targets with
differing capabilities and with different objectives in mind. Such problem domains re-
quire fairly sophisticated swarm designs and (typically) some kind of learning.

However, it isn’t clear how portable swarm design methods are when there are pro-
found disconnects between how agents can move and how a swarm system directs them
to move. Moreover, it isn’t clear how such constraints impact learning performance. To
begin to answer this question, we focus on a simple form of our more general problem
and investigate how our constrained nonholonomic controller impacts learning, as well
as the final solution quality.

4.1 Covert Tracking

For this experiment we use a single tracker and a single target. The goal is for the tracker
to follow the target as closely as possible and not be seen by the target. The target has a
field of vision that consists of two concentric circles. The target will detect the tracker if
it is anywhere in the inner circle, 10 distance units. The outer radius (30 distance units)
is a 3

2π radians arc, such that the target has a “blind spot” directly behind its facing
direction. The target moves at a maximum velocity of 1 unit per step and is constrained
in a way similar to the tracker with a θmax = 0.05. It randomly wanders as follows:
with a probability of 0.05 each time step, it selects a new desired facing direction and
changes its velocity to match that preference (allowing for actuation constraints). The
new direction is chosen uniformly at random within a relative±3 radians. The behavior
is fairly smooth, with occasional surprising turns.

Initial positions of the target and tracker are chosen uniformly at random in a rect-
angular area of 80 × 60 units in size. The tracker has a 2π radians field of view up to
80 distance units and has a maximum velocity of 2 units per step. It’s behavior is con-
trolled via physicomimetics as described above using three types of particles. The first
represents the target, the second the tracker, and the third a virtual particle — a particle
representing an unembodied concept to be used by the control system, described below.
Each step, the tracker constructs a particle model, placing a tracker particle in its own
position, a target particle in the position of the target (if it is seen), and a virtual particle
in a position computed using a relative range and bearing from the position of the target.
The offset bearing is relative to the bearing of the target, and the tracker estimates the
target bearing based on its change in position.
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The virtual particle is necessary if we hope to have the trackers exploit the blind spot
of the target. While our representation does not prescribe how this particle is used, the
most obvious solution is to place the particle in the blind spot. The learning system is
responsible for determining this.

The control system requires 23 parameters. The mass and coefficient of each of the
three particles (6), the force law parameters for each interaction (5 · 3), and a range
/ bearing offset for computing the position of the virtual particle. These are all repre-
sented as real values. The table below describes the permitted ranges for these values.

Table 1. Ranges for control system parameters, ε = 0.00001

Type of parameter Range Type of parameter Range
mass, m [0, 200] distance power, d [−10, 10]
friction, cf [0, 1000] mass power, a [−10, 10]
effect range, E [0 + ε, 480] virtual particle range, ρv [0, 60]
AR boundary, R [0 + ε, E] virtual particle bearing, θv [−π, π]
gravity, G [−1000, 1000]

4.2 Learning a Physics Model for Control

The 23 parameters just discussed were encoded into a real-valued genome, and a
(5+35)-ES was used for optimization. Gene values were in the range [0.0, 1.0], and
were scaled to the ranges of each individual parameter of the force laws the physi-
comimetics control system. Fitness for an individual was aggregated over 20 trials, for
600 timesteps per trial. Adaptive mutation was employed as in [6] with σinit = 0.25
and σ ∈ [0.005, 0.25]. Evolution took place over 50 generations, and the most fit in-
dividual found was then evaluated with a number of metrics for our empirical analysis
(described below).

Fitness at each time step for each individual was evaluated as follows.

F (a ∈ trackers, b ∈ targets) = Rα ·
(

sees(a, b)
D(a)− ra,b

D(a)

)Rβ

− Pα · sees(b, a)

sees(a, b ∈ agents) =
{

1 if agent a ‘sees’ agent b
0 otherwise

Here D(a) represents the vision range of agent a. There are three parameters Rα, Rβ ,
and Pα, used here to tune the ES towards different desired behaviors. Rα is the reward
scaling factor, Rβ is an exponent that changes the signifigance of the distance of the
trackers to the targets they see, and Pα is the penalty scaling factor. For the purposes
of our experiment, Rα = 1, Rβ = 1, and Pα = 3. This creates an environment where
the fitness reward increases linearly with the proximity of the tracker to its target. The
reward given per time step can be up to 1.0. A flat penalty of 3 is applied at each time
step if the tracker is seen by the target. Increasing the reward for smaller distances
causes the tracker to get as close as possible, while the penalty for being seen ensures
that the tracker will avoid the vision area of the target.
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4.3 Predicting vs. Controlling Agent Behavior

The first hypothesis that needs to be confirmed is that limitations on agent mobility
create a disconnect between the executed behaviors of the controlled agents and the
described behaviors of their analogous particles. If that is so then presumably the learn-
ing system will have to work with, or compensate for, those differences. Our suggested
position difference measure, Δpos confirms the first part of this reasoning.

At each time step the physicomimetics system suggests a velocity that the agent,
to the best of its ability, tries to execute. This yields a suggested position, x̂, and the
actual updated position the agent is capable of achieving, x. The suggested position
difference for a given time step is then the Euclidean distance between the suggested
and actual position for that step. The magnitude of this value represents the degree to
which the agent is incapable of matching the directions given by the control system. Our
measure aggregates this value over all time steps according to the following equation:

Δpos =
∑T

t=1(‖x̂(t)‖−‖x(t)‖)
T .

The Δpos for the best of run for each of thirty trials of the EA were collected.
The results were aggregated over each value of θmax, and a Bonferroni-adjusted t-test
was applied to test for statistical differences between the results (see the left graph of
Figure 3). As is expected, as the turn speed constraint is relaxed, the overall trend of the
output of the physicomimetics model moves to more closely match the actual change
in location of the agent. However, even as the turn speed approaches the point where
an agent may turn any direction in a single time step, there is still a statistically signifi-
gant difference compared to the traditional agent. As expected, the constraints create a
disconnect between particle model prediction and the resulting executed behavior.

4.4 Effects on Learning Performance

Despite the fact that there is the disconnect discussed above, the learned solutions are
surprisingly good. Though the learned solution in the traditional case is significantly
better than all the others (in fact, all groups are significantly different from one another),
all but the most extreme cases learn the same basic behavior: Set the virtual particle
inside the blind spot of the target, then track the target from that position.

Consider the right plot in Figure 3, below. First, all values are reported in terms
of their average fitness per step. Second, the means and confidence intervals of the
best of run values for each experiment group are plotted. Finally, an incursion zone
is plotted as a shaded rectangle to highlight the efficacy of the learned solutions. This
zone represent distances smaller than the range of vision of the target, scaled to the

limit of the tracker’s range of vision
(

D(a)−ra,b

D(a)

)
. Fitness values within that range

must result from behaviors that stay within the outer range of the target’s range of
vision and receive no penalty from being seen (i.e., in the target’s blind spot). The wider
confidence wings on the 0.15 and 0.3 groups occur because some trials fail to discover
this, while others succeed. The learning gradient for placing the virtual particle becomes
particularly steep when the constraint is high.
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Fig. 3. Left graph: Suggested position difference for several experimental groups. Right graph:
Best of run fitnesses for all groups. The grey area represents values where trackers remain (on
average) in the blind spot of the target. Points and wings: means and 95% confidence intervals.

5 Related Work

There is an increasing wealth of literature that uses swarm intelligence for coordinated
control of groups of agents, such as physicomimetics [2,3,4], methods based on social
potential fields [7], or methods based on flocking and schooling behaviors in animals
[8]. These approaches rarely focus on the effects on actuation constraints on agents
under control, though the agents themselves are often nonholonomic.

Additionally, there are traditional control theory methods for formation control in
agents, typically based on a leader / follower paradigm [9]. In an interesting middle-
ground approach, [10] presents a method for designing cooperative formation control
systems for groups of mobile robots (both holonomic and nonholonomic) based on
potential functions. [11] examines three aspects of a behavior-based approach to co-
ordinated multiagent control that includes control of robots under differential steering.
These methods incorporate explicit notions of actuation constraint and (often) include
formal justifications for which certain patterns will stabilize; however, they lack the
intuition and simplicity of bottom-up, nature-based approaches.

6 Conclusions and Future Work

Though it is clear that actuation constraints can have potentially profound impacts on
how a multiagent system must be controlled to produce useful coordinated behavior, lit-
tle effort has been made to date to determine how swarm-based approaches are affected
by such constraints. We believe a closer look at when and how actuation constraints af-
fect swarm-based behaviors is therefore justified, and this paper presents a preliminary
empirical look into these effects in two simple domains: hexagonal lattice formation
and covert tracking. We examined a differential-like control system that allowed us to
vary the degree of constraint on agent movement.
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We found that while constraints do impact system performance, only in the most ex-
treme cases were the physicomimetics control methods unable to accomplish the basic
tasks at hand. The systems did not destabilize, nor did they alter the basic character
of the behavior implemented in the unconstrained cases. Simple, high-quality hexag-
onal lattices were formed even when maximum turn speed was quite low, using the
same parameters as successful unconstrained physicomimetics agents used to solve the
same problem. Constraints affected learning performance only minimally, save when
they were particularly severe. Our results provide some hope that for certain, simple
problems physicomimetics is fairly robust to these kinds of mobility limitations.

We believe that even when the constraints are severe, learning difficulties can be mit-
igated using transfer learning. In the most extreme case of the covert tracking problem,
the system never learns to place the virtual particle in a useful position and the agent
learns simply to stay outside the vision range. Our approach is to first learn the control
parameters in the traditional way, then use this to bias the search for behaviors when
the tracker cannot move so freely. Early results are encouraging.
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Abstract. It has recently been proposed that the model plant, Arabidopsis 
thaliana (thale cress), uses a newly discovered genetic repair system to repair 
errors at the genetic level. A. thaliana uses information from the grandparent’s 
genes as a basis for this correction – so genetic information appears to skip a 
generation. We apply this gene repair strategy to a combinatory optimization 
problem, firstly comparing the performance of parent and grandparent based re-
pair. Subsequent experiments expand our understanding of the GeneRepair al-
gorithm, by examining the parameters of fitness and direction involved in the 
generepair process. Our results point to a tentative explanation as to why A. 
thaliana might have evolved such an apparently complex inheritance process.  

Keywords: Evolutionary optimization, genetic repair, constraints, Arabidopsis 
thaliana. 

1   Introduction 

Evolutionary Optimization (EO) is an optimization strategy that is inspired by Dar-
win’s idea of survival of the fittest. EO effectively implements a “generate and test” 
beam search to find near optimal solutions to complex problems, such as NP-
Complete problems, in a reasonable amount of computing time. A population of can-
didate solutions are created and allowed to converge towards a global optimal under 
the guidance of a suitable fitness function. Evolutionary strategies are effective in 
exploring complex solution spaces, where each individual explores part of the search 
space. However, EO is less suited to enforcing validity constraints [1] on these search 
spaces.  

Evolutionary optimization and related approaches, use biology as their inspiration. 
This paper turns again to the biology domain, looking at some recent advances in the 
study of the Arabidopsis thaliana (thale cress) plant. A. thaliana appears uses a ge-
netic repair process to repair errors in its genes. This repair process uses genetic in-
formation originating in the genes of the grandparent – information which does not 
appear to be detectable in the genes of the parent.  

This paper presents a comparison of these repair strategies, on a standard combina-
toric optimization problem. Results for a biologically inspired penalty points tech-
nique [2] act as a benchmark. The results of our initial experiment and presented and 
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discussed, followed by two supplementary experiments that clarify some issues raised 
by the first experiment.  

To the best of our knowledge, no authors have previously examined the effective-
ness of grand-parent based repair in evolutionary computation, or compared parent 
based and grandparent based approaches to genetic repair.  

2   Gene Repair in Arabidopsis Thaliana  

Arabidopsis thaliana (thale cress) is a model plant used for a wide variety of detailed 
studies and was the first plant genome to be sequenced. The Arabidopsis plant has one 
of the smallest genomes with about 157 million base pairs and five chromosomes. 
The Arabidopsis genome encodes 27,000 genes and 35,000 proteins.  

Lolle et al [3] investigated A. thaliana plants with an organ fusion mutation on the 
Hothead gene (HTH), resulting in an abnormal formation of the plant’s flower. Their 
studies revealed that two plants with the HTH can produce offspring without this 
abnormality, forming perfectly normal plants. The resultant offspring have the normal 
form of the hothead gene (hth), even though this information was present in neither of 
the parent’s genomes. That is, approximately 10% of the offspring were found to 
revert to the normal form of the hothead gene, which is a far higher rate than can be 
explained by random mutation of these specific alleles (which would be of the order 
of 1 per billions per allele per generation). It was found that that these revertant ge-
nomes all appeared to inherit genetic information from their grand-parents genomes, 
which had the normal (hth) form. Thus, genetic information appeared to skip a gen-
eration, reappearing in a subsequent generation. In an interview with the Washington 
Post (March 23rd, 2005) Robert Pruitt referred to this as a “parallel path of inheri-
tance”, which appears to occur in addition to standard Mendelian inheritance. In es-
sence, a corrective template is used to correct broken or damaged sequences of DNA, 
possibly in response to stress placed on the plant due to the presence of a genetic 
mutation.  

While Lolle’s controversial [4] explanation relies on a cache of RNA inherited 
from previous generations, we focus on the explanation offered by Ray [5] that is 
compatible with Lolle’s findings. Ray’s explanation relies on an archival form of 
DNA, that serves to store the ancestral DNA but which is not detected by the proc-
esses used to sequence the regular encoding of DNA.  

Thus, in our implementation each individual maintains its own archive of 2 genera-
tions of ancestral genetic information. This yields a custom made repair template for 
each individual in the population (see Figure 2). 

3   The TSP Evolutionary Optimization Problem 

To examine the performance of various GeneRepair strategies, we used the standard 
problem called the Traveling Salesman’s Problem (TSP) (or the Hamiltonian Circuit 
problem). This NP complete problem involves finding the shortest path that visits 
each of a number of vertices (cities), visiting each just once and returning back to the 
original vertex (city). The TSP problem is thus a minimization problem, where the 



 Genetic Repair for Optimization under Constraints 401 

best results correspond to a lower tour length. In this paper we use the results gener-
ated for the 51 city traveling salesman problem (eil51) from the standard TSPLib 
problem set. We point out that our focus was on comparing the effectiveness of 
GeneRepair strategies and not on producing short tours for this problem set per se. 

One specific requirement for the problem domain was that it has identifiable valid-
ity constraints. That is, invalid solutions to this problem can be generated and can be 
identified. A TSP solution is invalid if the tour does not visit all cities, if a city is 
visited twice or if the tour does not return to the starting city.  

The mutations of A. thaliana studied by Lolle et al [3] were from living plants, 
which were thus viable plants. There are a relatively small number of known viable 
(living) mutations of A. thaliana, corresponding to a tiny fraction of combinations of 
its 157 million base pairs. In contrast, the TSP does not have such viable mutants as 
all mutants form invalid (non-viable) solutions to the problem. These non-viable solu-
tions are repaired immediately, whereas A. thaliana does not appear to involve ge-
netic repair until the next generation. While our experiments appear to involve a 
slightly more pro-active gene-repair process, it was considered that is was not a very 
significant difference. These differences may perhaps lie more in the environmental 
stress factors that trigger gene repair in A. thaliana. 

All experiments were run with the same experimental set-up, where only the de-
scribed parameters were changed between experimental conditions. Initial experi-
ments were conducted with a population size of 500 for 500,000 generations. This 
yields an overall search space that examines 250,000,000 different possible tours. We 
point of that this is a tiny fraction of the total search space of approximately 1.5.*1064 
possible tours. Several independent runs were conducted for each experimental condi-
tion, to counteract against the randomized nature of EO. (A computer cluster was used 
to support simple independent simulations).The best results produced at each stage 
were recorded, as well as the generation at which those results were generated. The 
best and average results are presented in the next section. 

4   Evolutionary Optimization with GeneRepair 

This paper applies the genetic repair process described by Lolle [3] and Ray [5] to an 
otherwise standard EO algorithm (with unmodified crossover and mutation opera-
tors). The GeneRepair process is largely independent of the application domain itself. 
The only influence the problem domain has is through the genetic strings of the an-
cestor population. Thus, we conclude that this repair process is (largely) domain inde-
pendent and may work as well or even better on a variety of other problem domains. 
This may be related in some way to the findings of Lolle et al [3] who found that gene 
repair in Arabidopsis thaliana appeared to operate throughout the DNA sequence and 
thus appear to be a general mechanism for extra-genomic inheritance.  

However, before examining the GeneRepair process itself, we must first look at the 
underlying EO algorithm. 

4.1   Representation 

Each allele in our EO algorithm encodes a single city and each city is uniquely en-
coded. Therefore there is a 1-to-1 association between cities of the TSP problem and 
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the city’s representation within the EO algorithm. Solutions to the TSP are formed as 
an ordered list of cities and the entire population is composed of a fixed number of 
individual tours (see Figure 1). Tours are stored as a fixed length and ordered list of 
cities (the number of cities in TSP determining the length of representation). So, the 
relative order of cities determines their position within a tour.  

This representation allows two types of genomic error to occur to individuals 
within a population. Firstly, duplicate errors may occur when a city is repeated within 
a candidate tour in the population. Secondly, omission errors occur when a city is 
absent from a candidate solution in the population. We highlight that error is a viola-
tion of the solution constraints as required by the TSP. Because of our fixed-length 
encoding, omission and duplicate errors are always found in pairs. Thus, an omission 
error is always has a corresponding duplicate error. As can be seen in Figure 1, dupli-
cation of the “2” causes omission of “6” from the genetic sequence. Repairing such 
errors shall be discussed in Section 4.2 below.  

 

1 3 4 5 9 7 8 2 6 
3 2 1 5 9 7 8 6 4 
7 2 1 8 2 3 4 9 5 
4 3 9 8 1 6 7 5 2

 
 
1 2 3 4 5 6 7 8 9 

Population Fixed Repair Template 

 

Fig. 1. The third Individual has duplicate and missing information, which must be repaired 

4.2   Fitness Function, Crossover, Mutation 

Before we present the GeneRepair operator, we first clarify the structure of the EO 
that is working in conjunction with GeneRepair. We now briefly describe the opera-
tors of fitness evaluation, selection, crossover and mutation rates. We point out that 
these are all generic operators, none of which are tailored to the given problem do-
main (see [6] for a discussion of specialized operators). The fitness function operates 
on individual tours, calculating the Euclidean distance between each city pair in turn, 
returning the sum of the individual inter-city distances. 

Previous work on the GeneRepair operator has investigated the performance of 
parent based repair [7, 8]. This was compared to the performance of a variety of alter-
native strategies for implementing constraints on EO. In particular, this work explored 
how GeneRepair interacted with the standard evolutionary parameters, especially 
mutation rate and crossover mechanism.  

While the results of Mitchell [7] indicate that best results are produced using Tour-
nament selection, the results in this paper used Truncation selection with a truncation 
factor of 2. Thus, at the end of every generation the fittest half of the population we 
replicated and replaced the less-fit half of the population. The decision to use Trunca-
tion selection was made because of its simplicity and because it made detailed analy-
sis of results (not discussed here) easier to conduct. Similarly, single point crossover 
was used to create new individuals. Thus, a random point on the genetic sequence of 
both parents is chosen, the first portion of the first parent and the last portion of the 
second parent are combined to form the new individual (solution).  
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Mitchell [7] indicates that GeneRepair requires a relatively low rate of (point) mu-
tation - 2% of the alleles in the population are mutated on every generation. This low 
rate of mutation may be explained because the GeneRepair operator has a mutagenic 
effect, meaning that the background level of mutation can be somewhat lower than 
may otherwise be expected.  

4.3   The GeneRepair Adjunct Operator 

The GeneRepair operator is used in this paper to ensure that all solutions in the popu-
lation are valid – that there are no omission or duplication errors in any of the solu-
tions stored in the population. Such error can be generated from two different sources. 
Firstly, the crossover operator combines genetic information from two individual to 
create a new individual. We use single point crossover that chooses a single point 
along the allele sequence of both parents, combining the first half of one parent with 
the second half of the other parent. Thus a new individual is formed. 

Genetic errors are identified when the genetic information of newly generate off-
spring violate the (mathematical) constraints of the TSP. We identify on two catego-
ries of error: omission errors and duplication errors (as discussed in Section 4.1 
above). 

 Population Parent Template Grand- Parent Template 

9 4 6 5 3 1 8 2 7 
3 6 1 5 9 8 4 7 2
8 2 9 7 3 1 6 4 5 
6 7 4 3 1 8 5 2 9

4 5 3 1 2 8 6 7 9 
9 1 6 3 5 4 7 2 8 
8 2 9 4 3 5 6 7 1 
6 7 4 3 8 2 9 5 1 

4 9 6 5 3 1 8 2 7 
3 6 1 5 9 7 8 2 4 
8 2 9 7 4 8 3 6 9 
7 3 5 6 8 4 1 2 9 

 

Fig. 2. Does Parent or Grandparent based Correction yields better results? 

Mitchell [7] and Mitchell et al [8] and others [9] examined several biologically and 
non-biologically inspired templates, but did not explore the use of a grandparent 
based repair template.  

4.3.1   Template Origin  
Our first objective was to compare the performance of parent based GeneRepair with 
that of grand-parent based GeneRepair. Template driven GeneRepair operates in two 
phases as follows. The first phase (called error detection) identifies all occurrences of 
duplicate errors in the current population. In our first experiment, these duplicate 
errors were identified in a fixed left-to-right manner. So the second and subsequent 
occurrences of cities within a tour are detected as errors and are sent to the second 
phase, called correction. (This left-to-right decision shall be addressed further in Sec-
tion 4.3.2 below.) These duplication errors can be seen as the bold figures in the Cur-
rent Population of Figure 2 above.  
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The second phase (called error correction) of GeneRepair repairs the identified er-
rors. While each individual was being examined, the cities of the current population 
are tagged in the parent and grandparent populations. Thus, un-tagged information in 
both populations form an ordered list of missing cities. These missing cities are used 
to replace the duplicate cities in a left-to-right manner.  

The first experiment compared the effectiveness of parent and grandparent based 
GeneRepair, on the TSP problem described above. Table 1 summarizes these results, 
showing the shortest tour identified across these experiments and the mean results 
produced by each strategy.  

Table 1. GrandParent based GeneRepair outperforms parent based repair 

 Min Mean 

Parent Strategies 505.43 549.43 

GrandParent Strategies 491.18 548.24 

As shown above, the grandparent strategy far outperformed the parent strategy on 
these experiments. In fact, all grandparent based results outperformed all of the parent 
based results. Additionally, the relatively high mean of the Grandparent based repair 
was due to one particularly poor result of this strategy.  

Not only did grandparent based repair generate better results, it did so in 
significantly fewer generations that the parent strategy. The grandparent strategy 
reached a result within 15% of the optimal in 5,500 generations while the parent 
strategy reached a result within 19% of the optimal in 8,350 generations. Also, we 
point out that our focus was on comparing strategies inspired by Arabidopsis thaliana 
and little effort went into tailoring our EO to generate good results for this problem set. 

An explanation for the superior performance of grand-parent based repair, we turn 
to the differences between the offspring and its parent and grandparent. We point out 
that the grandparent has a higher probability of being different to the individual being 
repaired than its immediate parent. Thus, grandparent based repair generally has a 
larger disruptive effect on the individual than parent based repair. As our EO 
converges, the diversity in the population tends to reduce so that there is little 
difference between parent and offspring. (Mutation or even adaptive mutation is often 
used to counteract this tendency, allowing convergence to a global rather than a local 
optimum). Thus, we theorize that the grandparent proves to be a better template for 
repair than the parent, because of its potential for greater dissimilarity with the 
individual. This conclusion suggests that great-grandparent based repair should 
further outperform grandparent based repair – this being the subject of our current 
work. However, we do expect a decreasing pay-off as additional generations are 
archived in the repair process. As with Arabidopsis thaliana, it may well be that the 
additional expense of adding generations may not produce a commensurate payback 
in performance.  

Another interesting observation arose from our analysis of these experiments. 
When a single occurrence of a duplication error is identified, both parent and grand-
parent strategies will generate the same new repaired individual. So when converging 
towards a global optimum for the given problem, we might expect fewer errors and 
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thus less of a difference between parent and grandparent strategies. Therefore, much 
of the difference between these two strategies will occur earlier in the evolutionary 
process.  

4.3.2   Direction of Error Detection 
The next experiment attempted to assess the impact that the direction of error detec-
tion has upon solution quality. In addition to the left-to-right error identification strat-
egy, two other strategies were investigated: right-to-left and random direction. The 
left-to-right and right-to-left were fixed throughout whereas the random direction 
changed for every individual in each generation.  

The next experiment compared these three repair directions: (i) operating repair 
from right to left, (ii) operating repair from left to right and (iii) operating repair in a 
random direction. 

Table 2. The Random Direction GeneRepair Produced Best Results 

 Min Mean 

Left-to-Right 471.44 519.67 

Right-to-Left 483.36 529.27 

Random 459.74 514.25 

The results for this experiment are summarized in Table 2 above. Firstly, GeneRe-
pair produces the best results when it proceeds in random and changing directions. 
The random strategy outperformed the two fixed direction strategies, on the best re-
sult generated and as an average across all runs of this experiment.  

4.3.3   Fitness of Template 
The final factor that we investigated was whether the fitness of the recorded ancestors 
had any impact on the goodness of the solutions generated. In the earlier experiments, 
at the end of each generation the genetic material of the fittest parent was recorded for 
each individual. This then formed part of the repair template for that individual.  

In the next experiment, we explored the impact of recording a randomly selected 
parent for each individual. Thus for the randomly selected parent condition, the parent 
chosen to be moved into the repair genome was selected randomly, without any refer-
ence to the fitness of the two parents. It was expected that the superior fitness of the 
fittest condition would outperform the random parent conditions.  

Table 3. Comparison of Fittest Ancestral Template with Random Ancestral Template 

 Min Mean 

Random Parent 493.84 538 

Fittest Parent 483.36 529.29 

Random Grandparent 459.74 514.25 

Fittest Grandparent 475.68 517.99 
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As shown above a random choice of ancestor proved to be superior to using the fit-
test of the two. This experiment also concretes the findings of the first experiment in 
that once again the grandparent was superior to the parent as a GeneRepair template. 
One explanation for the random ancestor from either generation outperforming the 
fittest ancestor may be deduced by examining the crossover technique used in this 
evolutionary strategy. The crossover is single point crossover where the point is cho-
sen randomly for each individual. This means that the fittest ancestor does not neces-
sarily have more impact on the individual than the other ancestor. We can theorize 
from this that because the fittest ancestor does not always have a larger impact on the 
individual it is not necessarily the best template to use for repair and a random tem-
plate is more appropriate. The results above also confirm the results shown in Table 2 
as the tour length of 459.74 which was achieved using a Random Grandparent repair 
template was found by conducting repair in a random direction  

4.3.4   Penalty Points 
We also examined the performance of the penalty points approach to enforce con-
straints, using the “death penalty” whereby invalid individuals are prevented from 
being used in crossover. The result of this experiment is shown in Table 4. As can be 
seen in Table 4 this approach produces significantly less-fit individuals that was pro-
duced by GeneRepair (Tables 1, 2 & 3).  

Table 4. Death Penalty Approach 

 Min Mean 

Death Penalty 1486.4 1584.94 

4.3.5   Summary of Results 
Each one of the repair directions described in Section 4.3.2 was tested for each of the 
inheritance template shown in Table 2 so there are in essence twelve different results 
to the experiment described in Section 4.3.3 rather than three.  

The results of all twelve experiments are summarized in Fig. 3 below. The lines in-
dicate the best solutions produced by each strategy across all runs of that strategy. The 
depicted results for each strategy were selected by choosing the best results at the end 
of the 500,000 generations. Each line indicates the best solution found thus far and as 
can be seen, this gradually converges towards the global optimal. (For this problem 
the known global optimal was 426. We were very pleased with the results of grand-
parent based repair – given that truncation selection was used. We expect even better 
results with Tournament selection and a much larger search space). 

Best results are shown by the bottom line on Figure 3. This depicts the result for 
GeneRepair operating in a random direction using a randomly chosen grandparent as 
its repair template. This result is followed closely by the other GeneRepair techniques 
which use the grandparent as a repair template.  
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Fig. 3. Comparison of 12 different GeneRepair techniques 

5   Conclusion 

Evolutionary Optimization (EO) is an approach to optimization inspired by Darwin’s 
idea of survival of the fittest. EO is a very are effective in exploring complex solution 
spaces, but are less suited to supporting validity constraints between the search pa-
rameters. This paper presents an approach to genetic repair that is inspired by the 
Arabidopsis thaliana plant. This plant is capable of making repairs to its own genes 
by making use of genetic information originating in the individuals grandparent. Con-
troversially, this genetic information appears to skip the parent’s generation. Our 
GeneRepair mechanism is inspired by an “archival DNA” explanation, though an 
alternative RNA based explanation exists. Errors in an individual plant’s genes are 
repaired by comparison to the grandparents “template” DNA, which also serves to 
correct these errors. 

We adapt this approach to genetic repair by applying it to a standard constrained 
optimization problem – the Traveling Salesman’s Problem (TSP). This applied evolu-
tionary optimization techniques, using unmodified crossover and mutation operators. 
An adjunction GeneRepair process ensured the validity of all solutions generated. 
This comparison found that GeneRepair based on a grandparent template produced 
better results than that of the parent based template. These results echoes recent ad-
vances in genetics, identifying non-Mendelian inheritance on the Arabidopsis 
thaliana plant [3]. A subsequent experiment indicates that archiving a randomly cho-
sen parent produced better results than biasing the genetic archival process in favor of 
the fittest parent – and thus fittest grandparent. Our final experiment showed that the 
GeneRepair process produces best results when operating in random (and changing) 
directions. This approach outperformed both of the fixed direction strategies tested.  
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Not only do our results echo the controversial theory of Lolle et al [3], they also 
shed new light on this theory of non-Mendelian inheritance. First, that the repair 
seems to work best when it uses a randomly chosen grandparent and, secondly that 
repair should repair violations in a random order. Building upon Lolle’s [3] results, 
these findings suggest a general approach to enforcing constraints on combinatorial 
optimization problems, opening up new possibilities for exploration. 
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Abstract. This paper considers the multilabel classification problem, which is a 
generalization of traditional two-class or multi-class classification problem. In 
multilabel classification a set of labels (categories) is given and each training 
instance is associated with a subset of this label-set. The task is to output the 
appropriate subset of labels (generally of unknown size) for a given, unknown 
testing instance. Some improvements to the existing neural network multilabel 
classification algorithm, named BP-MLL, are proposed here. The modifications 
concern the form of the global error function used in BP-MLL. The modified 
classification system is tested in the domain of functional genomics, on the 
yeast genome data set. Experimental results show that proposed modifications 
visibly improve the performance of the neural network based multilabel 
classifier. The results are statistically significant. 

Keywords: multilabel, learning system, neural network, backpropagation, 
bioinformatics, functional genomics. 

1   Introduction 

Multilabel classification is a generalization of traditional two-class or multi-class 
classification. In both cases a finite set of labels (categories) is given, but unlike in the 
latter case, where the task is to associate each problem instance with one category, the 
multilabel classification associates each instance with a subset of the set of labels. In 
other words, a multilabel classifier transforms the domain of instances X to the power 
set of the set of labels 2Y: 

h: X → 2Y (1)

where X ⊆ Rd denotes the set of instances and Y = {0, 1, …, Q-1} represents the set of 
possible labels. In many practical situations the mulitilabel classification problem is 
converted to the problem of defining a function f: X × Y → R such that for any xp ∈ X 

f(xp, y1) > f(xp, y2) (2)
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for all y1 ∈ Yp and y2 ∉ Yp. In other words instead of defining the classification of the 
form (1) it is sufficient to find function f(.,.) which provided higher outputs for the 
elements belonging to Yp than for those not belonging to Yp, where (xp, Yp) is a 
training (testing) instance. 

Many real-world problems can be modeled by multilabel classification systems. 
The most popular application domains include text categorization [6], [7] and 
bioinformatics [3], in particular a functional genomics area. This latter problem is 
considered in this paper in order to verify the efficacy of proposed modifications. 

Our work is inspired by Min-Ling Zhang and Zhi-Hua Zhou’s paper [1], where a 
neural network based method is proposed as an approach to multilabel classification 
problem in the domains of functional genomics and text categorization. Up to our 
knowledge, the paper [1] is the first attempt to apply neural networks to multilabel 
classification. Previous approaches include using decision trees [4], [11] and kernel 
methods [3], [8]. In the case of single-label classification problem, current studies are 
based on kernel methods. However, experimental results presented in [1] indicate that 
in the case of multilabel classification, neural network based method [1] outperforms 
kernel method proposed in [3]. So we decided to consider neural network approach. 

The paper is organized as follows: in the next section a brief description of the 
neural network based multilabel classifier introduced in [1] is presented together with 
some modifications to the global error function proposed in this paper. The most 
popular performance measures that are applied in this paper are also introduced. 
Experimental results in the domain of functional genomics are presented and 
discussed in Section 3. The last section is devoted to conclusions and possible  
future work. 

2   Neural Networks in Multilabel Classification 

The simplest approach to solve the multilabel classification problem is its 
decomposition into multiple set of classification problems – one for each label. This 
solution, however, has a significant disadvantage – it does not take into account 
dependencies between different categories. Hence a different approach need to be 
employed. One of the candidate algorithms is the well-known BackPropagation (BP) 
learning method [9], [10] which, after appropriate adaptation to the multilabel 
classification case, can be used to solve the problem. This idea was exploited in [1], 
where the algorithm named BP-MLL (Backpropagation for Multilabel Learning) was 
developed and experimentally verified. 

2.1   A Brief Description of BP-MLL 

BP-MLL is applied in [1] to a multilayer perceptron with sigmoidal neurons with one 
hidden layer and additional biases from the input and hidden layer. The size of the 
input layer is equal to the instance domain dimension (plus a bias neuron). The size of 
the output layer equals the number of labels (i.e. Q). Training is based on the classical 
BP algorithm, but in order to address the dependencies between labels, the new global 
error function of the following form is proposed: 
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where m is the number of learning pairs, Yp ⊆ Y = {0, 1, …, Q-1} is the set of labels 
associated with the p-th training instance, cq

p (named rank value) is the actual output 
value of the q-th output neuron (corresponding to the q-th label), 

pY  denotes the 

complementary set of Yp (i.e. 
pY  = Y \ Yp) and h(xp) denotes the set of labels attached 

to xp by the network. Minimizing (3) tends to get higher output values by neurons 
corresponding to the labels belonging to Yp than those not belonging to Yp. 

The next step to achieve multilabel classifier is determining the set of labels 
belonging to the input instance. This information can be retrieved from the neural 
network output values (rank values) by means of the threshold function which 
depends on the input vector. If the output neuron value is higher than the threshold 
value, then corresponding label belongs to the input instance. Otherwise, the label 
does not belong to the instance. More detailed description of BP-MLL can be found 
in [1]. 

2.2   Error Function Modifications 

In this paper we propose some improvements of the error function used in [1]. The 
first introduced modification is integration of the threshold value into the error 
function used in BP-MLL. It results in the following form of the error function: 
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The last output neuron’s value (cQ
p) is interpreted as the threshold. The meaning of 

the remaining output neurons is the same as in case of using the BP-MLL method. 
Proposed solution allows to determine the threshold value by adaptation during neural 
network learning. Hence, unlike in the method described in [1], additional step 
devoted to definition of the threshold function is not required. 

The above error function (4) can be further generalized (and the whole process 
becomes more autonomous) by introducing independent thresholds for different labels: 
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In the case of equation (5) two output neurons (indexed by 2q and 2q+1) per each 
category q are considered. The first one of them (number 2q) represents the output of 
the respective category (label) like in (3), and the other one (number 2q+1) defines 
the respective threshold value for the q-th category. 

Finally, in the error function comparisons between all the rank values of categories 
belonging to Yp (

pY  resp.) and their respective threshold values can be taken into 

account, which leads to the following equations of the error function (6) and (7): 
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Note that (6) and (7) differ from (5), where each rank value is compared only with 
one threshold assigned to it. In (6) and (7) each rank value of category belonging to Yp 
(

pY  resp.) is compared with each threshold value of category belonging to Yp (
pY  

resp.) Moreover, (7) extends (6) by also considering differences between threshold 
values (cf. the first terms in the numerators of both equations). In effect minimization 
of (7) results in lower threshold values corresponding to labels belonging to Yp , for p 
= 1, …, m, than to those not belonging to this set. 

2.3   Evaluation Metrics 

Before presentation of experimental results let us briefly introduce the most popular 
error measures used in multilabel classification domain [1], [3]. The three of them, 
namely the Hamming loss, the one-error and the ranking loss are considered in this 
paper. 

The Hamming loss measure (8) indicates the frequency (with respect to the size of 
the testing set K) of incorrect classification (the instance is classified as associated 
with particular label when it is actually not the case or vice-versa the instance is not 
classified as associated with this label in case it should be). 
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The one-error measure (9) points out how often the label with the highest rank 
value (the top-one) does not belong to Yp. Function f in (9) is defined by equation (2). 
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The third error measure, the ranking loss (10) indicates how often the label 
belonging to Yp has got lower or equal rank value than the one not belonging to Yp 
(which is not the expected outcome). 
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Ranking loss and one-error denote the function f defined in (2) and Hamming loss 
denotes the function h defined in (1). Both Hamming loss and ranking loss consider 
the frequencies of incorrect output values (in the case of Hamming loss incorrect label 
assignment and in the case of ranking loss incorrect order of rank values). Both meas-
ures well address multilabel classification characteristics. One-error takes into ac-
count only the label with the highest rank value and ignores other labels. One-error 
does not measure general performance of multilabel classifier but is specialized for 
penalizing classifiers which frequently give the highest rank value to the labels not 
belonging to Yp. 

3   Application to Functional Genomics 

Our modifications to the BP-MLL method were tested against real-world multilabel 
classification problem in the domain of functional genomics [1], [3], [4], [5]. The goal 
is to determine (various) functions of genes based on biological data such as gene 
expression levels [5] (from DNA micro arrays), sequence data (sequences of 
nucleotides or amino acids) or phylogenetic profiles [5]. 

3.1   Yeast Genome Data Set and Learning Parameters 

In particular in our experiments a data set [2] dealing with yeast genome was 
considered. This set was also used by other researchers, e.g. [1], [3]. It contains 2417 
genes associated with functional classes. Every gene is described by 103-dimensional 
vector consisting of the information about phylogenetic profile and gene expression 
levels. This vector forms the neural network input. Each input vector is associated 
with a subset of the set of 14 possible functional classes. In average, each example 
(gene) is associated with 4.24 ± 1.57 labels. 

During training process the learning rate was set to 0.05. In order to avoid 
overfitting, similarly to [1] a weight decay (equal to 0.5) was introduced. Due to the 
relatively small size of the data set, tenfold cross-validation was applied. Training was 
performed separately on each of the five multilabel classifiers – one for each global 
error function (3) – (7). 

The size of a hidden layer was equal to 20 and 40 neurons, respectively for the 
classifiers with error functions (3), (4) and (5), (6), (7). The number of training epochs 
was equal to 100. In the case of (3) the threshold function (t) was set to be the zero 
constant function. 
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3.2   Experimental Results 

Five experiments, each based on tenfold cross validation, were performed for each 
classifier. This resulted in 50 evaluations of each of the tested classifiers for each of 
the three error measures (Hamming loss, one-error and ranking loss). Table 1 presents 
means and standard deviations of those evaluations. Results of statistical tests (t-test 
at 5 percent significance level) are shown in Table 2. 

Table 1. Means and standard deviations of considered multilabel classifiers evaluations 

Hamming loss One-error Ranking loss Error 
function Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

(3) 0,2754 0,0188 0,2324 0,0292 0,1729 0,0150 
(4) 0,2005 0,0071 0,2311 0,0255 0,1705 0,0102 
(5) 0,2023 0,0094 0,2351 0,0215 0,1721 0,0107 
(6) 0,1988 0,0094 0,2252 0,0230 0,1659 0,0120 
(7) 0,1987 0,0089 0,2247 0,0242 0,1657 0,0117 

Table 2. Statistical tests results (t-test at 5 percent significance level). The results below the 5 
percent level are presented in boldface. 

Test Hamming loss  
p-value 

One-error  
p-value 

Ranking loss  
p-value 

(3) vs. (4) 0 0,8202 0,3569 
(3) vs. (5) 0 0,5950 0,7786 
(3) vs. (6) 0 0,1778 0,0116 
(3) vs. (7) 0 0,1578 0,0089 
(4) vs. (5) 0,2787 0,4010 0,4335 
(4) vs. (6) 0,2981 0,2289 0,0410 
(4) vs. (7) 0,2594 0,2026 0,0310 

The results of experiments presented in both tables allow to make some 
performance comparisons between various neural network multilabel classifiers taken 
into account. Considering the Hamming loss shows that all modified classifiers (i.e. 
(4), (5), (6) and (7)) are significantly better than the original one (3). Moreover, there 
are no statistically significant differences in the results accomplished by classifier (4) 
vs. (5), (6) or (7). One-error performance measure does not permit to make any 
conclusions about potential differences between multilabel classifiers in question. 
They are statistically comparable. This can be caused by the characteristics of one-
error measure which only considers some details of classifier and does not address 
multilabel classifier performance in general. Finally, classifiers (6) and (7) outperform 
(3) and (4), with statistical significance when ranking loss measure is considered. 

Table 3 presents comparison of BP-MLL with other approaches to multilabel clas-
sification (decision tree based method ADTBOOST.MH [11] and kernel method 
RANK-SVM [3]) on the Yeast Genome Data Set considered in this paper. This  
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Table 3. Mean values and standard deviations of considered multilabel classifiers evaluations 
for three approaches to multilabel classification (BP-MLL, ADTBOOST.MH and RANK-
SVM) 

Hamming loss One-error Ranking loss Error function 
Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. 

BP-MLL 0,206 0,011 0,233 0,034 0,171 0,015 
ADTBOOST.MH 0,207 0,010 0,244 0,035 - - 
RANK-SVM 0,207 0,013 0,243 0,039 0,195 0,021 

comparison was made by authors of [1] and shows that BP-MLL outperforms both 
ADTBOOST.MH and RANK-SVM. 

4   Conclusions and Future Work 

Multilabel classification problem generalizes traditional two-class or multi-class 
classification since each instance in the training/testing set is associated with several 
(usually more than one) classes (labels). The problem is not easy to solve also because 
the size of the label-set associate with particular unseen instance is generally 
unknown. Various approaches to tackle this problem were presented in the literature, 
but – up to our knowledge – there has been only one attempt to apply a neural 
network for solving this task [1]. In this paper a few modifications of the global error 
function proposed in [1] are presented and experimentally evaluated. Generally, all of 
them improve performance of the multilabel neural classifier. The improvement – in 
case of the two most elaborate functions, i.e. (6) and (7) is noticeable and statistically 
significant. Overall, including the threshold values into the error function and 
considering differences between the rank values and the thresholds proved to be a 
promising direction for improvement of the multilabel classifier performance. 

Currently, we are focused on performing more tests (especially with other sizes of 
hidden layer) and on other data sets in order to further verify the efficacy of proposed 
modifications. 
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Abstract. This paper analyzes the effects of restricting probabilistic
models in the hierarchical Bayesian optimization algorithm (hBOA) by
defining a distance metric over variables and disallowing dependencies
between variables at distances greater than a given threshold. We argue
that by using prior problem-specific knowledge, it is often possible to
develop a distance metric that closely corresponds to the strength of
interactions between variables. This distance metric can then be used to
speed up model building in hBOA. Three test problems are considered:
3D Ising spin glasses, random additively decomposable problems, and
the minimum vertex cover.

1 Introduction

The hierarchical Bayesian Optimization Algorithm (hBOA) [1,2] has been shown
to solve a large range of problems scalably and robustly. However, being able
to solve a problem in low-order polynomial time is not always enough. As prob-
lem size and difficulty increases, the computational resources necessary could
still make the problem intractable in practice. That is why it is important
to design efficiency enhancement techniques [3,4,5,6,7] which can further im-
prove the efficiency of hBOA and other estimation of distribution algorithms
(EDAs) [8,9,10,2].

One approach to speeding up EDAs is to use prior knowledge to restrict or bias
model building [11,12,13,14]. One way to do this is to define a distance metric
on variables such that the variables that are close to each other with respect
to this metric are expected to influence each other more strongly. If this metric
accurately reflects the problem structure, one can use it to speed up hBOA and
other EDAs with complex models by disallowing dependencies between variables
at a distance above a given threshold [12,13,14]. This should improve algorithm
performance by simplifying model building and increasing model accuracy.

In this paper we study the effects of such model restrictions on three im-
portant classes of problems: 3D spin glasses, random additively decomposable
problems, and minimum-vertex cover. First, a distance metric is constructed for
each problem based on the structure of the objective function. The metric is then
used to restrict models in hBOA, and hBOA performance is tested for various
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values of the threshold. The results show that when hBOA is given a reasonable
threshold, model restrictions lead to substantial speedups.

The paper is organized as follows. Section 2 discusses prior work on biasing
model building in EDAs. Section 3 outlines hBOA. Section 4 discusses the design
of good distance metrics and the expected benefits of using an appropriate dis-
tance metric to restrict model structure. Section 5 describes test problems and
the distance metrics for each problem. Section 6 presents experimental results.
Finally, section 7 summarizes and concludes the paper.

2 Previous Work on Biasing Model Building in EDAs

There are two main approaches to biasing model building in EDAs: (1) Impose
soft restrictions by biasing the scoring metric to prefer models that closely corre-
spond to the problem structure [11,15] or (2) impose hard restrictions by strictly
disallowing some dependencies [12,13,14,15].

Schwarz & Ocenasek [11] proposed the use of prior probabilities of competing
network structures in BOA to bias model building toward models that closely
correspond to the problem structure in graph bi-partitioning. Edges between
variables connected in the underlying graph were thus given preference, but no
edges were strictly disallowed.

Mühlenbein & Mahnig [12] also considered graph bi-partitioning but they
used a hard restriction to only allow connections between nodes connected in
the underlying graph. Baluja [13] proposed the use of the same hard restriction
in the dependency-tree EDA on graph coloring. Santana [14] used the same hard
restriction to speed up model building of dependency trees on a protein design
problem. Hauschild et al. [15] proposed the use of both soft restrictions based
on prior models on problems of the same structure as well as hard restrictions
based on a distance metric for hBOA on the 2D spin glass and MAXSAT. This
paper extends the work of Hauschild et al. [15] on hard restrictions based on
a distance-metric by considering other important classes of problems, including
two NP-complete problems (3D spin glass and minimum vertex cover).

3 Hierarchical BOA (hBOA)

Estimation of distribution algorithms (EDAs) [8,9,16,2,17] replace standard
crossover and mutation operators of genetic algorithms by building an explicit
probabilistic model of selected solutions and sampling the built model to gen-
erate new candidate solutions. hBOA is an EDA that uses Bayesian networks
as probabilistic models and incorporates restricted tournament replacement [18]
for effective diversity maintenance.

hBOA evolves a population of candidate solutions represented by fixed-length
strings over a finite alphabet (e.g., binary strings). The initial population is
generated at random according to the uniform distribution over all potential so-
lutions. Each iteration (generation) starts by selecting promising solutions from
the current population using any standard selection method of genetic and evo-
lutionary algorithms. In this paper we use truncation selection with threshold
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τ = 50%. Next, hBOA builds a Bayesian network [19,20] with local structures
[21,22] as a model of the selected solutions using a greedy algorithm. Learning
the model structure is typically the most challenging task of model building [2].
New solutions are generated by sampling the built network. These are then in-
corporated into the original population using restricted tournament replacement
(RTR) [18], which ensures effective diversity maintenance. We set the window
size w = min{n,N/20}, where n is the number of decision variables and N is the
population size [2]. The next iteration is then executed unless some predefined
termination criteria are met. For more details, see refs. [21,1,2,22].

Since a simple deterministic hill climber (DHC) was shown to lead to substan-
tial speedups of hBOA on both the 3D spin glass [2] and the minimum vertex
cover [23], we incorporated DHC into hBOA for these two problems. DHC takes
a candidate solution and performs one-bit changes on it that lead to the maxi-
mum improvement in fitness and DHC is terminated when no single-bit flip leads
to improvement.

4 Distance-Based Model Restriction

To improve model building in hBOA, only necessary dependencies should be
considered. This may significantly reduce the space of potential model struc-
tures, improving the speed and accuracy of model building. Doing this is often
not easy in practice, as for many problems it is difficult to identify necessary de-
pendencies. Nonetheless, it is often possible to provide a soft measure that ranks
edges according to their expected importance based on prior problem-specific
knowledge. The likelihood of certain dependencies can be estimated for example
from an explicit or implicit distance metric between problem variables. In many
problems, such a distance metric is relatively easy to design from the structure of
the objective function or previous runs of an EDA on similar problem instances.

For example, for 2D spin glasses, Hauschild et al. [24] showed that while in
general it is not easy to decide what dependencies are unnecessary, dependen-
cies are more likely to connect spins located close to each other with respect to
the shortest path between these spins in the underlying 2D lattice. This fact is
explored by Hauschild et al. [15], who examined the effects of specifying a dis-
tance threshold and disallowing dependencies between spins at a distance above
the threshold (for example, only allowing dependencies between spins that were
of distance 2 or less from each other). A similar distance metric was proposed
and tested for MAXSAT. The results showed that with an appropriate thresh-
old, distance-based restrictions lead to substantial speedups on both problems.
This paper considers similar restrictions on three additional classes of difficult
problems, two of which are NP-complete.

We expect two main benefits from restricting model structure in this way. By
disallowing some dependencies, model building should become significantly faster
because there are fewer dependencies to examine. Additionally, by disallowing
unlikely dependencies, the model should contain fewer spurious dependencies,
leading to improved model accuracy. These two factors should lead to significant
speedup of hBOA as is also confirmed in section 6.
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The following section describes the test problems considered in this paper and
the distance metrics used to restrict models for all problems.

5 Test Problems

5.1 3D Ising Spin Glass with ±J Couplings

An Ising spin glass is typically arranged on a regular 2D or 3D grid where each
node i corresponds to a spin si and each edge 〈i, j〉 corresponds to a coupling
between two spins si and sj . For the classical Ising model, each spin si can be in
one of two states: si = +1 or si = −1. Each edge has a real value Ji,j associated
with it that defines the relationship between the two connected spins. Periodic
boundary conditions are used that introduce a coupling between the first and
the last elements along each dimension.

Here the task is to find spin configurations C that minimize the energy for a
given set of coupling constants Ji,j , defined as

E(C) =
∑
〈i,j〉

−siJi,jsj , (1)

where the sum runs over all couplings 〈i, j〉. The minimum-energy configurations
are called ground states. To represent spin configurations, we use binary strings
of length n where ith bit defines the value of the ith spin (-1 is encoded by 0, +1
is encoded by 1). We consider random instances of the 3D ±J spin glass, where
each coupling constant is set randomly to +1 or −1 with equal probability. The
problem of finding ground states of 3D spin glasses is NP-complete [25] and, due
to its complex landscape, it poses a challenge for most optimization algorithms.

Based on the results on 2D spin glasses [24,15], we define the distance between
two spins as the shortest path between these spins in the underlying 3D grid.

5.2 Random Additively Decomposable Problems

Random additively decomposable problems (rADPs) [26,27] are a class of test
problems developed to test performance of evolutionary algorithms on broad
classes of decomposable problems. The input string in rADPs is partitioned into
subsets of bits, with the overall fitness being the sum of the subfunctions applied
to all the subsets. We denote the order of rADPs by k; that is, each subproblem
contains k bits. To ensure that rADP instances are solvable in polynomial time,
the subproblems are located in contiguous blocks of k bits and the overlap is
specified by a parameter o which denotes the number of bits shared by neighbor
subproblems. The fitness for each subproblem is given by a table of 2k values
which are generated randomly from the uniform distribution over [0, 1). To verify
the global optimum, the dynamic-programming algorithm [28] is used. Instances
of rADPs vary in difficulty due to the differences in subfunction difficulty and
the amount of overlap.

Intuitively, bits located in the same subproblem are likely to influence each
more strongly than bits located in different subproblems regardless of the over-
lap. More generally, in the presence of overlap, we can expect that the greater
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the distance between the subproblems containing two bits, the more weakly the
two bits influence each other [24]. To design a distance metric that captures this
fact, we create a graph that connects pairs of bits located in the same subprob-
lem and define the distance between each such pair of bits as 1. The distance
between any two bits is then computed as the shortest path between these bits
in this graph.

5.3 Minimum Vertex Cover

The minimum vertex cover (MVC) of an undirected graph G is the smallest
subset of nodes in G such that for every edge G, at least one of the two nodes this
edge connects is in this subset. MVC is interesting because it is NP-complete [29]
and is closely related to other hard graph problems. In this paper we consider
MVC for random instances of G(n,m) graphs [30,31]. G(n,m) consists of graphs
with n vertices and m edges such that m = nc, where c > 0 is a constant. To
represent subsets of nodes in hBOA, we use n-bit binary strings where the ith
bit is 1 if and only if the ith node is selected. A repair operator is used to ensure
that each solution corresponds to a valid graph cover [23] and the fitness of each
cover is defined as the number of nodes not contained in this cover.

Intuitively, bits corresponding to the nodes located closer in the underlying
graph can be expected to influence each other more strongly. So we define the
distance between bits as the minimum number of edges on a path between these
vertices. Pairs of vertices in unconnected components are assigned distance n.

6 Experiments

For all problem instances, bisection [32,2] was used to determine the minimum
population size to ensure convergence to the global optimum in 5 out of 5 inde-
pendent runs, with the results averaged over the 5 runs. The number of generations
was upper bounded according to hBOA scalability theory [33] by n where n is the
number of bits in the problem. Each run of hBOA is terminated when the global
optimum has been found (success) or when the upper bound on the number of
generations has been reached without discovering the global optimum (failure).

Various values of the distance threshold parameter are considered, from the
maximum observed distance to the minimum distance required to solve all prob-
lem instances in a reasonable time. The results for certain thresholds are excluded
since the restriction was too severe, requiring large population sizes, N ≥ 105.

In the following sections, some of our graphs use the term Reduction Factor.
This is the factor by which the numbers have been decreased from the base case.

6.1 Results on 3D Spin Glasses

To examine the speedups obtained with distance-based model restrictions in 3D
spin glasses, we considered three problem sizes: 6×6×6, 7×7×7 and 8×8×8.
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Fig. 1. Execution time speedup by distance restriction on 3D spin glass
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Fig. 2. Reduction in the number of bits examined in model building on 3D spin glass

Since spin glass instances vary in difficulty, we considered 1000 different instances
for the two smaller sizes and 100 different instances for the largest size.

Figure 1 shows the execution-time speedup for various distance thresholds
for all three problem sizes. The results show that the model restriction yields
speedups of 1.5 to 2.2. We also see that as the problem becomes larger, dependen-
cies at larger distances are expected to be important. For the two smaller prob-
lems, the best threshold is 3, whereas for the largest problem the best thresholds
are 4 and 5. In the two smaller problems, distance of at least 2 must be considered
for efficient performance, whereas for the largest problem we must consider dis-
tances of at least 3. The results also show that while the best speedups obtained
for the two smaller problems are almost identical, the best speedup obtained on
the largest instance is smaller. The reason for this may be that only 100 problem
instances could be considered for the largest problem due to its high complexity,
and the results are affected by the specific selection of instances.

Figure 2 shows the reduction in the number of bits examined during the entire
model-building procedure. The results show a dramatic reduction in the number
of bits examined, which decreases monotonically with the threshold. Nonetheless,
while reducing the number of bits examined, more severe model restrictions can
also be expected to lead to an increased time complexity of fitness evaluation
due to the larger population sizes required to achieve reliable performance.
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Fig. 3. Execution speedup by distance restriction on rADPs
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(b) n = 101, k = 5, o = 1

Fig. 4. Reduction in the number of bits examined by distance restriction on rADPs

6.2 Results on rADPs

To examine distance-based model restrictions on rADPs, we considered two dif-
ferent combinations of values of n and o. For the heavier overlap of o = 2, we
considered the problem of 92 bits. On the other hand, for overlap o = 1, we
considered instances of n = 101 bits. In both cases, we set k = 5. 1000 random
problem instances are tested for each problem size.

Figure 3a shows the execution time speedup for various distance thresholds
on rADPs of n = 92 with o = 2. We see that the optimal speedup is obtained
when we allow dependencies only between bits in the same subproblem or those
that are part of overlapping subproblems. On the other hand, figure 3b shows
that for n = 101 and o = 1, the best speedup is obtained when we allow only
dependencies between the bits in the same subproblem. Therefore, it is clear that
stronger overlap leads to the need of considering dependencies between bits at
greater distances; on the other hand, weaker overlap allows more severe model
restrictions.

Figure 4 shows the reduction in the number of bits examined during the entire
model-building procedure for both cases. We see that the results for both cases
are very similar. Similarly as for the 3D spin glass, the number of bits examined
decreases with stronger restrictions.
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Fig. 5. Execution time speedup and reduction in the number of bits examined for MVC

Table 1. Percentage of pairs of nodes with different distance thresholds for random
instances of the G(n, m) model with n = 100 and m = 400

dist 1 2 3 4 5 6 none

total 1200000 8388911 26212460 8883471 137371 580 151960

prob 2.7% 21.3% 79.6% 99.4% 99.7% 99.7% 100%

6.3 Results on Minimum Vertex Cover
To examine the distance-based model restrictions on MVC, we considered 1000
random instances of the G(n,m) model with n = 300 nodes and m = 4n.

Figure 5 (left-hand side) shows the execution-time speedup for various dis-
tance thresholds on MVC. The speedups obtained are much smaller than those
obtained for the other two test problems. Even in the best case (threshold of
4) we only see slightly more than a 10% improvement. While this is somewhat
surprising, the reason can be explained by the obtained reduction of the number
of bits examined, which is shown in Figure 5 (right-hand side). Unlike in the pre-
vious experiments, the reduction in the number of bits examined reaches only
a factor of 1.1 even for the most severe distance restrictions. We also see that
there is a sharp drop in the number of bits examined between the thresholds of
4 and 5.

To examine the MVC results in more depth, we looked at the distribution of
distances over all 1000 problem instances, which is shown in table 1. These results
show that for thresholds of 5 or more, almost all pairs of nodes are allowed to
be connected, which explains why the reduction in the number of bits examined
is negligible. Furthermore, the results show that when decreasing the thresholds
of 1 and 2 leads to a dramatic reduction in the number of possible dependencies,
explaining poor performance of hBOA with such severe model restrictions.

7 Summary and Conclusions

This paper analyzed the speedups obtained in hBOA by defining a distance met-
ric over problem variables and strictly disallowing dependencies between vari-
ables at a distance greater than a given threshold. Three test problems were
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considered: 3D spin glass, random additively decomposable problems (rADPs),
and minimum vertex cover (MVC). It was shown that substantial speedups of
1.5 to 2.2 can be obtained for the 3D spin glass and rADPs, whereas only small
speedups of about 1.1 can be obtained for MVC.

While we only looked at three problems, a distance metric can be defined for
many other problems, including graph coloring, atomic cluster optimization, and
the quadratic assignment problem. An important direction for future research
is to extend the proposed techniques to other important classes of problems.
Furthermore, since the benefits of using distance-based model restrictions depend
on the distance threshold, an important direction for future work is to develop
automated methods for choosing an appropriate threshold or to eliminate the
threshold altogether using soft distance-based restrictions. Finally, similar ideas
might be applied to other EDAs based on multivariate models.

An important thing to remember is that combining efficiency enhancement
techniques can lead to multiplicative speedups [34,7]. That means that even a
moderate speedup of 1.5 or 2 can significantly contribute to the overall efficiency.

Acknowledgments

This project was sponsored by the National Science Foundation, NSF, under
CAREER grant ECS-0547013, by the Air Force Office of Scientific Research,
AFOSR, under grant FA9550-06-1-0096, and by the Univ. of Missouri–St. Louis,
UMSL, through the High Performance Computing Collaboratory sponsored by
ITS, and the Research Award and Research Board programs. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for government pur-
poses notwithstanding any copyright notation thereon. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of NSF, AFOSR, or the U.S.
Government. Some experiments were done using the hBOA software developed
by M. Pelikan and D. E. Goldberg at the Univ. of Illinois at Urbana-Champaign
and most experiments were performed on the Beowulf cluster maintained by ITS
at UMSL.

References

1. Pelikan, M., Goldberg, D.E.: Escaping hierarchical traps with competent genetic
algorithms. In: Genetic and Evolutionary Computation Conf (GECCO 2001), pp.
511–518 (2001)

2. Pelikan, M.: Hierarchical Bayesian optimization algorithm: Toward a new genera-
tion of evolutionary algorithms. Springer, Heidelberg (2005)

3. Sastry, K., Goldberg, D.E., Pelikan, M.: Don’t evaluate, inherit. In: Genetic and
Evolutionary Computation Conf .(GECCO 2001), pp. 551–558 (2001)

4. Pelikan, M., Sastry, K.: Fitness inheritance in the Bayesian optimization algorithm.
In: Genetic and Evolutionary Computation Conf (GECCO 2004), vol. 2, pp. 48–59
(2004)



426 M. Hauschild and M. Pelikan

5. Lima, C.F., Pelikan, M., Sastry, K., Butz, M.V., Goldberg, D.E., Lobo, F.G.: Sub-
structural neighborhoods for local search in the Bayesian optimization algorithm.
Parallel Problem Solving from Nature, 232–241 (2006)

6. Pelikan, M., Sastry, K., Goldberg, D.E.: Sporadic model building for efficiency
enhancement of hierarchical BOA. In: Genetic and Evolutionary Computation Conf
(GECCO 2006), pp. 405–412 (2006)

7. Sastry, K., Pelikan, M., Goldberg, D.E.: Efficiency enhancement of estimation of
distribution algorithms. In: Pelikan, M., Sastry, K., Cantú-Paz, E. (eds.) Scalable
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Abstract. The covariance matrix adaptation evolution strategy (CMA-
ES) is suggested for solving problems described by Markov decision pro-
cesses. The algorithm is compared with a state-of-the-art policy gradient
method and stochastic search on the double cart-pole balancing task us-
ing linear policies. The CMA-ES proves to be much more robust than
the gradient-based approach in this scenario.

1 Introduction

Reinforcement learning (RL) aims at maximizing accumulated reward over time
by improving a behavioral policy mapping states to actions. The learning is
based on interaction with the environment, where perceived transitions between
states and scalar reward signals, which may be sparse, noisy, and/or delayed,
drive the adaptation [1,2,3]. Various evolutionary algorithms (EAs) have been
successfully applied to RL problems (see, e.g., [4,5,6,7]) and performed well in
comparison with alternative approaches (see [8,9] for recent studies). Still, EAs
are often met with scepticism from the RL community. The main argument is
that a general purpose optimization technique such as an EA, even if slightly
tailored to the learning problem, is not likely to compete with highly specialized
methods developed solely for canonical RL scenarios. Strong empirical evidence
for the power of evolutionary RL and convincing arguments why certain EAs
are particularly well suited for certain RL problem classes are needed to dispel
this concern, and this study is a further step in this direction.

Unfortunately, it is not easy to conduct a fair comparison of evolutionary and
standard RL techniques. Of course, they can be applied to the same benchmark
problems, as for example done in [8,9]. However, usually the search spaces are dif-
ferent, which can introduce a strong bias in the comparison. Many RL algorithms
are value function approaches, which learn a function that predicts the expected
future reward given a state or an action in a particular state. The policy is then
defined on top of this value function [1,2,3]. In contrast, EAs are typically used
for direct policy search, that is, they directly optimize a mapping between states
and actions. Thus, it is insightful to compare EAs with other methods searching
directly in policy space such as policy gradient methods (PGMs), which are well
established in the RL community.

We propose variable metric evolution strategies (ESs) for RL [10,11,12,13].
Evolution strategies are per se powerful direct search methods [14]. They usu-
ally outperform gradient-based approaches in the presence of noise and on multi-
modal objective functions (especially if the local optima have only small basins
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of attraction). We argue that this makes them particularly well-suited for RL.
In RL, noise arises from several sources. The state-transitions and the reward
signals may be stochastic. Further, the state observations may be noisy. In addi-
tion, the initial state usually varies. This makes it necessary to approximate the
quality of a behavioral policy based on a finite number of episodes (or roll-outs).
That is, the quality of a policy is a random variable. Evolution strategies adapt
the policy as well as parameters of their search strategy (such as the variable
metric) based on ranking policies, which is much less error prone than estimating
absolute performances or performance gradients [13]. But also for deterministic
tasks, evolutionary RL can be advantageous. As we will illustrate in this paper
for a non-noisy task, benchmarks problems typically used in RL can be multi-
modal and are therefore difficult for purely gradient-based methods.

In order to demonstrate the performance of ESs for RL, we compare the covari-
ance matrix adaptation ES (CMA-ES, [15,16]) with random search and a PGM,
where we try to make the comparison as fair as possible. Here we consider the
natural actor-critic (NAC, [17,18,19]) algorithm, which is an established, state-
of-the-art method and our favorite PGM. The NAC is a powerful algorithm for
fine-tuning policies and it is arguably one of the best developed and most elabo-
rated PGMs. It is well-suited for comparison with the CMA-ES, because the two
algorithms have some conceptual similarities as discussed in [12,13]. In [12,13]
NAC and CMA-ES were compared on simple RL problems where the policies
had only very few parameters. It is an open question how these results scale
with problem dimensionality and difficulty. In this study, we therefore consider
convergence speed and success rate on a more difficult variant of the pole bal-
ancing problem and take a look at the fitness landscape near optimal solutions.
In contrast to EAs, PGMs need a differentiable structure on the space of can-
didate policies. Here, we consider simple linear policies, which are often used in
combination with the NAC.

In the next section, the basic formalism of RL is introduced before we briefly
describe the NAC, random weight guessing, and our approach of using the CMA-
ES for RL. After that, we describe our experiments in Section 3. Then the results
are presented and discussed.

2 Algorithms for Adapting Policy Parameters

Markov decision processes (MDP) are the basic formalism to describe RL prob-
lems. An MDP 〈S,A,P ,R〉 consists of the set of states S, the possible actions
A, and for all a ∈ A and s, s′ ∈ S the probabilities Pa

s,s′ that action a taken
in state s leads to state s′ and the expected rewards Ra

s,s′ received when going
from state s to s′ after performing action a. We consider agents interacting with
the environment on a discrete time scale. The agent follows its actions accord-
ing to a behavioral policy π : S × A → R, where π(s, a) is the probability to
choose action a in state s (for deterministic policies we write π : S → A). The
goal of RL is to find a policy π such that some notion of expected future re-
ward ρ(π) is maximized. For example, for episodic tasks we can define ρ(π) =
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s,s′∈S,a∈A d

π(s)π(s, a)Pa
s,s′Ra

s,s′ , where dπ(s) =
∑∞

t=0 γ
t Pr{st = s | s0, π} is

the stationary state distribution, which we assume to exist, and st is the state
in time step t and γ ∈]0, 1] a discount parameter.

In the following, we briefly describe the RL algorithms compared in this study.

2.1 Natural Policy Gradient Ascent

In this section, we introduce the NAC algorithm according to [19]. Policy gra-
dient methods operate on a predefined class of stochastic policies. They require
a differentiable structure to ensure the existence of the gradient of the perfor-
mance measure and ascent this gradient. Let the performance ρ(π) of the current
policy with parameters θ be defined as above. Because in general neither dπ, R,
nor P are known, the performance gradient ∇θρ(π) with respect to the policy
parameters θ is estimated from interaction with the environment.

The policy gradient theorem [20] ensures that an unbiased estimate of the
performance gradient can be determined from unbiased estimates of the state-
action value function Qπ(s, a) = E [

∑∞
t=0 γ

trt+1|π, s0 = s, a0 = a] (where rt+1 ∈
R is the reward received after the action in time step t) and the stationary
distribution. For any MDP it holds

∇θρ(π) =
∑
s∈S

dπ(s)
∑
a∈A

∇θπ(s, a)Qπ(s, a). (1)

This formulation contains explicitly the unknown value function, which has to
be estimated. It can be replaced by a function approximator fv : S × A → R
(the critic) with real-valued parameter vector v satisfying the convergence con-
dition

∑
s∈S d

π(s)
∑

a∈A π(s, a) [Qπ(s, a)− fv(s, a)] ∇vfv(s, a) = 0. This leads
directly to the extension of the policy gradient theorem for function approxima-
tion. If fv satisfies the convergence condition and is compatible with the policy
parametrization in the sense that

fv = ∇θ ln(π(s, a))v + const, (2)

then the policy gradient theorem holds if Qπ(s, a) in (1) is replaced by
fv(s, a) [20].

Stochastic policies π with parameters θ are parametrized probability distri-
butions. The Fisher information matrix F (θ) induces a metric in the space
of probability distributions that is independent of the coordinate system [21].
The direction of steepest ascent in this metric space is given by ∇̃θρ(π) =
F (θ)−1∇θρ(π), thus inducing ”natural” gradient ascent in this direction. We
have F (θ) =

∑
s∈S d

π(s)
∑

a∈A π(s, a)∇θ ln(π(s, a))(∇θ ln(π(s, a)))T using the
definitions above. This implies ∇θρ(π) = F (θ)v, which leads to the simple
equality ∇̃θρ(π) = v.

The function approximator fv estimates the advantage function Aπ(s, a) =
Qπ(s, a) − V π(s), where V π(s) = E [

∑∞
t=0 γ

trt+1|π, s0 = s] is the state value
function. Inserting this in the Bellman equation for Qπ leads to

Qπ(st, at) = Aπ(st, at) + V π(st) =
∑
s′

P at

st,s′

(
Rat

st,s′ + γV π(s′)
)
.
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Algorithm 1. episodic Natural Actor-Critic
initialize θ, Φ = 0, R = 0, dimension n1

for k = 1, . . . do2

// k counts number of policy updates

for e = 1, . . . , emax do3

// e counts number of episodes per policy update, emax ≥ n + 1
for t = 1, . . . , T do4

// t counts number of time steps per episode

begin5

observe state st6

choose action at from πθ7

perform action at8

observe reward rt+19

end10

for i = 1, . . . , n do11

Φ(e, i) ← Φ(e, i) + γt ∂
∂θi

ln πθ(st, at)12

R(e) ← R(e) + γtrt+113

Φ(e, n + 1) ← 114

// update policy parameters:

θ ← θ + (ΦTΦ)−1ΦTR15

Now we sum over a sample path:

T∑
t=0

γtAπ(st, at) =
T∑

t=0

γtrt+1 + γT+1V π(sT+1)− V (s0).

For an episodic task that is in its terminal state in time step T it holds that
V π(sT+1) = 0, thus, after replacing Aπ using (2), we get:

T∑
t=0

γt(∇θ lnπ(st, at))Tv − V (s0) =
T∑

t=0

γtrt+1.

For fixed start states we have V π(s0) = ρ(π), and we get a linear regression
problem with n + 1 unknown variables w = [vT, V π(s0)]T that can be solved
after n+ 1 observed episodes (where n is the dimension of θ and v):⎡⎣T (ei)∑

t=0

(
γt∇θ lnπ(sei

t , a
ei
t )
]T
,−1

⎤⎦T

v =
T (ei)∑
t=0

γtrei

t+1 , i = 1, . . . , n

The superscripts indicate the episodes. In Algorithm 1 the likelihood information
for a sufficient number of episodes is collected in a matrix Φ and the return for
each episode in R. In every update step one inversion of the matrix ΦTΦ is
necessary [19].
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2.2 Random Weight Guessing

We use simple random search (random weight guessing) as a baseline compari-
son [9]. In every iteration new policy parameters are drawn uniformly from an
interval [−θmax, θmax]k, where k is the number of policy parameters. This candi-
date solution is evaluated and is maintained if it outperforms the best solution
so far and discarded otherwise.

2.3 Evolution Strategies

We promote using the CMA-ES for solving MDPs. The highly efficient use of
information and the fast adaptation of step size and covariance matrix (which
corresponds to learning the metric underlying the optimization problem) makes
the CMA-ES one of the best direct search algorithms for real-valued optimization
[14]. For a detailed description of the CMA-ES we refer to the articles by Hansen
et al. [15,16].

For the first time the CMA-ES was proposed for RL in [10]. It was found that
the CMA-ES outperforms alternative evolutionary RL approaches on variants
of the pole balancing benchmark in fully and partially observable environments.
In a more recent study by [9], these results were compared to 8–12 (depending
on the task) other RL algorithms including value-function and policy gradient
approaches. On the four test problems where the CMA-ES was considered, it
ranked first, second (twice), and third. In [11] the CMA-ES was applied to learn
the behavior of a driver assistance system, where neural attractor dynamics
were used to represent the policies. In [22] and [23] the CMA-ES was used for
RL in robotics. The authors combined the CMA-ES with evolutionary topology
optimization to evolve artificial neutral networks.

Recently, we performed a systematic comparison between the CMA-ES and
policy gradient methods with variable metrics [12,13]. The preliminary experi-
ments indicate that the CMA-ES is much more robust regarding the choice of
hyperparameters and initial policies.

3 Experiments

The experiments conducted in this paper extend our previous work described
in [12], where we analyzed the cart pole balancing task, which is a well-known
benchmark in RL. In this paper we study a more difficult variant, double-pole
balancing, which has already been solved successfully with evolutionary methods,
see [24,10,9].

Double-pole balancing. Two poles of different length (l1 = 1m for the first pole
with mass m1 = 0.1kg and l2 = 0.1m for the second pole with mass m2 = 0.01kg)
are mounted side by side on the same 1-dimensional cart with mass mc = 1kg
and are to be balanced simultaneously. The equations of motion for two poles
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Fig. 1. Performance of CMA-ES, NAC, and random weight guessing on the double pole
balancing task. The median over 500 independent trials is shown for the CMA in a)
and for random weight guessing in b). For the NAC only exemplary the performance
for learning rate α = 0.1 is shown in c). The performance of the NAC with initial
policy parameters drawn uniformly from a hypersphere with radius r = 0.1 centered
at a global optimum at (−4.19408,−13.2605,−1.54318,−36.91, 4.39037, 3.53484) and
parameter values α = 0.01 and σNAC = 1 is shown in d).

are given in [25].1 This task is only solvable if the two poles differ in length.
The state s = [x, ẋ, ζ1, ζ̇1, ζ2, ζ̇2]T is given by the cart’s distance to the center of
the track x ∈ [−2.4, 2.4] and velocity ẋ, the current angle ζ1 of the longer pole
and its angular velocity ζ̇1 and the current angle ζ2 of the second pole together

1 For i ∈ {1, 2} we have:

ẍ =
F − μc sgn(ẋ) +

∑2
i=1 F̃i

mc +
∑2

i=1 m̃i

, ζ̈i = − 3

8 li

(
ẍ cos ζi + g sin ζi +

2μi ζ̇i

mi li

)
F̃i = 2mi li ζ̇2

i sin ζi +
3

4
mi cos ζi

(
2μi ζ̇i

mi li
+ g sin ζi

)
, m̃i = mi

(
1 − 3

4
cos2 ζi

)
Here g = 9.81 m/sec2 is the acceleration due to gravity and μc = 5 · 10−4 Ns/m
the coefficient of friction of the cart, μ1 = μ2 = 2 · 10−6 Nms are the coefficients of
friction for the first and second pole, respectively. The effective force from pole i on
the cart is given by F̃i and its effective mass by m̃i. The sign function sgn “inherits”
the unit of measurement of its argument.
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with its angular velocity ζ̇2. Actions are continuous forces a = F applied to the
cart parallel to the x-axis. The dynamical system is numerically solved using
fourth-order Runge-Kutta integration with step size τ = 0.01 s.

Experimental setup. The agent follows a deterministic policy πdeter(s) = sTθ,
with θ ∈ R6. The policy parameters θ are initialized with zero.2 For learning,
the NAC uses the stochastic policy πstoch

θ (s, a) = N(πdeter
θ (s), σNAC), where the

standard deviation σNAC is viewed as an additional adaptive seventh parameter
of the method and is initialized independently. After every time step the agent
receives a reward signal of rt+1 = 1. A time step corresponds to 0.02s simulation
time. An episode ends after 1000 time steps (20s) or when either of the poles
leaves the feasible region [−36◦, 36◦] or the cart leaves the interval [−2.4, 2.4].
All episodes start in the same initial state s0 = [0, 0, 1◦, 0, 0, 0]T. Since the task
is episodic we use a discount factor of γ = 1 in the performance measure. The
fitness function used by the CMA-ES is the accumulated reward observed over
one episode (one episode is sufficient because the task is deterministic in our
experiments) ρ(π) =

∑T
t=1 rt = T . Thus the fitness of a policy is determined

by the number of time steps T the poles are balanced without the cart leaving
the feasible region. The same function is used for evaluation of the NAC and of
random weight guessing.

We employ the CMA-ES with rank-μ covariance update [16], where all pa-
rameters are set to default values. The population sizes are μ = 3 and λ = 6,
accordingly. Candidate solutions outside the box [−50, 50]6 are discarded and
a new offspring is generated. We test different initial global step sizes σ ∈
{0.001, 0.1, 1, 1, 10, 15, 20, 25, 50}.

In the case of random weight guessing, we vary the interval lengths θmax ∈
{0.001, 0.1, 1, 1, 10, 15, 20, 25, 30, 35, 50}. For the NAC, we test all combinations
of α ∈ {0.0001, 0.001, 0.01, 0.1, 0.3} and σNAC ∈ {0.1, 1, 5, 10, 15, 25, 50, 100}.

Each algorithm gets a budget of 10000 episodes per trial. A trial is stopped
and regarded as successful when the poles are balanced for 1000 time steps.

4 Results

Selected results are shown in Fig. 1. Table 1 lists the success rates for the different
hyperparameters. The episodic NAC never managed to balance the poles, except
for (α = 0.001, σNAC = 100), and (α = 0.01, σNAC = 50), where it found a
solution in 1 and 2 out of 500 trials, respectively.

While the double-pole balancing benchmark is not very difficult for evolu-
tionary RL with neural network policies [10,9], it is obviously a challenging
problem using linear policies. Although the CMA-ES is usually much better
than random weight guessing [13], this difference is not so clear in this study.
The performance of both methods depends on the choice of the hyperparameter,
the initial global step size and the bounds of the search interval, respectively.
2 We assume that the measurement units of the single components of θ are chosen

such that sTθ is a force.
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Fig. 2. 2-dimensional projection of the fitness landscape around a global optimum.
On the left, the parameters θ2 and θ6 are varied while the other parameters are fixed
(θ1 = −4.19408, θ3 = −1.54318, θ4 = −36.91, θ5 = 4.39037). On the right, θ2 and θ5

are varied (θ1 = −4.19408, θ3 = −1.54318, θ4 = −36.91, θ6 = 3.53484).

For θmax ∈ {5, 10, 15} random weight guessing succeeds significantly more fre-
quently (χ2-test, p < .05) to balance the poles compared to the CMA-ES with
the worst hyperparameter choice σ = 20. For all other values of θmax (except
θmax ∈ {5, 20} ) the purely random search performed significantly worse (χ2-
test, p < .05) than the CMA-ES regardless of the choice of intial global step
size σ. The CMA-ES is always significantly better than the episodic NAC. The
performance of the CMA-ES is comparatively independent of the choice of the
initial step size. Random weight guessing requires that the search intervals fit
the problem. If the boundaries are too large, it will not sample a good solution,
if they are too small, there might be no good solutions in the parameter ranges
at all.

The bad performance of the episodic NAC is striking. To understand the
results, we visualized the objective function landscape around a global opti-
mum found by the CMA-ES, see Fig. 2. In these projections, the objective
function is clearly multi-modal and contains plateaus of equal (bad) quality.
Thus, in these two-dimensional plots the landscapes are almost worst case sce-
narios for purely gradient-based methods. The objective function is also difficult
for ESs, but at least there is some structure in the fitness landscape they can
exploit and they are much less likely to get stuck in local optima with small
basins of attraction. However, when initializing the policy parameters close to
the difficult global optimum shown in Fig. 2 the NAC works very efficiently,
see Fig. 1 d).

Table 1. Success rates for CMA-ES and random weight guessing

Success rate η of CMA-ES for different values of the initial global step size σ.

σ 0.001 0.01 0.1 1 5 10 15 20 25 50

η 151
500

172
500

201
500

245
500

154
500

144
500

145
500

141
500

161
500

161
500

Success rate η of stochastic search for different intervals [−θmax, θmax].

θmax 0.001 0.01 0.1 1 5 10 15 20 25 30 35 50

η 0
500

0
500

0
500

0
500

171
500

182
500

191
500

159
500

113
500

85
500

77
500

20
500
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5 Conclusion

Evolutionary reinforcement learning (RL) using the covariance matrix adapta-
tion evolution strategy (CMA-ES) resembles policy gradient methods, in partic-
ular the episodic natural actor-critic (NAC) algorithm. Both strategies search
directly in the space of policies, are variable metric methods, and rely on nor-
mally distributed variations for exploration. Of course, the frequency and the
level at which the variations are applied vary. We claim that in practice the
CMA-ES is much more robust w.r.t. the choice of hyperparameters, policy ini-
tialization, and especially noise, while, given appropriate hyperparameters, the
NAC can outperform the CMA-ES in terms of learning speed if initialized close
to a desired policy. This is supported by the experiments on the double-pole
balancing benchmark in this study, which turns out to be surprisingly difficult
when linear policies are considered. Because of plateaus and undesired local op-
tima in the objective function landscape, the CMA-ES is superior compared
to approaches purely based on estimated performance gradients. However, even
the CMA-ES has difficulties on this landscape as shown by the comparison with
random search.

In future work we will extend the experiments to different, higher dimensional
benchmark tasks and to other direct policy search methods.

Acknowledgment. The authors acknowledge support from the German Federal
Ministry of Education and Research within the Bernstein group “The grounding
of higher brain function in dynamic neural fields”.
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Abstract. Experiments with resource-defined fitness sharing (RFS) ap-
plied to shape nesting problems indicate a remarkable ability to discover
exact covers of resources [1, 2]. These exact covers are represented by
a maximally sized set of cooperating (non-competing) species. Recent
papers by Horn [3, 4] introduce the first formal analyses of this empirical
phenomenon. In [3], a minimal case of two species, a and b, against a
third, c, is considered: the two-against-one scenario. It is shown that if
the team of a and b form an exact cover, then c will be extinct at niching
equilibrium. In [4], this result is generalized to the case of two-against-
many: if a and b form an exact cover against an arbitrary number of
competing species, under very general assumptions, a and b will be the
only survivors at niching equilibirum. In the current paper, we extend
these results to the most general scenario: many-against-many. We prove
that, under certain very general assumptions, any size team of species
forming an exact cover will dominate a population with any number
of competing species: at niching equilibirum, all such competitors will
be extinct. The results are more general than shape-nesting problems,
applying as well to the NP-complete problem exact cover by k-sets.

1 Introduction

This paper completes a series of three analytical papers that attempt to explain
the unusual results reported in the 2002 paper [1] that introduced resource-
defined fitness sharing (RFS)1. In the 2002 paper, the RFS niching method
exhibits a robust ability to converge to an optimal solution on shape nesting
problems if that optimal solution consists of a tiling (i.e., exact cover). Since
RFS operates with quantities defined by sets (e.g., set intersections), this ability
to tile shapes generalizes to an ability to find exact covers of arbitrary sets. That
is, if an exact cover can be found in the current population, it appears that RFS
will always drive the population distribution to represent the exact cover.

Two previous papers begin a formal analysis of this empirical phenomenon.
The first [3] examines the minimal case of “cooperation versus competition”,
namely the two-against-one case. In this scenario two species cooperate to com-
pete against one other species. The two species form an exact cover of all re-
sources, while the third species is completely overlapped (in resource coverage)
1 RFS, applied to shape nesting problems, is the subject of U.S. Patent No. 7,181,702.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 438–447, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. RFS can select for tilings of a surface

by the combination of the first two species. The second paper [4] generalizes
this analysis to the case of two-against-many, in which two cooperating species
compete against an arbitrary number of other species. Again, the two coopera-
tive species cover all of the resources, while the others compete for coverage. In
this paper we finish generalizing this analysis by investigating the many-against-
many case, in which any number of species form an exact cover and compete
against arbitrarily many other species.

2 Background

We summarize the RFS algorithm and the problem domain of shape nesting,
which is a subset of resource covering problems in general. This summary is
meant to motivate the analysis at the heart of this paper but is not essential to
understanding the analysis. Horn [1] gives details about the origin of RFS.

2.1 RFS Applied to Shape Nesting

Shape nesting algorithms attempt to place shaped pieces on a finite substrate
so as to maximize the number of such pieces on the substrate with no over-
laps [5, 6]. On one particular test problem, Horn [1] applies RFS to a two-
dimensional shape nesting problem limited to axis-aligned squares. The width
of the substrate square is four times that of the piece square, so that a single op-
timal solution exists, consisting of sixteen pieces exactly covering the substrate,
as shown in Figure 1, right. Starting with a random population of 16,000 square
pieces (Figure 1, left), the GA with RFS is able to select and promote the six-
teen species corresponding to the solution in Figure 1, right, where each of the
16 species is represented by approximately 1000 copies (individuals) in the final
population.

2.2 The RFS Algorithm

The fitness of each individual in the current population is calculated as follows.
Each chromosome specifies a placement of a piece. If that placement causes a
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Fig. 2. The basic terms used in specifying RFS

piece to extend beyond the boundaries of the substrate, the individual is assigned
a fitness of 0. All other individuals (i.e., chromosomes specifying piece placements
entirely on the substrate), receive a shared fitness greater than 0, for use in a
standard selection method (e.g., tournament selection, proportionate selection).

Individual Fitness. The shared fitness for each individual depends on the
amount of resources (e.g., area) covered by the individual, and on the amount
that coverage overlaps with that of other individuals in the population. The RFS
shared fitness formula, fsh,i, takes the form of a fraction:

fsh,i =
fi

niche count(i)
=

fi∑
j∈P fij

, (1)

where i is an individual in population P , fi is the objective (unshared) fitness
of i, and fij is the pairwise overlap in “coverage” between individuals i and j
in P , and niche count(i) is a measure of the degree of competition for resources
covered by i. Under RFS, niche count is defined as the cumulative pairwise
overlap between i and other individuals in P . Figure 2 illustrates the terms fi,
fj, and fij for two individuals i and j.

Species Fitness. Next we define what we mean by species as opposed to in-
dividuals. We consider a species to be a set of identical individuals (this means
identical coverage of resources). Thus each unique chromosomes defines a unique
species. Any two members of the same species overlap completely, while between
any two members of different species there is less than complete overlap .

We can now re-write Equation 1 in terms of species:

fsh,x =
fx

niche count(x)
=

fx∑
y∈S(P ) nyfxy

. (2)

Equations 2 and 1 are equivalent. In Equation 1, the summation in the niche
count is taken over the population of individuals (using the variable j). In Equa-
tion 2, the population is partitioned into a set S(P ) of species y, with y ∈ S(P ).
The shared fitness for any member of a species x is thus equal to the objective
fitness of that species divided by the niche count for that species. The species
niche count is equal to the sum over all species of the interaction term (fxy)
multiplied (weighted) by the number of members of that species (i.e., the species
count: ny) in the current population P .
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Identical Coverage. This paper considers only the situations in which individ-
uals (and therefore species) have identical objective fitnesses (e.g., the nesting of
identical shapes, or the selection of fixed size subsets for set covering). Therefore
we normalize the objective fitness fi to 1, ∀i ∈ P . Thus 0 ≤ fij ≤ 1, ∀i, j ∈ P ,
and fsh,i = 1

niche count(i) .

2.3 A Static Analysis of Niching Equilibrium

A population distribution is said to be at evolutionary equilibrium if applica-
tion of the selection operator yields the same distribution (in expectation) [7]:
E[px(t + 1)] = px(t), where px(t) is the proportion of species x in the pop-
ulation at time t, and E[px(t + 1)] is the expected proportion of x at time
t + 1 (e.g., the next generation). Under RFS with proportionate selection, this
equation implies that at equilibrium the shared fitness fsh,x of all species must
be equal to the average fitness, and therefore must be equal to each other:
∀(x, y ∈ S(P )) : fsh,x = fsh,y. Since we assume that the objective fitnesses
are identical, then equilibrium requires that the niche counts must all be equal:
∀x∈S(P )

∑
y∈S(P ) nyfxy = C′, where C′ is some constant (actually the inverse of

the average fitness at equilibrium).
We assume the infinite population model to allow the existence of an ex-

act solution to the niching equilibrium equations, and to avoid an integer pro-
gramming problem in our analysis. Thus our equilibrium equations become
∀x∈S(P )

∑
y∈S(P ) pyfxy = C′, where 0 ≤ py ≤ 1 is the proportion of species

y in current population P . Finally, we have an additional equation that helps
determine a unique solution, namely,

∑
x∈S(P ) px = 1.

Before proceeding with the static analysis, we note that to determine the true
stability of an equilibrium state, and to find all such states, a dynamic analysis
is needed. In particular, Friedman [8] uses dynamic analysis in the context of
evolutionary games to illustrate different types of dynamic and static equilibria,
and to relate them to one another. Dynamic analysis of niching equilibrium is
beyond the scope of this paper but is an important direction in which to extend
its results.

Three Species: Two Against One. In [3] the entire population P is divided
up among three species: S(P ) = {a, b, c}. If pa, pb, and pc are the proportions
of the population for species a, b, and c respectively, then pa + pb + pc = 1, and
at equilibrium,

niche count(a) = pafaa + pbfab + pcfac = pa + pbfab + pcfac = C′

niche count(b) = pafab + pbfbb + pcfbc = pafab + pb + pcfbc = C′

niche count(c) = pafac + pbfbc + pcfcc = pafac + pbfbc + pc = C′

Before attempting to solve these equations, Horn [3] further constrains the over-
lap (a.k.a., interaction) terms fxy: he focuses on the case of “exact cover” by
two out of three species (e.g., Figure 3, top left). Two properties follow from the
exact coverage by a and b:
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Fig. 3. Situations in which Properties I and II hold

Property I: Minimum a ↔ b Competition fab = 0

Property II: Maximum (a, b) ↔ c Competition fac + fbc = 1

Under Property II species c is completely covered by a and b.
These two properties allow Horn to solve uniquely the set of niching equi-

librium equations to find that (pa, pb, pc) = (1
2 , 1

2 , 0). Thus if an exact cover of
resources exists in a population, then under RFS selection only the species rep-
resenting the exact cover can be expected to resist invasion by another species
at niching equilibrium (with the other species extinct at niching equilibrium).

Many Species: Two Against k. Horn [4] generalizes his previous results (re-
visited above) to niching scenarios in which the exact cover team of species a and
b compete against an arbitrary number, k > 0, of competing (i.e., overlapping)
species. This scenario is depicted in Figure 3, top right.

To handle an arbitrary number of competitors, Horn drops the use of let-
ters for the competing species and instead numbers the k competing species
1..k. Horn [4] also introduces matrices to represent the set of equations defining
niching equilibrium. He proceeds to solve the set of equations to show that at
equilibrium, the competing species are extinct while the two exact cover species,
a and b, split the population.

Because the generalization in [4] to k competitors is so similar to our new
generalization to h exact cover species versus k competitors, we simply present
our new results and derivation without repeating the details in [4].

3 Generalization to Many EC Species: h against k

We now try to generalize the results of [4] to niching scenarios in which the
exact cover set consists of an arbitrary number h > 0 of species. Once again,
these exact cover (EC) species compete against an arbitrary number, k > 0, of
competing (i.e., overlapping) species. We extend our notation thus: the set of
species S in the population P is partitioned into two subsets, E

⋃
C = S(P ),

where E is the set of species comprising the exact cover of resources and C is
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the set of species that compete with E by overlap. Let ‖E‖ = h and ‖C‖ = k.
Figure 3, bottom, shows an example scenario.

3.1 Interaction Matrices

We re-write the species interaction matrix MRFS introduced in [4], and consider
a helpful partition:

MRFS =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fE1E1 fE1E2 . . . fE1Eh
fE1C1 fE1C2 . . . fE1Ck

fE2E1 fE2E2 . . . fE2Eh
fE2C1 fE2C2 . . . fE2Ck

...
...

. . .
...

...
...

. . .
...

fEhE1 fEhE2 . . . fEhEh
fEhC1 fEhC2 . . . fEhCk

fE1C1 fE2C1 . . . fEhC1 fC1C1 fC1C2 . . . fC1Ck

fE1C2 fE2C2 . . . fEhC2, fC1C2 fC2C2 . . . fC2Ck

...
...

. . .
...

...
...

. . .
...

fE1Ck
fE2Ck

. . . fEhCk
fC1Ck

fC2Ck, . . . fCkCk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[
EE EC
CE CC

]
.

(3)
The upper left submatrix MEE consists of all interactions solely among the

exact-cover species E. The lower right submatrix MCC contains all interactions
solely between pairs of competing species C. The lower left and upper right
submatrices are transposes of each other, and define the interactions between
each exact cover species and each competitor species.

We note that this square matrix is symmetric about the main diagonal, since
niche overlap is a symmetric relationship: fxy = fyx. We therefore choose to al-
ways write the species subscripts in the same order, with exact cover species listed
before competitor species (e.g., fE3C2 is written rather than fC2E3). We further
note that the entries on the main diagonal are all 1, since ∀X ∈ S(P ) : fxx = 1.
Generalizing Property I (minimal competition among EC species) from [4], gives
fEiEj = fEjEi = 0, for i �= j. Thus our matrix MRFS above can be re-written
as the left-hand side of Equation 4 below.

The submatrix MEE in the MRFS of Equation 4 is an identity matrix, thanks
to Property I. Furthermore, we can generalize Property II (maximum E versus
C competition), to ∀i∈(1..k)

∑h
j=1 fEjCi = 1. This means that the sum of each

column in the upper right submatrix MEC , and the sum of each row in the lower
left submatrix MCE , are equal to one.

The lower right submatrix MCC contains all interactions solely among the
competing species (C1, ..., Ck). There are no apparent implications of Properties
I or II for this submatrix, because the interactions there are independent of the
species in set E.

3.2 Niching Equilibrium Matrix

Under RFS, the matrix MRFS essentially “defines” the niche counts. Recall
that at niching equilibrium, the niche counts (and hence the shared fitness) of
all species present in the population must be equal:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 fE1C1 fE1C2 . . . fE1Ck

0 1 . . . 0 fE2C1 fE2C2 . . . fE2Ck

...
...

. . .
...

...
...

. . .
...

0 0 . . . 1 fEhC1 fEhC2 . . . fEhCk

fE1C1 fE2C1 . . . fEhC1 1 fC1C2 . . . fC1Ck

fE1C2 fE2C2 . . . fEhC2 fC1C2 1 . . . fC2Ck

...
...

. . .
...

...
...

. . .
...

fE1Ck
fE2Ck

. . . fEhCk
fC1Ck, fC2Ck

. . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pE1

pE2

...
pEh

pC1

pC2

...
pCk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C′

C′

...
C′

C′

C′

...
C′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

where C′ is some constant. That is, at niching equilibrium, the niche count for
every species is the same (∀x ∈ S, niche counteq(x) = C′).

3.3 Solving the Niching Equilibrium Equations

We proceed to solve the above system of linear equations for the general case of
k competitors, using Gauss-Jordan elimination.

We note that the zeroing of the first column in the MCE submatrix is accom-
plished by subtracting fE1Crow times the first row in MRFS from each “competitor
row” row in MRFS (that is, 1 ≤ row ≤ k). We can continue the Gauss-Jordan
elimination procedure in this manner, zeroing out the column col in the CE sub-
matrix by subtracting fEcolCrow times the colth row in MRFS from each competi-
tor row row in MRFS (that is, 1 ≤ row ≤ k and 1 ≤ col ≤ h).

After zeroing all h columns in the MCE (lower left) submatrix in this manner,
we are left with

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 fE1C1
fE1C2

. . . fE1Ck
0 1 . . . 0 fE2C1

fE2C2
. . . fE2Ck

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
. . .

.

.

.
0 0 . . . 1 fEhC1

fEhC2
. . . fEhCk

0 0 . . . 0 1 −
∑h

i=1 fEiC1
fEiC1

fC1C2
−
∑h

i=1 fEiC1
fEiC2

. . . fC1Ck
−
∑h

i=1 fEiC1
fEiCk

0 0 . . . 0 fC1C2
−
∑

h
i=1 fEiC2

fEiC1
1 −
∑

h
i=1 fEiC2

fEiC2
. . . fC2Ck

−
∑

h
i=1 fEiC2

fEiCk

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
. . .

.

.

.
0 0 . . . 0 fC1Ck

−
∑h

i=1 fEiCk
fEi,C1

fC2Ck
−
∑h

i=1 fEiCk
fEiC2

. . . 1 −
∑h

i=1 fEiCk
fEiCk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

More succinctly, we can say that after enough Gauss-Jordan elimination steps,
the submatrices MEE and MEC remain unchanged, while submatrix MCE con-
sists of all zeros, and the submatrix MCC has entries

fCrowCcol
−

h∑
i=1

fEiCrowfEiCcol

for the (row, col) entry of MCC . On the right-hand side, the column vector looks
like this:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C′
C′

.

.

.
C′

C′ −
∑h

i=1 C′ ∗ fEiC1
C′ −

∑h
i=1 C′ ∗ fEiC2

.

.

.
C′ −

∑
h
i=1 C′ ∗ fEiCk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6)

where the right-hand side entry for each row row (for the last k rows) is

C′ −
h∑

i=1

C′ ∗ fEiCrow ⇒ C′ − C′ ∗
h∑

i=1

fEiCrow .

By Property II,
∑h

i=1 fEiCrow = 1 for row = 1..k, simplifying our expression
above to zero: C′ − C′ ∗ 1 = 0. Placing these right-hand side zeros into our
niching equilibrium matrix equation, submatrix MCC yields
⎡⎢⎢⎢⎢⎣

1 −
∑h

i=1 fEiC1
fEiC1

fC1C2
−
∑h

i=1 fEiC1
fEiC2

. . . fC1Ck
−
∑h

i=1 fEiC1
fEiCk

fC1C2
−
∑h

i=1 fEiC2
fEiC1

1 −
∑h

i=1 fEiC2
fEiC2

. . . fC2Ck
−
∑h

i=1 fEiC2
fEiCk

.

.

.

.

.

.
. . .

.

.

.
fC1Ck

−
∑

h
i=1 fEiCk

fEiC1
fC2Ck

−
∑

h
i=1 fEiCk

fEiC2
. . . 1 −

∑
h
i=1 fEiCk

fEiCk

⎤⎥⎥⎥⎥⎦

∗

⎡⎢⎢⎢⎣
pC1
pC2

.

.

.
pCk

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎣
0
0

.

.

.
0

⎤⎥⎥⎦ .

(7)

We can see that submatrix MCC above represents a homogenous system of linear
equations, since the values on the right-hand side are all zero. If the original
matrix MRFS is non-singular, then so is this submatrix, and there is a unique
solution to it. This solution must be the trivial solution:

pC1 = pC2 = ... = pCk
= 0.

Substituting this solution into the E rows of our matrix above (that is, the
first h rows), we find that pE1 = pE2 = ... = pEh

= C′. If we now make the
single, infinite population assumption:

∑
∀x∈S(P ) px = 1. For us this means that

pE1 = pE2 = ... = pEh
= C′ =

1
h

.

Thus we have shown that under the assumption that the niching interaction
matrix is non-singular, if an exact cover exists in the population, then the only
solution to the niching equilibrium equations has the equilibrium population
uniformly distributed among the species in the exact cover set E. All other
species (those not in the set E) are extinct at niching equilibrium.

Theorem 1. If a set E of distinct species exactly cover resources, then un-
der RFS with proportionate selection and an infinite population, a sufficient
condition for E to take over the population at niching equilibrium, is the non-
singularity of the niching interaction matrix.

PROOF: The proof is given above.
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4 Discussion

One major result of our analysis is the conclusion that if a set E of species
together exactly cover the resources of any and all other species, and if these
species form the only exact cover, then these species will take over the population
at niching equilibrium, resisting “invasion” by any and all other “redundant”
species. This is remarkable, in that k + h species can all have the same objective
fitness; they each cover the same amount of resources. Yet RFS selection strongly
favors the h against the other k. This preference must be due solely to the greater
coverage of one particular ensemble of species over any other.

The limitations of this conclusion arise from the assumptions made in the anal-
ysis. For example, the use of proportions instead of actual numbers means we are
using the “infinite population” model, in which we assume that the population
is large enough to exactly realize any proportions generated by the manipulation
of the equations in our model. Such an assumption can be tested by experiment
and by dynamic analysis, both of which are missing in the current study. A dy-
namic analysis is of particular importance. Our static analysis does not preclude
the existence of dynamic attractors, such as cycles, or of other complex, dynamic
behaviors. Another limitation of our model is the assumption that only a single,
exact cover exists. What about “ties”? Our model does not preclude them, only
our assumptions do. It might not be difficult to extend the analysis to consider
problems with multiple solutions, or to modify RFS to deal with multiple so-
lutions. Another limitation with deep implications is the non-singularity of the
niching interaction matrix MRFS . Under what conditions is this matrix non-
singular? Does the non-singularity condition translate to meaningful conditions
in the physical world of niche overlaps?

We have also not considered exploration operators such as recombination and
mutation. While these can be added to the analysis in future work, it may be
that these are applied sparingly enough to have neglible effect on the dynamics
of RFS and selection. We should consider also the implication of the current
analysis that RFS and selection alone can solve a hard search problem (i.e.,
exact cover) and so could be used without variational operators. That is, with a
sufficiently large and diverse initial population, using RFS to select the optimal
(covering) subset would by itself be a significant evolutionary computation.

A final observation: the RFS algorithm and the results herein are not limited to
spatial “nesting” of geometric shapes. They apply to the nesting of any kind of set.
Shape overlap is really just a special case of set intersection. Thus the most general
problem domain to which this analysis is applicable is exact cover by k-sets2.
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Abstract. Measuring fitness progression using numeric quantification
in an Evolutionary Computation (EC) system may not be sufficient to
capture the rate of evolution precisely. In this paper, we define the rate
of evolution Re in an EC system based on the rate of efficient genetic
variations being accepted by the EC population. This definition is mo-
tivated by the measurement of “amino acid to synonymous substitution
ratio” ka/ks in biology, which has been widely accepted to measure the
rate of gene sequence evolution. Experimental applications to investi-
gate the effects of four major configuration parameters on our rate of
evolution measurement show that Re well reflects how evolution pro-
ceeds underneath fitness development and provides some insights into
the effectiveness of EC parameters in evolution acceleration.

1 Introduction

Evolutionary computation is a method that simulates natural evolution to search
for solutions to optimization problems. This field has seen significant progress
in the past decades. Improving the evolutionary capabilities of an evolutionary
system has attracted substantial attention recently [1], particularly enabling an
evolutionary computation system to generate evolvable adaptation to environ-
ments. Measuring the rate of evolution can help to quantify evolutionary capa-
bilities, and thus can be used to accelerate evolution through designing better
computation models. At the time of writing, the rate of evolution has not yet
seen a formal definition in the literature other than measuring fitness progression
over generations. At first glance, a definition reflecting how fast an evolution-
ary population is improving its fitness may seem sufficient. However, considered
as the capability to generate adaptation, evolutionary progress cannot be de-
termined by how good population fitness is per se, but should be regarded as
a “second-order” effect of fitness improvements. Therefore, we believe that the
rate of evolution should be better defined by looking beyond fitness and should
be measured by the rate of genetic variations being generated and accepted.

Some methods to quantify evolutionary capabilities have been proposed in
the literature. Bedau and Packard [3] proposed a method to identify the ca-
pabilities of creating adaptation during evolutionary processes. It is based on
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calculating evolutionary activity statistics of components in an evolutionary sys-
tem. Their comparison between artificial and natural evolutionary systems by
studying evolutionary activities has shown that the “long-term” trend of gener-
ating adaptation is deficient in artificial systems, i.e., the capability of generating
evolvable adaptation is not as strong in artificial evolutionary systems.

In molecular evolution biologists use the ka/ks ratio to measure the evolution
rate of gene sequences [8,9]. Such a measurement compares two homologous
protein-coding gene sequences from two related species. The ka/ks ratio result-
ing from measuring the number of nonsynonymous (amino acid) substitutions
per nonsynonymous site (ka) to the number of synonymous substitutions per
synonymous site (ks) characterizes the rate of evolution between these two se-
quences. Here, substitutions only include those observable genetic changes hav-
ing been accepted into the gene sequences. Since ks measures neutral evolution
(without involving functional improvements under selection pressure), the ka/ks

ratio reflects the rate of adaptive evolution against the background rate of evo-
lution. This measurement has been widely applied in the analysis of adaptive
molecular evolution, and is regarded as a general method of measuring the rate
of sequence evolution in biology.

In this paper, we transfer the measurement of this ka/ks ratio to EC. We utilize
a Genetic Programming system to implement measuring the rate of evolution.
Specifically, the rate of evolution in a GP system and the measurement of this
rate are defined here. Comparative experiments on varying parameters, including
tournament selection size, population size, mutation rate, and crossover rate,
show the effectiveness of this approach. It is able to capture the rate of generating
adaptive variations, which cannot be well observed in fitness development. We
conclude this paper with a brief discussion on some future research.

2 The ka/ks Ratio in Biology

In molecular biology, a codon in DNA consists of three nucleotides, and each
codon determines one amino acid of a corresponding protein. A sequence of
amino acids forms a protein, which produces the functional phenotype of an
organism. A single nucleotide substitution on a codon produces another codon.
Due to the redundancy of the genetic code, different codons may encode the
same amino acid (e.g., codons AAA and AAG both code for amino acid lysine).
Thus, a nucleotide substitution on a codon may be synonymousand not produce
an amino acid replacement. A different nucleotide substitution may produce dif-
ferent amino acids, and this codon change is a nonsynonymous (amino acid)
change. To characterize each site on a codon, in particular, for a codon ε, if fε(i)
(i = 1, 2, 3) denotes the fraction of nonsynonymous single-nucleotide substitu-
tions among all possible single-nucleotide substitutions at site i, therefore, the
number of nonsynonymous sites on codon ε is

∑3
i=1 fε(i), and subsequently, the

number of synonymous sites on codon ε is 3−
∑3

i=1 fε(i) [8].
Biologists compare two homologous protein-coding nucleotide gene sequences

from related species. These two relevant sequences carry similar genes, i.e., are
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homologous. However, there can be differences at some nucleotide loci as a result
of evolution. Some of these differences on the two gene sequences may result in
generating different amino acids for encoding proteins, i.e., are nonsynonymous
substitutions, and some of them may not modify the proteins, i.e., are syn-
onymous. The differences between two homologous gene sequences are counted
by pairwise comparison of codons. Specifically, the number of nonsynonymous
nucleotide substitutions is denoted by Ma, and that of synonymous nucleotide
substitutions is Ms. Further, the total number of nonsynonymous (synonymous,
resp.) sites for an entire gene sequence is calculated by summing up all the num-
bers of nonsynonymous (synonymous, resp.) sites on each codon. For the two
comparative gene sequences, Na means the average number of nonsynonymous
sites of two sequences. Similarly, Ns is obtained as the number of synonymous
sites. Therefore, the nonsynonymous substitution rate ka = Ma/Na is the num-
ber of observed nonsynonymous substitutions divided by the total number of
such type of changes that these sequences are capable of. This is a metric of
how much evolution has occurred in protein sequences normalized by all possi-
ble genetic variations between the two species. Rate ks = Ms/Ns is the number
of observed synonymous changes divided by the total number of such changes
that the sequences are capable of. This metric measures the “background” rate
of “silent” genetic evolution without phenotypical improvement between the two
species.

Therefore, the ratio ka/ks quantifies the rate of evolution by stating efficient
evolutionary changes in relation to silent background evolutionary changes. This
ratio also reflects the selection pressure on the evolution of organisms. In the
case of ka/ks > 1, fixation of nonsynonymous substitutions is faster than that
of synonymous substitutions, which means that positive selection fixes amino
acid changes faster than silent ones. While mostly one finds ka/ks < 1, the case
where deleterious substitutions are eliminated by purifying selection (negative
selection), and the rate of fixation of amino acid changes is reduced. If ka = ks,
the fixation of these two types of changes are at the same rate. Measuring a large
ka/ks ratio suggests that adaptive genetic variations have been generated and
fixed at a high rate.

3 Measuring Rate of Evolution in EC

Inspired by the ka/ks measurement on the rate of sequence evolution in biol-
ogy, we define the rate of evolution and propose a measurement method for
EC systems. An EC system better capable of evolution can generate efficient
adaptation under selection pressure, so it has a potential to improve fitness. Evi-
dently, this capability or potential is less observable than fitness itself. Since fast
evolution is caused by generating adaptations at a high rate we can focus on
the adaptive genetic changes underneath the phenotypical fitness to investigate
the evolutionary progress. Here, we define the rate of evolution Re as the rate of
adaptive genetic changes being accepted into an EC system. Since selection acts
at the phenotypical level, the adaptation of a genetic change to its environment
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can be determined by its acceptance into the population. Some changes that are
able to improve the adaptation will be accepted, i.e., nonsynonymous substitu-
tions, while other attempted deleterious changes will be eliminated. Some silent
changes will be accepted as synonymous substitutions without experiencing se-
lection pressure on phenotypical improvement. Dividing the rate of adaptive
substitutions by the rate of synonymous substitutions can quantify the rate of
adaptive evolution in an EC system. Therefore, if selection favors the innovated
adaptive genetic changes at a high rate relative to the background rate, we say
that this EC system has a high rate of evolution.

As a case study, we utilize a tree-based GP system to implement this idea
because GP individuals possess similar features to gene sequences. For example,
for a GP tree in our case, genetic changes can be nonsynonymous as in biological
systems, which lead to representing different functions, or synonymous, which
keep the encoded function unchanged. We calculate the number of substitutions
and divide it by the “sites” for a GP system to obtain the two types of rates. Here,
we measure the rate of evolution for a GP system in each generation. Specifically,
before establishing a generation t, standard mutation and crossover, limited to
subtree replacement, are applied to the individual trees in a GP population of
generation t − 1. Truncation tournament selection is then performed on both
the parents and offspring to form the next generation t. In such an iteration,
we define the rate of evolution Re(t) of generation t by observing the individual
genetic changes and their acceptance into the population.

It is well known that changes to a GP tree may be silent due to the existence
of neutral intron codes [2]. That is, syntactic changes to a tree may or may not
lead to functional changes. Therefore, after mutation or crossover of the trees,
these subtree replacements are either nonsynonymous or synonymous. For each
individual tree i, if a change is silent, the value of nonsynonymous change mi

a(t)
is set to 0 and the value of synonymous change mi

s(t) is set to 1. In contrast, if
a change leads to functional differences, mi

a(t) is 1 and mi
s(t) is 0. If tree i is not

modified from generation t− 1 to generation t, both mi
a(t) and mi

s(t) remain 0.
After the truncation tournament selection chooses new individuals from both the
parents and offspring, a new generation t is established. As a result, the total
number of nonsynonymous substitutions Ma(t) and synonymous substitutions
Ms(t) for the entire population of generation t can be calculated as

Ma(t) =
S∑

i=1

mi
a(t) , Ms(t) =

S∑
i=1

mi
s(t) , (1)

where S is the population size. Note that, Ma(t) and Ms(t) only count those
genetic changes accepted into the population, i.e., substitutions, which have
survived through the selection.

As we discussed in the biological ka/ks ratio definition (Sect. 2), the num-
bers of nonsynonymous sites and synonymous sites represent the potential of the
sequence to produce nonsynonymous or synonymous changes, and are used to
“normalize” the numbers of substitutions. Here, we adopt a sensitivity notion to
describe the potential of a GP tree to change its semantic meaning in the event of
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a subtree replacement. Trees have varying sensitivities against subtree replace-
ments, an observation made by Langdon and Banzhaf [6] in research on repeated
patterns in tree-based GP systems. We keep a record of all changes to a tree from
the beginning of evolution including all attempted subtree replacements, such
that the accumulated fraction of these changes being nonsynonymous or syn-
onymous can be regarded as the nonsynonymous sensitivity and synonymous
sensitivity of this tree. Specifically, for an individual tree i after initialization,
we use cia(t) and cis(t) to denote the accumulated numbers of nonsynonymous
and synonymous changes of generation t, respectively, obtained by summing up
all the previously recorded changes that have happened to this tree,

cia(t) = cia(t− 1) +mi
a(t) , cis(t) = cis(t− 1) +mi

s(t) , (2)

with
cia(0) = cis(0) = 0 . (3)

Therefore, the nonsynonymous and synonymous sensitivities of tree i of genera-
tion t can be obtained as follows from the fraction of each type of changes, and
these metrics indicate the degree of tree i being changed nonsynonymously or
synonymously,

ni
a(t) =

cia(t)
cia(t) + cis(t)

, ni
s(t) =

cis(t)
cia(t) + cis(t)

. (4)

We add up the sensitivities of all individuals in the population to obtain the
total nonsynonymous and synonymous sensitivities as the “sites” of the current
generation,

Na(t) =
S∑

i=1

ni
a(t) , Ns(t) =

S∑
i=1

ni
s(t) . (5)

Last, we define the nonsynonymous and the synonymous substitution rates ka

and ks of generation t as

ka(t) =
Ma(t)
Na(t)

, ks(t) =
Ms(t)
Ns(t)

. (6)

The rate ka(t) measures the rate of generating nonsynonymous adaptive changes.
The rate ks(t) describes the rate of producing neutral changes in an evolutionary
process. Without changes at the functional level, these neutral changes will not
experience pressure in evolution. Thus, ks(t) practically provides “clock ticks” for
the acceptance of genetic changes in the GP system. Since ka(t) measures the rate
of accepted effective changes, the ratio ka(t)/ks(t) represents the “evolutionary
distance” in relation to the “evolutionary time”, therefore, the rate of effective
adaptation of generation t. Thus, we propose the rate of evolution Re in the GP
tree population of generation t to be

Re(t) =
ka(t)
ks(t)

. (7)
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4 Experimental Results

As a demonstration, we calculate Re using GP to solve a benchmark quintic
polynomial symbolic regression problem x5 − 2x3 + x defined by Koza [5]. Each
individual in this GP population is a syntax tree initialized by the method ramped
half-and-half with maximum depth 6. Candidate functions are evolved toward a
target function f(x) = x5 − 2x3 + x within interval [−1, 1] by matching a set
of sample points. The sample set has 50 real numbers uniformly distributed in
[−1, 1]. The absolute difference between output and the target f(x) value is the
error, and the fitness function is defined as the average error over all 50 samples.
The terminal set includes variable x and random ephemeral constants generated
from 2001 numbers equally distributed in [−1, 1] with granularity of 0.001. The
four arithmetic operators: +, −, ×, and protective ÷ are used as the function
set. We apply random mutation and crossover with probabilities 0.1 and 0.9,
respectively, and the maximum mutation subtree depth is 4. Parent individuals
and offspring after genetic changes compete through truncation selection with
tournament size 4. This GP system has a population size of 4000 evolved for a
maximum of 50 generations. A set of 20 cases are used as inputs to a GP tree
before and after mutation or crossover, to test whether a subtree replacement is
nonsynonymous or synonymous. If all 20 cases produce the same output, subtree
replacement applied to this tree is regarded synonymous; otherwise, this tree is
considered to have undergone a nonsynonymous change.

A preliminary experiment of this rate of evolution measurement on a single
GP evolutionary process can be found in Hu and Banzhaf [4]. Here, we compare
Re in different configuration scenarios by varying such parameters as selection
size, population size, mutation rate, and crossover rate, to study their effects on
the rate of evolution and to verify the effectiveness of our approach. In each set
of experiments, we only change the investigated parameter and hold all others
constant. The average fitness, ka, ks and Re are plotted with the average values
of 50 successful runs. The method exponentially weighted moving average is used
here to smooth the curves (smoothing factor 0.1).

4.1 Tournament Selection Size

We increase tournament selection size from 4 to 6 and to 8 (Fig. 1). It is gener-
ally accepted that a larger tournament selection size generates greater survival
pressure, and thus can maintain a better fitness in the population. It can be
seen that the population under tournament selection size 8 has the best average
fitness. However, due to a higher selection pressure, fewer innovative individuals
are accepted, so the population with tournament size 8 has the lowest nonsyn-
onymous substitution rate ka. In contrast, relatively more silent changes are
accepted with a larger tournament selection size. This also concurs with a recent
prediction by Luke and Panait [7] that bloat of neutral code in GP is caused by
the pressure of improving fitness. Therefore, the rate of evolution Re decreases as
the tournament size increases. These results show that higher selection pressure
slows down the rate of accepting genetic variations.
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Fig. 1. Rate of evolution with different selection pressure

4.2 Population Size

We test the GP system with different population sizes 200, 2, 000 and 20, 000
(Fig. 2). Observe that a larger population is better at searching and maintaining
the average fitness. All three nonsynonymous substitution rates ka with different
population sizes are quite close, which indicates that, although larger populations
offer a larger amount of adaptive individuals to be generated and accepted, their
rates in this static symbolic regression problem are nearly the same as smaller
populations. Further, a larger population accepts synonymous genetic changes
at a slower rate, which is an expected result of a slower propagating speed of
dominant individuals. It can be observed that a larger population has a slightly
higher Re at the early stage of the search process but slows down when the
target individual becomes dominant in the population. These differences are
quite small, however, for this static optimization problem. So we believe that,
although a larger population offers more chances of innovating adaptation, under
the same environment and selection pressure, a larger population does not have
a real advantage in improving the rate of evolution. It can be seen further that
the population with size 200 has the most drastically changing rates, accepting
genetic changes at a fairly high rate even around generation 50 (see also the
average fitness chart).

4.3 Mutation Rate

The mutation rate is set to 0.3, 0.6, and 0.9 when the crossover rate is fixed
to 0.1 (Fig. 3). In our simulations, we only collect successful runs which can



Nonsynonymous to Synonymous Substitution Ratio ka/ks 455

 0

 0.05

 0.1

 0.15

 0.2

 10  20  30  40  50

av
er

ag
e 

fit
ne

ss

generation

(a) Average fitness

psize 200
psize 2000

psize 20000

 0

 0.2

 0.4

 0.6

 10  20  30  40  50

ka

generation

(b) Nonsynonymous substitution rate ka

psize 200
psize 2000

psize 20000

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50

ks

generation

(c) Synonymous substitution rate ks

psize 200
psize 2000

psize 20000

 0

 0.2

 0.4

 0.6

 10  20  30  40  50

R
e

generation

(d) Rate of evolution Re

psize 200
psize 2000

psize 20000
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reach the target function within 50 generations. A population with a higher
mutation rate is more likely to succeed. We observed that the percentages of
successful runs with mutation rates 0.3, 0.6, and 0.9 are 16%, 22%, and 30%.
However, despite different success likelihoods, various mutation rates do not
show significant differences in the rate of improving the average fitness solving
this problem. In our rate of evolution measurement, it can be observed that,
a higher mutation rate results in a higher nonsynonymous substitution rate ka

and a lower synonymous rate ks, and thus, a higher evolution rate Re. These
results show that a higher mutation rate can accelerate evolution but also brings
in more noise at the end of evolution (Fig. 3 (d)). Moreover, this simulation
supports a general tendency of mutation to maintain high population diversity.

4.4 Crossover Rate

In this set of simulations, we fix the mutation rate at 0.1 and increase the
crossover rate from 0.3 to 0.6, and to 0.9. In Fig. 4, similarly to varying mu-
tation rates, we can see that investigating fitness development is not sufficient
for drawing conclusions on the effectiveness of crossover rate on the rate of
adaptive evolution. In our measurement, it is observed that a larger crossover
rate provides more adaptive genetic changes, i.e., a greater ka, and consequently
a higher rate of evolution Re. However, the differences between mutation and
crossover operations are their effects on synonymous substitution rate ks. That
is, increasing the crossover rate can result in a higher synonymous rate, which
implies that crossover contributes more to neutral evolution than mutation.
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5 Conclusion and Future Work

In this paper, we introduced the equivalent of a biological measurement of the
nonsynonymous to synonymous substitution ratio ka/ks. The experimental ap-
plications show the ability of this measurement to capture the rate of generating
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efficient genetic variations in an EC system. Therefore, we believe that the rate
of evolution should be better defined by looking beyond fitness and should be
measured by the rate of adaptation being generated and accepted. Further, some
observations show that in the truncation selection scheme tournament size, mu-
tation rate, and crossover rate are directly related to the rate of evolution, while
population size has an indirect relation.

The Re measurement can be extended in different ways. First, this measure-
ment can be used to help determine adaptive population size in EC. Through vi-
sualizing the rate of evolution at different stages, adaptive population size can be
chosen to provide effective diversity. Therefore, population size can be chosen sys-
tematically rather than empirically. Second, applications of this measurement to
various methods in evolutionary computation need to be thoroughly investigated.
Third, we propose to use this method for quantification of evolvability since it can
reflect the evolutionary capabilities of an artificial evolutionary system.
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Abstract. Elitism has a large effect on the search ability of evolutionary algo-
rithms. Many studies, however, did not discuss its different implementations in 
cellular algorithms. Usually a replacement policy called “replace-if-better” is 
applied to each cell in cellular algorithms as a kind of elitism. In this paper, we 
examine three implementations of elitism. One is global elitism where a pre-
specified number of the best individuals in the entire population are viewed as 
being the elite. The replace-if-better policy is applied only to the globally best 
individuals. Another scheme is local elitism where an individual is viewed as 
being the elite if it is the best among its neighbors. The replace-if-better policy 
is applied only to the locally best individuals. The other scheme is cell-wise 
elitism where the replace-if-better policy is applied to all individuals. Effects of 
elitism are examined through computational experiments using a cellular ge-
netic algorithm with two neighborhood structures. One is for local competition 
among neighbors. This competition neighborhood is used in the local elitism to 
determine the locally best individuals. The other is for local selection of par-
ents. This selection neighborhood is also called the mating neighborhood. Since 
we have the two neighborhood structures, we can specify the size of the compe-
tition neighborhood for the implementation of the local elitism independent of 
the selection neighborhood for mating. Experimental results show that the use 
of the replace-if-better policy at all cells is not always the best choice. 

1   Introduction 

Elitism usually improves the search ability of evolutionary algorithms. For example, it 
is well-known that elitism is indispensable in the design of efficient evolutionary 
multiobjective optimization algorithms [6], [22]. A possible negative effect of elitism 
is the decrease in the diversity of individuals due to high selection pressure. For ex-
ample, Jagerskupper and Storch [13] discussed positive aspects of non-elitist algo-
rithms such as the ability to escape from local optima. In this paper, we examine the 
effect of elitism on the search ability of cellular genetic algorithms using three differ-
ent implementations of elitism. 

Cellular algorithms are one of the most popular models of spatially structured evo-
lutionary algorithms [2], [4]. Since early studies in the late 1980s [8], [14] and the 
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early 1990s [18], [19], cellular algorithms have been an active research area (e.g., see 
[1]-[4], [7]). In cellular algorithms, each individual is spatially fixed in a cell of a 
lattice (typically a two-dimensional grid-world). A new offspring in a cell is generated 
from individuals in its neighboring cells. The main characteristic feature of cellular 
algorithms is the use of local selection, which is based on a neighborhood structure. It 
was shown in the literature [9], [15], [16] that the size of the neighborhood structure 
has a large effect on the behavior of cellular algorithms. 

Whereas a single neighborhood structure has been usually used in cellular algo-
rithms in the literature, some studies were based on two neighborhood structures. For 
example, evolution of altruism in a two-dimensional grid-world was actively studied 
under the name of structured demes in the late 1970s [5], [17], [20], [21] using two 
neighborhood structures: One is for local competition and the other is for local selec-
tion. Recently two neighborhood structures have been used to analyze the evolution of 
cooperative behavior in spatial prisoner’s dilemma games (e.g., [10], [12]). The use of 
two neighborhood structures was also examined for function optimization problems in 
[11] where good results were obtained from the combination of a small competition 
neighborhood and a large selection neighborhood. 

In this paper, we examine different implementations of elitism in a cellular genetic 
algorithm with two neighborhood structures. A replacement policy called “replace-if-
better” has often been used at all cells in cellular algorithms as a kind of elitism in the 
literature. This policy replaces an individual in a cell with the generated offspring 
only if the latter has a better fitness value. In this paper, we use the replace-if-better 
policy together with a random tiebreak mechanism: When the current individual and 
the offspring have the same fitness value, the replacement is performed with the prob-
ability of 0.5. The replace-if-better policy is a kind of elitism at each cell. In this pa-
per, an “elite” individual means an individual to which the replace-if-better policy is 
applied. On the other hand, a non-elite individual is always replaced with the gener-
ated offspring independent of their fitness values. We examine three implementations 
of elitism: global, local and cell-wise elitism. These three implementations are differ-
ent in the specification of elite individuals.  

The cell-wise elitism is the same as the replacement scheme in standard cellular al-
gorithms where the replace-if-better policy is applied to all cells (i.e., to all individu-
als). In the global elitism, a prespecified number of the best individuals in the entire 
population are the elite. The replace-if-better policy is applied only to the globally 
best individuals. On the other hand, an elite individual is the locally best individual 
among all neighbors in its competition neighborhood in the local elitism. That is, the 
replace-if-better policy is applied only to the locally best individuals. 

The intensity of the global elitism is specified by the number of elite individuals, 
which is a user-definable parameter. An extreme case of the global elitism is the same 
as the cell-wise elitism where the number of elites is the population size. On the other 
hand, the intensity of the local elitism is specified by the size of the competition 
neighborhood. The cell-wise elitism can be also viewed as an extreme case of the 
local elitism with the minimum competition neighborhood of size one. In this case, all 
individuals are locally best because there is only a single individual in the competition 
neighborhood. Another extreme case of the local elitism, in which the entire popula-
tion is used as the competition neighborhood, is a kind of the global elitism. 
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In this paper, we first explain our cellular genetic algorithm with two neighborhood 
structures in Section 2. Next we examine its performance through computational experi-
ments in Section 3. It is shown that the choice of an implementation scheme of elitism 
has a dominant effect on the performance of our cellular genetic algorithm. It is also 
shown that the choice of an appropriate implementation scheme heavily depends on the 
problem and the parameter specifications. That is, the use of the replace-if-better policy 
at all cells is not always the best choice. Finally we conclude this paper in Section 4. 

2   Cellular Genetic Algorithms with Two Neighborhood Structures 

We use a two-dimensional grid-world where a single individual is spatially fixed in 
each cell. Thus the number of cells is the same as the population size. We assume the 
torus structure in our two-dimensional grid-world. In Fig. 1, we show some typical 
examples of neighborhood structures used in the literature. In each plot, open circles 
are the neighbors of the closed circle individual. 

                      

 

 
    (a) 5 neighbors     (b) 9 neighbors     (c) 13 neighbors 

          

 

 

 

  
    (d) 25 neighbors     (e) 41 neighbors      (f) 49 neighbors 

Fig. 1. Six neighborhood structures examined in this paper 

As we have already mentioned, we use two neighborhood structures in our cellular 
genetic algorithm. One is for local competition among neighbors. This neighborhood 
structure determines the neighbors against which each individual competes. We de-
note the competition neighborhood of the ith cell as NCompete(i). The ith cell itself is 
included in NCompete(i). The competition neighborhood is used only for the definition 
of the local elitism in this paper whereas it was also used for recalculating the fitness 
value of each individual in our former study [11]. The rank of each individual in its 
competition neighborhood was used as its recalculated fitness value in [11]. 

The other neighborhood structure is for local selection. This neighborhood struc-
ture determines the neighbors from which two parents are chosen to generate an  
offspring. The selection neighborhood is also called the mating neighborhood. We 
denote the selection neighborhood of the ith cell as NSelect(i). The ith cell itself is 
included in NSelect(i). We use binary tournament selection to select two parents from 
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NSelect(i) for generating an offspring for the ith cell. If the current individual in the ith 
cell is not an elite individual, it is always replaced with the offspring. On the other 
hand, the replace-if-better policy is applied to the current individual if it is an elite 
individual. The replacement of individuals is performed in a synchronized manner. 

We use the six neighborhood structures in Fig. 1 for local competition and local se-
lection. All the 66 ×  combinations of them are used in computational experiments. 

In this paper, we examine three implementations of elitism: global, cell-wise and 
local elitism. In the following, we explain each implementation. 

Global elitism. A prespecified number of the best individuals in the entire population 
are handled as elite individuals in the global elitism. The global elitism is independent 
of the two neighborhood structures. The replace-if-better policy is applied only to the 
globally best individuals in the global elitism. 

Cell-wise elitism. The replace-if-better policy is applied to all cells (i.e., all individu-
als). That is, all individuals are handled as elite individuals in the cell-wise elitism. 
The cell-wise elitism is also independent of the two neighborhood structures.  

Local elitism. The implementation of the local elitism depends on the competition 
neighborhood. When an individual has the highest fitness value among its neighbors 
in the competition neighborhood, it is handled as an elite individual. That is, the re-
place-if-better policy is applied only to the locally best individuals in the local elitism. 

We examine three versions of the local elitism, which are different in the handling 
of the tie situation where the current individual in a cell has the same locally best 
fitness value as some neighbors in its competition neighborhood. Let K be the number 
of neighbors (including the current individual in the cell) that have the same locally 
best fitness value in the competition neighborhood. Version 1 handles the locally best 
individual as an elite individual only when it is better than all the other neighbors (i.e., 
when K = 1). Version 2 probabilistically determines whether the locally best individ-
ual is an elite individual or not in the tie situation. The probability of being an elite 
individual is specified as the inverse of the number of the locally best neighbors (in-
cluding the current individual). That is, the probability is specified as 1/K. Version 3 
always handles the locally best individual as an elite individual even when some other 
neighbors (or all neighbors) have the same locally best fitness value. 

3   Performance Evaluation of Cellular Genetic Algorithms 

We used a 500-item 0/1 knapsack problem with two constraint conditions. This prob-
lem was generated from the original two-objective 500-item knapsack problem in [22] 
by defining an integrated fitness function as fitness(x) = f1(x) + f2(x) where x is a 500-

dimensional binary vector, f1(x) and f2(x) are the two objectives of the original prob-

lem in [22]. Each individual (i.e., solution) is represented by a binary string of length 
500. Thus the size of the search space is 2500. 

Our cellular genetic algorithm was used under the following specifications: 
 Grid-world: 1111×  (i.e., population size: 121), 
 Crossover probability (uniform crossover): 0.8, 
 Mutation probability (bit-flip mutation): 1/(string length), 
 Stopping condition: 2000 generations. 
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In the global elitism, we examined four specifications of the number of the global 
elite individuals: 1 (1% of the population size), 6 (5%), 12 (10%) and 24 (20%). In the 
same manner as [22], we used the maximum profit/cost ratio-based greedy repair 
scheme to transform infeasible solutions into feasible ones. This repair scheme was 
implemented in the Lamarckian manner.  

Using the optimal solution x* of our test problem, we calculated the relative error 
of the obtained solution x as  

100
*)(

)(*)(
)( ×−=

x
xx

x
fitness

fitnessfitness
errorRelative  (%). (1)

The average relative error was calculated over 100 runs of our cellular genetic al-
gorithm after the 2000th generation for each setting about elitism and neighborhood. 
Experimental results are summarized in Fig. 2 where the base plane of each plot 
shows the size of the two neighborhood structures (i.e., the x-axis is the selection 
neighborhood NSelect(i) while the y-axis is the competition neighborhood NCompete(i)). 
We can see from Fig. 2 that the choice of an implementation scheme of elitism has a 
dominant effect on the search ability of our cellular genetic algorithm. For example, 
good results were not obtained from the global elitism with only a single elite indi-
vidual in Fig. 2 (a). Since good results were obtained in Fig. 2 (b), we can see that the 
number of elite individuals in Fig. 2 (a) was too small. When the size of the competi-
tion neighborhood was too large in Version 1 and Version 2 of the local elitism, good 
results were not obtained, either. This is also because the number of elite individuals 
was too small. In Fig. 3, we show the average percentage of elite individuals over 100 
runs with 2000 generations for Version 1 and Version 3 of the local elitism. From the 
comparison between Fig. 2 and Fig. 3, we can see that good results were not obtained 
by the local elitism when the percentage of elite individuals was too small. 

In Fig. 2, good results were obtained independent of the choice of neighborhood 
structures when we used the global elitism with 12 elite individuals in (b), the cell-wise 
elitism in (c), and Version 3 of the local elitism in (f). That is, those implementation 
schemes of elitism were robust with respect to the size of neighborhood structures. On 
the contrary, Version 1 and Version 2 of the local elitism were sensitive to the size of 
neighborhood structures. The best result in Fig. 2 (i.e., 0.410 highlighted in bold print 
in Table 1), however, was obtained from local elitism Version 1 with a small competi-
tion neighborhood and a large selection neighborhood. This observation was consistent 
with our former study on function optimization problems [11]. 

In Table 1, we show the average relative error together with the corresponding 
standard deviation (in the parentheses) obtained from the best specification of the 
neighborhood structures for each implementation scheme of elitism. It should be 
noted that the competition neighborhood was used only in the local elitism. (Thus the 
experimental results in Fig. 2 (a)-(c) were flat with respect to the y-axis: the size of 
the competition neighborhood). 

In Table 1, the best result was obtained from local elitism Version 1. Using 
Welch’s t-test, we compared the best result of local elitism Version 1 (i.e., 0.410) and 
that of the cell-wise elitism (i.e., 0.524) in Table 1. The difference was statistically 
significant with p-values < 0.05 (p = 8.4 × 10−14).  

From the experimental results by the four specifications of the global elitism in 
Table 1, we can see that too many elite individuals as well as too few elite individuals  
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     (a) 1 global elite individual  (b) 12 global elite individuals 
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          (c) Cell-wise elitism   (d) Local elitism: Version 1 
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     (e) Local elitism: Version 2  (f) Local elitism: Version 3 

Fig. 2. Average performance of our cellular genetic algorithm over 100 runs for each setting 

had negative effects on the performance of our cellular genetic algorithm. A possible 
negative effect of too many elite individuals is the decrease in the diversity of solu-
tions. We show how individuals evolved in our cellular genetic algorithm in the two-
dimensional objective space in Fig. 4 where all individuals in the initial, 20th, 50th 
and 10000th generation in a single run are depicted for each implementation scheme 
of elitism with the best neighborhood structures (see Table 1). In Fig. 4 (a) with the 
cell-wise elitism, all individuals converged on a single point before the 10000th gen-
eration. On the other hand, individuals of the 10000th generation had a certain amount 
of diversity in Fig. 4 (b) with local elitism Version 1. Such a diversity maintenance 
effect explains the best result by local elitism Version 1 in Table 1. 
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     (a) Local elitism: Version 1  (b) Local elitism: Version 3 

Fig. 3. Average percentage of elite individuals over 100 runs 

Table 1. Experimental results with the best neighborhood structures ( 1111×  grid) 

Elitism Competition Selection Relative error

1 global elite individual - 9 1.019 (0.124)
6 global elite individuals - 49 0.461 (0.090)

12 global elite individuals - 41 0.467 (0.099)

24 global elite individuals - 41 0.479 (0.098)

Cell-wise elitism - 25 0.524 (0.115)

Local Version 1 9 41 0.410 (0.079)
Local Version 2 9 41 0.436 (0.093)

Local Version 3 5 5 0.543 (0.128)

Initial

20th

50th

10000th

f1(x)

f 2
(x

)

12000 14000 16000 18000 20000

12000

14000

16000

18000

20000

 

Initial

20th

50th

10000th

f1(x)

f 2
(x

)

12000 14000 16000 18000 20000

12000

14000

16000

18000

20000

 
             (a) Cell-wise elitism          (b) Local elitism: Version 1 

Fig. 4. Average percentage of elite individuals over 100 runs 

One may think that the above-mentioned negative effect of the cell-wise elitism 
(where the replace-if-better policy was applied to all individuals) would be removed 
or remedied by the use of a larger grid-world. So we also performed computational 
experiments using a 2121×  grid-world with 441 cells. Experimental results are  
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summarized in Table 2. Better results were obtained by increasing the number of elite 
individuals in Table 2. Whereas the difference in the average relative errors between 
the cell-wise elitism and local elitism Version 1 was decreased by the use of the larger 
grid-world in Table 2, the best result was still obtained by local elitism Version 1 with 
a small competition neighborhood and a large selection neighborhood.  

Table 2. Experimental results with the best neighborhood structures ( 2121×  grid) 

Elitism Competition Selection Relative error

1 global elite individual - 5 1.040 (0.122)
22 global elite individuals - 41 0.299 (0.062)

44 global elite individuals - 41 0.293 (0.070)

88 global elite individuals - 25 0.293 (0.061)

Cell-wise elitism - 9 0.289 (0.070)

Local Version 1 9 49 0.269 (0.049)
Local Version 2 5 5 0.280 (0.065)

Local Version 3 5 13 0.308 (0.074)

 
In order to examine the behavior of our cellular genetic algorithm on a multi-modal 

problem, we applied it to Schwefel function with 10 variables. Each variable was 
coded as a binary string of length 10 using gray coding. We used the same parameter 
specifications as in the previous computational experiments in Fig. 2. The mutation 
probability was specified as 1/100 (i.e., 1/(string length)). Experimental results are 
summarized in Table 3. The best result was obtained from the global elitism with only 
a single elite individual. We can also observe that the standard deviation was very 
large in Table 3 except for the best result case. This is because strong elitism pre-
vented individuals from escaping from local optima. We can see from Tables 1-3 that 
the choice of an appropriate implementation of elitism is problem-dependent. For 
example, the cell-wise elitism was a bad choice in Table 3. 

We also performed the same computational experiments using a larger mutation 
probability (0.05 instead of 0.01), a larger crossover probability (1.0 instead of 0.8) 
and a smaller computation load (500 instead of 2000 generations). In this case, we  
 

Table 3. Experimental results on Schwefel function using the same parameter specifications as 
in the previous computational experiments on the 0/1 knapsack problem 

Elitism Competition Selection Relative error

1 global elite individual - 5 0.014 (0.100)
6 global elite individuals - 5 9.479 (32.14)

12 global elite individuals - 5 14.53 (38.48)

24 global elite individuals - 5 35.54 (68.05)

Cell-wise elitism - 5 40.28 (71.51)

Local Version 1 41 5 1.529 (11.52)

Local Version 2 41 5 4.761 (23.21)

Local Version 3 13 5 55.68 (84.53)
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needed strong elitism since the mutation probability was too large. Experimental 
results are summarized in Table 4 where the best result was obtained from the cell-
wise elitism. From Table 4, we can see that the cell-wise elitism worked well when it 
was used together with high crossover and mutation probabilities. 

Table 4. Experimental results on Schwefel function using different parameter specifications 
with a larger mutation probability, a larger crossover probability, and a less computation load 

Elitism Competition Selection Relative error

1 global elite individual - 41 238.6 (129.9)

6 global elite individuals - 25 84.56 (85.51)

12 global elite individuals - 49 37.42 (60.90)

24 global elite individuals - 25 23.23 (45.32)

Cell-wise elitism - 9 0.705 (0.402)
Local Version 1 5 9 4.257 (1.963)

Local Version 2 5 9 5.246 (11.80)

Local Version 3 5 9 8.344 (23.21)

4   Conclusions 

We examined various implementations of elitism through computational experiments 
using a cellular genetic algorithm with two neighborhood structures. It was demon-
strated that the choice of an implementation scheme of elitism had a dominant effect 
on the performance of our cellular genetic algorithm. When we used the local elitism, 
the performance of our cellular genetic algorithm was sensitive to the specifications 
of the two neighborhood structures. The best result was obtained from Version 1 of 
the local elitism with a small competition neighbor and a large selection neighbor for 
a knapsack problem. In the global elitism and the cell-wise elitism, we used only a 
single neighborhood structure as in standard cellular algorithms. The performance of 
our cellular genetic algorithm was not sensitive to the specification of the neighbor-
hood structure when we used the global elitism and the cell-wise elitism. We also 
demonstrated that the cell-wise elitism was not always a good choice whereas it has 
been often used in many studies on cellular genetic algorithms. This work was par-
tially supported by Grant-in-Aid for Scientific Research (B): KAKENHI (20300084). 
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Abstract. As an alternative to various existing approaches to incorporating 
modular decomposition and reuse in genetic programming (GP), we have pro-
posed a new method for hierarchical evolution. Based on a division of the prob-
lem’s test case inputs into subsets, it employs a program structure that we refer 
to as a selection architecture. Although the performance of GP systems based 
on this architecture has been shown to be superior to that of conventional sys-
tems, the nature of evolved programs is radically different, leading to specula-
tion as to how well such programs may generalise to deal with previously  
unseen inputs. We have therefore performed additional experimentation to 
evaluate the approach’s generalisation ability, and have found that it seems to 
stand up well against standard GP in this regard. 

1   Introduction 

In recent years, there has been much research activity aimed at the question of how to 
scale genetic programming (GP) to deal with complex, high-level problems. One of 
the most promising avenues of research is that of employing decomposition and reuse 
techniques to break a task down into more manageable, easily solvable sub-systems 
which can then be combined to create solutions to the original problem. Among the 
various approaches to this are Koza’s Automatically Defined Functions (ADFs) [1,2], 
Angeline and Pollack’s Module Acquisition technique [3], Rosca and Ballard’s 
Adaptive Representation through Learning [4], and Walker and Miller’s work on 
module encapsulation in Cartesian GP [5]. 

Most of these existing methods involve the identification and encapsulation of use-
ful code fragments as they arise during the evolutionary process. An alternative  
approach, which has been the subject of our own investigations, is to specify the goals 
of the subsystems in advance, and then to evolve solutions to each of those goals in 
independently executing processes. There are various ways of performing such goal-
directed hierarchical learning in GP, but the one that we focus on here involves the use 
of what we call a selection architecture. This architecture is based on the idea that each 
subsystem be made responsible for dealing with only a subset of the range of possible 
inputs to the program as a whole. The subsystems are encoded as branches of the main 
program, connected together by a root node which is given the role of activating the 
appropriate branch for each input received. In this way, the problem is reduced to a 
number of greatly simplified and independent subtasks that are often trivial to solve. 
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As we shall see later, the performance of this selection architecture is substantially 
better than that of more conventional GP systems. However, the nature of programs 
based on this architecture is radically different from that of programs evolved by more 
standard GP techniques. Although the performance improvements are certainly an 
advantage, it has to be asked whether there is a trade-off against other properties of 
the programs. In particular, one concern is how well such individuals are capable of 
generalising. 

In assessing generalisation ability, it is suggested that, at the very least, input cases 
should be divided into two sets: a training set and a test set [6,7]. The training set is 
used during the evolutionary process itself, while the test set contains input values 
that have not been previously encountered. Some researchers go further than this two-
stage mechanism by advocating the addition of an intermediate validation set to allow 
programs to gauge their generalisation ability during evolution [8]. 

Various suggestions have been made as to how best to improve generalisation in 
GP. Francone, Nordin and Banzhaf, for example, have discussed how to benchmark 
and analyse the generalisation capability of their Compiling Genetic Programming 
System [9], and have found that it is significantly affected by the rate of mutation 
used [10]. Vanneschi et al [11] have found that Pareto multi-optimisation has a 
marked positive impact, whilst Droste [12] argues that generalisation can be promoted 
in Boolean functions through the use of a program representation known as ordered 
binary decision diagrams. 

There is evidence to suggest that generalisation tends to be better in smaller 
programs, the explanation being that compactness requires constructs capable of 
dealing with multiple cases [13]. For this reason, some researchers have argued for the 
use of parsimony pressure to drive down progam size whilst driving up generalisation 
prowess [8]. However, it has also been shown that, in some circumstances, too strong a 
bias towards low complexity can increase generalisation error [14]. 

We shall return to this generalisation issue as it applies specifically to our selection 
architecture in Section 3, and will go on to present some experiments which assess its 
generalisation capabilities in relation to those of standard GP. Before we can do that, 
we need to present more details concerning the architecture itself. 

2   A Selection Architecture 

In most conventional GP systems, the program code of individuals is represented in a 
tree structure, the internal nodes being members of the function set, and the leaf nodes 
being taken from the terminal set. Alternatives to this format include linear code and 
more general graph structures. Attempts to evolve code that is more modular in 
nature, and which makes use of evolving sub-structures, involve modifications of 
these basic forms. The best known approach is that of Koza’s Automatically Defined 
Functions (ADFs), which evolve a number of function-defining branches in tandem 
with a main branch that may invoke these functions. 

The architecture we propose is also hierarchical in nature, but unlike ADFs it 
assigns a more definite purpose to each of the lower-level subsystems. Conceptually, 
it is quite simple, as shown in Figure 1. Like an ADF tree, this structure also contains 
a pre-defined number of branches off the root node. Unlike its ADF counterpart, 
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however, there is no ‘main’ branch. Instead, each branch is charged with the 
responsibility of handling a subset of the input test cases to be applied to the 
individual as a whole. 

SELECT 

BRANCH 0 BRANCH 1 BRANCH n 

INPUTS 

TEST 
SUBSET 0 

TEST SUBSET 1 

TEST 
SUBSET n 

 

Fig. 1. Selection architecture for test-subset approach 

The idea is that, given a set or range of input cases, we partition it into a number of 
subsets. Code for handling each subset is then evolved independently in separate 
branches of the program. Decomposition of the original problem in this way should 
lead to a number of sub-objectives which, in isolation, are easier to solve via 
evolutionary computation. A trade-off is an increase in the number of code fragments 
that must be evolved to solve all branches. 

The branches in the selection architecture are not functions in the ADF sense: they 
are simply code fragments composed from the normal terminal and function sets of 
the problem. Despite this, each branch does not interact directly with other branches; 
rather, it is evolved separately and independently. This is a key difference from the 
ADF architecture, in which all branches evolve simultaneously towards the solution 
of a problem and the evolutionary value of each branch is judged according to the 
contribution it makes to the fitness of the individual as a whole. In the selection 
architecture each branch has its own evolutionary target, its fitness being calculated 
according to how well it deals with its assigned subset of test cases. Evolutionary 
effort is focused on one branch at a time rather than all branches at once, although the 
independent nature of the code fragments means that all branches could readily be 
evolved in parallel on a multiprocessor machine. 

A further difference between the two architectures is that, whereas the number of 
branches in an ADF system is rather arbitrary, the branch count in the selection 
architecture is determined by the number of subsets into which the test cases have 
been divided. These branches are linked together at a single root node, the purpose of 
which is to decide which branch to activate for a particular combination of inputs. The 
root node therefore acts as a kind of switch, its exact form depending on the problem 
being solved and the language being used to encode evolved programs. In most 
situations it will correspond to a straightforward ‘case’ statement or a nested ‘if-then-
else’ construct. 
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Table 1. Performance comparisons for the even-5 parity problem 

Approach Success rate (%) Comp. 
Effort 

Standard GP 0 - 
ADF GP 32 864,000 
4 branches, 8 cases each 91 192,000 
8 branches, 4 cases each 100 16,000 

An extensive assessment of the performance of this architecture in comparison with 
other methods has been given elsewhere [15]. A single example is the even-5 parity 
problem, in which the aim is to evolve a Boolean design that returns a TRUE output if 
the number of logic one values on its 5 inputs D0-D4 is even, FALSE otherwise. In 
making the comparisons we use two forms of the selection architecture: one with 4 
branches, each branch dealing with 8 of the 32 possible input cases, and one with 8 
branches, each responsible for 4 input cases. Table 1 shows how these systems fare 
against standard GP and a GP system using ADFs (detailed problem parameters are 
given in [15]). The figures given measure the success rate at finding solutions over 100 
runs, and also the computational effort statistic as defined by Koza [1]. 

Like Koza, we found that discovering a solution to the even-5 parity problem using 
standard GP is extremely difficult. By incorporating an ADF mechanism we were 
able to get much better results, with a success rate of 32%. When we try the selection 
architecture using 4 branches, the success rate is almost triple that achieved in the 
ADF system, leading to a huge decrease in the computational effort. As before, the 
use of 8 branches gives us a solution on every run, and an associated computational 
effort that is comparatively tiny. 

3   The Generalisation Issue 

We have seen in the previous section that the use of a selection architecture as a basis 
for genetic programming can lead to dramatic improvements in performance, 
measured in a variety of ways. However, the nature of programs evolved within this 
framework is very different from that of programs generated using more conventional 
GP approaches. Whereas standard GP attempts to derive a program capable of 
matching all of a set of inputs to the corresponding outputs, the selection approach 
attempts to evolve a collection of related sub-systems, each of which is responsible 
for a subset of the possible inputs. To illustrate this, consider the even-4 parity 
problem. A solution generated using a 4-branch selection architecture is: 

SWITCH (INT(D3..D0)) 
CASE 0..3: 
NAND(OR(D0 D1) NAND(D0 D1)) 
CASE 4..7: 
NOR(NOR(OR(D1 D2) OR(D1 D1)) NAND(OR(D0 D1) NAND(D0 D1))) 
CASE 8..11: 
AND(AND(OR(NAND(OR(D1 D0) AND(D1 D1)) OR(NAND(D1 D0) NAND(D3 D1))) 

OR(NOR(NOR(D2 D0) NAND(D2 D2)) OR(D1 D0))) OR(NAND(NOR(D2 NOR(D0 D0)) 
NOR(NAND(D0 D0) NOR(D0 D2))) NAND(NAND(AND(D1 D2) NOR(D0 D3)) AND(AND(D2 
D3) NAND(D3 D1))))) 

CASE 12..15: 
OR(AND(AND(NAND(AND(D1 D0) OR(D2 D1)) AND(NAND(D0 D3) NAND(D1 D2))) 

AND(OR(AND(D2 D1) NAND(D3 D0)) OR(NAND(D1 D3) OR(D2 D3)))) AND(D1 D0)) 
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In this solution, the root node is implemented as a form of case statement, acting 
on an integer representation of the four binary inputs and directing control flow to the 
appropriate branch for that value. Each branch has evolved to deal with its own 
particular subset of values, and not for any other. As such, a given branch may be 
quite trivial, such as the first branch of our  solution above, in which the terminals D2 
and D3 do not even appear. Whilst this may make it quicker and easier to evolve code 
for such branches, it also gives rise to questions as to whether, in the general case, 
they possess sufficient complexity to deal with inputs that do not form part of the 
training set. 

The point is further illustrated with a symbolic regression problem. Here, the aim is 
to evolve a formula to fit a number of x-y data pairs. In our experiments, the formula 
is the polynomial 4x4 – 3x3 + 2x2 – x. When plotted as graphs, the differences 
between a conventional solution and a selection-based solution are not readily 
discernible. However, for ‘poor’ programs which do not attain all hits, the differences 
are a lot more visually apparent. Figure 2 shows the behaviour of a best-of-run 
program obtained using conventional GP for finding the specified polynomial. It 
achieves just 12 out of 32 hits and has a fitness value of 3.78. 
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Fig. 2. Behaviour of a program evolved by standard GP for the symbolic regression problem 

It can be seen that the Y-values produced by the GP program form a smooth curve. 
This curve fits to the polynomial quite closely in the first two thirds of the graph, and 
then begins to deviate from it. By way of contrast, consider the graph of Figure 3, 
which is for a 4-branch selection-based program evolved as the best of a run.  

This program has more hits (16) than the conventional GP program above, and a 
much better fitness (1.2). However, the division of labour into four separate sub-
systems is clear, with the upper two finding very poor linear approximations to the 
polynomial curve. Again, it must be wondered whether evolved programs of this 
nature can hope to compete with regular GP in being able to generalise to cope with 
previously unseen input values. 
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Fig. 3. Behaviour of a program evolved by selection GP for the symbolic regression problem 

4   Generalisation Experiments 

We begin with the even-4 parity problem, the standard GP parameters for which are 
set out in Table 2. 

Table 2. GP parameters for the even-4 parity problem 

Objective To evolve a program capable of determining if the number 
of logic 1s on the 4 inputs is even 

Terminal set D0, D1, D2, D3 

Function set AND, OR, NAND, NOR 

Initial population Ramped half-and-half 

Evolutionary process Steady-state; 5-candidate tournament selection 

Fitness cases 16, representing all combinations of inputs 

Fitness Number of mismatches with expected outputs (0-16) 

Success predicate Zero fitness (solution found) 

Other parameters Pop size=500; Gens=51; prob. crossover=0.9; no mutation; 
prob. internal node used as crossover point=0.9 

 
In trying to assess the generalisation capabilities of our systems, we divide the 

fitness cases into two sets: a training set TR and a test set TE. Programs are evolved 
using the training set alone, and then the best program at the end of each run is 
applied to the test set to determine performance on these new values. For the even-4 
parity problem, which has 16 test input cases in all, we perform the experiments with 
a test set of size 4 and then with a test set of size 8. 

In deciding which input case belongs to which set, we use the following algorithm: 
divide the input range into a number of partitions equal to the size of the test set, then 
form the test set by selecting one value at random from each partition. For example, in 
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our even-4 parity problem, the possible values on the four binary inputs correspond to 
the decimal integers 0-15. If we require a test set of size 4, we partition our input 
range equally to give 0-3, 4-7, 8-11 and 12-15. We then choose one input value at 
random from each partition, so that our final test set might be the input values 
{2,5,11,14}. Using this simple algorithm allows a certain degree of randomness whilst 
at the same time ensuring that programs based on the selection architecture end up 
with an equal number of input cases per branch, irrespective of the sizes of the test 
and training sets. 

Table 3 shows the results obtained when comparing standard GP against 2-branch 
and 4-branch forms of the selection architecture for the even-4 parity problem, using 
two different test set sizes. 

Table 3. Comparisons of generalisation ability for the even-4 parity problem (* indicates no 
statistical difference) 

TE size 4 (TR size 12) TE size 8 (TR size 8)  

Train score Test score Train score Test score 

Standard GP 0.23 3.96 0.00 7.56 

2 branch 0.03 3.85 0.00(*) 7.58(*) 

4 branch 0.00 3.96(*) 0.00(*) 7.62(*) 

 
The scores in this table are averages of fitness values obtained over 100 runs. 

Fitness is computed as the number of mismatches with expected outputs, and so lower 
values indicate higher fitness, zero being the ideal. The results from all runs were also 
tested for statistical significance via the use of a t-test with an alpha value of 0.05. 
Results for the selection architecture that are not significantly different from the 
standard GP results are marked in the table by an asterisk. 

When a training set of 12 values was used (the remaining 4 values forming the test 
set), the average score obtained by standard GP during that training was 0.23. This is 
bettered by both the 2-branch and 4-branch versions of the selection architecture, the 
latter finding programs which dealt with every training case on all runs. During the 
testing phase, the 2-branch selection system again fared better, while the 4-branch 
version achieved the same score. When the training set was reduced and the test set 
increased to 8 values, all systems found programs in each run that could deal with the 
training inputs. The results of the test phase did not differ by a statistically significant 
amount in the various systems. 

Overall, then, it can be said that the generalisation ability of the selection 
architecture is at least as good as that of standard GP for the even-4 parity problem. 

In the 5-input version of the even parity problem, the parameters are almost 
identical to those presented in Table 2, except that the population size is increased to 
2000, and the total number of fitness cases is doubled to 32 because of the additional 
input. Once again, standard GP is compared with selection-based GP, this time using 2, 
4 and 8 branches. The results for three different TE and TR sizes are given in Table 4. 
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Table 4. Comparisons of generalisation ability for the even-parity problem 

TE size 4 (TR size 28)  TE size 8 (TR size 24) TE size 16 (TR size 16)  

Train score Test score Train score Test score Train score Test score 

Standard 
GP 

3.28 3.83 1.96 7.57 0.56 15.02 

2 branch 1.69 3.87(*) 0.35 7.81 0.00 15.54 

4 branch 0.11 3.89(*) 0.00 7.72(*) 0.00 15.31 

8 branch 0.00 3.97 0.00 7.92 0.00 15.42 

 
Once again, the scores obtained by the selection architecture during training are 

substantially better than those for standard GP during that phase. However, to a lesser 
extent, the situation is reversed during the subsequent test phase. When the size of the 
test set TE is only 4, there is little significant difference. For larger TE sizes the scores 
for selection-based GP tend to be worse than the conventional counterpart. These 
differences are marginal in absolute terms but, on the whole, they are statistically 
significant. 

For the symbolic regression problem, the GP parameters are as given in Table 5. 
The range of x values for this problem is specified as [0.0,1.0). In principle, any 
number of data points could be chosen from this range in order to evaluate fitness; we 
chose 32 to make it correspond more directly to the even-5 parity problem in terms of 
TE and TR sizes and the number of selection branches. 

The comparative results for this problem are given in Table 6. A point to note here 
is that the scores given represent the number of ‘hits,’ where a hit indicates that the 
evolved expression produces a value that is within an acceptable deviation limit from 
the expected polynomial value. As such, higher scores equate to better fitness, unlike 
the parity problems discussed above.  

Table 5. GP parameters for the polynomial symbolic regression problem 

Objective Symbolic regression of the polynomial 4x4 – 3x3 + 2x2 - x 

Terminal set x 

Function set +, -, *, / (division protected to return large value on divide-by-zero) 

Initial population Ramped half-and-half 

Evolutionary process Steady-state; 5-candidate tournament selection 

Fitness cases 32 x-values in the range [0, 1), from 0.0 increasing in steps of 1/32, 
plus corresponding y values 

Fitness Sum of absolute errors in calculated y values 

Success predicate 32 hits, a hit being error less than 0.01 

Other parameters Pop size=500; Gens=51; prob. crossover=0.9; no mutation; prob. 
internal node used as crossover point=0.9 
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With regard to training, the pattern is similar to that seen earlier, with the selection 
architecture performing much better than conventional GP in discovering programs 
capable of dealing with the training data. For the testing phase, however, the situation 
is somewhat less unequivocal. With a TE size of 4 or 8, some of the selection-based 
GP test results are better, some worse, and some not statistically distinct from those of 
standard GP. Only when the TE size is increased to 16 do all forms of the selection 
architecture exhibit higher scores, although even then one of those scores is not 
statistically significant. 

Table 6. Comparisons of generalisation ability for the symbolic regression problem 

TE size 4 (TR size 28)  TE size 8 (TR size 24) TE size 16 (TR size 16)  

Train score Test score Train score Test score Train score Test score 

Standard 
GP 

17.58 2.76 14.08 4.94 9.34 9.26 

2 branch 23.22 2.86(*) 18.66 5.56 12.92 11.82 

4 branch 22.74 2.12 21.22 5.36(*) 12.94 10.56 

8 branch 22.00 2.24 21.8 4.06 14.6 10.18(*) 

5   Conclusions 

This work has provided further evidence to support the claim that, in terms of the 
ability to discover programs that can produce the correct outputs for a known set of 
outputs, the performance of a selection architecture for GP is substantially superior to 
that of more conventional systems. With regard to the comparative generalisation 
ability of these systems, however, the results are less conclusive. On the basis of the 
admittedly limited set of experiments described here, it would not seem unreasonable 
to claim that selection-based GP is no worse than standard GP in this regard. As the 
selection-based method matures and is applied to more problem domains, it is hoped to 
gather further evidence to support this claim. What is certainly true of both standard 
and selection-based GP, however, is that neither exhibits generalisation powers that 
could be said to be impressive. This is especially so for the even parity problems, 
where the level of training appears to make little difference to the outcome: in almost 
every run of every system, the number of test cases failed is remarkably close to the 
size of the test set! Clearly, a good deal of additional research is required into this area, 
which is key to the future success and acceptability of GP as a solution-finding tool. 
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Abstract. We investigate reinforcement learning methods, namely the
temporal difference learning TD(λ) algorithm, on game-learning tasks.
Small modifications in algorithm setup and parameter choice can have
significant impact on success or failure to learn. We demonstrate that
small differences in input features influence significantly the learning pro-
cess. By selecting the right feature set we found good results within only
1/100 of the learning steps reported in the literature. Different metrics for
measuring success in a reproducible manner are developed. We discuss
why linear output functions are often preferable compared to sigmoid
output functions.

1 Introduction

Reinforcement learning (RL) is a powerful optimization technique in situations
where a learning agent does not receive a direct target signal for each (observa-
tion, decision) pair. The agent receives only a reward from the environment and
does not learn a target output function. Often the reward is only given after a
sequence of decisions has been taken. Reinforcement learning attempts to mimic
one major way how animals or humans learn in natural environments. Instead
of being told what to do, they learn through experience. In a similar way, re-
inforcement learning agents learn to interact with an unknown and unspecified
environment.

Sutton’s well-known temporal difference (TD) learning algorithm is a specific
method to deal with the credit assignment problem in control and decision
tasks [1]. Based on this work, Tesauro designed in 1994 the famous TD-Gammon
agent which learned basically from self-play how to play the game of backgam-
mon at world champion level [2]. This made TD learning very popular, and
many successful applications have been reported since then. However, numerous
researchers also tried to apply TD (or RL in general) to distinct problems and
found quite mixed results in terms of convergence speed and/or decision qual-
ity of the learning agent. Despite of elegance of RL theory and the simplicity
of the basic TD ideas, the implementation of the algorithms is not trivial: tiny
implementation details can decide about complete success or failure.
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We study in this paper the application of TD learning to simple game-play
tasks as a preparation for more complex learning tasks. We are interested in
elements of the algorithm which have significant impact on convergence speed
and/or success or failure of the learning agent. A better understanding of sur-
prising failures on simple tasks might help to configure algorithms in the right
way for more complex tasks.

In Sect. 2 we describe the TD algorithm and its application to the game-
learning tasks. In Sect. 3 we describe our metrics for measuring the quality of
the learning agent and present our results, which are further discussed in terms
of general insights in Sect. 4.

2 Methods

We consider two simple games:

Nim-3. A simplified variant of the game Nim, where N tokens are on the table,
each player can take 1, 2, or 3 tokens and the winner is the one who takes the
last token. The state space has 2N states. The optimal strategy is to leave
3 + 1 tokens for the opponent. Although almost trivial, we are interested
in situations where RL fails to learn the task or is considerably slow in
learning it.

TicTacToe. The board contains 3 × 3 fields, each player in each move marks
(with X or O) a field and the winner is who gets “3 in a row” (horizontal,
vertical, diagonal). The state space contains 5478 states. This is small enough
that a standard minimax agent can perform exhaustive search for each state
and find the best move.

A state in strategic games is usually described by the current board position
and the player who made the last move (so-called after state [3]). An example
for TicTacToe is shown in Fig. 1. Following the ideas of Tesauro [2], the RL
agent learns the game function V (st), which ideally gives for each after state the
probability that player p = +1, i.e., “X” will win. Given a certain board position,
the strategy for player p = +1 is to select the next move which maximizes
V (st+1), while player p = −1 (“O”) tries to minimize V (st+1). A state can be
encoded by collecting row-by-row the board positions into a state vector with
+1 for each “X”, 0 for each unoccupied field and −1 for each “O”. Together with

Fig. 1. Some after states for the game TicTacToe
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the player who made the last move we get for example in Fig. 1 the following
state representation for state s4, which is a safe win for player “X”:

s4 = {00-1, 011, -100,−1}, V (s4) = 1.000 (1)

Even for moderate games the state space is usually too large to be represented as
a table and it is impossible to visit every state sufficiently often during learning.
To overcome this problem, a function approximation scheme is used where each
state s is transformed into a feature state g(s) and the function f(w; g(s)) with
internal parameter vector w (the weight vector) approximates V (s).

The TD algorithm aims at learning the function f(w; g(s)). It does so by setting
up an (initially inexperienced) RL agent who plays a sequence of games against
himself. It learns from the environment which gives a reward r ∈ {0.0, 0.5,
1.0} for { O-win, tie, X-win } at the end of each game. The main ingredient is the
temporal difference (TD) error signal

δt = rt+1 + γV (st+1)− V (st), (2)

where rt+1 is the reward for state st+1 (0 in a rewardless state, the game reward
r when t + 1 is the final state) and V (st+1) is the game value for st+1. The idea
is to remember from state st the value V (st) and the gradient ∇wf(w; g(st))
of the function f with respect to the weights w, to wait for the next state st+1,
and to apply then a learn step for the former state st. Thus the error signal
aims at bringing the game value V (st) closer to the (best) successor game value
γV (st+1) in a rewardless state or closer to the sum rt+1 + γV (st+1) in a final
state. The discount parameter γ is usually close to 1.

Typical approximation functions are

– A linear function f(w; g(s)) = w·g(s) (or the sigmoid of this linear function)
– A backpropagation net with weights w and input g(s).

In both cases the learning step uses a variant of gradient descent with the so-
called eligibility vectors et. The core of the TD(λ)-algorithm is given as pseudo
code as Algorithm 1. After the network is initialised with random weights, Al-
gorithm 1 is called for G games to produce a trained RL agent. Usually the
learning parameter α and the exploration parameter ε are slowly decreased in
the sequence of the games, e.g., α decreases exponentially from αinit to αfinal.

For each of the games Nim-3 and TicTacToe we explore different feature sets
which are defined in Tab. 1. As an illustration consider TicTacToe state s4

in Fig. 1, which gives rise to the following feature vectors in the sets T 1 and
T 3, resp.:

T 1 : g(s4) = (3, 0, 0, 2, 1, 0)
T 3 : g(s4) = (3, 0, 2, 1, 3, 2, 0, 0, 1, 0, 0, 0,−1, 0, 1, 1, −1, 0, 0)

Note that there is only a small difference between F0 and F2 (the 1 is replaced
by p), but this has a large impact on learning, as we will see below.
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Algorithm 1. “Self-play”: Incremental TD(λ)-algorithm for strategic games
Input: player p0 [=+1 (“X”) or -1 (“O”)] for the first move, initial state s0, and a
(partially trained) function f(w; g(st)) to calculate the game function V (st).

1: Vold := f(w; g(s0)) and t := 0 � with player −p0 in after state s0

2: e0 := ∇wf(w; g(s0))
3: for (p := p0; 1; −p → p, t + +) do � switch forever between players
4: select random number r ∈ [0, 1]
5: if r < ε then select randomly an after state st+1 � explorative move
6: else select after state st+1 which maximizes p · f(w; st+1) � greedy move
7: get response V (st+1) := f(w; g(st+1)) and reward rt+1 := r(st+1) from envi-

ronment
8: calculate error signal δt := rt+1 + γV (st+1) − Vold

9: if st+1 is greedy move or st+1 is final state then
10: make learn step w := w + αδtet

11: end if
12: if st+1 is final state then break � exit for-loop
13: Vold := yt+1 := f(w; g(st+1)) � because w has changed!
14: et+1 := γλet + ∇wf(w; g(st+1)) � becomes et for the next iteration
15: end for

3 Evaluation

We measure the success of a trained RL agent by different metrics.

Nim-3. The 2N possible outcomes of the game function V can be directly
evaluated. If the value of p · V in a after state for player p with s = 4m
tokens, m = 0, 1, 2, . . ., is larger than in the states with s+2, s+1, s−1, s−2,
then the agent will play optimally on all possible moves and we term such
an agent a success.

TicTacToe. We evaluate in a set of 40 selected states whether the RL agent
produces the same move as the optimal move suggested by the minimax
agent (or produces an equivalent move having the same minimax score). The
percentage of correct moves is a measure of success. This metric explores the
state space if the 40 selected states cover relevant aspects of the state space.

TicTacToe. In a tournament, the RL agent plays 500 games against other
agents, either as player X (the starting player) or as player O. We measure
the percentage of X-wins, ties, and O-wins. The success rate in a tournament
is the simplest and, at the end of the day, most relevant metric. But, note
that a tournament against the minimax agent will produce always the same
moves and thus will explore only a tiny fraction of the state space.

The success rate in the Nim-3 metric is measured as the average over 500
realisations of the RL agent. The results in Fig. 2 show the following: The earlier
each curve rises to 1.0 the faster the RL agent has learned the concept. It is
clearly seen that learning is faster without a sigmoid on the output and that the
linear net learns considerably faster than its backpropagation companion. All
runs use the feature set F0, which is simpler to learn than F1 or F2.
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Table 1. Feature sets for Nim-3 and TicTacToe. Each feature vector is an M -
dimensional vector: (f0, . . . , fM−1) for Nim-3 and (t0, . . . , tM−1) for TicTacToe. Singlets
in TicTacToe are lines (horizontal, diagonal, vertical) with exactly one token of player
p, the rest of the fields being empty; similar for doublets and triplets. A crosspoint
is an empty field belonging to at least two singlets of the same player. It character-
izes an opportunity for that player. “Diversity” counts the number of different singlet
directions for each player.

Name Description dim M

Feature sets for Nim-3
F0 fi = p, if i tokens left by player p, 0 else (i = 0, . . . , N − 1) N
F1 fi = 1, if i tokens left; fi+N = p, if i tokens left (i = 0, . . . , N−1) 2N
F2 fi = 1, if i tokens left, 0 else; fN = player p (i = 0, . . . , N − 1) N + 1

Feature sets for TicTacToe
T1 t0,1,2 : number of singlets, doublets, triplets for p = −1;

t4,5,6 : number of singlets, doublets, triplets for p = +1;
6

T2 t0,1 : number of singlets, doublets X if p = −1; 0 else
t2,3 : number of singlets, doublets O if p = +1; 0 else
t4,5 : diversity O/X if p = −1; 0 else
t6,7 : diversity O/X if p = +1; 0 else
t8,9 : crosspoint count O/X;

10

T3 same as T2 plus nine features containing the raw board position 19

Fig. 2. This figure shows how fast different net types can learn Nim-3, as a function
of the number of training games in self-play. The linear net without sigmoid in the
output neuron learns ten times faster than the backprop net without sigmoid and 50
times faster than the backprop net with sigmoid. Parameters: αinit = 0.1, αfinal = 0.01,
λ = 0 and γ = 0.9. The backpropagation net has six sigmoidal hidden neurons.
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Fig. 3. Success rate in Nim-3 for different feature sets. Again nets without output
sigmoid (solid lines) learn faster than those with (dashed lines). In all cases the net is
a backpropagation net with six hidden neurons. The importance of correct feature-set
selection is demonstrated: slow or no convergence on feature set F2. 12 hidden neurons
produce similar results. Other parameters are the same as in Fig. 2.

Of course the linear net can not learn each feature-output-relation. While the
feature set F1 is still linearly separable, the feature set F2 is not. The linear net
can learn F1 as well, but not F2. But, as Fig. 3 shows from the average over 500
realisations, also the backpropagation net has increasing difficulties in learning
F1 and F2. It does not succeed at all in the case F2, with sigmoid which is quite
a surprising failure.

Figure 4 shows the second measurement metric, the percentage of correct moves
on selected states. It is quite easy to reach 50% or more, but difficult to achieve
a figure above 85% on the average of 200 independent realisations. Single reali-
sations can reach 100% correct moves. The learning curve in Fig. 4 shows quite
surprisingly a decline in performance for feature set T 1 as G increases. As a gen-
eral trend, the “richer” feature sets T 2 and T 3 show much better performance.
The decline for G ≥ 104 in 3 of 4 learning curves is not yet fully understood.

Finally we perform a TicTacToe tournament of 300 games between an RL
agent, a minimax agent, and a random agent, where the latter chooses each
move at random. The results shown in Tab. 2 are quite satisfactorily (no agent
can do better than “tie” against the minimax agent). Although without any
strategy, the random agent explores the full state space and it is not easy to
win consistently against it. The percentages obtained here are about ten points
higher (in the favor of RL) than the similar results reported in [4]. It has to be
noted, that these results were achieved with a single (best) RL agent realisation,
which is the same procedure as in [4].
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Fig. 4. Percentage of correct moves in TicTacToe for different feature sets. Each mea-
surement point averages 200 independent realisations of a backpropagation net with 15
hidden neurons. Nets without output sigmoid (solid lines) learn faster in the initial phase,
but nets with sigmoid (dashed lines) produce slightly better results as G increases. Best
results are obtained with feature set T3. Other parameters are the same as in Fig. 2.

Table 2. Our results from a 300 games TicTacToe tournament. The RL agent is our
backpropagation net with 15 hidden neurons, linear output function, trained on feature
set T3 over G = 104 games of self-play. The minimax agent is a perfect player (recursive
search of best move), while the random player chooses each move randomly. See Tab. 3
for comparable results by Stenmark [4].

X vs. O X wins tie O wins

minimax vs. RL 0% 100% 0%
RL vs. minimax 0% 100% 0%
random vs. RL 0% 18% 82%
RL vs. random 100% 0% 0%

4 Discussion

An important result is that a linear output neuron is advantageous in nearly all
cases compared to an output neuron with sigmoid function. This holds both for
the linear net and the backpropagation net. It is surprising at first glance, since
a sigmoidal output in [0, 1] seems more appropriate for a function approximat-
ing V (s), the probability of a win for player X. The reason for slower learning
convergence (or no learning success at all) might lie in the following fact: In the
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Table 3. Results as reported by Stenmark [4] on a TicTacToe tournament. The RL
agent is a backpropagation net and was trained with 1 million games of self-play, yet
it does not achieve the same performance as in Tab. 2. Entries in bold face highlight
differences to Tab. 2.

X vs. O X wins tie O wins

minimax vs. RL 0% 100% 0%
RL vs. minimax 0% 100% 0%
random vs. RL 4.5% 22% 73.5%
RL vs. random 90.5% 9.5% 0%

sigmoidal case the gradient∇wf is a function proportional to f ·(1−f) and thus
becomes weaker as f approaches 0 or 1, the desired targets. Therefore “pulls”
into the right direction have a smaller net effect than “pulls” into the wrong
direction as they occur during the initial learning phase or while the correct
concepts are not yet learned.

Another interesting result is that the right selection of features is of great
importance to the learning process, as Fig. 4 shows. Too few features or features
not specific enough towards the learning goal might block the road to success.
On the other hand too many features on top of specific features seldom do
any harm, the RL agent quickly learns to ignore irrelevant features. Even if an
additional feature is quite unspecific (as for example the field contents used as
extra features in set T 3, which is on a single level not directly related to win or
loss), it might help to make a formerly linearly inseparable task separable. This
enables a linear function approximator to learn the desired behaviour quickly
and robustly.

This brings in front another topic which is well-expressed on Suttons RL FAQ
page [5], but too often forgotten in RL applications in the literature: Sutton
emphasizes the robustness and speed of linear nets and prefers them in first
approaches to new RL-tasks as opposed to backpropagation or other non-linear
function approximators. We feel in the same way and think that the results
presented here might assure these statements.

It pays off to think about features and their connection to the learning goal.
The Nim-3 task and the seemingly similar feature sets F0 and F2 show that
tiny modifications can be important: While F0 contains the same information
as F2, it makes learning much easier. In the set F2 conflicting concepts are
overlapping and hinder the learning process. Note that in the set F0 the input
f4 = +1 always signals a win for player +1, while in the set F2 the input
f4 = 1 means a win if fN = +1, but a loss if fN = −1. The net has to learn
the “concept” (f4 · fN ), but the conflicting TD error signals hinder it to do so.
A similar source of conflicts, namely the interference of redundant inputs was
reported by Togelius et al. in their work on memetic climbers [6].

Finally we compare our results with other work: For the game TicTacToe
many RL-implementations exist [4,7]. The RL agent from [4] shows a 10% weaker
performance on the random agent (Tab. 3), although it was trained 100 times
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Table 4. Tournament results when playing TicTacToe against the agent ANN by
Levkovich [7] which uses also RL and a feature set equivalent to our set T1. RL(T1)
and RL(T3) are our RL agents with feature sets T1 and T3, resp. Other parameters
are the same as in Tab. 2.

X vs. O X wins tie O wins

ANN vs. RL(T3) 7.4% 46% 46.6%
RL(T3) vs. ANN 61% 18% 21%
ANN vs. RL(T1) 24.1% 45.5% 30.4%
RL(T1) vs. ANN 63.4% 16.3% 20.3%

RL(T1) vs. RL(T3) 16.2% 39.4% 44.4%

longer (1 million games). But the difference is that their input was only the set
of raw board positions. This demonstrates the importance of feature inputs. The
RL agent in [7] is available as source code, so we ran several direct tournaments
where both agents had the same number G = 104 of training games (Tab. 4).1

The win rate of our RL agent with feature set T 3 was on average three or seven
times higher than that of the RL agent ANN in [7], depending on whether our
RL agent played as O or as X, resp. The performance of our RL agent with
feature set T 1 was a bit weaker, still slightly above ANN. So RL(T 3) leaves the
tournament as the best agent, even stronger than RL(T 1).

As a general remark it is quite surprising that the different RL agents do not
reach very often a tie or draw when playing against each other, as they do when
playing against the perfect minimax agent or against themselves. The reason is
probably that they did not encounter all variants of the other RL agent during
self-play training, so both sides have their “vulnerabilities” when playing against
each other. However, a better learning scheme seems theoretically possible where
an agent learns a perfect strategy just from self-play. Yet it has not been achieved
in an RL scheme with function approximation (where a learning step for state
A can also influence the results for state B).

5 Conclusion and Future Work

Some insight has been gained in the way to configure RL learning agents. It has
been studied in the case of strategic games but might as well be applicable to
other control or learning problems with delayed rewards. A somewhat surprising
result is that a sigmoidal output function is disadvantegeous in some tasks.
Another interesting failure is the decline of the RL agent to learn the Nim-3
task from feature set F2, while rapidly converging on the very similar feature
set F1. This shows the importance of the right feature selection. Compared to
other RL solutions on the TicTacToe task we find good results within only 1/100
of the learning steps reported in [4].

1 The source code of our implementation can be requested from the authors as well.
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We plan to apply the results obtained here to more complex learning tasks,
e.g., to the game Connect4 (state space complexity 1014). A number of param-
eters and algorithmic choices have to be tuned carefully, which we plan to do in
a systematic way with Sequential Parameter Optimization (SPO), a recent and
leading technology in statistical analysis [8]. The most interesting “parameter”
seems to be the design of a sufficiently rich and goal specific feature set for a
learning task. It seems interesting to develop automatic or semi-automatic pro-
cedures for feature selection and test their validity on different RL learning tasks.
Guidelines for the design of feature spaces could be the following properties:

– Is the feature distinctive with respect to the optimization goal, i.e., does at
least one of the feature values reliably signal a win / a loss?

– Can we generate complex features as combinations of primitive features
which have increased distinctiveness?

– Does a certain feature vector see too much spread in desired target values
during learning? If so, probably different concepts of the learning task are
mapped to the same feature vector and it might help to enrich the feature
set to make these concepts separable.

It is desirable to find meta strategies for the selection of the best feature sets
independent from the learning tasks. We plan to use again SPO [8] for this
task. The final goal is to develop RL agents which learn optimal behaviour from
the interaction with the environment in a way more robust and faster than the
current RL agents.
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Abstract. This paper investigates the behaviour of the Evolvable Agent
model (EvAg) in static and dynamic environments. The EvAg is a spa-
tially structured Genetic Algorithm (GA) designed to work on Peer-to-
Peer (P2P) systems in which the population structure is a small-world
graph built by newscast, a P2P protocol. Additionally to the profits in
computing performance, EvAg maintains genetic diversity at the small-
world relationships between individuals in a sort of social network. Ex-
periments were conducted in order to assess how EvAg scales on deceptive
and non-deceptive trap functions. In addition, the proposal was tested on
dynamic environments. The results show that the EvAg scales and adapts
better to dynamic environments than a standard GA and an improved ver-
sion of the well-known Random Immigrants Genetic Algorithm.

1 Introduction

The natural evolution has shown to succeed in the changing conditions of the
environments. Within any species, individuals’ mating is spatially constrained,
taking place between the fittest known individuals rather than just the fittest of
the whole membership. This way, nature finds a way to preserve genetic diversity
and responds to environmental changes (e.g. same species in different latitudes
adapt to the climatic conditions).

Within the Evolutionary Algorithms (EAs) area, spatially structured EAs
(ssEA) mimic these spacial relationships in nature (see e.g. [15] for a survey),
but they remain still unexplored in the context of non-stationary environments.
Neighbourhood structures in ssEA are modeled as a graph in which the vertices
are individuals and edges represent relationships between them. The impact of
different neighbourhood structures on the selection pressure has been studied for
regular lattices [5] and different graph structures such as a toroid [6] or small-
world [11]. The small-world structure has shown empirically to be competitive
against panmictic EAs. Specifically in [7], a Watts-Strogatz structured popula-
tion yields better results than a Barabási-Albert one and standard panmictic
approaches.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 488–497, 2008.
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Nevertheless, to the extent of our knowledge, there are just two works apply-
ing ssEAs to Dynamic Optimization Problems (DOP). The first one, proposed
by Sarma and De Jong in [12], explored the behaviour of a cellular Genetic Al-
gorithm (cGA) in a non-stationary environment. More recently, Alba et al. [2]
did a most exhaustive investigation but then again over a cGA using a regular
2-dimensional lattice. Following this line, in this paper we analyse a small-world
population applied to DOPs. Such a population structure is based on the news-
cast Peer-to-Peer (P2P) protocol presented in [8].

An additional advantage of using P2P protocols as population structure is
that they are inherently designed to tackle large-scale graphs and they present
consequently a good scalability behaviour. In order to assess the influence of such
a population structure in an EA, we have performed a scalability study on static
trap functions. Results show that our proposal scales better than a standard GA
(a generational 1-elitism GA) which has been used as a baseline for comparison.
Besides, results on DOP show that our approach also outperforms the standard
GA and the state of the art algorithm Self-Organizing Random Immigrants GA
(SORIGA) presented in [14]. SORIGA adopts a Self-Organized Criticality model
in order to maintain a sub-population of random individuals and their offspring
which varies in size by a power-law distribution.

The key to our P2P EA is the Evolvable Agent Model (EvAg) presented
in [10]. It consists of a fine grained approach for parallelizing EAs in which
there is a population of concurrent and self-scheduled agents performing the
evolutionary steps of selection, variation and evaluation of individuals. Within
such a study, several kinds of topologies were tested, concluding that a newscast
based topology yields better results than topologies based on the Watts-Strogatz
model or panmictic approaches.

The asynchronous update of the population in our approach implies a bias
error during changes in DOPs (i.e. the change happens and some individuals
might not be reevaluated during the first generation due to the asynchronous
updating). In order to tackle with such an issue, we have assumed that the
algorithm is able to detect changes. Additionally, we have also performed an
exploratory study without change detections using a reduced test case in which
the periods between changes are large (i.e. the larger the period is, the smaller
the bias error).

The rest of the paper is structured as follow: Section 2 presents the algorith-
mic details of our proposal. In Section 3, we explore the performance of our
approach in static and dynamic trap functions. Finally, in Section 4 we reach
some conclusions and propose some future work lines.

2 Description of the Algorithm

The overall procedure of our approach consists of a population of Evolvable
Agents (EvAg), described in Section 2.1, whose main design objective is to carry
out the main steps of evolutionary computation: selection, variation and evalua-
tion of individuals [4]. Each EvAg is a node within a neighbourhood in which the
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selection takes place locally. A decentralized system would be inefficient support-
ing a global comparison among all individuals. Consider, for example, roulette
wheel or rank-based selection.

In this paper, we analyse the effects of a neighbourhood based on newscast,
a self-organized small-world graph presented in [8].

2.1 Evolvable Agent

An Evolvable Agent (EvAg) itself is an EA composed of a single individual [9,10].
In spite of the model not having a population in the canonical sense, adjacent
EvAgs provide each other with the genetic material that they require to evolve.
Therefore, we talk about a population of EvAgs instead of a population of indi-
viduals.

Algorithm 1 shows the pseudo-code of an EvAg where the agent owns an
evolving solution (St).

Algorithm 1. Evolvable Agent
St ⇐ Initialize Agent
loop

Sols ⇐ Local Selection(Newscast) See algorithm 2
St+1 ⇐ Recombination(Sols,Pc)
St+1 ⇐ Evaluate(St+1)
if St+1 better than St then

St ⇐ St+1

end if
end loop

The selection takes place locally into a given neighborhood where each agent
select other agents’ current solutions (St). Selected solutions are stored in Sols
ready to be recombined. Within this process a new solution St+1 is generated. If
the newly generated solution St+1 is better than the old one St, it replaces the
current solution.

2.2 Population Structure

In principle, our method places no restrictions in the choice of population struc-
ture, although this choice will have an impact on the dynamics of the algorithm
since it establishes the environmental selection pressure. In this paper, we apply
the newscast protocol as graph structure. Within this section we do not enter
on the dynamics but on its functioning elements (see [8,16] for further details).
Algorithm 2 shows the pseudo-code of the main tasks in the self-organized pro-
cess which builds the newscast graph. Each node maintains a cache with one
entry per node in the network at most. Each entry provides the following infor-
mation about a foreign node: Time-stamp of the entry creation (it allows the
replacement of old items) and an agent identifier.
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Algorithm 2. Newscast protocol in node EvAgi

Active Thread
while EvAgi not finished do

sleep ΔT
EvAgj ⇐ Random selected node from Cachei

send Cachei to EvAgj

receive Cachej from EvAgj

Cachei ⇐ Aggregate (Cachei,Cachej)
end while

Passive Thread
while EvAgi not finished do

wait Cachej from EvAgj

send Cachei to EvAgj

Cachei ⇐ Aggregate (Cachei,Cachej)
end while

Local Selection(Newscast)
[EvAgh, EvAgk] ⇐ Random selected nodes from Cachei

There are two different tasks that the algorithm carries out within each node.
The active thread which initiates communications and the passive thread that
waits for the answer. In addition, the local selection procedure provides the
EvAg with other agents’ current solutions (EvAgh(St) and EvAgk(St)). After
ΔT time each EvAgi initiates a communication process (active thread). It selects
randomly an EvAgj from Cachei with uniform probability. Both EvAgi and
EvAgj exchange their caches and merge them following an aggregation function.
In our case, the aggregation consists of picking up the newest items (newscast)
for each cache entry in Cachei, Cachej and merging them into a single cache
that EvAgi and EvAgj will share. We have fixed ΔT to once per evaluation.

The cache size plays an important role in the newscast algorithm. It repre-
sents the maximum number of connections (edges) that a node could have. For
example, a topology with n nodes and a cache size of n, will lead to a complete
graph topology. Therefore, the cache size is smaller than the number of nodes
(typically around log(n)) in order to get small-world features such as a small
charasteristic path length and a high clustering coefficient (for further details
on the dynamics refer to [16]). We have fixed the cache size to 4 within the
experimental setup.

3 Experimental Setup and Results

In order to investigate how EvAg behaves on static and dynamic environments
experiments were conducted on trap functions [1]. A trap function is a piecewise-
linear function defined on unitation (the number of ones in a binary string).
There are two distinct regions in search space, one leading to a global optimum
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and the other leading to the local optimum. In general, a trap function is defined
by the following equation:

trap(u(−→x )) =

⎧⎨⎩
a
z (z − u(−→x )), if u(−→x ) ≤ z

l
l−z (u(−→x )− z), otherwise

(1)

where u(−→x ) is the unitation function, a is the local optimum, b is the global
optimum, l is the problem size and z is a slope-change location separating the
attraction basin of the two optima.

For the following experiments, 2-trap, 3-trap and 4-trap functions were de-
signed with the following parameter values: a = l-1; b = l; z = l-1. With these
settings, 2-trap is not deceptive, 4-trap is deceptive and 3-trap lies in the region
between deception and non-deception. Under these conditions, it is possible not
only to examine how EvAg scales on trap functions, but also to investigate
how the scalability varies when changing from non-deceptive to deceptive search
landscapes. Scalability tests were performed by juxtaposing m trap functions
and summing the fitness of each sub-function to obtain the total fitness. For
each trap and each size m the bisection [13] method was used to determine the
optimal EvAg population size N (the lowest N for which 98% of the runs solve
all the traps). As stated in the bisection method, mutation rate was set to 0, the
idea is to calibrate a minimum population size such that using random initial-
ization it is able to provide enough building blocks to converge to the optimum
without other mechanism than recombination. EvAg was tested with pc = 1.0,
uniform crossover and binary tournament. With respect to DOPs, population
size N was set to 240. In order to evaluate EvAg’s results a standard genera-
tional GA (GGA) with 1-elitism was also tested with the same parameter values.
Results are depicted in figure 1.

From the graphics in figure 1 it can be concluded that EvAg scales better than
GGA on 2, 3 and 4-trap, but the improvement is much more noticeable when
solving the deceptive 4-trap function. Under these conditions (4-trap), a GGA
faces extreme difficulties because lower order building blocks mislead the search
towards local optima instead of combining to form higher order building-blocks,
thus challenging the GA’s search mechanisms, and if the problem size grows,
the computational effort grows exponentially. A possible explanation for EvAg’s
better scalability lies in its ability to maintain genetic diversity at a higher and
consequent reduction of its optimal population size (N). With a lower optimal N,
EvAg needs fewer evaluations to reach the optimum, when compared to standard
GAs. Investigating scalability is of extreme importance when changing from a
”toy problem” test environment to real-world problems which may require very
large chromosomes to codify the solutions.

Experiments on dynamic problems were also conducted with trap functions.
For that purpose, the DOP generator presented in [17] was used to build different
changing environments based on 3- trap and 4-trap functions. Given a stationary
problem (f(x)(x ∈ {0, 1}L)) where L is the chromosome length, DOPs may be
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Fig. 1. Scalability with trap functions. Optimal population size and Average Evalu-
ations to Solution (AES) values for a standard GA (sGA) and the Evolvable Agent
Model (EvAg).

designed by applying a binary mask to each solution before its evaluation in the
following manner:

f(x, t) = f(x XOR M(k)) (2)

where t is the generation index, k = tτ is the period index and f(x, t) is the
fitness of the string x. M(k) is incrementally generated as follows:

M(k) = M(k − 1) XOR T (k) (3)

where T (k) is an intermediate binary mask for every period k. T(k) has ρ×L ones.
ρ is a value between 0 and 1 that controls the intensity, or severity, of changes
(i.e. ρ = 0 stands for a stationary problem and ρ = 1 represents the highest
degree of change). Therefore, by setting ρ and τ it is possible to control two of
the most important features of DOPs test environments: severity (ρ) and speed
(τ) of change [3]. Nine different scenarios for each trap were designed by setting ρ
to 0.05, 0.6 and 0.95, and τ to 10, 100 and 200 generations. Stationary functions
were designed with 10 subfunctions each, meaning that size of dynamic 3-trap
is L = 30 and size of dynamic 4-trap is L = 40. EvAg, GGA and SORIGA were
tested with uniform crossover, bit-flip mutation, binary tournament, pc = 1.0,
N = 240 and 1-elitism (GGA). SORIGA’s parameter rr was set to 3.

GAs performance analysis on DOPs must be addressed in a different manner
from static environments’ usual procedure. Dynamic behaviour throughout the
run must be examined, rather than the final convergence. For that purpose, the
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Table 1. Results on dynamic 3-trap and 4-trap (averaged over 30 independent runs).
Mean of best of generation and corresponding standard deviation values.

τ 10 100 200
ρ 0.05 0.6 0.95 0.05 0.6 0.95 0.05 0.6 0.95

3-trap GGA 25.72 21.88 24.19 29.4 26 25.57 29.81 26.7 25.6
(pm = 1

L ) ±0.97 ±0.27 ±0.24 ±0.44 ±0.33 ±0.17 ±0.11 ±0.33 ±0.22
L = 30 SORIGA 26.43 22.74 24.10 29.74 27.71 26.67 29.86 28.8 27.95

(pm = 1
2L ) ±0.62 ±0.3 ±0.26 ±0.05 ±0.17 ±0.16 ±0.02 ±0.1 ±0.16

EvAg 25.71 22.83 26.37 28.91 27.04 27.83 29.61 27.64 28.03
(pm = 1

L ) ±0.38 ±0.43 ±0.34 ±0.26 ±0.17 ±0.39 ±0.27 ±0.2 ±0.33
4-trap GGA 28.92 26.63 31.66 30.52 32.55 35.1 30.61 33.08 35.3

(pm = 1
L ) ±0.33 ±0.39 ±0.52 ±0.57 ±0.34 ±0.11 ±0.44 ±0.29 ±0.129

L = 40 SORIGA 28.64 26.54 29.4 34.12 32.4 34.7 35.92 33.43 35.02
(pm = 1

8L ) ±0.71 ±0.36 ±0.55 ±1.57 ±0.37 ±0.14 ±1.4 ±0.38 ±0.09
EvAg 31.71 27.82 32.71 34.89 33.76 36.9 35.32 34.87 37.17

(pm = 1
L ) ±0.53 ±0.39 ±0.46 ±0.5 ±0.28 ±0.31 ±0.51 ±0.25 ±0.33

evaluation of the algorithmic performance is done by measuring the mean best-
of-generation values (this is the standard procedure for DOPs). In addition, the
progression of best-of-generation values may be plotted in a graph, thus helping
to understand how the algorithm reacts to changes in the environment. Different
mutations rates were tested, and results in table 1 show the best configurations,
that is, the mutation rates that attained the higher values when averaging the
mean best-of-generation of the nine scenarios.

Table 2 helps to understand the relevance of the results in table 1 by showing
the results of pairwise t-test that compares the algorithms’ performance. The (+)
sign means that algorithm 1 is significantly better than algorithm 2, (∼) means
that the performance is equivalent and (−) means that the second GA is better.
While in 3-traps GGA and SORIGA still outperform EvAg in some scenarios,
in 4-traps our proposal achieves better results, with statistical significance, in all
the scenarios except one. EvAg abilities to solve DOPs appear to emerge when
facing a harder problem for GAs.

Figure 2 shows the dynamic behaviour of EvAg and GGA throughout the
run. It is clear that EvAg is more able to track the optimum, maintain a lower
distance to the solution during the search, in all scenarios. When ρ = 0.95,
GGA oscillates between local and global optimum, without really tracking the
solution, while EvAg maintains the best fitness closer to the global optimum,
which is f(x) = 40.

All this results have been obtained assuming that the algorithm is able to
detect changes in DOPs. However, some real situations would not allow our
proposal to detect changes. Therefore, looking forward future improvements in
the model, we have analysed it without change detections in the 4-trap function
using the larger periods between changes (τ = 100 and τ = 200). Note that
the results in Tables 3 and 4 are given with a bias error of 0.008% and 0.004%
respectively for τ = 100 and τ = 200. Besides, the fact of changes are not de-
tectable means that EvAg will need extra computational effort. For that reason
it is not surprising that EvAg performs better if we assume change detections
(see table 4). But when compared to GGA and SORIGA, EvAg still performs
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Fig. 2. Dynamics when tracking 4-trap functions (L = 40). Best of generation curves

Table 2. Pairwise t-test on dynamic 3-trap and 4-trap. Evolvable Agent vs. GGA and
SORIGA.

t-test τ 10 100 200
ρ 0.05 0.6 0.95 0.05 0.6 0.95 0.05 0.6 0.95

3-trap EvAg vs. GGA ∼ + + − + + − + +
EvAg vs. SORIGA − ∼ + − − + − − +

4-trap EvAg vs. GGA + + + + + + + + +
EvAg vs. SORIGA + + + + + + +− + +

Table 3. Results on dynamic 4-trap. It includes Evolvable Agent without change
detections. Mean of best of generation and corresponding standard deviation values.

τ 100 200
ρ 0.05 0.6 0.95 0.05 0.6 0.95

4-trap Without changes detection 34.6 32.6 36.6 34.9 34 37
(pm = 1

L ) ±0.4 ± 0.38 ±0.3 ±0.47 ±0.27 ± 0.23
L = 40 Changes detection 34.89 33.76 36.9 35.32 34.87 37.17

(pm = 1
L ) ±0.5 ±0.28 ±0.31 ±0.51 ±0.25 ±0.33

GGA 30.52 32.55 35.1 30.61 33.08 35.3
(pm = 1

L ) ±0.57 ±0.34 ±0.11 ±0.44 ±0.29 ±0.129
SORIGA 34.12 32.4 34.7 35.92 33.43 35.02

(pm = 1
8L ) ±1.57 ±0.37 ±0.14 ±1.4 ±0.38 ±0.09
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Table 4. Pairwise t-test on dynamic 4-trap. Evolvable Agent without change detections
vs. GGA, SORIGA and EvAg assuming that changes are detectable.

t-test 4-trap τ 100 200
EvAg without change detections ρ 0.05 0.6 0.95 0.05 0.6 0.95

vs. EvAg change detection − − − − − −
vs. GGA + ∼ + + + +

vs. SORIGA + + + +− + +

better (if changes are not detectable, all the agents’ solutions must be evaluated
in each generation, even if the fitness has been already computed).

4 Conclusions and Future Works

In this paper we have investigated the scalability of the Evolvable Agent Model
in static trap functions and its ability for responding to changes in dynamic
optimization problems. Results show that our approach scales better than a
standard GA and is able to outperform SORIGA [14], one of the state of the
art algorithms in DOPs. These results are specially remarkable under deceptive
conditions. The key to this is a population structure based on the small-world
graph built from a P2P protocol.

The non-generational procedure of the EvAg model produces a bias error
during changes in DOPs that we have avoid by assuming that the algorithm is
able to detect changes. Additionally, we have also explored its behaviour without
change detections. To that end, we have used the test cases in which the periods
between changes are large and the bias error is minimum. In both cases our
approach outperforms the standard GA and SORIGA.

As a future work, we intend to find a mechanism to avoid such an error without
assuming that changes are detectable. It will allow us to explore a wider range
of more realistic non-stationary problems.
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The Impact of Global Structure on Search
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Abstract. Population-based methods are often considered superior on multi-
modal functions because they tend to explore more of the fitness landscape before
they converge. We show that the effectiveness of this strategy is highly dependent
on a function’s global structure. When the local optima are not structured in a
predictable way, exploration can misguide search into sub-optimal regions. Lim-
iting exploration can result in a better non-intuitive global search strategy.

Keywords: Funnel landscapes, test functions, exploration, dynamic populations.

Many artificial test functions have a “big valley” topology, where a decrease in fitness
implies that, on average, search is getting closer to the global optimum. Although the
search space is highly multi-modal, the local optima are structured such that there exists
a global trend toward the best solution. Problems that exhibit this characteristic are
sometimes referred to as single-funnel landscapes.

There are several real-world applications that do not have this simple structure. Wales
[7] suggests that many optimization problems in computational biology are difficult
because local optima often form in distinct, spatially separate clusters within the search
space. Problems of this type have multiple funnels, resulting in a landscape that has a
less predictable underlying global structure.

The way that global structure impacts evolutionary search is not well understood, in
part, because many of the test functions used for evaluation have single-funnel land-
scapes. There are also a few test functions that have multiple funnels, but the number of
funnels increases with dimensionality. This complexity makes it difficult to understand
search behavior in high dimensions.

We have several objectives in this paper. First, we describe a method for creating
landscapes that contain exactly two funnels, regardless of the problem size. Then, we
empirically show that several evolution algorithms have an extremely low probability
of success when the global optima is located in a proportionally smaller funnel. Finally,
we demonstrate that limiting exploration can result in a performance gain.

1 Motivation and Background

The degree to which an algorithm will perform well on an application partly depends
on how well the algorithm can deal with the features that make the problem difficult.
Researchers within the computational chemistry community have started to pay atten-
tion to how global structure affects problem difficulty [4]. Much of their attention has

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 498–507, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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been devoted to studying Lennard-Jones clusters, which are a class of configuration op-
timization problems where the goal is to find the spatial positions for a set of atoms that
has the smallest potential energy.

The energy surface of the Lennard-Jones potential is highly multimodal, and the most
difficult instances have a double-funnel landscape. Assuming that a search algorithm
can escape local optima, the underlying global structure of a problem may have a greater
impact on problem difficulty than the number of local optima [6].

The Rastrigin function is a classic single-funnel landscape. Kern et al. [3] point out
that there are two potential strategies for solving this highly multimodal problem. The
first is to exploit separability, which reduces its difficulty to N one-dimensional lines
searches, where N is the number of parameters. The other strategy is to exploit the
problems global structure; CMA-ES [2] and Basin-Hopping [8] avoid local optima by
exploiting an underlying structure. The main question we are exploring in this paper is:
how does this underlying structure impact evolutionary search?

2 Creating Double-Funnel Landscapes

The relative merit in any empirical study is limited by how well we understand the
characteristics that make realistic parameter optimization problems difficult, and by
our ability to embed these features into benchmark test functions. In this section, we
describe two double-funnel test problems. First, we create a simple surface comprised
of only two quadratic spheres. Then, we take this simple surface and add local optima
to it. This creates a multi-funnel surface similar to Rastrigin’s function.

2.1 The Double-Sphere

The landscape structure of our simple double-sphere test function is the minimum of
two quadratic functions, where each sphere creates a single funnel in the search space.
The placement of each sphere is critical because the barrier that divides them will be
inconsequential if they are too close. We also want this barrier height to scale with
dimensionality.

To address these concerns, we place each quadratic sphere along the positive diago-
nal of the search space, which is bounded on the interval [−5, 5]N . The optimal sphere
is located in the middle of the positive quadrant of the search space, at μ1 = 2.5 in
each dimension. The sub-optimal sphere is centered at μ2 = −2.5 across all dimen-
sions. The distance between each funnel increases proportionally with dimensionality,
and this construction creates an underlying surface that is globally non-separable.

Lennard-Jones double-funnel problems are difficult when 1) the sub-optimal funnels
is nearly as deep as the optima funnel, and 2) the basin of attraction to the optimal
funnel is small. We simulate this by increasing the height of the sub-optimal funnel
by a value of d. That way, the value of the optimal funnel is unchanged. In order to
change the relative size of each funnel, we scaled the sub-optimal funnel by a constant
factor, denoted s. This way, the optimal funnel retains it shape regardless of scaling,
and therefore, has a more consistent level of difficulty. Multiplying the sub-optimal
funnel by a number greater than one will create a more narrow sub-optimal funnel. The
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d=1
d=2
d=3
d=4

Fig. 1. The impact of d and s on the double-sphere function. Increasing d creates more distinction
between the funnels (left). When s = 0 (middle), the two funnels are the same size. Decreasing
s creates a larger sub-optimal funnel (right).

opposite is true when s is less than one. The overall form of our multi-funnel sphere
function is:

fdouble-sphere(x) = min

(
N∑

i=1

(xi − μ1)2, d ·N + s ·
N∑

i=1

(xi − μ2)2
)

In order to make s the primary control characteristic for the size of each basin of
attraction, we shifted the mean of the sub-optimal sphere such that the barrier between
them, which is the point at which they intersect, is always located at the origin of the
search space. This configuration requires μ2 = −

√
(μ2

1 − d)/s.
Values s and d control the size and depth of the sub-optimal funnel. The leftmost

graph in Figure 1 is a diagonal slice showing how the different values of d impact
the depth of the sub-optimal funnel. The middle and right-most contour plots illustrate
the impact of s. The two funnels are the same size in the middle graph (e.g. s = 1.0),
but the right-most graph creates a larger sub-optimal funnel (white) using s = 0.7.
We use the quadratic penalty term described by Hansen and Kern [2] to enforce strong
boundaries.

2.2 The Double-Rastrigin

We wanted a double-funnel test problem with properties similar to Rastrigin’s func-
tion because it would isolate global structure as the main difference impacting problem
difficulty on a problem that is well-understood. We create a double-funnel version of
Rastrigin’s function by adding local optima to the double-sphere function. We translate
the cosine term used in Rastrigin’s function by μ1 so that the minimum of the local
optima component is centered at the bottom of the optimal funnel. The overall form of
the double-Rastrigin function is

fdouble-Rastrigin(x) = fdouble-Sphere(x) + 10
N∑

i=1

(1− cos 2π(xi − μ1))
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3 Understanding the Impact of Global Structure

In this section, we explore how the characteristics of the double-sphere, which we mea-
sure in terms of s and d, impact search. We compare a simple evolution strategy using
Cumulative Step-length Adaptation (CSA-ES) [5,3], the Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES)[2], and the CHC genetic algorithm [1]. Please see
citations for descriptions and parameter settings.

We measure performance in terms of success rate, which we denote as ω, and define
as the probability that an algorithm will converge to the global optimum. In each exper-
iment, we estimate ω by running 1000 trials of each algorithm and counting the number
of instances that find the global optimum.

Our results show that population-based methods are vulnerable to the size of each
funnel, as controlled by s, when the depth of the two funnels are relatively close. That
is, there exists some funnel characteristics where the exploration process will misguide
search into the biggest funnel, not the deepest.

This section is organized in the following way. First, we measure the performance
of local search in order to get a rough estimate of the size of each basin of attraction
over a range of s and d values. Then we investigate how CMA-ES and CHC perform
on the double-sphere. Although this problem only has two local optima, we still find
both algorithms can fail even when the size of the optimal basin of attraction is fairly
large. Finally, we discuss why this is important from a global optimization perspective
by evaluating CMA-ES and CSA-ES on the double-Rastrigin function.

3.1 Local Search Properties of the Double-Sphere

As a baseline, we use the success rate of a local search method, where the probability
of finding the global solution is proportional to the size of the basin of attraction to the
optimum. We start by considering the double-sphere with dimension N = 30. We vary
s between [0.2, 1.4] by increments of 0.1, and evaluate different sub-optimal depths of
d = 1, 2, and 3.

When we estimate ω̂ for local search, we find a positive and approximately linear
relationship between ω̂LS and s. That is, as we decrease s, we also decrease the prob-
ability of finding the global optimum using local search. This makes sense because a
small s value increases the size of the sub-optimal funnel, making the optimal funnel
proportionally smaller (e.g. the basin of attraction to the optimum is smaller). The left
graph in Figure 2 shows the relationship between ω̂LS and s. Notice that when s = 1,
each funnel occupies≈ 50% of the search space (black dot).

We use this estimate of the size of each basin of attraction as a baseline for inter-
preting our results. That is, instead of graphing ω̂ for each algorithm as a function of s,
we plot the ω̂ values as a function of ω̂LS, the estimate size of basin of attraction to the
global optimum. This makes it easier to observe when the evolutionary search is under-
or over-performing with respect to what we would expect from local search.

For example, Figure 2 also shows the success rates of CMA-ES using the default
population size of λ = 14 (for N = 30). Since CMA-ES is always above the gray line,
we can observe that the success rates for CMA-ES are greater than that of local search.
However, there is still a strong linear relationship between ω̂ and the size of the optimal
funnel.
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Fig. 2. Local search on the double-sphere: There is an approximately linear relationship between
the size of the optimal funnel and success rate of local search, ω̂LS (left). Notice that the depth of
the sub-optimal funnel does not greatly impact ω̂LS. The right plot shows success rate for CMA-
ES using the default population size. The success rates for CMA-ES are greater than that of local
search, but still strongly tied to the size of the optimal funnel (≈ ω̂LS).

3.2 Global Search Properties of the Double-Sphere

Most evolutionary algorithms perform better on multimodal surfaces when they use a
larger population size. This is especially true for CMA-ES [2,3] and CSA-ES [3]. CHC
is probably the exception, as it was designed to use smaller populations [9].

In this section, we would like to understand how the double-sphere impacts global
search. In the next section we will consider a range of population sizes for CSA-ES and
CMA-ES, but for now, we fix the population size of CMA-ES to λ = 500. For CHC
we use the default of population size of 50 with 10-bits of precision. Our results did not
change dramatically with increased population sizes for CMA-ES or CHC. Changing
the precision on CHC to 20−bits also had little impact. A maximum of 100, 000 eval-
uations were allocated and no random restarts were used (expect for the soft-restarts
used by CHC). We discuss the role of restarts in the next section.

We observe a similar probability distribution for each algorithm. Instead of a lin-
ear trend, as observed for the local search methods, the distribution is pulled into a
sigmoid. When the optimal funnel is proportionally larger than the sub-optimal fun-
nel, success rates are extremely high. However, when the optimal funnel is propor-
tionally smaller, the success rates for CMA-ES and CHC drop dramatically. Figure 3
show the probability of success for CMA-ES and CHC as a function of the basin of
attraction size.

Consider the extreme cases. When the relative size of the optimal funnel is ≈ 70%,
evolutionary search is highly successful (ω̂ ≈ 100%). This means that when local
search finds the optimal solution≈ 70% of the time, CMA-ES and CHC will almost al-
ways find the optimal solution. On the other hand, when the relative size of the optimal
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Fig. 3. CMA-ES and CHC on the double-sphere: The probability of success as a function of the
size of the basin of attraction to the optimal funnel, as estimated with local search (ω̂LS ). The
gray line indicates the success probability of local search. For each algorithm, the trend is similar;
when the optimal funnel is relatively large, the success rates for evolutionary algorithms are high.
When the relative size of the optimal funnel is low, evolutionary search is more likely to fail.

funnel is only ≈ 10%, CMA-ES and CHC fail to find the global optimum. This is true
for all the d values we considered.

As we increase d, we increase the height of the sub-optimal funnel. Figure 3 show
that larger values of d shift the ω̂ distribution to the left, meaning that a smaller s value,
and therefore, a smaller basin of attraction to the global optimal, is required to observe
failure. The hardest problems for CHC and CMA-ES are those where the depths of
the two funnels are close (d = 1) and the basin of attraction to the optimal funnel is
comparatively small (s is small).

The black dots in Figure 3 represent a success rate of 10% for each algorithm when
d = 1. This means that CMA-ES will succeed less than 10% of the time even when
the relative size of the optimal funnel is ≈ 33%. A similar problem occurs with CHC.
Even when the basin of attraction to the global optima is ≈ 35%, the success rate for
CHC is about 10%. In general, when local search finds the optimal solution ≈ 1/3 of
the time, the evolutionary algorithms we tested are likely to fail when the depths of the
two funnels are relatively close.

The key observation we make in this section is this: when the depths of two funnels
are close (e.g. d = 1, about 17% different from the barrier that divides them), the global
search parameter settings employed by the evolutionary algorithms we tested are likely
to cause failure, even when the optimal basin of attraction is relatively large,≈ 30%. As
we increase the depth of the sub-optimal funnel, evolutionary search is more successful.

3.3 Implications for Global Search: Double-Rastrigin

Considering that CMA-ES using the default population size has probabilities of success
that are similar to, or even better than, that of local search, why should we care about the
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Fig. 4. Increasing the population size (λ) increases the probability that each evolution strategy will
find the optimal solution on Rastrigin’s’ function (left), but decreases the probability of success
on the double-Sphere function

bias of larger populations? The main reason this matters is that if an algorithm cannot
cope with the simple structure of the double-sphere, it will also not be successful on
more complex multimodal surfaces, like the double-Rastrigin, where the double-sphere
dictates the underlying global structure.

We consider three 30-dimensional functions: Rastrigin, double-sphere, and double-
Rastrigin. For the double-sphere and the double-Rastrigin, we created instances that
are intentionally difficult for CMA-ES by choosing d = 1 and s = 0.7, which corre-
sponds to an ω̂LS ≈ 30%. We only consider CSA-ES and CMA-ES because they have
strong termination criteria and can solve the 30-dimensional Rastrigin function with
large populations. This simplifies the interpretation of our results.

The leftmost graph in Figure 4 shows the estimated success rates for the ES algo-
rithms, without restarts, on Rastrigin’s function as the population varies from [100, 1000]
by increments of 100. We have also included the default population size ofλ= 14. These
results are consistent with previously reported success rates [2,3]. The noticeable trend
is that larger populations are more able to exploit the underlying sphere structure of the
Rastrigin function and locate the best solution. Smaller population sizes tend to get stuck
in one of the many local optima. For example, CMA-ES with a population of λ = 14
never finds the global solution. Using a population size of λ = 100, CMA-ES only finds
the optimal about 10 out of 1000 times.

As we vary the population size for the ES algorithms on the double-sphere, we find
the opposite is true. High success rates are realized with low population sizes, but larger
values of λ cause CSA-ES and CMA-ES to exhibit extremely low success rates. The
right-most graph in Figure 4 shows these results.

This presents an interesting trade-off for the double-Rastrigin function: find a pop-
ulation size that balances the difficult characteristics of both the modality of the Ras-
trigin function and the structure of the double-sphere. Unfortunately, this balance is
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disappointing. When we run both algorithms on the double-Rastrigin function, we find
that the success rates are lower than 3%, regardless of population size. This is because
the success rates for the double-Rastrigin function can be decomposed into the success
rates of its components. That is, the probability that an algorithm will be successful on
the double-Rastrigin is approximately the joint probability that it is successful on the
Rastrigin function and the probability that it will succeed on the double-sphere.

This is also an incomplete picture because the results presented so far have not used
random restarts. From a practical point of view, restarts can increase performance be-
cause the success probabilities will add. That is, each restart represents an independent
event. So, we are not just forced to find a population that balances the characteristics of
both the Rastrigin and double-sphere function, we also need to account for the general
observation that smaller populations will use fewer evaluations and restart more often.

When we include restarts and allow each algorithm to use 1e7 evaluations, we still
observe low success rates. For example, CSA-ES peaks at ω̂ ≈ 11% with a population
of λ = 400. CMA-ES operating with λ = 300 yields an expected best of ω̂ ≈ 5%.

The results of this section reinforce the notion that an algorithm’s success or failure
largely depends on its ability to cope with the features of a function. A population size
suitable for Rastrigin’s function is a poor choice for the double-sphere and vise-versa.

4 Limiting Exploration with Dynamic Populations in CSA-ES

On the double-sphere function, larger populations in CSA-ES (and CMA-ES) tend to
pull the mean towards the funnel with the most samples. When the funnels are close
in depth, a larger sub-optimal funnel is more likely to have more samples. Smaller
populations are less vulnerable to this because less information being sampled. On the
double-Rastrigin, we need the best of both worlds: a small population size to drop into
a funnel without being pulled towards a larger basin of attraction, and then a large
population size to exploit the underlying structure of that particular funnel.

As a proof of concept, we implemented CSA-ES with a dynamic population size that
increased as the global step-size decreased. A decrease in step-size indicates a higher
level of exploitation. When search is first exploring, it is utilizing a small population
size. As it begins to exploit a promising region, increasing the population size will help
exploit the underlying funnel structure. The algorithm is identical to CSA-ES in every
way except at the end of each generation, we compute a new population size based on
a function of the global step-size σ, the initial step-size σ0, and an upper bound of the
population size, λMAX.

λ = λMAX

(
σ

σ0
− 1
)2

We ensure that λ never falls below the default population size, λd = 14, or exceeds the
maximum λMAX, which is an input parameter.

We ran this strategy, which we denote D-CSA-ES, on the 30-dimensional Rastrigin,
double-sphere, and double-Rastrigin functions for the same values of λ used in the
previous section, except that D-CSA-ES interprets this value as λMAX. The resulting
search strategy is less effective on the Rastrigin function, but operates at a consistent
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Fig. 5. D-CSA-ES on the double-sphere (left) and on the double-Rastrigin (right). The relation-
ship between success rate and the size of the optimal funnel remains linear. This results in a much
higher success rate on the double-Rastrigin function.

level on the double-sphere function that is proportional to the size of the optimal funnel,
regardless of the population size. The left graph in Figure 5 shows D-CSA-ES on the
double-sphere as a function of optimal funnel size for d = 1, 2, and 3 using λMAX =
500. The most striking feature is the approximately linear relationship between the size
of the optimal funnel and the success rate of D-CSA-ES. This resembles the relationship
of CMA-ES using a default population size on the double-sphere, but with a setting for
λ that is more appropriate for global optimization.

What does this mean for the double-Rastrigin function? The right graph in Figure 5
show D-CSA-ES on the double-Rastrigin function for s = 0.7 and d = 1 as a function
of population size. Without restarts (dash), D-CSA-ES has a success rate the is about
10 times higher than either CMA-ES or CSA-ES. When D-CSA-ES runs with restarts
(solid line) until 1e7 evaluations, it success rates are as high as ≈ 60%.

The dotted line in this graph represents the predicted performance obtained by multi-
plying the ω̂ from Rastrigin with ω̂ from the double-sphere. The prediction is very close
to the empirical results and reinforces the notion that successful search must cope with
both modality and global structure.

5 Summary

Global structure can clearly impact the performance of evolutionary optimization. When
the optimal funnel is proportionally smaller, the success rates for CHC and CMA-ES de-
crease dramatically on the double-sphere, especially when the depths of the two funnels
are close. Exploration is not able to distinguish between funnel quality, and is pulled
into the larger funnel. We believe these results generalize to other algorithms.

This presents a problem for CMA-ES and CSA-ES on the double-Rastrigin func-
tion because, although larger population sizes are necessary to exploit the underlying
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structure of the Rastrigin, they are also more bias towards funnel size. The population
size that is best for Rastrigin is the least effective on the double-sphere. A compromise
that works on both is disappointing.

By dynamically adapting the population size, D-CSA-ES is less biased toward funnel
size while exploring the search space. However, as it descends into a particular funnel,
and it begins to exploit the search space, increasing the population size aids D-CSA-
ES in detecting the underlying structure of the funnel and avoiding local optima. This
results in a strategy whose success rate is dependent on funnel size; when the optimal
funnel is large, the success rates for D-CSA-ES are not a good as CHC or CMA-ES.
But when the optimal funnel is small, D-CSA-ES will still find the global solution with
a probability proportional to relative funnel size. The highs are not as high, but the lows
are still acceptable.

Exploring the search space to gain a global perspective before exploiting a particular
region may be an effective strategy for “big valley”, single-funnel problems. But on
multi-funnel landscapes, the effectiveness of exploration comes into question as a global
search strategy. This work supports an ongoing awareness that, if an algorithm is going
to be successful, then it must be able to deal with the features in the landscape.
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Abstract. Ant Colony Optimization algorithms were inspired by the
foraging behavior of ants that accumulate pheromone trails on the short-
est paths to food. Some ACO algorithms employ pheromone trail limits
to improve exploration and avoid stagnation by ensuring a non-zero prob-
ability of selection for all trails. The MAX-MIN Ant System (MMAS)
sets explicit pheromone trail limits while the Ant Colony System (ACS)
has implicit pheromone trail limits. Stagnation still occurs in both al-
gorithms with the recommended pheromone trail limits as the relative
importance of the pheromone trails increases (α > 1). Improved esti-
mates of the lower pheromone trail limit (τmin) for both algorithms help
avoid stagnation and improve performance for α > 1. The improved esti-
mates suggest a general rule to avoid stagnation for stochastic algorithms
with explicit or implicit limits on exponential values used in proportional
selection.

1 Introduction

Metaheuristic search algorithms are an effective means to solve a variety of
combinatorial optimization problems [1]. Ant Colony Optimization (ACO) [2] is
a group of metaheuristic algorithms inspired by nature. These algorithms model
the foraging behavior of ants that accumulate pheromone trails on the best paths
leading to food. ACO algorithms similarly build pheromone trails to learn the
best solution to a problem.

ACO algorithms perform a series of iterations to explore the problem space
while exploiting the pheromone trail information learned from previous itera-
tions. Each iteration involves solution construction using random proportional
selection based on the pheromone trails and heuristic information from the prob-
lem, local search to improve these solutions, and pheromone trail updates based
on one or more constructed solutions. The algorithm ceases at some predeter-
mined point, such as a maximum number of iterations or a time limit.

A common problem with metaheuristic search algorithms such as ACO is
stagnation or premature convergence to a local optimum. In ACO, stagnation
occurs when a single pheromone trail dominates the random proportional selec-
tion during tour construction. ACO algorithms use different methods to address
stagnation.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 508–517, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Stützle and Hoos introduced the MAX-MIN Ant System (MMAS) [3] which
includes explicit upper and lower pheromone trail limits to avoid stagnation.
Dorigo and Gambardella introduced the Ant Colony System (ACS) [4] which
includes an exponential moving average pheromone update rule that implicitly
limits the pheromone trails.

The recommended pheromone trail limits for both algorithms exhibit stagna-
tion as the relative importance of the pheromone trails increases (α > 1). This
behavior is consistent with other ACO algorithms and prior literature which
resulted in a parameter recommendation of α = 1 for MMAS and ACS.

An analysis of the proportional probabilities shows the probability of selection
for trails with the minimum pheromone level τmin approaches zero for α > 1. The
improved estimates of τmin for MMAS and ACS introduced in this article maintain
the desired non-zero proportional probabilities to help avoid stagnation.

Benchmark problems from TSPLIB[5] demonstrate the expected stagnation,
both with and without local search. The improved estimates of the lower phero-
mone trail limit τmin reduce the effect of stagnation and significantly improve
performance for α > 1 on the benchmarks. The improved estimates suggest a
general rule for stochastic algorithms with explicit or implicit limits on expo-
nential values used in proportional selection.

In the remainder of this paper we review the estimation of the pheromone
trail limits in Section 2, propose improved estimates for lower pheromone trail
limits in Section 3, compare empirical results for the existing and improved lower
pheromone trail limits in Section 4, and summarize our findings with recommen-
dations for additional additional research in Section 5.

2 Pheromone Trail Limits

ACO algorithms share the first two equations in Table 1 – the probability dis-
tribution rule pk

ij used by ants for random proportional selection during tour
construction and the pheromone trail update rule τij applied at the end of each
iteration. Pheromone trail limits τmin and τmax defined in the remaining equa-
tions are explicit in MMAS and implicit in ACS. The performance of these
algorithms depend on the proper selection of these pheromone trail limits.

During tour construction, random proportional selection based on the prob-
ability distribution pk

ij determines the next city j visited by ant k currently
located at city i using equation (1). Only cities not yet visited on the tour con-
structed by ant k are eligible for selection – this is the neighborhood Nk

i . The
current pheromone trail values τij and the problem heuristics ηij determine the
probability distribution, with exponents α and β to weight their relative contri-
butions. ACS omits the α exponent on pheromone trails which is equivalent to
setting α = 1. Both algorithms may employ pseudo-random proportional selec-
tion where the value q0 biases the amount of exploration versus exploitation of
the existing solution.

In MMAS, the pheromone trail update rule for τij in equation (2) evaporates
a portion of all pheromone trail values based on the evaporation rate ρ and
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Table 1. Equations governing the behavior of the MMAS and ACS algorithms

MMAS ACS

pk
ij(t) = [τij(t)]

α·[ηij ]
β∑

l∈Nk
i

[τil(t)]α·[ηil]β
pk

ij(t) = [τij(t)]·[ηij]
β∑

l∈Nk
i

[τil(t)]·[ηil]β
(1)

τij(t + 1) = (1− ρ) · τij(t) + Δτij τij(t + 1) = (1− ρ) · τij(t) + ρ ·Δτbs
ij (2)

τmin ≤ τij ≤ τmax (3)

τmax = 1
ρ ·

1
Lopt τmax = 1

Lbs (4)

n
√

pbest = τmax

τmax+avg·τmin
(5)

τmin = τmax ·
[

(1− n
√

pbest)

avg· n
√

pbest

]
τmin = 1

Lnn · 1
n (6)

τminlocalsearch = τmax ·
[

1
2·n
]

(7)

τ0 = τmax τ0 = τmin (8)

deposits additional pheromones on the trail of either the iteration best or global
best solution. MMAS also adjusts any pheromone trail values not within the
limits τmin and τmax to the appropriate limit to maintain the relationship in
equation (3). The result is a relative increase in the probability of selection for
some trails during the next iteration and a decrease for others.

In ACS, the pheromone trail update rule in equation (2) applies only to the
pheromone trails of the global best solution using an exponential moving average
with ρ as the smoothing factor to maintain the pheromone values between the
limits. Since the initial pheromone level τ0 of ACS is the minimum trail level
τmin in equation (8), the result is an increase only to trails associated with the
best solution. There is no evaporation in ACS.

Both algorithms derive their upper limit τmax in equation (4) from the limit of
the series expansion for the pheromone trail update rule τij(i + 1), where Lopt is
the length of the optimal tour and Lbs is the length of the global best solution.
Since the optimal tour Lopt is not known in advance, MMAS substitutes the
length of the global best solution during the run Lbs as an estimation.

MMAS estimates the lower limit τmin in equation (5) using the probability
distribution pk

ij and the probability pbest of constructing a greedy solution with
the maximum pheromone values[3]. Since the remaining number of selections
varies during tour construction, the proportional probability estimation uses the
average number of selections remaining. This average is n/2 if all n possible
selections are considered or cand/2 when using a candidate list of size cand.
Solving the equation for τmin yields equation (6). The initial pheromone level
τ0 for MMAS is set to the maximum pheromone trail level τmax in equation (8)
to encourage early exploration. MMAS recomputes the explicit pheromone trail
limits during execution as new best solutions are found. Based on experimental
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results, the recommended value for pbest is 0.05. When run with local search,
MMAS sets the lower pheromone trail limit τmin using equation (7) to increase
exploration[6].

ACS sets an experimentally determined lower limit τmin in equation (6) where
Lnn is the length of a nearest neighbor tour[4]. In ACS the lower limit does not
change from the initial value, while the upper limit changes implicitly as new
best solutions are found.

Both lower pheromone trail limits have the form τmin = τmax · a where a is a
scaling factor between 0 and 1, assuming an equivalence of Lnn and Lbs in the
estimations for ACS. In the next section we will see that the value of the lower
pheromone trail limit τmin plays a critical role in the avoidance of stagnation.

3 Improved Lower Limits

An analysis of the proportional probabilities pk
ij using problem kroA100 from

TSPLIB[5] as an example suggests stagnation for α > 1. The selection proba-
bilities pmax and pmin for trails with the maximum and minimum pheromone
trail values are shown in Table 2. As α increases, the range between τmax and
τmin increases and the proportional probabilities for pmax approach 1.0 and pmin

approach 0.0 which results in stagnation.

Table 2. MMAS and ACS selection probability for trails corresponding to maximum
pmax and minimum pmin pheromone trail values using TSP problem kroA100 with n =
100. Parameters used in this estimation include Lopt = 21282, cand = 20, pbest = 0.05,
and ρ = 0.02 for MMAS, Lbs = Lnn = 25848 for ACS.

α τmax τmin τα
max τα

min pmax pmin

MMAS
1 2.3e-03 7.1e-06 2.3e-03 7.1e-06 0.97 3.0e-03
2 2.3e-03 7.1e-06 5.5e-06 5.1e-11 0.99 9.2e-06
3 2.3e-03 7.1e-06 1.3e-08 3.6e-16 1.00 2.8e-08
4 2.3e-03 7.1e-06 3.0e-11 2.6e-21 1.00 8.6e-11

ACS
1 3.9e-05 3.9e-07 3.9e-05 3.9e-07 0.92 9.2e-03
2 3.9e-05 3.9e-07 1.5e-09 1.5e-13 0.99 1.0e-04
3 3.9e-05 3.9e-07 5.8e-14 5.8e-20 1.00 1.0e-06
4 3.9e-05 3.9e-07 2.2e-18 2.2e-26 1.00 1.0e-08

Stagnation occurs for α > 1 in MMAS due to the simplified estimate of
proportional probabilities used in equation (5) that omitted α, resulting in a
derivation for τmin that assumed α = 1. Note that the probability of selection
pmax = τα

max/(τα
max + avg · τα

min) and pmin = τα
min/(τα

max + avg · τα
min) are pro-

portional to τα
max and τα

min, not τmax and τmin. The proposed improvements in
Table 3 incorporate α in the proportional probability estimation for pk

ij shown
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in equation (9). Solving this equation for τmin in equation (10) yields a similar
estimation in terms of τmax where the scaling factor is now adjusted by the
exponent 1

α . This narrows the range between τmax and τmin to compensate for
the exponentiation in the proportional probabilities. Assuming a general form
τmin = τmax · a

1
α for the lower pheromone trail limit suggests an analogous im-

provement for MMAS with local search in equation (11) and ACS in equation(10)
as shown in the table.

Table 3. Improved lower limits for pheromone trails in MMAS and ACS

MMAS ACS

n
√

pbest = τα
max

τα
max+avg·τα

min
(9)

τmin = τmax ·
[

(1− n
√

pbest)

avg· n
√

pbest

] 1
α

τmin = 1
Lnn ·

[
1
n

] 1
α (10)

τminlocalsearch = τmax ·
[

1
2·n
] 1

α (11)

The selection probabilities pmax and pmin in Table 4 reflect the improved
estimates of τmin for both MMAS and ACS. The improved estimates result in
constant selection probabilities as α increases for both algorithms. The ACS
probabilities will vary somewhat during execution since the value of τmax in-
creases as the value of Lbs decreases while the value of τmin remains constant.
The MMAS probabilities will maintain their ratio since the algorithm recom-
putes both when Lbs changes.

Table 4. Improved MMAS and ACS selection probability for trails corresponding to
maximum pmax and minimum pmin pheromone trail values using TSP problem kroA100
with n = 100. Parameters used in this estimation include Lopt = 21282, cand = 20,
pbest = 0.05, and ρ = 0.02 for MMAS, Lbs = Lnn = 25848 for ACS.

α τmax τmin τα
max τα

min pmax pmin

MMAS
1 2.3e-03 7.1e-06 2.3e-03 7.1e-06 0.97 3.0e-03
2 2.3e-03 1.3e-04 5.5e-06 1.7e-08 0.97 3.0e-03
3 2.3e-03 3.4e-04 1.3e-08 3.9e-11 0.97 3.0e-03
4 2.3e-03 5.5e-04 3.0e-11 9.3e-14 0.97 3.0e-03

ACS
1 3.9e-05 3.9e-07 3.9e-05 3.9e-07 0.92 9.2e-03
2 3.9e-05 3.9e-06 1.5e-09 1.5e-11 0.92 9.2e-03
3 3.9e-05 8.3e-06 5.8e-14 5.8e-16 0.92 9.2e-03
4 3.9e-05 1.2e-05 2.2e-18 2.2e-20 0.92 9.2e-03
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These new estimates for τmin ensure non-zero probability of selection for all trails
with α > 1 to help avoid stagnation. In the next section, we study the improved
stagnation avoidance in MMAS and ACS, both with and without local search.

4 Results

We conducted a series of tests using common TSPLIB[5] benchmark problems
to illustrate and verify the expected improvement for the MMAS and ACS algo-
rithms. Optimal solutions known for the TSPLIB problems simplify the analysis
of the results, allowing us to illustrate the improvement using the percent over
optimal as a measure. We modified the ACO-TSP [7] source code to incorporate
the improved lower pheromone trail limit estimates in both algorithms.

Statistical analysis using the Mann-Whitney U test[8] and the Kruskal-Wallis
One-Way Analysis of Variance test[8] allow us to characterize the significance of
these results. Both tests are non-parametric methods used to test a difference
in the location of probability distributions for populations based on the rank of
the values. Mann-Whitney tests two populations to determine if the ranks of the
combined populations are equivalent in location. Kruskal-Wallis is an extension
of Mann-Whitney to test three or more populations to determine if the ranks
of the combined populations are equivalent in location. All statistical analysis is
based on the average of 10 runs with a statistical significance of 0.05.

The performance results in Table 5 and Table 6 show the percent over the
optimal solution for the average of ten runs of 2500 iterations using default
parameters and varying both α and β from 1 to 7. Each 7 by 7 grid shows α = 1
in the bottom row and β = 1 in the left column, with white representing optimal
and black representing 5.0% over optimal for tests run without local search and
0.2% over optimal for tests run with local search. The MMAS and ACS rows of
these tables show results for the original values of τmin while the MMAS+ and
ACS+ rows show results for the improved values of τmin.

The pseudorandom proportional rule constant was the recommended q0 = 0.9
for ACS without local search and q0 = 0.98 for ACS with local search. MMAS
did not employ this rule. To help avoid stagnation MMAS used pheromone trail
reinitialization while ACS used local pheromone trail updates.

For tests run without local search, we characterized the performance for a
range of greedy pheromone, heuristic, and evaporation parameter values (α, β,
and ρ) on benchmark problems eil51 and kroA100 as shown in Table 5. We se-
lected a range of evaporation rates ρ based on ACO recommendations[2] to study
the impact of the new pheromone trail limits on other algorithm parameters.

For tests run with local search, we characterized the performance for a range
of greedy pheromone and heuristic parameter values (α and β) on benchmark
problems d198, lin318, pcb442, att532, rat783, and pcb1173 as shown in Table 6.
The tests employed the 3-opt local search algorithm included in ACO-TSP and
the default evaporation rates ρ based on the ACO recommendations[2].

The location of the lowest average score in each grid exhibits different distri-
butions in these tables. For MMAS and ACS the lowest average score occurs in
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Table 5. Average performance without local search for the original (MMAS, ACS)
and improved (MMAS+, ACS+) lower pheromone trail limits. Each grid shows % over
optimal from 0% (white) to 5+% (black) with α = 1..7 on the vertical axis, β = 1..7
on the horizontal axis and α = β = 1 in the lower left corner.

eil51 kroA100

ρ 0.02 0.2 0.5 0.02 0.2 0.5

MMAS

MMAS+

ρ 0.1 0.3 0.5 0.1 0.3 0.5

ACS

ACS+

Table 6. Average performance with local search for the original (MMAS, ACS) and
improved (MMAS+, ACS+) lower pheromone trail limits. Each grid shows % over
optimal from 0% (white) to 0.2+% (black) with α = 1..7 on the vertical axis, β = 1..7
on the horizontal axis and α = β = 1 in the lower left corner.

d198 lin318 pcb442 att532 rat783 pcb1173

MMAS

MMAS+

ACS

ACS+

the α = 1 row in 23 of 24 test cases, but in only 2 of 24 test cases for the α > 1
rows. For MMAS+ and ACS+ the lowest average score occurs in the α > 1 rows
in 21 of 24 test cases, but in only 7 of 24 test cases for the α = 1 row. In some
test cases, the lowest average score appeared in both categories.
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The original and improved versions of the algorithms produce the same lower
pheromone trail limits τmin when α = 1 which should lead to similar perfor-
mance. The difference in performance was not statistically significant in 23 of
24 tests cases using the Mann-Whitney test.

Both tables appear to exhibit the expected stagnation for MMAS and ACS
with darker shading representing increased error as alpha increases. The dif-
ference in performance for MMAS and ACS between the α = 1 and α > 1
populations are statistically significant in 21 of 24 test cases using the Mann-
Whitney test, confirming stagnation does occur for α > 1 with the original lower
pheromone trail limits.

MMAS+ and ACS+ do not appear to exhibit the same stagnation behavior.
The difference in performance for MMAS+ and ACS+ between the α = 1 and
α > 1 populations are not statistically significant in 21 of the 24 test cases using
the Mann-Whitney test, confirming stagnation does not occur for α > 1 with
the improved lower pheromone trail limits.

The improved lower pheromone trail limits in MMAS+ and ACS+ also appear
to deliver more consistent results across the range of α values tested. The differ-
ence in performance for individual values of α is not significant in 19 of 24 tests
cases with MMAS+ and ACS+ using the Kruskal-Wallis test. This condition
holds for only 4 of 24 test cases with MMAS and ACS.

The test cases run without local search in Table 5 also studied the impact of
changes to the evaporation rate ρ to identify possible effects on other algorithm
parameters. We compared the performance of the recommended ρ value with the
larger values of ρ tested. The difference in performance is statistically significant
in 14 of 16 test cases, with 7 of 8 test cases for MMAS and ACS showing decreased
performance as ρ increased and 7 of 8 test cases for MMAS+ and ACS+ showing
increased performance as ρ increased.

We also compared the performance of MMAS+ and ACS+ for all three tested
values of ρ with the best value of ρ for MMAS and ACS. The difference in
performance is statistically significant in 11 of 12 test case comparisons using
the Mann-Whitney test, with MMAS+ and ACS+ providing better performance.

These results confirm a significant reduction in stagnation and improvement
in the performance for α > 1 on the problems tested when using the improved
lower limit for pheromone trails τmin for both ACO algorithms. These results
also demonstrate significant differences in algorithm behavior that result from
changes in other parameters with the improved lower limits for pheromone trails.

5 Conclusions

Pheromone trail limits in ACO algorithms are a more effective means of avoiding
stagnation than previously understood. Our tests show that performance of these
algorithms is sensitive to proper selection of the lower pheromone trail limit.
The omission of α in the previous estimates for the lower pheromone trail limit
produced values of τmin that assumed α = 1, leading to stagnation for larger
values of α. The new estimates for the lower pheromone trail limits significantly
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reduce stagnation and improve performance of both MMAS and ACS on the
test problems. This improvement occurs both with and without the use of local
search.

The set of tests used in this paper to characterize the improvement are meant
to be illustrative of the performance improvement in solution quality only. Ad-
ditional tests are necessary to study the impact on larger Traveling Salesman
Problems and other types of problems such as the quadratic assignment and
scheduling problems. Of particular interest is whether the use of greedy phero-
mones, α > 1, with the improved lower pheromone trail limits will improve
performance on problems that have relatively poor heuristics.

The parameter testing with ρ shows significant improvement with values larger
than the recommended defaults for both algorithms. This constitutes a trade-
off between early exploration before convergence with smaller evaporation pa-
rameters and exploration near the local optimum after convergence with larger
evaporation parameters. Performance for problems with strong fitness-distance
correlations such as TSP[3] may benefit more from the latter form of explo-
ration with the improved stagnation avoidance offered by the improved lower
pheromone trail limits.

The improvement in MMAS performance was consistent for tests with and
without local search. The improvement in ACS performance was less apparent
in tests with local search. The higher pseudorandom proportional selection value
q0 = 0.98 used by ACS with local search favors the best solution found and may
limit exploration near the local optimum. The performance of ACS with local
search on these problems may benefit from a lower value of q0 as a result of the
improved stagnation avoidance.

The improved stagnation avoidance from the new lower pheromone trail limits
may alter the results of previous studies of ACO parameter optimization[9] [10]
[11]. These studies found performance improvements with a range of values of α,
ρ, and q0 on selected problems. Further study may provide an expanded range of
values for parameter optimization methods or suggest changes to recommended
parameter settings.

Our tests focused on stagnation avoidance and solution quality. We did not
study the effect of α > 1 on computation time, using 2500 iterations as the
stopping criteria for all problems. Additional tests are necessary to understand
the impact on computation time for α > 1 and compromise in solution quality
for a fixed time limit.

Finally, the improved estimation suggests a general approach to avoid stagna-
tion for stochastic algorithms with explicit or implicit limits on the exponential
values used in proportional selection.

p = ve...∑
ve... (12)

v(i + 1) = (1 − λ) · v(i) + λ ·Δv (13)

vmin ≤ v(i) ≤ vmax (14)

vmin = vmax · f
1
e (15)
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Given a proportional probability of selection p in equation (12) where the
value v is modified each iteration using an update rule such as an exponential
moving average in equation (13) and the value v is bounded as in equation (14),
then the limits should satisfy the relationship in equation (15) where f is some
scaling factor between 0 and 1.
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Abstract. For many complex Reinforcement Learning problems with
large and continuous state spaces, neuroevolution (the evolution of arti-
ficial neural networks) has achieved promising results. This is especially
true when there is noise in sensor and/or actuator signals. These results
have mainly been obtained in offline learning settings, where the training
and evaluation phase of the system are separated. In contrast, in online
Reinforcement Learning tasks where the actual performance of the sys-
tems during its learning phase matters, the results of neuroevolution are
significantly impaired by its purely exploratory nature, meaning that it
does not use (i. e. exploit) its knowledge of the performance of single
individuals in order to improve its performance during learning. In this
paper we describe modifications which significantly improve the online
performance of the neuroevolutionary method Evolutionary Acquisition
of Neural Topologies (EANT) and discuss the results obtained on two
benchmark problems.

1 Introduction

Reinforcement Learning (RL) is concerned with deciding which action a (vir-
tual or real) agent should take in a given state of an environment in order to
maximize its long-term reward. The strategy an agent follows is called its policy.
Traditionally, methods from the domain of Temporal Difference (TD) Learning
[10] have been most popular for solving RL problems. TD learning is essen-
tially a search in value function space where the policy is indirectly optimized
by changes in estimated value of a state-action pair. In contrast, methods which
search directly in the space of policies have gained more attention recently. Ex-
amples of these kind of methods are policy gradient [11] and neuroevolution [15].
In neuroevolution (NE), the policy an agent follows is represented as an artificial
neural network (ANN), which represents a mapping from state to action. NE op-
timizes an ANN (and thus the policy) by applying an Evolutionary Algorithm
(EA), which modifies either the weights or both the topology and the weights
of the ANN. Typically, the policy represented by an ANN is not updated after
each step as usually done in TD learning but after each episode or after a fixed

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 518–527, 2008.
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number of steps. This is due to the fact that EAs usually assess the performance
of an individual (in this case the ANN) as a whole using a fitness function. In
episodic, stochastic RL problems, it is most natural to use an approximation of
the expected reward per episode as fitness function, e. g. by following the given
policy for a certain number of episodes and approximate the expected long-term
reward by the average of the actually obtained reward per episode. A critical
question is for how many episodes a policy is followed before its expected reward
per episode is estimated [6].

It has been shown that NE can outperform TD methods in domains with large
and/or continuous state and action spaces especially when sensors and/or actu-
ators are subject to noise [2,12]. However, the comparison between TD learning
and NE has usually been done only for offline RL. Offline RL means that the
agent has a training phase where its actual performance does not matter and
only after this phase is it confronted with the real problem where it should act
optimally. In contrast, in online RL the agent has to act as well as it can from
the very beginning, meaning that it has to maximize the obtained reward start-
ing from the first step. Online RL is important since not all tasks can be shaped
into an offline RL problem. For instance, the dynamics of real world tasks like
robot control are often not completely known or too complex to be accurately
simulated, and thus an agent would likely need to learn online in the real world.

Online RL is more challenging for NE mainly due to the following reason: At
each moment in time the EA used in NE operates on a whole set of individu-
als (ANNs), the population. This population normally contains a broad range of
ANNs and usually only a few of them represent policies that acquire a large long-
term reward. In offline RL, at the end of the training phase only the best individ-
ual of the entire training is chosen to perform in the testing phase (the phase in
which its performance matters), and because of this a large long-term reward in
the testing phase is obtained. However, this is not possible in online RL since it
is not known beforehand which ANNs represent a good policy, and it is therefore
necessary to test bad individuals frequently in order to assess their fitness. This
decreases the overall performance of any NE method in online RL drastically.

In this paper, we will discuss how an NE method can be modified such that
the online performance of the method is greatly improved. We will first give a
review of works which have applied NE in the context of online RL (Section 2),
explain the basic EANT algorithm and its extension to online RL (Section 3),
and present the results obtained by offline and online EANT as well as by the
TD method Sarsa(λ) on two benchmarks (Section 4). We will conclude with a
brief outlook (Section 5).

2 Review of Works

In this section, we discuss works in which neuroevolutionary methods have been
applied in the context of online RL and the closely related RL with real-time
demands. For a general review of the works in the evolution of neural networks
we refer to Yao [15].
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Whiteson et al. [14] conducted an empirical study on how to balance the
trade-off between exploration and exploitation in the context of neuroevolution.
In order to transfer mechanisms for balancing exploitation and exploration from
TD learning to neuroevolution, the level at which those mechanisms are applied
is modified: instead of applying these mechanisms on the level of individual ac-
tions, they were applied on the level of episodes, in which entire policies are
assessed holistically. This was necessary because evolutionary methods have no
notion of the value of individual actions but only of whole policies (i. e. they
perform a search in policy space and not in value function space). Three dif-
ferent mechanisms were compared (ε-greedy selection, softmax selection, and
interval estimation) on two benchmark problems (mountain car [10] and server
job scheduling [13]) using the neuroevolutionary method NEAT [7]. It was found
that all three mechanisms clearly outperform the offline version of NEAT (where
all policies get the same number of evaluations) in terms of maximizing the over-
all accumulated reward. Furthermore, softmax selection and interval estimation
performed roughly the same, but both performed significantly better than ε-
greedy selection.

Realtime demands in the context of RL are addressed by Stanley et al. [8].
They describe how NEAT can be modified in order to meet the realtime demands
of a multi-agent continuous-state machine learning game called NeuroEvolving
Robotic Operatives (NERO). The main modification of the NEAT algorithm is
that instead of replacing an entire population at once, only single individuals are
replaced. The worst performing agent among those members of the population
that have been evaluated sufficiently is replaced by a new agent created by
NEAT’s standard mechanism for producing offspring from a given population.
The idea of replacing only one individual at once originates from the area of
evolution strategies [1] and is known as steady-state evolution.

The main contribution of this work is to show that balancing exploitation and
exploration and steady-state evolution are two orthogonal concepts and can be
meaningfully combined. Furthermore, a new mechanism for balancing exploita-
tion and exploration that is especially suited for neuroevolution is proposed.

3 Evolutionary Acquisition of Neural Topologies (EANT)

3.1 Offline-EANT

In this section, we discuss the EANT algorithm1 [3]. In the context of this work,
we refer to the algorithm proposed in [3] as Offline-EANT.

The basic procedure of Offline-EANT is outlined in Algorithm 1. Its structure
is similar to most generational EAs: first, the initial population of num indiv
individuals is created. Then, for each generation, the respective population is
evaluated for a given (fixed) number of episodes num evals. Based on these eval-
uations, the fitness of each individual is estimated. In Create-Next-Generation,
1 The source code for EANT is available under the URL

http://sourceforge.net/projects/mmlf/
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Offline-EANT(num evals, num indiv):
population ← Create-Individuals(num indiv)
while True do

for i ∈ {0, . . . , num evals} do
individual ← Choose-Individual(population)
fitnessSample ← Evaluate-Individual(individual)
Update-Estimated-Fitness(individual,fitnessSample)

population ← Create-Next-Generation(population)

Algorithm 1. The offline (generational) EANT algorithm

some of the members of the population are selected with respect to their fitness
and these individuals and their offspring (generated using the genetic operators)
form the next population. Creation of the initial population and of the next pop-
ulation based on the current one are described in more detail in Metzen et al. [5].
The individuals EANT acts on are usually encoded in a genome and evaluating
them involves developing these genotypes into the corresponding phenotypes.
In principle, EANT can be combined with a magnitude of genetic encodings of
neural networks. However, in practice EANT has typically been combined with
the Common Genetic Encoding (CGE) [4].

The most important properties of Offline-EANT are (1) that the evolution
is divided into two time scales, a smaller one on which the ANN’s weights are
optimized and a larger one on which the topology of the ANN is optimized [3],
and (2) that (optionally) the population is divided into species and the concept
of fitness sharing is applied to these species as proposed by Stanley [7].

3.2 Tradeoffs in Offline-EANT

Each evaluation of an individual (policy) in Offline-EANT consists of playing a
full episode with this policy, and results in one sample of the fitness function.
In deterministic environments with fixed start state, the same individual will
always get the same fitness, and thus there is no need to evaluate an individ-
ual more than once. In stochastic environments, however, the fitness samples
are “noisy” and one evaluation per individual is not sufficient for estimating
an individual’s fitness accurately. Thus, two questions arise: What is an opti-
mal value for num evals (the evaluations per population) and how should the
evaluations be distributed among the individuals? In neuroevolution, it turns
out that there is more than just a exploration-exploitation trade-off. There is
also the issue of estimating an individuals fitness accurately (see Figure 1a).
Choosing the value of num evals influences the exploration-accuracy trade-off
since setting num evals to large values will increase the accuracy of fitness
estimates while decreasing the extent to which new network structures and
weights are explored, and vice versa. On the other hand, how evaluations are dis-
tributed among individuals influences the exploitation-accuracy trade-off, since



522 J.H. Metzen et al.

(a) (b)

Fig. 1. The three conflicting objectives of neuroevolution (exploitation, exploration,
and accuracy), and how they can be controlled by Offline-EANT (a) and Online-
EANT (b)

distributing them equally among the individuals will maximize average fitness
estimation accuracy but will not exploit information accrued during evaluation,
while other distributions will necessarily decrease the estimated fitness accuracy
for some individuals. The trade-off between exploitation and exploration is in-
fluenced both indirectly via the accuracy and directly via the mutation ratio
since less mutations will increase the number of evaluations of individuals which
have been found before to perform well (i. e. exploitation) but will decrease the
occurrence of new individuals (i. e. exploration), and vice versa. Whiteson et al.
[14] (see Section 2) have mainly addressed the exploitation-accuracy trade-off by
comparing different ways of distributing the evaluations among the individuals
(like softmax selection and interval estimation). These approaches can easily be
realized by implementing Choose-Individual in Algorithm 1 accordingly. The
exploration-accuracy trade-off, on the other hand, could be addressed by manu-
ally adjusting num evals. However a systematic, automatic approach would be
highly desirable.

3.3 Online-EANT

In this section, we discuss how the EANT algorithm can be modified in a way
that allows it to perform more efficiently in online RL tasks. The resulting algo-
rithm, called Online-EANT, is summarized in Algorithm 2 and has the form of
a steady-state evolution, i. e. the evolution is no longer divided into generations.
Instead, there is a continuous change in the population, some new individuals
being “born”, some older individuals “dying” (as in nature). The population is
divided into two disjoint sets of individuals. The first set is the set of “mature”
individuals. The fitness of these individuals has been accurately estimated, and
they are able to create offspring. The other set is the set of “adolescent” indi-
viduals. These are the individuals which are currently tested by the algorithm in
the environment. None of the adolescent individuals is able to create offspring,
and none of the mature individuals will ever be evaluated in the environment
again2.

2 At this point, it is assumed that the fitness function is stationary, i. e. that the fitness
distribution of an individual does not change over time.
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Online-EANT(num indiv):
adolescents ← Create-Individuals(num indiv)
matures ← ∅
while True do

individual ← Choose-Randomly(adolescents)
fitnessSample ← Evaluate-Individual(individual)
Update-Estimated-Fitness(individual,fitnessSample)
if Likely-Worse(individual,matures) then

adolescents.replace(individual,Create-New-Offspring(matures))

else if Fitness-Accurately-Estimated(individual) then
if Fit-Enough(individual,matures) then

matures.add(individual)
if To-Many-Individuals(matures) then

matures.remove-oldest()

adolescents.replace(individual,Create-New-Offspring(matures))

Algorithm 2. The online (steady-state) EANT algorithm

Initially, there are only adolescent individuals (the quantity is determined by
the parameter num indiv). For each of these adolescent individuals, there are
two possibilities: either they become mature after some time (i. e. evaluations)
or they “die” prematurely. Which of these options occurs is determined based on
the set of fitness samples obtained by the individual in a way similar to Stagge
[6]. For this purpose, two criteria are checked:

(1) If the hypothesis h1 that the individuals true fitness is below the average
estimated fitness of the mature individuals is valid with a certain significance
level α1, the individual is considered to have “died” prematurely and is replaced
by a new individual which is created based on the set of mature individuals
using EANT’s standard procedure of selection and applying genetic operators.
The hypotheses h1 is checked by the function Likely-Worse.

(2) If hypothesis h2 that the individuals current fitness estimate differs from
its true fitness by less than a factor β is valid with a certain significance level
α2, it is checked whether the individual’s estimated mean fitness is larger than
the average fitness of the mature individuals. If that is the case, the individual is
added to the mature individuals. If afterwards, the number of mature individuals
exceeds a certain number, the oldest (not the least fit) mature individual is
removed from matures. If the individual’s estimated mean fitness is not larger
than the average fitness of the mature individuals, it is not becoming a mature
individual but is replaced by a new individual. The hypotheses h2 is checked by
the function Fitness-Accurately-Estimated.

3.4 Handling of Tradeoffs in Online-EANT

As in Offline-EANT (see Section 3.2), there are three conflicting objectives in
Online-EANT: exploration, exploitation, and accuracy. In Online-EANT, the
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exploitation-accuracy and the exploration-accuracy trade-offs are explicitly ad-
dressed: (1) The method Likely-Worse ensures that no evaluations are “wasted”
on individuals which have turned out to be not competitive (on the basis of the
obtained fitness samples of the individuals). An individual is considered to be not
competitive if the hypothesis h1 is valid with a certain significance level α1 (the
p-value is computed using an one-tailed, one-sample t-test). The smaller α1, the
more cautious the algorithm is in discarding an individual (i. e. the fitness of an
individual needs to be estimated more accurately before it is discarded) but at
the expense of exploiting the knowledge of good individuals less. Thus, α1 con-
trols the exploitation-accuracy trade-off. (2) The method Fitness-Accurately-
Estimated controls how accurately the fitness of a (competitive) individual is
estimated. The fitness is considered to be estimated accurately if the hypothesis
h2 is valid with a certain significance level α2 (the p-value is computed using
a two-tailed, one-sample t-test). The smaller the required significance level α2

and the allowed error rate β, the more accurately the fitness of an individual is
estimated, but at the cost of a reduced amount of exploration. Thus, α2 and β
control the exploration-accuracy trade-off.

The exploitation-exploration trade-off is addressed explicitly in Online-EANT
via the mutation rate, but it can be influenced also implicitly via the two other
trade-offs: decreasing α1 and increasing α2 at the same time will result in roughly
the same accuracy but will increase exploitation at the cost of exploration. The
relationship between the three issues is depicted in Figure 1b. Whether Online-
EANT’s way of handling the trade-offs yields better online RL performance than
formerly studied approaches is discussed in Section 4.

4 Results

Mountain Car. We have tested three different RL methods in the Mountain Car
benchmark [10]: The TD method Sarsa(λ), Offline-EANT, and Online-EANT. For
Sarsa, we used the Cerebellar Model Articulation Controller (CMAC) [10] func-
tion approximator with a superposition of 10 independent tilings, replacing eligi-
bility traces with decay rate λ = 0.95, a learning rate of α = 0.5, and a discount
factor of γ = 1.0. Two different values for ε (the ratio of choosing a random, non-
greedy action) have been tested, namely ε = 0.0 and ε = 0.01. The initial Q-values
were all set optimistically to 0 to enforce initial exploration. For Offline-EANT,
we used a population size of 20, evaluated each individual for 10 episodes, and dis-
abled fitness sharing. For Online-EANT, we created 20 individuals initially, set the
required significance levels α1 and α2 to 0.05 and the allowed error rate β to 20%.
The maximum number of steps an individual was allowed to take to reach the goal
was restricted to 500. If the goal was not reached after this number of steps, the
next individual took over control of the car at the current position. Thus, no arti-
ficial ending of an episode was necessary and neuroevolution could not get stuck
in an unfeasible policy which never reached the goal.

Figure 2a shows the reward per episode of the three methods in the benchmark
(the plotted values are the averages over 50 independent runs for each method
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and are smoothed using a moving window average in order to reduce fluctuations
induced by the stochastic start state of the benchmark). Online-EANT obtains
significantly more reward per episode than Offline-EANT over the whole 25000
episodes of evaluation (p < 7 ∗ 10−5). This shows that Online-EANT’s choice
of evaluating more promising individuals more often does not only improve ini-
tial performance but does also not interfere with the long-term progress of the
evolution. Compared to Sarsa (ε = 0.0), Online-EANT obtains less reward per
episode in the early phase of a trial (the difference is significant during the first
4000 episodes (p < 0.003)) but achieves better performance in the long run (the
difference is significant after 10000 episodes (p < 0.05)). In contrast, Offline-
EANT’s performance remains significantly worse than Sarsa’s (p < 0.05) over
the whole evaluation time. Sarsa’s superior performance for in the initial phase
of the trials can be explained by the fact that it makes use of the instantaneous
reward supplied by the environment (instead of assessing the policies as a whole)
while its worse performance in the long run might be explained by the fact that
it is more easily trapped in locally optimal policies (in particular if the learning
rate ε is set to 0). However, setting ε to 0.01 did not yield in an improved online
performance (see Figure 2a). Compared to the results presented in [14], Online
EANT achieves better online performance than the combination of NEAT with
any policy selection strategy. However, since Offline-EANT achieves better per-
formance than the performance reported for Offline-NEAT in [14], this gives no
indication on whether the proposed online modifications for EANT are better
than different policy selection strategies. Because of this, we analyze this issue
in the next section on a more selective problem.

RoboCup Keepaway. Keepaway is part of the RoboCup Soccer Simulator
and was introduced as a benchmark by Peter Stone et al. [9]. Metzen et al. [5]
have shown that the combination of Offline-EANT and CGE can outperform the
results which have been published for the temporal difference learning method
Sarsa(λ) and for the neuroevolutionary method NEAT [12] in the Keepaway
benchmark problem when given enough training and applied in an offline sce-
nario. In contrast to this offline assumption, we compare in this section the on-
line performance of Online-EANT with two versions of traditional, generational
EANT (Offline-EANT). For Online-EANT, we created 50 individuals initially
and set the maximal number of mature individuals to 25. We set α1 and α2 to
0.05 and β to 10%. For Offline-EANT, we used a population size of 50. We com-
pared two different strategies for balancing exploitation and estimation accuracy
in Offline-EANT, namely giving all individuals the same number of evaluations
and applying softmax policy selection like proposed by Whiteson [14]. The num-
ber of episodes per generation was set to num evals = 2000, giving each indi-
vidual 40 evaluations in the average. For both Online- and Offline-EANT, we
enabled fitness sharing.

Figure 2b shows the performance of the three methods (the plotted values
are the averages over 6 independent runs for each method and are smoothed
using a moving window average in order to reduce fluctuations induced by
the stochastic start state of the benchmark). Online-EANT’s performance is
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Fig. 2. Performance Comparison on the Mountain Car (left) and RoboCup Keepaway
(right) benchmark. Each curve is an average over 50 (Mountain Car) and 6 (Keepaway)
independent runs.

significantly better than Offline-EANT’s (p < 0.009) and Offline-Softmax-
EANT’s performance (p < 0.05) during the whole 450h of evaluation. In contrast,
Offline-Softmax-EANT’s performance is only in the first 6 hour significantly bet-
ter than Offline-EANT’s (p < 0.05). Altogether, the results show that proposed
method, Online-EANT, improves the online performance of EANT significantly
while simply using Offline-EANT with a modified policy selection strategy like
Softmax policy selection does not (or only to a very small amount which could
not be detected in 6 runs).

5 Conclusions and Outlook

In this paper, a method of extending the neuroevolutionary method EANT has
been proposed that permits efficient learning in online RL tasks. In terms of max-
imizing the accumulated reward, this extension outperforms previous approaches
in which softmax policy selection is applied to classical offline neuroevolution.
The discussed method mainly addresses the issue of maximizing the accumu-
lated reward during learning. However, for applying RL algorithms in general
and neuroevolution in particular to online RL, further issues need to be ad-
dressed: when learning in the real world, some actions might be dangerous to
the system in certain situations. For instance, when learning to control a heli-
copter, it must be assured that no policy will explore actions that lead to a crash
of the system (which would have virtually infinite costs). In this case, some kind
of domain knowledge (an approximate model, for instance) needs to be incorpo-
rated into the method. Furthermore, it would be interesting to investigate how
the proposed method performs in environments with different characteristics,
e. g. environments with a non-stationary fitness function.
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Abstract. We present an empirical study on the impact of different
design choices on the performance of an evolutionary algorithm (EA).
Four EA components are considered—parent selection, survivor selec-
tion, recombination and mutation—and for each component we study
the impact of choosing the right operator, and of tuning its free parame-
ter(s). We tune 120 different combinations of EA operators to 4 different
classes of fitness landscapes, and measure the cost of tuning. We find that
components differ greatly in importance. Typically the choice of opera-
tor for parent selection has the greatest impact, and mutation needs the
most tuning. Regarding individual EAs however, the impact of design
choices for one component depends on the choices for other components,
as well as on the available amount of resources for tuning.

1 Introduction

Evolutionary Algorithms (EA) form a class of search methods that work by
incrementally improving the quality of a set of candidate solutions by variation
and selection [5]. The most important components of EAs are thus recombination
and mutation (umbrella term: variation), parent selection, and survivor selection.
To obtain a working EA, each component needs to be instantiated by a specific
operator, e.g., the one-point crossover operator for the recombination component.
Furthermore, an EA has parameters that need to be instantiated by a specific
parameter value, e.g., 0.5 for the crossover rate. In this paper we maintain the
distinction between components and parameters and say that the instantiation
of EA components by concrete operators specifies a particular EA, e.g., uniform
crossover, bit-flip mutation, random uniform parent selection and k-tournament
survivor selection. Further details regarding the parameters do not lead to a
different EA, only to variants of the one defined by the operators.1 A complete
EA design includes the definition of an EA (operators for its components) and
the specification of a particular variant of it (values for its parameters).

Setting EA parameters is commonly divided into two cases, parameter tuning
and parameter control [3,4]. In case of parameter control the parameter values are
changing during an EA run. This requires initial parameter values and suitable
1 Alternatively, components & operators could also be called symbolic parameters &

values, and we could say these values only define different EA variants.
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control strategies, which in turn can be deterministic, adaptive or self-adaptive.
The problem of parameter tuning is hard because for any given application
there is a large number of options, but only little knowledge about the effect
of EA parameters on EA performance. EA users mostly rely on conventions
(mutation rate should be low), ad hoc choices (why not use uniform crossover),
and experimental comparisons on a limited scale (testing combinations of three
different crossover rates and three different mutation rates). Here we address the
problem of parameter tuning. Our main research questions are:

1. How does the choice of operator for each component contribute to EA per-
formance? To this end we compare the absolute performance achieved with
different combinations of operators.

2. The parameters of which EA component need the most tuning? For this
question we measure the amount of information needed to tune the free
parameter(s) of each operator (e.g., crossover rate or tournament size).

For a systematic exploration of the space of EA configurations we use ex-
haustive search for the combination of operators, and Relevance Estimation and
Value Calibration (REVAC) to tune the free (numeric) parameters. REVAC is
an Estimation of Distribution Algorithm [14] that tunes an EA by optimizing
marginal probability distributions over the free parameters [16,15]. Starting from
a set of uniform distributions and an initial drawing of 100 vectors of random
parameter values, REVAC iteratively generates new marginal distributions of in-
creasing expected EA performance by drawing a new vector of parameter values
from the current distributions, evaluating the vector by measuring the perfor-
mance of the EA with these values, updating all marginal distributions based on
this evaluation, and smoothing the updated distributions. Smoothing is a unique
feature of REVAC that forces all marginal distributions to approach the maxi-
mum Shannon entropy distribution for a given EA performance. This maximized
Shannon entropy is independent from the computational cost of any particular
tuning method and can be used as a general estimator of the minimum amount
of information required to reach a certain level of EA performance. Hence, it
can be regarded as a general indicator of how difficult it is to tune a certain EA
parameter, and how relevant it is to overall EA performance.

Related work includes the general discussion of EA design [2] and parameter
setting [12], in particular within parameter tuning as defined in [3,1,4]. Through-
out the relevant literature we find that the costs of tuning parameters is largely
ignored. Notable exceptions are the theoretical considerations of [17] and [9], as
well as the systematic parameter sweeps of [11,21,20] and the statistical analysis
of parameters by [6]. In the general field of experimental design, a paradigm shift
that emphasizes a low cost of tuning over the performance of optimal parameter
values was due to [22]. In our field, [7] proposes a meta-GA approach in which
both EA components and EA parameters are tuned and shows the importance
of the right choice for the GA operators. [20] shows how parameter sweeps can
be used for robustness and correlation analysis. [18] embed sequential parameter
optimization in a wider framework of experimental EA design.
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2 Experimental Setup

For a clear discussion we distinguish three different layers in the analysis of an
EA: the problem/application (here: fitness landscapes created by a generator),
the problem solver (here: an EA), and the method for tuning the problem solver
(here: REVAC). For an unbiased study we use independent software implementa-
tions for each layer and combine them through simple interfaces. For the problem
layer we use a generator of real-valued fitness landscapes that are formed by the
max-set of Gaussian curves in high dimensional Cartesian spaces [8]. Where a
Gaussian mixture model takes the average of several Gaussians, a max-set takes
their enveloping maximum, giving full control over the location and height of all
maxima. For the implementation we followed [19] on rotated high dimensional
Gaussians, and used 10 dimensions, 100 Gaussians, and the same distributions
over height, location, and rotation of these Gaussians as specified in the exem-
plary problem sets 1–4 of [8]. These sets offer an increasing amount of exploitable
structure to the EA. Set 1 has the least structure, with peaks of different height
scattered at random, while set 4 is the most structured, with peaks that get
higher the closer they get to the origin. For each set, different landscapes are
created by passing a different random seed to the generator. Initialization of all
EA populations is uniform random in the domain of the fitness landscapes. The
optimal fitness value is 1 on each problem instance and the condition for success-
ful termination is defined as “fitness > 0.9999” or 10,000 fitness evaluations”.

For the EAs we use the Evolutionary Computation toolkit in Java (ECJ)
[13], which allows the specification of a fully implemented EA through a simple
parameter file, including the choice of operator for each component and the
values for the free parameters. The ECJ offers several operators for each EA
component, cf. Table 1. For any given EA, the population size parameter is
always present. Most operators have zero or one free parameter. One operator
has 2 free parameters—Gaussian(σ, p) with parameters σ for step size and p
for mutation probability, which takes the value 1 in case of Gaussian(σ, 1). Due
to technical details of the ECJ, only 10 different combinations of parent and
survivor selection operators are possible.2 With 4 operators for recombination
and 3 operators for mutation, we have 120 combinations of operators, of which
6 with 2, 33 with 3, 53 with 4, 25 with 5, and 3 with 6 free parameters.

The performance of an EA with a given set of parameter values is measured in
three different ways: SR (Success Rate, percentage of runs with fitness > 0.9999),
MBF (Mean Best Fitness of all runs), and AES (Average number of Evaluations
to Solution of successful runs; undefined when SR = 0). Each EA is tuned 5
times on each of the 4 problem sets. During each tuning session on a given set
REVAC generates 1,000 different vectors of parameter values. Each vector of
values is written to the ECJ configuration file, together with the specification of
the operators and the problem generator. The resulting EA is evaluated on 10
different instances of the problem set, generated by different random seeds.

2 Arguably, (μ, λ) and (μ+λ) define both parent and survivor selection. Here we clas-
sify them under survivor selection because that is what the parameter λ influences.
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Table 1. EA components, operators, and parameters used in this study

Component Operator Parameter(s)

population size μ

parent tournament parent tournament size
selection best selection number n of best

random uniform -
fitness proportional -

survivor generational -
selection tournament survivor tournament size

random uniform -
(μ, λ) λ
(μ + λ) λ

recombination none -
one-point crossover probability
two-point crossover probability
uniform crossover probability

mutation reset (random uniform) mutation probability
Gaussian(σ, 1) step size
Gaussian(σ, p) step size, mutation probability

Notes. We follow the naming convention of the ECJ.

For each REVAC tuning session and each EA, the performance after n evalu-
ations is the best performance measured after evaluating n vectors of parameter
values. The average performance after n evaluations is averaged over multiple
tuning sessions on the same EA. We define near best performance as the aver-
age performance after 1,000 evaluations minus 5%. If n is the lowest number of
vectors for which the average performance exceeds this value, then we say that
REVAC needs n evaluations to tune the EA to near best performance. Section 3
uses this to study the impact of choosing an operator for each component.

In Section 4 we analyze the cost and benefits of tuning per EA component.
REVAC continuously maximizes the Shannon entropy of the marginal distribu-
tions that it optimizes during a tuning session. This maximized Shannon en-
tropy provides a generic information-theoretic measure of the minimum amount
of information needed per parameter to reach a given performance level. The
differential Shannon entropy H of a probability density function D over the
continuous interval [a, b] is commonly defined as

H(D[a,b]) = −
∫ b

a

D(x) log2 D(x) dx.

The sharper the peaks of a probability density function, the lower its Shannon
entropy. In order to compare the entropy of distributions that are defined over
different parameter intervals in a meaningful way, we normalize all parameter
intervals to the interval [0, 1] before calculating the Shannon entropy. In this way
the initial uniform distribution has a Shannon entropy of zero, and any other
distribution has a negative Shannon entropy H(D[0,1]) < 0.
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Fig. 1. Near best performance in AES against cost of tuning, by EA component

3 How Does the Choice of Operator Per Component
Contribute to Performance?

Due to space limitations we only present data on one problem set (no. 4) and one
performance measure. We choose to report on the AES, because it only yields 67
data points (those 67 EAs with SR > 0 for which the AES could be calculated).
MBF and SR require 120 data points, making the plots less transparent. The
four scatter plots in Figure 1 show the performance of these 67 EAs after tuning,
and the cost of tuning, averaged over 5 tuning sessions per EA. The y-axes show
the near best performance in AES. The x-axes show the number of REVAC
evaluations needed to tune the EA to this performance. Each plot shows the same
EAs but labels them according to the operator choice for a different component.
To read the full specification of an EA, one needs to look at the same location
in all four plots. Table 2 shows the near best performance in AES per operator,
averaged over those EAs that have this operator and terminated with success.

The choice of operator for the parent selection component has the strongest
effect on EA performance. The 16 EAs that are clustered together in the lower
left of each plot of Figure 1 display the best performance and the lowest num-
ber of evaluations needed to reach this performance. These EAs all use tour-
nament selection for parent selection, either tournament selection or random
uniform selection for survivor selection, any recombination operator, and either
Gaussian(σ, p) or Gaussian(σ, 1) for mutation. On the other hand, those 53 EAs
that never terminated with success share one common feature, namely a lack
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Table 2. Average near best performance in AES per operator

parent selection survivor selection recombination mutation

random unif. 9581 random unif. 7039 none 7994 Gaussian(σ, p) 6056
tournament 4514 tournament 6332 one-point 7736 Gaussian(σ, 1) 6891
best select. 7661 generational 8299 two-point 7053 reset 9633
fitness prop. - (μ, λ) 7943 uniform 7325

(μ + λ) 7386
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Fig. 2. Impact of recombination operators on AES and cost of tuning

of selection pressure. In particular, EAs with random uniform or fitness propor-
tional selection for parent selection almost never terminate with success unless
combined with strong survivor selection pressure.

Of the two variation components, the choice of mutation operator has the
stronger effect on EA performance, as can be seen from the differences in Table 2.
On this problem set reset mutation is the worst mutation operator, and non-
standard Gaussian(σ, p) mutation is superior to Gaussian(σ, 1) both in terms
of performance and cost of tuning. The latter may come as a surprise, since
the additional free parameter for mutation probability increases the parameter
search space. We conclude that the tuning cost of different operators is not
additive, and that the tuning cost of an operator can only be evaluated in the
context of the overall EA composition.

While choosing the recombination operator has the least effect on EA perfor-
mance, it demonstrates how the choice of operator can depend on the available
resources for tuning. Figure 2 enlarges the lower left corner of Figure 1c, overlaid
by four graphs that show the evolution of the average performance of 4 EAs with
tournament selection for both parent and survivor selection, Gaussian(σ, p) mu-
tation, and four different recombination operators. 20 tuning sessions were used
for each graph. While any recombination operator eventually outperforms no re-
combination, an EA with no recombination consistently outperforms EAs with re-
combination after about 30–40 parameter vectors have been evaluated, and it has
at least average performance for anything under 100 evaluated parameter vectors.
Recombination behaves similar over a wide range of operator choices for the other
components and over all 4 problem sets. All in all, for recombination, the choice of
operator can clearly depend on the amount of effort that can be invested in tuning.
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Fig. 3. Correlations with Shannon entropy

4 Which EA Component Needs the Most Tuning?

The previous section related the performance of the near best parameter vector
to the number of REVAC evaluations needed to find this vector and to achieve
this performance. This section takes a rather unconventional approach based on
the average performance when parameter values are drawn from a probability
distribution, namely those created by REVAC after 500 evaluations. To calculate
the performance gain achieved by tuning, this average performance is compared
to the average EA performance when parameter values are drawn from the uni-
form distribution. All results are averaged over 5 REVAC tuning sessions of an
EA on each of the 4 problem sets, 20 tuning sessions per EA. In order to extend
our analysis to all 120 EAs, we use the Mean Best Fitness that an EA achieves
at termination (successful or not), rather than the AES.

Shannon entropy measures the amount of information that a probability dis-
tribution provides on its random values. By definition, the lower the Shannon
entropy of the maximum entropy distribution that achieves a given expected EA
performance, the finer the parameter value has to be tuned in order to achieve
that expected performance. This is demonstrated in Figure 3. The left scatter
plot shows the correlation between the Shannon entropy of the marginal dis-
tribution over the mutation probability and the standard deviation of the best
found parameter values. The x-axis shows the Shannon entropy as estimated by
REVAC. The y-axis shows the average of the standard deviation of the 5 best
found values for each set. The correlation coefficient is 0.8. The point here is
that if the maximum entropy distribution has a higher Shannon entropy, there
is less certainty on the precise parameter value, something that can otherwise
be expensive to assess.

The right scatter plot of Figure 3 shows a clear correlation between a gain in
expected MBF and the Shannon entropy of the maximum entropy distributions
that REVAC has estimated after 500 evaluations. The x-axis shows the aver-
age performance gain in percent. The y-axis shows the Shannon entropy of the
estimated distributions, summed over all tuneable parameters of the EA. Note
that no EA lies above the main diagonal, which shows that there is a minimum
information cost for every percent point of increase in expected performance,
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Table 3. Entropy per EA component & population size aggregated over all EAs

Component Correl. with Shannon
& pop. size MBF gain Entropy

Correl. p-value max median min

1) pop. size -0.3 0.002 0 -0.8 -1.5
2) parent sel. -0.3 0.069 0 -0.7 -3.7
3) surviv. sel. -0.5 0.002 0 -0.3 -1.2
4) recombin. -0.3 0.004 0 -0.1 -1.0
5) mutation -0.6 0 -0.2 -1.5 -4.6

entire EA -0.8 0 -0.3 -2.9 -5.1

Median Sha. Entropy per
Component & pop. size

1 2 3 4 5
0

-1

-2

regardless of the EA specifications. Of those EAs that lie significantly below the
diagonal, most use tournament selection for both parent and survivor selection.
By 500 REVAC evaluations, their MBF had long been maximized. Further tun-
ing only improved their AES, distorting their performance gain-entropy ratio.

Does the strong correlation between total Shannon entropy and the gain in
expected performance carry over to individual EA components? The first two
numeric columns of Table 3 show the correlation coefficient for each component
and its p-value, i.e., the probability to observe this value if the true coefficient
is zero. Only EAs with a tunable operator were considered for the respective
component. The correlation is generally weaker, with coefficients up to -.3. In
other words, the question which component needs tuning in order to improve
the performance of a particular EA depends much on the EA in question.

With respect to the average Shannon entropy per component, we see that not
all components require the same amount of tuning. The right numeric columns
in Table 3 show the maximum, median, and minimum Shannon entropy that we
observed for each component (and the population size) when instantiated with
an operator that needs tuning. The bar diagram to the right of Table 3 allows
a visual comparison of this average median Shannon entropy. Such a skewed
distribution of a need for tuning is commonly known as sparcity of effects.

Typically, mutation requires the highest amount of tuning, and recombina-
tion the least. This rule has many exceptions, as can be concluded from the low
correlation coefficients. While the relative order of Shannon entropy per compo-
nent depends much on the EA in question, consistent patterns can be detected
for small groups of EAs. Take for example the two EAs with tournament selec-
tion for both parent and survivor selection, Gaussian(σ, 1) mutation and either
one-point, two-point or uniform crossover. We find that the Shannon entropy
for mutation has the unusually high Shannon entropy of around -.2, while the
parent selection operator has a low Shannon entropy below -3. When combining
the same selection operators with other recombination or mutation operators,
we find that the Shannon entropy for parent selection is back to normal levels,
while it is still comparatively high for mutation. Another example is recom-
bination, which only exhibits a low Shannon entropy for uniform crossover in
combination with either (μ+λ), or (μ, λ). Such irregular patterns are consistent
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over different problem sets and seem to be inherent to specific combinations of
EA components.

5 Conclusions and Further Work

This paper introduces a novel approach to EA design that emphasizes the cost
of tuning. To understand how this cost depends on the choice of operator per EA
component, we combined an enumerative search over operators with REVAC for
tuning their parameters. Our experiments revealed a number of notable insights.

Our tests confirmed the common wisdom that the choice of operator for one
EA component depends on the choice of operator for the other components.
Of all components, the choice of operator for parent selection has the biggest
impact on EA performance. Furthermore, EAs differ greatly in the amount of
tuning needed to reach a given performance, and this tuning cost depends on
the overall setup of the EA, rather than the number of free parameters. With
regard to recombination, we found that the best EA setup depends on the time
and effort one can permit to tune the EA.

To measure the need for tuning per component we use the Shannon entropy
of maximum entropy distributions as estimated by REVAC, which expresses
the minimum amount of information that is needed to achieve a given expected
EA performance. It is a generic information-theoretic measure that is indepen-
dent of any particular tuning algorithm. Inspired by theoretical considerations,
it was validated by a strong correlation with the standard deviation of best solu-
tions found during multiple tuning sessions. Based on this measure we observed
that the need for tuning follows a skewed distribution, and that while total
Shannon entropy is strongly correlated with performance gain, the correlation
per component is weak. The question which component needs the most tuning
depends on the precise composition of an EA and can not be answered on a
general level. It needs to be addressed by the operational analysis of individual
EAs. Also, we recommend that a scientific discussion of individual operators ad-
dresses its effect on the overall tunability of an EA and on the need for tuning per
component.

Regarding the scope of our results, an empirical study can only use a limited
set of test problems, and strictly speaking our findings are only proven for our
test problems. However, we consider it unlikely that the complex picture that
has emerged here is an artefact of the test problems. What remains to be studied
is whether the way in which the need for tuning per component depends on the
choice of operators is different on other complex fitness functions.

Last but not least, this paper serves as a demonstration of an open source
tool kit that can be used to analyze the need for tuning of EA parameters
on a given application. Further documentation, Matlab implementations and
graphical demonstrations of REVAC are available on the web sites of the
authors3.

3 http://www.few.vu.nl/∼volker/revac and http://www.few.vu.nl/∼gusz
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Abstract. Interactions giving rise to dilemmas are widespread in society. Starting
from the observation that individuals interact through networks of acquaintances,
we study the co-evolution of the agents’ strategies and of the social network itself
using two prototypical games: the Prisoner’s Dilemma and the Stag Hunt. We find
that cooperation and coordination can be achieved through the self-organization
of the social network into strong and stable clusters of identical strategies.

1 Introduction and Previous Work

Evolutionary game theory has been traditionally applied to very large populations in
which pairs of agents are drawn uniformly at random to play a given two-person one-
shot game [1]. The population dynamics is such that those strategies that do better than
average increase their share in the population, while those that do worse decline. The
rest points of the dynamics are the equilibrium states, some of which are called evolu-
tionarily stable strategies (ESS) and roughly correspond to the Nash equilibria (NE) of
the game, i.e. those ensembles of strategies, one for each player, such that each strategy
is a best response to the strategy of the other players [1]. This framework has allowed
to satisfactorily explain a number of aspects and behavior in human and animal soci-
eties. However, there exist games in which either the equilibrium posited by the theory
is logically and socially unsatisfying, or there is more than one equilibrium and no way
to rationally choose between them, although some equilibrium clearly appears to be
socially more efficient. The first kind of difficulty is illustrated by the well known Pris-
oner’s Dilemma (PD), while the second situation is found, among others, in another
paradigmatic game: the Stag-Hunt. These two representative games (see, for instance,
[2,3] for more details) are two-person, two-strategies, symmetric games with the fol-
lowing payoff bi-matrix:

C D
C (R,R) (S,T)
D (T,S) (P,P)

R stands for the reward the two players receive if they both cooperate (C), P is the
punishment for bilateral defection (D), and T is the temptation, i.e. the payoff that a
player receives if it defects, while the other cooperates. In this case, the cooperator gets
the sucker’s payoff S. In both games, the condition 2R > T + S is imposed so that

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 539–548, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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mutual cooperation is preferred over an equal probability of unilateral cooperation and
defection. For the PD, the payoff values are ordered as: T > R > P > S. Defection
is always the best rational individual choice in the PD; (D,D) is the unique Nash equi-
librium (NE) and also an evolutionarily stable strategy (ESS) [1]. Mutual cooperation
would be preferable but it is a strongly dominated strategy.

In the SH, the ordering is R > T > P > S, which means that mutual cooperation
(C,C) is the best outcome, Pareto-superior, and a Nash equilibrium. However, there
is a second equilibrium in which both players defect (D,D) and which is somewhat
“inferior” to the previous one, although perfectly equivalent from a NE point of view.
The (D,D) equilibrium is less satisfactory yet “risk-dominant” since playing it “safe”
by choosing strategy D guarantees at least a payoff of P, while playing C might expose
a player to a D response by her opponent, with the ensuing minimum payoff S. Here the
dilemma is represented by the fact that the socially preferable coordinated equilibrium
(C,C) might be missed for “fear” that the other player will play D instead. Although the
PD has received much more attention in the literature than the SH, the latter is also very
useful, especially as a metaphor of coordinate social behavior for mutual benefit [3].

In practice however, cooperation and coordination on common objectives is often
seen in human and animal societies [2,3]. Coordinate behavior, such as having both
players cooperating in the SH, is a bit less problematic as this outcome, being a Nash
equilibrium, is not ruled out by theory. For the PD several mechanisms have been in-
voked to explain the emergence of cooperative behavior, such as repeated interaction,
reputation, and belonging to a recognizable group [2]. Yet, Nowak and May [4] showed
that when players are arranged according to a spatial structure and only interact with
neighbors, a certain amount of cooperation can be sustained even when the game is
played anonymously and without repetition. Nowak and May’s study and much of the
following work were based on regular structures such as two-dimensional grids. Nev-
ertheless, we now know that actual social networks have a topological structure that is
neither regular nor random. Instead, individuals may have a widely different number of
neighbors [5]).

Some work has been done in recent years in the direction of using those more re-
alistic kind of networks. In particular we mention work on scale-free networks [6],
on Watts–Strogatz small-world graphs [7], and on model and real social networks [8].
These investigations have shown that a realistic structure of the society, with interac-
tions limited to neighbors in the network, is sufficient for cooperative and coordinate
behavior to emerge without making any particular assumption about the rationality of
the actors. However, all the above mentioned studies have assumed a fixed population
size and structure. But real social networks, such as friendship or collaboration net-
works, are not in an equilibrium state, they are open systems that continually evolve
with new agents joining or leaving the network, and relationships being made or dis-
missed by agents already in the network. In the present work we re-introduce these
coupled dynamics and we investigate under which conditions cooperative and coordi-
nate behavior may emerge and be stable. We also study the topological structures of the
resulting networks and their relationships with the strategic choices of the agents. Some
previous work has been done on evolutionary games on dynamic networks [9,10,11].
The present study differs from those in the way in which links between agents are
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represented and interpreted, we study the agents’ and link dynamics with a different
stochastic rule, and we use a novel asynchronous update sequence.

This article is structured as follows. In sect. 2, we present our model of co-evolving
dynamical network. In sect. 3, we discuss the simulation results and their significance
for the social networks. We give our conclusions in sect. 4.

2 Model Description

Our model is strictly local. A player only uses information about the strength of the links
with her first neighbors and the knowledge of her own payoff plus the strategies and in-
directly the payoffs of her immediate neighbors. The model is an evolutionary one:
players just adapt their behavior to imitate more successful strategies in their neighbor-
hood with higher probability. In addition, they are able to locally assess the worth of an
interaction and possibly dismiss a relationship that does not pay off enough. The model
and its dynamics are described in detail in the following sections.

Network and Interaction Structure. The network of agents is represented as an undi-
rected graph G(V, E), where the set of vertices V represents the agents, while the set
of edges (or links) E represents their symmetric interactions. The population size N is
the cardinality of V . A neighbor of an agent i is any other agent j such that there is an
edge {ij} ∈ E. The set of neighbors of i is called Vi and its cardinality is the degree ki

of vertex i ∈ V . The average degree of the network will be called k̄.
Although there is formally a single undirected link between a player i and another

player j ∈ Vi, we shall maintain two links: one going from i to j and another one
in the reverse direction. Each link has a weight or “force” fij (respectively fji). This
weight, say fij , represents in an indirect way the “trust” player i places in player j.
It may take any value in [0, 1] and its variation is dictated by the payoff earned by
i in each encounter with j, as explained below. The link strengths can be seen as a
kind of “memory” of previous encounters. However, they must be distinguished from
the memory used in iterated games, in which players “remember” a certain number of
previous moves and can thus conform their future strategy on the analysis of those past
encounters [2]. Our interactions are strictly one-shot, i.e. players “forget” the results
of previous rounds and cannot recognize previous partners and their possible playing
patterns. We define a quantity si called satisfaction of an agent i as the mean weight of

i’s links: si =
∑

j∈Vi
fij

ki
. Clearly 0 ≤ si ≤ 1.

Initialization. The constant size of the network during the simulations is N = 1000.
The initial graph is generated randomly with a mean degree k̄ = 10. This value of k̄
is of the order of those actually found in many social networks (see, for instance, [5]).
Players are distributed uniformly at random over the graph vertices with 50% cooper-
ators. Forces between any pair of neighboring players are initialized at 0.5. There is
another parameter q that has to be set; q is a real number in [0, 1] and it represents the
frequency with which an agent wishes to dismiss a link with one of its neighbors. The
higher q, the faster the link reorganization in the network. It is an important considera-
tion, as social networks may structurally evolve at widely different speeds, depending
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on the kind of interaction between agents. Agents are updated partially asynchronously,
i.e. in each time step, a fraction of randomly chosen agents is updated simultaneously.

Strategy and Link Dynamics. When a given individual i is chosen to be activated it
goes through the following steps:

– if the degree of agent i, ki = 0 then player i is an isolated node. In this case a link
with strength 0.5 is created from i to a player j chosen uniformly at random among
the other N − 1 players in the network.

– otherwise,
• either agent i updates its strategy according to a local replicator dynamics rule

with probability 1 − q or, with probability q, agent i may delete a link with a
given neighbor j and creates a new 0.5 force link with another node k ;

• the forces between i and its neighbors Vi are updated

Let us now describe each step in more detail.

Strategy Evolution. We use a local version of replicator dynamics (RD) as described
in [8]. The local dynamics of a player i only depends on its own strategy and on the
strategies of the ki players in its neighborhood Vi. Let πij be the payoff player i re-
ceives when interacting with neighbor j. The quantity Π̂i(t) =

∑
j∈Vi

πij(t) is the
accumulated payoff collected by player i at time step t. The rule according to which
agents update their strategies is the conventional RD in which strategies that do better
than the average increase their share in the population, while those that fare worse than
average decrease. To update the strategy of player i, another player j is drawn at ran-
dom from the neighborhood Vi. The probability of switching strategy is a monotonic
increasing function φ of the payoff difference (here linear) [1]. Strategy si is replaced
by sj with probability

pi = φ(Π̂j − Π̂i). (1)

Link Evolution. The active agent i, which has ki �= 0 neighbors will, with probability
q, attempt to dismiss an interaction with one of its neighbors. This is done as follows.
Player i looks at its satisfaction si. The higher si, the more satisfied the player, since
a high satisfaction is a consequence of successful strategic interactions with the neigh-
bors. Thus, there should be a natural tendency to try to dismiss a link when si is low.
This is simulated by drawing a uniform pseudo-random number r ∈ [0, 1] and break-
ing a link when r ≥ si. Assuming that the decision is taken to cut a link, which one,
among the possible ki, should be chosen? Our solution again relies on the strength of
the relevant links. First a neighbor j is chosen with probability proportional to 1 − fij ,
i.e. the stronger the link, the less likely it will be chosen. This intuitively corresponds
to i’s observation that it is preferable to dismiss an interaction with a neighbor j that
has contributed little to i’s payoff over several rounds of play. However, in our system
dismissing a link is not free: j may “object” to the decision. The intuitive idea is that,
in real social situations, it is seldom possible to take unilateral decisions; we represent
this by a probability 1− (fij + fji)/2 with which j may refuse to be cut away. In other
words, the link is less likely to be deleted if j appreciates i, i.e. when fji is high.
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Assuming that the {ij} link is finally cut, how is a new link to be formed? The
solution adopted here is inspired by the observation that, in social networks, links are
usually created more easily between people who have a mutual acquaintance than those
who do not. First, a neighbor k is chosen in Vi\{j}with probability proportional to fik,
thus favoring neighbors i trusts. Next, k in turn chooses player l in his neighborhood
Vk using the same principle, i.e. with probability proportional to fkl. If i and l are not
connected, a link {il} is created, otherwise the process is repeated in Vl. Again, if the
selected node, say m, is not connected to i, a new link {im} is established. If this also
fails, a new link between i and a randomly chosen node is created. In all cases the new
link is initialized with a strength of 0.5 in both directions.

Updating the Link Strengths. Once the chosen agents have gone through their strategy
or link update steps, the strengths of the links are updated accordingly:

fij(t + 1) = fij(t) +
πij − π̄ij

ki(πmax − πmin)
,

where πij is the payoff of i when interacting with j, π̄ij is the payoff earned by i
playing with j, if j were to play his other strategy, and πmax (πmin) is the maximal
(minimal) possible payoff obtainable in a single interaction. This update is performed
in both directions, i.e. both fij and fji are updated ∀j ∈ Vi.

3 Simulation Results

3.1 Simulation Parameters

For each game, we can explore the entire game space by limiting our study to the vari-
ation of only two parameters per game. In the case of the PD, we set R = 1 and S = 0,
and vary 1 ≤ T ≤ 2 and 0 ≤ P ≤ 1. For the SH we fix R = 1 and S = 0 and vary
0 ≤ T ≤ 1 and 0 ≤ P ≤ T . In the PD case, P is bounded by R = 1 and S = 0 in
order to respect the ordering of the payoffs (T > R > P > S) and T ’s upper bound
is equal to 2 due to the 2R > T + S constraint. In the SH, setting R = 1 and S = 0
determines the range of T and P (since this time R > T > P > S). Note that for this
game the only valid value pairs of (T, P ) are those that satisfy the T > P constraint.

As stated in sect. 2, we used networks of size N = 1000, randomly generated with
an average degree k̄ = 10 and randomly initialized with 50% cooperators and 50%
defectors. In all cases, the parameters are varied between their two bounds in steps of
0.1. For each set of values, we carry out 50 runs of at most 20000 steps each, using
a fresh graph realization in each run. A run is stopped when all agents are using the
same strategy, in order to be able to measure statistics for the population and for the
structural parameters of the graphs. The system is considered to have reached a pseudo-
equilibrium strategy state when the strategy of the agents (C or D) does not change
over 150 further steps, which means 15× 104 individual updates. We speak of pseudo-
equilibria and not of true evolutionary equilibria because, as we shall see below, the
system never quite reaches a totally stable state in the dynamical systems sense.
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3.2 Emergence of Cooperation

Fig. 1 shows cooperation results for the PD in contour plot form. As observed in other
structured populations, cooperation may thrive in a small but non-negligible part of the
parameter space. Thus, the added degree of freedom represented by the possibility of re-
fusing a partner and choosing a new one does indeed help to find players’ arrangements
that help cooperation. This finding is in line with the results of [10,11]. Furthermore,
the fact that our artificial society model differs from the latter two in several important
ways also shows that the result is a rather robust one. When considering the depen-
dence on the fluidity parameter q, one sees in fig. 1 that the higher q, the higher the
cooperation level. This was expected since being able to break ties more often clearly
gives cooperators more possibilities for finding and keeping fellow cooperators to in-
teract with. Compared with the level of cooperation observed in simulations in static
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Fig. 1. Cooperation level for the PD in the game’s configuration space. Darker gray means more
defection.

networks, we can say that results are consistently better for co-evolving networks. For
example, the typical cases with k̄ = 10 and q = 0.5, 0.8 show significantly more co-
operation than what was found in model and real social networks in previous work [8].
Even when there is a much lower rewiring frequency, i.e. with q = 0.2, the cooperation
levels are approximately as those observed in the mentioned study in which exactly the
same replicator dynamics scheme was used to update the agents’ strategies and the net-
works were of comparable size. The reason for this behavior is to be found in the added
constraints imposed by the invariant network structure.

From the point of view of the evolutionary dynamics, it is interesting to point out
that any given simulation run either ends up in full cooperation or full defection. When
the full cooperation state of the population is attained, there is no way to switch back
to defection by the intrinsic agent dynamics. In fact, all players are satisfied and have
strong links with their cooperating neighbors. Even though a small amount of noise
may still be present when deciding whether or not to rewire a link, since there are only
cooperators around to imitate, there can be no strategy change and only very little link
rewiring. On the other hand, well before this stable state is reached and there are still
many defectors around, the system may experience some random drift that may drive
it to full defection. The converse may also happen, but when the full defection state
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is reached, the situation is qualitatively different. In this case agents are unsatisfied,
they will often try to rewire their links. However, all the other players around being
also defectors, there will be constant changes of the local network structure. Thus the
system will find itself in a fluctuating state, but this matters little for the bulk statistical
properties of the population and of the network. To be assured that this is indeed the
case, we have conducted some very long runs with all-defect end states. Global statistics
do not change, except that the mean degree tends to increase slightly with time and the
degree distribution function continues to evolve (see sect. 3.3).
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Fig. 2. Cooperation level for the SH game

Cooperation percentages as a function of the payoff matrix parameters for the SH
game are shown in fig. 2 for k̄ = 10 and q = 0.2, 0.5, and 0.8. Note that in this case
only the upper left triangle of the configuration space is meaningful. The SH is different
from the PD since there are two evolutionarily stable strategies which are therefore also
NEs: one population state in which everybody defects and the opposite one in which
everybody cooperates (see sect. 1). Therefore, some runs will end up with all defect,
while others will witness the emergence of full cooperation. In contrast, in the PD the
only theoretically stable state is all-defect and cooperating states may emerge and be
stable only by exploiting the graph structure and creating more favorable neighborhoods
by breaking and forming ties. The value of the SH is in making manifest the tension that
exists between the socially desirable state of full cooperation and the socially inferior
but less risky state of defection [3]. The final outcome of a given simulation run depends
on the size of the basin of attraction of either state, which is in turn a function of the
relative values of the payoff matrix entries. To appreciate the usefulness of making and
breaking ties in this game we can compare our results with what is prescribed by the
standard RD solution. Referring to the payoff table of sect. 1, let’s assume that the
column player plays C with probability α and D with probability 1 − α. In this case,
the expected payoffs of the row player are: Er[C] = αR + (1 − α)S and Er [D] =
αT + (1−α)P. The row player is indifferent to the choice of α when Er[C] = Er[D].
Solving for α gives: α = (P − S)/(R − S − T + P ). Since the game is symmetric,
the result for the column player is the same and (αC, (1 − α)D) is a NE in mixed
strategies. Let us now use the following payoff values in order to bring them within the
explored game space (NEs are invariant w.r.t. such a transformation [1]): R = 1, T =
2/3, P = 1/3, S = 0. Substituting in the previous expression gives α = 1/2, i.e. the
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(unstable) polymorphic population should be composed by about half cooperators and
half defectors. Now, if one looks at fig. 2 at the points where P = 1/3 and T = 2/3,
one can see that this is approximately the case for the first image, within the limits of the
approximations caused by the finite population size. On the other hand, in the middle
image and, to a greater extent, in the rightmost image, this point in the game space
corresponds to pure cooperation. In other words, the non-homogeneity of the network
and an increased level of tie rewiring has allowed the cooperation basin to be enhanced
with respect to the theoretical predictions of standard RD.

3.3 Structure of the Emerging Networks

Here we present a statistical analysis of the global and local properties of the networks
that emerge when the pseudo-equilibrium states of the dynamics are attained. Let us first
consider the evolution of the average degree k̄. Although there is nothing in our model
to prevent a change in the initial mean degree, the steady-state average connectivity
tends to increase only slightly. For example, in the PD with q = 0.8 and k̄init = 10,
the average steady-state (ss) value is k̄ss  10.5. Thus we see that, without imposing
a constant k̄, the latter nonetheless tends to increase only slightly, which nicely agrees
with observations of real social networks.

The clustering coefficient Ci of a node i is defined as Ci = 2Ei/ki(ki − 1), where
Ei is the number of edges in the neighborhood of i. Thus Ci measures the amount of
“cliquishness” of the neighborhood of node i and it characterizes the extent to which
nodes adjacent to node i are connected to each other. The clustering coefficient of the
graph is simply the average over all nodes: C = 1

N

∑N
i=1 Ci [5]. Random graphs are

locally homogeneous and for them C is simply equal to the probability of having an
edge between any pair of nodes independently. In contrast, real networks have local
structures and thus higher values of C. Table 1 gives the average clustering coefficient
C̄ = 1

50

∑50
i=1 C for three points in the game space which cover both cooperation

and defection for both games (see figs. 1 and 2). It is apparent that the networks self-
organize and acquire local structure, since the clustering coefficients are higher than
those of the random graph with the same number of edges and nodes, which is k̄/N =
10/1000 = 0.01. However, C is larger where cooperation predominates. The social
networks develop local structures and the more so the higher the value of q.

Table 1. Clustering coefficient of the resulting networks. For both games we have an always
cooperative case, a mixed case, and an alwasy defective case.

q = 0.2 q = 0.5 q = 0.8

P = 1.1 T = 0.1 0.1433 0.1937 0.2421
P = 1.8 T = 0.1 0.0146 0.0176 0.2462P

D

P = 1.1 T = 0.4 0.0156 0.0404 0.0466
P = 0.9 T = 0.1 0.1019 0.1564 0.2192
P = 0.9 T = 0.4 0.0171 0.0254 0.2604SH

P = 0.9 T = 0.7 0.0228 0.0363 0.0443
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Fig. 3. Cumulative degree distributions. Average values over 50 runs. (a): PD, (b): SH. q = 0.8,
k̄ = 10. Linear-log scales.

The degree distribution function (DDF) p(k) of a of a graph represents the proba-
bility that a randomly chosen node has degree k [5]. Random graphs are characterized
by DDF of Poissonian form, while social and technological real networks often show
long tails to the right, i.e. there are nodes that have an unusually large number of neigh-
bors [5]. The cumulative degree distribution function (CDDF) is just the probability that
the degree is greater than or equal to k and has the advantage of being less noisy for
high degrees. Fig. 3 (a) shows the CDDFs for the PD for three cases of which two are in
the cooperative region and the third falls in the defecting region (see fig. 1). The dotted
curve refers to a region of the configuration space in which there is cooperation in the
average but it is more difficult to reach, as the temptation parameter is high (T=1.8,
P=0.1). The curve has a rather long tail and is thus broad-scale in the sense that there is
no typical degree for the agents. Therefore, in the corresponding network there are co-
operators that are linked to many other cooperators. On the other hand, if one considers
the dotted-dashed curve, which corresponds to a defecting region (T=1.1, P=0.4), it is
clear that the distribution is much closer to normal, with a well-defined typical value of
the degree. Finally, the third thick curve, which corresponds to a region where cooper-
ation is more easily attained (T=1.1, P=0.1), also shows a rather faster decay of the tail
than the dotted line and a narrower scale for the degree. Nevertheless, it is right-skewed,
indicating that the network is no longer a pure random graph. Since we use linear-log
scales, the dotted curve has an approximatively exponential or slower decay, given that
a pure exponential would appear as a straight line in the plot. The tail of the thick curve
decays faster than an exponential, while the dashed-dotted curve decays even faster.
Almost the same observations also apply to the SH case (fig. 3 (b)). These are typical
behaviors. When cooperation is difficult to reach, agents must exploit link-redirection
in order for cooperators to stick together in sufficient quantities and protect themselves
from exploiting defectors during the co-evolution. When the situation is either more
favorable for cooperation, or defection easily prevails, network rearrangement is less
radical. In the limit of long simulation times, the defection case leads to networks that
have degree distribution close to Poissonian and are thus almost random.
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4 Conclusions

By means of two well known games that represent conflicting decision situations we
have studied the role of the dynamically networked society’s structure in the estab-
lishment of global cooperative and coordinate behaviors, which are desirable outcomes
for society’s welfare. Starting from randomly connected players which only interact
locally in a restricted neighborhood, and allowing agents to probabilistically and bilat-
erally dismiss unprofitable relations and create new ones, the stochastic dynamics lead
to pseudo-equilibria of either cooperating or defecting agents. With respect to stan-
dard replicator dynamics results for mixing populations, we find that there is a siz-
able configuration space region in which cooperation may emerge and be stable for the
PD, whereas the classical result predicts total defection. For the SH, where both all-
cooperate and all-defect steady-states are theoretically possible, we show that the basin
of attraction for cooperation is enhanced. The self-organizing mechanism consists in
both games in forming dense clusters of cooperators which are more difficult to dis-
solve by exploiting defectors. While the beneficial effect of relational or geographical
static population structures on cooperation was already known from previous studies,
here we have shown that even more realistic dynamic social networks may allow coop-
eration to thrive.
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Abstract. When a simple real-valued estimation of distribution algo-
rithm (EDA) with Gaussian model and maximum likelihood estimation
of parameters is used, it converges prematurely even on the slope of
the fitness function. The simplest way of preventing premature conver-
gence by multiplying the variance estimate by a constant factor k each
generation is studied. Recent works have shown that when increasing
the dimensionality of the search space, such an algorithm becomes very
quickly unable to traverse the slope and focus to the optimum at the
same time. In this paper it is shown that when isotropic distributions
with Gaussian or Cauchy distributed norms are used, the simple con-
stant setting of k is able to ensure a reasonable behaviour of the EDA
on the slope and in the valley of the fitness function at the same time.

1 Introduction

Estimation of distribution algorithms (EDAs) [1] are a class of evolutionary
algorithms (EAs) that do not use the crossover and mutation operators to create
the offspring population. Instead, they build a probabilistic model describing the
distribution of promising individuals and create offspring by sampling from the
model. In real-valued spaces, such an algorithm can have a very simple structure
which is depicted in Fig. 1.

If the Gaussian distribution is employed as the model of promising individuals
([2], [3], [4], [5]), and the parameters of the distribution, μ and σ, are learned by
maximum likelihood (ML) estimation, the algorithm is very prone to premature
convergence (i.e. the population converges on the slope of the fitness function) as
recognized by many authors (see e.g. [3], [6], [7]). In [8], it was shown also theo-
retically that the distance traversed by a simple Gaussian EDA with truncation
selection is bounded, and [9] showed similar results for tournament selection.

Many techniques that fight the premature convergence were developed, usu-
ally by means of artificially enlarging the ML estimate of variance of the learned
distribution. In [6] it is suggested to use standard deviation greater than 1 when
sampling the Gaussian distribution (e.g. to use G(0, 1.5)). Adaptive variance
scaling (AVS), i.e. enlarging the variance when better solutions were found and
shrinking the variance in case of no improvement, was used along with various
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1. Initialize the parameters μ0 = (μ0
1, . . . , μ

0
D) and σ0 = (σ0

1 , . . . , σ0
D), D is the

dimensionality of the search space. Generation counter t = 0.
2. Sample N offspring from the search distribution (use μt as the distribution

center and σt as relative scaling factors of individual components).
3. Evaluate the individuals.
4. Select the τN best solutions (truncation selection).
5. Update parameters μt+1 and σt+1 using the selected individuals.
6. Enlarge the σt+1 by a constant factor k (global step size).
7. Advance generation counter: t = t + 1.
8. If termination condition is not met, go to step 2.

Fig. 1. Simple EDA analysed in this article

techniques to trigger the AVS only on the slope of the fitness function in [10] and
[11]. The algorithm in Fig. 1, that suggests enlarging the population variance by
a constant factor each generation, was studied in [12] where the minimal values
of the ‘amplification coefficient’ were determined by a search in 1D case. In [13],
the theoretical model of the algorithm behavior in 1D was used to derive the
minimal and maximal admissible values for k. However, in [14] it was shown
experimentaly that a constant multiplier does not ensure the desired properties
of the algorithm when increasing the dimensionality of the search space.

In this article it is shown that when a modified Gaussian or Cauchy distribu-
tion is used instead of the standard Gaussian distribution, the simple approach
with multiplying the population variance by a constant factor ensures the desired
algorithm properties. Sec. 2 introduces the requirements constituting the bounds
for a reasonable behaviour of the algorithm. Sec. 3 contains description of the
probability distributions compared in this article. The results of the empirical
study can be found in Sec. 4 and Sec. 5 concludes the paper.

2 Fundamental Requirements on EDA

According to [15], the optimal behaviour of the self-adaptive EAs in real spaces
arises from balancing two antagonistic forces: (1) the variance shrinking effect
of selection, and (2) the variance enlarging effect of the variational operators
(distribution sampling, in our case). In this article, an approach of [14] is used
where the combined effect of the selection and variation is taken into account.

Two simple fitness landscapes are used: a linear and a sphere function:

flin(x) = x1 (1)

fsphere(x) =
D∑

d=1

x2
d (2)

These functions can be regarded [15] as local approximations of the real fitness
functions; the fitness landscape is often modelled as consisting of slopes and
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valleys (see e.g. [10], [16], [12]). The slopes and valleys are modelled with the
linear (Eq. 1) and the sphere function (Eq. 2), respectively.

There are two fundamental requirements on the development of the population
variance that ensure a reasonable behavior of the algorithm as a whole:

1. The variance must not shrink on the slope. This ensures that the population
position is not bounded and that it eventually finds at least a local optimum.

2. The variance must shrink in the valley. In the neighborhood of the optimum,
the algorithm must be allowed to converge to find the optimum precisely.

These two conditions constitute the bounds for the variance scaling factor k
which must be large enough to traverse the slopes, but must not be too large to
be able to focus to the optimum.

2.1 Bounds for k

The evolution of the model variance from one generation to another can be
described as follows: (1) sample new individuals with variance (σt)2, (2) select
the best individuals, and (3) compute the variance (σt+1)2 for the next sampling.
Without selection and using ML estimate, the two variances are expected to be
the same. For our two fitness landscapes, the selection reduces the variance, thus

(σt+1)2 = (σt)2 · c, (3)

where c is the ratio of the population variances in two consecutive generations, t
and t+ 1, and c < 1 in our case. Of course, the ratio c differs for various fitness
landscapes, thus it will be designated as cslope and cvalley, respectively.

As already said in the introduction, the simplest method of preventing prema-
ture convergence is to enlarge the estimated standard deviation σ by a constant
factor k (step 6 of the algorithm in Fig. 1). Thus

σt+1 = k · σt ·
√
c (4)

In order to prevent the premature convergence on the slope, the ratio of the
consecutive standard deviations should be at least 1, i.e.

σt+1

σt
= k · √cslope ≥ 1, thus k ≥ 1

√
cslope

def= kmin. (5)

On the other hand, to be able to focus to the optimum, the model must be
allowed to converge in the valley. The ratio of the two consecutive standard
deviations should be lower than 1, i.e.

σt+1

σt
= k · √cvalley < 1, thus k <

1
√
cvalley

def= kmax (6)

Joining these two conditions together gives us the bounds for the constant k:

kmin =
1

√
cslope

≤ k <
1

√
cvalley

= kmax (7)

In this paper, the value of k is called admissible if it satisfies condition 7.
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3 Probability Distributions

Although [13] theoretically deduced bounds for k in case of 1D Gaussian dis-
tribution, in [14] it was shown that the process sketched above does not work
with increasing dimensionality, since the interval of admissible k diminishes and
eventually vanishes. This is due to the fact that the variance after selection in
the neighborhood of the valley (sphere function) increases with dimensionality,
thus kmax must be successively smaller and eventually gets lower than kmin.

In this article, a distribution that does not exhibit this unpleasant behaviour
is sought for. Three distributions are compared.

Standard Gaussian distribution (designated as G). Probably the most often
used distribution in real-valued evolutionary algorithms. The 1D normal
distribution with zero mean and variance σ2 has the following p.d.f.:

fN (0,σ2)(x) =
1√
2π
e−

1
2 ( x

σ )2

(8)

Sampling process. D-dimensional realizations of the standard normal dis-
tribution can be created by sampling each component independently from
the 1D standard normal distribution.

Isotropic distribution with 1D Gaussian norm (designated as Giso).1

Used in the hope that it preserves some features of the 1D Gaussian
distribution.
Sampling process. 1D version of Giso is the same as 1D version G. The
multidimensional versions of Giso can be created by (1) sampling the direction
vector uniformly on the unit hypersphere2, and (2) by multiplying the vector
by a factor sampled from χ-distribution with 1 degree of freedeom. The χ-
distribution describes norms of vectors generated from G.

Isotropic distribution with 1D Cauchy norm (designated as Ciso).
Selected for the comparison to show the effects of heavy tails (if any). The
1D Cauchy distribution with median 0 and upper quartile γ has the following
p.d.f.:

fC(0,γ) =
1
π

γ

x2 + γ2
(9)

Standard Cauchy distributed values with γ = 1 can be be obtained by sam-
pling two values from G and dividing them.
Sampling process. D-dimensional realizations of Ciso can be sampled sim-
ilarly as Giso with the exception that the multiplication factor is sampled
from 1D Cauchy distribution instead of 1D Gaussian.

1 In this article, the term isotropic is not meant as a feature of the distribution (stan-
dard normal distribution is isotropic as well); it describes the sampling process.

2 Sampling a vector on a unit hypersphere can be achieved e.g. by sampling D-
dimensional standard normal distribution and dividing the resulting vector by its
norm.
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Dim Gaussian Gaussian Norms Cauchy Norms
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0

1000

2000

3000

4000

5000

6000
St.d. = 1.483

−6 −4 −2 0 2 4 6
0

1000

2000

3000

4000

5000

6000
St.d. = 467.532
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Fig. 2. The distribution of the first coordinate (the histograms) and the distribution of
the vector norms (solid line) for G, Giso, and Ciso, and for the search space dimensions
1, 2, and 10
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Fig. 3. After selection with sphere function. The distribution of the first coordinate
(the histograms) and the distribution of the vector norms (solid line) for G, Giso, and
Ciso, and for the search space dimensions 1, 2, and 10. Note that the distribution of
vector norms (solid line) is cut off at x = 1 due to the modification of sampling process
described in Sec. 3.1.
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These distributions were already studied in several works from different points
of view. In [17], the local convergence rates of evolutionary algorithms with Gaus-
sian and Cauchy mutations are estimated and compared. In [18], the convergence
to a local optimum was studied as well, along with the ability to locate narrow
valleys and the influence of the dimensionality on the exploration efficiency. The
usefulness of the Cauchy distributions in case of multimodal optimization was
explored in [19]. In this article it is studied if these distributions allow for the
simple constant setting of the global step size.

3.1 Modification of Vector Norms

It was deliberately decided to normalize3 the vector norms of all three distribu-
tions in such a way, that the 100τ -percentile of the distribution of norms equals
to 1. This is achieved simply by

– dividing the G-distributed vectors by the value of inverse cumulative dis-
tribution function (i.c.d.f) of the χ distribution with D degrees of freedom
(d.o.f.) at point τ , i.e. xm = x/CDF−1

χD
(τ), x ∼ G,

– dividing the Giso-distributed vectors by the value of the i.c.d.f. of the χ
distribution with 1 d.o.f. at point τ , i.e. xm = x/CDF−1

χ1
(τ), x ∼ Giso, or by

– dividing the Ciso-distributed vectors by the value of the i.c.d.f. of the standard
Cauchy distribution at point (1 + τ)/2, i.e. xm = x/CDF−1

C (1+τ
2 ), x ∼ Ciso,

respectively.

The distributions of sampled data points and their norms are depicted in
Fig. 2. The fact that the 100τ -percentile of the norm distribution is equal to 1
is demonstrated in Fig. 3 which shows the distributions of selected data points
when sphere function is used. The frequency of norms of the selected data points
is cut off at value 1.

4 Experiments, Results and Discussion

The bounds for k for all three distributions were found experimentaly. The lower
bound kmin is found by using the flin, the upper bound kmax is found by exper-
iments with fsphere. During the experiments, the value of standard deviation of
coordinate x1 is tracked and it is checked if it increases or decreases (on average).
The bisection method is used to determine the value of k for which the variance
stays the same (with certain tolerance).

The population size 1,000 was used in all experiments. To determine each
particular kmin (and kmax), 10 independent runs of 100 generations were carried
out. Each run was started with initial parameters μ0 = 0 and σ0 = 1 ensuring
that the processes are started in the stationary state. During each run, the
standard deviation of x1 was tracked; this gives 10 values of st.d. for each of 100

3 There is no special need for the normalization. With the normalization, however, the
graphs in Figs. 4 and 5 show more regular patterns and are more comparable.
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generations. To this data, a linear function of the form E(log(st.d.)) = a ·gen+ b
was fitted (‘gen’ is the generation counter) using simple linear regression which
should be adequate type of model. The sign of the learned parameter a was used
to decide, if the variances increase or decrease during the run.

The bounds of k found for G can be seen in Fig. 4. For 1D search space there
exists an interval of admissible values of k for all tested selection proportions
τ . However, with increasing dimensionality, the value of kmin grows faster than
kmax for all values of τ , and for dimensions greater then 5 there is no admissible
k (which would ensure effective traversing of slopes and focusing to the optimum
in the same time). This is in accordance with the results in [13] and [14].

10
0

10
1

10
0

10
1

dim

k

kmax
kmin, τ = 0.1
kmin, τ = 0.3
kmin, τ = 0.5
kmin, τ = 0.7
kmin, τ = 0.9

Fig. 4. Minimal and maximal values of k for the Gaussian distribution. (The lines for
the respective kmax are very close to each other; without losing the big picture they
were replaced by the shaded region.) It can be observed that for D > 5 the kmin is
greater than kmax for all tested selection proportions τ and the admissible interval for
k does not exist!

The same figures when Giso is used are depicted in Fig. 5, left. The results
are completely different now! For all but the highest values of τ , there seems to
exist an interval of admisible values of k and this interval does not shrink with
incresing dimensionality.

The situation for Ciso distribution is even better, see Fig. 5, right. The size of
admissible interval for k does not shrink so much when increasing the selection
proportion τ , as was the case for Giso.

It can be also observed that for the isotropic distributions and a particular
value of selection proportion τ , the ratio kmax/kmin stays almost the same re-
gardless of the dimensionality. This observation could be used to create a simple
equation for the setting of k in relation to τ and the dimensionality. Of course,
optimal setting of k depends on the problem, on the initial values of μ0 and σ0,
and can also depend on the search distribution used. At this moment, it is not
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k
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kmin, τ = 0.1
kmin, τ = 0.3
kmin, τ = 0.5
kmin, τ = 0.7
kmin, τ = 0.9

10
0
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1

10
−3
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−2

10
−1

10
0

10
1

dim

k

 

 

kmax, τ = 0.1
kmax, τ = 0.3
kmax, τ = 0.5
kmax, τ = 0.7
kmax, τ = 0.9
kmin, τ = 0.1
kmin, τ = 0.3
kmin, τ = 0.5
kmin, τ = 0.7
kmin, τ = 0.9

Fig. 5. Minimal and maximal values of k for the isotropic Gaussian (on the left) and
isotropic Cauchy (on the right) distributions. (The lines for the respective kmax of the
Giso distribution are very close to each other; without losing the big picture they were
replaced by the shaded region.) It can be observed that the admissible interval for
k exists and does not shrink with the dimensionality for almost all tested selection
proportions τ and for both tested isotropic distributions.

clear if it is better “on average” to set k only slightly above kmin, slightly below
kmax, or somewhere in the middle.

As already said in the introduction, in [6] the authors showed that their EDA
with truncation selection with τ = 0.3 which used the value of 1.5 for the stan-
dard deviation of the Gaussian distribution was able to find the optimum of
the 10D Rosenbrock function while EDA without this modification (using ML
estimate of σ) converged prematurely. The value 1.5 can be transformed to the
context of this article; the corresponding k = 1.5 · CDF−1

χ10
(0.3) ≈ 4. Looking

at the Fig. 4 (dim=10, τ = 0.3) we can see that this value is not admissible;
it lies somewhere in the shaded region of kmax, below kmin. Thus, the popula-
tion variance was shrinking during the whole evolution (as shown in [6]). The
shrinking was a bit slower, however, than when using ML estimate of σ giving
the algorithm the time needed to find the global optimum. The algorithm was
started from the origin. If it was started from a more distant point, the results
obtained in this article suggest that the optimum would not be reached.

The adaptive variance scaling approach (AVS) presented in [10] and [11]
should work even for the isotropic distributions used in this article. Since it
is a dynamic scheme for setting the k, it needn’t be limited to admissible values
of k. For the algorithm it is often profitable to set k > kmax when on slope, or
to set k < kmin when in the valley which ensures faster traversal of slopes and
faster convergence to the optimum, respectively. On the other hand, AVS alone
is an iterative update scheme and it can take several generations to switch the
scaling from slope-style to valley-style or vice versa. That is the reason behind
the triggers introduced in [10] and [11] which should decide if the population is
on the slope or in the valley and trigger the AVS only on the slope; in the valley,
the ML estimate of σ is used without scaling. The right behavior of such an
algorithm is largely determined by the ability of the trigger to decide correctly
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whether to trigger the scaling. The results of this article can thus be useful for
these algorithms in two ways: (1) if the trigger is good, the scaling factor can
be set to at least kmin on the slope, and at most to kmax in the valley, or (2)
if the trigger makes mistakes, the algorithm can use the admissible interval of
〈kmin, kmax) as a safeguard.

5 Summary and Future Work

This article aimed at simple way of preventing premature convergence of a sim-
ple EDA. The variance of the distribution estimated from the selected data is
increased by the factor (or global step size) k each generation, artificially keeping
the sufficient diversity in the population.

Recent works have shown that when Gaussian distribution is used, a constant
value of kwhich would ensure a reasonable behaviour of the algorithm on the slopes
and in the valleys of the fitness function exists only for low-dimensional spaces.

The situation is much better when isotropic distribution with Gaussian or
Cauchy norms is used. Both of these two distributions ensure the existence of the
admissible interval for k for a broad range of selection proportions τ and search
space dimensionalities. Moreover, the ratio kmax/kmin stays almost the same for
the isotropic distributions, with Cauchy distribution giving larger margin.

Compiling a practically appliable heuristic for setting the value of k, building
a real working optimization algorithm based on these principles, and its compar-
ison with other scaling techniques remain as the future work. It would be also
appealing to explore this technique in combination with other selection schemes
different from the truncation selection.
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Abstract. Noisy fitness functions occur in many practical applications
of evolutionary computation. A standard technique for solving these
problems is fitness resampling but this may be inefficient or need a
large population, and combined with elitism it may overvalue chromo-
somes or reduce genetic diversity. We describe a simple new resampling
technique called Greedy Average Sampling for steady-state genetic algo-
rithms such as GENITOR. It requires an extra runtime parameter to be
tuned, but does not need a large population or assumptions on noise dis-
tributions. In experiments on a well-known Inventory Control problem it
performed a large number of samples on the best chromosomes yet only
a small number on average, and was more effective than four other tested
techniques.

1 Introduction

In many real-world applications of Genetic Algorithms (GAs) and other Evo-
lutionary Computation algorithms, the fitness function is noisy: that is, the
fitness of a chromosome cannot be computed directly but must be averaged over
a number of samples. Examples include the learning of randomised games such as
Backgammon, human-computer interaction, and simulation problems for which
we wish to evolve a robust plan. The standard deviation of the sample mean of
a random variable with standard deviation σ is σ/

√
n where n is the number

of samples, so a large number of samples may be needed for very noisy fitness
functions.

Several techniques for handling fitness noise in EAs are surveyed in [4,13]:
the use of sampling to obtain an average fitness reduces noise; increasing the
population size makes it harder for an unfit chromosome to displace a fitter one
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(a point also made by [10]) and can be viewed as a form of implicit averaging;
and rescaled mutation samples distant points in the search space then moves
a small distance toward them. [5] propose regression to estimate the fitness of
neighbouring chromosomes. [1] vary sample rates across both chromosomes and
generations in a generational GA. [18] record fitness levels in a search history, and
use a stochastic model of fitness levels to locate new points in the search space.
[3] use a threshold selection heuristic for accepting chromosomes. [17] adapt
the sampling rate to different regions of the search space, a technique they call
dynamic resampling. [19] use a Bayesian approach to sampling called Optimal
Computing Budget Allocation, which assumes normally distributed noise.

A popular approach is to use a Noisy Genetic Algorithm (NGA) which com-
putes the fitness of each chromosome by averaging over a number of samples
[9,11,14,15]. Following [1] we shall refer to this as static sampling, and refer to
this algorithm as NGAs. NGAs wastes considerable time evaluating unpromising
chromosomes, but it can be improved by linearly increasing the number of samples
with search time, starting from a low value [21,27]. We shall refer to this as incre-
mental sampling and the resulting algorithm as NGAi. However, though NGAs
and NGAi have been used to solve real problems, they may not be the most effi-
cient approach. It is pointed out in [22] that a reduction in noise is not necessary
for every chromosome, only for the best ones. Of course, this entails discovering
which are the best chromosomes without performing a large number of samples,
but poor chromosomes might become apparent after just a few samples.

An alternative technique is to resample chromosome fitness: that is, some
chromosomes are allowed to survive for more than one generation, and their
fitness is periodically recomputed to refine the estimate. Various heuristics may
be used to decide when to discard a chromosome. [22] experiments with aver-
aging over a small number of samples, and guiding resampling by a statistical
test which assumes Gaussian noise but is considered to be robust under non-
Gaussian noise. [12] uses the standard deviation of the fitness to correct for
its noise, again under assumptions on noise distribution. Resampling and the
common heuristic of elitism do not always combine well. [6] show that, with
an elitist GA, the probabilistic method of [12] is inferior to a resampling ap-
proach. [2] show that, in Evolutionary Strategies that allow fitness values to
survive for more than one generation, failure to resample can lead to systematic
overvaluation of chromosomes. [8] found that, when applying co-evolutionary
learning to the noisy task of learning how to play Backgammon, more sampling
can have a bad effect on the learning besides incurring overhead. It causes less
fit chromosomes to be pruned more quickly which reduces genetic diversity too
drastically, especially with small populations. Despite these drawbacks, resam-
pling and elitism have been successfully combined. [25] describe an extension of
the Simple (generational) GA that maintains a list of the fittest solutions found
so far, while increasing the number of samples as search proceeds as in NGAi;
they also increase the population size during search.

Another successful resampling elitist GA is the Kalman-extended Genetic Al-
gorithm (KGA) [23], designed for problems whose fitness is both noisy and



A Steady-State Genetic Algorithm with Resampling 561

nonstationary. It adapts its sampling rate for each chromosome individually,
based on techniques from Kalman filtering. Removing the nonstationary aspects
of KGA yields a steady-state algorithm that evaluates the fitness of each new
chromosome just once before adding it to the population, then replaces the
least-fit population member by the new chromosome. Alternate iterations are
devoted to resampling chromosomes that are already in the population. The
current fitness estimate of a chromosome is the mean over all its samples. In
KGA a chromosome is selected for resampling according to its current fitness
estimate and how many times it has already been sampled (which is a measure
of the fitness uncertainty): choose the chromosome with fewest samples, among
those whose fitness estimates are greater than the population fitness mean minus
the population fitness standard deviation. The intuition behind this approach is
that unfit chromosomes with high fitness estimate based on only a few samples
will be resampled, and their low fitness will become apparent. We shall refer to
this as Kalman sampling.

In this paper we investigate resampling strategies for the steady-state (there-
fore elitist) GENITOR algorithm [26]. Our aim is to find a simple resampling
strategy that can be used with a steady-state GA, does not assume any noise
properties, does not require a large population, resamples fit chromosomes many
times to avoid overvaluation, yet on average uses only a few samples per chromo-
some. We find it necessary to introduce a new runtime parameter that requires
manual tuning, but this might be automated in future work. We demonstrate our
technique on a well-known problem from Inventory Control. Section 2 describes
our algorithm, Section 3 describes the problem we attempt to solve, Section 4
presents experimental results, and Section 5 concludes the paper.

2 The Algorithm

We use a single GA in our experiments: a basic version of GENITOR [26] without
refinements such as a gene to determine crossover probability. GENITOR is a
steady-state GA that, at each iteration, selects two parent chromosomes, breeds
a single offspring by (optional) crossover followed by mutation, evaluates it, and
uses it to replace the least-fit member of the population. We use random parent
selection, and standard uniform crossover applied with a crossover probability
0.5: if it is not applied then a single parent is selected and mutated. In our
problem (described below) each gene can take any of 100 integer values, plus
a special value denoted by NULL. Because of the special nature of the NULL
value we select it with probability 0.5, otherwise randomly select one of the
100 integer values. Mutation is applied to a chromosome once with probability
0.5, twice with probability 0.25, three times with probability 0.125, and so on.
A small population of size 30 is used. We assume that at least U samples are
required to obtain a sufficiently reliable fitness estimate, and in experiments
we will use the large value U = 1000. Thus we face the challenge of sampling
effectively without incurring the drawbacks described above: inefficiency, lack of
genetic diversity, or overvaluation, while using only a small population.
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This is our basic GA but we have yet to specify a sampling strategy to cope
with fitness noise. We will compare five resampling strategies, three of which are
well-known: static sampling (as in NGAs) in which we take U samples for each
chromosome, incremental sampling (as in NGAs) in which we take a variable num-
ber of samples per chromosome that linearly increases from 1 to U during the GA
execution, and Kalman sampling (as in KGA). The other two strategies are new.

Our first new strategy tries to combine the rapid convergence of Kalman
sampling with the reliability of static sampling. It applies Kalman sampling but
with a number S ≥ 1 of samples to initialise and resample chromosomes, with
the best value of S to be determined by experiment. We shall refer to this as
Kalman averaged sampling and our GA with this sampling scheme as KASGA.
It is inspired by a note in [1] stating that if the fitness variance in the population
is small compared to the noise variance then a GA will make no progress, and
it becomes necessary to increase the sample rate. It is also inspired by the use
of a small number of samples for evolutionary algorithms in [22].

Our second new strategy also takes S samples each time a chromosome is
selected for (re)sampling, but it resamples the chromosome with highest fitness,
ignoring chromosomes that already have U samples. Note that if S < U then
there is always at least one chromosome with fewer than U samples: the most
recently created chromosome, which only has S samples. Note also that we nor-
mally choose S to be a divisor of U to avoid unnecessary resampling, but this is
not strictly required. We shall call this scheme greedy averaged sampling because
it greedily resamples the most promising chromosome, based on current fitness
estimates. Combining this with the GA we obtain a new algorithm we shall call
the Greedy Average Sample GA (GASGA). This is our main contribution and
it is summarised in Figure 1.

GASGA(S, P, U)

create population of size P
evaluate population using S samples

while not(termination condition)

select two parents

breed one offspring O

evaluate O using S samples

replace least-fit chromosome by O

select fittest chromosome F with #samples< U
re-evaluate F using S samples

output fittest chromosome

Fig. 1. GASGA pseudo-code

3 An Inventory Control Problem with Uncertainty

The problem we consider is as follows. Given a planning horizon of N periods and
a demand for each period t ∈ {1, . . . , N}, which is a random variable with a given
probability density function; we assume that these distributions are normal,
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though this is not required by our GA. Demands occur instantaneously at the
beginning of each time period and are non-stationary (can vary from period to
period), and demands in different periods are independent. A fixed delivery cost
a is incurred for each order, a linear holding cost h is incurred for each product
unit carried in stock from one period to the next, and a linear stockout cost s is
incurred for each period in which the net inventory is negative (it is not possible
to sell back excess items to the vendor at the end of a period). The aim is to find
a replenishment plan that minimizes the expected total cost over the planning
horizon.

Different inventory control policies can be adopted to cope with this and
other problems. A policy states the rules used to decide when orders are to
be placed and how to compute the replenishment lot-size for each order. (The
term policy here refers to the form of the plan, whereas in some fields such as
Artificial Intelligence a policy refers to an actual plan. We use the term in both
senses, and the meaning should be clear from the context.) One possibility is the
replenishment cycle policy (R, S) [20]. With non-stationary demands this policy
takes the form (Rn, Sn) where Rn denotes the length of the nth replenishment
cycle and Sn the order-up-to-level for replenishment. In this policy a wait-and-
see strategy is adopted, under which the actual order quantity for replenishment
cycle n is determined only after the demand in former periods has been realized.
The order quantity is computed as the amount of stock required to raise the
closing inventory level of replenishment cycle n − 1 up to level Sn. To provide
a solution we must populate both the sets Rn and Sn for n = {1, . . . , N}. The
(R, S) policy yields plans of higher cost than optimal but has been formulated
to reduce nervousness in inventory control, and is more often used in practice.

There are more efficient algorithms which are guaranteed to yield optimal poli-
cies (under reasonable simplifying assumptions) so a GA would not be applied
to precisely this problem in practice. However, if we complicate the problem in
simple but realistic ways, for example by adding order capacity constraints or
dropping the assumption of independent demands, these efficient algorithms be-
come unusable. In contrast, a GA can be used almost without modification. Thus
the problem is useful as a representative of a family of more complex problems.

The replenishment cycle policy can be modelled as follows. Each chromosome
represents a single policy, each gene corresponds to a period n, an allele specifies
the order-up-to level or the lack of an order (denoted here by the special value
NULL) for that period, and a chromosome’s fitness is the inverse of the total cost
incurred by the policy that it represents. For our experiments we allow 100 differ-
ent order-up-to levels, linearly spaced in the range 1–300. Thus each gene has 101
alleles. These parameters were chosen as suitable for the instances we tested.

4 Experiments

We obtained results using several problem parameter settings, and in each case
found the same relationships between the algorithms. For this reason, and be-
cause of limited space, we present results for only one instance: 100 periods,
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stationary demands with mean 50 and standard deviation 10 in all periods, and
cost parameters h = 1, a = 400 and s = 10. Problems with 100 periods are very
hard: none of the methods we test can find the optimal policy within several
hours (nor did attempts using Mixed Integer Programming and Reinforcement
Learning algorithms). The optimal policy has an expected total cost of 19,561
with replenishment every 4 periods (starting from the first period) and order-
up-to levels of 205 deduced from the cyclic nature of the problem (which is not
exploited by the algorithms we test).

We will compare several GAs using three metrics: the fitness of the selected
chromosome, the reliability of the selected chromosome measured by the number
of samples used to compute the fitness, and the wastefulness of the GA mea-
sured by the number of samples used to estimate the fitness of discarded chro-
mosomes. Almost every chromosome is discarded at some point during search,
so the wastefulness is an approximation to the average number of samples used
per chromosome. Ideally we aim for a GA with high fitness and reliability, but
low wastefulness. In our experiments we aim for a reliability of U = 1000. The
results are shown in Figure 2.

The fitness graph also shows results for the SARSA(λ) Reinforcement Learn-
ing algorithm [24] for comparison, as the problem can be modelled as an episodic
Partially Observable Markov Decision Process in which a state is the period, an
action is either the choice of an order-up-to level or the lack of an order (NULL)
in a period, and a reward (undiscounted) is minus the total cost incurred in a pe-
riod. We use an ε-greedy heuristic, varying ε inversely with time as recommended
in [24], and tuning the α, λ parameters by the common method of hill-climbing
in parameter space. All state-action values were initialised to 0, as the use of
optimistic initial values encourages early exploration [24].

Because there is a range of Pareto-optimal solutions among the chromosomes
of a GA, varying from high fitness based on few samples to low fitness based on
many samples, we have a problem: how should different GAs be compared? We
are interested in fit solutions based on many samples, so for each GA we shall
select the chromosome with the greatest value of samples/cost. The results are
as follows.

The graphs show that NGAs has high reliability, but it converges quite slowly
and has high wastefulness as it uses exactly 1000 samples for every chromosome.
NGAi has much better fitness than NGAs. It reaches this fitness rapidly but
then make little further progress, perhaps because of its increasing wastefulness.
However, it achieves NGAs’s reliability by the end of the run, and only matches
its wastefulness by the end of the run. Note that the reliability does not quite
reach 1000 samples: there is a delay between (i) increasing the number of sam-
ples to a given number, and (ii) obtaining a chromosome whose fitness is both
high and based on that number of samples. This delay would not occur in a
generational GA, in which no chromosome survives to the next generation. We
should perhaps use a generational GA to evaluate incremental sampling, as this
was the form of GA used in the Noisy GA work, but in this paper our aim is to
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compare several sampling techniques on the same (steady-state) GA. However,
a generational GA will presumably exhibit similar wastefulness.

KGA has excellent fitness but very low reliability. Though KGA has given
good results on other problems, here no chromosome survives long enough to
achieve a sufficient number of samples. This is caused by the high fitness noise
in our problem: as chromosomes are resampled their estimated fitnesses fluctuate
significantly, and over many iterations the fittest chromosome is not much more
likely to survive than any other. Our problem is very noisy, with the fitness
standard deviation not much less than the mean, and KGA seems unsuitable for
such problems. KASGA is a marked improvement over KGA. Increasing S until
the reliability is approximately 1000 samples, we reach a value S = 250. The
graphs show that KASGA has better fitness than NGAs but no other algorithm,
probably because of its fairly high wastefulness (approximately 400 samples per
chromosome). But it does have high reliability, making it more usable than KGA.

GASGA outperforms KASGA and the other algorithms. Again increasing S
until reliability is approximately 1000, this time we reach a value of only S = 25.
The graphs show that GASGA has higher fitness than any other GA (other than
KGA). GASGA is also less wasteful than any other GA (other than the unreliable
KGA): though it finds high-fitness solutions using 1000 samples, it uses only 39
samples per chromosome on average. This is exactly what we aimed for: a GA
that achieves high fitness and reliability but low wastefulness.

As noted above, in further experiments using different problem parameters
we obtained the same relationships among the GAs. The only difference was the
SARSA(λ) result: on this instance it found a solution that was approximately as
good as that found by GASGA, on others it found better solutions, and on others
it found worse solutions. This illustrates the known fact that Reinforcement
Learning and Evolutionary Computation are rival approaches to some problems,
and neither dominates the other over all instances [16].

GASGA should find application to many problems with noisy fitness func-
tions. The required number of samples can be chosen by considering the required
solution accuracy and the observed variance in solution fitness. Parameter S
must currently be tuned by hand: too small a value causes GASGA to behave
like KGA, and it never obtains a reliable solution; too large a value causes it to
behave like NGA, and it converges slowly. We tried automating S by maintain-
ing it at a level that only just generates a chromosome with 1000 samples, but
this forced it to a higher value than necessary (over 100); automation of S is a
topic for future work.

5 Conclusion

We designed a simple new resampling strategy for steady-state GAs that makes
no assumptions about fitness noise distributions (though problems with different
distributions will probably require the parameter values to be tuned differently),
does not require a large population, provides a high level of reliability, yet takes
a low number of samples on average. Incorporated into GENITOR and applied
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to a problem from classical Inventory Control, it gave better results than four
other sampling strategies. In future work we will evaluate GASGA on other
problems with noisy fitness functions such as perception [7], image registration
[9,15], network design [27] and remediation design [11].

None of the algorithms we tested are able to find optimal policies for the
inventory problem so it is a challenging benchmark for Evolutionary Computa-
tion, and in further experiments we also found it to be hard for Reinforcement
Learning and Mixed Integer Programming. This makes it an interesting bench-
mark despite its simplicity, and in future work we will add features such as order
capacity constraints.
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Abstract. When using an evolutionary algorithm on an unknown problem, prop-
erties like the number of global/local optima must be guessed for properly pick-
ing an algorithm and its parameters. It is the aim of current paper to put forward
an EA-based method for real-valued optimization to provide an estimate on the
number of optima a function exhibits, or at least of the ones that are in reach for a
certain algorithm configuration, at low cost. We compare against direct clustering
methods applied to different stages of evolved populations; interestingly, there is
a turning point (in evaluations) after which our method is clearly better, although
for very low budgets, the clustering methods have advantages. Consequently, it is
argued in favor of further hybridizations.

Keywords: Multimodal optimization, basins of attraction, function optimization,
detect-multimodal mechanism.

1 Introduction

The fitness landscape of an optimization problem that is considered for solving by
means of evolutionary techniques is almost always completely unknown for the user.
Exceptions are represented by the optimization of two- and three-dimensional functions
that can be plotted in order to have an idea of the difficulty of the problem at hand. How-
ever, for the real-world tasks, one hopes for a unimodal problem, but usually expects
that the landscape contains some local optima and one or more global ones. In this re-
spect, it would be very useful to know in advance how multimodal the fitness landscape
of the problem is, as this could help decide which optimization algorithm to choose or
even set appropriate values for its specific parameters.

The aim of this paper is to design such a tool, also based on an evolutionary algorithm
(EA), for the acquisition of data on the profile of the fitness landscape for problems de-
fined over real-valued domains. Instead of obtaining a set of best solutions as usually
pursued by contemporary niching EAs, we strive for obtaining an estimate on the num-
ber of optima an objective function possesses. One could imagine doing so by simply
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applying clustering techniques, but even these can only detect different clusters repre-
senting optima after somehow progressing towards good regions (as e.g. demonstrated
in [1]); a random sample is hard to cluster meaningfully. In order to move into promis-
ing areas, some optimization method has to be applied before. However, marching too
far e.g. by means of an EA implies the danger of missing several optima on which the
subpopulations go extinct. Additionally, randomly initialized recombinative EAs have
a natural tendency to contract the population near the search space center, as it has the
lowest average distance to all individuals.

We must therefore find a good compromise between basin maintenance, convergence
into basins, and further exploration. We track this goal by addressing the topology of
the fitness landscape and the preservation of the fittest individuals, in a novel technique
tailored after [2]. With this approach at hand, we compare against the straightforward
clustering means – chosen as either the state-of-the-art Jarvis-Patrick or the more re-
cent, effective Nearest-Better grouping – with a prior canonical EA for the generation
of samples and a final unification of clusters based on the space topology. It goes with-
out saying that the parametrization of any EA based method plays a decisive role for
the ability to discover distinct optima and must be taken into account when fitting it for
delivering estimates on the multimodality of unknown problems. Different parametriza-
tions will influence the reachable search space region of the EA. Consequently, there
are no means to perform estimations over areas never visited.

The paper is organized as follows. §2 emphasizes the circumstances and the argu-
ments for the development of such an instrument, while §3 describes the Topological
Multimodality Estimator (TME). Conducted experiments to validate and investigate the
estimations of proposed technique are outlined in §4; the two clustering algorithms also
examine test landscapes and results of expected/found optima of all three are put side
by side. Finally, conclusions of the experimentation and outcome are reached.

2 Context and Motivation

When a less-known multimodal problem is considered, one may either resort to iterated
local search techniques (ILS) [3] or rely on a usually radius-dependent niching EA for
separating the resembling individuals into different subpopulations (species); in the best
case, each one of these would track a different optimum and the number of subpopula-
tions equals the number of optimal solutions. When such an EA is employed, the main
concern lies in determining an accurate value for the radius parameter that would help
separating the individuals into subpopulations in the most advantageous manner.

Among the radius-related EAs, the most commonly referred is the niching technique
of Goldberg and Richardson [4]; for the last two decades, it has represented a source
of inspiration for the development of many radius-based EAs in the vein of it [5], [6].
Within this niching technique, individuals are grouped into species by a given radius, so
that no distance inbetween them is larger. As previously stated, the value to be chosen
for the radius parameter directly depends on the fitness landscape, i.e. on the problem
considered for solving. Selecting an appropriate value for the radius assures accurate
results. Deb and Goldberg [7] proposed one solution for computing the value for the ra-
dius threshold (σshare) that leads to the formation of subpopulations; this has afterwards
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been embraced by most of the researchers dealing with such parameters. Knowing the
number of optima that are to be found, N , and being aware that each niche is enclosed
by an n-dimensional hypersphere of radius r, the niche radius σshare can be estimated
as σshare = r

n√N
.

However, in most of the cases, especially for real-world applications, one usually
cannot know in advance the number of optima. Additionally, there is no guarantee that
basins of attraction are formed like regular hyperspheres. Methods for approximating
the number of solutions for combinatorial optimization problems are described e.g. in
[8]. For problems with continuous domain, by investing a small amount of fitness eval-
uations and using the tool that we put forward, one could have an approximation for N ,
or at least for the fraction of N that is found relatively often. We assume that this reach-
able fraction of optima heavily depends on the configuration of the underlying EA, so
that it is larger for more explorative settings. For any clever technique, a higher number
of fitness evaluations invested shall lead to a more accurate estimation, as is the case for
the proposed method. Moreover, the present approach also provides approximations of
the detected optima, especially for relatively high budgets of evaluations.

3 Topological Multimodality Estimator

As the suggested method represents a pre-processing tool, it shall provide information at
a very low cost, i.e. with a reduced budget of fitness evaluations. In order to achieve this
aim and, at the same time, explore the search space thoroughly, we utilize a variable
sized population: We start with a large population and subsequently continue solely
with the most prolific individuals that belong to different basins of attraction. Thus, the
number of consumed fitness evaluations is kept low. The population size is allowed to
raise again during reproduction, but, unless new basins of attraction are discovered, it
is again reduced to a minimum. Another important constraint that had been taken into
account is that the technique did not have to require additional parameters (as compared
to a canonical EA) that directly depend on the considered problem. In order to avoid the
use of a threshold (radius) for subpopulation differentiation, we exploit the topology of
the fitness landscape, separating us from simple clustering approaches.

The algorithm begins with the generation of random individuals within the problem
domain. A method for detecting whether two individuals belong to the same basin of
attraction or not is succeedingly used for selecting the fittest individuals within each
of the detected attractors. The procedure was introduced in [9] and called hill-valley;
taking into account two individuals, it verifies whether there exists either a hill (in
this case, they track the same peak) or a valley (different peaks) inbetween, within
the fitness landscape. The method is herein renamed detect-multimodal for reasons of
simplicity and is described below. From this point on, the search continues only with
the fittest individuals that undergo recombination and mutation; obtained offspring are
checked to see whether they belong to different basins of attraction than the ones al-
ready discovered and the population is updated by retaining the best individual within
each attractor. Evolution continues for several cycles until the predefined budget is
consumed.
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3.1 The Detect-Multimodal Mechanism

The routine takes two individuals (points) as input, checks their relative position within
the search space and returns a boolean value, which specifies whether there is a valley
between them in the fitness landscape or not: In the latter circumstances, the conclusion
is that they climb different hills. In order to reach that decision, a set of interior points
between the twois generated. If the fitness of all these is higher than the minimal fitness
of the two tested individuals, it is concluded that they track the same optimum. Contrar-
ily, if there exist such a point whose fitness is smaller than the minimal fitness of the two,
then it is assessed that they follow different peaks. To conclude, the detect-multimodal
method verifies the assumption that two individuals track the different optima and re-
turns true if so and false if they follow the same peak [9]. The only required parameter
refers to the number of gradations (interior points) taken into account. In all undertaken
experiments of current paper, the gradations are values taken equidistantly from the in-
terval [0,1]. The higher the number of interior points, the more precision the outcome
of the detect-multimodal mechanism has.

3.2 TME Mechanics

TME starts with the initialization of a uniformly randomly generated set of individu-
als. From this collection, the fittest individual from each different basin of attraction is
selected. The chosen individuals undergo an iterative process that includes the follow-
ing steps. Recombination is applied to the selected pool of individuals: All offspring
obtained after recombination are added to the current population which is subject to
mutation. The membership of all offspring to the currently detected basins of attraction
is verified. For each discovered basin, only the fittest individual is kept. The individuals
located in previously unseen basins are also preserved, once more only the fittest one
per basin. The selection of the fittest individual within every attraction basin uses the
detect-multimodal procedure for distinguishing the different attractors (Algorithm 1).
The entire population is sorted decreasingly according to fitness. The fittest individual
in the population represents a seed. Each individual in the sorted series is considered in
turn and checked against the currently found seeds to see if they track distinct optima. If
it follows a different peak than all the others that have been tracked until the present mo-
ment, then the individual represents a new seed. The recorded seeds (Seeds) are taken
one by one in terms of Euclidean proximity from the considered individual. It is more

Algorithm 1 Seeds identification
Sort population P decreasingly according to fitness;
Seeds = {P1}; //the fittest individual automatically becomes a seed
for i = 2 to n do

Find closest (highest probable) s ∈ Seeds such that detect-multimodal(Pi , s) = false;
if no such a seed s then

Seeds = Seeds ∪ {Pi}; // Pi is a seed
end if

end for
return the Seeds set
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Algorithm 2. Integration of the newly created individuals
for each offspring x in X do

Find its closest individual s in Seeds for which detect − multimodal(x, s) = false;
if s exists then

Seeds = (Seeds\{s}) ∪ {fitter(x, s)}; // x and s fight for survival
X = X \ {x};

end if
end for
Find the fittest free individual x in X;
NewSeeds = {x}; // x is a new seed
while there are still individuals in X do

For fittest x ∈ X find closest s ∈ NewSeeds such that detect−multimodal(x, s) = false;
if no such seed s then

NewSeeds = NewSeeds ∪ {x};
end if
X = X \ {x};

end while
Seeds = Seeds ∪ NewSeeds; // individuals that follow other peaks are added to population
return the Seeds set with the integrated individuals

likely that the individual tracks the same peak as the nearest seed and, consequently, it
is verified, by distance rank, against the closest ones to avoid unnecessary calls of the
detect-multimodal procedure.

The selected set of seeds then enters the evolutionary cycle. Thus, the size of the
population is drastically diminished in order to reduce the fitness evaluation cost. Re-
combination takes place and all resulted offspring are appended to the current popula-
tion. Hence, the space between the currently tracked optima is explored. Now the whole
population undergoes mutation. All obtained offspring from either of the two variation
operators are checked against the parent population with two purposes. If an offspring
tracks an optimum that has already been followed by one closest individual from the
parent population, i.e. the two belong to the same basin of attraction, then only the fitter
of the two is kept in the seeds population for the next generation. Secondly, when an
offspring lies within a basin of attraction that has not been previously tracked by any
other individual from the parent population, it shall be added to the seeds population of
the next generation, given that there are no solutions between itself and other descen-
dants that lie within the same basin of attraction (Algorithm 2). NewSeeds represents

Algorithm 3. Topological Multimodality Estimator
Initialize population and identify the seeds Seeds (Algorithm 1);
while stop condition is not met do

Apply mating selection to Seeds;
Apply recombination to Seeds and obtain the set of offspring X;
Apply mutation to Seeds and X and append all obtained offspring to X;
Integrate the newly created individuals X to Seeds (Algorithm 2);

end while
return the cardinal of Seeds and the actual solutions in Seeds
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the set of seeds that are detected in the current generation. Each time a new seed is
considered for adding, it is checked against the other solutions in the NewSeeds set.
Finally, NewSeeds is appended to the Seeds set to form the population that will enter
the next generation. The steps of the entire approach are outlined in Algorithm 3. Note
that with TME, basin identification in the worst case requires O(|P |2) extra evaluations
(|P | stands for population size). However, this happens only if every newly produced
individual is outside all yet identified basins. Additionally, the population is kept small
by deleting all non-seed individuals inside a basin. Practical experience shows that with
these measures, the process requires rather O(|P |) evaluations for basin testing.

4 Experimental Investigation

Experimentation aims to validate the proposed technique against functions whose num-
ber and location of optima is known and compare the performance to that of the cheap
alternative of direct clustering on the search space. The Waves function (F1, 10 op-
tima) is asymmetric and has some peaks difficult to find as they lie on the border or
on flat hills. The Six-Hump Camel Back function (F2, 6 optima) exhibits two local
optima that are not really higher than their neighboring regions and thus can easily be
missed. Additionally, we employ a highly multimodal function (Rastrigin, F3) as model
for problems for which neither location nor number of optima is known (it is clear that
these are easy to compute in this case). Here, the global optimum is surrounded by a
large number of close local optima with small relative differences in their values.

F1(x, y) = (0.3x)3 − (y2 − 4.5y2)xy − 4.7cos(3x− y2(2 + x))sin(2.5Πx)),
−0.9 ≤ x ≤ 1.2,−1.2 ≤ y ≤ 1.2

F2(x, y) = −((4− 2.1x2 + x4

3 )x2 + xy + (−4 + 4y2)y2),
−1.9 ≤ x ≤ 1.9,−1.1 ≤ y ≤ 1.1

F3(x) = −(10·n +
∑n

i=1(x2
i − 10 ∗ cos(2·Π ·xi))), −5.12 ≤ xi ≤ 5.12.

Two conceptually different nearest neighbor clustering approaches were taken into
account for comparison: The Jarvis-Patrick clustering method and the recently proposed
Nearest-Better algorithm [10]. A canonical EA evolves a population of individuals for a
number of fitness evaluations and clustering is subsequently applied to the final genera-
tion. The estimated number of basins is given by the resulting number of clusters, while
the approximate optima are given by the prototypes. The Jarvis-Patrick (JP) algorithm
[11] considers a list of J nearest neighbors—in terms of (Euclidean) distance—for each
individual. Every point in the search space is verified in turn against all others: If the two
are contained in each other’s neighbor list and have at least K neighbors in common,
they are placed in the same cluster. A point cannot belong to more than one cluster.
Moreover, if x and y meet the condition to belong to the same cluster and x and z
also pass the two criteria, all three will be clustered together, indifferent of the fact
of whether y and z also respect the conditions. Finally, the prototypes are determined
as the fittest individuals in each cluster. The drawback of this very efficient algorithm
consists in the two parameters J and K that results are very dependent upon. The re-
cently introduced Nearest-Better (NB) clustering mechanism relies on the connection
to one immediate neighbor for each point, which is also better in terms of fitness—thus,
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topological information is included in addition to location of points. It essentially as-
sumes that the best individuals in different attraction basins are much further away from
each other than the average distance of all individuals to their nearest better neighbors.
Every individual connects to its nearest better neighbor (in terms of Euclidean distance
once more). The longest edges—those higher than φ·mean(lengths of all edges)—are
removed and the prototypes for each cluster are represented by those individuals that
do not connect to others. This approach possesses only one additional parameter to be
tuned, with 2 being a good default value according to [10].

Research Questions. How do TME and JP/NB compare in terms of performance on
functions with known number of solutions? Can we find a correlation of results obtained
for the same configuration but in different runs to estimate the ’reachable’ optima?

Pre-experimental Planning. The two selected clustering techniques are utilized on
the test cases in advance in order to get acquainted to their behavior. The preceding
canonical EA also stops after a fixed number of fitness evaluations. Comparing the
number of detected optima against the number of clusters lead to the insight that the
two methods largely overestimate the number of attraction basins for both functions,
with an advantage on the NB side which is less deceiving. The number of clusters was
approx. 3 times higher than the amount of optima. The overrating clustering action of
the two techniques had to be resolved, in order to set an equal rival to suggested TME.
Ergo, we applied the detect-multimodal mechanism with a limited number of interior
points (set to 2 in the undertaken experiments) after clusters are determined, in order to
unify groups within the same basin. The fitness evaluations employed in this final step
are also counted within the totally allowed value.

Task. Directly compare the number of attraction basins found (F1 and F2) or reach-
able basins estimated (F3) by TME and JP/NB clustering. Measure the ability of the
techniques to find the same solutions in multiple runs of the same parameter design.

Experimental Setup. The same budget of fitness evaluations was used both for TME
and JP/NB, ranging from 200 to the maximum 2000. The values for all parameters were
generated using a Latin Hypersquare Design, i.e. 30 space-filling configurations were
produced. The parameters of the evolutionary algorithm were generated within the fol-
lowing intervals for all three methods: Population size is between 2 and 200, mutation
and recombination probabilities between 0 and 1 and mutation strength between 0 and
5. Additionally for the JP method, the values for the two parameters J and K were
both created between 1 and 25 with the constraint that J > K . Plus, as the number of
neighbors cannot be higher than the population size, the latter is between 25 and 200.
The TME technique also makes use of one parameter, which is the number of interior
points considered for the detect-multimodal method. The positive integer is generated
between 1 and 15. In order to evaluate whether a technique tends to find the same optima
in different runs with the same parameter configuration (estimation of reachable optima
number), we conducted the following computations: Within each parameter design, for
every two runs (out of 30 performed here), we use the pair of solution sets A and B for
computing the fraction of commonly found (correlated) peaks d = |A∩B|

|A| , where |A|
represents the cardinal of the set A. Averaging d/| B | leads us to an estimator for 1/n
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and thus for n according to [12]. However, we assume that here n is not the number of
all optima but rather the number of reachable basins for each different configuration.
Note that although used with results from 30 runs here, the estimator shall get stable
already for very small run sets. Otherwise, it would suffice to simply count the number
of optima found within a large number of runs.

Results/Visualization. Table 1 gives the number of optima detected by the three com-
pared techniques on F1 and F2, for the (30 LHD) different algorithm parameter settings.
Best columns refer to the highest average number of optima out of all configurations,
whether average stands for the average of all runs of all configurations. The small dif-
ferences between best and average TME results prove the fact that it is not very sensitive
to the parameter values.

Table 1. Attraction basins found by TME, JP and NB in the best configuration and average over
30 configurations for F1 and F2 with different fitness evaluation budgets

Fitness F1 F2
evaluation TME JP NB TME JP NB

calls Best Average Best Average Best Average Best Average Best Average Best Average
200 5.96 4.48 8.13 5.15 8.36 5.95 3.4 2.97 4 3.33 4 3.37
500 6.96 5.68 8.2 4.33 8.26 5.16 4.43 3.63 4 2.62 4 2.57

1000 8.1 6.71 8.1 2.68 8.56 3.24 5.16 4.08 3.96 1.75 3.83 1.7
2000 9.33 7.89 2 1.07 2.5 1.21 5.63 4.45 1.93 1.22 1.96 1.24

As for the second part of the experiment, which regards the correlation of basin sets,
when JP and NB were applied for F3 with 5 or more variables, it was found that for
several configurations, in all the 30 repeats, the methods found only different attraction
basins. In such a case, the value for the estimation n is infinity, which is not a meaningful
a priori information about the problem landscape. Consequently, the results of JP and
NB for F3 with 5 or 10 variables are not reported. For F1 with 200 evaluation calls,
NB provides the highest averaged value over all configurations for n, 6.08, while for
TME this is 5.34 and for JP 5.14. The maximum value in one configuration in these
low budget conditions is obtained by NB (8.32). As the number of evaluation calls is
increased, the average value for n puts TME in advantage and lowers the values for the
clustering methods: For 2000 evaluation calls, the average n for TME is 7.98, while
for JP and NB they are 1.26 and 1.4, respectively. The situation is very similar for F2,
where 3.42 is the estimated reachable basin number for NB, 3.28 when JP is employed,
and 3.08 for TME when the lowest budget is used; the value moves up to 4.42 for the
highest budget considered for TME, while it goes down for JP and NB towards 1.92
and 1.88. For F3 (2 var.), TME has a larger set of solutions that are found in multiple
runs, even with 200 evaluations calls: TME has 16.62, NB gives 14.62, while JP has
12.23. The value increases again for TME up to 20.01 for the highest budget, while NB
has 3.74 and JP 2.17, in the same circumstances. In case of 5 and 10 variables, TME
estimates in average 43.42 and 40.21 solutions (highest budget) and drops to 24.2 (5
var.) and to 17.14 (10 var.), respectively (lowest budget). The configurations with the
highest values find n equal to 90.5 (5 var.) and 71.2 (10 var.), while the smallest value
in one configuration is around 9 for both cases.
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Observations. While JP and NB perform very well for a small number of fitness eval-
uations and tend to decrease quality as more are considered, TME goes in the opposite
direction as a higher budget assures significantly better results. JP and NB with the sub-
sequent detect-multimodal manage to overcome the initial overrating. The explanation
for the performance decrease in JP and NB for increased number of evaluations lies in
the fact that the optimization process drives the population towards one or few optima
and, therefore, other local optima are neglected as they remain empty. For both func-
tions F1 (10 optima) and F2 (6 optima), the closest to the correct solution is TME,
when the 2000 evaluation calls are considered. It is interesting to see that JP and NB
come very close the real number of basins when the lowest budget is considered (8.36
out of 10 for F1 and 4 out of 6 for F2). However, it shall also be noted that the differ-
ence from the best configuration to the average over all configurations is very high in all
cases for the clustering techniques, while there exists only a small such difference for
TME. It seems that TME is not very dependent on the values of its parameters, while
for JP and NB they play an important role as wrong configurations lead to poor results.

Discussion. While JP and NB perform better for lower evaluation costs, TME’s ac-
curacy is significantly increased when the evolutionary cycle is prolonged. This is of
course due to the interaction between the basin preservation and detection and explo-
rative phases in TME. In JP and NB, this is inexistent and hence, the underlying EA pro-
duces smaller and smaller basin numbers while the runs progress. Out of the objective
comparison intention of this experiment, further tests were undertaken for TME with a
budget of up to 6000. The solutions quality was gradually increased until it reached 9.9
attraction basins for F1 and all 6 for F2 for the best configuration, in average over 30
repeats. The two presented clustering methods, JP and NB, represent good economical
alternatives for estimating the number of different attraction basins of a fitness land-
scape. However, they strongly depend on the underlying optimization algorithm, so that
providing more evaluations does not result in improvements unless the underlying al-
gorithm itself is explorative and preserving. However, if such means are provided, as in
TME, one gets a much less parameter-dependent and thus robust method, which shall
be the better choice, especially for real-world problems. Nevertheless, for higher di-
mensional spaces, results attest an increased level of parameter-dependency; additional
investigations are necessary to observe what parameter settings make TME efficient.

5 Conclusions and Future Work

An evolutionary technique, Topological Multimodality Estimator, to determine the pro-
file of the fitness landscape for real-valued optimization problems, with respect to a low
budget of evaluation calls, is introduced. A variable sized population to keep only the
most promising solutions for further evolution is thus used. Two improved clustering
methods, applied to the set of solutions of a canonical EA, are considered for direct
comparison on three multimodal functions. For two dimensions and a very low number
of evaluation calls, clustering provided better results. However, when the techniques
are allowed to evolve for more generations, TME results improve, while the quality of
the EA/clustering method combinations is worse – the underlying EA converges to few
attractive regions as it has no means to preserve the already found basins.
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Rethinking the obtained results, the conclusion seems obvious. Simple clustering
methods are cheap and successful especially during the early phases of an optimization,
and explorative methods like TME need more evaluations to obtain comparable results,
but do have a much higher potential; investing more yields more. Hybridization of TME
with one of the clustering methods to eliminate valuable calls of the fitness function,
especially at the beginning of the evolutionary cycle, may be a middle alternative. At
the same time, clustering affects the quality of solutions when the evaluation calls bud-
get is increased; this would be overcome through the replacement of the canonical EA
by the TME engine. Out of the two, NB looks like a better alternative for hybridization,
not only because of the better results, but also for the absence of additional parameters.
A future TME version should also attain information on the sizes of the detected attrac-
tion basins and, finally, the influence of its estimated number of optima on the success
probability/convergence rate of a radius-based search algorithm will be investigated.
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Abstract. We propose that the behaviour of non-linear media can be controlled 
automatically through coevolutionary systems. By extension, forms of uncon-
ventional computing, i.e., massively parallel non-linear computers, can be  
realised by such an approach. In this study a light-sensitive sub-excitable Be-
lousov-Zhabotinsky reaction is controlled using various heterogeneous cellular 
automata. A checkerboard image comprising of varying light intensity cells is 
projected onto the surface of a catalyst-loaded gel resulting in rich spatio-
temporal chemical wave behaviour. The coevolved cellular automata are shown 
to be able to control chemical activity through dynamic control of the light in-
tensity. The approach is demonstrated through the creation of a number of  
simple Boolean logic gates.   

1   Introduction 

There is growing interest in research into the development of ‘non-linear computers’. 
The aim is to harness the as yet only partially understood intricate dynamics of non-
linear media to perform complex ‘computations’ more effectively than with tradi-
tional architectures and to further the understanding of how such systems function. 
Previous theoretical and experimental studies have shown that reaction-diffusion 
chemical systems are capable of information processing. Experimental prototypes of 
reaction-diffusion processors have been used to solve a wide range of computational 
problems, including image processing, path planning, robot navigation, computational 
geometry and counting (see [Adamatzky et al., 2005] for an overview). In addition to 
these applications, Boolean logic gates have been constructed in such excitable 
chemical systems (e.g., [de Lacy Costello & Adamatzky 2005]) and in bistable sys-
tems [Rössler, 1974].  

In this paper, we produce networks of non-linear media — reaction-diffusion sys-
tems — to achieve user-defined computation in a way that allows direct control of the 
media. We use a spatially-distributed light-sensitive form of the Belousov-
Zhabotinsky (BZ) [Zhaikin & Zhabotinsky, 1970] reaction which supports travelling 



580 C. Stone et al. 

reaction-diffusion waves and patterns. Exploiting the photoinhibitory property of the 
reaction, the chemical activity (amount of excitation on the gel) can be controlled by 
the applied light intensity, namely it can be decreased by illuminating the gel with 
high light intensity and vice versa. In this way a BZ network is created via light and 
controlled using cooperative coevolutionary computing to design heterogeneous Cel-
lular Automata (CA) [von Neumann, 1966]. We adapt the chemical system described 
by Wang et al. [1999] and explore its computational potential based on the movement 
and control of wave fragments. In our experiments a heterogeneous CA controls the 
light intensity in the cells of a checkerboard image projected onto the surface of the 
light sensitive catalyst-loaded gel. Initially a certain number of wave fragments are 
created on the gel and the coevolved CA is shown able to create a number of two-
input Boolean logic gates - AND, NAND and XOR - through dynamic control of the 
light intensity within each cell in a simulated chemical system. 

Previously, several results from the evolution of CAs to perform defined tasks have 
been presented. Mitchell et al. (e.g., [1993][1994]) have investigated the use of a Ge-
netic Algorithm (GA) [Holland, 1975] to learn the rules of uniform one-dimensional, 
binary CAs. The GA produces the entries in the update table used by each cell, candi-
date solutions being evaluated with regard to their degree of success for the given task 
— density and synchronization. Andre et al. [1999] repeated Mitchell et al.’s work, 
using Genetic Programming [Koza, 1992] to evolve update rules. They report similar 
results. Sipper (e.g., [1997]) presented a non-uniform, or heterogeneous, approach to 
evolving CAs. Each cell of a one- or two-dimensional CA is also viewed as a GA 
population member, mating only with its lattice neighbours and receiving an individ-
ual fitness. He shows an increase in performance over Mitchell et al.’s work by ex-
ploiting the potential for spatial heterogeneity in the tasks. In this paper we extend our 
recently presented version of Sipper’s approach to control the behaviour of the BZ 
system described [Stone et al., 2007]. 

2   Cooperative Coevolution of Heterogeneous CAs 

The characteristics of the chosen chemical system are very much akin to those of two-
dimensional cellular automata, such as the Game of Life [Gardner, 1970]. That is, 
fragments of excitation travel across the surface of the gel, often colliding to form 
other fragments or self-extinguishing, as do the gliders in “Life.” Further, the light 
projections which cause such behaviour can be arranged in a regular grid of cells over 
the gel surface. We are therefore interested in using cellular automata to control the 
behaviour of the fragments to implement computation, particularly forms of collision-
based computing (e.g., [Adamatzky, 2002]). 

As noted, we have previously presented an approach to the use of a heterogeneous 
CA to control the BZ chemical system [Stone et al., 2007]. The heterogeneous network 
has a CA topology, i.e., simple finite automata are arranged in a two-dimensional lat-
tice, with aperiodic boundary conditions (an edge cell has five neighbours, a corner cell 
has three neighbours, all other cells have eight neighbours each). Each automaton up-
dates its state depending upon its own state and the states of its neighbours. States are 
updated in parallel and in discrete time. In this work, the transition function of every 
automaton cell is evolved by a simple evolutionary algorithm (EA).  



 Coevolving Cellular Automata 581 

This approach is very similar to that presented by Sipper [1997]. However, his reli-
ance upon each cell having access to its own fitness means it is not applicable in the 
majority of chemical computing scenarios we envisage. Instead, fitness is based on 
emergent global phenomena in our approach (as in [Mitchell et al., 1993], for exam-
ple). Thus, following Kauffman [1993], we use a simple coevolutionary approach 
wherein each automaton of the two-dimensional CA controller is developed via a 
simple genetics-based hillclimber. Due to the use of a single global fitness measure, 
automata do not evolve in isolation and fitness is influenced by the state of all auto-
mata cells in the grid. Hence the automata must coevolve cooperatively to solve the 
global task.  

Gel state

Evolving Heterogeneous CA controller 

Light projections

 

Fig. 1. Relationship between the CA controller, applied grid pattern and chemical system com-
prising one process control cycle 

For a given experiment, a random set of CA rules is created for a two-dimensional 
array of size 10-by-10, i.e., 100 automata, each responsible for the corresponding area 
of the gel surface (Figure 1). The transition state for each possible rule for an automa-
ton is represented by a gene in the genome, which takes one of the three discrete light 
intensity values used in the experiment. As previously mentioned, the grid edges are 
not connected (i.e., the grid is planar and does not form a toroid) and the neighbour-
hood size of each cell is of radius 1; cells consider neighbourhoods of varying size 
depending upon their spatial position. The state of the gel is described by a binary 
string which indicates the thresholded level of chemical activity in each neighbour-
hood location. Previously, we showed this system capable of increasing or decreasing 
the amount of activity across the surface of the gel in both numerical simulation and 
the actual chemical system [Stone et al., 2007]. 

3   Chemical Model 

Features of the chemical system are simulated using a two-variable Oregonator model 
modified to account for photochemistry [Field & Noyes, 1973; Krug et al., 1990; 
Kádár et al., 1997]: 
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The variables u and v represent the instantaneous local concentrations of the bro-
mous acid autocatalyst and the oxidized form of the catalyst, HBrO2 and tris 
(bipyridyl) Ru (III), respectively, scaled to dimensionless quantities. The rate of the 
photo-induced bromide production is designated by Φ, which also denotes the excit-
ability of the system. Low simulated light intensities facilitate excitation while high 
intensities result in the production of bromide that inhibits the process. The system 
was integrated using the Euler method with a five-node Laplacian operator, time step 
Δt=0.001 and grid point spacing Δx=0.62. The diffusion coefficient, Du, of species u 
was unity, while that of species v was set to zero as the catalyst is immobilized in the 
gel. The kinetic parameters were set to ε = 0.11, f = 1.1 and q = 0.0002. The medium 
is oscillatory in the dark which made it possible to initiate waves in a cell by setting 
its simulated light intensity to zero. At different Φ values the medium is excitable, 
subexcitable or non-excitable. The gel surface area is represented by 200-by-200 
simulation points.  Parameter settings for the model were experimentally verified 
against the actual chemical system [Toth et al., 2008]. 

4   Control Process 

Waves were initiated by setting the excitability to zero for a small area under and just 
outside the bottom centre of the grid. These waves were channelled into the grid and 
broken up into 12 fragments by choosing an appropriate light pattern as shown in 
Figure 2(a). The black area represents the excitable medium whilst the white area is 
non-excitable. After initiation three light levels were used: one is sufficiently high to 
inhibit the reaction; one is at the sub-excitable threshold such that excitation just man-
ages to propagate; and the other low enough to fully enable it. The modelled chemical 
system was run for 600 iterations of the simulator.  This value was chosen to produce 
network dynamics similar to those obtained in experiment over 10 seconds of real 
time. 

A colour image was produced by mapping the level of oxidized catalyst at each 
simulation point into an RGB value. Image processing of the colour image was neces-
sary to determine chemical activity. This was done by differencing successive images 
on a pixel by pixel basis to create a black and white thresholded image. Each pixel in 
the black and white image was set to white (corresponding to excitation) if the inten-
sity of the red or blue channels in successive colour images differed by more than 5 
out of 256 pixels (1.95%). Pixels at locations not meeting this criterion were set to 
black. An outline of the grid was superimposed on the black and white images to aid 
visual analysis of the results.   
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        (a)                                                  (b) 

Fig. 2. Showing initiation pattern (a) and a typical example of a coevolved light pattern (b) 

The black and white images were then processed to produce a 100-bit description of 
the grid for the CA. In this description each bit corresponds to a cell and it is set to true 
if the average level of activity within the given cell is greater than a pre-determined 
threshold of 10%. Here, activity is computed for each cell as the fraction of white pix-
els in that cell. This binary description represents a high-level depiction of activity in 
the BZ network and is used as input to the CA.  Once cycle of the CA is performed 
whereby each cell of the CA considers its own state and that of its neighbours (ob-
tained from the binary state description) to determine the light level to be used for that 
grid cell in the next time step.  Each grid cell may be illuminated with one of three 
possible light levels.  The CA returns a 100-digit trinary action string, each digit of 
which indicates whether high (Φ=0.093023), sub-excitable threshold (Φ=0.04) or low 
(Φ=0.000876) intensity light should be projected onto the given cell. The progression 
of the simulated chemical system, image analysis of its state and operation of the CA 
to determine the set of new light levels comprises one control cycle of the process. A 
typical light pattern generated by the CA controller is shown in Figure 2(b). 

Another 600 iterations are then simulated with those light-levels projected, etc. un-
til 25 control cycles have passed. After 25 control cycles, the fitness of the emergent 
behaviour is calculated. As previously mentioned, the EA used in this work employs a 
single global fitness measure.  The nature of the tasks undertaken means that it is not 
possible to decompose solutions obtained by the EA and apportion fitness to their 
constituent parts. Instead, a global fitness is determined according to how well the 
task has been performed and this fitness is assigned to the genome for each CA cell. 

The EA is a simple hillclimber. After fitness has been assigned, some proportion of 
the CA’s genes are randomly chosen and mutated. Mutation is the only variation op-
erator used here to modify a given CA cell’s transition rule to allow the exploration of 
alternative light levels for the cell’s grid state.  For a CA cell with eight neighbours 
there are 29 possible grid state to light level transitions, each of which is a potential 
mutation site. After the defined number of such mutations has occurred, a generation 
of the EA is complete and the simulation is reset and repeated as described. 

For each cell, the EA keeps track of which grid states are visited since mutation. 
On the next fitness evaluation (at the end of a further 25 control cycles) mutations in 
states that were not visited are discarded on the grounds that they have not contributed 
to the global fitness value and are thus untested. We also performed control experi-
ments with a modified version of the EA to determine the performance of an equiva-
lent random CA controller. This algorithm ignored the fitness of mutants and retained 
all mutations except those from unvisited states.  
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 I1            I2 O (AND) O (NAND) 

00 

 

0 1

01 
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11 

 

1 0

Fig. 3. Typical examples of solutions of AND and NAND logic gates after 25 cycles. Input 
states I1, I2 for the logic gates are shown on the left and consist of two binary digits, spatially 
encoded using left and right “initiation trees”. The EA found the AND solution in 56 input 
presentations and the NAND in 364 input presentations. 
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5   Chemical Logic Gates 

We have designed a simple scheme to simulate a number of two-input Boolean logic 
gates under the framework described above where excitation is fed in at the bottom of 
the grid into the branching pattern. To encode a logical ‘1’ and ‘0’ either both 
branches or just one branch of the two “trees” shown in Figure 2(a) are allowed to fill 
with excitation, i.e., the grid is divided into two for the inputs (Figure 3). The number 
of active cells in the whole grid, that is those with activity at or above the 10% 
threshold, is used to distinguish between a logical ‘0 and ‘1’ as the output of the 
system. For example, in the case of XOR, the CA controller must learn to keep the 
number of active cells below the specified level for the 00 and 11 cases but increase 
the number for the 01 and 10 case. 

 

Fig. 4. Showing the average fitness over time for 10 runs for the (a) AND gate and (b) NAND 
gate on the simulated chemical system. Dashed lines: random controller (10 runs). 

Figure 3 shows typical examples of the logic gates learned using the simulated 
chemical system. Here the mutation rate was set at 4000 genes per EA generation. 
The required number of active cells was set at 20. Each of the four possible input 
combinations is presented in turn – 00 to 11 – and for each input presentation the 
system is allowed to develop for 25 control cycles. Fitness of the logic gate is 
evaluated after the complete sequence of four input presentations. Each correct output 
scores 1, resulting in a maximum possible fitness of 4 for a correctly functioning gate. 
Figure 4(a) and (b) show the fitness averaged over ten runs for the AND and NAND 
tasks, with similar results found for XOR (not shown). 

Table 1 shows a more detailed comparison, namely the results of ten runs for each 
gate. Due to the high computational requirements needed to perform the simulations a 
limited number of input presentations were allowed for each experiment and an 
experiment was considered successful if the controller found a solution within 2000 
input presentations. The success rate shows the number of successful runs out of ten. 
The AND task was so simple that a solution was easily found even with a random 
controller. This is because the first three inputs provided activity levels similar to the 
correct outputs, and only the activity levels provided by the 11 input needed to be  
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Table 1. Performance on AND, NAND and XOR gates 

Gate Controller Success rate Min. Max. Avg. Std. 

Coevolutionary 10/10 8 144 61 45.69 

Random 10/10 4 200 64 71.73 

Simple Memory 10/10 32 252 140 78.88 

AND 

WH Memory 10/10 4 68 34 21.35 
Coevolutionary 7/10 288 >2000 1065 767.21 

Random 4/10 300 >2000 1454 744.49 

Simple Memory 2/10 632 >2000 1858 431.08 

NAND 

WH Memory 10/10 16 720 228 234 
Coevolutionary 9/10 348 >2000 808 510.08 

Random 10/10 20  1080 455 333.68 

Simple Memory 8/10 48 >2000 1326 784.74 

XOR 

WH Memory 10/10 8 428 148 131.16 

 
changed to generate appropriate output activity, namely the controller had to increase 
excitation to get higher than the required number of active cells (that is, those with an 
activity level greater than or equal to 10%). In contrast, the NAND gate was the most 
difficult task, because the controller had to achieve the opposite activity levels to 
those provided by the input states. For 00, 01 and 10 inputs the initial number of 
fragments were less than the required value so the controller had to increase the 
excitation to get the correct logical ‘1’ output, while for the 11 input the controller 
had to decrease the excitation to achieve the logical ‘0’ output. These results indicate 
the ability of the coevolutionary approach for universal computation since all 
functions can be constructed by NAND gates. The XOR task was also hard because 
the activity levels provided by three of the initial inputs (00, 01, and 10) were the 
opposite of the desired output activity levels and only the 11 input provided an 
appropriate direct basis for correct output activity. 

In the cases where the success rate was less than ten, the averages in Table 1 are 
the lowest possible averages, since 2000 was taken as the number of input 
presentations required, even though no solution was found in these cases. For this 
reason we can only use these data as an indication of the difficulty of the task. 

6   Coevolving CAs with Memory 

As discussed above, the BZ reaction exhibits rich spatio-temporal behaviour. Re-
cently, the standard CA framework has been extended to explicitly consider temporal 
dynamics in the transition rule by the inclusion of memory mechanisms (e.g., 
[Alonso-Sanz, 2004]). Given the strong temporal element of BZ systems, we have 
explored the utility of including memory within the evolving heterogeneous CA  
controller. 

A simple way of implementing memory is for the CA transition rule Φ to consider 
the neighbourhood  of a cell i supplemented with the state  of the cell on the  
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previous cycle: . However, this means that the size of the 
CA’s genome must increase to incorporate the extra state and the size of the search 
space is doubled.  To overcome this limitation we have also implemented a form of 
memory using the well-known Widrow-Hoff Delta rule with learning rate β=0.2.  
This provides a weighted average memory with no representational overhead in the 
genome. For this type of memory: 

 

As Table 1 shows, the simple explicit memory scheme degrades performance but 
the weighted average scheme improves performance in all cases. Moreover, t-test 
results with a = 0.01 for the NAND and XOR gates show a statistically significant 
performance improvement when using the Widrow-Hoff memory scheme. Thus, it 
would appear that the inclusion of memory can enable the CA to capture better the 
temporal dynamics of the reaction, as envisaged. However, it is apparent from these 
initial results that factors such as the type and/or depth of memory are important in 
achieving a benefit. 

7   Conclusions 

Excitable and oscillating chemical systems have previously been used to solve a 
number of simple computational tasks. However the experimental design of such sys-
tems has typically been non-trivial. In this paper we have presented results from a 
methodology by which to achieve the complex task of designing such systems — 
through the use of coevolution. We have shown using a simulated system that it is 
possible to control the behaviour of a light-sensitive BZ reaction to implement a num-
ber of Boolean logic gates. We have also shown that the inclusion of memory within 
such discrete dynamical systems can better enable them to control such non-linear 
media. Current work is utilising the actual chemical system (for example, see [Toth et 
al., 2008]) and exploring the utility of memory mechanisms within CAs to control and 
model complex systems in general.  
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Abstract. Evolutionary approaches to protein-ligand docking typically
use a real-value encoding and mutation operators based on Gaussian
and Cauchy distributions. The choice of mutation is important for an
efficient algorithm for this problem. We investigate the effect of mutation
operators by locality analysis. High locality means that small variations
in the genotype imply small variations in the phenotype. Results show
that Gaussian-based operators have stronger locality than Cauchy-based
ones, especially if an annealing scheme is used to control the variance.

1 Introduction

Protein-ligand docking is an energy minimization search problem with the aim
to find the best ligand conformation and orientation relative to the active site
of a target protein [1]. The docking problem can be very difficult since the rel-
ative orientation and conformations of the two molecules must be considered.
Typically, the receptor (usually a protein) is fixed in a three-dimensional coor-
dinate system. By contrast, the ligand can be repositioned and rotated. In case
that both receptor and ligand are allowed to be flexible, the problem difficulty
increases. As such, the problem is classified, by increasing complexity, into the
ensuing categories: rigid-structure docking (both molecules are rigid); rigid pro-
tein and flexible ligand; flexible protein and rigid ligand; and, both molecules are
flexible. With both molecules flexible, usually the active site of the protein and
the ligand, the problem becomes harder. In fact, a higher degree of flexibility
implies a considerable increase of the search space size.

For the past years, numerous protein-ligand docking methods have been pro-
posed using different techniques, e.g., incremental construction algorithms,
stochastic algorithms and molecular dynamics. For more detailed descriptions,
we refer the reader to several review studies [2,3]. Evolutionary and swarm algo-
rithms have recently become one of the dominant search techniques for docking
methods and proved to be very successful [3,4]. Although several applications
exist, no comprehensive set of studies could be found to understand why these
algorithms and their components are successful. To the best of our knowledge,

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 589–598, 2008.
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the only attempt was made in [5] where several parameters (e.g., population
size) and some genetic operators are empirically investigated. When designing
an evolutionary approach for this problem, to make it efficient is important to
understand its components behavior and effects.

Locality is an important requisite to ensure the efficiency of search and it
has been widely studied by the evolutionary computation community [6,7,8]. In
general terms, this property indicates that small variations in the genotype space,
usually originated by mutation, imply small variations in the phenotype space [6].
A locally strong search algorithm is able to efficiently explore the neighborhood
of the current solutions. When this condition is not satisfied, the exploration
performed by the algorithm is inefficient and, in a worse case scenario, tends to
resemble random search.

The goal of this paper is to perform an empirical locality analysis on the evolu-
tionary algorithm model [9,3] that is usually adopted for protein-ligand docking
optimization. Locality measures for the analysis are adopted from the framework
proposed by [8] and extended by [10] to deal with real-valued encodings. One
distance measure suitable for the selected representation is applied. Mutation is
the most frequent operator considered in locality studies. The present study con-
centrates on the questions: do Gaussian and Cauchy mutation operators have
a different effect on phenotypes? Which type of operator is more suitable for
evolutionary approaches to protein-ligand? We expect to answer these questions
by investigating the impact of the operators on locality. In spite of that, our
main research focus is the study of representation properties and the effects of
variation operators. The presented work is the first step of a wider study that
includes analysis on locality, heritability and heuristic bias.

Results allow us to gain some insights about the degree of locality induced
by different mutation operators. The search space is highly multimodal and its
shape is influenced by the size, shape and topology of the ligand and the ac-
tive site being docked [5]. As a consequence of this, even small modifications
performed by genetic operators in the structure of an individual lead to large
phenotypic changes. An evolutionary algorithm operating on its own is unable
to deal with these difficulties. Thus, it is important to know how locality relates
to mutation operators commonly used in evolutionary algorithms for molecu-
lar docking. Furthermore, understanding the role played by each algorithm’s
component may provide useful insights for future applications of evolutionary
algorithms to this problem.

The rest of the paper is structured as follows. Section 2 contains an overview of
the evolutionary algorithm’s components used in our experimentation. In section 3
wepresent the localityanalysis andrespectivediscussion.Finally, section4contains
the main conclusions.

2 Evolutionary Algorithms and Protein-Ligand Docking

Evolutionary algorithms applied to molecular docking can be found since 1993
[11]. A comprehensive review of these efforts, including an outline state-of-the
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art applications, can be found in [12,3]. One of the most important works is
the evolutionary algorithm proposed in [9], commonly referred to as AutoDock.
This approach is a conformational search method which uses an approximate
physical model to evaluate possible protein-ligand conformations. It incorporates
flexibility by allowing the ligand to change its conformation during the docking
simulation. In addition, pairwise interactions between atoms are pre-calculated,
considerably speeding up the docking simulation. To search the space of possi-
ble protein-ligand conformations, the approach uses an evolutionary algorithm
with a local search method. When this method is applied, the genotype of the
individuals is replaced with the new best solution found. This process is usually
referred to as Lamarckian evolution.

In our analysis, we adopt an experimental model which uses the main com-
ponents from [9], because AutoDock serves as a basis for the large majority of
evolutionary-inspired approaches (e.g.,[3,4]).

2.1 Encoding

During the docking process the protein remains rigid whilst the ligand is flexible.
In this case, an individual represents only the ligand. The encoding is an indirect
representation. A genotype of a candidate solution is encoded by a vector of real-
valued numbers which represent the ligand’s translation, orientation and torsion
angles [9]. Cartesian coordinates represent the translation, three variables in the
vector, whereas four variables defining a quaternion represent the orientation. A
quaternion can be considered to be a vector (x, y, z) which specifies an axis of
rotation with an angle θ of rotation for this axis. For each flexible torsion angle
one variable is used. The phenotype of a candidate solution is composed of the
atomic coordinates that represent the three-dimensional structure of the ligand.
The atomic structure is built from the translation and orientation coordinates
in the ligand crystal structure with the application of the torsion angles.

2.2 Evaluation

To evaluate each individual an energy evaluation function is used. The fitness
for each candidate solution is given by the sum of the intermolecular interaction
energy between the ligand and the protein, and the intramolecular energy that
arises from the ligand itself [9]. An empirical free energy potential composed
of five terms is used. The first three terms are pairwise interatomic potentials
that account for weal long-range attractive forces and short-range electrostatic
repulsive forces. The fourth term measures the unfavorable entropy of a ligand
binding due to the restriction of conformational degrees of freedom. The fifth
and last term uses a desolvation measure. Further details of the energy terms
and how the potential is derived can be found in [9].

2.3 Genetic Operators

Common crossover and mutation operators are applied on the population. In
AutoDock a standard two-point crossover is used. Cut points only occur between
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related genes, i.e., separating translational values, orientation values and rotation
torsion angles into separate blocks. This is done to avoid disruption of useful
parts of the solution [9]. Since the encoding is a real-valued vector, mutation is
performed by using evolutionary strategies based operators. The genetic operator
acts in the following way: when undergoing mutation, the new value for a gene
x′ is obtained from the old value x by adding a random real number sampled
from a distribution U(0, 1):

x′ = x + σ × U(0, 1) (1)

The common distribution used for U(0, 1) is the standard Gaussian distri-
bution, N(0, 1). In spite of that, the AutoDock approach replaces the Gaussian
distribution with a Cauchy distribution:

C(x, α, β) =
β

πβ2 + (x− α)2
(2)

where α ≤ 0, β > 0,−∞ < x < +∞ (α and β are parameters that control the
mean and spread of the distribution). The Cauchy distribution has a bias toward
small variations. However, unlike the Gaussian distribution, it has thick tails
which allows larger variations more frequently. Some evolutionary approaches to
molecular docking use both distributions for mutation operators, e.g., [5].

One important aspect is the value for the parameter σ. If it is set too low,
exploitation overcomes exploration and if set too high vice versa. The value can
be fixed or self-adapted (e.g., if an evolutionary strategy approach is used). In
[5], annealing schemes to control σ as a function of time, i.e., the number of
generations are proposed. Results show that the following scheme presents good
results, scaled with 0.1:

σ(t) =
1√

1 + t
(3)

We also include in the analysis the simple uniform mutation operator. It works
in the following way: when applied to a gene, it assigns a new random value
according to the gene bounds, sampled from a standard uniform distribution.
This operator serves as a comparison baseline.

3 Locality Analysis

We selected several instances from the AutoDock test suite to perform the local-
ity analysis. Due to space limitations, we will only present results obtained with
the HIV-1 protease/XK 263 protein-ligand complex. It has 10 rotatable bounds
with 8 torsional degrees of freedom and is one of the largest complexes in the
suite. Results obtained with other instances (e.g., β-Trypsin/benzamidine) fol-
low the same pattern. The parameter σ is set to a value of 0.1 which previous
studies in computational chemistry problems have shown to be a good value [10].
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3.1 Related Work

Several techniques have been proposed to estimate and study the behavior of
evolutionary algorithms and their components. Some of these methods adopt
measures that are, to some extent, similar to the locality property. We highlight
the most relevant ones.

The concept of fitness landscapes, originally proposed by [13], establishes a
connection between candidate solutions and their fitness. Moreover, [14] pro-
posed fitness distance correlation as a way to determine the relation between
fitness and distance to the optimum. If fitness values increase as the distance
to the optimum decreases, then search is expected to be easy. An alternative
way to analyze the fitness landscape is to determine its ruggedness. In [15], it is
proposed the adoption of autocorrelation functions to measure the correlation
of all points in the search space at a given distance. In [6], conditions for strong
causality are studied. A search process is said to be locally strong causal if small
variations in the genotype space imply small variations in the phenotype space.
In this case, variations in genotypes are caused by mutation.

3.2 Definitions

Investigations with an evolutionary framework usually means considering two
spaces: the genotype space Φg and the phenotype space Φp. Genetic operators
are applied on Φg while the fitness function, f , is applied to solutions from the
phenotype space: f : Φp → ,. To establish the similarity between two individu-
als from Φp a phenotypic distance has to be defined. This measure captures the
semantic difference between two solutions and is directly related to the problem
being solved. The phenotypic distance can be determined with a structural dis-
tance measure. To evaluate a final ligand conformation we compare it with the
experimental structures using the standard Cartesian root-mean-square devia-
tion (RMSD):

RMSDlig =

√∑n
i=1 dx2

i + dy2
i + dz2

i

n
(4)

where n is the number of atoms in the comparison and dx2
i , dy2

i and dz2
i are the

deviations between the crystallographic structure and the corresponding coordi-
nates from the predicted structure lig on Cartesian coordinate i. RMSD values
below or near 1.5Å can be considered to be a success criterion. Thus, lower values
mean that the observed and the predicted structures are similar. Therefore, our
structural distance measure determines the difference between RMSD values of
two phenotypes:

dstruct(A, B) = |RMSDA −RMSDB| (5)

We adopt the innovation measure proposed by Raidl and Gottlieb [8] to study
the effect of mutation on locality. To predict the effect of applying this operator
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we use the distance between individuals in a mutation step. Let X be a solu-
tion and Xm the result of applying m mutation steps to X , then the Mutation
Innovation (MI) is given by:

MI = dist(X, Xm) (6)

MI illustrates how much innovation the mutation operator introduces, i.e.,
it aims to determine how much this operator modifies the semantic properties
of an individual. Locality is directly related to this measure. The application
of a locally strong operator implies a small modification in the phenotype of
an individual. The distance between the two solutions is small. On the other
hand, operators with weak locality allow large jumps on the search space. To
evaluate MI, 1000 random individuals are generated. Afterwards, a sequence of
mutation steps is applied to each one of them and the distance between the
original individual and the new solution is measured. In our experimentation,
we start by applying a single mutation step. Later, we repeat the experiment
with k successive mutation steps, with k ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512}.

3.3 Experimentation and Discussion

Table 1 shows the characteristic values for MI with a single mutation (k = 1).
P (MI = 0) represent the percentage of cases for which MI = 0. E(MI|MI > 0)
and σ(MI|MI > 0) show the mean value and the standard deviation of MI, for
MI > 0. They act as estimations for the expected values. Max(MI) gives the
maximum value for MI.

Table 1. Characteristic values for the Mutation Innovation MI with k = 1

Uniform Gaussian 0.1 Cauchy 0.1 Gaussian AS Cauchy AS

P (MI = 0)[%] 0.30 7.30 4.70 9.10 7.40
E(MI |MI > 0) 1.28 0.04 0.15 0.03 0.11
σ(MI |MI > 0) 1.71 0.11 0.52 0.08 0.39

Max(MI) 7.49 1.19 5.94 0.75 5.54

We start by considering the case where mutation does not affect the phe-
notype, MI = 0 (occurring with probability P (MI = 0)). A large value of
P (MI = 0) indicates that mutation does not make often moves in the search
space. In alternative, it may also be an evidence of redundancy or strong heuris-
tic bias since many elements could map to the same phenotype. Table 1 shows
that this is not the case. The probability of MI = 0 is low for every operator.
Uniform mutation displays the lowest value (0.30) compared to Gaussian and
Cauchy mutation. Since this operator replaces a complete gene in opposition to
performing a small modification, this modification is enough to produce a new
phenotype. For Gaussian and Cauchy operators the final result in behavior is
similar. The modifications operated by these distributions will produce differ-
ent phenotypes although the probability of generating a number that is small
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Fig. 1. E(MI |MI > 0) and σ(MI |MI > 0) over the number of mutations

enough to induce the same individual is slightly larger. The small difference
between Cauchy and Gaussian mutation is explained by the thick tails of the
Cauchy distribution. These allow larger variations more frequently than with
Gaussian distribution and as such, lower its P (MI = 0).

Moving on to E(MI|MI > 0), σ(MI|MI > 0) and Max(MI), in general,
small values indicate high locality. A single mutation changes the phenotype
only a little and thus, should be aspired [8]. Although lower values are good
signs for a good locality, it should be noted that larger values for the standard
deviation and for Max of MI may not necessarily be a bad indication. In our case,
both distributions show low values for the locality measures. However, Cauchy
mutation operators present larger values. For example, E(MI|MI > 0) displays
0.15 and 0.11 in comparison to 0.04 and 0.03. The same pattern is observed
for the remaining measures. To establish if these differences are statistically
significant, we performed the Wilcoxon rank sum test with significance value α =
0.01. We found significant differences between Gaussian and Cauchy mutation
operators, with fixed and annealing schemes. Differences between operators with
the same distribution were not found (e.g., Gaussian with fixed variance and
Gaussian with annealing scheme).

A Gaussian operator displays better locality properties but, how does the
distribution of mutation innovation changes when considering k > 1 mutations?
We will now consider the case for k ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512}. Figure 1
plots the empirically obtained mean values E(MI|MI > 0) and σ(MI|MI > 0)
over the number of mutations k. Cauchy mutation without the annealing scheme
shows higher mean and standard deviations than Gaussian operators and the
Cauchy operator with the annealing scheme. For values of k larger than 32,
the difference between this operator and the others increases considerably. This
indicates weak locality with respect to the Cauchy operators. However, uniform
mutation displays much higher values. When looking at the E(MI|MI > 0)
values, uniform mutation starts to express much larger values from k = 1, only
stabilizing around k = 64. Nevertheless, the difference is very high showing the
low locality properties induced by this operator. The combination of a Gaussian
distribution and the annealing scheme displays the best behavior: for all the
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Fig. 2. Distribution of structural distances for k ≥ 1 mutations

mutation steps the mean and standard values remain low. This suggests a strong
locality effect for this operator. The same is also true for the Gaussian operator
with fixed variance and the Cauchy operator with annealing scheme operators.
Nevertheless, for larger values of k, these two operators start to display a small
E(MI|MI > 0) increase.

Regarding σ(MI|MI > 0) values, the pattern is similar but some remarks
must be made. The most stable operator is Gaussian with annealing scheme
whereas the most unstable are uniform mutation and Cauchy with fixed vari-
ance. The Cauchy operator starts with low standard deviation values but there
is a shift of phase near k = {16, 32}. From this point on, the standard deviation
values rise. For k = 128 the values are larger than uniform mutation. This is
consistent with the mean values since by this time, uniform mutation has stabi-
lized, although the distance between the mutated individuals and the originals
is very large. At this point there is no semantic relation between the individu-
als. The Cauchy operator follows the same behavior. Here, the loss of semantic
relationship occurs later in the process.

Grouping the distances between the original solution and the successive mu-
tants allow us to observe the different types of changes operated by mutation
for E(MI|MI > 0). Given a structural distance dstruct between two pheno-
types, the set Gi to which dstruct is assigned is determined the following way:
{G0 : 0 ≤ dstruct < 0.1; G1 : 0.1 ≤ dstruct < 0.5; G2 : 0.5 ≤ dstruct < 1; G3 : 1 ≤
dstruct < 2; G4 : 2 ≤ dstruct < 3; G5 : 3 ≤ dstruct < 5; G6 : 5 ≤ dstruct < 10; G7 :
10 ≤ dstruct < 25; G8 : 25 ≤ dstruct < 50; G9 : 50 ≤ dstruct}. The specific values
that were selected to determine intervals are arbitrary. The relevant information
is the distribution of the structural distances through the sets. Low order sets
(i.e., small variations) suggest that locality is strong.
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The charts in figure 2 show the distribution of structural distances for 1000
individuals, for all operators variants, with each column representing a mutation
step. Important differences can be observed. Gaussian operators exhibit high
locality: with the annealing scheme, ≥ 50% of the distances belong to the first
group until k = 32. From k = 32 to k = 512, the percentage of distances in the
first groups stabilizes around 35%. Moreover, the majority of the remaining dis-
tances are within the lower three groups. This pattern is not observed elsewhere.
This shows that this operator preserves the semantic properties of the individu-
als subject to mutation well. The Gaussian operator with fixed variance and the
Cauchy operators demonstrate similar distributions. The main difference is given
by Cauchy with fixed variance. The loss of the semantic properties can clearly
be seen from the last four columns (representing the mutation steps for large
k). Here the amount of individuals belonging to the last groups is considerable.
This supports our previous plot analysis of σ(MI|MI > 0).

4 Conclusions

Most evolutionary algorithms applied to this problem use one of these distribu-
tion operators (or variants based on them) but mostly Cauchy-based. However,
no studies were performed to conclude about its efficiency and performance with
the exception of [5]. The Gaussian operator with the annealing scheme is reported
to attain the best optimization results. Nevertheless, an investigation on why the
operator is able to achieve these results is not provided. Since Cauchy-based op-
erators are commonly used in evolutionary approaches to molecular docking, it
is important to understand their behavior and related operators.

We investigated the degree of locality induced by different mutation opera-
tors when applied to protein-ligand docking optimization. Results confirm that
high locality is important and explain the behavior of different mutation op-
erators. As such, the useful outcome from this work is twofold: 1) it explains
in terms of locality the operators under investigation; 2) it provides hints on
how future mutation operators can be developed. Is important for an opera-
tor to induce strong locality to obtain good optimization results. This result is
sustained by the study described in [5] and experimentation performed by us
(not shown due to space constraints). Gaussian mutation provides locally strong
operators and this is especially true when used in conjunction with an anneal-
ing scheme. This is an indication that more fine-tuning of the conformations
is allowed. On the other hand, Cauchy-based operators show a lesser degree
of locality. The operator with the annealing scheme shows a locality similar
to Gaussian mutation with fixed variance. Thus, these operators can provide a
more exploratory role. In fact, the higher locality shown by Gaussian mutation
with the annealing scheme could prove to be excessive, and therefore, difficul-
ties to overcome traps in the search space could arise. Although results from
optimization runs show this operator obtaining the best results [5], there are
other algorithm’s components which also have a direct influence on the search
process. As such, it is necessary to extend our research to other components,
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e.g., crossover, and perform additional optimization runs. Finally, in this work,
local search methods were not considered. These techniques will be the focus
of a future publication since the impact of local search is an important aspect
of an evolutionary algorithm. As future research, we will extend this study to
heritability and heuristic bias properties, to study the effects of representation
and operators on this problem.
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Abstract. Intrigued by the interesting Context Aware Crossover (CAX)
operator proposed by Majeed and Ryan in a number of recent papers, this
operator was tried on a real problem (solid catalysts optimisation) where
unfortunately, no improvement was detected. An implementation of the
benchmarks used in [MR06b] seems to show that the CAX is mostly an
exploitation operator, boosting the average fitness of the population.

1 Introduction

At EuroGP’06 in Budapest, Majeed and Ryan presented a paper [MR06a] (nom-
inated for the best paper award) on a new Genetic Programming crossover op-
erator called Context Aware Crossover (CAX) that (according to the paper)
yielded great results on several usual benchmarks including symbolic regression,
that were confirmed in at least three other papers [MR06b, MR07b, MR07a].

It was therefore very tempting to try it out on the real problem of catalyst
optimisation, which is a form of multi-objective symbolic regression. Unfortu-
nately, the results were not as good as expected, so we tried to reproduce the
benchmarks of [MR06b] in order to study this operator more thoroughly.

This paper starts with a quick description of the CAX crossover, followed
with a presentation of the results obtained on the catalyst optimisation problem.
Then, some benchmarks are presented to compare the CAX with the standard
GP crossover, based on consumed CPU-time, and a conclusion ends the paper.

2 Quick Description of the Context Aware Crossover

The CAX aims at improving the efficiency of the standard GP crossover (which
is generally regarded as mostly destructive, even though it is the main drive
of Genetic Programming), by improving the second part of the operation, i.e.
choosing where to graft into parent 1 a subtree chosen in parent 2.

Usually, a “modern” GP crossover operator creates one new child from two
selected parents (P1 and P2) by:

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 599–609, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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1. Randomly selecting a subtree S2 in P2 (with 90% chance to select a node),
2. Randomly selecting a subtree S1 in P1 (pointing on a node if S2 is a node),
3. Creating a child which is the clone of P1 with subtree S2 in place of S1.

Fig. 1. Context Aware Crossover: the shaded nodes in P1 are possible crossover points
where the selected subtree S2 from P2 can go in. This figure is extracted from [MR06b].

In the case of the CAX operator, after selecting S2 in P2 like in step 1 above,
one tries to find the best place where it could be grafted in P1. All nodes of P1

can potentially receive the graft, excluding:

1. The root of P1 (that cannot be a crossover point, otherwise, the entire indi-
vidual would be replaced by the S2 subtree).

2. Nodes in the bottom of P1, where grafting of S2 would result in violating
the maximum depth constraint (depth 5 in fig. 1).

All possibilities are deterministically explored, by evaluating all possible chil-
dren resulting from the graft of S2 wherever P1 can receive it (gray nodes in
fig. 1). The CAX returns the child with the best fitness.

Even though the exhaustive exploration of all potential crossover points in
P1 is clearly expensive, Majeed and Ryan claimed exceptional results in their
different papers, convincing us to try this new operator on the real world problem
of heterogeneous catalysts optimisation.

3 Tests on a Real World Problem: Catalyst Optimisation

Catalytic processes constitute the fundamentals of modern chemical and petro-
chemical industries. Over 70% of the current chemical processes are catalytic,
whereas for the newly introduced ones this percentage is over 90. In highly de-
veloped industrial countries, catalytic processes create about 20% of the Gross
Domestic Product (GDP).
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Here, the chosen application [SBMC08] deals with catalysts for obtaining long
chain aliphatic epoxides that can be functionalised for application in lubricants,
plasticizers, chemicals and fine chemicals production. The chemical reaction is
the epoxidation of 4-decene with organic peroxides (cf . fig. 2).

Fig. 2. Epoxidation reaction: the molecule in the centre is the desired product while
the one on the right hand side is undesirable

Progressing from catalyst design and discovery up to commercial applications
involves several steps and iteration loops. In general, the overall process may
take 15 to 20 years. Drastic and successful changes occurred in the 90’s via fast
synthesis and screening of large libraries of diverse formulations by using fully
automated working stations and analytics. Combinatorial heterogeneous catal-
ysis [AMS+06, CDCJ+06] is a multi- and trans-disciplinary field, as it requires
the intensive support of robotics, physics, mechanical and electrical engineering
but also statistics [BMC07], data mining [KFB+04, Bau06], artificial intelligence
[BFLM04] and many more.

Fig. 3. General scheme: the use of Genetic Programming enables the direct calculation
of a deactivation criterion and a prevision through neural network, both based on the
parameters of the best function found by GP

The aim of catalysts optimisation using Genetic Programming is multiple.
Firstly, the initial reaction rates, noted r, are usually calculated manually due
to the lack of analytical functions describing the evolution of the formation of
products under the action of the catalysts. Therefore, such a laborious task can
be easily handled if a function is available, and a map of the entire search space
can be found using a given machine learning approach, here a Neural Network.
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However, optimising catalyst performance does not only consider the initial
reaction rate but also the behaviour the catalyst under a given period of re-
action, so-called deactivation, which requires the whole series. In order to find
the optimal set of catalysts based on all previous experiments and taking into
account both criteria, the following strategy has been employed: the synthesis
variables of the catalysts have been correlated with the parameters of the best
function found by the GP (cf . fig. 3).

Due to the limited amount of experimental data and in order to discard over-
fitting of the NN, the number of parameters of the function must be minimized.
Thus, a multi-objective GP has been implemented whose aims are to minimize
both the squared error along the entire series for each catalyst, and the number
of parameters of the function.

3.1 Description of the Input Data

The dataset is composed of 148 different synthesized and tested catalysts. Cat-
alysts activity is monitored during 16 hours, and for each one, a series of seven
conversion measurements is obtained, i.e. the quantity of initial reactant which
is transformed along time. Since catalytic activity decreases over time, all curves
share a general shape, characterized by a positive first derivative and a nega-
tive second derivative. The aim of the GP algorithm is to discover the function
behind the general shape (corresponding to all catalysts).

Fig. 4. Catalyst optimisation problem. Number of generations for constant population
(left) and reduced population for CAX (right). Each run takes around 13 hours on a
3Ghz PC (5 minutes evolution × 148).

3.2 Results with and without CAX on Catalyst Optimisation

This difficult problem was first tackled with a tailored GP algorithm that did
not use the CAX operator. The adjusted fitness (in the Koza sense1) of the
best individual measured on the evaluation set is 0.93 (for each catalyst, data is
divided in a learning set, a test set to detect overfitting and an evaluation set).

1 adjusted_fitness = 1/(1 + raw_fitness)
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Then, the CAX was tried, but with bad results, which was quite disappointing.
Coding was carefully checked to no avail. In their different papers, Majeed and
Ryan suggest to first use the standard GP crossover, and then start the CAX
only after some time, so curves were plotted for CAX_10 (CAX started after
10% of the run), CAX_40, CAX_70 and no CAX (cf . fig. 4).

In [MR06b], the authors say that they were giving an “advantage” to standard
GP by giving it 4,000 individuals where the algorithm using CAX only needed
200. In fact, tests showed that if the same population size is used for standard
GP and CAX, the generation count just freezes when the CAX starts, due to the
huge amount of children evaluations that this operator needs (cf . fig. 4 left). It
therefore appears that using a population of 200 individuals only for CAX was
in fact giving an advantage to CAX rather than GP. . .

If the bad results were due to the lack of evolution, it was decided to give the
CAX an advantage by reducing its population by 95% when it starts, so as to
keep a generation count roughly equivalent to standard GP (cf . fig. 4 right).

Fig. 5. Results averaged on 4 runs for a reduced population size when CAX starts

Curves were much better although standard GP still got the best result (cf .
fig. 5 left). In CAX, the individuals size did slightly drop (as claimed in [MR06b]),
but not by a large amount, and for individuals that were not as fit as standard
GP individuals (cf . fig. 5 right).

Note that in [MR06a], fitness curves are given with reference to the number
of generations, which, with such an operator, is quite meaningless since when
the CAX is started, producing one child needs many more evaluations than a
standard crossover. The curves of [MR06b] show performance wrt. the number
of evaluations, which is much better, although still not very accurate, for the
reason that in GP, all individuals do not take the same time to evaluate, and
according to the paper, CAX leads to smaller individuals that should therefore
evaluate faster than individuals produced by a standard GP crossover.

In order to be as precise as possible in the comparison, the presented plots
show results against computing time, which, in our opinion, is the most accurate
metrics (all four plots of this paper are done in parallel, on a quadri-processor
exclusively devoted to the runs, to make sure that all time scales are identical).
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Moreover, plotting against time also takes into account the potential differences
in execution speed induced by the implementation of the different operators.

On this example, it seems that one can conclude that the exhaustive search
started by the CAX in order to find the best position for S2 in P1 does not yield
much better results than when the same amount of CPU time is used by an
ordinary standard crossover.

Finally, a two parameter function ktn/(1 + ktn) has been extracted from the
best Pareto front that was found (using the standard GP operator) that shows
the best balance between fitting accuracy and number of parameters. Due to
the low number of parameters, overfitting of the neural network has been easily
handled, and the resulting architecture shows a very low level of complexity in
both the number of hidden layers and total amount of neurons (Multi-layer Per-
ceptron 4:4-6-2:2), four synthesis variables as input, and k and n as output. A
new criterion of deactivation has been employed on the resulting virtual curves
predicted for the entire synthesis space. Based on the obtained data, a few cat-
alysts (picked up from the best predicted materials) have been synthesized and
tested confirming the very high accuracy obtained by such methodology. Con-
sequently, this new strategy used for the first time in heterogeneous catalysis
appears to be both very promising and relevant.

4 Re-Implementation of the [MR06b] Benchmarks

These disappointing results asked for more tests concerning the CAX, so it was
decided to re-implement the benchmarks of [MR06b], but on a CPU-time basis,
rather than on an per-evaluation basis. This difference is meant, so that the
presented results show the efficiency of the CAX under a new point of view
(there would be no point in reproducing the experiments presented in [MR06b]).

[MR06b] presented benchmarks on three standard problems taken from Koza’s
Genetic Programming books [Koz92, Koz94]: the quartic polynomial symbolic
regression, the 11 bit multiplexer and the lawnmower with one ADF (Automati-
cally Defined Function). However, since the target problem on catalysts does not
need ADFs, it was decided to skip them and implement the quartic polynomial
symbolic regression, the 11 bit multiplexer and the artificial ant on the Santa-Fe
trail (that does not need ADFs in Koza’s implementation).

4.1 Experimental Setup

All benchmarks were re-implemented according to Koza’s specifications, and tests
on CAX only started when similar results as those presented in [Koz92, Koz94]
were obtained.

Where [MR06b] authors specified that they ran all the experiments for 50
generations, and averaged over 50 runs, all the experiments of this paper were
done over 50 runs, but for a number of seconds allowing standard GP to perform
the same number of evaluations as found in Koza’s book.

For the sake of simplicity, the varying rate of crossovers (indicated as P_var
in [MR06b]), was not re-implemented. The experiments implement the simple
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solution of turning on the CAX after completion of a certain percentage of a run
(which is the solution that gave the best results in [MR06b]). To quote [MR06b]:
if the CAX was turned on after 10% completion of the run, then the first 10%
of the run was completed using only standard crossover, and the rest of the run
was generated by only using context-aware crossover.

Here again, the implementations of this paper depart from those of [MR06b]
in spite of this precise definition: Majeed and Ryan chose to use a reduced
population size (200 individuals) for experiments that used CAX from the very
beginning of the runs, while in the present paper, in order to precisely evaluate the
effects of CAX, the standard GP population size (4,000) is used in the beginning
of CAX runs until the CAX operator is started, after which the population is
reduced by 95% (down to the 200 individuals specified in [MR06b]).

As a consequence, in this paper, the runs using CAX are identical to the
standard GP run until the CAX operator is started, which is not the case in
[MR06b]. In other words, in this paper, standard GP is the same as a CAX_100
(i.e. CAX started after 100% of the run).

Fig. 6. Quartic polynomial symbolic regression. Left: Best individual performance.
Right: Average performance of the population. Standard GP is in fact CAX_100.

To take a precise example, in order to obtain the CAX_10 curve for the quartic
polynomial problem that takes 1200 seconds (cf . fig. 6), the algorithm begins
with a population of 4,000 individuals for 120 seconds (10% of 1200), after which
the CAX is started. At this moment, the population is reduced down to 200
individuals using the following process: the best individual is kept (elitism), and
the other 199 individuals are selected with a tournament of size 40 (1% of the
original population size). Lower arities were tested, with elitist tournament-7
and random selection, but tournament-40 is what yielded the best results.

4.2 Quartic Polynomial Symbolic Regression Problem

Koza’s quartic polynomial symbolic regression problem (x4 + x3 + x2 + x) is
implemented, with a population of 4,000 until a CAX is started. At this moment,
the population is reduced to 200 so as not to freeze the CAX on the same
generation till the end of the run.
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Fig. 7. Figures from [MR06b]. Standard GP is the lowest curve on both figures.

On the Best Individual fitness curve (cf . fig. 6 left), surprisingly enough, one
can see that all methods perform the same, even when the CAX is started and the
population reduced from 4,000 down to 200. However, the Average Population
fitness curve (cf . fig. 6 right) clearly shows that something is going on.

Whenever the CAX starts, the average population fitness is boosted to values
not far from the best individual’s, but apparently, this does not lead to premature
convergence, which is an interesting feature. Unfortunately, however, the great
improvement shown by all CAX best individual curves presented in [MR06b] (cf .
fig. 7) is not observed. Even if one takes into account the fact that [MR06b] uses
only 200 individuals from the beginning on CAX runs, on these curves, the best
individual of all CAX runs yields a much better result than the best standard
GP individual. We have clearly not been able to reproduce this in our curves.

Fig. 8. Evaluation count and generation count

Fig. 8 shows that the implementation population reduction scheme is fair for
the CAX evaluation- and generation-wise.

4.3 11 Bit Multiplexer Problem

On this problem, the effects of CAX look pretty much the same: on fig. 9 left,
starting the CAX does not seem to have much effect at all (although it seems that



Testing the CAX on a Real-World Problem and Other Benchmarks 607

Fig. 9. Best and mean performance on the 11 bit multiplexer problem

CAX_10 has had a small negative impact on the best individual performance).
On the right, one can clearly see the effect of CAX on the population average
fitness whenever CAX is started. Before CAX starts, the curve is of course iden-
tical to standard GP. What is remarkable, though, is that for CAX_10, it seems
that the population has not prematurely converged, though the average fitness is
very close to the best fitness. In the end, the best individual value for CAX_10
is the same as for standard GP !

4.4 Artificial Ant on the Santa-Fe Trail

The last benchmark in [MR06b] is the Lawnmower problem, as described in
[Koz94]. However, this problem uses ADFs that we did not implemented, since
the original catalysis problem did not need them. So, in order to take a never-
theless comparable benchmark, the Artificial Ant on the Santa-Fe trail problem
(i.e. an implementation without ADFs) was chosen.

On this benchmark, still no improvement on the best fitness (cf . fig. 10
left) although this time, CAX_10 does not seem to recover and catch up with

Fig. 10. Artificial Ant on the Santa-Fe Trail. Left: Number of hits of the best individual.
Right: Number of hits of the average population.
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Standard GP. Here again, a spectacular boost on the population average fitness
is observed whenever the CAX starts.

5 Conclusion

The conclusion is not exactly the one that was originally planned. When starting
this work, the aim was to improve the best individual result on the heterogeneous
catalyst optimisation problem using the CAX. Unfortunately, things did not turn
out as expected, as it was impossible to obtain better results with the CAX than
with an ordinary crossover operator on this real world problem.

A careful (albeit different) implementation of the benchmarks used in [MR06b]
seems to show that Context Aware Crossover is not capable of improving the
best fitness value, although CAX seems to be a very good exploitation opera-
tor that boosts the whole population towards much better fitness values while
maintaining a good level of diversity (best individual fitness keeps rising after
the CAX is started).

This means that CAX remains a very interesting crossover method, that would
deserve another careful investigation on diversity preservation.
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Abstract. Applied to certain problems, neuroevolution frequently gets
stuck in local optima with very low fitness; in particular, this is true for
some reinforcement learning problems where the input to the controller
is a high-dimensional and/or ill-chosen state description. Evidently, some
controller inputs are “poisonous”, and their inclusion induce such local
optima. Previously, we proposed the memetic climber, which evolves neu-
ral network topology and weights at different timescales, as a solution to
this problem. In this paper, we further explore the memetic climber, and
introduce its population-based counterpart: the memetic ES. We also ex-
plore which types of inputs are poisonous for two different reinforcement
learning problems.

1 Introduction

It stands to reason that when applying evolution methods to reinforcement learn-
ing problems, providing more information to the controller rather than less should
make the problem easier rather than harder to solve. Intuitively, if those parts of
the state description that are actually necessary to solve the problem (e.g. the
position of the agent relative to the goal) were available, then a sensible learning
algorithm ought to disregard any redundant information (e.g. the position of an
unrelated agent relative to the goal, a random variable, or relevant aspects of the
system state represented in the wrong scale or frame of reference). This assump-
tion is not challenged by most existing reinforcement learning benchmarks, since
they provide the controller with only a few well-chosen variables as inputs.

For problems where the best state representation is not immediately obvious,
the above assumption is often wrong. In many cases, providing extra information
to the controller results in lower fitness. For example, Lucas and Togelius [1]
found that removing an input representing an angle to a way point was necessary
for successful navigation to evolve for an holonomic agent; Igel [2] found that the
CMA algorithm found good pole-balancing controllers much faster when a bias
input was removed; and in the domain of helicopter control, De Nardi et al. [3]
found that the network controlling yaw and the network controlling the pitch
and roll could not share any inputs, lest evolution never found good controllers.
In these examples, the presence of certain “poisonous” irrelevant inputs induces
local minima in the fitness landscape—evolution exploits the poisonous inputs
to quickly find controllers that score better than random but cannot be built
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upon to find full solutions. For evolutionary reinforcement learning to be useful
in real-world problems where the best state description is not known in advance,
we need algorithms that can identify those state variables that should be ignored.
Such algorithms will likely operate on more than one timescale, with one process
learning what to ignore and another process learning the policy.

In a recent paper, we introduced the memetic climber [4], a variation of the
simple hill-climber that searches for neural network topology and weights at
different time scales; each topology mutation is accepted only if it is better than
its predecessor after a brief period of local search in weight space. We found that
on a version of a simulated car racing task which used a carefully selected set
of inputs, the memetic climber performed slightly better than a standard, non-
memetic hill-climber. However, when extra, potentially useful, but redundant
inputs were added, the standard hill climber failed to find good controllers,
while the memetic climbers performed almost as well as with the smaller set on
inputs. In other words, the memetic climbers learned which inputs to ignore.

A number of algorithms have been proposed that evolve both topologies and
weights of neural networks at the same time (see [5] for an overview). Most of
these are not memetic algorithms, and treat topology search and weight search
as a single search process, on a single time scale. An exception is the EANT2
algorithm [6], which treats topology and weight search as separate but interde-
pendent processes: it evolves topologies with a simple ES and weights with the
CMA-ES. Memetic algorithms have previously been used to efficiently search
the space of neural network weights; see [7] for an example.

This paper continues our exploration of when and why extra inputs thwart
the learning of effective control policies, and how memetic search in weight and
topology space can counter this phenomenon. There are three main objectives:
(1) to investigate the effects of changing the number of local search steps per
global mutation in the memetic climber, (2) to compare the effects of redundant
inputs with and without information content (irrelevant state descriptions versus
pure noise), and (3) to introduce a population-based version of the memetic
climber, the memetic ES, and compare it with other evolutionary algorithms.

2 Neural Memetic Search Algorithms

In this section, we describe five memetic search algorithms for neural network
weights and topologies. The first two, originally presented in [4], use a single
search point, while the other three are memetic extensions to evolutionary strate-
gies. All of the algorithms are used to search the space of masked networks: in
addition to the connection weights, the network chromosomes contain a bit-mask
with a bit for each connection that determines whether or not the corresponding
connection is active in the network.

There are two types of mutation operations that are applied to the masked
network representations:

– weight mutation adds values drawn from a Gaussian distribution to all of
weights.

– topology mutation iterates over all bits in the mask, flipping any bit with
probability p.
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Algorithm 1. Memetic Climber (n,m)
Initialize (champion)1

fchamp ← Evaluate (champion)2

for i=1 to n do3

contender ← champion4

TopologyMutate (contender)5

for j=1 to m do6

fcntder ← Evaluate (contender)7

subcontender ← contender8

WeightMutate (subcontender)9

fsubcnt ← Evaluate (subcontender)10

if fsubcnt >= fcntdr then11

contender ← subcontender12

end13

end14

fcntder ← Evaluate (contender)15

if fcntder >= fchamp then16

champion ← contender17

end18

end19

When and how often these two operations are used relative to each other, is
the key feature that distinguishes the algorithms presented here.

2.1 Memetic Climber

The memetic climber, described in Algorithm 1, can be considered two nested
hillclimbers operating at different timescales, and in different search spaces: a
slow search in topology space (the outer loop, lines 3-19), and a fast search
in weight space (the inner loop, lines 6-14). The algorithm maintains a single
candidate solution, the champion. Each “generation”, a copy of the champion,
the contender, is topology-mutated and then local search is performed in for m
steps. The contender replaces the champion only if its fitness after local search is
higher than or equal to that of the champion. The intuition behind this algorithm
is that by using local weight search to refine new topologies it might be possible
to mitigate the disruptive effect of topology mutation. This is related to the
NEAT algorithm, which affords new topologies “innovation protection” [8].

2.2 Inverse Memetic Climber

The inverse memetic climber works in the same way as the memetic climber except
that the two types of mutation are interchanged (i.e. swapping lines 5 and 9 in
Algorithm 1): for every weight mutation, local search is done in topology space.

2.3 Memetic ES

The memetic ES, described in Algorithm 2, is one possible combination of the
memetic climber and evolution strategies. At each generation, a small amount of
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Algorithm 2. Memetic ES(μ,λ,n,m)
Initialize (Population, μ + λ individuals)1

for i=1 to n do2

for j=1 to (μ + λ) do3

contender ← Copy (Population[j])4

fcntndr ← Evaluate (contender)5

for k=1 to m do6

subcontender ← contender7

WeightMutate (subcontender)8

fsubcnt ← Evaluate (subcontender)9

if fsubcnt >= fcntdr then10

contender ← subcontender11

end12

end13

Population[j] ← contender14

Evaluate (Population[j])15

end16

Permute (Population)17

SortOnFitness (Population)18

for j=μ to (μ + λ) do19

population ← Copy (Population[j-λ])20

TopologyMutate (population[j])21

end22

end23

local search is conducted in weight space for each individual in the population.
The population is then sorted by fitness, and the least fit λ are replaced by copies
of the better fit μ of the population. Finally, all the newly copied individuals are
topology-mutated.

2.4 Inverse Memetic ES

Just as with the inverse memetic climber, the inverse memetic ES is identical to
memetic ES except that the weight and topology mutations (lines 8 and 21) are
swapped.

2.5 Memetic CMA-ES

This algorithm is a version of the memetic climber where the local search (lines
6-14, algorithm 1) uses Covariance Matrix Adaption Evolution Strategy (CMA-
ES) instead of the simple hillclimber. CMA-ES is a method that adapts the
covariance matrix of the problem variables in order to model the fitness landscape
as a multivariate normal distribution that used to generate new search points
(see [9] for a complete description of this algorithm). Our Memetic CMA-ES
is related to the more complex EANT2 algorithm [6] which uses CMA-ES for
weight search and standard ES to search topology.
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Table 1. Results for Memetic Climber with different numbers of local, weight search
steps. Best fitness found after 20000 episodes for simplerace, averaged over 50 runs.

Local steps Standard Extra Cartesian Extra random
2 13.83 12.81 13.27
5 13.79 12.71 13.12
10 13.85 13.06 13.33
25 13.51 12.90 13.15
50 13.86 11.66 12.96
100 13.46 9.50 12.76
250 13.25 7.80 11.74
500 11.19 6.99 10.65

3 Experiments

Two very different domains were chosen as testbeds for the memetic algorithms
described above: simplerace and non-markovian double pole balancing. The stan-
dard set of controller inputs normally used in these domains provide sufficient
information for the controller to solve the task. In order to evaluate how well
the algorithms learn to ignore irrelevant or redundant information, experiments
were conducted using three different input representations: (1) the standard in-
puts, (2) an extended input set consisting of the standard inputs plus a number
of inputs accurately describing redundant or irrelevant aspects of the state, and
(3) a noise input set consisting of the standard inputs and a number of normally
distributed random variables.

To compare the memetic to the non-memetics approaches, experiments we
also run for standard (non-memetic) (5 + 5) and (50 + 50) evolution strategies,
and as a baseline two versions of random search: one which randomly generates
masks and weight vectors, and one which only generates random weight vectors,
with all mask bits set. Both versions the memetic and inverse memetic ES have
a population size of 10.

The weight mutation for all methods used a Gaussian distribution with mean 0
and standard deviation 0.1 applied to all weights, and the probability of having
a bit flipped, p, was set to 0.05 for the topology mutation operator. For the
memetic algorithms, all mask bits are initially unset. These two operators are
described in section 2.

3.1 Setup: Simulated Race Car Driving

The simplerace problem involves driving a car in a simple racing simulation in or-
der to reach as many randomly placed waypoints as possible in a limited amount
of time. In addition, the driver must decide which waypoint to target in order to
beat an opponent car that tries to reach the same waypoints, giving the game a
strategic element. The game has previously been used as a benchmark problem
in several papers, and in two competitions associated with recent conferences1.
1 A description of the problem is available in [10], and source code can be downloaded

from http://julian.togelius.com/cec2007competition.
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For this domain, the standard input set consists of eight values: a bias term,
the speed of the car, angle and distance to the current and next way point and
to the next vehicle. The extended input set consists of the positions of both the
controlled and the opponent car in Cartesian space, the speed of the opponent
car, and the orientation and angular velocity of the controlled car in Cartesian
coordinates. This information, while correct, should be significantly harder than
the core inputs to interpret, due to the need for coordinate transformations. The
noise input set are seven inputs that are set to independent values drawn from
a Gaussian distribution with mean 0 and standard deviation 1.

Each algorithms was run 50 times, and 20, 000 multilayer perceptrons (MLPs)
with the tanh transfer function and six hidden units were evaluated in each run.
For the memetic climber, eight different settings (2, 5, 10, 25, 50, 100, 250, 500)
for the number of local search steps, n, (weight mutations) per global (topology
mutations) were tried.

3.2 Results: Simulated Race Car Driving

From Table 1, we can see that when the number of local steps per global mutation
is low, the memetic climber finds good controllers under all three input condi-
tions; for the simplerace problem, the best setting seems to be 10 local search
steps, though everything under 50 is good. When using hundreds of search steps,
worse solutions are found under all input conditions, though this effect is much
more marked under the extra Cartesian input condition.

In Table 2 the results for the best memetic climber configuration are compared
with a number of other search algorithms. The most striking result is that for
every algorithm, the controllers found using standard inputs are better than
those found using the extra random inputs, which in turn are better than those
found using the extra Cartesian inputs. These differences can be minor, as for
the memetic climber, or drastic, as for the (50 + 50) ES.

Table 2. Results for simplerace task. Best fitness found after 20000 episodes for sim-
plerace, averaged over 50 runs.

Algorithm Standard Extra Cartesian Extra random
Random search (mask/weights) 13.44 9.08 11.15
Random search (weights only) 10.66 1.18 7.36
Hillclimber 12.82 0.56 10.78
Memetic climber 10-local 13.85 13.06 13.33
Inverse memetic climber 10-local 13.85 12.76 13.52
(5+5) ES 15.47 0.94 13.93
(50+50) ES 16.23 1.30 14.14
(5+5) Memetic-ES 15.36 14.02 14.90
(5+5) Inverse Memetic-ES 15.45 14.51 15.18

None of the algorithms that only search weight space manage to find good
controllers using the extra Cartesian inputs, e.g. the (50 + 50) ES finds the
best controllers (probably close to the optimum for reactive controllers) for the
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standard inputs, but performs extremely poorly with the extra Cartesian inputs.
This effect can be seen even for random search, where random search in weight
space performs worse than random search in topology and weight space under
the standard condition, much worse under the extra random condition, and very
much worse under the extra Cartesian condition.

Using the standard and extra random random, all the population-based algo-
rithms outperform all non-population-based algorithms. With standard inputs,
the ESs slightly outperform the memetic ESs, and under the extra random con-
dition the opposite is the case; however, under the extra Cartesian condition the
difference is dramatic. Overall, the memetic ESs are the best algorithms of those
compared for finding simplerace controllers. (The differences in performance be-
tween standard and inverse versions are rather small and unsystematic.)

3.3 Setup: Non-markovian Double Pole Balancing

In this task, two poles, sitting side by side, hinged to a wheeled cart must be
balanced simultaneously by applying a scalar force at regular intervals such that
they are balanced indefinitely and the cart stays within the track boundaries.
Unlike the standard inverted pendulum problem which is nearly linear around
the unstable equilibrium point, the double pole system is highly non-linear due
to the interacting between the poles. In addition, in this non-Markovian version,
the controller only recieves three of the six state variable as standard input: the
distance of the cart from the center of the track, and the angle of each pole from
vertical. Since the velocity of the cart, and the angular velocities of the poles are
not provided to the controller, it must compute them from previous inputs usin
internal state (memory) in order to balance the poles (see [11] for equations of
motion and system parameters).

For this problem, the extended input set consists of the four Cartesian coor-
dinates of the tips of both poles. The noise input set consist of four Gaussian
noise sources as in the simplerace setup. In order to compute the velocities, the
controllers were represented by Elman-style simple recurrent neural networks
with sigmoid transfer functions. Each algorithm was run 30 times, and each
run lasted until the best network could balance the pole for 50, 000 time steps,
or until 30, 000 networks had been evaluated, whichever occured first. For this
problem, we also compare our results to CMA-ES.

3.4 Results: Non-markovian Double Pole Balancing

Table 3 summarizes the results for the pole balancing experiments. The variance
in the results of each algorithms for different sets of inputs is more pronounced
on this task compared to simplerace. In fact, many of the algorithms fail to find
controllers that can balance both poles for the required 50, 000 time steps. This
is partly because, for run time reasons, we have chosen to cut off the search
very early, at 30, 000 evaluations. This is roughly ten times more than the best
algorithm needs, but might be too short for some other algorithms.

One result that immediately stands out is that CMA-ES (along with memetic
CMA-ES) is much better than all of the other algorithms using both the standard
and extra Cartesian inputs. This is to be expected as CMA-ES is one of the
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Table 3. Comparison of methods using different input sets for non-
Markovian pole balancing task. For each type of input: the first column (evals.) is
the average number of pole balancing attempts required to solve the task; the second
column (%solved) indicates the percentage of the runs that were able to solve the task;
the third column (fail. fit.) is the average final fitness for the unsuccessful runs. The
number of local search steps per global mutation is 100 for the memetic climbers, 50
for memetic-ESs and 500 for the memetic CMA-ES. Each method was run 50 times.

Algorithm Standard Extra Cartesian Extra random
evals. %solved fail. fit. evals. %solved fail. fit. evals. %solved fail. fit.

Random search — 0 60 — 0 60 — 0 43
Random masks — 0 56 — 0 60 — 0 49
Hillclimber — 0 47 — 0 45 — 0 38
(5+5) ES — 0 46 — 0 43 — 0 39
(50+50) ES — 0 40 — 0 40 — 0 38
CMA-ES 3658 90 736 3421 90 523 — 0 92
Memetic CMA-ES 2223 39 497 21733 39 109 29000 5 162
Memetic climber 1736 17 444 8005 2 324 — 0 64
Inverse memetic 2900 2 76 — 0 109 — 0 47
Memetic-ES 1950 5 240 20500 5 147 — 0 862
Inv. Memetic-ES — — 175 — 0 112 — 0 51

most efficient algorithms for this particular problem to date [11]. However, the
performance of CMA-ES drops sharply under the extra random condition–from
90% to 0% successful runs.

In fact, the performance of all algorithms degrades dramatically when the
noisy inputs are present. The only algorithms that perform better than random
search in this case are the memetic CMA-ES (which sometimes solves the prob-
lem) and the memetic ES (which does not solve the problem, but has a relatively
good average fitness for failed runs).

Even using the standard and extra Cartesian inputs, the normal memetic
algorithms clearly outperform the non-memetic algorithms, including the ES
(but not CMA-ES). The inverse memetic algorithms perform worse than the
normal memetic algorithms under all conditions.

4 Discussion

Pole balancing and simplerace are quite different problems with apparently very
different search spaces, for all three input conditions. For the simplerace problem,
random search does relatively well, and the observed performance differences
between algorithms is at the upper end of the fitness range. For pole balancing,
almost the opposite is the case: most algorithms spend a long time trying very
unfit solutions and some, including the standard ES, do not perform noticeably
better than random search within the allotted number of evaluations.

The search spaces of the two problems are also transformed in different ways
by the added inputs. The extra Cartesian inputs make the simplerace problem
hard to solve for algorithms that search only for weights, but have little effect
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on pole balancing. This is possibly due to the fact that the Cartesian inputs
make the simplerace search space deceptive: algorithms easily find modestly fit
solutions that depend on the extra inputs, but are far from truly solving the task.
No such effect seems to exist for the extra Cartesian inputs for pole balancing.

Adding random extra inputs has little effect on the simplerace problem, while
it completely transforms the pole balancing problem, making the search much
harder for all tested algorithms. A simple explanation for this is that noise is
more deleterious for an unstable system like the double pole balancer, so that the
connections from the random inputs have to be masked off or made very close
to zero in order to prevent them from perturbing the system. The simplerace
environment, however, does not exhibit this kind of instability, so that steering
the car is more robust to disturbances (i.e. each action can, in principle, correct
for each disturbance without the system diverging).

For both problems, memetic search of topologies and weights was not only
competitive with algorithms that searched only for weights using standard in-
puts, but also significantly outperformed them when extra “distracting” inputs
were provided.

The decrease in evolvability in the presence of poisonous inputs is not due
to the increased dimensionality of the input or search space. This is clear from
the fact that, for both problems, evolvability decreased only very slightly in the
presence of non-poisonous inputs, whereas the input dimensionality is identical.
Further experiments (omitted due to space constraints) have shown that the ef-
fects of poisonous inputs persist when replacing MLPs with linear filters of much
lower dimensionality. See also the experiments in chapter 7.2 of [10], which sug-
gest that increasing the dimensionality of the search space (through increasing
the size of the hidden layer) actually increases evolvability in simplerace.

In simplerace, random weight and topology search reached lower fitness when
subjected to the noise inputs than under the other two conditions, but perfor-
mance did not decrease as drastically as it did for the other search algorithms.
This suggests that poisonous inputs decrease evolvability both by reducing the
portion of the search space which contains good solutions, and by making the
search space more deceptive. The poor performance of random search on pole-
balancing prevents us from drawing similar conclusions for that domain.

It is plausible that other topology and weight-evolving algorithms are equally
capable of countering poisonous inputs. If so, this provides an important argu-
ment for the use of such algorithms on problems where the best input represen-
tation is not yet known.

5 Conclusions

We have shown that two rather different control learning problems can be made
much harder by adding irrelevant information to the controller inputs, albeit
which sorts of extra inputs were poisonous depended on the problem. This effect
seems to be independent of the type of neural network used. We have also shown
that these effects can be mitigated to a large extent by using algorithms that
search topology and weight space separately; such algorithms could solve both
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benchmark problems in the presence of irrelevant inputs that made them unsolv-
able by the tested non-memetic algorithms. In particular, we have shown that the
memetic climber can be extended to a population-based algorithm in the form
of the memetic ES. This algorithm is competitive with other population-based
algorithms even when the state description is well-selected and well-represented,
and performs better than the memetic climber when presented with problematic
irrelevant inputs. We expect these findings to be highly relevant for cases where
evolutionary reinforcement learning is applied to novel, unanalyzed problems, for
which the correct state description is unknown, so that the best approach is to
feed the controller any information that might or might not be relevant. In other
words, the sort of problems where you would expect evolutionary computation
to be at its greatest advantage.

Acknowledgments

This research was supported in part by the Swiss National Science Foundation
(SNF) grant number 200021-113364/1. Thanks to Dan Ashlock for suggesting
the term ”poisonous inputs.”

References

1. Lucas, S.M., Togelius, J.: Point-to-point car racing: an initial study of evolution
versus temporal difference learning. In: Proceedings of the IEEE Symposium on
Computational Intelligence and Games (2007)

2. Igel, C.: Neuroevolution for reinforcement learning using evolution strategies. In:
Proceedings of the Congress on Evolutionary Computation (CEC) (2003)

3. De Nardi, R., Togelius, J., Holland, O., Lucas, S.M.: Evolution of neural net-
works for helicopter control: Why modularity matters. In: Proceedings of the IEEE
Congress on Evolutionary Computation (2006)

4. Togelius, J., Gomez, F., Schmidhuber, J.: Learning what to ignore: memetic climb-
ing in weight and topology space. In: Congress on Evolutionary Computation
(CEC) (to be presented, 2008)

5. Yao, X.: Evolving artificial neural networks. Proceedings 1447, 87(9) (1999)
6. Siebel, N.T., Sommer, G.: Evolutionary reinforcement learning of artificial neural

networks. International Journal of Hybrid Intelligent Systems 4(3), 171–183 (2007)
7. Krasnogor, N., Pacheco, A.A.,, J.: Memetic algorithms. In: Metaheuristics in Neu-

ral Networks Learning, pp. 225–247. Springer, Heidelberg (2006)
8. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting

topologies. Evolutionary Computation 10(2), 99–127 (2002)
9. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution

strategies. Evolutionary Computation 9(2), 159–195 (2001)
10. Togelius, J.: Optimization, Imitation and Innovation: Computational Intelligence

and Games. PhD thesis, Department of Computing and Electronic Systems, Uni-
versity of Essex, Colchester, UK (2007)

11. Gomez, F., Schmidhuber, J., Miikkulainen, R.: Accelerated neural evolution
through cooperatively coevolved synapses. Journal of Machine Learning Re-
search 9, 937–965 (2008)



Parameter Control Methods for Selection

Operators in Genetic Algorithms

P. Vajda, A.E. Eiben�, and W. Hordijk

Vrije Universiteit Amsterdam
gusz@cs.vu.nl

http://www.cs.vu.nl

Abstract. Parameter control is still one of the main challenges in evolu-
tionary computation. This paper is concerned with controlling selection
operators on-the-fly. We perform an experimental comparison of such
methods on three groups of test functions and conclude that varying se-
lection pressure during a GA run often yields performance benefits, and
therefore is a recommended option for designers and users of evolutionary
algorithms.

1 Introduction

Evolutionary computing (EC) has become a proven problem solving technol-
ogy over the past few decades [6]. However, the performance of evolutionary
algorithms (EAs) depends largely on their parameters, such as population size,
selection pressure, crossover and mutation rates. Choosing good values for EA
parameters before an EA run (parameter tuning) and/or appropriately vary-
ing parameter values during an EA run (parameter control) is still one of the
main challenges of the field [4]. The ultimate goal is to develop methods that
are capable of adjusting the parameter values to a given problem, and also to
the different stages of the search process. Traditionally, most attention has been
paid to parameters of the variation operators (in particular the crossover and
mutation rates) and –to a much lesser extent– to population size [3,13]. In con-
trast, on-the-fly control of selection operators has received little attention, and
the few available results are scattered throughout the literature. Note that in
EAs that use evolution strategy-like population management, that is, (μ, λ) or
(μ+λ), the offspring population size λ determines the selection pressure, and can
thus be used to control the selection operator [11]. However, in this study we fo-
cus on genetic algorithms (GAs), in particular steady-state GAs that inherently
feature two selection mechanisms: one for parent selection and one for survivor
selection (replacement). To keep things simple, we keep the replacement strategy
fixed and focus on parent selection. The objectives of this paper are twofold: To
present an overview of known parameter control methods for (parent) selection
operators, and to perform an experimental comparison of these methods with
each other and a benchmark GA (a simple GA with K-tournament selection).
� Corresponding author.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 620–630, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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To broaden the support base of our empirical findings we use three groups of test
functions: (1) a collection of popular test functions for EA research, (2) known
“GA teasers”, and (3) a set of abstract fitness landscapes created by a random-
ized generator. The results show that the winning policy1 largely depends on
the group of test functions. Consequently, the overall winner depends on the
relative weights these groups are given when calculating the final score for each
policy. However, the data provides sufficient support for the superiority of on-
the-fly control of selection pressure (as opposed to keeping it constant during a
GA run) and an indication of a control mechanism that is capable of regulating
selection pressure by itself.

2 Parameter Control for Selection Operators

In this section we present the contestants of our experimental comparison, includ-
ing K-tournament selection with a fixed K (benchmark), K-tournament selec-
tion with changing values of K (new method, introduced here), and three control
methods from the literature. Despite an extensive literature study we could not
find any other existing control methods, except variations on the Boltzmann
selection, e.g., [14].

Fixed tournament size. As a benchmark for the parameter control methods,
we use a simple genetic algorithm (SGA) with tournament selection with fixed
tournament size K. We consider 10 values, K = 1, 2, 4, 6, 8, 12, 16, 24, 32, 64, for a
comparison with the control methods, where K = 1 amounts to uniform random
selection (compensated by the replacement strategy).

Deterministic tournament-size control. This method (DTC) is the most
straightforward way of adjusting the selection pressure during the search. The
tournament size K is a deterministic function of the time step (generation) t:

K(t) =
{

t(p2−p1)
1000 + p1 if t ∈ [0, 1000]

p2 otherwise
(1)

where p1 and p2 are parameters of the method. In words, the tournament size
increases linearly from p1 to p2 (or decreases if p1 > p2) for the first 1000
generations, after which it stays fixed at p2.

Boltzmann selection with annealing. A more sophisticated deterministic
parameter control method is Boltzmann selection with a Riemann-Zeta anneal-
ing schedule (BSR). The probability p(x, t) of selecting an individual x from the
population Pt at time step t is calculated as:

p(x, t) =
eγt·f(x)∑

y∈Pt
eγt·f(y)

, γt = γ0

t∑
k=1

1
kα

(2)

where γt is the annealing temperature. γ0 and α are parameters of the method.
1 By policy we mean either a control mechanism, or the value of K in the SGA using

K-tournament selection.
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Self-adaptive tournament size. It is also possible to let the parameter value
be controlled by the evolutionary process itself. In [5], a self-adaptive tourna-
ment size (SAT) method was introduced, where an extra parameter k ∈ (0, 1) is
added to each individual’s chromosome, which represents this individual’s con-
tribution to the overall tournament size parameter K =

⌈∑N
i=1 ki

⌉
, where N

is the population size. Note that K ∈ [1, N ]. The self-adaptive mechanism for
mutation rates in GAs as described in [2] is then used to mutate the individual
values of k:

k′ =
(

1 +
1− k

k
· e−γ·N(0,1)

)−1

(3)

where γ is a learning rate which allows for control of the adaptation speed.
This mutation mechanism has the desirable property that if k ∈ (0, 1), then
also k′ ∈ (0, 1). A variant of this, called hybrid self-adaptive tournament size
(HSAT; see [5] for details) adjusts an individual’s parameter value k according
to whether its fitness value is better or worse than that of its parent:

k′ =
{

(1 + 1−k
k e−|γN(0,1)|)−1 if f(x′) ≥ f(x)

(1 + 1−k
k e|γN(0,1)|)−1 otherwise

(4)

where x represents the parent and x′ the offspring. Of course the ≥ sign will
be a ≤ for minimization problems. Again, γ is a learning rate. This method is
self-adaptive as in the original SAT method, but it also uses feedback from the
search (in particular the fitness values of parents and offspring).

Fuzzy tournament selection. This method (FTS) is based on the adaptation
of selection in [8]. The concept of fuzzy logic (FL) itself was conceived by Zadeh
[7]. Here, we use two inputs, genotypic and phenotypic diversity, and one output,
μ, the modification parameter. Genotypic diversity (GD) is calculated as follows:

GD =
d− dmin

dmax − dmin
=

1
N

∑N
i=1 D(Cbest, Ci)−min {D(Cbest, Ci)}

max {D(Cbest, Ci)} −min {D(Cbest, Ci)}
(5)

where N is the population size, D(x, y) ∈ [0, 1] is the (normalized) Hamming
distance of genomes x and y, and Cbest is the chromosome of the best individual
in the population. Phenotypic diversity (PD) is calculated as follows:

PD =

{
fbest

f
↓ for minimization problems

1−fbest

1−f
↑ for maximization problems

(6)

The modification parameter μ is calculated using the fuzzy logic rules shown in
figure 1. The tournament size K in generation t is set to Kt = (μ+ 0.5) ·Kt−1.
The label set for the output is {Low, Medium, High} (figure 1), calculated as
follows:

GD \ PD Low Medium High
Low Low Medium High
Medium Low High High
High Low Low High
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Fig. 1. Fuzzy sets of GD (left), PD (center), and μ (right)

3 Test Suite

To compare the different parameter control methods for selection operators, we
have composed an extensive test suite that includes (1) some popular (mostly
difficult) functions such as Ackley’s function and Rastrigin’s function, (2) well
known “GA teasers” such as the long path problem and the royal road function,
and (3) a set of instances from the multimodal problem generator of Spears. In
this section, a brief review of the used test functions is presented.

Popular test functions
These functions are used very often in experimental EC research. Therefore, we
restrict ourselves to simply listing them: the Sphere, Generalized Rosenbrock,
Generalized Ackley, Rastrigin, and Griewank functions [16,1]. These are all de-
fined as minimization problems on real numbers in L dimensions.

GA teasers
These functions where either specifically constructed to be deceptive or to test
certain assumptions about how the genetic algorithm performs its search. They
are all defined as maximization problems on bit strings of length L.

Long path. This function [9] is difficult mainly because (at least from a hill-
climbing point of view) the only way to the global optimum is very long and
narrow, with the length of this path increasing exponentially with the problem
size L. So, even though this problem is unimodal, it may take an exponentially
long time to reach the optimum.

Ugly. This function [18] presents a deceptive function. To calculate an individ-
ual’s overall fitness value F , first its chromosome is cut into 3-bit substrings
bibi+1bi+2, and each of these substrings is assigned a fitness value f . The overall
fitness of an individual is the average over all the substrings:

F (b) =
∑L/3−1

i=0 f(b3i+1b3i+2b3i+3)
L

, f(b) =

⎧⎨⎩
2 if b ∈ {0 ∗ ∗}
3 if b = 111
0 otherwise

(7)

Royal road. This function [15] was originally introduced to investigate the
validity of the building block hypothesis [10]. The main idea of the function is
to compare a given individual with a set of schemata with a varied number of
defined bits and containing various pre-defined building blocks. For each of the
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schemata that the individual is an instance of, it receives one point. The overall
fitness value of the individual is then a weighted sum of the received points.

Random landscapes by the multimodal problem generator
A useful and tunable test suite for testing GAs can be created with the multi-
modal problem generator (MPG) of Spears [12,17]. Here, we generate problem
instances with P = 1, 2, 5, 10, 25, 50, 100, 250, 500, and 1000 peaks whose
heights are linearly distributed and where the lowest peak has height 0.5. The
fitness of an individual is measured by the Hamming distance (HD) between the
individual and the nearest peak, scaled by the height of that peak. The nearest
peak is determined by

Peaknear(b) =
P

min
i=1

(HD(b, P eaki)) (8)

In case of multiple peaks at the same (minimum) distance, the highest of these
peaks is chosen. The evaluation function of an individual is then:

F (b) =
L−HD(b, P eaknear(b))

L
· height(Peaknear(b)) (9)

4 Experimental Setup

We used all parameter control methods for selection described in section 2 on
all test functions in the test suite described in section 3. For each method, 100
runs are performed on each problem instance (with different random seeds for
each run), for a maximum of 5000 fitness evaluations per run. Three standard
performance measures are used: Success Rate (SR; fraction of times the global
optimum was found), Average number of Evaluations to Solution (AES; only
calculated over those runs where the global optimum was found), and Mean
Best Fitness (MBF). These performance measures are calculated over the 100
runs for each combination of control method and problem instance. We used two
variants of the simple genetic algorithm, one with a floating point representation
and one with a bit string representation.

For the popular test functions we use a floating point GA, cf. table 1. Note
that all problems in this group are minimization problems in L = 30 dimen-
sions/variables. Float vector mutation works as follows. Individuals are repre-
sented as x = 〈x1, x2, . . . , xL〉. The mutation rate p ∈ [0, 1] determines whether
a particular value xi will be mutated. If so, then x′i is drawn from a uniform
random distribution from the interval I = [xi − r, xi + r], where r is defined as:

r =

⎧⎨⎩
p b−a

2 if a ≤ xi − p b−a
2 and b ≥ xi + p b−a

2

xi − a if a > xi − p b−a
2

b− xi if b < xi + p b−a
2

(10)

where the domain of the chromosome is [a, b]L. The used domain values for
the different functions are [−5.12, 5.12] for the Sphere, Rosenbrock, and Rastri-
gin functions, [−32.768, 32.768] for the Ackley function, and [−600, 600] for the
Griewank function.
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Table 1. Details of the GAs used in the experiments

Representation floating point bit string

GA model steady-state steady-state

Optimization minimization maximization

Chromosome length (L) 30 29, 30, 64, 100

Population size 100 100

Selection all from section 2 all from section 2

Crossover uniform (pc = 0.7) uniform (pc = 0.7)

Mutation float vector (pm = 0.1) bit flip (pm = 0.01)

Replacement delete worst delete worst

Since the GA teasers and the multimodal problems are defined in terms of
bit strings, we use a GA with a bit-string representation here, see Table 1, right
column. The chromosome lengths depend on the individual problem, and here we
use L = 29 for the long path, L = 30 for the ugly problems, L = 64 for the royal
road problem (with the ”building blocks” being of length 8), and L = 100 for the
multimodal problem instances. The parameter values come from the definition of
the functions and most relevant articles. If there were no sufficient and accepted
parameter values in the literature (BSR, SGA and DTC), we tried to cover the
parameter space by using multiple values.

Finally, the parameter values for the various control methods need to be
specified. For the deterministic tournament-size control (DTC) method, we use
p1, p2 ∈ {2, 7, 17}, i.e., six combinations of p1 and p2 values such that p1 �= p2.
For the Boltzmann selection (BSR) method, we use the following values for
the (γ0, α) parameter combination: (40.89, 1.0001), (60.57, 1.1), (154.30, 1.5),
and (243.2, 2). And for the self-adaptive tournament size (SAT) and the hybrid
version (HSAT), we use γ = 0.22.

5 Results

For a direct comparison, we calculated a normalized score for each method. On
each test function, the worst method gets a score of 0, the best one gets 1, and the
remaining ones get a score that is linearly dependent on their result (RESA,T ):

score(A, T ) =

{
RESA,T −MIN(RES.,T )

MAX(RES.,T )−MIN(RES.,T ) if ↑
MAX(RES.,T )−RESA,T

MAX(RES.,T )−MIN(RES.,T ) if ↓
(11)

where A is a selection method and T a test function. Recall that there are three
groups of test funtions (Popular, Teasers, and MPG). Each method gets a score
between 0 and 1 for each group by averaging the scores over all test functions
in the group. The total score of a method is the average of its scores for all
three groups. This total score is calculated for each of the performance measures
(SR, AES, MBF ). The average of these three scores is then the final score of a
method (Table 2, last column). Of course we can also calculate a total score for
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each performance measure first, and then calculate the final score as an average
over these three scores. Table 2 shows the results of both these calculations, i.e.,
either by performance measure (columns 2–4) or by test function group (columns
5–7), both leading to the same final score (last column). As the table shows, the
best overall score is achieved by the HSAT method.

Table 2. Scores of selection methods by the three performance measures and by the
three groups of test functions. The final score is the average of these.

SR AES MBF Teasers Popular MPG Final score

HSAT 0.832 0.764 0.828 0.780 0.977 0.667 0.808
SGA 1 0.949 0.568 0.840 0.889 0.869 0.599 0.786
DTC 2 7 0.720 0.863 0.737 0.682 0.958 0.679 0.773
SGA 2 0.822 0.695 0.748 0.715 0.918 0.632 0.755

SAT 0.752 0.810 0.684 0.692 0.927 0.627 0.749
DTC 7 17 0.712 0.875 0.631 0.548 0.956 0.713 0.739
SGA 4 0.734 0.824 0.657 0.625 0.922 0.668 0.739
DTC 2 17 0.752 0.751 0.689 0.501 0.967 0.724 0.731

FTS 0.714 0.870 0.609 0.594 0.919 0.682 0.731
SGA 8 0.755 0.808 0.619 0.498 0.934 0.751 0.727
DTC 7 2 0.760 0.852 0.549 0.531 0.874 0.756 0.720
SGA 6 0.667 0.852 0.590 0.541 0.937 0.630 0.703

SGA 16 0.648 0.860 0.589 0.507 0.929 0.661 0.699
SGA 12 0.681 0.860 0.541 0.470 0.930 0.682 0.694
SGA 24 0.630 0.886 0.458 0.409 0.909 0.655 0.658
BRS 2 0.653 0.880 0.441 0.402 0.901 0.671 0.658

SGA 64 0.661 0.886 0.417 0.437 0.838 0.690 0.655
DTC 17 2 0.748 0.769 0.434 0.504 0.737 0.710 0.650
SGA 32 0.618 0.879 0.395 0.413 0.813 0.665 0.631
DTC 17 7 0.666 0.759 0.380 0.370 0.784 0.653 0.602

Assigning equal weights to each group of test functions or performance mea-
sures is rather arbitrary, and obviously the overall winner could change if we use
different weights (which would reflect different relative importances for the dif-
ferent types of test functions or performance measures). In Figure 2 we present
the overall winner for all possible combinations of weights. In the three corners of
each graph either the three test function groups (left) or the three performance
measures (right) are shown, representing a weight of 1 for the group belonging
to this corner and 0 for the other two. The equally-weighted average (as given
in table 2) is the point in the center. As the figure shows, HSAT remains the
best method for a wide range of relative weights (in both cases). The SGA 1
method also performs quite well, but mostly on the GA teasers group, which
represents the most difficult test functions. On these functions, a low selection
pressure works best (allowing for more exploration), and with the SGA 1 method
there is no selection pressure at all (parents are chosen at random with uniform
probability). As far as we know, Figure 2 introduces a new way of presenting
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Fig. 2. The best selection methods for different weights of the test function groups
(left) and of the performance measures (right). The equally-weighted average is the
point in the center.

EA performance results which provides useful insights for algorithm comparisons
relative to importance given to different test functions or performance measures.

Given these results, we are now able to answer the question on which test
functions does each selection method perform well, and why?

SGA. This is the benchmark for the parameter control methods. Our results
show that the optimal tournament size depends strongly on the test function.
There are some easy landscapes where the GAs with higher selection pressure
perform better (MPG), and there are difficult landscapes where the SGA behaves
in the opposite way (GA teasers). However, the optimal tournament size can be
anywhere in between, so we can conclude that there is no prefect (constant)
tournament size.

DTC. The results show clearly that there exist landscapes where DTC per-
forms better than the SGA. On the Ackley function, e.g., the gradual increase
in tournament size leads to a much better performance than all of the SGA vari-
ants. This confirms that the optimal tournament size indeed requires adaptation
during the runtime of the GA.

BRS. This proves to be a good method on MPG problems. However, since it
uses a deterministic parameter control, it does not work well on more difficult
problems. Due to the parameter settings, the BRS method reaches a very high
selection pressure when the population is close to the optimum, which makes the
method very fast. Nevertheless, if the landscape does not need a high selection
pressure, this method does not give satisfactory results.

HSAT. Overall, this method performs well on all test functions. For the Spears
functions, the control parameter (K) increases very much at first, and then
drops down again when the population is very close to a peak. This is due to
the fact that recombination can initially create better offspring quite easily, so a
higher selection pressure converges more quickly to a good area in the landscape,
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whereas once it becomes more difficult to find better offspring, a lower selection
pressure could be beneficial (allowing for more exploration). On more difficult
problems, like the GA teasers, the parameter value stays low all throughout,
because it is always difficult to find fitter offspring, and a low selection pressure
(more exploration) is better – as the good score of SGA 1 indicates. Whenever
a landscape requires a high selection pressure, the control parameter always
reaches the upper limit (e.g., on most popular functions).

FTS. Although this method is not performing as well as the others, its adapta-
tion is handled quite easily. The fuzzy system does actually not directly control
the selection parameter, but it merely multiplies it. Therefore, it usually becomes
too high, and thus the selection parameter can not converge to an optimal value.

Finally, we can answer similar questions about the test functions: How “diffi-
cult” is a test function and which methods perform well on it?

Popular functions. This group of functions has a variety of difficulty levels, but
are overall easier than the GA-teasers. Our results suggest that those methods
which can adjust the selection pressure quickly work better. The HSAT method
appears to perform the best overall.

GA-teasers. These are the most difficult test functions. Generally speaking,
the methods that maintain a low selection pressure perform better, because the
population can leave the (bad) local minima more easily. The SGA 1 method
appears to be the best in this respect, with HSAT being second.

MPG. Because of the special properties of these functions, the greedy methods
found the optimum faster. A high selection pressure gives an advantage on these
functions. Here, the DTC (7, 2) method is the best.

6 Conclusions

The main conclusions that can be drawn from our comparison of the different
selection methods are as follows:

1) On-the-fly adjustment of the parameter(s) regulating selection is superior to
using a constant value. First, because this enables the GA to use different levels
of selection pressure on different landscapes without human tuning. Second,
because using different parameter values at different stages of the GA search
can significantly improve the performance.
2) The best method to control selection depends on the problem (type), but
our results indicate that HSAT is the generally best policy. It is capable of
appropriately adjusting the selection pressure according to the search results so
far and to the given landscape.
3) The general strategy of the HSAT method is that as long as improvements
are found, the selection pressure will increase to exploit good solutions. However,
when the population is stuck or has converged too much, the selection pressure
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will decrease to encourage more exploration. These parameter adjustment de-
cisions can be made based on genotypic and/or phenotypic diversity, or from
the fitness differences between parents and offspring. Here we only tested one
possible implementation of the main idea.

In the future, more detailed investigations will have to be done, but our exper-
iments have already provided useful results and a proof-of-principle. In general,
the use of parameter control for selection operators is a recommendable design
heuristic for EA users.
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Abstract. This paper studies the performance of four alternative eval-
uation methods; two instances of the Exponential Moving average, the
Elo-rating and the Glicko-rating method. These methods are tested in
a co-evolutionary setup using the LINT-game, which is known to be
problematic under co-evolutionary conditions. Besides the different eval-
uation approaches, two methods aimed at preserving diversity are tested.
By using the Objective Fitness Correlation as an analytical tool for mon-
itoring accuracy of evaluation, it is shown that actual performance of an
evaluation method strongly depends on whether co-evolutionary failure
occurs and that a multi-modal approach to the LINT-problem is effective
in maintaining stable progress over time.

1 Introduction

Co-evolution offers the potential to evaluate individuals using a limited, adaptive
set of interaction partners. The design of a co-evolutionary algorithm begins with
a consideration of the desired solution concept [1]. A solution concept specifies
which elements of the search space qualify as solution to a given problem and
which do not. Examples of solution concepts include: Maximum Expected Utility
(MEU), the Pareto-optimal set and Nash-equilibria. In this paper the focus is
on test-based problems where candidate solutions are evaluated on the outcome
against a set of test conditions and the MEU solution concept is thus understood
as maximizing the sum of outcomes against all possible opponents.

In the co-evolutionary algorithm the set of test conditions can be understood
as a population in its own right with its own evolutionary dynamics, giving
us two conceptually distinct populations. The advantage of the evolutionary
interaction between the set of candidate solutions and its set of opponents is
twofold: biases and overfitting related to the use of a static test set are avoided,
while the evolutionary co-dependence of the sets explores the problem space in
a more meaningful way than a series of stochastically assembled test sets could.

The co-evolutionary interaction also leads to a set of pathologies that can
lead to co-evolutionary failure and threaten stable progress towards the solution
concept. Three of these problems recognized by many researchers are disengage-
ment, overspecialization and cycling, see among others [2]. These pathologies can

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 631–640, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



632 R.P.T. van Wijngaarden and E.D. de Jong

be directly ascribed to a dissociation between the subjective fitness, derived from
the local interactions with other individuals, and the objective fitness, a measure
of individual performance on a global scale.

Despite these problems co-evolutionary algorithms have been designed that
guarantee stable progress for the MEU solution concept and the other solution
concepts described above. The practical value of such guarantees remains limited
however, as long as bounds on the computational expenses required to actually
reach the desired solution concept are unavailable. A central current challenge
in co-evolutionary research therefore is how algorithms can be designed that
not only enable stable progress, but also do so efficiently, i.e. using limited
computational resources.

In this paper four alternative evaluation methods are compared to a control
method in terms of the accuracy of evaluation. This accuracy is measured by
means of the Objective Fitness Correlation (OFC) [3], an analytical tool that
expresses whether the evaluation of a population adequately reflects the global
goal. Furthermore two alternative algorithmic setups are used to test the evalu-
ation methods that differ in the way diversity within populations is handled to
see if the performance of the evaluation methods can be viewed in isolation. A
test-problem is used that is known to lead to co-evolutionary failure and is yet
simple enough to study this failure at a fundamental level: the LINT-game [2,3].

The rest of the paper is structured as follows: Section 2 shortly introduces the
used LINT-game. Section 3 and 4 introduce the evaluation methods and diversity
measures used respectively, while section 5 describes how these are combined into
testable algorithms. The results are presented in section 6 and section 7 and 8 are
used to discuss the results and draw conclusions, in that order.

2 Test Problem: LINT

Watson and Pollack recognized that the mechanics behind the benefits and pro-
belms associated with co-evolution are often still poorly understood, as the evo-
lutionary interaction between individuals and a set of test conditions adds a
whole new level of complexity. Therefore they introduced the numbers game as
a means to investigate the properties of the co-evolutionary setup in isolation
from problem specific difficulties [2]. This class of games as trivially simple as
evolving and maximizing integers implemented in a co-evolutionary algorithm
displayed archetypal co-evolutionary pathologies, thereby effectively attributing
these pathologies to the co-evolutionary setup rather than problem complexity.

For this investigation the Locally Intransitive (LINT) game is used; a specific
numbers game introduced by Watson [4] and further investigated by De Jong
[3,5]. To avoid complications due to overspecialization the LINT-game used is
limited to one dimension and individuals are represented as a single positive
floating-point value. A game between a learner L and a test T can be expressed
as follows:

G(L, T ) =
{

1 if T ≥ L ∧ ¬(T ≥ (1 + δ)L) or ¬(T ≥ (1− δ)L)
0 otherwise
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We can see the LINT-game is locally deceptive as information gained from op-
ponents that fall within the region defined by α gives evolutionary incentives
diverging from the global goal. The objective fitness of an individual can now be
expressed as: obj fitness(L) = (1 − δ)L + (1 + δ)L− L = L.

To avoid further complications such as disengagement, a single population
is used which means that individuals are evaluated on two different roles. On
the one hand individuals are evaluated as learners that try to beat as many
opponents as possible and on the other hand individuals are evaluated as tests
that provide information for the other individuals, see [3].

3 Evaluation Methods

The evaluation of individuals deals with the question how to translate the infor-
mation gained from interactions between individuals into a meaningful subjective
fitness score. In principal sampling randomly selected opponents as a basis for
this evaluation is sufficient since the average of the resulting outcomes is guar-
anteed eventually to converge to the expected outcome. However, this seems like
a waste of computational effort, as substantial knowledge is gained during evo-
lutionary runs besides the outcomes of individual interactions. Therefore four
evaluation methods are tested that use the information gained from the interac-
tions differently than the most basic interpretation that simply uses the sum of
a sequence of interactions as a subjective fitness score.

The Exponential Moving Average (EMA) is used in statistics and fi-
nance to smooth out short-term fluctuations and study underlying trends [6].
In an evolutionary setup this means that individuals carry not only informa-
tion about performance in the current timestep, but information about previous
timesteps as well, constituting a form of memory. Over time the impact of pre-
vious timesteps degrades exponentially based on the smoothing factor α. Given
the actual measured performance Yt at timestep t and the current EMA score
St, the new EMA score can be calculated as: St+1 = αYt + (1 − α)St, with α
between 0 and 1. For our experiments two different implementations of the EMA
method are used: one that updates the EMA score after a cycle of interactions,
or tournament, which will be referred to as tEMA and one that updates per
individual interaction, which will be referred to as iEMA.

The Elo-rating, originally invented by Arpad Elo, is in its current adaptation
used as a rating system for chess players [7]. This method aims at rating players
in a competitive environment more fairly than counting the total number of
wins and losses by attempting to statistically estimate the underlying true skill
of these players. To do this the current rating of players is taken into account,
which means that the impact of a specific match is relative to the players. Given
two players A and B with respective ratings RA and RB the new rating R′

A of
player A can be calculated by means of the expected outcome EA and the realized
outcome SA as follows:

– EA = 1
1+10(RB−RA)/400

– R′
A = RA + K(SA − EA), with K as the maximum rating adjustment
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The rating of player B can be updated noting that, EA+EB = 1 and SA+SB = 1
New players are initialized with a fixed starting rating.

The Glicko-rating is based on the Elo-rating method and originally invented
by Mark E. Glickman [8] to provide an alternative rating system for competitive
communities. Glickman realized that in the Elo-rating system the impact of a
game depends solely on the ratings of both players, the number of previous games
played is irrelevant while it seems reasonable that the rating of an individual that
has played many games is a more accurate approximation of the underlying true
skill. To take the amount of previous games into account Glickman introduced
the Rating Deviation (RD) that reflects the stability of a players rating and
generally decreases as more games are played. Given a player A with rating
RA and rating deviation RDA we can update based on a game played against
opponent B with rating RB and rating deviation RDB with outcome S as follows:

– R′ = R + q
1/RD2

A+1/d2 g(RDB)(S − E(S|RA, RB, RDB)

– RD′ =
√

( 1
RD2

A
+ 1

d2 )−1

With:

– q = ln(10)
400

– g(RDA) = 1√
1+3q2(RD2

A)/π2

– E(S|RA, RB, RDB) = 1
1+10−g(RDB )(RA−RB)/400

– d2 = 1
q2g(RDB)2(E(S|RA,RB ,RDB)(1−E(S|RA,RB ,RDB)

New individuals are initialized with a fixed rating and RD.

4 Diversity Maintenance

A genetically diverse population is more proficient at exploring the fitness land-
scape, which is generally considered to be beneficial in evolutionary computation.
For co-evolutionary algorithms diversity is even more important as the set of test
conditions is in itself a dynamic population. In the LINT game specifically, diversity
is an important issue as convergence will lead to misleading evolutionary incentives
when more and more individuals fall within each others regions of intransitivity. For
this reason we also look at two different methods of promoting diversity and see how
this influences the performance of the different evaluation methods.

Firstly, the key to a successful test set is to provide learners with relevant
challenges so that an informed decision can be made about the relative fitness
of individuals. This in general means that a test that makes more distinctions
between learners carries more information about the desired evolutionary gra-
dient towards the solution concept. A test is considered to make a distinction
between two learners if the outcome against one is higher than against the other
as in [9]. By using Competitive Fitness Sharing [10] an informativeness score
can be determined for individuals that expresses the number of distinctions an
individual makes weighted by the total number of times every distinction has
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been made. This score can be used to augment the test-score of an individual
and contributes to a more diverse and informative population.

Secondly, the problem of local intransitivity would be solved if all individuals
would be spaced apart such that none falls within an others region of intran-
sitivity. Therefore the challenge posed by the LINT game can be viewed as a
dynamic multi-modal search problem [11], as the challenge is not only to find the
individual with the highest numerical value, but also to maintain lower valued
individuals along the way, spaced to avoid overlap and thereby sustain progress.
In a sense a non-overlapping individuals become desirable local optima. Various
methods have been proposed to deal with multi-modal environments, but for
this paper elements of Deterministic Crowding (DC) [12] and Restricted Tour-
nament Selection (RTS) [13] are used. New individuals enter competition for
space with one of the existing individuals based on phenotypic similarity and
new individual can replace the old one if it has a higher subjective fitness score.
To measure phenotypic similarity the outcomes of games played by an individ-
ual in the current evolutionary cycle are recorded in an outcomevector, and the
Hamming distance between two outcomevectors is used to express similarity.

5 Algorithmic Details

Using the above descriptions of diversity maintenance three algorithms can be
constructed to test the five evaluation methods introduced in section three; the
Basic algorithm with no specific diversity operator, the Informative algorithm
and the Multi-Modal algorithm. The specific implementation is based on De
Jong [3] and is depicted in Fig. 1 and operates as follows:

1. pop := initialize random();
2. for gen := 1 : generations{
3. pop := pop ∪ mutate(pop);
4. for i := 1 : |pop|{
5. learner scorei :=

∑|pop|
j (G(popi, popj);

6. test scorei :=
∑|pop|

j (1 − G(popj , popi));
7. }
8. sub fitnessi := learner scorei + test scorei;
9. pop := select(pop, sub fitness);
10.}

Fig. 1. Pseudo-code for the Basic algorithm using the base evaluation method

initialize random(). An initial population of size n is generated as a set of uni-
formly distributed floating-point values between 0 and 1. Necessary other scalars
are initialized to the appropriate value; the base and EMA evaluation methods
start with a subjective fitness score of 0, while the Elo- and Glicko-rating meth-
ods start with a rating of 1500 (both) and a RD of 350 (for Glicko only).

mutate. In this step n new individuals are generated by randomly selecting
individuals from the current population without replacement and adjusting the
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floating-point value by a normally distributed random value with mean -0.025
and standard deviation 0.1. The negative mutational bias reflects the idea that
a random mutation is generally more harmful than beneficial [3].

evaluate. Every individual in the new population of size 2n is played against all
other individuals twice: once as a learner and once as a test. Based on this cycle of
interactions learner- and test-scores are calculated and combined into a subjective
fitness score. For the Basic algorithm the tEMA evaluation method calculates the
subjective fitness differently by replacing line 8 in the pseudo-code by:

8. sub fitnessi new := α(learner scorei + test scorei) + (1−α)sub fitnessi old;
For iEMA every individual interaction is used to update both the learner- and

test-score and the Elo and Glicko methods use player ratings as the measure of
subjective fitness and update accordingly.

The Informative algorithm uses the informativeness of individuals to augment
the test-score of these individuals. The parameter γ determines how much influ-
ence the informativeness has on the final score. In this case line 6 should read:

6. test scorei := γ(
∑|pop|

j (1−G(popj , popi))) + (1− γ) ∗ infi;
The informativeness score is based on a sequence of interactions and therefore

poses a problem for evaluation methods that update per interaction. For iEMA
this is solved by normalizing the informativeness score and adding this to the
test-score appropriately:

test scorei = γ ∗ test scorei + (1− γ) ∗ infi/infmax
For the Elo-rating method the sum of the expected and realized outcomes over
this sequence of interactions is therefore used as follows:

R′
i = Ri + K((γ

∑
Si + (1− γ) ∗ infi)−

∑
Ei)

Since it is very hard to integrate the informativeness into the Glicko updating
process in a meaningful way, this has not been implemented for the Informative
algorithm. For the Multi-Modal algorithm all subjective fitness scores are cal-
culated as for the Basic algorithm and scorevectors of the individual players are
recorded, representing phenotypic behavior.

select. For both Basic and Informative algorithms ranked selection with replace-
ment is used to construct a new population of n individuals, where the sorting
rank is used as the relative selection probability. For the Multi-Modal algorithm
every mutant may try to replace one original individual that is closest pheno-
typically. The original individual is replaced if the subjective fitness score of the
mutant is higher. If more than one mutant compete with a single individual the
best mutant is chosen.

The Basic, Informative and Multi-Modal algorithms are run for 500, 1500
and 5000 generations respectively in order to study the qualitative behavior
over time. All results presented in the next section are averaged over 100 runs
and differences in performance are considered significant if p < 0.001 using the
Mann-Whitney U-test. In all cases the population size is 20 and δ is 0.05. As
observables, the average objective fitness of a population and the OFC are used,
where the OFC is calculated as the Pearson correlation coefficient between the
objective and subjective fitness values of individuals within a population [3].
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6 Experimental Results

The results for the Basic algorithm with respect to the average objective fitness
are presented in Fig. 2a. The parameters for the Elo method (K) and both
EMA methods (α) are set to 32 and 0.9 respectively. As we can clearly see all
evaluation methods increase in performance rapidly at first, but slowly peter
out as time progresses. Although both Elo and iEMA significantly outperform
the base method and both Glicko and tEMA perform significantly worse, the
differences are small and the behavior of the methods is very similar; stable
progress cannot be maintained over time. This observation is confirmed by the
measure OFC’s displayed in Fig. 2b, as the OFC’s degrade to values fluctuating
around 0 within the same time-frame as the stagnation of performance.

 0

 1

 2

 3

 4

 5

 6

 7

 0  50  100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 o
bj

ec
tiv

e 
fit

ne
ss

Generation

a

 Base
 tEMA
 iEMA

 Elo
 Glicko

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100 150 200 250 300 350 400 450 500

O
bj

ec
tiv

e 
F

itn
es

s 
C

or
re

la
tio

n

Generation

b

 Base
 tEMA
 iEMA

 Elo
 Glicko

Fig. 2. a.) Average objective fitness and b.) OFC over time for the Basic algorithm

The results for the Informative algorithm are presented in Fig. 6. The pa-
rameters K and α are again set to 32 and 0.9 respectively, while γ is set to 0.6 for
the base and Elo evaluation methods and set to 0.5 for both EMA methods. The
iEMA method is outperformed significantly by all other methods and actually
performs similar to iEMA in combination with the Basic algorithm. Apparently
iEMA does not benefit from the added informativeness score, which makes sense
as iEMA essentially represents a form of random sampling and unlikely to co-
operate well with the global measure of informativeness. On the other hand the
other three methods perform much better than for the Basic algorithm, with
tEMA outperforming Elo significantly. However, again the results are close to-
gether and the gross behavior is comparable to the Basic algorithm, being unable
to sustain progress. This process is closely mirrored by the measured OFC’s.

Figure 6 displays the results for the Multi-Modal algorithm. The parameters k
and α are set to 16 and 0.1 respectively. Opposed to the previous algorithms the dif-
ferences between the evaluation methods are large, in fact all differences are highly
significant. The tEMA, Elo and Glicko evaluation methods score much higher than
for the other algorithms, especially tEMA. The base evaluation method on the
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Fig. 3. a.) Average objective fitness and b.) OFC over time for the Informative algorithm

other hand lies between the Informative and Basic algorithm with respect to per-
formance and iEMA performs slightly worse than on both other algorithms. Most
notably however, is that for all evaluation methods stable progress is maintained
and there is no indication yet that it will not be maintained later on. This is again
reflected by the measured OFC’s as in Fig. 6b; all OFC-scores remain very high
over time, indicating a meaningful correlation between the objective fitnesses and
awarded subjective fitnesses within a population.
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Fig. 4. a.)Average objective fitness andb.)OFCover time for theMulti-Modal algorithm

7 Discussion

The results of both the Basic and the Informative algorithms can be understood
in terms of co-evolutionary failure; both systems eventually reach an equilibrium
state where the averaged performance remains at a constant level. The introduction
of the informativeness as an extra measure of performance as a test definitively im-
proves the results for evaluation methods to which it can be appropriately applied,
but in the end the problem of local intransitivity still prevents stable progress. In
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the single population set-up there is a trade-off between the informativeness score
and the regular outcomes as the first leads to a more diverse and informative set and
the latter provides directed evolutionary pressure. Such a trade-off is not explicitly
present in the Multi-Modal algorithm, as the alternative method of selection op-
erates separately from the calculation of fitness. While the algorithm progresses
slowly compared to the other two algorithms, as the replacement of individuals
is done in a more conservative way, progress is maintained over time. This means
that the population is kept at a level of diversity that is meaningful and enables ade-
quate evaluation. By using the outcomevector as a measure of similarity behavioral
niches are protected and the implicit connection between the genotypically deter-
mined objective fitness and the outcomevector of individuals guarantees genotypic
diversity to a certain degree.

More generally we can see that for this problem the performance of a specific
evaluation method cannot be viewed in isolation, it strongly depends on the
specific algorithmic implementation, in this case the degree of diversity mainte-
nance. Also we found no evaluation method that is in itself capable of overcoming
the obstacle of local intransitivity and in fact in the case of co-evolutionary fail-
ure as in the Basic and Informative algorithms the final result associated with
an evaluation method is dictated more by the failure of the algorithm than by
the method itself, as these final results lie very close. If co-evolutionary failure
is staved off however, differences in the evaluation methods do become apparent
and in the case of the Multi-Modal algorithm the methods that take outcomes
from previous generations into account (tEMA, Elo and Glicko) perform much
better. The more complex Elo and Glicko evaluation methods perform worse
than tEMA, so the idea that these more statistically inspired methods could
lead to better estimations of the objective fitness is not empirically validated for
this problem.

8 Conclusion

Although the LINT-game was used to eliminate as much complicating factors
as possible, performance of the various evaluation methods is still dependent
on the specific diversity method. We found no single evaluation method that
performs qualitatively different than the rest under the same algorithmic as-
sumptions. What we did find is that the Multi-Modal approach to the LINT-
problem proved very effective in terms of stable performance although not as
efficient for all evaluation methods. Lastly, the OFC has been shown to be an
adequate tool for monitoring co-evolutionary dynamics with respect to accuracy
of evaluation.

More specifically the idea of approaching a search problem with multi-modal
techniques to preserve functional diversity should be explored more thoroughly,
using different test problems and a broader range of parameters. This would
lead to a better understanding of the dynamics governing the formation and
preservation of critical niches.
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Abstract. The evaluation of optimization algorithms and especially the
analysis of adaptive variants is often complicated because several fea-
tures are modified concurrently. For Differential Evolution these features
may be adaptation of parameters, adjustment of the strategy and ad-
dition of local search or other special operators. Thus, it is difficult to
analyze which of these procedures is actually responsible for changes in
the performance. Therefore, in this work several adaptive algorithms are
studied in-depth by monitoring performance changes for individual com-
ponents of these algorithms to examine their effectiveness. The results
show among others that the performance can be significantly improved
by employing strategy control.

1 Introduction

Differential Evolution (DE) [1] is a relatively new evolutionary algorithm that
is often used in literature because of its fast convergence behavior. Another
property that is often associated with DE is ease of use as it only contains
three control parameters: The population size NP , the scaling factor F that is
used in mutation, and the crossover probability CR. For F and CR the range
of recommended values given in literature is mostly relatively small. However,
recommended settings for CR depend on the decomposability of the objective
function which is a property that is not necessarily known in advance, and fur-
thermore for multi-objective optimization suitable settings may be different from
single-objective optimization. Another decision associated with applying DE is
which strategy to use. Often this question is not discussed in the literature, and
in most papers DE/rand/1/bin is used [2] which actually seems to be a good
choice for many optimization problems, but there are also examinations in the
literature which conclude that other strategies perform better [2,3].

In order to overcome these problems with having to choose control parameter
settings and a suitable DE strategy, several adaptive variants of DE have been
presented in the literature where one or several of the control parameters and/or
the DE strategy are modified during an optimization run [4,5,6,7,8,9,10,11,12,13].
However, generally several features are modified concurrently, thus it is not clear
which of the features are actually effective and which ones only complicate the al-
gorithm without contributing anything to its performance. Therefore, a detailed
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analysis of several adaptive approaches from literature is done here by regarding
individual components of these algorithms separately, based on an extensive test
set of constrained single-objective optimization problems.

This paper is organized as follows: In Section 2 the Differential Evolution
algorithm, its control parameters and several strategies for DE are introduced.
The adaptive approaches which will be examined in this work are described in
Section 3. Experimental settings are given in Section 4, results are discussed in
Section 5, and the paper ends with conclusions in Section 6.

2 Differential Evolution

Differential Evolution can be classified as a population-based stochastic evolu-
tionary optimization algorithm. As in other evolutionary algorithms the first
generation is initialized randomly in a given search space, and further genera-
tions evolve by applying specific evolutionary operators until a stopping criterion
is satisfied. The DE individuals consist of real-valued vectors with dimension D
that equals the number of objective function parameters. The number of individ-
uals NP has to be set by the user. In every generation one offspring is generated
for each population member xi (with i ∈ {0, . . . , NP−1}) using the evolutionary
operators mutation and recombination.

There are several strategies for DE that differ in the way mutation and recom-
bination is conducted [1,2]. They have the commonality that during mutation a
mutated vector vi is generated that is a linear combination of several individuals,
and during recombination components from the mutated vector and the target
vector xi (which is a population member) are combined to build the trial vector
ui that competes with xi for a place in the next generation during selection.

The variants are specified using the notation DE/x/y/z where x denotes the
vector to be mutated, y is the number of difference vectors and z is the crossover
scheme [14]. The vector to be mutated (also called base vector) might be a
randomly chosen vector (notation: ’rand’), the best vector that was found so far
(notation: ’best’), or a vector that is located on the connecting line between two
solutions, e.g. between the target vector and a random vector (notation: ’current-
to-rand’) or between the target vector and the best vector (notation: ’current-
to-best’). The number of difference vectors y is normally set to one or two.
Concerning the crossover scheme, a binomial or exponential process can be used
(notation: ’bin’ or ’exp’, respectively) which differ in the way that components
are chosen for copying to the trial vector [14]. In [14] the use of binomial crossover
is recommended but in [15] it is stated that there are no significant differences
between the crossover methods, so in this work only the binomial process is used
that will be explained later in this section.

The strategies which will be used in this work are given in Table 1 where F
and K are control parameters of DE (K = F is always assumed in this work as it
is also often done in the literature, e.g. in [16]), the number of difference vectors
is set to y = {1,2}, the indices r1, . . . , r5 denote mutually different individuals
which are also different from xi, and x∗ is the best individual found so far.



Comparison of Adaptive Approaches 643

Table 1. Strategies of Differential Evolution

Notation Equation for mutated vector

DE/rand/y vi = xr1 + F ·
∑y−1

m=0

(
xr2+2·m − xr3+2·m

)
DE/current-to-rand/y vi = xi + K · (xr1 − xi) + F ·

∑y−1
m=0

(
xr2+2·m − xr3+2·m

)
DE/best/y vi = x∗ + F ·

∑y−1
m=0

(
xr1+2·m − xr2+2·m

)
DE/current-to-best/y vi = xi + K · (x∗ − xi) + F ·

∑y−1
m=0

(
xr1+2·m − xr2+2·m

)

In this work binomial recombination is used for every strategy, thus trial
vectors ui are built (with i ∈ {0, . . . , NP−1}) by determining for every vector
component j ∈ {0, . . . , D−1} if the corresponding component should be copied
from the target vector xi or the mutated vector vi. The decision is made using
a random variable randj that is compared with the control parameter CR. How-
ever, because during selection ui and xi will be compared, it is ensured for every
individual that at least one component of ui is derived from vi by a random
choice of a number k ∈ {0, . . . , D−1}:

ui,j =

{
vi,j if randj ≤ CR or j = k

xi,j otherwise
(1)

The selection process is identical for all strategies. Selection is conducted by
comparing the target vector xi with the trial vector ui. For unconstrained single-
objective minimization problems, the solution that yields the smaller objective
function value is chosen for the next generation (ui might also be preferred in
case of equality to enable crossing of flat regions in objective space). However, for
constrained optimization problems the selection procedure has to be modified. In
this work the feasibility rules described in [17] are applied, thus when a solution
a is compared to a solution b, a is considered better if:

– Both solutions are feasible, but a yields the smaller objective function value.
– a is feasible and b is not.
– Both solutions are infeasible, but a has the lower sum of constraint violations.

For easier comparability this technique is used throughout this work although
some of the algorithms examined here originally use slightly different methods
for constraint-handling. The same holds for boundary constraints: To simplify
this analysis, a limit-exceeding parameter is set to the middle between the old
position and the boundary for all algorithms, regardless of the original approach
(other methods may be examined in future work).

3 Adaptive Approaches

There are several adaptive approaches in the DE literature. In this paper three of
them are considered in detail: jDE [4], SaDE [5] and DE DoE [6]. Other methods
like described in [7,8,9,10,11,12,13] may be regarded in future work.



644 K. Zielinski, X. Wang, and R. Laur

3.1 jDE

A self-adaptive DE algorithm called jDE is described in [4], and its extension
jDE-2 is presented in [18,19]. Each individual xi,G has its own values of control
parameters, denoted Fi,G and CRi,G (where G is the current generation). The
control parameters are updated as follows:

Fi,G+1 =

{
Fl + rand1 · Fu if rand2 < τ1

Fi,G otherwise
(2)

CRi,G+1 =

{
rand3 if rand4 < τ2

CRi,G otherwise
(3)

where τ1 = τ2 = 0.1, Fl = 0.1, Fu = 0.9, and the random numbers randj ∈ [0, 1]
(with j ∈ {1, 2, 3, 4}) are from a uniform distribution. Thus, F ∈ [0.1, 1.0] and
CR ∈ [0, 1] are adapted based on the probabilities τ1 and τ2. The jDE and jDE-2
algorithm differ in the handling of boundary constraints, but to limit the com-
plexity of this examination, only one method for handling boundary constraints
is used here (see Section 2). Furthermore, in contrast to the jDE algorithm
that uses only strategy DE/rand/1/bin [4], in jDE-2 three strategies are used
(DE/rand/1/bin, DE/current-to-best/1/bin, DE/rand/2/bin), and each individ-
ual has separate control parameters for each strategy. A further modification of
the jDE-2 algorithm is that the k worst individuals are replaced every l gen-
erations with randomly chosen positions where l = 1000 and k = 70 in [18].
For constraint-handling, the feasibility rules by Deb are used in [18,19] whereas
in [4] unconstrained optimization problems are regarded. To enable an easier
comparison, this work is limited to considering jDE.

3.2 SaDE

In [5] not only parameter settings but also the DE strategy is changed during an
optimization run. Four different strategies are used (DE/rand/1, DE/current-
to-best/2, DE/rand/2, DE/current-to-rand/1; in a previous paper only the first
two strategies were used [20]) which all have the same probability to be selected
in the beginning of an optimization run. Later, the probabilities are modified by
calculating for every strategy the ratio r of the number of trial vectors which
successfully entered the next generation divided by the number of generated trial
vectors. This number is sampled for 20 generations (learning period). Settings for
F are randomly taken from a normal distribution with a constant mean of 0.5 and
a constant standard deviation of 0.3 (where F is limited to F ∈ (0, 2]). Thus, F
is varying but there is no feedback from the search. Because the authors assume
that the setting ofCR is more sensitive to the optimization problem (in a previous
paper they also stated that F is more related to the convergence speed [20]), CR
is adapted based on feedback from the search. Like F , it is also selected from a
normal distribution with a fixed standard deviation (0.1), but the mean CRm is
adapted. In the beginning CRm = 0.5 is used, and each individual is randomly
assigned a CR value that is kept constant for five generations and then a new
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value is randomly chosen using the same distribution. After 20 generations, CRm
is recalculated based on r, and the described procedure is repeated. To speed up
convergence, in [5] a local search method (Sequential Quadratic Programming) is
used every 500 generations. To limit the complexity of the present examination,
the local search is omitted here. Constraints are handled slightly differently in [5]
than presented here, but to simplify the analysis the constraint-handling method
as described in Section 2 is employed throughout this work.

3.3 DE DoE

In [6] the adaptation of F and CR based on methods from Design of Experiments
(DoE) [21] is shown for constrained single-objective optimization, and in [22]
the method is extended for multi-objective optimization. Significant differences
in performance of different parameter settings can be detected by analysis of
variance (ANOVA) which is associated with a confidence coefficient α that is set
to α = 0.01 here. Performance is measured similarly to SaDE (for single-objective
optimization r is also multiplied with the improvement of the objective function
value). Due to sophisticated designs, not only main effects but also interaction
effects can be detected while keeping the computational cost low. In this work
a two-level factorial design is employed, therefore two settings of F and CR are
regarded at any given time, respectively, and initial settings of F = {0.7, 0.9} and
CR = {0.2, 0.9} are used. Each parameter combination is applied to one fourth
of the individuals in every generation (therefore, NP must be divisible by four).
Each generation equals a replicate of the DoE analysis, and if a significant effect
has been found, the parameters are adapted (in this case the worse performing
setting is changed by 0.1 in the direction of the better one, and the better
performing setting changes by 0.05 in the same direction), and the DoE analysis
is restarted. The analysis is also restarted if no significant effects occurred for
some time (in this case for 10 generations) because the performance may vary
over time, complicating the detection of significant effects.

4 Experimental Settings

In order to examine which components of the adaptive approaches are especially
effective, the following algorithm variants are considered in this work:

– V1: DE DoE
– V2: jDE’
– V3: SaDE’
– V4: jDE’ with strategy control as in SaDE’
– V5: SaDE’ with adaptive F
– V6: SaDE’ without strategy control
– V7: SaDE’ with eight strategies
– V8: DE DoE with strategy control as in SaDE’

Here, V1 is the DE DoE algorithm used in [6], whereas V2 and V3 are close to the
original jDE and SaDE algorithms given in [4] and [5], respectively (they are not
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equal because the same constraint-handling and the same handling for boundary
constraints is used for all algorithm variants here as described in Section 2, and
local search is omitted). In V4 the jDE’ algorithm is used for parameter control
while a strategy control as in SaDE’ is also used. In V5 SaDE’ is used as basis
and F is adaptively controlled in the same way as CR (with an initial mean of
Fm = 0.5 and a standard deviation of 0.3, like suggested in [5]). To examine
the influence of strategy control on SaDE’, V6 only uses the parameter control
of SaDE’ without strategy control. Because several more strategies exist besides
the ones employed in SaDE’, in V7 all strategies given in Table 1 are used (with
y = {1, 2}). In V8 the strategy control of SaDE’ is employed in DE DoE.

The same population size is used for all algorithm variants. Because NP = 50
was used in [5], NP = 50 for D = 10 and NP = 100 for D = 30 in [20], NP = 100
in [4], NP = 200 in [18,19] and NP = 52 in [6] (because NP must be divisible
by four for this method), in this work NP = 52 is used. The maximum number
of function evaluations is 500,000.

In [23] 24 constrained single-objective test problems with a large variety of
different features have been defined for the Special Session on Constrained Real
Parameter Optimization at the Congress on Evolutionary Computation 2006.
This test set is used as basis for the examination (where functions g20, g22 and
g23 have been omitted because none of the here examined algorithms was able
to find the optimal solution). Thus, 21 functions are employed, for which 25
optimization runs have been done for every algorithm variant, respectively.

The following performance measures are used: The success rate sr is the per-
centage of runs in which the global optimum has been found (with an accuracy
of 10−4). Because the success performance sp as given in [23] (average number of
function evaluations for convergence divided by sr) may lead to wrong conclu-
sions when sr is low, the average number of function evaluations for convergence
is regarded here. The feasible rate fr (percentage of runs in which at least one
feasible individual was found) is omitted because almost every optimization run
resulted in feasible individuals (exceptions are V1 with fr = 96% for g13 and
fr = 92% for g17, V3 with fr = 44% for g13, and V8 with fr = 92% for g14).

5 Results

The success rate of all algorithm variants is given in Table 2, and the average
number of function evaluations for convergence is shown in Table 31.

To evaluate the different methods of parameter control, the strategy control
of SaDE’ has been disabled for V6, and results for V6 are compared with jDE’
(V2) and DE DoE (V1). The success rate of V6 is better than for V1 and V2 for
many functions although there are also exceptions (g02, g14, g19). The average
number of function evaluations for convergence is also often comparable to or
better than the results for V1 and V2. It is concluded that the parameter control
of SaDE’ is generally superior to the methods employed in jDE’ and DE DoE.
1 Due to space limitations only partial results can be shown here. More detailed results

are available at http://www.item.uni-bremen.de/staff/zilli/PPSN08 results.xls
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Table 2. Success rate in %

Problem V1 V2 V3 V4 V5 V6 V7 V8

g01 100 100 100 100 100 100 100 100
g02 76 72 44 88 20 28 16 84
g03 0 0 16 0 92 100 92 0
g04 100 100 100 100 100 100 100 100
g05 44 32 100 88 100 92 64 84
g06 100 100 100 100 100 100 100 100
g07 60 96 100 100 100 100 4 72
g08 100 100 100 100 100 100 100 100
g09 96 100 100 100 100 100 100 100
g10 28 40 100 96 100 100 0 76
g11 92 100 100 100 100 100 100 100
g12 100 100 100 100 100 100 100 100
g13 0 0 16 0 44 4 24 0
g14 52 0 100 100 44 4 0 72
g15 92 60 100 100 100 100 48 92
g16 100 100 100 100 100 100 100 100
g17 4 0 36 4 32 4 8 8
g18 68 84 84 80 72 72 60 80
g19 28 24 48 100 60 4 0 72
g21 20 60 68 80 92 68 36 40
g24 100 100 100 100 100 100 100 100

Furthermore, it is tested if advantages can be gained by controlling F adap-
tively in the same way as done for CR (V5), therefore variants V3 (SaDE’) and
V5 are compared. Regarding the success rate, it depends on the function if a
better performance is reached. For g03, g13, g19 and g21 the performance is
better with adaptive F whereas for g02, g14 and g18 the performance becomes
worse. The average number of function evaluations for convergence is better for
g02, g03, g09, g16 and g18 with adaptive F , and it is worse for g05, g07, g10, g13,
g14, g15, g17, g19 and g21 (functions for which the results are similar are not
specified here). Therefore, although the success rate averaged over all functions
can be slightly improved by using an adaptive F (from 78% to 80%), the overall
performance tends to become worse when considering the average number of
function evaluations for convergence.

To analyze the influence of strategy control, a comparison of each algorithm
with and without strategy control is done. For the jDE’ algorithm (V2 without
strategy control and V4 with strategy control) the strategy control clearly re-
sults in improved performance concerning the success rate as it is always equal
or higher for V4 (with exception of g18 where the success rate is slightly better
without strategy control). The average number of function evaluations for con-
vergence is often in a similar range. For some functions V2 is better (g06, g11,
g18, g21, g24) and for other functions V4 is better (g02, g07, g09, g10, g15, g19),
so no definite conclusion can be given regarding this performance measure.
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Table 3. Average number of function evaluations for convergence

Problem V1 V2 V3 V4 V5 V6 V7 V8

g01 28180 20605 24277 22902 24005 20221 18039 25165
g02 194869 68767 447694 62372 37901 206936 325195 182247
g03 - - 327083 - 280131 151734 151789 -
g04 37488 27761 15868 29775 14792 16782 11345 17789
g05 255793 228783 102745 239549 171724 250927 176413 247343
g06 16858 13521 9416 16348 9238 8530 6827 12061
g07 199319 210108 51793 128084 97990 159242 64946 172512
g08 1356 1277 1491 1415 1445 1286 816 1338
g09 127950 49097 16077 43141 14200 19637 11662 46958
g10 233591 325477 60265 224051 164689 244380 - 171405
g11 41082 29114 22542 45232 21391 24357 10154 63000
g12 2313 2041 2002 2333 2044 1822 1448 2182
g13 - - 247711 - 316994 373682 281284 -
g14 284388 - 47177 163763 321290 439743 - 126777
g15 173911 270119 60450 162129 98147 164098 280830 216409
g16 18812 15368 24880 16064 10777 25068 18222 15286
g17 406848 - 255101 431151 331256 443380 154002 275375
g18 111613 87950 40206 115294 31143 43680 17171 100533
g19 318225 351489 83244 246529 218128 396186 - 241520
g21 266365 151667 108141 174406 139919 171408 131463 185859
g24 4484 4823 4119 5321 3814 3767 3260 4124

Comparing SaDE’ with and without strategy control (V3 and V6, respec-
tively), the success rate with strategy control is better than or equal to the
variant without strategy control except for function g03. Concerning the aver-
age number of function evaluations for convergence, V3 is also mostly better
than V6 (for g05, g07, g09, g10, g13, g14, g15, g17, g19 and g21 whereas V3 was
worse for g02 and g03).

For DE DoE the variant V1 is compared with V8 that uses the strategy control
of SaDE’. The success rate of V8 is always better than or equal to the results
of V1. Concerning the average number of function evaluations for convergence,
also an improvement can be seen for nearly every function when using strategy
control (exceptions are only functions g11 and g15).

It can be concluded that strategy control is able to improve the results for
all regarded algorithms, especially concerning the success rate. To analyze the
effect of using more than the four strategies given in [5], variant V3 (SaDE’)
is compared to variant V7 that uses the parameter and strategy control de-
scribed in SaDE’ but with eight instead of four strategies. However, the results
using V7 deteriorate for many functions concerning the success rate (exceptions
are g03 and g13). Interestingly, the average number of function evaluations for
convergence improves for several functions using eight instead of four strategies
(exceptions are only g05, g07, g13, g15 and g21). The reason for this behavior
is not yet clear. For future work the probabilities of the strategies should be
monitored during optimization runs to develop a theory for this behavior.
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6 Conclusions

The comparison of jDE’, SaDE’ without strategy control and DE DoE showed
that the parameter control employed in SaDE’ is the most efficient strategy which
may be explained by the use of different control parameters for each individual
and the adjustment of CRm based on feedback from the search. Adapting not
only CR but also F does not have a large effect as assumed in [5]. Nevertheless,
it would be interesting to observe the development of CRm and Fm over time
in future work.

Strategy control had a positive effect on the success rate of jDE’, SaDE’
and DE DoE. The average number of function evaluations for convergence also
mostly improved but concerning this performance measure the results were less
clear (except for DE DoE for which the results improved for all but two func-
tions). However, it does not seem to be wise to use too many strategies in strategy
control as the results concerning success rate for SaDE’ mostly deteriorated when
using eight strategies. However, the average number of function evaluations for
convergence mostly improved, therefore future work observing the probabilities
of the strategies over time should provide more insight into the DE dynamics
that cause this behavior.

In future work also the local search procedure employed in SaDE and the
random substitution used in jDE-2 should be analyzed. Besides, in Section 3
many other adaptive approaches are mentioned which may also be examined.
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Abstract. Indicator-based methods to tackle multiobjective problems have be-
come popular recently, mainly because they allow to incorporate user preferences
into the search explicitly. Multiobjective Evolutionary Algorithms (MOEAs)
using the hypervolume indicator in particular showed better performance than
classical MOEAs in experimental comparisons. In this paper, the use of indicator-
based MOEAs is investigated for the first time from a theoretical point of view.
We carry out running time analyses for an evolutionary algorithm with a (μ +1)-
selection scheme based on the hypervolume indicator as it is used in most of the
recently proposed MOEAs. Our analyses point out two important aspects of the
search process. First, we examine how such algorithms can approach the Pareto
front. Later on, we point out how they can achieve a good approximation for an
exponentially large Pareto front.

1 Introduction

In the last decades, there has been a growing interest in developing evolutionary al-
gorithms for multiobjective optimization problems. Many variants proposed in the last
years make use of special indicator functions that explicitly define the optimization
goal—independent from the algorithm itself. That is an advantage compared to earlier
algorithms where user preferences were incorporated in the algorithms implicitly.

The hypervolume indicator, first introduced by Zitzler et al. as the ‘size of the space
covered’ [13] and also known as the S-metric [1, 7], is used in many cases as the under-
lying indicator function. Up to now, it is—together with its weighted version of [11]—
the only known indicator that is compliant with the concept of Pareto-dominance, i.e.,
whenever a set of solutions dominates another set, its hypervolume indicator value is
higher than the one of the latter. This is the main reason why most of the recently pro-
posed indicator based algorithms like IBEA [12], SMS-EMOA [1], or the multiobjec-
tive version of CMA-ES [6] use the hypervolume as the underlying indicator—although
its calculation time is exponential in the number of objectives. It was shown experimen-
tally even for a higher number of objectives that hypervolume-based algorithms out-
perform standard MOEAs [10]. A theoretical understanding why hypervolume-based
algorithms outperform their Pareto-dominance based counterparts is still missing.

This paper is a first step towards a general explanation why hypervolume-based al-
gorithms perform better on the known test problems than other state-of-the-art algo-
rithms. Our aim is to gain insights into the optimization process of hypervolume-based
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algorithms by carrying out rigorous running time analyses. Besides very general non-
convergence results on steady-state MOEAs by Zitzler et al. [14], there are no results
on the runtime behavior of indicator based evolutionary algorithms known so far. This
paper achieves the first results of this kind. Comparisons to former running time analy-
sis results of non-hypervolume-based algorithms allow first conclusions that and when
hypervolume-based algorithms are preferable to other algorithms. Within this paper,
we consider two important parts of the optimization process. First, we examine how
hypervolume-based evolutionary algorithms may approach the Pareto optimal set (Sec-
tion 3). By considering the function LOTZ, we point out how the population moves
to the Pareto front. Second, we examine in Section 4 how the hypervolume indicator
helps to spread the individuals of a population over a large Pareto front such that a good
approximation of the Pareto optimal set can be achieved. In the following section, we
provide the basis for our analyses to follow.

2 The Hypervolume Indicator and Hypervolume-Based
Algorithms

Our aim is to analyze hypervolume-based algorithms for multi-objective optimiza-
tion problems. Without loss of generality, we assume that k objective functions f =
(f1, . . . , fk) that map solutions x ∈ X from the decision space X to an objective vec-
tor f(x) = (f1(x), . . . , fk(x)) ⊆ Rk have to be maximized. Throughout this study, we
assume that X is the set of binary strings of length n. Instead of optimizing the weak
Pareto-dominance relation /:= {(x, y) |x, y ∈ X ∧ ∀1 ≤ i ≤ k : fi(x) ≥ fi(y)},
i.e., finding its maximal elements also called Pareto optimal solutions1, the goal for
hypervolume-based algorithms is to maximize the hypervolume indicator IH . The hy-
pervolume indicator IH(A) of a solution set A ⊆ X can be defined as the hypervol-
ume of the space that is dominated by the set A and is bounded by a reference point
r = (r1, . . . , rk) ∈ Rk:

IH(A) = λ

(⋃
a∈A

[f1(a), r1]× [f2(a), r2]× · · · × [fk(a), rk]

)

where λ(S) is the Lebesgue measure of a set S and [f1(a), r1] × [f2(a), r2] × · · · ×
[fk(a), rk] is the k-dimensional hypercuboid consisting of all points that are weakly
dominated by the point a but not weakly dominated by the reference point.

Note that the hypervolume indicator is Pareto-dominance compliant, i.e., whenever
a solution set A ⊆ X is strictly better than a set B ⊆ X with respect to the weak
Pareto-dominance relation2 the hypervolume of A is also strictly better than the one for
B (IH(A) > IH(B)). Therefore, the objective vectors of a set X∗ ⊆ X that maximizes
the hypervolume indicator cover the Pareto front entirely [2].

1 Usually, an approximation of the so-called Pareto front is sought: the set of objective vectors
the preimages of which are Pareto optimal is usually smaller than the Pareto optimal set itself.

2 We say that a set of solutions A is strictly better than another set B iff (for maximization)
A � B ∧ B �� A where A is dominating B (A � B) iff ∀b ∈ B : ∃a ∈ A : a � b.
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Fixing the maximal number μ of solutions in an evolutionary algorithm A, the goal
of maximizing the hypervolume indicator changes to finding a set of μ solutions that
have the maximal hypervolume indicator value among all sets of μ solutions. The time
until such a solution set is found for the first time is referred to as the optimization time
of A; its expectation is denoted by the term expected optimization time.

Several evolutionary algorithms to optimize the hypervolume have been proposed in
the literature [1, 6, 11, 12]. Most of them use the same (μ+λ)-selection scheme which
will be also investigated in the remainder of the paper. The population P of the next
generation with |P | = μ is computed from the set P ′ of solutions that is the union of
the previous population and the λ generated offsprings in the following way: after a non-
dominated sorting of P ′ [4], the non-dominated fronts are, starting with the best front,
completely inserted into the new population P until the size of P is at least μ. For the
first front F the inclusion of which yields a population size larger than μ, the solutions
x in this front with the smallest indicator loss d(x) := IH(F ) − IH(F \ {x}) are
successively removed from the new population where the indicator loss is recalculated
every time a solution is removed.

The algorithm (μ + 1)-SIBEA, we investigate in the following, is based on the Sim-
ple Indicator-Based Evolutionary Algorithm (SIBEA) proposed in [11] that also uses
the above mentioned selection scheme. For our theoretical investigations, we consider
a simplified version of SIBEA (see Algorithm 1). It uses a population P of size μ and
produces in each iteration one single offspring x. By removing the individual with the
smallest hypervolume loss from P ∪ {x}, the new parent population is obtained. The
omission of the non-dominated sorting step is not crucial for our obtained results, i.e.,
all running time bounds are the same than with the sorting. Only dominated points are
handled differently: with the original selection scheme, always the worst point on the
worst front is deleted, whereas in our version, any dominated point is deleted with the
same probability.

Algorithm 1. (μ+ 1)-SIBEA
Parameters: population size μ

Step 1 (Initialization):
Generate an initial (multi)-set of decision vectors P ⊆ {0, 1}n of size μ uniformly at random.
Step 2 (Repeat):

• Select an element x from P uniformly at random. Flip each bit of x with probability 1/n to
obtain an offspring x′. Set P ′ := P ∪ {x′}.

• For each solution x ∈ P ′ determine the hypervolume loss d(x) if it is removed from P ′,
i.e., d(x) := IH(P ′) − IH(P ′ \ {x}).

• Choose an element z ∈ P ′ with smallest loss in P ′ uniformly at random, i.e., z =
argminx∈P d(x) and set P := P ′ \ {z}.

The goal of the next sections is to analyze the runtime behavior of (μ + 1)-SIBEA on
some example functions. These analyses point out some basic concepts how the algo-
rithm can make progress during the optimization process. Additionally, it gives insights
how a good spread over the whole Pareto front can be achieved using the hypervolume
indicator.
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3 Exploring a Small Pareto Front

In this section, we examine the well-known bi-objective problem LOTZ with a Pareto
front of size n+ 1 and show that the expected optimization time of the (μ+ 1)-SIBEA
is O(μn2) if μ is large enough to find all optima, i.e., μ ≥ n+ 1.

LOTZ was first investigated in [9] and has been considered in several previous stud-
ies concerning the running time analysis of MOEAs. It is defined as LOTZ : {0, 1}n →
N2 with

f1(x) = LO(x) =
n∑

i=1

i∏
j=1

xj and f2(x) = TZ(x) =
n∑

i=1

n∏
j=i

(1− xj).

Without loss of generality, we fix the reference point for computing the hypervolume to
(−1,−1). All results of this section still hold as long as the reference point (r1, r2) is
chosen such that r1 and r2 are negative.

Lemma 1. The expected time until the (μ + 1)-SIBEA has obtained for the first time a
Pareto optimal solution of LOTZ is O(μn2).

Proof. Throughout this proof, we consider the situation where no Pareto optimal search
point belongs to the current population P . Let {x1, x2, . . . , xk} ⊆ P be the set
of individuals that are not dominated by any other individual in P . Denote by H
the hypervolume covered by these points. Without loss of generality, we assume that
LO(xi) ≤ LO(xi+1), 1 ≤ i ≤ k − 1 holds which also implies TZ(xi) ≥ TZ(xi+1),
1 ≤ i ≤ k − 1, as the k individuals do not dominate each other.

LetX1 = LO(x1)+1,Xi = LO(xi)−LO(xi−1), 2 ≤ i ≤ k and denote byXmax =∑k
i=1Xi the maximum LO-value with respect to the reference point (−1,−1). Similar,

define Y1 = TZ(xk) + 1 and Yi = TZ(xk−i)−TZ(xk−i+1), 2 ≤ i ≤ k, and denote by
Ymax =

∑k
i=1 Yi the maximum TZ-value with respect to the reference point (−1,−1).

Considering one single solution xi of the k non-dominated solutions of P , we study
how the hypervolume can increase. Flipping the single bit which increases its LO-value
increases the hypervolume by at least Yk−i+1. Flipping the single bit which increases
its TZ-value increases the hypervolume by at least Xi. We call all these 1-bit flips
applied to one of the k individuals good. Each of these 2k good operations happens
with probability 1

μ ·
1
n · (1− 1/n)n−1 ≥ 1

eμn in the next step.
Note, that each good operation is accepted as it leads to a population with a larger

hypervolume. The total increase of all good operations with respect to the current hy-
pervolumeH is at least Xmax + Ymax ≥

√
Xmax · Ymax ≥

√
H.

Choosing one of theses 2k good operations uniformly at random, the expected in-
crease of the hypervolume is at least

√
H/(2k). Hence, the expected number of good

operations needed to increase the hypervolume by
√
H is upper bounded by 2k. Us-

ing Markov’s inequality, the probability of having at least 4k operations to achieve this
goal is upper bounded by 1/2. Hence, with probability at least 1/2 a phase containing
4k good operations is successful, i.e., increases the hypervolume by

√
H with proba-

bility at least 1/2. This implies that an expected number of 2 of these phases carrying
out 4k such good operations each is enough to increase the hypervolume by

√
H .
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Considering all good 1-bit flips together, the probability of carrying out one good
operation in the next step of the algorithm is at least 2k

eμn . Hence, the expected waiting
time for a good operation is O(μn/(2k)) and the expected waiting time for increasing
the hypervolume by at least

√
H is therefore upper bounded byO(μn

2k ·2 ·4k) = O(μn).
It remains to show that O(n) successive increases of the hypervolume by its square-

root fraction suffice to reach the maximum hypervolume of O(n2). Let h(t) be the
hypervolume of the current solutions after t increases by at least

√
h(t). Then, h(t +

1) ≥ h(t) +
√
h(t). We want to prove by induction that h(t) ≥ t2/5. The induction

basis case holds trivially since h(0) ≥ 0. In general,

h(t) ≥ h(t− 1) +
√
h(t− 1) ≥ (t− 1)2

5
+
t− 1√

5

≥ t2

5
+ t

(
1√
5
− 2

5

)
−
(

1√
5
− 1

5

)
≥ t2

5
.

Therefore, the expected number of iterations for the situation where no solution of the
current population is Pareto optimal is upper bounded by O(μn2).

Theorem 2. Choosing μ ≥ n+1, the expected optimization time of the (μ + 1)-SIBEA
on LOTZ is O(μn2).

Proof. Using Lemma 1, the expected time until a first Pareto optimal solution has been
obtained is O(μn2). Due to the hypervolume-based selection and the fact that at most
n + 1 solutions are mutually non-dominated in LOTZ [9], a Pareto optimal solution
that has been found with (μ + 1)-SIBEA will stay from that moment in the popula-
tion or another solution mapping to the same objective vector will enter the population.
Increasing the number of Pareto optimal solutions in the population increases the hy-
pervolume indicator, i.e., the highest hypervolume value is achieved if and only if the
entire Pareto front is found. Therefore, there is at least one solution in the population
which has a Hamming neighbor that is Pareto optimal and not contained in the current
population—unless the whole Pareto optimal set is already found. Hence, the expected
waiting time for increasing the number of Pareto optimal solutions in the population is
O(μn). Having reached a Pareto optimal solution for the first time at most n additional
Pareto optimal solutions have to be produced which implies that the expected time to
achieve a population including all Pareto optimal solutions is O(μn2).

4 Approximating a Large Pareto Front

The goal of this section is to examine how the hypervolume indicator helps to achieve
a good spread over a larger Pareto front. In the case of a large Pareto front, we are
interested in the time until an algorithm has achieved a good approximation of the
Pareto front. We are considering the multiplicative ε-dominance relation [8] to measure
the quality of an approximation. Let ε ∈ R+ be a positive real number. We define that
an objective vector u ε-dominates v, denoted by u /ε v, precisely if (1 + ε) · ui ≥ vi

for all i ∈ {1, . . . ,m}. An evolutionary algorithm has achieved an ε-approximation
for a given problem if there exists for each objective vector v in the objective space a
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Fig. 1. Illustration of the objective space of LFε. In addition, the corresponding solutions in de-
cision space are annotated as well. It is important to note that instead of the original objective
values the logarithms of the objective values are plotted for clarity.

solution with objective vector u in the population such that u /ε v. In the following,
we present for each choice of ε a function where the Pareto-dominance based algorithm
Global SEMO [3] cannot obtain an ε-approximation while (μ + 1)-SIBEA is able to
achieve this goal in expected polynomial time.

We consider the bi-objective problem LFε (large front) introduced in [5] which is
parametrized by the value ε coming from the definition of ε-dominance. Without loss
of generality, we assume that n is even, i.e., each decision vector consists of an even
number of bits. We denote the lower half of a decision vector x = (x1, . . . , xn) by
�(x) = (x1, . . . , xn/2) and its upper half by u(x) = (xn/2+1, . . . , xn). Furthermore,
we denote the length of a bit-string x by |x|, the number of its 1-bits by |x|1, the number
of its 0-bits by |x|0, and its complement by x. In addition, we define the function

BV(x) :=
|x|∑
i=1

2|x|−i · xi

which interprets a bit-string x as the encoded natural number with respect to the binary
numeral system. We consider the function LFε : {0, 1}n → R2 (large front), for a given
ε ∈ R+, defined as

f1(x) = LFε,1(x) :=

{
(1 + ε)2·|
(x)|1+2−n/2·BV(u(x)) min{|�(x)|0, |�(x)|1}≥

√
n

(1 + ε)2·|
(x)|1 otherwise,
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f2(x) = LFε,2(x) :=

{
(1 + ε)2·|
(x)|0+2−n/2·BV(u(x)) min{|�(x)|0, |�(x)|1}≥

√
n

(1 + ε)2·|
(x)|0 otherwise.

The function LFε(x) is illustrated in Figure 1. In the following proofs it will sometimes
be helpful to use the following equivalent formulation of f2(x):

LFε,2(x)=

{
(1 + ε)n−2|
(x)|1+1−2−n/2BV(u(x))−2−n/2

min{|�(x)|0, |�(x)|1}≥
√
n

(1 + ε)n−2|
(x)|1 otherwise.

It has been shown in [5] that Global SEMO needs with probability exponentially
close to 1 a number of steps that is exponential in the number of bits to achieve an
ε-approximation of LF. The reason for this negative result is that the population of
Global SEMO becomes exponentially large before obtaining an ε-approximation. On
the other hand it has been pointed out in this paper that the use of ε-dominance with the
choice of ε as used for the definition of LF achieves an ε-approximation in expected
polynomial time.

In the following, we show that this goal can also be achieved by using the
(μ + 1)-SIBEA with a population of reasonable size. Our result holds for each ε ∈
R+—in contrast to the usage of ε-dominance based algorithms examined in [5] where
the exact knowledge of ε is necessary to achieve a good approximation.

Let the reference point for computing the hypervolume be ((1 + ε)−1, (1 + ε)−1)
corresponding to the point (−1,−1) in the plot of Figure 1. Note that the following
results also hold for any reference point (r1, r2) with r1, r2 ≤ (1 + ε)−1.

Theorem 3. Choosing μ ≥ n/2 + 3, the expected time until (μ + 1)-SIBEA has
achieved an ε-approximation of LFε is O(μn log n).

To prove Theorem 3 we have to show that if no other solution x with |�(x)|1 = |�(s)|1
is contained in the population, the (μ+ 1)-SIBEA will not remove the solution s from
the population:

Lemma 4. When optimizing LFε, the (μ + 1)-SIBEA with μ ≥ n/2+3 will not remove
a solution s with {x ∈ P : |�(x)|1 = |�(s)|1} = {s} from the population P .

Proof. If {x ∈ P : |�(x)|1 = k} = {s} for some k, such a solution s will be called sole.
To show the lemma, it suffices to prove that sole solutions are not removed from the
population. Let d(x) = IH(P ′)− IH(P ′ \ {x}) be the hypervolume loss of a solution
x in the population P ′ of (μ + 1)-SIBEA and let s be a sole solution. We will show that
there is always another solution z with d(z) < d(s) which proves the lemma due to the
selection step of (μ + 1)-SIBEA. To this end, we first calculate a lower bound for d(s)
and then upper bound d(z). The small sketches to the right of the volume calculations in
this proof use the same double-logarithmic axes as Figure 1. If min{|�(s)|0, |�(s)|1} ≥√
n, then (we can ignore the −2−n/2 in the exponent of the first subtrahend)
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d(s) >
[
(1 + ε)2|
(s)|1+2−n/2BV(u(s)) − (1 + ε)2|
(s)|1−1

]
·
[
(1 + ε)n−2|
(s)|1+1−2−n/2BV(u(s))−2−n/2

− (1 + ε)n−2|
(s)|1−1−2−n/2]
=(1 + ε)n+1−2−n/2

+ (1 + ε)n−2−2−n/2

− (1 + ε)n−2−n/2BV(u(s))−2−n/2

− (1 + ε)n−1+2−n/2BV(u(s))−2−n/2

≥(1 + ε)n+1−2−n/2 − (1 + ε)n−2−n/2

− (1 + ε)n−1−2−n/2
+ (1 + ε)n−2−2−n/2

.

where the last inequality stems from the fact that

max
0≤Δ≤1

(1+ε)Δ +(1+ε)1−Δ = (1+ε)0 +(1+ε)1.

It remains to prove the existence of a solution z with d(z) < d(s). If there
is a solution z with min{|�(z)|0, |�(z)|1} <

√
n and |{x ∈ P : |�(x)|1 =

|�(z)|1}| ≥ 2, then d(z) = 0 and the lemma is proven. If there is a k with
|{x ∈ P : |�(x)|1 = k}| > 2, then there is a solution z with |�(z)|1 = k and

d(z) ≤
[
(1 + ε)2|
(z)|1+2−n/2BV(u(z))−(1 + ε)2|
(z)|1]
·
[
(1 + ε)n−2|
(z)|1+1−2−n/2BV(u(z))−2−n/2

− (1 + ε)n−2|
(z)|1]
<(1 + ε)n+1 − (1 + ε)n+2−n/2BV(u(z))

+ (1 + ε)n − (1 + ε)n+1−2−n/2BV(u(z))

≤(1 + ε)n+1 + (1 + ε)n − 2(1 + ε)n+1/2.

where the last inequality holds since argmin0≤Δ≤1(1 + ε)Δ + (1 + ε)1−Δ = 1
2 . Com-

paring this upper bound for d(z) and the above lower bound for d(s) yields d(z) < d(s)
for all ε > 0 and n.

It remains to examine the case where there is neither a k with min{n− k, k} <
√
n

and |{x ∈ P : |�(x)|1 = k}| ≥ 2 nor a k with |{x ∈ P : |�(x)|1 = k}| > 2. As there
are only n/2 + 1 possible values for k, but at least μ+ 1 ≥ n/2 + 4 solutions in P ′, by
the pigeonhole principle there must be a k with

min{n− k, k} > 0
√
n1,

|{x ∈ P : |�(x)|1 = k}| ≥ 2,
|{x ∈ P : |�(x)|1 = k + 1}| ≥ 1.

Let z be a solution with |�(z)|1 = k, then



Analyzing Hypervolume Indicator Based Algorithms 659

d(z) ≤
[
(1 + ε)2|
(z)|1+2−n/2BV(u(z)) − (1 + ε)2|
(z)|1]
·
[
(1 + ε)n−2|
(z)|1+1−2−n/2BV(u(z))−2−n/2

− (1 + ε)n−2|
(z)|1−2
]

=(1 + ε)n+1−2−n/2 − (1 + ε)n+1−2−n/2BV(u(z))−2−n/2

− (1 + ε)n−2+2−n/2BV(u(z)) + (1 + ε)n−2

<(1 + ε)n+1−2−n/2 − (1 + ε)n+1−2−n/2BV(u(z))−2−n/2

− (1 + ε)n−2+2−n/2BV(u(z))−2−n/2
+ (1 + ε)n−2−2−n/2

≤(1 + ε)n+1−2−n/2 − (1 + ε)n−2−n/2 − (1 + ε)n−1−2−n/2
+ (1 + ε)n−2−2−n/2

.

where the last inequality comes from argmin0≤Δ≤1(1 + ε)3−Δ + (1 + ε)Δ = 1. This
shows d(z) < d(s) and finally proves the lemma.

Proof of Theorem 3. An ε-approximation of the Pareto front has been achieved if and
only if the population includes for each k ∈ {0, . . . n/2} a solution x with |�(x)|1 = k
(see [5]). Denote the set of covered | · |1 values by A := {|l(x)|1 | x ∈ P} and the
set of uncovered | · |1 values by B := {0, . . . , n/2} \ A. Due to the previous lemma,
we know that during the optimization process elements that are added to A are never
removed and follow the ideas given in [5].

As long as A �= {0, . . . , n/2}, there exists an a ∈ A and a b ∈ B with b = a − 1
or b = a + 1. Let x ∈ P be the individual with |l(x)|1 = a. The probability to choose
x in the next step and flip exactly one proper bit to obtain a decision vector y with
|l(y)|1 = b is at least 1

μ ·
min{b+1,n/2−b+1}

en ≥ min{b,n/2−b}+1
μen .

Summing up over the different values that b can attain, we get a maximum waiting
time of μen ·

∑n/2
b=0

1
min{b,n/2−b}+1 ≤ 2μen ·

∑n/4+1
b=1

1
b = O(μn logn) until solutions

with all possible values of b are contained in the population which completes the proof.

5 Conclusions

Indicator-based evolutionary algorithms have been shown to be very successful for deal-
ing with multiobjective optimization. With this paper, we have taken a first step in un-
derstanding these algorithms using the hypervolume indicator by rigorous running time
analysis. Considering the function LOTZ, we have pointed out how the progress of
such algorithms towards the Pareto front can be analyzed. Later on, we have shown that
the hypervolume indicator is provable helpful for approximating large Pareto fronts.
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Abstract. In this work we present a new hybrid cellular genetic al-
gorithm. We take MOCell as starting point, a multi-objective cellular
genetic algorithm, and, instead of using the typical genetic crossover and
mutation operators, they are replaced by the reproductive operators used
in differential evolution. An external archive is used to store the nondom-
inated solutions found during the search process and the SPEA2 density
estimator is applied when the archive becomes full. We evaluate the re-
sulting hybrid algorithm using a benchmark composed of three-objective
test problems, and we compare the results with several state of the art
multi-objective metaheuristics. The obtained results show that our pro-
posal outperforms the other algorithms according to the two considered
quality indicators.

1 Introduction

Multi-objective optimization refers to optimizing problems whose formulation
involves two or more objectives, which are known as multi-objective optimization
problems (MOPs). The solution to these kinds of problem uses not to be a single
one; instead, a set of nondominated solutions has to be found. Each solution in
this set is said to be a Pareto optimum, and when they are plotted in the objective
space they are collectively known as the Pareto front.

In the last few years evolutionary algorithms (EAs) have become very popular
tools for solving MOPs since they are capable of obtaining the Pareto front in a
single run. As a consequence, many multi-objective EAs have appeared in recent
years, and the most well-known metaheuristics, such as NSGA-II [1], SPEA2 [2],
PAES [3], and many others [4][5], belong to this family of techniques. Most of
these algorithms are genetic algorithms (GA), a subclass into EAs.

Our starting point is MOCell [6], a multi-objective cellular GA (cGA) that
is characterized by the use of an external archive to store the non-dominated
solutions found during the search and a feedback mechanism in which solutions
from this archive randomly replaces existing individuals in the population after
each iteration. In order to manage the insertion of solutions in the archive with
the goal of obtaining a diverse set, MOCell includes a density estimator based
on the crowding distance of NSGA-II [1]. This measure is also used to remove
solutions from the archive when it becomes full. MOCell has proven to be very ef-
fective in solving bi-objective MOPs; in particular, it provides Pareto fronts with

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 661–670, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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a remarkable uniformity (spread) of their solutions. However, preliminary exper-
iments have revealed that it has difficulties when dealing with three-objective
MOPs (namely, those belonging to the DTLZ problem family [7]).

In our research activity, we paid attention to differential evolution (DE) al-
gorithms [8], another kind of EA. DE has been successfully applied as a single-
objective optimizer in continuous search problems within the last few years [9],
and there are proposals which adapt it to multi-objective optimization [10,11,12].
In particular, we focused on the Generalized Differential Evolution 3 (GDE3) al-
gorithm [11]. Preliminary experiments with GDE3 showed that it was able to
reach solution sets which are very close to the Pareto front when solving some
DTLZ problems.

This work is aimed at designing a metaheuristic capable of producing the same
satisfactory results in three-objective MOPs as MOCell achieves in bi-objective
problems. Our proposal is a new hybrid metaheuristic, called CellDE, which
tries to combine the advantages of both MOCell (good diversity in bi-objective
MOPs) and GDE3 (good convergence in three-objective MOPs). The idea is
to use MOCell as search engine and hybridizing it with DE, by replacing the
typical genetic operators of crossover and mutation of GAs by the reproductive
mechanism used in DE.

To assess the performance of our algorithm, we have compared it to the tech-
niques it derives, MOCell and GDE3, and to NSGA-II and SPEA2, the reference
metaheuristics in the field. We have used a benchmark composed of the three-
objective formulation of the MOPs included in the DTLZ and WFG [13] problem
families.

The rest of the paper is organized as follows. In Section 2, we give an introduc-
tion to cellular GAs and DE. Our proposal is described in Section 3. Section 4 is
devoted to analyzing the obtained results in the experiments. Finally, Section 5
includes the conclusions and lines of future work.

2 Cellular GAs and Differential Evolution

GAs work on a set (population) of tentative solutions (individuals) which under-
goes stochastic operators (typically selection, crossover, and mutation) in order
to search for better solutions. The form in which this set of solutions is structured
yields to different kinds of GAs (see Fig. 1). On the one hand, those algorithms
that use a single population (panmixia) of individuals and apply operators to
them as a whole; on the other hand, the so-called structured GAs, in which
the population is decentralized somehow. Among the many types of structured
GAs [14], the distributed and cellular models are two popular variants.

Cellular GAs (cGAs) make use of the concept of (small) neighborhood in
the sense that one individual can only interact with individuals belonging to
its neighborhood in the breeding loop. These neighborhoods are defined among
tentative solutions in the algorithm, with no relation to the geographical neigh-
borhood definition in the problem space. The overlapped small neighborhoods of
cGAs help in exploring the search space: the induced slow diffusion of solutions
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(a) (b) (c)

Fig. 1. Panmictic (a), distributed (b), and cellular (c) GAs

through the population provides a kind of exploration (diversification), while
exploitation (intensification) takes place inside each neighborhood by genetic
operators.

Differential evolution [8] is an evolutionary technique which is gaining popu-
larity in recent years. Like many others EAs, DE uses a population of individuals
which are recombined to reach improved solutions. In DE the search process is
guided by generating a single offspring by adding a weighted difference vector
between two parents to a third parent.

DE works as follows. At each generation G, for each D dimensional solution
xi,G, i = 1, 2, . . . , N (N is the population size), a new trial solution u is obtained
as it is indicated in Algorithm 1, where CR controls the crossover operation and
F is the scaling factor for mutation. Both CR and F remain constant during
the execution of the algorithm. After that, the new solution ui,G is compared to
the old vector xi,G, and the latter is replaced by the former if this one has an
equal or better objective value.

3 Outline of CellDE

In this section we describe our proposal. The pseudocode of the algorithm is
shown in Algorithm 2. The basic behavior of CellDE is that of a cGA following
an asynchronous behavior, in the sense that all the cells are explored sequentially
(in synchronous cGAs the cells are explored in parallel). The MOCell version
taken as starting point is based on aMOCell3 [6], which is characterized by
using an external archive to store the non-dominated solutions found so far

Algorithm 1. Pseudocode of generating a new solution in DE.
1: // r1, r2, r3 ∈ {1, 2, . . . , N}, randomly selected, except mutually different from i
2: proc differentialEvolution(i, r1, r2, r3)
3: jrand =floor(randi[0, 1) · D) + 1
4: for (j = 1; j � D; j = j + 1) do
5: if (randj[0, 1) < CR ∨ j = jrand) then
6: ui[j],G = xr3[j],G + F ·

(
xr1[j],G − xr2[j],G

)
7: else
8: ui[j],G = xi[j],G

9: end if
10: end for
11: return ui,G

12: end proc differentialEvolution;
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Algorithm 2. Pseudocode of CellDE.
1: proc stepsUp(CellDE) //Algorithm parameters in ‘CellDE’
2: population ← randomPopulation() //Creates a random initial population
3: archive ← createFront() //Creates an empty Pareto front
4: while !terminationCondition() do
5: for individual ← 1 to CellDE.populationSize do
6: neighborhood←getNeighbors(population,position(individual));
7: parent1←selection(neighborhood);
8: parent2←selection(neighborhood);
9: // parent1 and parent2 may be different
10: while parent1=parent2 do
11: parent2←selection(neighborhood);
12: end while
13: offspring←differentialEvolution(position(individual), position(individual),

position(parent1), position(parent2));
14: evaluateFitness(offspring);
15: insert(position(individual),offspring,population);
16: addToArchive(individual);
17: end for
18: population←replaceIndividuals(population,archive);
19: end while
20: end proc stepsUp;

during the search and a feedback mechanism. The aMOCell3 algorithm was
originally engineered using the crowding distance as density estimator to manage
the diversity in the approximated Pareto front. As it has been reported in the
literature [15], this estimator does not perform well with MOPs having more
than two objectives. This leads us to use the density estimator of SPEA2 [2] in
CellDE and also in the aMOCell3 algorithm used in this work.

The main difference between CellDE and MOCell (we will refer aMOCell3 as
MOCell in the rest of the paper) arises in the creation of new individuals. Instead
of using the classical GA operators to generate new individuals, CellDE takes the
operator used in DE: three different individuals are chosen and the new offspring
solution is obtained based on the differences between them. Please, refer to [6]
for a detailed description of the methods that will be used next.

CellDE starts by creating a population of random solutions and an empty
Pareto front (lines 2 and 3 in Algorithm 2). Individuals are arranged in a
2-dimensional grid, defining neighborhood structures over the population. For
each individual xi,G, two different solutions of the neighborhood are selected
(lines 7 and 8) which, along with the current individual, are used as the three
parents to create the new offspring (line 13). This is a different approach to the
one used in DE, where the three parents exclude the current solution; we take
this scheme since it allows to enhance the intensification capabilities of the algo-
rithm. The newly generated offspring is evaluated (line 14) and then it replaces
the original solution if dominates it, or, if both are non-dominated, it replaces
the worst individual in the neighborhood (line 15). After that, the new individ-
ual is sent to the archive, where it is checked for its insertion (line 16). Finally,
after each generation, a feedback procedure is performed to replace a number
of randomly chosen individuals by a number of solutions taken from the archive
(line 18).
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Table 1. Parameterization (L = individual length)

Parameterization used in NSGA-II [1]
Population Size 100 individuals
Selection of Parents binary tournament + binary tournament
Recombination simulated binary, pc = 0.9
Mutation polynomial, pm = 1.0/L

Parameterization used in SPEA2 [2]
Population Size 100 individuals
Selection of Parents binary tournament + binary tournament
Recombination simulated binary, pc = 0.9
Mutation polynomial, pm = 1.0/L

Parameterization used in GDE3 [11]
Population Size 100 individuals
Recombination Differential Evolution, CR = 0.1, F = 0.5

Parameterization used in MOCell (aMOCell3) [6]
Population Size 100 individuals (10 × 10)
Neighborhood 1-hop neighbors (8 surrounding solutions)
Selection of Parents binary tournament + binary tournament
Recombination simulated binary, pc = 0.9
Mutation polynomial, pm = 1.0/L
Archive Size 100 individuals
Feedback 20% of the population (20 individuals)

Parameterization used in CellDE
Population Size 100 individuals (10 × 10)
Neighborhood 1-hop neighbors (8 surrounding solutions)
Selection of Parents binary tournament + binary tournament
Recombination differential evolution, CR = 0.1, F = 0.5
Archive Size 100 individuals
Feedback 20% of the population (20 individuals)

4 Computational Results

This section is devoted to the evaluation of CellDE. We have chosen several
test problems taken from the specialized literature, and, in order to assess how
competitive CellDE is, we have compared it to the two reference algorithms
in the field, namely NSGA-II and SPEA2, as well as to the base algorithms
used for designing CellDE, GDE3 and MOCell. All the algorithms have been
implemented in Java using the jMetal framework [16].

The parameter settings used in the experiments are summarized in Table 1.
The values are taken from the reference papers where the algorithms are de-
scribed. The stopping condition in all of them is to evaluate 25000 solutions.

The test problems we have used are the three-objective formulations of the
Deb-Thiele-Laumanns-Zitzler (DTLZ) benchmark [7] and the Walking-Fish-
Group (WFG) problems [13]. A total number of sixteen MOPs has been used
to evaluate the five metaheuristics. For assessing the performance of the algo-
rithms, we have used two Pareto-compliant indicators: hypervolume (HV ) [17]
and additive epsilon indicator (I1

ε+) [18]. The latter is an indicator measuring
the convergence of the resulting Pareto fronts, while the former measures both
convergence and diversity.

We have made 100 independent runs of each experiment, and we have ob-
tained the median, x̃, and interquartile range, IQR, as measures of location (or
central tendency) and statistical dispersion, respectively. Since we are dealing
with stochastic algorithms and we want to provide the results with confidence,
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Table 2. Median and interquartile range of the (additive) Epsilon (Iε) indicator

NSGA-II SPEA2 GDE3 MOCell CellDE
Problem x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR

DTLZ1 7.62e-2 7.2e−2 4.16e-2 8.4e−3 4.80e-2 6.6e−3 5.35e-1 5.1e−1 3.34e-2 3.3e−3 +
DTLZ2 1.24e-1 2.0e−2 8.20e-2 9.5e−3 1.17e-1 1.7e−2 7.99e-2 8.5e−3 7.62e-2 8.8e−3 +
DTLZ3 4.51e+0 2.7e+0 4.73e+0 3.0e+0 1.36e+1 5.2e+0 1.67e+1 7.8e+0 3.55e+0 3.3e+0 +
DTLZ4 1.12e-1 2.4e−2 7.93e-2 5.6e−1 1.08e-1 1.9e−2 6.92e-2 1.0e−2 6.77e-2 8.6e−3 +
DTLZ5 1.07e-2 2.6e−3 7.74e-3 1.5e−3 5.58e-3 4.8e−4 8.08e-3 1.6e−3 6.55e-3 1.1e−3 +
DTLZ6 8.57e-1 1.3e−1 7.82e-1 6.3e−2 5.10e-3 5.5e−4 1.72e+0 1.5e−1 6.00e-3 7.9e−4 +
DTLZ7 1.27e-1 4.5e−2 9.82e-2 1.2e−2 1.20e-1 3.6e−2 1.15e-1 3.0e−2 8.42e-2 1.6e−2 +
WFG1 5.66e-1 6.8e−2 6.56e-1 1.1e−1 7.76e-1 1.1e−1 6.30e-1 1.8e−1 1.03e+0 1.5e−1 +
WFG2 3.23e-1 6.4e−2 2.37e-1 3.4e−2 3.02e-1 4.5e−2 2.56e-1 3.8e−2 2.52e-1 3.9e−2 +
WFG3 1.24e-1 3.5e−2 9.22e-2 1.7e−2 1.08e-1 3.6e−2 8.57e-2 1.8e−2 1.04e-1 3.0e−2 +
WFG4 4.32e-1 7.8e−2 3.26e-1 3.8e−2 4.21e-1 1.0e−1 2.95e-1 4.3e−2 3.10e-1 4.1e−2 +
WFG5 4.71e-1 7.8e−2 3.52e-1 4.6e−2 4.34e-1 6.4e−2 3.44e-1 4.2e−2 3.30e-1 4.7e−2 +
WFG6 4.31e-1 6.7e−2 3.30e-1 4.9e−2 3.94e-1 6.2e−2 3.13e-1 4.4e−2 2.81e-1 3.6e−2 +
WFG7 4.65e-1 8.7e−2 3.37e-1 3.9e−2 4.57e-1 1.1e−1 3.07e-1 3.8e−2 2.95e-1 3.7e−2 +
WFG8 7.51e-1 9.2e−2 6.22e-1 1.4e−1 7.56e-1 5.4e−2 6.26e-1 1.6e−1 6.38e-1 3.3e−2 +
WFG9 4.39e-1 7.2e−2 3.28e-1 4.2e−2 4.25e-1 5.8e−2 3.13e-1 4.5e−2 3.14e-1 3.7e−2 +

Table 3. Non-successful statistical test of the Iε indicator

SPEA2 DTLZ3, DTLZ6
GDE3 DTLZ2, DTLZ4, DTLZ7,

WFG4, WFG5, WFG7, DTLZ1
WFG8, WFG9

MOCell
DTLZ7

DTLZ2, DTLZ5, WFG1, DTLZ3,
WFG5, WFG6, WFG8 DTLZ7

CellDE DTLZ3, WFG2, WFG4, DTLZ2, DTLZ4, WFG2,
DTLZ3 WFG5, WFG8 WFG3 WFG4, WFG5, WFG7,

WFG8, WFG9
NSGA-II SPEA2 GDE3 MOCell

the following statistical analysis has been performed in all this work [19]. Firstly,
a Kolmogorov-Smirnov test is applied in order to check whether the values of
the results follow a normal (gaussian) distribution or not. If the distribution is
normal, the Levene test checks for the homogeneity of the variances. If samples
have equal variance (positive Levene test), an ANOVA test is done; otherwise
a Welch test is performed. For non-gaussian distributions, the non-parametric
Kruskal-Wallis test is used to compare the medians of the algorithms. We always
consider a confidence level of 95% (i.e., significance level of 5% or p-value under
0.05) in the statistical tests. Successful tests are marked with ‘+’ symbols in the
last column in all the tables containing the results; conversely, ‘-’ means that
no statistical confidence was found (p-value > 0.05). The best result for each
problem has a gray colored background. For the sake of a better understanding
of the results, we have also used a clearer grey background to indicate the second
best result.

To further analyze the results statistically, we have also included a post-hoc
testing phase which allows for a multiple comparison of samples [20]. We have
used the multcompare function provided by Matlab c©. Tables 3 and 5 summarize
this comparison by including only those problems for which the differences are
not statistically different.

We start by analyzing the results of the Iε indicator, which are included in
Table 2. We observe that CellDE obtains the best (lowest) values in eight out of
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Table 4. Median and interquartile range of the HV indicator

NSGA-II SPEA2 GDE3 MOCell CellDE
Problem x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR

DTLZ1 7.22e-1 1.0e−1 7.69e-1 1.5e−2 7.62e-1 6.0e−3 0.00e+0 1.0e−1 7.86e-1 7.9e−4 +
DTLZ2 3.73e-1 8.3e−3 4.05e-1 2.6e−3 3.74e-1 6.3e−3 4.10e-1 2.0e−3 4.16e-1 1.3e−3 +
DTLZ3 − − − − − -
DTLZ4 3.74e-1 7.6e−3 3.98e-1 1.9e−1 3.71e-1 5.9e−3 4.05e-1 1.9e−3 4.07e-1 1.4e−3 +
DTLZ5 9.28e-2 3.0e−4 9.32e-2 1.9e−4 9.39e-2 7.0e−5 9.33e-2 1.7e−4 9.36e-2 6.9e−5 +
DTLZ6 − − 9.49e-2 4.8e−5 − 9.46e-2 8.1e−5 -
DTLZ7 2.80e-1 6.0e−3 2.90e-1 3.5e−3 2.92e-1 2.8e−3 2.81e-1 7.2e−3 3.03e-1 2.4e−3 +
WFG1 7.71e-1 5.2e−2 6.75e-1 7.4e−2 6.42e-1 5.4e−2 7.17e-1 1.3e−1 5.27e-1 1.1e−1 +
WFG2 9.01e-1 4.7e−3 9.13e-1 1.9e−3 9.05e-1 3.3e−3 9.12e-1 1.7e−3 9.14e-1 1.8e−3 +
WFG3 3.19e-1 2.5e−3 3.11e-1 2.7e−3 3.23e-1 1.5e−3 3.15e-1 1.6e−3 3.11e-1 4.6e−3 +
WFG4 3.65e-1 8.2e−3 3.92e-1 4.8e−3 3.52e-1 8.6e−3 4.07e-1 2.3e−3 3.95e-1 4.4e−3 +
WFG5 3.41e-1 9.4e−3 3.68e-1 6.9e−3 3.55e-1 4.0e−3 3.68e-1 4.8e−3 3.71e-1 1.9e−3 +
WFG6 3.64e-1 1.0e−2 3.91e-1 1.4e−2 3.81e-1 9.0e−3 3.97e-1 1.5e−2 4.16e-1 2.6e−3 +
WFG7 3.58e-1 1.0e−2 3.83e-1 5.5e−3 3.63e-1 7.8e−3 4.00e-1 3.2e−3 4.07e-1 2.5e−3 +
WFG8 2.42e-1 6.7e−3 2.69e-1 9.2e−3 2.40e-1 5.5e−3 2.69e-1 7.7e−3 2.59e-1 5.1e−3 +
WFG9 3.57e-1 7.2e−3 3.77e-1 3.8e−3 3.61e-1 5.4e−3 3.86e-1 5.9e−3 3.86e-1 2.7e−3 +

Table 5. Non-successful statistical test of the HV indicator

SPEA2 DTLZ4, DTLZ6
GDE3 DTLZ2, DTLZ4 DTLZ1, DTLZ4, DTLZ7

MOCell DTLZ6, DTLZ7, WFG8
DTLZ6, WFG1, WFG2,
WFG5, WFG6, WFG8

CellDE WFG2, WFG3
NSGA-II SPEA2 GDE3 MOCell

the sixteen problems evaluated and the second best results in five cases. MOCell
is the second best algorithm (three best results and seven second best values)
followed by SPEA2 (best value in two out of the sixteen problems evaluated and
the second best value in three other problems). GDE only yields the best values
in two problems. NSGA-II is the technique providing the poorest fronts, which
confirms the fact that this algorithm has difficulties when solving MOPs having
more than two objectives.

Table 3 contains, for each pair of algorithms, the MOPs for which no statistical
difference exists (at a confidence level of 95%) according to the Iε indicator. If
we focus on CellDE, we can see that the differences in the values in five and eight
problems with SPEA2 and MOCell, respectively, are not significant. This means
that both SPEA2 and MOCell produce similar Pareto fronts in those problems.

We analyze now the results obtained after applying the HV indicator (see
Table 4). It can be seen that CellDE clearly outperforms the other algorithms,
obtaining the best (highest) values in nine out of the sixteen MOPs evaluated,
yielding also the second best values in three other problems. MOCell can be
considered as the second most competitive algorithm according to HV since,
although it reaches the best HV value in only a single MOP, it is the second
best in eight out of the sixteen problems. GDE3 gets the best value in three
MOPs, and the second best value only in one case, while SPEA2 obtains the
best value in only one problem and the second best value in two cases. The least
algorithm with respect to this indicator is NSGA-II, which only reaches the best
value in one problem, yielding also the second best value in another one. As
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Fig. 2. Front obtained when solving DTLZ1. From left to right, from top to bottom:
NSGA-II, SPEA2, GDE3, MOCell, CellDE.

to GDE3 and MOCell, the base algorithms for CellDE, we can state that the
search capabilities of the new approach improves significantly those of the two
former ones according to HV . We explain now the meaning of the ‘−’ symbol
in Table 4. Since the HV indicator is not free from the arbitrary scaling of the
objectives, the resulting Pareto fronts of the algorithms have to be normalized.
In this normalization process, the nondominated solutions that are outside the
limits of the true Pareto front are not considered to compute the HV value
because, otherwise, the obtained values would be unreliable.

Table 5 contains, for each pair of algorithms, the MOPs for which no statistical
difference appears. The main conclusion that can be drawn from this table is
that the differences in the HV values of CellDE with respect to the values of the
other four algorithms are significant in all except two MOPs (WFG2 and WFG3
with SPEA2), thus providing our previous claims with statistical support.

To illustrate the search capabilites of CellDE, we include in Fig. 2 the Pareto
fronts reached by the different algorithms evaluated when solving problem DTLZ1.
We observe that the fronts obtained by CellDE and SPEA2 have a better distribu-
tion of solutions than the other ones. Furthermore, in the case of CellDE, all the
solutions have converged towards the true Pareto front, while in the SPEA2 front
some solutions have not. We include in Fig. 3 the fronts obtained by CellDE for
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Fig. 3. Fronts obtained by CellDE when solving DTLZ2 (left) and WFG7 (right)

problems DTLZ2 and WFG7, where a uniform distribution of the solutions can be
observed.

5 Conclusions and Future Work

In this work we have proposed a new algorithm called CellDE, which hybridizes
the behavior of a cellular GA with a DE algorithm. It has been evaluated using
a benchmark composed of sixteen three-objective optimization problems.

To assess how competitive CellDE is, we have compared it to four state-of-
the-art algorithms, NSGA-II, SPEA2, MOCell, and GDE3, being the last two
ones the starting point to design our algorithm. The obtained results show that
CellDE clearly outperforms the other techniques according to the parameter
settings, problems, and quality indicators used.

A study of the behavior of CellDE when applied to problems having more
than three objectives is a matter of future work.
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Abstract. It is widely assumed that evolutionary algorithms for multi-objective
optimization problems should use certain mechanisms to achieve a good spread
over the Pareto front. In this paper, we examine such mechanisms from a theo-
retical point of view and analyze simple algorithms incorporating the concept of
fairness introduced by Laumanns et al. [7]. This mechanism tries to balance the
number of offspring of all individuals in the current population. We rigorously
analyze the runtime behavior of different fairness mechanisms and present show-
case examples to point out situations where the right mechanism can speed up the
optimization process significantly.

1 Introduction

Evolutionary algorithms evolve a set of solutions called the population during the opti-
mization process. In multi-objective optimization one usually does not search for a single
optimal solution but a set of solutions representing the possible trade-offs when deal-
ing with conflicting objective functions. Hence, multi-objective evolutionary algorithms
(MOEAs) seem to be in a natural way well suited for dealing with these problems.

Many MOEAs give priority to regions in the decision or objective space that have
been rarely explored. This leads to the use of fairness in evolutionary multi-objective
optimization. The idea behind using fairness is that the number of offspring generated
by individuals with certain properties should be balanced. Different mechanisms for
spreading the individuals in the population over the Pareto front have been proposed.
In NSGA-II [1] a uniform spread over the Pareto front should be achieved by using a
crowded comparison operator that gives individuals in less crowded regions a higher
priority. SPEA2 [10] uses a density estimator such that the fitness of an individual is
given by its objective vector and a density value which depends on the other individuals
in the population. The goal of the density estimator is also to give individuals in less
crowded regions a higher priority. Our aim is to get a theoretical understanding how
such fairness mechanisms influence the optimization process.

The theoretical understanding of the runtime behavior of MOEAs is far behind their
practical success. The first rigorous runtime analyses of such algorithms have been
carried out by Laumanns et al. [7] on some pseudo-Boolean functions. They have in-
vestigated a mutation-based MOEA called Simple Evolutionary Multi-objective Op-
timizer (SEMO) that searches locally by flipping in each mutation step a single bit.
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In addition, they have considered a MOEA called Fair Evolutionary Multi-objective
Optimizer (FEMO) and shown that this algorithm outperforms SEMO on a particular
pseudo-Boolean function called LOTZ (Leading Ones, Trailing Zeroes). Giel [5] has
investigated SEMO with a mutation operator that searches globally and called the al-
gorithm Global SEMO. Global SEMO has also been considered for some well-known
combinatorial optimization problems [3,8,9].

In this paper, we want to put forward the runtime analysis of MOEAs and consider
how the use of fairness can influence the runtime behavior. We investigate the concept
of fairness introduced by Laumanns et al. [7]. The implementation of this concept relies
on several counters, where each individual in the population corresponds to one of these
counters. The counters measure the number of offspring that the corresponding group
of individuals has created. Fairness means to balance these counters to achieve that all
groups have been granted the same chance to create a better individual. There are two
basic ideas to link individuals with counters. The first idea is that individuals with the
same decision vector share a counter and the second idea is that individuals with the
same objective vector share a counter. Our goal is to compare the runtime behavior of
these two variants.

The outline of this paper is as follows. A short introduction into multi-objective opti-
mization and the algorithms that are subject of our analyses are presented in Section 2.
The differences between the two variants of fairness are worked out in Sections 3 and 4.
Finally, we finish with some concluding remarks.

2 Algorithms

We start with some basic notations and definitions that will be used throughout the
paper. We denote the set of all Boolean values by B and the set of all real numbers by
R and investigate the maximization of functions f : Bn → Rm. We call f objective
function, Bn decision space, and Rm objective space. The elements of Bn are called
decision vectors and the elements of Rm objective vectors. We define that y weakly
dominates y′, denoted by y / y′, if and only if yi ≥ y′i for all i ∈ {1, . . . ,m},
and y dominates y′, denoted by y 3 y′, if and only if y / y′ and y �= y′, where
y = (y1, . . . , ym) ∈ Rm and y′ = (y′1, . . . , y

′
m) ∈ Rm are two objective vectors.

The set Ff := {y ∈ f(Bn) | �y′ ∈ f(Bn) : y′ 3 y} is called the Pareto front of f
and the setPf := f−1(Ff ) = {x ∈ Bn | �x′ ∈ Bn : f(x′) 3 f(x)} the Pareto set of f .
The elements of Ff and Pf are called Pareto optimal. The set {(x, f(x)) | x ∈ Pf}
constitutes the canonical solution of an optimization problem of the considered kind.
In the literature a set {(x, f(x)) | x ∈ X} with X ⊆ Pf is also considered as a
valid solution if f(X) = Ff . This means that it is sufficient to determine for all Pareto
optimal objective vectors y ∈ Ff at least one decision vector x ∈ Bn with f(x) = y.

Laumanns et al. [7] argue that it can be beneficial when all individuals in the pop-
ulation have created roughly the same number of offspring and therefore introduced
the algorithm FEMO. This algorithm works with a local mutation operator and uses a
counter for each individual in the population to measure the number of offspring the
corresponding individual has created. We investigate generalized variants of FEMO.
Our algorithms apply a global mutation operator and additionally accept individuals
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with the same objective vector as an individual in the population. The use of a global
mutation operator seems more appropriate as the ability to flip two or more bits in a sin-
gle mutation step is essential to escape from a local optimum. The relaxed acceptance
rule also tends to improve the optimization, since it allows the exploration of plateaus,
i. e., regions in the decision space whose decision vectors are mapped to the same ob-
jective vector. We distinguish two kinds of fairness depending on whether the fairness
is ensured in the decision or objective space. The following algorithm uses fairness in
the decision space.

Algorithm 1. Global FEMOds

1. Choose x ∈ Bn uniformly at random.

2. Set c(x) := 0.

3. Set P := {x}.
4. Repeat

– Choose x ∈ {y ∈ P | c(z) ≥ c(y) for all z ∈ P} uniformly at random.

– Set c(x) := c(x) + 1.

– Create an offspring x′ by flipping each bit of x with probability 1/n.

– If there is no y ∈ P with f(y) 3 f(x′) then
• If x′ /∈ P then set c(x′) := 0.

• Set P := (P \ {y ∈ P | f(x′) / f(y)}) ∪ {x′}.

Note, that resetting a counter to 0 depends on the individuals in the current popula-
tion. This implies that the algorithm forgets about counter values for decision vectors
that have been seen during the optimization process but are not part of the current pop-
ulation. This phenomenon is of relevance if a decision vector re-enters the population
which has been replaced in the meantime by another decision vector which is mapped
to the same objective vector. However, we think that this is a natural way of implement-
ing this idea of fairness as EAs are usually limited to the knowledge of the individuals
that are contained in the current population. Note, that Global FEMOds coincides with
Global SEMO [3,9], when the counter values do not influence the search process, i. e.,
c(x) = 0 holds for each search point at each time step.

The goal in multi-objective optimization is to find the Pareto front. Thus the question
arises whether it might be more beneficial to associate each counter with an objective
vector rather than a decision vector, since the latter approach emphasizes the exploration
of the objective space. The following algorithm implements fairness in the objective
space.

Algorithm 2. Global FEMOos

1. Choose x ∈ Bn uniformly at random.

2. Set c(f(x)) := 0.

3. Set P := {x}.
4. Repeat

– Choose x ∈ {y ∈ P | c(f(z)) ≥ c(f(y)) for all z ∈ P} uniformly at random.

– Set c(f(x)) := c(f(x)) + 1.
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– Create an offspring x′ by flipping each bit of x with probability 1/n.

– If there is no y ∈ P with f(y) 3 f(x′) then
• If f(x′) /∈ f(P ) then set c(f(x′)) := 0.

• Set P := (P \ {y ∈ P | f(x′) / f(y)}) ∪ {x′}.

For our theoretical investigations carried out in the following sections, we count the
number of iterations until a desired goal has been achieved. Since we are interested in
the discovery of all Pareto optimal objective vectors, we count the number of iterations
until an individual for each objective vector ofFf has been included into the population
and call it the optimization time of the algorithm. The expectation of this value is called
the expected optimization time.

3 Advantages of Fairness in the Decision Space

The goal of the next two sections is to point out the differences that the use of different
fairness mechanisms might have. Therefore we examine situations where the runtime
behavior of the two variants differs significantly. To ease the notation in the following
sections we will refer to the number of 0- and
1-bits in a decision vector x ∈ Bn as |x|0 and
|x|1, respectively. We start with the examina-
tion of a situation, where Global FEMOds is ef-
ficient while Global FEMOos is inefficient, and
therefore investigate the bi-objective function PL
(PLateau) [4]. The function is similar to the well-
known single-objective function SPC (Short Path
with Constant values) [6]. PL is illustrated in the
right figure and defined as follows:

PL(x) :=

⎧⎪⎨⎪⎩
(|x|0, 1) x /∈ {1i0n−i | 1 ≤ i ≤ n},
(n + 1, 0) x ∈ {1i0n−i | 1 ≤ i < n},
(n + 2, 0) x = 1n.

The function features the following properties. The decision space is partitioned into
a short path SP := {1i0n−i | 1 ≤ i ≤ n} and its complement Bn \ SP. The second
objective of the function ensures that decision vectors from one of the mentioned sets
are comparable while decision vectors from different sets are incomparable. The Pareto
front of PL isFPL = {(n, 1), (n+2, 0)} and the Pareto set of PL isPPL = {0n, 1n}. The
set SP\{1n} constitutes a plateau, since all decision vectors are mapped to the objective
vector (n + 1, 0), while Bn \ SP features a richer structure. Since PL(x) 3 PL(x′) for
x, x′ ∈ Bn \ SP iff |x|0 > |x′|0, the algorithms are directed to the Pareto optimal
decision vector 0n. This function has already been considered by Friedrich et al. [4]
who have shown that Global SEMO is inefficient on PL. The next theorem shows that
Global FEMOos is also not efficient on this function.

Theorem 1. The optimization time of Global FEMOos on PL is lower bounded by
2Ω(n1/4) with probability 1− 2−Ω(n1/3).
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Proof. We show that the decision vector 1n is not created with probability 1−2−Ω(n1/3)

within a phase of 2Ω(n1/4) steps. The initial individual x ∈ Bn does not belong to SP
with probability 1 − |SP|/2n = 1 − 2−Ω(n), as it is chosen uniformly at random. In
addition, |x|1 ≤ 2n/3 holds with probability 1− 2−Ω(n) using Chernoff bounds. In the
remainder of the proof we consider a typical run consisting of phases of length n3/2.

Claim. Within the first n3/2 steps with probability 1 − 2−Ω(n1/3), the population P
never contains 1n and at one time the population P = {0n, 10n−1} is reached.

Proof. The probability that a mutation flips at least i bits is upper bounded by(
n

i

)
·
(

1
n

)i

≤
(en
i

)i

·
(

1
n

)i

=
(e
i

)i

.

Therefore the probability that a mutation flips at least n1/3 bits is upper bounded by
(e/n1/3)n1/3

= 2−Ω(n1/3 log n). This implies that none of the first n3/2 mutations flips
more than n1/3 bits with probability 1− 2−Ω(n1/3 log n).

The probability to create and accept an offspring x′ with more 1-bits than its parent
is at most 1/n, since x is required to be in SP. Hence, the expected number of such
steps is upper bounded by n1/2. Due to Chernoff bounds this happens at most 2n1/2

times with probability 1− 2−Ω(n1/2). Hence, the number of 1-bits increases by at most
2n1/2 · n1/3 = o(n) which implies that the decision vector 1n has not been found.

As at most 1
2 ·n3/2 mutation trials are allocated to c((n+1, 0)), the individuals from

Bn \ SP are chosen at least 1
2 ·n3/2 times for mutation. We consider the first 1

4 ·n3/2 of
these mutation steps and show that the search point 0n is included into the population.
The probability that an offspring x′ of an individual x ∈ Bn \ SP contains less 1-bits
than x and does not belong to SP is lower bounded by (|x|1 − 1)/en if |x|1 ≥ 2 and
1/en if |x|1 = 1. Therefore the decision vector 0n is found after an expected number of

en+
n−1∑
i=2

en

i− 1
≤ en+ en(ln(n− 2) + 1) ≤ en(lnn+ 2)

individuals from Bn \ SP have been chosen for mutation. Using Markov’s inequality
the probability to discover the decision vector 0n within 2en(lnn + 2) steps is at least
1/2. Dividing 1

4 · n3/2 steps into n3/2/(8en(lnn + 2)) = Ω(n1/3) phases of length

2en(lnn+ 2) the decision vector 0n is reached with probability at least 1− 2−Ω(n1/3).
The remaining 1

4 · n3/2 of these mutation steps affect 0n. Therefore the search point

10n−1 is included into the population with probability 1 − 2−Ω(n1/2) using similar
arguments.

We now consider an additional phase of length n3/2. Within this phase a search point
with more than n/2 1-bits is not included into the population using previous arguments.
Additionally, a situation is reached where c(n, 1) = c(n + 1, 0) holds. From this point
of time the two individuals with objective vectors (n, 1) and (n + 1, 0) are alternately
selected for mutation. We consider the situation when c(n, 1) = c(n+ 1, 0) for the first
time and show the following invariant to complete the proof.
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Claim. Assume that 0n ∈ P and maxx∈P |x|1 ≤ (n/2). Consider a non-empty phase

of at most n3/2 steps. Then with probability 1−2−Ω(n1/3), the population never contains
1n and at one time a population P with 0n ∈ P and maxx∈P |x|1 ≤ (n/2) is reached.

Proof. The search point 0n will not be removed from the population once it has been
included. From the proof of the previous claim, we already known that the decision
vector 1n is not obtained within a phase of n3/2 steps with probability 1 − 2−Ω(n1/3).
The decision vector 0n is selected at least 1

2 · n3/2 − 1 times for mutation within the
considered phase. With probability at least 1/(en) such a mutation produces the search
point 10n−1. Hence, within the considered phase of length n3/2 this holds with proba-
bility 1 − 2−Ω(n1/3). Having produced the search point 10n−1, it replaces the previous
search point of SP in the population. Hence, the assumption of the claim is fulfilled
again.

Considering the invariant at most 2n1/4
times, Global FEMOos does not create the de-

cision vector 1n with probability 1 − 2−Ω(n1/3). This proves Theorem 1 as all failure
probabilities are bounded by 1− 2−Ω(n1/3).

We will see that Global FEMOds performs much better on PL than its counterpart Global
FEMOos. The main reason for this is that after a while the Pareto optimal decision vector
0n is prevented from generating additional offspring that can stop the random walk on
the plateau.

Theorem 2. The expected optimization time of Global FEMOds on PL is O(n3 logn).

Proof. Before showing that Global FEMOds quickly creates the decision vectors 0n

and 1n we summarize some results concerning PL. On one hand, the decision vector
0n is created with probability at least 1/2 if at least γn logn individuals not from SP
are chosen for mutation, where γ > 0 is a constant (see proof of Theorem 1). On the
other hand, the decision vector 1n is created with probability at least 1/2 if at least
δn3 individuals from SP are chosen for mutation and all offspring of individuals not
contained in SP do not belong to SP, where δ > 0 is an appropriate constant (see [6]).

We show that the expected time until one decision vectors of {0n, 1n} is introduced
into the population is O(n3 logn). We observe a phase of length

� := (2γ logn+ 1) · (δn3 + γn logn) = O(n3 logn)

and distinguish two cases. If at least γn logn individuals not from SP are chosen for
mutation, the probability to find the decision vector 0n is lower bounded by 1/2 accord-
ing to the first statement. The probability that an offspring of an individual not from
SP belongs to SP is upper bounded by 1/n. Therefore otherwise at most 2γ logn off-
spring of individuals not from SP belong to SP with probability at least 1/2 according
to Markov’s inequality. Assuming that this has happened and applying the pigeonhole
principle we can be sure that the phase contains a sub-phase of length

δn3 + γn logn,
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where no offspring of individuals not contained in SP belong to SP. The mentioned sub-
phase fulfills the second statement, since at least δn3 individuals from SP are selected
for mutation. Hence, the decision vector 1n is created with probability at least 1/4.
Since the probability to create the decision vector 0n or 1n in a phase of length � is
lower bounded by 1/4, an expected number of at most 4� = O(n3 logn) steps suffices.

We now consider the situation where the decision vector 0n has been found and the
decision vector 1n is still missing. Observe a phase of length

�′ := (2e ln(2δn3) + 1) · (δn3 + en ln(2δn3)) = O(n3 logn).

If 0n is selected at most en ln(2δn3) times then the probability that at most 2e ln(2δn3)
offspring of 0n are from SP is lower bounded by 1/2 using Markov’s inequality. As-
suming that this has happened the phase contains a sub-phase of length

δn3 + en ln(2δn3)

in which at least δn3 individuals from SP are chosen for mutation and all offspring of
the individual 0n do not belong to SP. Hence, the probability that the missing decision
vector 1n is found or the counter value c(0n) exceeds en ln(2δn3) is lower bounded
by 1/4. One of the mentioned events occurs after an expected number of most 4�′ =
O(n3 log n) steps. If the individual 1n still has not been found we observe a phase of
length 2en2 +δn3. The probability to add a new individual from SP to the population is
lower bounded by 1/(en2) as at most 2 specific bits have to flip. This worst case occurs
if 0n is selected for mutation and 10n−1 is already contained in the population. Hence,
the probability that in the first 2en2 steps of the phase a new individual from SP with
an initial counter value of 0 is added to the population is lower bounded by 1/2 due to
Markov’s inequality. Assuming that this has happened the probability that the individual
0n is selected in the following δn3 steps can be upper bounded as follows. The probabil-
ity to reset the counter of the individual from SP is lower bounded by 1/en. The prob-
ability that this does not happen in en ln(2δn3) consecutive steps is upper bounded by(

1− 1
en

)en ln(2δn3)

≤ e− ln(2δn3) =
1

2δn3
.

The probability that this does not happen in a phase of length δn3 is upper bounded by
δn3 ·1/(2δn3) ≤ 1/2. We conclude that the counter value of the actual individual from
SP does not exceed en ln(2δn3) with probability at least 1/2 and therefore the individ-
ual 0n is not chosen for mutation. Assuming that this has happened the probability that
the decision vector 1n is found is lower bounded by 1/2. Hence, the decision vector 1n

is found in an expected number of 8 · (2en2 + δn3) = O(n3) steps.
We also have to examine the situation that the decision vector 1n has been found and

the decision vector 0n is still missing. We wait until the population contains an addi-
tional individual not contained in SP and the counter value c(1n) is at least as big as
the counter value of this individual. Afterwards we observe a phase of length 2γn logn.
We can be sure that at least γn logn steps are allocated to individuals not from SP as
c(1n) is never set to 0. Hence, after an expected number of O(n log n) additional steps
the decision vector 0n is added to the population.
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4 Advantages of Fairness in the Objective Space

In this section, we point out situations where the use of fairness in the objective space
favors over fairness in the decision space. We have already seen that the latter fairness
mechanism enables a random walk on a plateau of constant fitness where the former
fairness mechanism does not allow this kind of exploration. During the random walk
the counter of the individual on the plateau is set to 0 whenever a new individual on the
plateau is created. This can also be a drawback of fairness in the decision space as it
might prevent the algorithm from improvements that are harder to obtain than finding a
new individual on the plateau.

The function that is used to point out the mentioned behavior is similar to the function
PL that has been examined in Section 3. To ease the following definition we assume
n = 8m, m ∈ N, and define

SP1 := {1i0n−i | 1 ≤ i ≤ 3n/4− 1}

and

SP2 := {13n/4+2i0n/4−2i | 0 ≤ i ≤ n/8}.

The function PLG (PLateau and Gaps) is il-
lustrated in the figure to the right and defined
as follows:

PLG(x) :=

⎧⎪⎨⎪⎩
(|x|0, 1) x /∈ SP1 ∪ SP2,

(n+ 1, 1) x ∈ SP1,

(n+ 2 + i, 0) x = 13n/4+2i0n/4−2i.

Note, that FPLG = {(n+ 1, 1), (9n/8 + 2, 0)} and PPLG = SP1 ∪ {1n}. The short path
SP is divided into a plateau and a short path with little gaps that leads to the second
Pareto optimal objective vector (9n/8 + 2, 0).

The next theorem shows that Global FEMOos performs well on PLG.

Theorem 3. The expected optimization time of Global FEMOos on PLG is O(n3).

Proof. An individual of SP1 ∪ SP2 is added to the population after an expected number
of O(n logn) steps, since before the achievement of such a situation the population
contains one individual and the algorithm behaves like (1+1) EA on ONEMAX (see [2]).

We first consider the situation where this individual belongs to SP1. After an ex-
pected number of O(n3) steps an individual of SP2 is introduced into the population
(see [6]). The probability to find a better individual of SP2 under the condition that
the individual of SP2 has been selected for mutation is lower bounded by (1/n)2(1 −
1/n)n−2 ≥ 1/(en2) as it suffices to flip its two leftmost 0-bits. Hence, in expectation
at most en2 attempts per non-optimal individual of SP2 are needed to improve it. The
counter of the Pareto optimal individual of SP1 is never reset. Hence, the individual of
SP2 is chosen at least once in two consecutive iterations. Therefore, an expected number
of at most 2·n/8·en2 = O(n3) steps is needed to obtain the missing decision vector 1n.
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In the case that the first individual of SP1 ∪SP2 belongs to SP2 an individual of Bn \
SP2 is created with probability at least 1/e in a mutation step as it suffices to flip a single
bit. Hence, after an expected number of e = O(1) steps the population contains besides
a solution of SP2 an additional solution of Bn \SP2. A decision vector of SP1 is reached
by allocating an expected number of O(n log n) mutation trials to the individuals of
Bn \ SP2. We already know that O(n3) mutation trials allocated to the individuals of
SP2 are enough to reach the decision vector 1n which completes the proof.

The next theorem states that Global FEMOds is inefficient on PLG. We will see that the
random walk on the plateau prevents the algorithm from following the short path to the
second Pareto optimal decision vector 1n.

Theorem 4. The optimization time of Global FEMOds on PLG is lower bounded by
2Ω(n1/2) with probability 1− 2−Ω(n1/2).

Proof. For the initial individual x holds |x|1 > 5n/8 with probability e−Ω(n) due

to Chernoff bounds. One of the first 2n1/2
mutations flips more than n1/2 bits with

probability 2−Ω(n1/2 log n) (cf. proof of Theorem 1). We assume that these events have
not happened and show that 1n is not found within a phase of length 2n1/2

w. h. p.
We wait until the algorithm has generated for the first time an individual x ∈ SP2

with |x|1 ≥ 3n/4 + n1/2 − 1. As at most n1/2 bits flip per mutation, we can be sure
that |x|1 ≤ 3n/4 + 2n1/2 − 2 holds in the next step and that the population contains
an additional individual of SP1. The probability to generate a better individual of SP2

under the condition that the individual of SP2 has been selected for mutation is upper
bounded by 1/n2 since at least the two leftmost 0-bits of x have to be flipped. The
probability that n2 − 1 trials to find a better individual of SP2 fail is lower bounded by
(1− 1/n2)n2−1 ≥ 1/e. As at most n1/2 bits flip per mutation, the algorithm is at least

n/4− 2n1/2 + 2
n1/2

=
n1/2

4
− 2 +

2
n1/2

≥ n1/2

8
times in the above situation. Hence, the probability that there is an individual x∗ ∈ SP2

for which the first n2 − 1 trials to find a better individual of SP2 fail is at least

1−
(

1− 1
e

)n1/2/8

≥ 1− 2−Ω(n1/2).

We upper bound the counter value of the individual of SP1 which shows that the
algorithm is not able to find an individual with more 1-bits than x∗. Note, that there is
at least one Hamming neighbor for the individual of SP1 that is mapped to the same
objective vector. Hence, the probability to reset the counter value of the individual of
P ∩ SP1 is lower bounded by 1/en. Therefore, the probability that the counter value of
an individual of SP1 reaches n2 is upper bounded by(

1− 1
en

)n2−1

=
(

1− 1
en

)en·n/e

· en

en− 1
≤ e−n/e · en

en− 1
= 2−Ω(n).

As the probability that this happens in the observed phase is upper bounded by 2n1/2 ·
2−Ω(n) = 2−Ω(n), the statement of the theorem follows.
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5 Conclusions

Popular variants of MOEAs such as NSGA-II or SPEA2 use specific modules to explore
the Pareto front of a given problem by favoring solutions belonging to regions in the
decision or objective space that are rarely covered. With this paper, we have taken a
first step to understand such mechanisms by rigorous runtime analyses. We have shown
that there are simple plateau functions which cannot be optimized without fairness or
with fairness in the objective space, but with a MOEA which implements fairness in the
decision space (cf. Section 3). We also proved that for certain “perforated” plateaus the
impact of fairness can be the other way around (cf. Section 4).
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Abstract. In this paper, we apply the parallel predator-prey model
for multi-objective optimization to a combinatorial problem for the first
time: Exemplarily, we optimize sequences of 50 jobs for an instance of the
bi-criteria scheduling problem 1|dj |

∑
Cj , Lmax with this approach. The

modular building block architecture of the predator-prey system and the
distribution of acting entities enables the analysis of separated problem
knowledge and the design of corresponding variation operators. The ac-
tual modules are derived from local heuristics that tackle fractions of the
complete problem. We unveil that it is possible to cover different areas of
the Pareto-front with special property operators and make evident that
the whole front can be covered if those operators are applied simultane-
ously to the spatial population. Further, we identify open problems that
arise when the predator-prey model is applied to combinatorial problems
which have not yet occurred for real-valued optimization problems.

1 Introduction

Ten years ago, Laumanns et al. [6] proposed a parallel evolutionary algorithm to
tackle multi-objective optimization (MOO) problems. Following the predation
paradigm from biology, he adapted the—partially simplified—interaction rela-
tions between predators and preys: a population of prey is distributed on a spatial
structure that is represented by an undirected graph. Predators move randomly
along the edges in order to chase those preys weak against their certain criterion.
The presence of several predators—each representing a single criterion—was ex-
pected to force the prey to likewise adapt to the threats from all predators and
thus result in suitable trade-off solutions for MOO problems.

During the following years, Deb [1], Li [7], and Schmitt et al. [8] adopted
this approach, but modified critical points of the algorithm. Deb re-aggregated
the disjoint selection mechanism, implicitly losing effect of independent work-
ing predator agents. Li introduced stronger parallelism by allowing the prey to
move, however at the expense of simplicity and thus perceivability. Schmitt et
al. removed parts of the implicit parallelism from the system by controlling the
prey reproduction in a centralized manner to establish a (μ +, λ)-selection in
larger neighborhoods to foster convergence at the cost of deteriorated diversity.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 681–690, 2008.
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Recently, Grimme and Lepping [3] reclaimed the original algorithm and pro-
posed a methodology to utilize both the parallel character and the distributed in-
fluence of predators, enabling an easy parameterization for special
problem instances with detail knowledge on particular objectives. The main
idea of this approach was to consider the reproduction mechanism, variation
operators, predator movement, and other characteristics of predators as build-
ing blocks. This allows the creation of predator species on the basis of certain
characteristics such as variation operators and movement patterns to the point
of specific modules tailored to tackle a certain aspect of the inspected multi-
objective problem. The parallel impact of those predator species eventually de-
livers compromise solutions to the overall MOO problem.

Up to now all evaluations of the model where founded on very simple real-
valued problem instances that where useful to understand the model dynamics.
However, the large class of problems from combinatorial optimization, that rep-
resents more practical or even real-world problems, has not been analyzed so
far. In this paper, we perform a first investigation of such problems and try to
find out whether the proposed building block approach for variation operators is
also applicable for combinatorial multi-objective optimization. As problem do-
main we chose scheduling because of its frequent occurrence and indisputable
relevance to many areas such as production, logistics, and information technol-
ogy. Additionally, most scheduling problems belong to the class of NP-complete
problems. This is all the more true for multi-objective scheduling problem which
makes it frequently impossible to efficiently find optimal solutions. However, we
chose as a first step the only bi-criteria scheduling problem for which (at least
to the authors’ knowledge) the Pareto-front can be computed within polynomial
time. We apply the predator-prey algorithm on the basis of well-known heuris-
tics for each single objective and show that—using this approach—the optimal
Pareto-front can be reached.

The rest of the paper is organized as follows: in Section 2, we describe the
original problem and discuss solution strategies for each single objective. Then, in
Section 3, we shape the building blocks of our predator-prey environment. Next,
in Section 4, we evaluate the performance of the afore defined environment on
the problem. Finally, in Section 5, we conclude our work, giving an outlook on
future investigations.

2 A Multi-objective Scheduling Problem

For the multi-objective scheduling problem we assume a single machine as the
simplest of all machine environments with n jobs having to be processed on
it. The combinatorial optimization task is to find all Pareto-optimal sequences
of job executions concerning the two objectives. Once such a sequence of jobs
has been determined those jobs are dispatched on the machine and executed
without any forced delay. Consequently, the resulting schedule can be classified
as a non-delay schedule.
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A job j ∈ J is given by two simple properties which characterize the problem
instance: the processing time pj , and the due date dj of job j. The latter should be
greater or equal than the processing time (dj ≥ pj), representing the committed
shipping or completion date promised to the customer. The time that job j
exits on the machine is denoted by Cj and naturally depends on the scheduling
sequence. If the completion time Cj is after the due date dj a penalty is incurred
and the job is denoted late.

The plethora of multi-objective scheduling problems includes only very few
that can be solved with polynomial time complexity. In order to allow for bench-
marking the obtained solutions’ quality in terms of convergence and diversity,
a problem that has algorithms for finding optimal solutions in reasonable time
would be favorable.

As objective we assume the on the one hand maximum lateness which is
given by Lmax = maxj=1...n{Lj} with Lj = Cj − dj being the lateness of job j.
This objective measures the worst violation of due dates. On the other hand we
consider the total completion time of all n jobs, computed by

∑n
j=1 Cj , which

expresses the concern of finishing each job as early as possible. While
∑
Cj

objective completely ignores the due date Lmax objective refers to due dates
only and ignores the jobs’ processing times. This leads to the conflicting nature
of the objectives.

Further, we use for the description of scheduling problems the α|β|γ notation
of Graham [2], where α denotes the machine environment, β the constraints,
and γ the objective field respectively. According to this convention the multi-
objective scheduling problem can be formulated as 1|dj |

∑
Cj , Lmax.

For this problem an efficient algorithm for computing an optimal solution
already exists: In 1980 van Wassenhoven and Gelder’s [11] presented a polynomial-
time algorithm with an overall complexity ofO(n3 logn) that iteratively generates
all Pareto-optimal trade off solutions by executing two nested loops. For a detailed
description along with examples please refer to T’kindt and Billaut [10].

2.1 Solution Strategies

The objectives for described problem are the maximum lateness and total com-
pletion time which are usually conflicting: although there might be job sequences
for which the optimal solutions for each of the two objectives do not disrupt each
other1, most problem instances do not have matching orderings and thus produce
contradictory solutions for the singe-objective case.

For the single-objective scheduling problem 1|dj |Lmax which considers only
maximum lateness, Jackson presented in 1955 [5] the Earliest Due Date (EDD)
rule as an optimal algorithm. It sequences the jobs in non-decreasing order of
their due dates. This simple rule gives an optimal sequence for the single ma-
chine maximum lateness problem, and is used as a heuristic for numerous other
scheduling problems. For total completion time objective and the correspond-
ing single-objective scheduling problem 1||

∑
Cj , Smith developed in 1956 [9] the

1 That is, when the optimal sequence regarding maximum lateness is identical to the
optimal sequence regarding total completion time.
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Shortest Processing Time (SPT) rule. This sorting-based dispatch rule sequences
all jobs in non-decreasing order of their processing times pj and optimally
solves the given problem. Both extremal solutions can be determined easily in
logarithmic time.

3 Instantiation of the Predator-Prey Model

We base our setup on the building-block based predator-prey model defined by
Grimme et al. [4]: Predators comprise a specific objective, a set of variation oper-
ators for reproduction, a neighborhood function for determining the individuals
that are exposed to selection and reproduction, and a walking function for the
movement pattern on the spatial structure; Prey represent the solutions of the
MOO problem.

Fig. 1. Schematic depiction of the building-block based predator-prey model. The
depicted instance exemplarily shows a toroidal population structure that hosts prey
individuals along with a single predator. The displayed movement involves two distinct
walks (from positions 2, 3 to 4, 2 and from positions 4, 2 to 5, 3), each obeying the
graph’s vertices. Additionally, a neighborhood with a radius of 1 is shown, as well as
one free vertex from which the prey has been removed.

A schematic depiction of this concept is shown in Figure 1. Following, we in-
stantiate the model by discussing the problem encoding, introducing the applied
operators, and concretizing the remaining building blocks.

3.1 Encoding of the Problem

Since the reviewed scheduling problem bases on a sequence of n jobs, we use a
standard permutation encoding to represent the genotype of the problem. As we
consider an offline scheduling problem, it is the task of the algorithm to find the
set of optimal job permutations.

3.2 Structure of the Applied Variation Operators

Former work has shown that the understanding of how each variation operator
influences the population and the subsequent combination of these using au-
tonomously acting predators yielded good approximation results. In the context
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of a practical problem, the different variation operators can be based on local
search heuristics that assess a certain aspect of the considered multi-objective
problem, resulting in an accelerated convergence towards the corresponding frac-
tion of the Pareto-front.

For the considered scheduling problem, we apply this very methodology by
integrating problem specific knowledge into the operator design: The variation
operators used for the reproduction of prey utilize the strategies for single- objec-
tive optimal solution described in Section 2.1. The following paragraphs describe
these operators in detail.

Fig. 2. Schematic depiction of the working principle of the EDD (SPT) mutation op-
erator with δ = 2

SPT mutation is a local mutation heuristic that integrates the SPT solution
strategy for the 1||

∑
Cj problem. As this strategy potentially results in an

optimal solution for just one of the considered objectives, the mutation op-
erator is designed to be applied only locally. Figure 2 depicts the application
of this operator to a given sequence: a position k is selected randomly in the
permutation representation of the genotype. Then, a subsequence of 2δ + 1
genes are sorted according to SPT. The size of this δ-neighborhood is de-
termined by a normal distribution with an externally adjustable step size
of σ. Obviously, δ = 0 has no effect as only the initial gene at position k
is selected. On the other hand, a growing δ leads to a higher probability of
a completely SPT-ordered genome which limits the Pareto-front regarding
this objective2.

EDD mutation works completely analogous to the SPT mutation, using the
Earliest Due Date sorting strategy. As described in Section 2.1, it delivers
optimal solutions for 1|dj |Lmax.

Random Swap (RS) mutation is rather a classic mutation operator than
a local search heuristic. For a given number ζ is swaps ζ times a pair of
genes in the considered genome. This variation operator is expected to bring
innovation to the population and reduce the effect of the heuristic tendency
to extremal solutions.

3.3 Defining the Remaining Building Blocks

Finally, we need to instantiate three additional building blocks in order to com-
plete the model instantiation for the given problem.
2 Since it represents the optimal solution for

∑
Cj and thus one extremal point on

the Pareto-front.
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The spatial population structure is represented by a two-dimensional toroidal
grid with a size of 40 × 40, which is initialized with random individuals. The
movement of a predator follows a random walk pattern, ensuring that each
position is visited equally often. The number of evaluations for each model run
was restricted to 30,000. The selection neighborhood of a predator is fixed to a
radius of 1, resulting in a selection set of five prey individuals.

4 Evaluation

In order to assess the applicability of the predator-prey approach to our problem,
we generated a single instance of 1|dj|

∑
Cj , Lmax with n = 50 jobs.

Herefor, the processing time was sampled using a uniform distribution as
pj = U(1, 10), ∀j = 1 . . . n. In order to guarantee that all due dates can be met,
we determine correspondingly dj = pj + U(1, 990), ∀j = 1 . . . n.

This ensures that many Pareto-optimal solutions exist as the widely dis-
tributed due dates allow for a larger variety of Lmax values, a property which was
verified by the application of the polynomial algorithm, see Section 2.1, which
produces a result with 36 Pareto- optimal solutions that form a well distributed
front. A detailed description of the used problem instance can be obtained from
the authors’ web pages3.

Our procedure for evaluation involved three steps: (1) the calculation of a ref-
erence solution using the aforementioned algorithm, (2) the isolated application
of each operator in order to identify the specific effects, and (3) the combined
application of all operators and analysis of the achieved results.

4.1 Isolated Application of Each Operator

In order to conceptualize a powerful combination of variation operators for the
here addressed problem, we first identified the isolated effects of the different
single objective operators.

EDD Mutation. Here, we focus on the exclusive influence of EDD muta-
tion and the corresponding single-objective selection. As mutation width, see
Section 3.2, we set σ = 5. Herewith, we made two experiments using a single
predator: one Lmax selection run and one

∑
Cj selection run. The outcomes are

shown in Figure 3, separated by objectives.
As expected from the theoretical analysis, the EDD mutation solves the prob-

lem for the first objective (Lmax) optimally. Therefore, when the predator selects
according to Lmax, many solutions are found that reach the minimum possible
objective value of 0, see Figure 3(a). More interesting is the behavior of the selec-
tion regarding total completion time: The solution covers the whole range of the
search space while a good diversity is preserved as well. However, no convergence
towards the actual front is observable.

As such, the EDD mutation acts—from the total completion time selection’s
point of view—like a local search at a random point in the genome.
3 http://www.it.irf.uni-dortmund.de/∼{}lepping/ppsn/

http://www.it.irf.uni-dortmund.de/~{}lepping/ppsn/
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(a) Selection regarding Lmax (b) Selection regarding
∑

Cj

Fig. 3. Evaluation of the EDD mutation operator in combination with two different
selections. Additionally, the real Pareto-front is depicted as reference.

SPT Mutation. In analogy to the previous examination, we perform exclusive
SPT mutation for both objectives and analyze the corresponding solutions, see
Figure 4.

(a) Selection regarding Lmax (b) Selection regarding
∑

Cj

Fig. 4. Evaluation of the SPT mutation operator in combination with two different
selections. Additionally, the real Pareto-front is depicted as reference.

It turns out that the SPT mutation finds the optimal Lmax(SPT/EDD)
point on the bottom right edge of the front (

∑
Cj = 4992). Contrary to EDD

mutation, the SPT mutation does not completely fail when applied to the non-
related objective, see Figure 4(a): in conjunction with Lmax selection, it achieves
both a good convergence to the front as well as an acceptable diversity. However,
the left part of the front, which lies more in the EDD region, cannot be reached
with this single operator.
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The effect of SPT mutation seems to be stronger than the one of EDD mu-
tation in terms of convergence, see Figure 4(b). Also, it is more robust with
respect to the selection objective. The conclusion that can be drawn from this
is two-edged: While the SPT mutation is able to favor convergence to the actual
front, the population may collapse into one optimal solution when the influence
of the operator becomes too strong for the total completion time objective.

RS Mutation. The application of RS mutation reveals a similar effect for
both objectives: The order of the jobs is highly disrupted, resulting in a almost
complete coverage of the search space far away from the actual front. As such,
this operator qualifies for the injection of higher diversity. However, RS mutation
must be used carefully as it is counterproductive for the convergence towards
the front.

4.2 Combined Application of All Operators

The effects that could be perceived during the isolated application of each of
the operators indicate that their combination could lead to a good approxima-
tion of the problem’s Pareto-front. To this end, we combined the EDD and SPT
mutation operators as described in Section 4.1 and additionally introduced and
fine-tuned the RS mutation in order to preserve diversity. The final parametriza-
tion of each predator is shown in Table 1.

Table 1. Parameterization of the predators for the combined problem solving scenario

Predator Objective Mutation Parameter

P1 Lmax SPT σ = 20

P2
∑

Cj EDD σ = 2

P3 Lmax RS ζ = 1

P4
∑

Cj RS ζ = 10

The evaluation of the combined run results in the Pareto-front approximation
depicted in Figure 5. It turns out that it is possible to combine the beneficial
effects to achieve a well overall approximation. However, the intensity of the
operators had to be tuned by hand which took several attempts. Nevertheless, it
is remarkable that all identified characteristics are preserved in their combined
application, resulting in a front that is almost covered as a whole.

5 Conclusion and Future Work

In this work, we applied the concept of multi-objective problem solving through
parallel execution of single objective variation operators in the predator-prey
model to a bi-criteria scheduling problem. Thus, this is a first step to trans-
fer the hitherto theoretically investigated methodology into the new problem
domain of combinatorial optimization. We are able to express problem specific
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Fig. 5. Parallel application of all mutation operators in combination with the two
different selections and the real Pareto-front

single-objective knowledge by corresponding variation operators. Their analysis
shows that it is possible to reliably cover certain regions of the Pareto-front.
The simultaneous and parallel impact on the population yields a good set of
trade-off solutions. Apparently, it is possible to combine observed effects of sin-
gle operators in order to achieve an exact and diverse solution. This is generally
in line with the results that have been obtained for real-valued MOO problems.
However, it is much harder to preserve the covered areas in both diversity and
convergence when the representing predators are applied simultaneously. Thus,
finding a good configuration of the system involves manual tuning that requires
sensitivity and experience.

For future work, the process of operator design and model configuration must
be simplified and made more reliable. To this end, the model concept must
be expanded with capabilities to force trade-off solutions from reachable ex-
tremal points by itself. At the moment, the model seems to be constricted by
the predators’ single-objective selection that prevents the system from finding
compromises directly as well as from preserving them. Concepts that focus on
niching techniques as building blocks or additional properties of the spacial pop-
ulation structure are promising topics for future investigation.
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Abstract. This paper presents a Genetic Algorithm (GA) for multi-
objective function optimization. In multi-objective function optimiza-
tion, we believe that GA should adaptively switch search strategies in
the early stage and the last stage for effective search. Non-biased sam-
pling and family-wise alternation are suitable to overcome local Pareto
optima in the early stage of search, and extrapolation-directed sampling
and population-wise alternation are effective to cover the Pareto front
in the last stage. These situation-dependent requests make it difficult to
keep good performance through the whole search process by repeating a
single strategy. We propose a new GA that switches two search strate-
gies, each of which is specialized for global and local search, respectively.
This is done by utilizing the ratio of non-dominated solutions in the
population. We examine the effectiveness of the proposed method using
benchmarks and a real-world problem.

1 Introduction

Problems of simultaneously optimizing multiple conflicting objective functions are
called multi-objective optimization. In recent years, multi-objective evolutionary
algorithms (MOEAs) have attracted attention as effective multi-objective opti-
mizers that are able to obtain various trade-off solutions in a single run [1]. The
problems in which the real value is used for decision variables are called multi-
objective function optimization (MOFO). MOFO is important as it frequently
appears in real-world problems. In MOFO, it is worth considering the landscape
of not only the objective space but also the variable space as several researchers
have pointed out [2,3].

In MOFO problems, multi-modal objective functions produce multiple local
Pareto optima [4] in the variable space in many cases. When multiple local Pareto
optima exist, it becomes harder to find the Pareto optimal set. The problems
that have multiple local Pareto optima are called multi-modal problems. To find
the global Pareto optimal set on a multi-modal problem, MOEAs are required
to concentrate the population on promising areas where the Pareto optimal set
exists by overcoming local Pareto optima in the early stage of search. We call,
in this paper, this part of search process global search.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 691–701, 2008.
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In the last stage of search, after overcoming local Pareto optima, MOEAs are
required to uniformly distribute the population over the whole Pareto front in
the objective space. We call this search process local search. If the population
has converged on partial regions of the Pareto front as a result of global search,
local search should spread the population along the Pareto front. Here, if the
Pareto optimal set gets curved in the variable space, it becomes more difficult for
MOEAs to efficiently spread the population along the Pareto front. The Pareto
optimal set is curved by several reasons such as epistasis among parameters.

As described above, MOEAs are required to perform conflicting behaviors,
converging and spreading the population, depending on the phase of search pro-
cess. NSGA-II [5] and SPEA2 [6] are recent MOEAs that reportedly obtain rela-
tively good results in various test problems [5,6] and are most widely used today.
They are designed to converge the population with ranking and spread the pop-
ulation with sharing in the survival selection. However, it has been reported that
they fail to find Pareto optimal solutions on some multi-modal problems [5,6].
It is also observed that their search efficiency deteriorates on the curved Pareto
optimal sets when they are used with crossover operators such as UNDX-m [7],
SPX [8] and PCX [9], which show good performance in function optimization.

In this paper, we propose a new MOEA named the Functional-Specialization
Multi-Objective real-coded Genetic Algorithm (FS-MOGA), which adaptively
switches two search strategies specialized for global and local search. In sec-
tion two, we first present the formulation of MOFO problems and point out the
problems of NSGA-II and SPEA2. In section three, we propose FS-MOGA to
overcome these problems. In section four, the performance of FS-MOGA is exam-
ined through experiments with benchmark problems. In section five, FS-MOGA
and conventional methods are applied to a real-world problem to demonstrate
the usefulness of FS-MOGA. Section six states the conclusions.

2 Multi-Objective Function Optimization and Problems
of Conventional Approaches

2.1 Multi-Objective Function Optimization

Let the dimensions of the real-valued variable space and the objective space
be N and M , respectively. Denote a solution by x = (x1, x2, . . . , xN )T ∈ RN ,
the vector of objective functions by f = (f1, f2, . . . , fM )T , the feasible region by
S ⊂ RN , and the image of x in the objective space by f(x) ∈ RM . Multi-objective
function optimization problems can be formulated as:

Minimize fi(x) (i = 1, 2, . . . ,M), subject to x ∈ S.

If the following holds for some solutions x1,x2 ∈ S, x1 is said to be superior
to x2, which is denoted by x1 3 x2:

∀i ∈ {1, . . . ,M}, fi(x1) ≤ fi(x2) ∧ ∃i ∈ {1, . . . ,M}, fi(x1) < fi(x2).
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If there is no feasible solution x′ such that x′ 3 x, the solution x is called a
Pareto optimal solution. There are often multiple Pareto optimal solutions. The
set of all the Pareto optimal solutions is called Pareto optimal set. If there is
no solution x′ such that x′ 3 x in the feasible ε-vicinity of a solution x, x is
called a local Pareto optimal solution. Local Pareto optimal solutions henceforth
denote those that are not Pareto optimal. The image of the Pareto optimal set
on the objective space is called a Pareto front.

2.2 Problems of Conventional Approaches

We believe that NSGA-II has the following three problems from the viewpoints
of global and local search.

High Selection Pressure in Global Search. The aim of global search is to
find the areas where the Pareto optimal set exists in the early stage of search.
For the global search, it is important to keep the diversity of the population
to prevent from trapping in local Pareto optima. NSGA-II chooses parents for
crossover with the tournament selection, where the superiority between two indi-
viduals is determined by the crowded-comparison operator (CCO) [5]. CCO first
compares the ranks of two individuals, and if they are the same, next it com-
pares their crowding distances. Because there are individuals with various ranks
in the population in the early stage of search, the superiority between almost
all the individual pairs would depend on their ranks. Consequently, individu-
als on local Pareto optimal regions, which would be highly ranked in the early
stage of search, are likely chosen as parents and offspring are sampled from the
local Pareto optimal regions intensively. Furthermore, in the survival selection,
NSGA-II selects the best μ individuals (μ: population size) from the combined
set of the current population and offspring to create a population for the next
generation. We believe that this selection would remove individuals from promis-
ing areas where individuals have not been sampled sufficiently yet and, as the
result, the areas where the Pareto optimal set exists might be missed.

Limited Extrapolative Sampling Ability in Local Search. The aim of the
local search is to distribute the population over the whole Pareto front uniformly
in the last stage of search. The population often converges on partial regions of
the Pareto front as a consequence of global search. In this case, local search is
required to spread the population along the Pareto front in the objective space.
For this purpose, parents for crossover should be chosen from the areas of the
variable space corresponding to those of the objective space where the density of
the population distribution is low as shown in Fig. 1. As described above, NSGA-
II chooses parents with the tournament selection based on CCO. Because the
ranks of almost all the individuals in the population are one in the last stage
of search, the superiority between two individuals in the tournament selection
primarily depends on their crowding distances. However, since the tournament
selection chooses two candidate individuals for a parent from the population
uniform-randomly at first, it frequently chooses parents from the dense areas as
shown in Fig. 1. If a crossover operator such as UNDX-m, SPX and PCX, which
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Fig. 1. The probability distribution of
parents chosen by the tournament se-
lection in the objective space in mating
selection of NSGA-II

Fig. 2. Offspring distributions gener-
ated by parents chosen by the tourna-
ment selection in the variable space in
NSGA-II

shows good performance in function optimization, is applied to parents in the
dense areas, it generates offspring in the same dense areas again at high rates,
which means that the search efficiency is lessen.

Low Accuracy of Sampling along the Curved Pareto Optimal Set in
Local Search. If the geometrical shape of the Pareto optimal set in the vari-
able space is curved, it is difficult for NSGA-II with crossover operators such as
UNDX-m, SPX and PCX that have good search abilities on function optimiza-
tion to distribute the population along the curved Pareto optimal set. As shown
in Fig. 2, the tournament selection used in NSGA-II often mates distant parents
on the Pareto optimal set. Unfortunately, the above crossovers with such distant
parents generate offspring off the curved Pareto optimal set as shown in Fig. 2.

The basic framework of SPEA2 is the same as that of NSGA-II. In SPEA2,
parents are selected with the tournament selection, and the next-generation pop-
ulation is constructed from a combined set of the current population and off-
spring. SPEA2 determines the superiority between two individuals depending
on their strength and distance from the k-th nearest neighbor. We believe that
SPEA2 has almost the same problems as NSGA-II. In fact, the observed perfor-
mances are almost the same [6].

3 Functional-Specialization Multi-Objective Real-Coded
Genetic Algorithm: FS-MOGA

In this section, we propose the Functional-Specialization Multi-Objective real-
coded Genetic Algorithm (FS-MOGA) to remedy the three problems of the con-
ventional methods described in the previous section. FS-MOGA aims to search
efficiently by adaptively switching two strategies, each of which is specialized for
global and local search, respectively.
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3.1 Global Search Strategy

In the mating selection of the global search, parents for crossover are chosen ran-
domly from the population. This selection resolves the problem of NSGA-II in
which highly-ranked individuals on local Pareto optimal regions are frequently
chosen as parents. Besides, in the survival selection of the global search, parents
in the population are replaced with only their direct descendant. In order to sam-
ple new solutions as many as possible, the parents which participate in crossover
are always replaced with their offspring like (μ, λ)-ES except that the parents
are non-dominated individuals in the population. This alternation resolves the
problem of NSGA-II in which individuals on promising areas that have not been
searched sufficiently are removed. We believe that these two devices can keep
enough diversity of the population and converge the population on the promising
areas including the Pareto optimal set better than NSGA-II. In this paper, we
employ SPX [8] as a crossover operator of global search. The superiority between
two individuals is determined by CCO, like NSGA-II.

3.2 Local Search Strategy

In the mating selection, first, one parent is chosen among the non-dominated
individuals in the population according to the probability proportional to the
crowding distance 1. We believe that this selection method enhances the extrap-
olative sampling ability along the Pareto front in the objective space because it
frequently chooses parents on the sparse areas as shown in Fig. 3. Next, the rest
of the parents for crossover are chosen randomly from k-nearest neighbors (k-
NN) of the first parent in the variable space. This enables to generate offspring
properly along the curved Pareto optimal set as shown in Fig. 4. We employ
UNDX-m [7] that can efficiently search along the m-dimensional manifold when
the population distributes on the m-dimensional manifold. This is because the
Pareto optimal set of MOFO with N variables and M objectives is known to
form locally m = min{N,M − 1} dimensional manifold in the variable space
[10]. The survival selection chooses the best μ individuals from the combined set
of the current population and the offspring set to create the population of the
next generation as NSGA-II does, where μ is the population size. The superi-
ority between two individuals is determined by CCO. This intends to eliminate
individuals on dense areas to make the population distribution in the objective
space uniformly along the Pareto front.

3.3 Switching Strategies

FS-MOGA chooses a strategy for the current generation according to the ratio of
the non-dominated solutions in the population. The probability that an individ-
ual randomly chosen from the population is a non-dominated one is equal to the
ratio of the non-nominated solutions in the population. Hence, if the rank of a
1 In this paper, the selection probability of individuals with the crowding distance of
∞ is set to that of the individual with the second largest crowding distance.
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Fig. 3. The probability distribution of
the first parent chosen by the roulette
selection in the objective space in mat-
ing selection of FS-MOGA local search

Fig. 4. Offspring distributions gener-
ated by parents chosen based on k-NN
in the variable space in FS-MOGA local
search

randomly chosen individual from the population is one, FS-MOGA performs lo-
cal search. Otherwise, it does global search. Generally, we cannot know whether
the region where the population converges is truly Pareto optimal or not. How-
ever, we believe that it is desirable to change the strategy from global search to
local one because the increase of non-dominated individuals in the population
means that the potential to overcome local Pareto optima has lost.

3.4 Algorithm

The algorithm of FS-MOGA consists of three parts; the main loop, the global
search procedure and the local search procedure. The global and local search
procedures are called from the main loop.

Main Loop
1. Initialization: Generate an initial population P0 = {p1, . . . , pμ}, where μ is

the population size. Set the generation number t = 0.
2. Evaluation: Evaluate all the individuals in Pt.
3. Fitness assignment: Calculate ranks and crowding distances of all the indi-

viduals in Pt.
4. Strategy selection: Choose an individual psel from Pt at random. If psel is a

non-dominated solution (rank(psel) = 1), then execute the local search
procedure. Otherwise, perform the global search procedure.

5. Termination check: Stop if stopping criterion is satisfied. Otherwise, set t =
t+ 1 and go to 3.

Global Search Procedure

1. Mating selection: Choose N + 1 parents Qt = {q1, . . . , qN+1} from Pt ran-
domly without replacement, where N is the number of decision variables.

2. Crossover: Apply SPX to Qt and generate offspring Ot = {o1, . . . , oΛ},
where Λ is the number of offspring generated in global search.
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Table 1. Benchmark problems

Problem N Objective functions Bounds Optimal solutions

RS 40 f1(x) =
PN−1

i=1

ˆ
(1 − xi)

2 + 100(xi+1 − x2
i )2

˜
[−5.12, 5.12]N x2, . . . , xN =

√
x1,

f2(x) =
PN

i=1 x2
i 0 ≤ x1, . . . , xN ≤ 1

RR−2.56 40 f1(x) =
PN−1

i=1

ˆ
(1 − xi)

2 + 100(xi+1 − x2
i )2

˜
[−2.56, 7.68]N x2, . . . , xN =

√
x1, f2(x) ≤ N,

f2(x) = 10N +
PN

i=1

ˆ
x2

i − 10 cos(2πxi)
˜

0 ≤ x1, . . . , xN ≤ 1

3. Evaluation and fitness assignment: Evaluate all the offspring in Ot. Then,
calculate ranks and crowding distances of all the individuals in Pt ∪Ot.

4. Survival selection: Select the best N + 1 individuals as survivors St =
{s1, . . . , sN+1} from Ft = Q∗

t ∪Ot, where Ft has been ordered as follows;
1) Non-dominated offspring O∗

t = {o ∈ Ot | rank(o) = 1},
2) Non-dominated parents Q∗

t = {q ∈ Qt | rank(q) = 1},
3) The rest of offspring Ō∗

t = Ot \O∗
t .

where each of O∗
t , Q∗

t and Ō∗
t has been sorted by CCO.

5. Alternation: Let Pt+1 = (Pt \Qt) ∪ St.

Local Search Procedure

1. Mating selection: Choose a parent q1 from the non-dominated solutions of
the population P ∗

t = {p ∈ Pt | rank(p) = 1} by the roulette-wheel selec-
tion based on crowding distances 2. Then, choose parents q2, . . . , qM+1 from
k-nearest neighbors of q1 randomly without replacement, where M is the
number of objectives and k is a user-defined parameter to determine the
range of the neighborhood. Let Qt = {q1, . . . , qM+1}.

2. Crossover: Apply UNDX-m (m = M) to Qt and generate offspring Ot =
{o1, . . . , oλ}, where λ is the number of offspring generated in local search.

3. Evaluation and fitness assignment: Evaluate all the offspring in Ot. Let Ut =
Pt ∪Ot. Then, calculate ranks and crowding distances of all the individuals
in Ut.

4. Survival selection: Sort Ut by CCO. Select the best μ individuals as survivors
St = {s1, . . . , sμ} from Ut.

5. Alternation: Let Pt+1 = St.

4 Experiment with Benchmark Problems

To show the effectiveness of FS-MOGA, we compared the performance of FS-
MOGA with that of conventional methods on two benchmark problems, RS and
RR−2.56, shown in Table 1. RS is a single-modal problem with a curved Pareto
optimal set. We use this problem to examine the performance of local search.

2 The selection probability of individuals assigned crowding distance of ∞ is equal to
the one which is the second largest crowding distance.
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Fig. 5. GD (left) and D1R (right) on RS averaged over ten trials

            

Fig. 6. GD (left) and D1R (right) on RR−2.56 averaged over ten trials

RR−2.56 is a multi-modal problem with a curved Pareto optimal set. This prob-
lem is used to test the performance of global search and the reasonability of
the timing of switching strategies. Because the number of objectives is two in
the both problems, their Pareto optimal sets form one-dimensional manifolds
in the variable space as described in section 3.2. We therefore employed UNDX
(UNDX-1) as a crossover operator in local search of FS-MOGA. We compared
the performance of FS-MOGA with that of four conventional methods; NSGA-II
with SPX (SPX+NSGA-II), NSGA-II with UNDX (UNDX+NSGA-II), SPEA2
with SPX (SPX+SPEA2) and SPEA2 with UNDX (UNDX+SPEA2). The pa-
rameter ε of SPX was set to

√
N + 2 as its proposers recommended [8]. The

population size in each method was set to 400. The number of offspring gener-
ated by crossover in global search and local search was 400 and 8, respectively in
FS-MOGA, and 8 in the conventional MOEAs. The k-value of k-NN was set to
80, which is 20% of the population size. We have empirically confirmed that the
setting of k-value is not sensitive; it would almost always work well with 20% of
the population size. The above settings were determined based on the prelimi-
nary experiments. We performed ten trials for each method. Each algorithm was
stopped when the number of evaluations reached 5× 105. The performance was
measured by two commonly used metrics; GD [1] and D1R [11]. The smaller the
GD is, the nearer the solutions are to the Pareto front on average. The smaller
the D1R is, the wider Pareto front is covered.
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Fig. 7. Result on inference of gene networks. The smaller the MSE and the pruning
term are, the better they are.

The results on RS are shown in Fig. 5. As seen from this figure, FS-MOGA
outperforms all the conventional methods with respect to GD and D1R. In the
D1R plot in Fig. 5, the improvement rate of D1R of FS-MOGA is much larger
than those of the conventional MOEAs after about 1.2 × 105 evaluations. We
confirmed that, after 1.2× 105 evaluations, all the individuals in the population
become non-dominated in FS-MOGA search, which means that FS-MOGA al-
ways chooses local search as a search strategy. It suggests that the local search
ability of FS-MOGA is better than that of conventional methods.

The results on RR−2.56 are shown in Fig. 6. The GD plot in Fig. 6 indicates
that FS-MOGA succeeded in finding the Pareto optimal set while the conven-
tional MOEAs failed to overcome local Pareto optima. It suggests that the global
search ability of FS-MOGA outperforms that of the conventional methods. On
the other hand, the D1R plot in Fig. 6 shows that FS-MOGA succeeded in
spreading the population along the Pareto front widely and uniformly. There-
fore, we can conclude that the timing of switching strategies is appropriate.

5 Experiment with a Real-World Problem

To demonstrate the effectiveness of FS-MOGA in a real-world problem, we ap-
plied FS-MOGA and the conventional methods, SPX+NSGA-II, UNDX+NSGA-
II, SPX+SPEA2 and UNDX+SPEA2, to inferenceof genenetworkswhich is known
as a difficult real-world problem. This problem can be formulated as a bi-objective
function optimization problem. The first objective is to minimize the mean squared
error (MSE) between time course data observed in experiments and those obtained
by solving the S-system model [12] which is simultaneous differential equations [12].
The second objective is to minimize the pruning term [13] which represents the com-
plexity of the network. Its decision variables are the system parameters of S-system.
We inferred the network consisting of five genes, in which the number of decision
variables is 40.

The population size of each method was set to 1,600. The k-value of k-NN
used in FS-MOGA was set to 320, which is 20% of the population size. Ten trials
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were carried out for each method. Each algorithm was stopped when the number
of evaluations reached 2× 106. The other settings were the same as section 4.

The results are shown in Fig. 7. In this figure, the horizontal and vertical
axes are MSE and pruning term, respectively. As shown in Fig. 7, FS-MOGA
succeeded in finding many better solutions than those found by the conventional
methods. We believe that this result attributes the outstanding local and global
search abilities of FS-MOGA.

6 Conclusions

In this paper, we proposed a new MOEA for multi-objective function optimization
named FS-MOGA, which performs global and local search adaptively. We also
showed that FS-MOGA outperformed the conventional methods, SPX+NSGA-II,
UNDX+NSGA-II, SPX+SPEA2 and UNDX+SPEA2, on benchmark functions
and inference of gene networks.

We think that, in many-objective problems, the strategies switching method
proposed in section 3.3 does not work well because most individuals in the popu-
lation become non-dominated quickly. As future work, an extention of FS-MOGA
with ε-dominance [14] can be considered for many-objective problems. We also
have a plan to compare FS-MOGA with more existing methods and analyze its
behavior in detail using problems having three or above objectives and various
metrics such as binary quality indicators [15].
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Abstract. Physics-based potential energy functions used in protein structure pre-
diction are composed of several energy terms combined in a weighted sum. ‘Mul-
tiobjectivization’ — splitting up the energy function into its components and op-
timizing the components as a vector using multiobjective methods — may have
beneficial effects for tackling these difficult problems. In this paper we investigate
the hypotheses that multiobjectivization can (i) reduce the number of local optima
in the landscapes, as seen by hillclimbers, and (ii) equalize the influence of differ-
ent energy components that range over vastly different energy scales and hence
usually swamp each other’s search gradients. The investigations use models of
two real molecules, the alanine dipeptide and Metenkephalin under the Amber99
energy function, and consider hillclimbers with a range of mutation step sizes.
Our findings support the hypotheses and also indicate that multiobjectivization is
competitive with alternative methods of escaping local optima.

1 Introduction

The accurate prediction of protein structure from sequence remains one of the biggest
challenges in computational biology [1,10,19]. Recent work has suggested tackling the
problem by decomposing the traditional physics-based energy function into two or more
energy components, and optimizing the resulting multiobjective function using multi-
objective EAs [3,4,18]. The principal argument offered for the attraction of this multiob-
jective approach is the observation of conflicts between some of the energy components
in physics-based energy functions and the fact that an ensemble of candidate solutions
rather than a single structure may be obtained [3]. In other words, these papers argue
that the set of Pareto optimal solutions, taken as an ensemble, is likely to provide a bet-
ter answer to the problem of protein structure prediction than would the single-objective
optimum, usually a single structure.

In this paper, we are interested in a different aspect of multiobjective optimization,
namely the way a decomposition of the energy function impacts on the difficulty of
the fitness landscape ‘seen’ by an optimization method. This is closely related to pre-
vious work on ‘multiobjectivization’ [2,9,12], which argues that the introduction of
additional objectives, or the decomposition of an objective into several, may influence
the difficulty of a problem, making it easier [2,9,12,14,17] or harder [2]. The approach
taken in this paper is an empirical one in which single- and multiobjective hillclimbers
present themselves as useful tools to investigate changes in the difficulty of a fitness
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landscape caused by a decomposition of the energy function. Such an empirical analy-
sis is useful, as general results about the changes in the fitness landscape only directly
apply to multiobjective algorithms without archives [7], whose use is rarely practicable
in real problems.1 Also, a straightforward visualization of the multiobjective landscape
is not possible even for a two-dimensional problem, as the Pareto dominance relation
provides us with a partial ranking of solutions only.

The remainder of the paper is structured as follows. Section 2 discusses the properties
of physics-based potential energy functions and the motivations behind their decompo-
sition, in terms of facilitating search. Section 3 discusses the main methods used in
this paper, including the two molecular structures considered and the hillclimbers used
to explore the resulting fitness landscapes. Experimental results are presented and dis-
cussed in Sections 4, 5 and 6. Section 7 considers the wider implications of these results
and concludes.

2 Decomposition of Physics-Based Potential Energy Functions

A prototypical physics-based potential energy function (here, Amber99 [5]) can be writ-
ten as a linear combination of six terms:

Es = Ebs + Eab + Eit + Eta + Evdw + Ecc,

where Ebs, Eab, Eit and Eta are the bonded terms constraining bond lengths, bond
angles, improper torsion angles and torsion angles respectively. Evwd and Ecc are the
non-bonded forces, which arise from van der Waals attractive and repulsive forces and
electrostatic interactions respectively.Es is to be minimized. A decomposition into non-
bonded and bonded components then considers a two-dimensional vector

Ev = (Evdw + Ecc, Ebs + Eab + Eit + Eta)T ,

rather than a single energy value. The set of solutions that are optimal with respect to
Es form a subset of those that are Pareto optimal with respect to Ev, so minimization
of Ev as a Pareto multiobjective optimization problem ([6], page 24) is a valid means
of finding a solution to Es.

The fitness landscapes described by physics-based potential energy functions are
highly rugged (multi-modal), which makes them very challenging to optimize. In addi-
tion, the scale of the variation within the different energy components differs strongly in
these functions: the variation in the non-bonded energies (especially the van der Waals
term) is several orders of magnitude larger than that of the bonded terms. Evidently, a
large variation in a given term implies the existence of large local gradients in the same
terms, which are bound to dominate the overall energy gradients in many areas of the
search space. A distinct effect of a decomposition of the function into bonded and non-
bonded components is, therefore, an increase in the influence of the bonded objective
in those areas of the search space, as the differences in the scales are annihilated and

1 In particular, [7] shows that multiobjectivization by decomposition causes the introduction
of plateaus of incomparable solutions, which can only result in the removal but not in the
introduction of local optima in the search space.



704 J. Handl, S.C. Lovell, and J. Knowles

the influence of bonded and non-bonded terms is effectively equalized. Importantly, the
same effect cannot easily be obtained through a scaling of the individual energy compo-
nents, as this would not guarantee to preserve the actual energy minimum. The bonded
term is smoother than the non-bonded term (as well as having a smaller energy range),
so amplifying its influence may help the search process.

The above observation raises the question of whether an increased influence of the
bonded components is something that is actually desirable during protein structure pre-
diction. This question can partly be answered through consideration of relevant work
in protein structure prediction. Several state-of-the-art prediction methods use mech-
anisms to suppress the dominating influence of non-bonded energies during the early
stages of the search. These measures range from the reformulation or capping of van
der Waals forces [19] to a division of forces into short- and long-range components,
where long-range components are only periodically updated [8]. The very existence of
such techniques suggests that increased guidance by means of bonded terms is seen as
favorable at least by some authors.

3 Methods

The Alanine Dipeptide. The alanine dipeptide is a well-known model system in the
protein structure prediction literature [15], with only two degrees of freedom. Despite
the simplicity of the peptide, its energy landscape already exhibits some fundamental
features of the energy landscape of proteins, such as their multimodality and the dom-
inant influence of non-bonded energies. Its small dimensionality, allows for extensive
experimental testing and enabled us to visualize directly the (single-objective) energy
landscape, algorithm trajectories and the location of local optima during the interpre-
tation of experiments. Due to space limitations these visualizations are not included in
the paper.

To create a model of the peptide suitable for optimization, the molecular modeling
software TINKER [16] was used to enumerate all possible integer values (from -179 to
180) for the two dihedral angles, and to determine the potential energy of the resulting
conformation using the Amber99 force field.

Metenkephalin. The molecule Metenkephalin was used as an example of a more com-
plex molecular structure. This protein consists of five amino-acids and has seventeen
flexible dihedral angles, which correspond to the degrees of freedom or decision vari-
ables in our problem. A complete enumeration of the search space, as done for the ala-
nine peptide, is no longer possible for this size of problem. Each evaluation therefore
requires an explicit call to the TINKER molecular modeling software, making these
experiments much more expensive, computationally. As a result, the global optimum
for this molecule under the Amber99 energy function was not explicitly identified.

Algorithms. Three different hillclimbers were used to explore the fitness landscapes
under integer coding using a standard Gaussian creep mutation operator2. The single-
objective hillclimber (SHC) always accepts the mutant solution if its objective is equal

2 We take the floor of the value to make it an integer.
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to or better than that of the parent solution. The multiobjective hillclimber (MHC) uses
the basic mechanisms described in [13]. It maintains an archive of non-dominated solu-
tions to avoid degradation of solutions (see [13]) and always accepts the mutant solution
if it is indifferent or incomparable to the current solution and if it is not dominated by
a solution in the archive. The third algorithm, a hybrid hillclimber (HHC), uses single-
objective optimization but maintains an archive (of non-dominated solutions under the
biobjective formulation) and switches to multiobjective optimization whenever it has
failed to find a valid move for 20 consecutive iterations. It switches back to single-
objective optimization as soon as an improvement upon the minimum energy value so
far has been found.

Experimental Details. In all our experiments (see Sections 4, 5, and 6) all three al-
gorithms were run from identical starting positions with a standard mutation rate of 1

n ,
where n is the number of decision variables, and for 10000 iterations. The multiob-
jective and hybrid hillclimbers used a large archive size of 1000 in order to simulate
an unbounded archive and remove any influence of the archive’s performance on the
search. All experiments were repeated from different starting positions 100 times for
the alanine peptide and (due to the much larger computational costs) 15 times for the
Metenkephalin molecule. Means of the minimum energy value found per run are re-
ported, and standard errors and p-values (obtained using the Wilcoxon paired rank sum
test) are included, where appropriate.

4 Comparative Performance of the Three Hillclimbers

Figure 1 shows the performance of the three hillclimbers for the alanine dipeptide as
a function of the standard deviation σ of the Gaussian mutation operator. For σ ≥ 35,
all three methods show reliable convergence to the global optimum of -16.98 indicating
that escape from all local optima is possible using this size of mutation operator. The
results also suggest that very large mutation sizes do not hinder convergence for any
of the algorithms, but this is likely to be an artifact resulting from the small size of the
search space for this particular problem.

Distinct differences between the algorithms can be observed in the regime for σ <
35. For this range of mutation sizes, the single-objective hillclimber converges to local
optima with the highest frequency. There are two possible explanations for this result:

1. The hillclimbers utilizing multiobjective optimization can escape local optima more
readily at a smaller mutation step size through the exploitation of plateaus of incom-
parable solutions. Analysis of the trajectories of the single-objective and hybrid
hillclimbers provides some evidence for the validity of this latter explanation: the
set of solutions accessed by the single-objective hillclimber is usually a subset of
those accessed by the hybrid hillclimber. In other words, the trajectories of the two
usually agree until a local optimum is met, where the single-objective hillclimber
remains while the hybrid hillclimber switches to Pareto optimization and escapes
(results not shown).

2. The multiobjective formulation (in particular the larger emphasis on the bonded
objective) provides better guidance in the search space and steers the multiobjec-
tive algorithm towards the global optimum and away from the local optima. The
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Fig. 1. Performance of the three hillclimbers as a function of the standard deviation σ of the
Gaussian mutation operator on the alanine dipeptide. Shown are the averages and the standard
error over 100 runs.

-100

-80

-60

-40

-20

 0

 0  5  10  15  20  25  30  35  40  45  50

A
m

be
r9

9 
en

er
gy

 o
f b

es
t s

ol
ut

io
n

Standard deviation of Gaussian mutation

Multiobjective hillclimber
Single-objective hillclimber

Hybrid hillclimber

Fig. 2. Performance of the three hillclimbers as a function of the standard deviation σ of the
Gaussian mutation operator on Metenkephalin. Shown are the averages over 15 runs. For σ < 15,
SHC and HHC outperform MHC with p-values of 0.0001370 and 3.073e-08, respectively. SHC
and HHC are not significantly different at the 0.01 level. For σ ≥ 15, MHC and HHC outperform
SHC with a p-value < 2.2e− 16. MHC and HHC are not significantly different at the 0.01 level.
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good performance of the hybrid hillclimber (which does not utilize multiobjective
optimization during the early stages of the search) gives some indication that this
is not happening. Nevertheless the validity of this explanation will be investigated
further in the next subsections.

In cases where several hillclimbers find the same local or global optimum, the single-
objective and hybrid hillclimber are usually more efficient at converging towards the
optimal solution than their multiobjective counterpart (results not shown). This is a
further side-effect arising from the introduction of plateaus of non-dominated solu-
tions, which cause the multiobjective hillclimber to spend time exploring regions away
from the global optimum. For Metenkephalin, this slower convergence actually results
in a performance advantage of the single-objective and hybrid hillclimber for small
mutation sizes, as shown in Figure 2. Overall, however, a performance advantage of
the hillclimbers using multiobjective optimization also remains for this more complex
molecule and can now mainly be observed for larger mutation step sizes.

5 Random Decompositions

The above experiments indicate a performance advantage of hillclimbers utilizing mul-
tiobjective optimization. As mentioned above, one may speculate that, in addition to
the presence of plateaus facilitating the escape from local optima, these methods may
benefit from the stronger emphasis on the bonded objective, which may help to direct
the search towards the global optimum (and away from local optima).

In order to test this hypothesis further, a set of control experiments were conducted
on the alanine dipeptide that compared the performance of a number of alternative de-
compositions of the overall energy function. In particular, we considered biobjective
formulations of the form:

F = (Ebs + Eab + Eit + Eta + Evdw + Ecc − r, r)T .

Evidently,Ev is a special case of such a decomposition, where r = Ebs +Eab +Eit +
Eta. The alternative definitions of r considered were:

1. r has the same properties as the bonded objective, but is uninformative. This effect
was obtained by choosing r to correspond to the bonded energy for a conformation
with interchanged phi and psi angles.

2. r is extremely rugged. This effect was obtained by choosing r to correspond to the
bonded energy with the phi and psi angles randomly permuted (a random mapping).

3. r presents a smooth gradient (in arbitrary direction). This effect was obtained by
choosing r as the sum of all decision variables.

Figure 3 compares the performance of the multiobjective hillclimber on the alanine
dipeptide using these alternative decompositions to that of the original multiobjective
and single-objective hillclimber. The results confirm that, on the alanine dipeptide, the
second objective acts as an escape mechanism: the degree of information provided by
r has very little impact and the performance of the hillclimbers is primarily influenced
by the ruggedness of r, as a smooth gradient along r provides the facility to ‘drift’
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Fig. 3. Performance of SHC and MHC, as well as MHC using three alternative decompositions, as
a function of the standard deviation σ of the Gaussian mutation operator on the alanine dipeptide.
Shown are the averages and the standard error over 100 runs.
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smooth decomposition with p-values of 0.0001370 and 1.234e-05, respectively. MHC and the
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out of a local optimum in the first objective. Consequently, the decomposition based
on a smooth r turns out as the strongest performer in this comparison and was fur-
ther evaluated for the Metenkephalin molecule (see Figure 4). For small mutation step
sizes (σ ≤ 15), the experimental results on Metenkephalin appear to confirm those ob-
tained for the alanine dipeptide and the decomposition based on the smooth r performs
somewhat more robustly than the original decomposition (result not statistically signifi-
cant). However, for σ ≥ 15 the original decomposition shows a significant performance
advantage over the smooth decomposition, indicating that the method may, after all,
benefit from the additional guidance provided by the bonded objective. Together with
the good performance of the hybrid hillclimber, this result may indicate that increased
emphasis on the bonded objectives mainly matters during the escape from local optima.

6 Alternative Escape Mechanisms

Some of the success of the multiobjective and hybrid hillclimber can be attributed to the
introduction of plateaus that facilitate the escape from local optima. On the downside,
the presence of these plateaus slows down convergence speed, which is at the root of the
superior performance of the single-objective and hybrid hillclimbers on Metenkephalin
for small mutation step sizes. There is thus a trade-off to be met regarding the introduc-
tion of plateaus, and it is likely that more effective escape mechanisms than multiobjec-
tivization exist.
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Fig. 5. Performance of the three hillclimbers with macromutation as a function of the standard
deviation σ of the Gaussian mutation operator on the Metenkephalin molecule. Shown are the
averages and the standard error over 15 runs. For σ < 15, SHC outperforms MHC and HHC with
p-values of 4.534e-14 and 7.731e-11, respectively. MHC and HHC are not significantly different
from each other at the 0.01 level. For σ ≥ 15, MHC, SHC and HHC are not significantly different
at the 0.01 level.
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In a final experiment, we consider the relative performance of the three hillclimbers
if they are furnished with additional escape mechanisms. In particular, the mechanism
chosen here is the macromutation operator proposed in [11], which simulates uniform
crossover between the current and a random solution. The offspring that inherits more
than fifty per cent of its genes from the current solution is taken as the mutant solution.
This macromutation is applied with a probability of 0.7 in every iteration.

Figure 5 shows the results obtained for Metenkephalin. The results obtained show
a significant increase in the performance of the single-objective hillclimber for small
mutation step sizes. In contrast, the performance of the multiobjective and hybrid hill-
climbers suffers from the introduction of the macromutation, (which may appear sur-
prising given their increased performance for large mutation step sizes — see Figure 2).
This is probably because, for the multiobjective hillclimbers, the macromutation causes
them to spend too much time in plateaus (of non-dominated solutions) in the search
space, which affects the degree of convergence that can be achieved by them.

When comparing the results obtained using the best parameter settings for each of
the three types of hillclimbers (best overall averages are obtained by the single-objective
hillclimber with macromutation for σ = 4, the hybrid hillclimber without macromu-
tation with σ = 48 and the multiobjective hillclimber without macromutation with
σ = 32), no statistically significant difference can be observed.

7 Conclusion

This study has explored the impact of multiobjectivization on the potential energy func-
tions used in protein structure prediction. Compared with a simple hillclimber, a mul-
tiobjective hillclimber operating on a decomposed two-objective energy function finds
lower overall energy solutions for the same number of evaluations - and does so over
a range of mutation step sizes. Experiments to investigate this advantage indicate that
multiobjectivization achieves a reduction in the number of local optima in the landscape
whilst simultaneously maintaining some of the important “guidance” (or gradient) that
the landscape possesses.

When comparing multiobjectivization to more advanced search methods, namely the
inclusion of a well-respected macromutation operator to facilitate escape from local op-
tima, we find no advantage in terms of the minimal energy achieved at the best mutation
step-size settings. However, the multiobjective approach seems slightly more robust to
different step-size choices. More importantly, multiobjectivization finds the low energy
solutions at the same time as finding many other non-dominated trade-off solutions, and
at no extra cost in function evaluations. Whether or not these additional trade-offs are
valuable for identifying native structures is not considered here, but is the subject of our
future work.

Acknowledgments. JH gratefully acknowledges support by a Special Training Fel-
lowship from the Medical Research Council (MRC), UK. JK is supported by a David
Phillips Fellowship from the Biotechnology and Biological Sciences Research Council
(BBSRC), UK.



Investigations into the Effect of Multiobjectivization in Protein Structure Prediction 711

References

1. Bonneau, R., Tsai, J., Ruczinski, I., Chivian, D., Rohl, C., Strauss, C., Baker, D.: Rosetta
in CASP4: progress in ab initio protein structure prediction. Proteins (suppl. 5), 119–126
(2001)

2. Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zitzler, E.: Do addi-
tional objectives make a problem harder? In: Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation, pp. 765–772. ACM Press, New York (2007)

3. Cutello, V., Narzisi, G., Nicosia, G.: A multi-objective evolutionary approach to protein
structure prediction. J. R. Soc. Interface 3(6), 139–151 (2006)

4. Day, R.O., Zydallis, J.B., Lamont, G.B., Pachter, R.: Solving the protein structure prediction
problem through a multiobjective genetic algorithm. Nanotechnology 2, 32–35 (2002)

5. Duan, Y., et al.: A point-charge force field for molecular mechanics simulations of pro-
teins based on condensed-phase quantum mechanical calculations. Journal of Computational
Chemistry 24(16), 1999–2012 (2003)

6. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)
7. Handl, J., Lovell, S., Knowles, J.: Multiobjectivization by decomposition of scalar cost func-

tions. In: Rudolph, G., et al. (eds.) PPSN X 2008. LNCS, vol. 5199, pp. 31–40. Springer,
Berlin (2008)

8. Jacobson, M., Pincus, D., Rapp, C., Day, T., Honig, B., Shaw, D., Friesner, R.: A hierarchical
approach to all-atom protein loop prediction. Proteins: Structure, Function, and Bioinformat-
ics 55(2), 351–367 (2004)

9. Jensen, M.: Helper-objectives: Using multi-objective evolutionary algorithms for single-
objective optimisation. Journal of Mathematical Modelling and Algorithms 3(4), 323–347
(2004)

10. Jones, D.: Predicting novel protein folds by using FRAGFOLD. Proteins (Suppl. 5), 127–132
(2001)

11. Jones, T.: Crossover, macromutation, and population-based search. In: Proceedings of the
Sixth International Conference on Genetic Algorithms, pp. 73–80. Morgan Kaufmann, San
Francisco (1995)

12. Knowles, J., Watson, R., Corne, D.: Reducing local optima in single-objective problems by
multi-objectivization. In: Proceedings of the Congress on Evolutionary Multiobjective Opti-
mization, pp. 269–283. Springer, Berlin (2001)

13. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto
archived evolution strategy. Evolutionary Computation 8(2), 149–172 (2000)

14. Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-objective opti-
mization. Natural Computing 5(3), 305–319 (2006)

15. Ramachandran, G.N., Ramakrishnan, C., Sasisekharan, V.: Stereochemistry of polypeptide
chain configurations. Journal of Molecular Biology 7, 95–99 (1963)

16. Ren, P., Ponder, J.W.: Polarizable atomic multipole water model for molecular mechanics
simulation. Journal of Physical Chemistry B 107, 5933–5947 (2003)

17. Scharnow, J., Tinnefeld, K., Wegener, I.: The analysis of evolutionary algorithms on sorting
and shortest paths problems. Journal of Mathematical Modelling and Algorithms 3(4), 346–
366 (2004)

18. Schulze-Kremer, S.: Application of evolutionary computation to protein folding with spe-
cialized operators. In: Fogel, G.B., Corne, D.W. (eds.) Evolutionary Computation in Bioin-
formatics, pp. 163–191. Morgan Kaufmann, San Francisco (2003)

19. Simons, K., Kooperberg, C., Huang, E., Baker, D.: Assembly of protein tertiary structures
from fragments with similar local sequences using simulated annealing and Bayesian scoring
functions. Journal of Molecular Biology 268, 209–225 (1997)



On the Use of Projected Gradients for

Constrained Multiobjective Optimization
Problems

Alfredo G. Hernandez-Diaz1, Carlos A. Coello Coello2,
Luis V. Santana-Quintero2, Fatima Perez3, Julian Molina3,

and Rafael Caballero3

1 Department of Economics, Quantitative Methods and Economic History, Pablo de
Olavide University, Seville, Spain

agarher@upo.es
2 Centro de Investigacion y de Estudios Avanzados, Mexico D.F., Mexico

ccoello@cs.cinvestav.mx, lvspenny@hotmail.com
3 Department of Applied Economics(Mathematics), University of Malaga, Malaga,

Spain
f perez@uma.es, julian.molina@uma.es, rafael.caballero@uma.es

Abstract. Recent works have shown how hybrid variants of gradient-
based methods and evolutionary algorithms perform better than a pure
evolutionary method both for single-objective and multiobjective opti-
mization. This same idea has been used with Evolutionary Multiobjec-
tive Optimization (EMO), obtaining also very promising results. In most
cases, gradient information is used as part of the mutation operator (and
only for unconstrained MOPs), in order to move every generated point to
the exact Pareto front. In our approach, we use the Karush-Kuhn-Tucker
optimality condition for constrained optimization problems to combine
the information provided by the gradient vector of each objective func-
tion and the gradient vectors of constraint functions to obtain a feasible
movement direction in those points near the border. In our approach, gra-
dients of the objective functions will be approximated using quadratic
regressions, trying to avoid local optima. The proposed algorithm is able
to converge on several nonlinear constrained multiobjective optimization
problems obtained from a benchmark, consuming few objective function
evaluations (between 150 and 1000). Our results indicate that our pro-
posed scheme may produce a significant reduction in the computational
cost, while producing results of good quality, when it is incorporated into
a hybrid MOEA or when it is used to seed an EMO algorithm.

Keywords: Gradient-based method, constrained optimization, nonlin-
ear multiobjective programming, quadratic approximation.

1 Introduction

MOEAs have been very successful in the solution of a wide variety of problems,
mainly during the last few years [2]. However, for certain types of applications,

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 712–721, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



On the Use of Projected Gradient for Constrained MOPs 713

MOEAs result particularly expensive (computationally speaking), since they re-
quire a large number of objective function evaluations in order to produce an
acceptable approximation of the true Pareto front, specially for constrained prob-
lems, where a suitable constraint-handling mechanism is needed.

On the other hand, the classical (exact) methods for (multi-objective) opti-
mization (gradient based methods) consume just a few number of evaluations,
but can be trapped in local optima and require a lot of assumptions about the
problem: continuity, differentiability, explicit mathematical formulation, etc.

On the other hand, under proper assumptions, Newton’s method is quadrat-
ically convergent, but its efficiency is reduced by its expensive computational
cost, especially, for mid-to-large scale problems. The key point is to evaluate the
gradient and the Hessian efficiently, and two different approaches can be found
for that sake:

– Use analytical derivatives. The first option is manually obtaining ana-
lytic derivatives of each objective and constraint functions. But this is only
possible if an explicit mathematical formulation is available, and this is the
main weakness of this approach as many interesting problems could not be
solved: simulation based problems, design problems, etc. On the other hand,
it is an error-prone activity, because if the formulation is complicated, ob-
taining analytical derivatives can be a hard task.

– Use estimated derivatives. In this category we can find the Newton-
like methods, where derivatives are estimated in some efficient way. These
methods do not require explicit formulae of derivatives but, on the other
hand, consume some more evaluations in order to compute the estimation.

On the other hand, the use of gradient information for constrained optimization
problem has been relatively popular for many years. Techniques such that Barrier
Methods and Penalty functions (see [3]), Interior-Point Methods ([7]) or Projected
Gradient ([5], [8]) have been successfully used in continuous optimization.

Barrier and penalty methods are designed to face the problem by solving
a sequence of specially constructed unconstrained optimization problems. In a
penalty method, the feasible region is expanded from the feasible region to all
of Rn, but a large cost or “penalty” is added to the objective function for points
that lie outside of the original feasible region. In a barrier method, we assume
we are given a starting point in the interior of the feasible region, and we im-
pose a very large cost on feasible points that lie ever closer to the boundary of
the feasible region, thereby creating a “barrier” to exiting the feasible region.
Interior-point methods move through the interior of the feasible region following
the gradient vector of the objective function generating approximated solutions
that asymptotically converge to the exact solution, while the projected gradient
orthogonally projects new generated infeasible solutions over the feasible region.

In this work we propose an easy-to-implement method to iteratively generate
nondominated solutions for constrained multiobjective optimization problems.
In this method we use “global” estimated derivatives for the objective
functions (and analytical derivatives for constraint functions) but consuming
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the lowest possible number of evaluations while maintaining a high quality on
the results. We propose its use to seed and EMO method instead of using it
along the whole process (which would consume too many evaluations).

2 Definitions and Basic Concepts

We assume the following definition of a constrained MOP problem1:

Minimize f (x) := (f1(x), f2(x), . . . , fs(x)) (1)

subject to:
gi(x) ≤ 0 i = 1, 2, . . . ,m (2)

hi(x) = 0 i = 1, 2, . . . , p (3)

where x = (x1, x2, . . . , xn)T is the vector of decision variables (normally bounded
ai ≤ xi ≤ bi), fi : Rn → R, i = 1, ..., s are the objective functions, and gi, hj :
Rn → R, i = 1, ...,m, j = 1, ..., p are the continuously differentiable constraint
functions of the problem.

Given a function f : Rn → R, for x ∈ Rn, a direction v ∈ Rn is a descent
direction if ∇f(x) · v < 0 (∇f denotes the gradient vector of f).

A generalized gradient method can be summarized in the following equation:

xk+1 = xk + αkvk

where vk is a descent direction and αk is the step size. One of the most commonly
used choice for the descent direction is the following (steepest descent direction):

xk+1 = xk − αk∇f(xk)

Obviously, one of the main difficulties for constrained problems is the feasi-
bility of xk+1. Specially when the constraints are nonlinear, a balance has to be
achieved between satisfying the constraints and reducing the objective function.

Moreover, choosing the optimum step size αk is desirable, but it may be com-
putationally expensive. Some other approaches, which have good properties (e.g.,
convergence), are quite efficient. One of the most efficient is the Armijo’s rule:

Let β ∈ (0, 1) be a prespecified value, let v be a descent direction and let x
be the current point. The condition to accept t (the step size) is:

f(x+ tv) ≤ f(x) + βt∇f(x) · v

where we start with t = 1 and while this condition is not satisfied we set t := t/2.
The choice of β can be critical because the bigger the value of β, the bigger

the steps we can implement at the beginning; but we consume more evaluations if
too many reductions of t must be done to achieve the condition. Armijo’s rule is
mathematically correct and the “t” value always exists. However, this value could
1 Without loss of generality, we will assume only minimization problems.
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be very small, which would be translated into an insignificant progress (this is, in
fact, the main disadvantage of Armijo’s rule). This problem is more significant for
box-constrained problems or, in general, for constrained problems when the cur-
rent solution is over or close to the boundary between the feasible and infeasible
regions, or to the boundary of one of the decision variables, and the descent direc-
tion moves it outside of the feasible space. Depending on the violated constraints,
we distinguish two cases: (a) if the new solution xk+1 violates constraints in (2)
or (3) or, (b) if some variables of xk+1 are out of its range.

(a) Let denote by c1(x), c2(x), ..., cq(x) the violated constraints by xk+1. The
Karush-Kuhn-Tucker optimality condition (for equality constraint problems)
states that x∗ is a local minimizer if there exist real numbers λ1, ..., λq (La-
grange multipliers) such that

∇f(x∗) =
q∑

i=1

λi∇ci(x∗).

In a regular situation (for example, if ∇f(x∗) and ∇ci(x∗), i = 1, ..., q, are
independent), the above condition is imposible to achieve. This means there
exists a feasible direction v obtained by decomposing ∇f(x∗) in its pro-
jection over the space generated by {∇c1(x∗), ...,∇cq(x∗)} and its normal
component, v. So, this normal vector v is computed taken into account that
v = ∇f(x∗)−

∑q
i=1 λi∇ci(x∗) has to be orthogonal to ∇ci(x∗), for all i. So,

the coefficient vector (λ1, ..., λq) may be obtained by solving the system (all
gradient vectors are evaluated in x∗)⎛⎜⎜⎜⎝

∇c1 · ∇c1 ∇c1 · ∇c2 · · · ∇c1 · ∇cq
∇c2 · ∇c1 ∇c2 · ∇c2 · · · ∇c2 · ∇cq

...
...

...
...

∇cq · ∇c1 ∇cq · ∇c2 · · · ∇cq · ∇cq

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
λ1

λ2

...
λq

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
∇f · ∇c1
∇f · ∇c2

...
∇f · ∇cq

⎞⎟⎟⎟⎠ .

Then, if xk+1 violates constraints c1, c2, ..., cq and the current solution xk

is close enough to them (in order to consider these constraints as active
constraints), the feasible direction considered is the above normal vector
(reducing the step size until xk+1 is feasible). The key issue is the following:
The closer xk to these violated constraints, the more precise the feasible
direction v but, due to some of these constraints are nonlinear, the closer
xk to the constraints, the smaller the step size to obtain a feasible move.
In our experiments, x is considered close, or ε-active, to constraint ci if

|ci(x)|
∇ci(x)·∇ci(x) < ε. (ε = 0.001 for linear constraints and ε = 0.1 for nonlinear
constraints).

(b) In this case, we apply the following rules for each violated variable i:

– If xk+1
i < ai, then xk+1

i = ai+xk
i

2 .

– If xk+1
i > bi, then xk+1

i = bi+xk
i

2 .
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This way, the current solution xk is moved in a intermediate direction be-
tween the direction induced by ∇f(xk) and its projection over the violated
constraints (like in (a)). In an informal sense, this kind of transformation
is also an adapted Armijo’s rule but considering different step sizes in each
coordinate.

3 Gradient Based Method for Multi-Objective
Optimization

The goal now is trying to adapt some of the principles of single-objective opti-
mization to obtain a number of efficient points of the MOP problem. The main
idea is based on the Fritz-John optimality condition for MOP problems (see for
example [4]):

– Given a point x ∈ X , a necessary condition to be Pareto optimal solution is
the existence of λ ≥ 0 such that

∑p
i=1 λi∇fi(x) = 0.

For a bi-objective optimization problem, this condition means that for any
Pareto optimal solution, we can find some λ ≥ 0 such that ∇f1(x) = −λ∇f2(x).
This is, for any Pareto optimal point, gradients of both objective functions are
parallel but in the opposite direction. It means that if we are placed in the
minimum of one of the objectives (for example the minimum of f1, a Pareto
optimal solution) and follow the direction of∇f2(x), we will remain in the Pareto
front. This is shown graphically in Figure 1.

F (x)1

F (x)2

F (y)1

F (y)2

x y

Fig. 1. Pareto front on a bi-objective problem

This idea was used in [10], where they link s+1 local searches (more precisely,
tabu searches). The first local search starts from an arbitrary point and attempts
to find the optimal solution to the problem with the single objective f1. Let x1

be the last point visited at the end of this search. Then, a local search is applied
again to find the best solution to the problem with the single objective f2 using
x1 as the initial solution. This process is repeated until all the single-objective
problems associated with the s objectives have been solved. At this point, they
solve again the problem with the first objective f1 starting from xs, to finish
a cycle around the efficient set. This phase yields the s efficient points that
approximate the best solutions to the single-objective problems that result from
ignoring all but one objective function, and additional efficient solutions may be
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found during this phase because all visited points are checked for inclusion in the
approximation of the Pareto front, as probably most of the intermediate points
will lie on the Pareto front. This way, they obtain an initial set of efficient points
to be used as an initial population for the EMO method developed in [10].

In this work, we are going to use the same idea, link s + 1 single objective
local searches, but using a single-objective gradient based method instead of a
tabu search. The next subsection is devoted to show the main features on this
gradient-based local search mechanism.

3.1 Single-Objective Gradient Based Method

For our local search engine, we are going to use an steepest descent method, this
is, given the current point xk, the next point will be computed as follows:

xk+1 = xk − t · ∇̃f(xk)

where ∇̃f(xk) is an estimation of ∇f(xk) (or its projection/modification seen
in the above section), and t will be computed following our adapted Armijo’s
rule with β = 0.1 and starting with the value of t = 1. The reason to choose a
low value for β is the fact that small steps are also interesting for us while we
are on the Pareto front, as we are checking every intermediate solution for being
included in the final approximation. This is, we are not only interested in the
final point of each search, but also in the intermediate points.

To estimate the gradient of a function f , we will use a quadratic approximation
over all its domain:

f(x) ≈ β0 +
n∑

i=1

β1
i · xi +

n∑
i=1

n∑
j=i

β2
i,j · xi · xj

This means that we are interested in global gradients instead of the local
information provided by a precise estimation of the gradients at each solution.

The number of parameters (N) to adjust such an approximation for a function
with n variables is: N = 1 + n+ n(n+1)

2 = n2+3n+2
2 . N represents the minimum

number of points needed to adjust such an approximation. For a problem with
30 variables, for example, at least 496 will be needed. In order to generate these
N points efficiently, we used Latin-Hypercubes [9], which is a method that guar-
antees a good distribution of the initial population in a multidimensional space,
as it is required in order to better fit the function with this quadratic approxi-
mation. Once these points are generated and evaluated, we compute the values
of each parameter solving the corresponding system of equations using a pseudo-
inverse (due to its complexity when N is increased). This system of equations
can be formulated using matrices: X ·B = Y , so X · B = (XtX)−1XtY .

Finally, we assumed the following stopping conditions:

1. The step is too small, this is, the estimated gradient or the projected gradient
is too small: t · ‖∇̃f(xk)‖ < 0.01, or

2. The improvement is too small: |f(xk+1)− f(xk)| < 0.001.

The complete method is summarized in Algorithm 1.
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Algorithm 1. Constrained Multi-Objective Gradient Based method: CMGBM
1: Generate a set InitPop with N initial points using Latin-Hypercubes.
2: Send each point in InitPop to the list of nondominated solutions: PF .
3: Use the set InitPop to adjust a quadratic approximation of each objective function

over all its domain.
4: for each objective function fi (repeating the first one) do
5: x0 =last point visited or random solution in PF when i = 0
6: while stopping conditions = FALSE or xk+1 is infeasible do
7: Obtain xk+1 through the gradient-based method using ∇̃fi(x

k).
8: If xk+1 is infeasible, check ε-active constraints for xk.
9: If xk is an interior point (it has no ε-active constraints), reduce the step size.

Otherwise, obtain a new xk+1 through the projected gradient over the ε-active
constraints.

10: Send xk+1 to PF .
11: end while
12: end for

4 Preliminary Results

To test the performance of CMGBM, we solved several constrained optimization
problems from the benchmark: Srinivas ([13]), Osyczka and Osyczka2 ([11]),
Tanaka ([14]), Binh ([1]) and Jimenez ([6]). All of them are nonlinear bi-objective
optimization problems with several nonlinear constraints. Moreover, they all
have 2 decision variables, except for Osyczka which has 6 variables. For a quick
overview of these test functions, please visit: http://www.cs.cinvestav.mx/~
emoobook/.

Table 1. IGD values for the selected six test problems

Test Function / IGD Min Mean (SD) Max N. Points N. Eval.

Srinivas 0.057 0.089 (0.013) 0.107 74.455 406.6

Osyczka 0.171 0.296 (0.136) 0.570 64.000 544.2

Osyczka2 0.102 0.140 (0.018) 0.159 37.546 917.4

Tanaka 0.091 0.489 (0.410) 1.227 17.091 239.8

Binh 0.046 0.072 (0.012) 0.084 224.727 594.1

Jimenez 0.010 0.043 (0.063) 0.216 129.091 262.3

Results obtained by CMGBM are not compare against other algorithms be-
cause the main aim is to show the viability of this scheme to obtain nondominated
solutions over the true Pareto front. This is why we perform 11 independent runs,
measured using the Inverted Generational Distance, IGD ([15]). IGD measures
the euclidean distance from the true Pareto front to the approximated front,
previously normalized to allow a fair comparison. So, the closer the IGD value
to zero, the better the approximation. IGD = 0 is obtained only when the ap-
proximated front is over the true Pareto front and the extremes have been also
achieved.

http://www.cs.cinvestav.mx/~{}emoobook/
http://www.cs.cinvestav.mx/~{}emoobook/
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Fig. 2. Best (top) and median (bottom) IGD values obtained by CMGBM for selected
problems

It can be observed in Table 1 that CMGBM produced IGD values really
close to zero. The first column shows the best IGD values (min), the second
column shows the mean IGD values and its corresponding standard deviation.
The third column show the worst (max) of the eleven IGD values. Finally, last
two columns show the average of the number of nondominated solutions obtained
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by CMGBM and the mean value of the number of evaluations consumed. For
these problems, the CMGBM is able to find a high number of exact efficient
points using very few evaluations.

Figure 2 shows the nondominated solutions obtained by CMGBM. These plots
correspond to the best run (top) and the run in the median value (bottom)
with respect to the IGD metric. We can clearly see that in all problems, but
Osycka2, CMGBM converged to the true Pareto front after only about 500 fitness
function evaluations. And even for the hardest problem (Osyczka2), CMGBM
obtained some good solutions after only 1000 evaluations. On the other hand,
CMGBM was able to obtain the extreme points (of each objective function) in
most cases.

5 Conclusions

We have introduced a Constrained Multi-Objective Gradient-Based Method
(CMGBM) in order to generate efficient solutions of nonlinear constrained multi-
objective optimization problems with a low number of objective function evalu-
ations. The main contribution is the way in which we use the estimated gradient
vector of the objective functions and the gradient vector of the constraints to
obtain an improvement direction. Results show the efficiency of this method over
several nonlinear constrained MOPs, since CMGBM obtains good approxima-
tions of the Pareto front consuming very few objective function evaluations.
With this preliminary results we show how the use of gradient information
could reduce the computational cost while quality is not decreased. We believe
that this gradient information could be very useful to seed EMO algorithms
and enhance their convergence. This strategy could be more efficient than us-
ing gradients through all the EMO execution because once the EMO method
is provided with solutions close (or in) to the Pareto front, the use of gradi-
ent information consumes a lot of evaluations while not providing significant
improvements.

In the future, besides completing a comprehensive set of experiments, we
would like to improve this scheme using also approximated gradient vectors of
the constraints, and adapt this mechanism for problems with more than two
objective functions.
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Abstract. One of the major issues in applying multi-objective genetic
algorithms to real-world problems is how to reduce the large number of
evaluations. The simplest approach is a search with a small population
size. However, the diversity of solutions is often lost with such a search.
To overcome this difficulty, this paper proposes a diversity maintenance
mechanism using clustering and Network Inversion that is capable of
preserving diversity by relocating solutions. In addition, the proposed
mechanism adopts clustering of training data sets to improve the accu-
racy of relocation. The results of numerical experiments on test functions
and diesel engine emission and fuel economy problems showed that the
proposed mechanism provided solutions with high diversity even when
the search was performed with a small number of solutions.

1 Introduction

Multi-objective genetic algorithms (MOGAs) are strong optimization methods
that can derive a Pareto-optimal set in a single run [1,2]. However, in real-world
problems, such as large-scale design problems [3,4], the reduction of evaluation
calls becomes an essential issue due to their high computational cost. Two ma-
jor approaches have been proposed for this issue: the response surface method
[5,6,7] and search using small population size [8] (SSP strategy). In this paper,
an effective SSP mechanism is discussed. SSP is a simple approach for reducing
the calculation cost. However, solution diversity in the objective space tends to
be lost. We have proposed a diversity maintenance mechanism using an Artifi-
cial Neural Network (ANN) [9] to preserve high diversity, which relocates the
converged solutions to solutions with a uniform distribution. In this relocation,
it is necessary to perform inverse analysis that estimates the design values from
the fixed objective values, because the relocation must be conducted in the ob-
jective space. In our previous paper, inverse function by ANN was adopted, but
it showed poor performance in high-dimensional or multi-modal problems. In

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 722–732, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Diversity Maintenance Mechanism for MOGAs 723

this paper, new diversity maintenance mechanism based on Network Inversion
[10,11] and clustering of ANN training data is proposed to solve these difficulties.

2 Mode of Inverse Analysis and Necessity of Clustering

2.1 Mode of Inverse Analysis in the Proposed Mechanism

In the proposed mechanism, Network Inversion (NI) [10,11] is applied for inverse
analysis, which is a technique using an approximation function with the same
structure as the objective function. This mode is advantageous with regard to
high-dimensional problems. In the conventional mode based on inverse function,
it is difficult to relocate solutions appropriately, because many outputs should be
estimated from few inputs in high dimensions. On the other hand, NI preserves
the input/output relationship of the objective function, and is effective in high
dimensions. Most studies concerned with ANN focus only on an approximation
of the objective function and local search [12,13]. On the other hand, ANN was
used in this study to relocate the solutions and restore the solution diversity.

2.2 Necessity of Clustering

The filtration of training data set to improve the approximation accuracy of NI
is also discussed. To create a good approximation function with few data, the
following two conditions should be satisfied:
(i). Training data set exists in a narrow area.
(ii). Approximation function is a monotone in approximation area.

A case where a function pole exists in a training area is illustrated in Fig.1 to
discuss the importance of these conditions.
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4

(a)Training data and landspcape
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One approximation Two approximations
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Fig. 1. Case where a function pole exists in a training area and its handling

In Fig.1, Fig.1(c) which satisfies both (i) and (ii) by dividing the training data
set into two groups, is a good method of training when a function pole exists
in the training area. Whether there is a function pole in the training area can
be judged according to the neighbor relationship of the data. To check this, it is
necessary to make two sorting lists of all data, which are sorted by design values
and objective values in ascending order. When two adjacent data points of an
arbitrary data set are the same in both lists, the training data set is defined as
having the same neighbor relationship. For example, when all training data in
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Fig.1(a) are sorted by design and objective values (Fig.1(b)), each list becomes
(1,2,3,4,5,6) and (4,5,3,2,6,1). In this case, the data set has a different neighbor
relationship. On the other hand, in Fig.1(c), training data are divided into two
groups: (1,2,3,4,) and (5,6). If the same sorting procedure is performed on both
groups, the neighbor relationship becomes the same. In this paper, we propose a
clustering method that can divide training data sets into groups with the same
neighbor relationship.

3 Diversity Maintenance Mechanism by Clustering and
Network Inversion

The proposed mechanism is composed of MOGA search, clustering, training
ANNs, and relocation, and the latter 3 processes are used to restore diversity.
The concept of the proposed mechanism is illustrated in Fig.2.

f2

f1

f2

f1

MOGA Search Training ANNs

f2

f1

Relocation

f2
f1

f2

f1

Training

ANNs

Approximation functions

ANN

Clustering

f2

f1

Converged

f2

f1

ClusteringMOGA

MOGA's
solutions Target

solutions

Derived
solutions

Step 1 Step 2 Step 3 Step 4

ANN

Fig. 2. Concept of proposed mechanism

The first application of the restoration process is when all archive solutions
become the non-dominated solutions (NDS), and is applied uniformly in the
remaining search. The algorithm is described below:

Step 1: MOGA search. MOGA search is performed until application condi-
tion of the diversity restoration is met. After application of the diversity restora-
tion, MOGA search is conducted for specified number of generations.

Step 2: Clustering. Clustering is applied to the NDS obtained by MOGA.

Step 3: Training ANNs. ANNs are trained based on a set of clustered solu-
tions obtained in Step 2.

Step 4-1: Linear interpolation. A linear line passing through a set of n NDS
is obtained by interpolation.

Step 4-2: Locating target solutions (TS). All solutions are removed except
those at the edges, and n− 2 TS are located uniformly on the interpolated line.
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Step 4-3: Inverse analysis. Inverse analysis is performed with NI, and design
values corresponding to each objective value of TS are derived.

Step 4-4: Relocation. Obtained design values are evaluated using the real
objective function. Then, archive and solutions obtained by NI are combined,
and the archive update mechanism of MOGA is executed. Return to Step 1 if
the terminal condition is not satisfied.

3.1 Clustering (Step 2)

A clustering algorithm is proposed to obtain a set of solutions with the same
neighbor relationship. It judges the neighbor relationship by calculating the Eu-
clidean distance between one solution and the others. The solution used to calcu-
late the distance is defined as the base solution, and the solutions with minimum
or maximum value in any objective function are defined as edge solutions. Fur-
thermore, this operation is applied only to n NDS of archive, because it showed
superior results in the preliminary experiment. The clustering procedure is de-
scribed below, and the clustering of the solutions in Fig.3 is shown in Fig.4

Step 2-1: ID is assigned to k NDS in ascending order regarding f1 (i = 0).

Step 2-2: A base solution is fixed (i = 0 : solution with ID=1, i = 1 : ID=k).

Step 2-3: Euclidean distances between the base solution and the others are
calculated in the design space, and a sorted list of IDs is made by the distance
in ascending order.

Step 2-4: Consecutive solutions from the head of the sorted list with its IDs
in ascending (i = 0) or descending (i = 1) order are selected as setAi

Step 2-5: If i = 0, return to Step 2-2 and update the base solution (i = 1).

Step 2-6: When setA0=setA1, a cluster is created from the solutions of set
A0, and the process is terminated. When either set becomes the subset of the
other, the solutions of the subset are adopted as a cluster, and the process is
terminated. Otherwise, only sets with the edge solution included are selected as
the new NDS set, and the clustering process is repeated to it.

This algorithm does not require the number of clusters to be assigned before-
hand, because only clusters that include the edge solution are obtained.
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3.2 Training ANNs (Step 3)

In Step 3, training ANNs is performed regarding design values as input and
objective values as output by Backpropagation (BP). Solutions from clustering
in Step 2 are adopted as a training data set. With BP, output error is minimized
based on the gradient method by considering the weights of the network as the
source of error and adjusting it.

3.3 Linear Interpolation and Location of Target Solutions (Steps
4-1 and 4-2)

In this section, we describe how the objective values of TS are determined.
First, a linear interpolation line is obtained (Step 4-1). For this interpolation, a
linear interpolation method is adopted, because it showed more positive results
in preliminary experiments than two-dimensional interpolation. Next, TS are
located on the interpolated line such that the distances on the interpolated line
between the neighboring solutions become the same. As it is difficult to set
TS in many objectives (more than three), this paper focuses on two-objective
problems. The scheme of locating TS is shown in Fig.5.

Fig. 5. Concept of locating TS

3.4 Inverse Analysis (Step 4-3)

In this step, input values are estimated from fixed output values using ANNs
trained in Step 3. The principle of inverse estimation by NI is the same as that of
BP. However, the source of error is considered to be the input values, and they
are adjusted instead of the weights of the network. From the process described
above, design values x of TS are estimated. In addition, training cost of ANNs
and calculation cost of NI are relatively small in comparison with the evaluation
cost of GA, and these costs are not discussed in this paper.

3.5 Relocation (Step 4-4)

Estimated design values from Step 4-3 are evaluated by the objective function,
and real-objective values are obtained. Next, the archive update mechanism
is applied to a set of solutions composed of solutions of inverse analysis and
MOGAs. With this, a superior set of solutions with high accuracy and diversity
can be selected. In addition, even if TS cannot be obtained properly, the search
performance will not be degraded because the updating mechanism eliminates
them and the solutions before relocation are adopted.
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4 Numerical Experiments through Test Functions

The effectiveness of the proposed mechanism was verified through numerical
experiments. Search performance was compared by Angular Cover Rate (ACR)
for diversity and GD for accuracy [14]. In ACR, domains in which solutions exist
are divided uniformly into the number of search population size by the angle, and
it counts how many domains are covered by derived solutions. On the other hand,
GD measures the accuracy by calculating the distance between derived solutions
and Pareto-optimal solutions. In all experiments discussed in this section, NSGA-
II is employed for MOGAs of the proposed mechanism, and population size is
set to 10 [8], because the search with a small number of solutions is assumed. In
addition, crossover rate is 1.0, and mutation rate is 1.0/gene length. The concept
of ACR and GD is illustrated in Fig.6 and Fig.7.

Fig. 6. Concept of ACR Fig. 7. Concept of GD

In this section, the following three experiments are discussed.

1. Effectiveness of clustering.
2. Improvement of diversity by the proposed mechanism.
3. Diversity maintenance and accuracy by iterating the proposed mechanism.

4.1 Accuracy of an Approximation by Clustering and NI

The differences in performance between NI and NI with clustering were verified
using multi-modal function ZDT4 [15] with 2-dimensions. The training data set
and the results are shown in Fig.8 and Fig.9, respectively.

The results shown in Fig.9 indicate that when the neighbor relationships in
both spaces are different, clustering may provide more accurate approximation.
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4.2 Effect of the Proposed Mechanism for Diversity

In this experiment, MOGA search and the proposed mechanism were compared
to examine the effects of the proposed mechanism on diversity. Test functions
were ZDT1, ZDT2, and ZDT4 with three patterns of dimensions (2,5,10), and
the number of generations for GA was 100. The results are shown in Fig.10.
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Fig. 10. ACR (Max, Median, Min) in ZDT1, ZDT2, ZDT4

Fig.10 shows the minimum, median, and maximum of ACR at 30 runs. From
these results, we can infer that the proposed mechanism provides solutions with
high diversity even in high dimensions.

4.3 Effect of the Iteration of the Proposed Mechanism

The effects of diversity maintenance by the proposed mechanism were verified.
In ZDT1 and ZDT2, generation was set to 100, and the number of applications
of the proposed mechanism was set to 5. In ZDT4, each parameter was set to
300 and 15, respectively. In addition, the number of dimensions was 10. In this
experiment, the effects of diversity maintenance by the proposed mechanism
were validated by the transition of ACR. The results are shown in Fig.11.
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Fig.11 indicates the median of ACR measured by the generation. These results
show that the search with the proposed mechanism can maintain high diversity
compared to only using MOGAs. Next, the influence regarding the accuracy
by the proposed mechanism was verified by GD. The results on median and
standard deviation are shown in Table.1. The number of evaluations was the
same in both methods.

Table 1. Comparison of GD

ZDT1 ZDT2 ZDT4

NSGA-II Median 0.209 0.348 3.53
Standard deviation 0.106 0.128 1.66

Proposed Median 0.238 0.362 3.06
Standard deviation 0.130 0.214 1.31

As shown in Table.1, both methods showed comparable accuracy. From these
results, we concluded that the proposed mechanism can maintain solution diver-
sity without deterioration of solution accuracy even in high dimensions.

5 Numerical Experiments through Real-World Problem

The effectiveness of the proposed mechanism was verified by application to the
diesel engine emission scheduling problem.

5.1 Diesel Engine Fuel Emission Scheduling Problem

Diesel engines have considerable advantages with regard to durability, fuel econ-
omy, and reduced CO2 emission. However, in recent years, emission regulations
for automobile engines have become stricter because of the adverse influence on
the environment. Therefore, there is a great deal of research interest in reducing
emissions to meet the regulations [16].

A diesel engine works by compressing air in a cylinder and injecting a liq-
uid fuel. However, it also emits large amounts of both nitric oxide (NOX) and
particulate matter (PM), including soot. The amounts of these emissions are
determined by the scheduling of fuel emission. Therefore, the emission charac-
teristics were optimized from the perspective of engine combustion to achieve
low emission. This optimization problem is called the diesel engine emission
scheduling problem, and minimizes the following objectives:

– The amount of NOX

– The amount of soot
– The amount of specific fuel consumption (SFC)

This problem should be optimized simultaneously due to the trade-off relation-
ships between NOX and soot or SFC. These objective values are calculated by
simulation with the phenomenological model HIDECS [17,18]. Design variables
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are Start Angle, Exhaust Gas Recirculation Rate (EGR Rate), Swirl Ratio,
Boost Pressure, and the shape of injection [19].

In this section, it is examined whether the proposed mechanism can improve
the diversity, and also if the diversity can be preserved by iterating them.

5.2 Effects of Relocation in the Diesel Problem

The effects on diversity were verified when the proposed mechanism was applied
once. In all of the following problems, only SFC and NOX were focused upon
because the mechanism can only be utilized with two-objective problems. Pop-
ulation size was set to 10 and the number of generations was 50. The other GA
parameters were the same as in section 4. The results are shown in Fig.12.
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Fig. 12. Effect of the relocation of the proposed mechanism

As shown in Fig.12, the diversity can be improved by the proposed mechanism
in the diesel engine problem.

5.3 Effects of Iteration in the Diesel Problem

The effects on diversity maintenance of the proposed mechanism were verified.
In this experiment, the transition of ACR was examined during a search. The
plot graphs of obtained NDS at 30 runs were compared to measure the accuracy,
because Pareto-optimal solutions in this problem were not known and GD could
not be employed as an indicator. The number of generations was set to 50 and the
number of applications of the proposed mechanism was set to 10. The number
of evaluations was the same in both methods. The first experimental results of
the transition of ACR are illustrated in Fig.13. Fig.13 shows that the proposed
mechanism can provide solutions with higher diversity during a search than the
conventional search.
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a) NSGA-II

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

100 200 300 400
SFC

NOx

SFC

NOx

b) Proposed

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

100 200 300 400
SFC

NOx
Proposed
NSGA-II

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

100 200 300 400

c) Both method

Fig. 14. All NDS obtained by both methods in diesel problem

In the second experiment, the influence of iteration on the search performance
was examined by plotting all obtained NDS at 30 runs in Fig.14.

Fig.14 indicates that the search performance of the proposed mechanism is
comparable to the conventional method with regard to accuracy. From these
results, we concluded that the proposed mechanism can provide solutions with
high diversity without deterioration of the search performance in the diesel en-
gine emission scheduling problem.

6 Conclusions and Future Work

In this paper, a new diversity maintenance mechanism was proposed that hy-
bridizes MOGAs with a small population size and the process of restoring diver-
sity by NI. This mechanism involves MOGA search, clustering, training ANNs,
and relocation, and diversity can be preserved by iteration.

The effectiveness of the proposed mechanism was examined through applica-
tion to benchmark problems and the diesel engine emission scheduling problem.
The results showed that the proposed mechanism can provide solutions with
high diversity even in high dimensions and the search with 10 solutions. In fu-
ture studies, we will examine the appropriate number of solutions for the search,
and how to apply the proposed mechanism to many-objective problems (more
than 3).
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Abstract. This paper describes and demonstrates a new and highly innovative
technique that identifies an approximation of the entire bounding surface of the
feasible objective region directly, including deep concavities, disconnected re-
gions and the edges of interior holes in the feasible areas. The Pareto front is a
subset of the surface of the objective boundary and can be extracted easily. Im-
portantly, if the entire objective boundary is known, breaks and discontinuities
in the Pareto front may be identified using automated methods; even with high
objective dimensionality. This paper describes a proof-of-principle evolutionary
algorithm that implements the new and unique Direct Objective Boundary Iden-
tification (DOBI) method.

1 Introduction

The objective boundary is the ‘outside hypersurface’ of the hypervolume of the feasible
objective region in objective space. In its full form, it encompasses both maximisation
and minimisation of the objectives as demonstrated in Fig. 1a. The leading edge of the
objective boundary that is heading towards a utopia point of interest is the objective
front. Deep concavities in the objective front may be dominated, but are still viable
solutions. The Pareto front is the sub-set of non-dominated solutions, given a criteria of
minimisation or maximisation for each objective. If a solution is identified as belonging
to the objective front and is a minimal/maximal solution as desired, but is not part of
the Pareto front, then the solution must lie in a discontinuity of the Pareto front. Thus
regions which are true discontinuities in the Pareto front can be identified, rather than
just not knowing if solutions exist, but have not been identified by the Pareto-based
optimiser.

Many real engineering problems [1] require 4 or more objectives and optimisation
and visualisation of the results becomes difficult. Previous work has shown that iden-
tification of spot solutions on the objective front can yield useful information about
the structure of the Pareto front [2]. Additionally, any optimisation algorithms that are
intended for use in many dimensions must be capable of producing useful front approx-
imations as the problem dimensionality increases [3,4,5].

Regions of the objective space that have no feasible solutions associated are also of
interest. An algorithm that is attempting to identify the full objective boundary should
be capable of identifying the boundary of disconnected valid objective regions and also
identify the boundaries of ‘holes’ within feasible objective regions.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 733–742, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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This paper describes a new and very unique algorithm that is designed to identify
the objective boundary directly for many-objective problems. The approximation of the
Pareto front can then be extracted from the results and analysed. The prime focus of this
research has been to see if a practical algorithm for direct identification of the objective
boundary could be demonstrated. The described algorithm can identify the boundaries
of convex and concave regions, disjoint regions and also identify the boundaries of large
‘holes’ within feasible spaces. The algorithm uses a normalisation process to allow
the search to be conducted easily in high-dimensional objective spaces and the paper
provides a theoretical basis for key elements of algorithm tuning.

2 Objective Boundary Definition

The objective boundary is the set of points that form the boundary of the feasible objec-
tive region. The objective boundary set is the corresponding points in decision space.
In objective space, points could be considered as interior, where they are surrounded
on all sides by other feasible points, or exterior which have at least one direction in
which they have no immediate neighbouring feasible solutions. Mathematically, the set
of exterior solutions E is a subset of the entire feasible objective set Q, E ⊆ Q, and is
defined formally in (1);

E = {∃�n : �E + δt�n � Q} (1)

ie. for each member of the set E (the objective vector denoted as �E), there exists at least
one direction �n, which when examined over a small distance, δt, there are no solutions
in Q that form part of the feasible objective region. The definition is demonstrated
graphically in Fig. 1a where the directions in which no immediate neighbours exist
have been indicated.

3 Neighbourhood Assessment

In reality, the objective region is sampled by the optimisation process, rather than being
a continuous set around each point of interest. There are many possible approaches to
identifying which of the objective-space sample points are surrounded and therefore
interior. Common methods for reconstructing convoluted surfaces may be considered,
such as Delaunay Triangulation and level sets [6]. Delaunay Triangulation fundamen-
tally is the basis of many of the reconstruction methods and forms a connected net
between the observed valid points in the feasible region such that for any simplex in
the net (triangle in 2D, tetrahedron in 3D etc.) there are no points within the circumhy-
persphere of the simplex. The objective surface will form a subset of the faces of the
Delaunay triangulation. Unfortunately the computation of the Delaunay triangulation
with high numbers of objective dimensions (≥ 10) becomes very time consuming. For
computationally and theoretical simplicity, and also to provide a processing time that
is linear in the number of objectives, an alternative to hypersphere and Delaunay based
methods has been sought.

The concept of the new algorithm described in this paper is to assess the quality
of each solution by examining the largest empty hypercone (or an approximation to
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Fig. 1. Left figure shows diagram of feasible objective solutions, showing the boundary that
forms the objective front (dashed), and also the Pareto front when the objectives are minimised
(Solid). The objective region shown has two disjoint feasible regions, one of which has a ‘hole’.
The figure shows a selection of feasible solutions and the directions in which there are no close
neighbouring solutions. The right figure shows a diagram of ideal conditions where neighbours
are distributed uniformly and densely on the surface of a hypersphere. Arc length d1 and nearest-
neighbour angle θ will be distributed exponentially. The angle α is between a test direction, �m,
and its nearest neighbour and α will also be distributed exponentially, but with half the mean of
the distribution of θ.

the largest hypercone) that can be projected from the current point of interest (cone
vertex), out between the other valid points. The centre vector (axis) of the hypercone is
an approximation of the vector �n in (1) and the directionality of the axis can be used to
assess how relevant the point under consideration is (for minimisation/ maximisation).
The nearer to the objective boundary that the point of interest lies, the greater the apex
angle of the largest empty hypercone becomes, i.e. a surrounded point can only fit a
very narrow cone between the other points identified in the objective region.

The definition in (1) does not provide an implicit description of an optimal solution,
i.e. an algorithm based on (1) would both minimise and maximise all objectives in one
run of the algorithm! It is sensible in practice to restrict the direction of vector �n in (1) to
always point with a component in the direction of an ideal utopia solution, for example
if all objectives are to be minimised, then it would be sensible to constrain all elements
of the vector �n to be negative, pointing to the ‘lower left’ corner of the optimisation
hyperspace. If some objectives are to be maximised, the preferred search direction can
easily be constrained accordingly.

Unfortunately finding the largest projected hypercone through a set of N-dimensional
points is itself not trivial and the calculation of an exact solution will rival the processing
required for the Delaunay triangulation of the set of points. Alternatively the identifica-
tion of the largest cone angle could be treated as an optimisation problem.

If a random unit-length vector �m is chosen and projected from a point within the
objective space that is being assessed, then the closest point in angle from the remainder
of the set of objective points would form one vector which tracks the edge of an empty
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hypercone (a generatrix of the hypercone). If a random search is conducted of cone axis
vectors �m, eventually a vector �m would be identified which is the axis of the largest
empty hypercone. Given that the probability of a random vector landing in a hypercone
is highest for the hypercone of interest (i.e. by definition the largest empty hypercone
has the largest solid angle), a simple random search could be employed.

In a 2D problem, if we consider a set of a large number of points distributed uni-
formly along a circular trajectory with a point-of-interest, P , at the cluster centre, we
may analyse the behaviour of the random search theoretically. Figure 1b shows a typical
configuration. If the distribution of the points are uniform along the circular trajectory,
then the arc-length between neighbouring points, and therefore the cone angles between
them will be distributed following an exponential distribution. Moreover, if we place a
test-point at a location on the circle selected uniformly at random, the segment length
and therefore the angle to the nearest neighbour solution will also be distributed expo-
nentially [7].

The exponential behaviour for nearest neighbour distances does however require two
assumptions to be satisfied:

1. The point density is sufficiently high so that the probability of observing the upper
limit on the angle θ = 2π is very small,

2. the distribution of the points on the circle is from a uniform distribution.

The exponential distribution of the nearest neighbours is described by

f(x) = λe−λx (2)

F (x) = 1− e−λx , x ≥ 0; (3)

where f(x) is the probability density function with mean 1/λ and F(x) is the cumu-
lative distribution function that describes the probability of an observation from the
distribution being less than or equal to x. For the nearest neighbour distribution the an-
gle between neighbours will be distributed with λθ = Nl/2π, giving a mean angle of
θ̄ = 2π/Nl; where Nl is the number of points on the circular trajectory (Nl = 14 in
Fig. 1b). For the angle α between a random test vector �m (distributed uniformly within
the circle) and its nearest neighbour, the distribution of α will also be exponential, but
with a mean that is half of θ̄; i.e. λα = Nl/π. Although the theoretical analysis is for
points lying on a circle, as a uniform distribution of points on the surface of a hyper-
sphere may be generated by creating a vector with each axis drawn from the normal
distribution N(0,1) and then normalised to unit length [8], the theory will also hold
for the angles between a normally distributed cluster of points too, and in practice the
angles between points uniformly distributed in a cartesian region [9].

In practice, a cluster of 7+ points will provide a practical lower limit to producing the
anticipated exponential behaviour (assumption 1) as there is less than a 1 in 1000 chance
of the exponential distribution ideally producing values greater than the maximum θ =
2π limit (calculated from the cumulative distribution in (3)). If a Gaussian mutation
scheme is used within an evolutionary algorithm, often the localised distribution of
neighbouring solutions is sufficiently uniform to satisfy assumption 2.

If we perform a random search by generating a series of test vectors, �m and then
taking the maximum nearest neighbour angle, then we can determine the resultant
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probability density distribution of the maximum observed angle by transforming (2)
and (3) with the order-statistic formula [10]

fNs,z(x) =
Ns!

(z − 1)!(Ns − z)!
F (x)z−1(1− F (x))Ns−zf(x); (4)

where Ns is the number of random samples taken and z is the order statistic of interest.
In this work we are interested in the maximum value and therefore z = Ns. Combining
(2) and (3) with (4) yields (5)

fNs(x) = Nsλ

Ns−1∑
k=0

(Ns − 1)!
k!(Ns − 1− k)!

(−1)ke−λ(k+1)x (5)

FNs(x) = Ns

Ns−1∑
k=0

(Ns − 1)!
k!(Ns − 1− k)!

(−1)k

k + 1

(
1− e−λ(k+1)x

)
(6)

where fNs(x) is the probability density distribution formed from taking the maximum
of Ns angles and FNs(x) is the cumulative probability distribution.

Thus a point can be assessed as being interior by:

1. Generating a random direction vector �m and identifying the nearest neighbour in
angle space. The nearest neighbour is found by taking the dot/inner product be-
tween �m and the difference vector between the point under consideration, P and a
set of Nl points {Qj : j ∈ [1, Nl]} which form a local neighbourhood around the
point P . The dot product (if �m and the difference vector are unit length) yields the
cosine of the angle between the vectors. The smallest angle (largest cosine) is the
nearest neighbour;

2. The process repeated for a different random unit length vector �m and the largest
overall observed neighbour angle (smallest cosine) and corresponding vector �m are
recorded.

The method is described mathematically as

α = cos−1

(
Ns

min
i=1

(
Nlmax
j=1

(
�mi · (Qj − P )
|�mi||(Qj − P )|

)))
. (7)

The resultant angle α can then be considered as being associated with interior or exterior
points by recognising that the cumulative probability distribution FNs(α) in (6) can be
used to determine a threshold level for the observed angle. If the value of α needed to
give FNs(α) = 0.95 is found and used as a threshold, then there is a 95% probability
that a point that is truly an interior point will be correctly classified as interior. The
method can be verified experimentally and is accurate as long as the assumptions of
sufficient point density and uniform distribution are observed (software that performs
the experimental verification of the CDF is available at [11]).

Unfortunately the ideal case of being able to assess explicitly whether a point is
exterior is not practical, as the probability density distribution of exterior points will
vary depending on the degree of convexity of the objective front local to the point and
is unknown and not trivial to observe. Practically, the threshold that can be calculated for
interior point acceptance is sufficient to create a useful algorithm. If a higher threshold
level (e.g. 99%) is set, the algorithm is more aggressive at classifying points as interior.
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4 Extension to Many-Objectives

As the dimensionality of the objective space is increased, the apex angles of the largest
empty hypercones that can be fitted between a set of points also tend to increase. Thus
instead of specifying the limit on the smallest apex-angle before solution cropping, an
alternative strategy has been employed that allows the apex angle to be normalised into
a common space, removing any issues associated with objective space dimensionality.

If a hypercone is projected through a hypersphere, the region of the hypersphere
surface that is contained within the cone is a hyperspherical cap. The normalisation
is obtained by transforming the observed cone angles into the ratio of the area of the
hyperspherical cap to the total hypersphere area. The key observation of this transfor-
mation is that even in very high dimensional spaces, the distribution of the hyperarea
ratios between nearest neighbours still follows the exponential distribution theory for
nearest neighbours that was observed in the two-dimensional case. For example, in two
dimensions, in Fig. 1b, if the circle is unit radius, the arc length between the two neigh-
bours is the hyperspherical cap and d1 may be transformed into a ratio R = d1/2π.

Equations 8 and 9 provide the description of the hypersphere and hyperspherical cap
areas [12] for a hypersphere of radius r, and (12) describes the ratio of the areas, based
on the axis-to-generatrix cone angle α as shown in fig. 1b; where α would be used to
calculate the ratio of the arc d2 to the total circumference. It is clear that to calculate
(12), the processing requirement is linear in the number of objectives, n.

As =

⎧⎨⎩
rn−1nπn/2

(n/2)! n is even,
rn−1nπ(n−1)/22n+1( n+1

2 )!

(n+1)! n is odd,
(8)

Ac =

⎧⎨⎩
rn−1nπ(n−2)/2

(n/2)! p n is even,
rn−1nπ(n−1)/22n( n+1

2 )!

(n+1)! q n is odd,
(9)

p =

{
α n = 2,

α− cos(α)
∑n−4

2
j=0

22j(j!)2

(2j+1)! sin(α)2j+1 n ≥ 4
(10)

q = 1− cos(α)

n−3
2∑

j=0

(2j)!
22j(j!)2

sin(α)2j (11)

R =
Ac

As
=

⎧⎨⎩
1
π p n is even,

1
2q n is odd,

(12)

The largest angle observed by the random sampling process can be converted to a ratio
R using (12) and then the ratio compared against the limit calculated from (6) (with
x representing ratio not angles) to test whether the point is interior or not. The config-
uration for many-objectives is the same as for the 2D case with λ = Nl forming the
shape parameter of the exponential distribution and Ns being the number of random
samples used to estimate the largest cone angle (and therefore ratio). In practice, condi-
tions of Ns/Nl < 1/2 and Ns > 7 are sufficient to ensure that the assumption that the
distribution is exponential is valid. A local neighbourhood is best formed by selecting



Many Objective Optimisation: Direct Objective Boundary Identification 739

the Nl nearest neighbours using Euclidian distance in the objective space. If the local
neighbourhood is small (e.g. in range 25 to 100) then the assumption that the points
used for comparison follow a uniform distribution in the single dimension ratio space
is also usually satisfied. The ratio R can also be used in the fitness assignment process
to determine solution quality, with points having larger ratios being more ‘interesting’.

5 Solution Spreading and Front Maintenance

As with most multi/many objective optimisation algorithms, some means of spreading
the solutions evenly across the objective boundary is needed. Naturally, the solutions
will tend to prefer convex regions if the ratio R alone is used as a selection criteria. For
demonstration purposes with the proof-of-principle algorithm, a simple sharing mech-
anism has been employed. The sharing mechanism is to calculate the total weighted
Euclidean distance to the Nl neighbouring solutions. The Euclidean distance to the Nl

neighbours is needed in order to normalise the difference vectors for angle and ratio
calculations, therefore the sharing calculation overhead is little more.

The sharing function is defined in (13), where Fs(i) is the shared fitness of solution
i, T is the set of Nl local solutions (including solution P ), Ri is the transformed ratio
for solution i, σs is the standard deviation of the sharing function and dij is the Euclid-
ian distance between solutions i and j. As solution i will be compared with itself, the
denominator of (13) will always be at least unity.

Fs(i) =
Ri∑

j∈T exp(− d2
ij

2σ2
s
)

(13)

The distance dij may be calculated in either objective or decision space, however for
the proof-of-principle algorithm, only objective space sharing has been applied. For
sensible sharing distances to be generated, it is advised to scale each of the objectives
appropriately; in real engineering problems, this scaling information is often available.

All of the solutions that have been generated by the evolutionary algorithm so far
are sorted so that the feasible solutions with the highest shared fitness are at the start of
the list, and then any constrained solutions are appended after the list of sorted feasible
solutions. The constrained solutions are sorted based upon their worst degree of con-
straint violation, i.e. each solution has a vector of constraint violations, with negative
values indicating a violated constraint. The more negative the violations, the further the
solution is from the constraint boundary; the minimum value of the constraint vector is
used for solution sorting.

6 Evolutionary Algorithm Structure

A mutation only, evolutionary process has been employed, with an incremental structure.
Each generation, the 100 top solutions are chosen from the sorted list of all solutions
evaluated. These solutions are mutated with a normal distribution in each dimension. The
standard deviation of the mutation is initially 1

8

th
of the range of each decision variable,

and the standard deviation is reduced by 10% each generation (i.e. multiplied by a factor
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of 0.9). To estimate the hypersphere ratio, a random search size of Ns = 10, local sample
size of Nl = 25 and σs = 0.001 have been applied.

To reduce the computational effort, the hypercap ratios of most of the interior and a
proportion of the crowded solutions are not evaluated each generation. Points that are
considered as interior are not removed completely; they are marked as constrained but
given a 50% probability of being selected for ratio re-calculation on the next iteration.
If the point is still considered interior then its probability of re-calculation is reduced
by a factor of 50% to 25% etc. Heavily crowded points are also marked as constrained
but given a probability of 50% of being reconsidered on the next algorithm iteration.

By maintaining all solutions generated so far as possible candidates for future muta-
tions, the algorithm does slow with increasing numbers of generations. However by not
forgetting where previous solutions have been generated, the algorithm builds a good
approximation to the objective front in few generations. The algorithm is best suited
to initial coarse exploration of unknown problems to identify the underlying objective
space structure and identify regions which warrant more focussed investigation with
Many-Objective algorithms such as MSOPS-II [2].

7 Example Behaviour Results

As a demonstration of the behaviour of the algorithm, the Tanaka objective function has
been used (detailed in [2]) but with an added constrained region of a small circle centred
at (0.3 0.2) in the plots. Two runs, both for 50 generations have been conducted. The
first run has no restriction on the direction of the boundary search and has identified the
entire objective boundary, while for the second run, a preferred direction corresponding
to minimisation has been imposed by restricting the components of �m in (7) to be
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Fig. 2. Output of the prototype DOBI algorithm for the modified Tanaka function. The left plot
shows the behaviour when the boundary search is unrestricted and the entire objective boundary
is identified. The right figure shows the output when a restriction of minimisation is placed on
the algorithm. In both plots, the convex/ concave regions of the objective front and the hole in
the feasible region have been identified correctly. The light points are constrained solutions, mid
grey are classed as interior and the black points are classed as exterior.
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Fig. 3. Histograms of Pareto front distance for 5000 solution points from multiple runs on a unit
hypersphere function of NSGA-II, MSOPS-II, DOBI (with restricted boundary search) and a
random search . The left plot shows the behaviour for the 3-objective configuration; MSOPS-II
and NSGA-II provide indistinguishable results with the DOBI algorithm a close 3rd. The right
plot shows the performance with 6 objectives. The DOBI algorithm is clearly superior, with the
performance of NSGA-II falling as anticipated.

negative. Figure 2 shows the locations of the evaluated and classified solutions for the
two conditions.

Figure 3 shows a comparison of the DOBI algorithm to other state-of-the-art meth-
ods. The test function has a Pareto front formed by a constraint boundary comprising
the unit hypershpere (and hence is concave). The distance from the origin to identified
objective vectors have been grouped to form histograms; an ideal case would have all
solutions with a distance of unity. The results show clearly that the DOBI algorithm can
be competitive in low dimensions and is superior for many-objective problems.

Rigourous statistical verification of the prototype algorithm behaviour is at present
on-going; there are no existing metrics that allow the performance of the algorithm to
be examined, and no other algorithms are capable of developing the entire objective
boundary. For example the closest contender MSOPS-II can only form a limited objec-
tive front; it is not capable of identifying interior regions without a-priori knowledge of
their location.

8 Conclusions

This paper has introduced a new and unique concept for an algorithm that is capable of
identifying the entire boundary of the feasible objective space, even with internal holes,
in many objective dimensions. The theory behind the exponential distribution of hyper-
spherical cap ratios has been introduced and used to construct a prototype evolutionary
algorithm capable of unparalleled exploration behaviour.

By using a small random search and a normalisation into hyperspherical cap ratio
space within the evolutionary algorithm, the time complexity of the search scales lin-
early with the number of objective dimensions, unlike Delaunay-based methods which
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become impractical for even moderate dimensionality. Prototype algorithm software
that will re-produce all of the results in this paper is available for academic use at [11].
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7. Jiřina, M.: Nearest neighbour distance statistics estimation. Technical report, Institute of
Computer Science: Academy of Sciences of the Czech Republic (October 2002),
ftp://ftp.cs.cas.cz/pub/reports/v878-02.pdf

8. Muller, M.E.: A note on a method for generating points uniformly on n-dimensional spheres.
Communications of the ACM 2, 19–20 (1959)

9. Hicks, J.S., Wheeling, R.F.: An efficient method for generating uniformly distributed points
on the surface of an n-dimensional sphere. Communications of the ACM 2, 17–19 (1959)

10. Rose, C., Smith, M.D.: Mathematical Statistics with Mathematica. Springer, Heidelberg
(2002)

11. Hughes, E.J.: Software resources, http://code.evanhughes.org
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Abstract. This paper proposes an idea of using heuristic local search proce-
dures specific for single-objective optimization in multiobjective genetic local 
search (MOGLS). A large number of local search techniques have been studied 
for various combinatorial optimization problems. Thus we may have a situation 
where a powerful local search procedure specific for a particular objective is 
available in multiobjective optimization. Such a local search procedure, how-
ever, can improve only a single objective. Moreover, it may have severe  
side-effects on the other objectives. For example, in a scheduling problem, an 
insertion move of a job with the maximum delay to an earlier position in a cur-
rent schedule is likely to improve only the maximum tardiness. In this paper, we 
assume a situation where each objective has its own heuristic local search pro-
cedure. First we explain our MOGLS algorithm, which is the hybridization of 
NSGA-II and weighted sum-based local search. Next we propose an idea of us-
ing heuristic local search procedures specific for single-objective optimization 
in MOGLS. Then we implement the proposed idea as a number of variants of 
MOGLS. These variants are different from each other in the choice of a heuris-
tic local search procedure. We examine three schemes: random, probabilistic 
and deterministic. Finally we examine the performance of each variant through 
computational experiments on multiobjective 0/1 knapsack problems with two, 
three and four objectives. It is shown that the use of heuristic local search  
procedures and their appropriate choice improve the performance of MOGLS.  

1   Introduction 

It has been demonstrated in the literature [1], [5], [7], [10], [24] that the search ability 
of evolutionary optimization algorithms can be improved by the hybridization with 
local search. Such a hybrid algorithm has often been referred to as memetic algo-
rithms [25]. Implementation of memetic algorithms has been discussed in detail for 
single-objective optimization [6], [20], [22], [23]. Self adaptation of local search 
strategies has also been discussed for single-objective optimization [20], [26], [27]. 

Whereas most memetic algorithms have been developed for single-objective opti-
mization, real-world application tasks usually involve multiple objectives. It is well-
recognized that evolutionary algorithms are suitable for multiobjective optimization 
because a number of non-dominated solutions can be obtained by their single run. 
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A number of multiobjective evolutionary algorithms (MOEAs) have been proposed 
and successfully applied to various application areas [2]. Limitations of their search 
ability, however, have also been reported. One limitation is poor scalability to many-
objective problems. Since almost all solutions in the current population become non-
dominated with each other under the presence of many objectives, the search ability 
of MOEAs is severely deteriorated by the increase in the number of objectives. It was 
demonstrated in [8], [17] that MOEAs were outperformed by multiple runs of single-
objective evolutionary algorithms (SOEAs). See [12], [13] for a review of various 
studies on evolutionary many-objective optimization. Another limitation is related to 
combinatorial optimization. It was demonstrated in [16] that MOEAs did not find a 
good non-dominated solution set that well approximated the entire Pareto front of a 
large-scale two-objective knapsack problem. 

Hybridization with local search is a promising approach for overcoming the above-
mentioned limitations. The hybridization, however, is not straightforward in the case 
of multiobjective optimization. In single-objective memetic algorithms (SOMAs), the 
same objective function can be used for global search and local search. Thus the hy-
bridization is straightforward in the design of SOMAs. This is not the case in the 
design of multiobjective memetic algorithms (MOMAs) because local search is basi-
cally a single-objective optimization technique for finding a single optimal solution 
(while global search in MOMAs is supposed to search for a large number of non-
dominated solutions with respect to multiple objectives). Thus we need to implement 
a local search procedure that can handle multiple objectives in the design of MOMAs. 

The first MOMA, which is called a multiobjective genetic local search (MOGLS) 
algorithm, was proposed in [9]. In MOGLS, a weighted sum fitness function is used 
in parent selection and local search while Pareto dominance is used for updating a 
secondary population. In order to search for a variety of non-dominated solutions 
along the Pareto front, the weight vector in the weighted sum fitness function is ran-
domly updated whenever a pair of parent solutions is chosen for crossover. The same 
weight vector is used in local search for an offspring solution generated by genetic 
operations from the chosen parents. A variant of MOGLS with higher search ability 
was proposed in [15]. It was demonstrated by Jaszkiewicz [16] that his MOGLS out-
performed other MOMAs (i.e., M-PAES [18], [19] and the original MOGLS [9]) and 
a well-known MOEA (i.e., SPEA [28]). M-PAES (memetic Pareto archived evolution 
strategy) is an MOMA where Pareto dominance is used to compare the current solu-
tion with its neighbor in local search. When they are non-dominated, they are com-
pared using a crowding measure based on a grid-type partition of the objective space. 

Whereas high search ability of MOGLS was reported for multiobjective traveling 
salesman problems [15] and multiobjective knapsack problems [16], it did not signifi-
cantly outperform MOEAs in its application to multiobjective flowshop scheduling 
[9], [14]. This may be because local search did not use any problem-specific knowl-
edge in multiobjective flowshop scheduling in [9], [14]. On the other hand, good 
results were reported for a bi-objective capacitated arc routing problem in [21] where 
constructive heuristics were used for generating good initial solutions in MOMAs. 

In this paper, we assume a situation where each objective has its own powerful 
heuristic local search procedure. Then we propose an idea of using such a heuristic 
local search procedure for single-objective optimization in MOGLS. 
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2   Multiobjective Genetic Local Search 

Let us consider the following k-objective maximization problem: 

Maximize ))(...,),(),(()( 21 xxxxf kfff= , (1) 

where f (x) is a k-dimensional objective vector, and x is a decision vector. MOEAs 
such as NSGA-II [3] and SPEA [28] were designed to search for a non-dominated 
solution set that well approximated the entire Pareto front (i.e., the projection of the 
Pareto optimal solution set onto the objective space). MOMAs such as MOGLS [9]. 
and M-PAES [18], [19] were also designed for the same task. 

In this paper, we use a simple MOGLS (S-MOGLS [11]) algorithm to evaluate the 
effect of local search procedures specific for single-objective optimization. The gen-
eration update mechanism of S-MOGLS is illustrated in Fig. 1. From the current 
population, an offspring population is generated by genetic operations in the same 
manner as NSGA-II. Local search is applied to some offspring. An improved popula-
tion consists of offspring improved by local search. Good individuals are selected 
from the current, offspring and improved populations to form the next population. 

 

Fig. 1. Generation update in S-MOGLS 

Let us denote the population size as Npop . The size of the offspring population is 
the same as the current population. That is, Npop offspring are generated by genetic 
operations. The size of the improved population depends on the number of offspring 
to which local search is applied. It also depends on the ability of local search to im-
prove the current solution. The outline of S-MOGLS is written as follows: 

[S-MOGLS] 
Step 1: P = Initialize(P) 
Step 2: While the stopping condition is not satisfied, do 
Step 3:   P’ = Genetic Operations(P) 
Step 4:   P’’ = Local Search(P’) 
Step 5:   P = Generation Update(PUP’UP’’) 
Step 6: End while 
Step 7: Return Non-dominated(P) 
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First an initial population with Npop solutions is randomly generated in Step 1. 
Then Steps 3-5 are iterated until a prespecified stopping condition is satisfied. Finally 
non-dominated solutions in the final population are presented in Step 7. 

Step 3 of S-MOGLS is exactly the same as NSGA-II. That is, each solution in the 
current population is evaluated by Pareto sorting and a crowding distance for parent 
selection. Then crossover and mutation are applied to a pair of selected parents. Step 
5 is conceptually the same as NSGA-II. That is, the same fitness evaluation scheme as 
in NSGA-II is used to evaluate each solution in the current, offspring and improved 
populations. The best Npop solutions are selected to form the next population.  

In Step 4, we use the following weighted sum fitness function for local search: 

)()()()( 2211 xxxx kk ffff λλλ +⋅⋅⋅++= , (2) 

where λ=(λ1 , λ2 , ..., λk) is a weight vector. Before the execution of S-MOGLS, we 
first generate a set of uniformly distributed weight vectors. More specifically, we 
generate all integer vectors satisfying the following conditions: 

dk =+⋅⋅⋅++ λλλ 21    and   }...,,1,0{ di ∈λ  for ki ...,,2,1= . (3) 

For example, we generate six weight vectors (2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 2, 0), 
(0, 1, 1), (0, 0, 2) when d is specified as d = 2 for three-objective problems (i.e., k = 3). 
In our computational experiments, d was specified as d = 100 for k = 2 (101 weight 
vectors). d = 13 for k = 3 (105 weight vectors), and d = 7 for k = 4 (120 weight vectors). 

In Step 4, first a weight vector is randomly drawn from the weight vector set. Then 
an initial solution for local search is selected from the offspring population P’ using 
tournament selection with replacement. Each offspring in P’ is evaluated by the 
weighted sum fitness function in (2) with the current weight vector. In order to choose 
a good initial solution for local search, we use a large tournament size (e.g., 20 in our 
computational experiments). Local search is applied to the chosen initial solution with 
the local search application probability PLS. The weighted sum fitness function in (2) 
with the current weight vector is used in local search.  

In local search, a neighbor is randomly generated from the current solution. When 
a better neighbor is found, the current solution is replaced with the neighbor. That is, 
we use the first move strategy where local search accepts the first improved neighbor 
instead of the best improved neighbor in the neighborhood. 

When a better neighbor is not found among a prespecified number of randomly 
drawn neighbors (say, Lfail neighbors), local search is terminated. That is, Lfail is the 
upper bound on the number of successive failure attempts. Local search is also termi-
nated by the total number of examined neighbors (say, Lsearch neighbors) in a series of 
local search from a single initial solution. Local search is terminated when at least one 
of these two conditions is satisfied. In our computational experiments, Lfail and Lsearch 
were specified as Lfail = 5 and Lsearch = 20. If the initial solution is improved by local 
search, the final solution is added to the improved population P’’. The selection of an 
initial solution and the application of local search with the local search application 
probability PLS are iterated Npop  times where Npop  is the population size. 
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3   Use of Single-Objective Local Search in MOGLS 

Let us assume that we have a general local search procedure LSG which is not specific 
for any objective. We also assume that we have a set of k local search procedures 
LSS = {LSS1, LSS2, ..., LSSk} where LSSi is specific for the ith objective. Our problem 
in this section is how to choose one of the (k+1) local search procedures for each 
solution (i.e., how to coordinate the local search procedures in local search). 

Let us denote the selection probability of each local search procedure as PG, PS1 , 
PS2 , ..., PSk  where PG+PS1 +PS2+ ... +PSk = 1. We also denote the selection prob-
ability of the specific local search procedures as PS where PS = PS1+PS2+ ... +PSk . 

In this paper, we handle PG and PS as user-definable parameters (PG+PS = 1). 
That is, the values of PG and PS are prespecified. The specific local search proce-
dures are used with the probability PS while the general local search procedure LSG is 
used with the probability PG (PG =1−PS ). Let us discuss how to choose one of the k 
specific local search procedures for each solution in local search. Since each specific 
local search procedure can improve only a single objective, it may be a good idea to 
use each of them with the same probability. A simple implementation of this policy is 
random choice. Another idea is to bias the selection probability of each specific local 
search procedure using the weight of the corresponding objective in the weighted sum 
fitness function. That is, we can use roulette wheel selection where the selection prob-
ability of each specific local search procedure is proportional to the weight of the 
corresponding objective. It is also possible to deterministically choose the specific 
local search procedure corresponding to the maximum weight. The above-mentioned 
three variants are summarized as follows:  

Rand version: Random selection of one of the k specific local search procedures. 
Prob version: Probabilistic selection where PS1:PS2:  ... :PSk  = λ1 :  λ2 :  ... :  λk . 
Max version: Deterministic selection using the maximum weight.  

We also examine two variants with respect to the timing of the choice (i.e., the timing 
of the change) of a local search procedure. In a short term variant, the selected local 
search procedure is used for generating only a single neighbor. A different local 
search procedure is selected to generate another neighbor. In a long term variant, a 
local search procedure continues to be used in a series of local search from a single 
initial solution until local search is terminated. That is, the selection of a local search 
procedure is performed only when a new initial solution is chosen for local search. 
These two variants are denoted as follows: 

Short version: A local search procedure is chosen whenever a neighbor is to be gen-
erated in local search. The chosen local search procedure is used for 
generating only a single neighbor. 

Long version: A local search procedure is chosen only when an initial solution is 
selected for local search.  

We examine all the 23×  combinations (i.e., six variants). These six variants are re-
ferred to as MOGLS-GS because they use both general and specific local search. 
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4   Computational Experiments 

In our computational experiments, we used nine multiobjective 0/1 knapsack prob-
lems in Zitzler & Thiele [28]. Their multiobjective 0/1 knapsack problems with k 
knapsacks (i.e., k objectives and k constraints) and n items can be written as follows: 

Maximize ))(...,),(),(()( 21 xxxxf kfff= , (4) 

subject to ∑
=

≤
n

j
ijij cxw

1
,  ki ...,,2,1= , (5) 

where ∑
=

=
n

j
jiji xpf

1
)(x ,  ki ...,,2,1= . (6) 

In this formulation, x is an n-dimensional binary vector, pij is the profit of item j 
according to knapsack i, wij is the weight of item j according to knapsack i, and ci is 
the capacity of knapsack i. Each solution x is handled as a binary string of length n. 
We denote the k-objective n-item knapsack problem as a k-n problem. 

The performance of several MOEAs was examined in [28] using nine problems 
with two, three, four objectives and 250, 500, 750 items. We used these nine problems 
while we can report a part of our experimental results due to the page limitation.  

Zitzler & Thiele [28] used a greedy repair procedure where items were removed in 
the increasing order of the maximum profit/weight ratio qj over all knapsacks: 

}...,,2,1|max{ kiwpq ijijj == , nj ...,,2,1= . (7) 

In our computational experiments, we used this maximum ratio repair in NSGA-II 
and S-MOGLS. On the other hand, Jaszkiewicz [16], [17] took into account the 
weight vector of the weighted sum fitness function in his greedy repair as follows: 

∑∑
==

=
k

i
ij

k

i
ijij wpq

11
λ , nj ...,,2,1= . (8) 

In local search, we generated a neighbor in the following manner. First we applied 
the bit-flip operation to each bit of the current solution with the probability 4/n where 
n is the string length. Then we repaired the generated solution if it was not feasible. In 
S-MOGLS, we always used the maximum ratio repair in (7). On the other hand, the 
local search procedure with the maximum ratio repair was used as a general local 
search procedure LSG in MOGLS-GS. As a specific local search procedure LSSi , we 
used the local search procedure with the weighted ratio repair in (8) where only the 
weight value λ i for the ith objective was 1 (all the other weight values were 0). 

In Fig. 2, we show how infeasible solutions are repaired by each repair scheme. 
Randomly generated infeasible solutions (open circles) are repaired to feasible solu-
tions (closed circles) in each plot in Fig. 2. We can see that similar results are ob-
tained by the maximum ratio repair in Fig. 2 (a) and the weighted ratio repair with the 
weight vector (1, 1) in Fig. 2 (b). That is, the maximum ratio repair used in LSG is not 
specific for any objective. On the other hand, feasible solutions with good values of  
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 (a) Maximum ratio repair in LSG.         (b) Weighted ratio repair with (1, 1). 
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    (c) Repair in LSS1 with (1, 0).  (d) Repair in LSS2 with (0, 1). 

Fig. 2. Effects of different repair schemes 

the first objective were obtained by the greedy repair used in LSS1 in Fig. 2 (c). This 
observation shows that LSS1 can be viewed as a local search procedure specific for the 
first objective. The same observation can be obtained in Fig. 2 (d) for LSS2.  

We applied NSGA-II, S-MOGLS and MOGLS-GS to each test problem 50 times 
using the following parameter specifications: The population size was 200, the termi-
nation condition was the examination of 400,000 solutions, the crossover probability 
was 0.8 (uniform crossover), the mutation probability was 1/n (n: the string length), 
the local search application probability PLS was 0.1, and the probability PS of the 
specific local search procedures in MOGLS-GS was 0.5.  

In Fig. 3, we show the 50% attainment surface [4] obtained by each algorithm for 
the 2-500 problem. As MOGLS-GS, we used the Long & Max version. From Fig. 3, 
we can see that much better results were obtained by MOGLS-GS than S-MOGLS 
with respect to the diversity of solutions along the Pareto front. This is because we 
used the specific local search procedure for each objective in MOGLS-GS. 

In Tables 1-3, we show experimental results by MOGLS-GS with various parame-
ter specifications. Each table shows the normalized average values of the hyper-
volume measure. All experimental results are normalized using the average result by  
 



750 H. Ishibuchi et al. 

f1(x)

f2(x)

NSGA-II
S-MOGLS
MOGLS-GS
Pareto front

16000 17000 18000 19000 20000
16000

17000

18000

19000

20000

21000

 

Fig. 3. The 50% attainment surface obtained by each algorithm for the 2-500 problem 

NSGA-II. The best result in each table is highlighted by bold face print. From 
these tables, we can see that more frequent use of the specific local search proce-
dures (i.e., the increase of PS) improved the performance of MOGLS-GS. Better 
results were obtained from the long term version than the short term version. We 
can also see that the random choice of a specific local search procedure was out-
performed by the probabilistic choice and the deterministic choice based on the 
weight vector. 

Table 1. Average relative values of the hypervolume measure for the 2-500 problem 

MOGLS-GS Versions of 
MOGLS-GS NSGA-II S-MOGLS PS=0.1 PS=0.2 PS=0.3 PS=0.4 PS=0.5 
Short & Rand 100.000  100.910  102.770 103.224 103.694 104.010  104.218  
Short & Prob 100.000  100.910  103.305 103.929 104.313 104.584  104.887  
Short & Max 100.000  100.910  103.352 103.999 104.441 104.717  104.927  
Long & Rand 100.000  100.910  103.071 103.602 104.045 104.283  104.487  
Long & Prob 100.000  100.910  103.589 104.257 104.446 104.762  104.997  
Long & Max 100.000  100.910  103.688 104.250 104.631 104.873  105.066  

Table 2. Average relative values of the hypervolume measure for the 3-500 problem 

MOGLS-GS Versions of 
MOGLS-GS NSGA-II S-MOGLS PS=0.1 PS=0.2 PS=0.3 PS=0.4 PS=0.5 
Short & Rand 100.000 101.581 103.409 104.538 105.178 105.649 106.007 
Short & Prob 100.000 101.581 104.710 106.275 107.183 108.124 108.662 
Short & Max 100.000 101.581 105.025 106.740 107.753 108.557 109.141 
Long & Rand 100.000 101.581 104.304 105.518 106.192 106.680 107.512 
Long & Prob 100.000 101.581 105.686 107.387 108.203 108.833 109.278 
Long & Max 100.000 101.581 106.380 107.813 108.606 109.225 109.608 
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Table 3. Average relative values of the hypervolume measure for the 4-500 problem 

MOGLS-GS Versions of 
MOGLS-GS NSGA-II S-MOGLS PS=0.1 PS=0.2 PS=0.3 PS=0.4 PS=0.5 
Short & Rand 100.000  102.288  104.020 105.361 106.288 106.986  107.668  
Short & Prob 100.000  102.288  106.151 107.880 109.387 110.210  110.663  
Short & Max 100.000  102.288  106.667 108.836 110.031 110.941  112.108  
Long & Rand 100.000  102.288  105.175 106.747 107.754 108.332  108.828  
Long & Prob 100.000  102.288  107.623 109.030 110.584 111.109  111.876  
Long & Max 100.000  102.288  108.154 110.291 111.419 111.959  112.696  

5   Conclusions 

We proposed an idea of using heuristic local search procedures specific for single 
objective optimization in multiobjective memetic algorithms (MOMAs). Through 
computational experiments on multiobjective 0/1 knapsack problems, we demon-
strated that the proposed idea improved the performance of MOMAs. Whereas we 
assumed that all objectives had powerful local search procedures, this is not the case 
in real-world applications. An interesting future research issue is the handling of a 
more general situation where a heuristic local search procedure for each objective has 
different search ability: Some are very powerful while others are not (including a 
situation where only a part of the objectives have heuristic local search procedures).  

This work was partially supported by Grant-in-Aid for Scientific Research (B): 
KAKENHI (20300084).  
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Abstract. Optimization problems with many objectives open new issues for
multi-objective optimization algorithms and particularly Particle Swarm Opti-
mization. Many of the existing algorithms are able to solve problems of low
number of objectives, but as soon as we increase the number of objectives, their
performances get even worse than random search methods. This paper gives an
overview on Multi-objective Particle Swarm Optimization when having many
objectives and parameters. Furthermore, two new variants of MOPSO are pro-
posed which are based on ranking of the non-dominated solutions. The pro-
posed distance based ranking in MOPSO improves the quality of the solutions
for even very large objective and parameter spaces. The quality of the new pro-
posed MOPSO methods has been tested and compared to the random search and
NSGA-II methods. The tests cover 3 to 20 objectives and 20 to 100 parameters.

1 Introduction

Multi-Objective Particle Swarm Optimization (MOPSO) has been introduced to solve
various optimization problems from science and industry in the last years [13,11]. The
main features of MOPSO are the simplicity in the implementation and the small num-
ber of control parameters comparing to the Evolutionary Multi-objective Optimization
(EMO) algorithms. In MOPSO, the positions of the candidate solutions (particles) in
the parameter space are updated through the generations where in EMO, only the good
solutions have the chance to survive the selection and recombination process [6,4].

MOPSO and EMO have different natures; it can be observed that the EMO methods
have very well-distributed populations during the generations where MOPSO particles
are moving in a swarm all close to each other. Besides the differences, both MOPSO
and EMO methods evaluate the quality of the solutions based on the domination crite-
ria. The non-dominated solutions are considered as the best solutions of a population. In
MOPSO, the global best particles are selected using the non-dominated set [21,16,18]
and they lead the population to move toward the optimal front. However, in a large ob-
jective space, since all the population members get non-dominated, there is a difficulty
for MOPSO to efficiently move the particles. There might be a small move because of
the randomness in the diversity preserving method or the boundary handling.

In EMO, this feature has been already studied [20,19,2,5,14], while in the literature
of MOPSO there is no work on this aspect to the knowledge of the authors. In a recent
work [5], Corne and Knowles studied some existing methods such as weighted average
ranking method [2], K-Optimality [9], and the favour relation [10] in EMO and apply

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 753–762, 2008.
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them to a TSP problem with 5 to 20 objectives. They conclude that the ranking method
has the best performance among the others for the specific test problem.

In this paper, we study MOPSO methods in high dimensional parameter and objec-
tive space and propose two new variants of MOPSO which are based on the ranking
proposed by [2] and a new distance based ranking method. The new distance based
ranking method considers the positions of the non-dominated solutions which are lo-
cated in less crowded areas and assigns them better ranks than the solutions in crowded
areas. These ranking mechanisms in MOPSO are used for selecting the global best parti-
cles. The non-dominated solutions with good ranks have a higher chance to be selected.
For this purpose two selection mechanisms such as fitness proportional and tournament
selection are used. Furthermore, we analyze the performance of the MOPSO variants in
large parameter and objective spaces and compare them with a random search method
as a baseline and NSGA-II [7]. The results show that the performance of MOPSO is
improved when using the distance based ranking method comparing with the results of
a typical MOPSO and the other methods on the selected test problem.

This paper is structured as follows. Next section is a short description of multi-
objective optimization and the ranking of the non-dominated solutions. Section 3 is
about a new distance based ranking method which is used in Section 4. In Section 4, we
briefly explain the MOPSO methods and the new distance based ranking mechanism in
MOPSO. Experiments and results are shown in Section 5 and the paper is concluded in
the last section.

2 Multi-objective Optimization

A multi-objective optimization problem is of the form

minimize f = { f1(x), f2(x), · · · , fm(x)} (1)

subject to x ∈ S, involving m(≥ 2) conflicting objective functions fi : Rn → R that we
want to optimize simultaneously. The parameters x = (x1,x2, · · · ,xn)T belong to the
feasible region S ⊂ Rn. We denote the image of the feasible region by Z ⊂ Rm and call
it a feasible objective region. The elements of Z are called objective vectors and they
consist of objective values f (x) = ( f1(x), f2(x), · · · , fm(x)).

A parameter vector x1 ∈ S is said to dominate a parameter vector x2 ∈ S, iff (a) x1

is not worse than x2 in all objectives and (b) x1 is strictly better than x2 in at least one
objective. x1 ∈ S is called Pareto-optimal if there does not exist another x2 ∈ S that
dominates it. Finally, an objective vector is called Pareto-optimal if the correspond-
ing decision vector is Pareto-optimal. The main goal of multi-objective optimization
algorithms is to approximate the Pareto-optimal solutions by a set of well-distributed
solutions.

2.1 Ranking Non-dominated Solutions

All the non-dominated solutions are said to be indifferent to each other. But if we
have a set of N non-dominated solutions, we can rank them in terms of their posi-
tions, e.g., in crowded or uncrowded areas. Also there is a difference between two non-
dominated solutions with respect to the number of objectives where one of them is
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Fig. 1. An example showing 5 different non-dominated solutions in the objective space. The solu-
tions A and E build a crowded area. D is the farthest solution to the crowded area and the solution
B is located in the middle of the front.

better than the other. The so called weighted average ranking [2,5] assigns a rank to
a non-dominated solution in terms of the number of objectives that are better than the
other non-dominated solutions. Consider the two non-dominated solutions xi and x j.
We compute a vector ai j with m elements as follows:

ai jk =

⎧⎨⎩
1, if fk(xi) < fk(x j)
0, if fk(xi) = fk(x j)

−1, if fk(xi) > fk(x j)
(2)

where k = 1, · · · ,m and the corresponding rank AR(xi) for the non-dominated solution
xi is:

AR(xi) = ∑
k

∑
j �=i

{(N + 1)−ai jk} (3)

The AR ranking mechanism considers the differences between the objective values in
terms of being better or not. For each solution, we measure the number of objectives
that are better than the other solutions and the rank is the sum of them. If a solution is
better in most of the objectives, it will obtain a lower (better) rank.

Example. Consider the objective values of the 5 solutions xA · · ·xE shown in
Figure 1 with f (xA) = (0,10,0), f (xB) = (5,5,5), f (xC) = (10,0,0), f (xD) = (0,0,10),
and f (xE) = (1,9,0). The AR values are AR(xA) = 71, AR(xB) = 76, AR(xC) = 71,
AR(xD) = 70, and AR(xE) = 72. In this example, the order of ranks from best to worst
is D, A and C, E and B. D has the best rank because there are at least three other so-
lutions, B, E and A which are worst in two objectives than B. In this ranking A and C
have the same ranks which is not desirable. C must be preferred to A, since E is very
close to A. �
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3 Distance Based Ranking

The AR ranking method (described in the last section) does not consider the positions
of the solutions and the distances between them in the objective space. For instance, the
solutions A and C have the same ranks, but they have different locations and neighbors.
A has a very close neighbor, E, whereas the closest neighbor to C is B.

In this section, we study a new variant of the ranking method by considering the
distances between the objective vectors. We compute a new distance vector di j =
(| f1(xi)− f1(x j)|, · · · , | fk(xi)− fk(x j)|) which indicates the absolute distance values be-
tween the objectives of the two solutions xi and x j.

We use the vector di j and compute a DR value (DR is very similar to AR but for
simplicity the term (N + 1) is omitted):

DR(xi) = ∑
k

∑
j �=i

di jk (4)

Here, in the contrary to AR ranks, the solutions with high ranks indicate the preferred
solutions which play a key role in keeping the information about the uncrowded areas
in the objective space.

In the example from the last section, the DR values are DR(xA) = 57, DR(xB) = 58,
DR(xC) = 73, DR(xD) = 75, and DR(xE) = 53. The DR values rank the solutions in a
totally different way than the AR values. In this ranking, the solutions from the best to
worst are: D, C, B, A and E. D obtains the best rank (as in AR) but the next ranked
solutions are C and B.

4 Multi-objective Particle Swarm Optimization

A typical MOPSO contains a population of particles which explore the parameter space
by moving with particular velocities toward the optimal solutions. The velocity of each
particle is influenced by a social impact coming from the population and the individual
experience of the particle. In MOPSO, a set of particles may be considered as a popula-
tion Pt in the generation t. Each particle i has a position defined by xi = {xi

1,x
i
2, · · · ,xi

n}
and a velocity defined by vi = {vi

1,v
i
2, · · · ,vi

n} in the parameter space S. In generation
t + 1, the new velocity and position for each particle i is computed by:

vi
j,t+1 = wvi

j,t + c1R1(pi
j,t − xi

j,t) + c2R2(pi,g
j,t − xi

j,t)

xi
j,t+1 = xi

j,t + vi
j,t+1 (5)

where j = 1, · · · ,n, w is called the inertia weight, c1 and c2 are two positive constants,
and R1 and R2 are random values in the range [0,1].

In Equation (5) pi
t is the best position that particle i could find so far (personal best

particle). It is like a memory for the particle i which gets updated in each generation.
One good strategy in selecting pi

t is called the newest method [3]. This method com-
pares the new position of the particle with pi

t . If pi
t is dominated by the new position or

if they are indifferent to each other, pi
t is replaced by the new position.
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In Equation (5), p i,g
t is the position of the global best particle. Since in Multi-

objective Optimization there is no single optimal solution, the global best particle is
selected from the set of non-dominated solutions. In most of the MOPSO methods [21],
the non-dominated solutions are stored in an archive and each particle selects its own
global best from the archive. There are several strategies to find the global best and
it has been shown that selecting the global best particles has a high impact on the di-
versity and convergence of the solutions. In the literature, Non-dominated sorting [15],
Epsilon dominance [21], Pareto-dominance Concept [1] and the Sigma method [18] are
some of the strategies for selecting the global best particles. The main criticism to all of
these domination based methods is that as soon as we have a high dimensional objective
space, all of the particles in the population get non-dominated and therefore the posi-
tions of the particles cannot be improved. In some cases, like in the Sigma method, it can
be observed that the population stops moving [18]. The only existing MOPSO method
(known to the authors) which is not based on the domination criteria is the Maximin
fitness ranking in MOPSO [16]. This approach does not compute the non-dominated
solutions at all. But it ranks all the particles in terms of their Maximin Fitness values.
The small fitness values indicate the non-dominated solutions in a non-crowded area.

One good strategy for selecting the global best particles in high dimensional objec-
tive spaces is to randomly select the global best particles from the archive. In this way,
we can force the population (of almost non-dominated solutions) to move.

Diversity preserving methods are also applied to MOPSO in order to avoid parti-
cles to converge to local optima. There are several approaches to prevent the prema-
ture stagnation of the basic PSO and MOPSO which introduce randomness into the
swarm [17,22]. Most of the main approaches randomly reinitialize some solutions in
each generation with a probability. This is called turbulence factor [12].

4.1 Ranking and Distance Based Ranking MOPSO

Here we propose a new strategy in selecting the global best particles in MOPSO. We
compute the non-dominated solutions of the population in each generation and store
them in an archive. For selecting the global best particle for each particle in the pop-
ulation, we perform the following steps. First, we apply one of the ranking methods
(AR or the DR values) from Sections 2 and 3 to the non-dominated solutions and rank
the solutions. We call the MOPSO using the AR ranking, RMOPSO and using the DR
ranking DMOPSO. After the ranking, one of the non-dominated solutions is selected by
a selection mechanism as the global best particle. The most common selection mech-
anisms are the fitness proportional and the tournament selection [6]. In the selection
process, the solutions with high ranks must have a higher chance to be selected as the
global best particles when using the DR ranking mechanism. For the AR ranking, the
lowest ranked solutions are the best and the selection criterion is vice versa.

5 Experiments

The main goal of the experiments is to observe the behavior of MOPSO (a typical
MOPSO and the new variants) in high dimensional parameter and objective spaces. We
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select one scalable test function from [8]. This test function can have n parameters and
m objectives as follows:

f1(x) = (1 + g(XM))cos(x0π/2) · · ·cos(xM−1π/2) (6)

f2(x) = (1 + g(XM))cos(x0π/2) · · · sin(xM−1π/2)
...

fm−1(x) = (1 + g(XM))cos(x0π/2)sin(x1π/2)
fm(x) = (1 + g(XM))sin(x0π/2)

g(XM) =
n

∑
j=M

(x j−0.5)2

where xi ∈ [0, 1], for i = 0, · · · ,n and M is selected to be m. The Pareto-optimal solu-
tions of this test function construct a hyper-sphere shape in the objective space. All the
optimal solutions on the hyper-sphere have the property S = ∑m

j=0 f 2
i (x) = 1. We use

the S values to evaluate the solutions in the high dimensional objective spaces. One can
compute the number of solutions which fulfill the S = 1 criteria. The quality of different
methods can be compared in terms of the number of solutions having S values close to
one. In the experiments, this evaluation is done by computing the histograms of S for
the solutions.

5.1 Parameter Setting

In the experiments, we vary the number of parameters and objectives from 20 to 100
and 3 to 20, respectively and find the optimal solutions of a typical MOPSO, ranking
MOPSO (RMOPSO), Distance based ranking MOPSO (DMOPSO), Random Search,
and NSGA-II [7].

We select a typical MOPSO as described in Section 4. The global best particles
are selected at random from the archive. The personal best particles are selected based
on the newest method. RMOPSO and DMOPSO indicate MOPSO methods which use
the ranking and distance based ranking methods to rank the non-dominated solutions.
The selection mechanisms in RMOPSO and DMOPSO are selected to be Fitness Pro-
portional (FP) and Tournament selection with tournament size 5 indicated as TR(5).
All the MOPSO methods are run with 100 particles for 100 generations and 100 non-
dominated solutions are kept in an archive using a clustering technique [18]. The inertia
weight is set to 0.4. The turbulence factor of 0.1 is used for all of the MOPSO variants
and c1 and c2 are set to one.

The NSGA-II1 method is run for the same number of evaluations, 100 individuals
and 100 generations. The cross-over and mutation values are set to 0.9 and 0.2 as sug-
gested in the program. The random search method selects 100 non-dominated solutions
out of the non-dominated solutions from 10000 evaluations (the same number of eval-
uations used for all other methods). The selection is based on the clustering method
used for other MOPSO methods. The reason for clustering is that the size of the non-
dominated set drastically increases through the generations. All the programs are run
for 20 different initial seeds. The average values are shown.

1 The program is downloaded from www.iitk.ac.in/kangal/codes.shtml
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Fig. 2. Histogram of the S values for the Random, MOPSO and NSGA-II results for different
numbers of parameters and objectives

5.2 Results

The first experiments are carried out to observe the quality of the solutions for different
numbers of parameters and objectives for MOPSO, NSGA-II and the random method.
Figure 2 shows the histograms of the S values for the different numbers of parameters
and objectives. We observe that for the number of objectives less than 5, NSGA-II has
the best performance among the others even if we increase the number of parameters to
100 (first row in Figure 2). For low number of parameters and the number of objectives
more than 10, the random method is performing as the best and MOPSO has a better
performance than NAGAII. For 20 objectives and 100 parameters, MOPSO and random
have similar S values. This is due to the randomness in selecting the global best particles
in MOPSO. Note that the optimal solutions must have S = 1 and none of our examined
methods for n > 50 and m > 10 are able to find solutions with S = 1.

We furthermore analyze the influence of the ranking and the distance based ranking
method on MOPSO as shown in Figure 3). For low number of objectives and param-
eters, all the methods perform equally good (first row in Figure 3). For the number
of objectives more than 5, DMOPSO with the tournament selection performs the best.
Among the selection mechanisms, the Fitness Proportional (FP) selection performs the
worst comparing to the others. In these experiments, we observe that the quality of
the solutions has been improved by the distance based ranking method in terms of the
S values. Following the above experiments, we select the best results from MOPSO
(DMOPSO, Tur(5)) and compare them with the results of NSGA-II and the random
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Fig. 3. Histogram of the S values for the DMOPSO and RMOPSO with FP and Tur(5) and
MOPSO for different numbers of parameters and objectives

search methods (Figure 4). Here, DMOPSO obtains solutions with the same or com-
parable quality to the results of NSGA-II, when having low number of objectives (first
row in Figure 4). For high number of objectives, DMOPSO is even performing much
better than NSGA-II and the random method.

The experiments show that MOPSO methods (even the typical MOPSO) perform
very well for low number of objectives and any desirable number of parameters. These
results are improved for high number of objectives, as we apply a ranking mechanism
to select the global particles such as in DMOPSO with tournament selection. The dis-
tance based ranking, as expected performs very well and in fact improves the results of
MOPSO comparing to the AR ranking. The main issues in the above experiments are
the evaluation mechanism and the fact that we have selected one test function. There are
a lot of evaluation mechanisms [4,6] such as hypervolume metric, cmetric, generational
distance. Note that all of these metrics are computationally intensive as we increase
the number of objectives and could not be performed in a reasonable time on the huge
amount of results produced in this paper. For having informative and reasonable base-
line, we selected the random search method and the NSGA-II to compare the quality
and the improvements in the experiments. We selected the proposed test function be-
cause its optimal front has a simple hyper-sphere shape with no specific local optima
and it is very well scalable. The Pareto-front is located in the middle of the parameter
space which helps us to investigate the performance of the MOPSO methods and not
other aspects such as boundary handling methods.
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Fig. 4. Histogram of the S values for the DMOPSO, random and NSGA-II for different numbers
of parameters and objectives

6 Conclusions and Future Work

In this paper, we study Multi-Objective Particle Swarm Optimization methods for solv-
ing problems with many (( 3) objectives and parameters. We observe that a typical
MOPSO performs equally well or sometimes even worse than random search for such
problems. Here, we study the performance of MOPSO by using two ranking methods in
selecting the global best particles. We improve the ranking method from the literature
by considering the distances between the objective values of the solutions and call it dis-
tance based ranking. The results of the MOPSO variants are compared with the results
of the random search and NSGA-II methods. From our experiments, we conclude that
the distance based ranking MOPSO can solve the many-objective problem better than
the other methods, even for the large number of parameters. In future, we will apply the
new MOPSO variants to other test problems and study other evaluation mechanisms.
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Abstract. An open issue in multi-objective optimization is designing
metaheuristics that reach the Pareto front using a low number of function
evaluations. In this paper, we adopt a benchmark composed of three
well-known problem families (ZDT, DTLZ, and WFG) and analyze the
behavior of six state-of-the-art multi-objective metaheuristics, namely,
NSGA-II, SPEA2, PAES, OMOPSO, AbYSS, and MOCell, according
to their convergence speed, i.e., the number of evaluations required to
obtain an accurate Pareto front. By using the hypervolume as a quality
indicator, we measure the algorithms converging faster, as well as their
hit rate over 100 independent runs. Our study reveals that modern multi-
objective metaheuristics such as MOCell, OMOPSO, and AbYSS provide
the best overall performance, while NSGA-II and MOCell achieve the
best hit rates.

1 Introduction

Many real-world optimization problems require to optimize more than one
objective function at the same time. These problems are called Multi-objective
Optimization Problems (MOPs). Contrary to single-objective optimization prob-
lems, the solution of MOPs is not given by a single solution, but by a set of
nondominated solutions called the Pareto optimal set. A solution that belongs
to this set is said to be a Pareto optimum and, when the solutions of this set are
plotted in the objective space, they are collectively known as the Pareto front.
Obtaining the Pareto front is the main goal in multi-objective optimization.
Additionally, many real-world MOPs typically need computationally expensive
methods for computing the objective functions and constraints. In this context,
deterministic techniques are generally not applicable, which leads therefore to
using approximate methods [7]. Among them, metaheuristics [1,7] are nowadays
used extensively to deal with MOPs.

The performance of these algorithms is normally assessed using benchmarks,
such as the Zitzler-Deb-Thiele (ZDT) test suite [19], the Deb-Thiele-Laumanns-
Zitzler (DTLZ) problem family [3], and the Walking-Fish-Group (WFG) test
problems [9]. The experimentation methodology typically lies in computing a

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 763–772, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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pre-fixed number of function evaluations and then comparing the obtained re-
sults by considering different quality indicators [11].

The motivation driving us is that the objective functions of many real-world
problems are hard to compute, so applying metaheuristics requiring a high num-
ber of function evaluations to solve them is not a satisfactory approach in prac-
tice. In this context, there are applications in which it can be more important
to obtain a reasonably good approximation to the Pareto front of a given MOP
faster than to search for a higher quality solution set but requiring more time.
Thus, an open research area is to design techniques with this goal in mind, and
some works that address this issue have recently appeared. Santana-Quintero et
al. propose in [17] a PSO algorithm using rough sets theory, and it is used to
solve problems using 4,000 fitness function evaluations, which is a low number
compared to today’s standards in the specialized literature. In a related paper,
Hernández-Dı́az et al. [8] propose a hybrid algorithm between a multi-objective
differential evolution approach and rough sets theory, which only performs 3,000
fitness function evaluations. In [18], a more efficient multi-objective PSO algo-
rithm is presented; this algorithm is able to provide accurate Pareto fronts of
MOPs computing only 2,000 fitness function evaluations. Eskandari et al. ex-
plore in [6] the use of dynamic population sizing to design an algorithm called
FastPGA, which outperforms NSGA-II when computing less than 10,000 solu-
tion evaluations. Knowles studies multi-objective optimization calculating only
260 function evaluations [10]; he proposes an algorithm called ParEGO, which
outperforms NSGA-II using such a low number of evaluations.

In this paper, we are interested in analyzing the convergence speed of six state-
of-the-art multi-objective metaheuristics to give hints about their efficiency when
solving 21 MOPs comprising the test suites ZDT, DTLZ, and WFG. The algo-
rithms are two Genetic Algorithms (NSGA-II [2], and SPEA2 [20]), an Evolution
Strategy (PAES [12]), a Particle Swarm Optimization algorithm (OMOPSO [16]),
a Scatter Search method (AbYSS [15]), and a cellular Genetic Algorithm (MO-
Cell [13]). In our study, to assess the quality of a front we have employed the hyper-
volume quality indicator [21]. To assure that an algorithm has successfully solved
a problem it needs reaching a fixed percent of the hypervolume of the true Pareto
front. In Fig. 1 we show different fronts obtained for problem ZDT1 with different
percentages of hypervolume. We can observe that the front with a hypervolume of
98.26% represents a reasonable approximation to the true Pareto front in terms of
convergence and diversity of solutions. So, we have taken 98% of the hypervolume
of the true Pareto front as a criterion to consider that a MOP has been successfully
solved. Thus, those algorithms requiring fewer function evaluations to achieve this
termination condition can be consider to be faster. Using the hypervolume in the
stopping condition also allows us to obtain a hit rate for the algorithms, i.e., their
percentage of successful executions.

The rest of the paper is organized as follows. Section 2 is devoted to the exper-
imentation, including the parameter settings and the methodology adopted in
the tests. Section 3 provides an analysis of the obtained results. The conclusions
and potential lines for future work are presented in Section 4.
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Fig. 1. Fronts with different hypervolume values obtained for problem ZDT1

2 Experimentation

As commented before, to carry out our study we have selected the two most
widely known and used metaheuristics in the field: NSGA-II [2] and SPEA2 [20],
and we have compared them to other classical algorithm: PAES [12], and to three
other modern algorithms: OMOPSO [16], AbYSS [15], and MOCell [13] (in par-
ticular, we have used the asynchronous variant named aMOCell4 in [14]). We do
not describe them here due to space restrictions. Authors unfamiliar with these
techniques should revise the indicated references. We have used the implemen-
tation of these algorithms provided by jMetal [5], a Java-based framework for
developing metaheuristics for solving multi-objective optimization problems.

The benchmarking MOPs used to evaluate the six metaheuristic algorithms
have been the aforementioned ZDT [19], DTLZ [3], and WFG [9] test suites. The
two latter families of MOPs have been used with their bi-objective formulation.

2.1 Parameterization

We have chosen a set of parameter settings that aims at guaranteeing a fair
comparison among the algorithms. All the evolutionary algorithms (NSGA-II,
SPEA2, and MOCell) use an internal population of size equal to 100; OMOPSO
is configured with 100 particles and with a maximum number of 100 leaders
also. The size of the archive in PAES is 100 as well. AbYSS uses a population
size of 20, which is also the size of the RefSet; the size of the external archive is
100. In MOCell a toroidal grid of 100 individuals (10× 10) has been chosen for
structuring the population, and an archive of 100 individual is used.

For the genetic algorithms, we have used SBX and polynomial mutation [4] as
operators for crossover and mutation, respectively. The distribution indexes for
both operators are ηc = 20 and ηm = 20, respectively. The crossover probability
is pc = 0.9 and the mutation probability is pm = 1/n, where n is the number of
decision variables. In PAES, we have also used the polynomial mutation operator,
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with the same distribution index. OMOPSO makes use of two types of mutation
operators: uniform and non-uniform. AbYSS uses polynomial mutation in the
local search procedure and SBX in its solution recombination method.

2.2 Methodology

Since our main interest is to analyze the convergence speed of the studied meta-
heuristics, we have to measure the number of evaluations needed by the algo-
rithms to achieve a hypervolume equal or higher than the 98% of the value of that
quality indicator when applied to the Pareto front of the considered problem.

In our experiments, each algorithm is executed until a maximum of 1,000,000
function evaluations have been performed. At every 100 evaluations (that is,
at each iteration in the population-based metaheuristics), we measure the hy-
pervolume of the nondominated solutions found so far. Therefore, in NSGA-II
and SPEA2 we have considered the nondominated solutions at each generation,
whereas in PAES, AbYSS, and MOCell, we have used the external population
and, in OMOPSO, the leaders archive. We consider as stopping condition either
reaching the desired hypervolume value or computing the 1,000,000 evaluations
previously indicated.

Using the hypervolume as the stopping condition allows us to obtain a hit rate for
the algorithms, i.e., the percentage of successful executions. An execution is suc-
cessful if the metaheuristic stops before reaching 1,000,000 function evaluations.

We have performed 100 independent runs of each algorithm for each problem
instance. Since we are dealing with stochastic algorithms, we need to perform
a statistical analysis of the obtained results in order to compare them with a
certain level of confidence. Next, we describe the statistical tests that we have
carried out for ensuring such statistical confidence. First, a Kolmogorov-Smirnov
test is performed in order to check whether the values of the results follow a
normal (Gaussian) distribution or not. If they follow a normal distribution, the
Levene test checks for the homogeneity of the variances. If the samples have equal
variance (positive Levene test), an ANOVA test is done; otherwise, we perform a
Welch test. For non-Gaussian distributions, the non-parametric Kruskal-Wallis
test is used in order to compare the medians of the algorithms. We always
consider in this work a confidence level of 95% (i.e., a significance level of 5% or
p-value under 0.05) in the statistical tests, which means that the differences are
unlikely to have occurred by chance with a probability of 95%. Successful tests
are marked with the ‘+’ symbol in the last column in the table containing the
results (see Table 1); conversely, a ‘-’ symbol means that no statistical confidence
was found (p-value > 0.05). Looking for homogeneity in the presentation of the
results, we use the median, x̃, and interquartile range, IQR, as measures of
location (or central tendency) and statistical dispersion, respectively, since some
samples are normal and others are not. We have also performed a post-hoc
testing phase (not included in the paper because of space constraints) using
the multcompare function provided by Matlab c©, which allows for a multiple
comparison of samples. In general, it can be said that the differences of the best
algorithms with respect of the others for each MOP are statistically significant
at 95% of confidence level.
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Table 1. Median and IQR of the number of evaluations computed by the algorithms

NSGA-II SPEA2 PAES OMOPSO AbYSS MOCell
Problem x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR

ZDT1 1.43e+4 8.0e+2 2.12e+4 1.6e+3 1.32e+4 1.1e+4 6.80e+3 2.0e+3 1.37e+4 1.6e+3 1.30e+4 1.2e+3 +
ZDT2 2.43e+4 1.8e+3 − 1.71e+5 2.0e+5 8.90e+3 3.6e+3 1.71e+4 2.8e+3 1.17e+4 4.0e+3 +
ZDT3 1.27e+4 9.0e+2 1.72e+4 1.5e+3 2.56e+4 2.3e+4 9.85e+3 2.7e+3 1.27e+4 2.0e+3 1.30e+4 1.3e+3 +
ZDT4 2.13e+4 5.0e+3 2.46e+5 2.6e+5 4.41e+4 1.8e+4 − 2.28e+4 1.1e+4 1.63e+4 5.0e+3 +
ZDT6 2.88e+4 1.2e+3 5.27e+4 5.5e+3 9.95e+3 1.2e+4 2.80e+3 1.5e+3 1.56e+4 1.2e+3 2.09e+4 1.3e+3 +
DTLZ1 2.51e+4 9.4e+3 − 8.73e+4 1.3e+5 1.00e+6 4.7e+4 2.37e+4 1.2e+4 2.01e+4 7.7e+3 +
DTLZ2 8.10e+3 1.2e+3 − 3.07e+4 2.0e+4 8.20e+3 3.1e+3 4.70e+3 9.0e+2 5.60e+3 9.0e+2 +
DTLZ3 1.18e+5 5.7e+4 − 1.00e+6 2.7e+5 − 1.19e+5 7.5e+4 6.73e+4 2.3e+4 +
DTLZ4 8.50e+3 1.4e+3 − − 1.25e+4 3.8e+3 4.80e+3 7.5e+2 1.00e+6 9.9e+5 +
DTLZ5 7.95e+3 1.1e+3 − 3.14e+4 2.9e+4 8.45e+3 2.9e+3 4.65e+3 8.0e+2 5.80e+3 8.5e+2 +
DTLZ6 1.00e+6 9.7e+5 − 7.89e+4 1.5e+5 4.10e+3 1.5e+3 − − +
DTLZ7 1.36e+4 1.0e+3 2.35e+4 2.6e+3 − 6.15e+3 2.6e+3 1.06e+4 1.7e+3 1.11e+4 1.6e+5 +
WFG1 4.38e+4 1.1e+5 2.27e+5 8.2e+5 − − − 4.16e+4 1.7e+4 +
WFG2 1.75e+3 4.5e+2 2.40e+3 8.0e+2 1.32e+5 1.6e+5 1.80e+3 4.0e+2 1.85e+3 2.4e+3 1.40e+3 8.0e+2 +
WFG3 − − − − − − -
WFG4 1.84e+4 6.2e+3 − − 2.23e+5 1.3e+5 6.75e+3 2.4e+3 1.05e+4 3.1e+3 +
WFG5 − − − − − − -
WFG6 1.00e+6 5.2e+5 9.05e+4 8.0e+4 − 7.30e+3 1.2e+3 − 1.00e+6 5.5e+5 +
WFG7 1.62e+5 2.7e+5 − − 1.49e+4 2.6e+3 9.60e+3 3.4e+3 1.21e+4 3.4e+3 +
WFG8 − − − − − − +
WFG9 − − − 8.93e+4 4.9e+4 − − +

3 Analysis of Results

In this section, we analyze the obtained results. Table 1 shows the median and
the interquartile range of the number of evaluations needed by the different
optimizers when solving all the problems. When an optimizer is not able to reach
acceptable fronts upon performing 1,000,000 function evaluations after the 100
independent runs, its result appears as ‘−’, and it is not taken into account
in the statistical tests. Concretely, the ‘−’ symbol means that the median of
the number of function evaluations is 1,000,000 and the IQR is 0. However, it
is worth mentioning that the IQR only considers the values between the 25th

and the 75th percentiles, so it is possible that the algorithm was successful only
in a few executions (less than 25% of the independent runs executed). To ease
the analysis of the results in Table 1, the cells containing the lowest number of
function evaluations have a grey colored background. There are two grey levels:
the darker grey indicates the best (lowest) value, while the lighter grey points
out the second best value.

The hit rates are reported in Table 2. A ‘
√

’ in a cell means a 100% hit rate,
while a ‘−’ indicates that the problem could not be solved in none of the 100
independent runs.

3.1 ZDT Problems

We start by analyzing the results obtained when solving the ZDT test suite,
which is composed of five MOPs having different properties (convex, non-convex,
disconnected, multi-frontal, non uniformly spaced). In this benchmark OMOPSO
is the fastest optimizer, requiring the lowest number of evaluations to reach the
stopping condition in four out of the five MOPs of the ZDT family. Furthermore,
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Table 2. Hit Rate

Problem NSGA-II SPEA2 PAES OMOPSO AbYSS MOCell
ZDT1

√ √ √ √ √ √

ZDT2
√

– 0.99
√ √ √

ZDT3
√ √ √ √ √ √

ZDT4
√

0.99
√

–
√ √

ZDT6
√ √

0.96
√ √ √

DTLZ1
√

– 0.91 0.28
√ √

DTLZ2
√

–
√ √ √ √

DTLZ3
√

– 0.30 0.01
√ √

DTLZ4 0.89 – –
√ √

0.38
DTLZ5

√
–

√ √ √ √

DTLZ6 0.40 – 0.97
√

0.19 0.10
DTLZ7 0.99

√
0.16

√
0.89 0.76

WFG1 0.83 0.73 – – 0.21
√

WFG2
√ √

0.99
√

0.98
√

WFG3 – – – – 0.17 –
WFG4

√
– –

√ √ √

WFG5 – – – – 0.11 –
WFG6 0.34 –

√ √
0.13 0.37

WFG7 0.99 – –
√ √ √

WFG8 – – – – 0.18 0.12
WFG9 – – – 0.99 0.24 0.24

except for the ZDT4 problem, the differences are noticeable when compared
with the second best performer, particularly in ZDT1 and ZDT2. Despite its
good global results, OMOPSO is the only metaheuristic unable to solve ZDT4,
a multi-frontal problem, in less than 1,000,000 function evaluations. MOCell,
the cellular GA, is the fastest metaheuristic solving ZDT4, and both NSGA-
II and MOCell are the second fastest algorithms in two problems. PAES, the
simplest one of the compared algorithms, obtains the second best value in ZDT6.
Concerning SPEA2 and AbYSS, they do not obtain the best nor the second best
results in any problem.

When examining the hit rate results (see Table 2), we see that NSGA-II,
AbYSS, and MOCell achieve a 100% for all the problems, while SPEA2 and
OMOPSO fail in problems ZDT2 and ZDT4, respectively. We observe that PAES
has a hit rate of 0.96 on problem ZDT6, so it has been unable to find the Pareto
front of the problem in four out of the 100 independent runs.

3.2 DTLZ Test Problems

The DTLZ test suite is composed of seven MOPs, some of them including proper-
ties not found in any of the problems from the ZDT family. For example, DTLZ1
is a linear problem, and both DTLZ5 and DTLZ6 have degenerate Pareto fronts
(when the number of objectives is greater than two).

If we focus on convergence speed, AbYSS is the fastest algorithm at reaching
98% the hypervolume of the true Pareto fronts on three out of the seven MOPs
from this benchmark, and the second fastest in other two. The second algorithm
is MOCell, which requires the lowest number of evaluations on DTLZ1 and
DTLZ3 and it also is the second fastest solver in two out of the seven problems.
OMOPSO obtains the best results in two problems: DTLZ6 and DTLZ7.

We examine now the hit rate of the metaheuristics. According to Table 2, it
is noticeable that SPEA2 is only able to solve the DTLZ7 problem in less than
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1,000,000 functions evaluations. It is also remarkable that OMOPSO only finds an
accurate front in one of the 100 independent runs performed on problem DTLZ3.
Conversely, according to the hit rates obtained, NSGA-II and AbYSS appear as
the most successful algorithms on the DTLZ problem family, followed by MOCell.

3.3 WFG Test Problems

The WFG test suite is composed of nine MOPs having different properties. A
first look at the number of evaluations required by the six studied metaheuris-
tics shows that none of them is able to provide accurate Pareto fronts of three
problems (WFG3, WFG5, and WFG8) in less than 1,000,000 function evalua-
tions, and many algorithms have difficulties when solving the others MOPs. This
clearly indicates that this benchmark is harder to be solved than both the ZDT
and the DTLZ problem families.

Proceeding as in the two previous benchmarks, we start by analyzing the
convergence speed. The fastest algorithm is MOCell, which requires the lowest
number of evaluations in two cases, having the second best behavior on two of
the WFG problems. OMOPSO and AbYSS achieve the best results in two out
of the nine MOPs. NSGA-II obtains the second lowest number of evaluations in
two problems and SPEA2 does the same in one.

The technique providing the highest hit rates is MOCell, which achieves a
100% on WFG1, WFG2, WFG4, and WFG7, and hit rates of 0.37, 0.12, and
0.24 on WFG6, WFG8 and WFG9, respectively. MOCell is followed by AbYSS
(100% on WFG4 and WFG7), which is the only solver able of finding some
accurate fronts in problems WFG3 and WFG5. It is remarkable the behavior
of OMOPSO, which obtains a 100% hit rate in practically five problems, but
it fails in the other four MOPs. The worst ranked algorithms according to the
hit rate for this benchmark are SPEA2 and PAES. As commented before, those
results below a hit rate of 25% are reported in Table 1 as ‘−’, as it happens with
AbYSS and WFG1, WFG3, WFG5, WFG6, WFG8, and WFG9.

3.4 Discussion

If we merely make a global ranking of the fastest algorithms in our study (see
Table 3), it would be led by MOCell (five best results, six second best ones),
OMOPSO (eight best results), and AbYSS (five best results, two second best
ones). The hit rate ranking would be headed by NSGA-II. It performs the best in
the DTLZ test suite, as MOCell and AbYSS do in the WFG family. In the case
of the ZDT problems, these three approaches perform equally well. It is worth
mentioning that AbYSS is the only metaheuristic providing a hit rate higher
than 0% in all the problems.

These conclusions are relevant, and we believe that they are the most impor-
tant contributions of our study. However, although from a practical point of view
the hints of the type “if you want to solve a problem fast, try first MOCell and
OMOPSO” or “if you want the highest chance to solve a MOP, try NSGA-II”,
can be useful, it would be more interesting to provide some hints, given the char-
acteristics of a given MOP, regarding the algorithm that is more suitable to solve
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Table 3. Ranking of the algorithms

Rank Convergence speed Hit rate
1 MOCell NSGA-II
2 OMOPSO MOCell
3 AbYSS AbYSS
4 NSGA-II OMOPSO
5 PAES PAES
6 SPEA2 SPEA2

it. The three benchmarks we have used provide us with a range set of problems,
having each of them different features. Unfortunately, their analysis in [9] indi-
cate that it is far from simple to make a clear classification of the 21 problems
according to their properties (convex, concave, linear, disconnected, multifrontal,
separable, etc). In any case, we attempt to draw some (more general) conclusions
based on our study, subject to the evident limitations previously indicated.

If we focus on the multi-modality feature, it is present in the following prob-
lems: ZDT3, ZDT4, ZDT6, DTLZ1, DLTZ3, DTLZ7, WFG4, and WFG9 (this is
also deceptive) [9]. An analysis of the evaluations required to solve these MOPs
shows that MOCell is the fastest algorithm in ZDT4, DTLZ1, and DTLZ3, and
the second fastest in WFG4. OMOPSO is the fastest algorithm to solve prob-
lems ZDT3, ZDT6 and DTLZ7, and it is the only solver able to achieve a hit
rate of 99% on problem WFG9, but it fails when solving ZDT4, DTLZ1, and
DTLZ3. According to these results, it is not clear whether OMOPSO should be
discarded or not when dealing with this type of problems.

There are three problems having disconnected Pareto fronts: ZDT3, DTLZ7,
and WFG2. Our study reveals that OMOPSO is the fastest in the first two and
the third fastest in the last one. The second algorithm is MOCell, which requires
the lowest number of evaluations in problem WFG2, followed by NSGA-II which
is the second fastest in problems ZDT3 and WFG2.

4 Conclusions and Future Work

We have evaluated six metaheuristics over a set of 21 MOPs in order to study
the performance of the algorithms concerning their convergence speed, i.e., their
velocity to reach an accurate Pareto front using a stopping condition based on
the hypervolume of the true Pareto front. We have also evaluated the percentage
of successful executions or hit rate.

In the context of the problems analyzed, the experimentation methodology,
and the parameter settings used, we can state that, regarding convergence speed,
MOCell, OMOPSO, and AbYSS are the most competitive algorithms, followed
by NSGA-II and PAES. SPEA2 is the last algorithm in the ranking, so it can
be considered as the slowest of the compared techniques.

As to the hit rate, NSGA-II is the most salient algorithm in the DTLZ test suite,
followed by AbYSS and MOCell. In the WFG family, AbYSS and MOCell are the
first one in the ranking, followed by NSGA-II. The algorithms providing the worst
behavior are SPEA2 (fails in 14 problems) and PAES (fails in 8 problems).
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Taking into account problem properties, we have found out that OMOPSO
performs the best in disconnected problems. Concerning multi-modality, MOCell
provides good values, while OMOPSO has an “all or nothing” behavior: it is
either among the best when solving a problem, or it has a hit rate of zero (i.e.,
it is the worst).

We have presented a first study of the behavior of multi-objective metaheuris-
tics concerning their convergence speed as well as their hit rates. A line of future
work is to deepen in the study of the features of the problems, to try to deter-
mine more precisely which algorithms are more suited to solve a certain type of
MOP. Other interesting research line is to analyze the best parameter settings
of the algorithms in order to make them to converge faster while maintaining a
high degree of success when solving the problems.
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Abstract. This paper proposes a novel Team Algorithm (TA) approach based 
on Ant Colony Optimization (ACO) for multi-objective optimization prob-
lems. The proposed method has shown a significant cooperative effect of dif-
ferent algorithms combined in a team of algorithms, achieving robustness in 
the resolution of a set of various combinatorial problems. Experimentally, the 
proposed approach has verified a balance on different performance measures 
in problems as the Traveling Salesman Problem (TSP), the Quadratic Assign-
ment Problem (QAP) and the Vehicle Routing Problem with Time Windows 
(VRPTW). Robustness and balance are achieved due to a novel classification 
and selection of the algorithms to be used by the team, considering Pareto  
concept. 

Keywords: Team Algorithms (TA), Ant Colony Optimization (ACO) and 
Multi-objective Optimization Problem (MOP). 

1   Introduction 

A Multi-objective Optimization Problem (MOP) can be defined as the problem of 
finding a set of solutions that satisfies given constraints and optimizes several objec-
tive functions simultaneously. Usually, these objective functions are in conflict with 
each other [1]. MOP is widely treated with different optimization paradigms [1-4], as 
Multi-Objective Evolutionary Algorithm – MOEA, which have been successfully 
applied to solve highly complex problems. On the other hand, the "No Free Lunch - 
NFL" theorem [5] states that on average, all algorithms have the same performance. 
Considering the NFL theorem, the development of Team Algorithms (TA) [6] is a 
valid alternative for achieving high robustness on average. 

This paper proposes a novel TA approach based on Multi-Objective Ant Colony 
Optimization (MOACO) algorithms for solving combinatorial optimization problems 
in a multi-objective context. Basically, the new proposal tries to improve the state of 
the art in this area [6]. Experimental tests were carried out on different bi-objective 
instances of the Traveling Salesman Problem (TSP), the Quadratic Assignment Prob-
lem (QAP) and the Vehicle Routing Problem with Time Windows (VRPTW). To 
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measure an algorithm’s quality in a MOP context, various multi-objective perform-
ance figures (measures) were considered, such as distance, distribution, extension, 
error and quality of solutions [7, 8]. 

2   Multi-Objective Optimization 

A Multi-Objective Optimization Problems (MOP) generally consists of a set of n de-
cision variables, a set of k objective functions and a set of m restrictions [1]. Objective 
functions and restrictions are function of the decision variables. Therefore, MOP gen-
erally optimizes: 

 z =  f(x) = (f
1
(x), f

2
(x),…, f

k
(x)) (1) 

subject to                          g(x) = (g
1
(x), g

2
(x),…, g

m
(x)) ≤ 0 (2) 

where x = (x1,x2,…,xn)∈ X is a decision vector, X denotes the decision space of f(x), z 
= (z1,z2,…,zk)∈ Z is an objective vector while Z denotes the objective space of f(x). 
The feasible solution set Ω ⊂ X is defined as a set of decision vectors x that satisfies 
g(x). A vector u ∈ Ω is said to dominate v ∈ Ω (denoted by u ≻ v) if u is at least as 
good as v in every objective function and strictly better in at least one objective func-
tion. For a given MOP, the Pareto optimal set P* is defined as the set of non-
dominated solutions of Ω. The objective space of P*, known as Pareto Front, is de-
noted as F*, i.e. F*= f(P*). 

Performance figures are used in this work with two aims: (i) to compare different 
TA approaches in a multi-objective context, and (ii) to measure performance of slave 
processes for the selection of algorithms to be used in the next iteration of a TA. The 
performance figures used in this work are presented in Table 1.  

Table 1. Performance measures 

Name Symbol Ref. 
Generational Distance M

1
 [8] 

Distribution M
2
 [8] 

Extension M
3
 [8] 

Error M
4
 [9] 

ONVGR† M
5
 [9] 

     †Overall Non-dominated Vector Generation Ratio 

3   Multi-Objective Ant Colony Optimization 

Multi-Objective Ant Colony Optimization (MOACO) is a search technique inspired 
by the natural behavior of ant colonies [2, 3]. Different studies demonstrated empiri-
cally the efficiency of MOACOs in solving a MOP [2, 3, 6, and 14-20]. In this paper 
we considered the use of 9 MOACO algorithms (see Table 2) representing the state of 
the art in this area. 
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Table 2. MOACO algorithms 

Symbol Algorithms Symbol Algorithms 
MAS Multi-objective Ant System [6] COMP COMPETants [16] 

BIANT Bi-criterion Ant [14] MOACS Multi-Objective Ant Colony System [17] 
BIMC Bi-criterion Multi Colony [14] M3AS Multi-objective Max-Min Ant System [18] 
PACO Pareto-Ant Colony Optimization [15] MOAQ Multiple Objective Ant Q [19] 
MOA Multi-objective Omicron ACO [20]   

4   Team Algorithms 

Team Algorithm (TA) is a technique used to take advantage of parallel computational 
resources in an asynchronous environment, such as a computer network, combining 
different algorithms to solve the same problem [6, 9, 10]. For example, each algo-
rithm of a team can be executed in a different processor of the network. A process of 
a TA, usually known as Master Process, can dynamically define the mapping of algo-
rithms to computers. Figure 1 presents this centralized master-slave model [6]. 

1
Slave Process 

2
Slave Process

|P| 
Slave Process

Master Process 

Global 
Solution

Local 
Solution

 

Fig. 1. Interaction between the master and each of |P| slaves. The slave processes send their 
best local solutions to the master process. The master guides the search process by sending 
global solutions to the slaves. The master also defines what algorithm will be executed in each 
slave, what may be dynamically modified. 

4.1   Related Works 

Evolutionary Computation was associated with the concept of parallelism since its 
inception [12, 13]. However, distributed models have only recently been incorporated 
for resolving MOPs. Fernandez et al. proposed a Team Algorithm of MOEAs (TA-
MOEA) considering different MOEA algorithms running in each processor of a dis-
tributed system [10]. Moreover, several parallel approaches of ACO were proposed in 
[13]. Recently, Paciello et al. proposed a Team Algorithm based on MOACO algo-
rithms (TA-MOACO) [6], where the implementation of the TA-MOACO is similar to 
TA-MOEA [10].  

4.2   General Method 

In general, each slave process looks for the best Pareto solutions of some particular 
region of the search space. These solutions are transmitted to the master process, 
which generates a set of Pareto solutions of the space explored by the TA. 
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Depending on the approach [6, 10], each algorithm is selected according to some 
criterion in order to be assigned to a slave process in the next iteration. Normally, the 
selection criteria are taken proportional to the quality of the contributed solutions. 
Typically, the quality of the contributed solutions is defined with one of the perform-
ance figures presented in Table 1. This interaction between processes (master and 
slaves) is carried out until a stop condition is satisfied. To facilitate the understanding 
of the implemented algorithms, the following nomenclature is presented: 

P: Set of available computers on the network, i.e. P = {p
i
| i=1, 2,…, |P|}. 

H: Set of algorithms, where H = {h
j
| j=1, 2,…, |H|}. 

W: Set of slave processes mapping, where W = {wk∈P×H | wk = (pi, hj), pi∈P, hj∈H, 
k=1,2,…,|W|}, note that P×H is a Cartesian product and W ⊂ P×H. 

P
k
: Pareto Set calculated by a slave process w

k
∈W. 

Γ: Set formed by the Pareto sets P
k
, i.e. Γ = {P

k
| w

k
∈W}. 

 ϒ: Pareto fronts associated to Γ, whereϒ  = {F
k
| F

k
 = f(P

k
)}. Note that ϒ = f(Γ). 

N
k
: Pareto performance figures associated with a slave process wk∈W, i.e. Nk={Mr| 

r=1, 2,…, |Nk|}. Note that in this work |Nk|≤ 5 (see Table 1). 
Ψ: Performance associated to W, where Ψ= {N

k
 | k=1, 2,…, |W|}. 

P
known

: Known Pareto set that approximates P*.  
F

known
: Known Pareto front that approximates F*, where F

known 
= f(P

known
). 

For this work, each process w is executed on a different processor pi, i.e., at all times 
|W| = |P| (a slave processor only runs one algorithm at a time).  

Considering the previous nomenclature, Algorithm 1 presents a generic procedure 
for a master process while Algorithm 2 corresponds to the procedure of the k-th slave 
process. 

 

Algorithm 1: Generic Master Process 
Input: P, H  
Output: Pknown and Fknown 
Initialize configuration parameters and Pknown = ∅ 
W = Initial Mapping (P, H) 
Initial Launch Slave Processes (W) 
while (stop condition is no achieved) do   
    Γ = Receive solutions from Slaves Processes (P) 
    Update Pknown  and Fknown 
    Ψ = Calculated Performance of Slaves (ϒ, Fknown) 
    W = Mapping (P, H,Ψ ) 
    Launch Slave Processes (W, Pknown, Control-Parameters) 
end while 
Send stop-orders to slaves 
return Pknown and Fknown 

 
Algorithm 2: Generic Slave Process (wk) 
Input: hk, Pknown, Seed 
Receive initial configuration from Master Process (hk)  
while (stop-order is not received) do      
     P’ = Select Solutions (Pknown, Seed)   
     Pk = Run Algorithm (hk, P

’) 
     Send best solutions to Master Process (Pk) 
     Receive information from Master Process (hk, Pknown, Control-Parameters) 
end while 
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4.3    Simple-TA of MOACOs 

The method proposed in [6, 10] considered a classification of slaves processes using a 
single figure of merit, i.e. |Mk|=1. In this work we call that TA-MOACO proposal 
simple-TA (s-TA). Basically, the classification of slave processes in s-TA consists of 
an ordering of slave processes from best to worst according to their performances 
obtained in the last iteration. Then, the algorithm used by the best slave process re-
places the algorithm of the worst slave process. Thus, as the evolutionary cycle pro-
gresses, a few algorithms tend to be associated with all the processes of the team. 
Note that this approach is a case of sudden death where an algorithm with poor per-
formance at the beginning of the execution never again is selected. 

5   Proposed Methods 

TAs recently proposed in the literature [6, 10] do not simultaneously considers differ-
ent factors affecting convergence, distribution and extension of the quality of the  
solutions associated with a Pareto Optimal set. The use of a single figure of merit is a 
partial assessment of the actual performance of slave processes. Therefore, this work  
considers several figures of merit simultaneously, with the hope that it would enhance 
the search capabilities of a TA balancing different desirable characteristic, i.e. good 
values of several performance measures. Under these conditions, the master process 
may discern the algorithms used to really improve performance figures of those that 
need to be improved. Moreover, the master process could decide what portions of 
Pknown would be sent to each slave process in order to promote the exploration and ex-
ploitation of various portions of the search space (see Select Solutions in Algorithm 2). 

Considering the above-mentioned idea, this paper proposes for the first time the 
simultaneous use of several performance figures (in a multi-objective context) associ-
ated with the algorithms of a TA. Thus, a classification of slave processes (R) in the 
Pareto sense may be calculated. This classification indicates which slave processes 
obtained better performance and therefore should have a greater chance of being used 
at a next iteration. In short, the R classification is based on successive Pareto sets of 
slaves processes w∈W considering performance figures, i.e. R = {Rl | l=1, 2,…, |R|} 

where R1 ≻ R2 ≻…≻ R|R|. Classification by Pareto fronts is performed using an algo-
rithm known as fast non-dominated sorting proposed in [21]. 

An important issue to be highlighted is that the classification of slave processes of 
s-TA is a particular case of the current proposal using a single performance metric. 
Basically, two new approaches are proposed below: elitist-TA (e-TA) and probabilis-
tic-TA (p-TA). Both approaches use the same concept of Pareto classification of slave 
processes, but they differ on the selection mechanism of the algorithms to be assigned 
to the slave processes. 

5.1   Elitist TA 

The elitist-TA (e-TA) is a natural extension of s-TA in which processors of similar 
characteristics are considered. In this approach, the master process selects randomly a 
slave process wi belonging to the best front R1 and another slave process w’ corre-
sponding to the worse front Rn. Next, the algorithm associated with wi replaces the 
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algorithm of w’. Thus, the algorithms with better performance are gradually replacing 
the algorithms with the worst performances. A single algorithm is replaced at each 
iteration. Algorithm 3 illustrates the sub-routine Mapping of the master process given 
in Algorithm 1. 

 
Algorithm 3:  Mapping for e-TA 
Input: P, H, Ψ 
Output: W 
R = Pareto Classification of results from Slaves (Ψ ) 
if |R| > 1 then 
    Randomly select a slave process w’ ∈ R1 
    Randomly select a slave process wi∈ Rn 
    Replace algorithm hw’ with hwi 
end if 
return W; 

5.2   Probabilistic TA 

Clearly, the e-TA approach presents a high elitist pressure on the method to select 
algorithms for a new iteration. Furthermore, an algorithm replaced loses any chance 
of being selected in a future iteration. This suggests that e-TA can have stagnation 
with some algorithm whose initial performance was good. However, this algorithm 
might generally be bad in the long run. Clearly, this could provoke a bad performance 
of the TA with some problems. In order to prevent the loss of diversity of algorithms 
in slave processes, the following approach is proposed. Algorithm selection is based 
on a probability distribution based on the classification of slaves processes R. This 
approach is called probabilistic-TA (p-TA) and the probability of selecting a slave 
process can be calculated according to equation (3). 

p(R
l
) = 

)2()1(

)2(2

+⋅+

+−⋅

RR

lR
 con l=1, 2, …, |R|+1 (3) 

All slave processes belonging to a given classification Rl (l = 1, 2,…, |R|) receive 
the same selection probability. In this approach, algorithms unallocated to any slave 
process are classified as R|R|+1. This will ensure that any algorithm has a probability of 
selection greater than zero in any iteration, regardless of their performance in past 
iterations. Considering equation (3), note that: p(R1) > p(R2) > … > p(R|R|+1) and  

.1)(
1||

1 =∑ +
=
R

l l
Rp

 

The outline of p-TA is presented in Algorithm 4. 

 
Algorithm 4: Mapping for p-TA   
Input: P, H,Ψ 
Output: W 
R = Pareto Classification of results from Slaves (Ψ) 
Calculates p(Rl) using equation (3) 
for (i = 1 to |W|) do     
    w’= Select a Slave Process of R according p(Rl) 
    Replace algorithm hwi with hw' 
end for     
return W; 
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6   Experimental Analysis 

Experiments carry out show the behavior of the proposed approaches e-TA and p-TA 
when applied to different combinational problems. The following set of bi-objective 
problems have been selected for this paper: kroab100 and kroac100, instances of 
TSP, qapUni.75.0.1 and qapUni.75.p75.1, instances of QAP, and c101 and rc101, 
instances of VRPTW [6]. The set of MOACO algorithms considered were H = {BI-
ANT, BIMC, COMP, MOACS, M3AS, MOAQ, MOA, PACO, MAS}, mentioned in 
Table 2 of Section 4. For comparison reasons, the parameters used in the MOACO 
algorithms, presented in Table 3, were chosen very similar to those used in [6]. The 
TAs were implemented in C + + (GNU GCC Compiler) and PVM library 3.4.5 [11], 
on a Linux operating system, Fedora 4 distribution. The experiments were performed 
on a network of 10 homogeneous workstations (9 slave computers and a master com-
puter), 2 GHz processor and 512 MB RAM, i.e., P = {p1, p2,…, p9 | pi ≡ pj ∀i, j}. 

Table 3. Configuration parameters of MOACOs 

Parameter Value 
Number of ants 10 
Relative influence between pheromones and visibility 0.5 
Learning factor  (MOAQ) 0.8 
Optimality policy (MOAQ) 0.3 
Evaporation rate 0.1 
Initial level of pheromone 1 
Omicron factor (MOA) 10 
Re-initiation factor (MAS) 500 
Exploration vs. Exploitation Probability (MOACS) 0.5 

For the Pareto classification of slave processes (R), this work only considers two 
performance figures: M3 and M5, i.e. |Nk|=2. Since s-TA considers only a single metric 
(|Nk|=1), it uses M5 according to the original proposal [6]. In order to experimentally 
verify performance of the proposed approaches, this work also implemented parallel 
versions of  MOACS (pMOACS) and M3AS (pM3AS). These algorithms were se-
lected considering their excellent experimental results reported in [3, 6, 17 and 18]. 

6.1   Experimental Design 

Let’s A = {s-TA, e-TA, p-TA, pMOACS, pM3AS} be a set of approaches to be com-
pared in the experimental tests. The following steps outline the experimental tests 
applied to each instance:  

1. 10 executions were carried out for each approach.  
2. A known Pareto front Fknown was calculated considering all Pareto fronts.  
3. Each calculated Pareto front was compared to Fknown obtaining several perform-

ance measures presented in Table 1.  

To report results, an execution time of 1000 seconds was experimentally adopted as 
stop criterion, even though other criteria were also tested. 
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The above indicates that in overall, the experimental test consists in 300 run (5 al-
gorithms • 3 problem • 2 instances • 10 times), i.e. more than 83 hours of run time 
using a network of 10 computers. 

6.2   General Results 

In order to have a clear appreciation of the performance of the different approaches, 
this sub-section provides the overall averages for each test instance as well as a rank-
ing of all performance figures considered in this work. 

Table 4 shows the normalized general averages considering all 10 runs (with 1 as 
the best value and 0 as the worst case), as well as standard deviation (σ) associated 
with each instance and each performance figure obtained after the completion of the 
proposed test. It can be noted that for kroab100 the best partial average was obtained 
by the p-TA with 0.96 while s-TA had a poor performance with only 0.41, lower than 
the one obtained by the pM3AS with a score of 0.47. The proposed e-TA also had a 
remarkable performance with an average of 0.86, well above to the rest of the ap-
proaches. 

Table 4. Results for each bi-objective instance, using a master and 9 slave computers 

Instance Algorithms M1 M2 M3 M4 M5 σ Average 
 p-TA 0.97 0.95 0.87 1 1 0.05 0.96 

kroab e-TA 1 1 0.87 0.69 0.76 0.14 0.86 
100 s-TA 0.1 0.79 0.99 0.02 0.13 0.45 0.41 

 pMOACS 0 0.93 1 0 0.14 0.51 0.41 
 pM3AS 0.43 0.83 0.90 0.04 0.16 0.39 0.47 

 p-TA 0.54 1 0.91 0.49 0.50 0.25 0.69 
kroac e-TA 1 1 0.89 1 1 0.05 0.98 
100 s-TA 0 0.82 0.96 0 0.03 0.48 0.36 

 pMOACS 0.37 0.91 0.95 0.16 0.17 0.30 0.51 
 pM3AS 0.07 0.83 1 0.10 0.11 0.45 0.42 

 p-TA 0.70 0.50 0.74 0.86 0.88 0.15 0.74 
qapUni e-TA 1 0.53 1 1 1 0.21 0.91 
75.0. s-TA 0.20 0.61 0.79 0.08 0.25 0.30 0.39 

 pMOACS 0.59 0.52 0.88 0.47 0.50 0.17 0.59 
 pM3AS 0 1 0.91 0 0.25 0.49 0.43 

 p-TA 1 0 0 1 1 0.55 0.60 
qapUni e-TA 0 1 1 0 0 0.55 0.40 

75.p75.1 s-TA 0.27 0.33 0.8 0 0 0.33 0.28 
 pMOACS 0.09 0.67 0.37 0 0 0.29 0.23 

 pM3AS 0 0 0 0 0 0 0 
 p-TA 1 - - 1 1 0.55 0.60 

c101 e-TA 0 - - 0 0 0 0 
 s-TA 1 - - 1 1 0.55 0.60 
 pMOACS 1 - - 1 1 0.55 0.60 

 pM3AS 0.64 - - 0 0 0.29 0.13 
 p-TA 1 0 0 1 1 0.55 0.60 

rc101 e-TA 0.26 0 0 0 0 0.12 0.05 
 s-TA 0.69 0 0 0 0 0.31 0.14 
 pMOACS 0 1 1 0 0 0.55 0.40 

 pM3AS 0.90 0 0 0 0 0.40 0.18 

With regard to kroac100, e-TA obtained a remarkable average of 0.98. Here, s-TA 
was again the one with the worst performance, with just 0.36. Note that pMOACS 
obtained a good performance reaching an average of 0.51 whereas p-TA obtained the 
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second best average performance of 0.69. Considering the two instances of the QAP, 
the proposed TA approaches are clearly superior.  

The VRPTW instances used for this work are characterized by having a Pareto op-
timal front with a single solution, i.e. |Fknown| = 1. Therefore, the distribution and ex-
tension figures are meaningless. For the instance, p-TA, s-TA and pMOACS obtained 
the same performance average with c101. This is because the previous approaches 
managed to find the only solution belonging to Fknowm in all 10 executions. It can be 
observed that in rc101, p-TA has achieved a better performance having obtained an 
average of 0.60, whereas e-TA obtained the worse behavior with an average of 0.14. 
On the other hand, pMOACS obtained the second best performance with an average  
of 0.40. 

Table 5 presents the obtained ranking considering the average reached considering 
all the execution in all instances of the test problem. A clear robustness of p-TA in 
comparison with all other approaches can be observed. This is consistent with a bal-
ance reached on the various performance figures. Note that for the Distance (M1), the 
Error (M4) and the ONVGR (M5), p-TA has obtained significant performance values. 

Regarding the Extension (M3) and Distribution (M2), the best values correspond to 
pMOACS. It should be noted that e-TA achieved the second best average with 0.53 but 
with a standard deviation of only 0.08. On the other hand, pMOACS achieved an av-
erage value higher than that obtained by the s-TA, which confirms the goodness of 
MOACS [3]. 

Table 5. Global Average 

Algorithms M1 M2 M3 M4 M5 σ Global Average 
p-TA 0.87 0.41 0.42 0.89 0.90 0.26 0.70 
e-TA 0.54 0.59 0.63 0.45 0.46 0.08 0.53 
s-TA 0.38 0.43 0.59 0.18 0.24 0.16 0.36 

pMOACS 0.34 0.67 0.70 0.27 0.30 0.21 0.46 
pM3AS 0.34 0.44 0.47 0.02 0.09 0.21 0.27 

7   Conclusions 

This paper proposes two new TA approaches: the elitist-TA (e-TA) and the probabil-
istic-TA (p-TA). Basically, both approaches classify the algorithms of a TA according 
to performance figures of the Pareto solutions they calculate. Experimental results 
indicate that the new proposals are promising approaches since they achieved greater 
robustness considering different types of combinational problems. Specifically, p-TA 
has succeeded in demonstrating a better balance between the various figures of merit, 
which define the quality of solutions generated by a multi-objective algorithm. This 
robustness is justified due to the combination of available algorithms, being these 
algorithms classified and selected fairly from the viewpoint of a multi-objective 
Pareto context. 

As future work, it is intended to conduct more experimental tests on more test in-
stances as well as real engineering problems, looking to refine the proposed approach 
toward becoming "smarter" methods to combine different algorithms in a distributed 
system. 
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Abstract. Real-world optimization problems often require the consideration of
multiple contradicting objectives. These multiobjective problems are even more
challenging when facing a limited budget of evaluations due to expensive ex-
periments or simulations. In these cases, a specific class of multiobjective opti-
mization algorithms (MOOA) has to be applied. This paper provides a review
of contemporary multiobjective approaches based on the singleobjective meta-
model-assisted ’Efficient Global Optimization’ (EGO) procedure and describes
their main concepts. Additionally, a new EGO-based MOOA is introduced, which
utilizes the S-metric or hypervolume contribution to decide which solution is
evaluated next. A benchmark on recently proposed test functions is performed
allowing a budget of 130 evaluations. The results point out that the maximization
of the hypervolume contribution within a real multiobjective optimization is su-
perior to straightforward adaptations of EGO making our new approach capable
of approximating the Pareto front of common problems within the allowed bud-
get of evaluations.

Keywords: Efficient Global Optimization, S-metric, Design and Analysis of
Computer Experiments, Multiobjective Optimization, Real-World Problems.

1 Introduction

Modern industrial processes become more and more complex. They consist of multiple
stages, each configurable by several parameters. Thus, the determination of adequate
parameter settings is a recurring task. It is especially challenging in case of expensive
experiments or numerical computer simulations, where every realization involves high
personnel or material expenses or requires immense calculation time. In these cases it
is essential to obtain the desired outcome within a small number of evaluations.

This task becomes even more challenging in case of multiple, potentially contradict-
ing objectives, such as product quality and cost. For these multiobjective optimization
problems (MOP), the target is to find Pareto-optimal solutions, i.e., solutions where an
objective cannot be improved without deteriorating at least one other. The challenges
involved in solving a MOP are to converge towards Pareto-optimal solutions and gen-
erate a well distributed solution set, which covers the entire Pareto front [1].

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 784–794, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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In order to apply MOOA to most real-world problems, these challenges have to be
mastered efficiently within a minimum number of objective evaluations [2,3]. Thus, in
this paper we present a review of recent MOOA for these problems and introduce a new
enhanced approach called ’S-Metric-Selection-based Efficient Global Optimization’
(SMS-EGO). In particular, two state-of-the-art approaches – Knowles’ ParEGO [2]
and a MOOA presented by Jeong and Obayashi [4] – are reviewed and compared to
SMS-EGO. All these methods compensate the limited amount of information by us-
ing approximate meta-models of the objective functions, on which a comprehensive
optimization is performed to determine the next solution for evaluation on the actual
problem. Since the actual objective evaluations are expensive, only a few iterations of
the MOOA can be performed. Thus, the runtime of the optimization approach itself is
not a critical issue. The restriction to a limited amount of evaluations is motivation as
well as prerequisite.

In the next section, the state of the art in meta-model-assisted multiobjective opti-
mization is presented. The EGO approach, which represents one of the most famous
meta-model-based singleobjective optimization algorithms, is described in section 3.
This approach allows solving common singleobjective problems with up to six dimen-
sions on a budget of about 100 evaluations [5]. Subsequently, recent concepts to transfer
EGO to multiple objectives are presented, and the new SMS-EGO is introduced. The
implementation of the evaluated algorithms, the benchmark test functions, which are
used to analyze whether the performance of EGO can be transferred to MOP, as well as
the experimental results are described in section 4. Finally, the findings are summarized
in section 5.

2 State-of-the-Art

A common approach to solve optimization tasks in case of expensive evaluations is to
introduce an intermediate modeling step [6]. In this study, we focus on ’Design and
Analysis of Computer Experiments’ (DACE) [7]. DACE is a famous meta-modeling
approach, which utilizes the assumption of close solutions being more likely to have
similar objective values. This approach is widely accepted as a meta-model for deter-
ministic non-linear functions. Furthermore, a recent study [3] supports its application
also to problems with noisy evaluations. In the following we denote these kinds of
meta-models as DACE models or DACE approximation.

Most papers on DACE-model-assisted MOOA are purely application oriented [8,9].
These algorithms simply apply the approximation as a surrogate function to reduce
expensive evaluations. No comparable benchmark results are available. Furthermore,
some MOOA additionally use the uncertainty of predictions to balance between lo-
cal and global search. Emmerich et al. [10,11,12] use local DACE models to determine
lower and upper confidence bounds for a prescreening of solutions within classical mul-
tiobjective evolutionary algorithms (MOEA, EMOA), such as NSGA-II, ε-MOEA, and
SMS-EMOA. They report successful results on test functions and real-world problems.
However, the confidence bounds are only used to evaluate solutions which are gener-
ated within the evolution. No criterion for a specific optimization has been developed.
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Recent approaches [2,4,13] transfer concepts of the popular EGO approach to multiple
objectives and are described and reviewed in the next sections.

3 Efficient Global Optimization

The EGO approach by Jones et al. [5] is the most famous DACE-model-based optimiza-
tion algorithm. The prediction of DACE models is based on the n already evaluated so-
lutions x(1), . . . ,x(n) by modeling the corresponding error ε(x) to a constant regression
model y(x) = μ + ε(x). In this μ denotes the mean of the observations and ε(x) is as-
sumed to have a mean of zero and covariance Cov(ε(x), ε(x(j))) = σ2R between ε(x)
and each observed error ε(x(j)) according to the measured process variance σ2 and the

correlation model R(x,x(j), θ,p) =
∏d

i=1 exp(−θi|xi − x
(j)
i |pi), j = 1, . . . , n, with

d being the dimension in decision space. The modeling parameter pi ∈ ]0, 2] controls
the smoothness of the approximated function, and the parameter θi > 0 specifies the
activity in dimension i. Both are determined via maximum likelihood estimation.

A key feature of DACE models is the approximation of the corresponding uncertainty
of a prediction. Using this information, the ’Expected Improvement’ (EI) measures the
expected value of improvement compared to the currently found minimum fmin. It can
be calculated based on the predicted function value ŷ and standard deviation ŝ

E[I(x)] = (fmin − ŷ)Φ(u) + ŝφ(u), u =
fmin − ŷ

ŝ
, (1)

where Φ and φ denote the normal cumulative distribution function and the normal prob-
ability distribution function, respectively. In EGO the maximization of the EI provides
the ’infill sampling criterion’ [14] to determine the next point for evaluation. Due to the
unknown correlation parameters and the resultant undervaluation of ŝ, this approach
may lead to an undesired local search. However, approaches have been developed to
overcome this drawback [14,15].

3.1 Adaptations of EGO for Multiobjective Problems

In case of m concurrent objectives, a separate model can be built for each objective di-
mension. Thereby, vectors of predicted values and estimated uncertainties are available.
The calculation of the EI with respect to multiple objectives has been formerly derived
by Keane [13]. He avoids the problem of selecting an appropriate reference vector fmin

(cf. eq. 1) by computing the probability of augmenting the current Pareto front or dom-
inating at least one of its solutions. Afterwards, the centroid of the distribution of the
corresponding probability density can be used as expected solution to calculate an in-
dicator of improvement to the current Pareto front. For m > 2, both tasks incorporate a
numerically demanding partitioning of the objective space, for which no free implemen-
tations are available. Thus, this approach could not be benchmarked within our study.
Additionally, two straightforward solutions to this problem have been published, which
are described in the following subsections.

Multiobjective EI Optimization. Jeong and Obayashi [4] present an approach which
directly uses the EI in each objective separately as fitness vector in a multiobjective
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optimization. For each objective they generate a DACE model and determine the best
solution found at that time. Subsequently, the EI of a solution can be calculated for an
optimization based on MOEA. Since MOEA usually obtain large sets of solutions, a
small, yet representative sample of the population has to be obtained. To accomplish
this, Jeong and Obayashi choose the m solutions having the highest EI values on each
separate DACE model. Additionally, they keep the solution located closest to the center
of the area, which is spanned by the final MOEA population in objective space.

Multiple Singleobjective EI Sampling. ParEGO [2] developed by Knowles reverses
the processing steps of model building and objective integration. It obviates the neces-
sity of considering a multiobjective EI by first reducing the MOP to a singleobjective
problem via an augmented Tchebycheff aggregation. In order to find solutions cover-
ing the whole Pareto front, the corresponding weight vector is randomly changed per
iteration. The possible weight vectors are a priori calculated and evenly distributed. Af-
ter combining the objectives, the scheme of EGO can be applied accordingly. Knowles
seems to be the only author, who provides comparative results on established test prob-
lems with respect to a limited amount of evaluations [2,16]. He successfully compared
ParEGO with random search, NSGA-II [17] as well as a binary-search-tree-based low-
budget variant of MSOPS [16]. Nevertheless, a comparison to algorithms, which also
use DACE meta-models, has not been performed.

S-Metric Selection-based Efficient Global Optimization (SMS-EGO). The funda-
mental target of any MOEA consists in the improvement of the internal Pareto front
approximation. Emmerich et al. [12] provide techniques to use common MOEA selec-
tion principles based on vectors of predicted values ŷ and estimated uncertainties ŝ.
They report best results using the lower confidence bound (LCB) ŷpot = ŷ − αŝ for a
given confidence level pα = (1− 2Φ(α))m, which follows the non-error principle [10]
to avoid the non-consideration of potentially promising solutions.

In our SMS-EGO approach, the idea of Emmerich et al. [11] to calculate the S-
metric [18] or hypervolume contribution of ŷpot to the current Pareto front approxima-
tion is extended to an independent infill criterion. The S-metric contribution is chosen
since it requires no normalization of the objective space [19] and holds some desired
theoretical properties [20]. Wagner et al. [21] showed that a selection routine based on
this contribution is superior to popular MOEA and also scales well with the number
of objectives. As aforementioned, the problem of its computational complexity can be
disregarded for the class of problems focused on.

Due to the use of the LCB, potential solutions can be predicted slightly beyond the
real objective space. In order to tackle this problem as well as to support a good distri-
bution, additive ε-dominance [20] is applied. The assignment of the vector ε is managed
by introducing an adaptive scheme, which aims on a maximum number of individuals
in the Pareto front approximation ε = ΔΛ

|Λ| + c · nleft, ΔΛ = max(Λ) − min(Λ),
where Λ refers to the current Pareto front approximation, nleft denotes the number of
remaining evaluations, and c = 1− 1/(2m) is a correction factor, which constitutes the
idealized probability for a remaining solution of being non-dominated [21].

In the calculation of the internal fitness value, three cases are considered. In the first
case of a non-ε-dominated solution, its contribution to the S-metric is calculated by
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Fig. 1. (a) Graphical explanation of the evaluation of solutions within SMS-EGO. (b) An exem-
plary run of the model-based internal optimization on the ZDT1 test function. The grayscales
express the sequence of evaluations performed by the CMA-ES. Consequently, a potential solu-
tion filling the gap in the Pareto front around (0.8, 0.2)T has been found.

f = S(Λ) − S(ŷpot ∩Λ). The reference point needed for this calculation is defined
by max(Λ) + 1 according to Emmerich et al. [22]. Second, in the case of a dominated
solution, a penalty p is added for each dominating point. To keep the penalty close
to the S-metric, the differences in each of the m objective dimensions are multiplied.
Additionally, a slight transformation is performed to assure that a positive penalty is
assigned to weakly dominated solutions

p =
∑

y(i)∈Λ

{
−1 +

∏m
j=1

(
1 + (ŷpot,j − y

(i)
j )
)

y(i) 4 ŷpot

0 otherwise
. (2)

In the third case of ε-dominated solutions, which are not dominated in the strict sense,
the penalty is limited to the objectives that are inferior with respect to the considered
Pareto front solution.

All three cases are visualized in Fig. 1 for m = 2. The preferred values of this fitness
function are negative since new, non-dominated solutions increase the hypervolume of
the current Pareto front approximation. In areas of dominated solutions, the search is
guided towards non-dominated solutions by means of the penalty term. This measure
can be minimized by any global singleobjective optimizer. Corresponding to the EGO
procedure, only the solution achieving the minimum of this criterion is selected to be
evaluated on the actual problem. Afterwards, the models are updated based on the new
observation in order to utilize as much information as possible.

4 Experiments

In this section a comprehensive analysis of the results, which can be achieved on a
budget of 130 function evaluations, is provided. To accomplish this, the approaches of
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Jeong and Obayashi [4], Knowles’ ParEGO [2], and the newly proposed SMS-EGO are
benchmarked on established test functions.

Pre-experimental planning: Based on recent suggestions for performance assess-
ment [23], five test functions are selected. More precisely, R ZDT1 (biobjective, uni-
modal), R ZDT4 (biobjective, multimodal), and two R DTLZ2 variants with three and
five objectives (scalability) [24] are chosen. The decision space dimension d is de-
creased to six in order to facilitate the modeling and to accord with typical numbers
of process parameters in real-world processes [3]. Furthermore, the domain of R ZDT4
has been reduced to three variables and x2, x3 ∈ [−1, 1] to obtain a manageable number
of only 20 local optima. This relaxed version is denoted as R ZDT4relax. Additionally,
the OKA2 [25] test function is considered since it provides a challenging Pareto set in
terms of shape and distribution.

Setup: All algorithms are implemented in MATLAB R©. As suggested by Knowles,
they start with an initial sampling of ninit = 11d− 1 solutions based on a Latin hyper-
cube design (LHD) within the given box constraints [2]. This kind of random design is
appropriate for real-world applications since in most cases the interesting parameter re-
gion is identified in a screening and then sampled by some kind of space-filling design.
Furthermore, LHD have been proven to be suited for the generation of DACE models
[5,7]. The design is evaluated, and the parameters of the DACE models are calculated by
maximum likelihood estimation using Hansen’s CMA-ES [26] implementation1. When-
ever the CMA-ES is applied, the default values are chosen for all parameters, and three
stopping critera, i.e., a maximum number of 4000d evaluations and the convergence of
the population in the objective or decision space, are set up. For each test function, an
amount of 130 evaluations on the actual test function is allowed. To speed up the Pareto
front calculation, external C-code programed by Yi Cao is applied2.

Jeong’s approach is implemented using code of NSGA-II3 for the internal multiob-
jective EI optimization. According to Jeong’s suggestions, the population size and the
number of generations are set to 512 and 100, respectively [4]. The center solution is
determined as minimizer of the uniformly weighted augmented Tchebycheff aggrega-
tion of the normalized Pareto front solutions. Also in ParEGO, the augmented Tcheby-
cheff aggregation is implemented according to Knowles using ρ = 0.05 and normalized
objective values [2]. Within SMS-EGO the S-metric calculation is performed by a C
implementation of Fonseca et al. [27]. The factor of the estimated uncertainty is set to
α = Φ−1(0.5+ 1

2m ). The infill criteria of ParEGO and SMS-EGO are maximized using
the CMA-ES.

The PISA test environment is applied for the evaluation of the results. As perfor-
mance measures, the unary hypervolume indicator [18], Hansen and Jaszkiewicz’s R 2
indicator [28], and the unary epsilon indicator [20] are used. These indicators are sug-
gested for multiobjective performance assessment and evaluate both, convergence and
distribution [20]. Additionally, the mean distance of the approximated Pareto front to
the real one is calculated analytically on R DTLZ2 to allow the separated consideration
of the convergence. For each algorithm and each test function, five runs are performed.

1 http://www.bionik.tu-berlin.de/user/niko/cmaes inmatlab.html
2 http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=17251
3 http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=10429
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Table 1. The table shows the median and worst-case results of the hypervolume, R 2, and ε-
indicator on OKA2, R ZDT1, R ZDT4relax and R DTLZ2 (with three and five objectives). The
smallest and highest value in each group are printed in bold and italics, respectively. The letters in
brackets indicate whether the difference of the median value is statistically significant compared
to Jeong (J), ParEGO (P), and SMS-EGO (S) based on a one-sided Kruskal Wallis test (p < 0.01).

test function algorithm
m / d indicator Jeong ParEGO SMS-EGO

median max median max median max
OKA2 S-metric 3.41e-1 (-,-) 4.01e-1 2.47e-1 (-,-) 3.35e-1 1.40e-1 (-,-) 1.42e-1
2 / 3 R 2 8.94e-2 (-,S) 1.37e-1 2.42e-2 (J,S) 7.00e-2 1.66e-1 (-,-) 1.67e-1

ε 3.48e-1 (-,S) 4.07e-1 2.87e-1 (J,S) 3.59e-1 4.96e-1 (-,-) 4.98e-1
R ZDT1 S-metric 2.60e-1 (-,-) 2.75e-1 1.21e-1 (J,-) 1.55e-1 2.38e-2 (J,P) 7.03e-2

2 / 6 R 2 3.48e-3 (-,-) 5.82e-3 9.22e-3 (-,-) 1.50e-2 7.30e-3 (-,-) 2.74e-2
ε 3.23e-1 (-,-) 3.60e-1 1.49e-1 (J,-) 1.59e-1 4.00e-2 (J,P) 7.34e-2

R ZDT4relax S-metric 2.27e-1 (-,-) 3.04e-1 3.19e-1 (-,-) 3.68e-1 7.58e-2 (J,P) 1.16e-1
2 / 3 R 2 2.22e-2 (-,-) 4.42e-2 4.87e-2 (-,-) 1.33e-1 2.25e-2 (-,-) 4.24e-2

ε 2.27e-1 (-,-) 3.45e-1 3.33e-1 (-,-) 3.80e-1 1.04e-1 (J,P) 1.41e-1
R DTLZ2 S-metric 9.31e-2 (-,-) 1.09e-1 6.79e-2 (J,-) 7.62e-2 1.90e-2 (J,P) 2.12e-2

3 / 6 R 2 5.15e-5 (-,-) 5.36e-5 6.11e-5 (-,-) 7.63e-5 1.10e-5 (J,P) 1.43e-5
ε 1.97e-1 (-,-) 2.03e-1 1.58e-1 (J,-) 1.67e-1 8.05e-2 (J,P) 9.35e-2

R DTLZ2 S-metric 2.60e-2 (-,-) 1.36e-1 5.31e-2 (-,-) 8.26e-2 1.22e-2 (J,P) 1.76e-2
5 / 6 R 2 2.31e-5 (-,-) 5.19e-4 8.16e-5 (-,-) 1.14e-4 5.68e-7 (-,-) 9.93e-7

ε 1.69e-1 (-,-) 3.05e-1 2.56e-1 (-,-) 3.36e-1 1.44e-1 (J,P) 1.66e-1

Experimentation/Visualization: The results of the experiments are summarized in
Table 1. The distribution of solutions within the median Pareto front approximation is
exemplarily visualized in Fig. 2. In Fig. 3, boxplots of the mean distance to the Pareto
front are shown for R DTLZ2 with three and five objectives.

Observations: SMS-EGO performs significantly better than ParEGO and Jeong with
respect to the ε- and hypervolume indicator on R ZDT1, R ZDT4relax, and
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Fig. 2. (a) The median attainment surfaces of all algorithms on ZDT1. (b) The distribution of
solutions in the objective space of DTLZ2 with three objectives. Exemplarily, the runs are chosen
which achieved the median result with respect to hypervolume indicator.
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R DTLZ2 with five objectives while being worse on OKA2 for the R 2 and ε measure.
When three objectives are considered, SMS-EGO outperforms all other algorithms for
all metrics. On this R DTLZ2 instance, on R ZDT1, and on OKA2, ParEGO also out-
performs Jeong regarding the ε- and hypervolume indicator.

Discussion: Whereas the concepts of the hypervolume and the ε-indicator are di-
rectly considered within SMS-EGO, the R 2 metric and ParEGO are both based on
augmented Tchebycheff aggregation. Thus, it is particularly surprising that SMS-EGO
significantly outperforms ParEGO with respect to this metric on the threeobjective
R DTLZ2 test function. Furthermore, the results on the test functions, which feature
more than two objectives, show that SMS-EGO copes best to increasing objective di-
mensions. This fact is visualized in the boxplots showing the distributions of the mean
distance to the Pareto front on R DTLZ2 with five objectives in Fig. 3 (b). The inferior
results on OKA2 can be explained by the difficulty of this test function. SMS-EGO ob-
tains one extremal solution with high accuracy (≈ 10−9)). Other solutions are neglected
since a comparable accuracy is necessary to provide further non-dominated solutions
due to the steep ridges around the optimal area. Jeong and ParEGO are forced towards
other solutions by their selection principles. Thus, they provide a better distribution,
which results in significantly better indicator values. Nevertheless, they fail to provide
close to optimal solutions. Consequently, OKA2-like problems with steep ridges cannot
be solved within a reduced budget of just 130 evaluations using the proposed model-
based approaches. The superior results of SMS-EGO on R ZDT4relax indicate that the
use of the LCB solution does not disregard global exploration compared to the EI used
in ParEGO and Jeong.

In order to further analyze the distribution and the convergence behavior of the algo-
rithms, Fig. 2 visualizes the median Pareto front approximations in the objective space
and Fig. 3 shows boxplots of the mean distance to the Pareto front on both variants of
R DTLZ2. Jeong and Obayashi’s approach covers only the boundaries of the Pareto
front with a competitive accuracy, which leads to the worst distance values of all algo-
rithms. This behavior may be caused by the dimension-based reference values for the
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Fig. 3. Box plots of the mean distance to the Pareto front over five runs on DTLZ2 with three (a)
and five objectives (b). The box extends from the lower quartile to the upper quartile, and a line
is drawn at the median value. The spread of the sample is indicated by the whiskers. The notches
represent a robust estimate of the uncertainty of the measured median for box to box comparison.
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computation of the EI. ParEGO performs slightly better, but explores the boundaries of
the Pareto front to a lesser extend. This problem of aggregation-based approaches us-
ing sets of weight vectors has already been observed by Wagner et al. [21]. SMS-EGO
is the only MOOA that is able to approximately attain the complete Pareto fronts of
R ZDT1 and R DTLZ2 with three and five objectives within the allowed budget of 130
evaluations, which is just slightly beyond the initial population size of most common
MOEA (cf. Fig. 2 (a) and Fig. 3).

5 Conclusions

The optimization of most real-world problems requires an efficient use of evaluations.
Thus, recent approaches, which transfer the singleobjective meta-model-assisted EGO
approach to MOP, are presented and a new enhanced algorithm based on the S-metric or
hypervolume contribution (SMS-EGO) is introduced. A comprehensive benchmark is
performed to analyze the results, which can be obtained on a budget of 130 evaluations.
The SMS-EGO introduced in this paper performs significantly better on all considered
R ZDT and R DTLZ2 instances. It is the only approach that is able to approximately at-
tain the Pareto front of these problems under the given conditions while achieving both
aims of multiobjective optimization, convergence and a good distribution of solutions.

The method of Keane [13] may show comparable results to SMS-EGO. However,
his proposed improvement metric heavily depends on the scaling of the objectives.
Since the use of the lower confidence bound for computing the hypervolume contri-
bution in SMS-EGO also leads to some undesired side effects, such as the occurrence
of dominated solutions, the implementation of his approach for formally determining
the expected objective vector in arbitrary dimensions and the combination with the infill
criterion of SMS-EGO are aspired.
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Abstract. In this paper we address the problem of approximating the
’knee’ of a bi-objective optimization problem with stochastic search algo-
rithms. Knees or entire knee-regions are of particular interest since such
solutions are often preferred by the decision makers in many applications.
Here we propose and investigate two update strategies which can be used
in combination with stochastic multi-objective search algorithms (e.g.,
evolutionary algorithms) and aim for the computation of the knee and
the knee-region, respectively. Finally, we demonstrate the applicability
of the approach on two examples.

1 Introduction

In many real world problems several objective functions have to be optimized
simultaneously. One typical goal for such multi-objective optimization problems
(MOPs) is to identify the entire set of optimal solutions (the Pareto set) and its
image in objective space, the Pareto front. However, since the Pareto set typically
forms a (k-1)-dimensional object, where k denotes the number of objectives, this
task may become too hard, in particular for more objectives. Instead, one can
e.g. integrate the decision maker (DM) into the search process (e.g., with inter-
active methods [11]) or can compute selected points out of the Pareto set, which
we address here. One such particular solution is the ’knee’1 or the ’maximal
bulge’ of the Pareto front which is often preferred by many DMs since it repre-
sents for them the ’optimal compromise’ in multi-objective optimization. In this
paper we propose and investigate two archiving strategies for stochastic search
algorithms which aim for the computation of such a knee and entire knee-regions
(i.e., solutions where the bulge is maximal or nearly maximal) respectively. We
consider here the bi-objective case (i.e., k = 2), but the results may be extended
for larger number of objectives.

Knees or other related user preference areas in multi-objective optimization
have been addressed in many works so far ([1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13]).
For instance, in [1] a multi-objective evolutionary algorithm is presented which

1 There exist different characterizations of the knee in literature which, however, lead
to the same or to similar solutions in many cases.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 795–804, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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focuses on the knee-regions of an MOP (using a different characterization of
the knee). The approach which we propose here can be viewed as a possible
alternative to this work. One advantage of our strategies is that they can easily
be integrated into any given archiving strategy for a stochastic search procedure.
In that case, the (additional) approximation of the knee comes for ’free’ in the
sense that no additional function call has to be spent.

2 Background

In the following we consider continuous multi-objective optimization problems

min
x∈Q

{F (x)}, (MOP)

where Q ⊂ �n is compact and F is defined as the vector of the objective func-
tions F : Q → �

k, F (x) = (f1(x), . . . , fk(x)), and where each fi : Q → � is
continuous.

Definition 1. Let v, w ∈ Q. Then the vector v is less than w (v <p w), if
vi < wi for all i ∈ {1, . . . , k}. The relation ≤p is defined analogously. y ∈ Q is
dominated by a point x ∈ Q (x ≺ y) with respect to (MOP) if F (x) ≤p F (y) and
F (x) �= F (y). x ∈ Q is called a Pareto optimal point or Pareto point if there is
no y ∈ Q which dominates x.

The set of all Pareto optimal solutions is called the Pareto set (denoted by PQ).
The image of the Pareto set F (PQ) is called the Pareto front. Further, we need
the following distances between different sets.

Definition 2. Let u ∈ �n and A,B ⊂ �
n. The semi-distance dist(·, ·) and

the Hausdorff distance dH(·, ·) are defined as follows: dist(u,A) := inf
v∈A

‖u− v‖,
dist(B,A) := sup

u∈B
dist(u,A), and dH(A,B) := max {dist(A,B), dist(B,A)}.

Finally, we need to define some straight lines in �2. For y1, y2 ∈ �2, y1 �= y2,
we define by L(y1, y2) := y1 +�(y2− y1) the line which goes through y1 and y2.

3 Characterization of the Knee

In this section we state one possible way to define the knee and modify it such
that we can use it for our purpose.

According to [3], a knee of a Pareto curve is found by solving the following
nonlinear programming problem (NLP):

max
p∈PQ

dist(F (p),L(F (p∗1), F (p∗2))), (1)

where p∗i ∈ arg min
x∈PQ

fi(x), i = 1, 2 (see also Figure 1). The knee as characterized

by (1) can be interpreted as the maximal bulge of the curve with respect to the
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Fig. 1. Two ’knees’ K1, K2 for different Pareto fronts as characterized by the maximal
bulge of the Pareto curve with respect to L∗ := L(y∗

1 , y∗
2)

line L(F (p∗1), F (p∗2)) which contains the two extreme points of the curve. We
have chosen for this characterization since it requires no gradient information
and is invariant to scalarization of the objectives.

Since we are interested in ’convex bulges’ and not in ’concave bulges’ which
do intuitively not fit to the idea of minimization (see Figure 1, or [3]), we define
the distance of the image F (p) of a candidate solution to L(F (p∗1), F (p∗2)) as
follows:

D(p, p∗1, p
∗
2) :=

{
dist(F (p),L(F (p∗1), F (p∗2))) if f2(p) ≤ g(f1(p))

- dist(F (p),L(F (p∗1), F (p∗2))) else
, (2)

where g(x) = L(F (p∗1), F (p∗2)). Using this function and the fact that we are
interested in convex bulges, we can modify NLP (1) by

max
x∈Q

D(x, p∗1, p
∗
2), (3)

which will be our ’knee’ in the sequel.

4 The Algorithms

Here we propose two different update strategies for the approximation of a single
knee as well as entire knee-regions and investigate the limit behavior of these
algorithms.

First we are interested in obtaining one maximal bulge. Since in most cases
(e.g., for all convex problems) ’the’ knee is indeed unique it is sufficient to store
one approximation — in addition to the approximations of the extreme points of
the Pareto curve, since they are also not known a priori. Algorithm 1 shows one
possible way to do this. The input parameters are the approximations m0

1, m0
2 of

the extreme points, the current approximation K0 of the knee as well as the new
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candidate solution p ∈ Q. Outputs are the new approximations of the extreme
points (m1,m2) and of the knee (K). Theorem 1 shows that the maximal bulge
(measured in objective space) is reached in the limit under certain assumptions
and in the probabilistic sense.

Algorithm 1. {m1,m2,K} := ArchiveUpdateMaxBulge1 (p,K0,m0
1,m

0
2)

1: if f1(p) < f1(m
0
1) then

2: m1 := p
3: else
4: m1 := m0

1

5: end if
6: if f2(p) < f1(m

0
2) then

7: m2 := p
8: else
9: m2 := m0

2

10: end if
11: if D(p, m1, m2) > D(K0, m1, m2) then
12: K := p
13: else
14: K := K0

15: end if

Theorem 1. Let (MOP) be given and Q ⊂ �n be compact, let there be no weak
Pareto points in Q\PQ, and K0,m

(0)
1 ,m

(0)
2 ∈ Q. Further, let p∗i , i = 1, 2, as

defined above with F (p∗1) �= F (p∗2), and

∀x ∈ Q and ∀δ > 0 : P (∃l ∈ � : pl ∈ Bδ(x) ∩Q) = 1, (4)

where Bδ(x) := {y ∈ �n : ‖y − x‖ < δ} and P (A) denotes the probability for
event A. Then, if Algorithm 1 is used to update the sequences Kl,m

(l)
1 ,m

(l)
2 , l ∈

�, it holds with probability one

(a)

m
(l)
1 → p∗1 ∈ arg min

x∈PQ

f1(x) for l →∞

m(l)
sl
→ p∗2 ∈ arg min

x∈PQ

f2(x) for l →∞

(b)
D(Kl) → max

x∈Q
D(x, p∗1, p

∗
2) for l→∞.

Proof. (a) We prove the convergence of the sequence (m(l)
1 )l∈�, the other state-

ment is analogue. The claim follows, roughly speaking, by assumption (4)
on the process to generate new candidate solutions and by the fact that
the point with the smallest value according to f1 which is found during the
search is kept in the archive. To be more precise, let x∗1 ∈ arg min

x∈PQ

f1(x).
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By (4) it follows that there exists for every i ∈ � with probability one a
number ji and a point pji ∈ B1/i(x∗1) ∩ Q. By construction of Alg. 1 it is
f1(m(ji)

1 ) ≤ f1(pji). Thus, the claim follows since pji → x∗1 for i→∞.
(b) The straight lines Ll(F (a(l)

m1), F (a(l)
m2))) can be written as gl(x) = mlx + bl.

Let a := f1(p∗1) and b := f1(p∗2). Denote by Sp = (xp, yp) ∈ Ll the vector with
minimal distance to the candidate solution pl. It is easy to verify that xp ∈
[a, b] (see e.g. the Appendix). Thus, it is sufficient to consider the functions
gl on the interval [a, b]. Since F (p∗1) �= F (p∗2) and by part (a) of this theorem
it follows that the gl’s are converging uniformly to g = L(F (p∗1), F (p∗2)) on
[a, b], and thus we have with probability one

max
x∈Q

D(x,m(l)
1 ,m

(l)
2 ) → max

x∈Q
D(x, p∗1, p

∗
2), for l→∞. (5)

Let p∗ ∈ arg max
x∈PQ

D(x, p∗1, p
∗
2). By (4) it follows that there exists with prob-

ability one a subsequence of pji of the candidate solutions such that pji ∈
B1/i(p∗) ∩Q. By construction of Alg. 1 it follows that D(Kji , a

(ji)
m1 , a

(ji)
m2 ) ≥

D(pji , a
(ji)
m1 , a

(ji)
m2 ). Using this and (5) we obtain with probability one

D(Kl, a
(l)
m1
, a(l)

m2
) → max

x∈Q
D(x, p∗1, p

∗
2), l →∞ (6)

and the proof is complete.

Next, we are interested to approximate beyond one knee solution the subset of
the Pareto front where the bulge is ’large’ since this entire set could be interesting
for the decision maker ([1]). That is, for M := maxx∈QD(x, p∗1, p

∗
2) and given a

threshold Δ ∈ �+ we are interested in the following set:

KΔ := {x ∈ PQ|D(x, p∗1, p
∗
2) ≥M −Δ} (7)

Note that in case the knee is not unique all these points are included in KΔ for
every value of Δ, which is another motivation to approximate this set.

In Algorithm 2 we propose one possible archiving strategy which aims for the
approximation of KΔ. The notation is as in Alg. 1 with the difference that K is
a set of points. In the following we investigate the limit behavior of the strategy
under the same assumptions as above (Thm. 2). Before we can do this we need
the following result.

Lemma 1. Let m1,m2, z, d ∈ Q with f1(m1) < f1(x) < f1(m2), and g(f1(x)) ≤
f2(x), where g(·) = Ll(F (m1), F (m2)), and d ≺ z, and let m1 and m2 be mutu-
ally nondominating. Then D(d,m1,m2) > D(z,m1,m2).

Proof. Assume that D(d,m1,m2) ≤ D(z,m1,m2). Let g(x1) = ax1 + b. Since
m1 and m2 are mutually nondominating it follows that a is negative. Define
by g2 the straight line which is parallel to g and which goes through z, i.e.,
g2(x1) = ax1 + b2. Since by assumption D(d,m1,m2) ≤ D(z,m1,m2) it follows
that f2(d) ≥ g2(f1(d)). Since the slope a of g2 is negative it follows that either
f1(d) ≥ f1(z) or f2(d) ≥ f2(z) which is a contradiction to d ≺ z, and thus, it
must the that D(d,m1,m2) > D(z,m1,m2).
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Algorithm 2. {m1,m2,K} := ArchiveUpdateMaxBulge2 (p,K0,m0
1,m

0
2, Δ)

1: if f1(p) < f1(m
0
1) then

2: m1 := p
3: else
4: m1 := m0

1

5: end if
6: if f2(p) < f1(m

0
2) then

7: m2 := p
8: else
9: m2 := m0

2

10: end if
11: K̃ := K0 ∪ {p}
12: M̃ := maxk∈K̃ D(k, m1, m2)

13: K := nondom({k ∈ K̃ : D(k, m1, m2) ≥ M̃ − Δ})

Theorem 2. Using the definitions above, let M > 0, Δ ∈ �+ with M −Δ > 0,
and let

lim
i→∞

KΔi → KΔ (8)

for every sequence (Δi)i∈� with Δi < Δ and Δi → Δ for i → ∞. Then, if
Algorithm 2 is used to update the sequences Kl,m

(l)
1 ,m

(l)
2 , l ∈ �, and under the

assumptions made in Thm. 1 it holds with probability one

(a)

m
(l)
1 → p∗1 ∈ arg min

x∈PQ

f1(x) for l →∞

(b)
dH(F (KΔ), F (Kl)) → 0 for l →∞

Proof. (a) Analogue to proof of Thm 1 (a).
(b) First we show that dist(F (KΔ), F (Kl)) → 0 for l→∞ with probability one.

Since Kl, l ∈ �, is finite and KΔ is compact it follows that

dist(F (KΔ), F (Kl)) = max
p∈KΔ

min
k∈Kl

‖F (p)− F (k)‖. (9)

By (8) it is sufficient to consider points p ∈ PQ with D(p, p∗1, p
∗
2) > M −Δ.

Let p be such a point. By Thm. 1 it follows that M̃l (see line 12 of Alg. 2)
converges to M with probability one. Further, since D and F are continuous
it follows that there exists with probability one a neigborhood U of p and
an integer l0 such that

D(u,m(l)
1 ,m

(l)
2 ) > M̃l −Δ, ∀u ∈ U, ∀l ≥ l0. (10)

By (4) it follows that there exists with probability one for every j ∈ � a point
plj ∈ U ∩B1/j(p) ∩Q. By construction of Alg. 2 the point plj will either be
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added to the archive (in that case denote dj := plj ), or there already exists
a point dj ∈ Klj which dominates plj . Due to (10) the point dj will only be
discarded from the archive if in turn a dominated solution is found. By this
and since pj → p and thus F (dj) → F (p) for j →∞ it follows that

dist(F (p), F (Kl)) = min
k∈Kl

‖F (p)− F (k)‖ → 0 with probability one, (11)

and the claim follows. It remains to show that also

dist(F (Kl), F (KΔ)) = max
k∈Kl

min
p∈KΔ

‖F (k)− F (p)‖ (12)

vanishes for l →∞ and in the probabilistic sense. For this we have to show
that every point x ∈ Q\KΔ will be discarded (if added before) from the
archive after finitely many steps, and that this point will never be added
further on, both with probability one. Let x ∈ Q\KΔ, that is, we have
either (a) D(x, p∗1, p∗2) < M −Δ or (b) x �∈ PQ. First we consider case (a).
Since the sequence M̃l →M (see above) and by continuity of D there exists
with probability one an integer l0 with

D(x,m(l)
1 ,m

(l)
2 ) < M̃l −Δ, ∀l ≥ l0, (13)

and by this, that x is not a member of Kl for l ≥ l0.
Next, let x �∈ PQ. By case (a) we can assume that D(x, p∗1, p

∗
2) ≥M−Δ >

0. Since x is not a weak Pareto point there exists a point p ∈ PQ with
F (p) <p F (x). By continuity of D and F , by part (a) of this theorem, and
by Lemma 1 it follows that there exists a neighborhood U of p and an integer
l0 such that:

F (u) <p F (x), ∀u ∈ U, and

D(u,m(l)
1 ,m

(l)
2 ) > D(x,m(l)

1 ,m
(l)
2 ), ∀u ∈ U, ∀l ≥ l0

D(u,m(l)
1 ,m

(l)
2 ) > M̃ −Δ, ∀u ∈ U, ∀l ≥ l0.

(14)

By (4) it follows that there exists with probability one an integer j0 > l0
such that that the candidate solution pj0 is in U ∩Q. Further, by (14) and by
construction of Alg. 2 it follows that pj0 will be either added to the archive or
that there already exists a point d which dominates pj0 . In further iterations
of the algorithm, this point is only discarded if a dominated solution is found
(using (14) and Lemma 1). Since ≺ is transitive all these points dominate
x, and hence is not a member of Kl for all integers l ≥ j0 with probability
one, and the proof is complete.

Since the archiver in Alg. 2 accepts all points in KΔ and does not discard them
further on it follows that in the course of the computation |Kl| → ∞ for l →∞.
In order to prevent this, one could select a subset of Kl in each step, e.g., by the
techniques proposed in [8] or other pruning techniques.
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Fig. 2. Numerical results for MOP (15) with N = 10, 000 randomly chosen points
within Q = [−2, 2]2 for Alg. 1 (left) and for Alg. 2 for Δ = 0.2. The circles represent
the final extreme points, and the square(s) the approximation of the knee (region).

5 Numerical Results

Here we present some numerical results on two MOPs: a convex problem and an
MOP ([14]) which has two optimal points with maximal bulge:

F1 : [−2, 2]2 → �
2

F1(x) =
(
(x1 − 1)2 + (x2 − 1)2, (x1 + 1)2 + (x2 + 1)2

) (15)

and

F2 = (f1, f2) : [−1.5, 1.5]2 → �
2

f1(x, y) =
1
2

(
√

1 + (x+ y)2 +
√

1 + (x− y)2 + x− y) + λ · e−(x−y)2

f2(x, y) =
1
2

(
√

1 + (x+ y)2 +
√

1 + (x− y)2 − x+ y) + λ · e−(x−y)2

(16)
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Fig. 3. Two numerical results for MOP (16) with N = 10, 000 randomly chosen points
within Q = [−1.5, 1.5]2 for Alg. 1 (left) and for Alg. 2 (right) for Δ = 0.1. The circles
represent the final extreme points, and the square(s) the approximation of the knee
(region).
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For the generation of the sequence (pl)l∈� of candidate solutions we have taken
a random search operator. Figures 2 and 3 show two numerical results—i.e., one
result for every archiving strategy—for each of the models. MOP (16) contains
two maximal bulges, and hence, the archiver ArchiveUpdateMaxBulge1 can
only reach one of them (Fig. 3 (a)). However, this does not occur when using
the second archiver (Fig. 3 (b)).

6 Conclusions and Future Work

In this paper we have proposed and investigated two update strategies for the
approximation of knees respectively knee-regions of multi-objective optimiza-
tion problems with stochastic search algorithms. The advantage of these meth-
ods is that they can be used either as standalone-algorithms together with any
stochastic search procedure or integrated into any other archiving strategy (e.g.,
distance based ones) without causing additional function calls. We have demon-
strated on two examples where we have used a random search operator that the
novel strategies are capable of approximating the desired regions with reasonable
effort.

For future research, there are mainly two points which have to be addressed.
First, a generalization of the obtained results for k > 2 would be desirable.
Further, the integration of the archivers into stochastic search procedures is of
particular interest: since the archivers focus on a real subset of the Pareto front,
a natural demand on the resulting algorithm is that it should be more efficient
in terms of function calls than algorithms which aim for the approximation of
the entire Pareto front. This is, however, ad hoc not straightforward since it is
well-known that the approximation of the nadir points can be a challenging task
itself.

Acknowledgements. The third author gratefully acknowledges support from the
CONACyT project no. 45683-Y.
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Appendix

Given points p, a1, aN ∈ Q, the distance of F (p) to the straight line
L(F (a1), F (aN )) can be computed as follows: since L(F (a1), F (aN )) ⊂ �2, it
can be written as a function g1 : �→ �, g1(x) = m1x+b1 with m1 = −(f2(a1)−
f2(aN ))/(f1(aN )− f1(a1)), and b1 = f2(a1)−m1f1(a1), where the interpolation
conditions g1(f1(aj)) = f2(aj), j ∈ {1, N}, are used. To compute the distance of
F (p) and g1 we define the auxiliary function g2(x) = m2x+ b2 with g2(f1(p)) =
f2(p) and which is orthogonal to g1. Doing so, this leads to the coefficients
m2 = −1/m1 and b2 = f2(p) −m2f1(p). The intersection of g1 and g2 is given
by the point Sp = (xs, ys) with xs = (b2 − b1)/(m1 −m2), ys = m2xs + b2, and
thus, we have

dist(F (p),L(F (a1), F (aN ))) = ‖F (p)− Sp‖ (17)
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Abstract. In this paper, we address multi-objective space mission de-
sign problems. We argue that it makes sense from the practical point of
view to consider in addition to the ‘optimal’ trajectories (in the Pareto
sense) also approximate or nearly optimal solutions since this can lead
to a significant larger variety for the decision maker. For this, we suggest
a novel MOEA which is a modification of the well-known NSGA-II algo-
rithm equipped with a recently proposed archiving strategy which aims
for the storage of the set of approximate solution of a given MOP. Using
this algorithm we will examine several space missions and demonstrate
the benefit of the novel approach.

1 Introduction

In a variety of applications in industry and finance a problem arises that several
objective functions have to be optimized concurrently leading to multi-objective
optimization problems (MOPs). For instance, in space mission design, which we
address here, there are two crucial aims for the realization of a transfer: minimiza-
tion of flight time and fuel consumption of the spacecraft ([2], [13], [11], [10]). The
scope of this paper is (a) to show that it makes sense to consider in addition to the
‘optimal’ trajectories also approximate solutions since by this the decision maker
(DM) is offered a much larger variety of possibilities, and (b) to present one way
to compute this enlarged set of interest with reasonable effort. As a motivating ex-
ample for (a) we consider the MOP in Section 4.2 which is a model for the transfer
from Earth to Mercury, and the following two points xi with images F (xi), i = 1, 2:

x1 = (782, 1288, 1788) , F (x1) = (0.462, 1001.7)
x2 = (1222, 1642, 2224), F (x2) = (0.463, 1005,3)

The two objectives are the propellant mass fraction—i.e., the portion of the
vehicle’s mass which does not reach the destination—and the flight time (in
days). In the domain, the first parameter is of particular interest: it determines
the departure time from the Earth (in days after 01.01.2000). F (x1) is less than
F (x2) in both components, and thus, x1 can be considered to be ‘better’ than
x2. However, note that the difference in image space is small: the mass fraction
of the two solutions differs by 0.001 which makes 0.1% of the total mass, and
the flight time differs by four days for a transfer which takes almost three years.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 805–814, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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In case the DM is willing to accept this deterioration, it will offer him/her a
second choice in addition to x1 for the realization of the transfer: while the two
solutions offer ‘similar’ characteristics in image space this is not the case in the
design space since the starting times for the two transfers differ by 440 days.

The identification of the two solutions would be a fundamental requirement
during the preliminary design of a space mission. In fact, in order to increase
the reliability of the design, the mission analysts would need to identify one or
more back-up solutions, possibly with identical cost, for each baseline solution.
Furthermore, for each mission opportunity (i.e., each launch date) rather than
an optimal solution, it is generally required to identify a set of nearly optimal
ones, possibly all with similar cost. Such a set would represent a so called launch
window, since for each solution in the set a launch would be possible. Designing
for the suboptimal points further increases the reliability of the mission since
it gives the freedom to deviate from the chosen design point with little or no
penalty. This holds true also for Pareto optimal solutions. It is therefore desirable
to have a whole range of nearly Pareto optimal solutions for each Pareto point.

The field of evolutionary multi-objective optimization is well-studied and
MOEAs have been successfully applied in a number of domains, most notably
engineering applications ([1]). Approximate solutions in multi-objective opti-
mization have been studied by many researchers so far (e.g., [7], [14], [6]). A first
attempt to investigate the benefit of considering approximate solutions in space
mission design has been done in ([12]), albeit for the single-objective case.

The additional consideration of (all) approximate solutions in multi-objective
space mission design problems is new and will be addressed in this paper. Crucial
for this approach is the efficient computation of the enlarged set of ‘optimal’ points
since in many cases the ‘classical’ multi-objective approach is a challenge itself.
For this, we will propose an algorithm which is based on the well-known NSGA-II
([3]) but equipped with an archiving strategy which was designed for the current
purpose. Note that ‘classical’ archiving/selection strategies—e.g., the ones in [4],
[9], [6], [5], or the one NSGA-II uses—store sets of mutually non-dominating points
(which means that e.g. the points x1 and x2 in the above example will never be
stored jointly). That is, these selection mechanisms—though they accomplish an
excellent job in approximating the efficient set—can not be taken for our purpose.

The remainder of this paper is organized as follows: in Section 2, we give the
required background which includes the statement of the space mission design
problem under consideration. In Section 3, we propose a new genetic algorithm
for the computation of the set of approximate solutions and present further on
in Section 4 some numerical results. Finally, we conclude in Section 5.

2 Background

2.1 Multi-Objective Optimization

In the following we consider continuous multi-objective optimization problems

min
x∈Q

{F (x)}, (MOP)
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where Q ⊂ �n is compact and F is defined as the vector of the objective func-
tions F : Q → �

k, F (x) = (f1(x), . . . , fk(x)), with fi : Q → �.

Definition 1. Let v, w ∈ Q. Then the vector v is less than w (v <p w), if
vi < wi for all i ∈ {1, . . . , k}. The relation ≤p is defined analogously. y ∈ Q is
dominated by a point x ∈ Q (x ≺ y) with respect to (MOP) if F (x) ≤p F (y) and
F (x) �= F (y). x ∈ Q is called a Pareto optimal point or Pareto point if there is
no y ∈ Q which dominates x.

The set of all Pareto optimal solutions is called the Pareto set (denoted by PQ).
The image of the Pareto set is called the Pareto front. We now define another
notion of dominance which we use to define approximate solutions and the set
of interest:

Definition 2. Let ε = (ε1, . . . , εk) ∈ �k
+ and x, y ∈ Q. x is said to ε-dominate

y (x ≺ε y) with respect to (MOP) if F (x) − ε ≤p F (y) and F (x) − ε �= F (y). x
is said to −ε-dominate y (x ≺−ε y) with respect to (MOP) if F (x) + ε ≤p F (y)
and F (x) + ε �= F (y).

Definition 3. Denote by PQ,ε the set of points in Q ⊂ �n which are not −ε-
dominated by any other point in Q, i.e., PQ,ε := {x ∈ Q| � ∃y ∈ Q : y ≺−ε x}.

The set PQ,ε contains all ε-efficient solutions, i.e., solutions which are optimal
up to a given (small) value of ε. Fig. 1 gives two examples.

Alg. 1 gives an archiving strategy which aims for the approximation of PQ,ε,
where A0 is a given archive, p a candidate solution, Δ ∈ �k

+ the discretization
parameter, and B(y, Δ) := {x ∈ �k : |xi − yi| ≤ Δi, i = 1, .., k}. See [10] for
the related discussion.

2.2 The Design Problem

The examples we analyze are taken from two classes of typical problems in space
trajectory design: a bi-impulsive transfer from the Earth to the asteroid Apophis,
and a low-thrust multi-gravity assist transfer.

Fig. 1. Two different examples for sets PQ,ε. Left for k = 1 and in parameter space
with PQ,ε = [a, b] ∪ [c, d]. Right an example for k = 2 in image space.



808 O. Schütze, M. Vasile, and C.A. Coello Coello

Algorithm 1. A := ArchiveUpdatePQ,ε (p, A0, Δ)
Require: population P , archive A0, Δ ∈ �+, Δ∗ ∈ (0, Δ)
Ensure: updated archive A
1: A := A0

2: if � ∃a1 ∈ A : a2 ≺−ε p and � ∃a2 ∈ A : F (p) ∈ B(F (a2), Δ
∗) then

3: A := A ∪ {p}
4: for all a ∈ A do
5: if p ≺−(ε+Δ) a then
6: A := A\{a}
7: end if
8: end for
9: end if

Bi-impulse Problem. For the bi-impulsive case, the propellant consumption is a
function of the velocity change, or Δv, required to depart from the Earth and to
rendezvous with a given celestial body. Both the Earth and the target celestial
body are point masses with the only source of gravity attraction being the Sun.
Therefore, the spacecraft is assumed to be initially at the Earth, flying along its
orbit. The first velocity change, or Δv1, is used to leave the orbit of the Earth
and put the spacecraft into a transfer orbit to the target. The second change in
velocity, or Δv2, is then used to inject the spacecraft into target’s orbit. The two
Δv’s are a function of the positions of the Earth and the target celestial body
at the time of departure t0 and at the time of arrival tf = t0 +T , where T is the
time of flight. Thus, the MOP under consideration has two objective functions
f1(x) = Δv1 + Δv2 and f2(x) = T , with the solution vector x = [t0, T ]T .

MLTGA Problem. It is here proposed to use a particular model for multiple
gravity assist low-thrust trajectories (MLTGA). Low-thrust arcs are modeled
through a shaping approach based on the exponential sinusoid proposed in
[8]. The spacecraft is assumed to be moving in a plane subject to the gravity
attraction of the Sun and to the control acceleration of a low-thrust propul-
sion engine[13]. Gravity manoeuvres are modeled through a powered swing-bys
approximation[13]: a pair of low-thrust arcs are linked through a Δv manoeu-
vre when the gravity of the swing-by planet is not strong enough to gain the
required change in velocity. As for the bi-impulsive case, we are interested in
the minimization of two objectives: the propellant mass fraction and the flight

time. The first objective is f1(x) = 1 − e
−(

ΔVGA+ΔV0
g0Isp1

+
ΔVLT
g0Isp2

) with the solution
vector[11] x = [t0, T1, k2,1, n1, ..., Ti, k2,i, ni, ..., TN , k2,N , nN ]T . Where ΔVGA is
the sum of all the ΔV s (variation in velocity) required to correct every gravity
assist manoeuvre, ΔV0 is the departure manoeuvre, while ΔVLT is the sum of
the total ΔV of each low-thrust leg. Then, k2,i is the i− th shaping parameter
for the exponential sinusoid and ni the number of revolutions around the Sun,
t0 is the departure time and Ti the transfer time from planet i to planet i + 1.
The two specific impulses Isp1 and Isp2 are respectively for a chemical engine
and for a low-thrust engine and g0 is the gravity acceleration on the surface of
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the Earth. For the tests in this paper, we used Isp1 = 315s and Isp2 = 2500s.
The second objective function is f2(x) = tN − t0 with tN the time of arrival at
destination.

3 A Genetic Algorithm for the Computation of PQ,ε

In this section we propose a MOEA which aims for the computation of the set
of approximate solutions, PQ,ε-NSGA-II, which is a hybrid of NSGA-II ([3]) and
the archiver ArchiveUpdatePQ,ε. Further, in order to be able to compare the
obtained solutions with another strategy, we introduce a performance metric.

The Algorithm. The algorithm we propose in the following is based on NSGA-II.
We have decided to take this one as our baseline algorithm for two reasons. First,
this algorithm is well-known and has been found to be very efficient. Second, we
think that the elements which constitute NSGA-II fit nicely to our context: a
(finite) archive A containing points which are mutually non-(−ε)-dominating can
be viewed as a set of Pareto fronts with different ranks, and also in the current
setting the first front (i.e., the non-dominated front) should be given the priority
since (i) improvement of the current set is clearly an objective and—in case the
solutions are already near to PQ—a local search around PQ (e.g., mutation) is a
search within PQ,ε. Thus, we have decided to adopt the ranking from NSGA-II,
as well as the crowding distance in order to maintain diversity, and the genetic
operators since they are proven to be well-suited for continuous problems.

The algorithm PQ,ε-NSGA-II reads as follows: the initial offspring
O ⊂ Q is chosen at random, and the first archiver is set to A0 :=
ArchiveUpdatePQ,ε(∅,O0, Δ). Alg. 2 describes how to obtain the subsequent
archives Al+1 from Al. Hereby the function Select() picks np/2 elements from
A at random, if |A| ≤ np/2 then C := A is chosen (np denotes the population
size). The next three operators are as in NSGA-II: DominationSort() assigns
rank and crowding distance to C, TournamentSelection() performs the tour-
nament selection, and GeneticOperator() performs simulated binary crossover
and polynomial mutation on P . Finally, the archive Al is updated by O using
ArchiveUpdatePQ,ε leading to the new archive Al+1.

The new algorithm is in fact very close to NSGA-II, merely the selection
strategy to keep the ‘promising’ points of the search has changed (by adding an
archive to NSGA-II). Recall that the motivation for the storage of approximate
solutions is to obtain in addition to the ‘optimal’ points also points which are
close to these points in image space but which differ significantly in parameter
space. Thus, it is desired to maintain a certain diversity in parameter space, and
that is why the chromosomes C are chosen randomly from the current archive
by Select().

Performance Metric. In order to be able to compare the results of different
algorithms, or just two sets A and B, we propose to use the following metric:

C−ε(A, B) := |{b ∈ B : ∃a ∈ A : a ≺−ε b}|/|B|, (1)
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Algorithm 2. Iteration step of PQ,ε-NSGA-II
Require: archive Al, Δ ∈ �+, population size np

Ensure: updated archive Al+1

1: C := Select(Al, np/2)
2: C′ := DominationSort(C)
3: P := TournamentSelection(C′)
4: O := GeneticOperator(P)
5: Al+1 := ArchiveUpdatePQ,ε(Al,O, Δ)

which is a straightforward extension of the set coverage metric suggested in [15].
Analogue to the original metric, C−ε(A, B) is an unsymmetric operator which
aims to get an idea of the relative coverage of the two solution sets.

4 Numerical Results

Here we present some numerical results coming from two different settings. For
the internal parameters (e.g., mutation probability) of NSGA-II we have followed
the suggestions made in [3], and have taken the same values for PQ,ε-NSGA-II.

4.1 Two Impulse Transfer to Asteroid Apophis

For the bi-impulse problem we analyze an apparently simple case: the direct
transfer from the Earth to the asteroid Apophis. The contour lines of the sum of
the two Δv’s is represented in Fig.2 (a) for the parameters t0 ∈ [3675, 10500]T

MJD2000 and T ∈ [50, 900] days. The intervals for t0 and T were chosen in such
a way that a wide range of launch opportunities are included. The solution space
presents a large number of local minima. Many of them are nested, very close
to each other and with similar values. For each local minimum, there can be a
different front of locally Pareto optimal solutions. The best known approximation
of the global Pareto front is represented in Fig. 2 (b) and was obtained with
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Fig. 3. Numerical result for Example 2 using NSGA-II, t1 := t0 + T

an extension to MOPs of the algorithm described in [12]. It is a disjoint front
corresponding to two basins of attraction of two minima, see Fig. 2 (a).

The two basins of attraction present similar values of the first objective func-
tion. Converging to the upper front is therefore quite a challenge since the lower
front has a significantly lower value of the second objective function. It is only
when the optimizer converges to a point in the vicinity of the local minimum of
the upper front that the latter becomes not dominated by the lower front. The
upper front contains the global minimum with a total Δv = 4.3786 k/s while
the lower front contains only a local minimum. It should be noted that, though
the front in Fig. 2b) is the global one, it represents only two launch opportu-
nities. Furthermore for each launch opportunity we would need to characterize
the space around each of the Pareto optimal point.

Figure 3 shows a result from NSGA-II, where the lower front has been found.
When using PQ,ε-NSGA-II using the same parameter values as for NSGA-II
and ε = (5, 5), which seems to be acceptable for this mission, a much broader
variety of solutions is offered regardless of the upper front, as shown in Figure 4
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(note the difference of the scales). For instance, for the obtained solution c0

with F (c0) = y0 = (5, 50) there are three clusters of solutions which offer a
similar cost and which are located around the points c1 = (t0 = 4700, T = 50),
c2 = (7700, 50), and c3 = (10700, 50). That is, the starting times of the transfer
differ by a total of 6000 days. In contrast, the maximal difference according to
t0 of all the solution displayed in Figure 3 is given by 35 days.

Note that, compared to the accurate solution of the global Pareto front, the
extended solution set offers, as required, not only more launch opportunities but
also the whole neighboring solutions for each one of them.

4.2 Sequence EVMe

For the MLTGA problem we consider a relatively simple but significant case: the
sequence Earth – Venus – Mercury (EVMe). For such a mission we have chosen
to allow a deterioration of 5% of the mass fraction and of 20 days transfer time
compared to an optimal trajectory which leads to ε = (0.05, 20). Figure 5 shows
a numerical result of PQ,ε-NSGA-II for 100 generations with population size 100
(i.e., the size of P in Alg. 2) and Δ = ε/3, which took several minutes on a
standard PC. To compare the result and since so far no such algorithm exists
we have taken a random search procedure coupled with ArchiveUpdatePQ,ε.
For NR = 10, 000 randomly chosen points we obtain (averaged of 20 test runs)
C−ε(AN , AR) = 0.4739 and C−ε(AR, AN ) = 0, where AN denotes the result from
PQ,ε-NSGA-II and AR the result coming from the random search procedure. For
NR = 100, 000 the result of the random search procedure can still not compete
with the same MOEA result: C−ε(AN , AR) = 0.4261, C−ε(AR, AN ) = 0.

Interesting for every non-dominated point x0 with F (x0) = y0 of an archive
A is the set N(y0, ε, A) := {a ∈ A : F (a) ∈ B(y0, ε)}, where B(y, ε) := {x ∈
�

k : |xi − yi| ≤ εi, i = 1, .., k}, i.e., the set of solutions in A those images are
‘close’ to y0. Since in this design problem the starting date t0 of the transfer is
of particular interest one can e.g. distinguish the entries in N(y0, ε, A) by the
value of t0. For instance, the final archive displayed in Figure 5 (a) consists of

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

Δ v

T
im

e 
of

 F
lig

ht
 (

da
ys

)

(a) ε-efficient front

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

Δ v

T
im

e 
of

 F
lig

ht
 (

da
ys

)

y
0

(b) non-dominated front

Fig. 5. Numerical result for sequence EVMe. Left the final archive and right the set of
non-dominated solutions.
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3650 solutions whereof 106 are non-dominated. The maximal difference of the
value of t0 for a point y0 inside N(y0, ε, A) is 449 days, and for 23 solutions this
maximal difference is larger than one year (including also values Δt0 of several
days or months which can be also highly interesting for the decision making
process). Hence, the number of options for the DM is enlarged significantly in
this example.

The consideration above leads to a natural way of presenting the large amount
of data to the DM: it is sufficient to present the non-dominated front as in the
‘classical’ multi-objective case. When the DM selects one solution y0 the set
N(y0, ε, A) can be displayed, ordered by the value of t0 (see Figure 5 (b)).

5 Conclusion

We have considered two multi-objective space mission design problems and
shown, that it is desirable to identify not only the Pareto set, but also a num-
ber of approximate solutions. In particular, it was shown that each part of the
Pareto set belongs to a different launch window. In order to increase the relia-
bility of the mission design, it is required to have a wide launch window (i.e.,
a large number of solutions with similar cost) and one or more back-up launch
windows. In order to address this problem, we have proposed a new variant of
an existing MOEA which aims for the computation of PQ,ε. As an example of
its effectiveness, we have considered two design problems. The results indicate
that the novel approach accomplishes its task within reasonable time and that
the idea to include approximate solutions is indeed beneficial since in all cases
the enlarged set of solutions offered a much larger variety to the DM. Despite
these promising numerical results, however, more work is required for the design
of a more efficient MOEA for the approximation of PQ,ε which will be part of
future work.
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Abstract. A local search method is often introduced in an evolutionary
optimization technique to enhance its speed and accuracy of convergence
to true optimal solutions. In multi-objective optimization problems, the
implementation of a local search is a non-trivial task, as determining a
goal for the local search in presence of multiple conflicting objectives be-
comes a difficult proposition. In this paper, we borrow a multiple criteria
decision making concept of employing a reference point based approach
of minimizing an achievement scalarizing function and include it as a
search operator of an EMO algorithm. Simulation results with NSGA-II
on a number of two to four-objective problems with and without the local
search approach clearly show the importance of local search in aiding a
computationally faster and more accurate convergence to Pareto-optimal
solutions. The concept is now ready to be coupled with a faster and more
accurate diversity-preserving procedure to make the overall procedure a
competitive algorithm for multi-objective optimization.

1 Introduction

Evolutionary multi-objective optimization (EMO) algorithms are often criticized
for their lack of a theoretical convergence proof to the true Pareto-optimal front.
Although theoretical time complexity estimates of certain specific EMO algo-
rithms exist [15] in solving specific test problems, in most problems a proof of
convergence with a finite computational effort is missing. However, EMO algo-
rithms also lack a theoretical proof of convergence to even on a local Pareto-
optimal front. Moreover, a past study [14] has demonstrated and argued that
EMO algorithm with a finite size archive for storing non-dominated solutions
may allow an evolving population to fluctuate (convergence to the Pareto-
optimal front followed by a departure of some solutions out of the front). This
phenomenon can happen due to constant emphasis of diversity maintenance
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pursued in EMO. To make the diversity among obtained non-dominated solu-
tions better, a Pareto-optimal solution may be sacrificed to accept a non-Pareto-
optimal solution.

Despite the lack of theoretical convergence properties of EMO algorithms,
they are increasingly being used in many applications, due to reasons such as,
user’s satisfaction with a near Pareto-optimal solution, difficulty in implemen-
tation of a local search procedure in a multi-objective context and in discrete
and combinatorial optimization problems, optimality of a solution is impossi-
ble to verify. There exist many other practical optimization problems for which
solutions close to the true Pareto-optimal front are desired with as low a com-
putational effort as possible.

The use of local search in EMO has enjoyed a lot of attention in recent past,
to make EMO algorithms converge faster on to the true Pareto-optimal front
[3]. Here, we briefly mention some representative studies. A hybrid algorithm
(S-MOGLS) using weighted sum of multiple objectives as fitness function was
proposed in [9]. A neighborhood search (NS) was used as a local search which
was then applied to all offspring solutions generated by NSGA-II. The algorithm
C-MOGLS developed in [17] combined cellular multi-objective genetic algorithm
and NS as a local search. The local search in this approach was applied using
weighted sum of multiple objectives as fitness function to all non-dominated
solutions in each generation. A new genetic local search algorithm which uses
hybridization of recombination operators with a neighborhood based local search
was presented in [10]. A random utility function was optimized locally in this al-
gorithm. The local search was applied on all offspring solutions. In [7], a weighted
sum of multiple objectives as fitness function was used and two approaches were
presented hybridizing NSGA-II, a posteriori approach in which the local search
is applied on all non-dominated solutions obtained after the NSGA-II simulation
and an online approach in which the local search is applied to all offspring gen-
erated in each generation of NSGA-II. M-PAES which is a population version of
multi-objective evolution strategy (PAES) was proposed in [11]. The search is
enhanced by the use of (1+1)-ES as a local search. Furthermore, a new hybrid
algorithm which uses Pareto descent method (PDM) as local search method
was proposed in [8]. PDM finds feasible Pareto descent directions by solving
computationally inexpensive linear programming problems.

Based on these studies and others from the literature, we observe two main
approaches of using a local search with EMO. First, most studies implement local
search as a refinement of solutions found by EMO. Second, when implemented
within EMO, a local search is usually applied to all offspring solutions with a
naive neighborhood based procedure. Not much effort has been given in borrow-
ing more effective multiple criteria decision making (MCDM) [1] ideas in local
search. In this paper, we propose the idea of one such hybrid approach in which
EMO and local search are coupled and the latter is used to solve an augmented
achievement scalarizing function (ASF). Since the solution to an augmented
ASF is always a properly Pareto-optimal solution, the overall hybrid approach
is shown to have a better convergence property than the EMO procedure alone.
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The rest of this paper is organized as follows. In Section 2, we discuss the
motivation of using a local search as a part of multi-objective optimization. The
proposed hybrid approach is described in Section 3. Then, Section 4 describes
results obtained by the hybrid approach and compared with original NSGA-II
on test problems and briefly discusses possible approaches to ensure diversity in
a hybrid approach. Finally, conclusions are drawn in Section 5.

2 Local Search in EMO

A local search is usually applied to improve the solution(s) obtained by an ap-
proximate optimizer. Here, we discuss the motivation for using a local search in
a complex optimization task.

Optimization in practice involves objective function landscapes which may be
multimodal, nondifferentiable, discrete, and involve many other complexities. It
is unrealistic to expect a single optimization algorithm to be computationally
efficient in handling different vagaries of function landscapes. A combination
of two types of algorithms – an approximate global optimizer and an accurate
local search – is one way to tackle the problem. The global optimizer searches the
entire landscape to find the most promising region(s) with multiple points, while
the local search begins its search from a particular solution and converges to a
locally optimal solution. Thus, the roles of global and local optimizers are used to
negotiate different function landscapes. Both optimization tasks are important
and a balance of the extent of their searches is necessary for the overall procedure
to converge to the true globally optimal solution.

In this study, we consider a population-based evolutionary algorithm as a
global optimizer and a (gradient-based) mathematical programming method as
a local search procedure, as they fit well with the above description of local and
global optimizers. There are at least two different ways they can be hybridized: a
serial and a concurrent approach. In a serial approach, global and local searches
are applied serially one after the other with appropriate termination conditions.
This switchover to local search from the global optimizer is not easy to fix a priori
on any unknown problem, as a delay in terminating global solver can consume
excess function evaluations and an early termination shall yield a locally optimal
solution. For terminating a local search, a standard procedure such as the error
in violations of Karush-Kuhn-Tucker (KKT) [12] conditions of optimality to be
within a limit can be used. In the concurrent approach, local search is embedded
within a global optimizer so that some or all intermediate solutions are modified
by the local search. For example, in the EMO framework, the local search may be
considered as an additional EMO operator which attempts to bring an interme-
diate solution to a locally Pareto-optimal solution. The termination criterion of
the local search can be a standard one (as described above), but the termination
of the global optimizer need not be ad-hoc, as in the serial approach, but can
be based on whether there is an improvement in the locally optimal solutions
over past few iterations. Due to the above advantages, we restrict ourselves to
the concurrent approach of hybridization in this study.
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In the case of solving single-objective optimization problems, the objec-
tive function to be optimized in the local search can be the same as that
used in the global optimizer, as the main goal in this task is to find the
global optimum of a single function landscape. Figure 1 illustrates this aspect.

x

f(x)

Points after local search
Points during global search

Global minimum

Fig. 1. Local and global searches can use the
same objective function in a single-objective
optimization

However, in handling multiple con-
flicting objectives, a local search
faces an additional difficulty of
choosing an appropriate single ob-
jective for its search. Since multiple
conflicting objectives are of interest
here, it is not fair to choose one par-
ticular objective function among the
conflicting ones for the local search.

Thus, we realize that an imple-
mentation of a local search is non-
trivial yet important in the context
of multi-objective optimization. De-
spite, the existence of many local
search approaches described in Section 1, a directed and computationally faster
optimization approach is necessary for the local search.

In the following section, we suggest a widely used reference point based ap-
proach [18] from the MCDM field to be used in local search.

3 Proposed Local Search Based EMO

We propose a hybrid approach where we use the NSGA-II method [5] as the EMO
procedure and hybridize it with an ASF (based on a reference point) which is
solved with a local search method.

In the t-th generation of the NSGA-II procedure, an offspring population Qt

is created by using selection, recombination and mutation operators from the
parent population Pt. Thereafter, each member of Qt is evaluated and checked
with a probability pl for its improvement with the local search procedure. After
the local search operations are performed, parent and offspring populations are
combined together and a non-dominated sorting is performed. Thereafter, the
NSGA-II procedure continues as usual.

The local search is started from an offspring solution y (having objective
vector f(y)). The local search procedure minimizes the following augmented
achievement scalarizing function [18]:

minimizex
M

max
i=1

fi(x)−zi

fmax
i −fmin

i

+ ρ
∑M

j=1
fj(x)−zj

fmax
j −fmin

j

,

subject to x ∈ S,
(1)

where S is the feasible decision variable space, z=f(y) is the so-called reference
point, and fmax

i and fmin
i are the maximum and minimum objective values of

the parent population Pt used for normalization.
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Fig. 2. Proposed local search based
on augmented achievement scalarizing
function

By solving (1) we project the refer-
ence point (i.e. the solution produced
by the EMO algorithm) onto the Pareto
optimal front. The second term in the
objective function (1) ensures that the
local search will converge to a prop-
erly Pareto-optimal solution [16,18]. A
small value of ρ = 10−2 is used in this
study. This local search procedure al-
lows a directed search dictated by the
wi = 1/(fmax

i − fmin
i ) term, as shown

in Figure 2. The local search is termi-
nated if any of the following conditions
is met: (i) a maximum of 25 iterations is
elapsed (here, maximum iterations are
fixed to prevent excessive function eval-
uations during initial stages of algorithm) (ii) a KKT error value of 0.001 is
achieved, or (iii) a maximum difference of 10−6 in any variable in two successive
iterations is achieved.

In this study, we use a probability of local search pl which periodically in-
creases and drops linearly with generations. Starting from zero at the initial
generation, the probability rises to 0.01 in (0.5N − 1) generations (where N is
the population size) and drops to zero in t = 0.5N generations. This means
that, when N = 100, and generation = (0.5N − 1), on an average one solution
in the entire population gets modified by the local search. The initial genera-
tions have a smaller local search probability, as typically the population is far
from the Pareto-optimal front and the local search may mostly produce extreme
Pareto-optimal solutions. The probability increases linearly as more solutions
may need to be modified using the local search procedure to ensure convergence
to the Pareto-optimal front. pl goes to zero after each period to prevent loss in
diversity both during these initial phases and when the population approaches
the Pareto-optimal front.

To terminate the hybrid approach, the normal stopping criteria of EMO such
as fixed maximum number of generations can be applied. Alternatively, it is
time to stop when the local search produces no significant change. Then the
local search should be applied to the entire final population. Here, for testing
purposes we use a stopping criterion based on the discrepancy (we call it an
’error metric’) in objective fM between obtained solution and corresponding fM

value obtained by substituting other objective values (f1 to fM−1) in the Pareto-
optimal relationship (fM = fM (f1, . . . , fM−1)) is calculated for each current
non-dominated solutions. If the sum of the square of errors generated by all
non-dominated solutions is less than or equal to 0.001, the hybrid approach is
terminated. This termination criterion ensures that all obtained solutions are
close to the true Pareto-optimal front. It must be noted, that this termination
criterion is used only to test the efficacy of our algorithm and cannot be applied
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to any general problem. To, check the diversity of obtained set of non-dominated
solutions, we calculate the hypervolume measure (HV) of the obtained set of
points [4]. Thereafter, the normalized difference in hypervolume measure (NDHV
= (HV∗-HV)/HV∗, where HV∗ is the hypervolume of the true Pareto-optimal
front) is computed and compared with the same obtained for the solutions of
the original NSGA-II.

Although not obvious, we argue here that the use of a local search procedure
within an EMO shall constitute a computationally faster approach than without
the use of a local search to EMO procedure. The occasional use of the local
search procedure will introduce a few elite solutions in the population. Under
EMO operators, these solutions will then get an opportunity to recombine with
other population members and exchange variables between them, which may
cause more non-Pareto-optimal solutions to come closer to the Pareto-optimal
front. This hybrid approach allows the population to converge faster near the
Pareto-optimal front.

4 Results and Discussion

We apply the proposed hybrid approach on a number of two to four objective
test problems. As a local solver we use SQP from KNITRO [2]. To compare the
speed and accuracy of our hybrid approach with the original NSGA-II, both
algorithms are terminated when the average error metric value is smaller than
0.001 and the number of function calls needed in each case are recorded. For
each problem, we also compute and compare the NDHV.

For this study, we consider four bi-objective test problems (ZDT1, ZDT2,
ZDT3 and ZDT4) and two three-objective test problems (DTLZ1 and DTLZ2)
and one four-objective problem (DTLZ2). For bi-objective problems, we have
100 population members and for three and four objectives, we have used 200
population members. Crossover probability of 0.9, SBX distribution index [4] of
15, mutation probability of 0.1M−1 (reduced probability with number of objec-
tives due to increased maintenance of diversity by crowding distance operator),
and mutation distribution index of 20 are used. Table 1 show the best, median

Table 1. Comparison of the number of function calls for the hybrid approach and orig-
inal NSGA-II. Algorithms are terminated when a fixed level of convergence is achieved.

Test Original NSGA-II Hybrid approach
Problem Best Median Worst Best Median Worst

ZDT1 19,400 20,900 24,600 4,665 7,554 8,580
ZDT2 20,600 21,700 23,200 4,826 6,351 7,198
ZDT3 21,900 23,500 26,300 10,736 16,731 22,137
ZDT4 27,100 34,500 60,300 6,003 7,658 14,479

3-DTLZ1 59,800 76,200 97,200 48,352 60,323 76,890
3-DTLZ2 38,200 54,000 93,800 32,611 61,508 69,650

4-DTLZ2 52,200 68,200 120,800 45,005 61,879 114,899
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Table 2. Comparison of NDHV for the hybrid approach and original NSGA-II. (smaller
value is better).

Test Original NSGA-II Hybrid approach
Problem Best Median Worst Best Median Worst

ZDT1 0.0043 0.0047 0.0054 0.0034 0.0042 0.1630
ZDT2 0.0044 0.0053 0.0064 0.0037 0.0070 0.0499
ZDT3 0.0012 0.0016 0.0023 0.0007 0.0009 0.0010
ZDT4 0.0042 0.0047 0.0055 0.0037 0.0106 0.223

3-DTLZ1 0.0196 0.0341 0.0403 0.0187 0.0224 0.0296
3-DTLZ2 0.0000 0.0000 0.0000 0.0000 0.0001 0.0030

4-DTLZ2 0.0049 0.0066 0.0086 0.0048 0.0067 0.0085

and worst function calls for 10 runs started from 10 identical initial populations
for both the hybrid approach and the original NSGA-II procedure. The better
algorithm in terms of the smallest number of required function calls is marked
in bold face. It is clear that for bi-objective problems the convergence is much
faster with the hybrid approach. For more objectives, better results are observed
with the hybrid approach, but the difference in the performance seems to reduce
with an increase in the number of objectives. We suspect that this behavior is
due to the degraded performance of domination-based EMO approaches with an
increased number of objectives [4]. Although the hybrid approach did not ex-
plicitly introduce a mechanism to maintain diversity except NSGA-II’s crowding
distance operator, we present NDHV values in Table 2. It is interesting that in
most cases the proposed hybrid approach is able to find a well-distributed set
of converged points. In the case of ZDT4, relatively higher median and worst
values, together with a prescribed error measure of 0.001 and a smaller number
of function calls, indicate desired convergence at a faster rate, but at the expense
of needed diversity in some simulation runs. Since in most problems, a function
evaluation is most time consuming, we stress here on number of function calls,
rather than exact computational time.

Other ideas could be considered for ensuring diversity, such as: Firstly, the
local search direction can be biased differently for different EMO solutions based
on the location of EMO solution and on the undiscovered regions of the Pareto-
optimal front. Secondly, the crowding distance operator of NSGA-II can be re-
placed with a better diversity preserving procedure, such as clustering [13,19]
and lastly, instead of using a generational evolutionary optimization approach
such as NSGA-II, a steady-state procedure (such as in epsilon-MOEA [6]) may
be adopted. In this way, every new solution created by the hybrid approach can
be evaluated for its convergence and diversity enhancement properties to the
rest of the non-dominated solutions of the EMO population.

We now discuss the working principle of the local search by examining its
performance on the ZDT1 and ZDT2 problems. In Figures 3 and 4, we plot the
average error metric values versus generation counter for both the approaches.
The vertical lines indicate the generations at which at least one local search is
executed. It is interesting to observe that soon after the first local search has
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Fig. 4. Average error metric for ZDT2

taken place at generation 10, the population gathered momentum to move to-
wards the Pareto-optimal frontier for both problems. Figure 5 shows all 100
population members at the start of generations 10, 11, 13 and 15. The first local
search takes place at generation 10 and a weak Pareto-optimal solution on f2

axis (marked with a circle) was found (25 iterations of local search were not
enough to find proper Pareto optimal solution). The presence of this solution in
the population and its subsequent recombination with other population mem-
bers caused them to come closer to the Pareto-optimal front, thereby providing
the speed of convergence. Starting from the same initial population, the original
NSGA-II, although maintained a similar error metric value till generation 10,
failed to keep pace with the hybrid approach thereafter. Figure 6 shows the pop-
ulations at the above generations to demonstrate the slow nature of convergence
of the original NSGA-II. A similar phenomenon is observed with test problem
ZDT2 (Figure 4).
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5 Conclusions

In this paper, we have argued that an efficient implementation of a local search
procedure in an EMO algorithm is not straightforward. To take advantage of fast
and accurate convergence to Pareto-optimal solutions, EMO algorithms must use
a directed and provable local search procedure. In this study, we have suggested
the use of an augmented achievement scalarizing function to be solved with a
local search method. The local search procedure has been implemented as an
additional operator and applied to EMO populations with a varying probability.
On a number of standard test problems involving two to four objectives, we have
observed that our proposed hybrid approach with NSGA-II is computationally
faster than the original NSGA-II procedure in finding solutions which are close
to the Pareto-optimal front.

Achieving convergence of solutions to the Pareto front is just half of our quest,
as diversity of obtained solutions is also vital. Although in this study we rely
on the NSGA-II crowding distance operator for diversity preservation, the faster
and accurate convergence achieved with the proposed local search is now ready
to be coupled with a more efficient diversity ensuring operator (currently under
study). However the present study has clearly shown the advantage and potential
of hybridizing local search in a fast and accurate computation of Pareto-optimal
solutions.
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Abstract. A systematic approach for determining the generation number
at which a specific Multi-Objective Evolutionary Algorithm (MOEA) has
converged for a given optimization problem is introduced. Convergence is
measured by the performance indicators Generational Distance, Spread and Hy-
pervolume. The stochastic nature of the MOEA is taken into account by re-
peated runs per generation number which results in a highly robust procedure.
For each generation number the MOEA is repeated a fixed number of times, and
the Kolmogorow-Smirnov-Test is used in order to decide if a significant change in
performance is gained in comparison to preceding generations. A comparison of
different MOEAs on a problem with respect to necessary generation numbers be-
comes possible, and the understanding of the algorithm’s behaviour is supported
by analysing the development of the indicator values. The procedure is illustrated
by means of standard test problems.

1 Introduction

Convergence properties for Multi-Objective Evolutionary Algorithms (MOEA) are an
equally important issue as for single objective optimization. The question when to
stop a stochastic search algorithm depends on practical as well as on technical deci-
sions. Due to the fact that MOEAs are a fairly recent phenomenon there do not exist
many mathematical convergence theories yet. Some of the current theories state back
to single-objective theory (Deb 2004). Rudolph and Agapie (2000) and Rudolph (2001)
proved that MOEAs with elitism and positive variation kernel can have the property
of converging to the true Pareto front in finite number of function evaluations in fi-
nite search space problems. Further rigorous results are available for t → ∞ (Hanne
1999). Laumanns et al. (2003, 2002) provided results on theoretical as well as empiri-
cal convergence properties for ε-MOEAs introducing additional spread properties. Van
Veldhuizen and Lamont (1998a) derive results on sufficient conditions of convergence.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 825–836, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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In contrast to offline convergence analysis also online termination criteria for an
MOEA exist, i.e. the MOEA is started for a single run, and it is stopped once a specific
termination criterion has been met. In practice it is generally difficult to find a good ter-
mination criterion for MOEAs without sufficient a-priori knowledge about the optimiza-
tion problem at hand. The most frequently used termination criterion is the maximum
number of generations or execution time. An alternative is to measure the difference
of improvements during a certain time interval. If the improvement is smaller than a
certain threshold the termination criterion holds. The problem here lies in the determi-
nation of the threshold. Furthermore, this criterion may also be misleading in cases of
functions with very small inclinations. Another criterion is to stop after a certain qual-
ity of a solution is reached. This leaves the problem of choosing a proper quality limit
that allows for a finite termination of the algorithm. Rudenko and Schoenauer (2004)
mention various online termination criteria for elite MOEAs. They discuss e.g. disap-
pearance of all dominated individuals or deterioration of the number of newly produced
non-dominated individuals. They propose a technique for determining stagnation using
a stability measure of the crowding distance (Deb 2002). Deb and Jain (2002) investi-
gate so-called running performance metrics for convergence and diversity of solutions
to be monitored in the course of the algorithm.

Especially for problems with yet unknown characteristics a systematic analysis of
the required run length of the MOEA becomes necessary as no sufficient a-priori-
knowledge is available for choosing the desired solution quality. Termination criteria
often are heuristical procedures with the disadvantage of being statistically unrobust as
only a single run of the algorithm is taken into account.

In this paper a systematic offline convergence analysis of MOEA behaviour with
respect to multiple performance indicators is suggested (Testing-based Runlength De-
tection (TRD)). Here Generational Distance (GD, Van Veldhuizen and Lamont 1998),
Spread (Deb 2002) and Hypervolume (Zitzler and Thiele 1999) were chosen exemplary.
For each generation number in a predefined (preliminary) interval the MOEA is applied
m times resulting in m values of the performance indicators. This makes the procedure
very robust as the stochastic nature of the MOEA is addressed.

Subsequently a Kolmogorow-Smirnov-Test (Sheskin 2000) is applied for each indi-
cator in order to check if the distribution of the indicator at a specific generation num-
ber significantly differs from the distribution of the indicator values obtained at the five
previous generations. The procedure stops in case the p-value of the test exceeds the
significance level for three successive generations, and the indicator-specific optimal
generation number is determined. The overall optimal generation number then comes
out as the maximum of the indicator-specific optimal numbers. In case the preliminary
upper generation limit has not been high enough it is redefined and the procedure is
restarted beginning at the previous upper generation limit. Thus no computational re-
cources are wasted.

By the proposed procedure it becomes possible to compare different MOEAs on an
optimization problem in a systematic way with respect to the required generation num-
bers. Ideally the remaining MOEA-parameters should be adapted or tuned upfront for
the given problem to allow highest possible algorithm performance. The method also
ideally suits problems which have to be optimised repeatedly with the same or slightly
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different set-up in order to have a guideline when to terminate the MOEA based on
systematic and robust analysis. Certainly it can only be considered for optimization
problems which require high accuracy on the one hand and allow time for such a sys-
tematic and computationally intensive approach on the other hand. This is the case for
recurring optimization problems in particular, for which it can be analysed how the
MOEA run length interacts with the remaining MOEA parameters.

In Section 2 a detailed description of the proposed procedure is given illustrated
by a flow chart. The results of exemplary applications to standard test problems are
summarized in Section 3 for NSGA-II (Deb 2002) applied to the Binh- (Section 3.1),
the ZDT1- (Section 3.2) and the Fonseca-problem (Section 3.3). Finally conclusions
are given in Section 4.

2 A Convergence Criterion for MOEAs

For a given multiobjective optimization problem a simulation is carried out following
the algorithm steps in Figure 1. A multiobjective evolutionary algorithm is selected and
all parameters except the number of generations are set to a constant level.

For each generation number G∗ ∈ [GL, GU ] with a predefined step-width S the
MOEA algorithm is applied a fixed number of times m always restarting from the be-
ginning, where GL and GU are the lower and (preliminary) upper limits of the gener-
ation numbers. The parameter m should not be too small to ensure a sound statistical
analysis. For the experiments in Section 3 m = 50 was used. This procedure results
in m Pareto fronts for generation G∗. Ideally a step-width S = 1 should be chosen.
But as the simulations require much CPU time and difficult test problems need a very
high number of generations the step-width S helps to keep the computational effort at
an acceptable level. The “true” optimal generation number then is within the interval
[Gopt − (S − 1), Gopt + (S − 1)].

For all G∗ three MOEA performance indicators are chosen in order to determine
the solution quality of the MOEA-algorithm. As all the indicators are sensitive regar-
ding the scaling of the objectives all solutions are normalized to the interval [0, 1] before
starting the performance analysis. Generational distance is used, measuring the distance
of the elements of the last non-dominated objective vectors (the estimated Pareto fronts)
of the different algorithms to those in the “true” Pareto optimal front. It is defined as

GD := (
√∑N

i=1 d
2
i )/N,whereN is the number of solutions in the last non-dominated

front found by the MOEA, and di is the euclidean distance between each of these objec-
tive vectors and the nearest objective vector of the true Pareto front. In case GD equals
zero all the solutions belong to the true Pareto front.

As a diversity measure the Spread Indicator (SP) introduced by Deb (2002) is used:

SP :=

(
M∑

m=1

dm +
N−1∑
i=1

|di − d̄|
)
/

(
M∑

m=1

dm + (N − 1)d̄

)
. (1)

The values dm are the euclidean distances between the extreme solutions of the true
Pareto optimal front and the boundary solutions of the last non-dominated set produced
by the MOEA corresponding to the mth objective function. M is the total number of
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Select MOEA 

Select initial generation number GL ,

step-width S for following generations and

preliminary upper generation limit GU

Run the MOEA m times using G generations

(Always restart from the beginning)

For (G in (GL : S : GU )) {

for (i in (1:1:m)) {

Compute performance indicators Generational Distance 
GDi

G, Spread SPi
G and Hypervolume HVi

G}

Compute the upper and lower quartiles and the median 
of each performance indicator

Plot (G vs. upper and lower quartiles and the median) 
to get an idea of convergence behaviour 

}

(X)

if (termination-criterion not fulfilled): {

Select G´U > GU ,

Set GL := GU - 5, GU := G´U

Start again at (X)

}

else {G* : Optimal generation number}

For (G* in (GL+ 6S : S : GU)) {

STOP if p-value is greater than    = 0.05 
for three succeeding G*, G*+1, G*+2 
for all three tests. 
}

Perform Kolmogorov-Smirnov-Test for

GDG* = {GDi
G* , i=1,...,m}

vs.  {GDG* - 5S, GDG* - 4S,..., GDG* - S)

SPG* = {SPi
G* , i=1,...,m}

vs.  {SPG* - 5S, SPG* - 4S,..., SPG* - S)

HVG* = {HVi
G* , i=1,...,m}

vs.  {HVG* - 5S, HVG* - 4S,..., HVG* - S)

Fig. 1. Procedure for selecting the optimal number of generations for a given multiobjective
optimization problem (Testing-based Runlength Detection (TRD))

objective functions. The parameter di represents the euclidean distance between neigh-
bouring solutions in the last non-dominated set of solutions measured in the objective
space, and d̄ is the arithmetic average of these distances. The target value of zero for SP
indicates a perfect equally distributed spread of the obtained algorithm solutions.

Hypervolume (HV, Zitzler and Thiele 1999) as the third performance criterion re-
flects the volume in the objective space covered by the members pi(i = 1, . . . , N) of a
non-dominated set ND of solutions. It is defined relative to an “anti-optimal” reference
pointR, the worst possible point in the objective space. This point is usually not known
and has to be chosen carefully (Knowles and Corne (2002)). It is mostly approximated
by the worst objective values in each dimension from any of the calculated fronts in the
course of the algorithm. Then the HV is the union of the hypercuboids (bounded by R)
in the Lebesgue measure Λ which are weakly dominated by the vectors pi:

HV (ND, R) = Λ
({⋃

h(pi)|pi ∈ ND, i = 1, . . . , N
})

, (2)

h(pi) = [pi1, R1]× [pi2, R2]× . . .× [piM , RM ]. (3)
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Thus the larger the hypervolume the wider is the range of Pareto optimal solutions.
Therefore hypervolume has to be maximized.

In order to get an idea about the convergence behaviour of the three indicators for
each G∗ the upper and lower quartiles as well as the median of the indicator values
are computed separately for each indicator and three plots are generated which plot
these statistics against the number of generations (see Figure 4 for an example). This
relates to the concept of Generalized Runtime Distributions (Hoos and Stützle 2004).
By analyzing the plots a first visual analysis for determining the optimal number of
generations becomes possible. The MOEA has converged at generationG∗ with respect
to an individual performance indicator if the median, lower and upper quartile of the
indicator values at G∗ do not differ significantly from the respective values obtained at
adjacent generation steps.

In order to perform a statistically sound analysis however, a sequential statistical test
procedure is suggested as follows. Starting at generation GL + 6 separately for each
indicator the distribution of the m indicator values at generation G∗ is compared to the
distribution of all 5 ·m indicator values of the five previous generation steps. The value
of five has been empirically set based on extensive simulation studies on standard test
problems. It turned out that smaller values do not allow reliable convergence statements
whereas higher values may lead to a too strict procedure, and thus to much higher
generation numbers than desired compared to the results of the visual analysis of the
performance plots.

The two-sample Kolmogorow-Smirnov (K-S) -Test (Sheskin 2000) is applied with
the null-hypothesis that the respective distributions are identical. Thus it is tested if a
significant change in performance is obtained at generation G∗ compared to the five
preceding generation steps.

The K-S-test was chosen as it is a non-parametric test. As the proposed procedure
should be generally applicable for all possible multiobjective optimization problems
no distribution assumption can be made for the m performance indicator values at each
generation. Furthermore, it has a general alternative, i.e. it is sensitive to any kind of dis-
tributional difference (location, dispersion, skewness, kurtosis,...) (Siegel and Castellan
(1988)). It is desired to check whether the distributions are different in any kind of
structure. The K-S-test is easily applicable and tables with critical values have been
provided. It proved to be superior to other well-known test procedures, e.g. based on
iterations of indicator values (Wald and Wolfowitz 1940) or to the test by Katzenbeisser
and Hackl (1986).

The two-sample Kolmogorow-Smirnow-Test relies on the empirical distribution
functions of the two samples which are an unbiased estimator for the unknown dis-
tribution functions of the underlying populations. Let IG∗

:= {IG∗

i , i = 1, . . . ,m}
be the m realizations of a performance indicator I at generation G∗ understood as

a sample of the population with distribution function F IG∗
. Furthermore, IG∗

5 :=
{IG∗−5S , . . . , IG∗−S} is defined as the set of 5m values of the performance indicator
I obtained at the five generations preceding G∗. IG∗

5 represents a sample of the popu-

lation with distribution function HIG∗
5 . The related empirical distribution functions are

F IG∗

m and HIG∗
5

5m , the index referring to the sample size:
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F IG∗

m (z) =

⎧⎪⎨⎪⎩
0, z < IG∗

(1)

i/m, IG∗

(1) ≤ z < IG∗

(i+1) for i = 1, . . . ,m− 1
1, z ≥ IG∗

(m)

(4)

The set {IG∗

(1) , . . . , I
G∗

(m)} is formed by the values of IG∗
in ascending order. HIG∗

5
5m is

defined in a straightforward manner:

HIG∗
5

5m (z) =

⎧⎪⎪⎨⎪⎪⎩
0, z < I

G∗
5

(1)

i/(5m), I
G∗

5
(1) ≤ z < I

G∗
5

(i+1) for i = 1, . . . , 5m− 1

1, z ≥ I
G∗

5
(5m)

(5)

The K-S-test assumes independence of the two samples. This condition is fulfilled due
to the fact that the MOEA is started from the beginning for each generation numberG∗,
which is repeatedm times. It is no online termination criterion, i.e. it is not the case that
everym generation the current non-dominated set is analysed. Thus the objective values
in the last non-dominated front at generation G∗ are not dependent on the respective
objective values at generation (G∗ − 1).

The test problem then can be stated as follows :

H0 : F IG∗

(z) = HIG∗
5 (z) ∀z ∈ R, (6)

H1 : F IG∗

(z) �= HIG∗
5 (z) for at least one z ∈ R. (7)

The test statistic Km,5m (8) of the K-S-test relies on the maximum absolute difference
of the respective empirical distribution functions,

Km,5m = max
z
|F IG∗

m (z)−HIG∗
5

5m (z)|, (8)

andH0 is rejected ifKm,5m > k1−α. It can be shown thatKm,5m is non-parametric, i.e.
does not depend on the concrete z values at hand. Form,n ≥ 20 and chosen significance

level α = 0.05 the critical value k1−α can be approximated by 1.36
√

m+(5m)
m·(5m) (Sheskin

2000). The significance levelα = 0.05 was chosen as it is a standard value for statistical
testing, and as it led to very good and reasonable simulation results (Section 3).

Opposed to the standard statistical test approach however it is not of interest if H0

is rejected. Instead one is waiting for the specific G∗ that allows to conclude that
H0 cannot be rejected any more. With respect to the performance indicator at hand
(I ∈ {GD,SP,HV }) the optimal generation number Gopt is then selected as the
generation number from where the p-value of the K-S-test exceeds 0.05 for three con-
secutive generation steps. The value of three was determined based on simulation stud-
ies on standard test problems (see Section 3). Smaller values do not produce stable
enough results, i.e. fluctuating p-values may occur. Convergence decisions are not reli-
able enough, i.e. the procedure tends to stop too early. Especially for multimodal prob-
lems it could happen that the MOEA gets completely stuck in a local optimum. Higher
values on the other hand tend to cause a too strong convergence criterion, especially if
S is quite large.
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As the test procedure is applied separately for all three performance indicators a mul-
tiple test problem (Miller 1981) results at each generation number resulting in a global
significance level of 0.15 at each G∗. This implies a probability of 15 % that H0 is
rejected although it actually holds.

The overall optimal generation number for the multiobjective optimization problem
at hand is chosen as the maximum of the three individual optimal generation numbers of
the indicators. In case the upper generation limit GU that has been chosen upfront turns
out not to be high enough to meet the convergence-criterion of the algorithm, a new
upper limit G′

U > GU has to be defined, and the procedure starts from the beginning
by setting GL := GU − 5 and GU := G′

U . However, one should be aware of the fact
that there may exist problems for which the MOEA will not find a good approximation
of the true Pareto front, regardless the number of generations. In our simulation the
Deb(3)-problem (Collette and Siarry 2003) turned out to be such an example. This
problem is difficult due to the change of expected PF-shape from concave to convex.
The percentage in which the algorithm failed, i.e. did not succeed in finding a convex
front was not stable at all over the m runs, even not for very high generation numbers.
In such cases reasonable considerations are necessary to select a suitable generation
number based on the plots mentioned above.

Although three specific performance indicators were chosen for the analysis the pro-
posed procedure is independent of the type and number of performance indicators. One
can easily replace e.g. GD by another criterion or even add another performance crite-
rion for the analysis. However, the significance levels of the K-S-test for the individual
indicators then have to be adjusted with respect to the desired global significance level.
In case the true Pareto front is not known upfront indicators have to be chosen which
are independent from this a-priori-knowledge. It is even possible to solely focus on Hy-
pervolume as an appropriate indicator which would remove the multiplicity of the test
problem.

For completely unknown problems the appropriate choice of the parametersGL, GU ,
and S could be difficult. The recommendation in this case is to use small numbers for
GL and S as the problem complexity is not known. The choice of GU is not crucial
as it can be adapted in the course of the procedure without any computational loss as
explained above.

3 Simulations

The proposed procedure was tested by means of three standard benchmark test
problems, the Binh-, the ZDT1- and the Fonseca-problem. The performance
indicators have been determined using JMetal-Tools (http://mallba10.lcc.uma.es/
wiki/index.php/Tools). A real-coded Matlab-implementation of NSGA-II (Deb 2002)
was used with parameter settings as typically suggested for the respective test functions
(Deb 2004). The population sizes will be given with the fitness functions. The pool size
is half the population size, and the distribution indices for crossover and mutation op-
erators are μ = 20 and μm = 20, respectively. The number of repeated runs for each
generation number was set to m = 50.
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Fig. 2. Pareto-fronts of the a) Binh- , b) ZDT1- and c) Fonseca-problem

In most test problems the SP indicator showed earlier convergence than GD implying
that the NSGA-II tends to first build up a well-spread non-dominated set and then tries
to shift it in the direction of the true Pareto front as accurate as possible. Furthermore,
the plots reveal that the improvement in the HV indicator is only large from lower
generation numbers to medium-sized ones. Visual inspection of the graphs indicate that
convergence seems to occur quite early. However, the distribution function of the HV
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Table 1. P-values of K-S-Test for
Binh-Problem

Gen p (GD) p (SP) p (HV)

15 0.0006 0.0000 0.0000
17 0.0000 0.0000 0.0000
19 0.0011 0.0000 0.0000
21 0.0544 0.0000 0.0001
23 0.0544 0.0001 0.0024
25 0.0003 0.0001 0.0000
27 0.0119 0.0001 0.0003
29 0.0024 0.0013 0.0001
31 0.2124 0.0000 0.0072
33 0.0009 0.0263 0.0005
35 0.1190 0.0473 0.0029
37 0.0926 0.1344 0.0119
39 0.0544 0.0926 0.0004
41 0.0624 0.2124 0.0225
43 0.3210 0.7583 0.0060
45 0.9822 0.9525 0.0410
47 0.0035 0.5021 0.0029
49 0.0410 0.5435 0.3210
51 0.4240 0.5021 0.0263
53 0.2365 0.2626 0.0042
55 0.6728 0.5021 0.0042
57 0.2365 0.6728 0.0011
59 0.1699 0.0926 0.0263
61 0.0713 0.3210 0.1513
63 0.2365 0.9304 0.6728
65 0.1052 0.6728 0.1190
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values of the m runs becomes very steep for higher generation numbers so that even
a small number of different solutions affects the shape of the distribution drastically.
Thus the HV convergence criterion is always met much later than visually expected.

3.1 Binh-Problem

Figure 2 a) shows the Pareto-front for the Binh-problem (Binh 1999, Collette and Siarry
2003), which is a connected convex curve. The generation limits GL and GU are set to
5 and 65 using a step width S equal to 2 whereas the population size equals 50. The true
Pareto front can be computed using the analytical formula f2(x) = 2 ·(

√
f1(x)/2−5)2

with f1(x) ∈ [0, 50]. It has been approximated using step width 0.1 in the interval
f1(x) ∈ [0, 10] and step width 0.5 in the interval f1(x) ∈]10, 50].

Figure 4 visualizes the median as well as upper and lower quartiles of the perfor-
mance indicators in relation to the number of generations. GD converges at first which
is reflected by the results of the test procedure in Table 1. The optimal generation num-
bers are 35 with respect to GD, 37 with respect to SP and 61 for HV leading to an
overall optimal generation number of 61.
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20 40 60 80

−
8.

0
−

7.
0

−
6.

0
−

5.
0

No. of Generations

lo
g(

G
D

)

0.25−Quantile
Median
0.75−Quantile

0.
00

1
0.

00
6

G
D

20 40 60 80−
1.

0
−

0.
6

−
0.

2
0.

2

No. of Generations

lo
g(

S
P

)

0.25−Quantile
Median
0.75−Quantile

0.
4

1
1.

2
S

P

20 40 60 80−
1.

8
−

1.
6

−
1.

4
−

1.
2

No. of Generations

lo
g(

H
V

)

0.25−Quantile
Median
0.75−Quantile

0.
18

0.
28

0.
32

H
V

Fig. 5. NSGA-II applied to the
Fonseca-problem; GD, SP and HV are
analysed



834 H. Trautmann et al.

3.2 ZDT1-Problem

The ZDT1-problem (Zitzler 1999) has 30 decision variables. Its Pareto front is a convex
and connected curve (Figure 2 b)) and can be analytically determined by f2(x) = 1 −√
f1(x). The true front has been approximated by this formula for f1 ∈ [0, 1] with a

sequence step of 0.05.
As the ZDT1-problem is known to be difficult to solve, even by using generation

numbers greater than 1000 (Zitzler 1999) a step width S = 50 is adequate with regard
to the computational effort of the simulations. GL was chosen as 50 and the upper
generation limit GU as 1200. The population size equals 200 as in the simulations
performed by Zitzler (1999). Figure 4 reflects that SP and HV behave rather similar
regarding the convergence behaviour, suggesting optimal generation numbers of 700
and 650 (Table 3). The p-values of the K-S-test for GD however do not exceed the
significance level of 0.05 for three succeeding generation steps until 1000 generations
which therefore is the overall optimal generation number. Not according to expectation
the Generational Distance Indicator does not have a downward but an upward tendency.
This is due to the fact that for small generation numbers the range of solution quality
differs very much. Also some outliers with very good GD values come up depending
on the values of the initial front. These solutions however often behave very poor with
regard to SP. With increasing generation numbers the MOEA behaviour then becomes
stable regarding a specific GD level.

Table 2. P-values of K-S-Test for
ZDT1-Problem

Gen p (GD) p (SP) p (HV)

300 0.0000 0.0005 0.0085
350 0.0000 0.0000 0.5860
400 0.0000 0.0000 0.0926
450 0.0000 0.0000 0.0225
500 0.0000 0.0000 0.0225
550 0.0060 0.0000 0.2908
600 0.0004 0.0119 0.0410
650 0.3533 0.0060 0.1052
700 0.0473 0.0814 0.0713
750 0.0473 0.0814 0.3533
800 0.0009 0.2908 0.1344
850 0.0072 0.2908 0.1902
900 0.2908 0.0306 0.4240
950 0.0003 0.6292 0.2908
1000 0.5435 0.3533 0.7990
1050 0.1513 0.0354 0.9525
1100 0.3877 0.0624 0.1190
1150 0.4240 0.2908 0.9304
1200 0.0193 0.3877 0.5021

Table 3. P-values of K-S-Test for
Fonseca-Problem

Gen p (GD) p (SP) p (HV)

15 0.0140 0.0000 0.0001
17 0.0020 0.0000 0.0000
19 0.0624 0.0000 0.0000
21 0.0544 0.0263 0.0713
23 0.0060 0.0009 0.0140
25 0.1190 0.0000 0.0011
27 0.0193 0.0000 0.0000
29 0.0050 0.0000 0.0000
31 0.0263 0.0050 0.0035
33 0.0000 0.0001 0.0000
35 0.0001 0.0029 0.0000
37 0.0410 0.0000 0.0000
39 0.0165 0.3533 0.3877
41 0.0000 0.0001 0.0001
43 0.0035 0.1052 0.0050
45 0.0410 0.6728 0.0060
47 0.0193 0.0814 0.0000
49 0.0007 0.0193 0.0000
51 0.0050 0.0306 0.0006
53 0.0926 0.0926 0.0119
55 0.0225 0.2626 0.0024
57 0.0024 0.9697 0.0072
59 0.1513 0.5021 0.4240
61 0.9036 0.1344 0.6728
63 0.7160 0.8372 0.7583
65 0.3210 0.2365 0.7583
67 0.3877 0.9905 0.1902
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3.3 Fonseca-Problem

The Pareto front of the Fonseca-problem (Fonseca and Fleming 1995) is a concave
and connected curve (Figure 2 c)). The interval [GL, GU ] was chosen as [15, 67] using
a step width S of 2, and the population size of NSGA-II was set to 100. The true
Pareto front has been approximated via NSGA-II using a population size of 100 and
200 generations. While Figure 5 suggests an optimal generation number of around 40
the K-S-tests determines the individual optimal generation numbers as 53 (SP) and 59
(GD, HV). Therefore 59 is the overall optimal generation number.

4 Conclusions

Specifying the optimal number of generations for a multiobjective evolutionary algo-
rithm is not an easy task. On the one hand no computational resources should be wasted,
but on the other hand the results have to be accurate enough. Furthermore, the optimal
number differs for each individual multiobjective optimization problem.

This paper provides a systematic procedure based on statistical testing called Testing-
based Runlength Detection (TRD). In contrast to an online termination criterion the
evolutionary algorithm is applied m times sequentially for each generation number up
to a preliminary upper limit. Per run three MOEA performance indicators are com-
puted (Generational Distance, Spread and Hypervolume). At each generation number a
Kolmogorow-Smirnov-Test is used to test if the distribution of the indicators over them
runs of the algorithm is significantly different from the distribution of the indicator va-
lues of the five previous generation numbers. This accounts for the stochastic nature of
the MOEA resulting in a very robust analysis of the algorithm’s performance behaviour.
The generation where the p-value exceeds the significance level for three consecutive
generation steps is the optimal generation number for a performance indicator. By ap-
plying the maximum to all indicator-specific optimal numbers the procedure yields the
overall optimal generation number.

Simulations on standard test cases show the easy applicability and high efficiency
of the proposed method. However, it is computationally intensive and thus designated
for problems which require high accuracy and can afford time for detailed and sys-
tematic evaluation of the algorithm performance. It is designed for a well-founded and
robust comparison between different MOEAs on given test problems with regard to the
required generations until convergence. By analysing the behaviour of the three per-
fomance indicators over time conclusions regarding the MOEA solution strategy can
be made. An application to other MOEA run length criteria (e.g. function evaluations)
is straightforward once it has been decided on desired intervals and step-widths of the
criteria.
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Abstract. The hybridization of multi-objective evolutionary algorithms
(MOEAs) with mathematical programming techniques has gained in-
creasing popularity in the specialized literature in the last few years.
However, such hybrids normally rely on the use of gradients and, there-
fore, normally consume a high number of extra objective function evalu-
ations in order to estimate the gradient information required. The use of
direct (nonlinear) optimization techniques has been, however, less com-
mon in the specialized literature, although several hybrids of this sort
have been proposed for single-objective evolutionary algorithms. This pa-
per proposes a hybridization between a well-known MOEA (the NSGA-
II) and two direct search methods (Nelder and Mead’s method and the
golden section algorithm). The aim of the proposed approach is to com-
bine the global search mechanisms of the evolutionary algorithm with the
local search mechanisms provided by the aforementioned mathematical
programming techniques, such that a more efficient (i.e., with a lower
number of objective function evaluations) approach can be produced.

1 Introduction

The use of evolutionary algorithms for solving multi-objective optimization prob-
lems has become very popular in the last 10 years, finding applications in a wide
variety of areas [1]. However, one of the current limitations of MOEAs is their
computational cost, which turns out to be unaffordable in certain real world
applications. The design of hybrid approaches combining MOEAs and math-
ematical programming techniques is not new (see for example [2]). However,
these hybridation schemes normally rely on gradient-based information to guide
the search. This may be inappropriate, since estimating such gradients normally
requires additional objective function evaluations, which is precisely what we
are trying to avoid in computationally expensive problems. Although the use
of surrogate models is a possible alternative to deal with such problems (see
for example [3]), these approximate models tend to produce accumulated er-
rors that sometimes generate a significant deviation with respect to the original
model. In this paper, we propose a new multi-objective hybrid algorithm based
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on the NSGA-II [4], coupled with two mathematical programming methods:
Nelder and Mead’s method (which is used for multidimensional optimization)
and the golden section (which is used for unidimensional optimization). The aim
of this proposed approach is to speed up the convergence of the baseline MOEA,
through the introduction of powerful local search engines (based on direct search
methods taken from the mathematical programming literature). This sort of hy-
brid aims at introducing information obtained from mathematical programming
techniques (which are deterministic algorithms) to refine the search performed
by a global search engine (a genetic algorithm in this case) without having to
perform additional objective function evaluations.

2 Basic Concepts

2.1 The Nonlinear Simplex Method

Spendley et al. [5] presented the basic simplex method, which is an efficient
sequential optimization method for minimizing real and multidimensional func-
tions. Later on, Nelder and Mead presented an improvement of this method
which was called the Nonlinear Simplex Search (NSS) method [6] (also known
as the Nelder and Mead method). The convergence towards a minimum value at
each iteration of the NSS is conducted by four movements in a geometric shape
called simplex. A simplex or n-simplex Δ is a convex hull of a set of n+1 affinely
independent points Δi (i = {0, 1, . . . , n}), in some Euclidean space of dimension
n. To define the full algorithm, it is necessary to specify four scalar parameters
to control the movements performed in the simplex: reflection (α), expansion
(γ), contraction (β) and shrinkage (δ). At each iteration, the n + 1 vertices of
the simplex Δi represent the solutions evaluated and are sorted according to:
f(Δ0) ≤ f(Δ1) ≤ · · · ≤ f(Δn). In this way, the movements performed in the
simplex by the NSS method are defined as:

1. Reflection: xr = (1 + α)xc − αΔn.
2. Expansion: xe = (1 + αγ)xc − αγΔn.
3. Contraction:

(a) Outside: xco = (1 + αβ)xc − αβΔn.
(b) Inside: xci = (1− β)xc + βΔn.

4. Shrinkage: The new vertices of the simplex at the next iteration will be:
{Δ0, v1, v2, . . . , vn}, where vj = Δ0 + δ(Δj −Δ0), for all j = {1, 2 . . . , n}.

where xc is called centroid of the simplex, and is computed as: xc = 1
n

∑n−1
i=0 Δi;

Δ0 and Δn are the best and the worst solutions identified within the simplex,
respectively. At each iteration, the initial simplex is modified by one of the above
movements, according to the following rules:

1. If f(Δ0) ≤ f(xr) ≤ f(Δn−1), then Δn = xr.
2. If f(xe) < f(xr) < f(Δ0), then Δn = xe,

otherwise Δn = xr.
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3. If f(Δn−1) ≤ f(xr) < f(Δn) and f(xco) ≤ f(xr),
then Δn = xco; otherwise, perform a shrinkage.

4. If f(xr) ≥ f(Δn) and f(xci) < f(Δn),
then Δn = xci; otherwise, perform a shrinkage.

We chose Nelder and Mead’s method for two reasons: it is a widely used multi-
dimensional optimization technique, and there exists previous evidence of suc-
cess in being hybridized with evolutionary algorithms. However, the use of other
(more powerful) mathematical programming techniques (e.g., Powell’s conjugate
direction method) is left for future work.

2.2 The Golden Section Method

The golden section, represented by ϕ, is a line segment sectioned in two parts
according to the golden ratio, which refers to the ratio between length and height
of a rectangle that is required in order to make it more aesthetically pleasant
to our senses. The golden ratio has a value of ϕ ≈ 0.618033. The golden section
search method finds the minima of a function within a certain (given) search
interval. This approach is very efficient to optimize unimodal, unidimensional
and unconstrained functions, and it is based on the main principle of the region
elimination methods, which establishes that if we assume a function to be min-
imized f to be strictly unimodal on the interval a ≤ x ≤ b with a minimum at
x∗, and having two points x1 and x2 in this interval, such that a < x1 < x2 < b,
then we can conclude [7]:

1. If f(x1) > f(x2), then the minimum of f(x) does not lie in the interval
(a, x1). In other words, x∗ ∈ (x1, b).

2. If f(x1) < f(x2), then the minimum does not lie in the interval (x2, b). In
other words, x∗ ∈ (a, x2).

By using the golden section, the region to be eliminated at each iteration can
be maximized, so that the minimum can be found in a more efficient way (i.e.,
requiring less iterations). We decided to adopt this approach, because it is the
most efficient region elimination method and it is a direct search approach (i.e.,
does not require derivatives). Although other (more powerful) unidimensional
optimization techniques exist, they rely either on polynomial approximations
(e.g., quadratic estimation) or gradient-based information (e.g., secant, Newton-
Raphson and cubic search) and thus limit the type of functions to be optimized.

2.3 Low-Discrepancy Sequences

A low-discrepancy sequence is also called a quasi-random or sub-random se-
quence, and it offers a high degree of uniformity in comparison with the more
common uniformly distributed random numbers. Low-discrepancy sequences are
commonly used in Monte Carlo simulations of integrals that do not have a
closed-form expression in order to achieve variance reduction. Here, we adopt
low-discrepancy sequences to construct the simplex in the Nelder and Mead
method. Next, we present the two low-discrepancy sequences that are adopted
in this work.
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Halton Sequence. The Halton sequence [8] is a variation of the van der Cor-
put sequence [9], differing only in the representation, since the van der Corput
sequence uses binary representation and the Halton sequence adopts a different
base for each vector coordinate. The Halton sequence is constructed according
to a deterministic method based on number theory. For constructing the i-th
vector of the Halton sequence in Rn, the first step is to choose n relatively prime
numbers p1, p2, . . . , pn. We consider the representation in base p of i, which takes
the i = a0 + pa1 + p2a2 + . . . form. Each coordinate of the vector is in [0, 1] and
is obtained by:

r(i, p) =
a0

p
+
a1

p2
+
a2

p3
+
a3

p4
+ · · ·

In this way, the i-th vector in the Halton sequence (starting with i = 0) is
defined as:

〈r(i, p1), r(i, p2), . . . , r(i, pn)〉 (1)

Hammersley sequence. The Hammersley sequence [10] is an adaptation of
the Halton sequence, which uses n − 1 relatively prime numbers. Starting with
i = 0, the i-th vector in the Hammersley sequence for a set of k vectors is defined
as: 〈

i

k
, r(i, p1), r(i, p2), . . . , r(i, pn−1)

〉
(2)

In an analogous way, each component of the vector in the Hammersley sequence
is in [0, 1].

3 Our Proposed Approach

Our proposed approach is called Nonlinear Simplex Search Genetic Algorithm
(NSS-GA), and combines the explorative power of a MOEA with the exploitative
power of the Nelder and Mead method, which acts as a local search engine. The
general scheme of the NSS-GA is detailed in Figure 1.

3.1 Local Search

The general idea of this phase is to intensify the search towards better solutions
for each objective function, based on an individual of the population. Genetic
traits of the best individuals found for each objective function are reproduced us-
ing the evolutionary operators of a genetic algorithm. The main goal of this phase
is to obtain the λ set using classical optimization methods. Because the Nelder
and Mead algorithm was designed to optimize multidimensional functions, when
dealing with unidimensional optimizations, the golden section method is used
instead. Thus, the λ set is defined as:

λ = λ1 ∪ λ2 ∪ · · ·λk ∪ Υ

where λi is a set of the best solutions found for the i-th objective function of
the MOP and Υ is a set of the best solutions found for the aggregating function
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n = number of decision variables
λ = set of locally optimal solutions found by the
local search mechanism

1. t = 0.
2. Randomly initialize a population Pt of size N .
3. Evaluate the fitness of each individual in Pt.
4. Generate the offspring Qt, applying the selection,
crossover and mutation operators to Pt.
5. Rt = Pt ∪ Qt (thus, Rt is now of size 2N).
6. Assign to P ∗ the N better individuals from Rt

according to the crowded comparison operator (≺n).
7. If (t mod n

2
= 0) then:

i. Get λ set according to the exploration phase.
ii. R∗

t = P ∗
t ∪ λ.

iii. Assign to Pt+1 the N best
individuals from R∗

t according to the crowded comparison operator (≺n).
Else: Pt+1 = P ∗.
8. t = t + 1.
9. If t > tmax stop, else go to step 4.

Fig. 1. Main algorithm of our proposed Nonlinear Simplex Search Genetic Algorithm
(NSS-GA)

described later in this section. If the i-th objective function to be optimized is
unidimensional, the size of λi is 1. In this case, the golden section method is
adopted to find the minimum of such objective function. Otherwise, if the i-th
objective function is multidimensional, then the size of the λi set is n + 1 and
corresponds to all the vertices of the final simplex found by the NSS algorithm.
Next, we describe the different components of our local search engine.

Selection Mechanism. In the population P , we choose the individual xΔ ∈ P
to optimize its i-th objective:

xΔ = xl|xl = min
∀xl∈P∗

{fi(xl)} (3)

where P∗ is a nondominated solutions set within the population P . In other
words, the selected individual is the best nondominated solution with respect to
the i-th objective function.

Aggregating Function. The vector H = [f∗
1 , f

∗
2 , . . . , f

∗
k ], consists of the min-

imum values f∗
i of the k objective functions in the current generation. We select

the individual xa from the population P , such that we minimize:

G(xa) =
k∑

i=1

|H [i]− fi(xa)|
|H [i]| (4)
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In this way, the local search minimizes the aggregating function defined by:

ψ(x) = ED(H ,F (x)) (5)

where F is vector of objective functions values of each individual and ED is
the Euclidean distance between the F and H vectors. Summarizing, the search
first focuses on finding the extremes of the Pareto front (using equation 3). In
this phase, we select as many individuals as objectives of the problem. Then, we
select one additional individual using equation 4, aiming to reach the “knee” of
the Pareto front.

Note that there are functions for which the NSS algorithm becomes inoperable
(for example, McKinnon’s function [11]). In order to deal with these and other
more complex functions, the NSS method has undergone some modifications
in the specialized literature (see for example [12,13]). We propose here a new
strategy to guide the improvement process towards promising areas during each
generation of the hybrid algorithm. Such strategy is described next.

Building the Simplex. The selected solution xΔ (xa for the case of the ag-
gregating function) is called “simplex-head”, which is the first vertex of the
n-simplex. The remaining n vertices are created in two phases:

1. Reducing the Search Domain: We use a strategy based on genetic analysis of a
sample taken from the population. From this sample, we identify the average
and standard deviation of the genes (decision variables) in each individual.
Based on that information, we define the new search space as:

low boundj
new = m(Pm(j))− σ(Pm(j))

up boundj
new = m(Pm(j)) + σ(Pm(j)) (6)

where Pm represents the individuals in the sample taken from the population
(such individuals are those with the best fitness with respect to the objective
function to optimize), m(Pm(j)) is the average and σ(Pm(j)) is the standard
deviation in the j-th parameter of the sample Pm. The size of the sample
taken in this work is 20% of the total population size.

2. Build Simplex Vertices: Once the new search domain has been defined, the
remaining vertices are determined using either the Halton or the Hammersley
sequence (each has a 50% probability of being selected).

For both sequences, the components are in [0, 1] and are mapped to the
new interval acording to:

c′ = low boundnew + c · (up boundnew − low boundnew)

where c is the component to be mapped to the interval [0, 1] and c′ is the
component already mapped to the desired interval. Although we do not have
a mathematical proof regarding the suitability of this scheme to generate a
non-degenerate simplex (i.e., a simplex whose volume is greater than zero),
we empirically found that this procedure worked well in the numerous ex-
periments that we performed.
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Bounded Variables for NSS. The NSS method was conceived for unbounded
domain problems. When dealing with bounded variables, the created vertices
can be located outside the allowable bounds after some movements of the NSS
method. Luersen et al. [14] proposed a simple strategy to deal with bounded
variables, which is the one we adopted in this work:

Let Δnew be the new vertex created by some NSS movement. The j-th com-
ponent of the vertex is established as:

Δ
(j)
i =

⎧⎪⎨⎪⎩
low boundj , if Δ(j)

i < low boundj

up boundj , if Δ(j)
i > up boundj

Δ
(j)
i , otherwise.

(7)

where low boundj and up boundj are the lower and upper bounds in the j-th
parameter, respectively.

However, this strategy can degenerate the simplex. We propose here to rebuild
the simplex if it has been degenerated, i.e., if its volume is different from zero.
Since we need a procedure to compute the volume of the simplex, we adopt the
proposal from [15] for that sake.

Stopping Criteria. Two stopping criteria are adopted in this work. The first
criterion imposes convergence towards a vertex better than the worst vertex
within the simplex (xw). This criterion is taken from Lagarias et al. [15]. How-
ever, adopting this stopping criterion does not guarantee that the NSS method
has an efficient performance. Convergence can be slow and may require a large
number of evaluations of the objective function. For this reason, we use a second
stopping criterion which consists of defining a convergence threshold ε (for the
experiments reported in this paper, ε = 1 × 10−3). Thus, the local search is
stopped if:

1. It does not generate a vertex better than xw after performing (n+ 1) itera-
tions, or

2. if after performing 2(n+1) iterations, the convergence towards a better point
is ≤ ε.

where n is the number of decision variables of the function to be optimized.

4 Comparison of Results

In order to evaluate the performance of the proposed hybrid algorithm, we com-
pare its performance with respect to the NSGA-II [4]. The test problems adopted
are five from the ZDT test suite [16] (except from ZDT5, which is a binary test
problem). We also adopted two problems from the DTLZ test suite (DTLZ1 and
DTLZ2) [17]. The description of these test problems is omitted due to space
constraints. We adopted three performance measures to assess our results: In-
verted Generational Distance (IGD) [18,1], Spacing (S) [19] and the Coverage
Indicator (CI) [16]. Their description is also omitted due to space constraints.
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Table 1. Results of IGD for the NSS-GA and the NSGA-II

Problem NSS-GA NSGA-II
average σ average σ

ZDT1 0.001149 0.000598 0.005582 0.000905
ZDT2 0.002101 0.001785 0.015385 0.004631
ZDT3 0.001221 0.000832 0.004217 0.000798
ZDT4 0.122063 0.058813 0.156509 0.051699
ZDT6 0.008980 0.004758 0.046699 0.007258
DTLZ1 0.658650 0.107311 0.779135 0.168162
DTLZ2 0.000403 0.000022 0.000428 0.000024

4.1 Experimental Setup

Our proposal (the NSS-GA) is compared with respect to the baseline algorithm
adopted (the NSGA-II). Since our approach does not require any additional
parameters for the main search engine (i.e., the NSGA-II), the comparison was
done with the same parameter values for both approaches in order to allow a fair
comparison. Thus, we adopted the following values: Population size (Sp) = 100,
crossover probability (Pc) = 0.9, mutation probability (Pm) = 1

N , where N is
the number of decision variables. The nonlinear simplex search was implemented
with: α = 1, β = 2, γ = 1

2 and δ = 1
2 . For each MOP, we performed 30 indepen-

dent runs with each of the two approaches. The results are presented in Tables 1
to 3. Each table displays both the average and the standard deviation (σ) of each
performance measure, for each of the test problems adopted. The best average
results obtained in each test function are displayed in boldface. Each run is
restricted to 4,000 fitness function evaluations, which is a very low value when
compared to those adopted by most MOEAs nowadays. From these results, it
is evident that our proposed approach (NSS-GA) outperforms the NSGA-II in
all the test problems, with respect to both the IGD (which measures closeness
to the true Pareto front) and the CI performance measure (which determines if
the solutions generated by one algorithm dominate the solutions generated by
the other). In fact, the low values obtained by our NSS-GA indicate that our
approach has practically converged to the true Pareto front, except for ZDT4
and DTLZ1 (we could corroborate this by plotting the results, but such graphs

Table 2. Results of S for the NSS-GA and NSGA-II

Problem NSS-GA NSGA-II
average σ average σ

ZDT1 0.014620 0.005329 0.023731 0.004730
ZDT2 0.021928 0.014674 0.029762 0.006576
ZDT3 0.013990 0.005108 0.023994 0.004774
ZDT4 0.455495 0.416654 3.098866 2.822281
ZDT6 0.171233 0.117406 0.106812 0.055624
DTLZ1 17.965977 7.564753 16.132116 6.874782
DTLZ2 0.055607 0.005740 0.055528 0.004754
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Table 3. Results of CI for the NSS-GA and NSGA-II

Problem NSS-GA NSGA-II
average σ average σ

ZDT1 1.000000 0.000000 0.000000 0.000000
ZDT2 0.971111 0.155571 0.004444 0.023934
ZDT3 0.969534 0.064908 0.009305 0.022992
ZDT4 0.686486 0.322281 0.332336 0.388879
ZDT6 0.769754 0.273523 0.144094 0.230425
DTLZ1 0.590605 0.147409 0.222936 0.112005
DTLZ2 0.150000 0.072019 0.025667 0.022462

were omitted due to space restrictions). With respect to the S performance mea-
sure, our approach obtained better results in 4 test problems, and the NSGA-II
obtained better results in the other three. However, since convergence is more
important than even distribution of nondominated solutions, we do not consider
this to be a major drawback of our proposed approach.

5 Conclusions and Future Work

In this paper, we have introduced a hybridization scheme in which a MOEA
(the NSGA-II) is coupled to two direct search methods (Nelder and Mead’s
method and the golden section method). Our proposed approach (called NSS-
GA), was found to be competitive with respect to the original NSGA-II over a
set of test functions taken from the specialized literature, when performing only
4,000 fitness function evaluations. As part of our future work, we are interested
in experimenting with other direct search methods, such as the Hooke-Jeeves
pattern search method and Powell’s conjugate direction method. We are also
interested in devising mechanisms that help us to decide whether the local search
needs to be triggered or not.
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Abstract. This paper pursues the idea of a general multiobjective op-
timizer that can be flexibly adapted to arbitrary user preferences—
assuming that the goal is to approximate the Pareto-optimal set. It
proposes the Set Preference Algorithm for Multiobjective Optimization
(SPAM) the working principle of which is based on two observations:
(i) current multiobjective evolutionary algorithms (MOEAs) can be re-
garded as hill climbers on set problems and (ii) specific user preferences
are often (implicitly) expressed in terms of a binary relation on Pareto
set approximations. SPAM realizes a (1 + 1)-strategy on the space of
Pareto set approximations and can be used with any type of set prefer-
ence relations, i.e., binary relations that define a total preorder on Pareto
set approximations. The experimental results demonstrate for a range of
set preference relations that SPAM provides full flexibility with respect
to user preferences and is effective in optimizing according to the speci-
fied preferences. It thereby offers a new perspective on preference-guided
multiobjective search.

1 Motivation

By far most publications within the field of evolutionary multiobjective opti-
mization (EMO) focus on the issue of generating a suitable approximation of
the Pareto-optimal set, or Pareto set approximation for short. For instance, the
first book on EMO by Kalyanmoy Deb [1] is mainly devoted to techniques of
finding multiple trade-off solutions using evolutionary algorithms.

Taking this view, one can state that EMO in general deals with set problems:
the search space Ψ consists of all potential Pareto set approximations rather than
single solutions, i.e., Ψ is a set of sets. When applying an evolutionary algorithm
to the problem of approximating the Pareto-optimal set, the population itself
can be regarded as the current Pareto set approximation. The subsequent appli-
cation of mating selection, variation, and environmental selection heuristically
produces a new Pareto set approximation that—in the ideal case—is better than
the previous one. In the light of the underlying set problem, the population rep-
resents a single element of the search space which is in each iteration replaced
by another element of the search space. Consequently, selection and variation
can be regarded as a mutation operator on populations resp. sets. Somewhat
simplified, one may say that a classical multiobjective evolutionary algorithm
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(MOEA) used to approximate the Pareto-optimal set is a (1, 1)-strategy on a
set problem. Furthermore, MOEAs are usually not preference-free. The main
advantage of generating methods such as MOEAs is that the objectives do not
need to be aggregated or ranked a priori; but nevertheless preference information
is required to guide the search, although it is usually weaker and less stringent.
In the environmental selection step, for instance, an MOEA has to choose a sub-
set of individuals from the parents and the offspring which constitutes the next
Pareto set approximation. To this end, the algorithm needs to know the criteria
according to which the subset should be selected, in particular when all parents
and children are incomparable, i.e., mutually nondominating. That means the
generation of a new population usually relies on set preference information.

These observations led to the concept presented in this paper which separates
preference information and search method. Firstly, we regard preference informa-
tion as an appropriate order on Ψ required to fully specifiy the set problem—this
order will here be denoted as set preference relation. A set preference relation
provides the information on the basis of which the search is carried out; for any
two Pareto set approximations, it says whether one set is better or not. Secondly,
we propose a general, extended (1+1)-strategy for this set problem which is only
based on pairwise comparisons of sets in order to guide the search. The resulting
algorithm (SPAM) is fully independent of the set preference relation used and
thereby decoupled from the user preferences.

This complete separation of concerns is the novelty of the suggested approach.
It builds upon the idea presented in [2], but is is more general—as it is not
restricted to a single binary quality indicator—and possess in addition desirable
convergence properties. Furthermore, there are various studies that focus on
the issue of preference articulation in EMO, in particular integrating additional
preferences such as priorities, goals, and reference points [3,4,5,6,7,8,9]. However,
these studies mainly cover preferences on solutions and not preferences on sets,
and the search procedures used are based on hard-coded preferences.

In the following, we first discuss the issue of designing set preference relations
and then present the full SPAM method. Finally, simulation results are provided
and compared for several example set preference relations.

2 Set Preference Relations

Consider a multiobjective optimization problem with the decision space X , the
objective space Z, n objectives f1, . . . , fn to be minimized, and a relation ≤ on
Z, which induces a preference relation 4 on X with a 4 b :⇔ f(a) ≤ f(b) for
a, b ∈ X . This problem is transformed into a corresponding set problem where
the search space Ψ includes all possible solution sets A ⊆ X , i.e., Ψ = 2X .
The preference relation 4 can be used to define a corresponding set preference
relation � on Ψ where

A � B :⇔ ∀b ∈ B ∃a ∈ A : a 4 b

for all Pareto set approximations A,B ∈ Ψ . Here, we will assume that weak
Pareto dominance, represented by 4par and �par, is the underlying preference
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relation resp. set preference relation. Most existing MOEAs are designed for such
a type of set problem where the goal is to find a good Pareto set approximation
A ∈ Ψ .

The set preference relation deduced from the preference relation on solutions
is usually not total, i.e., there are incomparable Pareto set approximations which
are hard to deal with by any optimization method. Therefore, additional pref-
erences are needed to refine � such that no incomparable pairs remain. Next,
we will discuss principles to design set preference relation that represent total
preorders and then provide several example relations.

2.1 Refinements and Sequences

Unary quality indicators are a possible means to construct set preference rela-
tions that are total preorders. They represent set quality measures that map
each set A ∈ Ψ to a real number I(A) ∈ R. Given an indicator I, one can define
the corresponding set preference relation as A �I B := (I(A) ≤ I(B)) where we
assume that smaller indicator values stand for higher quality, in other words, A is
as least as good asB if the indicator value ofA is not larger than the one ofB. For
instance, several recent approaches make implicitly use of the unary hypervolume
indicator in this way [10,11,12]. Alternatively, one may consider binary quality
indicators that assign a real value to ordered pairs of sets (A,B) with A,B ∈ Ψ .
Assuming that smaller indicator values stand for higher quality, a corresponding
set preference relation can be defined as A �I B := (I(A,B) ≤ I(B,A)). For
instance, IBEA [2] uses this type of preference information.

When defining set preference relations based on indicators (or using other
principles), we would like to guarantee that weak Pareto dominance is not vio-
lated, i.e., �I should refine �par. This can be formalized as follows.

Definition 2.1. Given a set Ψ . Then the preference relation �ref refines � if
for all A,B ∈ Ψ we have

(A � B) ∧ (B �� A) ⇒ (A �ref B) ∧ (B ��ref A)

That means a set that is strictly better than another set in the original set
preference relation should remain strictly better in the refined relation. The
hypervolume indicator [13,12], for instance, induces a refinement of weak Pareto
dominance, cf. [14,15]. Many other indicators only fulfill a weaker property which
we here denote as weak refinement.

Definition 2.2. Given a set Ψ . Then the set preference relation �ref weakly
refines � if for all A,B ∈ Ψ we have

(A � B) ∧ (B �� A) ⇒ (A �ref B)

A weak refinement may make two sets A and B indifferent (A �ref B ∧ B �ref

A), although A is actually strictly better than B; this is for instance the case for
the unary epsilon indicator [15]. Nevertheless, a weak refinement never contra-
dicts the original order, i.e., B cannot be strictly preferable to A with regard to
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�ref, whenever A is strictly better than B regarding �. However, many practi-
cally interesting indicators do not induce a weak refinement of the weak Pareto
dominance relation.

For optimization purposes, it is desirable to have a set preference relation that
represents a refinement of the dominance relation because this is a prerequisite
to achieve convergence to the Pareto-optimal set, see [16]. The following con-
struction shows how such refinements can be defined on the basis of arbitrary
indicators; it resembles the concept of hierarchy used in [3] for pairs of solu-
tions, but here (a) we are dealing with preference relations on sets and (b) the
hierarchical construction is different.

Definition 2.3. Given a set Ψ and a sequence S of k preference relations over
Ψ with S = (�1,�2, . . . ,�k). Then the preference relation �S associated with S
is defined as follows: Let A,B ∈ Ψ . Then A �S B if and only if ∃1 ≤ i ≤ k such
that the following two conditions are satisfied:

(i) (i < k ∧ (A �i B ∧B ��i A)) ∨ (i = k ∧ (A �k B))
(ii) ∀1 ≤ j < i : (A �j B ∧ B �j A)

With this definition, we can derive the following procedure to determine A �S B
for two sets A and B:

– Start from the first preference relation, i.e. j = 1. Repeat the following step:
If A and B are indifferent with respect to �j , then increase j to point to the
next relation in the sequence if it exists.

– If the final j points to the last preference relation (j = k), then set A �S

B ⇔ A �k B. Otherwise, set A �S B ⇔ A ≺k B.

This procedure allows to use indicators inducing only weak refinements or no
refinements at all in combination with refinements; the resulting set preference
relation is again a refinement.

Theorem 2.4. Given a sequence of preference relations according to Def. 2.3.
Suppose there is a k′ ≤ k such that �k′

is a refinement of a given preference
relation �. In addition, all relations �j, 1 ≤ j < k′ are weak refinements of �
and all relations �j, k′ < j ≤ k are preorders. Then �S is a refinement of �.

For reasons of space limitations, the proof for this theorem is omitted here; it is
provided in [16]. Fig. 1 visualizes the resulting construction principle. This will
be used in Section 2.2 to design indicators combinations representing different
types of preference information.

2.2 Design of Indicator-Based Relations

In the following, we present some examples for combined set preference relations
that illustrate different application scenarios. All of these relations are refine-
ments of the set preference relation �par.

The first combination is based on the unary epsilon indicator Iε1 [15] with
a reference set R in objective space which is defined as Iε1(A) = E(A,R) with
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weak
refinement

preorder

refinement

Fig. 1. Representation of the hierarchical construction of refinements according to
Theorem 2.4

E(A,R) = maxr∈R mina∈A ε(a, r) where ε(a, r) = max{fi(a) − ri | 1 ≤ i ≤ n}
and ri is the ith component of the objective vector r. Since this indicator induces
only a weak refinement of the weak Pareto-dominance relation �par, we will use
the hypervolume indicator to distinguish between sets indifferent with respect
Iε1. The resulting set preference relation is denoted as �ε1,H .

The second combination uses the R2 indicator proposed in [17] for which the
following definition is used here:

IR2(A) = R2(A,R) =
∑

λ∈Λ u
∗(λ,R)− u∗(λ, f(A))

|Λ|

where the function u∗ is a utility function based on the weighted Tchebycheff
function u∗(λ, T ) = −minz∈T max1≤j≤n λj |z∗j − zj| and Λ is a set of weight
vectors λ ∈ Rn, R ⊂ Z is a reference set, and z∗ ∈ Z is a reference point. In
this paper, we will set R = {z∗}. Also the R2 indicator provides only a weak
refinement; as before, the hypervolume indicator is added in order to achieve a
refinement. This set preference relation will be denoted as �R2,H .

Third combination: The previous two indicator combinations couple a weak
refinement with a refinement. To demonstrate that also non-refining indicators
can be used, we propose the following sequence of indicators S = (IH , IC , ID)
where IC measures the largest distance of a solution to the closest minimal
element in a set and ID reflects the diversity of the solutions in the objective
space. The latter two indicators, which both do not induce weak refinements of
�par, are defined as follows: IC(A) = maxa∈A minb∈Min(A,�) dist(f(a), f(b)) and

ID(A) = max
a∈A

(
1

nn1(a,A \ {a}) +
1

nn2(a,A \ {a})

)
where nn1(a,B) = minb∈B dist(f(a), f(b)) gives the smallest and nn2(a,B) =
maxc∈B minb∈B\{c} dist(f(a), f(b)) the second smallest distance of a to any solu-
tion in B. For the distance function dist(z1, z2), Euclidean distance is used here,
i.e., dist(z1, z2) =

√∑
1≤i≤n(z1

i − z2
i )2. The IC indicator resembles the genera-

tional distance measure proposed in [18] and ID resembles the nearest neighbor
niching mechanism in SPEA2 [19]. We will refer to the overall set preference
relation as �H,C,D. According to Theorem 2.4, �H,C,D is a refinement of �par.

Finally, note that set preference relations may be insensitive to dominated
solutions in a set, i.e., adding dominated solutions to A or B does not affect
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the relation between these two sets. This holds for instance for the set prefer-
ence relations induced by the hypervolume indicator and other popular quality
indicators. Nevertheless, to guide the search efficiently it is crucial that prefered
solutions are taken into account. One possibiliy is to integrate indicators that are
sensitive to dominated solutions such as IC and ID defined above. Alternatively,
the sets can be partitioned into dominance classes to which the set preference re-
lation is applied subsequently. More precisely, we here use nondominated sorting
[20,21] for partitioning and then use the same construction as in Theorem 2.4:
to compare A and B with respect to � we first compare only the nondominted
fronts; if this comparison yields indifference, then the second level of nondomi-
nance is considered to decide whether A or B is better, and so forth. Whenever
this principle of partitioning is used, we write �minpart; note that �minpart is a
refinement of �.

3 A General Set Preference Guided Search Algorithm

In the following, we introduce the Set Preference Algorithm for Multiobjective
Optimization (SPAM) which can be used with any set preference relation and
resembles a standard hill climber with the difference that two new elements of
the search space Ψ are created using two types of mutation operators. The main
part of SPAM is given by Algorithm 1.

Starting with a randomly chosen set P ∈ Ψm of sizem, first a random mutation
operator is applied to generate another set P ′. This operator should be designed
such that every element in Ψ could be possibly generated, i.e., the neighborhood
is in principle the entire search space. In practice, the operator will usually have
little effect on the optimization process; however, its property of exhaustivness
is important from a theoretical perspective, in particular to show convergence,
see [16].

Second, a heuristic mutation operator is employed. This operator mimics the
mating selection, variation, and environmental selection steps as used in most
MOEAs. The goal of this operator is to create a third set P ′′ ∈ Ψ that is bet-
ter than P in the context of a predefined set preference relation �. However, since
it is heuristic it cannot guarantee to improve P ; there may be situations where it

Algorithm 1. SPAM Main Loop
Require: set preference relation �
1: generate initial set P of size m, i.e., randomly choose A ∈ Ψm and set P ← A
2: while termination criterion not fulfilled do
3: P ′ ← randomSetMutation(P )
4: P ′′ ← heuristicSetMutation(P )
5: if P ′′ � P then
6: P ← P ′′

7: else if P ′ � P then
8: P ← P ′

9: return P
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is not able to escape local optima of the landscape of the underlying set problem.
Finally, P is replaced by P ′′, if the latter is weakly preferable to the former; other-
wise, P is either replaced by P ′ (if P ′ � P ) or remains unchanged. Note that in the
last step, weak preferability (�) and not preferability (≺) needs to be considered
in order to allow the algorithm to cross landscape plateaus, cf. [22].

For the mutation operators, we propose Algorithms 2 and 3. Algorithm 2 (ran-
dom set mutation) randomly chooses k decision vectors from X and uses them to
replace k elements in P .1 Algorithm 3 (heuristic set mutation) generalizes the iter-
ative truncation procedures used in NSGA-II [23], SPEA2 [19], and others. First,
k new solutions are created based on P ; this corresponds to mating selection plus
variation in a standard MOEA. While the variation is problem-specific, for mating
selection either uniform random selection (used in the following) or fitness-based
selection can be used (using the fitness values computed by Algorithm 4). Then,
these k solutions are added to P , and finally the resulting set of size m+ k is iter-
atively truncated to size m by removing the solution with the worst fitness values
in each step. Here, the fitness value of a ∈ P reflects the loss in quality for the
entire set P if a is deleted: the lower the fitness, the larger the loss.

Algorithm 2. Random Set Mutation
1: procedure randomSetMutation(P )
2: randomly choose r1, . . . , rk ∈ X with ri �= rj

3: randomly select p1, . . . , pk from P with pi �= pj

4: P ′ ← P \ {p1, . . . , pk} ∪ {r1, . . . , rk}
5: return P ′

Algorithm 3. Heuristic Set Mutation
1: procedure heuristicSetMutation(P )
2: generate r1, . . . , rk ∈ X based on P
3: P ′′ ← P ∪ {r1, . . . , rk}
4: while |P ′′| > m do
5: for all a ∈ P ′′ do
6: δa ← fitnessAssignment(a, P”)
7: choose p ∈ P ′′ with δp = mina∈P ′′ δa

8: P ′′ ← P ′′ \ {p}
9: return P ′′

To estimate how useful a particular solution a ∈ P is, Algorithm 4 compares
all sets Ai ⊂ P with |Ai| = |P |−1 to P \ {a} using the predefined set preference
relation �. The fewer sets Ai are weakly preferable to P \ {a}, the better the set
P \ {a} and the less important is a. This procedure has a runtime complexity of
O((m+ k)g), where g stands for the runtime needed to compute the preference
1 Note that for both mutation operators the same k is used here, although they can be

chosen independently. The safe version (k = m) for the random mutation operator
means that a random walk is carried out on Ψ .
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Algorithm 4. Fitness Assignment
1: procedure fitnessAssignment(a, P ′′)
2: δa ← 0
3: for all b ∈ P ′′ do
4: if P ′′ \ {b} � P ′′ \ {a} then
5: δa ← δa + 1

6: return δa

relation comparisons which usually depends onm+k and the number of objective
functions. It can be made faster, when using unary indicators, see [16].

4 Experiments

This section investigates the practicability of the proposed approach. The main
questions are: (i) can different user preferences be expressed in terms of set prefer-
ence relations, (ii) is it feasible to use a general search algorithm for arbitrary set
preference relations, i.e., is SPAM effective in finding appropriate sets, and (iii)
how well are set preference relations suited to guide the optimization process?
However, the purpose is not to carry out a performance comparison of SPAM to
existing MOEAs; the separation of user preferences and search algorithm is the
focus of our study.

In the following, we consider the different set preference relations presented
in Section 2.2 for integration in SPAM where �minpart

R2,H is parameterized to focus
on the outer regions of the Pareto front.2 In addition, the relations �minpart

H and
�minpart

ε induced by the unary hypervolume indicator resp. the binary epsilon
indicator are used. All of them are refinements of the set dominance relation �par.
As reference algorithms, NSGA-II [23] and IBEA3 [2] are used. The test problem
is DTLZ2 [24] with 20 decision variables and 2 resp. 5 objectives 4. To compare
the outcomes of the algorithms with respect to multiple runs (in this study 30
runs) statistically, we use the Mann-Whitney U test where the significance of the
test statistics U is calculated on the basis of the one-tailed normal approximation,
correcting the variance for ties, see [16] for details. Furthermore, multiple testing
issues need to be taken into account when comparing multiple algorithms with
each other; here, the significance levels are Bonferroni corrected.

Figure 2 shows the Pareto-set approximations generated by SPAM with three
selected set preference relations. The plots well reflect the chosen user prefer-
ences: (a) a set maximizing hypervolume, (b) focus on the extremes using cor-
responding weight combinations, and (c) closeness to a given reference set. This

2 The full parameterization of the indicators is given in [16].
3 With parameters κ = 0.05 and ρ = 1.1.
4 Other parameters: set size / population size m = 20 (visual comparisons) resp.

m = 50 (statistical comparisons); newly created solutions / offspring individuals
k = 20 resp. k = 50; number of iterations 1000; further details are provided in [16].
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Fig. 2. Pareto-set approximations found after 1000 generations on a biobjective DTLZ2
problem for a set size / population size of m = 20. All algorithms were started with
the same initial set / population.

demonstrates that SPAM is in principle capable of optimizing towards the user
preferences that are encoded in the corresponding set preference relation.

The quantitative comparisons for all set preference relations are provided in
Table 1. The hypothesis is that SPAM used in combination with a specific set
preference relation �A (let us say SPAM-A) yields better Pareto set approxima-
tions than if used with any other set preference relation �B (let us say SPAM-
B)—better here means with respect to �A. Ideally, for every set A generated by
SPAM-A and every set B generated by SPAM-B, it would hold A �A B or even
A ≺A B. Clearly, this describes an ideal situtation. A set preference relation
that is well suited for representing certain preferences may not be well suited
for search per se. With only few exceptions, the above hypothesis is confirmed:
using �A in SPAM yields the best Pareto-set approximations with regard to �A,
independently of the problem and the number of objectives under consideration.
These results are highly significant at a significance level of 0.001.

Concerning the exceptions, first it can be noticed that there is no significant
difference between �minpart

H and �H,C,D when used in SPAM—both times, the
hypervolume indicator value is optimized. This actually shows that dominance
class partitioning may be replaced by a corresponding sequence of quality indi-
cators. Second, the algorithm based on the set preference relation �ε using the
binary epsilon indicator performs slighlty worse than IBEA with respect to �ε.
This is not suprising since IBEA has been designed mainly for the epsilon indi-
cator and exploits certain characteristics; for instance, all population members
are compared to each other and not only those in the current front. In addi-
tion, SPAM with the binary epsilon indicator performs significantly worse than
SPAM with any of the two hypervolume-based relations �minpart

H and �H,C,D in
the case of two objectives. This may indicate that the binary epsilon indicator is
not sensitive enough to differentiate between small improvements. That means
that in Step 7 of Algorithm 3 too many solutions may achieve the minimum
δ-value, and therefore a choice needs to be done at random.
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Table 1. Pairwise statistical comparison of 30 runs per algorithm after 1000 gener-
ations. In the notation U : U ′, U (resp. U ′) stands for the number of times a set
generated by algorithm A (resp. B) beats a set of algorithm B (resp. A) with regard to
the test relation associated with the corresponding row. A star next to these numbers
indicates a significant difference, the few cases where this was not the case are shown in
bold. Per cell, the upper number pair corresponds to the biobjective DTLZ2 problem,
the lower number pairs to the 5-objective DTLZ2 problem.

�����alg. A
alg B. SPAM with set preference relation . . .

IBEA NSGA-II test
relation�minpart

H �minpart
R2,H �minpart

ε1,H �minpart
ε �H,C,D

S
P
A

M
w

it
h

se
t

p
re

fe
re

n
ce

re
la

ti
o
n

..
. �minpart

H - 900: 0* 900: 0* 900: 0* 456:444 900: 0* 900: 0* �H

- 900: 0* 900: 0* 900: 0* 445:455 900: 0* 900: 0*

�minpart
R2,H 900: 0* - 900: 0* 900: 0* 900: 0* 900: 0* 900: 0* �R2,H

900: 0* - 900: 0* 900: 0* 900: 0* 900: 0* 900: 0*

�minpart
ε1,H 900: 0* 900: 0* - 900: 0* 889: 1* 900: 0* 900: 0* �ε1,H

891: 9* 900: 0* - 900: 0* 897: 3* 900: 0* 900: 0*

�minpart
ε 63:837 900: 0* 900: 0* - 81:819 274:626 896: 4* �ε

60:840 900: 0* 900: 0* - 57:843 349:551 889: 11*
�H,C,D 444:456 900: 0* 900: 0* 853: 47* - 820: 80* 900: 0* �H,C,D

455:445 900: 0* 900: 0* 900: 0* - 900: 0* 900: 0*
* Preference is significant at the 0.001 level (1-tailed, Bonferroni-adjusted).

5 Conclusions

This paper proposed a general way to separate preference formalization from
algorithm design and presented SPAM, a flexible multiobjective optimizer, which
is basically a hill climber and generalizes the concepts found in most modern
MOEAs. SPAM can be used in combination with any type of set preference
relation and thereby offers full flexibility for the decision maker. Furthermore,
a novel scheme to design set preference relations by putting multiple quality
indicators in sequence was introduced.
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Abstract. Industrial agrifood processes often strongly rely on human expertise,
expressed as know-how and control procedures based on subjective measure-
ments (color, smell, texture), which are very difficult to capture and model. We
deal in this paper with a cheese ripening process (of french Camembert), for
which experimental data have been collected within a cheese ripening labora-
tory chain. A global and a monopopulation cooperative/coevolutive GP scheme
(Parisian approach) have been developed in order to simulate phase prediction
(i.e. a subjective estimation of human experts) from microbial proportions and
Ph measurements. These two GP approaches are compared to Bayesian network
modeling and simple multilinear learning algorithms. Preliminary results show
the effectiveness and robustness of the Parisian GP approach.

1 Introduction

This study is part of the large INCALIN research project, whose goal is the modeling
of agrifood industrial processes1. The competitive challenge to which agrifood indus-
tries are facing is related to quality and sustainability of food products. The aim of the
INCALIN project is to build decision support tools to manage the manufacturing pro-
cess as a whole. Current knowledge on industrial agrifood processes are focussed on
microbiological, mechanistic, sensorial or physicochemical changes, and are expressed
in various ways: databases, mathematical models, and know-how of operators-experts
in terms of formal or unformal reasoning. Among the fragmented knowledge available,
the human-expert knowledge is certainly the most challenging to capture.

We focus in this paper on a cheese ripening process (section 2): The cheese, dur-
ing ripening, is an ecosystem (a bio-reactor) that is extremely complex to be modeled
as a whole, and where human experts operators have a decisive role. The modifica-
tions of substrate under the action of several populations of micro-organisms is only

1 Supported by the French ANR-PNRA fund.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 859–868, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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partially known, and various macroscopic models have been experimented to embed
expert knowledge, like expert systems [12,13,11], neural networks [14,17], mechanis-
tic models [1,20], or dynamic Bayesian networks [4].

The major problem common to these techniques is related to the sparseness of avail-
able data: collecting experimental data is a long and difficult process, and resulting data
sets are often uncertain or even erroneous. The precision of the resulting model is of-
ten limited by the small number of valid experimental data, and parameteter estimation
procedures have to deal with incomplete, sparse and uncertain data. In this context we
consider stochastic optimisation techniques, like evolutionary techniques, which have
been proven successful on several complex agrifood problems [3,8,21].

The idea developed in this study is based on the following question: is it possible to
capture (learn) in a satisfying way an expert knowledge with help of a model evolved
by genetic programming, for a complex cheese ripening process ?

The first step in this direction aims at comparing a part of a reference dynamic
Bayesian model whose structure is based on expert knowledge (section 2) with evolved
GP estimators, using a global strategy (section 3) and a cooperative/coevolutive strat-
egy (Parisian GP, section 4). Experimental results (section 5) prove the efficacy of GP
approaches to estimate the phase parameter of the process (currently made “at hand” in
industrial chains). Section 6 then sketches the next steps of the study in order to build
an efficient model of the whole cheese ripening process.

2 The Camembert-Cheese Ripening Process

For soft-mould cheese the most important biochemical phenomena occur during ripen-
ing. Relationships between microbiological and physicochemical changes depend on
environmental conditions (e.g. temperature, relative humidity ...) [15] and influence the
quality of ripened cheeses [9,16]. A ripening expert is able to estimate the current state
of some of the complex reactions at a macroscopic level through its perceptions. Control
decisions are then generally based on these subjective but robust expert measurements.

Experimental procedures in laboratories (“model cheeses”) use pasteurized milk in-
oculated with Kluyveromyces marxianus (Km), Geotrichum candidum (Gc), Penicillium
camemberti (Pc) and Brevibacterium auriantiacum (Ba) under aseptic conditions (de-
tailed in [16]).

Experts use their senses to follow cheese ripening and they probably aggregate in a
complex way these information to regulate the evolution of the process. An important
information for parameter regulation is the subjective estimation of the current state of
the ripening process, discretised in four phases:

– Phase 1 is characterized by the surface humidity evolution of cheese (drying pro-
cess). At the beginning, the surface of cheese is very wet and evolves until it
presents a rather dry aspect. The cheese is white with an odor of fresh cheese.

– Phase 2 begins with the apparition of a P. camemberti-coat (i.e the white-coat at the
surface of cheese), it is characterized by a first change of color and a ”mushroom”
odor development.
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– Phase 3 is characterized by the thickening of the creamy under-rind. P. camemberti
cover all the surface of cheeses and the color is light brown.

– Phase 4 is defined by strong ammoniac odor perception and the dark brown aspect
of the rind of cheese.

These four steps are representative of the main evolution of the cheese during ripening.
The expert’s knowledge is obviously not limited to these four stages. But these stages
help to evaluate the whole dynamics of ripening and to detect drift from the standard
evolution.

3 Phase Estimation Using GP

The interest of evolutionary optimisation methods for the resolution of complex prob-
lems related to agrifood has been proved by various recent publications. For example
[3] uses genetic algorithms to identify the smallest discriminant set of variables to be
used in certification process for an italian cheese (validation of origin labels). [8] used
GP to select the most significant wavenumbers produced by a Fourier transform in-
frared spectroscopy measurement device, in order to build a rapid detector of bacterial
spoilage on beef. And a recent overview on optimisation tools in food industries [21]
mentions works based on evolutionary approaches.

In a previous work on cheese ripening modeling [4,19], a dynamic bayesian network
has been built, using human expert knowledge, to represent the macroscopic dynamic
of each variable. The phase the network is in at time t plays a determinant role for the
prediction of the variables at time t + 1. Moreover, four relevant variables have been
identified, the derivative of pH , la, Km and Ba at time t, allowing to predict phase at
time t + 1.

In this paper, we will focus on the phase estimation process: a genetic programming
approach is used to search for a convenient formula that links the four derivatives of
micro-organisms proportions to the phase at each time step t (static model), without a
priori knowledge of the phase at t−1. This problem is a symbolic regression one, how-
ever, it has to be noted that the small number of samples and their irregular distribution
make it difficult. Results will be compared with the performances of a static Bayesian
network, extracted from the DBN of [4], and with a very simple learning algorithms
(multilinear prediction, see section 5).

3.1 Search Space

The derivatives of four variables will be considered, i.e. the derivative of pH (acidity),
la (lactose proportion), Km and Ba (lactic acid bacteria proportions, see section 2), for
the estimation of the phase (static problem). The GP will search for a phase estimator

̂Phase(t), i.e. a function defined as follows:

̂Phase(t) = f(
∂pH

∂t
,
∂la

∂t
,
∂Km

∂t
,
∂Ba

∂t
)

The function set is made of arithmetic operators: {+,−, ∗, /, ,̂ log}, with protected /
and log, and logical operators {if,>,<,=, and, or, xor, not} in order to allow com-
plex estimation formula.
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The terminal set is made of the four partial derivatives plus real constants. The con-
stant’s values are not limited, but randomly initialised using one of the following laws
U [0, 1],−U [0, 1],N (0, 1) (U is the uniform law, andN the normal law).

3.2 Fitness Function

Available data are shared in two sets: learning set and validation set, that are randomly
chosen within the available data set for each run. The 16 available experiences are thus
randomly shared between learning and validation sets. The size of the learning set vary
from 10 to 15 experiments, while the size of the corresponding validation set vary from
6 to 1 experiment (see section 5).

The fitness function, to be minimised, is made of a factor that measures the quality
of the fitting on the learning set, plus a “parsimony” penalisation factor in order to min-
imize the size (the number of nodes, actually) of the evolved structures (to avoid bloat).
It is divided by the number of variables involved in the evaluated tree in order to favour
structures that embed all four variables of the problem (this is a requirement of biolo-
gists ; experiments also show that recognition results are better with this constraint):

fitness =

∑
learning set

∣∣∣f(∂pH
∂t ,

∂la
∂t ,

∂Km
∂t , ∂Ba

∂t )− Phase(t)
∣∣∣+W#Nodes

#V ariables+ 1

The parameter W has been experimentally tuned, the optimal value (W = 1) favours
evolution of structures with 30 to 40 nodes.

3.3 Genetic Operators

A classical tree crossover (exchange of subtrees from a randomly chosen node) has
been used with probability pc (defined per tree), as a means of evolving the structure of
the tree. Two types of mutations have been used:

– A subtree mutation (mutation of the structure), that randomly rebuilt a new subtree
from a randomly chosen node, applied with probability psm (defined per tree),

– A point mutation (mutation of nodes content), applied with probability pcm (also
defined per tree) that does not modify the structure, but randomly changes the con-
tent of each node of the tree within the set of compatible functions or terminals
(arity constraints). The probabilities (defined per node) are detailed in table 1. Real
values are considered separately and undergo a real mutation with probability prm

as a multiplicative perturbation according to a χ2 law of parameter N :

x′ = x

∑N
i=1N (0, 1)2

N

prm andN vary linearly according to generations, from 0.1 to 0.5 for prm, and from
1 to 1000 for N , in order to start with rather unfrequent large radius mutations and
finish with more frequent mutations with smaller radius.
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Table 1. Probabilities of point mutation operators

From to probability
operator operator 0.1
variable variable 0.1
variable constant 0.05
constant variable 0.05
constant constant prm : 0.1 to 0.5

N : 1 to 1000

Crossover, subtree and point mutation probabilities vary along evolution according to
the adapting scheme[6] available in the GPLAB toolbox[10]. pc, psm and pcm are ini-
tially fixed to 1

3 , and are updated according statistics of success of the various operators
computed on a tuneable window of past generations.

4 Phase Estimation Using a Parisian GP

Cooperative co-evolution techniques rely on the imitation of cooperative capabilities of
natural populations, and their ability to build solutions via a cooperation process. These
techniques are starting to be used with success on learning problems, see [2] for a recent
reference on the topic. The large majority of these approaches deals with a coevolution
process that happens between a fixed number of separated populations. We experiment
here a different implementation of cooperative coevolution principles, known as the
Parisian approach [5,18], that uses cooperation mechanisms within a single population.
It is based on a two-level representation of an optimization problem, in the sense that
an individual of a Parisian population represents only a part of the problem solution. An
aggregation of multiple individuals must be built in order to obtain a solution at hand. In
this way, the co-evolution of the whole population (or a major part of it) is favoured in-
stead of the emergence of a single best individual, as in classical evolutionary schemes.
The motivation is to make a more efficient use of the genetic search process, and reduce
the computational expense. Successful applications of such a scheme usually rely on
a lower cost evaluation of the partial solutions (i.e. the individuals of the population),
while computing the full evaluation only once at each generation.

Phase estimation can actually be split into 4 combined (and simpler) phase detection
trees. The structures searched are then binary output functions (or binarised functions)
that are able to characterize one of the four phases. A global solution being made of at
least one individual of each phase.

4.1 Search Space and Local Fitness Measurements

We now search for formulas of type: I(∂pH
∂t ,

∂la
∂t ,

∂Km
∂t , ∂Ba

∂t ) with real outputs mapped
to binary outputs, via a sign filtering: (I() > 0) → 1 and (I() ≤ 0)→ 0. The functions
(except logical ones) and terminal sets, as well as the genetic operators, are the same as
in the global approach above.

Using the available samples of the learning set, four values can be computed, in order
to measure the capability of an individual I to characterize each phase:
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k ∈ {1, 2, 3, 4} Fk(I) = 3
∑

i,phase=k

I(sample(i))

#Samplesphase=k

−
∑

i,phase�=k

I(sample(i))

#Samplesphase�=k

i.e. if I is good for representing phase k, then Fk(I) > 0 and F�=k < 0
The local fitness value, to be maximised, is a combination of three factors:

LocalF it = max{F1, F2, F3, F4} ×
#Ind

#IndPhaseMax
×

NbMaxNodes

NbNodes

∣∣∣∣
if NbNodes>NbMaxNodes

The first factor is aimed at characterising if individual I is able to distinguish one of the
four phases, the second factor tends to balance the individuals between the four phases
(#IndPhaseMax is the number of individuals representing the phase corresponding
to the argmax of the first factor and #Ind is the total number of different individuals
in the population) and the third factor is a parsimony factor in order to avoid large
structures. NbMaxNodes has been experimentally tuned, and is currently fixed to 15.

4.2 Sharing Distance

The set of measurements {F1, F2, F3, F4} provides a simplified representation in R4

of the discriminant capabilities of each individual. As the aim of a Parisian evolution
is to evolve distinct subpopulations, each being adated to one of the four subtasks (i.e.
characterize one of the four phases), it is natural to use an euclidean distance in this
four dimensional phenotype space, as a basis of a simple fitness sharing scheme [7].

4.3 Aggregation of Partial Solutions and Global Fitness Measurement

At each generation, the population is shared in 4 classes corresponding to the phase
each individual characterises the best (i.e. the argmax of max{F1, F2, F3, F4} for each
individual). The 5% best of each class are used via a voting scheme to decide the phase
of each tested sample2. The global fitness measures the proportion of correctly classified
samples:

GlobalF it =
∑learningset

i=1 CorrectEstimations

#Samples

The global fitness is then distributed as a multiplicative bonus on the individuals who
participated in the vote:

LocalF it′ = LocalF it× (GlobalF it+ 0.5)α

As GlobalF it ∈ [0, 1], multiplying by (GlobalF it+ 0.5) > 1 corresponds to a bonus.
The parameter α varies along generations, for the first generations (a third of the total
number of generations) α = 0 (no bonus), and then α linearly increases from 0.1 to 1,
in order to help the population to focus on the four peaks of the search space.

Two sets of indicators are computed at each generation (see section 5, third line of
figure 2):

2 This scheme may also yield a confidence level of the estimation. This measurement is not yet
exploited but can be used in future developments of the method.
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– the sizes of each class, that show if each phase is equally characterised by the
individuals of the population.

– the discrimination capability of each phase, computed on the 5% best individuals
of each class as the minimum of:

Δ = max
i∈[1,2,3,4]

{Fi} −
∑

k �=argmax{Fi}{Fk}
3

5 Experimental Analysis

Available data have been collected from 16 experiments during 40 days each, yielding
575 valid measurements.3 The derivatives of pH , la, Km and Ba have been averaged and
interpolated (spline interpolation) for some missing days. Logarithms of these quantities
are considered.

The parameters of both GP methods are detailed in table 2. The code has been de-
veloped in Matlab, using the GPLAB toolbox[10]. Comparative results of the four con-
sidered methods (multilinear regression, Bayesian network, GP and Parisian GP) are
displayed in figure 1, and a typical GP run is analysed in figure 2.

Table 2. Parameters of the GP methods

GP Parisian GP
Population size 1000 1000
Number of generations 100 50
Function set arithmetic and logical functions arithmetic functions only
Sharing no sharing σshare = 1 on the first third of generations,

then linear decrease from 1 to 0.1
αshare = 1 (constant)
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Fig. 1. Average (left) and standard-deviation (right) of recognition percentage on 100 runs for the
4 tested methods, the abscissa represent the size of the test-set

3 The data samples are relatively balanced except for phase 3, which has a longer duration, thus
a larger number of samples: We got 57 representatives of phase 1, 78 of phase 2, 247 of phase
3 and 93 of phase 4.
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Fig. 2. A typical run of the Parisian GP:
- First line: the evolution with respect to generation number of the 5% best individuals for each
phase: the upper curve of each of the four graphs is for the best individual, the lower curve is for
the “worst of 5% best” individuals.
- Second line left: the distribution of individuals for each phase: the curves are very irregular but
numbers of representatives of each phases are balanced.
- Second line right: discrimination indicator, which shows that the third phase is the most difficult
to characterize.
- Third line: evolution of the recognition rates of learning and verification set. The best-so-far
recognition rate on learning set is tagged with a star.

The multilinear regression algorithm used for comparison works as follows: the data
are modeled as a linear combination of the 4 variables:

̂Phase(t) = β1 + β2
∂pH

∂t
+ β3

∂la

∂t
+ β4

∂Km

∂t
+ β5

∂Ba

∂t

The 5 coefficients {β1, . . . , β5} are estimated using a simple least square scheme.
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Experiments show that both GP outperform multilinear regression and Bayesian net-
work approaches in terms of recognition rates. Additionally the analysis of a typical
GP run (figure 2) shows that much simpler structures are evolved: The average size of
evolved structures is around 30 nodes for the classical GP approach and between 10 an
15 for the Parisian GP.

It has also to be noted in figure 2 that co-evolution is balanced between the four
phases, even if the third phase is the most difficult to characterize (this is in accordance
with human experts’ judgement, for which this phase is also the most ambiguous to
characterize).

6 Conclusion and Future Work

This work is a first step toward the use of GP to model complex interactions within
a cheese ripening industrial chain. Preliminary results presented in this paper show
the effectiveness of GP schemes to capture subjective mechanisms related to human
expertise. This point is extremely important for the automation of industrial process as
well as for the transmission of expert knowledge.

Additionally, the developement of a cooperative-coevolution GP scheme (Parisian
evolution) seems very attractive, as it allows to evolve simpler structure during less gen-
erations, and yield results that are easier to interpret. There are however some difficulties
to overcome in future developments. First, the computation time is almost equivalent
between both presented methods (100 generations of a classical GP against 50 genera-
tions of a Parisian one), as one “Parisian” generation necessitates more complex oper-
ations, all in all). One can expect a more favourable behaviour of the Parisian scheme
on more complex issues than the phase prediction problem, as the benefit of splitting
the global solutions into smaller components may be higher and may yield computa-
tional shortcuts (see for example [5]). The second difficulty comes from the fact that
the Parisian sheme has to be adapted to the problem, it is not obvious for the moment
that a convenient sub-problem splitting can be built for other, more complex, prediction
problems.
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Abstract. A key task for data mining is to produce accurate and descriptive 
models. `Human readable’ models are often necessary to enable understanding, 
potentially leading to further insight, and also inducing trust in the user. Rules, 
or decision trees (if not too numerous or large) are readable, unlike, for example  
SVM models. However, descriptiveness and accuracy normally conflict; a chal-
lenge is to find algorithms that have both high accuracy and high readability. 
We introduce ORGA (Optimized Ripper using Genetic Algorithm) which hy-
bridizes evolutionary search with the RIPPER ruleset algorithm. RIPPER is ef-
fective at producing accurate and readable rulesets, and we show that ORGA 
provides significant further improvement. ORGA outperforms overall a suitable 
set of comparative algorithms including implementations of RIPPER, C4.5 and 
PART. On a majority of the datasets, ORGA’s outperformance of the other al-
gorithms is spectacular, and it is rarely dominated in terms of both accuracy and 
readability.  

Keywords:  data mining, human readability, hybrid machine learning. 

1   Introduction 

There continues to be considerable research effort worldwide aimed at finding effi-
cient and effective ways to learn predictive models from data. An ever-present issue 
in this field is the tradeoff between the accuracy of a model and its complexity. 
Broadly speaking, methods in data mining either produce complex models that are 
highly predictive but difficult to understand, or simple models that tend to have less 
favourable accuracy. An ongoing area of interest is the attempt to get the best of both 
worlds. That is, to find algorithms that produce models that are both accurate and 
readily understandable.  An understandable model is `human-readable'; that is, the 
knowledge inherent in the model is easily grasped by (for example) a doctor. The 
most obvious and common such model is an ‘ IF...THEN’ rule, or, more normally, a 
small set of such rules. Such models are advantageous in practice for several reasons. 
First, this kind of knowledge representation is a convenient way for experts to convey 
their knowledge to others. It follows that this is also an effective way to convey 
knowledge to the expert. Meanwhile, such rules are modular, each defining a rela-
tively small and, at least in principle, independent piece of knowledge. Additionally, 
we make comparisons with algorithms that produce decision trees, which also come 
into the category of readable and understandable models. 
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There is therefore continued interest in algorithms that generate simple rules, since 
these are naturally and immediately readable. Typically, the better-performing such 
algorithms tend to be those that produce sets of rules. For such a ruleset, a rough idea 
of its readability is given by the number of rules in the set. The issue in this specific 
research area is therefore to find algorithms that tend to produce small and accurate 
rulesets. In some preliminary research and literature review we identified a number of 
high-performing algorithms in this respect, with RIPPER [1] being the dominant one 
in typical, overall performance. We therefore took RIPPER as the launch point from 
which to pursue further research towards improving the combined accuracy and read-
ability of rulesets, interested particularly in medical datasets. RIPPER itself has two 
main phases, the second phase performing a particular kind of constrained optimiza-
tion of the ruleset produced by the first phase. We expected that replacing this optimi-
zation stage with an evolutionary algorithm would lead to enhanced performance. 
This paper therefore presents the resulting algorithm, which we call ORGA (Opti-
mized Ripper with GA), and evaluates its performance on a range of medical-theme 
datasets, in comparison to a selection of other ruleset generation algorithms, as well as 
some decision tree generation algorithms. 

The remainder is set out as follows. Section 2 summaries relevant related work. In 
section 3 we outline the RIPPER algorithm and describe ORGA, which hybridizes 
RIPPER with an evolutionary algorithm. The experimental setup is described in sec-
tion 4, which includes a summary of all of the datasets and algorithms compared, and 
an analysis of the results. Section 5 provides a concluding summary. 

2   Background and Related Work 

Data mining in medicine is considered by some machine learning communities as one 
of the more complex and problematic domains yet to be overcome [2]. Two of the key 
tasks in medicine are diagnosis and prognosis. To learn, express and convey knowl-
edge for these tasks, rule-based representations of knowledge are well-placed, and 
physicians are ready to trust and believe the consequent diagnoses.   

In an attempt to sample the state of the art as regards methods that combine accu-
racy and readability, in preliminary work we tested a wide range of algorithms avail-
able in the Weka toolkit on a collection of medical-themed datasets. The results were 
analysed based on broad measures of readability and accuracy, and we found that 
RIPPER ([1]; implemented in Java version as JRip inside Weka) stood out in its per-
formance in these combined respects, and we chose this to therefore examine and 
build on RIPPER towards further progress in combining accuracy and readability. 

RIPPER is quite a sophisticated algorithm (described further in the next section), 
and derives from a lineage of rule induction algorithms which started with Reduced 
Error Pruning (REP) [3]. The essence of REP was to repeatedly grow and prune a 
ruleset. Growing a ruleset simply means adding antecedents to a rule or adding a new 
rule in such a way as to maximize some aspect of performance, and pruning a rule 
means removing antecedents or rules, again in such a way that maximizes some (per-
haps other) aspect of performance. E.g. when growing a rule, we may continually add 
antecedents to increase that maintain the rule’s coverage of a particular class, while 
maintaining false positives below a given threshold. A key element of the REP  
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algorithm was that the dataset was partitioned into separate sets for evaluating per-
formance in the growing and pruning phases respectively. This led to rather good 
generalization performance. Further developments explored improvements the ‘grow 
and prune’ (also regarded as ‘overfit and simplify’) approach, until IREP [4] im-
proved upon this approach further by building a ruleset one rule at a time. That is, the 
grow and prune strategy was first used to generate a single rule, and then, after re-
moving from the training sets data covered by the ruleset so far, further rules are con-
structed by iterating the process.   

RIPPER then emerged from IREP by making a number of sophistications and 
modifications, affecting the details of the heuristics and stopping criteria used in the 
grow and prune phases, and involving the addition of a ruleset optimization compo-
nent (in itself using iterated grow and prune operators combined with a minimum 
description length (MDL) heuristic) to follow the (modified) IREP-constructed  
ruleset. The result was a highly efficient algorithm with excellent generalization  
performance.  

The success and performance characteristics of RIPPER have led to a number of 
variants being explored; among these, relatively prominent in the machine learning 
community is PART, which hybridises elements of C4.5 [5] with RIPPER, and which 
is one of the algorithms used in our comparison set. Meanwhile the SLIPPER algo-
rithm is a ‘boosted’ version of RIPPER [6], but we do not consider that further, since 
boosting approaches naturally lead to larger and hence less readable models. 

In this paper we explore a variant of RIPPER in which the optimisation stage is re-
placed by an evolutionary search. Hybridisations of evolutionary search with other 
strategies for rule or decision tree learning are fairly frequent in the literature, e.g. 
Turney [7] introduced ICET, a hybrid of a genetic algorithm and a decision tree in-
duction algorithm for cost-sensitive classification. ICET uses a genetic algorithm to 
evolve a population of biases for a modified version of C4.5), while Bala et al [8] 
proposed a hybrid learning methodology that integrates genetic algorithms and deci-
sion tree learning. In similar vein, Carvalho and Freitas [9] integrate adecision tree 
approach and a genetic algorithm. Meanwhile, Hsu et al. [10] proposed a hybrid of the 
association rule algorithm Apriori and genetic algorithms called AGA to discover a 
classification tree. Apriori is adopted to obtain useful clues based on which the GA is 
able to proceed its searching tasks in a more efficient way. 

Several such hybrid approaches have been explored, together with a long and in-
creasing literature of ‘pure’ (or mainly) evolutionary algorithm based approaches (e.g. 
see [11]), but there are actually very few explorations of approaches where the evolu-
tionary component is ‘light’, in the sense that a carefully designed and effective heu-
ristic-based algorithm, such as RIPPER, is modified a little to contain an evolutionary 
algorithm  By adopting this approach first, we expected to retain many of the 
strengths of RIPPER in generalisation ability, but by performing a less restrained 
optimisation perhaps enabling further improvements. 

3   RIPPER and ORGA 

The broad approach used in the original RIPPER algorithm is as follows. RIPPER 
builds a ruleset by repeatedly adding rules to an empty ruleset until all positive  
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examples are covered. This naturally leads to a set of rules that covers all positive 
examples as well as many negative examples. Rules are then refined by greedily add-
ing conditions to the antecedent of rules (starting with the empty antecendent) until no 
negative examples are covered. After a ruleset is constructed, an optimization stage 
then amends the ruleset so as to reduce its size and improve its fit to the training data. 
A combination of cross validation and minimum description length (MDL) heuristics 
are used to reduce the degree of data overfitting. RIPPER thus comprises two parts: 
ruleset-building, and ruleset-optimization. In the optimization stage, further grow and 
prune strategies are applied, with further heuristics and criteria to guide the search. 
Limited space prevents a complete description, but readers will find a full description 
in [1] and may inspect the Weka implementation of RIPPER (JRip). 

In ORGA, we replace the optimization stage with an evolutionary search. Other-
wise the algorithm is precisely the same as (the JRip implementation of) RIPPER. 
The task is to find an improved ruleset, given as a starting point the ruleset that 
emerged from the initial stage of RIPPER. The encoding is as follows. Each rule is a 
sequence of conditions {C1, C2, … Cn}, whose interpretation is “IF every condition 
is true, then the predicted class is X”. X is always clear from context. In a standard 
way, each condition Ci is characterized by a triple {Ai, Ri, Vi}, which are respec-
tively the attribute index, relational operator, and value. A chromosome is simply a 
variable length sequence of such triples. For example, the following chromosome: 

3, <, 85, 2, >, 0, 8, =, “blue”, 25,<,2 

encodes the condition: “attribute 3’s value is <85, attribute 2’s value > 0, attribute 8’s 
value is “blue” and attribute 25’s value is < 2..”.  Naturally, each attribute value gene 
is an integer indexing the attributes, constrained to not index the attribute whose class 
is to be predicted. The relational operator gene is binary, indicating either “=” or “≠” 
for a categorical attribute, or “≤” or “≥” for a numerical attribute. Finally, the value 
gene contains a value within the range of values of the attribute in question; this is 
either a real value for a numerical attribute, or a category for a categorical attribute. 
Actually in this paper we only explore numerical datasets and hence encode only 
numerical attributes, mainly because almost all medical-theme datasets in the UCI 
repository are all-numeric. A ruleset is simply encoded as a set of such structures. The 
evolutionary algorithm component of ORGA then proceeds to evolve rulesets (i.e. a 
chromosome represents a single ruleset as in the Michigan approach), and fitness is 
simply its predictive accuracy.   

Mutation operates by randomly selecting a condition from a randomly chosen rule, 
and making a random valid change to either its attribute, operator or value (for exam-
ple, if the attribute is changed, then a random value will be selected from the existing 
values in the training set for that attribute). The overall algorithm for this optimization 
component is simply as follows. First, construct a single chromosome directly from 
the collection of rulesets emerging from the first stage of RIPPER. Then, construct a 
population of 100 rulesets by generating 100 mutated copies of the initial ruleset. 
Then we run a simple, mutation-only steady-state binary tournament selection evolu-
tionary algorithm for 100 iterations. Hence, the additional runtime involved with 
ORGA is quite negligible; also, ORGA is unoptimised in terms of its parameters and 
strategies, representing one of our first attempts to see if RIPPER could be improved 
by using a basic evolutionary approach. 
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4   Datasets, Algorithms, Experimental Setup and Results 

4.1   Benchmark Datasets Used in This Study 

The datasets used in this investigation were obtained from the UCI Machine Learning 
Repository. Considering our interest in readability, which is a particular concern for 
data mining applications in medicine, we concentrate on medical datasets. At the time 
of writing, we consider only datasets where all attributes are numerical, and this is the 
case for 9 of the 10 datasets in the UCI repository that have a medical theme. A sum-
mary of these datasets is in Table 1. 

Table 1. UCI Repository medical-theme datasets used in this study 

No. Dataset Citation Instances Attributes Classes 

1 Breast-cancer (Wis- [12] 569 30 2 
2 echocardiogram [13] 132 9 2 
3 heart-disease [14] 303 13 5 
4 hepatitis [15] 155 19 2 
5 lymphography [16] 148 18 4 
6 pima-diabetes [17] 768 8 2 
7 primary-tumor [16] 339 18 19 
8 thyroid-gland [18] 215 5 3 
9 Horse-colic [19] 300 23 2 

4.2   Ruleset and Decision Tree Algorithms Used for Comparative Experiments 

Exploiting the Waikato Environment for Knowledge Analysis (Weka [20]), we chose 
to compare with algorithms from the Weka toolkit that produce readable models (i.e. 
rulesets or decision trees), and can be applied directly to datasets with both numeric 
and nominal attributes and can handle several (i.e. more than two) predictive classes. 
Although we only use datasets in this study with all-numeric datasets, our ultimate 
interest is in techniques than can handle mixed-attribute datasets. This resulted in the 
set of algorithms summarized in Table 2, for which we employed the Weka imple-
mentations with default parameters.  

OneR or “One Rule” is a simple algorithm proposed by Holt [21] which builds one 
rule for each attribute in the training data and then selects the rule with the smallest 
error rate. Ridor is the RIpple-DOwn Rule learner proposed by Gaines and Compton 
[22]. It generates a default rule first and then the exceptions for the default rule with 
the least (weighted) error rate. Then it generates the "best" exceptions for each excep-
tion and iterates until pure.  Exceptions are a set of rules that predict classes other than 
the default. IREP [4] is used to generate the exceptions. PART is a separate-and-
conquer rule learner proposed by Frank and Witten [23], which produces ‘decision 
lists’. PART builds a partial C4.5 decision tree in each iteration and makes the "best" 
leaf into a rule. The algorithm is a combination of C4.5 [5] and RIPPER [1]. JRip is 
the Weka implementation of RIPPER which, as we have seen, builds a ruleset by 
repeatedly adding rules to an empty ruleset until all positive examples are covered.  
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Table 2. Selected comparative algorithms 

No. Algorithm Acronym Classifier  Citation 
1 OneR OneR Rule [21]
2 Ridor Ridor Rule [22]
3 PART PART Rule [23]
4 JRip JRip Rule [1, 20]
5 DecisionTable DT Rule [24]
6 ConjunctiveRule CR Rule [20]
7 J48 (C4.5) J48 Tree [5, 20]
8 DecisionStump DS Tree [25]
9 RandomTree RT Tree [20]
10 REPTree RTree Tree [20]

DecisionTable builds a rule using a simple decision table majority classifier as 
proposed by Kohavi [24]. It summarizes the dataset with a ‘decision table’ which 
contains the same number of attributes as the original datase. It employs the wrapper 
method to find a good subset of attributes for inclusion in the table. ConjuctiveRule 
implements a single conjunctive rule learner and is described in [20]. A rule consists 
of antecedents "AND"ed together and the consequent (class value) for the classifica-
tion/regression. In this case, the consequent is the distribution of the available classes 
(or mean for a numeric value) in the dataset. If the test instance is not covered by this 
rule, then it's predicted using the default class distributions/value of the data not cov-
ered by the rule in the training data. J48 is the weka implementation of C4.5 [5, 20]. 
DecisionStump builds simple binary decision ‘stumps’ (1 level decision tress) [25]. It 
is usually used in conjunction with a boosting algorithm such as LogitBoost [26]. 
RandomTree considers K randomly chosen attributes at each node as described in 
[20]. It performs no pruning. Finally, REPTree is a fast decision tree learner [20] 
which builds a tree using information gain/variance and prunes it using reduced-error 
pruning. 

4.3   Experimental Setup 

Experiments were done to compare the performance of ORGA with each of the algo-
rithms described in section 4.2, on each of the datasets noted in section 4.1. Each 
individual experiment, characterized by the pair {Algorithm, Dataset}, was set up as 
follows. When the algorithm was ORGA, a simple unoptimized parameter set was 
employed, as detailed in section 3. In all other cases, the standard default settings of 
Weka version 3.5 were used for the algorithm in question. 10-fold cross-validation 
was used, where the dataset was randomly partitioned into ten approximately equally 
sized portions, and the result of a single trial was the mean accuracy on the test sets 
over the ten folds. The entire process was repeated for ten independent trials; so that 
we have a sample of 10 performance estimates for each {Algorithm, Dataset} pair. 
Finally, we note estimates of readability for each algorithm as follows. For algorithms 
that generate rulesets, we record the mean value of the number of rules in the final 
ruleset of each fold, and record the mean of this over the 10 trials. For algorithms that  
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generate decision trees, we record the number of non-leaf nodes in the tree as an 
analogous measure. Table 3 provides the raw results, recording for each {Algorithm, 
Dataset} pair the mean (upper) and standard deviation (lower) of the ten trials. 

Table 3. Raw results for various rule and tree algorithms and ORGA. Boldface indicates 
(equal) best mean value among the algorithms. 

  Ruleset algorithms Decision Tree algorithms 
Dataset OneR Ridor PART JRip DT CR ORGA J48 DS RT REPTree 
Breast 88.2 

0.89 
93.7 
0.41 

94.4 
0.60 

93.8 
0.59 

93.3 
0.57 

90.28 
0.45 

92.0 
2.99 

94.1 
1.06 

88.6 
0.66 

91.0 
0.77 

93.4 
0.56 

Echo 92.2 
0.32 

90.0 
1.85 

86.6 
1.31 

90.8 
0.72 

91.8 
0.37 

92.0 
0.40 

92.4 
1.22 

90.0 
1.27 

92.4 
0.0 

77.1 
2.04 

91.3 
0.97 

Heart 51.4 
0.82 

54.4 
1.65 

51.1 
2.01 

54.5 
1.16 

56.6 
1.46 

53.9 
1.16 

67.6  
3.95 

52.6 
1.40 

51.8 
0.94 

48.5 
1.95 

56.2 
1.24 

Hepatitis 82.5 
0.90 

78.6 
1.76 

79.9 
2.05 

79.0 
1.61 

79.4 
2.42 

78.8 
1.44 

86.9 
 1.89 

79.2 
1.18 

77.9 
1.36 

78.8 
3.27 

78.8 
2.00 

Lymph 75.7 
0.0 

76.8 
4.60 

76.3 
2.17 

78.8 
2.72 

75.7 
1.23 

65.1 
2.90 

77.7  
5.6 

78.5 
1.22 

65.9 
2.33 

73.1 
4.25 

75.3 
2.78 

Pima 71.7 
0.68 

73.2 
0.82 

73.7 
1.19 

74.1 
1.43 

73.9 
0.67 

70.6 
1.05 

76.6  
1.2 

73.9 
1.36 

71.4 
0.83 

66.8 
1.37 

73.7 
1.4 

p-tumor 27.0 
0.37 

37.6 
1.74 

40.4 
0.85 

38.6 
0.98 

38.1 
1.22 

27.8 
1.01 

47.0  
3.64 

41.3 
1.76 

27.14 
0.0 

33.1 
1.60 

39.9 
1.01 

thy-g 92.4 
0.59 

93.5 
0.82 

95.0 
0.96 

93.3 
0.79 

92.5 
0.71 

78.7 
0.81 

94.0  
2.64 

93.8 
1.17 

76.8 
0.72 

91.2 
1.44 

92.4 
0.59 

horse-c 69.4 
1.62 

70.4 
1.71 

72.1 
1.46 

71.5 
1.21 

72.5 
0.89 

65.0 
2.87 

78.5  
1.98 

73.0 
0.90 

73.0 
0.0 

65.5 
1.96 

72.3 
1.08 

Table 4. Mean rough measures of readability for various rule and tree algorithms and an 
unoptimsed implementation of ORGA. In this case, boldface indicates algorithms whose mean 
accuracy was better than that of ORGA, enabling us to contrast the rough relative readability of 
ORGA in this circumstance. 

 Ruleset algorithms Decision Tree algorithms 
Dataset OneR Ridor PART JRip DT CR ORGA J48 DS RT REPTree 

breast 
4 
0 

5 
0.7 

7 
0 

5.4 
0.8 

88 
0 

1 
0 

5.8 
0.8 

25 
0 

3 
0 

111.2 
16.0 

11.4 
2.8 

echo 
3 
0 

2.9 
1.5 

6 
0 

2.3 
0.5 

3 
0 

1 
0 

2.7 
0.8 

3 
0 

3 
0 

72.8 
22.3 

3 
0 

heart 
4 
0 

41.7 
12.8 

49 
0 

4 
1.2 

8 
0 

1 
0 

13.2 
1.2 

67 
0 

3 
0 

326.2 
1.9 

22.4 
5.6 

hepatitis 
3 
0 

2.5 
0.5 

8 
0 

2.7 
0.8 

46 
0 

1 
0 

2.3 
1.5 

21 
0 

3 
0 

135.8 
14.6 

8.2 
2.2 

lymph 
3 
0 

8.7 
3.1 

11 
0 

6.7 
1.2 

30 
0 

1 
0 

5.5 
1.8 

25 
0 

3 
0 

143.2 
10.3 

13.4 
3.6 

pima 
8 
0 

6.3 
1.8 

13 
0 

4.1 
0.9 

32 
0 

1 
0 

5.7 
1.4 

39 
0 

3 
0 

496 
23 

31.8 
6.2 

p-tumor 0 
331.4 
111.5 

46 
0 

8.8 
0.8 

53 
0 

1 
0 

15 
2.5 

81 
0 

3 
0 

487.6 
28.1 

34.6 
8.2 

thy-g 
3 
0 

8.3 
1.7 

4 
0 

5 
0.7 

21 
0 

1 
0 

5.6 
0.5 

17 
0 

3 
0 

45.2 
8.2 

8.8 
1.8 

horse-c 
3 
0 

5.2 
1.4 

15 
0 

3.9 
0.9 

24 
0 

1 
0 

2.4 
0.8 

11 
0 

3 
0 

538.8 
25.5 

20 
5.3 
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Table 4 summarises the results in terms of the rough estimate of readability pro-
vided by mean number of rules in a ruleset, or non-leaf nodes in the tree, in the best-
performing model delivered by each trial; again the mean and standard deviation are 
provided in each case. These are very rough measures of readability, and we aim to 
investigate refined measures in ongoing work. For now, they will serve to provide a 
usable guide as to the readability/accuracy tradeoffs among these algorithms. In par-
ticular, Table 4 highlights those cases in which other algorithms performed better than 
(or as well as) ORGA in terms of mean accuracy. This happened in the case of the 
breast-cancer, echo-cardiogram, and lymphography and thyroid-gland datasets. Con-
sidering cases of ruleset algorithms, we can see that ORGA produced equally smal 
rulesets than the slightly more accurate rivals in 4 of these 5 cases. Meanwhile, 
ORGA always produced a reasonably small number of rules. A remarkable result is 
the case of the hepatitis dataset, in which ORGA often produced a single rule, while 
outperforming all other algorithms in terms of mean result. Finally, in Table 5 we 
summarise findings in terms of statistical significance. For each dataset, we compare 
the ten results from ORGA with (individually) the ten results of each of the other 
algorithms using a randomization test [27], yielding p values for one-tailed hypothe-
ses based on the difference in means; the table summarises the significance results for 
each dataset.   

Table 5. Based on randomisation tests, summary of the statistical significance of apparent 
differences between   ORGA and other algorithms for each dataset 

Dataset Statistical significance notes 
Breast PART ( p = 0.003) and j48 (p = 0.027) outperform ORGA with confidence 

level >= 95%; JRip outperforms ORGA with >90% confidence (p = 0.052). 
REPTree and Ridor show no significant difference to ORGA, while ORGA is 
statistically superior to the remaining algorithms. 

Echo ORGA is not statistically different from OneR or DS, but is superior to DT with confi-
dence >90% (p = 0.087), CR with confidence >90% (p = 0.08), and all others. 

Lymph No algorithm is statistically superior to ORGA with  confidence >=95% 
thy-g PART is statistically superior to ORGA with p = 0.048; no significant difference be-

tween ORGA and J48 or ORGA and Ridor; ORGA superior to all other algorithms 
Heart, hepatitis, pima,p-tumour, horse-c ORGA superior to all others  with p values < 0.001  

5   Summary and Observations 

ORGA is clearly the overall best, with outstandingly better performance than all other 
tested algorithms on five of the nine datasets, and only outperformed occasionally by 
PART, and once by JRip. ORGA clearly has desirable readability properties. In this 
context, the algorithms tend to fall into three categories. CR, DS and OneR provide 
readable models by design (e.g. CR produces precisely a single conjunctive rule), and 
tend to underperform in terms of accuracy. In a second category are DT, J48 (C4.5) 
and RT, which are more concerned with accuracy than readability; performance tends 
to be competitive, but at the expense of readability. Finally, Ridor, PART, JRip, 
REPTree and ORGA attempt to do well at both accuracy and readability. Ridor and 
REPTree are less successful in terms of accuracy and unstable in terms of readability; 
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meanwhile, PART, JRip and ORGA are good performers all round. This is not sur-
prising considering that each of these is a fairly sophisticated hybrid approach.  
    Clues that might help explain ORGA’s overall excellent performance might be as 
follows. Where ORGA excels seems to be on the many-class datasets; meanwhile its 
worst performance, relatively speaking, was on the dataset with the most attributes. 
Naively (since based on just this small sample of datasets) this suggests that ORGA 
may be specialised for many-class few-attribute datasets. This idea is in harmony with 
the observation that the optimisation stage in ORGA involves a fixed, limited number 
of evaluations of new rules, which means increasingly less chance to explore the 
space of possible rulesets as the number of attributes increases. Meanwhile, RIPPER 
involves a series of stages that build rules specialised to each class in the dataset, in 
this way making a specific effort to do well on many-class problems. This is reflected 
in the fact that, as well as ORGA, the other algorithms based (at least partly) on RIP-
PER tend to do well on the >2-class datasets. 
     Ongoing work will examine these tentative hypotheses, towards a better under-
standing of how the attainment of both excellent accuracy and readability can be  
reliably achieved. In parallel and guided by this effort, we expect that additional per-
formance gains are likely to be found as we explore alternative places in ORGA’s 
parameter and strategy spaces.   
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Abstract. The Routing and Wavelength Assignment Problem deals
with the routing of telecommunication traffic in all-optical networks. Ex-
tending existing algorithms, we present a memetic algorithm (MA) for
the static RWA by introducing a recombination operator and a scheme
for distributing the computation. Compared to previously achieved re-
sults for this problem, our MA significantly improves the solution qual-
ity. We find provably optimal results for previously unsolved problem
instances. The distributed variant using epidemic algorithms allows to
find solutions of quality comparable to the MA in less real-time.

1 Introduction

The Routing and Wavelength Assignment problem (RWA), an NP-complete [1]
graph-theoretical problem, deals with Wavelength Division Multiplexed (WDM)
optical networks, where communication requests between nodes in a network
have to be fulfilled by routing them on optical fiber links with given capacities.

A problem instance of the RWA is a physical network represented by a graph
G = (V,E,W ) with nodes V , edges E, and wavelengths W . The optical fiber
links in the physical network are represented by E (here undirected) and on each
links each wavelength in W is available. A node in V can be starting point ur

or end point vr of a connection request r = (ur, vr, dr) ∈ R with a demand of
dr ∈ N+. For each unit of demand a lightpath has to be established. A lightpath
is a path between two nodes in the physical network utilizing one wavelength
on each link. The wavelength continuity constraint requires the path to use the
same wavelength on every link, the wavelength conflict constraint states that no
wavelength on a link may be used by more than one lightpath at the same time.

In the RWA’s static variant, a set of requests is given and one can either mini-
mize the number of wavelengths to route all requests or maximize the number of
routed requests for a given set of wavelengths. In the dynamic variant, requests
turn up over time and one has to maximize the number of routed requests. Here,
we focus on minimizing the number of used wavelengths in the static case.

Next, related work and a previous publication is discussed. We present our MA
and the recombination operator in Sec. 2. The transformation into a distributed
MA is described in Sec. 3. After motivating our experimental setup in Sec. 4, we
present our results in Sec. 5.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 879–888, 2008.
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1.1 Related Work

Early papers were due to Bala et al . [2] and Chlamtac et al . [3], where both
wavelength constraints were defined and algorithms for the dynamic RWA were
presented. A popular approach for the RWA is to split the solution finding pro-
cess into solving the subproblems of routing and wavelength assignment inde-
pendently. For the static RWA, Banerjee and Mukherjee [4] used this approach,
where the routing part is solved by relaxing the wavelength continuity constraint,
solving a fractional multicommodity flow problem, and using randomized round-
ing to find paths in the graph. For the wavelength assignment a graph coloring
problem is solved, where the nodes represent the paths and the edges state
whether the incident paths share a common physical link. Another approach for
solving the wavelength assignment part was given by Manohar and Shevgaonkar
[5], who defined it as an instance of the maximum edge disjoint paths problem,
where a maximum-sized subset of all paths in a graph is wanted holding that
no two paths share a common link. Iteratively, among the paths with no wave-
length assigned, the maximum subset is determined the next unused wavelength
assigned to that path set, which is then removed from subsequent iterations.
A general overview and classification of algorithms solving both subproblems
independently is provided in [6] by Zang et al . and in [7] by Choi et al.

Sinclair [8] presented a memetic algorithm for the static RWA. Its intricate
cost function does not match any of the RWA’s objectives as stated above. The
algorithm features mutation, recombination, and two local search operations
which are applied with varying probabilities. The mutation reroutes a given
request on a path randomly chosen from the set of k-shortest paths between
the endpoints using the first available wavelength. The recombination performs
a crossover where the set of requests is split and both offsprings contain paths
and wavelength assignments from one of the halves while the other half only
provides the paths using new wavelength assignments. The first local search
tries to reroute a request in a wavelength from a high index in a lower-indexed
wavelength using a k-shortest path. The second local search operates similarly,
but here a target wavelength is chosen first and all conflicting paths are rerouted
before rerouting the path from the high-indexed wavelength. Given that the
algorithm uses problem-specific operators, the large population size (500) and
the vast number of generations (100 000) question its efficiency.

Skorin-Kapov [9] introduced a construction heuristic called BFD RWA based
on bin-packing algorithms. Requests are sorted non-increasingly by length of
their shortest paths and routed in the wavelength with shortest available path.

In [10], we presented a new set of benchmark instances, on which an iterated
local search (ILS) algorithm was applied. The ILS consists of a local search
(LS) and a mutation operator. The LS’s idea is to move requests from less used
wavelength to highly used wavelengths with the intention to clear already sparse
wavelengths. The mutation operator randomly selects two wavelengths λ1 and
λ2 where w. l. o. g. the load of λ2 is smaller than λ1. A path routed in λ2 is
randomly chosen and moved to λ1 by using the shortest path between both
endpoints. Any conflicting path in λ1 is forcefully removed and later reinserted
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1: function InitializePopulation(Graph G, Requests R)
2: S ← ∅
3: for i ← 1, . . . , n do
4: s ← BFD RWA(G, R)
5: S ← S ∪ {s}
6: return S

1: function MemeticAlgorithmRWA(Graph G, Requests R)
2: S ← InitializePopulation(G, R)
3: while !TerminationReached do
4: S′ ← ∅
5: for all s ∈ S do
6: if Random() ≤P[recomb] then
7: s ← ChooseIndividual(S, s)
8: s′ ← Recombinator(G, s, s, R)
9: else

10: s′ ← Mutate(s, R, strength)

11: s′′ ← LocalSearch(s′, R)
12: if s′′ < s then
13: S′ ← S′ ∪ {s′′}
14: else
15: S′ ← S′ ∪ {s}
16: S ← S′

17: return S

Fig. 1. Memetic algorithm for the RWA

by the construction heuristic’s approach. The ILS provides solutions near the
lower bound (determined by relaxing the wavelength continuity constraint and
solving the resulting multicommodity flow problem) and, for some instances even
optimal solutions can be achieved.

It is equivalent having between any node pair either at most one request with
demand ≥ 1 or multiple requests with demand = 1 each. We use the latter
definition to simplify the notation of algorithms presented in this paper.

2 Algorithms

In this paper, we present a recombination operator (Fig. 1) which is used to
create a population-based memetic algorithm (MA) for the static RWA. Based
on the ILS presented in [10], the MA adds the feature to handle populations of
solutions and to recombine two solutions to one offspring solution.

The population is initialized by using the BFD RWA construction heuristic
for each individual. Although this heuristic orders requests by the length of
their shortest path, requests are inserted in random order within each subset of
equal shortest path lengths, thus resulting in different solutions. Until reaching
some termination criterion the MA iterates over the population. Our termination
criterion is an instance-dependent time limit allowing to compare different setups
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1: function Recombinator(Graph G, Solution a, Solution b, Requests R)
2: s ← a, R′ ← ∅, Pb ←

⋃
r∈R pG,b(r)

3: for λ ∈ {λ1, . . . , λ|W | : u(λi) ≥ u(λi+1)} do
4: for r ∈ R : λs(r) = λ do
5: if pG,s(r) ∈ Pb then
6: Pb ← Pb \ {pG,s(r)}
7: else
8: s ← s \ r, R′ ← R′ ∪ {r}
9: for all r ∈ R′ do � for all currently unrouted paths

10: λs(r) ← arg minλ∈W ΨG,s(r, λ) �= ∅
11: pG,s(r) ← ΨG,s(r, λs) � route request on the first possible wavelength

12: return s

Fig. 2. Recombination operator for the RWA

for the same instance. In each iteration, for each individual the same steps are
performed: First, with given probabilities (Sec. 4) either a recombination (s.b.)
or a mutation step as introduced in [10] is performed. The mutation strength
can be varied, the actually used strategy is 10%↓2% (starting with mutation
strength 10 % and decreasing in each iteration by 2 % until reaching the fixed
minimum of 1 %) as in [11]. Once a provisional offspring has been created, this
individual is improved by the LS used in [10].

For each individual of the next generation, offspring and parent are compared
and the better one is kept. Thus, the only interaction between individuals of
the same generation is the recombination operator. Setting the recombination
probability to 0.0, the memetic algorithm equals to as many independent ILS
runs as there are individuals in the population.

The recombination operator allows to combine common features of two parent
individuals to one offspring. The offspring only keeps paths existing in both
parents using the wavelength assignments from the better one. The remaining
requests are later inserted using a construction heuristic. To determine the set
of paths common to both parents, a matching problem between paths from both
parents has to be solved. Two paths can be matched iff they use the same set of
links regardless of the wavelengths assigned to the paths.

Details of the recombination operator are given in Fig. 2. W. l. o. g. parent
solution a is better than b as defined by the length-lex ordering from [10]. The
offspring solution s is initialized as a copy of a. To determine a matching between
paths from a and b, b’s set of paths is stored in the multiset Pb. In the recom-
bination’s first phase the algorithm iterates on the set of wavelengths sorted
non-increasingly by usage. For each request using the current wavelength, it is
checked whether the request’s path pG,s(r) is element of Pb. If the test holds, a
match has been found and the path is removed from Pb to prevent future match-
ings. Otherwise, the request is removed from s (removed requests are collected
in R′). The sorting of wavelengths here keeps paths in already highly used wave-
lengths more likely than paths in less often used wavelengths. We argued that
introducing a gap in already highly used wavelengths by not matching paths in
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1: function DistributedMemeticAlgorithmRWA(Graph G, Requests R)
2: s ← InitializeIndividual(G, R)
3: while ¬TerminationReached do
4: if {q1, . . . , qk} = Q �= ∅ then
5: s ← q1, Q ← {q2, . . . , qk}
6: s′ ← Recombinator(G, s, s, R)
7: else
8: s′ ← Mutate(s, R, strength)

9: s′′ ← LocalSearch(s′, R)
10: if s′′ < s then
11: s ← s′′

12: if Random≤P[recomb] then
13: SendToRandomNeighbor(s)

14: return s

Fig. 3. Distributed memetic algorithm for the RWA

those wavelengths can be less likely exploited for future improvements compared
to paths in less often used wavelengths. Finally, the removed requests R′ have
to be reinserted into s using the concept of the BFD RWA construction heuris-
tic, where the request is routed in the first wavelength where a feasible path
connecting both endpoints is available.

3 Distribution

The MA has been enhanced to a distributed memetic algorithm (DMA), differing
from the MA by using populations of n individuals in one algorithm instance, n
algorithm instances with one individual each operate independently. Resembling
the MA, the DMA’s instances exchange individuals regularly over the network
using an epidemic algorithm [12].

The DMA is shown in detail in Fig. 3 is similar to the MA (Fig. 1), as the
main differences are (a) the DMA operates on a single individual per algorithm
instance (b) the exchange and recombination between algorithm instances is
managed differently. Each algorithm instance has a receiving queue Q where
incoming individuals are stored temporarily (realized by using an asynchronous
thread). At the beginning of each iteration it is checked if the queue contains at
least one element. If the test holds, the queue’s top element is removed and used
in a recombination operation. Otherwise, the current solution is mutated. After
the obligatory local search and selection, with a given probability the current
solution is sent to one randomly selected neighboring algorithm instance. The
probability for sending an individual equals to the recombination probability in
the original MA. Due to the asynchronous nature of the DMA and the queuing
effects, the actual recombination probability may differ.

To build a neighborhood relation between algorithm instances (nodes) in dis-
tributed setups, we use an epidemic algorithm [12,13], where each node maintains
a list of neighboring algorithm instances. For the node neighbor lists’ initialization,
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one node is selected and its contact information is provided to other nodes. Dur-
ing the execution of the algorithm, from time to time each node chooses a neighbor
and both nodes exchanges their neighbor lists. Any received list will be merged with
the receiving node’s list. The epidemic algorithm’s membership protocol settled the
neighbor list for each node in less than 5 s in each case providing a stable neighbor
list. The receiving queueQ for incoming solutions was limited to 16 elements (twice
the largest population size) and any solution received at a node with full queue was
discarded.

4 Experimental Setup

In [10], problem instances based on network data from the SNDlib collection [14]
were presented. As all but four of these instances have been optimally solved
(lower bound reached) and for one the difference between best known solution
and the lower bound is only one wavelength, we use the remaining instances
janos-us-ca, nobel-us, and zib54 for the experiments in this paper. For the
SND problem, Atamtürk and Rajan [15] recently presented new benchmark in-
stances, which we converted to RWA instances, too. As the authors use fractional
demands in their data, we multiplied them by 100. Using the concept of undi-
rected edges, we added the demands with different directions between the same
nodes. For each instance size, the authors provide three networks: (a) average
node degree 4 (b) average node degree 8 (c) edge density 75 %. We performed
experiments with problem instances of size 15 and 20. The properties of all
instances used in our experiments are summarized in Tab. 1.

We considered population sizes of 2, 4 and 8 and recombination rates of 0.2,
0.4, 0.6, 0.8, and 1.0 (recombination only). For comparison, the original ILS
was reimplemented by using population size 1 and a recombination rate of 0.0

Table 1. Properties of instances used in our experiments ‘Pairs’ describes the number
of node pairs communicating with each other, ‘Requests’ summarizes the demand (sum
of paths to be established). ‘LB’ designates the known lower bound from [10] and ‘UB’
the best result found in any setup in this paper.

Instance Nodes Edges Pairs Requests LB UB Time [s]

janos-us-ca† 39 122 1482 10173 1288 1288 1200
nobel-us 14 21 91 5420 670 670 300
zib54 54 81 1501 12230 705 705 600

15.50.75 15 90 72 9500 – 155 1500
15.50.deg4 15 48 72 9500 – 366 450
15.50.deg8 15 68 72 9500 – 258 450
20.50.75 20 150 137 18210 – 188 3000
20.50.deg4 20 82 137 18210 – 439 1000
20.50.deg8 20 106 137 18210 – 294 2000

† Instance has been modified, see text for details.



A Distributed Memetic Algorithm for the RWA Problem 885

(no recombination). All experiments were repeated 30 times with different seeds.
We used up to eight identical cluster PCs (Pentium 4 with 3 GHz running Linux)
connected in a switched 100 MBit network. All software was written in Java.

Furthermore, to guarantee comparability between DMA and MA, both algo-
rithms are given the same total time per instance (see Tab. 1) by dividing the
time limit per CPU by the population size in the distributed case.

5 Experimental Results

Experiments using the MA and DMA were conducted as described above. In
Fig. 4 the performance of both the distributed and non-distributed MA variants
operating on 8 individuals for every benchmark instance is visualized. Except
for instance zib54 and a pathological case for nobel-us (discussed below), both
variants of our MA find significantly better results compared to the original ILS.
For the three instances already discussed in [10], our memetic algorithm was
able to find optimal solutions for janos-us-ca in 4 MA setups and 93 DMA
setups, for nobel-us in 28 and 402 setups, respectively, and for zib54 in 36 and
82 setups, respectively, out of 450 runs each.

Regarding population size, small sizes are less capable of maintaining suffi-
cient diversity within the population than larger populations. Interestingly, this
effect is stronger for non-distributed than for distributed setups. The DMA’s
population stays more diverse, as the DMA’s queue Q (see Fig. 3) provides a
memory of older and thus more different solutions. E. g. for 20.50.deg4, the
percentage of paths with the same edges regardless of used wavelengths (relative
similarity between two solutions) of both parents for a recombination in the MA
is on average over time and all repetitions > 98.5 % for all recombination rates,
whereas for the corresponding DMA setup the similarity is < 95.0 %. For recom-
bination rate 1.0 in the non-distributed case, the relative similarity decreases
from 99.9 % to 95.5 % and 91.2 % for population sizes of 2, 4, and 8, respectively.

Regarding recombination rates, three different patterns can be observed: (a)
all rates perform similarly (b) recombination rate 1.0 performs significantly worse
(c) recombination rate 0.2 performs significantly worse. Case (b) occurs most
often for the MA, whereas case (c) is more common for the DMA.

We discuss the setup with 15.50.75 (Fig. 5) with population size 8 in detail.
The two plots show the run-time behavior of the non-distributed and distributed
setup, respectively, for selected recombination rates in comparison to the original
ILS and the best known solution. Furthermore, instance 15.50.75 represents
recombination patterns (b) and (c), respectively. For each setup, the average
number of generations, the effective recombination rate, and the average simi-
larity of recombination partners are summarized below the plots. The number of
generations decreases with increasing recombination rate as a recombination op-
eration requires more computation time than a mutation operation. The effective
recombination rate determined by counting the number of recombinations is ex-
actly the expected value for the non-distributed case. For the DMA, the effective
rates are lower as recombinations are only performed if an individual’s queue Q
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is non-empty. Due to varying time requirements for mutation and recombination
and short-time effects, queues may be filled beyond the capacity limit for a few
generations and thus incoming solutions get discarded. For high recombination
rates, this effect is stronger explaining the lower effective recombination rates.
Due to this effect pattern (b) does not occur for distributed setups.

In our recombination, parents pass on common path and wavelength assign-
ments to their offspring thus requiring to insert new path and assignments to get
a feasible solution (partial restart). Low similarity yields large partial restarts
which may degrade the offspring’s solution quality, for too high similarity the
restart is too small to escape local optima. This model is well supported by
our data as depicted in Fig. 5. In the non-distributed case, the final solution
quality decreases with increasing similarity of the parents. In the distributed
case, all recombination rates except rate 0.2 have the same parent similarity of
about 94 % and the same solution quality. Only the recombination rate 0.2 has
a significantly lower similarity and performs considerably worse.

6 Conclusions

In this paper we presented a memetic algorithm including a recombination opera-
tor for the static RWA which significantly improved former results. Furthermore,
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the MA can be efficiently distributed in a real network allowing to find results
similar to the single CPU variant given the same total time summed over all
participating CPUs. Future work will focus on combining our MA and DMA
with the multilevel approach [11] for large instances.
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Abstract. In this paper, particle trajectories of PSO algorithms in the
first iteration are studied. We will prove that many particles leave the
search space at the beginning of the optimization process when solving
problems with boundary constraints in high-dimensional search spaces.
Three different velocity initialization strategies will be investigated, but
even initializing velocities to zero cannot prevent this particle swarm ex-
plosion. The theoretical analysis gives valuable insight into PSO in high-
dimensional bounded spaces, and highlights the importance of bound
handling for PSO: As many particles leave the search space in the be-
ginning, bound handling strongly influences particle swarm behavior.
Experimental investigations confirm the theoretical results.

1 Introduction

Particle Swarm Optimization (PSO) [1] is a population-based algorithm for
global optimization. All population members, from now on called particles, ex-
plore the n-dimensional search space S of an optimization problem with objective
function f : S ⊆ Rn → R. Without loss of generality (W.l.o.g.), we will assume
minimization problems. Each particle has a position xi,t, a velocity vi,t, and a
fitness value f(xi,t), where t is the iteration counter. A position z1 ∈ S is called
better than z2 ∈ S iff f(z1) < f(z2). The best search space position particle i
has visited until iteration t is its private guide pi,t. To each particle, a subset
of all particles is assigned as its neighborhood. The best private guide of all
neighbors of particle i is called its local guide li,t. In each iteration, position and
velocity of each particle i are updated according to the following equations:

vi,t = ω · vi,t−1 + c1 · r1 5 (pi,t−1 − xi,t−1) + c2 · r2 5 (li,t−1 − xi,t−1)
xi,t = xi,t−1 + vi,t

where ω, c1, and c2 are prespecified parameters, r1 and r2 are vectors of random
real numbers uniformly chosen between 0 and 1, and independently drawn every
time they occur. 5 denotes element-by-element vector multiplication.

In this paper, optimization problems with boundary constraints are studied,
i.e., S = [lb1, ub1] × [lb2, ub2] × . . . × [lbn, ubn] is bounded. W.l.o.g., we will
assume S = [−r, r]n. As many real-world problems and most benchmark suites
have boundary constraints, a lot of strategies to handle them can be found in
the literature (e.g., [2,3,4,5,6]). We will consider the following three strategies:

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 889–898, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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– Infinity allows particles to enter invalid space, does not alter positions or
velocities, and skips the evaluation step for infeasible particles [6].

– Absorb sets invalid particles on the nearest boundary and all affected velocity
components are set to zero [7].

– Random sets all invalid components of a particle’s position vector to a ran-
dom value, and the velocity is adjusted: vi,t+1 = xi,t+1 − xi,t [4].

Most theoretical studies of PSO concentrate on the important task of selecting
appropriate values for c1, c2, and ω [8,9,10]. Some widely-used standard settings
were derived from these analyses, e.g., c1 = c2 = 1.496172, ω = 0.72984 [6], or
c1 = c2 = 1.193, ω = 0.721 [11]. Often, PSO analyses assume 1-dimensional prob-
lems as each component of position and velocity vector is updated separately.
However, for a deeper understanding of particle swarms in high-dimensional,
bounded search spaces, the peculiarities of high-dimensional spaces have to be
taken into account. Previous studies have already shown that the “curse of di-
mensionality”, which means that high-dimensional spaces are not intuitive, is an
important topic in particle swarm optimization [12]. It was proven that particles
are initialized very close to at least one boundary. Moreover, it was shown that,
with overwhelming probability (w.o.p., for a definition, see Section 2), the best
particle leaves the search space in the first iteration when velocities are initialized
uniformly at random in [−r, r]n.

In the following analyses, PSO in high-dimensional search spaces is studied
in more depth. We will show that uniform velocity initialization causes not only
the best, but all particles to leave the search space, w.o.p. The fact that many
particles leave the search space was noted earlier [13,7], but never proven theo-
retically.

In order to avoid that too many particles leave the search space at the begin-
ning, other velocity initialization strategies were proposed:

– Zero [13]: Particle velocities are initialized to zero.
– Half-diff [11]: Let xi,0 be the initial position of particle i, and yi drawn

uniformly at random in S. Then, vi,0 is set to 1
2 (yi − xi,0).

In Section 2, we will prove that using zero or half-diff initialization also causes
many particles to leave the search space, w.o.p. We will derive some consequences
for PSO application afterwards. In Section 3, different velocity initialization
strategies and bound handling mechanisms will be studied experimentally on
known benchmark problems.

2 Theoretical Results

Particle trajectories in the first iteration will be analyzed for three different
velocity initialization strategies. Two main results will be derived:

– When using uniform velocity initialization, all particles leave the search space
in the first iteration, w.o.p.
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– When using zero or half-diff initialization, all particles which have a better
neighbor than themselves leave the search space in the first iteration, w.o.p.
For realistic optimization problems and most commonly-used neighborhood
topologies, this is the majority of the particles.

The following assumptions will be used: 1 < c2 ≤ 2, 0 < ω ≤ 1, c2 and ω
do not depend on n, and particles are initialized uniformly at random in the
n-dimensional search space [−r, r]n ⊂ Rn. The particles are connected via an
arbitrary neighborhood topology, including the fully connected swarm. For each
particle i with xi,0 �= li,0, li,0 is distributed uniformly at random in S. Actually,
the local guides’ positions depend on the optimization problem. However, the
above assumption is not too restrictive for higher-dimensional problems, which
is confirmed by Examples 1, 3, and 4 (PSO Exp.).

Definition: An event A(n) happens with overwhelming probability (w.o.p.)
with respect to n if there exists a constant γ > 0 such that P (A(n)) = 1 −
e−Ω(nγ), where Ω belongs to the big-O notation for expressing asymptotic be-
havior. Hence, an overwhelming probability with respect to n rapidly approaches
1 when n increases.

2.1 Uniform Velocity Initialization

Theorem 1. If velocities are initialized with uniform distribution in the search
space, all particles which are initialized such that they have at least one neighbor
with better fitness value than themselves (i.e., xi,0 �= li,0) leave the search space,
w.o.p.

Proof. Let particle i be an arbitrary particle satisfying the above assumptions.
As pi,0 = xi,0, its position and velocity in the first iteration evaluate to

vi,1 = ω · vi,0 + c2 · r2 5 (li,0 − xi,0)
xi,1 = xi,0 + vi,1 = ω · vi,0 + (1− c2 · r2)5 xi,0 + c2 · r2 5 li,0 .

(1)

Hence, for fixed r2, the d-th component of xi,1, xi,1,d, is the sum of three non-
identical uniformly distributed, independent random variables. Its density func-
tion fxi,1,d

(z) can be computed using the formula presented by Bradley and
Gupta [14, Theorem 1]. The probability that a particle crosses the boundary in
dimension d evaluates to:

q1(r2,d, c2, ω) =
∫ −r

−∞ fxi,1,d
(z)dz +

∫∞
r fxi,1,d

(z)dz =

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−3ω2+6c2r2,dω−4c2
2r2

2,d

−12ω(1−c2r2,d) (=: p1) if 0 ≤ r2,d <
ω

2c2
ω2

24(1−c2r2,d)c2r2,d
(=: p2) if ω

2c2
≤ r2,d <

2−ω
2c2

4c2
2r2

2,d+6ωc2r2,d−8c2r2,d+3ω2+4−6ω

12ωc2r2,d
(=: p3) if 2−ω

2c2
≤ r2,d <

2+ω
2c2

24+ω2+24c2
2r2

2,d−48c2r2,d

−24c2r2,d(1−c2r2,d) (=: p4) if 2+ω
2c2

≤ r2,d ≤ 1

(2)
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As r2,d is uniformly drawn from [0, 1], the probability pA(c2, ω) that a particle
violates the boundary in a specific dimension evaluates to:

pA(c2, ω) =
∫ 1

0 q1(r2,d, c2, ω)dr2,d =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24ωc2)
−1·(−36ω+6ω2 ln(2)−12ω2 ln(2−ω)+5ω2−36ω ln(2)+24ω ln(2−ω)+8 ln(2)

−16 ln(2−ω)−3ω3 ln(ω)+2ω3 ln(2−ω)+8 ln(2+ω)+12ω ln(2+ω)+6ω2 ln(2+ω)

−24ω ln(c2)−ω3 ln(c2)+ω3 ln(2+ω)+ω3 ln(c2−1)+24ωc2) if 2+ω−2c2<0

(12ωc2)
−1·(−10ω+6ω2 ln(2)−6ω2 ln(2−ω)+5ω2−12ω ln(2)

+12ω ln(2−ω)+8 ln(2)−8 ln(2−ω)−ω3 ln(ω)+ω3 ln(2−ω)

+4 ln(c2)+6−6ω ln(c2)+3ω2 ln(c2)+6ωc2+2c2
2−8c2) if 2+ω−2c2≥0

(3)

Eq. (3) can be used for calculating pA(c2, ω) for specific values of c2 and ω (see
Example 1). In order to prove that particles leave the search space w.o.p., we
must show that pA(c2, ω) > 0. Therefore, we use the following fact:

pA(c2, ω) =
∫ ω

2c2

0

p1dr2,d︸ ︷︷ ︸
l1(c2,ω)≥0

+
∫ 2−ω

2c2

ω
2c2

p2dr2,d︸ ︷︷ ︸
l2(c2,ω)≥0

+
∫ min{ 2+ω

2c2
,1}

2−ω
2c2

p3dr2,d︸ ︷︷ ︸
l3(c2,ω)≥0

+
∫ 1

min{ 2+ω
2c2

,1}
p4dr2,d︸ ︷︷ ︸

l4(c2,ω)≥0

We compute l2(c2, ω) = ω2·(ln(2−ω)−ln(ω))
ln(c2)

and l1(c2, 1) = 1+2 ln(2)
24c2

> 0.
If ω < 1, then l2(c2, ω) > 0, otherwise l1(c2, ω) > 0. Thus, pA(c2, ω) > 0, and

the probability that a particle leaves the n-dimensional search space is

p′A(c2, ω, n) = 1− (1− pA(c2, ω))n = 1− e−Θ(n) . (4)

��
Example 1. Two experiments were conducted for this and subsequent examples:

Conf. Exp.: In order to confirm that the mathematical analysis is correct
under the given assumptions, the following experiment was conducted: xi,0, vi,0,
li,0, and r2 were randomly drawn according to the assumptions, and xi,1 was
calculated according to Eq. (1). The probability for xi,1 /∈ S was evaluated by
performing 107 runs per considered problem dimensionality.

PSO Exp.: In order to determine the relevance of the theoretical results for
PSO, the following experiment was performed: The PSO is applied on all CEC
2005 benchmarks [15] which are scalable with respect to the search space di-
mensionality (some problems include matrices which are only given for at most
50 dimensions): f1, f2, f5, f6, f9, f12, f13, f15. Standard settings for the PSO
as presented in Section 3 were used, except for that particles are not included
in their own neighborhood so that for all particles xi,0 �= li,0 holds. For each
benchmark, 10, 000 runs with 50 particles were performed.

The theoretical results were obtained by using Eq. (3) and Eq. (4).

Theor. result Conf. Exp. PSO Exp.

p′
A(1.496172, 0.72984, 1) 0.17074 0.17072 0.149587

p′
A(1.496172, 0.72984, 30) 0.99636 0.99648 0.99582

p′
A(1.496172, 0.72984, 100) 0.9999999926 1 1
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Fig. 1. The probabilities pA(c2, ω) (left) and pD(c2, ω) (right)

The comparison of the theoretical results and Conf. Exp. confirms the mathe-
matical analysis. PSO Exp. shows that the assumption that local guides li,0 are
uniformly distributed at random in S is not too restrictive (see also subsequent
examples) for higher-dimensional spaces. Moreover, the example demonstrates
that the probability that a particle leaves the search space rapidly approaches 1
when increasing the search space dimensionality.

The probability pA(c2, ω) that a particle which is not its own local guide
violates a specific boundary in the first iteration is shown in Fig. 1. It approaches
zero for c2 → 1 and ω → 0. However, choosing such small values for c2 and ω
prevents exploration, and can therefore not be recommended.

Theorem 2. If velocities are initialized with uniform distribution in [−r, r]n,
each particle i with xi,0 = li,0 leaves the n-dimensional search space in on average
ω
4 · n dimensions in the first iteration.

Proof. As pi,0 = li,0 = xi,0, particle i’s position xi,1 and velocity vi,1 in the first
iteration evaluate to vi,1 = ω ·vi,0 and xi,1 = xi,0 + vi,1 = xi,0 +ω ·vi,0. Hence,
the d-th component of xi,1, xi,1,d, is the sum of two independent, uniformly
distributed random variables. Its density function fxi,1,d

is trapezoidal and can
be determined by convolution:

fxi,1,d
(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

4ωr2 z + 1
4r + 1

4ωr for − r − ωr < z ≤ ωr − r
1
2r for ωr − r < z < r − ωr

− 1
4ωr2 z + 1

4r + 1
4ωr for − ωr + r ≤ z < r + ωr

0 otherwise

Thus, the probability pB(ω) that particle i exceeds the search space boundary
in dimension d is pB(ω) =

∫ −r

−r−ωr fxi,1,d
(z)dz +

∫ r+ωr

r fxi,1,d
(z)dz = ω

4 . ��

Corollary 1. Each particle satisfying the assumptions of Theorem 2 leaves the
n-dimensional search space in the first iteration, w.o.p.
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Proof. The probability p′B(ω, n) that a particle which satisfies the given assump-
tions leaves the search space evalutes to

p′B(ω, n) = 1−(1−ω/4)n = 1−e−Θ(n). ��

Example 2. We evaluate p′B(0.72984, 30) = 0.99763, p′B(0.72984, 100) = 0.99999,
which shows that p′B(ω, n) rapidly approaches 1 when increasing n.

From Theorem 1 and Corollary 1 follows that, w.o.p., all particles leave the search
space in the first iteration, when initializing velocities uniformly at random in S.

2.2 Zero and Half-Diff Velocity Initialization

We will now show that using zero or half-diff initialization cannot avoid that
many particles leave the search space in the first iteration, either.

Theorem 3. If velocities are initialized to zero, each particle i with xi,0 �= li,0
leaves the search space in the first iteration, w.o.p.

Proof. Let particle i be an arbitrary particle satisfying the above condition. Its
position and velocity in the first iteration are given by

vi,1 = ω · vi,0 + c1 · r1 5 (pi,0 − xi,0) + c2 · r2 5 (li,0 − xi,0) =
= c2 · r2 5 (li,0 − xi,0)

xi,1 = xi,0 + vi,1 = (1− c2 · r2)5 xi,0 + c2 · r2 5 li,0 .

For fixed r2, xi,1,d is the sum of two non-identical uniformly distributed random
variables, and therefore trapezoidally distributed. If r2,d <

1
c2

, particle i does not
violate the boundary in dimension d. Otherwise, the density function fxi,1,d

of
xi,1,d can be computed (omitted due to space constraints), and the probability
q2(r2,d, c2) that particle i crosses the search space boundary in dimension d is

q2(r2,d, c2) =

{∫ −r

−∞ fxi,1,d
(z)dz +

∫∞
r
fxi,1,d

(z)dz = 1− 1
c2r2,d

if r2,d >
1
c2

0 otherwise

As r2,d is uniformly distributed between 0 and 1, we finally determine the prob-
ability pC(c2) that a particle violates the boundary in a specific dimension to

pC(c2) =
∫ 1

0

q2(r2,d, c2)dr2,d =
−1− ln(c2) + c2

c2
. (5)

From c2 > 1, pC > 0 follows. Thus, the probability p′C(c2) that particle i leaves
the n-dimensional search space evaluates to

p′C(c2, n) = 1− (1− pC(c2))n = 1− e−Θ(n) . (6)

��
Example 3. For the theoretical results, Eq. (5) and Eq. (6) were used.
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Theor. result Conf. Exp. PSO Exp.

p′
C(1.496172, 1) 0.06233 0.06223 0.04548

p′
C(1.496172, 30) 0.85497 0.85574 0.83358

p′
C(1.496172, 100) 0.988 0.998 0.99801

The example confirms the theoretically derived formulas for pC(c2) and p′C(c2, n),
and the relevance of the theoretical results for high-dimensional PSO application.

Conjecture 1. If the particles’ velocities are initialized according to the half-diff
strategy, each particle i with xi,0 �= li,0 leaves the search space, w.o.p.

Similar to the proof for Theorem 1, the probability pD(c2, ω) that a particle
leaves the search space in dimension d can be evaluated to

pD(c2, ω) =
∫ 1

0

(∫ −r

−∞ fxi,1,d
(z)dz +

∫∞
r
fxi,1,d

(z)dz
)

dr2,d =

= (12ωc2(ω−2))−1·(32ω−22ω2+3ω3−16 ln(2)+24ω ln(2)+16 ln(2−ω)

−24ω ln(2−ω)+24 ln(c2)ω−12ω2 ln(2)+12ω2 ln(2−ω)−12 ln(c2)ω
2+2ω3 ln(2)

−2ω3 ln(2−ω)+2 ln(c2)ω
3+2ω3 ln(ω)−24ωc2+12ω2c2−2ω3 ln(ω−2+2c2))

(7)

and is plotted in Fig. 1 (right). The probability that a particle leaves the n-
dimensional search space in the first iteration is

p′D(c2, ω, n) = 1− (1− pD(c2, ω))n (8)

which is overwhelming if pD(c2, ω) > 0. Fig. 1 shows that there is strong evidence
that pD(c2, ω) > 0, at least for commonly used values for c2 and ω, e.g., c2 > 1.1
and ω > 0.3.

Example 4. For the theoretical results, Eq. (7) and Eq. (8) were used. Again,
the theoretical results are confirmed:

Theor. result Conf. Exp. PSO Exp.

p′
D(1.496172, 0.72984, 1) 0.094572 0.094661 0.077998

p′
D(1.496172, 0.72984, 30) 0.949229 0.950656 0.941712

p′
D(1.496172, 0.72984, 100) 0.999952 0.999954 0.999935

2.3 Consequences for PSO Application

The theoretical analysis showed that none of the three investigated velocity
initialization strategies can avoid that many particles leave high-dimensional
search spaces as early as in the first iteration. Even initializing velocities to
zero cannot prevent particle explosion. For PSO application, there exist several
strategies to deal with this observation:

In order to avoid that particles leave the search space, bound handling strate-
gies which keep the particles inside the search space, such as Absorb or Random,
can be applied. Many other strategies exist in the literature [2,3,4,5]. From the
methods studied in the experimental analysis in Section 3, Absorb performed
best. However, hybrid methods as proposed by Clerc [2] seem to be promising.
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When using Infinity bound handling, which is a commonly used strategy [6],
many particles mainly explore invalid space at the beginning of the optimization
process. In our experiments (see Section 3), Infinity was significantly outper-
formed by Random and Absorb on almost all 100-dimensional problems. Velocity
clamping can help particles to reenter the search space.

More general approaches for constraint handling, e.g., the use of penalty func-
tions, can also be applied to deal with the initial particle explosion.

3 Experimental Results

The following experimental analysis studies the impact of velocity initialization
and bound handling in particle swarm optimization. For all experiments, the
PSO with standard parameter settings [6] (50 particles, c1 = c2 = 1.496172, ω =
0.72984) was applied on four widely-used benchmarks, Sphere, Rosenbrock, Ras-
trigin, and Griewank (function descriptions and particle initialization ranges see,
e.g., [6]), and on the CEC 2005 benchmarks f1, f2, f5, f6, f9, f12, f13, f15 [15].
When solving a CEC benchmark, particles were initialized uniformly at random
in S. The swarm is connected via the von Neumann topology, a two-dimensional
grid with wrap-around edges [16]. A particle is included in its own neighborhood.

The PSO terminated after 100, 000 function evaluations, and each configu-
ration was repeated 100 times. In order to compare the performance of two
algorithms A and B, the one-sided Wilcoxon rank sum test was used with null-
hypothesis H0 : FA(z) = FB(z), and the one-sided alternative H1 : FA(z) <
FB(z) (where FX(z) is the distribution of the results of algorithm X). Statisti-
cal significance was evaluated on a significance level of 0.01.

3.1 Velocity Initialization

In the theoretical analysis, three different velocity initialization strategies were
studied. Uniform initialization causes all particles to leave the search space,
w.o.p, whereas zero initialization slows down initial exploration. Hence, although
none of the strategies can avoid that many particles leave high-dimensional
search spaces, w.o.p., half-diff initialization seems to have fewest drawbacks.

In order to confirm this assumption, experiments were conducted on all 100-
dimensional benchmarks. The following tables summarize the one-sided Wilcoxon
rank sum test. For each algorithmic combination (A, B) the matrices show how
often A significantly outperformed B. E.g., entry “1” in the first table shows that
uniform significantly outperformed half-diff on one benchmark (out of 12).

Absorb bound handling
1 2 3

uniform (1) 0 2 1
zero (2) 2 0 0
half-diff (3) 4 4 0

Random bound handling
1 2 3

uniform (1) 0 0 0
zero (2) 0 0 0
half-diff (3) 2 2 0



Theoretical Analysis of Initial Particle Swarm Behavior 897

Table 1. Comparison of bound handling strategies. The tables show summaries of
one-sided Wilcoxon rank sum tests with significance level 0.01. S is the set of all
benchmarks. Example: Entry {f5, f9} in the first table shows that Absorb performed
significantly better than Infinity on f5 and f9.

Half-diff velocity initialization, 30 dimensions

Absorb Infinity Random

Absorb – {f5, f9} {f1, f2, f5, f6, f9, f12, f15}
Infinity {f2, f12, f15} – {f1, f2, f5, f6, f12, f15}
Random {Rastrigin} {Rastrigin, Griewank} –

Half-diff velocity initialization, 100 dimensions

Absorb Infinity Random

Absorb – S\{Sph., Rosenbr.} {f1, f2, f5, f6, f9, f12, f15}
Infinity – – –
Random {Sph., Rosenbr., Rastr.} S\{Sph.} –

Half-diff velocity initialization provides slightly better results than the other
two strategies, and can therefore be recommended for PSO application.

3.2 Bound Handling

The theoretical analysis showed that many particles leave the search space at
the beginning of the optimization process. To each of these particles, the bound
handling procedure is applied, and therefore, bound handling strongly influences
the particle swarm behavior, at least in the early steps of the algorithm. In order
to check experimentally whether the bound handling method actually strongly
influences particle swarm performance and whether the effect is stronger when
more search space dimensions are involved, three bound handling strategies (Ab-
sorb, Random, and Infinity) were investigated on 30- and 100-dimensional op-
timization problems. Half-diff velocity initialization was used. The results are
shown in Table 1, and confirm significant performance differences, especially for
the 100-dimensional benchmarks.

4 Conclusion

Particle trajectories during the first iteration were investigated theoretically for
three widely-used velocity initialization strategies. It was proven that many par-
ticles leave the search space as early as in the first iteration. To be more precise:
Uniform velocity initialization causes all particles to leave the search space with
overwhelming probability (w.o.p.) with respect to the search space dimensional-
ity n. In order to reduce the number of particles leaving the search space, other
velocity initialization strategies, among them zero [13] and half-diff [11] initializa-
tion, were proposed. However, this study showed that still many particles leave
the search space, w.o.p. Examples demonstrated that this probability rapidly
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approaches 1 if the search space dimensionality is increased. Consequences for
PSO application and strategies to deal with this observation were derived.

The presented analysis highlights the importance of bound handling for PSO:
As the bound handling procedure is applied to many particles at the beginning
of the optimization process, it strongly influences particle swarm behavior. The
experimental study confirms significant performance differences when varying
the bound handling method.
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Abstract. This paper presents principled results demonstrating how
the identification and exploitation of variable dependencies by means
of Artificial Neural Network powered online model building, combined
with a model based local-search, opens the way towards large-scale
optimization of hard, non-separable building-block problems.
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1 Introduction

Challenging optimization problems with staggering number of variables require
the development of techniques able to efficiently and reliably address, difficult,
large-scale problems.

The feasible sizes of problems strongly depend on their particular structure. Re-
cent results had shown that with an efficient parallel implementation, competent
algorithms can solve separable problems with millions to billions of variables even
in the presence of added noise [1]. However, for solving effectively and efficiently
non-separable, difficult, large-scale problems, where identification and exchange of
higher order building-blocks is mandatory, more powerful, context aware methods
are required, capable of performing a proper problem decomposition.

Probabilistic model building methods or Estimation of Distribution Algo-
rithms (EDAs) can render larger problems feasible by identifying and exploiting
dependencies. Nevertheless, they require populations large enough to guarantee
proper initial-supply, decision-making and accurate model-building.

The population requirements and model building costs are problematic for
large problem instances. Following known population sizing theories [2,3] results
that the solving of modular, non-separable problems up to millions of variables
would require terabytes of memory to accommodate the necessary population.
In addition, the search for an appropriate model in EDAs capable of modeling
higher order dependencies, requires many model evaluations with regard to the
population. Given the implied population sizes as the dimension of the problems
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increases, the computational cost of model building quickly exceeds economical
practicality.

In order to solve non-separable problems up to millions of variables, we need
a method that is computationally efficient in terms of model building and also
very efficacious in terms of memory usage.

For meeting these desiderates, we consider the extension of the model based
local-search presented in [4] with an online learning and model building mech-
anism. The proposed Online Model Based Local-Search (OMBLS) framework
employs an adaptive neighborhood structure which facilitates the operation di-
rectly on modules. Nevertheless, this approach does not use a memory to store
semi-converged solutions for later analysis, one point is sampled at the time
and the search experience is accumulated and information about the problem
structure is inferred from a single data structure, resulting in very low memory
requirements.

The great advantage of the online learning, in addition to the low memory
requirement, is that the learning is automatic. Using vector quantization, prob-
ability density functions are modeled by the distribution of prototype vectors;
there is no model search and repeated costly evaluation against a set of samples
like in population based EDAs.

2 The Mixed Hierarchical Test Function

To obtain a single, large, scalable test problem which embeds all the test features
found in separate suites, we consider the mixing of three standard and well known
hierarchical test functions: the hierarchical IFF [5], the hierarchical XOR [6] and
the hierarchical trap function [7].

These problems are defined on binary strings of the form x ∈ {0, 1}kp

, where
k is the number of sub-blocks in a block, and p is the number of hierarchical
levels.

As k = 2 for hIFF and hXOR, respectively k = 3 for hTrap in this pa-
per, a Mixed Hierarchical function (hMix) with p hierarchical levels will have
n = 2p + 2p + 3p = 2p+1 + 3p number of variables. The n problem variables are
shuffled by random reordering; the original arrangement (un-shuffling) for a
variable x is given by a decode function χ(x). The decoded state is parti-
tioned in three subsets, one for each of the three components of the problem by
χ1(x), χ2(x), χ3(x), where χ1(x) covers the first 2p variables from χ(x), χ2(x)
the following 2p ones, whilst χ3(x) retrieves the last 3p ones.

The hMix with p hierarchical levels is then given by:

hMIXp(x) = hIFF (χ1(x)) + hXOR(χ2(x)) + hTrap(χ3(x)) (1)

As two out of the three components have two global optima (hIFF and hXOR),
the combined hMix will have four globally optimal states.

Although having a gross-scale building-block structure, hMix and its compo-
nents are hard to solve without proper problem decomposition as the blocks are
not separable. Context aware methods must be applied which can overcome the
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conceptual separation between the fitness and meaning (context dependence) of
building-blocks.

Being formed from multiple components, the computation of hMix is eased.
Local-search techniques usually alter one or just few variables, perturbing only
a few blocks of a single component. Thus, efficacious caching can be employed
for this particular case; the values of the other components and unperturbed
modules can be used from previous epochs without the need for recomputing.

3 Online Model Based Local-Search

In Model Based Local-Search [8,4] the changing of the fixed problem representation
with a problem structure aware description, leads to a very efficient search and can
even lead to the solving of hierarchical problems by repeated decomposition [4].

Following the framework proposed in [4], OMBLS has two main phases. The
first one refers to the accumulation of search experience, provided by the repeated
model based local-search. The second phase concerns the exploitation of search
experience by linkage learning and module knowledge update, followed by the
collapse of the search space.

3.1 Employed Local-Search

The locally optimal setting of modules in hMix are in immediate vicinity of ran-
domly initialized module configurations, as module sizes are less or equal than
three and each module has two context optimal settings. Accordingly, we use a
simple greedy search among these configurations, alike the method used in [4].

For problems with larger modules, where context-optimal settings are harder
to reach, a more powerful local-search method may be required. A model based
local-search, based on macro-mutation [9] search strategy, had shown the ability
to identify and exploit much larger module sizes [10].

The building-block hill-climbing employed in this paper is rather straight-
forward: each module is processed systematically by testing its configurations
and selecting the one which provides the best objective function value. While
the search for the optimal configuration of a particular block is carried out, the
configurations of the other modules are held still.

3.2 Linkage Learning within OMBLS

When applying the greedy search on the presented hierarchical problems, the
method will always discover a context-optimal setting for each module, but due
to the non-linear interdependencies between the modules organized hierarchi-
cally, it will converge to a local optimum in most of the cases.

As there are only two context-optimal settings for each module, the variables
of the converged solutions will be grouped in a subspace which has lower
dimensionality than the dimensionality of the data. Certain artificial neural net-
work models have the ability to adaptively process input patterns and to produce
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simpler patterns with fewer components in accordance with the topology of the
input space. On longer term, by training the network with multiple solutions,
the modular structure of the problem can be inferred.

A network which seeks to preserve the topological properties of the input
space is the Self Organizing Map (SOM) [11]. The network is trained using
unsupervised learning to produce a two dimensional, discretized representation
of the input space, called a map.

The SOM weight adapting algorithm is based on the competitive learning
paradigm; vector quantization is used to model probability density functions by
the distribution of prototype vectors. Concretely, when a sample s is presented
to the network, the following steps are executed:

1. The Euclidean distance to all weight vectors is computed.
2. The neuron with weight vector most similar to the input is nominated as

the best matching unit (BMU).
3. The weights of the BMU and neurons in the neighborhood are adjusted

towards the input vector. The magnitude of the change decreases with time
and with distance from the BMU.

This algorithm can be very well iteratively updated online with “live” data,
directly inputting the results (locally converged states) of the model based local-
search, rather than training with samples from a memory.

In the proposed method we use a SOM with a lattice of 5 ∗ 5 neurons, which
are arranged in a rectangular grid with regular spacing. A weight vector of size
n where n is the number of detected modules and a position in the map space
is associated with each neuron. All weights are initialized with the value 0.5.
To induce a symmetric negative bias into the adjustment of the weights, the 0’s
from the inputs are replaced with -1.

The network can be trained with data for an apriori settled number of epochs
or one can use a dynamic stopping condition, which checks if the change in the
last few epochs of the weights values is below a certain threshold.

After training the SOM online, dependencies are deduced form the internal
representation of the network based on the heuristic that similar inputs should
produce similar patterns in their associated weights i.e dependent inputs have
roughly the same values for their weights.

Accordingly, we use the following metric for detecting the dependency between
variables xi and xj :

d(xi, xj) =
r∑

l=1

||Wil| − |Wjl|| (2)

where r is the number of neurons on the rectangular lattice and W represents the
weights of the SOM. This relation measures the closeness of different variables
by taking into account the weights related to them.

We consider xi and xj as being dependent if d(xi, xj) ≤ ε for a predefined ε
threshold.
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Dependent variables will be merged into the same composite module for the
next phase of the search.

By analyzing the weights of the network, we are able to decide which of the
current variables are linked, but in order to collapse the search space we also
need their context-optimal settings. As a consequence, provided with only the
variable relationships, for each new composite block the method must search all
the possible combinations of sub-modules in the context of randomly generated
states and retain the best λ ones.

3.3 Collapsing the Search Space

For efficient implementation, where module knowledge can be naturally repre-
sented in binary mode, in this paper we only focus on the case where λ = 2,
although the method is not limited to this special case.

The two most fit schemata found by the exhaustive search are compressed into
one single bit, where 1 maps to the most expressive schema and 0 maps to the
second most expressive one. The information about the schemata expressed by
each bit is recorded in a map M . The other 2k − 2 configurations are discarded
for the remainder of the search leading to the collapse of the search space.

The following section summarizes the Online Model Based Local-Search.

3.4 OMBLS Algorithm

Starting from a representation in concordance with the original problem, in a
first phase, search experience is accumulated by training the SOM online with
the “live” states provided by repeated local-search working on the current rep-
resentation, which always express the most two fit schemata found at a lower
level. The local-search strategy used must be powerful enough to discover fully
optimized modules at a single hierarchical level.

After convergence of the network, in the second phase the structure of the
input space is inferred from the weights of the network and expressed by vari-
able linkages. Furthermore, an exhaustive search is performed according to the
detected linkages, to find the best context-optimal settings for each new module.

The search space is collapsed as the module aware representation is com-
pressed according to the detected linkages and their two most fit context-optimal
settings.

After these steps, the search enters again phase one, with the local-search
operating on the newly derived representation, further exploring the combinative
neighborhood of the detected modules.

The method stops when the search space cannot be collapsed anymore or a
predefined number of objective function evaluations is exceeded.

OMBLS can conquer hierarchical difficulty and is able to overcome the
non-linear interdependence between building-blocks, as it applies a proper de-
composition at each level, promising, competing sub-solutions are kept and the
representation is adapted by expressing detected modules at lower level as vari-
ables of the upper level.

Formally the OMBLS is outlined in Algorithm 1.
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Algorithm 1. Online Model Based Local-Search
Data: n, nS , ε,@stopping cond.
/* Initially each binary variable is a base module */

for i = 1, n do
M [i][0] ← {0};
M [i][1] ← {1};

while not @stopping cond do
/* Phase I */

/* Build the SOM */

net ← InitializeSOM(n);
for i = 1, nS do

/* Generate a random binary state of length n */

s ← RandomState(n);
/* Apply module-wise greedy search */

s ← GreedySearch(s,M);
/* Train the network online using vector quantization */

net ← Train(net, s);

/* Phase II */

/* Detect possible modules via weight analysis */

nm ← GetLinkages(net.Weights, ε);
/* Identify the two most fit schemata for new modules by

exhaustive search */

COset ← RetrieveBestTwoSettings(nm);
/* Collapse the search space and update the building-block

configuration according to the detected modules and their

context-optimal settings */

n ← |COset|;
for i = 1, n do

if module i is new then
M [i][0] ← COset[i][0];
M [i][1] ← COset[i][1];

4 Run-Time and Scaling of the OMBLS

Assuming that the used machine learning technique successfully detects the cor-
rect dependencies, the global convergence of the OMBLS on the studied test
suite can be proven, by showing that there is a path towards global optima on
each component, easily followed by the method.

As mentioned in Sec. 3.1, in the components of hMix, the number of
sub-blocks in a block at each hierarchical level is maximally three and there are
two context optimal settings for each module. If the partial knowledge about the
problem structure is correct, starting from a random combination of sub-blocks,
if the global optima have not yet been attained, one of the two context-optimal
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setting at the next level is always reached by the greedy search1. As fully-optimized
modules are found they are expressed as variables in the next phase of the search,
which leads to a simple recursive solving of all hierarchical levels as in [4].

Provided that the SOM indicates the correct dependencies, the correct par-
tial knowledge about the problem structure is guaranteed by the fact that the
method performs an exhaustive search in order to determine the two most suit-
able settings for each module.

If the applied local-search strategy is able to find the correct context-optimal
settings at each hierarchical level (true for the greedy search on hMix), the
method will follow the above mentioned hierarchical-recursive path and thus, a
tight upper bound on the performance of OMBLS can be given.

In the case of the module-wise greedy search, at one hierarchical level, the
number of objective function evaluations is in concordance with the number of
modules l, the number of context-optimal setting λ = 2 for each module and the
number of epochs used to feed the network nS :

TLS = 2 · nS · l (3)

The search for the context-optimal settings will take a number of objective func-
tion evaluations exponential in the size (denoted by ki) of the newly discovered
modules M ′ and the number of context-optimal settings:

TCOS =
|M ′|∑
i=1

2ki (4)

For p hierarchical levels, the upper bound is given by the summation of the
model based local-search TLS and the search for context-optimal settings TCOS

on each hierarchical level.
As we know that the module sizes on hIFF and hXOR equal k1 = 2 and for

hTrap the module size is k2 = 3, we got the following upper bound on hMix for
p hierarchical levels:

ThMixp = 2 ·
kp
1∑

l=k1
l=l∗k1

(2 · nS · l +
l

k1
· 2k1) +

kp
2∑

l=k2
l=l∗k2

(2 · nS · l +
l

k2
· 2k2) (5)

To empirically confirm this result and to test the efficiency of the SOM based
online linkage detection technique, the scalability of the OMBLS have been tested
on hMix with p = {4, 6, 8, 10, 11} hierarchical levels, with the resulting problem
sizes n = {113, 857, 7073, 61097, 181243}. Theory predicts [2], that the solving of
hMix with p = 11 by classic EDAs using random sampling, requires a population
with more than 10 million members as population size scales as N = 22km ·
1 The proof, omitted here for space consideration, is based on showing that the Ham-

ming distance between a context-optimal setting at the next level, and its randomly
initialized component modules at the lower level, is at most 1.



906 D. Iclănzan and D. Dumitrescu

0 0.5 1 1.5 2

x 10
5

0

0.5

1

1.5

2

2.5

3
x 10

7

hMix problem size

N
r. 

ob
j. 

fu
nc

. e
va

ls
.

10
2

10
3

10
4

10
5

10
6

10
4

10
5

10
6

10
7

10
8

hMix problem size

N
r. 

ob
j. 

fu
nc

. e
va

ls
.

T
hMix

p

x0.909  log
2

(x)

T
hMix

p

x0.909  log
2

(x)

(a) (b)

Fig. 1. Sub-linearithmic scaling of OMBLS with module-wise greedy local-search strat-
egy on hMix: (a) arithmetic plot; (b) logarithmic plot

log(m), where m is the number of modules. With such a huge number of samples,
the cost of model building an extraction from the population may be of order of
quadrillions in a single generation.

Due to the deterministic nature of the algorithm, with precisely predictable
behavior, for p ≤ 8 a total number of 25 independent runs were averaged while
for p = {10, 11} the number of runs was restricted to 10.

As the input samples of the network are high-quality, converged states, we re-
stricted the number of module-wise local-search epochs to nS = 50. The thresh-
old for linkage detection was set to ε = 1.0e− 6.

The method found one of the four global optima in all cases confirming the
efficiency of the online SOM based linkage learning. The scaling of the method
on hMix is presented in Fig. 1. The experimental result was approximated with
a function of the form f(x) = axb · log2(x) where a and b are determined by the
least square error method. As depicted, OMBLS scales on hMix approximately
as θ(x0.909 · log2(x)), where x is the problem size.

Potentially, the most costly operation of OMBLS is represented by the search
for context-optimal settings, which is exponential in the order of dependencies
revealed by the SOM based learning. This phenomenon is not particular for
our method. The size of population in EDAs (implicitly the number of objective
function evaluations in each generation) is also lower bounded by the exponential
of the order of dependencies covered by the probabilistic model.

Nevertheless, for boundedly-difficult problems like the hMix, where the order
of dependencies is low compared to the problem size (k << n), the computa-
tional cost of the search for context-optimal settings can be approximated with a
constant. Consequently, the upper bound on the objective function evaluations is
dominated by the computational complexity of the employed local-search, being
log2(n) ·O(TLS), as we can have a maximum of log2(n) hierarchical levels.

In our case, as the cost of the greedy search is linear in the number of modules,
from Eq. (5) results a very efficient sub-linearithmic running time, confirmed
empirically by our experiments.
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If we used a model based (1+1)EA instead of greedy search, which provably
converges on hMix to context-optimal settings at each hierarchical level in O(n ·
log2(n)), the complexity of OMBLS would become O(n · log2(n)2).

The memory requirement of the OMBLS is very low, being linear in the
problem size.

The running time of model building is quadratic in the number of modules as
the distance according to Eq. (2) must be computed for each pairwise combina-
tion of modules. Even if n2 running time is mostly considered as competent, it
can become problematic when n is of order of millions. To efficiently address in
wall-clock time such large inputs, a parallel model building must be employed;
parallelization is a feasible and easily achievable desiderate (given the proper
hardware) as distance measurements of different module pairs can be computed
independently.

5 Conclusions and Further Work

The paper presents a model based trajectory framework, namely the Online
Model Based Local-Search (OMBLS) that learns the problem structure online
by means of topology preserving SOMs. OMBLS operates via hierarchical decom-
position, detected modules are used to collapse the search space and reformulate
the optimization problem with discovered modules and their context-optimal
settings as new search variables.

For boundedly-difficult, non-overlapping, non-separable building-block prob-
lems, the cost of the OMBLS is upper bounded by the number of hierarchical
levels, multiplied with the running complexity required by the module-wise local-
search to converge to context-optimal settings at one hierarchical level.

As training is done online, the memory requirements of the method are limited
to storing one solution at the time, the two most fit schemata for each module
and a SOM which is also linear in the number of input variables. Nevertheless,
the network can only reveal variable dependencies; a further search for context-
optimal settings must be employed, resulting in a model building complexity
in terms of objective function evaluations, bounded by the exponential of the
order of dependencies detected by the online learning. This computational cost
is similar with the population requirement of classic EDAs, where the number of
samples is also lower bounded by the exponential of the order of dependencies
covered by the probabilistic model.

OMBLS opens the way towards large-scale optimization of hard, non-
separable building-block problems. Further work will focus on probabilistic re-
coding of the information (“soft” chunking) in order to tackle problems with
more complicated structure. Another line of research will focus on the paral-
lelization of the proposed framework: instead of sequential epochs, several model
based local-searches can be run concomitantly on different computational units;
model building can be also greatly parallelized as the search for context-optimal
settings for each building-block, respectively the pairwise distance computation
of different modules can be run in parallel.
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Abstract. We propose a novel generalized algorithmic framework to
utilize particle filter for optimization incorporated with the swarm move
method in particle swarm optimization (PSO). In this way, the PSO
update equation is treated as the system dynamic in the state space
model, while the objective function in optimization problem is designed
as the observation/measurement in the state space model. Particle filter
method is then applied to track the dynamic movement of the particle
swarm and therefore results in a novel stochastic optimization tool, where
the ability of PSO in searching the optimal position can be embedded
into the particle filter optimization method. Finally, simulation results
show that the proposed novel approach has significant improvement in
both convergence speed and final fitness in comparison with the PSO
algorithm over a set of standard benchmark problems.

1 Introduction

Particle filter, also known as sequential Monte Carlo (SMC), is a class of impor-
tance sampling and resampling techniques designed to simulate from a sequence
of probability distributions, which has gained popularity for the last decade to
solve sequential Bayesian inference problems [1]. It was recently extended to a
general framework to deal with static and sequential Bayesian inference, as well
as the global optimization. In order to deal with an optimization problem, a
sequence of artificial dynamic distribution was designed to employ the particle
filter algorithm. The basic idea of particle filter optimization (PFO) method was
first presented in our previous works [2] to solve discrete optimization problems
in wireless communication system. The crucial element in the PFO algorithm is
how to design the system dynamic function, which forces the set of particles to
move toward the ‘promising’ area containing optima.

Particle Swarm Optimization (PSO) is a well studied heuristic optimization
technique inspired by the social behavior observable in nature, such as flocks of

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 909–918, 2008.
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birds and schools of fish [3]. In a basic PSO algorithm, a set of particles is gener-
ated randomly, and their positions (states) are iteratively updated according to
their own experience and the experience of the swarm (or neighboring particles).
The heuristic strategy of swarm move works well and therefore enable the PSO
algorithm being effective and efficient. However, the PSO is not universal for
all optimization problems because it suffers the premature convergence which
enables the PSO algorithm easily to get stuck in local minima.

A novel algorithmic framework is presented in this paper, where the swarm
move strategy is incorporated into particle filter optimization algorithm. The
update equation of particle swarm move in PSO algorithm is treated as the sys-
tem dynamic of a state space model, while the objective function in optimization
problem is designed as the observation model to motivate the swarm moving to-
ward the optimal position. In particle filter, the particles first evolve according
to the system dynamic model where they ‘learn’ the information from the whole
population. After that, the particles are updated by information from the ob-
servation model where they ‘learn’ the information from the objective function.
Therefore, the particles move towards location of the global optima sequentially
by ‘learning’ the information from these two aspects. By using the swarm move
strategy as the system dynamic, the desirable searching mechanism of PSO is
incorporated into the PFO algorithm and enhance its searching ability. The pro-
posed novel algorithm incorporates the state space probability modelling and
resample strategy to the PSO algorithm, which potentially enhance the ability
of PSO algorithm in two aspects: making it easier to jump out local optima and
further refining the final results.

This paper is organized as follows. Section 2 reviews the basic PSO algorithm.
Section 3 introduces the basic particle filter algorithm. In Section 4, we propose
the particle filter with particle swarm move for optimization problem. In section
5, the proposed algorithm is tested on a set of benchmark problems. Finally, we
conclude the paper in Section 6.

2 Particle Swarm Optimization

2.1 The Basic PSO Algorithm

The basic PSO algorithm first starts with a number of particles which are ran-
domly generated in the function domain space. After that, each particle flies
through the search space with a velocity which is dynamically adjusted accord-
ing to its own flying experience and the experience from neighboring particles.
Specifically, the behavior of each particle is affected by either the local best or
the global best particle to help it fly through a hyperspace. Therefore, by observ-
ing the behavior of the flock and memorizing their flying histories, all particles
in the swarm can quickly converge to near-optimal geographical positions [3].
The particles are updated according to the following equations:

vn = wvn−1 + φ1(xibest − xn−1) + φ2(xgbest − xn−1) (1)
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xn = xn−1 + vn. (2)

Equation (1) calculates a new velocity for each particle (potential solution) based
on its previous velocity vn−1, the particle’s location at which the best fitness has
been achieved xibest , and the population global (or local neighborhood, in the
neighborhood version of the algorithm) location xgbest (or xnbest , in neighbor-
hood version) at which the best fitness so far has been achieved. Equation (2)
updates each particle’s position in solution hyperspace. The two random control
factors φi (i = 1, 2) are drawn from U(0, 2.05). Moreover, ω is applied to further
improve the convergence rate of the PSO, [3].

2.2 Improvement for PSO Algorithm

Improvement for PSO algorithms has been studied extensively in various ways
such as increased swarm diversity [4], evolutionary selection [5] and adaptive
parameters in the velocity update equations [6]. Although these improvements
achieve significant success, they generally obtain superior minima at the expense
of iterations. In other words, they concentrate on how to obtain better final
fitness but not how to obtain them faster.

Obviously, there is a tradeoff between convergence speed and the values of
final fitness for nonlinear optimization methods [4], which means that improving
one is at the expense of the other. However, given an order of magnitude for
the final solution fitness, it is still possible to obtain satisfied solutions faster
[7]. The Kalman swarm (KSwarm) proposed in [7], first tried to address this
issue in PSO. In KSwarm, a reformulated PSO update equation is treated as
the system dynamic in the state space model, while the observation function is
a measurement of the best position each particle has obtained in the past. The
results in [7] showed that the KSwarm algorithm has a significant improvement
in both convergence speed and final fitness. This research works in [7] shows
that the possibility or statistical approaches for improvement in PSO algorithm
has a great potential. Inspired by the KSwarm, we propose a novel algorithmic
framework to combine the particle filter with PSO algorithm, which can effec-
tively get ride of the heavy extra computation problem incurred by KSwarm1.
Moreover, rather than learning from the best position it has obtained in the
past, the particle in the proposed algorithm learns from the information of the
whole probability density function formed by all the particles.

3 Particle Filter

Particle filter, introduced in [8], is a class of importance sampling and resampling
techniques designed to simulate from a sequence of probability distributions for
sequential inference problems. These methods have gained popularity in recent

1 The superior performance of the KSwarm is at the cost of additional computation
complexity which is incurred by the matrix operations in Kalman update equations
whose complexity order is O(d3) in the number of dimensions [7].
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years, due to their simplicity, flexibility, ease of implementation, and modelling
success over a wide range of challenging applications [1].

Give a state space model,

xn = f(xn−1) + wn, (3)

yn = h(xn) + vn, (4)

where f(·) is the system evolution function, h(·) is the observation function,
wn and vn are the system noise and observation noise respectively. We refer to
n as the time index, which is just a simple counter and has not any relation-
ship with ‘real’ time. In the context of sequential Bayesian inference, we are
interested in the posterior distribution π(xn|y1:n) (where y1:n denotes the obser-
vations y1, y2, ..., yn), which can be recursively obtained from the following two
equations:

π(xn|y1:n−1) ∝
∫
p(xn|xn−1)π(xn−1|y1:n−1)dxn−1, (5)

and
π(xn|y1:n) ∝ L(xn; yn)π(xn|y1:n−1), (6)

where p(xn|xn−1) represents the system dynamic in (3), π(xn−1|y1:n−1) in (5) is
the posterior distribution at (n−1), and L(xn; yn) in (6) refers to the likelihood
function obtained in (4). The recursion is initialised with some distribution, for
example, p(x0).

In very limited scenarios, the state space models of interest are ‘weakly’ non-
linear and Gaussian in which one may utilize the Kalman filter and its derivatives
[9], to obtain an approximately optimal solution. In practice, it is well known
that the update expression in (6) is generally analytically intractable for most
models of interest. We therefore turn to sequential Monte Carlo (SMC) methods
[1,8], also known as particle filters, to provide an efficient numerical approxima-
tion strategy for recursive estimation of complex models.

3.1 Sequential Importance Sampling

The basic idea behind particle filters is very simple: the target distribution is
represented by a weighted set of Monte Carlo samples which are called particles
in this paper. These particles are propagated and updated using a sequential
version of importance sampling as new measurements become available. Hence
statistical inferences of the posterior π(xn|y1:n) can be computed by these par-
ticles.

From a large set of particles
{
x

(i)
n−1

}N

i=1
associated importance weights{

w
(i)
n−1

}N

i=1
, we approximate the posterior distribution function π (xn−1|y1:n−1)

as follows:

π (xn−1|y1:n−1) ≈
N∑

i=1

w
(i)
n−1δ

(
xn−1 − x

(i)
n−1

)
, (7)
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where δ (·) is the Dirac delta function. We would like to generate a set of new

particles
{
x

(i)
n

}N

i=1
from an appropriately selected proposal function, i.e.,

x(i)
n ∼ q

(
xn|x(i)

n−1, y1:n

)
, i = {1, ..., N}. (8)

With the set of state particles
{
x

(i)
n

}
obtained from (8), the importance weights

w
(i)
n are recursively updated as follows:

w(i)
n ∝ w

(i)
n−1 ×

L
(
x

(i)
n ; yn

)
p
(
x

(i)
n |x(i)

n−1

)
q
(
x

(i)
n |x(i)

n−1, y1:n

) (9)

with
∑N

i=1 w
(i)
n = 1. It follows that the new set of particles

{
x

(i)
n

}N

i=1
with

the associated importance weights
{
w

(i)
n

}N

i=1
is then approximately distributed

according to π (xn|y1:n).
As the particle filters operate, only a few particles contribute significant im-

portance weights in (9), which leads to a degeneracy problem [10]. To avoid this
problem, one possible method is to resample the particles according to the im-
portance weights. With this method, the particles with more significant weights
will be selected more frequently than those with less significant weights. More
detailed discussions of degeneracy and resampling can be found in [10].

An important element in generating a set of weighted particles which could
well approximate the posterior distribution function in (4) is the selection of the
proposal importance sampling function q(x(i)

n |y1:n) in (8). One choice of the state
proposal function is the dynamic prior, q (xn|xn−1, y1:n) = p (xn|xn−1). Weights
become proportional to likelihood, wn ∝ wn−1L(xn; yn). In the proposed particle
filter optimization algorithm in the following sections, we will restrict to utilize
this simple but generic effective proposal.

3.2 Particle Filter for Optimization

Particle filter technique has recently been extended to a general framework to
deal with the static and sequential Bayesian inference, as well as the global op-
timization [11], which is also called sequential Monte Carlo sampler. To apply
the SMC sampler for optimization problem, a sequence of artificial intermediate
distributions is required, for example πn(x) = [π(x)]τn where {τn}N

n=1 is such
that 0 < τ1 < · · · < τN and 1 << τN to ensure that π0(·) is easy to sample from
and πN (·) is concentrated around the set of global maxima of π(·). Given some
sequence of distributions, SMC propagates samples forward from one distribu-
tion to the next according to a sequence of Markov kernels, Kn, and corrects for
the discrepancy between the proposal and the target distribution by importance
sampling [11]. The choice of forward and backward transition kernels is critical in
SMC sampler [11]. For example, in [2], the forward transition kernel was chosen
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as the Markov chain transition kernel from an adaptive Metropolized indepen-
dence sampler. Due to the efficiency of the adaptive Metropolized independence
sampler, the resulting optimization algorithm performs well for combination op-
timization problems. However, heuristic optimization techniques are not easy to
incorporate into the SMC sampler, since it is generic too sophisticated to formu-
late a heuristic optimization method as the forward and/or backward transition
kernel.

In this paper, we provide an alternative way to incorporate heuristic opti-
mization techniques, particularly the population based optimization methods,
into the particle filter optimization method. The basic idea is to utilize the de-
sirable tracking ability of particle filter to track the movement of the individuals
in the population based optimization algorithms. The location of the global op-
tima is treated as the observation of the dynamic system. Therefore, by treating
the location of global optima as the destination, the individuals in the popu-
lation will move towards it sequentially. Moreover, the move strategy can be
very heuristic and efficient since it comes from the excellent population based
optimization algorithms.

So the PFO algorithm can be designed as follows: the move strategy in the
population based optimization algorithms is reformatted as a system dynamic
function. The second step is the definition of observation function. Take the min-
imization problem x∗ = arg minx∈X g(x) as an example. The ‘best’ observation
is of course the exact location of the global minimum of the problem of interest,
but it is unknown. If the value of the objective function at the global minimum
point is known, i.e. g(x∗), then it can be served as the observation. Therefore
we can define the observation function (measurement likelihood) as follows

L(x; g(x∗)) = exp

{
− [g(x)− g(x∗)]2

τ

}
, (10)

where τ is a properly chosen temperature in the Boltman distribution. However,
in plenty of problems, the value of g(x∗) is unknown. In such cases, if we can guess
a value g∗ which is less than the value of g(x∗), we can define the observation
function as,

L(x; g∗) = exp
{
− [g(x)− g∗]

τ

}
. (11)

If we can not even guess such a value, we can also use an observation function
as,

L(x; a, b) = exp
{
−a ∗ [g(x)− b]

τ

}
, (12)

where a and b are two constant values, which are properly chosen to make the
value of L(x; a, b) reasonable (not extremely large or small).

When the system dynamic and observation in the state space model have
been defined, the particle filter is then applied to simulate this model and the
particles will move toward the global optima sequentially.
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4 Particle Filter Optimization with Particle Swarm
Movement

In this section, we will introduce the details of particle filter optimization algo-
rithm. The system dynamic function in the state space model is

zn �
[
xn

vn

]
=
[
xn−1 + wvn−1 + φ1(xibest − xn−1) + φ2(xgbest − xn−1)

wvn−1 + φ1(xibest − xn−1) + φ2(xgbest − xn−1)

]
+
[
εx
εv

]
(13)

where εx ∼ N(0, Σx), εv ∼ N(0, Σv), and φi ∼ U(0, 2.05) (i = 1, 2). The ob-
servation function can be defined as (10), (11), (12) depending on the concrete
problem, here denoted as L(x; ·). Description of the particle filter optimization
algorithm is presented as follows:

Step 1: At iteration n = 1, sample N particles
{
z
(i)
n

}N

i=1
∼ U(z; θ) (i =

1, ..., N) according to an uniform distribution with a predefined parameter θ
(i.e. the parameter to define the feasible solution space of the problem), and
compute w(i)

1 ∝ L(x(i)
1 ; ·).

Step 2: Evolve particles
{
z
(i)
n

}N

i=1
according to the dynamic function (13).

Step 3: Calculate the important weights, w(i)
n ∝ w

(i)
n−1L

(
x

(i)
n ; ·
)
.

Step 4: Resample the particle representation
{
w

(i)
n , z

(i)
n

}
.

Step 5: Update the location xibest and xgbest.
Step 6: If the stopping criterion is satisfied, then stop; otherwise, set n :=

n+ 1 and go back to step 2.

It is worth noting that in the PFO algorithm, compared with the PSO algorithm,
the additional computation is the resampling step, which has the complexity
O(N) in the number of particles (N). This additional computation complexity
is significantly less than the one in KSwarm whose complexity is about O(Nd3).
Moreover, the number of iterations required by the PFO algorithm is much
smaller than those of the PSO and KSwarm algorithm.

5 Experiments

PFO will be compared with the PSO and KSwarm algorithm via the follow-
ing four benchmark problems: Sphere, DejongF4, Rosenbrock and Griewank.
Herein, the first three are unimodal optimization problems, while the last one
is multimodal. In all experiments, the dimensionality d = 30. The mathematical
definitions of four benchmark functions are given as follows:

Sphere(x) =
d∑

i=1

x2
i , x ∈ (−50, 50)d (14)
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Table 1. Final Values Comparison among PSO, KSwarm and PFO

Function PSO [7] KSwarm [7] PFO

Sphere 370.041 4.723 5.548e-6
DejongF4 4346.714 4.609 2.236e-9
Rosenbrock 2.61e7 3.28e3 3.16e-2
Griewank 13.865 0.996 2.845e-5

DeJongF4(x) =
d∑

i=1

ix4
i , x ∈ (−20, 20)d (15)

Rosenbrock(x) =
d−1∑
i=1

[
100
(
xi+1 − x2

i

)2
+ (xi − 1)2

]
, x ∈ (−100, 100)d (16)

Griewank(x) =
1

4000

d∑
i=1

x2
i −

d∏
i=1

cos
(
xi√
i

)
+ 1, x ∈ (−600, 600)d (17)

In all experiments, the particle size is set to 100. The stopping criterion is that
the algorithm reaches its maximum iteration number 200. Then, the number
of objective function evaluations is the same as it is in [7], which makes the
comparison reasonable. We run each experiment 50 times for 200 iterations, and
averaged the results to account for stochastic differences. The inertia weight w
is 0.5 in all the experiments. The variance of system noise is given as Σx = γId,
Σv = γId, where the scalar γ indicates the magnitude of the variance in each
dimension, specifically, γ = 0.001 when iteration number n ≤ 100 and γ =
0.00001 when n > 100 for all experiments. A large variance enables the algorithm
to explore the space quickly while a small variance enables the algorithm to
improve the final fitness. In design of the observation function, we assumed that
we have only ‘weak’ prior knowledge of the value of the optimal objective function
g(x∗). For instance, in all the experiment, we used the observation function
(12) by simply setting a = 1 and b = 0. The temperature in the Boltzmann
distribution τ is set by experience. Herein, in all the experiments, τ = 10.

Table 1 shows the final values of basic PSO and KSwarm algorithms after
1000 iterations, as well as the final values of PFO after 200 iteration. It can be
seen that the values obtained by PFO are several orders of magnitude better
than the basic PSO and KSwarm algorithms in all four benchmark problems.
Afterwards, Figs. 1 - 4 pictorially depict the best value versus the number of
iterations. Herein, in order to compare the PFO, PSO and KSarm under the
same complexity condition, the number of iterations for PFO is set to 200, while
the number of iterations for PSO and KSwarm is set to 1000. Although the
number of iterations is different, the number of time of calculating the objective
function is same. Through simulations, we observe that, compared with the PSO
algorithm, the additional computation efforts of PFO is negligible, while KSwarm
take significant additional computation due to its matrix operations.
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Fig. 3. Rosenbrock
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Moreover, the plots of the best value obtained per iteration show that the
PFO tends to find good solutions faster than the other two methods. These
simulation results demonstrate a significant improvement for the PSO, not only
in exploring final solutions, but also in the speed to find them.

6 Conclusions

In this paper, we propose a novel generalized framework for stochastic optimiza-
tion in which the PFO is incorporated with the swarm move method in PSO.
The particle swarm move in PSO algorithm is treated as the system dynamic
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in the state space model, while the objective function in optimization problem
is designed as the observation model. Particle filter method is then applied to
track the dynamic movement of the particle swarm in PSO algorithm. By incor-
porating the state space probability modelling and resample strategy into the
PSO algorithm, the PFO can potentially enhance the ability of PSO algorithm
in two aspects: making it easier to jump out local optima and refining the final
result. Compared with the PSO and KSwarm algorithm, the PFO algorithm
can obtain better final fitness with a negligible additional computation effort.
Finally, simulation results demonstrate a significant improvement for the PFO,
not only in exploring final solutions, but also in the speed to find them.
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Abstract. This paper presents a feasibility-preserving crossover and mutation
operator for evolutionary algorithms for constrained combinatorial problems.
This novel operator is driven by an adapted Pseudo-Boolean solver that guar-
antees feasible offspring solutions. Hence, this allows the evolutionary algorithm
to focus on the optimization of the objectives instead of searching for feasible
solutions. Based on a proposed scalable testsuite, six specific testcases are in-
troduced that allow a sound comparison of the feasibility-preserving operator to
known methods. The experimental results show that the introduced approach is
superior to common methods and competitive to a recent state-of-the-art decod-
ing technique.

1 Introduction and Related Work

Definition 1. A constrained combinatorial problem is defined as:

minimize f(x)
subject to x ∈ Xf with Xf ⊆ {0, 1}n

The objective function f allows multi-dimensional and non-linear calculations. The
search space X = {0, 1}n is restricted to binary values, but allows integer values by
a binary encoding. The feasible search space Xf ⊆ X is restricted by a set of linear
constraints which are subsumed in the following matrix inequation:

Ax ≤ b (1)

with A ∈ Zm,n and b ∈ Zm. Thus, the constraints have to be linear or lineariz-
able1. Constraints that are not linearizable have to be handled by common methods
like penalty functions. However, many problems have linear constraints only [1] or are
dominated by the number of linear constraints [2]. In the following, this paper assumes
that all constraints are linear.

In the field of Evolutionary Computation different constraint-handling techniques of
constrained combinatorial problems as stated in Definition 1 exist. These constraint-
handling methods become necessary since a variation by crossover and mutation

1 Linearization substitution rule: x1 · x2 ↔ x3 with x1 − x3 ≥ 0 ∧ x2 − x3 ≥ 0 ∧ x1 + x2 − x3 < 2.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 919–928, 2008.
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operators tends to deliver infeasible solutions. A straightforward approach is a penalty
function that counts the violated constraints and deteriorates the objective function,
cf. [3,4]. Moreover, a greedy repair algorithm as presented in [5] can be applied to
minimize the number of violated constraints. This repair algorithm delivers feasible so-
lutions only for specific problems like, e.g., the 0/1 Knapsack Problem [5], but it cannot
guarantee feasibility for linear constraints as stated in Equation (1). Since this problem
is known to be NP-complete in general [1], it cannot be solved by a greedy algorithm
(assuming P�=NP).

If the search space is hard constrained, the common constraint-handling methods
fail, since they are more focused on the search for feasible solutions than optimizing the
objectives. In [2], a decoding strategy [6] known as SAT decoding is presented that over-
comes these drawbacks. By using a Pseudo-Boolean (PB) solver [7] as a decoder, this
method always obtains feasible solutions by mapping from a bounded search space to
feasible solutions. In combination with an Evolutionary Algorithm (EA), a good conver-
gence towards the optimal solutions also on large and complex real-world problems [8]
is reached.

Instead of using the PB solver for decoding feasible solutions, our novel approach
uses the PB solver within the crossover and mutation operator. Thus, only feasible solu-
tions are obtained already in the variation process of the EA and a decoding becomes un-
necessary. To compare this novel approach to common constraint-handling techniques
and the SAT decoding, we present a testsuite and six specific testcases. These testcases
represent random as well as structured real-world problems.

The remainder of the paper is outlined as follows: Section 2 introduces the scalable
testsuite and six specific testcases for the constrained combinatorial problem. In Sec-
tion 3, the novel feasibility-preserving crossover and mutation operator is presented.
Experimental results are given and discussed in Section 4 before the paper is concluded
in Section 5.

2 Testsuite

In the following, a scalable testsuite for constrained combinatorial problems is pre-
sented. This testsuite is based on the well known 3-SAT problem [1]. The 3-SAT prob-
lem is a special case of the Satisfiability Problem where each clause contains exactly
three literals. In a nutshell, the 3-SAT problem is to determine if there exists a satisfying
solution to a Boolean formula given as a conjunction of clauses. A clause is a disjunc-
tion of literals, which are variables or their negations. Each clause can be formulated
as a linear greater-or-equal-1 constraint by substituting the ORs by plus signs and the
negative literals xi by 1 − xi. For instance, the clause (x1 ∨ x2 ∨ x3) is converted to
x1 + x2 + (1 − x3) ≥ 1 or x1 + x2 − x3 ≥ 0, respectively. Thus, a transformation to
the form in Equation (1) is straightforward.

The testsuite is configured by two parameters:

– n - number of binary variables
– k - number of constraints

In contrast to the original 3-SAT problem, the constructed constrained problem must
contain at least one feasible solution. This is ensured by first constructing a random
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solution x ∈ X with
∑n

i=1 xi = n
2 or the same number of 1s and 0s, respectively. Ran-

dom constraints are generated by constructing clauses with randomly chosen positive
(xi) or negative literals (xi) of three randomly selected variables. This generated con-
straint is only added if it is satisfied by x to guarantee at least a single feasible solution.
The procedure is carried out until the desired number of constraints k is reached.

Since this paper deals with constraint-handling, for all following testcases, the ob-
jective function f is a simple single linear objective function

f(x) =
n∑

i=1

ri · xi

with the ri values randomly distributed in R[0,1].

T1. Testcase T1 is a random instance with n = 100 and k = 400. With k
n ≈ 4.3, hard

solvable 3-SAT instances are generated, cf. [9]. The experience shows, k
n = 4 tends to

construct testcases that have enough feasible solutions for a meaningful optimization
but, on the other hand, obtaining a feasible solution is not trivial.

T2. Testcase T2 is a random instance with n = 150 and k = 600. This testcase, in com-
bination with T1, reveals the scaling of the optimization method for random instances.

T3. Testcase T3 represents a real-world problem with n = 1000 and k = 4000. For this
testcase, a structure is induced by a special scheme to select the variables for the clauses:
First, a random variable xi is selected. The other two variables xj ,xk are selected by
a Geometric Distribution with the inverse function F−1(u) = 0ln(1− u)/ln(1− p)1,
with u being a random number in R[0,1), such that j = (i + F−1(u))%n + 1 and
k = (j + F−1(u))%n + 1. A high value for p decreases the pairwise distance of the
variables that is in average 1

p . For testcase T3 the value p is set to 0.1. It is known that PB
solvers are performing much better on structured problems than on random generated
problems [10]. In fact, real-world problems are usually structured due to the problem
trait, like, e.g. the system structure, or the construction scheme like, e.g, a hierarchical
approach, cf. [9].

T4 Testcase T4 represents a real-world problem with n = 1000 and k = 4100. Unlike
the construction scheme used in T3, a structure is induced by a partitioning approach.
First, b constraints are randomly generated among all variables. Second, the variables
are uniformly distributed in a partitions such that for each partition k−b

a random con-
straints are generated. For testcase T4, the parameters are set to a = 10 and b = 100
and, thus, 10 instances as in testcase T1 are created and interconnected by 100 con-
straints. These additional 100 constraints further reduce the rate of feasible solutions.

T5. Testcase T5 is constructed the same way as T4 with n = 2000, k = 8100, a = 20
partitions, and b = 100. This testcase is used to illustrate the scaling of the optimization
methods on structured problems.

T6. Testcase T6 is constructed the same way as T3 with n = 3000 and k = 9000. With
k
n = 3 this testcase has a high rate of feasible solutions. This testcase shows the range
of applicability of the optimization methods for low constrained problems.
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3 Feasibility-Preserving Crossover and Mutation

The requirement for a feasibility-preserving crossover and mutation operator for con-
strained combinatorial problems is to always obtain a feasible offspring solution from
two feasible parent solutions. The proposed approach is based on a state-of-the-art
Pseudo-Boolean (PB) solver [7]. In the following, a specialized crossover and muta-
tion operator is presented that makes use of a PB solver to obtain feasible offspring
solutions from two feasible parent solutions. Moreover, a heuristic that aims to improve
the quality of the obtained offspring solution in terms of information preservation is
presented.

3.1 PB Solver

The task of a PB solver is to find an x ∈ Xf that satisfies a set of linear constraints
as formulated in Equation (1). In fact, this NP-complete problem [1] is an ILP with
binary variables and an empty objective function and can be solved by a common ILP
solver. However, the specialized PB solvers tend to outrun common ILP solvers on these
Boolean-natured problems [11]. These PB solvers are extended SAT solvers that are ac-
tually used to solve the Satisfiability problem and are based on a backtracking strategy.
This strategy is known as the DPLL algorithm [12] and is outlined in Algorithm 1. The
algorithm efficiently searches for a solution x ∈ Xf that fulfills all given constraints,
cf. [7]:

Algorithm 1. DPLL backtracking algorithm: solve
Require: ρ ∈ Rn, σ ∈ {0, 1}n

Ensure: x ∈ Xf

1: while true do
2: branch(ρ, σ)
3: if CONFLICT then
4: backtrack()
5: else if SATISFIED then
6: return x
7: end if
8: end while

Starting with completely unassigned variables, the operation branch(ρ, σ) chooses
an unassigned variable and assigns it a value (line 2). The rule which variable is cho-
sen and which value is assigned is called branching strategy. The branching strategy
is guided by the two vectors ρ ∈ Rn and σ ∈ {0, 1}n. Unassigned variables xi with
the highest value ρi are prioritized and are set to the value σi. After each variable as-
signment, conflicts are recognized (line 3). If any constraint is not satisfiable anymore,
the backtracking is triggered (line 4), i.e., variable assignments are reverted. In case
all variables have an assignment and there exists no conflict (line 5), this assignment
represents a feasible solution x which is returned (line 6).
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3.2 Feasibility-Preserving Operator

Algorithm 1 is able to find feasible solutions x ∈ Xf . The backtracking is guided
by the branching strategy (ρ, σ) and, thus, these two vectors have a high influence on
which solution in Xf is found. Thus, Algorithm 1 is used to generate a feasible initial
population by arbitrary random branching strategies.

In Algorithm 2, a feasibility-preserving crossover and mutation operator is presented:
Based on the two feasible parent solutions, a branching strategy is derived to obtain a
feasible offspring solution using Algorithm 1.

Algorithm 2. Feasibility-preserving crossover and mutation operator
Require: x′, x′′ ∈ Xf ; C ⊆ {1, ..., n}; r ∈ R[0,1] (mutation rate)
Ensure: x ∈ Xf

1: for i ∈ {1, ..., n} do
2: if i ∈ C then
3: σi = x′

i

4: else
5: σi = x′′

i

6: end if
7: ρi = rand(0, 1)
8: if rand(0, 1) < r then
9: ρi = ρi + 1

10: σi = σi

11: end if
12: end for
13: x = solve(ρ, σ)
14: return x

Algorithm 2 requires two feasible parent solutions x′, x′′ ∈ Xf , the selection set
C ⊆ {1, ..., n}, and the mutation rate r. A branching strategy (ρ, σ) is generated as
follows: The prioritized phase σi of the corresponding variable xi is set to the corre-
sponding value of one of the parent solutions x′i or x′′i , respectively. This selection is
done based on the set C that controls the binary crossover (line 2-6). The priority ρi

of a variable xi is randomly chosen in R[0,1] (line 7). For each variable xi a mutation
is done with the probability r. The mutation increases the priority ρi by 1 and flips the
prioritized phase value σi (line 8-11).

With the given branching strategy (ρ, σ) the PB solver finds a feasible offspring
solution x ∈ Xf (line 13). At this, preserving the information obtained by the parent

solutions becomes important. Hence, the adaption diversity div(x, σ) =
∑n

i=1
|xi−σi|

n ,
that measures the fraction of preserved information of σ, should be kept as small as
possible.

Theorem 1. Given two feasible solutions x, x̃ ∈ Xf , a specific σ, and a random ρ, the
probability P to obtain the solutions x in comparison to x̃ is

P (x = solve(ρ, σ)) > P (x̃ = solve(ρ, σ)) (2)



924 M. Lukasiewycz, M. Glaß, and J. Teich

if
div(x, σ) < div(x̃, σ). (3)

Proof. Equation (3) implies that x̃ compared to x has a higher count of variables
that are different to these corresponding variables of σ. Thus, with a given random
ρ, x̃ is excluded with a higher probability earlier in the backtracking search algorithm
solve(ρ, σ) compared to x. Hence, x is reached with a higher probability than x̃ as
stated in Equation (2).

Thus, the PB solver tends to find a similar offspring solution x compared to σ and
preserves the information passed along by the parent solutions x′ and x′′. By setting C
to {1, ..., n} or {}, respectively, Algorithm 2 decays to a feasibility-preserving mutation
only operator. This approach is applicable if the crossover rate is lower than 1.

3.3 Minimizing the Adaption Diversity

To preserve the information within the feasibility-preserving operator, the adaption
diversity has to be minimized. At this, the selection set C that controls the binary
crossover has a high influence on this value. We propose a heuristic that finds selec-
tion sets based on a graph that represents the constraints of the problem. On the one
hand, this heuristic decreases the adaption diversity and, on the other hand, decays to
the well known one-point crossover for an unconstrained problem.

Consider the following definitions:

Definition 2 (Constraint-Graph). A constraint-graphG(V,E) is an undirected graph
that contains a vertex i for each variable xi from a problem defined in Equation (1).
A function w : V × V → R defines the weight of the edges. For each constraint of
the problem an edge between each pair xi, xj of variables of the constraint2 is added
between the vertices i and j. The weight of the added edge w(i, j) is the reciprocal
value of the count of the variables of the constraint. In case there exists already an edge
between the vertices i and j, the calculated weight is added to the weight of the existing
edge.

Definition 3 (Cut). Let G(V,E) denote a graph. A cut is a partition of the vertices V
in two disjunctive sets C and C. Any edge e = (u, v) ∈ E with u ∈ C and v ∈ C is a
cut edge. A weight of a cut is the sum of the weights of the cut edges.

A cut on a constraint-graph produces two partitions C and C. At this, C can be used as
the selection set for Algorithm 2. A small cut weight should be aspired since it tends
to minimize the number of potentially conflicting constraints and, thus, also tends to
minimize the adaption diversity.

A min-cut algorithm that finds the minimal cut of an undirected graph is presented
in [13]. However, a reasonable crossover operator needs a sufficient number of cuts
instead of just a single minimal cut. Based on Algorithm 3, the following proposed
heuristic tends to generate n− 1 relatively small cuts.

2 Variables are said to be part of a constraint if their corresponding coefficient in C from Equa-
tion (1) is non-zero.
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Algorithm 3. Vertex ordering heuristic
Require: G(V, E), w
Ensure: P is an ordered set
1: while P �= V do
2: Select xi ∈ V \P with

∑
xj∈P w(xi, xj) = max{

∑
xk∈P w(xi, xk)|xk /∈ P}

3: P = P ∪ {xi}
4: end while
5: return P

Given the constraint-graphG(V,E) with the corresponding edge weight functionw,
the algorithm fills a set P with the vertices V and keeps track of the insertion order.
Until the set P contains all vertices from V the algorithm continues (line 1). Each step
the most tightly connected vertex xi with respect to the set P is added to P (line 2-3).

Splitting the ordered set P at one point into two subsets C and C generates n − 1
cuts with relatively small weights. This is due to the fact that by using the presented
heuristic and adding at each step the most tightly connected edge, the weights of the
cuts are kept small along the order of P . Thus, we will uses these n − 1 C subsets
for the selection set C for Algorithm 2. In fact, this approach is similar to the common
one-point crossover and decays to it for unconstrained problems.

The time complexity of this algorithm is O(|E| + |V |log|V |), as stated in [13], and
with |V | = n and a maximum value of |E| = n2, the aggregated worst-case complexity
is O(n2). However, this algorithm has to be performed only once for each problem. As
the experimental results validate, the costs of this heuristic are negligible small com-
pared to the overall runtime of one optimization.

4 Experimental Results

All experimental results were carried out on an Intel Pentium 4 3.20 GHz machine with
1 GB RAM. The implementation of the presented approach is based on the optimization
framework OPT4J [14].

4.1 Selection Set

Table 1 presents a comparison of the adaption diversity induced by the feasibility-
preserving operator for a completely random selection set C and the selection sets that
were obtained by the presented heuristic in Section 3.3.

In particular, the induced adaption diversity for the structured testcases T3-T6 is
significantly lower for the sets that are obtained by the proposed heuristic. These results

Table 1. Results for the adaption diversity on all testcases with a random selection set C and
random selection set that was obtained by the presented heuristic

T1 T2 T3 T4 T5 T6
random 0.19 0.22 0.19 0.10 0.16 0.18

heuristic 0.12 0.14 0.04 0.02 0.02 0.01
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(a) Results for T1.
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(b) Results for T2.
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(c) Results for T3.
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(d) Results for T4.
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(e) Results for T5.
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(f) Results for T6.
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(g) Runtimes for all testcases.

Fig. 1. 1(a) to 1(f) show the results of the four optimization methods on the presented testcases.
Given is the reached minimal value of f(x) as well as the rate of infeasible solutions that were
obtained throughout the optimization. In 1(g), the runtimes of the optimization methods on the
testcases are denoted. Note that these values are given in logarithmic scale.
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validate that the heuristic effectively preserves the information of the parents. Thus, for
following experimental results the novel feasibility-preserving technique is performed
in combination with the presented adaption diversity minimizing heuristic.

4.2 Optimization

The section compares different EA based constraint-handling strategies on the six test-
cases. The penalty function based approach (penalty) tries to minimize the following
function (cf. Equation (1)) that prioritizes feasible over infeasible solutions:

f ′(x) = f(x) + p(x)
with p(x) = n ·min{e1 + ... + en} such that Ax ≤ b+ e and e ∈ N0

m

This approach is extended a by a greedy repair algorithm (greedy) [5] that flips each
variable trying to minimize p(x). In case of p(x) = 0, the greedy algorithm stops since
x is a feasible solution. The SAT decoding approach [2] is in the following denoted as
satdec. The feasibility-preserving approach proposed in this work is denoted as satop.
For all methods, an elitist EA is used with the population size of 100 individuals, gen-
erating 25 offspring from 25 random selected parent solutions. For all methods, the
mutation rate is set to r = 1

n . For the binary vectors, a binary crossover is used, fol-
lowed by a bit-flip with probability r. For the satdec approach, the crossover for the real
vector is implemented by the SBX (ν = 15) operator, followed by polynomial mutation
(η = 20) with probability p. For each testcase 10 instances were generated, and for
each instance 10 runs were carried out to allow a calculation of am overall meaningful
average.

The results of the optimization runs is given in Figure 1. The proposed feasibility-
preserving approach satop delivers the best solutions for all testcases except T4 where
satdec is slightly better. This is due to the fact, that satdec works best one problems
with very few feasible solutions. This is also apparent on testcase T6 with many feasible
solutions, where satdec is only slightly better than the greedy method. However, though
satop and satdec are both based on a PB solver and deliver feasible solutions only,
satop is about four times faster in average compared to satdec and even faster than the
greedy approach on the structured testcases T3-T6. Except for T4, the satop method
delivers remarkably better solutions on the testcases T3,T5, and T6 that represent real-
world problems. Note that the greedy approach becomes remarkably slow on the large
problem where obtaining a feasible solution is difficult and fails to find a single feasible
solution on the testcases T4 and T5. The method penalty is the fastest, but delivers bad
results and fails completely to find feasible solutions on the larger problems T3 to T6.

5 Conclusion

In this paper, a feasibility-preserving crossover and mutation operator for constrained
combinatorial problems is presented. This operator allows an Evolutionary Algorithm
to perform efficiently also on large and problems with few feasible solutions. The ex-
perimental results compare this novel approach to known methods based on a proposed
testsuite. The results show that the feasibility-preserving operator is superior to common



928 M. Lukasiewycz, M. Glaß, and J. Teich

methods like penalty functions or a greedy repair algorithm. Compared to the state-of-
the-art SAT decoding, the novel approach is four times faster and delivers, except for
one testcase, better solutions.
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Abstract. Meta-heuristics usually lack any kind of performance guar-
antee and therefore one cannot be certain whether the resulting solutions
are (near) optimum solutions or not without relying on additional algo-
rithms for providing lower bounds (in case of minimization).

In this paper, we present a highly effective hybrid evolutionary local
search algorithm based on the iterated Lin-Kernighan heuristic combined
with a lower bound heuristic utilizing 1-trees. Since both upper and
lower bounds are improved over time, the gap between the two bounds
is minimized by means of effective heuristics. In experiments, we show
that the proposed approach is capable of finding short tours with a gap of
0.8% or less for TSP instances up to 10 million cities. Hence, to the best
of our knowledge, we present the first evolutionary algorithm and meta-
heuristic in general that delivers provably good solutions and is highly
scalable with the problem size. We show that our approach outperforms
all existing heuristics for very large TSP instances.

1 Introduction

The Traveling Salesman Problem (TSP) is one of the best-known combinato-
rial optimization problems. Simply stated, the problem is to find the shortest
round trip through a set of cities where each city has to be visited exactly once.
Unfortunately, the TSP is known to be NP-hard.Meta-heuristics usually do not
provide a performance guarantee such as approximation algorithms. Hence, for
finding provably good solutions, one has to resort to exact algorithms like Branch
& Cut, or use an algorithm for computing a lower bound (in case of a minimiza-
tion problem) additionally to the meta-heuristic.

In this paper, we present a heuristic approach that simultaneously improves
lower and upper bounds for a TSP instance to provide a gap for the best solution
found. The gap determines the maximum deviation from the optimum solution
� This work is partially supported by the German Research Foundation (DFG).

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 929–939, 2008.
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and therefore provides a quality measure for the obtained TSP tour. The ap-
proach differs from exact algorithms like Branch & Cut [1] in that no efficient
linear programming (LP) solver is required and it differs from approximation al-
gorithms such as PTAS [2] in that no general performance guarantee is provided.
Instead, the quality is proved for each instance and a particular run: a final gap
between lower and upper bound of 1% means that the solution found is at most
one percent above the optimum (in practice the real gap is much lower).

We show in experiments that our approach (a) delivers solutions known to
be only about 1% above the optimum on average, (b) scales linearly for random
Euclidean instances and is therefore even applicable to instances with 10 million
cities, and (c) outperforms all known TSP heuristics for very large instances.

The paper is organized as follows: Section 2 discusses state-of-the-art meta-
heuristics for the TSP. In Section 3, our new highly effective approach is pre-
sented. Results from several experiments are discussed in Section 4. The paper
is concluded in Section 5.

2 Effective Approaches for the TSP

The TSP has served as a test-bed for new heuristic approaches including evo-
lutionary algorithms (EA). Consequently, many approaches, both evolutionary
and non-evolutionary, have been proposed. Here, we focus on those approaches
which are highly effective and scalable. TSP instances up to a size of 1,000 can
be considered as trivial for most algorithms. In fact, these small problems can
usually be solved exactly by Branch & Cut [3] in a few seconds. Therefore, these
instances are no longer of interest for heuristics research on the TSP. For in-
stances up to approx. 30,000 cities, very effective heuristics have been proposed
most of which are based on the powerful Lin-Kernighan (LK) heuristic [4], a vari-
able k-opt local search. An example is Helsgaun’s LK implementation (LKH) [5].

Only few evolutionary algorithms can compete with LKH. One of the best
evolutionary approaches is the EA of Nagata using EAX crossover [6] and 2-opt
local search. This algorithm finds (near) optimal tours up to a size of 33,000
cities, although with a high runtime. Recently, Nguyen et al.[7] have proposed
a hybrid evolutionary algorithm which utilizes a variant of the MPX crossover
operator [8] and a Lin-Kernighan local search variant with 5-opt moves. Results
are reported for instances up to 85,900 cities. The authors claim that their algo-
rithm is more effective than LKH. Moreover, the authors describe an approach
for solving the World TSP (approx. 2 million cities) by solving and merging sub-
problems. But results for other instances in the range from 100,000 to 10 million
cities are not reported.

For instances larger than 100,000 cities, only few heuristics have been proposed.
For these instances, the DIMACS TSP implementation challenge [9] lists several
approaches of which the best are based on the LK heuristic: The multi-level algo-
rithm of Walshaw [10] first reduces the size of a TSP instance stepwise and then
applies the (chained) LK heuristic to the smaller problems. The results are inferior
to the results obtained by directly applied chained LK or iterated LK heuristics.
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These heuristics are based on the principle of iterated local search [11], an evolu-
tionary heuristic incorporating local search. The idea is to stepwise improve the
current best solution by mutating it and subsequently applying local search. The
first iterated local search was the iterated Lin-Kernighan (ILK) heuristic by John-
son [12]. Other variants have been proposed such as the chained Lin-Kernighan
heuristic [13,14]. These ILK heuristics have been applied to instances with up to
10 million cities. The only algorithm within the DIMACS challenge not using LK
as a subroutine and still being highly effective for large instances is the dynamic
programming approach of Balas and Simonetti [15].

Except for the LKH heuristic, none of the mentioned algorithms provides a
lower bound on the optimum solution. To the best of our knowledge, the only
evolutionary algorithm computing lower bounds is the one proposed in [16].
However, the approach deals with instances below 2,400 cities only.

3 A Scalable Evolutionary Algorithm for the TSP

In the following, we present an ILK variant for the TSP that can be applied to
instances with millions of cities.

3.1 The General Evolutionary Framework

The evolutionary framework we use in our algorithm is not specific to the TSP.
The concept of iterated local search has been applied to other combinatorial
problems with great success [11]. The framework is rather simple: First, a so-
lution to the problem is generated using some sort of randomized construction
heuristic. Then, a local search is applied to obtain a local optimum. Afterwards,
the best local optimum obtained so far is mutated repeatedly by some problem–
specific mutation operator, and a local search procedure is applied subsequently.
If the newly obtained solution is better than the previous one, it is accepted as
the new best solution. In this way, one can obtain successively better solutions.
The reason why this approach is so effective for the TSP is that the fitness land-
scape of the TSP is highly correlated: The smaller the distance to the optimum,
the better the fitness (the smaller the tour length in case of the TSP). Therefore,
iterated local search allows to ’jump’ from one local optimum to a better local
optimum until the global optimum is reached. Relatively small mutations are
necessary to jump to a new local optimum since local optima are close to each
other [17,18].

Our local search is based on the LK heuristic, hence our iterated local search
is called iterated LK. The general outline of our iterated LK is shown in Fig. 1. In
contrast to other approaches, our ILK incorporates a lower bound computation.
This computation is interleaved with the optimization algorithm as can be seen
in the figure: every 400 iterations of the ILK, the lower bound is improved until
there appears to be no more improvement possible (the lower bound computation
has converged). The lower bound computation possibly modifies the candidate
edge set, which is used by the local search to look for improving moves (edge
exchanges).
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3.2 Implementation Details of the ILK

To find initial solutions (Init() in the pseudo code), we use the Quick-Boruvka
heuristic [9,14], and the initial candidate set (FindInitialCandidateSet(Instance) in
the pseudo code) is based on a subgraph containing the two nearest neighbors
for each quadrant of a city [14]. This candidate set has the property of being
connected. The candidate set is computed using a k-d-tree data structure [19]. A
small candidate set is essential for the scalability of the approach. Having eight
neighbors on average appeared to be reasonable.

Due to the complexity of state-of-the-art implementations of ILK, it is not
possible to describe all the aspects here in fully detail. A forthcoming technical
report will cover all these aspects.

Mutation Operator. The mutation operator used in the algorithm is non-
sequencial four exchange [4,20] using a random walk on the candidate set to
find edges to be included in the tour. This operator has been proven to be very
effective in conjunction with Lin-Kernighan local search [14]. Hence, in each
mutation as few as four edges are exchanged: Edges (t1, t2), (t3, t4), (t5, t6), and
(t7, t8) are replaced by edges (t1, t4), (t2, t3), (t5, t8), and (t6, t7). The random
walk omn the candidate edge set assures that edges with a relatively small length
instead of arbitrarily long edges are included. We experimented with several
other mutation schemes. This one appeared to be the best. We found that a
reasonable number of steps for the random walk is 150 independently of the
problem size. So, we used this value in our algorithm.

Local Search Operator. As mentioned before, we use a variant of the original
Lin-Kernighan heuristic for the local search. Compared to the original LK, we
use 3-opt moves as submoves instead of 2-opt moves at all levels: edges (t1, t2),

function ILK−PM(Instance : TspInstance, MaxIter : Integer) : TspTour;
begin

C := FindInitialCandidateSet(Instance);
Tour := Init ();
Tour := LocalSearch(C, Tour);
C := FindInitialLowerBound(C, TourLength(Tour));
for iter := 1 to MaxIter do begin

Tbest := Tour;
Tour := Mutate(Tour);
Tour := LocalSearch(Tour);
if TourLength(Tour) < TourLength(Tbest) then Tbest := Tour;
if ( iter % 400) = 0 then C := UpdateLowerBound(C, TourLength(Tbest));

end
return Tbest;

end

Fig. 1. The Evolutionary Local Search Algorithm



An Iterated Local Search Approach 933

(t3, t4), and (t5, t6) are replaced by edges (t2, t3), (t4, t5), and (t6, t1) in a sub
move. The next sub move will start by replacing the last new edge (t6, t1). We
do not use backtracking which simplifies the implementation drastically without
affecting the performance. In this aspect our implementation is similar to LKH.
As in other LK implentations we make use of Bentley’s don’t look bits concept
[21]. Moreover, we use two-level trees to represent tours [22].

3.3 The Lower Bound Computation

Held and Karp [23,24] proposed a method based on Lagrangian relaxiation to
compute lower bounds for the TSP. It is based on computing 1-trees, i.e. min-
imum spanning trees with one additional edge (the second shortest edge of a
leaf in the tree). The approach is to find a transformation given by a vector
π = (π1, . . . , πN ) that maximizes the lower bound w

w(π) = L(Tπ)− 2
N∑

i=1

πi, (1)

where N is the problem size, Tπ is a minimum 1-tree on the transformed graph
G′ for which the cost of traveling between city i and j is c′ij = cij + πi + πj ,

function UpdateLowerBound(C : CandidateSet; upper : REAL) :
TspTour;

begin
if (FirstTime) then begin

InitPiValues(Pi);
best lower : = Calculate1Tree(Pi);

end
FirstTime := false;
t := (upper − best lower) / norm;
for i := 1 to 200 do begin

updatePi(Pi, t);
lower : = Calculate1Tree(Pi);
if (lower > best lower) then begin

best lower := lower;
Best Pi := Pi;
t := t ∗ 4.0;

end
t := t ∗ 0.75;

end
best lower = Calculate1Tree(Best Pi);
return best lower ;

end

Fig. 2. The Incremental Lower Bound Improvement
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and L(Tπ) is the cost of the tree with respect to G′. Compared to other lower
bounds this bound does not require to compute a linear program. In order to
find the best π vector, a subgradient optimization can be applied. Within the
subgradient optimization, π is updated as follows:

πi = πi + t(k) (0.7(d(k)
i − 2) + 0.3(d(k−1)

i − 2)), (2)

where d
(k)
i denotes the degree of city i in the minimum 1-tree at step k. For t(k) →

0, for k → ∞, and
∑

t(k) = ∞, w(π) will converge to the maximum of w(π).
However, in practice convergence can be very slow and since computing min-

imum 1-trees is expensive for very large instances, we use a simplified scheme
of adjusting t(k) as shown in Fig. 2 and we repeat the subgradient optimization
several times. In the figure, norm denotes

∑
i(d

(k)
i − 2)2.

Since computing the minimum 1-tree for very large instances is time con-
suming, we calculate the minimum 1-tree in the candidate set. The final 1-tree
calculation of each call to UpdateLowerBound() is computed after the candidate
set was recomputed on the transformed instance using the best π vector. The
ILK will use the recomputed candidate set in its subsequent iterations.

4 Experimental Evaluation

To assess the performance of our algorithm we performed several runs on a set
of publicly available benchmark instances. We used all seven Euclidean TSPLIB
instances of size >10,000, three national TSP instances of size >10,000, three
VLSI instances of size >100,000 from http://www.tsp.gatech.edu/, and finally
seven random Euklidean instances form the DIMACS TSP challenge in the range
between 10 thousand and 10 million. We report average values of 32 runs for
each instance. The algorithms were coded in C++ (under Linux with gcc) and
running times are reported for an Intel Core Quad 6600 processor. For each run
only one CPU core was used. Results are reported in Table 1. For each instance,
the name (containing the size of the instance), the average final tour length,
the standard deviation of the tour length (sdev), the percentage excess over the
best–known solution (or in case of the E*.0 instances over the Held-Karp lower
bound), the gap of the computed lower and upper bound, and the running time
in seconds are provided. The termination criterion was 0.1N iterations (N is the
problem size). The last two columns contain the average percentage excess and
the running time for the alogrithm without lower bound computation.

The results demonstrate that the algorithm is capable of finding provably
good solutions in very short time: For the TSPLIB instances, the gap lies be-
tween 0.64% and 1.51% by spending at most 40 seconds of CPU time. For the
national instances, the gap is about 1.0% with a maximum of 122 seconds. The
VLSI instances are significantly greater and the running time increases up to
1,192 seconds. The average gap is about 1.5%. Finally, for the random Euclidean
instances the gap is below 0.83% independently of the size of the instance. The
running time increases from 13 seconds (10 thousand cities) to 32,789 seconds
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Table 1. Results of our ILK (ILK-PM-.1N) for DIMACS TSP Challenge Instances

With Lower Bound Without LB

Instance Tour length sdev Excess Gap sec Excess sec

rl11849 926071.6 583.5 0.302% 1.51% 9 0.382% 4

usa13509 20011164.1 6114.4 0.142% 0.91% 24 0.156% 18

brd14051 470051.6 230.9 0.148% 0.92% 20 0.140% 12

d15112 1574915.0 175.8 0.123% 0.67% 24 0.123% 16

d18512 646089.9 89.5 0.138% 0.64% 22 0.138% 13

pla33810 66456993.5 43691.9 0.618% 1.44% 20 0.693% 6

pla85900 143254481.1 85239.3 0.612% 1.24% 40 0.634% 13

sw24978 857594.8 257.0 0.234% 1.13% 33 0.262% 16

bm33708 961536.8 209.0 0.234% 0.98% 54 0.253% 17

ch71009 4573501.2 547.5 0.153% 0.86% 122 0.163% 70

sra104815 252310.2 47.7 0.377% 1.11% 152 0.443% 50

ara238025 581381.4 157.8 0.435% 1.32% 495 0.511% 121

lra498378 2183574.5 1389.0 0.705% 1.99% 722 0.886% 244

lrb744710 1619145.0 538.5 0.435% 1.36% 1192 0.541% 321

E10k.0 71969032.4 20938.0 0.850% 0.86% 13 0.853% 10

E31k.0 127469229.7 16091.7 0.786% 0.80% 50 0.792% 34

E100k.0 226146457.7 15767.1 0.809% 0.82% 184 0.819% 123

E316k.0 401954702.2 15174.6 0.801% 0.82% 665 0.808% 428

E1M.0 714351765.1 18622.6 0.797% 0.81% 2677 0.804% 1449

E3M.0 1269419125.3 14147.1 0.748% 0.81% 11547 0.755% 5228

E10M.0 2256845968.6 12030.8 0.752% 0.81% 32789 0.760% 17867

(10 million cities). Without the lower bound computation and the update of the
candidate set the running time is considerably lower for the larger instances.
Moreover, the average final tour quality is in all cases but one lower with can-
didate set update deactivated. The results are up to 0.18% better for the algo-
rithm with lower bound computation. However, this appears to be dependent
on the problem instance. For the uniform random instances, the gain is only
about 0.01%. The runtime increases almost linearly with the problem size for
our ILK as Fig. 3 demonstrates. In order to compare with other state-of-the-
art approaches, Table 2 shows a comparison with the eleven best performing
algorithms (out of 90) listed on the DIMACS TSP challenge web page. The
summary was produced with the statistics code from the challenge. Thus the
running time reported in the table is normalized to a DEC Alpha processor with
500 MHz in order to allow a comparison of the different approaches. The quality
is given as the percentage excess over the Held-Karp (HK) bound. As shown
in the table, our algorithm provides a significantly better tour quality than the
other approaches. And it does this in a fraction of time of the second best ap-
proach which is also an ILK implementation. Note that none of the competitors
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Fig. 3. Scaling behaviour of three ILK variants

computes a lower bound. For the 10 million city instance E10M.0, the quality
of our approach is 0.75% over the Held-Karp bound compared to the best al-
gorithm of the DIMACS challenge which is 1.63% over the Held-Karp bound!

Table 2. Comparison of DIMACS TSP Challenge Results on E1M.0. ILK-PM-.1N
denotes our ILK with 1 million iterations and ILK-PM-.1N denotes our ILK with 1,2
million iterations.

% HK Seconds Implementation Reference

0.787 17544.0 ILK-PM-.12N this paper

0.792 77161.6 ILK-NYYY-N ([25])

0.797 16062.0 ILK-PM-.1N this paper

0.804 8694.0 ILK-PM-.1N without LB this paper

0.841 6334.0 ILK-NYYY-Ng ([25])

0.879 42242.5 MLCLK-N [10]

0.888 3480.2 ILK-NYYY-.5Ng ([25])

0.903 19182.7 BSDP-6 [15]

0.903 19503.1 BSDP-8 [15]

0.903 21358.3 BSDP-10 [15]

0.903 19108.1 CLK-ABCC-N.Sparc [13]

0.905 19192.3 CLK-ACR-N [14]

0.910 16008.0 CLK-ABCC-N.MIPS [13]

0.945 20907.6 MLCLK-.5N [10]
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This is due to the fact that the best algorithms for the smaller instances do
not scale as well as our approach: Fig. 3 shows the normalized runtime of our
approach (ILK-PM-.1 with and without lower bound computation), the ILK of
Nguyen et al. (for which no reference exists except for the DIMACS challenge
web page) denoted ILK-NYYY-N, and the runtime of chained LK of Applegate
et al. denoted CLK-ACR-N [14] depending on the problem size. While the run-
time of our approach without lower bound computation grows linearly with the
problem size, the runtime of the others clearly grows faster and and yields in the
non-applicability of these algorithms to very large problem instances (>1 million)
whereas our approach is still very successful even if the lower bound computation
is activated.

5 Conclusions

We presented a new Iterated Lin-Kernighan heuristic based on the powerful
concept of iterated local search. We have shown in experiments that our ap-
proach scales well with the problem size and is therefore applicable to very
large TSP instances with 10 million cities. Besides the scalability, the approach
provides provably good solutions since it computes a lower bound interleaved
with the optimization. Therefore, the obtained results are known to be not more
than about 1% above the optimum and in case of the very large random Eu-
clidean instances not more than 0.81% above the Held-Karp Lower bound even
for the largest, 10 million cities instances. Compared to other evolutionary and
non-evolutionary approaches for very large instances above 1 million cities, our
approach obtains better tour quality in even shorter time. In particular, all al-
gorithms from the DIMACS TSP implementation challenge are shown to be
inferior to our approach. To the best of our knowledge the proposed approach is
the only one that is both scalable to millions of cities and provides provably good
solutions.

There are some issues for future research. Currently, we are working on a
distributed algorithm for large instances based on the ILK presented here. Both
the use of a population and the use of recombination are subject of our stud-
ies. Finally, we believe that our lower bound computation can be further
improved.
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Abstract. Genetic algorithms are random heuristic search (RHS) algo-
rithms which can be theoretically described with the help of a dynamical
system model. This model characterises the stochastic trajectory of a
population using a deterministic heuristic function and its fixed points.
For practical problem sizes the determination of the fixed points is un-
feasible even for the simple genetic algorithm (SGA). In this paper the
novel intrinsic system model is introduced for the genetic algorithm with
α-selection and the corresponding unique fixed point is determined. It is
shown that this model is compatible with the equivalence relation im-
posed by schemata. In addition to the theoretical analysis experimental
results are presented which confirm the theoretical predictions.

1 Introduction

Genetic algorithms mimic biological evolution and molecular genetics in sim-
plified form [1]. These random heuristic search (RHS) algorithms are based on
populations of individuals which evolve according to selection and genetic op-
erators like crossover and mutation. They can be theoretically described with
the help of a dynamical system model. In this model the algorithm’s stochastic
dynamics is modeled with an underlying deterministic heuristic function which
describes the expected next population [3,6,7]. The population trajectory is at-
tracted by the fixed points of the heuristic function. However, even for moderate
problem sizes the determination of the fixed points becomes unfeasible.

The genetic algorithm with α-selection recently introduced in [2] allows to ex-
plicitly determine the fixed points of the heuristic function. Due to the selection
operation the dynamical system model of genetic algorithms in general is not
compatible with the equivalence relation imposed by schemata [4,6]. This paper
presents a novel intrinsic system model which yields a compatible model and fur-
ther simplifies the mathematical analysis in [2]. The intrinsic system model also
provides a means to analyse the genetic algorithm’s exploitation and exploration
of the search space irrespective of the fitness function.

The paper is organised as follows. The genetic algorithm with α-selection is
described in Sect. 2 based on the notion of the best individual randomly mating
with other individuals in the current population. In Sect. 3 the corresponding

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 940–949, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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dynamical system model is derived. The intrinsic system model is introduced in
Sect. 4. Its unique fixed point is derived and its compatibility to schemata is
proven in Sect. 5. Simulation results presented in Sect. 6 show close agreement
between theory and experiment. A brief conclusion is given in Sect. 7.

2 Genetic Algorithm with α-Selection

In this section the genetic algorithm with α-selection, 1-point crossover and
bitwise mutation is described following the notation and definition of the simple
genetic algorithm (SGA) in [6]. It is assumed that the genetic algorithm is used
for the maximisation of a fitness function f : Ω → IR which is defined over the
search space Ω = ZZ�

2 = {0, 1}� consisting of binary -tuples (a0, a1, . . . , a�−1).
Each binary -tuple (a0, a1, . . . , a�−1) = a0a1 . . . a�−1 will be identified with

the integer a = a0 · 2�−1 + a1 · 2�−2 + . . . + a�−1 · 20 leading to the search
space Ω = {0, 1, . . . , n − 1} with cardinality |Ω| = n = 2�. The fitness values
are given by f(a) = fa. Based on the binary number representation the bitwise
modulo-2 addition a⊕b, bitwise modulo-2 multiplication a⊗b and bitwise binary
complement a are defined. Vice versa, the integer a ∈ Ω is viewed as a column
vector (a0, a1, . . . , a�−1)T. The all-one -tuple 1 corresponds to the integer n−1 =
2� − 1. The indicator function is defined by [i = j] = 1 if i = j and 0 if i �= j.

Similar to the SGA the genetic algorithm with α-selection works over popu-
lations P (t) defined as multisets of r individual binary -tuples a(t) ∈ Ω. For
the creation of offspring individuals in each generation t genetic operators like
crossover χΩ and mutation μΩ are applied to parental individuals (see Fig. 1).

t := 0;
initialise population P (0);
while end of adaptation �= true do

select α-individual b(t) as first parent;
for the creation of r offspring do

select second parent c(t) randomly;
create offspring a(t + 1) := μΩ (χΩ (b(t), c(t)));

end
increment t := t + 1;

end

Fig. 1. Genetic algorithm with α-selection [2]

For the α-selection scheme let b = argmax{f (i) : i ∈ P} be the best individ-
ual or α-individual in the current population P . In the genetic algorithm with
α-selection the α-individual b is mated with individuals randomly chosen from
the current population P with uniform probability r−1.

The crossover operator χΩ : Ω × Ω → Ω randomly generates an offspring -
tuple a = (a0, a1, . . . , a�−1) according to a = χΩ(b, c) with crossover probability
χ from two -tuples b = (b0, b1, . . . , b�−1) and c = (c0, c1, . . . , c�−1). With the
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crossover mask m ∈ Ω the -tuples a = b⊗m⊕m⊗ c or a = b⊗m⊕m⊗ c are
generated one of which is chosen as offspring a with equal probability 2−1. For
1-point crossover the crossover mask m is randomly chosen from Ω according to
the probability distribution vector χ = (χ0, χ1, . . . , χn−1)T with [6]

χm =

⎧⎪⎨⎪⎩
1− χ , m = 0

χ
− 1 , m = 2λ − 1 with 1 ≤ λ ≤ − 1

0 , otherwise

.

The bitwise mutation operator μΩ : Ω → Ω, which randomly flips each bit of
the -tuple a = (a0, a1, . . . , a�−1) with mutation probability μ, is defined with the
help of the mutation mask m ∈ Ω according to μΩ(a) = a ⊕m. The mutation
mask m is randomly chosen from Ω according to the probability distribution
vector μ = (μ0, μ1, . . . , μn−1)T with [6]

μm = μ1Tm · (1− μ)�−1Tm .

3 Dynamical System Model

Following [6] the dynamical system model for the genetic algorithm with α-
selection will be derived in this section. The dynamics of the genetic algorithm is
compactly formulated by defining the population vector p = (p0, p1, . . . , pn−1)T.
Each component pi = r−1

∑
j∈P [j = i] gives the proportion of element i ∈ Ω in

the current population P . The population vector p is an element of the simplex
Λ =

{
p ∈ IRn : pi ≥ 0 ∧

∑
i∈Ω pi = 1

}
. In the limit of infinite populations with

r → ∞ the population vectors are dense in the simplex Λ. With the help of the
population vector p the best individual in the current population is defined by

b = argmax{fi : i ∈ Ω ∧ pi > 0} .

The genetic algorithm with α-selection can be described as an instance of RHS
τ : Λ → Λ according to p(t + 1) = τ (p(t)). The RHS τ can be equivalently
represented by a heuristic function G : Λ → Λ which for a given population vector
p yields the probability distribution G (p). This probability distribution G (p)i =
Pr{individual i is sampled from Ω} is used to generate the next population. The
stochastic trajectory p, τ (p), τ2 (p), . . . approximately follows the trajectory p,
G (p), G2 (p), . . . of the deterministic dynamical system defined by G. The RHS
τ behaves like the dynamical system model in the limit of infinite populations. τ
shows punctuated equilibria, i.e. phases of relative stability nearby a fixed point
ω = G (ω) of the heuristic function G disrupted by sudden transitions to another
dynamical equilibrium near another fixed point. In the following this observation
will be referred to as the fixed point hypothesis of genetic algorithms.

3.1 Heuristic

In a genetic algorithm with α-selection the α-individual b is selected as the
first parent for creation of a new offspring, whereas the second parent is chosen
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uniformly at random from the current population according to the probability
distribution pj over Ω with j ∈ Ω. The heuristic function G (p) follows to

G (p)i =
∑
j∈Ω

pj · Pr{μΩ (χΩ(b, j)) = i} .

The probability distributions for crossover χΩ and mutation μΩ lead to

Pr{μΩ (χΩ(b, j)) = i} =
∑

u,v∈Ω

μv ·
χu + χu

2
· [b⊗ u⊕ u⊗ j = i⊕ v] .

By defining the n× n mixing matrix [6]

Mi,j =
∑

u,v∈Ω

μv ·
χu + χu

2
· [i⊗ u⊕ u⊗ j = v] (1)

this yields Pr{μΩ (χΩ(b, j)) = i} = Mi⊕b,i⊕j and finally

G (p)i =
∑
j∈Ω

pj ·Mi⊕b,i⊕j .

With the permutation matrix (σb)i,j = [i⊕j = b] and the twist (M∗)i,j = Mi⊕j,i

of the symmetric mixing matrix M = MT the new population vector is given by

q = G (p) = σb ·M∗ · σb · p . (2)

This dynamical system model is illustrated in Fig. 2.

3.2 Mixing Matrix

The calculation of the mixing matrix M can be done efficiently with the help of
the Walsh transform [5]. For a matrix M the Walsh transform is M̂ = W ·M ·W
with the symmetric and orthogonal n×n Walsh matrix Wi,j = n−1/2 · (−1)iTj .

p q = G (p)G

p qσb M∗ σb

Fig. 2. Dynamical system model of the genetic algorithm with α-selection with heuris-
tic function G (top) defined by the matrix σb · M∗ · σb (bottom)
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The Walsh transform of a vector v yields v̂ = W · v. For 1-point crossover χΩ

and bitwise mutation μΩ the Walsh transform of the mixing matrix M is [6]

M̂i,j = [i⊗ j = 0] · (1− 2μ)1
T(i⊕j) ·(

(1− χ) · [i = 0] + [j = 0]
2

+ χ · (lo (j)− hi (i))+ + (lo (i)− hi (j))+

2 · (− 1)

)
.

Here, hi (k) = 0 and lo (k) = −1 if k = 0 as well as hi (k) = sup
{
λ : 2λ ⊗ k > 0

}
and lo (k) = inf

{
λ : 2λ ⊗ k > 0

}
if k �= 0; (·)+ denotes the maximum of its

argument and 0. The Walsh transform of the twist of the mixing matrix can
be calculated from

(M∗∧)i,j = M̂i⊕j,j . (3)

4 Intrinsic System Model

The matrix σb ·M∗ ·σb of the dynamical system model q = σb ·M∗ ·σb ·p in (2)
of the genetic algorithm with α-selection depends on the mixing matrix M and
the α-individual b. Because of σ−1

b = σb this yields the equivalent formulation

σb q = M∗ · σb p . (4)

The permuted population vector σb p develops according to the matrix M∗ which
is independent of the α-individual b, i.e. the diagram in Fig. 3 commutes.

M∗ defines the intrinsic system model of the genetic algorithm with α-selection.
It corresponds to the dynamical system model with b = 0. Because of the corre-
sponding linear equation q = M∗ ·p the fixed points of the intrinsic system model
are obtained from the eigenvectors of M∗ to eigenvalue λ = 1, i.e. M∗ · ω = ω.
The fixed points of the heuristic function G of the dynamical system model follow
from the permutation σb ω for a given α-individual b. For the fixed point analysis
of the dynamical system model it therefore suffices to analyse the intrinsic system
model shown in Fig. 4. To this end the Walsh transform of both sides of the
equation q = M∗ · p is taken yielding q̂ = M∗∧ · p̂. For an eigenvector v with
eigenvalue λ it follows M∗ · v = λ · v and equivalently M∗∧ · v̂ = λ · v̂, i.e. the
matrix M∗ and its Walsh transform M∗∧ have the same eigenvalues.

p G (p)

σb p σb G (p)

σbσb

G

M∗

Fig. 3. Commutativity diagram for the dynamical system model of the genetic algo-
rithm with α-selection with heuristic function G and permutation σb
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p qM∗

Fig. 4. Intrinsic system model of the genetic algorithm with α-selection

For crossover and mutation the Walsh transform of the mixing matrix fulfills
M̂i,j ∝ [i⊗j = 0], i.e. M̂ is separative. M∗∧ = M∧∗∗ is a lower triangular matrix
the spectrum of which is given by the first column of M̂ [6]. Since the spectrum
of M∗ and its Walsh transform M∗∧ are the same this yields the eigenvalues

λi = (M∗∧)i,i = M̂0,i .

Because of λ0 = 1 and 0 ≤ λi ≤ 1
2 −μ < 1

2 for 1 ≤ i ≤ n− 1 there exists a single
eigenvector ω which is a unique fixed point of the intrinsic system model

ω = M∗ · ω . (5)

The fixed points of the heuristic function G of the genetic algorithm with α-
selection are obtained from the permutation σb ω for a given α-individual b.
According to the fixed point hypothesis the population will stay near this fixed
point σb ω and converge to a new fixed point if a better α-individual is found.

The unique fixed point ω of the intrinsic system model can be determined
explicitly with the help of the Walsh transform. Due to the relation ω̂ = M∗∧ ·ω̂
and the lower triangular matrix M∗∧ the Walsh transform of the fixed point
can be recursively calculated according to

ω̂i =
1

1− M̂0,i

·
i−1∑
j=0

M̂i⊕j,j · ω̂j (6)

for 1 ≤ i ≤ n − 1 starting with ω̂0 = n−1/2 which ensures
∑

i∈Ω ωi = 1. The
fixed point is then obtained via the inverse Walsh transform ω = W · ω̂.

5 Schemata

In this section coarse-grained system models based on schemata will be explored
as equivalence relations [6]. Two equivalent individuals i ≡ j in the search space
Ω belong to the same equivalence class [i] = {j ∈ Ω : j ≡ i}. This can be ex-
pressed with the help of the quotient map Ξ[i],j = [i ≡ j], i.e. i ≡ j if Ξ[i],j = 1.
Two populations are equivalent if the proportions of individuals in each of the
equivalence classes [i] with i ∈ Ω are the same in both populations. By using
the population vectors p and q in the simplex Λ this corresponds to Ξp = Ξq.

According to [6] schemata can be considered as specific equivalence rela-
tions. A schemata family is defined with the help of the -tuple ξ ∈ Ω via
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Ξ[i],j = [j ⊗ ξ = i] leading to the 21Tξ × 2� matrix Ξ. Here, i ∈ Ωξ = {i ∈ Ω :
i⊗ ξ = 0} and j ∈ Ω. Two individuals j, k ∈ Ω are equivalent if they agree on
the defining positions according to j ≡ k ⇔ j ⊗ ξ = k ⊗ ξ. The number of the
defining positions is 1Tξ which yields the cardinality |Ωξ| = 21Tξ.

5.1 Schema Heuristic

Based on the intrinsic system model of the genetic algorithm with α-selection

qi =
∑
j∈Ω

pj ·Mi,i⊕j (7)

a coarse-grained system model will now be derived. The proportion of the ex-
pected next population representing schema [i] = i ⊕ Ωξ with i ∈ Ωξ can be
calculated according to

q̃[i] = (Ξq)[i] =
∑
j∈Ω

[j ⊗ ξ = i] · qj =
∑

j∈Ω
ξ

qi⊕j =
∑
j∈Ω

ξ

∑
k∈Ω

pk ·Mi⊕j,i⊕j⊕k .

This yields
q̃[i] =

∑
j∈Ωξ

p̃[j] · (Mξ)[i],[i⊕j] (8)

with p̃ = Ξp and the symmetric 21Tξ × 21Tξ schema mixing matrix [6]

(Mξ)[i],[j] =
∑

u,v∈Ωξ

(Ξμ)[v] ·
(Ξχ)[u] + (Ξχ)[u]

2
· [i⊗ u⊕ u⊗ j = v] . (9)

The coarse-grained system model based on schemata for the intrinsic system
model of a genetic algorithm with α-selection is therefore given by

q̃ = M∗
ξ · p̃ . (10)

The intrinsic system model is compatible with the equivalence relation defined by
the schemata family ξ because the diagram in Fig. 5 commutes. This conforms
to the observation that the mixing operation of the SGA with crossover and
mutation is compatible with this equivalence relation [6].

5.2 Schema Mixing Matrix

The twist of the schema mixing matrix Mξ can be expressed with the help of
the twist of the mixing matrix M and the quotient map Ξ according to

M∗
ξ =

21Tξ

n
· Ξ ·M∗ ·ΞT . (11)
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p q

p̃ q̃

ΞΞ

M∗

M∗
ξ

Fig. 5. Commutativity diagram for intrinsic system model M∗ with quotient map Ξ

With the 21Tξ × 21Tξ
Walsh matrix Wξ over Ωξ and i, j ∈ Ωξ the Walsh

transform M∗∧
ξ = Wξ ·M∗

ξ ·Wξ follows to

(M∗∧
ξ )[i],[j] = (M̂ξ)[i⊕j],[j] . (12)

M∗∧
ξ is obtained from M∗∧ by choosing rows and columns with indices in Ωξ, i.e.

(M∗∧
ξ )[i],[j] = (M∗∧)i,j . (13)

5.3 Schema Fixed Point

The matrix M∗
ξ and its Walsh transform M∗∧

ξ have the same eigenvalues. Be-
cause of (13) for a lower triangular matrix M∗∧ the matrix M∗∧

ξ is also lower
triangular. The corresponding eigenvalues are obtained from

λ[i] = (M∗∧
ξ )[i],[i] = (M∗∧)i,i = λi

with i ∈ Ωξ, i.e. the eigenvalues λ[i] correspond to the eigenvalues λi. There
exists a single eigenvalue λ[0] = 1 which leads to the unique schema fixed point

ω̃ = M∗
ξ · ω̃ . (14)

The unique schema fixed point ω̃ can be determined explicitly from the relation̂̃ω = M∗∧
ξ · ̂̃ω by taking into account that M∗∧

ξ is a lower triangular matrix. The

schema fixed point is then obtained via the inverse Walsh transform ω̃ = Wξ · ̂̃ω.

6 Experimental Results

In this section the ONEMAX problem with fitness function fi = 1Ti is consid-
ered, i.e. fi denotes the number of 1’s in the binary representation of i ∈ Ω. A
genetic algorithm with α-selection using 1-point crossover, bitwise mutation and
random initial population is used with the strategy parameters  = 10, n = 1024,
χ = 0.5, μ = −1 and r = 50. A schemata family is defined by the binary -tuple
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Fig. 6. Fixed points of intrinsic system model (top) and schema heuristic (bottom)
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Fig. 7. Euclidean distances ‖σb p(t) − ω‖ (top) and ‖Ξ σb p(t) − ω̃‖ (bottom) over t

ξ = 0000001111 or ξ = 15, respectively. The fixed points ω and ω̃ of the intrinsic
system model and the schema heuristic, respectively, are shown in Fig. 6.

The Euclidean distances of the simulated and permuted population vectors
σb p(t) or Ξ σb p(t) in generation t to the fixed points ω or ω̃, respectively, are

‖σb p(t)− ω‖ =
√∑

i∈Ω
((σb p(t))i − ωi)

2
,
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‖Ξ σb p(t)− ω̃‖ =

√∑
i∈Ωξ

(
(Ξ σb p(t))[i] − ω̃[i]

)2

.

In Fig. 7 these Euclidean distances are shown averaged over 100 simulation runs
also indicating the range of ± one standard deviation. As these results illustrate
there is a close match between theoretical predictions and experimental results.

7 Conclusion

The intrinsic system model for the genetic algorithm with α-selection simplifies
the analysis of the dynamical system model of genetic algorithms. It is defined
by the mixing matrix M and enables the derivation of the unique fixed point ω.
The simplifications are gained because the fitness function f is hidden from the
mathematical formulation by making use of the α-individual b. Since b enters
the dynamical system model via a permutation σb according to σb ·M∗ · σb the
intrinsic system model can be formulated with the help of the matrix M∗.

The intrinsic system model provides a means to analyse the genetic algo-
rithm’s exploitation and exploration of the search space Ω irrespective of the
fitness function f . This model is compatible with the equivalence relation im-
posed by schemata as was shown by explicitly deriving the coarse-grained system
model for a given schemata family ξ. Experimental results showed close agree-
ment to the theoretical predictions obtained from the intrinsic system model.
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Abstract. This paper describes a new evolutionary learning method to handle
the fast adaptation of a group of agents in an uncertain environment. The method
is a result of our research towards the generation of intelligent agents in computer
games and is inspired by the idea of social learning or cultural evolution. Thus, the
agents try to adapt by the exchange of information about advantageous behaviours
within the population. This paper evaluates the new approach by addressing the
generation of competitive artificial players in a real-time action game.

1 Introduction

The requirement to learn online and to adapt in real time presents a challenging prob-
lem to artificial intelligence research. In our research towards artificial intelligence for
computer games [1] we often face the challenge that our game agents have to adapt
quickly in a very dynamic and uncertain environment that often contains unpredictable
human players. This makes it very hard to quickly find out which actions or behaviours
generally lead to an improved performance. In fact, when we tried to apply Q-learning
[1], a typical online learning method, the results were not satisfactory. Because of the
high volatility of the environment the experiences that were gained from the rewards
of the learning agent were not solid enough to form the basis of the learning process.
Therefore, we proposed the usage of a population of agents and their combined expe-
riences as the basis of learning because it can greatly enhance the quality of the results
and the stability of the learning process in the highly uncertain game environment[2].

In our previous work [1,2,3] we successfully used an evolutionary algorithm to breed
well performing game agents that were initialised from player recordings. However,
because of the exploratory nature of its variation operators, this approach tends to also
generate defective and malfunctioning agents, i.e. agents that show random movements
or other non-fluid behaviours. This might be no problem for scientific experiments,
but in an ongoing game all game agents should show valid behaviours to not diminish
the gaming experience. In addition, the method reacted quite sensitively to parameter
changes. Therefore, this paper presents an improved learning method that combines
the advantages of population-based learning with the ability to learn online by incor-
porating ideas from reinforcement learning. It is inspired by the concepts of social
learning[4] and memetics [5] and follows the idea that in a group of individuals the
low performing ones try to improve themselves by imitating the well performing ones.
Therefore, we chose to call it imitation learning. We have already published some raw
ideas of imitation learning in 2007 [3]. However, this paper presents the method in a
much improved and more sophisticated form. Concerning related approaches, imitation

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 950–960, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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learning bears several resemblances to the dynamic scripting method by Spronck et al.
[7] in that it also determines the effectiveness of behaviour rules that are then shared be-
tween all agents. However, imitation learning is able to generate new rules by using it’s
mutation operator. Therefore, it can be used for learning from scratch. In addition, imi-
tation learning sees each agent as a learning entity that imitates the best agents, whereas
dynamic scripting uses a central rule base from which the agents are newly constructed
after each adaptation step.

2 Imitation Learning

Imitation learning can in general be applied to all reinforcement learning problems or
problems in which an agent has to learn to become competitive in an uncertain environ-
ment. In the proposed form it requires that the encoding of the behaviour of an agent is
done as a set of rules - very similar to learning classifier systems. However, it is impor-
tant to notice that - unlike in a learning classifier system - in our implementation there
is only one rule that is executed in each time frame. The rule that is going to be applied
is chosen as the one with the highest similarity to the currently encountered situation.
If several rules have the same similarity, the one with the best fitness will be chosen. As
it is usual in reinforcement learning we assume that the Markov property holds, so that
the history of former states can be ignored. The adaptation process can be divided into
four steps: evaluation, elite identification, rule replacement and individual adaptation /
mutation. Algorithm 1 presents an overview of the approach.

Algorithm 1. Imitation Learning
inputs: μ, σ, ν ∈ N, μ ≤ n
initialise ν agents
loop

evaluate agents
elite identification: determine the μ elite agents
for all non-elite agents do

choose a random role model from the elite agents
select σ rules from the role model
replace rules
mutate σ worst rules

end for
end loop

Evaluation: After initialisation the agents and their rule sets are evaluated in parallel
for a certain timespan, whereas the performance of an agent is determined by the accu-
mulated rewards over the evaluation phase and the rule values are initially determined
by summing up the received rewards upon their application. However, the value of a
rule is not independent from the other rules. The interplay between certain rules is usu-
ally very important for the behaviour of the agent. Therefore, we have to take the rules
into account that have led to an advantageous situation in which the agent made a suc-
cessful move. To do this we have adapted the policy evaluation algorithm that is known
from the reinforcement learning field. For a set of rules R, let v0(r) ∈ R be the initially
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sensed value of rule r ∈ R after the evaluation phase. The value v(r) ∈ R of a rule
r ∈ R in a rule list R is then defined by

v(r) = v0(r) + γ
∑
r′∈R

prr′v(r′), (1)

where prr′ is the transition probability between r and r′ and γ ∈ [0, 1[ is a discount rate.
Let rt be the rule that is chosen at some time frame t. Then, the transition probabilities
prr′ are defined as

prr′ = P (rt+1 = r′|rt = r). (2)

Therefore, prr′ is the probability that at the next time frame r′ is chosen under the con-
dition that r has been executed in this time frame. To gain these probabilities the transi-
tions between the rules are counted during the evaluation timespan and then normalised.
Equation 1 describes a system of linear equations that has the size of the underlying rule
set. The solution of this system can be easily found or approximated by the appropriate
algorithms, e.g. Gaussian elimination, fixed point iteration, etc.

Elite Identification: After the evaluation, the μ ∈ N best performing agents, as indi-
cated by their accumulated rewards, are identified as the elite agents. The others become
the imitators.

Rule Replacement: The rule replacement is the crucial part of the adaptation mech-
anism. As the single rules are not independent from each other, many behaviours are
encoded by a sequence of rule applications. A simple replacement of rules with low
values by elite rules with high values will often lead to defective agents. Therefore, we
devise a more careful mechanism that is inspired by results from memetics and viral
marketing research about the acceptance and spreading of new ideas[8].

First of all, each imitator randomly selects just one elite agent as its role model, from
which it receives new rules. Therefore, the incoming rule package is known to have
successfully worked together. We propose to simply transmit the σ highest-valued rules
of the chosen elite agent.

To maintain the coherence of the rule sets a new rule can only replace the rule that
is most similar to itself. So, for each incoming rule, the imitator identifies the rule
that it would apply in the most similar situation. These two rules then compete by

find best fitting rule 
r’ in relation to r

incoming 
rule r

v(r) > v(r’) ?

keep r’

yes

no

replace r’ by r

Fig. 1. Rule Replacement
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their value. The new rule will only replace the old one, if it proposes a higher utility.
Figure 1 illustrates this procedure.

Individual Adaptation / Mutation: For individual adaptation we simply propose to
devise a mutation mechanism, though other adaptation techniques are possible. With
respect to the uncertainty and high dynamics of our considered environments, the elite
agents do not change their rules. This keeps the learning process more stable. They
therefore can be seen as taking the role of the parents in an evolutionary algorithm.

3 Application to QUAKE III

This section describes how we successfully applied imitation learning to learn combat
in the game QUAKE III ( c©1999, id software) - a very popular three-dimensional action
game. As this approach is based on our previous evolutionary methods[1,2,3], the basic
modelling of the used states, actions and rules resembles this work in most respects.
The agents use regular grids for their state representation and use rule lists to encode
their behaviour. A grid describes the current game situation as a mapping of the current
relative vicinity of the observed agent to square areas. These areas can have three differ-
ent values - empty, filled and opponent - that are based on their content. The agents are
not able to look behind solid objects. Figure 2 presents an example for the construction
of such a grid.

As required by the imitation learning method, the behaviour of an agent is encoded in
a rule list, which contains rules that map grids to basic movement actions. Hence, each
rule contains a grid that represents the state in which it should be applied and an action
that proposes the next move, e.g. move left with speed vx and forward with speed vy ,
turn right by α degrees and attack. According to the current situation the best fitting rule
of the rule list is determined by computing the Euclidean distance between the currently
sensed grid and the grids that are proposed by the rules. For a better determination of the
similarity between the grids, all grids are smoothed by a Gaussian filter - a convolution
with a 5 × 5 Gaussian filter matrix - before they are compared. The agents work at a
rate of ten times per second.

Initialisation: The agents are initialised with behaviour rules from a recorded player to
start at a better position in the search space. These rules simply state what movement

observed agent opponent wall

Fig. 2. Grid Computation
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the player made in a corresponding game situation. In our experiments we used the
built-in QUAKE III agent as the source for the recording because it also serves as the
benchmark for the performance of the agents.

Evaluation: All agents play in parallel in different game sessions and are evaluated
for one minute of combat gameplay against the built-in QUAKE III agent on a small
training map. The QUAKE III agents are artificial players that are supplied by the game
and which use some randomised hard-coded strategies and therefore present constant
opponents and are thus usable as a benchmark. The rewards and the initial rule values
are determined by the damage that the agent applied to its opponents minus the damage
that it received when the respective rule was applied. As stated above, the overall per-
formance of an agent in combat is measured by computing the amount of damage that
it inflicted on the other game characters minus the damage that it received in the whole
evaluation timespan.

Individual Adaptation / Mutation: The imitators mutate the σ rules with the lowest
utility. To reduce the number of parameters, we use the same value σ as for the number
of transmitted rules because the purposes of the parameters are somewhat related. We
assume, that the recording that was used for initialisation already contains all important
states and, therefore, apply no mutation to the grids and only add small changes to the
proposed commands, e.g. randomly move into another direction or add a small Gaussian
distributed value to the proposed turn angle. In our implementation, the agents will only
mutate a rule, if it has a negative utility. A negative utility indicates that the rule has led
to a situation in which the agent has received damage. Therefore, it is reasonable to do
something else in the respective situation.

4 Experimental Setup

The given approach has several degrees of freedom. Fortunately, we could use previous
results to assign good values to most parameters. Tables 2a and 2b give an overview of
the parameters and their respective values. We stopped all experiments after 80 minutes
because we expected our online adaptation algorithm to be able to adapt within a short
time span. Parameters 8-12 could not be directly assigned with good values.

The discount rate γ specifies how much the value of a rule should depend on the
rules which were executed afterwards. It should not be too high or too low for obvious

Table 1. Parameter Setup

# parameter value
1 grid size 15
2 grid field size 100
3 rule list size 100
4 mutation probably 0.1
5 evaluation timespan 60s
6 runs per experiment 20
7 experiment length 80 min

(a) Assigned Parameters

# parameter value
8 population size ν
9 elite size μ
10 number of transmitted rules σ
11 discount rate γ
12 mutation rate π

(b) Open Parameters
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Table 2. Experimental Setup (changed parameters are bold)

experiment population size ν elite size μ sent rules σ discount rate γ mutation rate π
base experiment 32 4 40 0.7 0.1

1.1 8 4 40 0.7 0.1
1.2 16 4 40 0.7 0.1
1.3 64 4 40 0.7 0.1
1.4 128 4 40 0.7 0.1
2.1 32 1 40 0.7 0.1
2.2 32 8 40 0.7 0.1
2.3 32 16 40 0.7 0.1
3.1 32 4 5 0.7 0.1
3.2 32 4 20 0.7 0.1
3.3 32 4 60 0.7 0.1
3.4 32 4 80 0.7 0.1
4.1 32 4 40 0.0 0.1
4.2 32 4 40 0.4 0.1
4.3 32 4 40 0.9 0.1
5.1 32 4 40 0.7 0.0
5.2 32 4 40 0.7 0.01
5.3 32 4 40 0.7 0.5

reasons. The number of transmitted rules σ specifies how many rules the elite agents
send to the other agents in the population after an evaluation phase. If it is too high,
the population might become more uniform in the course of the adaptation. If it is too
low, only some of the most important rules might be transmitted and some crucial rule
might be missing. The elite size specifies the number of chosen elite agents in each
adaptation step. It should be big enough to handle the uncertainty of the environment
but also small enough to generate an acceptable learning speed. The population size
ν should be big enough to statistically handle the high dynamics of the game and to
have a high enough diversity of rule lists - especially at the beginning. Furthermore,
each agent has to adapt to its own opponent. So, some agent might experience some
more valuable events, which helps the others. Finally, the mutation rate describes the
degree of variation that is added by the mutation operator. In particular it determines
the probability that a part of a rule is changed.

Table 2 shows the experiments that were conducted and their respective parameter
setup. We chose these values as a result of a series of former experiments and tests.
The setups were organised in a way in which first a base setup was chosen and then
each parameter was systematically changed to detect its influence. Though some of the
parameters are likely to not be independent from each other, this method is very help-
ful for obtaining an understanding of their general meaning. Each set of experiments
represents such an examination of one parameter.

Some setups were using some extreme values. Of particular interest are the setups
4.1 and 5.1. In setup 4.1 the discount rate γ was set to zero to see how the algorithm
performs if the discounted evaluation of the rules is switched off and the value of a
rule is just the immediate gained reward upon its execution. Setup 5.1 switches off the
mutation of the worst rules to detect how much of the performance gain is created by the
assembling of good, fitting rules and how much is gained by changing bad performing
rules.
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5 Results

The results of the conducted experiments were very successful as the imitation learning
approach was able to generate the same quality of solutions as our previous evolutionary
approach but showed a much higher robustness and a much lower tendency to generate
defective agents. The best experiments reached a mean performance of around zero
after thirty to forty minutes. This means that the mean of all agents performs as good as
the opponents and that about 50% of the agents are winning their matches.

In contrast to offline learning, where the result is usually an agent which is selected
as the best generated agent after the learning process, online learning should produce a
whole population of competitive agents. Therefore, the following analysis concentrates
on the mean performance of the agents in each adaptation step, averaged over 20 runs.

Figure 3a shows the influence of the population size on the algorithm. It shows that a
sufficient amount of agents is needed to make the algorithm work. Apparently, with the
used settings, 8 agents are not enough to obtain competitive behaviour. Using 16 agents
increases the mean performance, but the agents still do not reach a mean performance of
around zero. Not until a population size of 32 agents is used, the algorithm works well.
Interestingly, the usage of even more agents does not significantly increase the mean
performance. However, a higher population size gives the approach more statistical
stability. It is not disadvantageous to use as many agents as possible. One reason for the
poor performance when using 8 or 16 agents could be that the pool of rules the agents
start with is simply not diverse enough to obtain competitive behaviour.

The experiments in set 2 varied the elite size μ. In comparison to plain evolutionary
algorithms, μ corresponds roughly to the number of selected parents because it deter-
mines the number of elite agents from which the others incorporate new knowledge.
Therefore, the effect of changing μ is similar to changing the selection pressure or the
degree of exploitation of the approach. The results in figure 3b show that μ should be
chosen greater than one. The experiment with μ = 1 performs significantly worse than
the other experiments in this set. Though always copying the single best agent seems to
be quite reasonable, the drawback of this approach is that the game and thus the envi-
ronment of the agents is too uncertain and dynamic to specialise so much. Therefore, μ
has to be chosen according to the uncertainty and dynamics of the given environment.
In a completely deterministic world, an elite size of μ = 1 should produce the fastest
convergence, but might only lead to a local optimum. The other experiments eventually
reached about the same performance. However, because of its lesser degree of exploita-
tion, the experiment using μ = 16 lagged behind the ones using an elite size of 4 or 8.
Therefore, μ should be chosen not too low but also not too high.

As we already mentioned, the algorithm has shown a high robustness against parame-
ter changes. Especially, the number of transmitted rules σ - as seen in figure 3c - has only
a small influence, when set to sane values. Only if the number is too low - as in setup
3.1 - the algorithm did not perform well. All other setups reached about the same per-
formance as the base setup. σ is used at two points of the adaptation algorithm. The first
point is the number of rules that are selected for imitation. Our approach always selects
the σ best rules. The imitators incorporate these rules by the rule replacement method
that we specified above. This method compares the values of the incoming rules and
compares them to the rule which should be replaced. If σ is very high, the additionally
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selected rules tend to have very low or even negative values which makes them less
and less likely to replace an old rule. Furthermore, if the low valued rules replace some
rule, they will always replace a rule that by itself already had a low value. The second
point where σ is used, is the number of selected rules for mutation. Here, our approach
always selects the σ worst rules. However, the mutation operator will be only applied, if
the value of the respective rule is below zero. Therefore, setting σ to a very high level,
will not damage the well performing rules.

In set 4 (see figure 3d) of the experiments we varied the discount rate γ to detect its
influence on the algorithm. Again, imitation learning shows a high robustness against
parameter changes. All experiments with a discount rate of γ > 0 produced competitive
agents. To show that the discounting and thus the reinforcement learning-based part of
the algorithm has some influence at all, we also made experiments that used a discount
rate of 0.0. This effectively turns off the policy evaluation. In this case figure 3d shows
that the agents perform significantly worse. However, the algorithm still improves the
agents based upon the sole rule execution rewards and the fitness of the agents. It just
cannot reach the last bit of performance increase that is gained by relating the rule val-
ues against each other because it might ignore momentarily disadvantageous rules that
might lead to advantageous situations. Another reason why the algorithm still performs
quite well is that σ = 40 of 100 rules are transmitted. This increases the probability that
important rules that do not have a direct impact are still transmitted.

Finally, the experiments of set 5 examined the influence of the mutation rate π. The
results show that the variation of the mutation rate has only a very small effect on the
obtained performance. This has several reasons. First, the mutation is only important as
long as rules with negative values exist, as they are the only ones which will be mutated.
As a consequence of the discounted evaluation of the rules, it will be less and less
likely that rules with negative values exist, when the agent begins to defeat its opponent.
Second, the rules stem from a recording of a player and therefore need only slight
adjustments to work well. In addition, as we only mutate the commands and not the
grids, the rules always stay somewhat sane. Only few information can be destroyed. In
experiment 5.1 the mutation rate was set to zero, which effectively turns off the mutation
of bad rules. This experiment produced a significantly lower performance. Therefore,
the mutation is important. In fact, this experiment shows how much performance can
be obtained by just finding the best fitting collection of recorded rules. The remaining
gap is closed by small adjustments to optimise the rules themselves.

For better statistical judgement figure 3f provides the standard deviation of the base
setup for the mean and the maximum performance of the agents. The figure also shows
that even when adding the standard deviation most experiments end at about the desired
zero mean performance after at maximum one hour.

Finally, figure 3g compares the mean and the maximum performance per genera-
tion of the base setup for imitation learning to the best setup that we could get with
our previous evolutionary approach. There, imitation learning reaches about the same
performance, which confirms that, though imitation learning is much more focused on
exploitation, it is still able to produce the same quality of solutions. However, in con-
trast to the population size of 32 that was used by our base setup for imitation learning,
the evolutionary algorithm needed 60 agents to reach this result. So, figure 3h shows
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the mean performance of both approaches when just 32 agents are used. Here, imitation
learning significantly outperforms the exploratory evolutionary technique. As a general
result, imitation learning has proven to reliably deliver very good results and to be very
robust in terms of parameter dependency and environment uncertainty.

Concerning the defectiveness of the agents, the pure plots are not enough to give
a real indication because they are composed of such a high number of experiments.
Though the higher derivation of the results of the evolutionary method gives an indica-
tion of its inferior results, we had to rely on our observations during the training process
to judge the quality of the solutions that were gained by imitation learning. There, the
number of defective agents that appeared in the course of the adaptation process with
the imitation learning approach decreased very fast. Already after the first three to four
minutes no defective agents could be seen, though some low performing agents still
showed up from time to time. When observing the gaming behaviour of the produced
agents, all successful experiments showed more or less the same progression1. Right af-
ter initialisation the behaviour was a bit awkward and clumsy. Then, with each adapta-
tion pass the behaviour of the agents became sharper and more refined. After about five
minutes the first agents could defeat their opponents. As in the evolutionary approach,
in this phase the agents were almost mirroring the behaviours from the recording that
was used for their initialisation. Later, as the game progressed, the agents started to take
more freedom in their movements and showed more sophisticated behaviours. For more
details we refer to Steffen Priesterjahn’s PhD thesis on this topic [1].

6 Conclusion

The presented results show that it is possible to create a population-based online adap-
tation method that is based on the idea of social learning. Imitation learning is able
to quickly generate competitive game agents without producing defective agents. The
method is especially well-equipped for improving the mean performance of a popu-
lation of agents. The most important result is the very high robustness of imitation
learning which is based on the usage of the experiences of a population of agents and
the adaptive variation operators for rule replacement and mutation. This makes this
approach very applicable in practical problems, such as the automatic adaptation in
computer games.
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Abstract. Designing a relevant artificial intelligence engine for video
games does not always consist in finding the best solution (best opponent,
best path, etc.): it can sometimes consist in offering the player the best
gaming experience. Such a good experience is linked with the difficulty
level of the proposed challenge. A game that is too easy will be boring
whereas a game that is too difficult will be stressful. So, to be interesting
for everyone, an artificial intelligence engine should provide an adaptive
game level for every player. This game tuning is particularly prominent
in the especial case of accessible games for impaired player. In this paper
we show that the task division model based on ant colonies can be an
interesting way to provide adaptive behaviors in game engines for simple
one-player games.

1 Introduction

Despite their limited cognitive abilities, real ants are social insects that are able
to solve complex tasks (ant-hill building, food search, etc.) principally thanks
to their social interactions which is the synergy (ant colony ability is greater
than the sum of individual ants’ abilities). Several mathematical models have
been proposed in order to simulate social behaviors of ants [1] and are used in
computer science in order to conceive solving methods for complex problems
such as clustering [2] or combinatorial optimization [3].

Their robustness and their effectiveness are characteristics of these models.
Indeed, as real ant colonies are able to adapt themselves to their environmental
changes, ant colony based algorithms are also able to perform adaptations ac-
cording to initial or continuous data. This particular aspect has led us to consider
an artificial ant colony for a self adaptation engine in computer games. Indeed,
a player can be considered as a disruptive agent in a given environment and the
ant colony has to react in order to prevent him/her from winning. Moreover,
the higher a stimulus intensity is, the more efficient the ant colony is (we will
explain why in section 3). So, the stronger the player is, the more efficient the
ant colony will be. Finally, thanks to artificial ants, game level will depend on
the player because the game level will adapt itself.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 961–970, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Ant colonies have already been used in games, not for level adaptation, but
for Non-Player Characters’ moves [4] (pathfinding or band move). In this article
we will focus on the task allocation model and its introduction in an accessible
game AI engine able to adapt the difficulty level to the player.

This article is organized as follows: in section 2, we will introduce computer
games accessibility. Section 3 focuses on the problem of allocating tasks and
the associated mathematical model. The game developed from this model is
explained in section 4. Finally, section 5 will conclude this paper and proposes
further works.

2 Computer Games Accessibility

2.1 What Is Computer Games Accessibility?

Currently, computer games are a full-fledged element of our communication and
information society. That is why everyone, whatever his or her physical or cog-
nitive abilities, should be able to play them. Indeed, for several years, computer
games have become one of the main types of numerical entertainment. Accord-
ing to a recent French survey1, nearly half of all French homes play computer
games. Even if entertainment is fundamental, it is not the only aspect. Computer
games are wonderful pedagogical and social integration tools [5,6]. That is why
computer games accessibility is really an ethical, legal, financial and technical
challenge [7]. Defined for the first time in 2004 by the Game Accessibility Spe-
cial Interest Group of the International Game Developers Association (GA-SIG
IGDA) as:

“the ability to play a game even when functioning under limiting
conditions. Limiting conditions can be functional limitations, or
disabilities - such as blindness, deafness, or mobility limitations.”

Game accessibility can concern everyone. The definition takes into considera-
tion “limiting conditions” which deals with, but it is not limited to, impaired
players [8].

Currently, all mainstream games can be considered as inaccessible (even if a
few of them are partially accessible: accessible for a particular impairment or
only a part of the game is accessible). In a general way, when an impaired player
tries to play a computer game, he or she meets two kinds of problems: interaction
problems and level problems.

2.2 Interaction Problems

Interaction problems deal with the problems encountered by a player in its in-
teraction with the game: problems in information acquirement from the game or

1 The French market of computer games:
http://www.afjv.com/press0611/061122 marche jeux video france.htm

http://www.afjv.com/press0611/061122_marche_jeux_video_france.htm
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Fig. 1. Notion of “flow” in games by Chen Jenova

problems in transmitting commands to the game. A way to solve these problems
is to develop multi modal applications. Multi modality consists in proposing sev-
eral game representations based on different modalities (graphic, audio: speech
synthesis, haptic: force-feedback, tactile: braille terminal) and several game con-
trollers also based on different modalities (joypad, joystick, speech recognition,
breath etc.). So, according to his or her abilities, the player can choose which
modality to use.

2.3 Level Problems

Level problems deal with problems of complexity but also with problems of game
speed, game comprehension (learning each character’s role, learning the use of
controllers, etc.), etc. So level problems are larger than cognitive impairment.
They concern every player whether they are impaired or not. So level problems
are much more difficult to take into account than interaction problems because,
even if the level can prevent the user from playing the game, it is also what
makes the game interesting.

In order to illustrate the role of level in games, Chen Jenova [9] uses the notion
of “flow” defined in 1975 by the psychologist Csikszentmihalyi as “the feeling
of complete and energized focus in an activity, with a high level of enjoyment
and fulfillment”[10]. So, this feeling represents the state in which the player
takes pleasure in playing. According to Jenova, it depends on the abilities of the
player and the challenge of the game (Cf. figure 1) [11]. So the game must not
be too difficult nor too simple according to the player’s abilities in order to be
interesting.

This representation points out the difficulty to create UA-Games2 that are
interesting for both players with and without impairment. Thus the game level
has to adapt dynamically according to player abilities.

Such a mechanism is called “adaptive game AI”. According to Pieter Spronck
in [12], “adaptive game AI” can be defined as game AI with the ability of self
correction (i.e. the ability to resolve faulty agent behavior) and with the ability
of creativity (i.e. the ability to adapt successfully to changing circumstances).
Different techniques can lead to adaptive AI:

offline learning: what the game learns while it is not being played. This can
be learning from samples or learning by self-play.

2 Universally Accessible games (http://www.ics.forth.gr/hci/ua-games/
index.html)

http://www.ics.forth.gr/hci/ua-games/index.html
http://www.ics.forth.gr/hci/ua-games/index.html
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supervised learning: what the game learns while it is being played by a hu-
man. It implements changes to the game AI by processing immediate feed-
back on any decision that the game AI makes.

online learning: what the game learns while it is being played by a human in
order to adapt the game to the player’s tactic, style, skill, etc.

In order to solve level problems in the case of accessible games, we will focus on
online learning methods. Such methods need the following four computational
requirements : speed, effectiveness, efficiency and robustness [12]. Nevertheless,
these four requirements are part of the main interest of ant-based algorithms.
It is why, from the observations of auto adaptation skills in ant colonies and a
mathematical model of such behavior, we have decided to use this characteristic
to create online learning and dynamic adaptation within a simple game.

3 Division of Labor, Task Allocation Problem and
Bonabeau’s Associated Model

3.1 From Observations . . .

An ant colony is able to perform efficiently and simultaneously a large number
of various tasks thanks to an efficient and robust sharing out mechanism (search
for food, ant-hill building, larvae breeding, waste sorting, etc.). Each task in this
system has to be performed to ensure colony survival. Despite their simplicity,
each ant seems to choose the best task to perform (allocation notion) among a
list of possible tasks (division of labor notion) according to the colony’s needs.
This choice can not be made randomly. Collective intelligence has to influence
it by giving information about the priority of each task.

3.2 . . . to a Division of Labor and Allocation Tasks Model . . .

From these informations, Bonabeau et al. [13] have proposed a mathematical
model of these behaviors. Their model relies on reactive agents: each ant reacts
according to information extracted from its direct environment. So, it has only
a local knowledge and can not act in anticipation. A representation of ants’
behavior based on response thresholds and stimulus intensities has been defined
to simulate ants tasks choices. This representation using probabilities introduces
the following notions:

stimulus intensity Si: in order to ensure the continuous existence of the nest,
a set of tasks has to be performed by the colony. These tasks are associated
with a stimulus and a positive or null value, called stimulus intensity, rep-
resenting task priority. The higher the value, the more important the task.
We denote Si with the stimulus intensity associated with the task i;

response threshold θi,j : each ant in the colony has a set of response thresh-
olds associated with each stimulus (thus each task). A response threshold
represents a stimulus intensity level from which the corresponding task can
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be chosen by the ant. Hence, the lower a stimulus-associated response thresh-
old is, the greater is the chance to perform the corresponding task. We denote
θi,j with the response threshold for the task i (thus the stimulus intensity
Si) and the ant j;

probability Tθi,j to perform a task i: we denote Tθi,j with the probability
that an ant j starts a task i. This probability depends on the ant j response
threshold associated to the task i: θi,j and stimulus intensity associated with
i task: Si. Generally, if the stimulus intensity is negligible compared to the
response threshold, the probability to perform the task should be near 0.
Contrarily, it should be near 1 if the response threshold is negligible com-
pared to the stimulus intensity. In our engine we use the following function
(Cf. equation 1):

Tθi,j =
S2

i

S2
i + θ2

i,j

(1)

probability p to stop the current task performance : when an ant is per-
forming a task, it has the possibility to stop at each time step. This possibility
is given by the probability p shared by all the colony. So, on average, an ant
will perform a task during 1/p time step.

ant colony efficiency α: ant colony efficiency is a global parameter shared by
all ants of the colony for all tasks.

Fig. 2. Automaton-like model’s behavior

With just a few parameters, a simple task allocation model can be set. Its
dynamic aspect relies on stimulus intensity variations. This variation takes two
parameters into consideration:

natural increase δi: in a general way, stimulus intensity increases over time
if no ant performs the associated task. So each time step, the intensity will
increase by δi. In the case of an AI game engine, there is no natural increase.
It is replaced by player’s actions.

performed task: the only way to decrease stimulus intensity is to perform the
corresponding task. The diminution depends on the number of ants perform-
ing the task during the period and their effectiveness. We denote Nact,i with
the number of ants performing the task i during the period.
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Si(t+ 1) = Si(t) + δi −
α.Nact,i

N
(2)

Moreover, it is necessary to scale the amount of work performed by the Nact,i

ants by the total number of ants N in the colony in order to translate the
fact that the larger the colony is, the greater the amount of work to perform
will be.

Nevertheless, model performances vary a little bit from real ants’ behavior. For
instance, in Nature, ants are able to specialize in a particular task. This special-
ization can lead to morphological or behavioral alterations. But in all cases, if
an ant is a task j specialist, it will be more efficient at performing it and it will
have a preference to perform it. This is why Theraulaz et al. have extended the
previous mathematical model to integrate specialization mechanisms.

specialization: in Bonabeau’s mathematical model, efficiency is a global pa-
rameter shared by all the ants of the colony. So, specialization can not modify
ant efficiency to perform a particular task. The only way to integrate such a
mechanism is to take into consideration ant predilection for a particular task.
Theraulaz et al. have introduced a learning coefficient ξ and a forgetting one,
ϕ, which allow to modify ants’ response thresholds.

θi,j(t+Δt) = θi,j(t)− ξΔt (3)
θi,j(t +Δt) = θi,j(t) + ϕΔt (4)

3.3 . . . and Its Implementation

Some elements are missing in Bonabeau’s model description and we have to per-
form further studies to implement such a model. Among these missing elements,
we will focus on the task selection strategy and the move strategy. These two
kinds of strategies lead to important variations of system performances in terms
of efficiency, reactivity, etc.

Fig. 3. Task selection and move strategies illustration. Selection consists of choosing
one of the available tasks. Evaluation consists of determining if the ant has to perform
the selected task or not during the next time step. This choice is based on the stim-
ulus intensity and the corresponding ant’s response threshold. Task selection strategy
influences the Selection step whereas move strategy influences the Evaluation step.

Tasks Selection Strategy. At each time step, an inactive ant has to determine
if it will remain inactive during the next time step or if it will perform a task.
This choice is based on the mechanism given in figure 4 where the inactive ant
selects one task and evaluates it. Several selection strategies can be used. For
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Fig. 4. Model behaviors according to several move strategies with the same prede-
termined player’s actions (averaged over seven runs) functions a and b use the initial
Bonabeau’s action probability ; functions c and d balanced Bonabeau’s action probabil-
ity with distances; functions e and f consider the sum of Bonabeau’s action probability
and distances

example, an ant j can evaluate only one task i and according to its probability
to perform the task Tθi,j , and decide to perform it or not (cf. case a figure 3).
Contrarily, it can evaluate all the tasks until one of them is chosen or none are
accepted (cf. case a figure 4). These two strategies lead to an important variation
of inactive ants rate thus an important variation of the whole system’s efficiency.
In the first case, the global rate of inactive ants is higher so the system’s efficiency
is lower.

In our case, the colony must be efficient enough to represent a good challenge
for skilled players, but the inactive ants rate must vary enough to match the
players’ performance. A good compromise has been found : we evaluate only one
task and we use cumulated probabilities. Thanks to this mechanism, a random
number permits the selection of one task. This task is selected by taking into
account the different priority levels. This moderates the inactive ants rate.

Move Strategy. During the game, the ant processes are visible because each
artificial ant represents a Non-Player Character, so we need to implement re-
alistic moves. Several strategies can be considered (cf. figure 4). For example,
should distance between a task and an ant’s position have an influence on ants’
choices besides stimulus intensities and response thresholds? Can an ant decide
to change its current task during its move? etc.

To answer these questions, we have computed the sum of stimulus intensities
for each time step. A high value means that the colony is overwhelmed. Among
these strategies, we have studied results obtained with the initial Bonabeau et al.
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model, which does not take into account distance (with or without the ability
to stop a task during its move - squares on the figure 4), and models taking
distance into account (discs and triangles on figure 4).

Obviously, distance has to influence ants’ choices. Indeed, in a 2D environ-
ment, the ant colony efficiency and reactivity are increased when distance is con-
sidered. We select several of these strategies to manage difficulty level (player
keeps the possibility to choose the initial level : easy (b), medium (d), hard (f)).

4 The Game

4.1 Game Accessibility

Using this ant’s task allocation model, we have created a game that is accessible
for most of players. Firstly, game accessibility is ensured thanks to multi modal-
ity. Indeed, we have developed several game representations based on different
modalities such as graphic, tactile (braille display) and audio. Several game con-
trollers such as keyboards and braille displays are also available. Secondly, our
ant colony based algorithm solves the level problems.

4.2 Tasks Allocation Game

The task allocation game we have developed is based on buffers. Indeed, the
player tries to fill buffers whereas the ant colony tries to empty them. Based on

Fig. 5. Game screenshot and an associated Braille representation (on a 20 braille cells
display). Each task’s information is translated onto five braille cell groups : a full one
for the beginning of the group - two for the number of plates (each plate is associated
with a value between 1 and 10 respectively if it is almost empty or full and a bar can
contain up to 8 plates so the value varies from zero to 80) - a full one - and one for
the number of customers. Braille figure representations use the sixth upper splinters of
each cell (3x2 matrix). The fourth splinters line shows the player’s position.
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this principle, several gameplays can be envisioned. We focus on the following
one : the action takes place in a fast food restaurant where a waiter (i.e. the
player) has to serve different meals to several consumers (i.e. the ants of the
colony). The aim of the game is to satisfy consumers (Cf. figure 5). The score
is the maximum quantity of food found simultaneously on each bar. The player
loses a point life if a consumer is not satisfied. This very simple gameplay allows
everybody to understand the game (children, cognitive impaired players, etc.).

The player can move from one bar to the neighboring ones and he or she can
add a plate to the current one. The braille representation of the game (Cf. figure 5)
permits the player to know, for each bar, so for each task, the number of plates
(thus task stimulus intensity) as well as the number of customers (or the number

of ants performing the task) (0123456789 �
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5 Conclusion and Further Works

Even if real ants do not exhibit playing behaviors such as, for example, felines
[14], observing them has led us to design an efficient and adaptive AI engine for
games. This AI engine is based on a few, specific global parameters (six). It’s
able to adapt the game’s difficulty level according to the players, so the game
becomes well-adapted to every player whatever their age or their physical or
cognitive abilities. Moreover, used in collaboration with multi-modal interfaces,
it solves the two problems of game accessibility : interaction and level. Our expe-
rience with visual impairment leads us to principally conceive modalities focus-
ing on this impairment : braille terminal and audio representations[15,16,17,18].
Nevertheless, new interfaces, and in particular new controllers can be imagined
to make our game accessible for motor-impaired players.

The game developed on the task allocation model is a simple one. Nevertheless,
the underlying principle is used in school with young children to teach how to
count (count how many plates there are on each bar; to compare which bar has
more plates; etc.) and many games, or more generally, many computer science
problems, make reference to this mechanism. For example, RTS games where
several resources have to be gathered and a player must delegate each task to
the villagers. This model has been introduced to manage villagers’ allocation in
the Boswars game3 and in the Stratagus engine that it uses.

Currently several tests have been led with unimpaired adult players. Results
are encouraging and tests with children and visually impaired players are being
prepared. Tests with cognitive impaired players are also envisioned.

An implementation of other tools dealing with online learning such as evolu-
tionary algorithms, neural networks, reinforcement learning, dynamic scripting,
etc. are also envisioned [12,19]. This will lead to a real comparison of our engine
performance. Moreover this mathematical model based on response thresholds
has found other applications. For example, drawing a parallel between the stim-
ulus intensity and the similarity of several elements in the same neighborhood,
it can be used in clustering [20].
3 Boswars website : http://www.boswars.org/

http://www.boswars.org/
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Finally biomimetic algorithms are a good candidate to conceive artificial intel-
ligence in accessible computer games. Linked to accessible devices progress and
multi modality, it will permit the improvement of game accessibility in order to
create UA-games and a sharable game universe for all players with or without
any impairments.
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Abstract. The representation used in Particle Swarm Optimization (PSO) is an
n-dimensional vector. If you want to apply the PSO method, you have to encode
your problem as fix-sized vector. But many problem domains have solutions of
unknown sizes as for instance in data clustering where you often don’t know the
number of clusters in advance.

In this paper a set-based PSO is proposed which replaces the position and ve-
locity vectors by position and velocity sets realizing this way a PSO with variable
length representation. All operations of the PSO update equations are redefined
in an appropriate manner. Additionally, an operator reducing set bloating effects
is introduced.

The presented approach is applied to well-known data clustering problems and
performs better as other algorithms on them.

1 Introduction

In recent years a swarm-based optimization methodology called Particle Swarm Opti-
mization (PSO) has developed. Usually, the representation used in PSO is an
n-dimensional vector. Furthermore, all vectors of the swarm have the same dimension-
ality. If you want to apply PSO you have to encode your problem as fix-sized vector.

The question arises whether or not the PSO equations can also be applied to other
representations. For instance, in binary PSO [5] a variation is used by replacing the
real valued position vector by a binary valued vector. But this is still a fix-sized vector
representation only using a different data type for the components.

But what, if the size of your problem solution is unknown in advance? Imagine the
clustering of an unknown set of data where you don’t know the number of clusters a
priori. Another example is the optimization of dynamic data structures, e.g., trees or
graphs which can be represented by sets of tupels. For instance, in [14] the authors
use an adjacency list as variable length representation to encode Dynamic Bayesian
Networks. But their representation is specialized on this kind of domain.

Several works successfully use sets as representation for a genetic algorithm. For
instance, Raidl and Julstrom use sets as representation in genetic algorithms to represent
the edges of spanning trees [10]. In [7] the authors use a set oriented genetic algorithm
to solve the knapsack problem.

In [9] the authors introduce a set-based PSO to solve set-based combinatorial prob-
lems (especially for determining RNA structures). They replaced the addition / subtrac-
tion operators by the typical set union / minus operations. But they also removed the
scalar multiplication. To compensate the loss of diversity, they add random elements to

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 971–980, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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particle positions. Weakly compared to the original PSO concept this means to use no
scaling of the direction but to reset vector components randomly.

The concept proposed in this paper also replaces the position and velocity vectors
of PSO by position and velocity sets, but intents to be more in the spirit of the origi-
nal PSO as introduced by Kennedy and Eberhart [3]. All PSO operators are replaced
by appropriate set operations and a special operator reduces possible bloating effects.
Since the positions are sets of different cardinalities, this is a PSO with variable length
representation. Because of the general way it is defined, it is a general purpose PSO
with variable length representation. This set-based PSO is successfully applied to two
real world data clustering problems.

This paper is organized as follows. Section 2 introduces the standard Particle Swarm
Optimization algorithm. The definition of the set-based PSO is presented in sections 3
and 4. An operator to deal with bloating effects is given in section 5. In section 6 the
conducted experiments with some results are presented. Finally, in section 7 some con-
clusions are drawn with an outlook to future works.

2 Particle Swarm Optimization

Particle Swarm Optimization (PSO), as introduced by Kennedy and Eberhart [3] [5],
is an optimization algorithm modeling the flocking of birds flying around a peak in a
landscape. In PSO the birds are substituted by particles and the peak in the landscape is
the peak of a fitness function. The particles are flying through the search space forming
flocks around peaks of fitness functions.

Let Ndim be the dimension of the problem (i.e., the dimension of the search space
RNdim), Npart the number of particles and P the set of particles P = {P1, ...,PNpart}.
Each particle Pi = (xi,vi, li) has a current position in the search space (xi ∈ RNdim), a
velocity (vi ∈ RNdim) and the locally (or personally) best found position in history, i.e.,
its own experience (li ∈ RNdim).

In PSO, the set of particles P is initialized at time step t = 0 with randomly created

particles P(0)
i . The initial li are set to the corresponding initial xi. Then, for each time

step t, the next position x(t+1)
i and velocity v(t+1)

i of each particle P(t)
i are computed as

shown in Eqns. (1) and (2).

v(t+1)
i = w(t)

I v(t)
i + wLr1(l(t)

i − x(t)
i ) + wNr2(n(t)

i − x(t)
i ) (1)

x(t+1)
i = x(t)

i + v(t+1)
i (2)

Here, r1 and r2 are random numbers in [0,1]. The personally best found position of the

best neighbor particle at time t is denoted with n(t)
i ∈ RNdim .

As presented in [5] [6] [1] there are several possibilities to define the neighborhood
of a particle. The global (gbest) PSO uses a star topology [4]. This way, the whole
swarm is the neighborhood of each particle. For the local (lbest) PSO a ring topology
is used [4]. The neighbors of a particle are only the ones at both sides up to a specified
radius. A radius of r means r neighbors of the left and r neighbors of the right side.
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The inertia weight w(t)
I determines the influence of the particle’s own velocity, i.e., it

represents the confidence of the particle to its own position (typically wI ∈ [0.1,1.0]).
To yield a better convergence, this weight is decreased over time [11] [5] by an amount
of aI (typically aI = 0.001). wL is the influence of the locally best position found so far.
The influence of the best particle of the neighborhood is denoted by wN .

To avoid chaotic behavior, the new velocity v(t+1)
i is clamped to a pre-defined interval

[−Vmax,+Vmax]. Also, the new position x(t+1)
i is clamped to the problem-specific range

[Xmin,Xmax]. Often, Xmin is set to −Xmax.
The fitness of a particle is determined by a fitness function F : RNdim →R. If the new

position x(t+1)
i has a better fitness than the best solution found so far for particle Pi, it is

stored in memory as shown in Eq. (3) (in case of minimization).

l(t+1)
i =

{
x(t+1)

i , F(x(t+1)
i )< F(l(t)

i )
l(t)
i , otherwise

(3)

The best solution of the run is found at particle Pb with the best local solution lb. Best
solution lb is always element of the set of all best local solutions {li},∀i∈ {1, · · · ,Npart}.
The best fitness value is F(lb) = mini∈{1,···,Npart}{F(li)}.

3 Abstract PSO

The standard PSO as described in section 2 uses vectors as representation. All opera-
tions used in Eqns. (1) and (2) are the scalar multiplication and vector addition / sub-
traction. Eqns. (4) and (5) define the PSO in a more abstract way. For simplification the
weights and random numbers are combined by ηL = wLr1 and ηN = wNr2.

v(t+1)
i = w(t)

I 5 v(t)
i ⊕ ηL5 (l(t)

i 7 x(t)
i ) ⊕ ηN 5 (n(t)

i 7 x(t)
i ) (4)

x(t+1)
i = x(t)

i � v(t+1)
i (5)

To use PSO for other representations, the operations ⊕, 7, 5 and � need to be
redefined in an appropriate way.

4 Set-Based PSO

The set-based PSO replaces the position and velocity vectors by position and velocity
sets containing domain-specific elements as defined by a set D. To avoid confusion
with the SetPSO approach introduced in [9], the set-based PSO proposed in this paper
is called Set Swarm Optimization (SSO). Each particle Pi = (xi,vi, li) has a current
position in the search space (xi ∈ P (D)), a velocity (vi ∈ P (D)) and the personally
best found position in history (li ∈ P (D)). The scalars wI ,ηL,ηN are elements of the
domain-specific set S. More detailed examples are given in section 6.
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4.1 Operations

As pointed out in section 3, the operations⊕,7,5 and � need to be redefined for sets.
The addition ⊕ : P (D)× P (D) → P (D) of velocity sets is realized simply as set

union: ∀vi,v j ∈ P (D) : (vi,v j) &→ vi∪ v j.
The subtraction7 : P (D)×P (D)→ P (D) of position sets is the set minus: ∀xi,x j ∈

P (D) : (xi,x j) &→ xi \ x j.
The scalar multiplication5 : S×P (D)→ P (D) for velocity sets is applied element-

wise using a domain-specific operator ⊗D : S×D→ D and is defined as: ∀s ∈ S,∀v ∈
P (D) : (s,v) &→ {s⊗D di|∀di ∈ v}. Since⊗D is applied independent to each element, this
operation does not change the cardinality, i.e., |s5v|= |v| for all s ∈ S\{s0},v∈ P (D),
whereby s0 is the null element of scalars (if in existance). Note that, if you have a null
element d0 ∈D and s0⊗D di = d0 holds for all di ∈D, then |s05 v|= 1, since |s05 v| =
|{s0⊗D di|∀di ∈ v}| = |{s0⊗D d1, · · · ,s0⊗D d|v|}| = |{d0, · · · ,d0}| = |{d0}| = 1.

The update addition � : P (D)×P (D)→ P (D) of position and velocity sets is de-
fined the same way as the ⊕ addition: ∀xi,vi ∈ P (D) : (xi,vi) &→ xi∪ vi.

4.2 Set Bloating

The operations in section 4.1 are able to produce a bloating effect. That means that the
position and velocity sets get permanently more elements with ongoing iterations.

Velocity sets. Since the 5 operation does not change the cardinality of the w(t)
I 5 v(t)

i

term (except w(t)
I = s0), the cardinality of the new velocity set v(t+1)

i is minimum the

cardinality of the previous one (v(t)
i ). Additionally, all new elements created by the

cognitive and social terms are unioned which increases the cardinality of v(t+1)
i . Because

the 5 operator produces new elements by scaling them, the cognitive and social terms

permanently enrich v(t+1)
i with new elements.

Position sets. Because the new velocity set v(t+1)
i bloats up and the � operator is simply

the set union, each new position set x(t+1)
i is the previous one (x(t)

i ) together with these

new elements in v(t+1)
i . Thus, the bloating effect from the velocity sets is passed through

to the position sets.
To reduce these bloating effects a reduction operator R as defined in Eq. (6) is ap-

plied to the equations as presented in the next section.

R : P (D)→ P (D) (6)

4.3 Set Swarm Optimization

Now that all operations are defined, the SSO update equations can also be defined as in
Eqns. (7) and (8). For simplicity most abstract operators are replaced by the used ones.

v(t+1)
i = R ( w(t)

I 5 v(t)
i ∪ ηL5 (l(t)

i \ x(t)
i ) ∪ ηN5 (n(t)

i \ x(t)
i ) ) (7)

x(t+1)
i = R ( x(t)

i ∪ v(t+1)
i ) (8)
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Basically, SSO works like the standard PSO as described in section 2. A difference is
the method of initialization. In standard PSO simply randomized position and velocity
vectors are created. In SSO the position and velocity sets are created with a random
number of randomized domain-specific elements, whereby the number of elements per
set is between Cmin and Cmax. A randomized domain-specific element is created by a
function CD :→ D.

A Set Swarm Optimization instance is characterized by a 4-tupel

SSO( D , S , ⊗D , R ) (9)

and consists of 1) the set D of problem-specific objects, 2) the set S of problem-
specific scalars, 3) the problem-specific scalar multiplication ⊗D and 4) a reduction
operator R . An example of a reduction operator R as used later on in the experiments
is defined in the next section.

5 Reduction Operator

To overcome the bloating effects mentioned in section 4.2 a reduction operator is pro-
posed. One idea to prevent bloating without influencing the search process to strong is
to combine similar elements of a given position / velocity set. Here, this is achived by
specifying a nonnegative threshold of nearness ε. All elements whose distance to each
other is below this threshold are combined. In this sense a kind of clustering is performed
according to a domain-specific element distance function δ as defined in Def. (1).

Definition 1 (Element Distance Function δ). The distance function δ : D×D→ R+

computes the nonnegative distance between two domain-specific objects such that for
all di,d j ∈ D we have:

1) δ(di,di) = 0
2) δ(di,d j) = 0 ⇒ di = d j

To combine similar elements a set-representative map ρ as defined in Def. (2) is used
to compute or select a representative for a given set.

Definition 2 (Set-Representative Map ρ). The map ρ : P (D)→D computes or selects
a representative for the given set such that for all D ∈ P (D) we have the single element
identity:

|D|= 1 ⇒ ρ(D) = ρ({d}) = d

The reduction operator is denoted by R ε,δ,ρ and works as defined in Algorithm (1).
In the first step all elements of a given set D ∈ P (D) are grouped together based on
the element distance function δ. Then, in the second step all groups having elements
in common are merged to ensure that all groups are pair-wise disjoint. Finally, in the
third step for each group ci a representative is determined by using a set-representative
map ρ. If you want to deactivate the influence of the R ε,δ,ρ operator, you can set the ε
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threshold to 0 (R 0,δ,ρ). The axioms of Defs. (1) and (2) ensure that R 0,δ,ρ(D) = D holds
for all D ∈ P (D). Additionally, the R ε,δ,ρ operator ensures that R ε,δ,ρ( /0) = /0. In case
the set-representative map ρ used is only defined over finite sets, the reduction operator
R ε,δ,ρ is also restricted to finite sets. But this restriction can be disregarded, since in
practice computers can not store an infinite number of elements.

Algorithm 1. Reduction Operator R ε,δ,ρ(D)

// First step: Create groups si of similar elements
S ← /0
for all di ∈ D do

si = {di}∪{d j |δ(di,d j)≤ ε,∀d j ∈D}
S ← S∪{si}

end for

// Second step: Merge all groups sharing same elements
C ← S
while ∃si,s j ∈C : si∩ s j �= /0 do

C ←C \{si,s j}
c′ ← si∪ s j

C ←C∪{c′}
end while

// Third step: Compute representatives for all groups ci
P′← /0
for all ci ∈C do

P′ ← P′ ∪{ ρ(ci) }
end for

return P′

Two exemplary set-representative maps a) computing an average element and b)
selecting the median element are defined in the following. These are also used in the
experiments in section 6.

Definition 3 (Average Representative Map ρavg). Let D ∈ P (D) be a finite set to be
represented. Then, the map ρavg computes the average element over all elements di ∈D:

ρavg(D) =
1
|D| ∑

di∈D

di (10)

ρavg is a set-representative map since it fulfills the single element identity:

ρavg({d}) =
1

|{d}| ∑
di∈{d}

di =
1
1

d = d (11)

Requirements: You can use ρavg only if you are able to provide an addition (+ :
D×D→D) and multiplication with a real number (· : R×D→ D) for your domain D.
Furthermore, the 1 must be the identity element with respect to your · operation.
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Definition 4 (Median Representative Map ρmed). Let D ∈ P (D) be a finite set to be
represented. Then, the map ρmed selects the median element out of all elements di ∈ D.
For this, all elements are sorted according to an order operator <D: D×D→ {0,1}.
After sorting, the element in the middle position is picked out. Here, the median is
thought to be one of the elements of the set D (ρmed(D) ∈D). If (d(1), · · · ,d(|D|)) denotes
the sorted list of all di ∈D, then the median element is selected as follows:

ρmed(D) =

{
d

( |D|+1
2 )

, if |D| is odd

d
( |D|2 )

, if |D| is even
(12)

ρmed is a set-representative map since it fulfills the single element identity:

ρmed({d}) = d
( |{d}|+1

2 )
= d( 2

2 ) = d(1) = d (13)

Requirements: You can use ρmed only if you are able to provide the order operator
<D for your domain D.

Which one of the set-representative maps you choose depends on the operations you
can provide. If you neither can provide the + and · operations nor the<D order operator,
then you need to define your own set-representative map for your special domain D.

6 Experiments

In this section, the results of two experiments are presented to show the capabilities of
SSO. The used PSO parameters are the standard ones: Npart = 20, wL = 2 and wN = 2.
The inertia weight wI starts at 1 and is decreased by aI = 0.001. For the local (lbest)
versions, the radius r is set to 1. Validating the position and velocity sets is done ac-
cording to the [Xmin,Xmax] interval. The used ε values were determined in advance by
a systematic parameter exploration. All experiments are averaged over 50 independent
runs with 1000 iterations per run.

6.1 An Order Relation of n-Dimensional Vectors

In case the median representative map ρmed as defined in Def. (4) is used, an order
relation over D is needed. Assumed, the objects in D are n-dimensional vectors, i.e.,
D = V n. Then, the less order relation <V n is a set containing sorted pairs of vectors:
<V n= V n×V n.

The order criterion used here is to order according to the first dimension and if the
vector components of the first dimension are equal, order according to the second di-
mension and so on. In other words, the order is realized by ordering according to the
first vector components which are unequal.

If I = {1, · · · ,n} ⊆ N is the index set of components of n-dimensional vectors, then
the index set of all unequal vector components is I�=(x,y) := { i | xi �= yi, ∀i ∈ I } ⊆ I
for all x,y∈V n. Note that this order is applied to a set and not a multi-set. Thus, I�=(x,y)
will never be empty since in a set there will be no x,y which are equal.

The actual order relation as given in Eq. (14) orders two vectors x,y according to the
unequal component with the minimal index (min I�=(x,y)).
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<Vn := { (x,y) | x,y ∈V n, xmin I�=(x,y) <V ymin I�=(x,y) } (14)

The <V operator is the less operator on single vector components. If V = R, then
<V =<R=< is the typical less operator as known for real numbers.

6.2 Data Clustering

The task of data clustering is to divide a set of data X into sub-sets (clusters) Ci⊆ X con-
taining similar data. Used are the well-known datasets Iris and Wisconsin Breast Can-
cer (WBC) which were taken from the UCI Repository Of Machine Learning Databases
[8]. The dataset Iris contains 3 clusters in 150 records with 4 numerical attributes. The
dataset WBC contains 2 clusters in 683 records with 10 numerical attributes.

Let C denote the set of computed clusters Ci ⊆ X and T the set of labels t of the real
known classes of a dataset. Furthermore, let Nti be the number of data items of class t
within cluster Ci and Ni the size of cluster Ci, i.e., Ni = |Ci|.

The measure employed in this work is the F-measure known from information re-
trieval as shown in Eq. (15,left). It uses the purity of the considered cluster Ci with
Prec(t,Ci) = Nti

Ni
, i.e., how strong belongs cluster Ci completely to class t. Further-

more, it considers how much of the data of class t are contained within cluster Ci with
Rec(t,Ci) = Nti

Nt
and Nt being the number of data in class t.

FM(t,Ci) =
2 ·Prec(t,Ci) ·Rec(t,Ci)
Prec(t,Ci) + Rec(t,Ci)

, FMeas(C) = ∑
t∈T

Nt

|X |max
Ci∈C

{FM(t,Ci)} (15)

The best situation is to have each cluster consisting completely of data of the same
class t (Prec(t,Ci) = 1) and for each class t having all data placed in just one cluster
(Rec(t,Ci) = 1). This measure is limited to [0,1] and to be maximized. The overall
F-measure value is determined as in Eq. (15,right).

Let the domain be real-valued vectors, i.e., D = Rn. Every position set represents a
set of centroids. Computing the overall fitness of a set D ∈ P (D) involves two steps.
Firstly, the set of clusters C is computed by interpreting each di ∈ D as centroid. Each
centroid di has its corresponding cluster Ci. All data items in X are assigned to these
clusters, whereby a data item is assigned to the nearest cluster Cj according to Euclidean
distance. Finally, the fitness F(D) of a set D ∈ P (D) is the overall F-measure as shown
in Eq. (16). Since the F-measure is to maximize and SSO is a minimizer, the logic is
turned around.

F(D) = 1−FMeas(C) (16)

The fitness function F is to minimize.
The SSO used is

SSO( Rn , R , ·Rn , R ε,δ,ρ ) (17)

with ·Rn being the scalar multiplication of real numbers with real vectors, ε = 3 for Iris,
ε = 8 for WBC and δ =

√
∑n

i=1(ai−bi)2 (a,b∈Rn). For ρ experiments with both maps
ρavg and ρmed are conducted.
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The dimensions of the used vectors are n = 4 (Iris) and n = 10 (WBC) according
to the number of attributes. The ranges [Xmin,Xmax] are set to [0.1,7.9] (Iris) and [1,10]
(WBC) according to the minimum and maximum attribute values of the datasets. The
number of initial elements is set to Cmin = 1 and Cmax = 5. Each randomized element is
created by CRn := U(Xmin,Xmax)n.

The obtained results are given in Table 1. The methods with ”median” in brackets
refer to ρmed and ”average” refers to ρavg. As can be seen, the local SSO with the median
representative map works best for both datasets. Compared to other methods as e.g.
Data Swarm Clustering [13], k-means and Ant-based Clustering [2], the SSO approach
produces better results. Even the worst SSO variants are better than the three other
methods. The comparative values were taken from [13] [2] and were converted from
”F-measure” values to ”1 - F-measure” values, because the SSO method minimizes ”1 -
F-measure”. Compared to the PSO clustering method (”PSO Clustering”) as introduced
in [12] similar results are obtained. The mean F-measure values are close, but SSO has
a better standard deviation. Because the method introduced in [12] encodes all centroids
in a sequence, the right numbers of clusters are given in advance. For the SSO approach
this is not necessary.

Table 1. Performance of SSO on both datasets

Iris WBC

Global SSO (median) 0.034229 (± 0.013114) 0.023910 (± 0.001900)
Global SSO (average) 0.043435 (± 0.019289) 0.024099 (± 0.001048)
Local SSO (median) 0.029916 (± 0.009529) 0.022768 (± 0.001436)
Local SSO (average) 0.040805 (± 0.014850) 0.023631 (± 0.001163)

PSO Clustering 0.029799 (± 0.032804) 0.023465 (± 0.003343)

Data Swarm Clustering 0.169317 (± 0.073264) 0.314268 (± 0.062420)
Ant-based Clustering 0.183188 (± 0.014846) 0.032396 (± 0.001447)
k-means 0.175479 (± 0.084866) 0.034175 (± 0.000000)

7 Conclusions and Future Works

As the results show it is possible to apply the PSO update equations to sets. But it can
be neccessary to reduce a bloating effect caused by the interplay between the 5 and ∪
operations.

In both experiments, the methods using ρmed are better than those using ρavg. The
local SSO with the median representative map produces the best results. Furthermore,
the type of neighborhood topology (gbest or lbest) has only a small effect on the results.
But for the lbest SSO only the standard radius was tested. Maybe the performance can
be increased by choosing other radii or completely other topologies.

A still open question is the selection of the ε parameter. It should be examined
whether this parameter can be determined or estimated for a given problem simplier
than with parameter exploration. Maybe other reduction operators can be found with-
out the need of a threshold.
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Abstract. Rational cryptography is an emerging field which combines
aspects traditionally related to security with concepts described in eco-
nomic theoretical frameworks. For example, it applies game theory con-
cepts to address security problems arising when executing cryptographic
protocols. The aim is to replace the assumption of a worst–case attacker
by the notion of rational agents that try to maximize their payoffs. In this
work, we define a formal framework and a meta–heuristic technique for
the automated synthesis of multi–party rational exchange security (M–
RES) protocols. We provide experimental results for a simple scenario
where a 3–party rational exchange protocol is automatically designed.

1 Introduction and Motivation

The exchange problem of how to design a general procedure according to which
several parties can exchange items in a fair manner has attracted much attention
throughout the years. Interest in this class of protocols stems from its importance
in many applications where disputes among parties can occur, such as digital
contract signing, certified e–mail, exchange of digital goods and payments, etc.
Roughly, the property of fairness means that no party should reach the end of the
protocol in a disadvantageous position. Still, there exist no protocol according
to which a number of parties can exchange items in a fair manner exclusively by
themselves, assuming that misbehaving parties take part in the protocol ([1].)
As a result, all fair exchange protocols require a trusted third party (TTP) in
order to preserve fairness during the exchange.

By contrast, rational exchange protocols do have the enormous advantage
of not needing a TTP. Informally, a rational exchange protocol cannot provide
fairness, but it ensures that rational (i.e. self–interested) parties would have no
reason to deviate from the protocol, as misbehaving does not result beneficial.
The work presented in this paper focuses on the automated design of this type
of protocol (rational exchange protocols) in multi–party environments.

Next we motivate the need for this approach and introduce some related work.

Shortage of rational proposals. As it is only recently that rational exchange
schemes have been considered as an alternative solution to the exchange problem,

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 981–990, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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there are very few rational exchange protocols proposed in the literature (see e.g.
[2], [3].)

Automated analytical tools versus automated designing tools. With
regard to the formal analysis of security protocols, several automated tools have
been presented over the years (see [4] for an excellent survey.) In every case the
focus has always been on the validation of existing schemes. We intend to adopt
a relatively novel approach integrating formal verification within the designing
methodology.

Meta–heuristic search for automated protocol synthesis. It is clear that
the number of possible protocols achieving a set of goals from a set of initial
assumptions grows exponentially as the number of goals or the number of par-
ticipant entities rise. In this context, a designing methodology based on meta–
heuristic search appears to be a reasonable option. Hao, Clark and Jacob were
the first in applying these techniques for the synthesis of protocols that are prov-
able correct and satisfy certain security criteria ([5] and [6].) In their work, they
present an automated tool, based on Simulated Annealing, which finds security
protocols that achieve certain goals from a set of initial assumptions. In later
work [7] the authors apply a different heuristic technique based on genetic algo-
rithms for the synthesis of provably secure protocols. A similar approach is also
adopted by Park et al. in [8] to the synthesis of cryptographic protocols for a
fault–tolerant agent replication system.

1.1 Overview of Our Work

In this paper, we describe a framework for the automated synthesis of rational
exchange protocols (Section 2). The practical implementation of this formalism
results on an application designed to find multi–party rational exchange security
(M–RES) protocols for specified scenarios. We will illustrate its practical appli-
cation within a 3–party scenario (Section 3) where our heuristic technique finds
rational solutions very efficiently.

2 Foundations

Simple linear structures such as vectors and matrices will be used to represent
all aspects of a multi–party exchange problem. Prior to describing the model in
detail, the following definition will serve to unify notation throughout the paper:

Definition 1 (Exchange protocol). Given a set of entities P = {P1, . . . , Pv}
and a set of items O = {o1, . . . , om}, an exchange protocol Π consists of n steps,
each denoted by (t) Pi → Pj : ot1 , . . . , otkt

, where:

• t = 1, . . . , n is the step number,
• Pi, Pj ∈ P , i �= j, are the sender and receiver of the message, respectively.
• {ot1 , . . . , otkt

} ⊆ O are the items Pi sends to Pj, subject to Pi owning those
items at step t of the protocol.
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Note that this definition merely describes a series of messages being exchanged
between participants so that, at the end of the protocol execution some entities
would have lost control over some of their items as well as having gained access
over new ones. Further along in the synthesis process, a fitness function will
decide how good a protocol is in giving solution to a specific exchange problem.

2.1 Protocol Representation

Protocols described in Definition 1 will be represented by a series of matrices.

Protocol Matrix. A protocol Π is represented by a matrix SΠ ∈Mn×(m+2) =
[sΠ

i,j ] of integers, where each row is interpreted as a message in which the first
two components identify the sender and the receiver of the message, respectively,
and the rest of the row components represent the items being sent.

Although matrix SΠ represents the series of steps that participant entities
have to take along a protocol execution, the actual real message content being
sent at each step is subject to: (1) the sender entity holding the referred items
at that point in the protocol run; and (2) those items being accessible to that
sender. Different situations could derive in a non–accessible status of an item oj

for a particular entity Pi. For example, if an item oj is encrypted and entity Pi

does not hold the decryption key. Something similar happens if entity Pi is able
to generate item oj but it needs to gain access to other items in order to do so. In
this case, item oj must remain non–accessible until gaining control over the rest
of the required tokens. During the protocol execution this kind of information,
which is specific to the particular exchange problem at hand, will be captured
in two additional matrices: a matrix H(t) denoted state matrix and a matrix R,
denoted inter–dependency matrix describing items’ dependency relations. Both
structures are described below.

State Matrix. For each step t in the protocol t = 1, . . . , n, matrix H(t) =
[hi,j(t)] ∈Mv×m will capture the possessions of each party at the end of such a
step. At the initial step (t = 0) the matrix will represent the possessions of each
different entity prior to the exchange.

Inter-Dependency Matrix. A matrix R = [ri,j ] ∈ M(v×m)×(v×m) will cap-
ture the inter–dependency relations for each hi,j ∈ H for a given exchange
problem. Two different types of dependency relations, positive and negative, can
be expressed within the model as follows:

– Items oi and oj are positively related if when oj is non–accessible then,
gaining access to oi implies gaining access to item oj too.

– Items oi and oj are negatively related if when oj is non–accessible, then
receiving oi implies making item oi non–accessible.

Further and more complex dependency links may be represented in matrix R,
involving several items. The only restriction imposed by this representation is
that negative and positive relations between any two given elements cannot be
simultaneously expressed.
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Updating the State Matrix. Initially, a candidate solution consists of a pro-
tocol matrix SΠ , a state matrix H(0), and an inter–dependency relation matrix
R, specific to the exchange environment. As the protocol execution progresses,
the state matrix H is updated according to the instructions given in the protocol
and the positive and negative restrictions imposed by matrix R. At the end of
the protocol execution H(n) will reflect the possessions that each entity holds
and also those items that each entity has lost control over. How good the pro-
tocol SΠ is in giving solution to a particular exchange problem will be decided
by a fitness function.

2.2 Fitness Function

A fitness function is individually defined for each participant of the protocol to
evaluate the gains obtained at each step of the scheme. The search will aim at
finding exchanging schemes which maximize each individual fitness function.

Benefit Matrix. In our model, all participants assign every item involved in the
exchange a particular value. Those values serve to represent each individual’s set
of requirements and are captured in matrix B = [bi,j ] ∈Mv×m, denoted benefit
matrix. A more formal description of this matrix is given next:

bi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 iff Pi incurs cost when losing control over oj

0 iff item oj is of no value to participant Pi

−1 iff Pi obtains benefit when losing control over oj

(Via coalitions or incentives)
> 1 iff item oj is required by participant Pi

(It represents the value that item oj is worth to entity Pi,
if and only if, oj becomes accessible to Pi)

(1)

Maximum and Minimum Benefit Values. The following criteria will serve
to: (1) compute the maximum benefit that an entity can obtain in a single
protocol run; and (2) compute the minimum benefit that each entity Pi will
obtain, which satisfies its requirements.

– A maximum benefit value b̂i represents the payoff obtained when the out-
come of the protocol run is the most favorable for entity Pi. It is computed
considering that the entity has gained access to all the required items, it
has sent all items for which losing control over is beneficial and has kept all
items for which sending represents a cost.

– Minimum benefit value b̄i represents the minimum payoff that entity Pi

would expect to obtain with the exchange. The minimum that a rational
entity will consider as a satisfactory exchange is that in which the entity has
gained access to all required items, has had to lose control over items for
which sending represents a cost, and it does not possess any of the items for
which relaying is beneficial.
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We will now define a fitness function to compute participant “fitness” (i.e.
benefit attained) after each step in the protocol, as well as global protocol fitness
at the end of a protocol run.

Utilities. At each step t of the protocol (after updating state matrix H(t)
according to the transference of items), we shall refer to the gains achieved by a
player so far as “utility” or “payoff” values. Each Pi’s current utility at step t,
(0 ≤ t ≤ n) can be denoted as ui(t).

Differential Utilities. The differential utility dui for a player Pi between steps
t1 and t2, with 0 ≤ t1 ≤ t2 ≤ n, is defined as:

dui(t1, t2) = ui(t2)− ui(t1) (2)

Additionally, a global differential utility dU will measure the overall fitness of a
protocol solution SΠ . This can be defined as the sum of the benefit attained by
each participant at the end of the execution:

dU(SΠ) =
v∑

i=1

dui(0, n) (3)

2.3 On the Solution Space

Given the formalism just described, our goal will be to explore the space of all
exchange protocols to find schemes which are:

1. Feasible. That is, the exchange described by the protocol solution SΠ would
represent a feasible transference of the required items between each protocol
participant and,

2. Rational. During a protocol execution, there may be steps at which players
run into a temporarily “worse” state (i.e. dui(t, t + 1) ≤ 0.) However, the
relevant factors which ensure rationality of the scheme are:
i. At the end of the protocol run, Pi must have gained enough differential

utility. If dui(0, n) > 0, the exchange is profitable to Pi, if dui(0, n) < 0,
the exchange is non–profitable to Pi and, when dui(0, n) = 0 indicates
that the exchange is of no use to Pi.

ii. For each participant, the utility ui(n) must satisfy the minimum required
by Pi (ui(n) ≥ b̄i).

iii. Finally, entities having attained their required minimum b̄i in an inter-
mediate step, should not be considered as active participants for the rest
of the protocol. That is, entities achieving their goals must be forced to
quit the protocol execution.

How Many Exchange Protocols Exist? As described in Section 2.1, a pro-
tocol is represented by a matrix SΠ ∈ Mn×(m+2). An estimate of the total
number of possible exchange protocols can then be given by:

O
( v!

(v − 2)!
2nm
)

= O
(
v(v − 1)2nm

)
= O(v22nm) (4)
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where n is the number of protocol steps, v is the number of entities and m is
the number of tokens involved in the exchange.

It is difficult to determine how many of these protocols represent feasible
solutions to a specific exchange problem. Even more challenging is to estimate
how many of those feasible solutions represent a rational exchange. An heuristic
search based on Simulated Annealing will assist in finding those protocol designs
within the solution space of a given multi–party exchange problem, which satisfy
the above conditions of feasibility and rationality.

3 Automated Synthesis of a 3–RES Protocol

For the purpose of this paper, we will focus on a particular 3–entity exchange prob-
lem. For every participant entity we will provide a series of initial assumptions and
goals which will be represented using the matrices described in Section 2.

3.1 A 3–RES Problem

Initial assumptions and other aspects of the particular exchanging problem are
formalized as follows:

1. The specific exchange problem will consist of an entity P0 which aims to
collect a series of electronic items from entities P1 and P2, delivering the
appropriate tokens in return. All entities, P0, P1 and P2, are considered
to be rational (aimed to maximize their payoffs). The following items are
involved in the scheme:
• o0: Request token issued by P0 containing a description of the item that
P0 requires from P1.

• o1: Request token issued by P0 containing a description of the item that
P0 requires from P2.

• o2: Return token issued by P0 for P1 in return for o4.
• o3: Return token issued by P0 for P2 in return for o5.
• o4: Customized item issued by entity P1 as specified by P0 in o0.
• o5: Customized item issued by entity P2 as specified by P0 in o1.

2. None of the collected items in isolation is of any value to entity P0. In other
words, P0 is interested in collecting all (i.e. o4 and o5) or none of these items.

3. Entities must choose an arbitrary positive integer greater than one, for each
one of their required items. These values will represent the payoff associated
to gaining access to such items.

4. Finally, the nature of these items is such that their utilities only become
available when the corresponding tokens are delivered in return. Although
this restriction seems hard, there are a few real life examples where items
are of this nature. For example, P0 could be a user trying to book a holiday
package consisting of accommodation, flights and tickets for a local tourist
attraction. User P0 needs either all or none of the required items and, ad-
ditionally, no item becomes available unless the providers of the required
services have received payment.
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3.2 Search Technique and Parameterization

Simulated Annealing (SA) [9] will be used as search technique. The basic algo-
rithm has been slightly modified to stop when the first rational exchange pro-
tocol which satisfies the requirements is found. (This can be done by previously
computing the minimum required global fitness.)

A simple random mutation mechanism is employed as move operator. Given
a candidate solution (specified by a protocol matrix SΠ), a neighbor is obtained
by randomly modifying a percentage of its elements. We will refer to the amount
of elements mutated in the matrix as the moving rate. The different moving rates
considered in the experimental work are: 1%, 5%, 10%, 20%, 30%, 40%, 50%,
60%, 70% and 80%.

The acceptance criterion in SA is given by:

s′ is accepted if f(s′)− f(s) > Ti lnu (5)

where s and s′ are, respectively, the current and mutated solutions, Ti is the
current temperature, and u is a random number uniformly generated in [0, 1].

At each cycle, the temperature is geometrically decreased by:

Ti+1 = αTi (6)

0 < α < 1 being the cooling factor.
Note that, after m cycles the temperature is Tm = αmT0 where T0 is the

initial temperature. For Tm to be very close to 0 (say ε = 10−6) after m cycles,
a cooling rate of:

α =
(
ε

T0

) 1
m

(7)

is needed.
For our experimental work, these SA parameters have been adjusted according

to the definition of two different profiles. Both, profiles (I) and (II), will satisfy
the following property: in the first cycle, the probability of accepting a bad move
which decreases the global fitness value by just one unit will be approximately
0.5. Moreover, in profile (I), by half the total number of cycles, the probability of
accepting a bad move which decreases the global fitness value by more than one
unit will be almost 0. So from exactly half the total number of cycles onwards,
the search will behave as a pure hill climbing (HC.) By contrast, in profile (II),
the probability of accepting a bad move which decreases the global fitness value
by more than one unit will be almost 0 by one quarter of the total number of
cycles. In this case, from exactly one forth of the total number of cycles onwards,
the search will behave as a pure hill climbing.

Other parameters for our specific problem are the following. There are 3 par-
ties in the exchange which exchange 6 items according to the scenario described
in Section 3.1. The maximum allowed number of messages per protocol is set
to 10, with each message consisting of at most 6 items. Note that with these
parameters the search space (possible number of protocols) is O(263), according
to expression (4).
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Table 1. Rate of success (RS) and average number of protocols evaluated (NPE) per
trial and moving rate (MR). Results estimated over 500 trials.

Hill Climbing SA (Profile I) SA (Profile II)

MR RS Avg. NPE RS Avg. NPE RS Avg. NPE

0.01 64.8% 108348 79.4% 82434 71.6% 90830
0.05 93.6% 47068 99.6% 27637 97.2% 29765
0.1 97.6% 36464 99.6% 24833 99.4% 23879
0.2 98.2% 35274 99.2% 32709 99% 29981
0.3 90.4% 59144 98.4% 47924 95% 50588
0.4 56.6% 42754 75.8% 67340 68.4% 55958
0.5 18.6% 26387 30.20% 56718 23.8% 44678
0.6 5% 14311 11.2% 40484 7% 29673
0.7 1.4% 11281 5% 37466 3.2% 24909
0.8 2% 10047 3.6% 34830 1% 24535

Random Search

RS Avg. NPE

2.0% 19823
6.4% 96975
12.4% 186519
23.0% 355611

(a) (b)

3.3 Results

Extensive experimentation has demonstrated that around 200 cycles with 1000
moves in the SA inner loop are sufficient to reach solutions in reasonable time
(around 1 or 2 minutes.)

Table 1(a) shows the results obtained for the two SA profiles and different
moving rates (column MR). The rate of success (column RS) represents the
percentage of executions attaining a feasible rational protocol over 500 trials.
The average number of protocols evaluated is indicated in column Avg. NPE.
Finally, both SA profiles (I and II) are compared with the results obtained when
applying a classic Hill Climbing algorithm (HC.)

In both SA profiles, the best results are obtained with a moving rate of 0.1,
which results in around a 99.5% of success (i.e. almost every execution produces
a valid solution) by evaluating approximately 24500 protocols. These numbers
imply synthesizing a protocol for this scenario in less than 1 minute in a com-
mon laptop. The success rate for slightly lower or higher mutation rates are
similar, though the number of total candidates evaluated before reaching a solu-
tion grows considerably, thus resulting in a more inefficient search. As expected,
higher mutation rates transforms the search in an almost random procedure with
fewer chances to succeed. Further comparatives are shown in Table 1(b) where
a random search is applied to resolve the same problem.

All in all, the best rates of success are systematically achieved by SA. Even
though a simple HC technique attains very good solutions too, the average num-
ber of protocols evaluated per trial serves as an experimental proof of efficiency
in favor of a more sophisticated heuristic based on SA. Furthermore, our prelim-
inary experimentation indicates that this is certainly the case in more complex
exchange scenarios. Finally, as for a pure random search, the numbers are sev-
eral orders of magnitude below the results obtained by any of the other two
techniques.
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P0

o0,o1 �� P1

o1,o4

��

P0

o2,o3 �� P1

o3

��
P2

o4,o5

����������
P2

(1) P0 → P1 : {o0, o1}KP1

(2) P1 → P2 : {{o1, o4}K−1
P1

}KP2

(3) P2 → P0 : {o4, o5}K−1
P2

(4) P0 → P1 : {o2, o3}KP1

(5) P1 → P2 : {{o3}K−1
P1

}KP2

(a) (b)

Fig. 1. A synthesized 3–entity rational exchange protocol. The protocol runs in the
two phases illustrated on the right.

3.4 An Example of 3–RES Protocol

Figure 1(a) shows an example of a synthesized protocol for the problem described
in Section 3.1. Further security refinements are applied to each message resulting
in the scheme shown in Figure 1(b) (KPi and K−1

Pi
denote Pi’s public and private

keys, respectively.)
The 3–RES protocol synthesized using our proposed approach can be formally

proven rational using techniques based on game theory and backward induction
(see [10].) Informally, here are some aspects of the formalism which ensure that
the scheme is a feasible rational solution satisfying all participants’ sets of re-
quirements:

• From entity’s P0 point of view. As stated in the initial assumptions,
items o4 and o5 are of no use to entity P0 until the corresponding return
items o2 and o3 have reached entities P1 and P2, respectively. To this regard,
and since entity P0 requires either all or none of these items, entity P0 is
rationally forced to perform step (4) of the protocol.

• From entities P1 and P2 point of view. Again, the assumption of P0

requiring either all or none of the items forces (rationally) entity P1 to send
messages (2) and (5) and entity P2 to send message (3).

Therefore, no entity would unilaterally deviate from the 3–RES protocol as
they could not obtain better utility values in doing so. The scheme is then a
rational solution.

4 Conclusions

Traditionally, automated tools have always been applied to the analysis and
verification of existing security protocols. In this paper we have adopted a new
approach, ensuring rationality as part of the automated design of an exchange
scheme.

For the purposes of this work, we have designed and implemented a 3–RES
search algorithm based on Simulated Annealing. Moreover, the formal founda-
tions of our methodology ensure high levels of flexibility and scalability for any
multi–party rational exchange problem.
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Abstract. We consider the problem of real-time data broadcast schedul-
ing in pervasive systems with soft deadlines and constraints on the order
in which data items should be broadcast to be useful. The broadcast
schedule needs to be generated to provide a certain level of quality of
service. Thus, the real-time scheduler has to effectively trade-off between
its running time and the quality of schedules generated. We use an evo-
lution strategy to solve the problem. The variants tested includes (1+λ)-
ES, (1, λ)-ES, and a (2+1)-ES with a modified Syswerda recombination
operator, as well as a genetic algorithm.

Keywords: Data broadcasting, Scheduling, Evolution strategy.

1 Introduction

Many pervasive application domains involve clients interested in groups of re-
lated data items that can be processed one at a time following some order.
Consider the following example – a traffic management system in a large city.
The system gathers current traffic information using sensors and disseminates
it to drivers in real time on demand. Drivers use smart GPS navigation units
to request road conditions so that they can be routed and re-routed along the
best possible roads. The GPS unit periodically requests traffic information for
the roads that are still remaining in its route plan. The traffic service needs to
provide the road conditions in the same order that the roads are in the route
plan. That is, if the current route plan is 〈r1, r2, r3, r4〉, where ri is a road identi-
fier, then the traffic service should provide the information as 〈rc1, rc2, rc3, rc4〉,
where rci is the road condition for ri. A scheduling problem occurs in such an ap-
plication when the number of data access requests is larger than the bandwidth
capacity of the server.

Various soft deadlines may also be imposed on the requested data items, which
if not served within a specific time window may result in the data item having
near zero utility when finally received. For example, from the time that a driver
makes a request for traffic information on road ri to the time the monitoring
service reports back with a gridlock on ri, the driver may already have missed
a more convenient exit for an alternate route. Given the resource limitations,

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 991–1000, 2008.
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it is not always possible that the time constraints of every incoming request
be satisfied. Thus, a broadcast schedule is sought which can serve clients with
as much utility as possible. The scheduling problem is more difficult in a real-
time setting where generation of a high utility schedule has to respect run time
constraints as well.

In this paper, we first propose an utility accrual method for data requests
involving constraints on the order of the requested data items. Second, we define
a modified version of the Syswerda recombination operator for use in methods
with recombination. Finally, the utility function is used by an evolution strategy
based schedule optimizer to evaluate the effectiveness of the schedules. We pay
particular attention to the run time constraint of the scheduler and argue that
simple variants of evolution strategy can be employed to satisfy this requirement.

The remainder of the paper is organized as follows. Section 2 outlines the
related work. Section 3 presents the utility function and a formal statement of
the problem. Section 4 presents the specifics of the evolution strategy method.
The experimental setup is presented in Sect. 5. Discussion on the results obtained
are presented in Sect. 6. Finally, Sect. 7 concludes the paper.

2 Related Work

Several shortcomingsofusinga strictdeadlinebasedsystemarediscussedbyRavin-
dran et al. [1]. Jensen et al. point out that real-time systems are usually associated
with a value based model which can be expressed as a function of time [2]. They
introduce the idea of T ime − Utility Functions to capture the semantics of soft
time constraints specifying utility as a function of completion time. An attempt to
understand the benefit of utility values in hard deadline scheduling algorithms is
made by Buttazzo et al. [3]. Wu et al. study a task scheduling problem where utility
is considered a function of the start time of the task [4].

Ordered queries have been studied in the mobile computing paradigm. Cheha-
deh et al. take into consideration object graphs to cluster related objects close
to one another in the broadcast channel [5]. Hurson et al. propose an extension
for multiple broadcast channels [6]. Huang et al. show that several cases of the
problem of broadcasting related data is NP-hard and propose a genetic algorithm
to address the problem [7].

Our approach to the problem differs in the introduction of an utility metric
to evaluate the goodness of schedules and uses evolution strategy as a fast and
effective method to obtain high utility schedules.

3 Broadcast Scheduling

Data broadcasting is an efficient approach to address data requests, particularly
when similar requests are received from a large user community. Push-based ar-
chitectures broadcast commonly accessed data at regular intervals. On-demand
architectures allow the clients to send their requests to the server. Certain re-
quests have an added requirement of data items being served in a particular
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order. Further, particular emphasis has to be paid to the time criticality and
utility of a served request in an on-demand architecture.

3.1 Broadcast Model

Clients use an uplink channel to a data provider to request various data items
served by the provider. Each request Qj takes the form of a tuple 〈Dj , Rj〉, where
Rj is the response time within which the requesting client expects the first data
item from the ordered set Dj , hereafter called a data group. The assumption that
processing at the client end can start as soon as the first data item in the group is
received is implicit in this context. Nonetheless, a client must receive all requested
data items for the processing to complete. The data provider reads the requests
from a queue and invokes a scheduler to determine the order in which the requests
are to be served. It is important to note that new requests arrive frequently into
the queue which makes the task of the scheduler dynamic in nature. A request is
considered to be “fully served” when the last data item in the requested data group
is retrieved, otherwise it is considered “partially served”.

The scheduler is invoked every time a new request is received. At each instance,
the scheduler first determines the requests that will be fully served by the current
broadcast and removes them from the request queue. For the remaining requests,
the data items required to serve them are determined and a schedule is generated.
The scheduler makes a “best effort” at generating a schedule that respects the
response time requirements of the clients.

3.2 Utility Metric

In order to facilitate soft deadlines, we make the assumption that the utility of
a data item received by a client decreases exponentially if not received within
the expected response time. For request Qj arriving at time Tj and involving
the data group Dj = {d1j , d2j , . . . , dNjj}, let t1j , t2j , . . . , tNjj be the time when
the respective data items are retrieved by the client. The utility generated by
serving the first data item is given as,

uj [t1j ] =

{
1 , t1j − Tj ≤ Rj

e−α(t1j−Tj−Rj) , t1j − Tj > Rj

(1)

The utility from the subsequent items is then given as, for i = 2, . . . , Nj and
inter-item response time RT ,

uj[tij ] =

{
uj[t(i−1)j ] , tij − t(i−1)j ≤ RT

uj[t(i−1)j ]e−α(tij−t(i−1)j−RT ) , tij − t(i−1)j > RT

(2)

The utility of a data item for a client decays by half as a function of the
response time, i.e. α = ln 0.5/R, where R = Rj for the first data item in the
requested group and R = RT for any subsequent data item.

If all data items are broadcast in a timely manner, a maximum utility of 1
will be generated by each data item. However, when a data item’s broadcast
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time exceeds its expected response time, not only will its utility drop, it will also
influence the maximum utility that can be obtained from subsequent items. We
then say that the utility generated by serving the request is given by the utility
generated at the last item of the data group, or Uj = uj[tNjj ]. The quality of
service desired in an application domain can be directly specified as a fraction of
the utility derived from serving the requests. For a schedule S, generated to serve
the requests Q1, Q2, . . . , QM in the queue, the utility generated by the schedule
is the aggregation of the utilities for the requests in the queue, given as,

US =
M∑

k=1

Uk (3)

3.3 Problem Statement

A data source D = {D1, D2, . . . , DN} is a set of N ordered sets (or data groups),
where Dj = {d1j , d2j , . . . , dNjj} with Nj being the cardinality of Dj and j =
1, . . . , N . All data items dij are assumed to be unique and are of equal size dsize.
A request queue at any instance is a dynamic queue Q with entries Qj of the
form 〈Dj , Rj〉, Dj ∈ D and Rj ≥ 0. At an instance tcurr, let Q1, Q2, . . . , QM

be the entries in Q. We define the notation Wait[Qj] to denote the data item
that the request Qj is currently waiting for. Further, we define Rem[Qj] as the
ordered subset of data items that has been requested in Qj but not yet received,
i.e. Rem[Qj] ⊆ Dj . A schedule is a total ordering of the elements in the multi-set⋃
j=1,...,M

Rem[Qj].

The time instance at which a particular data item from the schedule starts
to be broadcast is dependent on the bandwidth of the broadcast channel. A
broadcast channel of bandwidth b can transmit b data unit per time unit. If
tready is the ready time of the channel (maximum of tcurr and the end time
of current broadcast), then for the schedule di1j1 < di2j2 < . . . < diP jP , the
data item dikjk

can be retrieved by an interested client at time instance tikjk
=

tready + [(k − 1)dsize/b]. All requests Qj in Q with Wait[Qj ] = dikjk
are then

partially served, i.e. tikj for such requests is set to tikjk
, and Rem[Qj] is changed

to Rem[Qj]− {dikjk
}. The request is fully served when Rem[Qj] = φ.

At each scheduling instance, the problem then is to find a schedule with
maximum utility given by (3).

4 Solution Methodology

Evolution Strategies (ES) [8] are typically expressed by the μ and λ parameters.
In the (μ + λ)-ES, μ best of the combined parent and offspring generations are
retained using truncation selection. In the (μ, λ)-ES variant, the μ best of the
λ offspring replace the parents. We restrict our focus to simple stochastic local
search variants by setting μ = 1. We also experiment with a (2 + 1)-ES with
recombination and a simple genetic algorithm (GA).

A schedule can be represented by a permutation of the data items currently
in the Rem[·] sets of requests. Since the same data item may be present multiple
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times in this permutation, a request identifier is attached to every data item. For
the requests Q1, Q2, . . . , QM currently in the request queue, the data items in
Rem[Qj] of a request are identified by the tuples 〈j, dikj〉, where dikj ∈ Rem[Qj].
The first component of a tuple identifies the request for which it exists in the
permutation, and the second component identifies the data item number. The
request identifier is only used in the permutation and is not part of the broadcast
for the data item. Hence, if a request is waiting on a data item, say dik1 j1 , then
upon broadcast it will be retrieved by the request irrespective of the request
identifier attached to the data item in the tuple, j1 in this case.

The simplest ES methods employ a mutation operator only, which implies a
low overhead on the running time of the scheduler in a dynamic setting. “Shift”
mutation selects two random positions in a permutation and the element at the
first chosen position is removed and inserted at the second chosen position. The
second random position is chosen in a way such that the ordering constraints for
the data item in the tuple is preserved.

Recombination for the (2+1)-ES and the GA is achieved by a modified version
of the Syswerda order-based crossover operator [9]. Syswerda’s operator chooses
random positions on a parent for exchange with the other. However, doing so
can disrupt the ordering constraints of the permutation on the offspring (Fig. 1).
The modified operator, called the constrained-Syswerda operator, eliminates this
problem by restricting the choice of positions to a random contiguous block in-
stead. One can prove this modification always yields feasible schedules.

Valid Parent 1 : a b c d e f g h i j
Valid Parent 2 : a d e b c h i f g j
Cross Positions : * * *
Invalid Offspring : a b e d c f g h i j

Fig. 1. A counter example for the Syswerda order-based crossover operator. Ordering
constraints are {a, b, c}, {d, e, f, g} and {h, i, j}; constraint {d, e, f, g} is violated in the
offspring.

5 Experimental Setup

Due to the non-availability of a standard test dataset in the domain, the data
used in our experiments is generated using well known distributions that are
known to capture the dynamics of a public data access system [10]. The dataset
contains 10000 requests generated using a Poisson distribution with an arrival
rate of 3 requests per second. Each request consists of an arrival time, data group
number, and an expected response time for the first data item in the group. We
consider 100 different data groups, the number of data items in each drawn
from an exponential distribution with rate parameter 10. The bandwidth for the
broadcast channel is set at 200KB/s.

The data groups requested are assumed to follow the commonly used Zipf
distribution [10] with the characterizing exponent of 0.8. Under this assumption,
the first data group becomes the most requested one, while the last one is the
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least requested. Broadcast schedules can be heavily affected by the size of the
most requested data group. Thus, we consider two different assignments: INC
– most requested data group has the smallest number of data items, and DEC
– most requested data group is the largest in size [11,12]. Each data item is of
size 50KB.

Expected response times for the first data item are assigned from a normal
distribution with mean 60s and standard deviation 20s. The particular settings
of these parameters in our experiment results in expected response times to be
generated in the range of [0, 120]s with a probability of 0.997. A zero value gen-
erated using this distribution implies that the request is expected to be served
immediately. Any negative value is replaced by zero. Response times for inter-
mediate data items is set at 1s.

For different variants of the (1 + λ)-ES and (1, λ)-ES, we fixed the maximum
number of function evaluations to 15000. The run time of a scheduling instance is
around 0.01s (on a 2×2.66 GHz Xeon running Fedora Core 8 with 2GB memory)
with this setting. The number of function evaluations is fixed at 5000 for the
(2 + 1)-ES. The parameters for the GA is set as follows: population size = 100,
number of function evaluations = 15000, crossover probability = 0.8, mutation
probability = 0.05, and 2-tournament selection.

6 Empirical Results

We present the results obtained from different variants of the ES on the two
different data group assignments – INC and DEC. The results are averaged for
20 runs for each variant. Figure 2 shows the percentage global utility obtained
by running (1 +λ)-ES with different λ values. Recall that each request can have
a maximum utility of 1. The percentage global utility is thus computed from
the fraction of this maximum utility generated in the requests in the data set.
For the INC type assignment, a (1 + 1)-ES yields an acceptably high (> 90%)
utility level. Given the bandwidth limit of 200KB/s, up to 4 data items can be
transmitted in a single time unit. In the case of an INC type assignment, this can
serve at least 4 different requests for the frequently requested data groups. Note
that the INC assignment has the most requested data group as the smallest in
size, which is one data item in our experimental data set.

The DEC type assignment has 20 data items in the most frequently requested
data group. Further, the Zipf distribution makes the larger data groups more
often requested than the smaller ones. The 200KB/s bandwidth poses a hard
bottleneck in this situation. Quite often, different requests for the same data
group arrive at different times prohibiting the Wait[·] value of those requests to
be the same. The (1 + 1)-ES fails to provide the same level of performance as
it does for the INC assignment. Increasing the sampling rate λ to 3, 5 and 10
show improvements up to 80% utility levels. Although increasing the number of
generations to 2000 improved the utility level up to 86%, the number of function
evaluations (2000× 10 = 20000) exceeded the maximum set limit of 15000.
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Fig. 2. Percentage global utility for the different λ values in the ES. For the INC
assignment, a high utility level is obtainable with λ = 1. For the DEC assignment,
increasing the sampling rate λ and the number of generations results in improvement
of the global utility.

Fig. 3. Mean difference between time of request arrival and time of first data item
broadcast for data groups of different sizes in the DEC assignment

The primary difference between the schedule utilities generated by (1 + 1)-
ES for 1000 generations and (1 + 10)-ES for 2000 generations is attributable to
the latency that the scheduler puts in between the time of arrival of a request
and the time when the first data item for the request is broadcast. Figure 3
shows the mean values of this latency for data groups of different sizes. The
(1+10)-ES maintains a higher mean latency for the larger data groups, whereas
the (1 + 1)-ES maintains a higher value for the smaller data groups. Given that
most requests are for the larger data groups in the DEC assignment, postponing
the first data item broadcast for such requests provides gaps in the schedule to
serve pending (or partially served) requests. Recall that the expected response
time is the highest for the first data item (between 0 and 120s). Once a client has
received the first data item, the expected response time drops to RT = 1s. Hence,
by delaying the first data item broadcast for the most requested data groups,
the (1 + 10)-ES maintains a better flexibility in serving pending requests.
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For the experimental data set, a simple (1 + 1)-ES for 1000 generations is
sufficient when the QoS requirement is not too high (< 75%). For the case when
the utility requirement is higher, a higher sampling rate is desired. However, note
that results obtained from running the different variants for 2000 generations
(more function evaluations) do not always yield a high difference in the utility
levels as compared to those from running the same variants for 1000 generations.
This is observed in both the comma and plus variants of the ES.

Fig. 4. (a) Schedule utility progress during the 5000th scheduling instance with DEC.
Utilities are also plotted for 100 points sampled around the parent of every generation.
(b) Percentage global utility for (2 + 1)-ES and a genetic algorithm.

Figure 4a shows the changes in the objective function (schedule utility given
by (3)) value during the scheduling instance when the 5000th request arrives. The
scheduler is working with DEC and λ = 5. Further, at each iteration, the plot
shows the utilities of 100 randomly sampled points (using shift mutation) near
the current parent. Note that the rise in the utility of the schedule is faster during
the first 250 generations and then slows down considerably. In other words, as
better schedules are obtained, improvements are harder to find. This in turn
makes the progress slower. Moreover, the randomly sampled points around the
parent of the current generation show very small differences in the utility values.
This makes it difficult for the ES to maintain a steady increase in the schedule
utility.

Figure 4b shows the percentage global utility generated by the (2+1)-ES and
the GA. Performance of both methods is on a par with the stochastic search
variants for the INC size distribution. The GA’s performance on the DEC dis-
tribution is easily overpowered by a (1+3)-ES. Further, the GA does a maximal
utilization of the allowed function evaluations of 15000. The (2 + 1)-ES achieves
an utility of 83%, equivalent to that of the (1 + 5)-ES with 2000 generations.
An important factor to consider here is the number of function evaluations used
in the two methods – 5000 in (2 + 1)-ES compared to 10000 in the (1 + 5)-ES.
Although this performance is marginally better (about 3%) than the (1 + 5)-ES
with 1000 generations, we stress that even obtaining such marginal improvements
is difficult with the DEC distribution.
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The enhanced performance of (2 + 1)-ES is attributable to the additional ex-
ploration brought forth by the recombination operator. Local search methods do
not display enough exploratory capabilities when stuck in a plateau of the search
space. Recombination allows for a more diverse sampling in such cases, thereby
resulting in a faster exploration through plateaus. The GA is expected to benefit
from this as well. The cause of its poor performance is not well understood.

Scheduling time is an important factor to consider in any dynamic scheduler.
However, it should be noted that the amount of time a scheduler has to generate
a schedule need not be always fixed. In this study, the scheduler is triggered only
when a new request arrives. The scheduler otherwise remains idle, including the
time when a broadcast is ongoing. In a real scenario, it may be beneficial to
trigger the scheduler more often – for example when a new broadcast starts –
and allow for more exploration of the search space.

7 Conclusions

Pervasive computing applications often need to broadcast grouped data objects
such that the elements in the group satisfy a user specified ordering constraint.
In addition, objects not served within a specific window may end up having near
zero utility. We introduce a method of utility accrual for grouped data objects
and use it to evaluate the effectiveness of a schedule. We argue that evolution
strategy is a viable methodology to maximize the utility of broadcasts given the
run time constraints of the application. We investigate three different methods–
a simple stochastic local search using (1 + λ)-ES and (1, λ)-ES, a (2 + 1)-ES
with a modified Syswerda recombination operator, and a genetic algorithm. Our
experiments suggest that the generation of an optimal schedule when the most
requested group has the highest number of data items is a difficult problem
to solve, often requiring a longer duration of search. However, recombination
based ES appears to be particularly effective. The (2 + 1)-ES with the proposed
recombination operator demonstrates the potential to generate better schedules
without engaging in too many function evaluations, thereby providing a fair
trade-off between the run time and utility objectives of a scheduler.

The problem considered in this paper assumes that data items are unique
across different data groups. However, there exists other problems in pervasive
environments where the data groups can have common data items. In future, we
plan to investigate if the scheduling strategy identified here works equally well
in such problem domains.
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Abstract. This paper presents a multiobjetive approach to solve the Linear Shelf
Space Allocation Problem (LiSSAP), which consists on allocating lengths of
shelves in a given shop to specific products or groups of products. Previously
we gave the first steps towards the development of a commercially viable tool
that used evolutionary computation to address the problem; in this paper we in-
troduce MELiSSA, standing for Multiobjective Evolutionary Linear Shelf-Space
Allocation, and test it on two real problem configurations, yielding very good
results.

1 Introduction

The problem of allocating space to a particular product in a shop is typically mapped in
the literature to that of deciding which combination of products will yield the maximum
profit. In general, the most commonly employed methods try and measure the impact on
the customer of the relationship between allocated space and sales [1,2,3,8,9]. The aim
is to find the allocation of space that maximises the profit. However, it is possible that
this is just an academic pursuit and that in “real life” things are addressed in a different
manner.

This is the case that we are going to address in this paper, which was presented to
us by a well-known Spanish supermarket chain1. In this company the maximisation of
the profit and the actual allocation of products to shelves were solved at different levels.
At the management level the optimal (in terms of higher profit) lengths of shelves to

1 We term this Linear Shelf Space Allocation Problem, or LiSSAP, which differs from the Shelf-
Space Allocation Problem (SSAP) described in [10] in that we aim to allocate products to
lengths of shelves (horizontal allocation) and not to the individual tiers of the shelf (vertical
allocation).
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allocate to each product were determined. These were called the category standards and
the set of category standards that configures a shop was termed the standard shop. At
the shop level, the shop planners must take this “ideal” shop configuration (in practice
a list of items and lengths of shelves) and transform it into an allocation of shelves to
items, in effect adapting the standard shop to the actual space available. Because the
size and layout of different premises can vary, the standard shop requirements cannot
be fulfilled exactly, so for some categories the allocated shelf length must be increased
or decreased with respect to the standard.

There are also other constraints for the placing of groups. Firstly, groups can have
affinities or adversities between them. Furthermore, some groups must be placed near
reference points, such as the oven, the freezer or the checkouts. Finally, groups must
be placed together in a cohesive manner: it is preferable to avoid situations in which a
group is scattered all over the shop, or with one or two modules isolated in the middle
of a shelf.

The problem shop planners faced was the lack of suitable tools to perform this task,
which meant that the allocation was done by hand. This resulted in several problems.
Firstly, the allocation of products was likely to be suboptimal (in ways that we will
define below). Secondly, no two shops had similar allocations, not only because the
initial shop layout was different2 but also because the allocation was performed by dif-
ferent persons, which could be very confusing for customers visiting different shops.
Further, allocation by hand was time consuming (up to several days), which is unac-
ceptable when many shops must be opened at the same time and also when things must
be frequently rearranged due to the introduction of new products.

In previous work [4,5,7,11] we gave the first steps towards the development of such
a tool by employing evolutionary algorithms. Here we take a step further by performing
several methodological changes, the first of which regards the objective function: pre-
viously we were either using a single aggregative fitness function which encapsulated
several objectives (giving different weight to each) [4,5,7] or addressed different con-
straints in sequence [11], via a separate algorithm; here we will employ a multiobjective
approach and address all objectives simultaneously, which we consider more suited to
the problem at hand.

The second change concerns the level of resolution of the problem, which in turn
affects the representation (encoding). In our prior approach we assigned products or
groups of products to modules (the parts in which shelves are divided). Here we will
allocate groups to shelves and aisles; once this is done it is easy to allocate indi-
vidual modules to groups, because in general there will be at most two groups per
shelf.

The paper is laid out as follows: the variables that will be employed in the rest of
the paper are described in Section 2. In Section 3 we describe the different aspects that
are relevant to the MELiSSA methodology: encoding, fitness functions and operators.
Results and analisys thereof are presented in Section 4. Finally, Section 5 summarises
the conclusions and lays the lines for further work.

2 We assume that the premises are rented and not built on purpose, which would result in a much
easier allocation problem.
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2 Modeling the LiSSAP

Given a set of G groups of products, a set of A aisles and a set of S shelves, with
S ≥ A. Each aisle ai can contain one or two rows of shelves. Each shelf si, i = 1 . . .S,
is part of one and only one aisle ak, k = 1 . . .A, and row (of which there can be one or

two), and is divided into Mi modules, with M =
S∑

i=1

Mi ≥ G being the total number

of modules in the shop.
Let PR be a number of reference points, which can be part of one or more aisles3.

Let D be the P × A matrix of distances between aisles, or distance matrix, whose
components di,j represent the distance between aisles ai and aj .

Let SS be the matrix that captures the standard shop requirements:

SS =

⎛⎜⎜⎜⎝
std1 min1 max1

std2 min2 max2

...
...

...
stdG minG maxG

⎞⎟⎟⎟⎠ (1)

where stdi, mini and maxi denote the standard, minimum and maximum number of
modules to allocate to the group gi, respectively. We term standard shop size, S, the
sum of the elements in the first column4 of SS:

S =
G∑

i=1

stdi

3 Evolutionary Methodology for the LiSSAP

In this section we cover the main aspects of the algorithm: the chromosome encoding,
the initialisation of the population, the fitness functions and the evolutionary operators.

Encoding. The individuals will consist of two chromosomes:

1. Shelves chromosome. It is represented as a vector of variable length rows, where
each row corresponds to a group and the elements of the row are shelf identifiers,
indicating the shelves occupied by the group.

2. Modules chromosome. As above, but in this case the elements of the row indicate
the number of modules assigned to the group in the corresponding shelf

Schrom =

⎛⎜⎜⎜⎝
S11 . . . S1n

S21 . . . S2m

...
...

...
SG1 . . . SGk

⎞⎟⎟⎟⎠ ; Mchrom =

⎛⎜⎜⎜⎝
M11 . . . M1n

M21 . . . M2m

...
...

...
MG1 . . . MGk

⎞⎟⎟⎟⎠ (2)

3 These will be modeled as fictitious modules to which we will allocate an equal number of
fictitious groups.

4 Note that, in general, the standard shop size S will differ from the actual shop size M , S �= M .
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Algorithm 1. Creation of an individual.

begin Algorithm create individual

[Assign initial values]

[Assign reference points to reference groups]

[Assign all modules of shelves to groups]

for each shelf s : 1 . . .S
repeat

Select a group g at random

Assign a feasible random number of modules to g

until s is fully occupied

[Complete groups below min from groups over std]

for each group g : 1 . . .G
while(g is below its min) do

Look for another group g2 above its std

Transfer a feasible number of modules from g2 to g

end Algorithm;

Initialisation of the Population. Because we are only considering feasible individuals,
the population initialisation method must ensure that the individuals created are valid.
The pseudo-code for the initialisation is given in Algorithm 1.

Fitness Functions. To encapsulate the constraints described before we will define three
fitness functions:

– Deviation fitness, fs, to capture the standard shop requirements. This function mea-
sures how close the allocation of number of modules to the groups is to the standard
shop. The objective is to minimise the absolute value of fs, which is given by

fs = e−k 1
G

G∑
i=1

fsi

where k equals the kurtosis of the deviations of all G groups5 when this value is
less than zero, and is zero otherwise and fsi is the deviation of group i. To obtain
the value of fsi we will employ a function as shown in Figure 1.

– Affinity fitness, fa, which will represent the affinity requirements between groups.
We have captured the affinity requirements in the following expression:

5 We employ the kurtosis as a measure of how spread the distribution of deviations is. A high
value of kurtosis indicates that all the deviations are around the same value, while a less than
zero value indicates a flat distribution. Using this statistic we intend to avoid undesirable situ-
ations in which a few groups have a much higher deviation than the rest, as it is preferable that
all groups have more or less the same values.
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Fig. 1. Deviation function for a group gi of given maximum, minimum and standard number of
modules. The values of σLo and σHi are determined by experimentation. It must be pointed out
that this function takes discrete values, in spite of having been represented as continuous.

fa =
G∑

i=1

G∑
j=1,j �=i

ϕ · fai,j

where G is the total number of groups, fai,j is the affinity fitness between groups
i and j and ϕ is a parameter determined by experimentation. The objective of the
algorithm is to maximise fa.

The affinity fitness between groups gi and gj , fai,j , is defined as follows,

fai,j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
di,j

dmax

)α

if gi and gj are adverse

1 if gi and gj are indifferent(
1− di,j

dmax

)α

if gi and gj are affine(
1− di,j

dmax

)β

if gi and gj are affine, with one being a reference point

where the values of α and β have been determined experimentally,dmax is the max-
imum distance between aisles and di,j is the distance between groups gi and gj .

– Dispersion fitness, fd, expressing the cohesion within a group. The dispersion fit-
ness measures the spread of groups over the shelves and across the whole shop. The
function we use for this purpose is :

fd =
1
G

G∑
i=1

fdi

where fdi is the dispersion for group i, calculated as follows:

fdi =
1
Si

Si∑
j=1

(
1−

ni,sj − 1
ni − 1

)
· max dSi

dmax

where Si is the number of shelves occupied by group i, ni,sj is the number of
modules of group i in shelf sj , ni is the total number of modules of group i and
max dSi is the maximum distance between any two shelves occupied by the group.
The objective is to minimise fd.
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Table 1. Configuration of evolutionary algorithm

Number of generations 100
Size of population 500
Restart when 50% of individuals are repeated
Size of tournament 2
Maximum size of Pareto front 50
Number of individuals kept for final solution 5

These functions and the distance measures employed are fully described in [6]. It
must be noted that the three fitnesses are not equally important for the allocation: the
deviation fitness must take precedence because it is directly based on economic criteria.

Evolutionary Operators. These have been designed to allow only valid individuals.
For simplicity reasons we have not defined a crossover operator and will only perform
mutation. The following mutation operators were implemented:

– give a shelf: the group that occupies less modules in a shelf gives them to any
other. The yielding group shall not remain under the minimum, nor the receiving
above the maximum. This operator acts on both chromosomes.

– swap shelves: two groups exchange all the modules each of them occupies,
either in the same shelf or in two different shelves. This operator acts on both
chromosomes.

– give modules: a group gives another a random number of the modules it occu-
pies in a shelf. This operator acts only on the M chromosome.

These operators are applied with different probabilities: swap shelves will have a
probability of 0.5 and the rest 0.25 each. If the mutation does not change the individual
then another one is attempted up to a maximum of ten times.

Once the evolutionary run has finished, we have a Pareto front consisting of 50 non-
dominated solutions. Because we cannot present the user with such a high number we
must perform a selection. This will be based on the fact that the deviation fitness must
take precedence over the other two, as stated above.

4 Experiments

The data set used to test the algorithm was taken from a well-known Spanish supermar-
ket chain and consists of 8 groups, as shown in Table 2.

The difficulty of this problem lies in the fact that the biggest group (G2, Cosmetics
and household products), i.e. the one that has a bigger standard value, is also adverse to
most other groups. Hence, it is going to be hard for the algorithm to find a location for
G2 that is far from nearly all others.

In order to test the algorithm two shelf layout configurations were chosen, which we
have called Shop M154 and Shop M127RP. The former consists of 8 aisles, 17 shelves
and M = 154 modules and the latter of 11 aisles, 19 shelves, and 127 modules. Hence,
the shops are respectively greater and smaller that the standard shop size of 130 given
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Table 2. Standard shop used in the experiments, with a size S of 130

Group # Description std min max Affine to Adverse to

1 Food - General 14 11 19 3,4,7 2,8

2 Cosmetics and household products 40 34 52 - 1,3,4,5,6,7

3 Food - Snacks 7 7 9 1 2,8

4 Sauces and seasoning products 9 7 11 1,7 2

5 Bakery, cereals 21 15 28 RP1 2,8

6 Baby food and accessories 13 8 19 - 2,8

7 Beverages 17 9 21 1,4 2,8

8 Pet food and accessories 9 5 11 - 1,3,5,6,7

Ref. point # Description

RP1 Oven (N.B. This will only be used for Shop M127RP)

Table 3. A solution for Shop M154; maximum and rangemax indicate that the group is at its
maximum number of modules or between the standard and the maximum number of modules
respectively

G1: S6(4) S9(3) S15(12) → 19 modules (maximum)
G2: S4(4) S7(12) S8(12) S13(12) S14(12) → 52 modules (maximum)
G3: S9(9) → 9 modules (maximum)
G4: S1(10) → 10 modules (rangemax)
G5: S3(4) S10(12) S11(12) → 28 modules (maximum)
G6: S2(10) S5(4) S12(5) → 19 modules (maximum)
G7: S12(7) S16(12) → 19 modules (rangemax)
G8: S0(10) → 10 modules (rangemax)

fa = 35.60611, fd = 0.31056547, fs = 0.8333333

Table 4. A solution for Shop M127RP; maximum, rangemax and rangemin indicate that the
group is at its maximum number of modules, between the standard and the maximum, or between
the standard and minimum number of modules respectively

G1: S1(8) S5(5) → 13 modules (rangemin)
G2: S0(8) S3(8) S13(8) S14(16) S15(6) → 36 modules (rangemin)
G3: S11(8) → 8 modules (rangemax)
G4: S2(8) → 8 modules (rangemin)
G5: S4(8) S10(8) S16(6) → 22 modules (rangemax)
G6: S7(5) S8(5) S9(5) → 15 modules (rangemax)
G7: S12(8) S17(6) → 14 modules (rangemin)
G8: S6(5) S18(6) → 11 modules (maximum)

fa = 43.143826, fd = 0.26538268, fs = 0.0
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Fig. 2. Best solution obtained for Shop M154 (top) and Shop M127RP (bottom)

by Table 2. For Shop M127RP there is also one reference point, the oven, to which
group G5 (Bakery & cereals) is affine. In both shops the module size is 1m× 0.5m and
the aisles between parallel shelves are 3 m wide.

We carried out 30 runs for each shop. The first thing that must be pointed out is that
execution times are very short, less than half a minute per run for both shops.

The best solutions for each shop are given in Tables 3 and 4, where Si is the identifier
of a shelf occupied by a given group and in brackets are the number of modules assigned
to the group in that shelf; maximum, rangemax and rangemin indicate that the
group is at its maximum number of modules, between the standard and the maximum, or
between the standard and minimum number of modules respectively. For more solutions
in the Pareto front the reader is referred to [6].

These two solutions (also depicted in Figure 2) have been selected following this
rule: first the lowest deviation (in absolute value, i.e. the one closest to 0), then the
highest affinity and finally the smallest dispersion. For Shop M154 this corresponds to
run 4, whilst for Shop M127RP it corresponds to run 13. In the latter case, however,
group G5 does not occupy the shelf closest to the reference point. For this reason we
will choose instead the solution obtained in run 5, because its deviation is very similar
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to that of run 13 and its affinity and dispersion also have similar values. This illustrates
the importance of user choice in the selection of the final solution.

For Shop M154, group G2 is placed on different aisles to all its adverse groups,
except for shelf S4 which it is close to shelf S6, occupied by G1. On the other hand,
affine groups are occupying close shelves. In this shop it can be seen that groups (except
perhaps G5) are spread all over the shop.

In Shop M127RP the algorithm succeeds in placing G5 opposite the reference point.
However, the nearest shelf occupied by it is S4, which is two aisles away. Here there is
less dispersion than in Shop M154 because more groups are cohesive.

5 Conclusions and Future Work

We have introduced MELiSSA, a multiobjective evolutionary methodology to solve the
LiSSAP, which incorporates a new model of the problem, a new encoding of the chro-
mosome and three fitness functions. The latter in particular have proven to be extremely
complex to tune and deserve further investigation.

We have observed that using the proposed method the groups tend to occupy com-
plete shelves, as long as the size of shelves in the shop allows it. This is very important,
since the undesirable situation in which a group is placed in an isolated module in a
shelf never arises, which implies an improvement over the results presented in [11].

Regarding the affinities, the algorithm manages to avoid locating two adverse groups
on the same shelf, although sometimes they can be placed on the same aisle. Further,
group G5 (Bakery & cereals) tends to be located near or in front of the reference point.

If a shop size is above the standard, all groups will be at least in their standard and
never below it. If a shop is smaller than the standard size, we cannot assure that the
distribution of number of modules is uniform. It appears that using the kurtosis as a
measure of the deviation spread works well when a shop is big enough and all groups
can be over their standard values, because the algorithm will prefer a solution were all
groups are in std at least. In the case of a shop size smaller than standard shop size, we
cannot avoid that there is a group in its max whilst other groups are below their std.

In summary, it can be said that the proposed method is effective (in providing rea-
sonable solutions) and efficient (by doing so in acceptable timescales).

Future work will involve greater refinements of the fitness functions, such as using
the centres of gravity of each group to measure the distances in the affinity fitness, using
a global dispersion function instead of considering separate dispersions for the groups
and considering alternatives to the kurtosis as a measure of deviation.
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4. Esparcia-Alcázar, A.I., Lluch-Revert, L., Albarracı́n-Guillem, J.M., Palmer-Gato, M.E.,
Sharman, K.: Towards an evolutionary tool for the allocation of supermarket shelf space.
In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), Seat-
tle, USA, vol. 2, pp. 1653–1660 (2006) ISBN:1-59593-184-4
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Abstract. Given a territory composed of basic geographical units, the
delineation of local labour market areas (LLMAs) can be seen as a prob-
lem in which those units are grouped subject to multiple constraints. In
previous research, standard genetic algorithms were not able to find valid
solutions, and a specific evolutionary algorithm was developed. The in-
clusion of multiple ad hoc operators allowed the algorithm to find better
solutions than those of a widely-used greedy method. However, the per-
centage of invalid solutions was still very high. In this paper we improve
that evolutionary algorithm through the inclusion of (i) a reparation
process, that allows every invalid individual to fulfil the constraints and
contribute to the evolution, and (ii) a hillclimbing optimisation procedure
for each generated individual by means of an appropriate reassignment of
some of its constituent units. We compare the results of both techniques
against the previous results and a greedy method.

Keywords: memetic algorithm, evolutionary computation, regionaliza-
tion, zone design, combinatorial optimization.

1 Introduction

Local labour market areas (LLMAs) are geographical entities defined to serve as
a territorial framework to design, implement and monitor effective labour market
policies and statistical operations at sub-national levels. The success of these key
policies crucially depends on the adequacy of the LLMAs delineation. According
to the code of good practices established by Eurostat [1] to guide the selection of a
specific procedure, the resulting LLMAs geography must be conformed by disjoint
areas exhaustively covering a given territory, characterised by a high degree of self-
containment in terms of travel-to-work trips (i.e. most workers in a specific LLMA
must live in that area and most of the LLMA’s employed residents should also work
locally), and relatively homogeneous in population size (exceeding a minimum size
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constraint, for instance). The problem is therefore the grouping of basic spatial
units (BSU) -such as districts, municipalities or counties- into functional areas so
that the proportion of workers that cross their boundaries in their travel to work is
low, while the number of defined areas is maximized. This problem is analogous to
a Graph Partitioning Problem (GPP) where the optimal number k of partitions
is unknown and the requisite of size homogeneity is relaxed or removed, so it is
expected to be at least as hard as the standard GPP (that is NP-hard). Thus, an
exhaustive resolution of the problem is not possible.

One of the more widely and successfully used official procedures is that of
Travel-to-Work Areas (TTWAs) in the UK (it is fully described in [2], and has
been applied with minor changes in other countries: [3], [4], [5], and [6]). This
regionalization method can be defined as a greedy algorithm that iteratively
aggregates a given set of BSUs based on the relative attraction (in terms of
commuting flows) between them until all the defined functional areas meet both
self-containment and size constraints (in terms of employed population). The
method allows reaching adecuate solutions with little CPU time.

In order to get solutions closer to the optimal, an evolutionary approach [7]
was designed. The multiple constraints which are part of the problem cause the
number of valid solutions –those that meet the constraints– to be extraordinarily
small with regards to the search space, so standard genetic operators didn’t
lead to valid solutions in a reasonable lapse of time. This is the reason why
an extensive set of specific crossover and mutation operators was proposed [8].
Whilst some of them have similarities with those used in other grouping and
clustering problems, others are much more related to the very specific nature
of the problem. However, and despite the design of ad hoc genetic operators, a
high percentage of the individuals generated were not valid. In this paper we
propose the inclusion of an intermediate stage in the evolutionary process aimed
at ’repairing’ every invalid individual. Additionally, we also include a stage of
local optimization through optimal reassignment of BSUs chosen at random.
The application of both techniques should accelerate the evolutionary process in
terms of generations and help to reach solutions closer to the optimal one.

2 Problem Formulation

Let S = {S1, S2, . . . , Sn} be a set of BSUs (the territory to be divided into
LLMAs) and WSi,Sj the number of commuters from BSU Si to BSU Sj , that
is, the number of residents in Si that work in Sj (thus, WSi,Si is the amount
of people who simultaneously live and work whithin the boundaries of BSU Si).
The objective is to obtain the set of markets (LLMAs) M = {M1,M2, . . . ,Mm},
where m is unknown a priori, so as Mi �= ∅, ∀Mi ∈ M ;

⋃m
i=1Mi = S and

Mi ∩Mj = ∅, ∀i, j ∈ [1,m] , i �= j, 1 ≤ m ≤ n), that maximizes fitness function
f . Let II be the interaction index between two markets:

II(Mi,Mj) =
WMi,Mj

Ri︸ ︷︷ ︸
PEMi,Mj

×
WMi,Mj

Jj︸ ︷︷ ︸
PJMi,Mj

+
WMj ,Mi

Rj︸ ︷︷ ︸
PEMj ,Mi

×
WMj ,Mi

Ji︸ ︷︷ ︸
PJMj,Mi

(1)
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where
WMs,Mt =

∑
∀Si∈Ms

∑
∀Sj∈Mt

WSi,Sj (2)

is the total number of commuters residing in the set of BSUs of Ms that works
in any of the BSUs of Mt; Rk = W{Mk},S the total number of workers residing
in Mk; and Jk = WS,{Mk} the total number of jobs in Mk.

Factor PEMi,Mj is the fraction of the employed population residing in Mi

and working in Mj ; and PJMi,Mj is the portion of jobs in Mj that are held by
workers residing in (coming from) Mi.

This interaction index can be the base for different fitness functions. Among
them in this exercise we have decided to test our method with

f(M) = card(M) ×
∑

∀Si∈S

II({Si},MSi − {Si}) (3)

where MSi is the market Si belongs to. In our case we calculate the interaction
index between a BSU Sk –which is considered as a mono-BSU market– and the
market that would result if that BSU Sk is substracted from the market Mk it
belongs to. This interaction index between a BSU and the market it belongs to is
a generalization of the interaction index used in [2]. The inclusion of the number
of LLMAs as a factor allows to reach the highest possible number of independent
LLMAs –this is one of the criteria usually applied in practical exercises [9].

Besides, each market Mi ∈ M must fulfil two requirements in terms of min-
imum self-containment percentages (β1, β2, 0 ≤ β1 ≤ β2 ≤ 1) –i.e. both the
proportion of the occupied working locally, and the proportion of jobs filled by
local workers must exceed a given threshold–, and minimum size in terms of
employed population (β3, β4, 1 ≤ β4 ≤ β3):

min

(
WMi,Mi

WMi,S
;
WMi,Mi

WS,Mi

)
≥ β1 (4)

WMi,S ≥ β4 (5)

Very urbanized environments are in real world characterised by the intensity
and complexity of the network of commuting flows, something which makes it
difficult to identify isolated groups of BSU. To facilitate the identification of a
larger number of separate LLMAs in such environments a trade-off between both
constraints (self-containment and minimum size) has been introduced similarly
to [2], but using the formulation proposed by Casado-Dı́az[9]. According to this
proposal, the minimum self-containment requirement is linearly relaxed from β2

to β1 for populations sizes from β4 to β3. For each market in a given solution,
this trade-off is evaluated as follows:

min
(

WMi,Mi

WMi,S
; WMi,Mi

WS,Mi

)
β2 −mβ4 +mWMi,S

≥ 1 (6)

m =
β2 − β1

β4 − β3
(7)
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We have also included a minimum connectivity requisite to guarantee some de-
gree of territorial contiguity without employing spatial data: a BSU can only
belong to a market if it is reachable from any other BSU of that market through
the γ largest outgoing/incoming commuting flows of each BSU in the market
(we call this functional neighbourhood).

3 Evolutionary Proposal

The structure of the initial evolutionary algorithm for the regionalization of a
given territory follows the next steps:

Step 1. Produce an initial population consisting of np individuals. At least
one of the individuals in the population must be valid -i.e. it must meet all
the constraints. To assure this the first individual generated consists of a single
market covering all the territory. Complete the initial population with np − 1
randomly generated individuals (in practice, all of these are invalid solutions).

Step 2. Evaluate fitness of all individuals and sort them accordingly.

Step 3. Repeat nr times: select two valid individuals from the current population
by fitness-proportional probability, select with uniform probability one crossover
operator, apply it to the two selected parents generating a new individual, and
evaluate its fitness.

Step 4. Sort the whole population, composed of np + nr individuals, by their
fitness value.

Step 5. Repeat nm times: select a valid individual from the current popu-
lation (including the new offspring from the recombination stage) by fitness-
proportional probability, select with uniform probability one mutation operator,
apply it to the selected individual generating a new individual, and evaluate its
fitness.

Step 6. Sort the whole population, composed of np + nr + nm individuals, by
their fitness value.

Step 7. Select the population for the next generation choosing the np best
individuals (truncation scheme).

Step 8. Stop condition: if the best individual has changed in the last g genera-
tions, return to step 3. Otherwise, finish.

3.1 Genetic Representation

The individuals which constitute the population represent feasible solutions, that
is, the aggregation of all the BSUs composing territory S, into non over-lapping
LLMAs. We have used a group-number encoding [10] where each individual is rep-
resented by a vector of n components, each of which corresponds to a BSU of S,
and takes the value of the identifier of the market the BSU belongs to (Figure 1).
This representations ensures the non-overlapping constraint is fulfilled.
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Fig. 1. Representation of individuals

3.2 Selection

The selection of the individuals to be affected by recombination and mutation
operations is performed following a ranking method, according to which those
individuals scoring higher in the fitness function have a larger probability of
being selected. We use truncation for the selection of surviving individuals that
compose the population in the next generation. So for every generation, the
population is composed by the np better solutions in the previous generation.

3.3 Genetic Operators

Due to the large number of constraints that the individuals must meet, the
usual operators of recombination and mutation seldom lead to valid solutions.
This makes the evolution difficult or even unable to progress. For this reason
we designed four ad hoc crossover operators and eleven mutation operators (see
[8] for a detailed description). Specialized crossover operators consider the cod-
ification of both parents when the offspring is generated avoiding discrepancies
between all of them. On the other hand, mutation operators have four main
functions: division of markets, fusion of markets, reassignment of single BSUs,
and reassignment of groups of BSUs. The goal of division operators is to increase
the number of markets –i.e. card(M)– in the regionalization, so as to improve
the detail of the result. Fusion operators merge markets to go back in the process
of division. Reassignment operators try to improve the solution by reassigning
specific BSUs between markets in a local search procedure.

3.4 Summary of the Evolutionary Process

To summarize, from an individual in which all the BSUs are merged to conform
a single LLMA, successive applications of division and aggregation of markets,
reassignment of single BSUs or groups of BSUs between markets, and recombi-
nations, allow increasing the number of LLMAs, assigning the basic geographical
units to the relevant LLMA so that the fitness function is maximised.

4 Memetic Proposal

One of the main problems of the application of this evolutionary algorithm,
caused by restrictions that must be fulfilled, is the high percentage of invalid
individuals resulting from the use of stochastical operators, where little or none
information about the problem is used.



1016 F. Flórez-Revuelta et al.

To achieve a higher success rate for those operators without complicating their
algorithms, we implement a repair stage after each genetic operator. In this step
invalid markets are disaggregated and their BSUs reassigned –among the rest of
markets that form the individual being repaired–, until all the markets in the
individual meet the constraints. As a side effect, this technique makes all ran-
domly generated individuals in the initial population to be valid, and therefore
the inclusion of an specific valid individual in step 1 to start the evolution is
unnecessary.

Moreover, just after its evaluation, every valid individual goes on to a local
search process, by means of the reassignment of individual BSUs among the
existing markets, in order to optimize the generated individuals.

4.1 Repair of Invalid Individuals

The process of repair of an individual is based on the technique used by Coombes
et al. [2] when a market does not fulfil the established restrictions. These invalid
markets are successively disintegrated into their constituent BSUs which are then
reassigned to the market with which they have the larger mutual interaction.

In an algorithmic way the process of repair would be as follows:

1. Verify the fulfilment of the constraints of each market Mi ∈ M (see 3). If
there is no invalid market, repair is finished.

2. Chose at random an invalid market Mi and disintegrate it.
3. Assign each BSU Sk ∈Mi (chosen in random order) to the market M ′ with

which it possesses more interaction. That is:

M ′ = arg max
∀Mj∈M,Mj �=Mi

II({Sk},Mj) (8)

4. Once all the BSUs in Mi are reassigned, return to step 1.

As a result of this process, the individual will fulfil the constraints (unless
there are not valid solutions in the search space due to excessive restriction), but
the total number of LLMAs will decrease at least in one (if the individual was
invalid). This worsens the fitness, since the specific function that we use in this
exercise (3) tends to overvalue the solutions with larger number of markets (there
is a preference for detail). Note that the final number of markets disaggregated
in a repaired individual can be lower than the number of invalid markets before
repair, because the reassigned BSUs of the first disintegrated markets can turn
some other invalid markets into valid ones before the repair process choose them
for disaggregation.

4.2 Improvement of Valid Individuals

We have also included a process of improvement of the generated individuals
that fulfil all the restrictions or those that have been repaired. The goal is to
carry out a local search to improve the fitness of the individual by reassigning
single BSUs between markets. The process starts by randomly selecting a market
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(LLMA) to be optimised. Next, the BSU belonging to that market and having
the lowest interaction with the rest of its constituent BSUs, is reassigned to
the market with which it has more interaction. This process continues while it
increases the value of the fitness function. Likewise, we have also included a
tolerance parameter that allows a number of unsuccessful reassignements before
stopping the optimization process.

The process of optimization is as follows:

1. Set counter of unsuccessful attemps to c = 0.
2. A market Mi ∈M of the individual I is selected at random.
3. The BSU to be removed is selected as:

Sr = arg min
∀Sj∈Mi

II({Sj},Mi − {Sj}) (9)

4. In a new individul I ′, copy of I, BSU Sr is assigned to its optimal market
following equation (8).

5. If the new individual I ′ is invalid, it is repaired.
6. If f(I ′) > f(I) (the new individual is better than the original), I = I ′. Else

increment the counter of failed attempts, c = c+ 1
7. If c < ξ return to step 2.

4.3 Results

To test our proposal we use a case study: the delineation of a set of LLMAs
in the Region of Valencia, Spain. Travel-to-work data derived from the Spanish
Census of Population [11] allowed us to build a 541 × 541 origin-destination
commuting matrix (where 541 is the number n of municipalities that integrate
the territory), where each cell represents WSi,Sj . Parameters were set in these
values: size population np = 100, recombination offspring nr = 10 and mutations
nm = 24. The condition of termination, i.e. generations without changes in the
best individual is set to g = 250. Parameter γ of minimum flow connectivity or
functional neightbourhood is set to 5. In the memetic algorithm, parameter ξ of
allowed failed attemps in the optimization process is set to 5.

These evolutionary proposals substantially improve the results obtained by
the traditional methods in both number of markets and fitness function (Table 1).
The memetic algorithm obtains better mean results than the original evolution-
ary proposal and their dispersion is smaller. In an ANOVA test with confidence
level 5%, we have obtained an F value equal to 16.04, greater than the critical
value 3.86. So, the improvement of the memetic proposal is significant, although
the best result was obtained with the original EA. However, although the solu-
tions are obtained in less iterations, evolution time is around four times higher
due to the great percentage of individuals that must be evaluated (Table 2) in
the course of the reparation and optimization steps.

One of the consequences of the application of this processes of repair and
optimization is that the success rate of the different operators –measured in terms
of individuals generated by that individual that remain in the population at the
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Table 1. Comparison of results

Fitness Number Generations Time
value of LLMAs consumed (s.)

TTWAs method 120.23 44 - 1

Original EA [7] Best 190.01 62 3620 1068
Mean 180.54 59.52 3088.1 853.43

σ 4.19 1.24 588.09 166.76

Memetic algorithm Best 189.64 62 2580 4478
Mean 182.04 59.43 2074.7 3332.58

σ 3.21 1.14 566.84 894.44

Table 2. Percentage of individuals repaired and improved

Percentage

Repaired by failing to fulfil contiguity constraint 53.44%
Repaired by failing to fulfil eq. (4) to (6) 35.50%
Improved individuals 7.58%

Fig. 2. Number of individuals in the population generated with the different operators

beggining of each generatio– differs from the original algorithm (Figure 2). For
instance, in the evolutionary proposal division operators were successful in the
beginning of the evolution. Once the number of markets reached its maximum,
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division of markets led to invalid individuals because they did not fulfil the size
constraint. However, with the memetic approach these markets can be repaired
and become successful.

5 Conclusions and Current Works

We have presented a memetic version of our previous evolutionary algorithm for
delineation of functional areas (an unsupervised multi-constrained graph par-
titioning problem), and compared both results. Given the complexity of the
problem, when the requirements associated to such a procedure are applied in
real case studies (where the number of base spatial units is frequently very high),
conventional genetic operators hardly ever lead to valid solutions. We tried to
avoid this problem by designing ad-hoc operators. These specialized operators
allowed to obtain good final delineations. However, the percentage of invalid gen-
erated individuals continued being very high. Our memetic extension of the EA
includes a repair procedure to turn these solutions into valid ones that can con-
tribute to the evolutionary process, and a local search optimization procedure.
Both techniques result in a faster evolutionary process, in terms of generations.
Besides, some of the operators that in previous versions were of low useful-
ness in the course of the evolution, are now much more significant in the whole
process. The time consumed by the whole memetic approach is however com-
paratively very high. The repair and optimization procedures, and the numerous
extra evaluations associated to them, makes the process longer. And opposite
to our first estimations, the improvement in quality of the solutions is small,
although statistically significant. This can be consequence of the high value that
the objective function chosen in this exercise assigns to the number of delim-
ited markets, since the repair process tends to reduce that value. Moreover the
optimization process uses itself the repair process in its iterations (so it is time
consuming) and it is based in one of the mutation operators already working
in the mutation stage (so its effectiveness would be improved if that mutation
operator is disabled). So now we are studying how this MA performs with other
fitness functions and representations, and how we could optimize the repair and
optimization processes.

We are also considering other ways of improvement, like the use of an adaptive
scheme for the probability of application of the genetic operators in order to take
advantage of the changing efficiency of the operators during the evolution, an
island model for the parallel implementation of the algorithm, a reformulation
of the problem based on multiobjective optimization, and the application of the
method to other GPPs.
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Abstract. This paper presents a new version of an evolutionary algo-
rithm that creates XSLT programs from its intended input and output.
XSLT is a general purpose, document-oriented functional language, gen-
erally used to transform XML documents (or, in general, solve any prob-
lem that can be coded as an XML document). Previously, a solution that
solved the problem efficiently was proposed. In this paper, we improve on
those results by testing different fitness functions, adding a new operator
and changing the type of desired output document that can be obtained.
The experiments show that the best results are obtained without con-
sidering the XSLT length and including this new operator.

1 Introduction

Since the Information Technology industry has settled on different Extensible
Markup Language (XML) dialects as information exchange format, there is a
business need for programs that transform from one XML set of tags to another,
extracting information or combining it in many possible ways; a typical example
of this transformation could be the extraction of news headlines from an on-line
newspaper that uses XHTML.

XSLT stylesheets (XML Stylesheet Language for Transformations) [1], also
called logicsheets, are programs designed for this purpose: applied to an XML
document, they produce another. There are other possible solutions: programs
written in any language that work with text as input and output (using, for
instance, regular expressions) or SAX filters [2], that process each tag in a XML
document in a different way, and do not need to load into memory the whole XML
document. However, these solutions require programming in external languages,
while XSLT is a part of the XML set of standards; in fact, XSLT logicsheets
are XML documents. This is why XSLT is one of the most common ways of
specifying document transformations. XSLT make use of XPath expressions [3]
to select nodes from the source document.

The work needed for logicsheet creation scales quadratically with the number
of input and output formats: for n input and m output formats, n ×m trans-
formations will be needed. Considering that each conversion is a hand-written
program and the initial and final formats can vary with certain frequency, any
� Supported by projects TIN2007-68083-C02-01, P06-TIC-02025 and OTRI-1515.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 1021–1030, 2008.
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automation of the process means a considerable saving of effort on the part of
the programmers1.

So, the problem is to find the XSLT logicsheet that, from one input XML
document, is able to obtain an output XML document which contains exclusively
the information desired from the first one. This information may be sorted in
any possible way (possibly in an order different to the input document). In this
work, an Evolutionary Algorithm (EA) [4] to resolve this problem is presented.
The logicsheet will be evolved using evolutionary operators that will take into
account the structure of the program and its components.

Thus, XSLT provides a general mechanism for the association of patterns
in the source XML document to the application of format rules to these ele-
ments, but in order to simplify the search space for the evolutionary algorithm,
only three instructions will be considered in this paper: template, which selects
the XML fragments that will be included when the element in its match at-
tribute is found; apply-templates, which is used to select the elements to which
the transformation is going to be applied and delegate control to the correspond-
ing templates; and copy-of, which includes the text representation of the nodes
of the input XML into the output file (that is, copy all node contents and tags),
so the output file will be a complete XML instead a list of content, as we did
in our previous work. Of course, XPath expressions will also be used to select
particular elements and sets of them.

In a previous work [5], we published an initial set of XSLT evolution exper-
iments, testing different document structures and operators. In this paper we
will try to improve on those results, by using XML output documents with tree
structure, instead of plain text-only documents. This means that output docu-
ments are composed of several nodes, which makes it easier to compare them
with each other. So, the output XML will be a complete XML document with a
(possibly sorted in a different way) list of nodes present in the original document.

The rest of the paper is structured as follows: the state of the art is presented
in Section 2. Section 3 describes the solution presented in this work, with the
novel elements introduced. Experiments with the automatic generation of XSLT
stylesheets for different examples are described in Section 4, and finally the
conclusions and possible lines of future work are presented in Section 5.

2 State of the Art

To our knowledge, there are few works related to the application of genetic
programming techniques to the automatic generation of XSLT logicsheets; one
of them, by Scott Martens [6], presents a technique to find XSLT stylesheets that
transform a XML file into HTML by using genetic programming. Martens works
on simple XML documents and uses the UNIX diff function as the basis for
its fitness function. He concludes that genetic programming is useful to obtain
solutions to simple examples of the problem, but it needs unreasonable execution

1 And money by whoever hires them.
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times for complex examples and might not be a suitable method to solve this
kind of problems.

Schmidt and Waltermann [7] approached the problem taking into account
that XSLT is a functional language, and using functional language program
generation techniques on it, in what they call inductive synthesis. First they
create a non-recursive program, and then, by identifying recurrent parts, convert
it into a recursive program; this is a generalization of the technique used to
generate programs in other programming languages such as LISP [8], and used
thoroughly since the eighties [9].

A few other authors have approached the general problem of generating XML
document transformations knowing the original and target structure of the doc-
uments, as represented by its DTD (Document Type Definition): Leinonen et
al. [10,11] have proposed semi-automatic generation of transformations for XML
documents, but user input is needed to define the label association. There are also
freeware programs that perform transformations on documents from a XSchema
to another one. However, they must know both XSchemata in advance, and are
not able to accomplish general transformations on well formed XML documents
from examples.

In our previous work [5], we presented an evolutionary algorithm to obtain
a XSLT that extracts information represented in a output XML from an input
XML. Several XSLT structures and operators were presented and studied. The
main inconvenient of that work is the output XML file is a list of text elements
instead of XML nodes, which would be much more useful to perform real XML
transformations. Additionally, the existing operators apparently led to situations
where evolutionary changes were quite difficult, so a new operator is proposed. In
this paper, the desired XML output document includes a set of nodes (text and
tags) extracted from the input document, which can be additionally processed
to change the required output tags.

3 Methodology

The EA described here evolves XSLT stylesheets, which are generated using a
set of operators and evaluated using a fitness function that is related to the
difference between generated XML and output XML associated to the exam-
ple. The way the algorithm works is shown in Figure 1. The solution has been
programmed using JEO [12], an evolutionary algorithm library developed at
University of Granada as part of the DREAM project [13], which is available
from http://www.dr-ea-m.org.

Since the search space of possible stylesheets is exceedingly large, language
grammar must be considered in order to restrict it and avoid syntactically wrong
stylesheet generation. Due to this, transformations are applied to a predeter-
mined stylesheet structure which was selected among three different ones in
previous work [5]. An example of this structure is shown in Figure 2. This type
of structure is more constrained than other types; and search is thus easier, since
less stylesheets are generated. Despite the constraints, mutation and crossover
are much more disruptive, generating a rougher landscape than before.

http://www.dr-ea-m.org
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Fig. 1. This figure shows how the algorithm works. Each individual of the population
is an XSLT stylesheet whose fitness is computed comparing the XML generated by the
stylesheet (using the input XML) with the output XML.

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output indent="no" method="xml"/>
<xsl:template match="/">

<grammar>
<xsl:apply-templates select="/grammar"/>

</grammar>
</xsl:template>
<xsl:template match="/grammar">

<xsl:copy-of select="div[3]"/>
<xsl:copy-of select="div[1]/h3[5]"/>
<xsl:copy-of select="h1"/>

</xsl:template>
</xsl:stylesheet>

Fig. 2. Example of a final XSLT generated by the algorithm. This logicsheet, applied
to the input XML document, produces an XML document equals to the desired XML
output document.

The operators may be classified in two different types: the first one consists in
operators that modify XPath routes in the attributes of the XSLT instructions
(apply-template and copy-of); and the other are the operators used to modify
the XSLT tree structure. In order to ensure the existence of the elements (tags)
added to the XPath expressions and XSLT instruction attributes, every time one
of them is needed it is randomly selected from the input file. These operators have
been described in more detail in our previous work [5], so we refer the interested
reader to that paper. A complete list is shown in Table 1 whose names are quite
descriptive. When an operator of the second group of the table is selected to
modify an individual, another operator is selected randomly from the first group
to use both in conjunction.
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<xsl:template match="book">

<xsl:copy-of select="chapter"/>

</xsl:template>

<xsl:template match="book">

<xsl:copy-of select="chapter[1]"/>

<xsl:copy-of select="chapter[2]"/>

<xsl:copy-of select="chapter[3]"/>

<xsl:copy-of select="chapter[4]"/>

</xsl:template>

Fig. 3. The left template is transformed into right template applying the split mutator.
The number of chapters in the input XML were 4 (this is known by the algorithm when
it process the input XML at the beginning of execution).

However, these operators are not enough to perform a smooth search; some-
times the XSLT search converges into a bad solutions when we want to select
ordered but alternated items from a node. So it is necessary to add a new oper-
ator to increase the diversification of this solution. The new operator proposed,
XSLTreeMutatorSplitTemplate, expands a random copy-of node into a list of
complete copy-of with all cardinalities (as shown in Figure 3). The result of
applying the new XSLT and the previous is the same, but it is easier for genetic
operators to modify the list of copy-of than the generic one (modifying, adding
or removing XPath and/or tags).

Since in this paper output is a fully formed XML document, fitness has been
changed to be the XML difference between the desired and the obtained output,
that is, the difference in nodes between the desired T and the actual document
X. This difference breaks down in insertions (nodes in X but not in T) and
deletions (nodes in T but not in X). We will leverage this vectorial structure of
fitness so that evolution can profit from it: instead of using a single aggregative
function, as we did in previous papers [5], fitness is now a vector that includes
the number of node deletions and additions needed to obtain the target out-
put from the obtained output, and the resulting XSLT stylesheet length. The
XSLT stylesheet is correct only if the number of deletions and additions is 0; and
minimizing length helps removing useless statements from it. So, fitness is min-
imized by comparing individuals as follows: An individual is considered better
than another

– if the number of deletions is smaller,
– if the number of additions is smaller, being the number of deletions the same,
– if the length is smaller, being the number of deletions/additions the same.

Separating and prioritizing the number of deletions helps guide evolution, by
trying to find first a stylesheet that includes all elements in the target docu-
ment, then eliminating unneeded elements, while, at the same time, reducing
length. However, this last element introduces selective pressure towards small
stylesheets, which might hinder discovering the correct one, so we have also
tested in this paper whether we should consider length or not as a part of the
fitness.
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4 Experiments and Results

To test the algorithm we have performed several experiments with 7 different
XML input and output files. The algorithm has been executed 30 times for each
input XML. Every experiment took 200.76 seconds in average to finish. The
same input file was used for several experiments: a RSS feed from a weblog
(http://geneura.wordpress.com) and an XHTML file. All input and output
files and programs used in this experiment are available from our Subversion
repository: http://tinyurl.com/6nxv8c.

Table 1. Operator priorities (used for the roulette wheel that randomly selects the
operator to apply) used in the experiments

Operator Priority

XSLTTreeMutatorXPathSetSelf 0.1
XSLTTreeMutatorXPathRemoveBranch 0.17
XSLTTreeMutatorXPathAddFilter 0.18
XSLTTreeMutatorXPathMutateFilter 0.18
XSLTTreeMutatorXPathRemoveFilter 0.2
XSLTTreeMutatorXPathAddBranch 0.16

XSLTTreeMutatorAddTemplate 0.2
XSLTTreeMutatorMutateTemplate 0.10
XSLTTreeMutatorRemoveTemplate 0.12
XSLTTreeAddApply 0.1
XSLTTreeMutateApply1 0.1
XSLTTreeMutateApply2 0.14
XSLTTreeRemoveApply 0.1
XSLTreeMutatorSplitTemplate 0.05

Probability of crossover 0.25
Probability of mutation 0.5

The computer used to perform the experiments is a Centrino Core Duo at
1.83 GHz, 2 GB RAM, and the Java Runtime Environment 1.6.0.01. The pop-
ulation size was 128 individuals for all runs, generated using the input XML as
information source. The termination criteria was set to 300 generations or until
a solution was found, and selection was performed via a 5-Tournament; 30 ex-
periments were run, with different random seeds, for each input document. The
XML and XSLT processors were the default ones included in the JRE standard
library. The operator rates used in the experiments, which were tuned heuristi-
cally, are shown in Table 1. The crossover and mutation probability have been
set to 0.25 and 0.5, after several experimental runs.

Due to the use of the new mutation operator we have performed the exper-
iments using 3 different configurations. The first is the algorithm without the
new operator (XSLTreeMutatorSplitTemplate), the second one, using the operator
and the third without considering the length of the stylesheet in the fitness func-
tion. This helps to keep the solutions which have the same number of deletions

http://geneura.wordpress.com
http://tinyurl.com/6nxv8c
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and insertions but larger size caused by the use of the operator (expanding the
copy-of tags). The breakdown of results per input file is shown in Table 2.

The fitness function, in general, yielded better results than previously. The
algorithm was able to find an adequate XSLT stylesheet within the pre-assigned
number of generations in most cases.

Table 2. Number of times, out of 30 experiments, a solution is found within the
predefined number of generations without the split mutator, using the split mutator
with normal fitness, and using split mutator without considering of the length of the
generated stylesheet

Input file Without Split With Split With Split w/o length

1 26 25 25
2 30 30 30
3 30 30 30
4 0 24 24
5 2 30 29
6 30 30 30
7 10 9 13

Table 3. Average generations/standard deviation to find an optimal solution (in less
of 300 generations), without the split mutator, using the split mutator with normal
fitness, and using split mutator without considering of the length of the generated
stylesheet

Input file W/o Split With Split With Split w/o length

1 62.86 ± 102.03 83.33 ± 112.81 66.33 ± 106.85
2 1.5 ± 1.25 1.6 ± 1.30 1.1 ± 1.29
3 4.13 ± 2.06 3.13 ± 1.94 3.83 ± 2.90
4 - 81.03 ± 112.25 71.68 ± 107.24
5 289.9 ±45.09 26.83 ± 5.35 36.03 ± 50.19
6 15.43 ± 5.74 20.43 ± 9.88 19.0 ± 11.12
7 232.17 ±105.48 245.46 ± 96.92 214.0 ± 112.90

Examples 1, 2, 3 and 6 are complete and ordered lists of elements of one or
several nodes, whose solution is simple, since the algorithm can easily create a
logicsheet that extracts all the childrens of a specific node. Example 7 takes spe-
cific and repeated elements from distinct nodes, which makes it more difficult,
because different expressions are needed to extract each one of them and the gen-
erated logicsheet is more complex. Finally, examples 4 and 5 focus into portions
of ordered and unordered fragments of an XML section (namely the 3rd and
6th chapters of a book), so the population converges into solutions with all the
elements of a node (selecting all chapters of a book) due to the way the fitness
works. Obtaining solutions for these examples is quite difficult without using the
new operator (just two times for example 5 and none for 4), which is fixed when
we use it; instead of selecting all chapters of a book (book/chapter), it selects
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Fig. 4. Logarithmic boxplot of the number of evaluations to find the best individual
in examples #5, #6 and #7 without split mutator (w), with split mutator considering
length (l) and without this feature (n)

all chapters using XPath location (book/chapter[1], book/chapter[2]...),
so it is easier for the algorithm to evolve this partial solution into a better one.

On the other hand, overruling the XSLT length comparison in fitness gives
different solutions the same chances to evolve, so the algorithm maintains more
diversity and finds solutions in less time than the cases comparing that length
(see Table 3). However, the generated XSLT may contain useless statements,
that could produce incorrect XMLs in a a production environment.

When a solution was found, the number of generations and time used to find it
also varies, as shown in Table 3. In general, the exploration/exploitation balance
seems to be biased towards exploration. Being such a vast and rough search
space makes that, after a few initial generations that create stylesheets with a
small difference from the target, mutations are the main operator at work.

5 Conclusions, Discussion, and Future Work

In this paper we present the results of an evolutionary algorithm designed to
search the XSLT logicsheets that is able to make a particular transformation
from an input XML document into a desired output one; one of the advantages of
this application is that resulting logicsheets can be used directly in a production
environment, without the interaction of a human operator. It tackles a real-world
problem found in many organizations and it is open source software, available
from http://tinyurl.com/5lwjcn.

The experiments have shown that the search space is particularly rough, with
mutations in general leading to huge changes in fitness. The hierarchical fitness

http://tinyurl.com/5lwjcn
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used is probably the cause of having a big loss of diversity at the beginning
of the evolutionary search, leading to the need of a higher level of explorations
later during the algorithm run. This problem will have to be approached via
explicit diversity-preservation mechanisms, or by using a multiobjective evolu-
tionary algorithm, instead of the one used now. A deeper understanding of how
different operator rates affect the result will also help; for the time being, opera-
tor rate tuning has been very shallow, and geared towards obtaining the result.
In addition, results showed in this paper can be used as a baseline for future ver-
sions of the algorithm, or other algorithms for the same problem. At any rate,
unlike what was mentioned in the pioneering paper [6], solutions can be found
effectively and efficiently.

However, there are some questions and issues that will have to be addressed
in future papers:

– Using the DTD (associated to a XML file) as a source of information for
conversions between XML documents and for restrictions of the possible
variations.

– Adding different labels in the XSLT to allow the building of different kinds
of documents such as HTML or WML.

– Testing evolution with other kind of tools, such as a chain of SAX filters.
– Obviously, testing different kinds and increasingly complex set of documents,

and using several input and desired output documents at the same time, to
test the generalization capability of the procedure.

– Using the identity transform [14] as another frame for evolution, as an al-
ternative to the structure shown here. The identity transform puts every
element found in the input document in the output document; elements can
then be selectively eliminated via the addition of single statements.

– Tackle difficult problems from the point of view of a human operator. In
general, the XSLT stylesheets found here could have been programmed by
a knowledgeable person in around an hour, but in some cases, input/output
mapping would not be so obvious at first sight. This will mean, in general,
increase also the XSLT statements used in the stylesheet, and also in general,
adding new types of operators.
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Abstract. The problem tackled here combines three properties of scheduling 
tasks, each of which makes the basic task more challenging: job scheduling 
with precedence rules, co-allocation of restricted resources of different per-
formances and costs, and a multi-objective fitness function. As the algorithm 
must come up with results within a few minutes runtime, EA techniques must 
be tuned to this limitation. The paper describes how this was achieved and com-
pares the results with a common scheduling algorithm, the Giffler-Thompson 
procedure. 

1   Introduction 

The problem is motivated by, but not limited to the task of scheduling jobs to the 
resources of a computational grid [1] in such a way that the partially conflicting inter-
ests of resource users and providers are satisfied as well as possible. Due to the dy-
namic nature of the grid, this is a permanent process and the time available for the 
scheduling is limited to a few minutes.  

The scheduling task can be briefly characterised as follows: users describe their 
application jobs, consisting of one or more atomic grid jobs, by workflows, each of 
which may be regarded a directed acyclic graph (DAG) defining precedence rules 
between the grid jobs. They state what a grid job should do by requesting resources 
like software, storage capacity, and/or additional equipment. These resources may 
need other resources. For example, a software tool may require a certain operating 
system and appropriate computer hardware to run on. This leads to the concept of 
primary and dependent resources, the latter being requested by other resources rather 
than by grid jobs directly. The availability of all these resources is limited in a hetero-
geneous way, e.g. the amount of software licences will usually differ from the number 
of computers the software can run on. The availability of resources may be restricted 
to certain time periods per day or week according to the needs of the resource pro-
vider. The costs may also vary over time. Furthermore, the performance of the re-
sources will usually differ, thus resulting in different cost-performance ratios.  

Nearly all job scheduling tasks and algorithms deal with a single objective to be 
optimised like e.g. the makespan [2, 3]. However, this is not sufficient to fulfil the 
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different needs of resource users and providers. Therefore, the following four objec-
tives are considered: completion time and costs of each application job measured as 
fulfilment of user-given limits and averaged, and to meet the demands of resource 
providers, the total makespan of all application jobs and the ratio of resource utilisa-
tion. As the scheduling process is an automated procedure, a single solution is re-
quired instead of a set of alternative ones. Hence, the weighted sum is used with 
weights based on earlier experience. It also allows for an easy steering of the solution. 

Generalising, this scheduling task requires co-allocation of heterogeneous re-
sources of different performances, varying abilities (software), and with time depend-
ant availability and costs. Precedence rules of the elementary jobs must be adhered to 
and time and cost limits should be fulfilled as well as possible. This task has some 
similarities to the resource-constrained project scheduling problem (RCPSP), one of 
the most ambitious tasks of operations research [4]. The RCPSP consists of a compa-
rable scheduling task of jobs with precedence rules and alternative resources, but is 
subject to capacity constraints of the resources. The task on hand is of greater com-
plexity as the RCPSP considers only one objective, the makespan, and as in the 
RCPSP the allocation time required by a particular job is equal for all resources. 

As our task includes the job shop problem, it is NP-complete. Thus, approximated 
solutions can be expected only. First solutions are generated by some simple heuris-
tics and the well-known Giffler-Thompson algorithm (GTA) [5]. It is the aim of our 
work to improve these solutions to the largest extent possible using a hybrid Evolu-
tionary Algorithm (EA). The application of EA or other meta heuristics to scheduling 
tasks is nothing new, see e.g. [4], but the combination of scheduling multi-DAGs, 
constrained heterogeneous resources, multi-objective optimisation, and a short run-
time makes it more or less special and unique, as pointed out in Section 2. This sec-
tion also gives a formal definition of the problem and an overlook of related work. 
Section 3 describes the heuristics used, the necessary extensions of the GTA, and the 
EA together with the used gene models, repair mechanisms, and specialised cross-
over operators. These algorithms and models are compared in the experiments re-
ported in Section 4. Section 5 contains a conclusion and an outlook.  

2   Problem Definition and Related Work 

We use a notation common to the scheduling literature [2, 4] to ease comparisons to 
other scheduling problems. Given are a set M={M1, …, Mm} of resources, a set J={J1, 
…, Jl} of application jobs, and a set O of grid jobs. The n GridJobs of application job 
Ji are denoted by Oi1, …, Oin.. The following functions are given:  

• a precedence function p:O×O → {TRUE,FALSE} for the grid jobs 
• an assignment function μ :O → P(P(M)) from grid jobs to resource sets. P(M) is 

the power set of M. μij is the set of all possible combinations of resources from M, 
which together are able to perform the grid job Oij 

• a function t:O×P(M) → ℜ, which gives for every grid job Oij the time needed for 
the processing on a resource set Rij∈μij 

• a cost function, c:ℜ×P(M) → ℜ, which gives for every time z the costs per time 
unit of the given resource set 
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Optimisation is done by choosing suitable start times s(Oij)∈ℜ and resource alloca-
tions Rij∈μij. A solution is valid, if the following two restrictions are met: 
1. All grid jobs are planned and resources are allocated exclusively: 

::,)(: ijjijijijij RMROsO ∈∀∈ℜ∈∃∀ μ  

jM  is in [ ),()();( ijijijij ROtOsOs + ] exclusively allocated by ijO . 
(1)

2. Precedence relations are adhered to: 

),()()(),(:, ijijijikikij ROtOsOsOOpkji +≥⇒≠∀  (2)

A violation of the two following constraints is treated by penalty functions in such 
a way that the amount of time and cost overruns is considered as well as the number 
of affected application jobs. 

1. All application jobs Ji have due dates di, which must be adhered to:  

),()(: inininii ROtOsdJ +≥∀    where Oin is the last grid job of Ji (3)

2. All application jobs Ji have a cost limit ci, which must be observed:  
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The fitness is calculated as the weighted sum of the already mentioned four main 
objectives and one auxiliary objective, which is described here very briefly only due 
to the lack of space. It measures the average delay of each non-terminal grid job (i.e. a 
grid job with no successors) relative to the earliest starting time of its application job 
and it is aimed at rewarding the earlier completion of non-terminal grid jobs. The idea 
is to support the process of starting grid jobs earlier such that the final grid job can be 
completed earlier in the end which is recognised by the main objective completion 
time. We name the resulting fitness sum raw fitness, as it can be lowered by the appli-
cation of one ore more penalty functions, each of which delivers a factor between 0 
and 1, by which the raw fitness is multiplied to obtain the end fitness. 

A comparable problem could not be found in literature, see e.g. [2] and [4] for a 
comprehensive presentation of scheduling problems. This corresponds to the results 
of the literature review found in [3]. There, it is concluded that only few publications 
deal with multiple objectives in scheduling and, if so, they mostly deal with single 
machine problems and Pareto optimisation. Of course, a lot of literature focuses on 
partial aspects of this problem. We will come back to some articles when already 
existing techniques incorporated in the used EA are presented.  

3   Basic Algorithms, Two Gene Models, and Some EA Extensions 

The original Giffler-Thompson algorithm [5, 6] is aimed at achieving a minimal 
makespan and a good rate of utilisation. It was extended for the problem on hand, 
such that it can deal with alternative resources, resource-dependant execution times, 
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and multiple successors of one grid job. Costs are not taken into account by the origi-
nal GTA and the used implementation does it only when the next set of resources is 
constructed and alternatives are available. We used some recommended [6] and some 
problem-specific priority rules, which are explained later with the results. 

In addition to the GTA, the following heuristics are used to generate schedules. In 
a first step a sequence of grid jobs is produced by these three heuristic rules: 

1. Shortest due date: grid jobs of the application job with the shortest due date first 
2. Shortest working time of grid job: grid jobs with the shortest working time first 
3. Shortest working time of application job: grid jobs of the application job with the 

shortest working time first 

In the next step resources are allocated to the grid jobs using one of the following 
three resource allocation strategies (RAS): 

RAS-1: Use the fastest resource of the earliest available for all grid jobs 
RAS-2: Use the cheapest resource of the earliest available for all grid jobs 
RAS-3: Use RAS-1 or RAS-2 for all grid jobs of an application job according to 

its time/cost preference 

Processing of the three grid job sequences with these RAS, which can be computed 
very fast, yields up to nine different schedules. 

Our Global Optimising Resource Broker and Allocator [7] performs a two-step 
planning process. In the first step the set of heuristics, including the GTA, is applied 
and the results are used to seed the start population of the subsequent EA run. As EA 
we use GLEAM [8], which already contains some evolutionary operators designed for 
combinatorial problems. Due to the lack of space, they are summarised only and the 
interested reader is referred to [8]. Apart from the standard mutation, which changes 
the sequence of genes by simply shifting one of them, GLEAM contains the move-
ment of gene segments and the inversion of their internal order. A chromosome  
consists of a sequence of segments, containing a sequence of genes. As segment 
boundaries can be changed by some mutations, the segments form an evolvable meta 
structure over the chromosomes. Segment boundaries are also used for the 1- and n-
point crossover operators, which include a genetic repair that insures that every off-
spring does not lack genes in the end. The evolvable segmentation and its associated 
operators among others distinguish GLEAM from most standard EAs. 

Two gene models are compared. Both use one gene per grid job, which contains 
the grid job index at the minimum. The interpretation of a chromosome is done by 
processing the genes in the order of their appearance as described below.  
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Gene model GM2 is aimed at a reasonable reduction of the search space. It re-
places the evolutionary selection of resources by the evolutionary selection of one of 
the RAS heuristics. This is done by an additional RAS gene and the crossover opera-
tors are modified to pass on the RAS gene of the better parent.  

 

The interpretation of the chromosomes described ensures that the precedence rela-
tions of grid jobs are not violated as long as no gene is located before the gene of its 
preceding grid job. As this may be interfered with by some genetic operators, two 
alternative repair mechanisms are applied and compared:  

The genetic repair searches for all genes of grid jobs, the genes of the preceding 
grid jobs of which are not located on the chromosome before. Such a gene is shifted 
until all genes of preceding grid jobs are on prior positions. As a result, the mecha-
nism may hamper meaningful steps of shifting genes. This is the explanation of the 
outcome of experiments earlier than those reported here, which produced best results 
when a fraction of about 20% of the offspring is corrected only. Using genetic repair 
therefore requires the application of an appropriate penalty function. 

Phenotypic repair is aimed at a correct interpretation of a chromosome rather than 
altering it. If the processing of a gene tries to schedule a grid job with missing, al-
ready scheduled predecessors, it simply suspends the scheduling until all predecessors 
will have been scheduled. The advantage of this approach is that there are no faulty 
schedules and that intermediate steps of shifting genes, which itself may be faulty, are 
now allowed to occur and hopefully result in a better schedule.  

Furthermore, in the experiment section we report about the effect of two crossover 
operators from literature, which are aimed at passing on sequence information. The 
well-known order-based crossover OX [9] preserves the relative order of the parent 
genes, while the precedence-preserving operator PPX [10] does this more strictly by 
perpetuating the absolute order. In contrast to OX, PPX ensures that sequence-correct 
parents produce sequence-correct offspring at the price of limited gene mixing. 

4   Experiments 

For the experiments, a set of benchmarks has been developed and they are evaluated 
using a simulated grid environment. This paper presents the results obtained with the 
standard benchmark set described in [7]. It consists of four classes of application jobs, 
each class representing different values of the following two characteristics: the de-
gree of dependencies between grid jobs D and the degree of freedom of resource 
selection R. The four basic benchmark classes are abbreviated by sRsD, sRlD, lRsD, 
and lRlD, where s stands for small and l for large values of R and D. As the amount of 
grid jobs is another measure of complexity, benchmarks containing 50, 100, and 200 
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grid jobs were defined using the same set of resources for every class. A fourth 
benchmark set again consists of 200 grid jobs, but with a doubled set of resources 
available (abbreviated by 200d in the figures).  

Besides the structure and amount of jobs and resources, the tightness of time and 
cost restrictions is another essential characteristic of the complexity and complicacy 
of a scheduling task. These two limits are intentionally set in such a way that cost and 
time overruns (cf. eqs. (3) and (4)) are provoked for the heuristic procedures running 
before the EA, i.e. they are always invoking the corresponding penalty functions. 
Thus, a measure of success is defined for both the GTA and the EA: can schedules be 
found that adhere to the given restrictions and, if so, always or to what fraction of the 
EA runs? This fraction is denoted as success rate and represents the first and crucial 
measure of the experiments. The second is the quality of the schedules measured as 
the fitness improvement obtained from an EA run. For a fair judgment, the non-
penalised raw fitness of heuristic planning is compared to the end fitness of the EA. 
The fitness values are also used to decide on the significance of differences observed. 
For judging the differences between heuristic and EA results, we check whether the 
best heuristic raw fitness is outside of the confidence interval (99% confidence) of the 
EA results. To assess different EA runs, the t-test is used. If it cannot be applied be-
cause of too large variance differences, the results are considered different. 

The experiments are based on a runtime limit of three minutes (on one processor of 
an AMD Athlon 64 4400+ 2.0 GHz CPU), because this is considered a reasonable 
time frame for planning. It must be stressed that the complete investigation is based 
on the goal of achieving the best possible results within this short period of time. For 
sufficiently longer planning times, other settings of the algorithms or gene models 
may perform better. All combinations of the two gene models GM1 and GM2 and the 
two repair mechanisms were investigated and the results are based on 100 runs per 
combination and benchmark in order to obtain meaningful success rates. For every 
setting, different population sizes in the range of 200 to 600 were used. 

4.1   Results of the Heuristics and the Giffler-Thompson Algorithm 

The most striking result is that the GTA can solve one benchmark only and this is a 
simple one with just 50 grid jobs. For an overall comparison, the best result of each 
benchmark is set to 100%. Table 1 shows the averaged percentages of all benchmarks 
for all heuristics introduced and the GTA with its priority rules. There are two surpris-
ing results: there is only one outstanding procedure and this is not the GTA, but the 
heuristic shortest due time. However, the GTA produces the second best values for 
the end fitness which gives rise to the hope that its results are good seeds for the ini-
tial population of the subsequent EA run. Obviously, our scheduling task differs too 
much from the pure job shop scheduling problem the GTA is aimed at. 

4.2   Best Gene Model and Repair Method 

At first, the two gene models are compared in figures 1 and 2 for both repair methods. 
GM2 performs better in most cases, especially for phenotypic repair, the only exception 
being the low robustness (cf. Fig. 1) for benchmark kRgA-100. Earlier experiments 
using a permutation-based coding like the one described in [10] yielded significantly 
poorer results than GM1. We attribute this to the effect of the segment mutations de-
scribed in Section 3, as runs without them produced comparably poor results. 
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Table 1. Results of the heuristics and the Giffler-Thompson algorithm (GTA). The relative raw 
and end fitness values (abbreviated as raw f. and end f.) are compared. For the GTA different 
priority rules were investigated, some of them recommended by [6]. The last two rules were an 
attempt of tailoring rules to the given problem. They try to keep the grid jobs of one application 
job together by preferring the scheduling of grid jobs of already begun application jobs. 

GTA with seven priority rules and heuristics with different RAS raw f. end f. 
Giffler-Thompson – longest job first 71 %   3 % 
Giffler-Thompson – shortest job first 72 %   2 % 
Giffler-Thompson – shortest due time 73 % 10 % 
Giffler-Thompson – shortest relative due time 74 % 11 % 
Giffler-Thompson – most work remaining 72 %   2 % 
Giffler-Thompson – last of considered job set (s-set) 69 %   1 % 
Giffler-Thompson – planned application job preferred 68 %   1 % 
Shortest due time & RAS-3 (appl. job dependant res. preference) 99 % 86 % 
Shortest due time & RAS-2 (cheapest resource always) 98 % 81 % 
Shortest due time & RAS-1 (fastest resource always) 96 % 87 % 
Shortest working time of grid job & RAS-3 70 %  2 % 
Shortest working time of grid job & RAS-2 70 %  2 % 
Shortest working time of grid job & RAS-1 70 %  2 % 
Shortest working time of appl. job & RAS-3 82 %  6 % 
Shortest working time of appl. job & RAS-2 80 %  8 % 
Shortest working time of appl. job & RAS-1 79 %  7 % 

 

Fig. 1. Comparison of the success rates of the two gene models and genotypic repair. Dotted 
bars indicate that this result was obtained for one population size only (low robustness). If the 
values are a little below 100%, the exact numbers are given for a better distinction. T-test re-
sults of the corresponding fitness values are given for those cases, where significance can not 
be derived from the success rate directly: ≠: difference significant at 99.9%, (≠): t-test not 
applicable due to too large variance differences, ≈: differences are not significant. 
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Fig. 2. Comparison of the success rates of the two gene models and phenotypic repair. Explana-
tions see Fig. 1. 

An analysis of some runs longer than 
three minutes reveals the same type of 
behaviour for more than 50 grid jobs, as 
shown in Fig. 3. The reduced search 
space of GM2 allows for a faster pro-
gress of the evolution, but cannot pro-
duce as good results as GM1 in the long 
run, because GM1 covers the complete 
search space. If all other parameters are 
fixed, the number of grid jobs deter-
mines the complexity and, hence the 
position of the intersection point. For 
benchmarks of about 50 jobs, this is left 
of the limit of three minutes and GM1 
yields the better results.  

A comparison of the two repair methods for GM2 (right parts of Figs. 1 and 2) 
shows the superiority of phenotypic repair. This can be explained by the greater flexi-
bility in altering the chromosomes. Thus, GM2 and phenotypic repair are used as the 
basis of the following investigation described in the next two sections. 

4.3   Results for the Two Crossover Operators  

As the benchmarks of sRlD and lRlD obviously are the most difficult ones for more 
than 50 grid jobs, further investigations are restricted to them to reduce the effort. The 
effect of both crossover operators was examined by using them solely or together to 
either replace or complement the standard operators. The strict PPX operator failed 
completely, while the OX was beneficial, but only when used alone and in addition to 
the standard 1- and n-point crossover operators. Fig. 4 shows the results for the added 
OX operator. They can be explained by the more exploitative character of the OX 
operator, which completes the standard operators that are more aimed at exploration. 

 

Fig. 3. Basic course of evolution of both 
gene models for more than 50 grid jobs 
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Fig. 4. The effect of the OX operator used in
addition to the standard crossover operators.
With the exception of sRlD-200d benchmark,
all results with and without OX differ signifi-
cantly. For further explanations, see Fig. 1. 

Fig. 5. Improvement of the end fitness com-
pared to the raw fitness of the best heuristic. 
All differences are significant, as the raw 
fitness values are far outside of the confi-
dence intervals of the EA results. 

The comparison of success rates is completed by the comparison of the averaged 
fitness differences as shown in Fig. 5 for GM2, phenotypic repair, and the OX cross-
over. The end fitness values obtained from the best EA runs are better by 5% at the 
minimum than the raw fitness of the best heuristic. The figure also shows that a small 
amount of resource alternatives (sR) yields slightly better results than more alterna-
tives. This is due to the fact that more search steps may be required for finding a suit-
able time slot when more resources are under consideration. This results in fewer 
evaluations and, hence, a shorter search within the given runtime.  

4.4   The Effect of Seeding the Start Population 

For the difficult benchmarks sRlD-
200, lRlD-200, and -200d, signifi-
cantly better result can be obtained 
by seeding the start population with 
the results of the heuristics, as dis-
played in Fig. 6. This corresponds 
to similar improvements of the end 
fitness not shown here. In the other 
cases, only minor improvements 
can be achieved, if any. This means 
that starting the evolution from 
randomly generated individuals is 
sufficient in most cases. Seeding the 
start population may help in some 
difficult ones but not in all, as is 
shown by lRlD-100. On the other 
hand, it makes sense to enter the 

 

Fig. 6. Seeding the start population with the 
results of the heuristics yields a significant im-
provement. For explanations of symbols and 
dotted bars see Fig. 1. 
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heuristic results, because only improvements may occur due to the elitist nature of 
GLEAM. The same experiment was performed using the GTA results, but no signifi-
cant differences were observed in all cases. This means that the GTA cannot even 
support the subsequent EA run. 

5   Conclusions and Outlook 

We have introduced a scheduling problem that is a combination of job scheduling 
with precedence rules, heterogeneous resources with different performances and costs 
as well as limited availability, and multi-objective optimisation. To make things 
worse, a solution is required within a few (here, three) minutes. This combination 
makes the problem more or less special and unique. In fact, we could not find a simi-
lar one in literature. The task is to overcome violations of time and cost limits, which 
cannot be solved by the heuristics applied in a first step, and to improve the general 
quality of the schedule. It has been shown that with the limited run time, the restric-
tion of the search space by handing over a part of the search to heuristic resource 
allocation strategies cannot only eliminate the violations, but also improves the solu-
tion quality. Best results have been achieved by a phenotypic repair of precedence 
violations and the well-known order-based crossover, provided that it is applied in 
addition to the standard 1- and n-point crossover operators. The given problem is so 
far away from standard job shop scheduling that one of the standard procedures, the 
Giffler-Thompson algorithm, is not successful. 

Our investigation was based on the scenario of planning of new jobs and an empty 
grid. This is good for testing and tuning algorithms and gene models, but not realistic. 
The next step will be the application of our system to the situation of replanning due 
to comparable small alterations like some new resources or a new application job. 
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Abstract. This paper proposes a new solution to the vehicle routing problem 
with time windows using an evolution strategy adopting viral infection. The 
problem belongs to the NP-hard class and is very difficult to solve within prac-
tical time limits using systematic optimization techniques. In conventional evo-
lution strategies, a schema with a high degree-of-fitness produced in the process 
of evolution may not be inherited when the fitness of the individual containing 
the schema is low. The proposed method preserves the schema as a virus and 
uses it by the infection operation in successive generations. Experimental re-
sults using extended Solomon's benchmark problems with 1000 customers 
proved that the proposed method is superior to conventional methods in both its 
rates of searches and the probability of obtaining solutions. 

Keywords: Vehicle routing problem, NP-hard class, evolution strategy, infec-
tion, virus, schema. 

1   Introduction 

The vehicle routing problem with time windows (VRPTW) is a well-known combina-
torial optimization problem that arises in delivery services, logistics, and distribution 
systems [1, 2]. The problem is how to design a set of minimum-cost vehicle routes 
originating and terminating at a central depot for a fleet of vehicles that services a set 
of customers with known demands and time-window constraints. 

The VRPTW belongs to the NP-hard class [3] and is very difficult to solve within 
practical time limits using systematic optimization techniques. Metaheuristics have 
recently been studied, which includes tabu searches [4, 5], simulated annealing [4, 6, 
7], genetic algorithms (GAs) [4, 5, 8, 9], evolution strategies (ESs) [10, 11], and ant-
colony optimization [12]. Two-phase hybrid metaheuristics using an evolution strategy 
has demonstrated especially impressive performance [10]. A (μ, λ)-evolution strategy 
is used to minimize the number of vehicles in the first search phase. In the second 
search phase, the total travel distance is minimized with a tabu search algorithm. 

In this paper, we propose a method of improving the ES in the two-phase method 
as the computational cost of the first phase is higher than that of the second. The new 



1042 H. Kanoh and S. Tsukahara 

method introduces a viral infection into the ES. This is called a virus evolutionary 
strategy (VES) in this paper. In conventional ESs, a schema with a high degree-of-
fitness produced in the process of evolution may not be inherited when the fitness of 
the individual containing the schema is low. The proposed method preserves the 
schema as a virus and uses it by the infection operation in successive generations. To 
use such schema for search is know as a virus GA [13, 14], but no research has yet 
been published that has reported the introduction of viruses into ESs. While mutations 
in ESs only carry out local searches, infection greatly changes the chromosomes of 
the target individual and enables the function of escaping from local optima. The 
purpose of this study was to improve both the rates of searches and the probability of 
obtaining solutions in ESs by using infection. 

The following sections first describe the objective problem and typical solutions to 
this. Next, we describe how we generated a virus that was specialized for the VRPTW 
and the algorithm used in the proposed method in detail. Finally, we present the re-
sults of experiments using benchmark problems with 1000 customers [15]. 

2   Background 

2.1   Objective Problem 

Figure 1 shows an example of the VRPTW, which consists of a set of identical vehi-
cles (routes), a central depot, and a set of customers. The objective of the VRPTW is 
to find a set of routes to minimize the number of vehicles needed to supply all cus-
tomers and the sum of travel time and waiting time for all vehicles under the follow-
ing constraints. This problem has already been formulated [2, 4]. 

 

 
Fig. 1. Example of VRPTW. A separate vehicle is assigned to each of the routes. 

• Each customer is only visited once by one of the vehicles. 
• Every vehicle has the same capacity, which is greater than or equal to the total 

demand on the route it travels. 
• The number of vehicles is less than or equal to a given number. 
• A vehicle arriving at a customer before its time window must wait. 
• A solution becomes infeasible if a customer is supplied after its time window has 

elapsed. 
• Each route must start and end within the time window associated with the depot. 

Depot 

#1 

#2 

#3 

#4 

#5 

#1 to #5: Customers 
Route 1 = (#1, #2) 
Route 2 = (#3, #4, #5) 
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2.2   Typical Solutions 

Homberger and Gehring proposed the (μ, λ)-ES to minimize the number of vehicles in 
the first search phase of their two-phase hybrid metaheuristics [10] using mutation 
and modified Or-opt as follows. 

Mutation 
The following operations are applied to a randomly selected individual from the 
population. 

• Insertion: Two routes are randomly selected from the individual and a customer 
selected from one route is inserted along the other route to minimize the travel 
cost. 

• 2-opt: This operation is a kind of crossover in the same individual. First, two 
routes are randomly selected from the individual. Next, a crossover site is chosen 
at random and the rear customers are swapped. 

• Interchange: This operation interchanges customers once between two randomly 
selected routes. Each customer is chosen at random and inserted in a place in 
which it can be located. 

Modified Or-opt 
This operation is intended to reduce the number of customers along the shortest routes 
in the individual or even eliminate the shortest routes. All possible attempts are sub-
sequently made to locate all customers on the shortest routes along other routes. 

2.3   Virus Theory of Evolution 

Nakahara et al. assumed that the cause of evolution is viral infection [16]. Viruses can 
transfer genes from one organism to target ones, and may change their chromosomes. 
In neo-Darwinian evolutionary theory, these organisms have been considered to 
evolve as follows: the organisms’ fittest characteristics for survival are produced by 
mutation, and these characteristics are inherited by their offspring. However, the 
probability that mutated dominant individuals will appear and increase in nature is 
very low. Nakahara et al. explained this problem and they insisted that the viral theory 
of evolution does resolve four points not fully explained by Darwinism: 1) the rapid 
evolution of the species, 2) the rapid extinction of the species, 3) evolution progress-
ing in a specific direction, and 4) the occurrence of parallel segregation [16]. 

3   Proposed Method 

3.1   Chromosome Representation and Fitness 

Each chromosome in the population with the proposed method (VES) represents a 
candidate solution that consists of a set of routes. Each route can be expressed by a 
variable-length sequence of customers who should be visited by one vehicle. Let Rj be 
the j-th route in an individual. Here, Rj = (Cj(1), …, Cj(nj)), Cj(l) is a customer who 
the vehicle visits to the l-th, and nj is the number of customers on the route. Figure 2 
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shows a chromosome representation, where m is the number of routes (vehicles) of 
the individual. 

The fitness of an individual can be expressed by the number of vehicles and the to-
tal travel time. Individuals in the ordering process of VES are sorted in increasing 
order of the number of vehicles. If two or more individuals are with the same number 
of vehicles, they are sorted in increasing order of the total travel time. 

 
R1 = C1(1) … C1(l) … C1(n1)   

: :  :     

Rj = Cj(1) … Cj(l) … … … Cj(nj) 

: :  :     

Rm = Cm(1) … Cm(l) … … Cm(nm)  

Fig. 2. Chromosome representation of proposed method. Each individual can be expressed by a 
two dimensional variable-length array. 

3.2   General Procedure 

The general procedure for the proposed method is given below, where P(t) is the 
population at generation t and Top(n, P) is a set of top n individuals in population P. 
Mutation and modified Or-opt operation in the procedure have already been reported 
[10] (see Section 2). The other operations will be described in detail in the following 
sections. 

Procedure VES() 
initialize population P(1); 
for(t=1; t<=upper bound of generation; t++){ 
  empty temporary population P’;  
  for(i=1; i<=λ; i++){ 
    x = select an individual from P(t) at random; 
    Mutation(x); 
    Modified-Or-opt(x); 
    Infection(x) with a probability of Pinf; 
    P’ += {x}; 
  } 
  P(t+1) = Top(μ-1,P’) + Top(1,P(t));  
} 

3.3   Initial Population 

The initial population in this paper is generated using Homberger and Gehring’s 
method of insertion [10]. The heuristics for inserting customers into a route for the 
VRPTW was introduced by Solomon [1].  

Heuristics. The feasibility of inserting a customer into a route is checked by inserting 
the customer between all the links on the current route and then selecting the link that 
has the lowest additional cost of insertion. A feasibility check is done to examine all 



 Virus Evolution Strategy for Vehicle Routing Problems with Time Windows 1045 

the constraints including time windows and load capacity. Only feasible insertions 
will be accepted. When the current route is full without any new customers being 
accepted, the heuristics will start a new route. 

The procedure for generating the initial population with the proposed method in-
volves seven steps. 

[Step1]  Select a customer at random and generate a route which consists only of that 
customer. 

[Step2]  Choose either clockwise or counterclockwise rotation at random, and select 
the customer who is in that direction. 

[Step3]  Insert the customer into the route according to the heuristics. 
[Step4]  Repeat Steps 2 and 3 until all the customers have been routed. 
[Step5]  Let this set of routes be an individual. 
[Step6]  Repeat Steps 1 to 5 μ times. 
[Step7]  Let this set of individuals be an initial population. 

3.4   Virus Population 

There may be two or more routes where a customer visited first are the same and a 
customer visited last are the same on all the routes in the population. In the case in 
Fig. 3, there are relations C1(1) = C2(1) and C1(4) = C2(3) between R1 and R2. Let a 
route where the number of customers is maximum among them be a virus (e.g., R1). 
When the number of customers is the same, let a route with the shortest travel time be 
a virus. We regard all the viruses found until the current generation as a population of 
viruses. The viruses are updated whenever a new route is produced by mutation or 
modified Or-opt. Each virus consists of one route, while an individual consists of a set 
of routes that includes all customers. 
 

 

Fig. 3. Example of process of generating virus population 

The procedure for updating the virus is given below, where Vk = (Ck (1), … , Ck 

(nk)) is the k-th virus in the population of viruses, V = {Vk | k=1, …, Nvirus} is the 
population of viruses, and Nvirus is the number of viruses (this is a variable). Here, 
T(Vk) is the travel time on Vk and Rj = (Cj(1), …, Cj(nj)) is a newly created route. 

Depot 

C1(1) = C2(1) 

C1(4) = C2(3) 

C1(2) 

C1(3) 

C2(2) 
R1 = (C1(1), C1(2), C1(3), C1(4)) 
R2 = (C2(1), C2(2), C2(3)) 
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Procedure update-of-virus() 
for(k=1; k<=Nvirus; k++){ 
  N’ = Nvirus;  
  if(Cj(1)=Ck(1) and Cj(nj)=Ck(nk)){ 
    if(nj>nk or (nj=nk and T(Rj)<T(Vk))) {V=V–{Vk}+{Rj};} 
  } 
  else {V=V+{Rj}; N’++; } 
} 
Nvirus = N’; 

Table 1 lists an example of the population of viruses. A blank table for all combi-
nations of the first and last visited customers (for 10 customers, the combinations are 
(#1, #2), (#1,#3), (#1, #4), …, (#9, #10)) is prepared at the beginning of the VES 
procedure, and then a new virus is written in the blank or over the old virus by using 
the update-of-virus procedure. When the number of customers Ncus is 1000, the linage 
in this table is Ncus(Ncus-1)/2 < 5×105 (this is not so large). No additional cost is in-
curred in maintaining this table, because the computational cost of the update-of-virus 
procedure can be negligibly small as compared with that for creating a new route. 

Table 1. Example of virus population in 10 customers. Each line corresponds to a virus. The 
hash mark “#” means the serial number of customers. C(1) and C(nk) are respectively the first 
and the last visited customers, and nk is the number of customers with the virus. 

C(1) C(nk) nk Travel time Route 

#1 #2    

#1 #3 6 162 (#1, #4, #6, #2, #10, #3) 

#1 #4    

#1 #5 5 93 (#1, #8, #7, #2, #5) 

… … … … … 

… … … … … 

#9 #10 5 125 (#9, #3, #7, #8, #10) 

3.5   Infection 

Individuals are infected after the modified Or-opt operation with an infection prob-
ability of Pinf. The procedure is as follows. 

Procedure Infection() 
Select a route Rj from the individual randomly;  
for(k=1; k<=Nvirus; k++) 
  if(Cj(1)=Ck(1) and Cj(nj)=Ck(nk))  
    if(nj<nk or (nj=nk and T(Rj)>T(Vk))){  
      Rj is replaced by Vk;  
      Move or delete customers; /* see follows */ 
    } 
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The operation “move or delete customers” in the above procedure is done as fol-
lows: if there are customers that are included in Vk and not included in Rj, then delete 
those customers from the other routes, and if there are customers that are not included 
in Vk and included in Rj, then insert those customers into the other routes so that the 
total length of these routes can be minimized. 

4   Experiments 

4.1   Experimental Method 

To evaluate how well the proposed method performed, we conducted two experi-
ments using benchmark problems with 1000 customers (extended Solomon's VRPTW 
instances [15]). The problems were classified into six types according to the distribu-
tion of customers and time-window constraints as listed in Table 2. All six problems 
had three parts: the type of problem, the number of customers divided by 100, and the 
sequential number (e.g., c1_10_1). Homberger and Gehring minimized the number of 
vehicles (routes) by obtaining the ES and the total travel cost using a tabu search [10]. 
Here, we only tried to minimize the number of vehicles by using the VES, as the 
purpose of this study was to improve the ES. In addition, the experiments were done 
under conditions of μ=10 and λ=20, using a 3.2-GHz Pentium IV PC. 

Table 2. Types of benchmark problems. The problems are classified into six types according to 
the distribution of customers and time-window constraints. 

Time-window constraints Distribution of 
customers Tight Loose 

Cluster C1 C2 
Uniform R1 R2 
Mix RC1 RC2 

4.2   Experimental Results 

We first compared the computational time for the proposed method with infection 
(VES) and without infection (ES). The time required for the number of vehicles to 
decrease to N10 was measured for 12 benchmark problems. Table 3 lists the average of 
10 trials for these indicated by Time. In this table, the ratio means (Time(ES)-
Time(VES))/Time(ES), N10 is the number of vehicles definitely obtained through the 
10 trials (the worst value in the best value for each trial), and Ninit is the best value in 
the initial population of VES. Here, Nref is the best value found by 2007 [15]. The 
infection probability, Pinf = 25%, was determined by conducting preliminary experi-
ments. We can see from the table that the computational times were improved in 10 of 
the 12 problems by using viral infection. Problem r2_10_2 is a singularly bad case, 
since as a nearly best value had already been found in the initial population (i.e., 
Ninit=20), no infection was necessary. 
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Table 3. Computational time required for number of vehicles to be decreased to N10. The ratio 
means (Time(ES)-Time(VES))/Time(ES), Ninit is the best value in the initial population of VES, 
and Nref is the best value found by 2007. 

Time (sec) Number of vehicles Problem 
ES VES 

Ratio 
(%) N10 Ninit Nref 

c1_10_1 164 143 12 103 129 100 

c1_10_2 110 52 53 109 120 91 

c2_10_1 483 322 33 33 41 30 

c2_10_2 325 291 10 34 40 29 

r1_10_1 17 15 10 101 105 100 

r1_10_2 22 13 43 94 96 91 

r2_10_1 175 112 36 21 23 19 

r2_10_2 87 209 -140 19 20 19 

rc1_10_1 98 99 -2 96 103 90 

rc1_10_2 36 22 37 93 97 90 

rc2_10_1 398 188 53 26 28 21 

rc2_10_2 227 160 29 25 26 18 

Table 4. Frequency distribution of number of vehicles in 100 trials for problem of C1_10_1 
(Nref = 100) 

Infection probability Number of 
vehicles 0% 25% 50% 75% 100% 

100 26 57 71 85 83 

101 40 36 27 12 16 

102 20 6 2 2 1 

103 11 1 0 1 0 

104 3 0 0 0 0 

Table 5. Frequency distribution of number of vehicles in 100 trials for problem of R1_10_1 
(Nref = 100) 

Infection probability Number of 
vehicles 0% 25% 50% 75% 100% 

100 92 97 96 96 98 

101 8 3 4 4 2 
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Table 6. Frequency distribution of number of vehicles in 100 trials for problem of RC1_10_1 
(Nref = 90) 

Infection probability Number of 
vehicles 0% 25% 50% 75% 100% 

92 0 2 0 3 5 

93 12 23 22 30 32 

94 47 40 52 43 37 

95 29 25 19 19 22 

96 12 10 6 5 2 

97 0 0 1 0 2 

Next, the number of vehicles in the best individual in the population at the 10000-
th generation was evaluated using the problems for types C1, R1, and RC1 to investi-
gate the probability of obtaining a good solution. Tables 4 to 6 list their frequency 
distributions in 100 trials when Pinf = 0, 25, 50, 70, and 100%. The best value for C1 
and R1 (i.e., Nref = 100) was obtained and the probability of obtaining the best value 
was highest when Pinf = 75 or 100% for C1 and 100% for R1. The best value for RC1 
(i.e., Nref = 90), on the other hand, was not obtained. However, comparing the fre-
quency where good solutions were obtained (e.g., the number of vehicles is less than 
94), the frequencies were larger when Pinf > 0 than when Pinf = 0. These results prove 
the effectiveness of viral infection in VRPTWs. 

5   Conclusions 

We proposed a new solution to VRPTWs with an ES adopting viral infection. Ex-
perimental results using extended Solomon's benchmark problems with 1000 custom-
ers proved that the proposed ES is superior to conventional ESs in both its rates of 
searches and the probability of obtaining good solutions. The present method pro-
motes evolution by using partial solutions obtained in the process of evolution. Infec-
tion plays a role in building schemata that mutation does not, and infection does not 
need any complicated chromosome representations to avoid lethal genes that cross-
over needs. Consequently, the combination of infection and mutation can be useful 
for a wide variety of NP-hard problems. 

In the benchmark problems used, the travel distance between two arbitrary custom-
ers was fixed, but in practical problems, this will change with time because of conges-
tion due to traffic. We next intend to apply the new method to practical problems with 
a road map database and actual traffic data. 
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Abstract. This paper provides an analytical approach to fuzzy rule
base optimization. While most research in the area has been done ex-
perimentally, our theoretical considerations give new insights to the task.
Using the symmetry that is inherent in our formulation, we show that the
problem of finding an optimal rule base can be reduced to solving a set
of quadratic equations that generically have a one dimensional solution
space. This alternate problem specification can enable new approaches
for rule base optimization.

1 Introduction

Fuzzy rule based solution representations combined with evolutionary algorithms
are a powerful real world problem solving technique, for example see
[2,5,9,15,18,19]. Fuzzy logic provides benefits in naturally representing real world
quantities and relationships, fast controller adaptation, and a high capacity for
solutions to be interpreted. The typical scenario involves using an evolutionary
algorithm to find optimum rule bases with respect to some application specific
evaluation function, see [7,11,13].

A fuzzy rule is a causal statement that has an if-then format. The if part is
a series of conjunctions describing properties of some linguistic variables using
fuzzy sets that, if observed, give rise to the then part. The then part is a value
that reflects the consequence given the case that the if part occurs in full. A
rule base consists of several such rules and is able to be evaluated using fuzzy
operators to obtain a value given the (possibly partial) fulfilment of each rule.

Membership functions are a crucial part of the definition as they define the
mappings to assign meaning to input data. They map crisp input observations
of linguistic variables to degrees of membership in some fuzzy sets to describe
properties of the linguistic variables. Suitable membership functions are designed
depending on the specific characteristics of the linguistic variables as well as pe-
culiar properties related to their use in optimization systems. Triangular mem-
bership functions are widely used primarily for the reasons described in [16].

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 1051–1060, 2008.
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Other common mappings include ‘gaussian’ [11] and ‘trapezoidal’ [8] member-
ship functions. The functions are either predefined or determined in part or com-
pletely during an optimization process. A number of different techniques have
been used for this task including statistical methods [7], heuristic approaches
[2], and genetic and evolutionary algorithms [5,9,14,18]. Adjusting membership
functions during optimization is discussed in [9,20].

A financial computational intelligence system for portfolio management is
described in [7]. Fuzzy rule bases are optimized in an evolutionary process to
find rules for selecting stocks to trade. A rule base that could be produced using
this system could look as follows:

– If Price to Earnings Ratio is Extremely Low then rating = 0.9
– If Price Change is High and Double Moving Average Sell is Very High then

rating = 0.4

The if part in this case specifies some financial accounting measures (Price to
Earnings ratio) and technical indicators [1] used by financial analysts; the output
of the rule base is a combined rating that allows stocks to be compared relative to
each other. In that system rule bases were evaluated in the evolutionary process
using a function based on a trading simulation.

The task of constructing rule base solutions includes determining rule state-
ments, membership functions (including the number of distinct membership sets
and their specific forms) and possible outputs. These parameters and the spec-
ification of data structures for computational representation have a significant
impact on the characteristics and performance of the optimization process. Pre-
vious research in applications [8,17,1] has largely consisted and relied on intuition
and experimental analysis for designs and parameter settings. This paper takes
a theoretical approach to the analysis of a specific design of a fuzzy rule base
optimization system that has been used in a range of successful applications
[6,7,11,13]; we utilize the symmetry that is inherent in the formulation to gain
insight into the optimization. This leads to an interesting alternate viewpoint of
the problem that may in turn lead to new approaches.

In particular, our formal definition and framework for the fuzzy rule base
turns the optimization problem into a smooth problem that can be analyzed an-
alytically. This analysis reduces the problem to a system of quadratic equations
whose solution space has the surprising property that it generically contains a
whole line. It should be possible to utilize this fact in the construction of fast
and efficient solvers, which will be an important application of this research. The
approach in this paper builds on experimental research presented in [7,6], but
it should be noted that a number of other mechanisms have been proposed for
encoding fuzzy rules [8].

The methods we consider could be used in an evaluation process where the
error is minimized with respect to fitting rule bases to some training data — in
the context of the above example this would allow a system to learn rules with
an output that is directly calculated from the data. For example a rule base
evaluated in this way could be used to forecast the probability that a stock has
positive price movement [10,12] in some future time period. A rule in such a rule
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base could look like: If Price to Earnings Ratio is Extremely Low and Double
Moving Average Buy is Very High then probability of positive price movement is
0.75. In this case the training data set would be some historical stock market
data similar to that used in [6,7].

The structure of this paper is as follows: Section 2 contains the formal defini-
tions for the analysis presented in Section 3. Section 4 concludes the paper.

2 Approach

In this section we introduce the formulation of the models used in the analy-
sis, including the rule base solution representation, the rule base interpretation
method and the evaluation function.

2.1 Rule Base Solution Representation and Interpretation

Let us introduce some precise definitions of what is meant by the rule base solu-
tion representation. First of all, we are given L linguistic variables {A1, ..., AL}.
Each linguistic variable Ai has Mi linguistic descriptions {Ai

1, ..., A
i
Mi
} that are

represented by triangular membership functions μi
j , j = 1, ...,Mi. A fuzzy rule

has the form

If Ai1 is Ai1
j1

and Ai2 is Ai2
j2

and · · · and Aik is Aik
jk

then o, (1)

where i1, ...ik ∈ {1, ..., L}, jk ∈ {1, ...,Mik
} and o ∈ [0, 1].

A rule base is a set of several rules. Let us assume that we are given a rule
base consisting of n rules:

If Ai11 is Ai11
j1
1

and Ai12 is Ai12
j1
2

and · · · and Ai1k1 is A
i1k1
j1
k1

then o1

If Ai21 is Ai21
j2
1

and Ai22 is Ai22
j2
2

and · · · and Ai2k2 is A
i2k2
j2
k2

then o2

...
...

If Ain
1 is Ain

1
jn
1

and Ain
2 is Ain

2
jn
2

and · · · and Ain
kn is A

in
kn

jn
kn

then on,

where iml ∈ {1, ..., L} and jm
l ∈ {1, ...,Mim

l
}. Given a vector x ∈ RL of observed

values, whose components are values for the linguistic variables A1, ..., AL, we
can evaluate the rule base as follows: the function ρ describes the way the rule
base interprets data observations x to produce a single output value. This value
has an application specific meaning and can be taken to be a real number (usually
normalized to lie between zero and one). More precisely, ρ is defined as follows:

ρ : RL → R

x =

⎛⎜⎜⎜⎝
x1

x2

...
xL

⎞⎟⎟⎟⎠ &→
∑n

m=1 o
m
∏km

l=1 μ
im
l

jm
l

(xim
l )∑n

m=1 o
m

.
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2.2 Evaluation Function

We consider an evaluation function (to minimize) that measures the error when
training a rule base to fit a given data set. This training data consists of a set
{xi, yi}i=1...N , where each

xi =

⎛⎜⎜⎜⎝
x1

i

x2
i
...
xL

i

⎞⎟⎟⎟⎠
is a vector that has as many components as there are linguistic variables, i.e. xi ∈
RL ∀ i = 1, ..., N , and each yi is a real number, i.e. yi ∈ R ∀ i = 1, ..., N . Then
the evaluation function has the form

ε =
N∑

i=1

(ρ(xi)− yi)2 (2)

=
N∑

i=1

(∑n
j=1 aijo

j∑n
j=1 o

j
− yi

)2

, (3)

where

asm =
km∏
l=1

μ
im
l

jm
l

(xim
l

s ).

Our aim is to optimize the rules base in such a way that the evaluation function
ε becomes minimal. This involves two separate problems. Firstly, the form of the
membership functions μi

j may be varied to obtain a better result. Secondly, the
rule base may be varied by choosing different rules or by varying the weights oi.
In this paper we will concentrate on the second problem, taking the form of the
membership functions to be fixed. For example, we can standardize the number of
membership functions for each linguistic variableAi to beMi = 2ni−1 and define

μi
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 : x ≤ j−1
2ni

2nix+ 1− j : x ∈
[

j−1
2ni

, j
2ni

]
−2nix+ 1 + j : x ∈

[
j

2ni
, j+1

2ni

]
0 : x ≥ j+1

2ni

for j = 1, ..., 2ni − 1 = Mi. These functions are shown in Figure 1.
Moreover, we can consider the number n of rules to be fixed by either working

with a specific number of rules that we want to consider, or by taking n to be
the number of all possible rules (this number will be enormous, but each rule
whose optimal weight is zero, or sufficiently close to zero can just be ignored and
most weights will be of that form), depending on the application. The resulting
optimization problem will be considered in 3.2.
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Fig. 1. Membership Functions

3 Analysis

This section contains the detailed analysis of the problem described in Section 2.
We firstly determine the maximum possible number of rules and then consider
the optimization problem for the evaluation function. As a result, we are able
to reduce the optimization problem to a system of equations (6), that has the
remarkable property that it allows (generically) a one-dimensional solution space.
This is the content of Theorem 1.

3.1 Search Space

The search space is the set of all potential rule base solutions. Let us first of all
compute the maximum number of rules nmax that we can have. Each rule can
be written in the form

If A1 is A1
j1 and A2 is A2

j2 and · · · and AL is AL
jL

then o,

where in this case ji ∈ {0, 1, ...,Mi} and ji = 0 implies that the linguistic variable
Ai does not appear in the rule. Then we have

nmax = (M1 + 1)× (M2 + 1)× · · · × (ML + 1)− 1.

Note that we have subtracted 1 to exclude the empty rule. If we include the
possible choices of weights oi with discretization oi ∈ {0, 1

d , ..., 1}, then we have
a system of

(d + 1)nmax

possible rule bases.

3.2 Optimization Problem

In this subsection we will treat the optimization problem described in 2.2. We
have to take the training data {xi, yi}i=1...N and the various membership func-
tions μi

j as given, so we can treat the various aij as constants and simplify
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ε(o) =
N∑

i=1

(∑n
j=1 aijo

j∑n
j=1 o

j
− yi

)2

=
N∑

i=1

⎛⎜⎝∑n
j=1(aij − yi)2ojoj + 2

∑
j<k(aij − yi)(aik − yi)ojok(∑n

j=1 o
j
)2

⎞⎟⎠
=

∑n
j=1 Ajjo

joj + 2
∑

j<k Ajko
jok(∑n

j=1 o
j
)2

with Ajk =
N∑

i=1

(aij − yi)(aik − yi)

=

∑n
j=1

∑n
k=1 Ajko

jok(∑n
j=1 o

j
)2 .

We want to find weights oi such that this expression becomes minimal. In our
formulation this requirement is smooth in the oi, so we can compute the partial
derivatives of the evaluation function with respect to the weights. At a minimal
point omin ∈ Rn, we must have

∂ε

∂o1
(omin) = 0,

∂ε

∂o2
(omin) = 0, ...,

∂ε

∂on
(omin) = 0.

It will turn out that this requirement is equivalent to a system of quadratic
equations. So let us compute

∂ε

∂oq
(o) = 2

(∑n
i=1Aiqo

i
) (∑n

k=1 o
k
)
−
∑n

i=1

∑n
j=1Aijo

ioj

(
∑n

i=1 o
i)3

(4)

=
2

(
∑n

i=1 o
i)3

⎛⎝ n∑
i=1

n∑
j=1

(Aiq −Aij)oioj

⎞⎠ . (5)

If we can simultaneously solve these n equations

∂ε

∂o1
(o) = 0,

∂ε

∂o2
(o) = 0, ...,

∂ε

∂on
(o) = 0,

then we have found a local extrema. For only two rules, for example, we obtain

∂ε

∂o1
(o) =

2o2

(o1 + o2)3
(
(A11 −A12)o1 + (A21 −A22)o2

)
∂ε

∂o2
(o) =

2o1

(o1 + o2)3
(
(A12 −A11)o1 + (A22 −A21)o2

)
Therefore, if we assume that o1 �= 0 or o2 �= 0, then the optimal solution is

o1 =
A22 −A21

A11 −A12
o2.
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This is a whole line that intersects zero in R2. This phenomena can be seen
clearly in the following picture:

1.0
0.75

y 0.5

0.25

0.0

0.00.19

0.25

0.24

x

0.5

0.29

0.75

0.34

1.0

0.39

0.44

0.49

Fig. 2. Evaluation function for two rules

More than Two Rules. If we have more than two rules, then the conditions
become

∂ε

∂oq
= 0 ⇔

⎛⎝ n∑
i=1

n∑
j=1

(Aiq −Aij)oioj

⎞⎠ = 0, q = 1, ..., n. (6)

Theorem 1. Generically, there exists a one-parameter family of solutions to
the system (6). Hence the space of extremal points for ε is a line in Rn that
passes through zero.

Proof. We will show that the n equations (6) are dependent, i.e. that we only
need to solve n− 1 of these equations and the n-th equation then follows auto-
matically. For this purpose, we rewrite the system⎛⎝ n∑

i=1

n∑
j=1

(Aiq −Aij)oioj

⎞⎠ =
n∑

j = 1

j �= q

oj
(
(Aqq −Aqj)oq + (Ajq −Ajj)oj

)︸ ︷︷ ︸
Bqj

+
n∑

j = 1

j �= q

n∑
i = 1

i �∈ {q, j}

(
(Aiq −Aij)oioj

)
.

Note that

Bqj = −Bjq.
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Denote the q-th equation by Eq. Using the equality above, we compute

n∑
k=1

okEk =
n∑

k=1

n∑
j = 1

j �= q

Bkjo
koj︸ ︷︷ ︸

=0

+
n∑

k=1

n∑
j = 1

j �= q

n∑
i = 1

i �∈ {q, j}

⎛⎜⎝(Aik −Aij)︸ ︷︷ ︸
Cijk

oiojok

⎞⎟⎠
= 0.

The last term vanishes due to the fact that the tensor Cijk is symmetric in the
index pair (i, j), symmetric in the index pair (i, k) and skew (i.e. anti-symmetric)
in the index pair (j, k). Such a tensor has to vanish identically. It is hence suf-
ficient to solve (6) just for (n− 1) equations, the last equation is automatically
satisfied.

Remark. Every local extrema of the function ε is in fact a local minima.

Proof. Assume omax is a local maxima. There exists a hyperplane E ⊂ Rn

through omax such that
(∑

i o
i
)2 is constant on E. Now A = (Ajk) can be

written as
A = KTK with Kij = aij − yi

and is hence positive definite. ThereforeAijo
ioj has a unique local extrema which

is a minima. This shows that there is a direction l ⊂ E ⊂ Rn such that Aijo
ioj

increases on l. But then ε increases on l as well. This is a contradiction.

Remark. The analysis in this subsection is independent of the form of the
membership functions, in particular they need not be triangular as in 2.2.

4 Conclusions and Future Work

We have successfully reduced the problem of finding optimal weights oi for a rule
base (given an arbitrary set of training data points) to a system of n equations for
n unknowns, where n is the number of rules. Moreover, we have shown that the
space of extremal points for the evaluation function is a line through the origin in
Rn. Hence a genetic algorithms will be able to find an optimal solution in [0, 1]n

using well-established and fast methods [3,4]. The reason for this, somewhat
surprising, result lies in the specific form of our rule base formulation: not the
values of the weights themselves are important, but the relationship that they
have with respect to each other. Mathematically speaking, the optimal solution
o is really an element of (n−1)-dimensional projective space RPn−1, rather that
an element of Rn. It should be noted that the t-norm and defuzzification method
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used in this analysis produces smooth functions, using other operators such as
the min t-norm would make the analytic treatment more problematic.

It is possible to use the analysis in this paper to design an optimization process
in which combinations of rules consisting of the if parts are selected and then
evaluated using a fast algorithm to find the optimal then parts (output weights)
to produce a rule base. This would be beneficial in a range of applications as
mentioned in the introduction. For example, reducing the size of the search space
by removing the assignment of output weights from the general rule base search
problem; or by fixing an initial structure for the rules (using knowledge from the
application domain or because of specific application requirements) that feasible
solutions should contain and then redefining the search objective to extend this
set rather than using a free search — this is for instance a very useful feature in
financial applications [7]. As a part of this further research, we will also examine,
combinatorially and empirically, algorithms and genotype representations that
utilize the reduction in complexity that arises from the analysis in this paper.
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Evolving Regular Expressions for GeneChip

Probe Performance Prediction
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Abstract. Affymetrix High Density Oligonuclotide Arrays (HDONA)
simultaneously measure expression of thousands of genes using millions
of probes. We use correlations between measurements for the same gene
across 6685 human tissue samples from NCBI’s GEO database to in-
dicated the quality of individual HG-U133A probes. Low concordance
indicates a poor probe. Regular expressions can be data mined by a
Backus-Naur form (BNF) context-free grammar using strongly typed
genetic programming written in gawk and using egrep. The automati-
cally produced motif is better at predicting poor DNA sequences than an
existing human generated RE, suggesting runs of Cytosine and Guanine
and mixtures should all be avoided.

1 Introduction

Typically Affymetrix GeneChips (e.g. HG-U133A) measure gene expression at
at least eleven points along the gene. Individual measurements are given by short
(25 base) DNA sequences, known as probes. These are complementary to corre-
sponding locations in genes. Being complementary, the gene product (messenger
RNA) preferentially binds to the probe. Cf. left hand side of Figure 1. Half a
million probes are placed on a glass slide in a square grid pattern. A fluorescent
dye is used to measure how much mRNA is bound to each probe.

While nothing is simple in Biology, to a first approximation, the amount of
mRNA produced by a gene should be the same no matter which part of the
mRNA molecule is bound to a probe. Affymetrix groups probes into probe-
sets. Each probeset targets a gene. Therefore probe measurements for the same
probeset should be correlated. Figure 1 (right) shows the 110 correlations for
a probeset as a “heatmap” (yellow/lighter corresponds to greater consistency
between pairs of probes).

There are several biological reasons which might lead to probes on the same
gene giving consistently unrelated readings. (Alternative splicing, alternative
polyadenylation and 3’-5’ degradation, come to mind [11].) However these do
not explain all of the many cases of poor correlation. In [9] we found some tech-
nological reasons. In particular, [9] showed that probes containing a large ratio
of Guanine (G) to Adenosine (A) bases are likely to perform badly. Subsequently
we have found that runs of Gs (which will tend to have a high G/A ratio) also

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 1061–1070, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.cs.ucl.ac.uk/staff/W.Langdon


1062 W.B. Langdon and A.P. Harrison

G

T

T
T
T

T
G
T

T
T
G

G

C

C

C

T
C
T
T

T
T
T

T

T

T

C

C

C

C

G

G

G

T
T

G

G

C
T

T
T
G

T
T

T

T
T

G

C
T

C
T

G

G
C

T

T
TT

A
A
A

A

A

A

A

A
A
A

A

A

A
A

A

A
A

A
A

A

A

A

A
A A

A

A
A

Fig. 1. Left:Schematic of an Affymetrix probe (vertical) bound with complementary
target sequence (right). Right: Correlation coefficients (×10) between 11 probes for
gene “S100 calcium binding protein A11” S100A11. Nine of the probes are correlated
but PM1 and PM2 (bottom 2 rows and 2 left) are not.

tend to indicate problem probes [25]. This has lead us to ask if there are other
sequences which might indicate dodgy probes.

The next section will briefly describes the research background, whilst Sec-
tion 3 will describe the preparation of datasets containing the correlation coeffi-
cients and probe sequences. Section 4 describes the evolutionary algorithm used
to create regular expressions for egrep. Section 5 describes how well genetic
programming does. Section 6 uses the evolved motif to suggest potential physi-
cal explanations for poor probes. Finally, in Section 7 we conclude that several
regular expressions, e.g. G(G|C){4}, in additions to GGGG, can be used together
to locate poor probes.

2 Grammars and Evolutionary Computation

Existing research on using grammars to constrain the evolution of programs can
be broadly divided in two: Grammatical evolution [21] based largely in Ireland
and work in the far east by Wigham [26,27], Wong [28] and McKay [17].

There is quite a body of work on using evolution to induce formal grammars.
E.g. Nikolaev tackled the Tomita regular expression benchmarks [20]. GP has
also evolved context free grammars [14]. Cetinkaya used grammatical evolution
to create regular expression for processing HTML [6].

Ross induced stochastic regular expressions from a number of grammars to
classify proteins from their amino acid sequence [24]. Typically his grammars had
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eight alternatives. In Stockholm regular expressions have been evolved to search
for similarities between proteins, again based on their amino acid sequences [7].
Whilst Brameier in Denmark used amino acids sequences to predict the location
of proteins by applying a multi-classifier [16] linear GP based approach [4] (al-
though this can be done without a grammar [15]). A similar technique has also
been applied to study microRNAs [5].

The next section describes our single stage strongly typed tree based GP being
applied to an important DNA problem: explaining why some DNA sequences in
wide spread commercial use make poor GeneChip probes.

3 Preparation of Training Data

Previously we had down loaded thousands of experiments from NCBI’s GEO [2],
normalised them, excluded spatial defects and calculated the correlation between
millions of pairs of probes [13,9,12]. To exclude genes which are never expressed,
we selected probesets where ten or more non-overlapping probe pairs had cor-
relations of 0.8 or more. For each probe we use the median value of all 10 of
its correlations with other members of its probeset (excluding those it overlaps).
This gave 4118 probesets, which were evenly split into three to provide indepen-
dent training, test and validation data.

Previously we found the “mismatch” probes were often poorly correlated with
other measurements for the same gene [9]. Since this is known, we excluded them
from this study.

As Figure 2 (left) shows correlation coefficients cover a wide range. Since we
are using correlation only as an indication of how well a probe is working we
decided to exclude the middle values from training and instead use probe pairs
that were highly correlated (≥ 0.8) or were very poorly correlated (≤ 0.3). Of
the 15 092 available training examples, there are 7 832 probes highly correlated
with the rest of their probeset but only 583 poorly correlated. To avoid unbal-
anced training sets, every generation all 583 negative examples are used and 583
positive examples are randomly chosen from the 7 832 positive examples.

4 Evolving Regular Expression Motifs

4.1 BNF Grammar of Regular Expression

The BNF grammar used (cf. Figure 3) is an extension of that given by Cam-
eron http://www.cs.sfu.ca/people/Faculty/cameron/Teaching/384/99-3/
regexp-plg.html In particular, matching the beginning of strings (^) and the
{n,m} form of Kleen closure, are also supported. The BNF has been customised
for DNA strings. (I.e. <char> need only be A C G and T). Since various combi-
nations of the start of string symbol, null strings and Kleen closure cause egrep
to loop, care has been taken to ensure that the new BNF does not permit null
strings after ^.

http://www.cs.sfu.ca/people/Faculty/cameron/Teaching/384/99-3/regexp-plg.html
http://www.cs.sfu.ca/people/Faculty/cameron/Teaching/384/99-3/regexp-plg.html
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Fig. 2. Training data. Probes with intermediate values (0.3 . . . 0.8) are not used. Right:

Evolution of breeding population (best 200 of 1000) of regular expressions to find poor
GeneChip probes. Each generation the positive training cases are replaced leading to
fluctuations in the measured best fitness (*). However diversity remains high and there
are usually few individuals with the same highest fitness (�). In this run the number
of distinct phenotypes (×) (i.e. egrep search strings) is almost identical to the number
of distinct genotypes. Bloat is limited (+), apparently by the tree depth limit (17).
However the system slows down by (≈ 1

2
) as evolution proceeds.

Brameier and Wiuf suggests that the traditional * and + form of Kleen closure
are not suitable for bioinformatic applications [5]. Instead they recommend the
{n,m} form which explicitly defines both lower (n) and upper (m) limits on the
number of times the preceeding symbol must occur. However both {n,m} and tra-
ditional Kleen closures are used by evolved solutions. To avoid mutation.awk
seeing “Hamming cliffs”, the integer quantifiers used in the {n,m} are Gray
coded [1]. Similarly the syntax groups together the chemically more similar
Pyrimidines (T and C) and Purines (A and G).

Our system supports full positive integer values for minmaxquantifier, how-
ever even modest values can lead egrep to hang the computer. Therefore n and
m are limited to 1-9. Finally egrep rejects {n,m} if m<n. This is handled by a
semantic rule which removes ,m from the phenotype when m is less than n.

4.2 Simplifying the BNF for Use by Evolutionary Algorithms

For simplicity, the BNF is written so that grammar rules are either simple
substitution rules (e.g. <minmaxquantifier>), rules with exactly two options
(e.g. <RE>) or terminals (e.g. "*" and T). In BNF terms, a terminal is a symbol
which cannot be substituted in the grammar. Therefore, unlike the BNF rules,
it becomes part of the egrep regular expression. The simple substitution rules
do not have any element of choice. They, like terminals, cannot be chosen as
crossover points or targets for mutation. Their principle use is to enable the
rules with options to be kept simple.

The binary choice rules are the active parts of the syntax. As they are always
binary, each sentence recognised by the BNF has an equivalent binary string.



Evolving RE for GeneChip Probe Performance Prediction 1065

<start> ::= <RE>

<RE> ::= <union> | <simple-RE>

<union> ::= <RE> "|" <simple-RE>

<simple-RE> ::= <concatenation> | <basic-RE>

<concatenation> ::= <simple-RE> <basic-RE>

<basic-RE> ::= <RE-kleen> | <elementary-RE>

<RE-kleen>::= <minmaxquantifier> | <kleen>

<kleen>::= <star> | <plus>

<star> ::= <elementary-RE2> "*"

<plus> ::= <elementary-RE2> "+"

<minmaxquantifier> ::= <elementary-RE4> "{" <int> <optREint> "}"

<elementary-RE> ::= <group> | <elementary-RE1>

<elementary-RE1> ::= <xos> | <elementary-RE2>

<elementary-RE2> ::= <any> | <elementary-RE3>

<elementary-RE3>::= <set> | <char>

<elementary-RE4> ::= <group> | <elementary-RE2>

<group> ::= "(" <RE> ")"

<xos> ::= <sos> | "$"

<sos> ::= "^" <elementary-RE4>

<set> ::= <positive-set> | <negative-set>

<positive-set> ::= "[" <set-items> "]"

<negative-set> ::= "[^" <set-items> "]"

<set-items> ::= <set-item> | <set-items2>

<set-items2> ::= <set-item> <set-items>

<set-item> ::= <char>

<char> ::= <c00> | <c01>

<any> ::= "."

<c00> ::= T | C

<c01> ::= A | G

<optREint> ::= <2ndint> | $

<2ndint> ::= "," <int>

<int> ::= <d0>

#4 Bit Gray Code Encoder

<REdigit> ::= <d111> | <d0>

<d0> ::= <d00> | <d01>

<d00> ::= <d000> | <d001>

<d01> ::= <d010> | <d011>

<d000> ::= 1

<d001> ::= 3 | 2

<d010> ::= 7 | 6

<d011> ::= 4 | 5

<d111> ::= 8 | 9

Fig. 3. Grammar used to specify legal regular expressions for use as egrep search
strings for testing DNA sequences

(A BNF sentence means an egrep regular expression in our case.) Each bit
corresponds to a BNF rule with two options needed when parsing the sentence.
The bit indicates which option should be invoked. Note that the meaning of
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each bit depends upon where we have reached in parsing the sentence (i.e. on
the earlier bits). In traditional GP terms, this list of choices is the evolving tree.
The BNF grammar acts to put labels on the choices, which constrain crossover,
but it is the choices (not the BNF grammar) which is the genetic material of the
evolving individual. Note, unlike grammatical evolution, strongly typed crossover
respects [23] the meaning of the BNF rules.

4.3 Creating Random BNF Sentences

The initial random population is created using ramped half-and-half [8]. It may
help to think of this as applying the usual genetic programming ramped half-
and-half algorithm to a binary tree (of choice nodes).

We start from <start> and recursively follow the BNF. However when we
reach a rule with options we need to choose one. As in ramped half-and-half we
keep track of how deep we are nested. If we have not reached the depth needed
to terminate the recursion, we randomly choose one of the options. This is the
equivalent of choosing a GP function. (As with other strongly typed GPs, if a
chosen route through the syntax has no further choices to be made, we may be
forced to terminate a recursive branch early.)

To terminate a recursion we choose the “simpler” option. Our BNF has been
written so that the simpler option is always on the right. (This is flagged by RE
in the rule name.) If there is no “simpler” choice, the choice is made randomly.
This mechanism is also used for mutating existing regular expressions.

Although this may seem complex, gawk (Unix’ free interpreted pattern scan-
ning and processing language) can handle populations of a million individuals.

4.4 Crossing over BNF Sentences

Creating a new sentence from two high fitness sentences is essentially subtree
crossover [22] applied to the binary choice tree (cf. Section 4.1) with the ad-
dition of strong type constraints [18]. This is implemented by scanning the
grammar used to create the first parent for all the rules with two options.
One of these is randomly chosen. For example, suppose the first parent starts
<start> <RE> <union> and suppose <union> is chosen as the crossover point.
For a grammatically correct child to be produced all that is necessary is that
the crossover point chosen in the second parent should also be <union>. (There
are complications to do with depth and size limits, which we shall ignore for
the time being.) Therefore the second parent is scanned to find all occurrences
of <union>. One of them is randomly chosen to be the second crossover point.
(If there are none, this crossover is aborted and another initial crossover point
is chosen. If we keep failing, eventually another pair of parents is chosen.)

Crossover is based on normal GP subtree crossover, cf. [22, Figure 2.5]. The
new child is created by copying the start of the first parent, excluding the subtree
at the first parent’s crossover point. Then genetic material from the subtree at
the second parent’s crossover point is added. Finally the remainder of the first
parent is appended to the child. This is implemented by crossing over the binary
choice trees to create a binary choice tree for the new child. Apart from issues
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Table 1. Strongly Typed Grammar GP for GeneChip Correlation Prediction

Primitives: The function and terminal sets are defined by the BNF grammar (cf. Fig-
ure 3). BNF rules with two options correspond to binary GP functions.
The rest of the BNF grammar correspond to GP terminals.

Fitness: true positives+true negatives. (I.e. proportional to the area under the
ROC curve or Wilcox statistic [10].) Less large penalty if egrep fails or
it matches all probes or none.

Selection: (200,1000)
Initial pop: Ramped half-and-half 3:7
Parameters: 100% subtree crossover. Max tree depth 17 (no tree size limit)
Termination: 50 generations

<start>

<RE>

<union>

<RE> | <simple-RE>

<union> <basic-RE>

<RE> | <simple-RE>

<union> <concatenation>

<RE> | <simple-RE>

<union> <concatenation>

<RE> | <simple-RE>

<union> <concatenation>

<RE> | <simple-RE>

<union> <concatenation>

<RE> | <simple-RE>

<union> <basic-RE>

<RE> | <simple-RE>

<simple-RE> <basic-RE>

<concatenation>

<simple-RE> <basic-RE>

<basic-RE> <RE-kleen>

<elementary-RE>

<elementary-RE1>

<elementary-RE2>

<elementary-RE3>

<char>

<c01>

G

<minmaxquantifier>

<elementary-RE4> { <int> <optREint> }

<elementary-RE2> <d0>

<elementary-RE3>

<char>

<c00>

C

<d00>

<d001>

3

<RE-kleen>

<minmaxquantifier>

<elementary-RE4> { <int> <optREint> }

<elementary-RE2> <d0>

<elementary-RE3>

<char>

<c01>

G

<d01>

<d011>

4

<RE-kleen>

<minmaxquantifier>

<elementary-RE4> { <int> <optREint> }

<elementary-RE2> <d0>

<elementary-RE3>

<char>

<c00>

C

<d01>

<d011>

4

<simple-RE> <basic-RE>

<concatenation> <RE-kleen>

<simple-RE> <basic-RE>

<basic-RE> <RE-kleen>

<elementary-RE>

<elementary-RE1>

<elementary-RE2>

<elementary-RE3>

<char>

<c00>

C

<minmaxquantifier>

<elementary-RE4> { <int> <optREint> }

<elementary-RE2> <d0>

<elementary-RE3>

<char>

<c01>

G

<d00>

<d000>

1

<minmaxquantifier>

<elementary-RE4> { <int> <optREint> }

<elementary-RE2> <d0>

<elementary-RE3>

<char>

<c00>

C

<d00>

<d001>

2

<simple-RE> <basic-RE>

<concatenation> <RE-kleen>

<simple-RE> <basic-RE>

<basic-RE> <RE-kleen>

<elementary-RE>

<elementary-RE1>

<elementary-RE2>

<elementary-RE3>

<char>

<c01>

G

<minmaxquantifier>

<elementary-RE4> { <int> <optREint> }

<elementary-RE2> <d0>

<elementary-RE3>

<char>

<c01>

G

<d01>

<d011>

4

<kleen>

<plus>

<elementary-RE2> +

<elementary-RE3>

<char>

<c00>

C

<simple-RE> <basic-RE>

<basic-RE> <RE-kleen>

<elementary-RE>

<elementary-RE1>

<elementary-RE2>

<elementary-RE3>

<char>

<c01>

G

<minmaxquantifier>

<elementary-RE4> { <int> <optREint> }

<group> <d0>

( <RE> )

<union>

<RE> | <simple-RE>

<simple-RE> <basic-RE>

<basic-RE>

<elementary-RE>

<elementary-RE1>

<elementary-RE2>

<elementary-RE3>

<char>

<c01>

G

<elementary-RE>

<elementary-RE1>

<elementary-RE2>

<elementary-RE3>

<char>

<c00>

C

<d01>

<d011>

4

<simple-RE> <basic-RE>

<basic-RE> <RE-kleen>

<elementary-RE>

<elementary-RE1>

<elementary-RE2>

<elementary-RE3>

<char>

<c01>

G

<minmaxquantifier>

<elementary-RE4> { <int> <optREint> }

<group> <d0>

( <RE> )

<union>

<RE> | <simple-RE>

<simple-RE> <basic-RE>

<basic-RE>

<elementary-RE>

<elementary-RE1>

<elementary-RE2>

<elementary-RE3>

<char>

<c01>

G

<elementary-RE>

<elementary-RE1>

<elementary-RE2>

<elementary-RE3>

<char>

<c00>

C

<d01>

<d011>

4

<RE-kleen>

<minmaxquantifier>

<elementary-RE4> { <int> <optREint> }

<elementary-RE2> <d0>

<elementary-RE3>

<char>

<c00>

C

<d00>

<d001>

3

Fig. 4. Geneotype of best program in generation 50. Active choice nodes in the
BNF (cf. Figure 3) are emphasised by placing them in ovals. The resulting phe-
notype is simply the 58 leaf nodes (excluding $), read in left to right order:
GC{3}|G{4}|C{4}|CG{1}C{2}|GG{4}C+|G(G|C){4}|G(G|C)4|C{3}. It is equivalent to
GGGG|CGCC|G(G|C){4}|CCC.

of tree size and depth, we are guaranteed that the new binary choice tree will
represent a valid sentence in the BNF grammar.

The final step is to recursively trace through the BNF grammar, obeying
the binary choices. Each time an BNF terminal (except the null symbol) is
encountered it is appended to the new regular expression. In order to be able to
breed following generations, the new individual’s genotype must also be passed to
the next generation. For convenience, this is done by writing each BNF symbol,
as it is encountered, to the file holding the next generation.

4.5 Evaluating the Fitness of BNF Sentences

Each generation, a command file is generated which contains a egrep -c -v ’RE’
command for each individual in the population. (RE is the individual’s regular
expression.) The command is run on a file holding the DNA sequences of the 583
probes poorly correlated with the rest of their probeset. The same command is also
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run on a file holding the 583 positive probes selected for use in this generation. The
fitness of the regular expression is based on the difference between the number of
lines in the two files which match RE. Expressions which either match all probes
or fail to match any are penalised by subtracting 583 from their score. See also
Table 1. Implementation details can be found in [12].

5 Results

By the end of the first run, with a population of 1000 (cf. Table 1 and Figure 2,
right) GP had evolved a probe performance predictor (see Figure 4) equivalent
to GGGG|CGCC|G(G|C){4}|CCC. It is obvious that it includes the previous rule
(GGGG, [25]) but includes other possibilities. Therefore it finds more poor probes.
Inevitably it will also incorrectly predict more high correlation probes are poor
but the increase is more than offset by its better performance on the poor probes.
See Figure 5. It has a fitness of 856. (GGGG has a fitness of 776.)

The confusion matrix for the evolved regular expression on the whole of the
training set (including the 6677 positive middling values which GP never saw)

is 410 4448
173 10061 and on the verification data: 448 4436

174 10045. (The corresponding ma-

trices for GGGG are 195 479
388 14030 and 209 434

413 14047 .) Unlike in many machine learning

applications, there is no evidence of over fitting. Indeed the corresponding re-
sults for the test set (second matrix of each pair) are not significantly different
(χ2, 3 dof) from those on the whole training set. The evolved regular expression
picks up significantly more (χ2, 3 dof) (448 v. 209) poorly performing probes on
the validation set than the human produced regular expression. Figure 6 shows
the number of DNA probes matching the evolved motif against their average
correlation with the rest of their probeset.

As is common in optimisation [3], almost all the time is taken by the fit-
ness evaluation. In our case, elapse time is dominated by the command script
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which runs egrep -c. Typically this takes 8.5mS per individual. The time taken
by gawk to process the BNF grammar, perform crossover, generate the regular
expressions, etc., is negligible.

6 Discussion

Theoretical and empirical studies of GeneChips confirm that the behaviour of
DNA probes tethered to a glass surface can be quite different from DNA be-
haviour in bulk solution. This is a new and difficult area and there are not deep
pure Physics experimental results. Therefore experimental studies have concen-
trated on data gathered during normal operation of the chips.

Our automatically generated motif, suggests that in addition to Gs, Cs are
important. Indeed the fact that only three consecutive Cs is predictive (whereas
four Gs are needed) suggests that Cs are more important than Gs. It is known
in GeneChips DNA C–G RNA binds more strongly than DNA G–C RNA [19].
(Both C and G bind more strongly than A and T.) We are tempted to suggest
that a CCC sequence on a DNA probe can act as a nucleation site encouraging
the probe to bind to GGG on RNA. Indeed the evolved motif suggests that four
Gs and mixtures of five Cs and Gs might also form nucleation sites.

The sequence CCC is too short to be specific to a particular gene. GeneChips
are designed on the assumption that only RNA sequences which are complemen-
tary to the full length of the probe will be stable. However studies have shown that
nonspecific targets can be bound to GeneChip probes for several hours even if held
only by the nucleation site. This may be why probes with quite short runs of either
Cs or Gs can be poorly correlated with others designed to measure the same gene.

7 Conclusions

Access to the raw results of thousands of GeneChips (each of which costs several
hundreds of pounds) makes new forms of bioinformatic data mining possible.

Millions of correlations between probes in the same probeset, which should be
measuring the same gene, show wide variation. Evolution of regular expressions
confirms previous work [9,25] that the DNA sequences from which the probes
themselves are formed can indicate poor probe performance. Indeed several new
motifs (e.g. CCC) which predict probe quality have been automatically found.

Linux code is available via FTP ftp://cs.ucl.ac.uk/genetic/gp-code/
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Abstract. We introduce self-interested evolutionary market agents,
which act on behalf of service providers in a large decentralised system,
to adaptively price their resources over time. Our agents competitively
co-evolve in the live market, driving it towards the Bertrand equilibrium,
the non-cooperative Nash equilibrium, at which all sellers charge their
reserve price and share the market equally. We demonstrate that this
outcome results in even load-balancing between the service providers.

Our contribution in this paper is twofold; the use of on-line competitive
co-evolution of self-interested service providers to drive a decentralised
market towards equilibrium, and a demonstration that load-balancing be-
haviour emerges under the assumptions we describe.

Unlike previous studies on this topic, all our agents are entirely self-
interested; no cooperation is assumed. This makes our problem a non-
trivial and more realistic one.

Keywords: decentralised systems, market-based control, co-evolution,
load-balancing, self-interested agents.

1 Introduction

Emerging paradigms for the development and deployment of massively dis-
tributed computational systems allow resources to span many locations, organi-
sations and platforms, connected through the Internet [1]. It has been predicted
that the majority of transactions over the Internet will, in the future, be car-
ried out by autonomous agents on behalf of their owners [2]. In this scenario,
neither control nor even full knowledge of key resources may be assumed. There
is therefore a need to find novel ways to understand and autonomically manage
and control these large, decentralised and dynamic systems [3].

Gupta et al. [4] propose externality pricing for the provision of otherwise vir-
tually zero cost per-use computational services. They argue that this approach,
where service users self-select their quantity based on price, is a more preferable
approach to the alternative of provider-side enforced quantity limits.

We propose the use of autonomous evolutionary market agents as an approach
to achieving this. Evolutionary market agents operate on behalf of individual
actors in a decentralised market-based system. Such decentralised markets have
no auctioneers or market-makers. Instead, selling agents (the service providers)

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 1071–1080, 2008.
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advertise their services at a price, and buying agents (the service users) decide
whether to buy, and from whom. Making use of only local information about
the live market, the sellers adapt (or evolve) the offers of their host in order to
maximise their payoff. When coupled with rational, self-interested buying agents,
we demonstrate that this approach is able to provide load-balanced allocations
across the system as a whole.

Market-based resource allocation and adaptive pricing are not new ideas (see
[5] for an introduction) and our contribution in this paper is twofold. Firstly, we
describe how decentralised computational markets can provide an emergent load-
balancing behaviour between self-interested agents at equilibrium, and secondly,
we demonstrate the use of competitive co-evolution to drive the market towards
this equilibrium.

2 Related Work

Traditionally, load-balancing is done in a centralised manner [6]. Relying on
a single node, such approaches have a central point of failure. Alfano and Di
Caprio note that scalability is a critical factor in load-balancing systems [7].
They present a scalable, decentralised load-balancing mechanism, based upon
cooperating peers. Our model, however, does not require cooperation. Indeed,
its power lies in the self-interested competition of peers, over whom we may not
have control.

As such, our approach falls into the broad category of market-based control,
a methodology which has been applied to the allocation of resources in vari-
ous real-world scenarios. Clearwater provides a useful introduction to the use
of computational markets in scenarios such as bandwidth allocation and air-
conditioning control [5]. A full review is beyond the scope of this paper, but may
be found in [8].

Cliff and Bruten note that a large proportion of market-based control systems,
however, either rely on a central auctioneer, or require human intervention [8].
Therefore, though much of the computation is done by individual agents and
is distributed, these systems are often not decentralised. They argue that this
leads to a brittleness of the system.

A number of distributed auction mechanisms have also been proposed
[9,10,11,12], which do not rely on one central auctioneer. These reduce the
fragility associated with reliance upon a single point, provide more scalability
and allow for dynamic composition of auctions. Typically, the central auction-
eer is replaced by a number of local ones, which communicate through some
secure means. However, similarly to the vulnerabilities of the Internet’s domain
name system [13], failure at certain points in the network may well cripple wider
functionality, at best.

Kuwabara et al. propose what we believe to be the most decentralised market-
based approach to the allocation of resources [14]. Here, no auctioneer, specialist
or market-maker is used; prices are set solely by the sellers and advertised via
a broadcast mechanism. Rational buyers then decide the quantity to purchase
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from each seller, in order to maximise their payoff. However, unlike our sellers’
strategies, those used used by Kuwabara et al. are not driven by self-interest.
The problem studied here is of the same general form as that in [14].

A variety of computational intelligence techniques have been used to attempt
to replicate the behaviour of human marketing managers in the real world. Midg-
ley et al. model brand managers in the retail coffee market as agents, which
determine the occurrence and nature of various promotions and price discounts
[15]. However, the difference between these cases and our problem is that we are
not interested in modelling human behaviours, or in replicating them.

Applying evolutionary techniques to self-interested selling behaviour, Cheung
et al. [16] used a simple model of the Australian consumer petroleum market to
predict how sellers would modify their prices in a competitive environment. By
giving sellers historical information about each other, they correctly replicated
implicit cartel behaviour found in the real world, where despite the short-term
rationality of cutting prices to increase market share, sellers in fact raised their
prices in step. Their simulations resulted in sellers colluding in order to all charge
the maximum price and share the market equally. If all other sellers cooperate,
then this is the optimal strategy from a seller’s point of view. However, only one
seller not cooperating and undercutting the others, leads to it making a greater
short-term payoff.

3 Problem Formulation

We consider a scenario consisting of a set of service providing nodes, S, each
member of which provides an equivalent, quantitatively divisible service, the
resource π, which may vary only in price. We assume that each member of S has
an equal capacity for the provision of π, and that they cannot be relied upon to
cooperate. We then imagine a large population of service users or buyers, B, each
member of which aims to consume some of the resource π, at regular intervals.
Our objective is to balance the load, such that all the service providers in S are
providing an equal amount of π across the population of service users. Though
this is a trivial problem when cooperation may be assumed, we wish to achieve
this using self-interest, with no central control. Note that we are not modelling
service providing nodes owned by competing businesses in the real-world, since
then load-balancing would not be desirable; self-interested competition is instead
artificially created in order to serve the purposes of the system owner.

At a given instant, a service provider, si ∈ S, advertises π at the price pπ
si

per unit. From a service user’s point of view, this may be denoted as the offer
Xsi . Each service user, a buyer in this case, purchases some of the resource π
should it be in their interest to do so at the price offered. The system iterates,
with service providers able to adapt their prices to the market conditions over
time. The actual provision of π may be regarded as instantaneous, such that it
does not interfere with this mechanism.

For simplicity at this stage, we assume that the system proceeds in discrete
time-steps, that each buyer bj ∈ B desires exactly one unit of π per time-step,
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and that each and every si ∈ S has sufficient quantity of π available to satisfy all
the buyers in B should it be so requested. This final assumption is commonplace
in the provision of information-based services, and is present in other related
work such as [14]. We do not believe that its presence alters the underlying
behaviour we demonstrate. We further simplify the model by stipulating that
each service provider has no overhead cost associated with obtaining, producing
or providing π. This assumption allows for buyers to purchase a tiny amount
from each of a large number of sellers. Whether or not this is unrealistic will be
determined by the application scenario.

Each time-step, each buyer, if it chooses to buy, may purchase any amount of
π from any number of service providers in S, subject to the constraint that the
total amount purchased per time-step is equal to exactly one unit. If no offer
from any si ∈ S is in its interest, the buyer may instead opt to purchase nothing.
We therefore define qij to be the instantaneous quantity bought by buyer bj from
seller si. The constraints mean therefore that

∑|S|
i=1 qij ∈ {0, 1} for all bj ∈ B.

The quantity of π sold by a given seller si at a given time-step, its load, lsi ,
is therefore:

lsi =
|B|∑
j=1

qij . (1)

Our stated objective is even load-balancing. In previous work [14], this is
defined as being the minimisation of the variance between the service providers’
loads, vl, as shown in equation 2.

vl =
∑|S|

i=1 (lsi − μ)2

|S| , (2)

where

μ =
∑|S|

i=1 lsi

|S| .

However, we prefer instead the measure, dl, a normalised measure of mean
absolute distance from the ideal load (here referred to as NMA distance), as
described in equation 3. We find that this scales better with respect to |S|, mak-
ing comparisons between simulations with different numbers of sellers simpler.
Hence a high dl indicates an uneven load, while a perfectly even load leads to a
value of zero. We define μ as before.

dl =
∑|S|

i=1 |lsi − μ|
|S| ÷ 2|S| − 2

|S|2 . (3)

Both buyers and sellers accrue a payoff, or utility gain, from their interactions
in the marketplace. For buyers, this will be the value they associate with the price
paid subtracted from the value they associate with the purchased resource. We
assume that buyers are self-interested, such that they attempt to maximise their
utility. However, as in previous work [14], we do not assume that they are hyperra-
tional, behaving in an all-or-nothing manner in favour of the instantaneously most
attractive option, since this behaviour may expose the buyer to a degree of risk.
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Instead, we investigate buyers who are risk-averse, preferring to spread their
purchases across a number of sellers. At each time-step, each buyer looks at the
available offers, Xsi∀si ∈ S, and purchases a proportion of their total desired
resource from each seller, relative to the expected utility gain from selecting the
offer from that seller. An alternative would be to motivate risk-aversion through
the game itself, however we prefer not to complicate the model, instead favouring
the clarity gained by the assumption of risk averse behaviour.

Therefore firstly a buyer considers a unit transaction of π from each seller.
The instantaneous expected utility, or payoff, for a buyer, bj , in purchasing one
unit of π from the seller si at the current offer,

E[U bj (Xsi)] = ubj (pπ
si
, π) , (4)

where E[U bj (Xsi)] represents buyer bj ’s expected payoff from accepting offer
Xsi , and ubj (p, π) is the buyer’s utility function over the goods: money and π.

The buyer then purchases a proportion of his total desired π from each seller.
Any sellers which would provide a negative payoff are ignored. Recalling that qij
is the quantity of π purchased by buyer bj from seller si,

qij =
E[U bj (Xsi)]∑
E[U bj (Xsk

)]
, (5)

which ranges over k for which the expectation is positive.
The market model we have described here is an example of a Bertrand Game

[17]. This is where two or more sellers compete by simultaneously setting prices
for equivalent goods, and buyers then decide the quantity to purchase from each
seller in a rational utility-maximising manner. The theoretical non-cooperative
Nash equilibrium outcome is the Bertrand equilibrium, at which all sellers charge
their reserve price and share the market equally. It is the equal sharing of the
market at the Bertrand equilibrium which provides us with load-balancing.

However, Bertrand competition relies on the presence of a number of po-
tentially unrealistic assumptions. Two of these are of particular interest. Firstly,
Bertrand competition assumes no collusion between sellers. Cheung et al. showed
that if sellers are able to reliably predict the behaviour of competitors, then they
may implicitly collude in order to raise prices and hence their payoffs [16]. This
behaviour is not observed in our model however, since the sellers do not retain
historical information concerning each other. Such an ability might well be un-
feasible in very large systems [16], though clearly a heterogeneous set of sellers,
differentiated by strategic ability is likely to lead to an uneven market, and hence
an uneven resource allocation.

Secondly, Bertrand competition assumes that sellers compete only on price,
and are otherwise unable to differentiate their products in the market. This is
unlikely, since more realistic service providing nodes’ differing quality of ser-
vice will provide product differentiation. Once competition exists other than on
price, Bertrand competition no longer applies, though other potentially useful
equilibria will exist.
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However, the introduction of issues other than price, and with it the het-
erogeneity of buyers, will also introduce the likelihood of ‘price-war’ behaviour.
Kephart et al. showed that in certain circumstances the competitive behaviour
of (non-colluding) sellers would lead to a never-ending series of price-wars [18].
This is shown to be the case when services are described over a number of is-
sues, and a heterogeneous population of buyers have preferences over those issues
such as to exist in different niches of the market. In these circumstances, sellers
undercut each other in order to gain a greater market share and hence greater
payoff. However, once the price has become sufficiently low, it becomes ratio-
nal for the sellers to switch to providing for another niche of buyers, and the
competition begins again. Once competition in that niche has driven the price
down, the sellers will switch to a different niche, and so on. This result will be
important to consider in future work.

4 Evolutionary Market Agents

Sellers also accrue a payoff, their revenue. In our model, this is income from the
sale of π. At a given instant, the revenue of a seller, si ∈ S, is therefore:

rsi =
|B|∑
j=1

pπ
si
qij . (6)

Ideally, a seller will wish to maximise its revenue by increasing both its price
and its market share, however as we have seen, the market share will depend
upon the relationship between its price and those of its competitors.

An evolutionary market agent operates on behalf of each seller, with the self-
interested objective of maximising its revenue. Using evolutionary computation
techniques, the agent evolves the market position of its host over time. In this
model, a market position consists simply of price, therefore each individual rep-
resents a real-valued price. For each interaction in the market, the price encoded
by an individual is adopted, and the resulting payoff provides its fitness.

The evolutionary algorithm for seller si’s agent proceeds as follows:

1. Decide upon the design parameters to be used: initial price range, population
size and mutation factor. In the simulations described, an initial price range
of 0 to 500 was chosen, along with a population size of 10 and mutation
factor (α) of 0.1.

2. Generate an initial population, P , and set k = 1. Each individual in P is a
real value, drawn from the uniform random distribution [0, pmax].

3. Initial fitness testing
(a) Set the seller’s offer to the value of the first individual in P , and enter

the market for one market time-step. Record the seller’s revenue, rsi as
that individual’s fitness.

(b) Repeat for the next individual in P , until all initial individuals have been
fitness tested in the market.
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4. Probabilistic tournament selection
(a) Select four individuals, x1, x2, x3 and x4 from P , at random, such that

x1 �= x2 �= x3 �= x4.
(b) Let champion c1 be either x1 or x2, the fitness of whichever is greater

with probability 0.9, the fitness of whichever is less otherwise.
(c) Let champion c2 be either x3 or x4, the fitness of whichever is greater

with probability 0.9, the fitness of whichever is less otherwise.
5. Let the offspring, o, be a new individual with its value equal to the mid-point

of the values of c1 and c2.
6. Mutate o, by perturbing its value by a random number drawn from a normal

distribution with mean zero and standard deviation α.
7. Select the individual in {x1, x2, x3, x4} with the lowest fitness value, remove

it from P , and insert o into P .
8. Set the seller’s offer to the value encoded in o, and enter the market for one

market time-step. Record the seller’s revenue, rsi as o’s fitness.
9. Repeat from step 4.

5 Simulation Results

5.1 A Baseline Scenario

We firstly consider a small scenario with two service providers, such that S =
{s1, s2}, each providing the resource π, at prices pπ

s1
and pπ

s2
respectively. Both

s1 and s2 make use of an evolutionary market agent, as described in section 4
in order to determine these prices at each time-step.

We begin with 10 buyers (the service users), with identical linear utility
functions,

ubj (pπ
si
, π) = 375− pπ

si
. (7)

This represents a buyer being indifferent between a unit of π and its cost at
a price of 375. This is an arbitrary positive value, and has little impact other
than to provide a range of positive payoff values for a range of prices. An al-
ternative approach would be to have the objective of minimising the buyer’s
spending, though this would remove the notion of a value placed upon π by the
buyer. Actively considering negative buyer payoffs would introduce the question
of buyer motivation, and considering a payoff able to range over both positive
and negative values would slightly complicate the buyer’s decision function for
no gain. Linear utility functions are used to give an estimation of a service user’s
expected preferences, though the exact function will of course depend on the
specific service and its users. The success of our approach with other forms of
utility function remains a topic for research.

Figure 1 shows the normalised mean absolute distance from the ideal load, dl

between s1 and s2, over time, for a typical run and across 30 independent runs.
Here, the NMA distance drops quickly, indicating the approach’s ability to

achieve a roughly even load between the two service providers in a short time.
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Fig. 1. Load balancing performance over time: 2 sellers and 10 buyers. Typical run
(left) and mean and standard deviation over 30 independent runs (right).

This this is due to the evolutionary agents’ competitively co-evolving their prices
to within close proximity of each other, resulting in roughly even shares of the
market. Due to diverse populations within each agent however, their prices, and
hence the allocation of resources, continue to vary.

Following these exploratory fluctuations, the NMA distance then stabilises as
the populations converge. At this point, the load-balance is highly equal. It is
important to note that Kephart’s price-wars [18], which would result in an unsta-
ble load allocation, do not occur here. This is the case since the sellers describe
the service π over only a single issue, price, and hence our buyer population is
homogeneous.

5.2 A More Complex Scenario

Due to the distributed, decentralised nature of our approach, it is highly scalable.
The complexity of the agents’ evolutionary algorithms remains constant with
respect to the number of buyers, whilst the complexity of the buyers’ algorithm
grows only linearly with respect to the number of sellers.

Figure 2 shows both a typical run and mean and standard deviation calculated
over 30 independent runs for |S| = 1000, |B| = 10, 000.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700  800  900  1000

N
M

A
 D

is
ta

nc
e 

(d
l)

Iteration

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700  800  900  1000

N
M

A
 D

is
ta

nc
e 

(d
l)

Iteration

Fig. 2. Load balancing performance over time: 1,000 sellers and 10,000 buyers. Typical
run (left) and mean and standard deviation over 30 independent runs (right).



Evolutionary Market Agents 1079

Here results are of a similar form to the previous simulation. This shows the
power of our approach to achieve load-balancing in a large, decentralised system
where no individual has any desire in favour of this behaviour. Indeed to the
contrary, though our outcome is similar to that in [14], our approach is novel in
that it relies on self-interested behaviour. The presence of larger populations of
agents appears to lead to more reliable results; the approach clearly scales well.

6 Conclusions and Future Work

We have presented a resource allocation problem, motivated by an emerging
computational paradigm; dynamic, decentralised, service-based systems. Based
on the mechanism proposed by Kuwabara et al. [14], we have described a de-
centralised, evolutionary market-based approach, which makes use of Bertrand
competition between self-interested sellers to achieve load-balancing. No coop-
eration is assumed. We believe that our approach is more suited to this scenario
than other decentralised load-balancing mechanisms, since it accounts for self-
interested utility maximising individuals.

Unlike the majority of market-based systems, our approach requires no central
point of control or auctioneer. Agents have no knowledge of the size of the
marketplace or any history. It has no point which is weaker than any other, and
is hence both scalable and robust to failure. Sellers instead have the ability to
advertise their prices through a broadcast mechanism.

A future, more realistic model may include a second issue with which to
describe quality of service. Sellers could then achieve product differentiation.
Outcomes in such a scenario are likely to be more complex than in the model
investigated here, in which effectively sellers behave as Dutch auctioneers, since
in general their prices only reduce over time.

It is also likely that more realistic scenarios will be dynamic, where service
providers may be added to or removed from the system. In addition, the pop-
ulation of buyers may change over time, and there may also be external dis-
turbances. It would be desirable for the system to autonomically achieve a new
load-balance in the presence of such changes.

Finally, more advanced tuning of the evolutionary algorithm used in the
sellers’ evolutionary market agents should improve system performance, and
analysis of the algorithm’s properties, especially in dynamic environments, will
be useful in achieving this. Adaptive mutation, in order to allow sellers to ex-
plore the market widely when necessary, but to compete without reckless price
changes, will be one potentially useful technique.
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Abstract. The problem of community structure detection in complex networks
has been intensively investigated in recent years. In this paper we propose a ge-
netic based approach to discover communities in social networks. The algorithm
optimizes a simple but efficacious fitness function able to identify densely con-
nected groups of nodes with sparse connections between groups. The method is
efficient because the variation operators are modified to take into consideration
only the actual correlations among the nodes, thus sensibly reducing the research
space of possible solutions. Experiments on synthetic and real life networks show
the capability of the method to successfully detect the network structure.

1 Introduction

The suitability of networks to represent many real world systems has given an impres-
sive spur to the recent research area of complex networks. Collaboration networks, the
Internet, the world-wide-web, biological networks, communication and transport net-
works, social networks are just some examples. Networks, in general, are constituted by
a set of objects and by a set of interconnections among these objects. In social networks
the objects are people and the connections represent social relations, such as common
interests, friendship, religion, and so on. An interesting property to investigate, typical
to many networks, is the community structure, i.e. the division of networks into groups
(also called clusters) having dense intra-connections, and sparse inter-connections. The
capability of detecting the partitioning of a network in clusters can give important in-
formation and useful insights to understand how the structure of ties affects individuals
and their relationships. The problem of community detection has been receiving a lot
of attention and many different approaches have been proposed [10,16,18,4,20,2,11].

In this paper we propose a new algorithm, named GA-Net, to discover communities
in networks by employing genetic algorithms. The approach introduces the concept of
community score to measure the quality of a partitioning in communities of a network,
and tries to optimize this quantity by running the genetic algorithm. All the dense com-
munities present in the network structure are obtained at the end of the algorithm by
selectively exploring the search space, without the need to know in advance the exact
number of groups. Specialized variation operators allow to reduce the space of the pos-
sible solutions thus improving the convergence of the method. The main novelties of
the approach can be summarized as follows. The concept of community score, that pro-
vides a global quality measure of a partitioning in communities, is defined. The notion
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of safe individual is introduced to avoid useless computation to the genetic algorithm
and specialized variation operators that generate safe individuals are employed. Unlike
many existing methods, the algorithm does not require the number of communities to
find. This number is automatically determined by the optimal value of the community
score. Experiments on synthetic and real life networks show the capability of the genetic
approach to correctly detect communities with results comparable with state-of-the-art
approaches.

The paper is organized as follows. The next section provides the necessary background
to formalize the problem and defines the quality metric. In section 3 a description of
the representation adopted and the variation operators used is provided. In section 4 an
overview of the main proposals in community detection algorithms is given. In section 5,
finally, the results of the method on synthetic and real life data sets are presented.

2 Problem Definition

A social network SN can be modelled as a graph G = (V,E) where V is a set of
objects, called nodes or vertices, and E is a set of links, called edges, that connect two
elements of V . A community (or cluster) in a network is a group of vertices having a
high density of edges within them, and a lower density of edges between groups. The
problem of detecting k communities in a network, where the number k is unknown,
can be formulated as finding a partitioning of the the nodes in k subsets that are highly
intra-connected and sparsely inter-connected. To deal with graphs, often the adjacency
matrix is used. If the network is constituted by N nodes, the graph can be represented
with the N × N adjacency matrix A, where the entry at position (i, j) is 1 if there is
an edge from node i to node j, 0 otherwise. The problem of detecting communities in a
network can then be transformed to that of finding a partitioning of A in k sub-matrices
that maximize the sum of densities of the sub-matrices. A naive density measure for a
sub-matrix of n rows/columns is the number of ones (i.e. interactions) it contains. The
higher the number of ones, the more connected the n nodes. However, counting the
number of interactions does not give any information about the interconnections among
the nodes. A density measure based on volume and row/column means, allowing to
detect maximal and dense sub-matrices, has been introduced in [1], and applied to find
Co-clusters in sparse binary matrices. Co-clustering[13], also known as bi-clustering,
differently from clustering, tries to simultaneously group both the dimensions (objects
and features) of a data set. Sub-matrix identification can be considered as a special
case of co-clustering in which the two dimensions represent the same concept, i.e. the
nodes of the graph. In the following the density measure used in [1], specialized for
adjacency matrices, is recalled, and the new concept of community score, that gives
a global measure of the network partitioning in clusters, is defined. In the following,
without loss of generality, we assume an undirected graph. This assumption implies
that the adjacency matrix is symmetric.

Let S = (I, J) be sub-matrix ofA, where I is a subset of the rowsX = {I1, . . . , IN}
of A, and J is a subset of the columns Y = {J1, . . . , JN} of A.

Let aiJ denote the mean value of the ith row of the S, and aIj the mean of the jth
column of S. More formally,
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aiJ = 1
|J|
∑

j∈J aij , and aIj = 1
|I|
∑

i∈I aij

The volume vS of a sub-matrix S = (I, J) is the number of 1 entries aij such that
i ∈ I and j ∈ J , that is vS =

∑
i∈I,j∈J aij .

Given a sub-matrix S = (I, J), the power mean of S of order r, denoted as M(S) is
defined as

M(S) =
∑

i∈I(aiJ )r

|I|
A measure based on volume and row/column mean, that allows the detection of max-

imal and dense sub-matrices, can be defined as follows. Given a sub-matrix S = (I, J),
let M(S) be the power mean of S of order r. The score of S is defined as Q(S) =
M(S)× vS . The community score of a partitioning {S1, . . . Sk} of A is defined as

CS =
k∑
i

Q(Si)

The problem of community identification can be formulated as the problem of maximize
CS. It is worth to note that higher values of the exponent r bias the CS towards matrices
containing a low number of zeroes. In fact, it amplifies the weight of the densely intercon-
nected nodes, while reducing those of less connected in the computation of the community
score. In the experimental result section we show that when the modular structure of the
network is not well defined, higher values of r help in detecting communities.

3 Genetic Representation and Operators

In this section we give a description of the algorithm GA-Net, the representation adopted
for partitioning the network, and the variation operators used.

Genetic representation. Our clustering algorithm uses the locus-based adjacency rep-
resentation proposed in [19] and employed by [9,14] for multiobjective clustering. In
this graph-based representation an individual of the population consists of N genes
g1, . . . , gN and each gene can assume allele values j in the range {1, . . . , N}. Genes
and alleles represent nodes of the graph G = (V,E) modelling a social network SN ,
and a value j assigned to the ith gene is interpreted as a link between the nodes i and
j of V . This means that in the clustering solution found i and j will be in the same
cluster. A decoding step, however, is necessary to identify all the components of the
corresponding graph. The nodes participating to the same component are assigned to
one cluster. As observed in [9], the decoding step can be done in linear time. A main
advantage of this representation is that the number k of clusters is automatically deter-
mined by the number of components contained in an individual and determined by the
decoding step. Suppose to have the network shown in figure 1(a). It consists of eleven
nodes numbered from 1 to 11. The network can be partitioned in the three groups visu-
alized by different colors and shapes of the nodes. Out of the many possible genotypes,
that showed in figure 1(b), corresponding to the optimal solution, is translated in the
graph structure given in figure 1(c). Each connected component provides a grouping of
nodes that corresponds to the partitioning of the network in figure 1(a).
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Objective Function. As described above, the decoding of an individual provides a dif-
ferent number k of components {S1, . . . Sk} in which the graph is partitioned. We are
interested in identifying a partitioning that optimizes the community score because, as
already discussed in the previous section, this guarantees highly intra-connected and
sparsely inter-connected communities. The objective function is thus CS =

∑k
i Q(Si)

Initialization. Our initialization process takes in account the effective connections of
the nodes in the social network. A random generation of individuals could generate
components that in the original graph are disconnected. In fact, a randomly generated
individual could contain an allele value j in the ith position, but no connection exists
between the two nodes i and j, i.e. the edge (i, j) is not present. In such a case it
is obvious that grouping in the same cluster both nodes i and j is a wrong choice.
In order to overcome this drawback, once an individual is generated, it is repaired,
that is a check is executed to verify that an effective link exists between a gene at
position i and the allele value j. This value is maintained only if the edge (i, j) exists.
Otherwise, j is substituted with one of the neighbors of i. This guided initialization
biases the algorithm towards a decomposition of the network in connected groups of
nodes. We call an individual generating this kind of partitioning safe because it avoids
uninteresting divisions containing unconnected nodes. Safe individuals improve the
convergence of the method because the space of the possible solutions is restricted.

Uniform Crossover. We used uniform crossover because it guarantees the maintenance
of the effective connections of the nodes in the social network in the child individual.
In fact, because of the biased initialization, each individual in the population is safe,
that is it has the property, that if a gene i contains a value j, then the edge (i, j) exists.
Thus, given two safe parents, a random binary vector is created. Uniform crossover then
selects the genes where the vector is a 1 from the first parent, and the genes where the
vector is a 0 from the second parent, and combines the genes to form the child. The
child at each position i contains a value j coming from one of the two parents. Thus
the edge (i, j) exists. This implies that from two safe parents a safe child is generated.
Figure 1 on the right shows an example of crossover. Two parents, individuals A and
B, and their graph-based representations are reported. Uniform crossover of A and B
gives the child C.

Mutation. The mutation operator that randomly change the value j of a i-th gene causes
a useless exploration of the search space, because of the same above observations on
node connections. Thus the possible values an allele can assume are restricted to the
neighbors of gene i. This repairedmutation guarantees the generation of a safe mutated
child in which each node is linked only with one of its neighbors.

Given a network SN and the graph G modelling it, GA-Net starts with a popula-
tion initialized at random and repaired to produce safe individuals. Every individual
generates a graph structure in which each component is a connected subgraph of G.
For a fixed number of generations the genetic algorithm computes the fitness function
of each solution member, and applies the specialized variation operators to produce
the new population. In the experimental result section we show that the fitness func-
tion guides the genetic algorithm to successfully identify the best partitioning of SN ,
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Fig. 1. (a) A network modelled as a graph; (b) the locus-based representation of a genotype; (c)
the graph-based structure of the genotype. On the right Uniform crossover of two individuals,
their genotype, their graph-based representation, and the child generated.

converging in a few iterations to the solution. Before presenting the experiments, in the
next section an overview of the main approaches to community detection is given.

4 Related Work

Many different algorithms, coming from different fields such as physics, statistics, data
mining, have been proposed to detect communities in complex networks
[8,10,16,18,4,20,17,2,11]. In the following we review some of the most known.

One of the most famous algorithm has been presented by Newman and Girvan [8,18].
The method is a divisive hierarchical clustering method [6] based on an iterative re-
moval of edges from the network. The edge removal splits the network in communities.
The edges to remove are chosen by using betweenness measures. The idea underlying
the edge betweenness comes from the observation that if two communities are joined
by a few inter-community edges, then all the paths from vertices in one community to
vertices in the another must pass through these edges. Paths determine the betweenness
score to compute for the edges. By counting all the paths passing through each edge,
and removing the edge scoring the maximum value, the connections inside the network
are broken. This process is repeated, thus dividing the network into smaller compo-
nents until a stop criterion is reached. The criterion adopted to stop the division is the
modularity. Given k communities, the modularity is defined as follows. Let eij be the
fraction of edges in the network connecting vertices from group i to those of group j,
and ai =

∑
j eij . Then M =

∑
i(eii − a2

i ) is the fraction of edges inside communities
minus the expected value of the fraction of edges if edges fall at random without regard
to the community structure. Values approaching 1 indicate strong community structure.
Thus the algorithm computes the modularity of all the clusters obtained by applying the
hierarchical approach, and returns as result the clustering having the highest value of
modularity. An agglomerative variant of this approach is presented in [16], and a faster
method version, based on the same strategy, is described in [4].
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Hopcroft et al. [10] present an agglomerative hierarchical method for clustering large
linked networks to identify stable or natural cluster. A cluster is deemed natural if it
appears in the clustering process when a given percentage of links are removed.

Radicchi et al. [20] propose two quantitative definitions of community and an al-
gorithm to identify communities. The quantitative definitions of community are based
on the degree of a node. A subgraph is a community in strong sense if each node has
more connections within the community than the rest of the graph. A subgraph is a
community in a weak sense if the sum of all in-degrees in V is greater than the sum of
the out-degrees. The algorithm is a divisive hierarchical method based on the concept
of edge-clustering coefficient, defined in analogy with the node clustering coefficient
[15], as the number of triangles an edge participates, divided by the number of triangles
it might belong to, given the degree of the adjacent nodes. Their algorithm works like
that of Newmann and Girvan, the difference being that instead of choosing to remove
the edge with the highest edge betweenness, the removed edges are those having the
smallest value of edge-clustering coefficient.

Approaches to community detection based on Genetic Algorithms can be found in
[21,22,7]. In [21,22] the authors present a genetic algorithm that uses as fitness function
the network modularity proposed by Newmann and Girvan. An individual is constituted
byN genes, whereN is the number of objects. The ith gene corresponds to the ith node,
and its value is the community identifier of node i. They use a non standard one-way
crossover operation in which, given two individuals A and B, a community identifier j
is chosen at random, and the identifier j of the nodes j1, . . . jh of A is transferred to the
same nodes of B.

A different approach is described in [7] where a random walk distance measure be-
tween graphs is integrated in a genetic algorithm to cluster social networks. The repre-
sentation they use is the k-medoids where each cluster center is represented by one of
the nodes of the network. Of course this means that the number k of clusters must be
known in advance. The fitness function tries to minimize the sum of all the pair-wise
distances between nodes.

5 Experimental Results

In this section we study the effectiveness of our approach on a synthetic data set. Then
we compare the results obtained by GA-Net with those reported by Girvan and Newman
in [8,18,17] on some real-worlds networks for which the partitioning in communities
is known. In both cases we show that our genetic algorithm successfully detects the
network structure and is competitive with that of Girvan and Newman. The GA-Net al-
gorithm has been written in MATLAB, using the Genetic Algorithms and Direct Search
Toolbox 2. The experiments have been performed on a Pentium 4 machine, 1800MHz,
1GB RAM. We employed standard parameters for the genetic algorithm, crossover rate
0.8, mutation rate 0.2, elite reproduction 10% of the population size, roulette selection
function. The population size was 300, the number of generations 30.

Synthetic data set. In order to check the ability of our approach to successfully detect
the community structure of a network, we use the benchmark proposed by Girvan and
Newan in [8]. The network consists of 128 nodes divided into four communities of 32
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nodes each. Edges are placed between vertex pairs at random but such that zin +zout =
16, where zin and zout are the internal and external degree of a node with respect to its
community. If zin > zout the neighbors of a node inside its group are more than the
neighbors belonging to the other three groups, thus a good algorithm should discover
them. We generated 50 different networks for values of zout ranging from 0 to 8, and
used the Normalized Mutual Information to measure the similarity between the true
partitions and the detected ones. The Normalized Mutual Information is a similarity
measure proved to be reliable by Danon et al. [5]. Given two partitions A and B of
a network in communities, let C be the confusion matrix whose element Cij is the
number of nodes of community i of the partition A that are also in the community j of
the partition B. The normalized mutual information I(A,B) is defined as :

I(A,B) =
−2
∑cA

i=1

∑cB

j=1 Cij log(CijN/Ci.C.j)∑cA

i=1 Ci.log(Ci./N) +
∑cB

j=1 C.j log(C.j/N)

where cA (cB) is the number of groups in the partition A (B), Ci. (C.j) is the sum
of the elements of C in row i (column j), and N is the number of nodes. If A = B,
I(A,B) = 1. If A and B are completely different, I(A,B) = 0.

Figure 2(a) shows the normalized mutual information, averaged over the 50 runs,
for different values of the exponent r when the external degree zout increases from 0
to 8. The figure point out that until zout ≤ 5 the algorithm is successful in detecting
the true communities in almost more than 80% of cases, independently the value of
r. However, as soon as the network fuzziness increases, in order to discover at least
50% of the true groups the parameter r plays an important role. In fact, the higher the
number of interconnections, the more indistinguishable the network structure because
communities are mixed with each other, but augmenting the value of r the algorithm is
still able to identify the hidden groups.

Real-life data set. We now show the application of GA-Net on three real-world net-
works, the American College Football, Krebs’ books on American politics, Bottlenose

(a) (b)
Fig. 2. (a): Normalized mutual information obtained by GA-Net on the synthetic data set for
different values of the exponent r. (b): Comparison of GA-Net and Girvan and Newman’s (de-
noted GN) algorithms relative to Normalized Mutual Information for American College Football,
Krebs’political books, Dolphins data sets.



1088 C. Pizzuti

Dolphins, well studied in the literature and compare our results with those obtained by
Girvan and Newman in [8,18,17]. The American College Football network [8] comes
from the United States college football. The network represents the schedule of Division
I games during the 2000 season. Nodes in the graph represent teams and edges represent
the regular season games between the two teams they connect. The teams are divided
in conferences. The teams on average played 4 inter-conference matches and 7 intra-
conference matches, thus teams tend to play between members of the same conference.
The network consists of 115 nodes and 616 edges grouped in 12 teams. The network
of political books was compiled by V. Krebs. The nodes represent 105 recent books on
American politics brought from Amazon.com, and edges join pairs of books frequently
purchased by the same buyer (unpublished http://www.orgnet.com/). Books were di-
vided by Newman [17] according to their political alignment (conservative or liberal),
except for a small number of books (13) having no clear affiliation. The last example is
the social network of 62 bottlenose dolphins living in Doubtful Sound, New Zealand,
compiled by Lusseau [12] from seven years of dolphins behavior. A tie between two
dolphins was established by a their statistically significant frequent association. The
network split naturally into two large groups, the number of ties being 159.

For each network we computed the normalized mutual information on the base of
the results reported by the authors. Regarding GA-Net, we run it 10 times and computed
the average normalized mutual information over these 10 runs. The results are reported
in figure 2(b). The figure clearly shows the very good performance of GA-Net with
respect to Girvan and Newman’s approach. In fact, on the American College Football
network, GA-Net obtained an average normalized mutual information of 0.8825 over
the 10 runs, with a worst value of 0.8417, and a best value of 0.9031, while the result
of [8] was 0.8957. For the Krebs’ network Newman [17] obtained 0.5107, while our
approach 0.5756. Finally, on the dolphin network Girvan and Newman [18] obtained
a normalized mutual information of 0.64. GA-Net over 10 runs obtained an average
value of 0.8992. It is worth to point out that for 7 out of the 10 runs, GA-Net misplaced
just node 40, which is connected to only two nodes: node 37 which belongs to the
first group, and node 58 that belongs to the second group, thus the membership to one
of the two communities is indistinguishable without adding semantics to the kind of
link interconnecting the dolphins. In one over the 10 runs GA-Net obtained the exact
partitioning of dolphins. To conclude figure 3 reports the result of running our algorithm
on Zackary’s Karate Club Study. This network was generated by Zachary [23], who
studied the friendship of 34 members of a karate club over a period of two years. During
this period, because of disagreements, the club divided in two groups almost of the same
size. The figure has been reproduced by using the NetDraw software [3]. We found
four groups, depicted in the figure by different colors and shapes of the nodes. However,
the two small communities are each a subgroup of the two effective communities. Thus
our algorithm is able to detect more compact interactions. For example, as pointed out
on the figure, the small community on the bottom left is characterized by five nodes
each of which is connected to the bigger community only through the friendship to
node 1, while among these five nodes a tighter connection exists. Girvan and Newman
in [8] found the two groups in which the karate club divided. Node 3, however, was
misplaced. A similar result is reported in [21]. In this latter approach the node 10 is
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Fig. 3. Community structure found by the genetic based method GA-Net

misplaced. Our approach, on the contrary, is able to correctly classify both these nodes.
The results obtained show the capability of genetic algorithms to effectively deal with
community identification in networks.

6 Conclusions

The paper presented a genetic algorithm for detecting communities in social networks.
The approach introduces the concept of community score, and searches for an optimal
partitioning of the network by maximizing the community score. All the dense com-
munities present in the network structure are obtained at the end of the algorithm by
selectively exploring the search space, without the need to know in advance the ex-
act number of groups. The concept of community score, though simple, revealed very
efficacious. In fact, experiments on synthetic and real life networks showed the capa-
bility of the genetic approach to correctly detect communities with comparable results
with state-of-the-art approaches. Future research will aim at applying multi-objective
optimization to improve quality results.
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Abstract. Manually developing walking patterns for kinematically
complex robots can be a challenging and time-consuming task. In or-
der to automate this design process, a learning system that generates,
tests, and optimizes different walking patterns is needed, as well as the
ability to accurately simulate a robot and its environment. In this work,
we describe a learning system that uses the CMA-ES method from evo-
lutionary computation to learn walking patterns for a complex legged
robot. The robot’s limbs are controlled using parametrized distorted sine
waves, and the evolutionary algorithm optimizes the parameters of these
waveforms, testing the walking patterns in a physical simulation. The
best solutions evolved by this system has been transferred to and tested
on a real robot, and has resulted in a gait that is superior to those pre-
viously designed by a human designer.

1 Introduction

Locomotion control of legged systems is a far more challenging task than lo-
comotion of wheeled systems. Classical approaches to robot control that use
(online) trajectory planning are not very well suited for the control of walking
robots [15] since these approaches require a highly accurate model of the robot
and its environment in order to compute the precise trajectories of a robot’s leg
movements. In contrast to these classical methods, biologically inspired robot
control methods are easier to implement and require less computational time
[2]. This is due to the fact that they do not require sophisticated models of the
environment, but generate the walking pattern based on a set of predetermined
elementary patterns.

Unfortunately, manually designing these patterns for a kinematically complex
robot is a difficult and time-consuming task that can only be done in a trial-and-
error fashion. After an appropriate gait has been designed, even small changes
to the morphology of the robot can cause this gait to become unstable, requiring
repetition of the design process. Furthermore, manual design is susceptible to the
designer bias : human designers might tend to focus on certain promising areas in
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the space of solutions, while ignoring possibly more efficient but counterintuitive
solutions in other areas.

Because of these difficulties associated with manual design, the use of au-
tonomous or at least semi-autonomous approaches for designing walking pat-
terns is very attractive. Such approaches relieve the designer from much of the
drudgery involved in the design process, and reduce designer bias, potentially
allowing the designer to find solutions that exceed the performance of manual
solutions. Evolutionary algorithms present a promising approach in this domain.
They can search complex spaces without being easily trapped in local extrema,
and at the same time they are able to cover broad parts of the search space
[13]. Evolutionary algorithms are especially suited for the optimization of a set
of real-valued parameters. One way of combining evolutionary algorithms with
robot locomotion is to describe the movements of the individual joints of the
robot by parameterized periodical curves. The combined rhythmic oscillations
of the single joints described by these curves results in entire leg movements,
and thus, potentially in a walking pattern. In this work, the Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES) [6] is used as the evolutionary
algorithm, and the periodic curves are described with distorted sine waves.

This paper is organized as follows. First, a brief review of works done in the
area of evolving/learning walking patterns is presented. Next, the experimental
platform used in this work is described. Following this, the methodology used
for learning walking patterns is presented, which involves both the evolutionary
algorithm and the parametrization of the joint curves. We then introduce and
discuss two experiments that were performed using this learning methodology,
and finally present conclusions and further areas of work.

2 Review of Works

Among the first works on the evolution of walking patterns is the work of Beer
and Gallagher [1]. In their work, artificial evolution was used to evolve a static
gait for a simulated, kinematically simple six-legged robot. Each leg was con-
trolled by a five neuron, fully connected, continuous-time neural network, and the
corresponding neurons of the controllers of the neighboring legs were connected.
The weights of the six controllers were constrained to be identical, yielding a to-
tal of 50 parameters to be optimized. The genetic algorithm they used was able
to evolve a tripod gait in all conducted runs. Lewis et al. [10] transferred the
approach of Beer and Gallagher for the first time onto a physical robot. While
Lewis et al. did not perform the evolution itself in the real world (but only
tested the evolved gait on a physical robot), Gomi and Ide [3] evolved a gait
for an octopod robot completely online. While in most experiments the control
architecture was fixed, Gruau and Quatramaran [5] used the cellular encoding to
evolve both the weights and the structure of a controller for an octopod robot.

In contrast to the approaches discussed above, in which a static gait was
evolved, Hornby [7] and Röfer [12] evolved a dynamic gait for AIBO1 robots.
1 AIBO: Very popular quadruped robot from Sony.
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They used a genetic algorithm to optimize the parameters, and evolution was
performed on-line on real robots like in the work of Gomi and Ide. Zhang [17]
achieved recently the fastest gait for these robots by combining a learning method
with evolutionary techinques. Hornby used the central pattern generator (CPG)
[4] model for the controller, which allow oscillatory patterns to be generated in
the absence of external stimuli. This model was also used by Reil and Husbands
[11], who used evolutionary methods to optimize the parameters of CPGs on a
simulated, bipedal robot, and show that the quality of an evolutionary method
depends heavily on the chosen fitness function. However, few works deal with
more than two or three degrees of freedom per leg. Ito [8] used evolutionary
techniques in a redundant, multi-legged robot, although only simulated results
were presented.

3 Robotic Platform

3.1 Hardware

The robot used in our work, named SPOT, was developed at the University of
Bremen’s robotics laboratory. It is a kinematically complex robot whose four legs
are made up of a total of 24 independently controllable joints. The robot, which
weighs about 30kg, shares many similarities with the ARAMIES robot [16], both
in its physical construction, and in its software architecture. Its six degrees of free-
dom per leg make the manual generation of walking patterns extremely complex
and time-consuming. On the other hand, due to the legs’ complexity, they can be
used not only for traversing a variety of terrains, but also for manipulating objects
[9]. In contrast to the ARAMIES robot, SPOT also possesses a hip joint which en-
ables it to bend at the waist. This makes it possible, for example, for the robot to
sit on its hind legs, or to climb steep slopes.

Fig. 1. SPOT: The robot used for our ex-
periments. The joints of the front left leg
are labeled with numbers in the picture.

Fig. 2. The “WalkerSim” simulation en-
vironment
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Fig. 3. Construction of a joint-angle pattern waveform. Six parameters are used to
represent the waveform: offset (C), amplitude (A), angular swing-start (θss), angular
swing-end (θse), swing-duration (Δtsw), and stance-duration (Δtst). The region of the
sine wave (left graph) designated as the swing-phase is shifted left to θ = 0. This shifted
function is further time-scaled so that the swing and stance phases are compressed or
expanded to fit into the Δtsw and Δtst time durations (right graph).

3.2 Simulation Environment

The evolutionary process makes use of the “WalkerSim” simulation environment,
developed at the University of Bremen’s robotics laboratory. The physical engine
used by the software is the Open Dynamics Engine (ODE) [14]. The simulation
software provides an interface between walking robots and ODE, and a set of
sensors that can be used by a simulated robot. The joint (motor) models have
been carefully designed to approximate the behavior of the real motors used by
SPOT, while not being too computationally complex to simulate. Figure 2 shows
a screenshot of “WalkerSim” in which a model of SPOT is shown.

4 Learning Methodology

4.1 CPG Representation

In this work, the function describing the joint-angle patterns of SPOT’s leg
joints is represented in the form of a distorted sine wave. Figure 3 shows how
this joint-angle function is constructed. A basic sine function with offset C and
amplitude A over the domain 0 ≤ θ < 2π is shown, whose range is considered
to represent the angular-position of a robot joint. An angular-interval [θss, θse]
is chosen within this sine function’s domain, where θss and θse represent the
beginning and end, respectively, of the swing-phase of a robot leg. This basic sine
function is phase shifted such that the swing-phase begins at θ = 0. Finally, this
phase-shifted function is time-scaled, and the interval [0, Δθsw] (where Δθsw =
θse − θss) of the phase-shifted function is compressed or expanded to a new
corresponding interval [0, Δtsw] of the distorted waveform, where Δtsw is the
desired duration (in seconds) of the swing-phase of the robot leg. In the same way,
the interval [Δθsw, 2π] is compressed or expanded to a corresponding interval
[Δtsw, Δtsw +Δtst] of the distorted waveform, where Δtst is the desired duration
of the stance-phase of the robot leg.

4.2 CMA-ES

Covariance Matrix Adaptation - Evolution Strategy (CMA-ES) [6] is an ad-
vanced form of evolution strategy [13] that can perform efficient optimization
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even with small population sizes. Each individual is represented by an n−di-
mensional real valued solution vector.

CMA-ES does not provide a means of bounding the search space (i. e. the
object variables are optimized on R). Therefore, to deal with the parameter-
value limits imposed by the robot hardware, we chose to use a function that
projects the whole space of real values onto a range that the robot-controller
can handle (i. e. the control-value space). The projection function P : R −→
[xoffset, xoffset + xmax] is defined by the chain x −→ x′ −→ x′′ −→ x∗ of the
following transformations:

x′ = x mod 2xmax (1)

x′′ =

{
x′, if x′ ≤ xmax

2xmax − x′, if x′ > xmax

(2)

x∗ = x′′ + xoffset (3)

This projection function is continuous, which is important for the learning
algorithm. It is also chosen such that the absolute value of its derivative is
constant wherever this derivative exists. This is done to avoid the negative effects
on the performance of the learning algorithm that can result from nonlinearly
projecting the learned values onto the control-value space. Such a nonlinear
projection like a modulo function could cause the fitness landscape to become
more fragmented, making it more difficult for an evolutionary method to find a
global maximum.

4.3 Evaluation of Individuals

An individual is represented as a vector of parameters, that have to be op-
timized. An individual’s values are determined by the evolutionary algorithm
(CMA-ES). These real-valued variables are mapped to a suitable range for each
parameter that is used to describe the joint patterns. To evaluate an individ-
ual, the patterns that the individual specifies are tested in the simulation for
a period of 10 seconds. The evaluation time is choosen empherically and found
to be a good balance between computational cost and adequate evaluation of
individuals. At the beginning of each evaluation, the simulated robot starts at
the same initial position. The simulation proceeds, and the rewards (e.g. torque,
load, and distance traveled) are calculated at the end of the simulation testing
period. From these rewards a fitness value is calculated and returned to the
evolutionary algorithm.

5 Experiments

In this section two experiments are presented and their results are discussed. The
first experiment investigates the feasibility of the approach, and the possibility
of transferring the simulated behaviors to the real robot. In this experiment,
the complexity of the learning problem is reduced by using empirical knowledge.
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In the second experiment, the learning algorithm optimizes a larger number of
parameters, which results in a larger search space for the evolutionary method
and greater challenges in transfering the results to the real robot.

In both experiments, each left leg is made to execute the same patterns that
the corresponding right leg executes (including a phase shift between the legs).
This restriction is made because of the symmetry of the robot architecture, and
has the advantage that patterns for only one side of the robot need to be learned.
As explained in Section 4.1, each pattern is defined by the four parameters A,
C, θse, and θss, which must be optimized. The other parameters that affect the
walking behavior are the CPG waveform period T , the duration of the swing
phase Δtsw, and the phase shifts between the walking patterns of each leg.

In order to assess the evolved walking patterns, a fitness value is used which
is based on the following variables which are measured in the simulation: The
distance traveled d, the average torque τ and the average load l of the joints,
a boolean value τ ′ that indicates that the maximal torque of the toe joints is
above a certain threshold, and a boolean value g that indicates if parts of the
robot other than the feets has ground contact. The fitness function for both
experiments is defined as sum of four terms. The first term −τ

d assesses the
energy efficiency, i. e. the consumed energy for the traveled distance. The second
term −l

d is based on the load incurred on the joints over the travelled distance.
The third term −1000g checks whether parts of the robot other than the feets
come into contact with the ground and a strong negative reward is added if that
is the case. The last term 1000τ ′ checks whether the maximal torque of one toe
joint exceeds a certain threshold and a strong negative reward is added if that
is the case. The resulting fitness function is described by the following equation:

fitness =
−τ
d

+
−l
d
− 1000g − 1000τ ′ (4)

For both experiments each evolution process (during which several populations
are generated) proceeds until the sigma2 value of a population is less than 0.01.

5.1 Experiment 1 Setup

The walking behaviors that have been hand-designed for SPOT only make use of
the third shoulder (joint number 3 in figure 1) and the knee joint (joint number
4 in figure 1). During the execution of the walking behavior, the foot is aligned
parallel to the body of the robot by a more or less passive control. The upper two
joints of the shoulder (joint numbers 1 and 2 in figure 1) were not used and were
held constant to minimize the complexity of designing the walking patterns for a
human developer. This setup is also an appropiate base for the first experiment
and allows a practical comparison between the human designed and the learned
walking behaviors. Therefore, only the patterns of the third shoulder and the
knee joint are learned in this experiment. In this case, the learning algorithm

2 Sigma is an internal value of CMAES which is equivalent to the convergence of an
evolution process.
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would normally need to optimize a total of eight joint angle patterns, two per
leg. However, after taking into account the symmetry constraints, the learning
algorithm must only optimize the patterns of four joints (front-shoulder, front-
knee, rear-shoulder, rear-knee) to learn a walking behavior. These four patterns
result in a 16-dimensional object variable vector used by the learning algorithm.

The other parameters are held constant in order to minimize the dimension-
ality of the learning problem. The step period T is set to 3 seconds, and Δtsw is
set to 0.4 seconds. The phase shifts are chosen such that the robot will execute
one swing movement after another, starting with the rear right leg, followed by
the front left, the rear left, and finally the front right leg. These empirical values
are based on experience gained from manually designed walking patterns of the
robot. The step period of three seconds means about three steps per leg during
the evaluation time of ten seconds.

5.2 Experiment 2 Setup

In this experiment, the evolutionary algorithm is forced to manage all degrees of
freedom of the legs. Making use of all joints for the learning algorithm increases
the possible space of solutions considerably. First tests of various fitness functions
showed that many solutions of this space performed well in the simulation but
would not be transferable to the real SPOT system. This is because the simulated
robot possessed certain physical possibilities which would cause the real robot
to be damaged (e. g. the way the robot could contact the ground). Upgrading
the simulation to model these material weaknesses was not realizable in this
study. Instead, the last two criteria of the fitness function are used to shape
the evolutionary process to find a transferable behavior. In this experiment the
algorithm has to learn a total of 12 joint patterns (6 for the front legs, and 6
for the rear legs), resulting in 48 parameters. The step period T and the swing
period Δtsw are set to the same values as in the first experiment. In contrast
to the first experiment, the phase shifts are also learned by the evolutionary
algorithm, beginning with the values used in the first experimental setup.

5.3 Results

All learned behaviors performed very well in the simulation and the fitness crite-
ria forced the evolutionary process to produce several results that were transfer-
able. The non-transferable results typically made too much use of the toes and
their joints, which are not as stable on the real robot as on the simulated one.
Table 1 shows some important variables that were calculated over 50 indepen-
dent runs of both experiments. The standard deviations of most variables shown
in Table 1 are very small, and thus the values generated by the fitness function
also have a low standard deviation.

The second experiment resulted in significantly3 better fitness values than the
first experiment (p < 5 × 10−8). These better fitness values were primarily due
to the fact that the robot reached a significantly higher speed (i. e. a further
distance was travelled during a fixed period of time) (p < 2× 10−7).
3 Significance levels were computed using a one-sided Student’s t-test.



1098 M. Römmermann et al.

Table 1. Statistics of various important variables over 50 independent evolution pro-
cesses of both experiments

Variable Optimum Average Std. Deviation

Expt1 Expt2 Expt1 Expt2 Expt1 Expt2

Fitness 4.98 4.28 8.66 6.43 1.60 1.26
Num. of Evaluations 2292.00 7590.00 4187.52 11838.60 1020.86 1423.78
Distance in m 3.17 4.05 2.10 2.84 0.59 0.35
Avg. Height in m 0.59 0.61 0.56 0.54 0.02 0.04
Avg. Torque in N-m 2.64 2.71 3.61 4.03 0.30 0.49
Avg. Load in N-m 10.32 10.62 16.93 15.79 2.47 2.56
Avg. Pitch in degrees 0.74 0.86 2.86 6.60 1.02 4.51
Avg. Roll in degrees 0.52 0.10 2.86 4.28 1.00 2.19

Fig. 4. A time-progression of snapshots showing a learned walking behavior that was
executed on both the simulated and real robot. The images are arranged in an chrono-
logical order from top to bottom, starting with the left column. The curves that are
executed by the front legs are shown in the plot on the right. These angle-values were
recorded on the real robot during the execution of the evolved walking patterns. The
dotted vertical lines indicate the points at which the snapshots were taken.

Some walking behaviors that had a good fitness in both experiments were
transfered directly and without modifications to the real robot. One transfered
walking behavior is shown in figure 4. When executed on the real robot, it
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proved to be stable, closely approximating the behavior of the simulated robot.
The plot in Figure 4 shows the curves for the shoulder and the knee joint of the
front right leg. The dotted vertical lines indicate the exact moments at which
the pictures in this figure were taken. It can be seen from this image sequence
that the real robot’s behavior is very similar to the behavior of the simulated
robot. As compared to the manually designed gaits, the learned gaits results
in a faster and more balanced dynamic walking behavior. The main difference
between most of the gaits learned and the manually designed behavior lies in
that during particular stages of the walking process of the learned gaits two legs
are in the air at the same time, while in the manually designed behavior only
one leg is in the air.

6 Conclusions and Future Work

The results of the experiments presented are promising. Not only were walking
behaviors learned in a simulation, but some of the learned gaits were success-
fully transferred to the real robot and resulted in a stable walking behavior.
Additionally, by using an evolutionary algorithm, the dynamic properties of the
robot were taken advantage of, yielding results that improved upon the previous
walking patterns that had been manually designed by our research group. We
believe that this approach can be transferred onto most other existing legged
robot platforms. However, many of the learned walking patterns (mostly from
the second experiment) are otimized highly to the simulation features. Therefore
they do not produce a stable walking behavior on the real robot. A task for the
future will be to change the experiment’s setup in order to produce more ro-
bust walking patterns. Within that task we will analyse the differences between
the simulated and the real robot’s behavior and formalise the transferablitity of
walking patterns. Another possible area of future work could involve applying the
optimization methods presented here to a more general reflex walking model. In
addition, the remaining designer bias might be reduced by replacing the model
of distorted sine waves for describing the joint movements by a more general
model like a recurrent neural network which can incorporate sensor information
more easily.
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Abstract. The techniques and the technologies supporting Automatic
Vehicle Guidance are an important issue. Automobile manufacturers
view automatic driving as a very interesting product with motivating
key features which allow improvement of the safety of the car, reducing
emission or fuel consumption or optimizing driver comfort during long
journeys. Car racing is an active research field where new advances in
aerodynamics, consumption and engine power are critical each season.
Our proposal is to research how evolutionary computation techniques
can help in this field. As a first goal we want to automatically learn to
drive, by means of genetic algorithms, optimizing lap times while driving
through three different circuits.

1 Introduction

Automatic Vehicle Guidance (AVG) has been addressed by numerous researchers,
i.e. [12], [15], [17], [13], [16], [20], as an engineering problem through different ap-
proaches, and the most promising ones are being engineered on real prototypes,
i.e., [13], [5], the Buick from the California PATH project or [7], or the cars which
participate each year in the annual competition organized by the Defense Ad-
vanced Research Projects Agency (DARPA) for driverless cars, [6]. The study of
the suspension system has been an interesting topic for researchers because it con-
tributes to the car’s handling and braking for good active safety and driving plea-
sure, and keeps vehicle occupants comfortable and reasonably well isolated from
road noise, bumps, and vibrations. This parameter optimization has been done
with Genetic Algorithm (GA) with promising results in several works, such as, [8],
[9] and [24]. One of the first works on this topic was carried out at the Carnegie
Mellon University by Sukthankar et al. in 1996, [16]. This work uses reasoning
modules which combine high level task goals with low-level sensor constraints,
proposing a Population Based Incremental Learning (PBIL) [2] for an automatic
setting of the module parameters. For the simulation the system uses a program
called SHIVA (Simulated Highways for Intelligent Vehicle Algorithms) which re-
produces a micro-simulation of vehicles moving and interacting in a user-defined
roadway. Two years later the PBIL was compared to the GA in this same frame-
work, [3]. The results of these works were quite motivating since they showed the
potential for intelligent behavior in tactical driving. Other interesting work carried
out in 1996 by Pyeatt et al. from Colorado University deals with simulated race
car driving [14]. In this case a study about autonomous driving was developed
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based upon RARS simulator software (the one which has influenced TORCS).
The results showed that the RARS simulator was adequate for developing the test
framework and that neural networks can be competitive techniques for producing
autonomous racing cars.

In 1998, Bernard et al.[4] from Iowa State University illustrated the power of
GAs to model driver/vehicle behavior. In fact, their work determined how fast
and safe a given vehicle model could be. The experimental framework was to
drive through a short course without hitting a cone or lifting its wheels. In 2004,
Floreano et al., [10], used a GA for tuning up a neural network which visually
recognizes edges, corners and height, resembling strategies observed in simple
insects which obtained results that performed equal or better than well trained
human drivers tested on the same circuits. In 2005, Sun et al. [18], used a GA
for optimizing the parameters of a set of Gabor filters in the context of vehicle
detection from images. They successfully tested the proposed framework on real
data and improved the performance of on-road vehicle detection. In the same
year another interesting approach was proposed for the automated evolutionary
design of driving agents, [11], [19]. This work showed how GAs can help in the
task of designing an agent able to remotely operate a scale racing car. This work
revealed that on long runs the agent’s operated car was 5% slower than the
human operated one. Working with the evolving weights of a neural network,
Julian Togelius et al. compared, with their own simulation, simulated cars with
evolved neural network controllers (in first-person and third-person) [23], [22].
They extended their work to a more complex case of two cars competing against
each other in the same track at the same time, [21], using evolutionary strategies
to solve the problem of the coevolution. Finally, an interesting study which
compares neuroevolution and genetic programming in the same environment
can be found in [1].

2 Problem Analysis and Design

As can be seen in the previous section, the AVG is a very difficult and widespread
problem. It has been tackled from different points of view, involving, among oth-
ers, robotics, artificial intelligence, computer engineering, telecommunications,
signal and image processing, or control and automation techniques. Our proposal
in this work is to divide the problem of the AVG starting from the optimization
of a lap trajectory in a known circuit. The idea is to increase the difficulty of
this scenario in future developments in order to solve the AVG problem. Thus, in
this paper, we have dealt with the problem of minimizing a single lap time using
Evolutionary Computation (EC) techniques, and without taking into account
obstacles or consumption factors. This work will be used as a base for hereafter
extensions of the goal. As we wish to reproduce human behaviour, we have de-
signed a codification based on actions that are applicable every certain number
of meters. This constant number of meters divides the circuit into segments.
The actions that can be done in each segment are acceleration (value between
0 and 1, where 0 means no pressure and 1 total force) and steering (measured
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with a real number between -1 and 1, where negatives values mean left turns
and 0 means no turn at all). This codification encodes the individuals using 2
chromosomes: one for the acceleration value and the other for the steering. Each
chromosome has the same number of genes as segments. The genes contain real
values. It must be taken into account that the segment size needs to be adjusted
because long segment sizes will cause shorter individuals (which is ideal for the
GA) but it will offer less precision to the driver. Therefore, a trade off must be
found in order to obtain a good base individual. One of the biggest problems
faced when trying to optimize a car trajectory in a circuit by means of GAs
is how to choose the first configuration used. This is because traditionally GA
approaches evolve directly from an initially random generated configuration. As
it is very difficult to obtain automatic driving evolution from individuals that
have been generated by chance, we decided to develop a traditional algorithm
to obtain a base trajectory which can complete a lap, although finishing it in
poor times. The mechanism of this algorithm is simple, it tries, for each segment,
all possible combinations of steering and acceleration (using, only for this base
individual, a discretization of the allowed values with a granularity of 0,1), look-
ing for the pair of values which maintains the vehicle closer to the center of the
track. Once all segments have been evaluated we have obtained the individual
taken as a basis for the GA, then the driving learning process can start. The
operators used in the GA are the following:

1. Selection: a size three tournament has been implemented in all experiments.
2. Mutation: the mutation operator used is executed over each one of the genes

of the final individual. Under certain mutation probability, each gene can be
altered by chance so the new value will be a quantity not too far from the
original.

3. Crossover: two crossover types were used in this project:

(a) Uniform: each one of the genes of the final individual has equal proba-
bility of coming from each one of its parents.

(b) By stretches: the goal of this approach is to test if a group of genes
can encode a good way to, for instance, take a turn. In this case, the
probability that determines the source of each gene is the same, but now
these genes are exchanged in groups, instead of one by one.

4. Elitism: elitism of one individual has been used in all experiments.

The simulator used in this project to test our individuals is TORCS (The Open
Racing Car Simulator), chosen because it is open source and gives us the flexi-
bility to modify and manage the process internally. The car used in all the test
is Nascar RWD (Nascar category), taking its fuel, aerodynamics and suspension
configuration by default. It is also important to note that the lap time stored is
from only the first lap. After the first lap the race is restarted in order to eval-
uate the next individual. All the experiments were conducted in three different
circuits of diverse complexity, as can be seen in Figure 1:
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Fig. 1. Circuits tested

2.1 Results with Fixed Segment Size (IT1)

In the A-Speedway circuit, the experiments were divided into 2 groups, depend-
ing on both types of crossover techniques explained before. Each experiment
was executed through 1, 000 generations and the segment size was fixed to 10
meters. Five experiments of each set were executed. As can be seen in Table 1,
results with both crossover strategies are very similar, but the uniform case pro-
vides more stability in them. All experiments ended with lap times under 40
seconds, which is a very big improvement compared with the initial 76 seconds
of the individual of reference. Most of the experiments finished with a very good
tendency, and it is expected that the times keep on improving during further
generations (only 1, 000 were conducted). After the good results obtained in the
first circuit, we tried another set of experiments on a a bit more complicated
track: the E-Track5. The results were good, but the improvements found by the
GA on this track (10.61 seconds on average, 14.45%) were not so good as the
ones obtained for the A-Speedway (39.69 seconds on average, 50.89%). To un-
derstand the problem we observed the behaviour of the generated drivers and
we concluded that the size of the segment in circuits with more turns affects the
performance of the driver, because some parts of the circuit need more precision
driving than others. To test the influence of this parameter we ran 2 different
sets of experiments using different constant segment sizes.

As can be seen in Table 1, the results of the experiments with longer seg-
ments are quite worse than the ones with shorter stretches. In the first case, the
vehicles do not have enough precision to drive through the circuit because the
size of the segment. Therefore, it is complicated to obtain a good performance
in the lap with large segments, even for the individual of reference. In contrast,
shorter segments allow drivers to have more precision when driving through the
track. Finally, we decided to see what happens in the Aalborg track. This circuit

Table 1. Results in A-Speedway and E-Track 5

Circuit Pop. size Mutation Crossover Segments Base ind. time GA time(mean) σ
A-SpeedWay 100 0.005-0.01 uniform 191 76.064 secs 36.479 secs 2.99
A-SpeedWay 100 0.005-0.01 stretches 191 76.064 secs 36.369 secs 4.51
E-Track 5 100 0.005-0.01 uniform 163 129.992 secs 112.468 secs 17.871
E-Track 5 100 0.005-0.01 uniform 326 74.108 secs 63.493 secs 3.915
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is the most difficult one of the three tracks tested: it is longer, it has more turns
and it is much narrower than the others. The base individual has been generated
using a segment size of five meters, in order to provide a high precision for the
driving, and ends a lap in 288.044 seconds. The GA was configured using uni-
form crossover and, like the previous circuits, different combinations of mutation
values were tested on several experiments. The best of them got 178.478 seconds,
so a reduction of almost 2 minutes from the base time was obtained.

2.2 Evaluating the Results with Other Simulator Bots

However, the results presented so far, even reducing the base individual times,
need to be validated against real drivers. As real drivers need to be trained,
and can be biased, our proposal is to compare the results with the lap times
performed by the simulator bots. The simulator provides several programmed
bots that have been used to check whether our lap times are really competitive
or not. Figure 2 shows the fitness curve of the best individuals of A-Speedway
compared with simulator bots’ lap times.

Fig. 2. A-Speedway best individual vs. bots (fitness curve)

In this figure can be clearly seen that the final lap time of our experiments is
much better in A-Speedway than the best times performed by the bots. Another
interesting comparison can be made by taking the lap times performed by human
players, with nearly one hour of experience, in this circuit. The best human time
obtained was 35.510 seconds (while ours is 31.962 seconds) so our GA individual
is even better than a human driver. Analyzing E-Track 5, our lap times are worse
than the bot ones, with a difference ranging between 12 and 19 seconds. As the
difficulty grows, it becomes worse. For the Aalborg track, the simulator bots
perform, depending on their skills, from 96.440 to 78.970 seconds, and the GA’s
best achieved result is 178.478 seconds. Allowing the GA to run during more
generations would have decreased the lap time, but it is important to consider
an improvement in the GA in order to evolve faster.

2.3 Variable Segment Size (IT2)

The results obtained in the first part of this research were promising but, in
the most complex circuits, the lap time reduction could not reach the times
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performed by the simulator bots. In order to improve the results and take a step
forward in the problem, some modifications were proposed:

- Variable sized segments: the most important modification implemented
is the adaptation of the individual to variable segment sizes. In the case of real
driving, the number of corrections of speed and steering depends greatly on the
features of the track point where the car is located on. Indeed, a higher number
of actions is required when the vehicle is in a bend. The point, then, is how to
find a procedure to determine the size of each segment of a circuit. The idea is
to create long segments for straight parts and short ones for turns, in order to
provide the individual with more precision for the trajectory. Fortunately, the
TORCS simulator provides us with a segment division that accomplishes this
requirement, so they were used in the new codification. Nevertheless, if we did
not have this information, we could obtain these segments analyzing the curve
tangent of the track, considering more segments in sharp turns (higher variations
of tangent value) and less in smooth stretches (lower variation).

- Changes on the individual of reference: because of the changes in seg-
ment sizes, a new problem arises when the base individual is searched again. With
the new segment sizes, some of them are so short that the individual interprets
them as straight segments. Then, the vehicle does not need to steer to keep cen-
tered in the track, and obtains higher speed turning with an unproper speed. Sev-
eral solutions were considered, but in the end we defined a new parameter in charge
of setting the maximum speed that the car was allowed to reach. Therefore, the
new algorithm used to find the base individual needs only to find the best steering
value to keep the car centered while keeping its velocity near (and always under)
the speed limit. The application of this new algorithm brought us two main advan-
tages: (1) the execution time spent was decreased dramatically because the search
space is smaller and, (2) the lap time of the individual of reference was reduced.
This improvement is an outcome of the changes made which provide more preci-
sion with the vehicle and, consequently, better lap times. Table 2 shows the new
values for segments and their initial lap times.

Table 2. New parameters for the genetic algorithm

Circuit Segments Segments Base Time Base Time
(1st Iteration) (2nd Iteration) (1st Iteration) (2nd Iteration)

A-Speedway 384 244 76.06 secs 60.17 secs
E-Track 5 326 334 74.67 secs 68.33 secs
Aalborg 518 371 288.04 secs 158.39 secs

It is remarkable how the new changes reduce the base times in all circuits,
being the reduction in the last circuit very promising: 158.39 seconds. This lap
time is much lower than the time obtained by the GA with the IT1 codification
(178.478 seconds).

- Changes on the GA: a steady state has been implemented to provide
more generations. It works creating a new individual in each generation, using
the usual operators (tournament selection, uniform crossover and mutation, as
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were used before), and comparing it with the worst one of the population. In the
case where the new individual is better than the old one, it is substituted and
the algorithm continues creating a new individual.

Once the previous modifications were made, a test set was executed in order
to check if better results could be obtained. All of them were executed in the
third circuit (Aalborg). As Aalborg is the most complex of the circuits tried,
we considered that good results on it would mean good results in the others
(A-Speedway and E-Track 5). After several tests, the mutation value chosen was
0.005. All the experiments were executed through 100, 000 steady state genera-
tions. The results found are summarized in Table 3. As can be seen in this table,
the final lap times are competitive, and even more if we compare them with the
best times obtained in the previous iteration. The improvements in relation to
IT1 are measured in a difference of almost 90 seconds on average.

Table 3. Summary of 40 experiments in Aalborg (IT2)

IT2 Generations Base time Reduction Final Time

Mean 1,000 158.39 secs 43.10 secs 115.28 secs

Best result 1,000 158.39 secs 59.79 secs 98.59 secs

The improvements made in relation to IT1 are obviously due to the changes
done to the base individual. However, the best lap times achieved by the GA in
the IT2, are very close to the ones performed by the simulator bots. The final
lap time stopped at 98.592 seconds, only 2 seconds away from the lap time of
one of the bots. Attending to the mean, this approach is still 32.04 seconds (on
average) away from the best TORCS simulator bot.

2.4 Variable Segment Size and Gene Value Discretization (IT3)

As the results obtained after the IT2 modifications did not reach the bots lap
times, we made some additional changes to the algorithm, with the aim of per-
forming competitive lap times. The changes made in this third iteration of the
paper are the following:

Initial population mutation: in this iteration, the whole initial population
is mutated before starting in order to have more diversity for the steady state
algorithm. This change helps the algorithm to perform better by providing a fast
fitness reduction during the first generations. It is important to note that, in this
mutation, only one individual remains intact (as the individual of reference) to
ensure having at least one which can complete a lap.

Discretization of genes values: from the beginning of the project, the values
of the genes have been continuous (real value codification). However, we can
consider the relevance of the values beyond the fourth or fifth floating point
number insignificant. For instance, the difference between a turn value of 0.0001
and 0.0002 cannot be appreciated in the driving process and, what it is worst,
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Table 4. Summary of experiments on Aalborg (IT3)

IT3 Generations Base time Reduction Final Time

Mean 1,000 158.39 secs 65.05 secs 93.34 secs

Best result 1,000 158.39 secs 73.81 secs 84.57 secs

increases the search space, affecting negatively to the performance of the algo-
rithm. In addition, a physical instrument for steering will probably not be able
to work with such a precision. The problem of this approach is that, as mutation
is a procedure that can change the value of a gene in any quantity, its final value
will not be discrete and the search space becomes extremely large. Because of
that, all the genes values have been discretized and their precision has been set
to two decimal numbers.

Changes in mutation procedure: due to the previous modification, the muta-
tion procedure has changed in order to fit in the new gene values. However, another
important update has been performed in this process. All over the GA, some kind
of cultural information is tracked: when an individual is mutated and the new lap
time is better than the one of its parents, the values of these successful mutations
are stored in a special individual. The information kept here is used as a reinforce-
ment for the next mutation chances, performing the gene modification oriented
to the successful mutations of its neighbors. This change is based on the fact that
contiguous segments usually perform similar actions in this problem.

Once the changes were made, another test set was executed. The results, which
are gathered in Table 4, are significantly better, obtaining competitive lap times
on average, and with a best result of 84.578 seconds. This new algorithm obtains
a time reduction of 22 seconds on average from the times achieved by the base
individual, and its standard deviation is also lower. Comparing our times with
the simulator bots, the results obtained are, on average, between the worst and
the best simulator bot lap times, so the objective of achieving competitive lap
times has been reached. The evolution of the best individual achieved by the
IT3 GA compared to the bot lap times can be seen in Figure 3.

As can be seen, fitness value decreases smoothly from the base individual lap
time, achieving competitive values before the half point of the GA execution.

Fig. 3. Aalborg best individual vs. simulator bots (fitness curve)



Driving Cars by Means of Genetic Algorithms 1109

This behaviour is common in most of the experiments of this test set. Further-
more, in the last generations, the decreasing of the lap time continues, which
indicates that the results will be even better with longer executions. Moreover,
results on average also improve part of the times obtained by the simulator bots.

3 Conclusions and Future Work

The use of GAs has been proved to be a successful technique for the optimization
of a lap trajectory in a known circuit. In the first experiments performed in this
paper, the results in complex circuits showed us that we were very far away
from competitive lap times. However, by analyzing and studying the algorithm,
some changes were made to the GA. With these changes the GA became good
enough to obtain lap times comparable with the ones achieved with the TORCS
simulator bots. This was tested by means of experiment sets with a significant
number of runs. The relevance of these successful results is not the fact of beating
the bots of the simulator. The relevance is the discovery, in the process of doing
so, of each one of the features which make this problem difficult and interesting
to solve. One of the problems of this approach is that the trajectory obtained
in the evolving process depends highly on the initial state of the car. If noise
in sensor readings or a change in the initial position happens, the trajectory
evolved would not be valid. The same happens if we need to perform more
than one lap. Avoiding these problems is one of the main objectives for future
developments. Two branches of future work can be the basis of our new research
lines. On one hand, applying different techniques, such as evolutionary strategies
and/or multi-objective optimization. These techniques can be used to find out
new possibilities for solving this problem in order to obtain better lap times than
any bot or human player. On the other hand, we can add complexity to this
challenge; for instance, we can try to include fuel consumption, gear changing,
overtaking other vehicles and, why not, a whole race planning.
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Abstract. Smart-appliances ensembles are highly dynamic device col-
lections in which devices can leave and join at any time without no-
tice. Due to the high system dynamics, such ensembles cannot employ
standard evolutionary algorithms for their internal self-organization pro-
cesses. Therefore, this paper proposes a new evolutionary framework,
called the appliances-go-evolution platform (AGE-P). The simulation
experiments indicate that AGE-P is able to properly cope with the pe-
culiarities of smart-appliances ensembles and that it is thus a suitable
option for their self-organization processes.

1 Introduction

Evolutionary algorithms of various sorts solve technical problems by utilizing
some selected concepts from natural evolution [2,5,6,9,12]. They describe a tech-
nical (optimization) problem as a set of n problem-specific parameters xi, also
called genes. The set of genes is called a genome and is tightly embedded into
an object, called individual. Typically, an evolutionary algorithm applies its ran-
dom variation operators, such as mutation and recombination, to an individuals’
genes. As a consequence, these random variations change the individuals’ fitness
values. A subsequent selection process exploits these fitness variations in order
to gain some progress. It should be obvious that both the fitness evaluation and
the selection process consider the genomes as atomic entities. In summary, the
notion of an individual as the container of its genome is a very fundamental
concept in all evolutionary algorithms.

The concepts described above are quite generic by their very nature. The per-
tinent literature on evolutionary algorithms presents a huge number of successful
applications that can be found in areas as diverse as machine learning, combina-
torial problems, VLSI design, breast cancer detection, evolutionary robotics, and
numerical optimization in general. But in its canonical form, the concept of an
individual is not suitable for all types of applications. For example, when evolving
structures, such as the topology of a neural network, the number n of parameters
xi is generally not not known in advance. Rather, the number n of parameters it-
self is the result of the actual evolutionary process. As a relief, previous research
has developed the concept of variable-length genomes [7,8,11]. This option allows
an individual to grow and shrink its genome, and thus to adapt to changing de-
mands. But still, with its genome, an individual constitutes a solid, atomic, and
monolithic entity, which is fundamental to all evolutionary algorithm.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 1111–1119, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Even with the concept of variable-length genomes, evolutionary algorithms
cannot be directly utilized in all application domains. Section 2 briefly describes
an example application called smart-appliances ensembles [1,10,13]. The term
“smart-appliances ensemble” refers to everyday-life devices that are equipped
with some computational resources and that are supposed to self-organize ac-
cording to the users’ needs. The following properties are closely linked to smart-
appliances ensembles: (1) they are dynamic by their very nature in that devices
may join or leave the ensemble at any time without notice; (2) the physical prop-
erties of every device are known only to itself and not the rest of the system;
and (3) a smart-appliances ensemble should not induce any user-based model-
ing and/or administration; rather, devices might be freely added and be freely
removed, which also includes device failures.

The discussion presented above suggests that the conventual usage of indi-
viduals and genes does not match the dynamic and modeling-free nature of
smart-appliances ensembles. Therefore, Section 3 proposes a new evolutionary
framework, called the appliances-go-evolution platform (AGE-P). A key feature
of AGE-P is that it physically distributes the genome as well as the mutation
operators across all the appliances. This way, the genome grows and shrinks as
devices come and go, and thus is naturally adapting to the ensemble dynamics.

For validation purposes, Section 4 describes the office lighting problem in
which several light sources are distributed within a typical office space. The
light sources are supposed to autonomously dim such that all users have the
specified illuminations at their desks. In this educational example, neither the
number of light sources nor their physical properties are known to the system.
Rather, all light sources randomly change their activation, and the resulting
effects are subsequently fed back by the sensors.

The results, as presented in Section 5, indicate that the proposed AGE-P
approach is able to solve the office lighting problem and that it is able to cope
with all the mentioned system dynamics. Finally, Section 6 concludes this paper
with a brief discussion.

2 Problem Description: Smart-Appliances Ensembles

Smart appliances refer to devices, such as laptops, personal digital assistants, cel-
lular phones, beamers, window blinds, light bulbs, and the like, that are present
in everyday life and that are accessible via some electronic interfaces. Smart-
appliances are considered an ensemble if they coherently work together such
that they support their users in an autonomous and non-invasive way [1,10,13].
In order to reach this goal, the devices should employ a self-organization process.
The self-organization process itself requires access to a proper communication
infrastructure, such as a wireless network and Bluetooth, by means of which the
devices exchange messages with each other.

The smart lecture room is a good educational example. It may consist of
a certain number of laptops, a few beamers, some light sources, and window
blinds. Suppose that a user is about to do a presentation and that the room is
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illuminated too much. Then, the ensemble is supposed to properly dim the lights
and/or close the window blinds.

A common approach for solving this task is to utilize rule based methods, such
as ontologies [3,4]. In this modeling approach, the devices use rules to negotiate
how to react to a given situation. However, the utility of such rule-based model-
ing is very limited in the problem at hand. Every joining or leaving device would
impose some administrative work, which is but desirable. Rather, the ensemble is
supposed to self-organize in order to work for the users and not vice versa. Thus,
a modeling approach would not be the method of choice. As has already been dis-
cussed in the introduction, even standard evolutionary algorithms are not suitable
for this application: the notion of an individual as the container of its genome is
highly useless, since devices and thus genes come and go without notice.

3 The Appliances-Go-Evolution Platform

This section proposes a new evolutionary scheme called the appliances-go-evolution
platform, or AGE-P for short. AGE-P abandons any central processing; rather, it
physically distributes all the operations as well as data structures involved across
all actuators and sensors. This means, for example, that in AGE-P, every gene only
resides in the device to which it belongs. Consequently, every device hosts its own
mutation operator, which it applies only to its private gene. In other words, none
of the other components has any knowledge about a device’s gene value or its par-
ticular variation operator. A consequence of the chosen approach is that remov-
ing or adding devices automatically removes or adds the associated genes from
the genome. Similarly, AGE-P distributes the fitness evaluation across the sen-
sors present in a scenario. With these conceptional modifications in mind, AGE-P
assumes the following setup:

1. All devices are split into two classes, sensors si and actuators ai. Actua-
tors are those devices that influence principal modalities, such as brightness,
sound volume, and the like. Sensors, on the other hand, measure modalities.

2. Every sensor si is tagged with a target value st
i

1. The overall goal of the
AGE-P system is that all the differences di = si−st

i vanish. In order to reach
this goal, the sensors periodically communicate their differences di, which
constitute the partial fitness contribution fi = (si − st

i)
2, to all devices.

3. Every actuator ai hosts its current activation, also denoted by ai, as well
as its private mutation operator. In order to perform an evolutionary pro-
cess, every actuator also hosts its previous values along with their associated
fitness values. In its most simple form, every actuator hosts one parent as
well as one offspring gene value. Then, all actuators perform a (1+1) se-
lection scheme, which indicates that the new parent gene is selected from

1 It is generally assumed that the target values originate from either higher abstraction
levels, such as an intention module, or given user settings. The discussion of the
intension module, which is part of the ensemble’s infrastructure, is beyond the scope
of this paper.
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the union of the previous parent and the offspring. This form is denoted as
(1+1)-AGE-P for short.

4. AGE-P assumes that a propper communication infrastructure, such as Blue-
tooth, WLAN, DECT, or the like, is readily present.

In this physical setup, AGE-P works as follows:

1. Initially, all sensors are tagged with reasonable target values st
i. Similarly,

all actuators choose suitable activations ai. In case of light sources, these
values might correspond to zero illumination.

2. Periodically, all sensors determine their current sensor values si, and broad-
cast the differences di = si − st

i.
3. On the arrival of new differences di, all actuators select their gene values

from previous cycles, and apply their private mutation operators, i.e., ai ←
ai + mi, with mi denoting the mutation operator of the ith actuator. As
a consequence, the actuators’ activations (randomly) change. The physics
mediate these changes, which the sensors si feed back in the next cycle.

4. The process continues with step 2.

Dynamic changes, such as changing sun shine, broken actuators, changed loca-
tions of the actuators and/or the sensors, new actuators, etc., might invalidate
the previously collected gene-fitness value pairs. To cope with these changes,
AGE-P periodically skips the selection process and re-evaluates the so far best
value. This re-evaluation might be triggered by any of the sensors or actuators.

4 Methods

In order to validate the concepts of the proposed AGE-P algorithm, this paper
is using a simulation. Such a simulation-based approach considers only those as-
pects, which are technically relevant for the algorithm. For the sake of simplicity,
the simulation models the illumination of a certain number of desks by a certain
number of light sources. The remainder of this section presents a description of
the considered scenarios as well as the used parameter settings.

Configuration of AGE-P. All experiments have been done with (1+1)-AGE-
P. This notation indicates that the algorithm generates one offspring from one
parent and that it selects the better one as the parent for the next generation.

Sensors si. AGE-P employs a user-specified number m of sensors si. In the
validation study presented in Section 5, these sensors measure the illumination
at various locations, e.g., the users’ desks.

Fitness function f . All sensors calculate the difference di = si − st
i as their

partial fitness contribution. By means of a global communication infrastructure,
all sensors broadcast their differences di across the system such that every device
can calculate the ensemble’s total fitness as

f =
m∑

i=1

fi =
m∑

i=1

di
2 =

m∑
i=1

(si − st
i)

2 . (1)
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Fig. 1. The test scenario consists of some light sources as well as two desks with light
sensors mounted close to the keyboards

Actuators ai. The simulation employs n actuators ai, which represent n light
sources that are distributed in the environment. Every actuator employs its
private mutation operator ai ← ai + σ ·N(0, 1), with σ denoting a private step
size. Without loss of generality, all actuator values ai are bound to 0 ≤ ai. Unless
otherwise stated, the step size is set to σ = 0.1 in all simulation scenarios. Please
remember that these actuators are not explicitly known to the sensors, the fitness
evaluation, or the system in general. Rather, the environment, i.e., the physics,
autonomously mediate their modalities towards the sensors si.

Simulation setup. The simulation setup resembles a typical workplace situ-
ation as shown in Fig. 1. Such a room has several light sources ai, desks, and
light sensors si. The effect of light source ai on sensor sj can be modeled by a
weight wij . The weights wij subsume all the relevant physical effects, such as
the light sources’ positions, their brightness, their illumination characteristics,
etc. In addition, most rooms have one or several windows through which the sun
might contribute some global illumination g. In mathematical terms, this paper
utilizes the following (simplified) physical model:

sj = g +
n∑

i=1

wij · ai , (2)

with wij set to values plausible for the scenario depicted in Fig. 1. It might be
mentioned again, that the mathematical model of Eq. (2) is not part of AGE-P,
but solely used for validation purposes within the simulation setup.

Depending on the chosen scenario (please, see below), the weights, the sensor
target values, and the number of actuators spontaneously change over time, i.e.,
wij(t), g(t), st

i(t), and n(t) are time dependent. For the purpose of readability,
the time t is omitted.

Scenario 1, System Startup. At startup time, all actuator values are set to
ai = 0 and g = 0, and the sensor target values are set to st

1 = 0.7 and st
2 = 1.2.
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The ensemble is then responsible to power up the lamps to the desired level. This
situation resembles an early winter morning, when the users enter the dark office.

Scenario 2, Scalability. This scenario increases the number of actuators from
n = 2 to n = 100. The goal of this scenario is to test the scaling behavior of
AGE-P.

Scenario 3, System Dynamics. This scenario focuses on the ensemble behavior
in more dynamic setups in which light sources might fail or join. It starts off with
two light sources per desk, i.e., n = 4. In simulation step t = 150, a light source of
each desk fails. Then, in simulation step t = 300, the sensor target value of desk
2 is increased from st

2 = 1.2 to st
2 = 1.5. This might model a situation in which

a different person starts working and might prefer a brighter desk. This situation
implies that the illumination of the other desk should remain unchanged.

Scenario 4, External Effects. This scenario starts off like the first one. But
in simulation step t = 150, the external (sunshine) illumination is set to g = 1,
and is reduced to g = 0.5 im simulation step t = 300. This scenario models the
influence of external modalities, which are outside the control of the ensemble. A
further challenge is that during time steps 150 ≤ t ≤ 300, the ensemble cannot
reach the specified target values, since the external illumination already exceeds
target value st

1.

5 Results

The simulation results of the four experiments are summarized in Figs. 2 to 5. On
the x-axis, the figures show the simulation time, and on the y-axis, they show
the target sensor values st

i, their actual readings si, and the global ensemble
fitness f (Eq. (1)). All data were obtained from 500 independent runs. From all

Fig. 2. Scenario 1 resembles the basic sit-
uation of powering up the lamps from
darkness to a desired brightness

Fig. 3. Scenario 2 resembles Scenario 1,
but with 100 instead of only 2 lamps
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Fig. 4. Scenario 3 focuses on the ensemble
behavior in more dynamic setups in which
light sources might fail or join. At time
t = 150 two of four lamps fail, at time
t = 300 the second sensor target value is
increased from st

2 = 1.2 to st
2 = 1.5.

Fig. 5. This scenario models the influence
of external modalities, which are outside
the control of the ensemble. Especially,
between t = 150 and t = 300, the external
influence already exceeds the target value
st
1 and therefore prevents the system to

reach the specified goal.

these runs, the figures always present the values from the run that was worst in
the corresponding time step t.

All figures clearly indicate that the global system error decreases exponen-
tially, and that thus after some adaption time, the AGE-P algorithm arrives at
the specified target values, i.e., si ≈ st

i. This is not only observable in the simple
scenarios 1 and 2, but also in the more dynamic one (Fig. 4) in which the target
values change over time. The only exception occurs in the fourth scenario (Fig. 5)
between time steps 150 and 300. However, it has already been discussed above
that AGE-P cannot reach the target values, since the external illumination is
brighter than the specification demands. In other words, the small deviation
from the optimum is not due to AGE-P but due to the physics; but even in this
case, AGE-P returns to the optimum shortly after the reduction of the external
illumination in time step t = 300.

It might be quite interesting to take a look at the scaling behavior of the
proposed self-organization algorithm. Normally, an increasing number of com-
ponents slows down the system convergence speed. However, a comparison of
Fig. 2 and Fig. 3 indicates that a larger ensemble (i.e., 50 light sources per desk)
reaches the optimal even faster than a smaller one (i.e, 2 light sources per desk).
This effect is counter intuitive but probably due to a significantly increased
number of actuator configurations that match the optimum sensor readings.

Rather than focusing on convergence speed, the application at hand focuses
on a smooth adaption of its actuators. To this end, the step size σ should be
set to rather small values; larger values would speed up the adaptation process,
but would also induce significant fluctuations around the optimum, which might
be rather annoying in real-world applications. Furthermore, a larger number of



1118 R. Salomon and S. Goldmann

actuators, such as a total of 100 light sources used in scenario 2, requires a
smaller step size, such as σ = 0.02. Otherwise, the fluctuations would be way
too large to be acceptable. Therefore, future versions of AGE-P should employ
a proper self-adaption scheme of the step size σ.

6 Conclusions

This paper has proposed a distributed evolutionary algorithm, called AGE-P, for
the self-organization of smart-appliances ensembles. A key feature of this algorithm
is that it does not maintain assembled genomes in the traditional sense. Rather,
AGE-P physically distributes all gene values across all the devices, and evaluates
only the resulting sensor modalities. Furthermore, the application of the mutation
operators is done by the actuators rather than a central processing instance.

The presented simulation results indicate that the proposed method is suitable
as the self-organization mechanism for smart-appliances ensembles. In addition
to the required basic adaptation capabilities, the AGE-P framework scales well,
and is also able to cope with the inherent system dynamics of those ensembles.

The experiments also show that the behavior of AGE-P depends on the chosen
step size σ of the mutation operators, privately employed in every actuator.
Therefore, future research will be devoted to the development of an adequate
self-adaption mechanism.

Ongoing research is developing hardware equipment that consists of remotely
controllable light sources as well as remotely readable sensors. All these devices
are equipped with a wireless communication module. Preliminary results indicate
that in the real-world, AGE-P also has to cope with varying time constants. For
example, slight brightness changes may be faster than drastic brightness changes.
Furthermore, these timing constants also depend on the chosen light source types
and potentially other system parameters.
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Abstract. The problem of finding an optimal positioning for the side
chain residues of a protein is called the side chain placement or side
chain prediction problem. It can be posed as an optimization problem in
the discrete domain. In this paper we use an estimation of distribution
algorithm to address this optimization problem. Using a set of 50 difficult
protein instances, it is shown that the addition of dependencies between
the variables in the probabilistic model can improve the quality of the
solutions achieved for most of the instances considered. However, we also
show that only when information about the known interactions between
the residues is considered in the creation of the probabilistic model, the
addition of the dependencies contributes to improve the quality of the
solutions obtained.

Keywords: estimation of distribution algorithm, protein structure pre-
diction, probabilistic models.

1 Introduction

Estimation of distribution algorithms (EDAs) [12,14,15] are evolutionary algo-
rithms that use probability models instead of genetic operators. Probabilistic
modeling allows EDAs to represent relevant features from the search space that
can be automatically learned from the data using machine learning methods.
The ability of EDAs to solve hard optimization problems and the capacity to
extract previously unknown features of the problem domains have contributed
to a recent upsurge of their applications in Bioinformatics [2,11,19,21].

In this paper, we address the important issue of the influence that the use of
probabilistic dependencies has in the solution of the protein side chain placement
problem. In [19], an EDA approach, based on the application of the univariate
marginal distribution algorithm (UMDA) [15], has been applied to this protein
problem. The UMDA approach uses the simplest probabilistic model where all
variables are considered independent.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 1120–1129, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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In EDAs, the capacity of the model to represent complex interactions be-
tween the problem components usually influences its accuracy. On the other
hand, increasing the model complexity has also an associated computational
cost. Therefore, central to the notion of efficient modeling is the achievement of
an appropriate balance between the adequate complexity of the model (enough
to represent the relevant features of the problem) and a feasible computational
cost (the time and the storage requirements must be affordable).

Although UMDA’s capacity of representation is highly limited, for a number
of difficult protein side chain placement instances where other state-of-the-art
algorithms failed to converge, UMDA was able to find better structures than the
other algorithms [19].

In this paper, we investigate the question of whether the representation of
interactions, by means of probability dependencies between the variables deter-
mines a real improvement in the efficiency of EDAs for the protein side chain
placement problem. To this end, we apply a tree-based EDA and compare its
results with UMDA. In addition, we introduce a proposal to improve the quality
of the solutions found and diminish the computational burden of the algorithms
by using the protein structure information available.

2 Protein Side Chain Placement Problem

We use Xi to represent a discrete random variable. A possible value of Xi is
denoted xi. Similarly, we use X = (X1, . . . , Xn) to represent an n-dimensional
random variable and x = (x1, . . . , xn) to represent one of its possible values.

Assuming that the position of the protein backbone is fixed, and considering
fixed bond lengths, the location of the protein side chain residues can be com-
pletely determined by the sidechain dihedral angles. The problem of finding an
optimal positioning for the side chain residues is called side chain placement or
side chain prediction [13].

A way to address the problem is to constrain the search to the discrete space by
means of discrete configurations of the angles, known as rotamers [6]. A rotamer,
short for rotational isomer, is a single side chain conformation represented as a
set of discrete values, one for each dihedral angle degree of freedom [6]. A rotamer
library is a collection of rotamers for each residue type.

The inclusion of these discrete configurations implies an important problem
reduction. The search for the protein structure is ’reduced’ to the search of a set
of rotamers (one for each residue) that optimizes the fitness function. However,
the combinatorial problem is NP-hard [17] and, in general, the use of brute force
algorithms is unaffordable.

In the protein side chain problem, variable Xi will represent the set of dihe-
dral angles corresponding to the i-th residue. xi will be interpreted as one of
the indexed set of rotamer configurations from the rotamer library. Each con-
figuration encodes one value for each of the dihedral angles of the i-th residue.
The number of values of each variable will correspond to the number of rotamer
configurations for the corresponding residue i (i.e. xi ∈ {1, . . . , ki}, where ki is
the number of feasible rotamer configurations for residue i).
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When the backbone is fixed, the energy of a sequence of n amino acids folded
into a defined structure can be expressed as:

E(x) =
n∑

i=1

E(xi) +
n−1∑
i=1

n∑
j>i

E(xi, xj), (1)

where E(xi) represents the energy interaction between the rotamer and the
backbone as well as the intrinsic self-energy of the rotamer. E(xi, xj) is the
interaction energy between all pairs of sidechains. For two sets of atoms, the
interaction energy is the sum of the pairwise atom interactions. We have adopted
the van der Waals energy function as implemented in [23]. This energy function
approximates the repulsive portion of Lennard-Jones 12-6 potential. It penalizes
steric clashes between atoms. The energy of residues that do not interact is zero
for every possible rotamer configuration.

Different optimization approaches to optimal side chain prediction have been
proposed. Among the most common approaches used are dead-end elimination
(DEE) algorithms [5], the self consistent mean field approach (SCMF) [10], and
side chain placement with rotamer library (SCWRL) [6]. Inference-based meth-
ods [23] can be also used to find the exact solutions of the side chain prediction
problem but they may fail to converge for some difficult instances. In these cases,
the application of heuristic approaches is necessary.

3 Estimation of Distribution Algorithms

We will work with positive probability distributions denoted by p(x). Simi-
larly, p(xS) will denote the marginal probability distribution for XS , where
S ⊂ {1, . . . , n}.

In the EDA approach we follow, each individual represents one possible so-
lution and it is encoded using the vector representation introduced above. The
selection step is based on the evaluation of a predefined fitness function. A key
characteristic and crucial step of EDAs is the construction of the probabilistic
model. These models may differ in the order and number of the probabilistic
dependencies that they represent.

UMDA is the simplest EDA approach to the problem treated in this paper.
The probability assigned by the model to each solution is equal to the product of
the variables’ univariate probabilities. UMDA’s estimation step consists of calcu-
lating the univariate frequencies of each value for every variable. In the sampling
step, new solutions are generated by independently sampling each variable.

In this paper, we propose the application of a model that captures bivari-
ate dependencies between the variables. This probabilistic model is based on a
tree where each variable may depend on at most another variable that is called
the parent. A probability distribution pTree(x) that is conformal with a tree is
defined as:

pTree(x) =
n∏

i=1

p(xi|pa(xi)) (2)
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where Pa(Xi) is the parent of Xi in the tree, and p(xi|pa(xi)) = p(xi) when
Pa(Xi) = ∅, i.e. Xi is the root of the tree. The distribution pTree(x) itself will
be called a tree model when no confusion is possible. Probabilistic trees are
represented by acyclic connected graphs.

The construction of the tree structure from data implies the detection of the
most important bivariate interactions between the variables. This can be done
applying statistical independence tests [16] or methods based on the analysis
of the mutual information between variables as in [1]. We follow the second
approach using the tree-based EDA (Tree-EDA)1.

Initially, the bivariate probabilities are calculated for every pair of variables.
From these bivariate probabilities, the mutual information between variables
is found. To construct the tree structure, an algorithm introduced in [4], that
calculates the maximum weight spanning tree from the matrix of mutual in-
formation between pairs of variables, is used. Probabilistic logic sampling [8] is
used to sample new solutions from the tree. New solutions are generated start-
ing from the root of the tree and sampling each variable conditioned by its
parent. More details about the algorithm and its computational cost could be
found in [22]. Tree-EDA has been successfully applied to other classes of protein
problems [18,21].

3.1 Using Problem Information to Increase Efficiency of EDAs

The energy function used to evaluate the protein side chain problem assigns a
zero contribution to pairs of residues that do not interact. We could expect that
the probabilistic dependencies between the corresponding pairs of variables will
be weaker. Therefore, one variant of the tree learning algorithm constrains the
calculation of bivariate probabilities and mutual information to those pairs of
variables corresponding to residues that are interacting in the backbone (those
that actually interact in the crystal structure). We call this algorithm Tree-
EDAr. During the learning phase of Tree-EDAr, the computation of the mutual
information is done only for the previously fixed subset of variables pairs. The
tree structure only includes pairs of variables that belong to this subset.

This approach, which has been previously tested for other class of protein
problems [18], helps to reduce the number of spurious correlations that contribute
to deteriorate the accuracy of the models and negatively influence the efficiency
of the search.

The computational complexity of EDAs is mainly dependent on the complex-
ity of the learning algorithm, but also depends on the population size and number
of generations needed for convergence, which are problem-dependent. While the
computational complexity of UMDA is linear in the number of variables, for
Tree-EDA it is quadratic [22]. Nevertheless, the use of problem structure, as
done by Tree-EDAr, reduces the time spent to learn the probabilistic model.

1 C++ (EDA program) and Matlab (MATEDA) implementations of UMDA, Tree-
EDA, and other EDAs are respectively available from endika@si.ehu.es and
http://www.sc.ehu.es/ccwbayes/members/rsantana/software/matlab/
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4 Experiments

First, we introduce the protein benchmark and the parameters used by the algo-
rithms. Then, we explain how the experiments were designed. Finally, the results
of the experiments are presented.

4.1 Protein Benchmarks

To test our algorithms, we started with a protein dataset of 493 X-ray crystal
structures2 with a resolution better than or equal to 2Å, an R factor below 20%,
and a mutual sequence identity lower than 50%. Each protein consisted of 1-4
chains and up to 1000 residues. As a pre-processing step, we determined the
instances in which the Goldstein criterion [5] eliminated all configurations but
one, and those instances in which the inference-based algorithm for structure
prediction (SPRINT) [23] converged.

SPRINT is one of the state-of-the-art algorithms for protein side chain place-
ment. In [23], the energies obtained by SCWRL [3,6] (version 2.9) were reported
to be strictly higher than those found by SPRINT in the small class of instances.
Unfortunately, the SCWRL (version 3.0) implementation does not provide the
energy values corresponding to solutions calculated by the algorithm. Proteins
that were solved using the Goldstein criterion and those for which SPRINT con-
verged were removed from the original database. The number of the remaining
instances, which were used for our experiments, was 50. They serve as an ap-
propriate testbed to focus the investigation of EDAs on a representative set of
difficult instances were other efficient algorithms have failed.

4.2 Parameters of the Algorithms

To work, EDAs require the definition of several parameters. We have used the
same settings for all instances of the problems treated. The quality of the results
achieved by the algorithms will depend on these settings. Since, in this paper,
we focus on the role played by dependencies, no attempt has been made to tune
the parameters to achieve an optimal performance. The parameters of the EDAs
have been set as follows. The population size was set at 5000. The maximum
number of generations is 500. Truncation selection with parameter T = 0.15 has
been used. In this selection scheme, the best T ·N individuals of the population
are selected to construct the probabilistic model. By setting a rather low value
of truncation, a strong selection pressure is induced, forcing the algorithm to
discard poor solutions as a faster pace.

We apply a replacement strategy called best elitism in which the selected
population at generation t is incorporated into the population of generation
t + 1, keeping the best individuals found so far and avoiding to revaluate their
fitness function. The algorithm stops when the maximum number of generations

2 These instances have been obtained from Chen Yanover’s page:
http://www.cs.huji.ac.il/∼cheny/proteinsMRF.html
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is reached or the selected population has become too homogeneous (no more
than 10 different individuals).

EDAs incorporate an additional problem reduction step to decrease the num-
ber of variables and their number of values. This step starts from the application
of a dead-end elimination step [5], based on the iterative use of the Goldstein
elimination criterion, which establishes a sufficient condition for rotamer con-
figuration xi to be absent from the optimal solution. When no condition that
further eliminates rotamers can be established, the algorithm stops. This step
considerably contributes to reduce the dimension of the search space, but the
search space remains huge.

4.3 Design of the Experiments

To compare the results of the algorithms we conducted, in most of cases, 50 ex-
periments for each instance and algorithm. For a number of complex instances,
the number of experiments for each algorithm was reduced to 30. The perfor-
mance of the algorithms was evaluated considering the fitness of the best solution
found in each experiment, the best fitness among all the best solutions found,
and the number of experiments in which the best fitness was found.

To determine whether differences between the fitness of the solutions found
by the algorithms are statistically significant the Kruskal-Wallis test [9] was em-
ployed. The test significance level was 0.05. To compare the algorithms according
to the best fitness, we determined for each instance, which was the best solution
found by each algorithm in all the experiments done.

4.4 Numerical Results

We compared the quality of the solutions obtained by UMDA, Tree-EDA and
Tree-EDAr using the protein benchmark. Tables 1 and 2 shows the 27 instances
for which Tree-EDAr found solutions with energies strictly lower than those
found by SPRINT, UMDA and Tree-EDA3. Table 1 shows the results corre-
sponding to those instances for which 50 experiments were conducted and Table 2
those for which 30 experiments were done. The best solution found by Tree-EDAr

has higher energy than the best solution found by SPRINT in only 5 of the 50
instances. The table shows the size of each instance after the application of the
Goldstein criterion (size), the number of experiments conducted (exp.), the best
value of the fitness found in all the experiments (best), the number of times the
best solution was found (S), and the average fitness (mean) of the best solu-
tions of each experiment. The standard deviation of the EDAs results changed
according to the instance used. For sake of space these values are not reported.

The application of the Kruskal-Wallis test found significant statistical differ-
ences between UMDA and Tree-EDA for 26 of the 50 instances. For 15 of these
instances, UMDA was better than Tree-EDA. Significant statistical differences
between UMDA and Tree-EDAr were found for 45 of the 50 instances. For 43
3 Detailed results for all the instances are available as additional documentation from

http://www.sc.ehu.es/ccwbayes/EDA/EDAProteinProblems.html
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Table 1. Results achieved by UMDA, Tree-EDA and Tree-EDAr for the selected
instances

UMDA Tree-EDA Tree-EDAr

pdb id size exp. best S mean best S mean best S mean
pdb1crz 75 50 626.41 1 627.25 626.12 7 627.54 626.12 24 626.56
pdb1ddt 146 754.93 1 760.02 754.30 1 760.88 753.38 26 754.05
pdb1dpe 185 727.37 2 750.51 725.83 1 739.73 725.50 18 729.94
pdb1gsk 208 939.94 1 947.77 934.79 1 945.74 934.01 12 935.62
pdb1h3n 318 1626.09 1 1639.00 1617.70 1 1653.47 1611.76 1 1625.08
pdb1jy1 144 861.92 1 870.34 856.88 4 860.76 856.84 33 856.92
pdb1kmo 241 925.90 1 943.09 890.85 1 924.32 875.20 1 886.86
pdb1kwh 207 972.11 1 988.21 960.73 2 980.09 959.17 1 965.53
pdb1nqe 189 570.29 1 593.49 563.36 1 588.67 563.30 16 566.70

of these instances, Tree-EDAr outperformed UMDA. The statistical tests con-
firmed what can be seen from Tables 1 and 2: Tree-EDAr consistently found
better solutions than UMDA. However, the performance of Tree-EDA is not al-
ways better than UMDA. Furthermore, a detailed analysis of the experiments
(see supplementary material), can reveal that UMDA beats the other two EDAs
for the largest problem instances. This might be explained by the fact that the
population sizes used by Tree-EDA and Tree-EDAr are still insufficient to learn
an accurate model of the interactions in very large problems. An exhaustive
analysis of this question is beyond the scope and space limitations of this paper.

Table 2. Results achieved by UMDA, Tree-EDA and Tree-EDAr for the selected
instances

UMDA Tree-EDA Tree-EDAr

pdb id size exp. best S mean best S mean best S mean
pdb1dxr 353 30 1703.73 1 1722.79 1701.61 1 1716.89 1695.16 5 1699.57
pdb1dz4 288 875.77 1 884.79 868.92 1 880.96 867.01 3 872.16
pdb1d2e 281 1839.67 1 1847.65 1829.95 1 1841.83 1823.87 2 1829.18
pdb1e61 454 1936.92 1 1958.89 1942.94 1 1992.96 1911.46 1 1918.09
pdb1e6p 365 1681.67 1 1694.86 1681.93 1 1703.08 1673.47 1 1680.59
pdb1f60 123 537.42 3 540.78 536.69 1 540.68 535.14 6 536.41
pdb1fmj 294 1100.51 1 1121.42 1089.81 1 1105.23 1088.80 8 1092.90
pdb1fn9 239 989.51 3 993.92 988.82 1 1004.05 987.13 1 990.61
pdb1fnn 240 735.75 1 749.53 732.90 1 751.41 732.01 4 735.82
pdb1giq 265 806.53 1 823.58 801.38 1 815.62 800.07 3 800.95
pdb1h3f 206 785.56 1 795.11 784.95 1 794.09 782.98 7 785.68
pdb1h4r 227 825.64 1 830.12 816.96 1 824.09 815.84 8 817.45
pdb1h80 229 1036.90 1 1040.45 1034.96 1 1039.07 1034.77 9 1035.15
pdb1iqc 288 1538.37 1 1546.85 1531.80 1 1536.20 1530.18 5 1532.12
pdb1jmx 285 1518.10 1 1545.51 1510.21 1 1534.77 1504.70 3 1510.91
pdb1j3b 289 1600.16 1 1625.67 1592.75 1 1616.81 1584.68 2 1598.96
pdb1j8f 329 957.08 1 964.50 942.69 3 954.67 942.62 16 943.56
pdb1lqt 268 935.95 1 967.32 926.16 1 941.13 926.16 12 927.22
pdb1lsh 350 1125.04 1 1135.00 1120.77 1 1132.27 1117.76 1 1119.78
pdb1tki 164 858.67 1 867.24 856.62 1 860.97 855.56 5 856.98

Additional experiments were conducted to investigate the structural differ-
ences between the best solutions found by UMDA and those obtained using Tree-
EDA and Tree-EDAr. This type of experiments is illustrated using dimer protein
pdb1tki. This protein has two symmetric chains and the number of residues be-
fore the application of the Goldstein criterion is 576. The energies corresponding
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to best side chain structures found by UMDA, Tree-EDA and Tree-EDAr were
respectively 858.67, 856.62 and 855.56.

The structures found by Tree-EDA and Tree-EDAr are respectively shown in
Figure 1 (left) and Figure 1 (right). The protein structures found by UMDA and
Tree-EDA are different in only 7 residues. These residues are identified by its
corresponding sequence number in Figure 1 (left). Their rotamer configurations
are accountable for the improvement in the energy. In the figure, those residues
that interact are linked. On the other hand, the structures found by UMDA and
Tree-EDAr are different in only 9 of the residues which are identified in Figure 1
(right). Also in this case, every residue is linked at least to another one.

Fig. 1. Backbone and best side chains configurations found by EDAs for a subset of
protein pdb1tki’s residues. Learned by Tree-EDA (left). Learned by Tree-EDAr (right).

In general, changes between the rotamer configurations of the best solutions
found by UMDA and those found using probabilistic dependencies occur for
clusters of interacting residues. UMDA is supposed to find the optimal configu-
rations for pair of residues with weak interactions but it is not able to find the
optimal configurations for clusters of variables that strongly interact. For several
of these cases, the use of probabilistic dependencies improve the results. In this
problem, the contrastive analysis of the best solutions found with and without
the use of dependencies helps to identify clusters of variables with strong pat-
terns of interactions which in turn correspond to residues that interact in the
protein structure.

5 Conclusions and Future Work

The results presented in this paper show how results achieved in the protein side
chain placement problem can be noticeably improved by the use of probabilistic
models able to represent interactions between the variables. The results obtained
by Tree-EDAr could be further improved by the application of local search meth-
ods as those used in [20] to refine the solutions found by UMDA. Other EDAs
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could be applied, however the application of EDAs that use more complex proba-
bilistic models, such as Bayesian networks or Markov networks, does not seem to
be a good option due to the high cardinality of the problem variables.

Finally, we point to the fact that contrastive analysis of solutions found using
different classes of models could be added to the set of available techniques
[7,18,21] used to extract problem information from the probabilistic models
learned during the search.
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E., Giralt, E.: ENPDA: An evolutionary structure-based de novo peptide design
algorithm. Journal of Computer-Aided Molecular Design 19(8), 585–601 (2005)

3. Canutescu, A.A., Shelenkov, A.A., Dunbrack, R.L.: A graph-theory algorithm for
rapid protein side-chain prediction. Protein Science 12, 2001–2014 (2003)

4. Chow, C.K., Liu, C.N.: Approximating discrete probability distributions with de-
pendence trees. IEEE Transactions on Information Theory 14(3), 462–467 (1968)

5. De Maeyer, M., Desmet, J., Lasters, I.: The dead-end elimination theorem: Mathe-
matical aspects, implementation, optimization, evaluation, and performance. Meth-
ods in Molecular Biology 143, 265–304 (2000)

6. Dunbrack, R.L.: Rotamer libraries in the 21st century. Current Opinion in Struc-
tural Biology 12, 431–440 (2002)

7. Echegoyen, C., Lozano, J.A., Santana, R., Larrañaga, P.: Exact Bayesian net-
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J.A., Armañanzas, R., Santafé, G., Pérez, A., Robles, V.: Machine learning in
bioinformatics. Briefings in Bioinformatics 7, 86–112 (2006)
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Abstract. Nature-inspired routing algorithms for fixed networks is an active area
of research. In these algorithms, ant- or bee-agents are deployed for collecting
the state of a network and providing them to autonomous and fully distributed
controllers at each network node. In these routing systems the agents, through
local interactions, self-organize to produce system-level behaviors which show
adaptivity to changes and perturbations in the network environment. The formal
modeling of such fully self-organizing, distributed and adaptive routing systems
is a difficult task. In this paper, we propose a scalable formal framework that
has following desirable features: (1) it models important performance metrics:
throughput, delay and goodness of links, (2) it is scalable to any size of topology,
(3) it is robust to changing network traffic conditions. The proposed framework
is utilized to model a well-known BeeHive protocol which is further validated
on NTTNeT (a 57 node topology). To the best of our knowledge, this is the first
formal framework that has been validated on such a large topology.

1 Introduction

Nature-inspired routing protocols is an active area of research and has lead to a number
of state-of-the-art algorithms like AntNet [2] and BeeHive [10]. These bottom-up algo-
rithms are characterized by the presence of a set of distributed, autonomous, minimalist
agents. These agents, through local interactions, self-organize to produce system-level
behaviors which show adaptivity to changes and perturbations in the external environ-
ment. Moreover, these algorithms are usually resilient to minor internal failures and
losses of agents, and scale quite well by virtue of their modular and fully distributed
design [4]. Farooq and Di Caro have highlighted a serious shortcoming of these al-
gorithms which is the “difficulty, somehow intrinsic to fully distributed and stochastic
bottom-up approaches, to provide formal guarantees in terms of dependability” [4]. One
of the most important reason which contributes towards this difficulty is the lack of for-
mal models of these algorithms, which eventually leads to studying their behavior in
simulators only.

To the best of our knowledge, no comprehensive research, except the preliminary
work reported in [1], has been conducted in developing a formal framework that pro-
vides insight into the behavior of Nature-inspired routing protocols for fixed networks.
In our earlier work [11], we proposed an elementary framework that utilizes stochastic

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 1130–1139, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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recursive functions to model the behavior of BeeHive. We validated our model on rela-
tively small topologies. The major contributions of this paper over our previous model
are: (1) incorporating the hybrid clustering model of BeeHive that views a given net-
work topology as overlapping foraging zones and non overlapping foraging regions,
(2) the ability to incorporate any number of traffic sources and sinks (3) the ability
to model varying traffic conditions ranging from low traffic loads to congested traffic
loads, and (4) making the framework to scale to any size topology. We believe that these
enhancements will help the designers to systematically study the scalability of a rout-
ing protocol in significantly short design cycles. It is to be noted that Farooq has shown
in [3] that running a single experiment, even on high power machines, on a network
topology of 1050 nodes takes 4 − 5 days. While in our framework, it takes less than 9
minutes. Moreover, an important conclusion of our validation process is: The behavior
of BeeHive and relevant performance parameters estimated by our formal framework
match with the behavior and results obtained from network simulations respectively.

Organization of Paper. The rest of the paper is organized as follows. Section 2 pro-
vides a brief overview of BeeHive to make the paper self contained. We introduce our
analytical framework in Section 3. We then discuss the outcome of our validation pro-
cess on NTTNeT topology. Finally we conclude the paper with an outlook to our future
research.

2 Overview of BeeHive

1BeeHive has been proposed by Wedde et al. [3], [10]. The algorithm has been inspired
by the communication language of honey bees. Each node periodically sends a bee
agent by broadcasting the replicas of it to each neighbor site. The replicas explore the
network using priority queues and they use an estimation model to estimate the prop-
agation and queuing delay from a node, where they are received, to their launching
node. Once the replicas of the same agent arrive at a node via different neighbor sites
of the node, they exchange routing information to model the network state at this node.
Through this exchange of information by the replicas at a node, the node is able to
maintain a quality metric for reaching destinations via its neighbor sites. The algorithm
utilizes just forward moving agents and, as opposed to AntNet, no statistical parameters
are stored in the routing tables. In BeeHive, a network is divided into Foraging Regions
and Foraging Zones. Each node belongs to only one Foraging Region. Each Foraging
Region has a representative node. A Foraging Zone of a node consists of all the nodes
from whom a replica of an agent could reach this node in predefined number of hops.
This predefined number of hops is termed as short distance bee hop limit. This approach
significantly reduces the size of the routing table as compared to AntNet because each
node maintains detailed routing information only about reaching the nodes within its
Foraging Zone and for reaching the representative nodes of the Foraging Regions. In
this way, a data packet, whose destination is beyond the Foraging Zone of a node, is for-
warded in the direction of the representative node of the Foraging Region containing the
destination node. The next hop for a data packet at a node is selected in a probabilistic

1 This summary has been reproduced from our earlier paper [9].
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Table 1. Symbols used in the paper

gind goodness of a link (i, n) to reach d ldin total delay for link (i, n)
pdin propagation delay for link (i, n) txin transmission delay for link (i, n)
qin queuing delay for the link (i, n) x iteration index
ξid rate of the data packets entered by i to reach d ηid flow of data through i to reach d

lfind flow of data on link (i, n) to reach d Lin total flow of traffic on link (i, n)
Sin service rate of the link (i, n) cdnd cumulative delay from node n to node d

tdind total delay from node i to d through n Tcum cumulative throughput of the network
V set of all nodes in network Ni set of all the neighbours of node i

N e
id set of all the effective neighbours i to reach d Θi neighbor set operator
h Short Distance Bee hop limit hmin minimum hops to reach destination
Zi set of all the nodes in foraging zone of node i R set of all representative nodes
Yid set of links constituting optimal path qavg avergae queuing delay

fashion depending upon the goodness of each neighbor for reaching the destination.
BeeHive is also fault-tolerant to crashing of routers. The interested reader will find
more details in [10][3].

3 Analytical Model

We now discuss the most important aspect of our formal model that deals with the ana-
lytical modeling of foraging zones and foraging regions. This will help us in analytically
doing the scalability analysis of BeeHive algorithm. We believe that this framework will
obviate the need to conduct lengthy very time-consuming simulations, which may last
even months [3], in order to study the behavior of an algorithm on large topologies.
An interested reader may refer to [3][10] to study the motivation behind the concepts
of foraging zones and foraging regions. We now define neighbor set operator that will
help in modeling these concepts.

Definition 1 (Neighbor set operator). Neighbor set operator,Θi(x), is defined as:

Θi(x) = N(
Θi(x−1)

) (1)

x = 0 ⇒ Θi(0) = {i}, represents the set containing the current node i
x = 1 ⇒ Θi(1) = Ni, represents the set of neighbors of node i
x = 2 ⇒ Θi(2) = N(Ni), represents the set of neighbors of the neighbors of node i
...

...
...

...

Foraging Zones. We now present our model for generating foraging zones of every
node in the network. Now consider a node i (where i is also its address) in the network
that launches short distance bee agents that can traverse h hops in the network starting
from node i. Without loss of generality, we assume that the smallest address of any node
in a given network is 1 and the largest address is |V|, where the size of set V is total
number of nodes in the network. We now define a family of sets Ei(x), which represents
all links that can be possibly traversed by short distance bee agents launched by node
i. An ordered pair (a, b) always represents a unidirectional link from node a to node b
in rest of the paper.
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∀a, b ∈ V

Ei(x) = {(a, b)|a ∈ Θi(x) ∧ b ∈ Θi(x+ 1)} x = 0, 1, 2 . . . h− 1 (2)

The elements of this family of sets are combined into one single set Ai as:

Ai = ∪Ei(x) x = 0, 1, 2 . . . h− 1 (3)

The elements in the set Ai are in the form of ordered pairs that represent all the links
traversed by short distance bee agents launched by node i. Now we define a set Zi

that contains all the nodes that are within h hops of the node i, and this set, therefore,
represents foraging zone of node i as per its definition in [3][10].
∀(a, b) ∈ Ai

Zi = {z|z = a ∨ z = b} (4)

Foraging Regions. Now we model foraging regions of a network. We assume that
propagation and transmission delays of all links in the network are the same. This as-
sumption simplifies our formal model but in our future work we want to model a het-
erogenous network of varying delays and bandwidths to make it more realistic. would
render our model We define a set T that initially contains all nodes in the networks and
hence is equal to V . Now we define set R (just an empty set at startup) that will contain
all the representative nodes in a given network once the network is successfully por-
tioned into foraging regions. We represent the foraging region of node i by a set FRi.
Recall that the smallest node address is 1, therefore,FR0 = φ. The iterative process of
foraging region formation is given in the Algorithm 1:

Algorithm 1. make foraging regions

while T (x) �= φdo
FRi = {z|z ∈ Zi} −

∑i−1
n=0 FRn i is the smallest value in T

R(x) = R(x − 1) ∪ {i}
T (x) = T (x − 1) − FRi

end while

The foraging region formation process is stopped once T becomes an empty set. Con-
sequently, the set R will contain all the representative nodes. Note that ∀i ∈ R,FRi is
the foraging region of node i and ∀i /∈ R,FRi = φ.

Network Traffic Model. Now we present the formal framework for the network traffic
in BeeHive protocol [10]. The network traffic is modeled using three important param-
eters: (1) gind, goodness of a link from node i to node n to reach a destination d, (2)
tdind, total delay experienced by a packet (propagation+queuing+transmission) to reach
the destination node d from the source node i through its neighbor n, and (3) Tcum, cu-
mulative throughput of the network . We have formally modeled these parameters for
very small topologies in our earlier basic framework [11]. In our current work, we now
scale our model to large topologies.

Goodness. Recall that gind is the probability that a packet will be switched to neighbor
n if its destination is d. This stochastic packet switching algorithm is an important
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component of all Nature-inspired algorithms [3][8]. We now define the term effective
neighbors of a node i.

Definition 2 (Set of effective neighbors). The set of effective neighbors of node i (N e
id)

to reach destination d is defined as:

N e
id = {n|n ∈ Ni ∧ n ∈ Zd} (5)

This definition ensures that if the current node is within the foraging zone of the des-
tination then only those neighbors are selected as the next hop that are in the foraging
zone of the destination. Now we model gind:

gind(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
tdind(x−1)∑

k∈Ne
id

( 1
tdikd(x−1) ) d∈Zi∧n∈N e

id
∧i�=n∧i�=d

1
tdind(x−1)∑

k∈Ni
( 1

tdikd(x−1) ) d∈(R−Zi)∧n∈Ni∧i�=n∧i�=d

0 otherwise

(6)

This definition successfully caters for three cases: (1) when the current node is within
the foraging zone of the destination, (2) when the current node is not within the for-
aging zone of the destination, and therefore, in this case a packet is forwarded towards
the representative node of the foraging region containing the destination node, and (3)
unreachable destination. Now we model the node traffic.

Node traffic. We define the amount of traffic passing through a node as its node traffic.
A node is allowed to generate data packets that can be destined for any other node in
the network. Let ξid be the traffic generated by node i for destination d. We add to ξid
the traffic that is transiting the current node i for destination d in order to get the total
traffic, ηid(x), for the destination:

ηid(x) =

⎧⎨⎩
ξid +

∑
k∈N e

id
ηki(x)gkid(x) i∈V,d∈Zi∧i�=d∧k �=d

ξid +
∑

k∈Ni
ηki(x)gkid(x) i∈V,d∈(R−Zi)∧i�=d∧k �=d

0 otherwise

(7)

In this way, a node traffic is modeled as probabilistic recursive functions in which the
rates of packet arrival and departure are dependent on the goodness of incoming and
outgoing links respectively. Finally, the current node will act as a sink node for the
packets destined for it.

Link flow. The amount of traffic flowing on a link is defined as its link flow. It can be
modeled as a function of the node traffic and the goodness of its neighbors. We now
define lfind which represents the fraction of the link flow of (i, n) for destination d as:

lfind(x) =
{
ηid(x)gind(x) i∈V,(n∈N e

id
iff d∈Zi)∨(n∈Ni iff d∈(R−Zi))

0 otherwise
(8)

The overall link flow Lin of (i, n) is simply a sum of all its fractions lfind:

Lin(x) =
∑
∀d∈V

lfind(x) (9)
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Calculation of delays. In computer networks, the arrival of packets is assumed to fol-
low Poisson distribution and the queues that are built as a consequence are M/M/1
queues [5], [6], [7]. Moreover the service rates can be pre-assigned because they are
independent of the network conditions. We can calculate the queuing delay associated
with every traversed link by utilizing the M/M/1 queuing theory if we know the arrival
and departure rates. Representing the service rate of (i, n) by Sin, we calculate the
queuing delay on this link represented by qin from the equation given below [6]:

qin(x) =
{ 1

Sin−Lin(x) Lin < Sin

∞ Lin ≥ Sin
(10)

This represents only the queuing delay. The data packets experience transmission delay
and propagation delay along with the queuing delay on any link. We represent the trans-
mission delay from node i to node n by txin and propagation delay by pdin. The total
delay experienced by the packets on (i, n) is termed as the link delay and is represented
by ldin:

ld
in

(x) = txin + qin(x) + pdin (11)

The packet that is currently at node i will be switched to node n according to the good-
ness of that neighbor. Once the packet has reached this intermediate node n, it again
might have multiple paths to reach the destination node through its neighbors. There-
fore, we calculate the cumulative delay cdnd from this node n to the destination d as:

cdnd(x) =

⎧⎪⎪⎨⎪⎪⎩
∑

k∈N e
nd

(
gnkd(x)

)(
ldnk(x) + cdkd(x)

)
d∈Zn∑

k∈Nn

(
gnkd(x)

)(
ldnk(x) + cdkd(x)

)
d∈(R−Zn)

0 n=d

∞ otherwise

(12)

Now we represent the total delay from node i to destination d as a sum of the link delay
and cumulative delay.

tdind(x) = ldin(x) + cdnd(x) (13)

The goodness for the next iteration by using (6) is:

gind(x + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
tdind(x)∑

k∈Ne
id

( 1
tdikd(x) )

d∈Zi∧n∈N e
id
∧i�=n∧i�=d

1
tdind(x)∑

k∈Ni
( 1

tdikd(x) ) d∈(R−Zi)∧n∈Ni∧i�=n∧i�=d

0 otherwise

(14)

So starting from the goodness value in (6) we reached (14). The iterations are stopped
once the goodness values reach a steady state.

Throughput. The throughput is defined as the number of data packets successfully
delivered to their destinations in unit interval of time. We can get the overall throughput
Tcum by taking a sum of throughput of each node which is given by:

Tcum =
∑
∀i∈V

∑
∀d∈V

( ∑
n∈Ni

(gind)(ξid)
tdind

)
(15)
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Optimal Path. Now we model the optimal path in terms of number of hops between
any given source and destination pair. We consider the case when the destination is
within the same foraging zone as of the source. We will show in Section 4 that most
of the packets in BeeHive follow optimal path under low traffic loads and the load is
distributed on multiple paths under high traffic loads. In order to formally model this
optimal path, we first calculate the minimum hops hmin path between a given source
and destination. For this purpose we find a set of all the possible links, Cid, within the
hmin hops from the source node, that lead to the destination. The minimum number
of iterations in which the link set, Cid constitutes the destination node is basically the
minimum hop number hmin and this is the optimal path Yid.

Cid =
{
Ei(x)|

(
(a, b) ∈ Ei(hmin)|b = d

)}
x=0,1,2...,hmin∧hmin<h (16)

Yid = {(an, bn)|(an, bn) ∈ Ei(n) ∧ an = bn−1 ∧ bhmin = d} n=0,1,2...,hmin

(17)

Pseudo code. At the end we present a pseudo code showing the sequence of steps to
calculate the performance parameters discussed above.

Algorithm 2. Formal Model

generate foraging zones using (2) to (4)
generate foraging regions using Algorithm 1
while goodness values are not stabilized do

calculate goodness using (6)
calculate node traffic using (7)
calculate link flows using (8)
calculate total delay using (13)
calculate throughput using (15)

end while

4 Empirical Verification of Formal Model

We will now validate our formal model on a well-known NTTNet shown in Figure 1. It
is a non-balanced oblong network with a low degree of connectivity. We also simulated
the reported scenarios in OMNeT++ simulator and then compared the estimated per-
formance metrics of our formal framework with the metrics obtained from OMNeT++.
We compared a number of parameters: (1) foraging zones for all the nodes, (2) foraging
regions and representative nodes of the network, (3) goodness values of the links, (4)
average total delay of the packets, (5) average queuing delay of the packets, (6) cumu-
lative throughput of the network, (7) average hops of the data packets, and (8) optimal
path. To the best of our knowledge, only our proposed formal framework is validated
at such a large topology and for so many relevant performance metrics. The results of
our validation framework clearly indicate that the performance metrics estimated by
our formal framework are within an acceptable deviation of the values obtained from
OMNeT++.
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Fig. 1. NTTNeT

Foraging zones. We now compare the foraging zones formed by our formal model,
by utilizing (2),(3) and (4), with the foraging zones of OMNeT++. Note that we used
a short distance bee hop limit of 6. We tabulate the foraging zones of node 9, 12, 18
and 57 (just to show few examples) in Table 2. One can see that our formal model has
accurately captured the process of zones formation.

Foraging regions. In Table 3 one can see that our formal model shows that with a short
distance bee hop limit of 6 NTTNeT is partitioned into 5 regions with 1, 15, 27, 41,
and 55 as the elected representative nodes of the regions. Again one can see the same
results for OMNeT++.

Table 2. Foraging Zones

Node Number Formal Model OMNeT++
9 1 to 8, 10 to 19, 22 to 25 1 to 8, 10 to 19, 22 to 25

12 1 to 11, 13 to 30, 32, 33 1 to 11, 13 to 30, 32, 33
57 27,28,33,35 to 56 27,28,33,35 to 56

Table 3. Foraging Regions

Rep Node Formal Model OMNeT++
1 1 to 14,19 1 to 14,19
15 15 to 18,20 to 26 15 to 18,20 to 26
27 27 to 40 27 to 40
41 41 to 50,53 41 to 50,53
55 55,56 55,56

Goodness. In order to demonstrate the correctness of our goodness model, we now
show the goodness values of the links for various source destination pairs. Just to cite
an example, we plot the goodness values of different effective neighbors of node 28
to reach destination node 12 in Figure 2. The most important observation is that the
goodness values reach a steady state after few iterations. Once the transient state fin-
ishes then the goodness values estimated by our formal model closely match with those
obtained from OMNeT++ simulations.

We can see that the goodness value settles to zero for the link (28,31). It is obvious
from Table 2, that node 31 is not in the foraging zone of node 12, therefore, it is not an
effective neighbor (see Definition 2).

Cumulative throughput. We now report in Table 4 the cumulative throughput obtained
from our formal model. We do that for four different values of mean packet inter-arrival
time (MPIA): 0.005, 0.035. 0.25 and 1.0. We also tabulate the cumulative throughput
obtained from OMNeT++ simulations for the same MPIA values. One can see in Table 4
that the throughput values, estimated by our formal model, are approximately the same
as obtained from OMNeT++ simulations.



1138 M. Shahzad, S. Zahid, and M. Farooq

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

x (time)

go
od

ne
ss

Plot of goodness for the neighbors of 28 to reach 12 (OMNeT++)

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

x (iterations)

go
od

ne
ss

Plot of goodness for the neighbors of 28 to reach 12 (Formal Model)

g
28 26 12

g
28 31 12

g
28 33 12

g
28 30 12

g
28 26 12

g
28 30 12

g
28 31 12

g
28 33 12

Fig. 2. A comparison of goodness between OMNeT++ and formal model for the neighbors of 28
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Average total delay. We now show (see Table 4) that the average packet delays, tdavg ,
estimated by our formal, in NTTNeT for above-mentioned four MPIA values, are ap-
proximately the same as obtained from OMNeT++ simulations. The MPIA is used in
this example as:

MPIA =
1
ξid

(18)

Average queuing delay. Similarly, the average queuing delays, qavg , obtained from our
formal model, for different MPIA values also match with the average queuing delays of
OMNeT++ simulations (see Table 4).

Average hops. One can see in Table 4 that our formal model correctly estimated the
average number of hops, havg that a data packet took to reach its destination.

Table 4. A comparison of performance values of our Formal Model with OMNeT++ for NTTNeT

Formal Model OMNeT++
MPIA Tcum tdavg qavg havg Tcum tdavg qavg havg

0.005 85.13 40.83 3.48 8.145 87.09 42.03 3.41 8.013
0.035 12.13 13.62 0.010 7.958 12.45 13.51 0.0093 7.893
0.25 1.64 12.46 0 7.42 1.75 12.5 0 7.37

1 0.41 11.9 0 7.127 0.44 12 0 7.01

Table 5. Percentage traffic on optimal path

Percentage Traffic
i-d pair Paths Formal Model OMNeT++

0.005 1.0 0.005 1.0
21 → 26 → 28(optimal path) 35 93 35 84

21-28 21 → 20 → 27 → 33 → 28 33 3 31 7
21 → 25 → 29 → 30 → 28 30 2 32 8
32 → 34 → 38(optimal path) 41 96 40 89

32-38 32 → 30 → 28 → 31 → 37 → 38 35 2 36 7
32 → 30 → 28 → 33 → 35 → 36 → 37 → 38 21 1 22 3
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Optimal path. We now show (see Table 5) that a large percentage of packets follows
the optimal path under low traffic condition (MPIA=1.0). However as soon as the traffic
increases (MPIA=0.005), the packets are stochastically switched to the other available
paths as well.

5 Conclusion

The important contribution of the paper is a scalable analytical framework that is used
to successfully model the behavior of BeeHive. The model obviates the need to do time-
consuming simulations, sometimes lasting months, to study the scalability behavior of
a routing protocol. The performance metrics estimated by our formal framework are
approximately the same as obtained though network simulations. In future we want
to undertake the following important tasks: (1) to do the scalability study in a similar
fashion as was done by Farooq in [3] using time-consuming lengthy simulations, (2)
extend the traffic model to session-oriented traffic also, (3) extend the network model to
cater for heterogenous networks of varying bandwidth and link delays, and (4) extend
the model to incorporate other Nature-inspired routing protocols like AntNet as well.
The work in this phase will be the subject of forthcoming publications.
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Abstract. Linear Linkage Encoding (LLE) is a representation method
proposed for grouping problems. It has already been used in solving
data clustering, graph coloring and timetabling problems based on multi-
objective genetic algorithms. In this study, this novel encoding scheme is
investigated on bin packing again using a genetic algorithm. Bin pack-
ing benchmark problem instances are used to compare the performance
of traditional recombination operators and custom made LLE crossover
operators which are hybridized with parametrized placement heuristics.
The results denote that LLE is a viable candidate for bin packing prob-
lem whenever appropriate genetic operators are chosen.

1 Introduction

Most of the grouping problems, such as, data clustering, graph coloring, or bin
packing require partitioning of a set items into n mutually disjoint subsets [8]:

V = V1 ∪ ... ∪ Vk ∪ ... ∪ Vl ∪ ... ∪ Vn and Vk ∩ Vl = Ø, where k �= l. (1)

In different problems this partitioning process is subject to a different set of con-
straints. Various meta-heuristics such as simulated annealing [13], tabu search
[10], genetic algorithms (GAs) [12], etc. have been applied to solve grouping
problems. GAs derived from the population genetics and the Darwinian the-
ory of evolution are powerful tools commonly used in search and optimization
for solving complex problems ([4], [11], [12], [16]-[19]). In spite of the satisfac-
tory performance of the traditional GAs on many NP-hard optimization prob-
lems, unfortunately, the same achievement is not usually observed on grouping
problems.

This is because many evolutionary algorithms do not address the dynamics of
a grouping problem: how to handle the groups. The commonly used representa-
tions usually suffer from redundancies due to the ordering of groups. Moreover
the genetic material representing groups might easily be disrupted by the genetic
operators and/or by the rectification process after the operators are applied.
Therefore a genetic algorithm requires special operators for solving a grouping
problem.
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1.1 Bin Packing Problem

Bin packing is a combinatorial NP-hard grouping problem in which items of
different sizes has to be packed into a minimal number of bins of fixed ca-
pacity C. In classical one dimensional bin packing problem [2], a sequence of
S = (I1, I2, ..., Ik, ...In) items, each with a size s(Ik) ∈ (0, 1] are packed into a
minimum number of unit-capacity bins (partition them into a minimum number
m of subsets B1, B2, ..., Bl, ...Bm such that

∑
Ik∈Bl

s(Ik) � 1, 1 � l � m).
There are exact and approximate methods proposed for solving bin packing.

The exact methods guarantee that the optimal result will be achieved, while
the approximate approaches provide satisfactory approximations. Martello and
Toth’s branch-and-bound reduction algorithm [15] (MTP) is an exact approach
which is used as the basic reference in most comparative studies of bin packing.
MTP although slow (for large instances) generally gives excellent results. The
MTP procedure attempts to find bins dominating all others. After such a bin
is found, the problem is reduced by removing the dominating bin. In order to
prevent an exponential search, only dominating bins of at most three items are
taken into account.

Constructive heuristics and (meta-)heuristics constitute approximate
approaches. In the first fit heuristic (FF), an item Ik is placed in the first (lowest
indexed) partially-filled bin Bj into which it could fit (capacity(Bl + s(Ik) � 1).
If this is not possible, a new bin containing Ik as the first item is created. A
variant of first fit is first fit decreasing (FFD) in which items are first sorted in
decreasing weight and then items are picked up one by one beginning with the
largest item and each item is placed into the first bin that can accommodate it.

In the best fit heuristic, an item Ik is placed in the partially filled bin Bl with
the highest level (level(Bl) � 1 − s(Ik)) and ties are broken in favor of lower
index bins. Similar to FF, Best Fit has a decreasing variant, in which items
are again sorted in decreasing order and placed into the best-filled bin that
can accommodate it. Although best-fit decreasing is slightly more complicated
than FFD, surprisingly it cannot beat FFD. Both heuristics have the worst case
performance of 11

9 Opt+4 where Opt is the number of bins in the optimal solution
[2]. Dosa [5] proved that the tight bound for FFD is 11

9 Opt + 6
9 .

Falkenauer [7] uses a Hybrid Grouping Genetic Algorithm (HGGA) which
is heavily modified to suit the structure of the grouping problems. His genetic
algorithm works with whole bins rather than with individual items. In HGGA
representation, a standard chromosome representing the IDs of the items are
augmented with a group part, encoding the groups on a one gene for one group
basis. The important point with the genetic operators is that they work on the
group part of the chromosome, the standard item part is just used to identify
which items form which group. Falkenauer used a strategy similar to the domi-
nation criterion of Martello and Toth to place the eliminated bins (free items).
Free items are swapped with non-free items (items currently placed within bins)
such that the bins will consist of few large items rather than many small items.
Items that cannot be placed with this replacement strategy are re-inserted into
the solution using a first-fit heuristic. Mutation works also similarly; it destroys
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a few bins from the element and reinserts the missing items using the mentioned
local search procedure.

Linear Linkage Encoding (LLE) is proposed as a novel representation scheme
for grouping problems [6]. LLE uses a link-based structure for objects within the
same group. Genetic operators work on the encodings by altering the links. It
is reported that the performance of LLE is superior to number encoding (NE)
which is the most common encoding scheme used in grouping problems. Unlike
NE, LLE does not require an explicit bound on the number of groups that can
be represented in a fixed-length encoding. The greatest strength of LLE is that
the search space is reduced considerably. There is a one to one correspondence
between the encodings and the solutions when LLE is used. Du et al. [6] uti-
lized LLE for data clustering, while Ulker et al. [21] experimented with LLE on
graph coloring and timetabling problems. A multi-objective genetic algorithm is
used in both studies. In this paper, these previous studies on LLE is extended.
Bin packing is chosen as a testbed for investigating LLE further using a single
objective genetic algorithm. The performance of different genetic operators are
compared based on LLE.

2 Linear Linkage Encoding for Grouping Problems

Number Encoding (NE) is the most widely used representation in grouping prob-
lems. In this scheme, each gene is reserved for an object and the value of the
gene indicates the group ID that the corresponding object belongs to. If six
objects are to be grouped, the individual 234212 is a valid chromosome in NE
and it encodes the solution where first object is in group 2, second in 3 and so
on. Other chromosomes exist that represent exactly the same solution. 123141 is
such an example where the order of the groups is different. However, this order-
ing proposed by the representation is irrelevant in terms of building the solution.
In [20], it is denoted that NE is against the minimal redundancy principles for
encoding scheme.

Group Encoding (GE) is an alternative representation for grouping problems.
In this scheme, the objects in the same group are placed into the same par-
tition set. The sets are separated from each other by using special markers
in the chromosome. For instance, the above example can be represented as
(1, 4, 6)(2)(3)(5) in GE. However, the ordering redundancy still holds. For in-
stance, (2)(3)(5)(1, 4, 6) would represent the same solution.

A special representation is used in [9] for the problem. This representation
augments standard number encoding with a group part. However, the same
redundancy problem exists for this augmented form, too. The difference from
group encoding is that traditional search operators work on the group part of
the encoding.

The redundancy that exists in above representational schemes is due to the
symmetric structure of search spaces in grouping problems. Many researchers
have proposed symmetry breaking methods to prune redundant search spaces
[3] [1]. Linear Linkage Encoding (LLE) is a new representation scheme proposed
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to eliminate the symmetry problem in grouping problems. The encoding scheme
[6] (LLE) was first proposed to solve the clustering problem. A multi-objective
genetic algorithm (MOGA) is used in this application. In [6], it is denoted that
LLE can reduce the search space considerably.

In LLE, a gene is reserved for each object just like NE. However, the value
of a gene is interpreted as a link from one object to another object of the same
group. With n objects, any partition set on them can be represented using a
chromosome of length n. Two objects are in the same group if either one can be
reached from another through the links. When a gene value is equal to its own
index, then it is considered as the last element of a group (ending node). The
following two constraints are imposed on LLE links:

– The value of each gene is greater than or equal to its index but less than or
equal to n.

– No two genes can have the same value except if one of them is an ending
node.

In LLE, the objects of a group form a linear path ending with a self referencing
last item. In [14], it has been proved that a one to one mapping has been ob-
tained between the possible partitions and the chromosomes of LLE (Figure 1).
The genetic operators may disturb the two constraints mentioned above. A rec-
tification process would be needed in order to recover the chromosome in such
a case. The process is quite straightforward and the details are presented in [6].

1 2 3 54 6

4 62 3 6 5

1 2 3 4 5 6

Fig. 1. A LLE chromosome and the partition it represents

The non-redundancy advantage of LLE diminishes if a crossover operator
causes huge jumps on the search space. Traditional crossovers like 1PTX or UX
can easily destroy the building blocks and hence result in huge changes on the
partition represented. It is important to preserve the order of the groups as
much as possible during a genetic operation. Therefore, two different ordering
mechanisms which assign group IDs to the groups are investigated within the
context of LLE. These ordering mechanisms are based on the cardinality of
the groups and the lowest index number in each group. In Cardinality Based
Ordering, the group ID is determined based on the group cardinality (set size).
The group with the highest cardinality is assigned group ID 1, the second highest
will be identified as group 2, and so on. In Lowest Index Ordering, the IDs are
assigned to groups based on the the smallest index in each group.
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3 A Grouping Genetic Algorithm for Bin Packing
Problem

The GA used in this study utilizes LLE as the representation scheme. The in-
dividuals are initialized using the FF heuristic and the resulting individuals
are converted into the LLE form. In order not to have the same individual
for the whole population, a random permutation of the items are fed into the
FF heuristic. At the end of the initialization it is ensured that the capacity of
each bin is not exceeded. As a mate selection method, tournament selection is
used. Some preliminary experiments are performed and it is observed that us-
ing higher selection pressure yields better results. The performances of different
crossover operators, including the traditional ones (1PTX, UX) are compared.
A non-traditional smart mutation is utilized. A trans-generational GA replaces
the current generation with the next one by keeping only the best individual
from the current population.

A straightforward fitness function would just take the inverse of the number
of bins. However, as pointed by Falkenauer [9] as well, such a fitness function
will result a very unfriendly fitness landscape in which many combinations with
one more bin than optimal solution will have the same fitness value. Instead, the
function proposed by [9] is used in this study:

f(s) =
∑N

i=1(Fi/C)2

N
(2)

where, N is the number of bins, Fi is the fill of bin i and C is maximum bin
capacity for a given solution s.

3.1 Crossover Operators

Ulker et al. [21] reports that Lowest Index Max Crossover (LIMX) performs well
on different graph coloring and timetabling problems. In LIMX, a single child is
generated using two individuals with two aims: transmit large groups to preserve
Cardinality Based Ordering, and to transmit groups beginning with lowest index
number (to preserve Lowest Index Ordering). Beginning with the lowest index
number (vertex) which has not been assigned first we calculate the length of the
links (path length) in both parents. Already assigned vertices are not counted
in this link length calculation. This allows finding the largest set in parents
beginning with the lowest index number. Then the links (and thus vertices)
are transmitted to the child from the parent based on the link-lengths. Then,
the next unassigned lowest index number is found and the process is repeated
until all vertices are assigned. For example, assume that {(1, 3, 6), (2, 4), (5)} and
{(1, 2), (3, 4, 5, 6)} are selected as mates. The starting lowest index is 1. (1, 3, 6)
is longer than (1, 2), so (1, 3, 6) is copied to the child. Then, the indices (1, 3, 6)
are deleted from the mates: {(2, 4), (5)} and {(2), (4, 5)}. Now, the current lowest
index is 2. (2, 4) is larger than (2) so it is transmitted to the child and deleted
from the mates: (5) and (5). Finally, (5) is copied to the child as the last group
and a new offspring is generated as {(1, 3, 6), (2, 4), (5)}.



A Grouping Genetic Algorithm Using LLE for Bin Packing 1145

A modified uniform crossover (MUX) method is utilized on the clustering
problem with LLE in [14]. In MUX, instead of the actual values like in UX, the
value of the ending node of the group in which the item belongs to is passed to
the offspring. This ensures groups were not separated. It is observed that this
crossover tends to combine the groups having the same ending node in both
parents. MUX is the second operator tested in bin packing domain.

3.2 Smart Mutation

A smart mutation that targets no overfilled bins during the packing is utilized
within the grouping GA. In mutation, k randomly chosen bins are destroyed and
the contents of these bins are redistributed to rest of the bins. The performance
of GA is observed for various values of the parameter k, referred to as mutation
rate. Furthermore, due to the nature of the crossover operators, the resulting
individual may have bins whose capacities are exceeded and thus may need an
additional repair procedure apart from the usual LLE rectification mechanism.
This repair procedure checks all of the bins and removes randomly selected
items from the over-filled bins until the capacity is not exceeded anymore. These
removed items are combined with the items from the previously deleted bins.
Then, all of them are reinserted into the rest of the bins using a heuristic. If it is
not possible to insert some items without exceeding the capacity of existing bins,
then a new bin is created. FF and FFD heuristics are used as repair heuristics.

Like previous algorithms of Falkenauer [7] and reduction algorithm of Martello
and Toth [15], a procedure based on the domination criterion has been adopted.
When an excess item is to be inserted back to the solution, first it is compared
with the items already present in the bins. An excess item replaces an item in
the bin while not causing an overfill in the bin and the replaced item is put into
the excess items list. This procedure increases the number of well-filled bins. In
the first-fit heuristic, the lowest-index based ordering is used. Due to the nature
of the bin packing instances, cardinality based ordering will be no different than
random ordering, therefore it is ignored.

4 Experimental Results

Two sets of test instances provided by Falkeanuer [7] are used in the experi-
ments. In the first set, the maximum bin capacity is set to 150 and each integer
item is randomly generated using a uniform distribution between 20 and 100.
Falkenauer reports that this distribution gives most difficult instances for the
method proposed by Martello and Toth [15]. In the second set, the item sizes
are drawn from the range (0.25, 0.50) to be packed into bins with maximum
capacity 1. In these instances, a well-filled bin must contain one large item and
two small items. That is why Falkenauer referred them as ’triplets’. Falkenauer
[7] points out a similarity between triplets and 3SAT which is considered as the
most difficult kSAT problem. In order to preserve the difficulty of the problem,
the generated instances have known local optima with maximum bin capacities
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of 1000. 20 different instances of triplets containing 60, 120, 249 and 501 items
are then generated.

The experiments are performed on Pentium IV, 2 GHz Linux machines with
256 Mb memory. The population size, tournament size and crossover rate are
fixed as 100, 10 and 1.00, respectively. The first fit (FF) and first fit decreasing
(FFD) heuristics are used as repair mechanisms. Mutation rate is the number of
bins destroyed in an element. Different experiments destroying 1, 2 and 4 bins
are carried out. For consistency with the previous experiments of Falkenauer [7]
and Martello [15], each instance in a set is tested only once. Hence, as a total of
twenty runs are performed.

The performances of four crossover operators ( 1PTX, LIMX, UX and MUX)
are tested using FF and FFD with mutation rates of 1, 2 and 4 providing a total
of 6 combinations for each crossover. In order to compare in a fixed heuristic
and mutation rate setting, a ranking mechanism that takes ties into account
is implemented. The ranking method takes into consideration the success ratio
(number of times the optimal solution is found), the mean number of bins found
and the mean number of generations. The t-tests are also carried out to ascertain
if there are statistically significant differences between different settings. If one
mutation instance (combination of repair heuristic and mutation rate) is better
than all the others then it is given a ranking of 1, and if it is worse than all
others, it is given a ranking of 6. The average ranking of each mutation instance
over the problems for each crossover is presented in Figure 2. It is observed that
crossover performance differs based on the repair heuristic utilized. Although,
there is no significant performance variance among the choice of repair heuristic
and the mutation rate, considering the overall performance of each, the best
repair heuristic turns out to be FF. 1PTX performed best in a FF and the
mutation in which 2 bins are destroyed (FF2). LIMX operated best when used
with FF1 which is closely followed by FFD4. For UX, FFD2 performed best
while for MUX FFD1 is best and closely followed by FFD2.

Table 1 provides a comparison of the results for different approaches, including
the grouping GA with the best setups for each crossover (1PTX - FF2, LIMX -
FF1, UX - FFD2, MUX - FFD1). The results clearly show that the proposed algo-
rithm is superior to Martello and Toth’s [15] reduction algorithm in all problem
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Fig. 2. Performance comparison of crossovers using different repair heuristics
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Table 1. Mean number of bins obtained in best setups for each crossover, Theo denotes
theoretical minimum lower bound on the number of bins

Instance Set Theo 1PTX FF2 LIMX FF1 UX FFD2 MUX FFD1 HGGA [7] M&T [15]

U120 49.05 49.05 49.10 49.05 49.05 49.15 49.15

U250 101.55 101.70 101.80 101.75 101.65 101.70 102.15

U500 201.20 201.30 202.35 201.50 201.30 201.20 203.40

U1000 400.55 400.65 417.50 401.45 401.05 400.55 404.45

T60 20.00 20.95 21.00 21.00 21.00 20.10 21.55

T120 40.00 41.00 41.00 41.00 41.00 40.00 44.10

T249 83.00 84.00 84.00 84.15 84.05 83.00 90.45

T501 167.00 168.00 168.85 169.80 169.20 167.00 181.85

AVG 132.79 133.33 135.70 133.71 133.54 132.84 159.64

sets. Falkenauer’s HGGA [7] remains however the best algorithm in terms of
overall solution quality especially for the more difficult triplet instances. How-
ever, for the uniform distribution instances, LLE with 1PTX is very competitive,
in fact for smaller instances it provides some packings that cannot be found with
HGGA. For the triplet instances, LLE with 1PTX is consistently one bin short
of the optimal packing.

The results presented in Table 1 are also evaluated using some statistical
tests. Each approach (1PTX - FF2, HGGA, M&T, etc.) is ranked according
to its performance for each problem instance. The ANOVA test over the aver-
age ranks shows that performances of 1PTX - FF2, HGGA and M&T are not
equal to each other within a confidence interval of of 99.99%. Then, t-tests are
used to make pairwise comparisons between 1PTX - FF2 and the others. It has
been observed that 1PTX - FF2 and HGGA generate significantly better perfor-
mances as compared to M&T within a confidence interval of of 99.99%. HGGA
seems to perform better as compared to 1PTX - FF2, however, this difference
in performance is not statistically significant under the t-test.

In terms of mean number of bins and number of generations, 1PTX usually
provides the best results especially for difficult large triplet instances. LIMX
performs somewhat inconsistently. It sometimes gives results close to 1PTX on
some large triplet instances. However it lags far behind especially in the larger
uniform distribution instances. UX and MUX behave consistently and yield an
acceptable performance in all test setups. LIMX and the other crossover oper-
ators are not particularly suitable for the bin packing instances tested because
for all of the instances average number of items per group is quite small (2 to
3 for uniform distribution instances and 3 for triplet instances). Preservation of
large groups is not important due to the small average size of the bins and the
low epistasis between items. Because of small and low epistasis bins, 1PTX has
a good performance as the likelihood of destruction of well-filled bins is lower.

5 Conclusions

In this study, the performance of LLE has been tested on bin packing. Several
crossover operators that can be used with LLE have been investigated. Unlike
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graph coloring [21], the performance of the traditional crossovers shines when
used in bin packing. They were able to generate very competitive results close to
hybrid grouping genetic algorithm (HGGA) of Falkenauer. They match HGGA
in uniform distribution instances and for smaller instances outperform them.
However for most difficult triplet instances, 1PTX, the best performing crossover
in the test setup, was constantly one bin short of the optimal solution. This
problem probably requires enhancements in the mutation operator and this is
one of the future research directions.

Crossovers utilized in graph coloring domain (e.g., LIMX) cannot perform
competitively on bin packing instances. This is an expected result since in bin
packing it is not crucial to preserve very large sets during generations. The most
difficult test instances usually require packing few items to a bin (2 to 3 in this
case). This is why ordering of groups based on cardinality does not make sense
as it will essentially be no different than random ordering. Hence, traditional
crossover operators perform quite well in this domain.

Linear linkage encoding is a viable candidate for solving grouping problems
especially if the number of groups is not known beforehand. In such problems,
the search is performed on a smaller search space than other encodings such as
number encoding. New operators that will make better use of this representation
awaits research. Moreover, other approaches for solving grouping problems may
also utilize LLE as their representation method, such as, hyper-heuristics [18].

Acknowledgments. This research is funded by TUBITAK (The Scientific and
Technological Research Council of Turkey) under the grant number 105E027.

References

1. Backofen, R., Will, S.: Excluding symmetries in constraint-based search. Principles
and Practice of Constraint Programming, 73–87 (1999)

2. Coffman, E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin
packing: a survey., 46–93 (1997)

3. Crawford, J., Ginsberg, M.L., Luck, E., Roy, A.: Symmetry-breaking predicates for
search problems. In: Aiello, L.C., Doyle, J., Shapiro, S. (eds.) KR 1996: Principles
of Knowledge Representation and Reasoning, pp. 148–159. Morgan Kaufmann, San
Francisco (1996)

4. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York
(1991)

5. Dosa, G.: The Tight Bound of First Fit Decreasing Bin-Packing Algorithm Is FFD
( I ) ≤ 11/9 OPT ( I ). In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE
2007. LNCS, vol. 4614, pp. 1–11. Springer, Heidelberg (2007)

6. Du, J., Korkmaz, E., Alhajj, R., Barker, K.: Novel clustering approach that em-
ploys genetic algorithm with new representation scheme and multiple objectives.
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Abstract. In this paper a new method based on evolution strategies
(ES) is presented to optimize a classifier for personal music categories.
The user assigns songs to multiple personal music categories: Examples
from each category are selected in order to train a category-specific clas-
sifier using musical features as input. The classifier then ranks all songs
according to their similarity to the category examples. Since an exhaus-
tive search for parameters maximizing the classifier performance is not
feasible an ES is applied. The experiments show a significant performance
increase for various music categories due to the ES optimization.

1 Introduction

The music market has changed profoundly during the past few years. The digital
distribution of music is gradually taking over the dominant position from the
sales of physical media such as music CDs and DVDs. Furthermore, the capa-
bilities of consumer devices like portable media players and (smart)phones with
music playback are increasing constantly. This leads to the situation that a user
can now carry his or her complete music collection in a mobile device.

For music playback the form factor of the device is not important: The audio
quality even in very small terminals can be excellent. But the small physical size
of a device limits the user interaction due to the restricted size of a keypad or
display. It is very time consuming and suboptimal to manage textual menu lists
such as artist or track lists with thousands of entries on a device the size of your
palm. This is one motivation for our work to organize large music collections
more intuitively. Another observation is that users have a very personal taste
of music. The pre-defined music categories such as genres or sub-genres might
help, but do not take personal listening preferences into account. We argue in the
following that music listeners should be able to define their personal categories
of music by giving examples and let an intelligent music classification system
rank the complete database according to these user preferences.

In our approach we investigate how far the music taste of a person can be
approximated from the audio content of a small number of music examples, pro-
totypes that perfectly match a personal category and also counter-examples that

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 1150–1159, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Optimization of Feature Processing Chain in Music Classification by ES 1151

are the complete “opposite” of this personal music category. In the following sec-
tion about previous work we outline how the music content is analyzed: A large
collection of music features is extracted and processed to achieve a more com-
pact representation. The resulting feature vectors are classified and a summary
rating indicates how similar each music track is to a user-defined music category.

This leads to the actual problem we want to address with this paper: The
music processing chain is complex and produces a huge amount of intermediate
data when a large music database is analyzed. There is no analytical solution
available that provides the optimal parameter settings for the processing chain.
Since the number of parameters is high an exhaustive search for each parameter
combination is not feasible. This topic is outlined in more details in problem
statement section and our solution to this problem based on evolution strategies
for the categorization is described in the following section.

In the experiment section we demonstrate the effectiveness of the evolution-
ary approach in the context of training an optimal classifier for personal music
categories and show the results of the optimization. We argue that this optimiza-
tion is effective and especially valid in our situation where we cannot provide an
analytic solution to come up with the optimal parameters.

Finally we give a conclusion of our work and point to promising open research
questions which should be addressed in future.

2 Processing Chain and Previous Work

2.1 Feature Extraction

A set of musical features is extracted from all music tracks. The N raw features
fi, i ∈ [1, N ] describe different characteristics of music, i.e., timbre, harmony,
melody, rhythm, time and structural properties of music [21]. We used a set
of 33 features, the mathematical definitions can be found in [19]. They are ex-
tracted in a sequence of M time windows for one track of music. The set of
computed features for one time window forms a raw (column) feature vector
f = (f1, f2, ...fN)T . Concatenation of the feature vectors for each time window
creates a N x M feature matrix F, where the number of columns is equal to the
number of time windows (see Eq. 1):

F =

⎛⎜⎜⎜⎝
f1(t1) f1(t2) . . . f1(tM )
f2(t1) f2(t2) . . . f2(tM )

...
...

. . .
...

fN(t1) fN (t2) . . . fN (tM )

⎞⎟⎟⎟⎠ (1)

The timbre features and some harmony / melody features are computed for 23
ms time windows (512 samples at a sampling rate of 22.05 kHz) with no overlap.
But there are also more complex features that require longer time windows
for the computation, like e.g., the fundamental frequency / pitch estimation or
the melody analysis. Rhythm features are analyzed in time windows of several
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seconds providing sufficient signal statistics for a reliable estimate. Structural
features of music are not yet taken into account, but typically are computed
in even longer time intervals (in the order of 30 s) [9]. For details about the
mathematical definitions of features refer to [10], [15], [20], [16].

2.2 Processing of Features

After the extraction of raw features the created feature matrix F must be con-
verted to one ore more classifier input vectors. Since the ranges of feature values
can be very different, normalization is often applied before classification (e.g.
mapping of features to the intervals [-1,1] or [0,1]).

Methods operating on rows of the feature matrix normally seek to reduce the
number of features. Principal component analysis [17] and linear discriminant
analysis [7] are statistical methods to reduce the data dimensionality. In corre-
lation-based feature selection highly correlated features are not submitted to
the classifier. One can start with an empty group of features adding one-by-one
a new feature which is least correlated with the existing feature set. Another
possibility is to start with the full set of features and to take away the mostly
correlated feature one-by-one until the desired number of features is reached [6],
[5]. Sequential forward selection starts with an empty group of features identi-
fying new features best improving classification performance in each iteration
step. Frequently new features are created by calculating derivatives or running
means of existing ones [1].

Another group of methods operates on the columns of the feature matrix. The
information of tatum and beat times in a music piece can be used for subsampling
the feature matrix. Tatum times measure the duration of the shortest note. We
describe further the tatum reduction method with Rtat = {n, t, b}. If no tatum
reduction is applied, Rtat := n. If it is applied, only the features from time
windows with tatum times (Rtat := t) or exactly in the middle between tatum
times (Rtat := b) are saved for further classification since notes are changing
on that time scale. Also partitions can be built dividing a track in parts of
equal length (e.g. 5 seconds). Each partition provides a single classifier input
vector. If some structural information about a track is available, features from
different song parts can be processed independently: It will be possible e.g. to
identify feature values characteristic for the track from song intro, refrain and
bridge.

Finally, the pruned feature matrix is converted to one or several classifier input
vectors, labeled with ground truth information by the user. In our experiments
we use a first-order Gaussian model, saving mean value and standard deviation
over time from each feature. Alternatively more complex Gaussian models using
larger number of Gaussian bell-shaped curves or methods which calculate the
optimum number of Gaussians can be applied [13]. Statistical methods can com-
press a sequence of feature values, e.g. by creating histograms or autoregressive
moving average models [2].
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2.3 Classification of Music Categories

The ultimate target of our system is that the music classifier learns the user’s
musical taste and assigns the same similarity values to music tracks as the human
user. In order to train the classifier and test the performance different users are
asked to rank 1139 music tracks (our music database) by similarities to their per-
sonal music category (reference input). Each user has to identify 10 music tracks
as prototypes for one personal music category i (similarity si,ref (n) = 1) and 10
tracks as counter-examples of the music category (similarity si,ref (n) = 0). These
20 songs are used for training. The user also ranks the remaining 1119 tracks of
music by assigning one of four discrete similarity values to them: si,ref (n) = 1
- music fits perfectly to music category (but is not used as positive example
for training), si,ref (n) = 2

3 - good, but not perfect fit with music category,
si,ref (n) = 1

3 - weak similarity with category, si,ref (n) = 0 - music does not fit
at all to personal music category (but is not used as counter-example for train-
ing). We used an even number of similarity values in order to not allow users
to choose an average rating thus forcing them to make a decision. Providing
finer or even continuous ranking values easily leads to confusion: People hardly
remember their previous choice for similar songs.

The output of the classifier si(n) is compared to si,ref (n). An optimal clas-
sifier would perfectly approximate the reference similarities and the deviations
between si,ref (n) and si(n) would be zero for each music track n. In reality there
are differences and as measure for the classifier performance the mean squared
error divided by the maximum possible mean squared error is chosen (L is the
song number):

E2 =
1

E2
max

1
L

L∑
i=1

(si(n)− si,ref (n))2 (2)

with E2
max =

1
L

L∑
i=1

e2i,max(n) and

ei,max(n) =
{

1 : si,ref (n) = 0 ∨ si,ref (n) = 1
2
3 : si,ref (n) = 1

3 ∨ si,ref (n) = 2
3

The normalization of the error by the divisor E2
max is needed since the maximum

possible error with regard to a value si,ref (n) is max(si,ref (n), 1 − si,ref (n)).
In section 5 the E2 measure is applied to assess the classifier performance in
different experiments.

The purpose of classification algorithms is to relate music songs to given
categories, allowing each song to be member of several categories. The results of
independent classifiers for different sets of features can be combined [4]. Many
classification strategies were developed for data mining. In our work we use
supervised learning techniques for music classification, which learn from given
labeled data (ground truth). For details and an overview of classifiers, see [3].

The divide-and-conquer algorithm builds decision trees which consider only one
most important feature in each node. The importance of every feature is estimated
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on the basis of an entropy measure. Several enhancements of divide-and-conquer
lead to an algorithm named C4.5 [12]. It typically constructs very compact deci-
sion trees. The experiments described later deploy C4.5 decision trees.

3 Problem Statement

In the last section we have outlined the complete music processing chain. For a
given classifier algorithm the input parameters, i.e. the set of features and the
duration of a partition, are fixed. Based on this input the classifier performs a
training to maximize the recognition rate.

But the classifier can only achieve a local performance optimum because it
is not proven that the specific input parameter set is the best one. Since an
analytical solution to determine the best input parameter set is not available,
an exhaustive search for all possible input parameter combinations would be
needed to find the global optimum. It is not feasible to perform this exhaustive
search by e.g. executing a grid-based search due to the high number of the input
parameters: We have 33 features or feature groups that could switched on or off
in the feature extraction phase. In addition the duration of the partition is a
continuous number between a minimum length (here assumed to be 0.5 s) and
a maximum duration (set to 30 s). Even if we quantize the partition length and
only evaluate some discrete durations between the minimum and the maximum
value the number of combinations is very large.

Therefore we propose an alternative approach: We use an evolution strategy
on top of a classifier to determine a specific set of input parameters and feed
it into the classifier. During the training phase the music examples for the per-
sonal music categories are used as before and a certain classifier performance
is the result. We use the mean squared error between the user ratings (ground
truth) and the classifier results as the fitness criterion. This fitness value is fed
back to the evolution strategy to determine a new input parameter set for the
classifier. The best input parameter set so far is always stored and compared
to the new parameter set. This approach avoids the complete computation of
all input parameter combinations, but might converge to a local instead of the
global optimum. The details are presented in the next section.

4 Evolution Strategies for Music Categorization

Evolution strategies have not yet been widely applied to the optimization of the
feature processing chain in music information retrieval. A very generic method
was investigated in [8]. In contrast, we wanted to analyze certain processing
parameters and measure their influence on classification quality. We considered
at first to let the ES operate on (1) the feature set for processing and classification
and (2) the size of a partition Tp, which corresponds to one classification sample
(Tp ∈ [500, 30000]). The smallest possible change in partition size (mutation step
size) was set to 1 ms. Thus, with a complete number of features N = 33, the
number of all possible processing combinations is 233 · 25501.
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The representation of an individual consists of a binary vector m with mi ∈
{0, 1} indicating if a feature i is used (1) or not (0) and an integer value Tp ∈
[500, 30000]. So the optimization problem can be described as

minimize E2(m, Tp) with restriction Tp ∈ [500, 30000] . (3)

We use a standard (1+1)-ES with random individual initialization. The num-
ber of iterations is set to 100 generations. Two mutations are applied per gen-
eration. The first mutation flips a bit in m with a probability 1/N , switching
on/off the processing of the corresponding feature. The second mutation changes
Tp and calculates the step size with the method for integer mutation proposed
in [14]. However the expected mean step size depends on the current generation
G and is calculated from

S = 15000 · 0.96G +
1− 15000 · 0.96G

100
·G. (4)

For the first generation (G = 0) the expected mean step size is 15000 and
is equal to half of the complete interval length. For the last generation (G =
100) the expected mean step size is 1, so the ES makes larger steps changing
partition size at the beginning and reduces them to the expected minimal step
size during the last generations. We also consider to use self-adaptation for step
size calculation. However no comparable experiences exist and these experiments
are planned for the near future.

5 Experiments

For experiments we used as a basis three personal music categories from [18].
1139 songs were classified, with 10 positive and 10 negative prototypes. However,
since the feature processing of all music songs during one fitness evaluation of ES
is a very time-intensive procedure, the test set was reduced to 176 music tracks.
From each CD two tracks were chosen randomly, so the validation results of this
song subset are representative, despite of the smaller number of tracks.

For the comparison with ES optimization, we extended the grid-search experi-
ments from [18], using feature reduction between tatum windows and a partition
size of 2.5 seconds. We used the C4.5 decision tree algorithm for classification.
The results are summarized in Table 1. Experiments with Rtat = b are almost al-
ways better than with Rtat = t. The stability of sound between tatum times can
explain this observation. In comparison to Rtat = n, processing of tatum win-
dows slightly reduces the performance, and the processing of windows between
tatum times slightly improves it. At any rate the tatum reduction saves about
90% computation time and storage space, since the features from the complete
song are not required any more. Another observation is related to the partition
size: Smaller partitions often provide better classification results. Too large par-
titions mix a lot of different data from the song, but too small partitions can be
also dangerous since they can lead to overfitting of classifiers.
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Table 1. E2 for classifier results without optimization, evaluated on three categories
(ED, IV, WT) with different tatum reduction methods

Personal music category

ED IV WT

Tp Rtat

n t b n t b n t b

Tsong 0.5740 0.6220 0.5796 0.2600 0.2253 0.2600 0.0835 0.0867 0.2174

10 s 0.2496 0.2655 0.2181 0.1029 0.1357 0.1050 0.0755 0.0748 0.0752

5 s 0.2309 0.2459 0.2293 0.0982 0.1168 0.1083 0.0636 0.0663 0.0647

2.5 s 0.2339 0.2311 0.2250 0.1015 0.1162 0.1024 0.0635 0.0654 0.0623

After the experiments with a fixed combination of processing characteristics,
we started ES to find the best partition size and feature set. For each of the three
user categories and Rtat = {n, t, b} we started 10 runs. Table 2 contains E2 mean
values for these runs after 100 generations and lists the best individuals found
during optimization with ES. Figure 1 depicts for a one category (here WT)
mean E2 values and 95 percent confidence intervals decreasing from generation
1 to 100.

The runs with ES outperformed the experiments without optimization. In
regard to the classification performance, no tatum reduction method can be
guaranteed to be the first choice. However, saving of features only from windows
with tatum times or between tatum times saves disc space and processing time
while resulting in a similar performance.

Another interesting observation is the partition size. Figure 2 shows all par-
ent individual fitness values dependent on the partition sizes. These plots and
Table 2 underscore that no general strategy for partition size choice can be
recommended. The first category optimization (ED) leads to very small parti-
tion sizes (around 1 s), and the third (WT) to larger partition sizes (12-24 s).
The possible assumption is that the more complex categories (like ED, where

Table 2. Mean E2 (1st row) over 10 runs, best E2 (2nd row), best Tp (3rd row)
and best Nbest (number of used features) for classifier results with optimization by
(1+1)-ES, evaluated on three categories (ED, IV, WT) with different tatum reduction
methods

Personal music category

ED IV WT

Rtat

n t b n t b n t b

Ẽ2 0.1935 0.2037 0.1856 0.0703 0.0817 0.0738 0.0524 0.0509 0.0527

E2
best 0.1819 0.1826 0.1761 0.0654 0.0733 0.0676 0.0469 0.0469 0.0472

Tpbest 0.931 s 1.150 s 1.375 s 0.525 s 0.967 s 4.041 s 12.023 s 19.868 s 24.080 s

Nbest 14 15 15 15 12 16 25 16 13
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Fig. 1. Mean E2 values and 95 percent confidence intervals for each tenth generation
during the optimization of category WT

Fig. 2. E2 values (all parent individuals of all iterations) depending on partition size
(top row: category ED, middle row: category IV, bottom row: category WT)
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the best E2 found was equal to 0.1761) can be better categorized with smaller
partitions, and the more simpler categories should be categorized with larger
partitions. Here further investigations are required. Also, if we compare the dif-
ferent tatum reduction methods, it holds for all three categories, that Tp(Rtat =
n) < Tp(Rtat = t) < Tp(Rtat = b). Optimal partitions with Rtat = b require the
partitions about twice as long as optimal partitions required with Rtat = n.

As a conclusion to the performed experiments, we suggest that the optimiza-
tion of the feature processing chain parameters may provide a significant im-
provement of the classification quality. The number of the used features after
optimization is much smaller then 33, as underscored in the last row of Table 2.
It means that the feature processing, training and classification are done faster
than if using all features.

Though the optimization runs require more computing time in comparison to
direct processing, this process must be applied only once for each user category
and can be done in the background. It has already been shown in [11] that not a
single fixed set of features can be recommended for all classification tasks. So the
feature processing chain must be rearranged for each music category for optimal
classification. We can confirm this suggestion: No optimal partition size and no
optimal tatum reduction method can be generally chosen for all possible music
categories. Another point is that different user categories or other categorization
tasks have different complexities. Even with the application of sophisticated
optimization algorithms, the success rate has always some upper bound which
cannot be exceeded. As the worst case, consider the user who creates the category
ground truth in a completely random way.

6 Conclusion and Outlook

Music classification and navigation through large music collections is a complex
problem which contains several steps - from the extraction of features to their
processing, the classification training and validation. Each step is very important
and a weak implementation of only one step leads to a significant reduction of
the classification quality. In this paper, we started with a rather inclusive set of
audio signal features, selected a classification method and attempted to optimize
the feature processing configuration. The experiments have demonstrated that
evolution strategies are a good choice to find those parameter settings, which are
optimal for a given personal user category. Several tendencies of the parameter
impacts were discovered.

For future research, we are going to construct a more complex feature process-
ing chain, adding statistical dimensionality reduction methods such as principal
components analysis, correlation analysis and feature extraction from different
song segments. On the other side, the optimization algorithm itself can be exam-
ined more thoroughly. Self-adaptation and a crossover operator are possible con-
cepts to investigate. Also experiments with other classification algorithms can be
worthwhile. Finally not only standard measures like accuracy / precision can be
used to evaluate the classifiers, but also runtime metrics and user-given feedback.



Optimization of Feature Processing Chain in Music Classification by ES 1159

References

1. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press,
USA (1995)

2. Box, G., Jenkins, G.: Time Series Analysis: Forecasting and Control. Holden Day
(1970)

3. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley-Interscience,
Chichester (2000)

4. Flexer, A., Gouyon, F., Dixon, S., Widmer, G.: Probabilistic Combination of Fea-
tures for Music Classification. In: Proc. of the 7th International Conference on
Music Information Retrieval (ISMIR), pp. 111–114 (2006)

5. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.: Feature Extraction, Foundations
and Applications. Springer, Heidelberg (2006)

6. Hall, M.: Correlation-based Feature Selection Machine Learning. PhD thesis, Uni-
versity of Waikato, New Zealand (1998)

7. McLachlan, G.: Discriminant Analysis and Statistical Pattern Recognition. Wiley
Interscience, Chichester (1992)

8. Mierswa, I., Morik, K.: Automatic Feature Extraction for Classifying Audio Data.
Machine Learning Journal 58, 127–149 (2005)

9. Ong, B.: Structural Analysis and Segmentation of Music Signals. PhD thesis, Uni-
versitat Pompeu Fabra, Barcelona, Spain (2006)

10. Peeters, G.: A Large Set of Audio Features for Sound Description (Similarity and
Classification) in the CUIDADO Project. IRCAM, France (2004)

11. Pohle, T., Pampalk, E., Widmer, G.: Evaluation of Frequently Used Audio Features
for Classification of Music into Perceptual Categories. In: Fourth International
Workshop on Content-Based Multimedia Indexing (2005)

12. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Fran-
cisco (1993)

13. Rasmussen, C.: The Infinite Gaussian Mixture Model. In: Advances in Neural In-
formation Processing Systems, pp. 554–560. MIT Press, Cambridge (2000)

14. Rudolph, G.: An Evolutionary Algorithm for Integer Programming. Parallel Prob-
lem Solving from Nature – PPSN III, 139–148 (1994)

15. Scaringella, N., Zoia, G., Mlynek, D.: Automatic Genre Classification of Music
Content. IEEE Signal Processing Magazine 23, 133–141 (2006)

16. Seppänen, J., Eronen, A., Hiipakka, J.: Joint Beat and Tatum Tracking from Mu-
sic Signals. In: Proc. of the 7th International Conference on Music Information
Retrieval (ISMIR), Victoria, pp. 23–28 (2006)

17. Smith, L.: A Tutorial on Principal Components Analysis (2002)
18. Theimer, W., Vatolkin, I., Botteck, M., Buchmann, M.: Content-based Similarity

Search and Visualization for Personal Music Categories. In: Sixth International
Workshop on Content-Based Multimedia Indexing, London, pp. 9–16 (2008)

19. Theimer, W., Vatolkin, I., Eronen, A.: Definitions of Audio Features for Music
Content Description. Algorithm Engineering Report TR08-2-001, Technische Uni-
versität Dortmund (2008)

20. Tzanetakis, G., Cook, P.: Musical Classification of Audio Signals. IEEE Transac-
tions on Speech and Audio Processing 10, 293–302 (2002)

21. Vatolkin, I., Theimer, W.: Introduction to Methods for Music Classification Based
on Audio Data, Technical Report NRC-TR-2007-012, Nokia Research Center
(2007)



Author Index

Adamatzky, Andrew 579
Alba, Enrique 661, 763
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