

Lecture Notes in Computer Science 5219
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Michael D. Harrison Mark-Alexander Sujan (Eds.)

Computer Safety,
Reliability,
and Security

27th International Conference, SAFECOMP 2008
Newcastle upon Tyne, UK, September 22-25, 2008
Proceedings

13

Volume Editors

Michael D. Harrison
Newcastle University
School of Computing Science
Claremont Tower, Newcastle upon Tyne, NE1 7RU, UK
E-mail: michael.harrison@ncl.ac.uk

Mark-Alexander Sujan
University of Warwick
Health Sciences Research Institute
Coventry, CV4 7AL, UK
E-mail: m-a.sujan@warwick.ac.uk

Library of Congress Control Number: 2008934760

CR Subject Classification (1998): D.1-4, E.4, C.3, F.3, K.6.5

LNCS Sublibrary: SL 2 – Programming and Software Engineering
ISSN

0302-9743
ISBN-10 3-540-87697-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-87697-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12517558 06/3180 5 4 3 2 1 0

Preface

Safecomp was held in Newcastle upon Tyne, UK in September 2008. The confer-
ence was the latest in a long and strong tradition of leading-edge research and
practice in Computer Safety, Reliability and Security that began in 1979.

The programme was drawn from a strong international selection of papers
from a dozen countries in three continents (32 papers from 115 submissions).
Traditional Safecomp themes such as software dependability, software safety ar-
guments and formal methods continued to be represented. This conference also
strengthened themes that have been less visible in previous Safecomp confer-
ences, particularly those relating to the complexity and resilience of systems,
critical infrastructures and human factors. It broadened the usual domains of
application to include, for example, e-Commerce. The programme continued to
benefit from strong industrial contributions in safety critical and security critical
applications.

We were fortunate to have keynote addresses from Colin O’Halloran (Qine-
tiQ) and Roger Rivett (LandRover) on different complementary industrial expe-
riences in security and reliability. We were also fortunate to have Erik Hollnagel
as our opening keynote speaker. Professor Hollnagel’s contribution was effec-
tive in challenging traditional views, broadening the focus of concern, especially
relating to the management and analysis of complexity in large-scale systems.

We would like to express our gratitude and thanks to all those whose effort
has made this conference possible: to the submitting authors and to the invited
speakers; to the Programme Committee and the external reviewers who helped
compile an attractive programme; to the financial and scientific sponsors; and
last but not least, to the members of the Organizing Committee who took care
of the local arrangements.

We hope that you will find these proceedings of interest and use for your own
work.

July 2008 Michael Harrison
Mark-Alexander Sujan

Organization

Safecomp 2008 was sponsored by EWICS TC7.

Organizing Committee

Co-chairs Michael Harrison (Newcastle University, UK)
Mark-Alexander Sujan (Warwick University,

UK)
EWICS Chair U. Voges (Forschungszentrum Karlsruhe, DE)
Organizing Committee Joan Atkinson (Newcastle University, UK)

Massimo Felici (University of Edinburgh, UK)
Michael Harrison (Newcastle University, UK)
Steve Riddle (Newcastle University, UK)
Claire Smith (Newcastle University, UK)
Shamus Smith (Durham University, UK)
Mark-Alexander Sujan (Warwick University,

UK)
Christine Wisher (Newcastle University, UK)
Nikos Zarboutis (ENERCON Service Hellas,

Greece)

Programme Committee

R. Amalberti, France
S. Anderson, UK
T. Anderson, UK
J. Braband, Germany
N. Buth, Germany
S. Cheshire, UK
M. Cooke, UK
P. Daniel, UK
W. Ehrenberger,

Germany
L. Emmet, UK
C. Fairburn, UK
M. Felici, UK
J. Gorski, Poland
B. Gran, Norway
L. Grunske, Germany
W. Halang, Germany
M. Harrison, UK

M. Heisel, Germany
C. Heitmeyer, USA
A. Hessami, UK
E. Hollnagel, France
C. Johnson, UK
M. Kaaniche, France
K. Kanoun, France
T. Kelly, UK
J. Knight, USA
F. Koornneef,

The Netherlands
P. Ladkin, Germany
B. Littlewood, UK
J. McDermid, UK
O. Nordland, Norway
P. Palanque, France
A. Pasquini, Italy
M. Pickering, UK

S. Pozzi, Italy
G. Rabe, Germany
F. Redmill, UK
F. Saglietti, Germany
E. Schoitsch, Austria
S. Smith, UK
L. Strigini, UK
M. Sujan, UK
P. Traverse, France
J. Trienekens,

The Netherlands
M. van der Meulen,

The Netherlands
U. Voges, Germany
A. Weinert, Germany
S. Wittmann, Belgium
N. Zarboutis, Greece
Z. Zurakowski, Poland

VIII Organization

External Reviewers

O. Meyer
N. Chozos
T. Storer
T. Ma
J. Clark

I. Wentzlaff
T. Santen
H. Schmidt
D. Hatebur
T. Santen

N. Rivire
M. Roy
A. van Moorsel
C. Gacek
P. Ryan

Sponsoring Institutions

EWICS TC7

Centre for Software Reliability

Newcastle University

Warwick Medical School

AdaCore

ReSIST

Qinetiq

Adelard

TTE-Systems

British Computer Society

ifip

IFAC

DECOS

Organization IX

Austrian Computer society

Gesellschaft für Informatik e.V.

Encress

Table of Contents

Keynote Papers

Critical Information Infrastructures: Should Models Represent
Structures or Functions? . 1

Erik Hollnagel

Security and Interoperability for MANETs and a Fixed Core 5
Colin O’Halloran and Andy Bates

Technology, Society and Risk . 12
Roger Rivett

Panel: Complexity and Resilience . 13
Aad van Moorsel

Software Dependability

The Effectiveness of T-Way Test Data Generation . 16
Michael Ellims, Darrel Ince, and Marian Petre

Towards Agile Engineering of High-Integrity Systems 30
Richard F. Paige, Ramon Charalambous, Xiaocheng Ge, and
Phillip J. Brooke

SafeSpection – A Systematic Customization Approach for Software
Hazard Identification . 44

Christian Denger, Mario Trapp, and Peter Liggesmeyer

Integrating Safety Analyses and Component-Based Design 58
Dominik Domis and Mario Trapp

Modelling Support for Design of Safety-Critical Automotive Embedded
Systems . 72

DeJiu Chen, Rolf Johansson, Henrik Lönn, Yiannis Papadopoulos,
Anders Sandberg, Fredrik Törner, and Martin Törngren

Resilience

Resilience in the Aviation System . 86
Antonio Chialastri and Simone Pozzi

Resilience Markers for Safer Systems and Organisations 99
Jonathan Back, Dominic Furniss, Michael Hildebrandt, and
Ann Blandford

XII Table of Contents

Modeling and Analyzing Disaster Recovery Plans as Business
Processes . 113

Andrzej Zalewski, Piotr Sztandera, Marcin Ludzia, and
Marek Zalewski

Fault Tolerance

Analysis of Nested CRC with Additional Net Data in
Communication . 126

Tina Mattes, Frank Schiller, Annemarie Mörwald, and
Thomas Honold

Symbolic Reliability Analysis of Self-healing Networked Embedded
Systems . 139

Michael Glaß, Martin Lukasiewycz, Felix Reimann,
Christian Haubelt, and Jürgen Teich

Investigation and Reduction of Fault Sensitivity in the FlexRay
Communication Controller Registers . 153

Yasser Sedaghat and Seyed Ghassem Miremadi

Security

Secure Interaction Models for the HealthAgents System 167
Liang Xiao, Paul Lewis, and Srinandan Dasmahapatra

Security Challenges in Adaptive e-Health Processes 181
Michael Predeschly, Peter Dadam, and Hilmar Acker

An Efficient e-Commerce Fair Exchange Protocol That Encourages
Customer and Merchant to Be Honest . 193

Abdullah Alaraj and Malcolm Munro

Creating a Secure Infrastructure for Wireless Diagnostics and Software
Updates in Vehicles . 207

Dennis K. Nilsson, Ulf E. Larson, and Erland Jonsson

Finding Corrupted Computers Using Imperfect Intrusion Prevention
System Event Data . 221

Danielle Chrun, Michel Cukier, and Gerry Sneeringer

Security Threats to Automotive CAN Networks – Practical Examples
and Selected Short-Term Countermeasures . 235

Tobias Hoppe, Stefan Kiltz, and Jana Dittmann

Safety Cases

Constructing a Safety Case for Automatically Generated Code from
Formal Program Verification Information . 249

Nurlida Basir, Ewen Denney, and Bernd Fischer

Table of Contents XIII

Applying Safety Goals to a New Intensive Care Workstation System 263
Uwe Becker

Safety Assurance Strategies for Autonomous Vehicles 277
Andrzej Wardziński

Expert Assessment of Arguments: A Method and Its Experimental
Evaluation . 291

Lukasz Cyra and Janusz Górski

Formal Methods

Formal Verification by Reverse Synthesis . 305
Xiang Yin, John C. Knight, Elisabeth A. Nguyen, and
Westley Weimer

Deriving Safety Software Requirements from an AltaRica System
Model . 320

Sophie Humbert, Christel Seguin, Charles Castel, and
Jean-Marc Bosc

Model-Based Implementation of Real-Time Systems 332
Krzysztof Sacha

Early Prototyping of Wireless Sensor Network Algorithms in PVS 346
Cinzia Bernardeschi, Paolo Masci, and Holger Pfeifer

Dependability Modelling

Analyzing Fault Susceptibility of ABS Microcontroller 360
Dawid Trawczynski, Janusz Sosnowski, and Piotr Gawkowski

A Formal Approach for User Interaction Reconfiguration of Safety
Critical Interactive Systems . 373

David Navarre, Philippe Palanque, and Sandra Basnyat

The Wrong Question to the Right People. A Critical View of Severity
Classification Methods in ATM Experimental Projects 387

Alberto Pasquini, Simone Pozzi, and Luca Save

Security and Dependability

A Context-Aware Mandatory Access Control Model for Multilevel
Security Environments . 401

Jafar Haadi Jafarian, Morteza Amini, and Rasool Jalili

XIV Table of Contents

Formal Security Analysis of Electronic Software Distribution Systems . . . 415
Monika Maidl, David von Oheimb, Peter Hartmann, and
Richard Robinson

The Advanced Electric Power Grid: Complexity Reduction Techniques
for Reliability Modeling . 429

Ayman Z. Faza, Sahra Sedigh, and Bruce M. McMillin

Automating the Processes of Selecting an Appropriate Scheduling
Algorithm and Configuring the Scheduler Implementation for
Time-Triggered Embedded Systems . 440

Ayman K. Gendy and Michael J. Pont

Author Index . 455

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 1–4, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Critical Information Infrastructures: Should Models
Represent Structures or Functions?

Erik Hollnagel

École des Mines ParisTech, Crisis and Risk Research Centre
Sophia Antipolis, France

erik.hollnagel@crc.ensmp.fr

Abstract. The common approaches to modeling and analyzing complex socio-
technical systems, of which Critical Information Infrastructures is one example,
assumes that they can be completely specified. The methods emphasize how
systems are composed or structured and how component failures propagate.
Since socio-technical systems always are underspecified, they cannot be ana-
lyzed in the same way. The alternative is to focus on their functions, and how
the variability of functions can combine to create non-linear effects. An exam-
ple of that is the Functional Resonance Analysis method (FRAM).

Keywords: Complexity, risk, socio-technical systems, functional resonance.

1 Introduction

There is little need to argue that the industrialized societies of today completely de-
pend on information technology, both to carry out individual functions and as a back-
bone. In 1984 Charles Perrow argued that many systems by then had become so
tightly coupled, both within and between domains of activity, that accidents should be
accepted as normal. This trend has continued unabated, and Perrow’s comment that
“(o)n the whole, we have complex systems because we don’t know how to produce
the output through linear systems” [1, p. 89] is as true today as it was then. One
consequence of this is that many information infrastructures become critical for or-
ganizations and society, in the sense that the “normal” functioning we have become
accustomed to is possible only if the underlying information systems work effectively
and reliably. While this usually is so, there is nevertheless an ever growing list of
cases where information systems and information infrastructures have failed – both in
routine operations or services and in more spectacular ways ranging from the failure
of the London Ambulance Service Computer Aided Dispatch [2] to security breaches
in petroleum industry information systems [3]. This creates a clear need to be able to
prevent such failures from taking place. To do so we need to understand both the na-
ture of the risks and the means of preventing them.

2 The Structural Approach to System Modeling

It is a basic principle of cybernetics that it is necessary to have a model of a system in
order to control it [4]. This principle also applies in the case of system safety, since

2 E. Hollnagel

risk identification and safety management clearly are forms of control. The common
approaches to modeling critical information infrastructures (CII) are based on the
tradition established by the analysis and assessment of technical systems. They em-
phasize how CIIs are structured, using the classical principles of aggregation and de-
composition. Although the concern should be the ability of a CII to provide a specific
service or functionality, descriptions are invariably given in terms of whether compo-
nents and/or subsystems work or fail, and whether they are available and reliable.

The common approaches make two fundamental assumptions. The first is that ad-
verse outcomes arise from failures and malfunctions of system parts, whether they be
subsystems or components. The focus is therefore on identifying the possible failures
modes and on deriving their probability. The second is that the effects of failures or
malfunctions propagate linearly. This favors a notation of system components, such as
processes, information channels, sensors, evaluation unites, actuators, control loops,
etc., and how they are connected, usually in terms of inputs and outputs. While struc-
tural models, and the associated methods, have been very successful for purely tech-
nical systems where the impact of humans and/or organizations are negligible, they
are ill-suited to address the safety issues of socio-technical systems.

Technical systems are basically bimodal, i.e., parts or components either work or
fail, and when they fail they are repaired or replaced. Connections among components
are defined in advance by the system design and the systems are assumed to be fully
describable (tractable). Since technical systems in principle can be completely speci-
fied, the quality of their performance depends on how well deviations from the re-
quirements can be prevented.

In socio-technical systems, the performance of parts and of the system as a whole
is not bimodal but can vary. While it sometimes is better than normal and sometimes
worse, it is exceedingly rare that it fails completely. Socio-technical systems are fur-
thermore outlined rather than designed, and specific connections may therefore de-
velop or disappear as the system adjusts to changing conditions and demands. Since
socio-technical systems always are underspecified to some degree, their internal
performance must be variable in order to compensate for the incompleteness of the
specifications. The quality of their performance therefore depends on how well the
variability can be managed in a given situation, rather than on the suppression of vari-
ability. For socio-technical systems it is therefore more important to describe their
function than their structure.

While it may be convenient to use a conventional linear notation to describe socio-
technical systems, it is inadequate both in principle and in practice. The issue for
socio-technical systems is not how components can fail but rather how performance
variability can combine in an unforeseen manner and thereby lead to unexpected
negative, or positive, outcomes. The model used must be able to describe how this
happens; otherwise both measurements and their interpretation will be inadequate for
monitoring and for effective interventions if and when something goes wrong.

3 The Functional Approach to System Modeling

Even though organizations often are represented as hierarchies or networks, there can
be vast differences between the formal and the informal organization. Humans are, of
course, even more diverse and cognitive models are rarely more than crude renderings

Critical Information Infrastructures: Should Models Represent Structures or Functions? 3

of a few prominent features – despite heroic efforts by cognitive scientists and psy-
chologists. A notation based on components, malfunctions, and linear propagations is
therefore unable adequately to represent a socio-technical system.

An adequate notation must be able to describe how the system functions rather
than how it is structured. The underlying model and method must furthermore be able
to account for how the variability of normal performance can combine in unantici-
pated ways. The functional resonance analysis method (FRAM; [5]) provides an ex-
ample of how this may be done. This particular method is based on four principles:

 The principle of equivalence of successes and failures: Successes and fail-
ures arise from the same underlying processes or “mechanisms”.

 The principle of approximate adjustments: Because systems always are
underspecified, people must adjust their performance to match current condi-
tions. These adjustments are approximate because there is a lack of time, re-
sources, and/or information.

 The principle of emergence: This means that it is impossible in practice to
trace an effect back to a specific cause or function – or in the case of failures,
a malfunction. Causal analyses are therefore often ineffective, and in some
cases directly misleading and inappropriate.

 The principle of functional resonance: The variability of a number of func-
tions may sometimes reinforce each other and thereby cause the variability
of one function to exceed the expected range. Consequences may spread
through tight couplings rather than via identifiable and enumerable cause-
effect links. This can be described as a resonance of the variability of normal
performance.

The FRAM notation allows couplings and dependencies to be created and mapped as
they develop and disappear in real time. An important part of the functional modeling
is therefore to determine the variability of each function by characterizing how de-
pendent it is on the environment, i.e., the functioning conditions. For nodes that de-
scribe human and organizational functions, one powerful principle is how humans and
organizations make sacrificing decisions or trade off efficiency for thoroughness.
While this normally is useful and contributes to the overall efficiency of the system, it
carries with it the risk of unexpected outcomes.

The FRAM notation offers a set of strong principles by which the psychological,
social, and technical couplings in a CII can be modeled. This approach to mapping
dynamic dependencies is already used in several other contexts, mostly in relation to
industrial safety applications [6, 7]. The step to security applications can make use of
this experience to develop a more rigorous approach.

References

1. Perrow, C.: Normal accidents: Living with high risk technologies. Basic Books, Inc., New
York (1984)

2. Finkelstein, A., Dowell, J.: A comedy of errors: the London Ambulance Service case study.
In: Proc. 8th International Workshop on Software Specification & Design IWSSD-8, pp. 2–
4. IEEE Computer Society Press, Los Alamitos (1996)

4 E. Hollnagel

3. Albrechtsen, E., Hovden, J.: Industrial safety management and information security man-
agement: risk characteristics and management approaches. In: Proceedings of ESREL 2007
(2007)

4. Conant, R.C., Ashby, W.R.: Every good regulator of a system must be a model of that sys-
tem. International Journal of Systems Science 1(2), 89–97 (1970)

5. Hollnagel, E.: Barriers and accident prevention. Ashgate, Aldershot (2004)
6. Mercadier, V.: When incident command system fails. University of Berkeley, Berkely

(2007)
7. Nouvel, D., Travadel, S., Hollnagel, E.: Introduction of the concept of functional resonance

in the analysis of a near-accident in aviation. In: 33rd ESReDA Seminar: Future challenges
of accident investigation, Ispra, Italy, November 13-14 (2007)

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 5–11, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Security and Interoperability for MANETs
and a Fixed Core

Colin O’Halloran and Andy Bates

QinetiQ
Malvern Technology Park
Worcestershire WR14 3PS

cmohalloran@qinetiq.com

Abstract. The problem of ensuring security and interoperability for mobile ad
hoc networks that connect to a valuable fixed core infrastructure is discussed.
The problem is broken down into three interdependent research areas of Secu-
rity versus Risk; Identity Management; Verification, Validation and Certifica-
tion. The research issues for each area are discussed in detail.

Keywords: NEC, NCO, Security, Interoperability, Risk, Trust, Identity Man-
agement, Verification, Validation, Certification.

1 Introduction

A fundamental assumption of Network Enabled Capability1 (NEC) is that the net-
works that connect sensors, platforms, troops and commanders, are robust and secure,
and the data provided is trustworthy such that reliable and timely information can
support local decision-making.

In practice work in the area of security has focused on Confidentiality and Integrity
with Availability relegated to a background concern. Availability is a central concern
of NEC because interoperability is a prime driver for NEC, hence interoperability is
used explicitly in conjunction with Confidentiality and Integrity.

As NEC is implemented, the transition from a traditional largely static core to in-
clude a dynamic wireless edge creates significant challenges for security and interop-
erability. The increasing operational trend to rapidly form military coalitions with for-
eign nations, or provide humanitarian aid in association with Other Government
Departments (OGDs) and Non-Government Organizations (NGOs) drives the need to
ensure that the benefits conferred by access is balanced with the risk of loss of confi-
dentiality and data integrity.

Advances in Information and Computing Technologies (ICT) are therefore required
which can satisfy the dynamic balance of security versus risk for ad hoc mobile net-
works, and deal with the real time dynamics of forming and reforming such systems
which can be Verified, Validated and Certified (VV&C) and scaled to address very
large numbers of wireless nodes without degrading network performance.

1 And the related concept of Network-Centric Operations (NCO).

6 C. O’Halloran and A. Bates

The subject of this paper is to propose a technical approach that incorporates near
and future ICT developments to bridge the gap between the current situation, via a
near term intermediate position, to a full future NEC position.

The research requirements can be split into three inter-dependent research areas:

• Security versus Risk;
• Identity Management;
• Verification, Validation and Certification.

These three research areas need to be addressed within a technical architectural
framework for ad hoc secure networks such as that shown in Figure 1. This will en-
sure a common approach and understanding to assumptions and dependencies when
researching different aspects of the ad hoc network security problem.

Fig. 1. Technical Architectural Framework for ad hoc Secure Networks Research and Devel-
opment - this framework will guide how emerging technologies can fit together

2 Security Versus Risk in Mobile Ad-Hoc Networks (MANETs)

This is concerned with the ability of mobile communications and computing nodes to
discover one another and create operationally relevant and secure networks. In pre-
planned networks, the likely deployment of the network and the risks to it, are gener-
ally known about in advance, and judgments are made about the security mechanisms

 Security and Interoperability for MANETs and a Fixed Core 7

required to protect the network and information. In ad hoc networks, the membership,
the connectivity, and the security risks are not known about in advance. Thus, a dy-
namic risk management approach needs to be adopted.

2.1 Dynamic Risk Management

There are a number of different dimensions to dynamic risk management.

Low –> High Risk Appetite Spectrum
Within a military operation, the Commander’s appetite for risk may change, depend-
ing on the potential benefits to the operation. For example, allowing NGO nodes to
connect to the military ad hoc network will typically increase the security risks to the
network, but the operational benefits may justify these increased risks. In response to
this increased risk, additional security measures may need to be put in place.

Simple –> Complex Risk Management Spectrum
Depending upon the level of risk appetite partners are willing to accept, the ad hoc
network can adopt a spectrum of risk management strategies. At one end of the spec-
trum the network can adopt very rigid pre-defined rules of network connection (e.g.
only allowing a connection if a common security key is held), or at the other end of
the spectrum the network may be self-synchronizing, self-organizing, self healing,
self-destructing, and self-accrediting. The latter is potentially more flexible to the
changing military operation, but the increased complexity will generally increase the
security risks resulting from the difficulty of being able to gain assurance about
the overall system security behavior.

Human –> Automated Spectrum
The risk management strategy can also vary in the degree a human is involved in the
security decision process. Again, there is a spectrum of possibilities. These range
from a human being solely involved (as is the case for static systems); to the semi-
automated case where some aspects of the decision process are automated, but others
are referred to a human for a decision; through to a fully autonomous approach which
may operate under very simple or very complex rules of behavior.

Risk versus Trust
The risk management strategy can also vary in the degree it demands of being able to
manage previous, current and future security risks. In an ad hoc network fully under
the control of a single organization, then it is possible for that organization to put in
place dynamic security measures to manage the security risks. In an ad hoc network
involving different organizations (e.g. coalition partners and NGOs) it is less likely
that the MoD will have full, or even any, control of the security management of those
parts of the ad hoc network not owned by MoD. Thus, connecting the MoD parts of
the ad hoc network to non-MoD parts will potentially increase the security risks to the
MoD part. However, if by some means (directly or indirectly) there is a belief (which
may be evidence based) on how security risks are managed within the non-MoD part
of the ad hoc network, then the resulting risks can be re-assessed.

8 C. O’Halloran and A. Bates

We are using here the following generally acceptable definition of trust:

An evolving, contextual and composite belief that one principal (trustor) has that
another principal (trustee) will perform certain actions with certain expected results,

when not all information about those actions is available.

There will be differing degrees of trust (which will be influenced by the level of evi-
dence available and the strength of the belief). It is also likely that different parts of
the ad hoc network will be trusted by MoD to different levels.

Boundary Security
In forming an ad hoc network involving different organizationally owned nodes, there
will be boundaries at which these nodes connect. These will be at different levels and
places within the ad hoc network architecture (e.g. communications, information
transfer, security services, applications etc). At these security domain boundaries, it
will be possible to construct security mechanisms (e.g. filters) to control connections
and information across the boundary as part of a cross security domain solution. Thus,
MoD can help mitigate the resulting security risks of connecting to an NGO node by
managing the connection and information flow across that security boundary. Ideally,
these security mechanisms should be variable to allow them to be changed as a result
of variations in the external risks and the degree of risk appetite the MoD Commander
is willing to take.

2.2 Node and Service Discovery in Ad Hoc Networks

Within an ad hoc network, one cannot assume that centralized services are available to
support ad hoc nodes. Consequently, alternative models need to be adopted. Peer-to-
Peer (P2P) technologies have emerged in recent years from the Internet community. In
such networks, information is held on peer nodes, rather than central servers.

Unfortunately, most of the current implementations of P2P are not ‘pure’ in that al-
though information is held on peers, the discovery on those peers is still supported by
central servers, which are used to identify which peers hold relevant information.

In a ‘pure’ P2P, there is a need for services which support the discovery of relevant
other nodes, services and information, and which do not utilize central servers. There
are number of ways of achieving this requirement. These include:

• P2P Service Publication – In this model, a peer tells other peers what infor-
mation or services they have to offer.

• P2P Service Request – In this model, a peer makes a request either to other
individual peers, or via a broadcast mechanism.

• Federated Service Publication & Request – In this model, peers build up in-
formation on other peers to support the discovery of services and informa-
tion.

The security challenges to be addressed in ad hoc network discovery are determining:

• The identity, the confidence in the identity integrity and its association with
the node and/or service;

• The security properties associated with the node / service;

 Security and Interoperability for MANETs and a Fixed Core 9

• The security risks that results from connecting to that node or service;
• The security protection mechanisms that need to be put in place to create that

connection with the service and/or node;
• The security implications of publishing, requesting and federated storing of

service information.

2.3 MANET and Fixed-Core Interoperability

The previous discussion has focused on the security implications of the ad hoc dy-
namic MANET. However, there is also a need for nodes and services within the
MANET to be able to interoperate with nodes and services within the “Fixed-core”.
As a consequence, there will be different approaches to risk management adopted in
different parts of the network.

As MANETs need to be able to accommodate different risk-management ap-
proaches for the reasons stated previously, then the fixed-core part is just a particular
type of risk management. However, within the fixed-core there may not be any pre-
planning of how to manage the security risks associated with dynamic MANETs. This
will particularly be the case for the early states of NEC. Consequently, the Boundary
Security approach to risk mitigation will be required at the MANET and Wired-core
boundary.

3 Identity Management

Identity management involves the management of the identities of people, nodes, ser-
vices, organizations, and communities, and the provision of facilities to enable them
to identify and authenticate one another when communicating. With a fixed or pre-
planned mobile networks, there is some knowledge of the identity of the people,
nodes and services within the network, which may be disseminated at system set-up.
For example, the identity signatures and security properties of all nodes within the
network can be distributed in advance to each node. Alternatively, it is possible to es-
tablish a centralized identity management service, which is only distributed a set-up
time.

With an ad hoc network, it must be assumed that this is not the case, and that there
is a need to dynamically:

• Determine the identity, to validate the integrity of the identity and its asso-
ciation with the node, person or service;

• Determine and validate the current security properties of that identity.

Having achieved the above, it is then possible to start to reason about the security
risks of connecting to each node, person or service.

To achieve dynamic identity management there are a number of possible approaches:

• Use of pre set-up information;
• Use of centralized identity management services supported by local storage

of identity management information for when the central services are not
available;

10 C. O’Halloran and A. Bates

• Use of a federated identity management service (e.g. using P2P technology
to share identity management information);

• Use of multi-channel, multi-event identity information exchanges to boot-
strap increasing levels of assurance in identities;

• Identity management based upon trust models (e.g. the US Army tells the
British Army that a US UAV belongs to the US Army and has specified se-
curity properties);

• Identity management based upon security property composition, rather than
absolute identity (e.g. a person has the required security properties rather
than confirming their identity and then having to determine their security
properties).

4 Verification, Validation and Certification (VV&C)

In fixed networks, it is possible for a human to VV&C the security properties of the
network at system design, integration and test. In pre-planned mobile networks, it is
possible for a human to VV&C the network, often using support tools, at system de-
sign, network planning and set-up.

In ad hoc networks, the following security aspects may not be known in advance:

• Nodes involved;
• ad hoc network construction and connectivity between the nodes;
• Security properties of the nodes;
• Security assurance levels associated with the security mechanisms;
• The ownership of the ad hoc nodes;
• The threats and risks that might emerge during the life of the ad hoc network.

Consequently, in order to achieve VV&C of ad hoc networks, we need to consider the
security properties of the ad hoc network, which are known prior to deployment.
These may include for example the following:

• The security mechanisms and assurance levels in the owned ad hoc network
nodes;

• The level of trust one organization may have in nodes owned by another;
• The security rules of behavior, that an organization’s ad hoc nodes will fol-

low given a security event. The security event may be triggered by an inter-
action with an alien node, or an environmental security event has occurred;

• The agreed rules of secure connection and information exchange between
coalition partners.

We do not have to assume that the above security mechanisms, assurance levels, be-
havioral rules and trust levels remain static during the operation of the ad hoc net-
work, but we must have a security assured means to change these parameters and this
means must also be capable of being VV&C prior to deployment of the ad hoc
network.

 Security and Interoperability for MANETs and a Fixed Core 11

Thus, VV&C in ad hoc networks is achieved, not by VV&C of the overall ad hoc
network, but by the following:

• VV&C of security properties, and security behavioral rules prior to deploy-
ment;

• VV&C of the any proposed changes to the security properties and behaviors
of ad hoc nodes during deployment;

• VV&C of a mechanism to be able to distribute changes and to update the se-
curity properties and behaviors in ad hoc nodes during deployment.

If we have the above capability, then it is possible to reason about the security behav-
ior of ad hoc networks, yet also be able to change that behavior in response to opera-
tional and environmental developments.

5 Conclusions

The problem of ensuring security and interoperability for mobile ad hoc networks that
connect to a valuable fixed core infrastructure has been discussed. The problem has
been broken down into three interdependent research areas of

• Security versus Risk;
• Identity Management;
• Verification, Validation and Certification.

The research issues for each area have been discussed in detail.

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, p. 12, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Technology, Society and Risk

Roger Rivett

Functional Safety Technical Specialist
Land Rover (UK)

rrivett@landrover.com

Abstract. There remains a healthy debate among those working in the fun-
ctional safety field over issues that appear to be fundamental to the discipline.
Coming from an industry that is a relative newcomer to this discipline I look to
the more established industries to give a lead. Not only are they in debate about
key issues, the approaches taken do not always transfer easily to a mass market
product, developed within very tight business constraints. Key issues that are
debated include:

 What is meant by risk, what is acceptable risk and who does the accepting?
 How do we justify that an acceptable risk has been, or will be, achieved?
 What role does the development process play?
 What is meant by the concept of a Safety Integrity Level?

In this talk I will air some views on these questions based on my experience of
deve-loping automotive systems and authoring industry sector guidelines and
standards in the hope that this will provoke informed discussion.

Panel: Complexity and Resilience�

Aad van Moorsel��

School of Computing
Newcastle University

aad.vanmoorsel@newcastle.ac.uk

Complexity and Resilience

The complexity of modern-day information systems creates large dependability
challenges. As described in the ReSIST (Resilience for Survivability in IST) work-
ingprogramme [1], “current state-of-knowledgeand state-of-the-art reasonably en-
able the construction and operation of critical systems, be they safety-critical (e.g.,
avionics, railway signalling, nuclear control) or availability-critical (e.g., back-end
servers for transaction processing). However, the situation drastically worsens
when considering large, networked, evolving, systems either fixed or mobile, with
demanding requirements drivenby their domain of application, i.e., ubiquitous sys-
tems. There is statistical evidence that these emerging systems suffer from a signif-
icant drop in dependability and security in comparison with the former systems.
There is thus a dependability and security gap opening in front of us that, if not
filled, will endanger the very basis and advent of information systems.”

TheReSISTworkingprogramme [1] further points out that“Twomaindrivers of
the creation and widening of the gap are complexity and cost pressure. Complexity
growthunder costpressure results from(drastic) changesthatcanbe functional, en-
vironmental and technological.Examples of such changes are: a) growth of systems
as demand increases, b) merging of systems in company acquisitions or coupling of
systems in military coalitions, c) interactions between systems of differing natures
(e.g., large-scale information infrastructure on the one hand and networks of sen-
sors on the other), d) dynamically changing systems (e.g., spontaneous, or ad-hoc,
networks of mobile nodes and sensors), e) the ever-evolving and growing problem
of attacks both by amateur hackers and by professional criminals.”

This panel discusses how to accommodate complexity-induced challenges in
resilience, considering resilience with respect to accidental failures as well as
malicious attacks. It will address among others the following questions:

– what are the dominating research questions that need to be addressed to
provide resilience in highly complex information systems?

– what can we learn from other disciplines regarding resilience in complex
systems?

� This panel is supported by: EU network of excellence 026764 (‘ReSIST: Resilience
for Survivability in IST’).

�� Supported in part by: EU network of excellence 026764 (‘ReSIST: Resilience for
Survivability in IST’) and EU coordination action 216295 (‘AMBER: Assessing,
Measuring, and Benchmarking Resilience’).

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 13–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

14 A. van Moorsel

– can emerging applications be Internet-based, or are other network and com-
munication paradigms required to provide resilience?

– can system resilience be understood and researched outside the context of
the application and its users?

– what kind of tools and methodologies must be developed or adapted to
improve information system resilience?

Panel Participants

Ann Blandford is Professor of Human Computer Interaction and Director
of the UCL Interaction Centre, University College London. The main focus of
her research is on ways of answering the question “How well does your system
fit?”, in terms of cognition, interaction and work. Broad themes include human
capabilities and human error, interactions with technology and models, methods
and theories for evaluating interactive systems.

Erik Hollnagel is Professor and Industrial Safety Chair at École des Mines de
Paris, and author of the book “Resilience Engineering: Concepts and Precept”.
He is an internationally recognised specialist in the fields of resilience engineering,
system safety, human reliability analysis, cognitive systems engineering, and in-
telligent man-machine systems. He is the author of more than 300 publications
including thirteen books, articles from recognised journals, conference papers,
and reports.

Marcus Kaiser is RCUK Academic Fellow for Complex Neural Systems. He has
worked on organization, development, and robustness of cortical and neuronal
as well as of metabolic and protein-protein interaction networks. He is initia-
tor and deputy director of the Wellcome Trust 4-year PhD programme “Sys-
tems Neuroscience: From Networks to Behaviour” and member of the Institute
of Neuroscience management board. In addition, he is member of the EPSRC
funded network Mathematical Neuroscience and member of the editorial board
of the journal Frontiers in Neuroinformatics.

Jean-Claude Laprie is “Directeur de Recherche” of CNRS, the French
National Organization for Scientific Research. His research has focused on de-
pendable computing since 1973, especially on fault tolerance, on dependability
evaluation, and on terminology issues. He currently leads the EU FP6 Network
of Excellence ReSIST (Resilience for Survivability in Information Society Tech-
nologies), integrating leading researchers active in the multidisciplinary domains
of dependability, security, and human factors.

Moderator Aad van Moorsel is Reader (Associate Professor) in Distributed
Systems at Newcastle University. He worked in industry from 1996 until 2003,
first as a researcher at Bell Labs/Lucent Technologies in Murray Hill and then
as a research manager at Hewlett-Packard Labs in Palo Alto, both in the United
States. He has worked in a variety of areas, from performance modelling to
systems management, web services and grid computing. In his last position in

Panel: Complexity and Resilience 15

industry, he was responsible for HP’s research in web and grid services, and
worked on the software strategy of the company.

Reference

1. Laprie, J.-C., et al.: working programme for ReSIST: Resilience for Survivability in

IST, network of excellence, contract number 026764,

http://www.resist-noe.org/overview/summary.html

http://www.resist-noe.org/overview/summary.html

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp.16–29, 2008.
© Springer-Verlag Berlin Heidelberg 2008

The Effectiveness of T-Way Test Data Generation

Michael Ellims1, Darrel Ince2, and Marian Petre2

1 Pi-Shurlok, Milton Hall, Cambridge, UK
2 Dept. of Computing, Open University

Walton Hall, Milton Keynes, UK
mike.ellims@pi-shurlok.com, {d.c.ince,m.petre}@open.ac.uk

Abstract. This paper reports the results of a study comparing the effectiveness
of automatically generated tests constructed using random and t-way combina-
torial techniques on safety related industrial code using mutation adequacy cri-
teria. A reference point is provided by hand generated test vectors constructed
during development to establish minimum acceptance criteria. The study shows
that 2-way testing is not adequate measured by mutants kill rate compared with
hand generated test set of similar size, but that higher factor t-way test sets can
perform at least as well. To reduce the computation overhead of testing large
numbers of vectors over large numbers of mutants a staged optimising approach
to applying t-way tests is proposed and evaluated which shows improvements in
execution time and final test set size.

Keywords: Software testing, random testing, automated test generation, unit
test, combinatorial design, pairwise testing, t-way testing, mutation.

1 Introduction

How to generate test sets automatically has been the subject of much research and a
wide range of techniques have been proposed ad investigated. These including ran-
dom generation [1], search techniques such as generic algorithms [2] and combinato-
rial techniques [3] based on statistical design of experiments [4] used to identify and
isolate the effects of interactions between factors of interest.

For unit testing the factors of interest are the input variables of the function under
test and the interactions between different values of those variables and how they
effect the outcome of running the code. If we generate vectors that cover all 2-way
(pairwise) interactions between n input variables v1 to vn then there will be a vector in
the test set such that for every value that the variable vi is allowed to take it will be
paired with each value the variable vj is allowed to take for all i and j where i ≠ j.

An important consideration is which values each variable will be allowed to take
on. In general the tester will select data points for each input variable that are of “in-
terest” based on criteria such as data input ranges, domain partitioning and other heu-
ristic rules. Selection all values is impossible except where only a small number of
values are allowed such as for enumerations.

To make this more concrete consider a function with three input variables, v1, v2
and v3 that take on the values a1, a2, a3 and b1, b2 and c1, c2 respectively. Then a 2-way
adequate test set that ensures that a vector exits that contains all values of v1 paired
with all values of v2 and all values of v3 and all pairs of v2 and v3 is shown in Figure 1.

 The Effectiveness of T-Way Test Data Generation 17

a1 a2 a3 a2 a1 a3 a1
b2 b1 b1 b2 b2 b2 b1
c1 c2 c1 c1 c2 c2 c1

Fig. 1. An example seven vector, 2-way adequate test set for 3 variables

Larger values of t can be used, for example t = 3 would involve matching sets of
three variables and t = 4, four variables in the same way. The advantage of taking this
approach is that far fewer vectors are required to construct a t-way adequate test set
than would be required for a test set that contained all combination of values. The
work presented in this paper is an investigation of the utility of t-way test generation
for unit testing and in particular to determine its suitability for safety-related software.

1.1 Contributions of This Work

The work presented here makes the following contributions;

• it provides a direct comparison with t-way adequate test sets against human gener-
ated test sets.

• it provides a practical method of incorporating high factor t-way testing and muta-
tion analysis into a development process which can avoid much of the computa-
tional overhead that may otherwise be encountered.

2 Related Work

2.1 Combinatorial Techniques

The original work on using combinatorial techniques for testing was presented by
Mandl [5] who used orthogonal arrays to select sets of constructs for testing an Ada
compiler. Sherwood [6] developed the Constraint Array Test System (CATS) to gen-
erate test sets algorithmically. This work was extended by Cohen et al. [3] as the
automatic efficient test generator (AETG) system and this algorithm has been the
focus of much later work.

The literature on combinatorial testing can be divided into two major classes, first
algorithms for generating t-way adequate test sets and second, work that evaluates the
technique. The latter in turn falls into two main categories: reports of the tools in field
use, and a small body of experimental work.

The studies from field use have examined real systems and on the whole report on
the detection of additional errors using combinational techniques. Brownlie et al. [7]
applied the technique to testing of an email system. The effectiveness claimed for the
technique is related to the saving in the number of test cases required and not on a
direct comparison of faults found by applying this and any other technique. Cohen et
al. [8] present information on the AETG tool on two releases of software where it
found more faults than standard test techniques, however what the standard tech-
niques are is not stated. Dalal et al. [9], [10] report briefly on the use of the AETG
tool on a number of systems and the fact that more faults were discovered with its use
than without. Smith et al. [11] discusses the use of the technique (2-way) on

18 M. Ellims, D. Ince, and M. Petre

spaceflight software and compare the number of faults found using the 2-way test sets
vs. test sets constructed by other means. Here 2-way adequate test sets did not fair as
well as expected.

One further set of field studies is of special interest, these looked at variable inter-
actions leading to the activation of faults in several systems. Wallace and Kuhn [12]
looked at software failure modes in data collect by the Federal Drug Administration
(FDA) involving the recall of medical equipment. Kuhn and Reilly [13] examined the
Mozilla and Apache open source projects using their bug tracking databases to deter-
mine the number of conditions required to trigger the fault. Finally Kuhn et al. [14]
looked at a large distributed system being developed at NASA. This work suggests
that in practice small t factor of between four and six was required to reveal all faults
reported.

Given the period of time in which combinatorial testing using covering arrays has
been in use there are surprisingly few controlled experimental studies. There are five
major studies: [15] which addressed coverage, [16], [17], [18]and [19] which ad-
dressed effectiveness at detecting seeded faults.

Dunietz et al. [15] compared the code coverage of random designs without re-
placement vs. the coverage obtained from systematic designs (i.e. t-way adequate test
sets) with the same number of vectors. They concluded that for block coverage low
factor t-way designs could be effective.

Nair et al. [16] investigated random testing without replacement and no partition-
ing vs. partition based testing, and showed that, in general partition testing should be
more effective. The particular case of partition testing was an application of experi-
mental design (t-way) and it showed that the probability of detecting the failure for
simple random testing is significantly lower than partition based techniques.

Kobayashi et al. [17] examined the fault detecting ability of specification based,
random, anti-random [20] and t-way techniques applied to the testing logic predicates
against mutations of those predicates. The authors concluded that 4-way tests were
nearly as effective as specification techniques and better than both random and anti-
random.

Grindal et al. [19] examined the fault detecting power of a number of different
combinatorial strategies including 1-way (each choice), base choice (a single factor
experiment), pairwise AETG and orthogonal arrays. Work was performed on code
with hand seeded faults and data reported for branch coverage is consistent with other
experimental results. However after examining the data the authors concluded that
code coverage methods may also need to be employed. As in [11] it was found that
the base choice technique performed as well as orthogonal arrays and 2-way in 3 out
of 5 problems. However no technique detected fewer than 90% of the detectable
faults.

Schroeder et al. [18] examined effectiveness in terms of code coverage for t-way
vs. random selection with replacement on code with hand seeded faults. While this
produced results that broadly support the results from other experimental work, it was
found that higher values of t were required to reveal some faults. They also concluded
that t-way test sets were no more effective that test sets constructed random selection
for sets of the same size.

Our conclusion is that the literature indicates that there is no overwhelming con-
sensus as to the utility of combinatorial techniques.

 The Effectiveness of T-Way Test Data Generation 19

2.2 Code Mutation

Much of the empirical work that evaluates the effectiveness of the t-way testing tech-
nique is constrained by two main limitations. First the reliance on hand seeded faults.
Second by the inability of common metrics such as code coverage to distinguish be-
tween test sets that reach code but do not stress the code sufficiently to reveal errors
and test sets that do.

Code mutation as proposed by Hamlet [21] and DeMillo et al. [22] has been used
previously in studies to compare test effectiveness [23], [24], [25]. It also has the
advantage that it subsumes conditional coverage techniques [26].

Mutation has recently been applied to evaluating random testing with C programs
[27] with the aim of determining whether faults inserted using the mutation are repre-
sentative of real faults. The conclusion is that they are but that they are also possibly
more difficult to detect.

3 The Experimental Study

3.1 The Data Set

The functions that were used in this study were drawn from a system that controls a
large industrial engine currently employed in safety-critical applications (Wallace).
The system was developed in a manner consistent with IEC 61508 [28] and code has
been subjected to review, unit, integration and system testing.

Hand generated unit test sets were developed using standard techniques such as
boundary value analysis and equivalency partitioning. They also took into account the
structure of conditional statements and attempt to ensure that all clauses are tested for
both TRUE and FALSE. All sets of test vectors are statement, branch coverage ade-
quate and most are also LCSAJ adequate ([29]). Therefore we have some confidence
that the hand generated set of test vectors are of high quality. A full description of
how the unit test process is given in [30].

3.2 Procedure Employed

The procedure employed in this experiment consisted of the following steps:

• A simple mutation tool was developed that produced operator, variable name,
constant and statement removal mutations [31].

• A set of functions from Wallace was selected with a range of complexities from 12
to 62 executable statements (i.e. excluding comments, blank lines and braces).

• The hand-generated vectors for each function was extracted along with input do-
main information from the detailed designs and data dictionary.

• Each mutant was run on each vector for the automatically and hand generated test
sets. For each complete set of mutants vs. test set executed the number mutants left
alive was recorded.

In previous work [31] we employed our AETG based tool, however the tool is in-
herently inefficient as it performs a liner search to match t-way tuples generated in
candidate vectors with tuples remaining to be covered. Lei et al. [32] reference the

20 M. Ellims, D. Ince, and M. Petre

jenney tool [33] and compared the performance of their tool FireEye against
other available tool sets. In terms of execution time jenny is far more efficient that
our own tool and replaces it in this work.

3.3 Code Selected

Table 1 summarizes the functions examined. Three were selected on the criteria that
they contained known errors discovered running the unit tests (vs. designing tests).
The remainder were selected based on their complexity, e.g. _gov_gen_ffd_rpm was
selected as it contains a large number of conditional statements (eleven).

Table 1. Summary of properties of code used in this study

Function Name Lines Valid

Mutants
Nesting
Factor

Cond’n
Factor

if’s Inputs

_dip_debounce 12 81 2 2 2 17
_aip_median_filter 25 217 1 1 4 3
_sdc_fuel_control 17 213 2 2 5 9
aip_spike_filter 22 178 3 1 4 7
_thc_decide_state 16 386 7 2 7 9
_thc_autocal 33 669 5 2 8 6
_aip_apply_filters 30 311 2 2 4 8
_gov_rpm_err 22 783 2 1 5 9
_sdc_pre_start 51 1297 3 1 8 3
_gov_gen_ffd_rpm 62 1227 4 2 11 16

Properties for each of the functions are shown in Table 2 as follows, the first col-
umn is the function name and the second is the number of executable statements in
the function. Column three gives the number of valid mutants that would actually
compile (ignoring warnings for divide by zero etc). The fourth and fifth columns are
the nesting factor (maximum depth of nesting) and the condition factor (maximum
number of comparisons in a predicate) as used in [34]. The sixth column is a count of
the number of if statements in the code with each case of a switch statement being
counted as one. The final column is the number of inputs to the function. The function
_dip_debounce stands out here, but this is because the underlying data structure is a
set of arrays and the original test set contained data values for the first, middle and
last elements of those arrays.

3.4 Experiment 1

3.4.1 Aims
The aims of this experiment are two fold. First to evaluate the effectiveness of t-way
adequate test sets relative to a set of high quality human generated tests. Second to
compare them with other automatic generation techniques that require a comparable
level of analysis to allow data to be generated.

 The Effectiveness of T-Way Test Data Generation 21

3.4.2 Procedure
The Procedure Employed in this Experiment Consisted of the Following Steps for
Each Function:

• Generate a t-way adequate test set sets for t = 2 to t = 5. For numeric variables the
minimum, median and maximum values in the range were used. For enumeration
variables we used all valid values and one out of range value to exercise the default
statement in the code. For Boolean variables TRUE and FALSE were used.

• Generate a test set of the same size as the t-way test sets using random selection
from the same set of values with replacement using the same values as for t-way.

• Generate a test set of the same size purely random tests . Numeric values were
drawn from the whole range with equal probability and replacement. Enumerations
and Boolean values were selected as above. The generator described in [35] was
used to ensure long sequences.

• For each function one or more sets of “base choice” [36] test vectors were gener-
ated. Base choice is where a base vector is selected, perhaps based on expected or
normal use. Additional vectors are generated from this base by changing a single
value of one variable in each new vector until all values have been used for all
variables.

• For each function, execute each of the valid mutants on each test vector and for
each test set recorded the number of mutants that were killed.

3.4.3 Results
Are shown in Table 2. The first column, gives the function name and the second states
the information given in the next four rows as follows. For each function the first row
(vectors) is the number of test vectors in the set determined by the size of t-way test
vectors. The second row (t-way) is the number of mutants killed by t-way vectors for t
= 2 to 5.

The final two columns (base, hand) gives the number of vectors in the base choice
and hand generated test sets with the number of mutants left alive below it. For each
function the smallest test set that had the best performance is highlighted in bold.

Table 3 gives indicative information on the amount of time in seconds that it takes
to run each set of t-way adequate test sets data for each function.

The primary concern is which of the techniques is best at killing mutants in the se-
lected functions. One approach is to look at which technique kills the most mutants
for each function. The results are summaries as follows;

• t-way test vectors win or draw in six of the ten cases.
• Test vectors generated via random selection win or draw in half the cases.
• Random data generation wins or draws in four of the ten cases but notably only has

a single win in the second half of the table.

The selection of “a winner” here is arbitrary in that it is the test set that killed the
most mutants regardless of the number of vectors required and for some code only
small numbers of vectors are required. Another way to approach is to examine the
number of cases where a method failed to achieve a result comparable with the hand
generated tests. Here there is one failure for t-way and random selection plus a near
miss (_sdc_fuel_control by one) and four failures for random testing.

22 M. Ellims, D. Ince, and M. Petre

Table 2. Number of mutants killed for each of the sets of test vectors applied

Function Name Proces
s

2-way 3-way 4-way 5-way Base Hand

vectors 19 60 205 634 25 18
t-way 9 9 9 9 28 12

rand sel 14 9 9 9

_dip_debounce

random 11 10 10 9
vectors 12 28 54 7 27
t-way 49 40 40 56 41

rand sel 46 43 40

_aip_median_filter

random 40 40 40
vectors 17 57 174 504 17 15
t-way 101 49 25 22 36 21

rand sel 126 31 24 22

_sdc_fuel_control

random 84 58 25 18
vectors 16 49 146 400 14 40
t-way 42 23 23 23 80 18

rand sel 66 37 32 23

aip_spike_filter

random 82 82 66 16
vectors 73 271 972 2883 28 17
t-way 228 206 100 57 313 60

rand sel 182 146 63 57

_thc_decide_state

random 348 346 307 232
vectors 20 70 181 377 14 6
t-way 333 188 187 187 270 197

rand sel 407 299 264 189

_thc_autocal

random 410 335 299 221
vectors 34 142 562 1949 23 68
t-way 47 46 46 46 64 64

rand sel 46 46 46 46

_aip_apply_filters

random 46 46 46 46
vectors 17 62 208 662 17 17
t-way 443 443 443 443 444 446

rand sel 443 443 443 443

_gov_rpm_err

random 465 462 462 460
vectors 22 79 228 573 13 14
t-way 736 673 673 673 965 675

rand sel 700 673 673 673

_sdc_pre_start

random 742 742 742 742
vectors 21 81 299 1040 29 14
t-way 701 190 158 140 785 152

rand sel 663 270 148 140

_gov_gen_ffd_rpm

random 502 265 152 152

We can also calculate the mean number of vectors required to kill each mutant.
Here the number of vectors required achieve the best result is used and we find that
t-way requires 2.62 vectors per mutant, random selection 2.71 and random 3.70.

 The Effectiveness of T-Way Test Data Generation 23

In no case was base choice the best performing technique and in only two cases
was its performance comparable with the hand generated tests. These results were
surprising given that previous work as [11], [19] found the technique to perform
rather better.

Table 3. Execution times for the t-way adiquate test sets

Function Name Valid
Mutants

2-way 3-way 4-way 5-way Max
(hours)

_dip_debounce 81 76 210 743 1649 0.46
_aip_median_filter 217 64 127 248 0.07
_sdc_fuel_control 213 132 362 808 3667 1.02
aip_spike_filter 178 109 433 858 1665 0.46

_thc_decide_state 311 707 2723 8156 43451 12.07
_thc_autocal 386 139 582 2313 4253 1.18

_aip_apply_filters 669 198 420 675 2788 0.77
_gov_rpm_err 783 212 851 3239 8563 2.34
_sdc_pre_start 1237 906 1506 5083 16,231 4.51

_gov_gen_ffd_rpm 1227 972 2612 17,758 33,653 9.35

3.5 Experiment 2

3.5.1 Aims
There are two obvious issues with the data presented above. First that the execution
times are long for some functions compared with the time it takes to generate the tests
by hand. Timesheet data gives an average of 5.6 hours for AIP functions, 5.7 hours
for DIP and 1.9 hours for SDC function. Second, the number of vectors that would
have to be examined to determine if a test passed or failed is infeasiblely large. In
practice a large part of the problem with generating tests by hand is determining
whether the output is correct. Given the volume of tests generated automatically,
determining whether the code passes or fails places an unacceptable burden on the
tester and significantly reduces the utility of any automatic generation technique.

Therefore this experiment has two aims. First to investigate the potential of reduc-
ing the amount of time required to exercise all the mutants. Second to determine if a
minimal test set can be extracted from the process to reduce the oracle problem to a
manageable level.

3.5.2 Procedure
For this experiment we modified the test driver to record which vectors killed which
mutants for each set of test vectors. After all vectors had been run over all mutants the
optimisation routine determines which vector killed the most mutants and it is
selected to be retained, mutants it killed are removed from further consideration. This
is repeated until there are no new vectors that kill more than one mutant left.

The run with the next set of vectors excludes from consideration those mutants that
were previously killed by all preceding test sets but otherwise the optimisation proc-
ess is identical. This continues until the final set of vectors is run when the restriction
on not selecting vectors that only kill a single vector is removed.

24 M. Ellims, D. Ince, and M. Petre

Other procedures have been made to reduce the number of vectors that need to be
considered. A suggestion by Offutt [37] was to simply ignore vectors that do not kill
any mutants. However these experiments suggest that savings may not be great as
large number of vectors kill at least one mutant which is why we delay selecting these
until the final pass. Offutt et al. [38] suggest mechanism for selecting minimal sets of
vectors that again removes mutants as they are killed but runs the set of vectors in
different orders.

3.5.3 Results
From experiment 2 are shown in Table4 which for each function reports the time to
run the largest t-way test set (max), the time using the optimisation procedure outlined
above (min) and the percentage time saving for the optimisation (gain). Information
on vectors given is the number of hand generated vectors (hand), the size largest
single t-way adequate test set (max) and the size of the optimised test set (min). For
reference the t value of the test set that first resulted in the maximum number of
mutants killed is shown in the second column headed t.

Table 4 shows that in terms of time saved the optimisation procedure can deliver
significant saving for possibly the majority of functions, with an average saving of
close to 53%. However it is also clear that for functions that show no increase in mu-
tants killed at higher values of t the process can be counter productive e.g.
_dip_debounce but that it is not always the case e.g. _aip_apply_filters. The benefits
where high t values do show improvement are more supportive of the idea that the
optimisation scheme trialled here is worth while.

Table 4. Summary data for t-way optimisation runs

Function Name t Time (seconds) Vectors
max min gain hand max min

_dip_debounce 2 1649 2029 123 % 18 634 6
_aip_median_filter 3 248 67 27 % 27 54 9
_sdc_fuel_control 5 3667 1144 31 % 15 504 12
aip_spike_filter 2 1665 628 37 % 40 400 9
_thc_decide_state 5 43451 6942 16 % 17 2883 13
_thc_autocal 4 4253 1276 30 % 6 377 13
_aip_apply_filters 2 2788 2029 73 % 68 1949 7
_gov_rpm_err 2 8563 6118 71 % 17 662 4
_sdc_pre_start 2 16231 18212 112 % 14 573 12
_gov_gen_ffd_rpm 5 33653 5767 17 % 14 1040 22

Results for the size of the test sets from the optimisation routine are less ambiguous,
in eight of the ten cases the test sets are smaller than the hand generated test sets. In the
remaining two cases they are not significantly larger in terms of total tests required.

There is however one down side, as reported in [11] vectors that were selected by
the optimisation procedure were not very user friendly. That is, it takes a significant
effort to understand what is being tested. Here none of the test cases contained tests
that would be obvious to an engineer producing the test cases by hand (the first author

 The Effectiveness of T-Way Test Data Generation 25

was the engineer in charge of Wallace) and many, especially those for the function
_aip_apply_filters contained data that in practice would not be used and would be
disallowed by the tool that vets the engine control unit calibration data.

3.6 Investigations

There are a small number of interesting features present in Table 2 as follows;

• why is it so difficult to obtain a good kill rate for the _sdc_pre_start function?
• is the fault detecting ability of random testing really static for _sdc_pre_start?
• can we improve on the results for _gov_gen_ffd_rpm if we use more random tests?

Examination of live mutants _sdc_pre_start code revels the fact that the majority of
live mutants are connected with manipulating variables that have Boolean values. As
has been noted in other work [31] and in a large amount of research on searched
based test data generation [34], [39]. Boolean data appears to be intrinsically difficult
to deal with.

The _sdc_pre_start code was executed with a number of different randomly gener-
ated test sets using different seed for 288, 573, 1200 and 2400 values. While some of
the vector sets showed some improvement the best result returned was only 717 killed
mutants and all data sets showed the same flat pattern as shown in Table 2.

Code for _gov_gen_ffd_rpm was run with a test set of 2000 and 5000 vectors tak-
ing 12 and 32.4 hours to execute. The test set of size 2000 showed no improvement
while the test set of 5000 vectors killed only an additional 2 mutants.

4 Threats to Validity

Threats to external validity are that code being tested may not be representative of
other code though a variant of aip_median_filter has been used by other researchers
[40, 41] and the function itself in [42]. This however is a general problem in testing
research and code from different application domains is likely to have different. The
code used here is thought to be representative of fixed point integer code real-time
embedded applications domain.

A novel threat is that as the code development process was strongly controlled that
code actually may be easier to detect faults in than more typical code. The implication
is that the results presented here are possibly optimistic. The only approach is to use
other data sets, however often these do not have the necessary hand generated test
vectors available. Another threat is that code mutation may not be representative of
real faults. Results in [27] strongly suggest that test sets that are adequate for mutation
will also be effective for real faults.

The major threat to internal validity comes from the way that the data points were
used in the t-way and random selection data sets, being limited to minimum, median
and maximum values. This is simplistic however it should tend to bias the results
against success, resulting in a false negative. However the data selection process does
follows examples in books such as [43] which will possibly provide the primary
source of information on combinatorial techniques for practitioners.

The tool used to insert faults into the code may also presents a risk, while it avoids
the bias associated with hand seeded faults it is a relatively simple tool and is not

26 M. Ellims, D. Ince, and M. Petre

capable of introducing mutants over multiple lines. Analysis by one of the authors [44]
however suggests that the majority of effective operators have been implemented.

5 Conclusions

The results of these experiments have been surprising. At the start of this study we all
thought that 2-way techniques offered a valid way of testing critical software. How-
ever our results show that:

• 2-way (pairwise) combinatorial techniques using simple selection criteria for selec-
tion data points are not adequate with respect to hand generated tests for the more
complex functions as measured by mutants generated, nesting level and number of
condition statements.

• Test sets that involve higher values of t-way adequate tests appear to be as effec-
tive as hand generated tests at killing mutants. However this statement holds only
relative to being able to distinguish mutated from original code. We have not as-
sessed the relationship with “real” faults. However as noted above results from
[27] suggest that a test set for one will be effective on the other.

• Random testing can be surprisingly effective but is not reliable in the sense that it
may often provide good results, but this cannot be counted on.

6 Future Work

There are some obvious avenues of work that the authors are either currently pursuing
or intend to pursue in the near term. Firstly some initial work has been done using a
small number of hand generated vectors as the first step in the optimisation process.
This has been done by drawing small random samples from the existing hand gener-
ated tests. Initial results suggest that while the number of mutants killed is only mini-
mally affected there may be further savings to be made in execution time.

The Wallace code base contains functions with higher level of complexity than
those involved in this study. However these have as inputs large arrays of one or more
dimensions and it is not clear how to effectively deal with these data structures. Does
one treat them as a collection of individual variables or as a complete unit?

As noted above the data selection model used is possibly too simplistic. Previous
work [45] shows that there can be an advantage in using more complete data models.
This work should be repeated with higher t-way test sets.

The unit tests for the Boar project reported in [30] have been extracted from the
project archive and these may provide an interesting comparison. The unit testing for
this project was outsourced and it is known that there is a significant difference be-
tween Wallace and Boar in what activity in the unit test process (test design vs. test
run) errors were revealed.

One area of interest is the effect that the mutant comparison function has on
the ability to detect faults. The current comparison functions are derived directly from
the hand generated tests and compares not only the output values but in most cases the
majority of other input data to check for invalid modification. It would be interesting
to determine what effect changing these functions has on the ability of vectors to kill
mutants.

 The Effectiveness of T-Way Test Data Generation 27

Acknowledgments

Our thanks to J. H. Andrews for making his mutation tool available for evaluation.

References

1. Duran, J., Ntafos, S.: An Evaluation of Random Testing. IEEE Trans. Softw. Eng. 10(4),
438–444 (1984)

2. Gallagher, M.J., Narasimhan, V.L.: ADTEST: A Test Data Generation Suite for Ada Soft-
ware Systems. IEEE Trans. Softw. Eng. 23(8), 473–484 (1997)

3. Cohen, D.M., et al.: The AETG System: An Approach to Testing Based on Combinatorial
Design. IEEE Trans. Softw. Eng. 23(7), 437–444 (1997)

4. Diamond, W.J.: Practical Experiment Design For Engineers and Scientists. John Wiley &
Sons, New York (2001)

5. Mandl, R.: Orthogonal Latin Squares: an Application of Experiment Design to Compiler
Testing. Commun. ACM 28(10), 1054–1058 (1985)

6. Sherwood, G.: Effective Testing of Factor Combinations. In: Third Int’l Conf. Software
Testing, Analysis and Review, Software Quality Eng. pp. 151–166 (1994)

7. Brownlie, R., Prowse, J., Phadke, M.S.: Robust Testing of AT&T PMX/StarMAIL Using
Oats. AT&T Technical Journal 71(3), 41–47 (1992)

8. Cohen, D.M., et al.: The Automatic Efficient Test Generator (AETG) System. In: Proceed-
ings 5th International Symposium on Software Reliability Engineering, pp. 303–309. IEEE
Computer Society, Los Alamitos (1994)

9. Dalal, S., et al.: Model-based Testing of a Highly Programmable System. In: Proc. of the
Ninth International Symposium on Software Reliability Engineering. IEEE Computer So-
ciety, Los Alamitos (1998)

10. Dalal, S.R., et al.: Model-based Testing in Practice. In: Proc. of the 21st Int’l Conf. on
Software Engineering, pp. 285–294. IEEE Computer Society, Los Alamitos (1999)

11. Smith, B., Feather, M.S., Muscettola, N.: Challenges and Methods in Testing the Remote
Agent Planner. In: Proceedings of the Fifth International Conference on Artificial Intelli-
gence Planning Systems, pp. 254–263. AAAI Press, Menlo Park (2000)

12. Wallace, D.R., Kuhn, D.R.: Failure Modes in medical device software: an analysis of 15
years of recall data. International Journal of Reliability, Quality and Safety Engineer-
ing 8(4), 351–371 (2001)

13. Kuhn, D.R., Reilly, M.J.: An Investigation of the Applicability of Design of Experiments
to Software Testing. In: Proceedings of the 27th Annual NASA Goddard Software Engi-
neering Workshop (SEW-27 2002). IEEE Computer Society, Los Alamitos (2002)

14. Kuhn, D.R., Wallace, D.R., Gallo, A.M.: Software Fault Interactions and Implications for
Software Testing. IEEE Trans. Softw. Eng. 30(6), 418–421 (2004)

15. Dunietz, I.S., et al.: Applying Design of Experiments to Software Testing: Experience Re-
port. In: Proc.of the 19th Int’l Conf. on Software Eng., pp. 205–215. ACM Press, New
York (1997)

16. Nair, V.N., et al.: A Statistical Assessment of some Software Testing Strategies and Ap-
plication of Experimental Design Techniques. Statistica Sinica 8, 165–184 (1998)

17. Kobayashi, N., Tsuchiya, T., Kikuno, T.: Non-Specification-Based Approaches to Logic
Testing for Software. Information and Software Technology 44(2), 113–121 (2002)

28 M. Ellims, D. Ince, and M. Petre

18. Schroeder, P.J., Bolaki, P., Gopu, V.: Comparing the Fault Detection Effectiveness of N-
way and Random Test Suites. In: ISESE 2004: Proceedings of the 2004 International
Symposium on Empirical Software Engineering, pp. 49–59. IEEE Computer Society, Los
Alamitos (2004)

19. Grindal, M., et al.: An Evaluation of Combination Strategies for Test Case Selection, in
Technical Report, Department of Computer Science, University of Skövde (2003)

20. Malaiya, Y.K.: Antirandom testing: getting the most out of black-box testing. In: Proceed-
ings, Sixth International Symposium on Software Reliability Engineering, pp. 86–95
(1995)

21. Hamlet, R.G.: Testing Programs with the Aid of a Compiler. IEEE Trans. Softw.
Eng. 3(4), 279–290 (1977)

22. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on Test Data Selection: Help for the
Practising Programmer. Computer, 34–41 (1978)

23. Daran, M., Thevenod-Fosse, P.: Software Error Analysis: a Real Case Study Involving
Real Faults and Mutations. SIGSOFT Softw. Eng. Notes 21(3), 158–171 (1996)

24. Frankl, P.G., Weiss, S.N., and Hu, C.: All-uses vs. mutation testing: an experimental com-
parison of effectiveness. J. Syst. Softw. 38(3), 235–253 (1997)

25. Zhan, Y., Clark, J.A.: Search-Based Mutation Testing for Simulink Models. In: Proc. of
the 2005 Conference on Genetic and Evolutionary Computation, pp. 1061–1068. ACM
Press, New York (2005)

26. Offutt, A.J., Voas, J.M.: Subsumption of Condition Coverage Techniques by Mutation
Testing, in Tech. Report, Dept. of Information and Software Systems Engineering, George
Mason Univ., Fairfax, Va (1996)

27. Andrews, J.H., Briand, L.C., Labiche, Y.: Is Mutation an Appropriate Tool for Test Ex-
periments? In: Proc. of the 27th Int’l Conf. on Software Engineering, pp. 402–411. ACM
Press, New York (2005)

28. Anon.: Functional Safety of Electrical/Electronic/Programmable electronic safety-related
systems, Part 1: General Requirements, BS EN 61508-1:2002, British Standards (2002)

29. Woodward, M.R., Hedley, D., Hennel, M.A.: Experience with Path Analysis and Testing
of Programs. IEEE Trans. Softw. Eng. 6(6), 228–278 (1980)

30. Ellims, M., Bridges, J., Ince, D.C.: The Economics of Unit Testing. Empirical Softw.
Eng. 11(1), 5–31 (2006)

31. Ellims, M., Ince, D., Petre, M.: The Csaw C Mutation Tool: Initial Results. In: Mutation
2007. IEEE Computer Society, Los Alamitos (2007)

32. Lei, Y., et al.: IPOG: A General Strategy for T-Way Software Testing. In: 14th Annual
IEEE Int’l Conf. and Workshops on the Engineering of Computer-Based Systems (ECBS
2007), pp. 549–556. IEEE Computer Society, Los Alamitos (2007)

33. Jenny (accessed June 2007), http://www.burtleburtle.net/bob/math
34. Michael, C.C., McGraw, G., Schatz, M.A.: Generating Software Test Data by Evolution.

IEEE Trans. Softw. Eng. 27(12), 1085–1110 (2001)
35. Wichmann, B.A., Hill, I.D.: Generating Good Pseudo-Random Numbers. Computational

Statistics & Data Analysis 51(3), 1614–1622 (2006)
36. Ammann, P.E., Offutt, J.: Using Formal Methods to Derive Test Frames in Category-

Partition Testing. In: Proc. of 9th Annual Conf. on Computer Assurance (COMPASS
1994), pp. 824–830. IEEE Computer Society, Los Alamitos (1994)

37. Offutt, A.J.: A Practical System for Mutation Testing: Help for the Common Programmer.
In: Proc. of the IEEE Int’l Test Conference on TEST: The Next 25 Years, pp. 824–830.
IEEE Computer Society, Los Alamitos (1994)

 The Effectiveness of T-Way Test Data Generation 29

38. Offutt, J.A., Pan, J., Voas, J.M.: Procedures for Reducing the Size of Coverage Based Test
Sets. In: Twelfth Int. Conf. on Testing Computer Software, pp. 111–123 (1995)

39. Bottaci, L.: Instrumenting Programs with Flag Variables for Test Data Search by Genetic
Algorithms. In: Proc. of the Genetic and Evolutionary Computation Conference. Morgan
Kaufmann Publishers, San Francisco (2002)

40. Gotlieb, A.: Exploiting Symmetries to Test Programs. In: Proceedings of the 14th Interna-
tional Symposium on Software Reliability Engineering, p. 365. IEEE Computer Society,
Los Alamitos (2003)

41. Offutt, A.J., et al.: An Experimental Determination of Sufficient Mutant Operators. ACM
Trans. Softw. Eng. Methodol. 5(2), 99–118 (1996)

42. Dillon, E., Meudec, C.: Automatic Test Data Generation from Embedded C Code. In:
Heisel, M., Liggesmeyer, P., Wittmann, S. (eds.) SAFECOMP 2004. LNCS, vol. 3219, pp.
180–194. Springer, Heidelberg (2004)

43. Copeland, L.: A Practitioner’s Guide to Software Test Design. Artech House Publishers,
Boston (2004)

44. Ellims, M.: The Csaw Mutation Tool Users Guide, in Technical Report, Department of
Computer Science, Open University (2007)

45. Ellims, M., Ince, D., Petre, M.: AETG vs. Man: an Assessment of the Effectiveness of
Combinatorial Test Data Generation, in Technical Report, Department of Computer Sci-
ence, Open University (2007)

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp.30–43, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Towards Agile Engineering of High-Integrity Systems

Richard F. Paige1, Ramon Charalambous1, Xiaocheng Ge1, and Phillip J. Brooke2

1 Department of Computer Science, University of York, Heslington, York, YO10 5DD
{paige,xchge}@cs.york.ac.uk, ramon.charalambous@gmail.com

2 School of Computing, University of Teesside, Middlesbrough, UK
pjb@scm.tees.ac.uk

Abstract. We describe the results of a pilot study on the application of an agile
process to building a high-integrity software system. The challenges in applying
an agile process in this domain are outlined, and potential solutions for dealing
with issues of communication, scalability, and system complexity are proposed.
We report on the safety process, argumentation generated to support the proc-
ess, and the technology and tools used to strengthen the agile process in terms
of support for verification and validation.

1 Introduction

Critical software systems development is typically approached through use of rigor-
ous processes, through careful consideration of risks and mitigation, and via substan-
tial planning. The so-called plan-driven processes that are invariably preferred for
high-integrity software (HIS) development have evolved to support rigorous devel-
opment of products. However, the emergence of new technologies, requirements vola-
tility, the desire to achieve incremental certification, and undesired documentation
costs cause difficulties for many organisations in applying plan-driven processes.

Agile processes (APs) are iterative and incremental, and aim to cope with volatile
requirements while improving the flexibility of the development process, through a
number of concrete technical practices. APs, such as Extreme Programming (XP)
[3], pose both opportunities and challenges in the domain of HIS engineering: the
flexibility and volatility problems tackled by APs are exactly those experienced by
HIS development; and the mechanisms through which APs achieve success are diffi-
cult to combine with verification, validation, and certification requirements for HISs.

For a HIS to be deployed, it needs to be certified as acceptably safe. Certification
is normally process-based and requires substantial evidence, often in the form of
rigorously presented documentation. But APs can deprecate the production of
documentation in favour of greater focus on the production of working code. In this
paper we report on an experiment to assess the applicability of an AP to the devel-
opment of high quality software with safety requirements. We also aim to identify
areas in which APs require modification in order to become fully compatible with
HIS development. The feasibility of applying APs to HIS will be assessed with an
attempt to develop a simple avionics application and an accompanying simulator
using XP.

 Towards Agile Engineering of High-Integrity Systems 31

2 Background and Related Work

2.1 Plan-Driven Processes

High-integrity systems – whether safety critical or safety related – are traditionally
viewed as best developed via plan-driven processes. Plan-driven processes are based
on the idea of software undergoing various transformations from specification to
code, based on decisions made early in the project’s lifecycle. Plans involve estimat-
ing costs and resource demands, identifying risks associated with a project and
finding ways to eliminate or minimize them, and tracking progress throughout the
project’s lifecycle. Thorough documentation allows developers to gather information
for assessing the quality and effectiveness of their work. Plan-driven methods’ main
strength is that they provide predictability and repeatability of results [6]. Expert
consensus is that the most effective way of facilitating communication between the
various engineering fields involved in HIS development is through inherent documen-
tation [4,9,17,18]. Documentation also serves as a way of capturing evidence of com-
pliance to standards. Documentation is seen as necessary and unavoidable in HIS
development, although the degree to which it is conducted varies according to project.

A potential source of problems in plan-driven processes is reliance on contracts as
procurement mechanisms. Contracts often result in delays in schedules and can prove
damaging to supplier-customer relations due to ambiguity of terms, which leads to
mistrust. [6] identify contracts as the main conduit for interaction between developers
and customers, and as a potential stress point in customer-developer relations.

2.2 Agile Processes

The basic concept of all APs is the Observe-Orient-Decide-Act (OODA) loop [20]
(Fig. 1). Humans make decisions in a cyclic fashion, based on information they col-
lect through observation of their environment. That information is used to orient
one’s perspective on the situation, make decisions regarding the actions one will take,
and carry out those actions. If one can reduce the time it takes from observation to ac-
tion, one can gain advantage over the opposition.

Fig. 1. The OODA Loop [20]

32 R.F. Paige et al.

The OODA loop concept is fundamental to an AP. The key idea behind the way
APs operate is that by keeping release cycles short, development can rapidly adapt to
changes in the environment and requirements through decision making and acting,
based on the most relevant and up-to-date information. APs are based on the princi-
ples defined in the Manifesto for Agile Software Development [15]. The principles
can be summarized as: focus on customer satisfaction through frequent delivery of
high quality software; empower the people involved in the development; favor face-
to-face communication over comprehensive documentation; simplicity of design; and
make the customer an active member of the team.

The focus of APs on software development varies; some APs are built around pro-
gramming activities, while others consider the entire software lifecycle. Despite their
differences, all APs share the same vision of how agile software development should
be and they all directly support the principles of agile software development found in
the Manifesto. [1] mentions nine of the most prevailing techniques today. These in-
clude Adaptive Software Development, Agile Modelling, the Crystal family, Dy-
namic Systems Development Method, XP, Feature-Driven Development, and Scrum.

APs have been almost exclusively used for in-house development or dedicated de-
velopment environments. In the HIS domain this assumption rarely holds, as HI
(software) systems development typically involves “critical mass” capabilities
through monolithic and inflexible requirements, and re-engineering or interfacing
with legacy systems built using traditional development methods [6].

2.3 Applying APs to HIS

If the HIS industry desires to accelerate release cycles in order to cope with an in-
creasingly evolving business and technological environment, then APs may be of
value. Despite the limited literature on the use of APs in the HIS domain, the scarcity
of empirical data, and the fact that research in this field is at an early stage, there are
indications that AP are applicable to critical systems development [4,6,7,10,14,16].
AP practices also appear to be partially aligned with standards such as the RTCA DO-
178B [9,21] and ISO/IEC 12207-1995 [19]. APs are compatible with frameworks
such as the CMMI [5]. The consensus of these studies is that APs will have to un-
dergo extensive tailoring in order to become fully compatible with HIS development.
We summarise some of the key challenges that must be overcome.

2.3.1 Communication
APs facilitate communication in an informal way, through face-to-face verbal com-
munication and tacit knowledge [6,8,9,16]. The face-to-face manner with which inter-
action takes place in APs, is regarded as the most effective form of communication.
This manner of communication works well if the complexity of the project and the
amount of information conveyed is relatively low. This is not likely to be the usual
case in HIS projects. Another limiting factor is team size: the larger a development
team, the more communication channels exist within the team. Again, human capacity
for retaining and processing information becomes a barrier.

2.3.2 Documentation
Reconciling documentation with AP practices is challenging. Avoiding excessive
documentation is not only one of the main principles of the agile philosophy, but also

 Towards Agile Engineering of High-Integrity Systems 33

one of the main sources of agility. The misconception that APs reject documentation
practices altogether is a result of the effectiveness with which internal communication
is achieved. The lack of an explicit documentation mechanism could limit APs’ appli-
cability to HIS development, as certification requirements for documentation may
prove overwhelming. Artefacts such as source code or unit tests may prove inade-
quate for certification purposes if they are used as the primary documentation means.

2.3.3 Customer Participation
APs rely heavily on customer participation for project success. As [16] points out
there is no single, clear role for customers in HI systems development. Customers can
come from a number of industries, business and technical backgrounds, each with
their own agendas and perspectives of the system under development. Certification
bodies may also be viewed as customers, whose participation requires independence
when it comes to verifying that a system meets certification requirements. In APs,
customers are responsible for planning iterations, identifying risks and developing ac-
ceptance tests. Without customers, teams are left to make these decisions on their own
using monolithic requirements as drivers for decision-making. The frequent customer
feedback achieved through short development cycles is an important input to APs.
The techniques used for HIS procurement isolate customers from the development
process to the point where coarse feedback of the type “the system works or the sys-
tem does not work” is given on an infrequent basis.

2.3.4 Multiple-Domain Engineering
The development of HIS requires knowledge and experience from a variety of engi-
neering backgrounds. This can create friction between the software teams involved in
the project and teams from other engineering backgrounds [9].

2.3.5 Testing
Testing has a prominent position among agile practices, especially in the case of XP.
In XP, testing is done constantly throughout the lifecycle, through the development of
unit tests written prior to the implementation of system features. Test Driven Devel-
opment (TDD), one of the cornerstones of XP, is found to be compatible with stan-
dards such as DO-178B [2,9]. Besides black-box testing, HI software development
also involves white-box testing techniques such as static verification and coverage
testing. White-box testing is not addressed by APs and this is a potential area in which
improvements can be made. However, this is difficult as these techniques are time-
consuming, expensive and some of them are difficult to carry out incrementally. Ac-
ceptance testing of critical systems is expensive and the opportunity to perform it
does not appear very often. The iterative nature of APs may require that such tests be
performed several times over, to determine the reliability of subsequent increments;
this is clearly unfeasible.

2.3.6 Incrementality
HI systems are characterized by large numbers of often inflexible requirements of
high priority. APs rely on the assumption that low-priority requirements that hold lit-
tle value for the customer can be deferred to a future increment. This is an area in
which friction between HI software development and the fundamentals of APs start to
appear. [16] also highlights the issue of incremental certification; specifically, they

34 R.F. Paige et al.

question whether a safe but incomplete design can be incrementally certified. Defin-
ing what constitutes an increment, as well as the number of increments required to
reach a critical mass of functionality adequate for certification, is one of the main con-
cerns with the application of APs to HIS.

3 Adapting APs to HIS Development

The previous section identified a number of challenges that must be overcome in or-
der to attempt to apply an AP for building a high-integrity system. This section pro-
vides suggestions for adapting APs to HIS development. In particular, we present
suggestions on how APs can be “cross pollinated” with plan-driven approaches, in or-
der to achieve both a degree of agility and the rigor necessary for HIS development.

3.1 Agility Across the HIS Development Spectrum

HI software development should not be performed in isolation from the rest of the de-
velopment activities. [9] points out that HIS development can benefit from agility
when it is applied “across the software/systems boundary”. Aligning systems engi-
neering activities with APs can potentially resolve incremental development and in-
terfacing issues between software and system engineering activities, resulting in a
more unified relationship between the various engineering disciplines involved in HIS
development. The use of tools (such as Simulink) with automatic code generation ap-
pears promising in homogenizing software and systems engineering activities [16,19].

Leveraging the benefits of Pair Programming can help align software and systems
engineer perspectives [16]. By pairing software and systems engineers, the communi-
cation gap between software teams and systems teams is abridged. This practice is
likely to face problems in terms of acclimatization of systems engineers with the agile
culture. It is also unclear how oversight requirements can be satisfied. However, the
benefits of increased design quality through constant evaluation and direct communi-
cation are a strong incentive for the application of this practice to HIS development.

3.2 Using Risk as a Driver for Planning and Design

A critical component of plan-driven approaches is risk management. [6] proposed that
a balance between agile and plan-based approaches can be achieved with risk man-
agement as a catalyst. They propose a hybrid method that uses risk as a driver for
determining the mix of agility and planning a software development process should
possess, and offer guidelines on applying the method. The concept of risk manage-
ment as a basis for agility is also discussed in [5]. [9] advocates that risk-driven plan-
ning can reduce the dangers of incremental development to an acceptable and man-
ageable level. However, they stress that in order for risk management to be used
effectively, a certain level of maturity and experience in applying it are required.

In terms of design, risk management can assist in designing the system so that an-
ticipated changes are easily absorbed [6,9]. Identifying the risks associated with vola-
tile requirements can enable developers to create change-resilient designs. However,
there needs to be a balance between simplicity and modifiability of designs.

 Towards Agile Engineering of High-Integrity Systems 35

3.3 Documentation

An approach to compensating for the lack of intra-team documentation in APs is the
generation of documentation artefacts from code [19,21]. [19] suggests that APs can
be made compatible with documentation requirements of standards such as the
ISO/IEC 12007 through the use of software tools. [21] proposes that agile documenta-
tion techniques be used for documents that cannot be automatically generated. APs
limit the need for documentation-based communication, through the use of face-to-
face communication. However, in the case of external communication, documentation
directed at stakeholders is needed. [19] suggests the introduction of a model based on
Brooks’ “Surgical team”, using a documentation subteam. Information capturing can
be enhanced by tools that extract documentation from source code and test suites.

3.4 Incremental Development Process

The incremental nature of APs poses substantial challenges for HIS development. The
idea of always delivering a “working system” after each iteration is difficult to reconcile
with the reality of building (often embedded) HIS that must also be certified. [9] sug-
gests that a “pipelined iterations” model be used to schedule development activities on
increments at different engineering levels throughout the iterations phase of the project
lifecycle. Fig. 2 depicts the engineering activities performed on given requirements sets
simultaneously. Interactions between the different engineering roles may yield derived
safety requirements which further complicate the process.

The authors address the issue of incremental certification by introducing minor and
major iterations to the above model, using DO-178B as the certifiability criterion of
an increment [9]. Minor iterations aim at designing, assessing and implementing a
given set of requirements across engineering roles, while major iterations aim at pre-
paring releases for acceptance testing. Releases are considered as conditionally safe,
since acceptance test results may reveal the need for changes. In addition, several ac-
ceptance tests will be deferred until the final release, whereupon expensive, one-off
tests will be performed.

Fig. 2. Pipelined iterations process

36 R.F. Paige et al.

3.5 Testing

While APs generally emphasise testing, it is usually acceptance and unit testing that
are applied. Incorporating white-box testing, static analysis and verification
techniques and MC/DC testing is challenging: these are intensive activities whose
execution reduces agility and impedes rapid feedback. [4] mentions that static analy-
sis testing activities for security critical systems can be automated through the use of
tools that support the application of such testing activities within an agile context.
They also propose the introduction of dynamic analysis tools - such as fault injection -
that similarly reduce overheads. [16] propose the use of simulators and testing rigs
with which expensive acceptance tests can be accommodated at the end of iterations.

3.6 Customising an Agile Process for HIS

XP is not fully compatible with the needs of critical systems development. If XP is to
yield certifiable software within schedule and budget constraints, it has to undergo
modifications. The process we have developed is what we term an evenly weighted
variant of XP, tailored to the needs of the particular case study that we aim to build.
XP intended to be tailored to the needs of the team and the project. While defining the
tailored process, we drew from practices proven by software engineers for building
HIS. We also included techniques currently used in plan-driven methods for HI soft-
ware development that traditional XP lacks, while remaining fundamentally agile.

The flexibility of XP allows for its augmentation through the addition of risk
management, safety analysis and safety case development techniques. The proposed
process retains the original XP practices, with the exception of the Metaphor and Col-
lective Ownership practices. The project workforce should be segmented into domain
teams, assigning each with distinct and clear development responsibilities, and sup-
porting them with technical service teams. It is suggested that teams are kept small
(up to 12 members) in order to be responsive with regards to communication. Techni-
cal writing teams are required, tasked with collecting and documenting information
on the various aspects of development that are taken into consideration when the
software is submitted for certification. The necessity for the inclusion of technical
service teams comprising of domain experts (e.g., aerodynamics experts) will depend
on the complexity and size of the system to be built.

The process we have developed resembles pure XP, and comprises a series of steps
that are performed iteratively; Fig. 3 illustrates the process. During iteration n, Busi-
ness prepares and selects stories for the next iteration n+1 and the next increment is
defined. TDD is conducted on the current increment n, while a team is verifying the
previous increment n-1 through simulations and test runs on hardware testbeds. Safety
analysis and safety case development activities are performed on the n-2 increment.
At the end of an increment, evaluation and adjusting of the process is performed by
development teams using feedback and metrics from past iterations.

Much of the process (TDD, V&V, planning, story engineering, and evaluation)
come from XP. A new and important part of each iteration is exploration. An explo-
ration spike ranging from a few days to a few weeks is conducted before the iterative
stage of the project begins. This enables developers to understand the purpose of the
system to be developed, define an initial architecture which evolves throughout the
lifecycle, and serves as a substitute to the Metaphor practice. The need for exploration
should diminish with time, as the workforce gains knowledge.

 Towards Agile Engineering of High-Integrity Systems 37

Fig. 3. The HIS-XP development process with pipelined iterations

4 Case Study

We now report briefly on a case study we carried out to assess the applicability of the
HIS-XP process for building safety-related software systems. The Integrated Altitude
Data Display System (IADDS) is responsible for providing pilots with altitude data
during flight. It is also responsible for issuing warnings to pilots whenever altitude
limits are reached. Pilots are able to display altitude readings based on the Sensor Of
Interest (SOI), i.e., barometric or radar equipment. IADDS is in general part of a lar-
ger avionics suite consisting of communications, navigational, weather monitoring
and flight control running on a common IMA platform. In addition to IADDS, we
developed a simple simulator for the operational environment, which served as a test-
bed. Development of the simulator application was in parallel to the Altimeter appli-
cation. IADDS possesses a number of safety properties and constraints, e.g.,

• IADDS altitude must equal simulator’s calibrated altitude.
• The software must always issue audible (but suppressible) and visible (non-

suppressible) warnings whenever the minimal altitude limit is exceeded while
landing gear is retracted.

• Automatic data mode switching function must transparently and without user
intervention switch from barometric mode to radar mode whenever the current
SOI’s indicated altitude equals 1500 feet while the aircraft is descending.

(Typically, such safety properties would include requirements for detection and cor-
rection of errors due to temperature lapse; we made simplifying assumptions.) The
abstract architecture of IADDS is illustrated in Fig. 4.

The simulator serves a dual purpose; it can be used as a means of verifying the
correctness of the Altimeter’s behaviour, and during acceptance testing. The simu-
lator software provides users with a GUI through which the various parameters
(MSL altitude, local QNH) that determine atmospheric pressure can be set. The
simulator will enable users to determine whether the expected altitude is correctly
estimated by IADDS, by displaying the calibrated altitude for the currently defined
area pressure.

38 R.F. Paige et al.

Fig. 4. Abstract Architecture of IADDS

XP heavily relies on tools that automate parts of the development process. Any tool
used in XP development must be able to automate the process it is designed to support
(e.g., unit testing) as much as possible to make its use worthwhile. For this experi-
ment, we applied Microsoft’s Spec# static verification tool, NUnit for TDD, Visual
Studio 2005 as an IDE, NCover for coverage testing, UWG3 for creating fault trees,
Adelard’s ASCE for safety case development, and Enterprise Architect for documen-
tation. We now briefly outline how the HIS-XP process was applied for building
IADDS and its simulator, touching on the key phases of the process.

4.1 User Stories

Stories for the IADDS and Simulator applications were developed with the help of an
airline pilot, who assumed the roles of customer and domain expert. Information
about altitude measuring technologies was provided by the customer. Throughout the
story engineering stage, domain knowledge was readily supplied. An interesting chal-
lenge encountered during the story engineering stage was educating the customer in
story development. Expressivity and clarity of the stories produced improved gradu-
ally over time. The main difference between the stories used for this experiment and
conventional XP stories is the inclusion of an additional field called ‘Fitness Criteria’
[18]. Fitness criteria explicitly define any safety properties and constraints that a story
must satisfy. Such constraints are normally accounted for by test cases; however the
inclusion of fitness criteria in a story makes safety case development activities easier
by readily identifying evidence associated with a particular feature.

4.2 Safety Stories

Safety stories represent safety requirements discovered during the safety analysis
stage of an iteration. They resemble regular user stories, although their purpose is to

 Towards Agile Engineering of High-Integrity Systems 39

capture information related to hazards that exist within implemented user stories. Fig. 5
shows a safety story from the IADDS application. The purpose of distinguishing be-
tween user and safety stories is to provide means for documenting the outputs of the
safety engineering steps of the process, and ensuring that product-related evidence is
captured, as well as a way of prioritizing and estimating changes to existing code.

Fig. 5. Safety story card for IADDS

4.3 Planning and Risk Management

The initial release plan was divided into three iterations, each culminating in a work-
ing version of the IADDS software. A fourth iteration was added for detecting and
correcting residual defects. The customer was only involved in IADDS story engi-
neering. Requirements for the simulation tool were extracted from IADDS system re-
quirements. The average ideal engineering time (IET) per iteration was estimated to 6
days out of 14. The actual average IET per iteration was 5.5 days. Total actual IET for
both IADDS and Simulator applications was 16.5 days.

During risk management activities for IADDS, risk-defining variables were taken
into consideration for each story. A series of questions representing about the likeli-
hood of each variable (see below) were answered, and the answer to each question
produced the value assigned to the variable for a particular story. Unanswered ques-
tions were given a high risk value, until variables can be assigned a value by confi-
dently answering the corresponding questions. The number and types of risk variables
can vary according to the type of project undertaken. The number of risk variables
used for the stories in this project was deliberately kept low, although in a real-world
project the number of variables would be much higher and would likely involve dif-
ferent risks for each increment.

40 R.F. Paige et al.

Risk variable Question asked

Technical know-how Do we know how to develop this feature?

Skill and technology Do we have the tools necessary to develop this feature?

Story volatility How likely is it for this feature to change in the near future?

Scale of change How much of this feature is likely to change?

Criticality How critical is the feature’s role in overall system safety?

4.4 Test-Driven Development

The test suites for the IADDS and simulator software applications were developed in
C# and tested using NUnit. The sources of the tests are fitness criteria from user and
safety stories, as well as specifications of desirable software behaviour in the presence
of certain conditions. Additionally, tests can come from domain experts, systems and
safety engineers and the on-site customer representative. To illustrate how tests are
developed, take for example the following fitness criterion taken from the user story
“Radar signal roundtrip times should never be negative, unless the user opts for er-
roneous output”. A test for this criterion is as follows.

public void RadarSignalTimeGreaterThanZero()
{

Simulation mySim = new Simulation(new decimal(1000),
 new decimal(1013.25));
mySim.TerrainElevation = 100;
Assert.IsFalse(mySim.CurrentAltitude < 0 &&
 mySim.CurrentAltitude >= mySim.TerrainElevation);
mySim.AllowErroneousOutput = false;
Assert.IsTrue(mySim.GetRadarSignalRoundtripTime() > 0);

}

The above test aims at verifying that the software will always produce a positive
roundtrip value for a given radar signal S, provided that the necessary environmental
conditions hold when the method is called.

The role of tests as evidence that can be used to argue a system’s safety raises the
question of tool reliability and correctness. Tools such as NUnit classify as verifica-
tion tools from a DO-178B viewpoint. Although many certified systems have been
successfully developed with unqualified tools, software vendors still need to ensure
that any TDD tools used have the ability to detect all errors that a piece of software
may potentially contain, and does not insert any errors in the software being verified.

4.5 Safety Process

Incremental hazard and safety analysis activities resulted in safety stories, which in
some cases adversely affected iteration plans and development activities. It soon be-
came apparent that incremental safety activities are difficult to carry out, as safety re-
quirements discovered may invalidate design decisions made in earlier iterations.

During safety analysis of the software artefacts of the project, tools were used for
producing and analyzing items such as fault trees. It became clear that automatic tool
support for safety activities is helpful, but it is only partially addresses the issues

 Towards Agile Engineering of High-Integrity Systems 41

associated with safety activities. What is needed is true integration of safety analysis
activities with APs; we conducted only a partial integration of these activities.

Unlike plan-driven approaches, the incremental nature of Agile development does
not allow for complete hazard identification and assessment to be conducted up front,
before implementation of the design begins. Hazard management should therefore be
incremental in order to be successfully applied to XP projects.

The discovered hazards associated with the stories allocated to a given iteration
were recorded in a Hazard Log, along with a textual analysis of each hazard. Details
for each hazard include a severity value, a likelihood of occurrence value, and a risk
exposure value. The process for identifying hazards was rather simple, consisting of
inspections of the user stories allocated to the increment under scrutiny and of any ini-
tial design ideas. The conditions under which operation of the software could poten-
tially jeopardize system safety were then assessed. Although less sophisticated than
techniques such as SHARD or LISA [17], this proved effective.

Safety analysis was conducted using the extended FTA technique proposed by
Kaiser et al [12]. The tool UGW3 was used to construct a set of fault trees for IADDS
and to calculate the failure probability of IADDS components. The extended approach
to FTA presented in [44] was selected due to its modular approach to safety analysis.
The technique allows for analysis to take place on a partial design, and facilitates the
reusability of CEG components. The CEG approach can be conducted in an incre-
mental manner, resulting in smaller, understandable and more manageable models.

Within an XP context, the safety process used to assess a system’s safety needs to
result in rapid feedback in order to be effective. Independence requirements isolate
safety teams from development teams, although some participation of software engi-
neers in the safety process is necessary. The boundary between safety and develop-
ment teams imposed by independence requirements creates overheads in the digestion
of safety requirements. Batch delivery of safety requirements can adversely influence
the progress of an iteration, causing breakage of tests and code, creating the need for
rework to bring already integrated code up to date with safety requirements. Stories
may be deferred to later iterations in order for teams to cope with safety requirements
implementation, although this suggests a departure from plans and budget estimates.

Safety case development was conducted as an external activity to software devel-
opment by a group of safety engineers who collected evidence to support claims about
the software process’ ability to yield HIS products, and a system’s suitability for op-
eration within a specific context, by constantly refining a set of contingent prelimi-
nary arguments. This was done until a comprehensive safety case emerged.

Although it is preferable that a safety case for a system built with XP evolves in-
crementally alongside the system itself, safety case development is not in any way
constrained to an incremental model. An initial safety case that evolves through evi-
dence collected with every iteration is ideal; however the necessary evidence may not
become available until the later stages of a project. If that is the case, safety argu-
ments can be produced towards the end of the lifecycle.

The approach used to argue the safety of IADDS was product-based. Evidence is
primarily associated with the software product, although process-related arguments
are vital to successfully arguing IADDS safety. The method selected for arguing
IADDS’ safety was GSN, as the notation and six step method [13] are suitable for
incrementally developing maintainable and highly expressive arguments. Argu-
ments were developed for the IADDS application using Adelard’s ASCE tool. The

42 R.F. Paige et al.

IADDS safety case was relatively small. The strategies adopted in constructing the
“implementation safe” argument were based on safety requirements satisfaction and
identified hazard omission. The goals resulting from the hazard omission strategy
were supported with fault tree, hardware component failure rates and cutset evidence.
Goals regarding safety requirements satisfaction were solved using evidence such as
unit testing results and simulation results. The “implementation correct” argument
was structured by approaching it with strategies for arguing over satisfactory test re-
sults and completeness of implementation. Process arguments were used to support
product arguments for IADDS. These were included in the product arguments as ref-
erences to process-related arguments. This approach is based on “Away Goals” [11],
an extension to existing GSN notation. Away goals are “placeholders” for process-
related arguments which defend the provenance of product evidence, as well as strat-
egy context. The tool used to develop the safety case for IADDS does not support
away goals; GSN notes were used instead to refer to the supporting arguments.

5 Conclusions

Although XP and APs in general were not designed with safety-critical systems de-
velopment in mind, they can be adapted to that sort of development. The exact capac-
ity of the XP variant proposed in this report for achieving a given software level (as
defined in DO-178B) is not known; it is rather unlikely that level A software can be
produced in the near future with the modifications made to the process so far. The
current aim of Agile Methods should not be to replace plan-driven approaches, but to
complement their use by applying them to the areas where plan-driven methods do
not perform as well as their Agile counterparts.

In the future, we should work at developing a framework of procedures and tech-
niques with which the hybrid process used in our experiment can be adapted to the
needs of any project size and of complexity. The core parts of the process will remain
unchanged; the framework will allow developers to tailor the method to their needs and
managers to plan the lifecycle and orchestrate resources, using risk-based techniques.
Also of interest should be developing high-level architectural plans that enable develop-
ers gain a clear understanding of the system and its purpose, by substituting or supple-
menting the Metaphor practice. The framework should define guidelines with which
such artefacts can be developed and evolved throughout the lifecycle.

Acknowledgments. We thank the referees for their helpful suggestions. The research
presented in this paper was supported by the Engineering and Physical Sciences Re-
search Council, as part of the Large-Scale Complex IT Systems research programme,
and research grant EP/F001096/1.

References

1. Abrahamsson, P., Wasta, J., Siponen, M.T., Ronkainein, J.: New directions on Agile
Methods. In: Dillon, L., Tichy, W. (eds.) Proc. ICSE 2003, pp. 244–254. ACM Press, New
York (2003)

2. Amey, P., Chapman, R.: Static verification and Extreme Programming. In: Sward, R. (ed.)
Proc. SigADA 2004, pp. 4–9 (2004)

 Towards Agile Engineering of High-Integrity Systems 43

3. Beck, K.: Extreme Programming explained. Addison-Wesley, Reading (2000)
4. Beznosov, K., Kruchten, P.: Towards agile security assurance. In: Sekar, R., McHugh, J.

(eds.) Proc. 2004 Workshop on New security paradigms, pp. 47–54 (2004)
5. Boehm, B.: Get Ready for Agile Methods, with Care. IEEE Computer 35, 64–69 (2002)
6. Boehm, B., Turner, R.: Balancing agility and discipline. Pearson, London (2003)
7. Boström, G., Wäyrynen, J., Bodén, M., Beznosov, K., Kruchten, P.: Extending XP prac-

tices to support security requirements engineering. In: Bruschi, D., De Win, B. (eds.) Proc.
Workshop on Software engineering for secure systems, ICSE 2006, pp.11–18. ACM Press,
New York (2006)

8. Eckstein, J.: Agile Software Development in the Large. Dorset House (2004)
9. Galloway, A., Paige, R.F.: On the use of Agile Methods for High-Integrity Real-Time Sys-

tems, DARP Technical Report DARP-TR-2006-5 (2006)
10. Grenning, J., Peeters, J., Behring, C.: Agile development for embedded software. In: Zan-

nier, C., Erdogmus, H., Lindstrom, L. (eds.) XP/Agile Universe 2004. LNCS, vol. 3134,
pp. 194–195. Springer, Heidelberg (2004)

11. Habli, I., Kelly, T.: Process and product certification arguments. ACM SIGBED Re-
view 3(4), 1–8 (2006)

12. Kaiser, B., Liggesmeyer, P., Mäckel, O.: A new component concept for fault trees. In:
Cant, T. (ed.) Proc. 8th Australian Workshop on Safety critical systems and software, pp.
37–46. Australian Computer Society (2003)

13. Kelly, T.P.: Arguing safety – A systematic approach to managing safety cases (PhD the-
sis), University of York (1998)

14. Manhart, P., Schneider, K.: Breaking the ice for Agile Development of Embedded soft-
ware: an industry experience report. In: Estublier, J., Rosenblum, D. (eds.) Proc. ICSE
2004, pp. 378–386. ACM Press, New York (2004)

15. Manifesto for Agile Software Development (2007), http://agilemanifesto.org/
16. Paige, R.F., Chivers, H., McDermid, J.A., Stephenson, Z.R.: High-Integrity Extreme Pro-

gramming. In: Omicini, A. (ed.) Proc. SAC 2005, pp. 1518–1523. ACM Press, New York
(2005)

17. Pumfrey, D.J.: The principled design of computer system safety analyses (PhD thesis),
University of York (1999)

18. Robertson, S., Robertson, J.: Mastering the requirements process, AWL (2006)
19. Theunissen, W.H.M., Kourie, D.G., Watson, B.W.: Standards and agile software devel-

opment. In: Eloff, J., et al. (eds.) Proc. Enablement through technology, vol. 47, pp. 178–
188 (2003)

20. Wikipedia contributors, OODA Loop, Wikipedia, The Free Encyclopedia,
http://en.wikipedia.org/w/index.php?title=OODA_Loop&oldid=15
4056152

21. Wils, A., Van Baelen, S.: Towards an Agile avionics process (2007), http://www.agile-
itea.org/public/deliverables/ITEA-AGILE-D2.12_v1.0.pdf

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 44–57, 2008.
© Springer-Verlag Berlin Heidelberg 2008

SafeSpection – A Systematic Customization Approach
for Software Hazard Identification

Christian Denger, Mario Trapp, and Peter Liggesmeyer

Fraunhofer Institute Experimental Software Engineering, Fraunhofer-Platz 1,
67663 Kaiserslautern, Germany

{Christian.Denger,Mario.Trapp,
Peter.Liggesmeyer}@iese.fraunhofer.de

Abstract. Software is an integral part of many technical systems and responsi-
ble for the realization of safety-critical features contained therein. Conse-
quently, software has to be carefully considered in safety analysis efforts to
ensure that it does not cause any system hazards. Safety engineering approaches
borrowed from systems engineering, like Failure Mode and Effect Analysis,
Fault Tree Analysis, or Hazard and Operability Studies, have been applied on
software-intensive systems. However, in order to be successful, tailoring is
needed to the characteristics of software and the concrete application context.
Furthermore, due to the manual and expert-dependent nature of these tech-
niques, the results are often not repeatable and address mainly syntactic issues.
This paper presents the concepts of a customization framework to support the
definition and implementation of project-specific software hazard identification
approaches. The key-concepts of the approach, generic guide-phrases, and tai-
loring concepts to create objective, project-specific support to detect safety-
weaknesses of software-intensive systems are introduced.

Keywords: Software Safety, Guide-Phrases, SafeSpection, Software FMEA,
Software FTA, Software HAZOP.

1 Introduction

Over the last decades, embedded systems have become an integral part of our daily
lives. Especially in the automotive domain, software-intensive systems execute and
control a variety of functions and safety measures. Without software, many innovative
functions and features would be hard or even impossible to realize.

As a part of a safety-critical system, i.e., a system whose failure might endanger
human life, cause extensive environmental damage, or lead to substantial economic
loss [1], the software itself must be perceived as safety-critical. In other words, as part
of the system the software has the potential of putting the overall system into a haz-
ardous situation. In that sense, Leveson defines safety critical software as any soft-
ware that can contribute to the occurrence of a hazardous system state either directly
or indirectly [2]. As an example of the safety criticality of software, General Motors
had to recall almost one million cars due to problems with their airbag system. On
paved roads under normal conditions the software interpreted the unstable movement

 SafeSpection – A Systematic Customization Approach 45

of the cars as a crash and activated the airbag. Similar examples can be found that
demonstrate the importance of including software in system safety analysis activities
executed during the development life-cycle.

Hence, in the automotive domain, recent standards (e.g., IEC 61508, ISO/WD
26262, MISRA Safety Analysis Guide) request a thorough software safety analysis.
The standards require the application of safety engineering techniques on the func-
tional concept and on the software architecture [3], [4]. In order to fulfill this, compa-
nies typically apply safety analysis techniques like Failure Mode and Effect Analysis
(FMEA), Hazard and Operability Studies (HAZOP), and Fault Tree Analyses (FTA)
to identify potential system hazards caused by the software. However, the applied
techniques are often not customized to the characteristics of software and conse-
quently do not support the identification of conceptual software faults. Mainly, the
standard processes of system-FMEA, -FTA, and -HAZOP techniques are used to
analyze the software work products. These processes are of a manual nature without
concrete guidance on how to identify software faults. The results rely on the experi-
ence of the moderator and the participating experts and hence the analysis is not re-
peatable, subjective and results cannot be compared between different development
teams. During the last decades, some approaches have evolved on how safety analysis
techniques can be applied to software. As Section 2 demonstrates, the efficient appli-
cation of these techniques still remains unclear. The main reason for this is that many
approaches focus the analysts on very detailed, low-level software causes of hazards
like uninitialized variables, too late or too early execution of algorithms, and wrong
data models. Additionally, the guidance provided by existing approaches is often on a
general-purpose level not tailored to the specific context characteristics of a (soft-
ware-) project. Hence, only general aspects like correctness and completeness issues,
and syntactic aspects are captured. Conceptual software faults, i.e., faults in the logic
of the software models, are rarely in the scope of existing approaches. In conse-
quence, what is missing today is an approach that provides systematic guidance on
how to customize safety-analysis techniques to the characteristics of a software de-
velopment context. This approach should support the identification of conceptual,
semantic software faults that might cause system hazards. The identification should
be performed during the early development phases to provide real added value. Safe-
Spection has been developed to close this gap.

Section 2 provides a detailed overview of the state of the art regarding software
safety analyses and motivates the approach. Section 3 introduces the core concept of
SafeSpection: guide-phrases and a grammar to systematically derive project-specific
guidance on detecting conceptual software faults causing system hazards. Section 4
outlines the results of an initial feasibility study in an industrial setting. Section 5
concludes the paper and provides some future research topics.

2 Existing Software Safety Analysis Approaches

Even though the idea of software safety analysis techniques has been around for sev-
eral decades, the number of publications regarding this topic remains quite small [6].
The following subsections categorize the existing approaches and provide a critical
review of these regarding their repeatability, customizability, and focus.

46 C. Denger, M. Trapp, and P. Liggesmeyer

2.1 A General View on Existing Software Safety Approaches

According to Fenelon et al. [5], software safety analysis approaches are categorized
according to the direction of the search for software causes of hazards. Explorative,
inductive, deductive, and descriptive approaches are distinguished. This classification
is based on the categorization of safety analysis techniques used in systems engineer-
ing. In order to provide a more intuitive, software-related classification we rephrased
and extended this existing scheme.

On an abstract level software safety analysis approaches are classified according to
the underlying systems engineering techniques they are based upon. Thus, HAZOP-
like approaches, FMEA-like approaches, Inspection-like approaches, and Formal-
approaches are distinguished indicating that the identification of software causes of
hazards is based on standard FMEA, HAZOP, inspection and formal approach, re-
spectively. FTA-like approaches are not considered in this scheme as these require
software hazards as an input and therefore do not provide concepts to identify these.
In addition to this abstract categorization each approach is classified according to the
scheme illustrated in Fig. 1

Fig. 1. Categorization Scheme for Characteristics of Software Hazard Analysis Approaches

Notation classifies the approaches according to the software development notations
to which they can be applied. The sub-classes of Notation are not orthogonal, that is,
it is possible that a technique is applicable to different notations. Type characterizes
the support provided by the approach in detecting software causes of hazards. The
subtype “ad-hoc/experience-based” indicates that no explicit support is provided; the
sub-type “guide-words/checklists” indicates that some triggers are provided that point
analysts to potential software faults; “scenarios” represent a special kind of support
that gives procedural guidance to the analysts. Scope provides a classification of the
types of software issues that are addressed (e.g., communication issues, correctness
issues, completeness aspects). Additionally, the approaches are classified according to
the software life-cycle phases they are designed for (i.e., requirements analysis, archi-
tecture definition, detailed design, and code).

 SafeSpection – A Systematic Customization Approach 47

We classified 60 references according to this scheme. 33 approaches explicitly
mention the use of FMEA principles to analyze software caused hazards, including
approaches that use a combination of FMEA and FTA. 20 approaches are based on
HAZOP ideas and five on inspection ideas. This result indicates that FMEA is the
technique applied most frequently for identifying and analyzing software causes of
hazards. Classifying the approaches according to Fig. 1 shows that most of the ap-
proaches are defined for lower-level development phases, i.e., detailed design and
code. This finding seems to contradict the finding that natural language is the notation
to which most of the approaches are applied. However, a close analysis of the ap-
proaches shows that they operate on detailed design specifications of code modules
written in natural language, technical models like state-charts, and variable defini-
tions. Analyzing the scope of the existing techniques shows that due to the provided
guidance, i.e., guidewords such as commission, omission, early, late, and the applica-
tion of these on assets like services, variables, data rates, and signals mainly the detec-
tion of syntactic faults and correctness issues is supported. Software faults on a more
subtle, logical level are often not detectable using these approaches.

2.2 Detailed Discussion of Selected Approaches

In the class of HAZOP-like approaches, the most prominent one is the SHARD
approach defined by [9]. The underlying idea of the approach is the suggestion of
potential failure modes of the software by means of guidewords. The focus is on the
interfaces of major software components and on the data- and control-flow between
them. SHARD provides the guidewords service commission, service omission, ser-
vice timing (early, late), and service value (incorrect) to support the detection of po-
tential deviations of the software behavior during the requirement phase. Lisagor et al.
extended the SHARD approach for architecture evaluations [12]. Similar approaches
are SoftwareHAZOP [10, 11] which applies standard HAZOP guidewords (more,
less, part-of, other-than, before, after, etc.) to different software notations (data-flow
diagrams, state-charts, class-diagrams). A formal variant of HAZOP-like techniques
is defined by Reese et al. [13]: the software deviation analysis. The idea is that based
on pre-defined software deviations, it is possible to derive deviation scenarios from a
formal model of the software.

Regarding FMEA-like approaches the most prominent ones are the HiPHOPS ap-
proach [14, 15] and the Bidirectional Analysis [8]. Both approaches are a combination
of FMEA and FTA approaches during the software requirements and design phase.
The idea is to investigate the impact of software failure modes on the software and
system level using a FMEA. Then, the identified hazards that are most critical are
analyzed in detail by means of an FTA to decide whether or not the hazard really can
occur. In case of [15], the FTA can be automatically derived from the formal repre-
sentation of the FMEA results. More recently, the SoftCare approach has been de-
fined [16]. This is also a combination of FMEA and FTA but some more guidance is
provided on how to identify initial software failure modes. For this purpose, the
guidewords (commission, omission, service timing, service value) are applied to
software-related constructs (data, procedures, variables). The resulting list of potential
software failures, however, contains a huge list of items pointing mainly to syntactic
issues (e.g., wrong data value, late procedure call).

48 C. Denger, M. Trapp, and P. Liggesmeyer

Summarizing the analysis of the state of the art of existing approaches, the follow-
ing open issues get evident: 1) Even though requested by many authors (e.g., [2], [6],
[11]), there is no systematic approach on how to perform a customization of the
analyses to a given project context. 2) Many approaches assume that the software
failure modes, i.e., the software causes of a hazard, are already known when the
analysis starts. In practice, this is not the case and the identification of the failure
modes is dependent on the experience and the knowledge of the analysts. This results
in subjective, non-repeatable, hard-to-compare results. 3) Even in the case that guid-
ance is provided for detecting potential software failure modes this guidance mainly
focuses on correctness and completeness issues of software work products. However,
such aspects are also addressed by standard software inspection approaches and it is
important to carefully analyze the overlap of software inspections and the proposed
software safety analysis approaches. Independent of that is the fact that systematic
guidance on how to detect conceptual faults that have an impact on software-safety
are missing. Remember the airbag example given in the introduction. The software
was correct and complete but contained a conceptual fault. The algorithms used in the
software to detect the system state “crash” contained a conceptual fault as they were
too shock-sensitive in certain driving situations.

3 The SafeSpection Framework

The overall objective of SafeSpection is the systematization of the detection of soft-
ware caused hazards, i.e., software failure modes. In that sense, SafeSpection supports
the customization and execution of software FMEA and software FTA analyses by
guiding the analysts in the identification of software causes of hazards. Hence, Safe-
Spection must not be perceived as a substitution but as an add-on to these approaches
to overcome the issues related to their execution. A framework for customizing soft-
ware safety guide-phrases to a specific project context is the core of the SafeSpection
approach that realizes the systematization.

3.1 Approach to Systematization

In order to efficiently and effectively detect software failure modes, it is essential to
provide systematic guidance that focuses the analysts not only on syntactic issues but
mainly on conceptual software faults. The following example taken from a real-world
accident illustrates the importance of focusing on conceptual software faults: The
system specification requires that certain functions of an electronic control unit of an
aircraft are executable if and only if the plane is “on ground”. The system-state “on
ground” is realized by the software as:

aircraft is on ground if signal_wheels_turning == true and signal_pressure_wheels >= x lb.

Typically, the moderator of a FMEA or a HAZOP analysis is responsible for trigger-
ing the analysis team with suitable questions that point to potentially unsafe behavior.
Using HAZOP guidewords, one would trigger the team with questions like “Is the
signal_wheels_turning correct?”, “Is the signal_wheels_turning late?”, “Is the sig-
nal_pressure_wheels too early or omitted?” To answer these questions the software is
analyzed in detail to determine whether or not these events can occur. This is mainly a

 SafeSpection – A Systematic Customization Approach 49

syntactic check. What is missing is the check of whether or not the software realiza-
tion represents a safe solution. An experienced moderator might ask additional ques-
tions pointing at conceptual faults like: “Is it possible that the aircraft is on ground but
the wheels are not turning?” or “Is a situation possible where the wheels are not turn-
ing or pressure is < x lb but the aircraft is on ground?” Asking these questions reveals
that the software realization is correct but not safe: in case of aqua-planning the
wheels are not turning but the aircraft is on ground!.

In order to overcome the reliance on expert experiences, SafeSpection provides an
abstract framework that allows the flexible customization of guide-phrases to a spe-
cific project and product context. The guide-phrases are defined in such a way that
they support the detection of conceptual software faults that cause system level haz-
ards. The underlying idea of the framework is the “formalization” of the provided
support in terms of guide-phrase patterns that are derived from a guide-phrase meta-
model. Based on the meta-model and the patterns, it is possible to instantiate project-
specific guide-phrases that point to conceptual faults. Both the definition of the
patterns and the instantiation of the guide-phrases are supported by SafeSpection
guidelines. This results in more specific guidance on the detection of software-caused
hazards, reduces the overlap of software-safety analysis and standard quality assur-
ance by focusing on conceptual faults rather than syntactic issues (which are ad-
dressed by standard quality assurance activities like software inspections), and makes
the results of the analysis repeatable, i.e., less dependent on individual experts, and
easier to compare between teams. The core elements of the SafeSpection framework
and their application are outlined in the following sections.

3.2 The SafeSpection Framework Concepts and Their Application

SafeSpection differentiates between three abstraction layers of guide-phrases (cf.
Fig. 3). On the highest level, meta-meta-questions define the building blocks of a
guide-phrase. The meta-meta-questions are the fundamental element for defining
systematic and repeatable guidance for the detection of conceptual software faults, as
they prescribe the structure of a general guide-phrase. According to the SafeSpection
approach, a guide-phrase comprises two main parts, a Trigger-Part and an Effect-Part
(cf. Fig. 2). The Trigger-Part is a sentence that represents a question pointing to ele-
ments in the functional specification of the software that might contain conceptual
faults. The Trigger-Part element comprises three sub-elements: The Object represents
elements of a software specification in the focus of the analysis for potential faults
(e.g., a function, service or component). The Influence Factor describes issues that
can have a potentially negative impact on the Object. Finally, Interference describes
the type of impact that is imposed by the Influence Factor on the Object. Each trig-
ger-part of a guide-phrase has one object, one influence factor, and one interference.
The Effect-Part is either a closed question asking about the possibility that an already
known hazard is caused by the question described in the trigger-part, or it is an open
question asking about the possible / thinkable consequences or impacts if the question
described by the Trigger Part becomes true.

50 C. Denger, M. Trapp, and P. Liggesmeyer

Fig. 2. The Meta-Meta-Questions Defining the Structure of SafeSpection Guide Phrases

Having introduced the basic building blocks, the SafeSpection framework defines
meta-questions that represent domain-specific instantiations of the concepts Objects
and Influence Factors.

Fig. 3. The Hierarchies for the SafeSpection MetaModel

Consequently, these meta-questions represent generic guide-phrases that are appli-
cable in a certain domain and that are an intermediate abstraction layer allowing the
systematic customization of feasible, project-specific guidance.

In order to use the SafeSpection framework efficiently it is the responsibility of a
safety manager and a software development leader to identify the domain-specific
instantiations of the meta-meta-questions. This activity has to be done in close
cooperation between software development and safety management to gather the

 SafeSpection – A Systematic Customization Approach 51

Nr. Question

1 How is the behavior of the application software typically described in the domain (in
terms of functions, services, processes)?

2 Can software functions within this domain be characterized with respect to time con-
straints, pre-conditions, post-conditions?

3 Which modeling elements / components are used to describe the software function in the
domain (e.g., sate-machines, data-flow models)

… …..

12 Are assumptions regarding the realization of functions to be considered?

13 What environmental conditions can have an impact on the software behavior (e.g.,
weather conditions, road-conditions)?

14 Is the software behavior dependent on operational modes (e.g., power-up, power-down)?

Fig. 4. SafeSpection Interview-Guide to Identify Guide-Phrase Objects and Influence Factors

knowledge and experience of both worlds. The concepts need to be identified for the
given domain of the systems developed (e.g., electronic control units for a car). Safe-
Spection provides an interview guide that supports the identification of relevant ob-
jects and influence factors (see an excerpt in Fig. 4).

The result of this activity is a set of generic guide-phrases that comprise the do-
main-specific objects and influence factors. The results of the interviews should be
backed up with a comprehensive study of existing functional specifications of ECUs
in the company to identify additional objects and influence factors. In the aircraft
example, one could identify software realizations of external conditions as an object,
i.e., the formula for “on ground”. Examples of influence factors in this domain are
weather conditions, flight situations like landing, take-of, and so on. Hence, the iden-
tification of a complete set of object and influence factors is a crucial success factor of
the SafeSpection approach.

We elicited domain-specific objects and influence factors in the context of func-
tional specifications of electronic control units of cars. In this domain, typical objects
are the functions/services and their characteristics (pre-conditions, timing constraints,
realization, accuracy, assumptions), the interfaces of the functions/services to other
functions (i.e., exchanged signals, their syntax, their semantic, and timing); and the
interactions the functions are involved in. The influence factors that can have a
negative impact on these objects are in the SafeSpection approach: environmental
conditions (e.g., weather conditions, road conditions), operational situations (e.g.,
high-speed driving, urban driving), technical constraints (e.g., latency of actuators,
frequency of sensor polling), realization assumptions (e.g., algorithm xyz is used to
approximate vehicle speed), operational modes (e.g., power-up, power-down, diagno-
sis), and the change of technical constraints (e.g., reusing software in another hard-
ware environment, change of sensor characteristics due to aging).

In order to standardize the definition of the generic guide-phrases, SafeSpection
provides a grammar. This grammar defines rules on how objects and influence factors
are combined into a SafeSpection guide-phrase. The core structure of each guide-
phrase follows the rule: S Intro ● Influence ● interference ● Object?, where Intro
is a phrase introducing a question, like “Does the…”, “Is it possible that…”. Influence
and Object are the identified domain-specific objects and influence factors, and inter-
ference defines the type of impact on the object. In our aircraft example applying
SafeSpection leads to the following generic guide-phrase: “Does the <<weather

52 C. Denger, M. Trapp, and P. Liggesmeyer

condition>> invalidate the <<software realization>> of <<system condition>>. The
words in <<..>> are the generic objects and influence factors that need to be identified
by the experts using the SafeSpection interview guidelines.

According to the combination of objects, interferences, and influence factors, the
SafeSpection approach predefines the following types of guide-phrases that address
certain types of software-caused hazards in the context of an ECU.

Name Scope
1. Overall
assumptions

Supports the identification of software-caused hazards that stem from a violation of system-
wide constraints, pre-requisites and assumptions by the software realization.

2. External
Influence

Supports the identification of software-caused hazards that stem from an inappropriate
consideration of special characteristics of driving situation, operational modes, and
environmental conditions in the software.

3. Changed
Environment

Supports the identification of software-caused hazards that stem from changes in the software
environment (like changed technical constraints, changed application context, changed sensor
characteristics) that are not properly mapped / considered in the software realization.

4. Communication Supports the identification of software-caused hazards that stem from wrong or inappropriate
interactions of software elements and software-realized functions / services / processes.

5. Functional
Realization

Supports the identification of software-caused hazards that stem from an improper realization
and an insufficient consideration of influences on the software behavior (like the fulfillment of
assumptions, prerequisites constraints that are not given in certain operation of modes).

6. Special
Functions

Supports the identification of software-caused hazards that stem from the implementation of
degradation scenarios that are not properly integrated in the overall functional concept.

Fig. 5. Types of Guide-Phrase Patterns in the SafeSpection Framework

For each type, one or more generic guide-phrase is provided. With respect to the
analysis of functional specifications of ECUs, we defined a set of generic guide-
phrases for the types defined above. The following questions represent guide-phrases
of the type external influence and changed environments:

Does the <<characteristic>> of <<driving situation>> invalidate the
<<pre-condition>> || <<post-condition>> of <<function>>?

Does the change of <<characteristics>> of <<sensor>> || <<actuator>>
violate the timing-constraints of <<function>>?

In the Appendix of thi paper an excerpt of the full set of generic guide-phrases
supporting the detection of conceptual faults is listed. The advantage of the guide-
phrases is their generic nature aimed at conceptual faults compared to the syntactic
guidance provided by existing HAZOP guidewords. Moreover, the guide-phrases are
already tailored to the application domain and hence more specific than general-
purpose guidewords. The following comparison clarifies this advantage: the checklist
questions defined by Leveson [2] typically aim at completeness issues, e.g.,: “A trig-
ger involving the nonexistence of an input must be fully bounded in time”. Guide-
phrases defined with the SafeSpection approach would perceive the definition of such
a trigger and its time bounds as objects of the specification, i.e., SafeSpection takes
these as inputs. These objects are combined with influence factors to check whether
or not the time bound can be violated for example by external conditions or whether
or not the time bound contradicts realization assumptions underlying the software.

Finally, the generic guide-phrases are instantiated to concrete guide-phrases that
are applicable in a certain project. That is, the generic meta-questions defined for the
application domain are instantiated with concrete objects and influence factors of a

 SafeSpection – A Systematic Customization Approach 53

software project. In our aircraft example, the generic guide-phrase is instantiated with
the concrete objects and influence factors: “Does rainy weather invalidate the soft-
ware realization plane on ground if the wheels are turning and the pressure is >= x
lb?” The person responsible for this activity is typically a quality assurance person of
the project team whose functional specification is analyzed. The resulting guide-
phrases are used by the analysis team to identify conceptual faults in the functional
specification. It is most important to identify those generic guide-phrases that are
relevant for the specific project context. Again, the SafeSpection framework provides
guidelines on how to perform this instantiation in terms of expert interviews. The
project-specific guide-phrases result in systematically tailored guidance addressing
the real safety needs in a project context. The detection of conceptual software faults
in the project becomes a repeatable activity and focused on the project-characteristics
rather than on providing general-purpose guidance. The identified guide-phrases can
be used as a stand-alone technique similar to an inspection approach, using the guide-
phrases as checklist questions or as part of the software FMEA and software FTA
activities where they guide the analysis team in detecting software failure modes and
software causes of hazards.

4 SafeSpection Application

In order to validate the applicability of the SafeSpection framework, we validated its
core concepts in an industrial project. The objective of the project was the develop-
ment of a complex, distributed system to realize new functionality in a car. Due to
confidentiality reasons it is not possible to show details of the software system or its
architecture, but on an abstract basis the project can be described.

4.1 The Application Context

The software system in this project realizes an innovative feature of a future car. The
overall software system comprises 8 sub-systems interconnected by a network. Each
sub-system is responsible for the realization of one or more features of the functional-
ity. By applying SafeSpection, the manufacturer of the system wanted to ensure that
the software system does not impact the overall value-adding processes in an unac-
ceptable way. Hence, in this project, safety was not defined in the common way, i.e.,
loss of life, or injury to people, but as the loss of an immense amount of money due to
such potential negative influences caused by the software system. The SafeSpection
approach was used to support the identification of conceptual faults in the general
functional specification of the software system and its conceptual architecture. The
analysis was performed at the end of the requirements analysis step and after the con-
ceptual architecture of the system had been defined. The manufacturer had already
performed an analysis of the potential risks caused by the software system but without
systematic guidance.

4.2 The Application Process

The execution of the software safety analysis was organized in 3 full-day workshops.
Based on the already identified catastrophic influences of the software system, a

54 C. Denger, M. Trapp, and P. Liggesmeyer

fault-tree analysis was performed to analyze the software causes of the unwanted
events. In order to support this step, i.e., the identification of conceptual software
faults causing the top-event, the SafeSpection framework was used to identify and
apply supporting guide-phrases. As outlined in the last section, the first step of the
SafeSpection approach is the definition of generic guide-phrases that combine objects
and potential influence factors. The analysis of the 500-page software specification
written mainly in natural language and the conceptual overview of the software archi-
tecture resulted in the following generic objects: processes, components, interactions,
pre- and post-conditions, assumptions, and constraints; and in the generic influence
factors operational mode, system assumptions, technical and environmental con-
straints. Based on these concepts generic guide-phrases could be created.

In order to identify potential software causes for the unwanted events, the concrete
instances of the identified generic phrases needed to be identified. This was done as
part of the FTA workshop. Starting from the unwanted event, those concrete system
processes influenced by the software were identified that directly contribute to the
unwanted event. Then the components realizing the identified processes as well as the
interaction of these components were identified together with the customer’s experts.
This was done using the customization questions defined in the SafeSpection frame-
work and the results of this step were documented by extended sequence charts show-
ing all concrete objects of realizing the selected processes (see Fig. 6).

The swim-lanes show the concrete components that participate in the identified
processes. The grey-boxes represent the objects, pre-conditions, post-conditions,
constraints, and assumptions. These were also identified as part of the workshop in
cooperation with the customer’s experts. For example, the component Pre-Processing
1 requires as a pre-condition the availability of a certain data-item (xyz) and that the
initialization has been performed successfully. The component Pre-Processing 2 must
fulfill the constraint that the processing of data is completed within 5 ms. The compo-
nent Data-buffer contains the implicit assumption that not more than 25 requests are
sent within one second. Finally, as a post-condition of the whole process the plausible
data are presented at the software interface as a output.

 The negative form of the post-condition of the whole process represents the un-
wanted event, i.e., the top-event of the fault tree. Now, the selected guide-phrase pat-
terns guide the identification of the causes of the unwanted top-event. In other words,
the guide-phrases were used to systematically identify potential software causes of the
unwanted top-events. As it was not possible to derive explicit influence factors prior
to the workshop (due to time limitations in the project) the guide-phrases were used as
open questions. That is, the guide-phrase patterns were modified in such a way that
they ask for potential influence factors that invalidate the object under discussion. The
following list shows an excerpt of instantiated guide-phrase patterns derived for ana-
lyzing the objects in the sequence chart.
Is it possible that the realization of pre-processing 1 violates the timing constraint
“needs to finish in 5 ms” of pre-processing 2?

• Which characteristic of the operational mode contradicts the realization of
pre-processing 1?

• Which external condition invalidates the realization of pre-processing 2?
• Which change of characteristics of external components interacting with the

application software violate the pre-conditions of pre-processing 1?

 SafeSpection – A Systematic Customization Approach 55

Pre-
Processing 1

Pre-
Processing 2

User
Interface

Data-
buffer

Input xyz required;
component must

be initialized

Retrieved data
are plausible

Needs to finish
within 5 ms

Not more than 25
requests / s.

Fig. 6. Application of the Guide-Phrases

• Which change of characteristics of external components interacting with the
application software violate the assumptions of the data buffer?

• Is it possible that the semantic of messages is different for pre-processing 1
and pre-processing 2?

The analysis starts from the unwanted top-event and asks whether or not an inter-
mediate event that is described by the guide-phrase triggers the top-event. If this is the
case, the event is added to the fault tree, if not, the event described by the next guide-
phrase is investigated until all guide-phrases have been considered. The workshop
leaders (two of the authors of this paper) derived the guide-phrases, asked the related
questions, and modeled the results as extensions of the fault tree.

4.3 The Application Results

Using the guide-phrases defined by the SafeSpection approach resulted in a system-
atic and easy to apply refinement of the fault tree top-events. The developers involved
in the analysis perceived the fault tree technique and the systematic consideration of
potential causes as a highly valuable technique to detect conceptual faults in their
functional software specification. The application of SafeSpection resulted in project-
specific guidance, which could be quickly derived during the FTA-meeting. The man-
agement perceived the approach as a success, as the results provided additional
conceptual weaknesses in the software specification.

56 C. Denger, M. Trapp, and P. Liggesmeyer

Criticality of Finding

none
18%

small
42%

medium
8%

high
28%

critical
4%

Fig. 7. Criticality of the Software Faults detected with SafeSpection

For the highest prioritized top-event, for example, we could identify 50 additional
software faults that could cause the top-event. For the 32 findings rated as high and
critical a careful re-consideration of the software specification was performed and miti-
gation strategies needed to be defined. These results show that the SafeSpection ap-
proach created customized guide-phrases that identify so far undetected conceptual
software faults quickly and in a feasible way during the FTA-meeting. We could detect
and resolve several faults that might have caused catastrophic events for the company.

5 Conclusion

The SafeSpection framework introduced here provides a feasible approach to identify
customized and project-specific guidance for the detection of conceptual software
faults that have the potential of causing safety-critical system events. We demon-
strated the feasibility of the core concept of the approach (a grammar for defining
generic guide-phrases) in an industrial case study. The customized guide-phrases
supported the identification of 50 additional software faults; 32 of them required the
definition of suitable mitigation strategies to prevent a catastrophic top-event.

In future steps, it is important to validate the applicability of the customization
approach in more detail. First, it is important to validate the completeness of the pro-
vided support on identifying objects and influence factors of the guide-phrases. Sec-
ond, the resulting guide-phrases will be compared in an empirical study with standard
software-safety analysis techniques (like FMEA or FTA) with respect to the type of
detected software faults (is it possible to detect more conceptual faults) and the re-
peatability and comparability of the results.

References

1. Knight, J.C.: Safety Critical Systems: Challenges and Directions. In: 24th International
Conference on Software Engineering (ICSE 2002), pp. 547–550. ACM, New York (2002)

2. Leveson, N.: Safeware – System Safety and Computers. Addison Wesley Publishers, Bos-
ton (1995)

3. IEC 61508: Institute of Electrical and Electronics Engineers. Functional Safety of electri-
cal/electronic/programmable electronic safety-related systems Part 3 Requirements on
Software (1999)

 SafeSpection – A Systematic Customization Approach 57

4. ISOWD 26262, Road vehicles, Functional Safety Part 6: Product development software.
Working draft (2006)

5. Fenelon, P., McDermid, J.A., Pumfrey, D.J., Nicholson, M.: Towards Integrated Safety
Analysis and Design. ACM Computing Reviews 2(1), 21–32 (1994)

6. McDermid, J.A.: Software Hazard and Safety Analysis. In: Lecture Notes in Computer
Science, vol. 2469, pp. 23–34 (2002)

7. Papadopoulos, Y., et al.: A Method and Tool Support for Model-based Semi-automated
Failure Modes and Effects Analysis for Engineering Designs. In: 9th Australian Workshop
on Safety Related Programmable Systems (SCS 2004), pp. 89–95. Australian Computer
Society (2004)

8. Lutz, R.R., Woodhouse, R.M.: Bi-directional Analysis for Certification of Safety-Critical
Software. In: The proceedings of the International Software Assurance Certification
Conference (ISACC 1999), pp. 1–9. Springer, Heidelberg (1999)

9. Pumfrey, D.J.: The Principled Design of Computer System Safety Analysis. PhD thesis.
Department of Computer Science, University of York, UK (1999)

10. Chudleigh, M.: Hazard analysis using HAZOP: A case study. In: 12th International
Conference on Computer Safety, Reliability and Security (SAFECOMP 1993), pp. 99–
108. Springer, Heidelberg (1993)

11. Redmill, F., Chudleigh, M., Catmur, J.: System Safety: HAZOP and Software HAZOP, p.
248. John Wiley & Sons Ltd., Chichester (1999)

12. Lisagor, O., et al.: Safety Analysis of Software Architectures – Lightweight PSSA. In: The
proceedings of the 22nd International System Safety Conference (ISSC 2004). IEEE
Computer Society, Los Alamitos (2004)

13. Reese, J.D., Leveson, N.G.: Software Deviation Analysis. In: 19th International
Conference on Software Engineering (ICSE), pp. 250–260. IEEE, Los Alamitos (1997)

14. Papadoupoulos, Y., et al.: Hierarchically Performed Hazard Origin and Propagation
Studies. In: Felici, M., Kanoun, K., Pasquini, A. (eds.) SAFECOMP 1999. LNCS,
vol. 1698, pp. 139–152. Springer, Heidelberg (1999)

15. Papadopoulos, Y., et al.: Automating the Failure Mode and Effects Analysis of Safety
Critical Systems. In: The proceedings of the 8th International Symposium on High
Assurance Systems Engineering (HASE 2004), pp. 310–311 (2004)

16. Rodriguez-Dapena, R.: Software safety verification in critical software intensive systems.
Phd Thesis, Eindhoven Technical University, University Printing Office (2002)

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 58–71, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Integrating Safety Analyses and Component-Based
Design

Dominik Domis and Mario Trapp

Fraunhofer Institute for Experimental Software Engineering, Fraunhofer-Platz 1,
67663 Kaiserslautern, Germany

{dominik.domis,mario.trapp}@iese.fraunhofer.de

Abstract. In recent years, awareness of how software impacts safety has in-
creased rapidly. Instead of regarding software as a black box, more and more
standards demand safety analyses of software architectures and software design.
Due to the complexity of software-intensive embedded systems, safety analyses
easily become very complex, time consuming, and error prone. To overcome
these problems, safety analyses have to be integrated into the complete devel-
opment process as tightly as possible. This paper introduces an approach to
integrating safety analyses into a component-oriented, model-based software
engineering approach. The reasons for this are twofold: First, component- and
model-based development have already been proven in practical use to handle
complexity and reduce effort. Second, they easily support the integration of
functional and non-functional properties into design, which can be used to inte-
grate safety analyses.

1 Introduction

Today, we are surrounded everywhere by embedded systems. For example, cars have
more than 80 microcontrollers, which control, e.g., multimedia systems, comfort
functions, and driver assisting functions. A lot of these systems are safety-critical, i.e.,
a failure of one or more of these systems can lead to accidents involving injury or loss
of life. Therefore, standards for the development of safety-critical systems highly
recommend considering safety during the complete development process [1]. Safety
analyses are intended to be used as part of the constructive development process.
They are very valuable for designing safe systems from the very beginning and for
having a systematic means for assessing which parts of the system have which impact
on safety. This is essential for the cost-efficient development of safety-critical sys-
tems. Nonetheless, safety analyses are very time-consuming and, as practical experi-
ence shows, are thus often performed only once very late in the development cycle,
sometimes even for documentation purposes only. Applied in late phases, however,
the analysis results have no direct impact on the development of the system, and their
benefit as a constructive means for developing safe systems is thus not recognized.
Consequently, from a project manager’s or developer’s point of view, these analyses
become even less important and helpful. Yet, the application of safety analyses is
indisputably of crucial importance for the development of safety-critical systems.

 Integrating Safety Analyses and Component-Based Design 59

This problem is even more severe for software. In practice, safety analyses are
most often limited to hardware, and software has only been regarded as a black box.
This is also true for the automotive industry. But automotive software realizes more
and more safety-critical functions that can harm people, such as X-by-wire and
driving dynamic control systems. It cannot be assumed that these complex embed-
ded systems have zero faults or that their safety can be guaranteed by intensive
testing. Besides this, mitigating weak points late in the development process is one
of the biggest cost factors in the development of software. So, safety analyses of
software architecture and design are as valuable as on the system or hardware level
for the constructive development process of safety-critical systems. Furthermore,
safety analyses are process-spanning activities, including the system, software, and
hardware levels, which cannot be analyzed in isolation. Thus, safety analyses of
software are particularly necessary for identifying how failure modes are propa-
gated through or caused by the software and for finding Common Cause Failures
that violate the safety assumptions on system level. Because of this, in recent years,
the awareness of how software impacts safety has increased rapidly. For example,
the working draft of the ISO 26262 and the MISRA safety analysis guidelines [2]
recommend safety analyses to also be performed on software. But in order to make
safety analyses applicable in the constructive software design process and tap their
full potential for the cost-efficient development of safety-critical systems, a signifi-
cant reduction in complexity and effort is essential. To achieve this, in this paper,
we integrate three mature approaches into one design methodology for the design of
safety-critical software:

1. Standard safety analyses, i.e., Failure Mode and Effect Analysis (FMEA) and
Fault Tree Analysis (FTA), because they are most intuitively applicable, wide-
spread, and accepted.

2. Semi-automatic safety analyses of model-based design, because their tool support
and automation reduces effort, supports the efficient evolution of models, and fa-
cilitates consistency between safety and design models.

3. Component-based software engineering, because it uses best software engineering
principles and supports reuse.

Chapters 2 to 4 discuss the advantages and disadvantages of the three approaches
and the related work in these fields, respectively. All three use different, mutually
complementary ways to handle complexity and reduce effort. In order to benefit from
all advantages and compensate for disadvantages in the constructive design of safety-
critical software, these approaches have to be tightly integrated into one design
method that uses and coordinates their activities in an optimal way. This integrated
design methodology is presented in chapter 5. The current status and future work are
discussed in chapter 6, and chapter 7 gives a short summary and conclusion.

2 Safety Analyses

Safety analyses aim at identifying failure modes, their causes, and those effects that can
have an impact on system safety. Their primary goal is not to uncover design faults or
prove that an implementation is correct. Safety analyses uncover safety-critical weak

60 D. Domis and M. Trapp

points that are theoretically possible failures that may cause hazards and argue whether
such hazards are sufficiently improbable in the current system design or not. On the one
hand, sufficiently improbable means the actual failure probability of random hardware
failures and, on the other hand, the application of appropriate measures and methods for
avoiding and mitigating random and systematic faults. Because of this, common verifi-
cation and validation techniques cannot replace safety analyses, but are prerequisites for
developing safe systems.

Most standards and guidelines as well as many experts recommend the combina-
tion of an inductive safety analysis, such as FMEA, with a deductive one, such as
FTA, to identify and analyze hazards. FMEA identifies failure modes and searches
bottom-up for their effects. FTA takes a top event and searches for its causes. In con-
trast to FMEA, FTA also determines how failure modes are related to each other
combinatorially. Both techniques are intuitively applicable, and are the most widely
spread and accepted ones. However, the immense effort required to apply FMEA or
FTA to complex, software-intensive systems very often impedes their application.
While FMEA is accepted and commonly used for hardware and mechanical systems,
software is mainly regarded as a black box. Particularly in the automotive industry,
FTA is still the exception rather than the rule.

Besides these two, there exist many other techniques that are not widespread or ac-
cepted. Many of them are mathematically more powerful, but they are less intuitive,
more complex, and therefore less applicable in industry, like Markov chains, Petri nets,
or formal models. These can be used to complement more intuitive safety analyses.

3 Automated Safety Analyses of Model-Based Design

Model-based development uses design models, such as Matlab/Simulink, ASCET, or
UML, to visually represent software on high levels of design, simulating its behavior
and generating code from them. Because of this, model-based development directly
helps to handle complexity and reduce effort by using tool support and automation.
To support safety analyses, these models can also be annotated with appropriate
safety-related information. Based on this, they can be automatically transformed into
safety analysis models, or they can be analyzed directly. In this way, information that
was already specified in the models is also used in safety analyses to reduce effort.
Most of these approaches are based on data flow models, like Matlab/Simulink, AS-
CET or SCADE, and can be divided into Failure Injection (FI) and Failure Logic
Modeling (FLM) [3].

FI injects failure modes into a (formal) model and uses symbolic model checking
to identify counterexamples that violate safety requirements [4]. A counterexample is
equivalent to a cut set of a fault tree. A cut set is a set of basic events or failure modes
that causes the top event of a fault tree. The minimal cut sets of a fault tree are the sets
of basic events, where every event must be true for the top event to become true.
Because of this, if all counterexamples are identified by the symbolic model checker,
they can be used to derive a fault tree whose top event is the disjunction of all mini-
mal cut sets. This is called a minimal cut set tree and its disadvantage is that the tree is
completely flat, i.e., it does not show the system structure and therefore, it does not
show the failure propagation traces through the system. This, however, is necessary

 Integrating Safety Analyses and Component-Based Design 61

for finding the appropriate places in the system where safety measures need to be
implemented. Because of this, additional tools are needed for finding these error
traces [5].

The advantage of FI is that by using only formal models, the safety analyses are
correct. But this requires the use of a formal design model. If the formal model has to
be derived, this is a new source of faults. Additionally, the injection of failure modes
is less intuitive than the application of standard safety analyses, resulting in another
source of faults. This makes the application of FI more difficult in industrial practice.

Failure Logic Modeling is the second kind of approach to automating the safety
analyses of data flow models. Failure Logic Modeling models the local failure flow of
modules or components on the lowest hierarchy level, i.e., it analyzes and models the
failure modes of the inputs and outputs as well as the components themselves and
their causal relationships. For this purpose, logic expressions [6] or finite state ma-
chines are used most often. However, there is also one approach that directly uses
fault trees to model the local failure flow [7][8]. Based on the models of the local
failure flow and the structure of the data flow models, fault trees are automatically
generated by most approaches.

One problem and disadvantage of FLM compared to FI that can be found very of-
ten in the literature is correctness [3], because FLM is modeled manually. Of course,
this can be a source of errors, but it is the strength of safety analyses to use expert
knowledge and human intuition to also find problems that are not specified. So, the
problem in automating safety analyses is to find the right ratio between human tasks
and automation. At least the process of using safety analyses constructively in the top-
down development process requires a lot of human thinking. This is why FLM has to
be preferred to FI for this purpose. However, FI can be used to verify the correctness
of the FLM later in the development process.

Another problem of FLM is the lack of abstraction and refinement [3], which are
of major importance in a top-down development process. In FLM, only one hierarchy
level can be analyzed, and no relations are defined between the safety analyses of
different hierarchy levels. So, most of the time, the entire current system is considered
and it is hard to focus only on one hierarchy level. Because of this, solutions for han-
dling complexity in this dimension also have to be found.

4 Component-Based Software Engineering

Abstraction and refinement are inherent parts of component-based software engineer-
ing (CBSE), which is already a mature approach to handling complexity in the devel-
opment of IT systems. But for embedded systems, and particularly for safety-critical
systems, only proprietary approaches exist until now. Most of them rather address
safety-related, non-functional properties, such as real-time behavior and correctness.
For example, the Prediction-Enabled Component Technology (PECT) of the Predict-
able Assembly of Certified Components (PACC) [9] provides analytical interfaces,
which can be used by model checkers to verify properties related to the safety of the
system. This use of model checking is equivalent to the Fault Injection mentioned
above and also proposed in the Rich Component Model (RCM) [10]. Of course,

62 D. Domis and M. Trapp

correct real-time behavior and the formal verification of safety-relevant properties are
necessary to guarantee safety, but they are not sufficient for developing safe systems.

However, CBSE is highly likely to further reduce the complexity of constructive
safety analyses during the development of safety-critical systems. The main reason
for this is separation of concerns, which is the basic principle of CBSE [11] and
which is applied in three dimensions:

1. Divide and conquer.
2. Rigorous separation between specification and realization.
3. Separation of different functional and non-functional properties by views.

The first two dimensions are illustrated in Figure 1a. Every box is a component,
consisting of a specification and a realization. The component specification specifies
the black-box behavior of the component, i.e., all externally visible properties or the
requirements on the component. This includes the interfaces of the component as well
as all externally visible functional and non-functional properties. In contrast to this,
the realization shows the component as a gray box, i.e., it shows the black-box speci-
fications of the subcomponents the component consists of and their collaboration. For
example, the top component in Figure 1a consists of three subcomponents and the
realization of the top component only knows the specifications of the subcomponents
and specifies their collaboration. In a top-down development process, this means that
the specifications of the subcomponents are derived from the specification of the
component based on the component realization. When doing so, a complex system or
component is recursively divided into subcomponents until the components are sim-
ple enough to be implemented directly. Additionally, the realization of every compo-
nent is simple, because only the collaboration of appropriate subcomponents has to be
defined based on the specifications of the subcomponents. Their inner details are
hidden in their realizations. In this way, the development of system and software is
recursively separated into many simple and controllable tasks.

The third dimension is illustrated in Figure 1b, which shows the Safe Component
Model, an adaptation of the KobrA component model [11]. Both the specification and
the realization of a component consist of views. Each view describes another func-
tional or non-functional property of the component. The advantage of the view con-
cept is that different properties of the components are considered separately and clear
internal interfaces between the different views are defined. In this way, CBSE not
only helps to focus only on one system element on one hierarchy level at any one
point in time, but, additionally, on only one property of this element. In this way, the
complexity of systems and software is controlled by separating the system into differ-
ent views of hierarchical components. This is possible because of two reasons: First,
for every view, composition rules, which specify how views of different components
can be connected with each other, are defined by domain experts. Second, rules for
abstraction and refinement between the views of the specification and the realization
are defined. Thus, the system is not only divided into components and views, but is
also composed of these. Finished components and all their views can be reused, which
again reduces effort.

 Integrating Safety Analyses and Component-Based Design 63

Functional

View

C
o

m
p

o
n

en
t

View

View

Realization

Specification

Failure

Functional

View

Failure

Functional

Fig. 1. a) System structure of hierarchical components. b) Safe Component Model.

5 Safe Component Model

In the Safe Component Model (SCM), the principle of CBSE is realized and adapted
to the model-based design of safety-critical embedded systems. For model-based
design, the basic views are data flow models. These are the functional views of speci-
fication and realization in Figure 1b. In order to make safety analyses efficiently and
constructively applicable during top-down development, safety analysis views and
appropriate automations are needed. Besides these, views for other non-functional
properties can be used dependent on the application domain. But in this paper, we are
focusing on the functional and safety views.

For the top-down design of safety-critical software, the functional views and the
safety views have to be tightly integrated. The first step is to specify the intended
functional behavior of the component in the functional specification. Based on this,
the failure behavior of the component has to be assessed directly and the results are
modeled in the failure specification. After this, the component specification can al-
ready be used in analyses on superordinate levels. The specification is described in
section 5.1.

In the next step, which is described in section 5.2, the specification is realized by
collaborating subcomponents. The subcomponents used and their collaboration are
specified in the functional realization. Because every subcomponent has a failure
specification, Failure Logic Modeling can be used to semi-automatically generate the
failure realization. In this top-down process, the specification can be seen as the re-
quirements on the realization. Because of this, it has to be checked whether the reali-
zation fulfills the specification or not. The relationship between failure specification
and realization is described in section 5.3.

5.1 Specification

A functional specification is a simple functional block with input and output inter-
faces. Therefore, the functional specification is equivalent to a SubSystem in Mat-
lab/Simulink and many other model-based development approaches. Additionally, the
syntax and semantic of the interfaces have to be specified in order to describe the
functionality of the block, make it reusable and analyzable.

64 D. Domis and M. Trapp

Fig. 2. Functional Specification of the Brake Controller

Figure 2 shows the functional specification of the Brake Controller (BC) compo-
nent, which is part of the traction control and anti-lock braking system of the IESE
concept car. BC has four input interfaces (inputs) and three output interfaces (out-
puts). The inputs are:

• I1 steering_angle_driverInput, which has the type integer, a value range from 0 to
180, and describes the steering angle in degrees that is set by the driver.

• I2 v_carRef, which is of the type double with a value range between 0 and 100
describing the speed of the car in kilometers per hour.

• I3 brake_driverInput, which is an integer with the value range 0-100 that specifies
the braking power that is set by the driver.

• I4 v_yaw, which is of the type int with a value range from 0-360 and describes the
rotation of the car in degrees per second around its y-axis (vertical axis).

All four inputs are used to calculate the braking power at the individual wheels that is
required to maintain the driving stability of the car and to steer and decelerate it as in-
tended by the driver. Both rear wheels are affected by the same brake, which is con-
trolled by the output O3 corrected_rearBrake. O1 corrected_brake_FL controls the
brake at the front left wheel and O2 corrected_brake_FR that at the front right wheel.
All three outputs are integer values between 0-100 and describe the power at the brakes.
Additional information includes the exact physical functions and assumptions, when the
component can be used, and how. This syntactical and semantic information can be
described, e.g., by type systems, invariants, preconditions, or post-conditions. But for
this simplified example, it is unimportant how the information is specified and what the
exact functionality is. The important point is that SCM can be applied on any model that
makes minimal use of interfaces in this way.

After specifying the functional requirements of the component in the functional
specification, its failure behavior, which might have an impact on safety, has to be
assessed. This early safety assessment can be used in the safety analyses of a super
component and as safety requirements on the realization of the component. In this
way, the failure specification makes safety-critical components reusable, because the
safety model is part of the component specification. Besides this, by analyzing safety
immediately, no information is lost, because the engineer still remembers what he/she
assumed.

Because SCM uses standard safety analyses, the analysis is very intuitive and
guided by mature techniques. In the first step, an Interface Focused-FMEA (IF-
FMEA) [6] is applied on the functional specification. First, the IF-FMEA searches for
failure modes at the inputs and outputs of the component as well as those of the com-
ponent itself. To identify failure modes, the concept of HAZOP guidewords is used,
which have also been adapted for software [12]. This method is called SHARD and
proposes the following guidewords: Omission, Comission, Value, Early, Late. A

 Integrating Safety Analyses and Component-Based Design 65

standard set of guidewords is a useful basis, but has to be adapted to the domain and
application being analyzed. For this purpose, an object-oriented Failure Type System
[13] is used (Figure 3). Each failure mode of an input, output, and component gets an
unambiguous failure type, such as FM_Omission or FM_Value. The Failure Type
System can be adapted to every application; failure modes can be defined and attrib-
utes can be used to refine the semantics of the failure modes. For example, for the
failure type FM_High_Deviation in Figure 3, it has to be specified which deviation is
tolerable before it is considered a failure.

Fig. 3. Example of a Failure Type System

In the second step, the IF-FMEA searches for causes and effects of failure modes.
Causes of output failure modes may be internal failure modes of the components, or
failure modes of inputs. Vice versa, the effects of input failure modes and internal
failure modes are output failure modes. These relationships are defined during the
second step of the IF-FMEA. In the next step, the information of the IF-FMEA is
refined by a Component Fault Tree (CFT) [14], i.e., the combinatorial relationships
between output, input, and internal failure modes are investigated and further failure
modes are identified. The output failure modes thus become the top events of the
CFT, the internal and input failure modes become basic events. CFTs directly support
the component concept by enabling the definition of output and input events. The
output failure modes can thus be defined as output events (filled triangles in Figure 4)
and the input failure modes as input events (triangles, open at the bottom). In this
way, the CFT can be easily used in the FTA of a superordinate component.

In the BC example, the input BC.I1 has the failure types FM_Low, BC.I2 FM_High,
and BC.I3 as well as BC.I4 FM_Value in the CFT of Figure 4. BC itself can have an
internal FM, BC.Int1 FM, and the failure detection of the input signals can fail, BC.Int2
FM_Detection_Fails. These failure modes are part of the specification, because their
effects are externally visible, they are requirements on the realization, and they do not
show inner details of the component. Because of this, information hiding is also guaran-
teed in the failure specification. All input and internal failure modes can cause the cor-
rected brake value at the output BC.O3 to be wrong, which is represented by the failure
types FM_Value . All input FMs except BC.I3 FM_Value can only cause FM_Value if
the internal failure detection of BC fails. Because of this, BC.Int2 FM_Detection_Fails
is combined with these input failure modes by an AND-gate. Additionally, BC.Int1 FM
can delay the corrected rearBrake, which is represented by BC.O3 FM_Late. BC.Int1
FM and BC.I3 FM_Value are single points of failures.

66 D. Domis and M. Trapp

Fig. 4. Failure Specification of the Brake Controller

In this way, all failure modes of the current component specification are easily identi-
fied and the failure behavior is assessed. If the analysis shows that the specification is
not suitable for achieving safety in the context of the supercomponent, the specification
can be changed immediately and alternatives can be compared. For example, one may
decide that further inputs are needed to increase the efficiency of error detection and
handling. For this purpose, no quantitative analyses are needed, only qualitative and
sensitivity analyses assessing the impact of events. In this way, the functional and safety
requirements of the component are derived from the super component and are directly
considered in the subsequent realization of the component.

5.2 Realization

The functional realization is a gray box specification of the component, which defines
or reuses appropriate subcomponent specifications to realize the requirements speci-
fied in the component specification. This is done by trial and error or by using expert
knowledge or design patterns. Many model-based approaches have similar hierarchi-
cal model elements, like the definition of a SubSystem in Matlab/Simulink [15]. So,
both the specification and the realization of SCM can be applied to most model-based
approaches.

Figure 5 shows the final functional realization of BC. BC consists of the steering an-
gle delimiter (SAD) and the yaw rate corrector (YRC). SAD uses the inputs BC.I1 and
BC.I2 of BC. With these inputs, the YAC
calculates the delimited_steering_angle at
the output SAD.O1, which is connected
with YRC.I1, because YRC requires this
input. The other two inputs of YRC, YRC.I2
and YRC.I3, require v_yaw and brake_
driverInput, which are the other two inputs
of BC. All three outputs of YRC are di-
rectly connected with the corresponding
outputs of BC because they provide the
necessary signals.

Fig. 5. Functional Realization of the Brake
Controller

 Integrating Safety Analyses and Component-Based Design 67

Fig. 6. Failure Realization of the Brake Controller

Thus, BC is composed of YRC and SAD based on their specifications. In order to
avoid interface problems or the composition of unsuitable components, interfaces can
only be connected with each other if they are syntactically and semantically compati-
ble. For this purpose, appropriate composition rules have to be defined. For SCM, it is
only important to mention that these composition rules do not only include the func-
tional views, but also the failure views. This reduces effort and helps to define or
identify appropriate subcomponents. It is automatically checked whether two compo-
nent interfaces can be connected with each other. For this purpose, in addition to the
functional syntax and semantic, it is checked whether the failure types of each inter-
face are compatible: The ports of components and subcomponents can only be con-
nected if they have the same failure type or the failure type of the required interface is a
super failure type of the provided interface. In case the failure types have attributes,
these also have to be considered in the compatibility check. If many provided interfaces
have to be connected with a single required interface, an OR-gate has to be used. This
guarantees that the failure realization contains a properly connected CFT and corre-
sponds to the semi-automatic safety analyses done by Failure Logic Modeling.

The CFT of the failure realization of BC is shown in Figure 6. Equivalent to the
functional realization, the failure realization is composed of the specifications of its
subcomponents, but here the failure specifications are used instead of the functional
realizations. So, the gray box in the lower left part of the picture, which is labeled
SAD, shows the instantiated failure specification of the SAD.

68 D. Domis and M. Trapp

The top event of the SAD failure specification is SAD.O1 FM_LOW. This is con-
nected with the input failure mode YRC.I1 FM_Value, which is an input failure mode
of the failure specification of SAD because the ports are connected in the functional
realization and FM_Value is a super failure type of FM_Low. The other input and
output failure modes of SAD and YRC are directly connected with the corresponding
output and input failure modes of BC. Besides the input and output Failure Modes,
SAD has the internal failure modes SAD.Int1 FM and SAD.Int2 FM_Detection_Fails
and YRC has the internal failure modes YRC.Int1 FM and YRC.Int2 FM_
Detection_Fails.

In this way, the failure realization is automatically derived based on the failure
specifications of the subcomponents and the functional realization of the component.
In a bottom-up approach, the reuse of existing subcomponents results in a significant
decrease in the effort needed for performing safety analyses on a component. In a top-
down approach, this directly supports the constructive design process of safe systems.
For the defined subcomponents, it is initially sufficient to define their failure specifi-
cations. Based on these subcomponent specifications, it is already possible to analyze
whether the current realization of the component will meet the requirements. In this
way, the failure specifications of the subcomponents can be optimized before they are
realized.

The failure realization can be reviewed manually in order to identify failure modes
that have not been considered in the model until now. These have to be added manu-
ally at the appropriate point, but the failure specification of the subcomponent and the
instance used in the realization are automatically kept consistent. Thus, manual steps
are also necessary in the failure realization, but because most steps are automated, the
effort is low.

5.3 Relation between Specification and Realization

In this top-down design process, the functional realization is used to derive the safety
specification of the subcomponents from the safety or failure specification of the
component. After the specification and the realization of the component are finished,
it has to be checked whether the realization fulfills the specification or not. For this
purpose, appropriate and application-specific rules have to be defined. This includes,
for example, that both have the same input and output failure modes and that the out-
put failure modes have the same MCS. The internal failure modes of the specification
can summarize internal failure modes of the realization. For example, the failure re-
alization of BC has six MCS: YRC.Int1 FM, SAD.Int1 FM, SAD.Int2
FM_Detection_Fails & BC.I1 FM_Low, SAD.Int2 FM_Detection_Fails & BC.I2
FM_High, YRC.Int2 FM_Detection_Fails & BC.I4 FM_Value, and BC.I3 FM_Value.
When YRC.Int1 FM and SAD.Int1 FM are summarized to BC.Int1 FM and SAD.Int2
FM_Detection_Fails is summarized together with YRC.Int2 FM_Detection_Fails to
BC.Int2 FM_Detection_Fails, they constitute all MCS of the BC failure specification.
Here, all internal failure modes with the same failure type were summarized, but other
rules may also be defined. Failure probabilities might also be used for this purpose
when this seems suitable, but the results of qualitative analyses should be preferred in
the analysis of software.

The same ideas can be used to automatically derive the failure specification from
the failure realization when a preliminary failure specification should be substituted

 Integrating Safety Analyses and Component-Based Design 69

by one that is closer to the realization or when no failure specification exists. In gen-
eral, the important point of the failure specification is that only externally visible
properties of the component are shown and all inner details are hidden. Because of
this, the BC failure specification does not show any information about YRC or SAD.
All internal failure modes of BC are failure modes of BC itself. So, when a failure
specification is generated from a failure realization, all internal events must be re-
named. Additionally, they can be summarized and the tree is transformed into an
MCS tree, which does not show any details about the inner structure of BC. In this
way, no inner details of a component are betrayed by the failure specification. First,
this helps to abstract from details and to focus on the relevant things on the current
component level. Second, this information hiding is of major importance for the pro-
tection of intellectual properties in a distributed development. If a supplier delivers a
component that has to fulfill a safety-critical functionality, this component has to be
considered in the safety analysis of the system, but without betraying any intellectual
properties regarding the component. Because of this, rigorous information hiding is
necessary in the failure specification.

6 Current Status

The SCM has already been implemented as part of the ComposeR tool for the com-
ponent-oriented, model-based development of safety-critical embedded systems. The
tool makes it possible to extend SubSystems in Matlab/Simulink with complete com-
ponent specifications and realizations and to analyze the extended Simulink models.
For safety, this includes connectability and safety analyses. The safety analyses can
be performed with ESSaRel [16] or Fault Tree + [17]. ESSaRel is easier to use, since
it directly supports CFTs, but Fault Tree + is one of the most widely used fault tree
tools in industry. Because of this, ComposeR also supports the generation of fault
trees of the entire system in Fault Tree+ for certification purposes. Besides safety,
ComposeR already supports views for graceful degradation/adaptation and further
views are currently being implemented. Moreover, the INProVe tool was developed
based on ComposeR for the architectural analysis of dataflow models. The results of
this tool are used to support model-based safety analyses.

The SCM methodology and the ComposeR tool were used in the development of
the traction control and anti-lock braking system of the IESE concept car. This is a
radio controlled model car with a combustion engine equipped with sensors, actua-
tors, and ECUs for implementing the intended functionality. Thus, it is a real practical
example. In the next step, we will validate the methodology and the tool in an indus-
trial case study and develop them further based on the results.

7 Summary and Conclusion

This paper has explained that safety analyses should be used as part of the construc-
tive development process of safety-critical systems and software, in order to develop
safe systems and avoid the costs of late analyses and changes. Particularly for soft-
ware, however, safety analyses are too complex for many companies to apply. To

70 D. Domis and M. Trapp

better handle the complexity of software safety analyses, we developed a method for
tightly integrating standard safety analyses, like FMEA and FTA, into a component-
oriented, model-based software design method. In this way, the safety analyses
benefit from the separation of concerns provided by component-based software engi-
neering. The system is divided into controllable subcomponents and the safety analy-
ses either focus on the specification or the realization of the current component.
Safety analyses on higher component levels abstract from details that are refined on
lower component levels. So, there is a clearly defined scope for every step of the
analysis. The impact on safety of every component is automatically analyzable at each
component level. The refinement is absolutely traceable across the different compo-
nent levels and particularly includes the safety analyses. Moreover, through the rigor-
ous separation between specification and realization, information hiding and protec-
tion of intellectual properties are guaranteed in distributed development between
different companies. Besides this, the method actively supports the reuse of compo-
nents, because the safety analysis model becomes an inherent part of the component
model. The approach is tool-supported and applicable to model-based designs like
Matlab/Simulink. Because of this, SCM helps to handle the complexity of safety
analyses and makes them constructively applicable during the software design proc-
ess, where they achieve the greatest benefit.

References

1. IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-
related systems, International Electrotechnical Commission (1999)

2. MISRA: Guidelines for safety analysis of vehicle based programmable systems, MIRA
Limited, Warwickshire (2007)

3. Lisagor, O., McDermid, J.A., Pumfrey, D.J.: Towards a Practicable Process for Automated
Safety Analysis. In: 24th International System Safety Conference, pp. 596–607 (2006)

4. Bozzano, M., Villafiorita, A.: ESACS: An Integrated Methodology for Design and Safety
Analysis of Complex Systems. In: 14th European Safety and Reliability Conference, pp.
237–245. Balkema Publishers, Maastricht (2003)

5. Bretschneider, M., Holberg, H.-J., Peikenkamp, T., Böde, E., Brückner, I., Spenke, H.:
Model-based Safety Analysis of a Flap Control System. In: Proceedings of the INCOSE
2004 – 14th Annual International Symposium, Toulouse (2004)

6. Papadopoulos, Y., McDermid, J.A.: Hierarchically Performed Hazard Origin and Propaga-
tion Studies. In: Felici, M., Kanoun, K., Pasquini, A. (eds.) 18th International Conference
on Computer Safety, Reliability and Security. LNCS, vol. 1608, pp. 139–152. Springer,
Heidelberg (1999)

7. Grunske, L., Kaiser, B.: Automatic Generation of Analyzable Failure Propagation Models
from Component-Level Failure Annotations. In: 5th IEEE International Conference on
Quality Software, pp. 117–123. IEEE Computer Society Press, New York (2005)

8. Grunske, L.: Towards an Integration of Standard Component-Based Safety Evaluation
Techniques with SaveCCM. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA
2006. LNCS, vol. 4214, pp. 199–213. Springer, Heidelberg (2006)

9. Wallnau, K.C.: Volume III: A Technology for Predictable Assembly from Certifiable
Components (PACC). Technical report CMU/SEI-2003-TR-009, Pittsburg, PA: Software
Engineering Institute, Carnegie Mellon University (2003)

 Integrating Safety Analyses and Component-Based Design 71

10. Damm, W., Votintseva, A., Metzner, A., Josko, B., Peikenkamp, T., Böde, E.: Boosting
Re-use of Embedded Automotive Applications Through Rich Components. In: Proceed-
ings of the Foundation of Interface Technology Workshop. Elsevier Science, Amsterdam
(2005)

11. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Muthig, D.,
Peach, B., Wüst, J., Zettel, J.: Component-based Product Line Engineering with UML.
Addison-Wesley, London (2001)

12. Pumfrey, D.J.: The Principled Design of Computer System Safety Analyses, DPhil Thesis,
University of York (1999)

13. Giese, H., Tichy, M., Schilling, D.: Compositional Hazard Analysis of UML Component
and Deployment Models. In: Heisel, M., Liggesmeyer, P., Wittmann, S. (eds.) SAFE-
COMP 2004. LNCS, vol. 3219, pp. 166–179. Springer, Heidelberg (2004)

14. Kaiser, B., Liggesmeyer, P., Mäckel, O.: A New Component Concept for Fault Trees. In:
Lindsay, P., Cant, T. (eds.) Proceedings of the 8th Australian workshop on Safety critical
systems and software, Canberra, vol. 33, pp. 37–46. Australian Computer Society (to be
published, 2003); Conferences in Research and Practice in Information Technology Series

15. MathWorks, Simulink: Simulation and Model-Based Design,
http://www.mathworks.com

16. Embedded Systems Safety and Reliability Analyser (ESSaRel),
http://www.essarel.de

17. Isograph: Fault Tree Analysis Software - FaultTree, http://www.isograph.com

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 72–85, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Modelling Support for Design of Safety-Critical
Automotive Embedded Systems

DeJiu Chen1, Rolf Johansson2, Henrik Lönn3, Yiannis Papadopoulos4,
 Anders Sandberg5, Fredrik Törner6, and Martin Törngren1

1 Royal Institute of Technology, SE-10044 Stockholm, Sweden
{chen,martin}@md.kth.se

2 Mentor Graphics Corp., SE-41755 Gothenburg, Sweden
rolf_johansson@mentor.com

3 Volvo Technology Corp., SE-40508 Gothenburg, Sweden
Henrik.lonn@volvo.com

4 University of Hull, Hull HU6 7RX, UK
Y.I.Papadopoulos@hull.ac.uk

5.Mecel AB, SE-400 20 Gothenburg, Sweden
anders.sandberg@mecel.se

6 Volvo Car Corp., SE-40531 Gothenburg, Sweden
ftorner@volvocars.com

Abstract. This paper describes and demonstrates an approach that promises to
bridge the gap between model-based systems engineering and the safety process
of automotive embedded systems. The basis for this is the integration of safety
analysis techniques, a method for developing and managing Safety Cases, and a
systematic approach to model-based engineering – the EAST-ADL2 architec-
ture description language. Three areas are highlighted: (1) System model
development on different levels of abstraction. This enables fulfilling many re-
quirements on software development as specified by ISO-CD-26262; (2) Safety
Case development in close connection to the system model; (3) Analysis of
mal-functional behaviour that may cause hazards, by modelling of errors and
error propagation in a (complex and hierarchical) system model.

Keywords: Automotive Embedded Systems, Dependability, Model-Based De-
velopment, Safety Analysis, Safety Case.

1 Introduction

Safety is posing an increasing challenge for the developers of automotive embedded
systems, also referred to as automotive Electrical/Electronic (E/E) systems. While
accounting for a large portion of the innovations and flexibility, the underlying com-
puter software and hardware also results in growing product complexity. The last
decade has indeed shown that an increasing number of vehicle failures stem from
errors related to embedded systems.

Currently, ISO is developing a standard on Functional Safety for Road vehicles
(ISO-CD-26262) [1]. As pointed out in its introduction, with the high complexity
growth there is an increasing risk of failures in automotive embedded systems. This

 Modelling Support for Design of Safety-Critical Automotive Embedded Systems 73

makes safety a key issue in future automobile development. ISO-CD-26262 requires
that a complete Safety Case is developed, presenting evidence that the system is safe.
It also specifies the requirements on product development at software level.

While state-of-the-art safety analysis techniques [2] provide support for deriving
the causes and consequences of errors, the difficulties remain in capturing and main-
taining plausible errors, safety requirements, and other related information along with
design refinement, changes and evolution, and in providing the safety argument. Such
analysis techniques in turn rely on system modelling and management support, as
well as the alignment with tools, processes, and standards. One challenge with current
methods for automotive E/E systems development is the lack of systematic ap-
proaches to information management, architecting and verification. Solutions relying
on social and traditional text-based communication do not scale for handling ad-
vanced embedded systems. Software architectures and/or exchange format standards
such as AUTOSAR [3] offer a significant improvement of the state of practice. How-
ever, experience tells us that advanced and complex systems also require model-based
engineering encompassing appropriate abstractions and views for both cost-efficiency
and development effectiveness. Over the years, the demand for additional levels of
abstractions and views has been continuously raised [6, 12].

System modelling based on an architecture description language (ADL) is a way to
keep the engineering information in a well-defined information structure. In this paper
we present how the architecture description language EAST-ADL2, complementary
to AUTOSAR, provides a basis for systematic development of safety-critical automo-
tive systems. As a language for architecture description, the EAST-ADL2 captures the
domain knowledge for automotive embedded systems and provides the modelling
means for keeping various engineering information, e.g., across multiple levels of
abstraction and concerns, within one infrastructure. Three important areas of EAST-
ADL2 will be highlighted in this paper: (1) System development based on models on
different levels of abstraction. This enables fulfilling many requirements on software
development as specified by ISO-CD-26262; (2) Safety Case development in close
connection to the system design; and (3) Analysis of hazardous failures by modelling
of errors and the propagations in a hierarchical system model. The integration of these
aspects provides structured information handling of requirements, design, safety
analysis, other verification and validation information, and design decisions. The
approach supports reuse, consistency between models, automated handling of de-
pendencies, view generation, transformations and analysis.

The paper is organised as follows: We first give an overview of EAST-ADL2
showing its capabilities for model-based development, and how it is complementary
to AUTOSAR. Then we describe the modelling support for a Safety Case. In the
following section we describe error modelling and modelling of error propagation,
and the link to the HiP-HOPS safety analysis tool. Finally, we illustrate the approach
with an industrial case study on one ECL (Electronic Column Lock) system.

2 Overview of EAST-ADL2

EAST-ADL2 is developed in the ATESST project (www.atesst.org), further extend-
ing and refining the EAST-ADL language from the EAST-EEA project (www.east-
eea.org). It is a domain-specific architecture description language aiming to

74 D. Chen et al.

adequately meet the engineers’ needs regarding information management and practi-
cal methods in the development of advanced automotive embedded systems. The
language provides an ontology for all the related engineering information and a set of
well-defined constructs for the capturing and structuring of such information in a
standard format. The covered system aspects include requirements, vehicle features,
functions, variability, software and hardware design, and environment, as well as the
related structures and behaviours. For the purpose of early quality assessment and
verification, the language also supports the capturing of other necessary non-
functional properties and thereby enables the reasoning of system timing and failure
modes. Through its constructs for traceability, the EAST-ADL2 allows the modelling
of dependencies across requirements, structural items and V&V information.

2.1 Hierarchies and Levels of Abstraction

While stipulating the abstractions and viewpoints that are of particular importance in
the development of automotive embedded systems, the EAST-ADL2 further enforces
separation-of-concerns and complexity-control through a multi-viewed and hierarchi-
cal modelling language. The core concept is to structure the solution architecture into
five levels of abstraction: VehicleLevel, AnalysisLevel, DesignLevel, Implementa-
tionLevel, and OperationalLevel. See also Figure 1. The levels correspond to system
views that can be used to support a variety of processes (from top-down to bottom-
up), including the typical scenario for platform-based product families, where a new
function is added to an existing system. The architectural solution at each abstraction
level is self-contained in the sense that it constitutes a complete model of the system
under consideration from a particular viewpoint. Within each of these architectural
solutions, hierarchies of composition are supported by dedicated constructs to de-
scribe the part-whole relations of functions/components.

The models at the VehicleLevel provide a top-level view of the E/E system of a ve-
hicle where the intended electronic features are described and elaborated in respect to
the related product-line organizations. One view that captures the realizations of such

Fig. 1. EAST-ADL2 abstraction layers and its relation to AUTOSAR [9]

 Modelling Support for Design of Safety-Critical Automotive Embedded Systems 75

electronic features in terms of logical functions and principal interfaces is given at the
AnalysisLevel. A further refined view is provided at the DesignLevel where more
implementation-oriented aspects are taken into consideration, such as alignment with
intended software decomposition and the target platform, fault tolerance, sensor and
actuator interfacing, etc. The support by EAST-ADL2 at this level includes the func-
tional design architecture for application software, the middleware abstraction for
platform software (e.g., middleware, RTOS etc.), and the hardware architecture for
target platform (e.g. I/O, sensor, actuator, power, ECU, topology and electrical wiring
including communication bus). It allows the reasoning of partitioning and allocation
of functions as well as the verification of the preliminary design either by simulation
or analysis techniques. The overall structure at the DesignLevel is such that one or
several entities can be later realized by AUTOSAR entities captured at the Implemen-
tationLevel [9]. Full traceability is possible from function definitions at the vehicle
level to AUTOSAR entities. The OperationalLevel is hidden by AUTOSAR concepts
via deployment on the AUTOSAR RTE (Run-Time Environment), representing the
E/E system as it is realized in the manufactured products.

One example of this hierarchical multi-viewed modelling approach is illustrated in
Figure 2, with an electronic feature Brake (denoted by the EFeature construct),
models of more detailed solutions, and the final implementation. The solutions at the
AnalysisLevel include the logic function BrakeCtrl (denoted by the ADLFunction
construct) and the abstract interfaces BrakePedal and BrakeMotor for the interactions
with the vehicle environment (denoted by the FunctionalDevice construct). The corre-
sponding software and hardware design solutions are shown at the DesignLevel.
While the logic function BrakeCtrl is realized by the software function BrakeCtrl, the
abstract interfaces are represented by hardware devices (denoted by the DeviceIF
construct) and software components for signal transformation (denoted by the Local-
DeviceManager construct). The implementation of the design is given by AUTOSAR
concepts at the ImplemenationLevel (e.g., an elementary ADLFunction is mapped to a
RunnableEntity of an AtomicSoftwareComponent).

Fig. 2. An example showing the electronic feature (Brake) and its representations with the
EAST-ADL2 abstraction levels

76 D. Chen et al.

2.2 Requirements and Traceability Support

EAST-ADL2 provides explicit support for requirement specification and management
in the development of advanced embedded systems. It differentiates between func-
tional requirements, which typically focus on some part of the “normal” functionality
that the system has to provide (e.g. “ABS shall control brake force via wheel slip
control”), and quality requirements, which typically focus on some external property
of the system seen as a whole (e.g. “ABS shall have an MTTF of 10,000 hours”). To
allow integration of external requirements tools, EAST-ADL2 provides supports for
the mapping of Requirements Interchange Format (RIF) [7] concepts.

The language treats requirements as separate entities and provides specific con-
structs to support the traceability by extending and adapting related principles from
SysML [8]. Typically, based on requirements on the higher abstraction levels of
EAST-ADL2, more detailed requirements are derived along with the refinements and
decompositions. Specific associations are introduced to relate requirements to their
target elements (through the ADLSatisfy construct). EAST-ADL2 introduces the no-
tion of Verification&Validation Case (denoted by the VVCase construct) in order to
show how a certain requirement is verified in a particular system context as well as to
support the planning, tracking, and updating of V&V efforts,. While linking certain
requirements and target entities, each VVCase provides a description of the related
evaluation information and activities.

3 Safety Case Support in EAST-ADL2

A Safety Case provides structure to the qualitative argumentation about why a system
is safe enough. Hence, the Safety Case is dependent on referencing and aggregating
information of different types related to the systems functionality and realization.
Therefore, integration with an ADL is useful for system development. Currently,
there are no requirements for Safety Cases in the automotive industry, but in the up-
coming automotive safety standard ISO-CD-26262 [1] such requirements are raised.
This section will provide the safety case metamodel which was implemented in
EAST-ADL2. A more detailed description is presented in [10].

A Safety Case can consist of large amounts of data and may be very hard to grasp.
To mitigate the complexity, a graphical notation, the Goal Structure Notation, have
been introduced by Kelly for the argumentation part of a Safety Case [4]. The nota-
tion consists of the following building blocks:

• Goal – A claim about a property of the system.
• Strategy – A description of how and why a Goal can be derived into other Goals.
• Justification – Provides further rationale for a selected GSN entity.
• Evidence – This is the set of leafs of an argumentation representing the actual evi-

dence that shows satisfaction of the goals it is connected to.
• Context – Defining in what context a Goal is given.

A safety case metamodel is shown in Figure 3. It is based on a description of GSN
and shows how the GSN entities relate to each other. The safety case entity itself is
the top level of a safety case, and it consists of the GSN argument entities. The safety

 Modelling Support for Design of Safety-Critical Automotive Embedded Systems 77

case can also consist of several other safety cases, in a hierarchical structure. In order
to maximize the traceability of the design data, each GSN class can be associated to
any EAST-ADL2 entity. This will provide support for consistency of the data as well
as support for the change management process.

GSN Argument
Classes::Goal

Safety CaseItem Definition

EAST-ADL2
Metamodel

Entities

GSN Argument
Classes::Context

GSN Argument
Classes::
Ev idence

GSN Argument
Classes::

Justification

GSN Argument
Classes::Strategy0..*

1

0..*1

0..*

1

1

ExistsFor

1

1..*

1

1..*

1

0..*

1

1..*

1

Goal

Ev idence

JustificationContext

Strategy

+contextOf
0..*

0..1

+contextOf0..* 0..1

0..1

+contextOf

0..*

0..1

+justificationOf

0..*

+goalDecompositionStrategy

0..1

+subGoal

2..*

0..1

+solutionOf 1..*

+goalDecomposi tion
2..*

1
+justi ficationOf

0..*0..1

+justi ficationOf
0..*

0..1

Fig. 3. The safety case metamodel based on GSN

A Safety Case is valid for a system or function, and this scope needs to be defined.
As shown in Figure 3, the safety case scope is defined by the ItemDefinition class that
is a collection of EAST-ADL2 entities, i.e. all available specifications entities for the
given item. The metamodel also contains the relations between the internal elements.
As shown in Figure 4, the Goal is the centre of the safety case structure. It can be
decomposed directly, or through the usage of a strategy, into two or more Goals. Each
Goal shall have a solution relation to at least one Evidence, also known as Solution in
the GSN notation. The Evidence entity can have several specializations, ranging from
protocols of V&V activities to design decisions. Each element in the GSN structure
can also be related to a Context entity indicating that a description of the context can
be provided. Similarly, a Justification for increased clarity can be provided for each
GSN entity, by a justification relation.

The Evidence represents any information that supports or, in its ultimate form,
proves that the Goal it is connected to is achieved. As such, the information can be of
many types, e.g. analysis reports, design specifications, requirements, protocols from
V&V activities, etc. The system model of EAST-ADL2 captures most of these enti-
ties in suitable packages, e.g. a package focusing on verification and validation, the
V&V package. In [10], the described safety case metamodel clearly visualizes the
GSN entities and interdependencies which has the advantage of facilitating the com-
prehension and easing the training effort.

4 Error Modelling Support in EAST-ADL2

As an overall system property, safety is concerned with the anomalies (in terms faults,
errors, and failures) and their consequences under given certain environmental condi-
tions. Functional safety represents the part of safety that depends on the correctness of

78 D. Chen et al.

a system operating in its context [11] and addresses the hazardous anomalies of a
system in its operation (e.g., component errors and their propagations). The objective
of the EAST-ADL2 error modelling is to allow an explicit reasoning of functional
safety and thereby to facilitate safety engineering along with an architecture design or
maintenance process.

4.1 Key Concepts and Domain Model

EAST-ADL2 facilitates safety engineering in regards to the modelling and informa-
tion management. While supporting the safety design through its intrinsic architecture
description and traceability support, the language also allows the developers to explic-
itly capture the error logics in terms of component errors and the error propagations in
an architecture error model through its error modelling support (see also Figure 4).
The error modelling is treated as a separated analytical view. It is not embedded
within a nominal architecture model but seamlessly integrated with the architecture
model through the EAST-ADL2 meta-model. This separation of concerns is consid-
ered necessary in order to avoid some undesired effects appearing when error model-
ling and nominal design is mixed, during comprehension and management of nominal
design, reuse of models, and system synthesis (e.g., code generation).

Fig. 4. EAST-ADL2 error modelling extends the nominal architecture in a separate view and
provides analysis leverage through external tools

The EAST-ADL2 error modelling package extends a nominal architecture model,
typically at the AnalysisLevel and DesignLevel, with the information of failure seman-
tics and error propagations. The failure semantics can be provided in terms of logical
or temporal expressions, depending on the analysis techniques and tools of interest.
Such analytical information, together with environmental conditions, forms the basis
for identifying the likely hazards, reasoning about the causes and consequences, and
thereby deriving the safety requirements. The relationships of local error behaviours
are captured by means of explicit error propagation ports and connections. Due to
these artefacts, EAST-ADL2 allows advanced properties of error propagations, such
as the logical and temporal relationships of source and target errors, the conditions of
propagations, and the synchronizations of propagation paths. Hazards or hazardous
events are characterized by attributes for severity, exposure and controllability

 Modelling Support for Design of Safety-Critical Automotive Embedded Systems 79

according to [1]. A hazardous event may be further detailed by e.g. use cases, se-
quence or activity diagrams. In an architecture specification, an error is allowed to
propagate via design specific architectural relationships when such relationships also
imply behavioural or operational dependencies (e.g., between software and hardware).
Fig. 5 shows the domain model definitions of constructs for the error modelling. The
key concepts include:

• ErrorBehavior: the definitions of possible failure behaviours of an ADLEntity (i.e.,
an abstract function or component).

• ErrorModel: the container for the usages or instantiations of particular errorBehav-
iors in a particular architecture context.

• propagationPort: ports through which the faulty events defined in an ErrorBehav-
ior propagate to other ErrorBehaviors or result in Hazards.

• ErrorPropagation: abstractions for error propagations that in turn relies on particu-
lar instances of ADLEntity (e.g. communication connectors) or the explicit or
implicit dependencies between them (e.g., allocations described by the ADLReali-
zation construct).

• ErrorToHazard: a link between errorBehaviors and their effects on the system.

class ErrorBehavior

ErrorBehavior

+ failureLogic: String = NA
+ genericDescription: String = NA
+ handled: boolean = false

constraints
{targetOption}
{targetType}

ErrorModel

ErrorPropagation

+ propagationLogic: String = NA

PropagationPort

+ direction: PropagationDirectionKind
+ event: String = NA

ADLContext
UserAttributeableElement

ADLCoreConstructs::ADLEntity

+ kind: ConstraintKind [0..1]
+ name: String

ErrorModelToTarget

ErrorToHazard

ADLTraceableSpecification
Hazard

+ controllability: String
+ exposure: String
+ severity: String

ADLRelationship
ADLRelationshipModeling::

ADLRealization

+throughADLRealization 0..1

+hazard 0..*

+containedErrorBehavior

1..
*

+inADLErrorModel

1..
*

0..*

+targetADLType 0..1
+errorBehavior
0..* 0..

1

0..*

+adlErrorContext0..1

1

+otherRelatedPropagations
0..*

+failureEvent
0..*

1..
*

+to

1..
*

0..1

+attachedADLErrorModel
1

1..
*

+from

1..
*

+propagationPort
1..*

+portOwner

1

+realizedByADLEntity
0..*

+realizedADLEntity
1..*

+source
0..*

0..*

*

+targetADLPart

0..1

+throughADLEntity
0..1

Fig. 5. The EAST-ADL2 domain model definitions for error modelling

In EAST-ADL2, the support for safety requirements and analysis is specifically ad-
dressed. The safety requirements, which are specialized to define the safety goals to be
met, have attributes and related entities to define the related functional and non-
functional requirements and the hazards to be mitigated. Hazards or hazardous events
are associated with both errors of abstract functions/components and the environment
model and characterized by attributes for severity, exposure and controllability. See

80 D. Chen et al.

Fig. 6. for the domain model definition. This concept is in line with [1] where each
hazard is related to an Item, which is defined as “E/E system (i.e. a product which can
include mechanical components of different technologies) or a function which is in the
scope of the development according to this standard”. When modelling a system in
EAST-ADL2 this means that for each level of abstraction a complete set of Items is
identified. The hazardous event may be further detailed by e.g. use cases, sequence or
activity diagrams. A safety requirement specifies the necessary safety functions and
their effectiveness (i.e., ASIL levels [1]). It can be traced all the way to its derived re-
quirements and thereby to the subsequent hardware and software solutions as well as the
needed V&V efforts.

class Hazards

ADLTraceableSpecification
ArchivedEntity

Requirements::ADLRequirement

+ applicability: String [0..1]
+ name: String
+ id: String

ADLRelationship
ADLRelationshipModeling::

ADLRefine

ADLTraceableSpecification
Hazard

+ controllability: String
+ exposure: String
+ severity: String

ADLContext
UserAttributeableElement

ADLCoreConstructs::
ADLEntity

+ kind: ConstraintKind [0..1]
+ name: String

SafetyRequirement::
SafetyRequirement

+ ASIL: ASILLevelKind

SafetyRequirement::SafetyGoal

Requirements::QualityRequirement

+ qualityRequirementType: QualityRequirementKind

+refinedBy 1..* +refinedRequirement 1..*

0..1

+childRequirements 0..*
{ordered}

+source 0..*

0..*

+derivedFromHazard

0..*

Fig. 6. The EAST-ADL2 domain model definition for hazard and safety requirements

4.2 Analysis Leverage and Tool Support through HipHOPS Method

A proof-of-concept tool integration with the HiP-HOPS method (Hierarchically Per-
formed Hazard Origin and Propagation Studies) [5] has been developed. HiP-HOPS is
a model-based safety and reliability analysis technique in which topological descrip-
tions of the system (hierarchically composed if required to manage complexity) that
are annotated with formalised logical descriptions of component failures, are used as a
basis for the automatic construction of fault trees and Failure Modes and Effects
Analyses (FMEA) for a system. Suitable models include a range of diagrams com-
monly used to express hardware and software architectures.

Through the EAST-ADL2 error modelling support, a HiP-HOPS study can be
performed on the abstract models at the AnalysisLevel or on the more detailed archi-
tecture models at the DesignLevel. This creates opportunities for systematic identifi-
cation of safety related requirements, re-use of earlier analysis, and the ability to
achieve a consistent and continuous assessment in the centre of which lies the design
of the system itself. Given an EAST-ADL2 model which contains descriptions of
ErrorBehaviours, a global view of system failure can be captured via HiP-HOPS in a
set of system fault trees which are automatically constructed as expressions that de-
scribe local fault propagation are being evaluated during the traversal. The synthe-
sised fault trees are interconnected and form a directed acyclic graph sharing branches
and basic events that arise from error propagations defined in the model. Classical

 Modelling Support for Design of Safety-Critical Automotive Embedded Systems 81

Boolean reduction techniques and recent algorithms for fault tree analysis that employ
Binary Decision Diagrams (BDDs) are applicable on this graph. Thus, qualitative
analysis (e.g. of abstract functional models) or quantitative analysis (e.g. calculation
of system-level failure rates from known probabilistic component data) can be auto-
matically performed on the graph to establish whether the system meets the desired
safety or reliability. The logic in the graph can also be automatically transformed into
a simple table which is equivalent to a multiple failure mode system.

5 Example Case Study: Electronic Column Lock

Steering column lock is a security function for preventing any steering wheel move-
ment without an authorized starter key. Traditional solutions use the position of
physical starter key as the securing and unlocking mechanism. For the reasons of
user-friendliness, as well as crash safety and vehicle security, keyless engine start
solutions with the immobilizer transponder and start button have been increasingly
adopted, allowing advanced cryptography for authentication control prior to engine
start. As a physical starter key is no longer present, there is a need to replace the tradi-
tional steering column lock principle. With electric steering column lock (ECL), a
logical key position rather than the physical key position is used to enable and disable
steering. The implementation normally consists of a mechanical lock placed on the
steering column as the actuation element, and a control unit for reading the immobilizer
transponder code and vehicle state and for controlling the mechanical lock. Fig. 7. de-
picts the modelling coverage by EAST-ADL2 for an ECL system.

Fig. 7. The modeling coverage of EAST-ADL2 for an ECL system

82 D. Chen et al.

Taken from the legislation, 95/56/EC annex IV, some of the basic requirements for
the security function with relevance for safety are: (1) Devices to prevent unauthor-
ized use shall be such as to exclude any risk of accidental operating failure while the
engine is running, particularly in the case of blockage likely to compromise safety; (2)
Locking shall only be possible after making one operation to stop the engine and then
a second operation designed to lock the column.

The major top level hazard is: Steering is disabled while driving. This top level
hazard must be controlled to a risk level where the risk of the hazard is kept suffi-
ciently low. To model this hazard we use the mechanisms described in Fig 3. The
initial Safety Case for ECL will consists of a root ‘Item’, with one ‘Hazard’ and two
‘ADL Functions’, One being the user function and the other the Environmental Model
entity for the steering wheel. The safety assessment; in this case this is an function
with the highest safety integrity level (ASIL D according to ISO 26262), is required to
enable the correct actions on technical and process elements on the function develop-
ment. The safety analysis for the function requires that we make an architecture defin-
ing which outputs and inputs are needed in order to perform the user function. Fig 8.
shows the abstract functional definition of the ECL.

Sensors for vehicle speed, engine speed and key-position are required for ECL op-
eration. For unlocking there are requirements on using an approved key, this is not
fully considered in this example. There is also the case of retry strategies that can use

Fig. 8. Functional Analysis Architecture with Electrical Column Lock function, where the
components from the package “ECL FuncAnalysis Architecture” act as parts

 Modelling Support for Design of Safety-Critical Automotive Embedded Systems 83

movement of the steering wheel as a trigger. The results of the safety analysis are
the basic safety requirements and how these must be implemented. In this example,
the outcome is that if the ECL lock is unpowered when the vehicle is moving and/or
the engine is running, the Hazard cannot occur (unless there are electrical hardware or
mechanical failures). The following architecture requirements (shown in Fig. 7) cap-
ture this and should be implemented in the design of the ECL function:

• SafetyGoal1 – The ECL must not be powered when vehicle is moving and ignition
is on.

• SafetyGoal2 – The ECL must not be powered when engine is running and ignition
is on.

As we rely on vehicle speed, engine running and ignition state on an ASIL D class
function, we need to consider the need for redundant decision making on this set of
data. As illustrated in the example case, the ADLFunctions on the highest level are
similar between the analysis and the design level respectively. When we realize the
AnalysisArchitecture (AA) on the analysis level with the DesignArchitecture (DA) on
the design level, we can still hide a number of details on the highest level of the cho-
sen ADLFunction hierarchy. Please observe the difference between the realization
that is done when going from the more abstract analysis level to the design level (rela-
tion between “Architectures” in Figure 7), and the unpacking of details that is done
when going down an ADLFunction hierarchy (the composition relation between con-
tained and containing functions in Figure 8).

To perform a HiP-HOPS based hazard analysis, the first step is the establishment
of ErrorBehaviors of components (i.e. functions, hardware or software elements) as
failure expressions which show how output failures of each component can be caused
by internal malfunctions and deviations of the component inputs. A variant of Hazard
and Operability Studies (HAZOP) can be used to identify plausible output failures
such as the omission, commission, value (hi, low) or timing (early, late) failure of
each output and then to determine the local causes of such events as combinations of
internal component malfunctions and similar types of input failures. Thereafter, the
structure for error propagations in a particular architecture context is determined using
ErrorModels for instantiating the predefined ErrorBehaviors and ErrorPropagation
for the propagations. The system effects of failure events in terms of Hazards are
captured with the ErrorToHazard construct. This global view in terms of fault trees
are the generated with the HiP-HOPS plug-in.

Our experience from case studies suggests two useful design patterns that can be
derived from this type of analysis: (a) when the analysis indicates that the omission of
a function has only marginal effects while commission and value failures have catas-
trophic effects, a design recommendation should be made to design the function in a
way that it “fails silent”; (b) on the other hand, when all potential failure modes of a
function are shown to have catastrophic effects on the system then a design recom-
mendation should be made to allocate the function to a fault tolerant architecture.
With the help of these results, the abstract functions are allocated to appropriate
hardware and software architectures in which case HiP-HOPS studies can become
much more detailed and quantitative in nature making use of available information
about component failure modes and failure rates.

ErrorBehaviours are now extended to include real failure modes and probabilistic
component failure data. Such failure modes include electrical and mechanical

84 D. Chen et al.

component failures caused by wear and environmental conditions or, in the case of
programmable components, statistically observed functional failures caused by un-
specified random or systematic faults. Note that credible probabilistic failure data
(often not available) is not essential for producing useful results. Qualitative applica-
tion of the technique can still produce useful results. The logical reduction of fault
trees into minimal cut-sets and FMEA, for instance, can indicate single points of fail-
ure in the system and point out potential design weaknesses. Clearly, the ability to
iterate fast this process ultimately also defines the ability to manage effectively the
evolution of an EAST-ADL2 design.

We should note that there is a range of other emerging techniques that are aiming
at automation of system safety analysis (Altarica [13] and FSAP-NuSMV [14] among
others). Most use model-checking and simulation as means of inferring the effects of
component failures in a system. However, the analysis of individual failure modes via
simulation or model-checking is computationally expensive and the inductive nature
of the analysis (from causes to effects) creates difficulties, especially when combina-
tions of failures need to be considered. Assuming that there are N possible component
failures in a system, assessment of combinations of M of those failures requires that
the analysis is repeated N!/((N-M)! x M!) times. For a system that has 1.000 failure
modes, assessment of the effects of combinations of 2 failure modes requires that the
analysis is repeated approximately half a million times. In HiP-HOPS, the analysis of
propagation of failures is deductive (from effects to causes) and therefore the tech-
nique always synthesises fault trees in linear time not determined by the highest order
cutset (i.e. the maximum number of failure modes considered in combination which is
defined only by the positioning and nesting of AND gates in the error propagation
model). The fast algorithms of HiP-HOPS have not only enabled its application on
large systems but also its combination with computationally greedy heuristics such as
Genetic Algorithms for the purpose of architectural optimisation with respect to de-
pendability and cost [15] - a capability which is unique in HiP-HOPS. Moreover, HiP-
HOPS has advanced capabilities for probabilistic analysis which include Poisson,
Binomial and Weibull calculation models, as well as capabilities for common cause
and zonal analyses, while most formal techniques tend to focus on functional safety
analysis only. Clearly there is often a need in software design to consider the prob-
ability of failure of components.

6 Conclusions

In this paper we have presented how the architecture description language EAST-
ADL2 supports the development of safety-critical automotive E/E systems. The inte-
gration of the safety case metamodel, safety analysis, and the system modelling will
achieve several benefits. The Safety Case development will be eased by the
systematic development that is supported by the EAST-ADL2, including structured
information handling, support for reuse, consistency between the models, etc. The
EAST-ADL2 language will benefit by having support for the Safety Case approach,
an important technique in safety relevant system development. Further, the safety case
metamodel will provide support for motivating why certain design decisions are
needed and provide means for connecting the argumentation and design information.
The connection between error modelling and system modelling supports quick safety
design iterations, the creation of views, and structured information management.

 Modelling Support for Design of Safety-Critical Automotive Embedded Systems 85

We believe this approach presents an important step in making the design and
safety processes more efficient and effective. Future work will concentrate on further
evaluation of the approach, developing systematic support for integrating several
relevant analysis techniques, and considering optimization with respect to safety
properties. Another direction is to assess how the proposed approach, biased by auto-
motive specifics and standards, is applicable to other domains.

Acknowledgments. This work was supported by contribution of all the partners of
the ATESST project consortium funded by the European Commission. We wish to
acknowledge feedback from the anonymous reviewers.

References

1. International Organization for Standardization: Draft 26262. ISO Committee (2008)
2. Chen, D.J., Törgren, M., Lönn, H.: Elicitation of relevant analysis and V&V techniques.

D2.2.1. ATESST EC FP6 (2007), http://www.atesst.org
3. AUTOSAR Development Partnership, http://www.autosar.org
4. Kelly, T.P.: Arguing Safety - A Systematic Approach to Managing Safety Cases. PhD

Thesis. University of York (1998)
5. Papadopoulos, Y., McDermid, J.A.: Hierarchically Performed Hazard Origin and Propaga-

tion Studies. In: Felici, M., Kanoun, K., Pasquini, A. (eds.) SAFECOMP 1999. LNCS,
vol. 1698, pp. 139–152. Springer, Heidelberg (1999)

6. Sangiovanni-Vincentelli, A., Di Natale, M.: Embedded System Design for Automotive
Applications. IEEE Computer 40(10), 42–51 (2007)

7. HIS Members and Partners: Specification Requirements Interchange Format (RIF). v1.1a
(2007), http://www.automotive-his.de

8. SysML Partners: Systems Modeling Language (SysML). Open Source Specification Pro-
ject, http://www.sysml.org

9. Cuenot, P., Frey, P., Johansson, R., Lönn, H., Reiser, M.-O., Servat, D., Tavakoli Kola-
gari, R., Chen, D.J.: Developing Automotive Products Using the EAST-ADL2, an AUTO-
SAR Compliant Architecture Description Language. Ingéniurs de l’Automobile 793, 58–
64 (2008)

10. Törner, F., Chen, D.J., Johansson, R., Lönn, H., Törngren, M.: Supporting an Automotive
Safety Case through Systematic Model Based Development - the EAST-ADL2 Approach.
Technical Paper Series, 2008-01-0127. SAE (2008)

11. International Electrotechnical Commission: Functional safety of electri-
cal/electronic/programmable electronic safety-related systems – Part 0: Functional safety
and IEC 61508 (2005)

12. Martin, T., Chen, D.J., Malvius, D., Axelsson, J.: Chapter - Model based development of
automotive embedded systems. In: Navet, N., Simonot-Lion, F. (eds.) Automotive Em-
bedded Systems Handbook. Industrial Information Technology. Taylor and Francis CRC
Press, Abington (2008)

13. Arnold, A., Griffault, A., Point, G., Rauzy, A.: The Altarica formalism for describing con-
current systems. Fundamenta Informaticae 40, 109–124 (2000)

14. Bozzano, M., Villafiorita, A., et al.: ESACS: an integrated methodology for design and
safety analysis of complex systems. In: ESREL European Safety and Reliability Confer-
ence, Balkema, pp. 237–245 (2003)

15. Papadopoulos, Y., Grante, C.: Evolving car designs using model-based automated safety
analysis and optimization techniques. Journal of Systems and Software 76(1), 77–89 (2005)

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 86–98, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Resilience in the Aviation System

Antonio Chialastri1 and Simone Pozzi2,3

1 Aviation Lab, Rome, Italy
2 Deep Blue srl, Rome, Italy

3 Sapienza University of Rome, Department of Psychology of Social and Developmental
Processes, Rome, Italy

anto.chialastri@tiscali.it, simone.pozzi@gmail.com

Abstract. This paper presents an overview of the main characteristics of the
civil aviation domain and their relation with concepts coming from the
approach of resilience engineering. Our objective is to first outline the structural
properties of the aviation domain (i.e. regulations, standards, relationships
among the various actors, system dynamics), to then present some example
processes that bear an effect on the system resilience. We will in particular
reason on training and on the role of automation, to discuss how and to what
extent they impact on system resilience. We contend that, in a complex system
like aviation, resilience engineering is not a matter of simple technical
upgrades, rather is about facing contradictory tensions and dynamic system
changes. This paper contains a pilot’s first-hand reflections, so it aims to
stimulate discussion on some issues that are still open, rather than providing
solutions.

1 Introduction

Given the unbearable human, economical and legal impact of an air disaster, safety
has always been the main concern for airline management. However, technological
innovation like the introduction of the so-called glass cockpits in the beginning of the
Nineties has questioned well-established safety management methods, calling for the
adoption of new safety models. For instance, Leveson [1] mentions how reductionist
approaches, which derive the whole system safety from ensuring that each single
component is safe, fail to appreciate the systemic dimension of safety. Traditional
Probabilistic Risk Assessment focuses on functional failures, i.e. on the non-
performance or inability of specific components to perform their intended functions.
However the more complex safety critical systems have become, the more accidents
have been determined by so-called dysfunctional interactions. Dysfunctional
interactions take place when system elements perform as they are expected (i.e. as
specified by requirements) but still the overall system behaviour is unsafe. The
increasing role of human and software in supervisory control addresses this issue, as it
is quite common to have situations in which a component satisfies its specified
requirements, even though the requirements may include behaviour that is undesirable
from a larger system context.

A coherent approach with the points raised by Leveson comes from Resilience
Engineering [2, 3]. Whereas conventional risk management approaches are based on

 Resilience in the Aviation System 87

hindsight and emphasize failure probabilities, Resilience Engineering aims to enhance
the ability of organizations to create processes that are robust yet flexible, that can use
resources proactively to accommodate for external disruptions or internal ones (e.g.
production pressures, human errors). In Resilience Engineering, failures do not stand
for a breakdown or malfunctioning of normal system functions, but rather represent
failure to adapt to the real world complexity. Resilience engineering focuses on the
capabilities on all levels of a system to respond to regular and irregular threats in a
robust yet flexible manner, and to anticipate the consequences of disruptions.
However, all systems to some extent adapt to changes, even if this adaptation might
be slow or not apparent. Robustness is provided by specified structures inside the
organizations that should respond to intentional attacks or unintentional mishaps,
while flexibility is achieved by stretching normal behaviors to cope with situation not
previously codified.

Resilience engineering refers to a broader definition of adaptation, whether the
system can handle variations that fall outside of the co-called design envelop, that is
the variance amplitude as defined in that system. The system should be “designed-for-
uncertainties, which defines a ‘textbook’ performance envelope and how a system
recognizes when situations challenge or fall outside that envelope – unanticipated
variability or perturbations” [2].

Individuals and organizations must always adjust their performance to the current
conditions; and because resources and time are finite it is inevitable that such
adjustments are approximate. Success has been ascribed to the ability of groups,
individuals, and organizations to anticipate the changing shape of risk before damage
occurs; failure is simply the temporary or permanent absence of that.

Given these definitions of resilience engineering, some problems arise regarding
the scope of their applicability in aviation.

According to Erik Hollnagel: “Safety is something a system or an organisation
does, rather than something a system or an organisation has. […] This creates the
dilemma that safety is shown more by the absence of certain events – namely
accidents – than by the presence of something. Indeed, the occurrence of an unwanted
event need not mean that safety as such has failed, but could equally well be due to
the fact that safety is never complete or absolute” [2]. Which begs the question of
which is the correct approach to safey in a system such as aviation. The answer
depends on how we see the entire system. Fifty years ago, when a reductionist
paradigm was dominant, the answer was that safety could be achieved via the
engineering approach, by improving onboard technologies. Everything was
measurable, predictable, modelled in different shapes to fit for the special field of
application. During the eighties, the answer to the same question shifted from
engineering to psychology. Following several accidents, due to poor human
interaction, the goal was to improve the “liveware” part of the system. Technology
was considered safe, while man was not. Today, we recognize that in complex
systems we cannot isolate single causes, since every element is interconnected with
the other elements.

The approach we propose in this paper is to move away from reductionism and
take a philosophical perspective on system dynamics and to address one of the key
contradictions at the core of the resilience engineering approach. On the one hand,
most of the authors acknowledge that a complex system cannot be reduced to the sum

88 A. Chialastri and S. Pozzi

of single components and are aware of the role played by emergent properties. On the
other hand, we need to have better engineering principles, that can be applied by
industries. Resilience and engineering do not match. Numbers, graphics and models
may give more confidence in the manageability of the system and may reduce the
uncertainty given by complexity, but they still cannot address emergent properties. In
our opinion, this is the key challenge that resilience engineering should tackle.

2 What Is Resilience in Aviation?

Given this explanation of resilience, we must clarify some concepts that could be
misleading for the discussion. From a system’s theory point of view, accidents are
considered as an unexpected combination of events rather than a single failure or
action leading to disaster. In a similar manner resilience is the ability to cope with
unexpected circumstances that could put in jeopardy the whole system. Accidents in
aviation, likewise other domains, show very similar and recurrent patterns of events.
That is why we are able to categorize types of accidents by their dynamics and by
their shared characteristics, e.g. “controlled flight into terrain” or “loss of control”. To
overemphasise the point for clarity’s sake, in most of the accidents we already know
every step leading to the negative outcome before they actually start unfolding.
Otherwise even with the benefit of hindsight we would not be able to identify the
single links of the event’s chain.

To recap, aviation resilience is itself a problematic notion to be analysed deeply,
not a simple solution to fix organizational latent failures. This leaves us with some
open issues. First, how to define aviation resilience. Ability to cope with unexpected
events? Robustness towards ambiguity of information? Functional plasticity and
structure remodelling, in order to achieve the same result, namely safety? What do we
mean by saying that something is unexpected in aviation? Second, which is the
appropriate system level for improving resilience? Who are the stakeholders? Shall
we concentrate on the final operator (i.e. pilots, air traffic controllers, etc) or on the
organisational level or on international institutions (e.g. ICAO, IATA, etc.)

To further our reflection on resilience engineering and the aviation domain, this
paper will present some of the characteristics of the aviation domain, to then describe
first-line processes and the way they might impact on the system’s resilience.

3 The International Nature of Air Transport: Rules and
Regulatory Bodies

The aviation industry has been among the first to go global. Its workplace is the
world, so it deeply needs international rules to be enforced worldwide. International
organisms and national regulators emit a set of rules regarding the air transport. An
airline must comply with the “Airworthiness of operation certificate” criteria. Another
institution that sets worldwide rules is the ICAO (International Civil Aviation
Organization) agency of the United Nations, who emits, among others, regulations
regarding flight procedures (i.e. setting the criteria on the design of instrument
approach). The IATA (International Airline Transport Association) is responsible of
the rules for passengers and good transportation.

 Resilience in the Aviation System 89

We must mention as well the international agreement signed following some
international conference as in Chicago (1944), where the States issued an agreement
to create ICAO, together with a series of documents also know as technical annex. At
the moment, 18 annexes have been issued regulating several aspects of international
flight.

From then on, other conventions took place, in Tokyo, in Montreal, and so on.
The United States, the cradle of the aviation industry and the commercial flight on a

large scale, often set the pace of air regulation, regulation that is later adopted
worldwide. The FAA (Federal Aviation Administration) emitted in the early days of
flight a set of rules regarding airplane’s manufacturers, pilot training, hiring and
scheduling, maintenance action and so forth, in order to guarantee the system reliability
to customers and workers in every country adopting those rules. Today, another super-
national regulator, the JAA (Joint Aviation Authority) issues its own rules for an
European Standard to be applied to airplanes and aircrew flying in Europe.

National regulators should comply with international rules and should implement
also other safety measures to ensure safe, smooth and orderly flight operations, They
should also take the role of the “system watchdog” whenever required. For this
reason, some flight rules are still derived from national legislations, which may
sometimes be outdated. For instance, as recently as in 1995, in Italy flight was
regulated by the old “Navigation Code”, issued some sixty years ago (30/3/1942),
thus applying the same measures to ships and airplanes. National legislations is
sometimes outdated compared to international rules, because aviation still defines
most of its rules and standards at a transnational level. This requires national
legislations to quickly comply with international standards, which is not always easily
done in the appropriate time frame.

3.1 Main Actors

Having covered the regulatory bodies that set worldwide rules for air transport, we
can now move to the core business’s actors of air industry and how they interact.
Main actors are the manufacturers (i.e. Boeing, Airbus, etc), the operators (airlines,
charter companies, cargo, and so on), crews, and auxiliary services. Each actor faces
its own peculiar safety challenges and has its own responsibilities.

The manufacturer builds a new airplane, according to the rules, and after the flight
tests, it sells the aircraft with the relative operation manual to the airline (the
operator). The manufacturer usually provides the following information:

− system’s limitation
− check list for normal, abnormal and emergency situations
− conditional procedures (a non-routine, but non-dangerous procedures)
− special operation (operation with degraded performance depending either on

systems or environment)
− performance tables, including engine(s) out performance
− loading
− MEL (minimum equipment list) enabling the crew to fly with inoperative devices

until home base where the repair is made according to a schedule (this deviation
must be previously approved by national regulator)

90 A. Chialastri and S. Pozzi

− runways tables that indicate the performances the aircraft can develop on the
specified runway: i.e. the maximum weight allowed during takeoff or the flight
path to be followed in case of engine failure soon after take off.

The operator buys the airplane and plans its operating schedule. In addition to the
manufacturer’s manual, every major airline provides the crew with rules of conduct
either on ground or in flight. This is called General basic, and specifies almost every
aspects of the crew members’ working life.

The crew flies according to the national and international rules and laws, it must
comply with the procedures specified in the operation manual (i.e. the manufacturer’s
manual) and the guidelines set by the operator (i.e. airline).

Auxiliary services to air travel include: air traffic management, airport services
(catering, fuelling, etc.), maintenance, marketing services. Even if each of these bears
a significant effect on aviation resilience, in this paper we will only briefly mention
the role of maintenance. Airplane overhauling is regulated by international standards
and by strict national rules. Every aircraft should be checked every day, and cyclically
after a determined number of flight hours. On the average, airplanes are brought to an
hangar every three months to have a complete overhauling, in order to check every
system and guarantee safe operations. If the crew experiences any system malfunction
during a flight, they file a report. The next flight cannot depart unless the problem has
been fixed. Documents proving that the maintenance action has been made are
quickly sent to the national regulator who has the right (and duty) of supervision on
every repair.

According to Amalberti theory on ultra-safe systems [4] (less than one accident
every million take offs), we can point out significant difference in safety records
between military and civil flights, and also among civil flights: airline, charter and
private flights.

Military flight is made in variable environment that does not allow a strict
regulation, leaving room for the pilot to arrange his flight in order to be “combat
ready”. Often the airplane is flown to its limits, with erosion of the risk margins.
Sometimes the enemy is inside the cockpit.

Civil aviation is made of different kind of subjects: airline, charter, private.
Airlines are structured in a very organised model that relies on detailed procedures
to carry on its activity. Accident rate have been estimated in one accident per ten
million take-offs. Crews are trained to comply strictly with these procedures.
Charter companies are instead driven by profit in a more aggressive way, so
economical pressure on crews could be stronger than in the airlines (estimate rate of
accident one per 105). Keeping accidents at bay is a serious concern for managers
and there is a concrete risk of misperception by employees about the management’s
real priorities. Private flight are less keen on procedures and mainly relies on pilot’s
experience, but on the other side, two elements could be critical (the estimated rate
of accident is one per 104). First, pilots often lack a professional community with
whom to share their experience, thus hampering effective proactive learning.
Second, maintenance is not often carried out by expert engineers, as maintenance
people is hired from big companies on a temporary basis.

 Resilience in the Aviation System 91

4 Resilience between Automation and Training

This section will present some of the processes that the aviation domain has
established to increase the resilience of its operations. In the first paragraph, we will
outline how pilots are trained to perform with the primary objective of safety. In the
second part, we will focus on the role of automation in modern aviation, highlighting
a progressive shift in the underlying design philosophy. These two examples will
show how resilience engineering is about facing contradictory tensions and dynamic
system changes.

4.1 Building a “Safe Crew”

Aviation is a socio-technical system made of men and a variable environment. Everyone
working around an airplane plays his role in assuring the final target: safety. In doing so,
everyone should be strongly committed to ensure the best performance s/he can in order
to avoid a deterioration of safety margins. According to the so-called hologrammatic
principle (i.e. every single particle contains the properties of the whole in which it is
embedded, e.g. a cell in the human body), in air industry every operator should share the
basic approach to safety, since any of her/his action could affect the final result. It is
thus crucial to review means and processes that make sure that every operator shares the
same approach to safety. Among the main drivers, we may mention training
programmes, but also organisational culture and the force of examples.

To tackle this issue, the airline industry adopts a knowledge-based approach to
safety, where the system resilience is ensured by appropriate performance at the
single operator’s level. The result is a bottom up approach to safety in which everyone
is strongly committed to safety because s/he shares the same value of the entire
organisation. Every area has its own principles and varies from role to role. Selection
is very important in hiring pilots, less for ramp agents. Teaching is very important for
ramp agents, given their sensitive role in assuring flight balance, less for pilots
already hired with a valid license. Given the author’s experience, this paper will focus
only on the pilot role. The main processes put in place by the aviation industry to
ensure a knowledge-based approach are selection, training and checking. In the next
part of the paper, we will particularly focus on training.

Selection
Selection is the first “filter” of candidates and it is structured taking into consideration
several factors: attitude towards the job, reliability, cognitive skills, social abilities,
etc. The performances of the would-be pilots are evaluated by a team made of
psychologists, old pilots, managers. The desired profile is set in advance, so that only
the suitable candidates are enrolled into the flying school. The other key turning point
in a pilot’s career is the upgrading to the rank of commander. To achieve this rank,
the candidate pilot should be positively assessed by many instructors and check pilots.

Training
Training is a lifelong process that endures till a pilot’s retirement. It is based on a
series of competences and knowledge pieces, ranging from flying skills, to flight
management, to role attitude. Each element is required in the pilot profile. Piloting is

92 A. Chialastri and S. Pozzi

not the sole skill required to be an airline pilot. A pilot also needs to make crucial
decisions on the basis of theoretical knowledge, previous experiences, current flight
data (which include the present situation, the aircraft status, meteorological
conditions). Just like a surgeon, pilots have a strong theoretical knowledge, but they
also need experience, which sometimes comes paired with mistakes. Both surgeons
and pilots always focus on the same object of operation, a human being for the
surgeon and a flight for the pilot, but this object everyday changes in subtle or sharp
ways. All the recent technological improvements provide help to carry out simple and
repetitive tasks, but in the end a good pilot or a good surgeon are required to exercise
their sound judgement to evaluate complex situations, whenever they arise. The core
of their profession is the “artfulness of the intelligent worker”, that reads reality and
puts into connection the single, unique, situations they are living with a set of
theoretical tenets.

For instance, if we take the case of procedures, we cannot simply claim they
positively contribute to safety. They certainly provide support in routine jobs for
smooth, clear, precise operations. However, it is impossible to get a procedure for
every aspect of a pilot’s job. In a complex environment, threats are too many to be
foreseen in advance, thus the safest way to cope with unexpected situation is to
provide pilots with the appropriate resources to cope with these variations. Usually a
pilot working for an airline is taught to fly well within the safety margins. The safety
margins protect the system from technical failures, unexpected circumstances or
human errors. But while pilots see the margin area as a buffer over risk, managers
tend to see buffers as inefficiencies. While pilots sometimes face the trade-off
between money and safety to comply with the company’s goals, the managers are
oriented to maximize the performances pushing the costs at their lowest edge. To
make sure pilots possess the right resources in the right situation, the aviation
community has identified four resource categories, also known as the “4 P” approach:
Philosophy, Policies, Procedures and Practices.

Philosophy is the guiding principle of airline business. The philosophy of airlines
should be safety first. Every organizational policy, procedure or practice should be
implemented according to this basic principle.

Policies are issued by the management to reach the operational target. They are
guidelines concerning a determined area. For instance fuel consumption, given the
actual oil cost, is object of a common policy in most of the airline. To minimize fuel
consumption a series of measures could be adopted, from avoiding of carrying extra
fuel, to requesting air traffic control for higher cruising altitudes, etc.

Procedures details the flow chart required to carry out the user’s task. They are
designed by the operator (airline) to comply with policies and regulations. They take
into consideration several aspects: manufacturer’s recommendations on the airplane’s
management, regulator’s criteria on crew composition. In the routine job they ensure
a safe and smooth flow of operation.

Practices are what people really do to bridge the gap between procedures and
reality demands. There is of course a well known potential mismatch between
procedures and practices. Whenever it is impossible to comply with the procedure, the
captain has the responsibility to deviate in order to ensure a higher level of safety, in
accordance with the philosophy of operations. In these situations, it is essential to

 Resilience in the Aviation System 93

evaluate the attitude towards risk, variable from pilot to pilot according to multiple
factors. Such attitude is commonly described as follows:

− risk expectancy: what is the real chance that something happens?
− risk sensitivity: in case something actually happens, which are my effective

resources to cope with this new situation?
− risk penalty: which will be the possible consequences in case something actually

happens?

For this reason, training programmes include flying skills, flight management
skills, role attitudes. Flying skills are the ability to fly an airplane according to basic
flight principles, with or without autopilot. They represent the “knowing how-to”,
cognitive-physical skills on execution tasks requiring coordination of external input
perception with actions. This area has a key prominence for a novice pilot, who has to
develop familiarity with locating the airplane position in a three-dimensional space
and planning/controlling corresponding movements. Flight management skills refer to
the ability of managing aircraft systems in order to perform at the requested level of
safety. These skills are developed by internalising operating rules and procedures to
understand the rationale behind them. In this training phase, pilots should move
beyond the mere knowledge of rules to understand how to use rules as resources to
ease work and make it safer. Rule should become “safety resources”, so that any
violation can only be justified if it is clearly required for safety reasons. Role attitudes
cover interpersonal skills, like assertiveness, critique, communicativeness, etc.. These
are required to perform in coordination with all the crew members, to develop and
maintain a shared view on the objectives, to manage the available resources, to handle
interpersonal conflicts that might disrupt the team performance. While the former
qualities are named technical skills, the latter is a non-technical skill. Leadership,
communication, and other non-technical skills can play a major role in many
accidents. For instance, a Controlled Flight Into Terrain accident (CFIT) is caused by
pilot’s misbehaviour or misconduct, as a perfectly efficient airplanes hits an obstacle
or overruns the runway end.

Another core area of training programmes deals with error management. Since
errors are unavoidable, this area is still an important one, even though state-of-the-art
safety literature [5-9] has deeply questioned the assumption that human error causes
more than 90% of the accidents. Anyway, pilots are trained in order to be aware of
human behaviour in flight. To improve error management, we articulate the training
in three levels of error’s awareness: avoid, detect, mitigate.

− Avoid: the ability to develop one’s own safety net that ensure a smooth, quick and
safe way to operate the system. It includes also flight discipline, intended more as a
shared value, rather than a rule to comply with.

− Detect: ability in the perception of something deviating from the natural course of
action and from intentional input to the system. A key risk area can be found
whenever perception does not match the user’s expectation, as sometimes
expectations can normalise very deviant perception.

− Mitigate: once the deviation is manifest, a quick return to a desired path is a pilot’s
“must”.

94 A. Chialastri and S. Pozzi

Detection can be particularly tricky, as pilots may underestimate a risk on the basis
of the lack of negative outcomes in their experience. This phenomenon is commonly
known as “drift to danger” [10]. It is an incremental, slow and pervasive attitude
toward risk that drives the sharp-end operator to pursue targets even beyond the
managers’ will. There is, basically, a misperception of the real margin of risk that the
organization, as a whole, is ready to accept. This dynamic can be exemplified with a
discussion on the fuel policy.1 Due to the oil price soaring, many airlines are trying to
save money, by reducing the fuel consumption. To reach this target, pilots are invited
by staff manager to uplift just the minimum fuel required for the flight. Many pilots
complied with this policy to eventually find out that they have significantly eroded
safety margins, even to a larger extent than they intended to. Recently, there have
been several “lack of fuel” emergencies in the United States and in Europe. The CAA
(the English regulator) emitted some years ago a recommendation to all crews flying
in UK, to consider the right amount of fuel to carry onboard to avoid distress on
passengers and special requests to Air Traffic Control units [11]. Even though not
every fuel policy critical event is properly detected and reported by crews, there are
clear evidences that this area of concern is spreading worldwide, and pilots are
struggling between production demands and protection needs. Furthermore, declaring
emergency leads to the fear of inter-peers judgement and blaming. A declared
emergency with a good functioning aircraft is an ambiguous event, that could be
regarded either as a lack of professionalism or as sound judgment. This is a clear
example of how economic pressures, organizational climate, raising expectations
could impair pilots’ day-to-day choices, making the organization unintentionally drift
towards the risk area.

Learning in a professional community
The last point we should mention on pilot training is sometimes disregarded, even if it
plays a major role in lifelong learning. A pilot should become aware that s/he is part
of a professional community, with which s/he can share experiences and discuss
problematic issues. Pilots learn from their mistakes, and no pilot can live long enough
to commit all the mistakes by her/himself. Pilots see one flight at a time, which does
not ensure that they possess an appropriate perception of flight risks. How can a
single crew assess if the mistake it has just done is due to poor training, to poor
system design or to a coincidence? There are currently no better means to conduct this
assessment than by ensuring that the community can openly discuss these events and
can share a common interpretation. In this case resilience comes from the cohesion of
a community, and not by dynamics strictly related to flight. Though in aviation the
informal communication is seen as potentially unsafe, we should point out the
paramount importance of peer-to-peer experience sharing, since it provides a valid
resource to cope with unexpected events.

Checking programmes
Checking programmes are set by the national and international regulators to define
the minimum requirements for licence validation. Big airlines check their pilots on
national regulator’s behalf.

1 See “Fuel policy and resilience” by Antonio Chialastri, unpublished manuscript, 2008.

 Resilience in the Aviation System 95

4.2 The Role of Automation: the Tension between Under-Redundancy and
Over-Redundancy

About twenty years ago, the air industry, looking for more redundancy in the avionics
systems, started introducing automation in flight management. Autopilot and other
automatic devices had already been present for some fifty years ago, but that kind of
innovation was still guided by the pilots, in the end the final user. The new conception
of automation was to provide a whole set of system’s redundancies, able to calculate
every aspect either of lateral navigation or vertical performances. The pilot was then
moved to a monitoring position, rather than being the flight manager. That approach
raised questions about the erosion of competence in a pilot (you must know WHAT,
not HOW), since the pilot was no longer required to understand the logic of what s/he
was using. The basic message was: just use it.

This historical shift in the automation philosophy can be described as a movement
from a tactical approach to a strategic one. In the past, every input given to the flight
automation (e.g. Flight director, Autopilot, Autothrottle), was immediately visible on
a display and pilot’s awareness about the mode of automatism was reasonably high.
This is called “tactical approach” because input and output were always clear and
displayed in cockpit. Nowadays, following the introduction of the Flight Management
System (a system that manages and computes several flight aspects in order to
minimize pilot’s input and provide a protection against flying skills issues, e.g. stall,
bank, etc.), a strategic approach is in place. A data (e.g. route deviation, flight level
change, etc) inserted now in the computer might be processed hours later, without any
displayed information at pilot’s reach. If the pilots wants to know which will be the
airplane behaviour s/he should review the flight Management System Computer
pages.

In the automation case, redundancy is achieved by improving and adding systems
in the cockpit, but new risks may arise, as these additional resources contribute to the
system resilience only by interacting with human resources, which cannot be
considered as a neutral factor. Each situation is exposed to its own peculiar threats.
An airplane with few systems (under redundancy) keeps the pilot under stress,
fatigue, distraction, information overload, so that workload management is the main
area of concern. Such a situation was usual in the middle of 20th century before the
introduction of the autopilot, which gave support to pilots during extended operation.
Risks were due to flying skills failures, often induced by a too high workload. As
automation increasingly supported the pilot’s flying skills, the main safety concerns
have simply moved to another place. Flight management has become the main risk
factor. Over-redundancy has kept the pilot at bay so that s/he lost the basic ability to
take over control when needed. Sometimes, pilots cannot understand the system’s
logic, they lose resources to “fly ahead” of the airplane. Pilots should be a step ahead
of the automated flight management system, but as soon as the pilot loses such
situation awareness, it should always be possible to revert to basic mode and put back
pilot in the position of actually flying the airplane and not merely monitoring
automated systems. Nowadays, the primary source of accident has become the loss of
control, that is the pilot not being able anymore to keep the airplane in a safe flight
path. So over-speed, excessive bank angles, stalls, etc, started to show the negative
effects of excessive onboard automation. The “erosion of pilot’s competence” resulted

96 A. Chialastri and S. Pozzi

in a lack of airmanship, caused by excessive confidence in the flight automation
system as the primary resource of flight path and performance management. As a
result, few years ago, FAA issued a recommendation to airlines to train pilots back to
basics, in order to develop the ability to fly regardless of the automated systems.

This discussion shows how in aviation automation often does not increase the margin
over risk, instead it keeps the risk ratio constant, allowing the crew (or the system as a
whole) to work at the maximum capacity. A similar point comes from the analysis of
the development of the instrumental approach to an airport. Ground facilities and
onboard receivers allow the pilot to identify the runway to land safely. Before landing
s/he must be sure that conditions warrant for a safe approach. It is common, at the
operational level, to establish a decision height where the crew must positively identify
by visual contact the runway and decide if landing is safe or not. If the airplane reaches
the decision height without getting the runway in sight, the approach must be
discontinued. When ground facilities and onboard instruments were not so accurate (i.e.
non directional beacon - NDB), the decision height was set, say, at 1000 ft above
ground and the minimum required visibility was four kilometres. As the technologies
improved and the VOR (Very high frequency Omnidirectional Radio) was introduced,
the decision height was lowered, say, to 500 ft above ground and the minimum visibility
to two kilometres. With the implementation of the Instrument Landing System (ILS – a
system that provides the pilot with the correct glide path), the relevant decision height
was further decreased to 200 ft and minimum visibility required to 600 metres.
Nowadays the ILS has been improved to a greater accuracy and the crew may wait 20 ft
over the runway before making a decision. That is to say: two eye blinks and you land
in the middle of a foggy day with visibility of 125 metres. As we see, gradual
introduction of new technologies made the airport operable in almost all weather
conditions, but it did not increase safety margins. Safety remained constant, while
productivity (operability) of the entire system boosted.

We might discuss other examples, like the introduction of reduced vertical
separation minima (RVSM), implemented few years ago, that allowed aircraft flying
at cruising level to be spaced vertically of 1000 feet, instead of 2000 feet as before.
Even here we see that the system is not safer, but more flight levels become available
to let more traffic flow.

This brief excursus shows how resilience engineering is not a matter of simple
technical upgrades. We might argue that the introduction of automation has made the
1950 aviation system more resilient (at least under certain conditions), but we would
miss the point that automation has also caused the system to change, thus making it
more vulnerable to other threats. In a complex system like aviation, resilience
engineering is not about increasing the safety level by “solving some issues”, nor by
introducing specific technical solutions, rather it should focus on managing changes
and studying a problem from various aspects. It should provide the system view, to
counter balance excessive specialisation and reductionism.

5 Conclusions

This paper has analysed the aviation system according to the complexity paradigm
approach. In doing so, we should drop the old habit used in aviation as far as twenty

 Resilience in the Aviation System 97

years ago to analyse the accident causes: a linear, pre-programmed, highly codified
system, made of sub-systems accurately designed by engineers, able to cope with a
foreseeable environment. According to this approach, human behaviour is the unique
variable, single source of malfunctions leading to disaster. The complexity paradigm
invests discipline, from biology to general system theory, to cybernetics, and prompts us
not to oversimplify living systems or organization as a whole. It rejects the “standard
view” approach based on predictability, verification, measurability, theory of meaning
as correspondence, neutral observation, distinction between data and theory. Instead,
data are intertwined with theory, observation is never neutral, depending on the
observer’s light on facts; confutation has replaced verification, and so on.

However, common sense has not followed fully such a paradigm shift. We still see
organization as a machine that can be designed, built and checked in every detail,
according to the principles of mechanics. For example, in the air industry, quan-
tification is still seen as the main base for decision making. A continuous monitoring
activity based on collecting numbers (a huge amount of numbers), followed by scarce
analysis and even less synthesis. The loop is not closed with the domain experience,
so data remain separated from an overall framework of knowledge.

We have shown in this paper how the concrete mechanisms put in place by the
aviation domain to increase its resilience are by far more complex than simple mec-
hanics, as they are multi-faceted, containing inner contradictions and tensions, always
developing and subtly changing. Even if we have kept separated the discussion on
training and on automation, we eventually have to study the interactions between the
two, thus adding further complexity. The lesson we would like to draw from our first-
hand experience is that resilience engineering should be a dynamic approach to safety,
a never-ending monitoring of the flying activity, which accepts the probable negative
outcome and studies all the means to exploit to try and avoid such outcome. An
improvement action does not simply fix a safety problem, it also triggers adaptations
and interactions. Resilience engineering should be about heightened monitoring of
system’s changes.

Is it possible to create a model to do it “a priori”? Or should we be satisfied with
post-accident analysis that teaches us what went wrong? At the moment, the only
sensible answer in aviation is to spread knowledge in order to make people aware of
their own behaviour as a single element of the system and as an emergent property, a
unique feature, which can contribute to the whole safety. The final question is how to
enhance safety via a feed back system that, starting from managers’ inputs, collects all
the relevant deviation from an ideal centreline accepted as safe. Spontaneous report
made by the front line actors (crews, engineers, ramp agents and so on) is vital to detect
such a gap between reality and theory. A “no penalty policy” is often endorsed by major
airlines in order to encourage people to show their own mistakes, failures in their line
operations. At moment this is the only valid approach able to avoid a hidden, and
highly dangerous, mismatch between the intended outcome and the actual one.

Acknowledgments. The authors gratefully acknowledge the support provided to this
work by the EU project “ReSIST: Resilience for Survivability in IST”.

98 A. Chialastri and S. Pozzi

References

1. Leveson, N.G.: A New Accident Model for Engineering Safer Systems. Safety
Science 42(4), 237–270 (2004)

2. Hollnagel, E., Woods, D.D., Leveson, N.: Resilience engineering: concepts and precepts.
Ashgate, Burlington (2006)

3. Hollnagel, E.: Resilience-The challenge of the unstable. Resilience engineering: concepts
and precepts. Ashgate, Aldershot (2006)

4. Amalberti, R.: The paradoxes of almost totally safe transportation systems. Safety
Science 37(2-3), 109–126 (2001)

5. Reason, J.T.: Human error. Cambridge University Press, Cambridge (1990)
6. Reason, J.T.: Managing the risks of organizational accidents. Ashgate Publishing Limited,

Hampshire (1997)
7. Leveson, N.G.: Safeware. System safety and computers. Addison Wesley Publishing

Company, Reading (1995)
8. Dekker, S.: The re-invention of human error. Human Factors and Aerospace Safety 1(3),

247–265 (2001)
9. Dekker, S.: Ten Questions About Human Error: A New View Of Human Factors And

System Safety. Lawrence Erlbaum Associates, Mahwah (2005)
10. Dekker, S.: Why we need new accident models. Journal of Human Factors and Aerospace

Safety, 2 4(1), 1–18 (in press, 2004)
11. Sindall, T.: Special Objectives Check on air Operator’s Fuel Planning Policies. FOCUS on

Commercial Aviation Safety 42 (summer, 2000)

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 99–112, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Resilience Markers for Safer Systems and Organisations

Jonathan Back1, Dominic Furniss1, Michael Hildebrandt2, and Ann Blandford1

1 University College London Interaction Centre
{j.back,d.furniss,a.blandford}@ucl.ac.uk

2 OECD Halden Reactor Project, Industrial Psychology Division
michael.hildebrandt@hrp.no

Abstract. If computer systems are to be designed to foster resilient perform-
ance it is important to be able to identify contributors to resilience. The emerg-
ing practice of Resilience Engineering has identified that people are still a
primary source of resilience, and that the design of distributed systems should
provide ways of helping people and organisations to cope with complexity. Al-
though resilience has been identified as a desired property, researchers and
practitioners do not have a clear understanding of what manifestations of resil-
ience look like. This paper discusses some examples of strategies that people
can adopt that improve the resilience of a system. Critically, analysis reveals
that the generation of these strategies is only possible if the system facilitates
them. As an example, this paper discusses practices, such as reflection, that are
known to encourage resilient behavior in people. Reflection allows systems to
better prepare for oncoming demands. We show that contributors to the practice
of reflection manifest themselves at different levels of abstraction: from indi-
vidual strategies to practices in, for example, control room environments. The
analysis of interaction at these levels enables resilient properties of a system to
be ‘seen’, so that systems can be designed to explicitly support them. We then
present an analysis of resilience at an organisational level within the nuclear
domain. This highlights some of the challenges facing the Resilience Engineer-
ing approach and the need for using a collective language to articulate knowl-
edge of resilient practices across domains.

Keywords: Human error, distributed cognition, control rooms, nuclear domain.

1 Introduction

In this paper we analyse manifestations of resilient practice at different levels of ab-
straction from the individual working with simple artefacts to more complex team
working situations. Resilience markers can be any system feature or procedure that
enables resilient practice to manifest. Identifying these markers may provide useful
performance indicators, and allow the resilient characteristics of a system to be com-
municated, so that existing features or procedures can be augmented in a way that
increases the capacity for resilience beyond that which is already present.

Resilience markers specify the conditions that need to hold for a system to perform
resiliently. In addition to enabling the detection of error-prone or non-resilient computer
systems, our approach provides a means of reasoning about resilience. This allows us to

100 J. Back et al.

look at distributed systems from a new perspective. Resilience engineering takes the
view that resilience is a characteristic of a system. This implies that a holistic perspec-
tive is required to develop an understanding. We are aware that the levels of granular-
ity presented here are interrelated and so they should be considered collectively.
However, much more work is needed to integrate these different levels. Indeed it
could be argued that the nature of resilience goes against a level-based composition,
however, our central focus is on finding evidence for resilience in the behaviour we
observe, and identifying what type of behaviour we would classify as resilient. The
aim of this approach is to develop an understanding of the system attributes that en-
courage people to engage in resilient activities (see Sections 3 and 4). We also discuss
the difficulties of understanding resilience issues at an organisational level by present-
ing a case study from the nuclear domain (see Section 5). The examples presented in
this paper should not be considered a full set of resilient behaviours that need to be
supported: they have been selected as being representative of different levels of
granularity that researchers and practitioners need to consider when designing sys-
tems that foster resilient performance (see Table 1).

Table 1. Levels of Granularity

Granularity Examples of
Vulnerabilities

Resilient
Manifestations

Resilient Markers

Individual Level
(see Section 3)

Errors in
procedural routine

1. Reflection
2. Cue creation

Providing an opportunity for meta-
cognitive activities.

Small Team Level
(see Section 4)

Coping with
increased demand

1. Buffering
2. Work shadowing
3. Artefact use

Optimised flow of information and
physical layout. An understanding
of artefact use, social conditions.

Operational Level
(see Section 5)

High complexity Error recovery Symptom-based emergency
procedures, automatic safety
systems, strategic crew leadership.

Plant Level
(see Section 5)

Plant shut downs
or failures to start
up, major
accidents

1. Plant safety record
2. Response to major
disturbances

Maintenance regime, plant
upgrades, risk analysis, training
programs.

Industry Level
 (see Section 5)

Political and
regulatory
intervention

Performance necessity
and availability of
alternatives

Regulatory compliance,
public/political perception, cost-
benefit ratio, competitiveness.

2 Background

Making a system safer involves coupling the capabilities of humans with the technol-
ogy they work with so that they can stay in control. A resilient system is able to rec-
ognise, adapt to and absorb disturbances so that it remains safe by being flexible to
new demands [1]. We report on work using experimental microworlds that enable
cognitive strategies to be understood, as well as studies of team working situations
using distributed cognition modelling. We also look at how the design of computer
systems in control room environments explicitly supports resilient practice.

Historically, there has been much more focus on why things go wrong than on why
they work well. Conventional engineering approaches to ensuring safety attribute failure
to a system component (human or technological) rather than the system as a whole.
When systems fail, the cause is often attributed to ‘human error’ or to a technical

 Resilience Markers for Safer Systems and Organisations 101

problem associated with a control process. Attributing blame to a faulty component
offers a pragmatic solution; the component can simply be replaced, fixed, or retrained.
The traditional view of managing safety involves attempts to reduce the complexity of
a system so that humans can maintain control under stress [2]. For example, one tech-
nique is to try and design systems that minimise the number of procedures by auto-
mating subsidiary interactions and leaving only the main parameters for the operators
to worry about. Ostensibly, this decreases the system complexity from a human-
computer interaction (HCI) perspective. However, Perrow’s account of high-risk
technologies highlights that it is not complexity per se that causes accidents [3]. The
existence of many system components is not a problem for either system designers or
operators if their interactions are expected. Based on the analysis of case studies and
foundational empirical work, we found that dealing with unexpected or hidden events
is facilitated by: designs that provide operators with an opportunity to engage in re-
flection [4]; expanding the variability of actions operators can take [2]; supporting the
use of artifacts (such as dynamically generated checklists) that augment the capabili-
ties of human cognition [5, 6]. These types of interactions allow a system to maintain
control by anticipating new demands. We classify them as being resilient interactions.

The performance of cognitive systems, ranging from the individual to a team, has
been found to be sensitive to external factors such as time constraints and workload
which erode control [1, 7]. However, experts are able to generate strategies that sup-
port resilient practice (e.g., [8]). Understanding how these strategies are generated
will enable the development of computer systems that explicitly support resilient
activities. Our approach is about understanding how systems can support the cogni-
tive and communicative capabilities of humans. This enables the socio-technical sys-
tem as a whole to adapt to oncoming demands. Work suggests that the process of
managing demands is influenced by task structures and team roles [9], external cogni-
tive artefacts and computer system design [10]. We suggest that these factors shape
the potential for resilient interactions rather than simply attributing resilience to the
capabilities of individuals themselves.

An opportunity to think about oncoming demands is essential for individuals,
teams, and organisations to reason about ways that performance can be better sup-
ported, enabling future strategies to be formulated. For example, an opportunity to
reflect can enable an individual to offload workload, allowing them to maintain levels
of performance under stress or high load situations. For example when anticipating
being in a rush to leave home for work, positioning your bag by the door reduces the
likelihood of forgetting to take it with you. Reflecting in a team setting can allow for
interruption management [11], task collaboration and temporal coordination [12].
Foundational work suggests reflection at an organisational level is unlikely to take
place during routine operation. Nathanael and Marmas’s Repetitions-Distinctions-
Descriptions model [13] suggests that encountering abnormal or different scenarios
forces ‘distinctions’ from the normal routine to be made. These ‘distinctions’ trigger
reflection-in-action to alter practice; this altered practice can then be absorbed back
into normal routine if appropriate. The ability of a socio-technical system, in which
computer systems are an integral part, to prepare for oncoming demands is an impor-
tant aspect of resilience. However, it is by no means the only one. Other aspects are
discussed in Hollnagel and Woods [14].

102 J. Back et al.

3 Cognitive Resilience at the Individual Level

The first level of granularity to be considered is cognitive resilience. In safety-critical
domains operators frequently perform routine tasks. Research on procedural routine
has demonstrated that under increased workload individuals are more prone to slips
[15]. Although the consequences of a slip do not necessarily move a system towards
failure, the ability of an operator to perform effectively is influenced, since some
control over the processes they are trying to manage has been lost. While most day-to-
day slips result in minor annoyances, those that occur in safety-critical situations
(such as in the aviation domain) can be catastrophic. Slip errors can occur systemati-
cally even when individuals have the required ‘expert’ procedural knowledge to per-
form a task correctly. Manifestations include omission errors (e.g. forgetting to collect
the original document after making photocopies), and mode errors (e.g. typing with
the Caps Lock mode activated). Slips cannot be eliminated through practice or in-
creased motivation [16] but they can be reduced by adopting a resilient strategy (such
as leaving your bag by the door). We hypothesised that reflection can support per-
formance during HCI, allowing slip errors to be mitigated. To test this hypothesis, an
understanding of under what conditions individuals are able to engage in reflection
was needed. In order to address the question of how an individual’s resilient cognitive
activities emerge, a ‘Fire Engine Dispatch Centre’ microworld was developed [6].
The development of a microworld to study how individuals avoid slips improves
understanding of what factors shape performance.

The overall objective of the microworld experiment was to send navigational in-
formation to fire engines enabling the fastest possible incident response times. When
a call was processed the location of the nearest fire engine and the location of the
incident were displayed automatically as waypoints on a map. Participants had three
minutes to identify the best route based on information displayed on a traffic informa-
tion ticker. Training trials were used to ensure that participants became familiar with
the sequence of actions. After performing two 'error free' training trials consecutively,
a participant was allowed to move on to twelve experimental trials. Two error-prone
task steps, outlined below, were built into the design: an initialisation step and a mode
selection step. The emergence of resilient strategies associated with these steps pro-
vides concrete examples of cognitive resilience.

Initialization Step. When commencing a new trial an individual had to decide which
call to prioritize before clicking on the 'Start next call' button (see Figure 1).

For each trial there was only one correct call prioritization selection. Participants
were trained to know that incidents in poor fire engine coverage areas should be se-
lected before incidents in good coverage areas. They also knew that high priority calls
took precedence over normal priority calls irrespective of fire engine coverage. The
first step in the process of setting call priority involved clicking on the radio button
that was located alongside the required call ID. For example, in Figure 1 a participant
is required to select ID 4. Clicking on ‘Confirm priority change’ is the second proce-
dural step. Participants were instructed that the ‘Start next call’ button should only be
clicked when both the new call ID has been selected and the ‘Confirm priority
change’ button has been clicked.

 Resilience Markers for Safer Systems and Organisations 103

Fig. 1. Inititalisation Step

When a routine task is learned task, steps become associatively linked, i.e. action x
(e.g. inserting a DVD) becomes a procedural cue for action y (e.g. locating the remote
control). The initialization step could not be procedurally cued, since there was no
preceding step, making it highly error-prone. The error occurred when participants
omitted the initialisation step, which involved prioritizing calls to the dispatch centre,
and instead clicked on the start next call button. The start button captured attention
away from the correct procedure since it moved a participant towards starting the
primary task of routing fire engines. Experimentation revealed that initialization er-
rors were more avoidable if participants were given the opportunity to reflect on task
requirements. The number of initialisation errors made by participants in Condition A,
where the system encouraged reflection by displaying the control interface during a
trial resumption delay, was compared with the number of errors made by participants
in Conditions B, where participants were presented with a blank screen. The mean
error rate when display cues were present was 6.09% compared to 23.12% when cues
were absent (Mann-Whitney U = 40.2, Wilcoxon W = 158.5, Z = -2.605, p < .01,
across 24 participants). Providing users with an opportunity to rehearse procedural
steps allows for reflection. System designers can modify the task environment to
ensure that rehearsal is possible and in some cases, where problematic interactions
have been identified in the past, is actively encouraged (by enforcing delays). Provid-
ing a window-of-opportunity as a means of facilitating reflection is a useful marker
for resilient design.

Mode Selection Step. After identifying a route, a participant had to select the
required route construction mode.

When a participant commenced the route construction procedure (after clicking on
the start button) the first requirement was to identify the most appropriate route on the
map. Participants had to select the best route based on traffic information (i.e. they had
to ensure a proposed route did not run through an accident or heavy traffic area). The
device provided a signal that informed participants of the required method of route
construction (located above the telephone image, see Figure 2). This signal was avail-
able after 35-45 seconds from pressing the start button. Participants were required to
attend to this signal so that they could determine what type of route information was
needed. If GPS was available then the centrally located menu could be used. Clicking
on this menu enabled one of the automatically generated routes to be selected. The drop-
down menu located below and to the left of the automatic route selection menu was
used for manual route construction. A mode error occurred when a participant used the
wrong route construction method.

104 J. Back et al.

Fig. 2. Mode Selection Step

Attending to the mode selection step indicator required an attentional shift away
from the main problem-solving task, making it highly error prone. A post-hoc analy-
sis revealed the generation of a tractable resilient cognitive strategy. If participants
placed the mouse cursor close to the signal status display (above the telephone in
Figure 2) before the signal status appeared, they were less likely to forget to attend to
the display before selecting the appropriate route construction method. When the
mouse cursor was placed < 2cm from the display, participants were significantly less
likely to make a mode error (Wilcoxon Z = -1.870, p < .05, two related samples test,
across forty-eight participants). Positioning the mouse cursor enables the creation of a
sensory cue. If the cursor is attended to then it may indicate that the display should be
attended to when route identification is complete.

Further experimentation revealed that the generation of this resilient strategy was
significantly more likely under a mixed workload condition. The complexity of the
routing task was manipulated so that half of the participants only performed difficult
routing tasks while the other half performed both easy and difficult tasks (mixed
workload). In the mixed workload condition 64% of participants adopted the cursor
strategy. In the high workload only condition only 27% of participants used the
mouse cursor as a candidate cue. Critically, participants in the mixed workload condi-
tion who adopted this strategy were able to apply it during easy and difficult tasks
(Wilcoxon signed rank test, related samples, Wilcoxon Z = -1.039, p < .05). Analysis
of these findings enables us to identify a further marker for resilience that has impli-
cations for the design of computer systems. Personalised cue creation is spontaneous
and can be used to minimize the likelihood of error. Allowing users to position mark-
ers (like ‘Post-it’ notes) provides support for attentional control. However, the use of
such cues is only likely in situations where distinctions to the normal routine can be
made. Mixed workload participants had: the cognitive resources available to think of
an appropriate cue to guide attention (when workload was low) and the motivation for
doing so, i.e. to support performance during high workload trials. Systems designers
need to design scenarios that encourage metacognition during routine performance. It
is generally agreed that the metacognitive activity consists of two basic processes
occurring simultaneously: monitoring progress, and selecting or generating strategies
to support performance [17]. Individuals need to be encouraged by the system to
engage in metacognition so that they can develop a repertoire of resilient strategies.
Reflection encourages the development of appropriate strategies and so enables levels
of performance to be maintained under stress.

 Resilience Markers for Safer Systems and Organisations 105

4 Resilience at the Small Team Level

As illustrated in the previous section, markers for resilient performance can be ‘seen’
in the laboratory. However, as previously discussed, manifestations of resilient prac-
tice occur at different levels of abstraction; next, we consider more complex team
working situations. There are many different things to ‘see’ in socio-technical con-
texts, often too many, and so it is helpful to have approaches that can facilitate our
perception in the ‘noise’ of real world contexts. DiCoT (Distributed Cognition in
Teamwork) has been developed as an approach to applying distributed cognition to
teamwork contexts [18]. Distributed cognition is a theoretical area which maintains
the computational vocabulary associated with cognitive psychology but expands its
unit of analysis. Hollan et al. [19] suggests three ways in which this expansion occurs:

• “Cognitive processes may be distributed across members of a social group”;
• “Cognitive processes may involve coordination between internal and external (ma-

terial or environmental) structure”; and
• “Processes may be distributed through time in such a way that the products of

earlier events can transform the nature of later events.”

This expansion has important implications for reflecting on and preparing for on-
coming demands. For example: What system are we considering to be receiving these
demands e.g. an individual, a team, a department, a company? Who is passing on the
information and how? What timeframe and what sort of demands are we talking about
e.g. restructuring the company over years or preparing for the next five minutes? How
is this information structured internally within individuals? How is it represented
externally in procedures? DiCoT encourages a system description which helps engage
with these issues. Hollan et al. [19] indicate that what functionally influences the
computation of the system is the concern of DC. DiCoT encourages analysts to look
at these functional influences through five interdependent models. These look at the
structure of information flows in the system, the artefacts which are used, the physical
layout of the system, the social structures and factors in the system, and how the sys-
tem has changed over time. These models, and the way they can be used to reflect on
oncoming demands, are introduced below with reference to a London Ambulance
Service control room study.

Information flow model. The information flow model concerns itself with the
propagation and transformation of information within the system. This model
underlies the other models. Firstly, the overall computational function of the system is
represented in an input-process-output diagram. For example, the input-process-
output diagram of an ambulance dispatch system is shown in Figure 3. After this the
make-up of the computational system can be explored. Figure 4 shows the abstract
computational structure of an ambulance dispatch team. From this we notice that the
structure of the system is designed to cope with the oncoming demands of the system.
The raw material from the External Callers is filtered into critical information for the
decision hub. The buffers control information to the decision hub considering its
workload and the criticality of the information. The filter does not hold up infor-
mation in this way: it just changes its form for computational purposes. If the flow of

106 J. Back et al.

information around a system is designed in a way that enables critical performance to
be maintained during variability in workload, this can be considered a marker for
resilience.

Fig. 3. The input-process-output diagram of an ambulance dispatch system

Fig. 4. Overview of main information flow properties the ambulance dispatch system. The Call
Taker (C) filters the raw information from the External Caller (Ex C). This structured informa-
tion is passed to the Allocator (A) who decides which ambulance should attend based on prior-
ity, availability and location. Depending on the status of the ambulance the Allocator (A) will
channel information to the Telephone Dispatcher (T) or the Radio Operator (R), who will con-
tact an ambulance crew at a station (Crew St) or one which is mobile (Crew Mob). Feedback
from the ambulance crews (Crew St and Crew Mob) goes back through the Telephone Dis-
patcher (T) and the Radio Operator (R) who act as buffers for the decision hub i.e. holding up
information when the hub is busy, if it is non-critical and would be disruptive.

Physical Model. The physical model concerns itself with functional influence of the
physical layout of the system. For example, at the time of the study, the ambulance
dispatch control room in London had seven desks, each of which is responsible for
allocating ambulances to a different area of London. The arrangement of the seven
desks reflects their geographical location, as adjacent areas will sometimes collaborate
on the shared use of resources and attending incidents. This is particularly important
with incidents near their shared border. This layout facilitates the oncoming demand of
cross-boundary collaboration.

Figure 5 shows the seating arrangement of one of the allocating desks. The Alloca-
tor and Radio Operator work closely together, and so are adjacent. This facilitates
their collaboration as the Radio Operator is implicitly aware of the Allocator’s activi-
ties by shadowing them i.e. listening to their communication with others and watching
their monitors. This allows the Radio Operator to prepare for oncoming activities
before their receipt. This augmented awareness of work demands, through physical
co-location, can be considered as a marker for resilience.

 Resilience Markers for Safer Systems and Organisations 107

Fig. 5. An allocating desk. The information flow concerned with this sector desk is described in
Figure 2.

Artefact Model. The artefact model concerns itself with the influence of the use of
artefacts in the system.

Two brief examples of preparing for oncoming demand include: that the sector
desks use a computer and card system which prepares them for the eventuality that
the computer system might fail; and the computer system will manipulate the colour
of incidents to indicate their criticality, facilitating the Allocator’s prioritisation of
incidents. Also, as soon as the Call Taker has established the location of the incident,
the Allocator will have access to the updating details so that they can prepare for the
oncoming demand. Redundancy and the support of decision making are important
resilience markers.

Social Model. The social model concerns itself with the functional influence of the
social structure and factors within the system. An example of inbuilt resilience at this
level is that people generally get promoted from Call Taker, to Telephone Dispatcher,
to Radio Operator to Allocator: so the more responsibility they have, the more aware
they are of the other functions in the system and the way they work. An example of
such resilience is that the Allocator may contact the ambulance directly if the
Telephone Dispatcher is busy. Effective knowledge and responsibility transfer is a
marker for resilience.

Evolutionary Model. The evolutionary model concerns itself with how the
computational structure and functions of the system have changed over time. An
example of a major change in the ambulance dispatch scenario was the introduction of
GPS mapping. This gives Allocators a dynamic visual display of where the incident is
and where their ambulances are located. These changes typically happen as a result of

108 J. Back et al.

a constant pressure to improve processes, to respond to increasing demand from the
environment, and to respond to the potentials new technology can offer. Exploiting
technological advances to better cope with demands from the environment is a marker
for resilience.

DiCoT can be used to understand the computation of the socio-technical system
within these five interdependent models. This analysis notices how the system is co-
ordinated to cope with oncoming demands.

5 Identifying Resilience in the Nuclear Domain

Two factors make the nuclear industry a particularly interesting context in which to
discuss resilience. First, in a high-revenue, high-consequence socio-technical system
such as the nuclear industry, significant safety and productivity gains can be expected
if the promises of the Resilience Engineering approach can be delivered. Second, the
nuclear domain presents an ideal environment for developing, operationalising and
testing models of resilience. One of the reasons for this is that analysis of events in the
nuclear industry requires a systemic approach. It is virtually impossible to discuss
issues at one level of abstraction (operational, plant, industry and regulatory) without
recourse to other levels. The degree of interconnectedness becomes clear when elabo-
rating some of the defining characteristics of nuclear operations: information-rich
operational environment; stable operations; possibility for severe disturbances; highly
trained crews of operators; operational support network; highly proceduralised emer-
gency operations reflecting thorough analysis of design-base accident scenarios; pos-
sibility of beyond-design-base incidents (e.g. fire); tight regulatory oversight and
reporting regime; high investments and operations cost; high revenue; a variety of
stakeholders, including operators, utilities, vendors, politicians and the public.

This section aims to identify manifestations of resilience at different organisational
levels in the nuclear industry. The analysis is based on a number of information
sources, including results from full-scale simulator experiments and training; incident
and event reports; observational, ethnographic and interview studies (e.g. [20]); as
well as Performance Shaping Factors that have been found to affect mission success
over a range of scenarios in the context of Human Reliability Assessment.

Operational level. Nuclear operations are characterised by a high level of
proceduralisation (especially during emergencies), and by a set of automatic safety
functions designed to prevent the most severe consequences of accidents (core
damage, release of radiation). There is crew-to-crew variability in procedure
adherence, but crews are expected to follow the procedures as closely as possible.
This system of operators, procedures, control room equipment and automation is
expected to perform reliably for design-base incidents, i.e. those scenarios that have
been considered during system design and in Probabilistic Risk Assessment. It is the
successful interaction between these system components that creates resilience for
design-base scenarios. Beyond these systemic properties, a number of factors have
been recognized to improve the ability of the system to respond to disturbances. For
instance, the move from event-based to symptom-based emergency procedures has
allowed a wider range of plant states to be addressed, and provides operators with a
simpler and more unified way of responding to complex events [21].

 Resilience Markers for Safer Systems and Organisations 109

Even with these well-designed and well-tested procedures, plant conditions can
arise that challenge the procedures and require knowledge-based situation assessment
[22]. To respond successfully to these unanticipated, beyond-design-base events, both
instrumentation and crew responses play an important role. Instrumentation helps the
crew maintain an overview of the situation and develop an appropriate response plan.
Other industries (e.g. petroleum) have already gone further down this path, and the
nuclear industry can benefit from developments such as large-screen and information-
rich displays, trend displays and ecological interface design. When considering crew
responses to beyond-design-base events, a number of characteristics for success have
been identified in recent simulator studies [22], including shift supervisors’ team
leadership style and situation assessment. This suggests that success in nuclear control
tasks at a mission level may not depend only on success or failure of low-level activi-
ties, such as slips, lapses or misidentifications. Given the operational context and time
available, such erroneous actions should be recovered from without significantly
affecting the overall mission. Instead it appears to be crew-level factors, work styles
and orientations that are more likely to determine mission-level success or failure.
Differences between domains in the significance of low-level failures may be ac-
counted for by the role of time. In domains with acute time pressure such as aviation,
it is more likely that low-level erroneous actions can have catastrophic consequences,
whereas in the timeframe available to nuclear operators, recovery mechanisms are in
place that can compensate for low-level failures. Therefore, available time, and the
situational and systemic factors that compensate for failures of individual system
components, can be considered resilience markers. Investigating differences between
domains as to how these factors influence mission success may provide important
insights into markers for resilience.

Plant level. Plants react to outside influences (safety requirements, economics, public
opinion) through upgrade programs, training, perseverance, or closure. Several
candidates for markers of resilience at this level are available, including performance
measures, safety measures (incidents / accidents), and safety culture measures. If and
how these indicators measure resilience, in the sense of the plant’s ability to respond
to and recover from major disturbances, and to adapt to long-term outside forces, is
unclear. Analysis of cases where plants have been built but never started up, were
shut down well before the end of the designed life cycle, or consistently produce
below-expectation power outputs may significantly improve our understanding of
resilience. Case studies suggest that the management of organisational change plays
an important role, and may constitute a marker for resilience. Organisational factors
include conflicts between professional groups within a plant (e.g. operations,
maintenance, engineering, managerial), problems of staff recruitment and retention
(especially with regards to an aging work force in a so-called ‘sunset industry’), and
the effects of organisational re-structuring (e.g. mergers, change of ownership). Each
of these factors can generate disturbances that compromise the resilience of the plant.
A better understanding of these factors is needed as plants prepare for upgrades that
will see their lifetimes extend for several decades.

A critical factor for resilience at both the operational and plant level, and a potential
marker for resilience, is training. While regular training on well-known initiating events
(e.g. steam generator tube rupture) improves response reliability on design-base

110 J. Back et al.

scenario, training for beyond-design-base operations may require different approaches.
More recently, training programs have started to place emphasis on scenarios that chal-
lenge procedure support, require knowledge-based diagnosis and planning, involve
close crew interactions and communication, and are specifically designed to promote
the shift supervisor’s situation assessment. Debriefing of simulator training runs is mov-
ing from an instructional, failure-based approach towards a crew-guided, reflection-
oriented approach.

Industry level. Many of the themes discussed in the previous section re-emerge when
considering resilience at the industry level. Judging by the outcome, the nuclear
industry possesses remarkable resilience. It recovered from severe accidents and the
resulting hostile public opinion. While the survival of the industry was predicated on
the organisational changes and safety improvements that followed in the wake of
these events, the need for power output and lack of alternatives also played an
important role. This suggests that resilience refers not only to the internal quality of a
system to adapt to changes in its environment. Instead the environment itself (in this
case: politics, the public) is in turn shaped by the perceived value of the products and
services provided by the system. From this point of view, resilience markers at an
industry level include pricing, demand and competition as well as safety records.
Even the sheer size of the industry and the investments made in the infrastructure may
contribute to its continued survival (resilience by inertia).

Finally, an important aspect of resilience in the nuclear industry is the role of the
regulator. Many aspects of nuclear operations are subject to regulatory oversight.
Regulatory practices such as risk-informed decision making have made safety as-
sessment of highly complex systems feasible, while leaving plants some degree of
flexibility in implementing and managing their own safety programs. The effect
of regulatory oversight on the ability of the industry to adapt and change, the model of
performance variability embedded in regulatory practices, and the analysis of outside
forces affecting the regulators themselves, are important fields for resilience research.

6 Discussion and Conclusions

The examples presented in this paper are representative of different levels of granular-
ity that researchers and practitioners need to consider when designing computer sys-
tems that foster resilient performance. All these examples demonstrate that people are
an important source of resilience in creating safety under performance pressure. Our
findings are incompatible with the view that erratic people degrade an otherwise safe
system, and align with the viewpoint of Cook and Woods [23], who argue that hu-
mans need to be supported in a way that helps them cope with complexity. As
Rochlin [24] identified, when managing hazardous technical operations, a high level
of performance does not flow from eliminating error but rather through anticipating
and planning for events and surprises.

At the cognitive level (see Section 3) we demonstrated how computer systems can
be designed to enable individuals to develop resilient strategies. By allowing indi-
viduals to reflect on task requirements, the generation of these strategies becomes
spontaneous. The spontaneity of using artefacts in the environment (such as a mouse

 Resilience Markers for Safer Systems and Organisations 111

cursor) to support performance when task demands are increased results in resilient
human performance. At the small team level (see Section 4) the use of a methodologi-
cal approach such as DiCoT is able to reveal the hidden complexity of team interac-
tions. DiCoT provides potential to be used as a tool to analyze the performance of the
system and recommend improvement in processes, in layout, in technologies, and in
social structures within a system’s history of change. Being able to represent interac-
tions at a team level is important for understanding resilience, as manifestations, such
as the ability to buffer, need to be supported by the way a control room is designed.
Computer systems play an increasingly influential role in control rooms so should be
considered as an integral component during design. At operational, plant, and industry
levels (see Section 5) manifestations of resilience are harder to observe. However, the
examples presented illustrate that people are still an essential source of resilience, and
that the design of complex distributed systems should provide ways of helping people
cope with complexity. Computer systems need to support: symptom-based diagnosis
of problems at the operational level; flexibility and extendibility at the plant level; and
survivability at the industry level.

Resilience markers can aid analyses of simulated scenarios at the individual and
team levels, which can be used to evaluate the performance of safety-critical systems.
Resilience markers at operational, plant, and industry levels can be used retrospec-
tively. However using markers to predict performance and survivability requires
researchers and practitioners to consider the interrelations between all levels collec-
tively. More work needs to be done on understanding their integration.

Acknowledgement. Back, Furniss, and Blandford were supported by EPSRC grant
GR/S37494.

References

1. Hollnagel, E., Woods, D.D.: Joint cognitive systems: Foundations of cognitive systems
engineering. Taylor & Francis, Boca Raton (2005)

2. Dekker, S.: Failure to adapt or adaptations that fail: contrasting models on procedures and
safety. Applied Ergonomics 34(3), 233–238 (2003)

3. Perrow, C.: Normal Accidents: Living with High-Risk Technologies. Basic Books (1999)
4. Back, J., Furniss, D., Blandford, A.: Cognitive Resilience: Reflection-in-action and on-

action. In: Proc. Resilience Workshop, pp. 1–6. Linköping University (2007)
5. Masino, G., Zamarian, M.: Information technology artefacts as structuring devices in or-

ganizations. Interacting with Computers 15(5), 693–707 (2003)
6. Back, J., Blandford, A., Furniss, D., Curzon, P.: Avoiding Slips. Submitted for journal

publication (2008)
7. Wright, P.: The harassed decision maker: Time pressures, distractions, and the use of evi-

dence. Journal of Applied Psychology 59, 555–561 (1974)
8. Klein, G., Orasanu, J., Calderwood, R., Zsambok, C.E.: Decision Making in Action: Mod-

els and Methods. Ablex Publishing Co., Norwood (1993)
9. Kirsh, D.: Adapting the environment instead of oneself. Adaptive Behaviour 4(3/4), 415–

452 (1996)
10. Spillers, F., Loewus-Deitch, D.: Temporal attributes of shared artifacts in collaborative

task environments. In: Proc: HCI 2003 workshop on temporal aspects of tasks (2003)

112 J. Back et al.

11. Furniss, D., Blandford, A.: Understanding Emergency Medical Dispatch in terms of Dis-
tributed Cognition: a case study. Ergonomics Journal 49(12/13), 1174–1203 (2006)

12. Bardram, J.E.: Temporal coordination: On time and coordination of collaborative activities
at a surgical department. Computer Suppoted Cooperated Work 9, 157–187 (2000)

13. Nathanael, D., Marmas, N.: The interplay between work practices and prescription: a key
issue for organisational resilience. In: Proc. 2nd Resilience Eng. Symp., pp. 229–237
(2006)

14. Hollnagel, E., Woods, D.D.: Epilogue: Resilience engineering precepts. In: Hollnagel, E.,
Woods, D.D., Leveson, N. (eds.) Resilience engineering: Concepts and precepts, pp. 347–
358. Ashgate (2006)

15. Byrne, M.D., Bovair, S.: A working memory model of a common procedural error. Cogni-
tive Science 21, 31–61 (1997)

16. Back, J., Cheng, W.L., Dann, R., Curzon, P., Blandford, A.: Does being motivated to
avoid procedural errors influence their systematicity? In: Proc. HCI 2006, pp. 151–157
(2006)

17. Ertmer, P.A., Newby, T.J.: The expert learner: Strategic, self-regulated, and reflective. In-
structional Science 24, 1–24 (1996)

18. Blandford, A., Furniss, D.: DiCoT: A methodology for applying Distributed Cognition to
the team working systems. In: Gilroy, S.W., Harrison, M.D. (eds.) DSV-IS 2005. LNCS,
vol. 3941, pp. 26–38. Springer, Heidelberg (2006)

19. Hollan, J., Hutchins, E., Kirsh, D.: Distributed cognition: toward a new foundation for
human-computer interaction. ACM Trans. Comput.-Hum. Interact. 7(2), 174–196 (2000)

20. Perin, C.: Shouldering Risks. Princeton University Press, Princeton (2004)
21. Ujita, H., Kubota, R., Ikeda, K.: Development and Verification of a Plant Navigation Sys-

tem. Cognition, Technology & Work 3, 22–32 (2001)
22. Halden Work Report 844. The International HRA empirical study – Pilot phase report.

OECD Halden Reactor Project. Halden, Norway (2008)
23. Cook, R.I., Woods, D.D.: Operating at the Sharp End: The Complexity of Human Error.

In: Bogner, M.S. (ed.) Human Error in Medicine, pp. 255–310. Lawrence Erlbaum, Mah-
wah (1994)

24. Rochlin, G.: Safe operation as a social construct. Ergonomics 42, 1549–1560 (1999)

Modeling and Analyzing Disaster Recovery

Plans as Business Processes

Andrzej Zalewski, Piotr Sztandera, Marcin Ludzia, and Marek Zalewski

Warsaw University of Technology, Institute of Automatic Control and Computational
Engineering, Warsaw, Poland
a.zalewski@ia.pw.edu.pl

Abstract. The importance of business continuity and disaster recovery
(BC/DR) plans has grown considerably in the recent years, becoming a
well-established practice to achieve organization’s resiliency. There are
several applicable standards, like BS 25999-1:2006, sets of guidelines and
best practices in this field. BC/DR plans are typically text documents
and exercising is still the main measure used to verify them. On the
contrary, to the common practice we suggest to model BC/DR plans
as business processes using ARIS methodology and models, which have
proven successful in the Enterprise Resource Planning systems projects.
This provides uniform representation of BC/DR plans that can be ap-
plied across the whole distributed organization, strengthens the efficiency
of traditional manual analysis techniques like walk-throughs, helps to
achieve completeness, consistency and makes possible computer simula-
tion of BC/DR processes. Timing and dynamic behavior, resource uti-
lization and completeness properties have been also defined. It is possible
to analyze them with computer support based on proposed ARIS model
of BC/DR plan.

1 Introduction

The catastrophes of last decade, like hurricane Katrina or terrorist’s attack on
World Trade Center in New York, have shown the importance of organization’s
resilience against severe disruptions. This caused a rapid development in the
genre of Business Continuity, which resulted in:

– the development of a number of standards and recommendation sets – e.g.
Business Continuity Management (BCM) standard BS 25999-1:2006 [1],
Standard on Disaster/Emergency Management and Business Continuity Pro-
grams NFPA 1600 [4], recommendations for contingency planning by NIST,
U.S. Department of Commerce [5];

– the inclusion of business continuity practices in IT services management
standard ISO 20000 [2] and IT auditing standard COBIT [3];

– numerous books published on the topic of BCM – e.g. [6], [7], [8].

Business Continuity Managements system is implemented within an organi-
zation to enable structured, well-organized and timely recovery from severe dis-
ruptions. Business Continuity (BC) Plans (including Disaster Recovery Plans)

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 113–125, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

114 A. Zalewski et al.

are a key element of this system. As these plans are of vital interest to the or-
ganization they should not only be diligently elaborated but also validated and
verified (either during the development or during the audits and maintenance).

As it has been shown in section 2 most of BC/DR plans are currently textual
documents of different levels of detail and formality. As such they are prone
to incompleteness, inconsistency and other imperfections, being at the same
time difficult to analyse and verify. To compensate for these disadvantages we
advocate an idea of integrating Business Continuity Management with business
process modeling to increase the level of formality of BC/DR plans.

BC/DR plans in our approach are treated as a specific kind of business
processes activated only in case of severe disruptions. As such, they can be
modeled with notations used for business process modeling. In this paper, we
use Sheer’s Architecture of Integrated Information Systems (ARIS) methodology
and notation, which has proved successful in commercial applications, especially
Enterprise Resource Planning systems projects. Formalizing one of the disaster
recovery plans available from the Internet we show the superiority of formalized
diagrammatic representation to traditional textual form of BC/DR plans. De-
finitions of the important properties of BC/DR plans modeled with ARIS and
techniques of their analysis have been provided.

The rest of the paper is organized as follows: the missing parts of BC man-
agement are discussed in detail in Section 2, the core concept of the paper i.e.
modeling of BC plans with ARIS methodology and models are presented in Sec-
tion 3, analysis of ARIS models are discussed in Section 4, the results of the
paper are discussed in Section 5, future research areas have been suggested in
Section 6.

2 The Missing Parts of Business Continuity Management

BS 25999-1:2006 defines how to implement Business Continuity Management
within an organization. It defines Business Continuity Management life cycle.
The cycle starts from identifying critical services and products, business impact
analysis and risk analysis. It is aimed generally at identifying recovery require-
ments and threats. These in turn lead to the identification of BC Management
options and elaboration of appropriate response in the form of incident manage-
ment, business continuity and disaster recovery plans. These plans play a key
role in the resiliency assurance. All these arrangements are subject to exercises,
maintenances, audits and self-assessment in the last phase of the BCM life cycle.
Similar approaches have been presented in numerous papers (e.g. [13], [11]).

BCM practices seem to be present in the majority of large organizations in
the developed economies (see survey for US [9]). The Internet research on the
form of BC/DR plans – presented in table 1 reveals that most of the BC/DR
plans are just textual documents. The list of analysis/verification techniques for
BC/DR plans is rather short – it includes mainly manual methods like desk-
checks, walk-troughs, simulations (manual) as well as executions of a part or
even entire plan (see BS25999:1 [1]). Only simulations are subject to computer

Modeling and Analyzing Disaster Recovery Plans as Business Processes 115

Table 1. Disaster Recovery/Business Continuity plans level of formalization – survey
of the practice

No. Organization / source Level of formalization

1 The Australian National Herbarium Can-
berra – the aim of the plan is to pro-
tect and restore the Collection. http://www.
anbg.gov.au/cpbr/disaster-plan/

Low – DR plan represented as
textual enumeration organized into
chapters and subchapters.

2 University of Arkansas – the aim of the plan
is to restore all computer operations with-
out loss of any data. http://www.uark.edu/
staff/drp/

Low – DR plan represented as
textual enumeration organized into
chapters and subchapters.

3 University of California – the aim of the plan
is to protect and restore the book collection
of the general library. http://palimpsest.
stanford.edu/bytopic/disasters/plans/

ucdaviis disasterplan2004.pdf

Low-medium – emergency plans
represented as textual enumera-
tions, short sentences are used.
There is a lot of white space used
between each step in printable ver-
sion to make easy the orientation in
the plan.

4 Systems Support Inc. – the aim of the MIS
Contingency Plan is to protect corporate
resources and employees. http://www.drj.

com/articles/drpall.html

Medium – detailed recovery plans
presented as textual enumerations,
actions are presented in tabular
form with explicate naming head-
ing, executing person and action.

5 Massachusetts Institute of Technology – the
aim of the plan is to restore critical functions
of MIT and the resources required to sup-
port them. http://web.mit.edu/security/
www/pubplan.htm

Low – recovery processes are pre-
sented as textual enumerations.
Teams and their emergency actions
have been described.

6 University of Arkansas Computing Services
Disaster Recovery Plan http://www.uark.

edu/staff/drp/

Medium – disaster recovery plans
are presented in textual form
(including both, actions and re-
sources). Detailed description of
roles, actions and resources, but
without logical connections be-
tween them.

7 NIH Data Center http://datacenter.cit.

nih.gov/pdf/disasterplan.pdf

Low – detailed recovery plans are
presented in enumerated text form.
People have not been explicitly as-
signed to the recovery actions.

8 Abilene Christion University http:

//www.acu.edu/technology/is/recovery.

html#PCRecovery

Low – recovery action plans are pre-
sented in textual form. Disaster re-
covery teams and their responsibil-
ities are described.

support. The efficiency of manual analysis methods is strongly limited by the
textual form of BC/DR plans. Full assessment can be achieved only through
real execution of a plan or its part. Apart from the costs of such an execution
it is worth noting that there are important cases, in which such experiments

116 A. Zalewski et al.

are risky themselves and probably would not be accepted by the appropriate
authorities: consider case of an art gallery with a collection of precious paintings
or sculpture.

The literature on the properties of BC/DR plans and their analysis is rather
sparse – the problem has not been so far treated in its entirety – only narrow
publications are available e.g. [10], [12].

3 Modeling BC/DR Plans as Business Processes

As a first step to resolve, the issues raised above we present how to model BC/DR
plans using Sheer’s ARIS methodology and notations – see [14], [15], [16]. The
major competitors to ARIS seem to be Business Process Modeling Notation
(BPMN) by Object Management Group as well as Unified Modeling Language.
Both of them lack models of organization, data (resources) and products while
they are focused on the flow of processing and documents (data). This is a major
deficiency as all these elements are an integral and important element of every
BC/DR plan. ARIS methodology, in turn, defines five views of an organization
– organizational, data, function, product/service, process. All the elements com-
prising BC/DR plans can be assigned to one of those perspectives, which has
been shown in table 2.

Table 2. Representation of BC/DR elements in ARIS Methodology

BC/DR element ARIS view ARIS model element

Role/Team Responsibility Function Function
Critical function Function Function
Supporting equipment and supplies Data Entity type
BCMS Documentation Data Entity type
Organizational structure Organization Organizational chart
Groups and Roles Organization Organizational chart
Senior Management Organization Position/Group
Stakeholders Organization Person type
Staff resources Organization Internal person
External services and supplies Organization External person
Activity Function Function
Business Continuity Plan Process / Control EPC diagram
Incident management plan Process / Control EPC diagram
Incident Process / Control Event
Business interruption Process / Control Event
Products and services Product / Service Product/Service
Business Continuity Management
Life cycle

Process / Control Value Added Chain Di-
agram

The modeling of BC/DR plans in each of the above perspectives has been
presented below in Section 3.1 – 3.5 and illustrated on DR plan for the general
library of the University of California [17] (see also table 1, pos. 3).

Modeling and Analyzing Disaster Recovery Plans as Business Processes 117

3.1 Organizational View of BC/DR Plans

The main model of the Organizational View is Organizational Chart. It models
the internal structure of the teams engaged in BC/DR plans representing the
relations between different members of those teams.

Fig. 1. The Organizational Chart of the Disaster Recovery Team

The Organizational Chart in figure 1 defines Disaster Recovery Team of the
University of California. The enclosed diagram shows DR team consists of groups
(Boxing Team) and positions like Disaster Recover Director. More information
about the teams and their members can be registered as attributes of appropriate
objects (see table 2).

3.2 Data View of BC/DR Plans

Data view models resources (excluding human resources) used in BC/DR plan.
The relations between them are modeled as Entity-Relationship Model (ERM).

Figure 2 models some of the resources used in DR Plan of University of
California, i.e. emergency box consisting of such first aid kit, camera and the
other.

3.3 Function View of BC/DR Plans

The function view models functions (i.e. technical tasks or other activities) and
their hierarchy. The latter is modeled with Function Tree Diagram. Functions
are characterized by the attributes of costs or execution time, which are useful
for simulation.

118 A. Zalewski et al.

Fig. 2. The Entity-Relationship Model – The content of emergency box

Fig. 3. The Function Tree - Responsibilities of The Boxing Team

The diagram in figure 3 presents the role (function) of Boxing Team in disaster
recovery: they are responsible for putting the books into paper boxes and packing
them onto the truck.

3.4 Product/Service View of BC/DR Plans

Product or Services are results of the execution of BC/DR plan. They are typ-
ically of different levels of abstraction constituting product/service hierarchy –
several partial products make an entire higher-level product. This hierarchy is
represented by the Product/Service Tree diagram.

The Product Tree diagram in figure 4 shows the partial products comprising
”The pack out final report”, which is one of the final products of the ”Pack out
process”. It consists of budget, packing report and photographs. The budget is
a product of function ”Prepare a recovery budget”, which is one of the functions
in ”Pack out process”.

3.5 Process/Control View of BC/DR Plans

A Process View consists of two main models: Value-Added Chain Diagram
(VACD) and Event-Driven Process Chain (EPC). They have been used to model
the processes of BC/DR plans putting the data contained in all the other views
into a single, legible model.

Modeling and Analyzing Disaster Recovery Plans as Business Processes 119

Fig. 4. The Product Tree - The partial products of The pack out final report

Fig. 5. Value-Added Chain Diagram – the simple processes of DRP

The VACD describes the top-level functions or processes. They usually form a
chain illustrating the process of gradual achieving of a higher level goal (product).

Figure 5 shows process of Disaster Recovery Plan of the University of Cal-
ifornia, which consists of several subprocesses, among them is ”The pack out”
subprocess modeled below with EPC diagram.

The Event-Driven Process Chain models the procedures of BC/DR plan in-
tegrating the information from all the other views:

– resources defined in data views become inputs to the functions;
– products become outputs of the functions;
– elements of the organization view are assigned to the functions (activities)

to show the responsibility of the BC/DR teams and/or their members.

The process is event-driven, as every functions is activated with the occurrence
of an event and its completion also generates one or more events. Events are
graphically represented as hexagons.

The EPC diagram in figure 6 models ”The pack out” process. It starts when
fire department gives permission to enter the affected area and finishes when
the ”Final report” is ready. Note that EPC diagram integrates all the informa-
tion needed to understand and manage the modeled process. It makes possible
simulation of a process providing information about cost, time and workload.

120 A. Zalewski et al.

Fig. 6. The Event-Driven Process Chain - The pack out process

4 Analyzing Properties of BC/DR Plans

EPC representation of BC/DR plan makes possible analysis of its timing and
dynamic behaviour, completeness and resource utilization properties. This can
be achieved by the simulation of EPC models of BC/DR procedures or the
analysis of data collected in the ARIS perspectives and their inter-relations.
An automated software tools support can be easily developed to support such
analyses. At the same time manual analysis techniques like walk-through, manual
simulation or desk-checks become more efficient – obviously, it is easier to analyze
diagrams than textual documents.

4.1 Simulation

Full formalization of all the ARIS models used to represent BC/DR plans exceeds
the scope of this paper. Therefore, the concepts presented below, especially the

Modeling and Analyzing Disaster Recovery Plans as Business Processes 121

definitions of the properties of BC/DR plans are semiformal but the ideas behind
them are clear and easy to implement in practice.

In our approach BC/DR plan is modeled with a set of EPC diagrams. The
execution of a plan can be simulated with discreet event simulation techniques.
Necessary prerequisites are:

– Duration times assigned to the functions – these should typically be worst-
case durations of the modeled activities;

– Simulation scenarios defined as:
• times of occurrence of certain events – typically external ones – this

typically defines the sequence of process activations due to the occurrence
of external events;

• indicating which choices to select during the simulation in case of condi-
tional constructs – here various strategies can be applied – random choices,
selection of either negative or positive choices, user-defined choice.

The simulation can be carried out with computer support – it is possible
to use standard modeling tools or develop some of one’s own. The result of a
simulation of a set of EPC models has been referred to as event trace.

Definition 1. Event Trace of a simulation of a set of EPC diagrams is a
sequence of 3-tuples (e, t, p), where e stands for unique identifier of an event,
t – time of occurrence of event e measured from the start of the simulation, p –
process in which event e has occurred.

4.2 Timing and Dynamic Behaviour

Timing properties of BC/DR plans are obviously of highest interest to the stake-
holders as such plans are usually aimed at bringing the length of the disruption
period to a minimum. Analyzing event trace of a given simulation, it is possible
to calculate the time between any pair of events that happened during the course
of the simulation. This makes possible to estimate the whole duration of BC/DR
procedures and relates them to the Business Continuity requirements, expressed
in terms of Maximum Tolerable Period of Disruption or Recovery Time Objec-
tive. A number of simulations can provide worst-case estimates on the duration
of BC/DR procedures.

Definition 2. If the duration of a given EPC process is predictable, than the
directed graph made of EPC diagram limited to events, functions, conditions
and logical operators is acyclic. (necessary condition)

The above definition indicates that if the BC/DR plan contains any conditional
construct leading to the functions performed earlier some sequences of function
executions can be performed more than once and the number of such repetitions
cannot be deduced just from the diagram. Such situations indicate potential
errors in BC/DR plan or a risky organizational solution.

122 A. Zalewski et al.

4.3 Completeness

Definition 3. The BC/DR plan is complete if:

1. Each team has at least one team member,
2. Each team/team member is assigned to at least one activity (function),
3. Each resource has been assigned to at least one activity (function),
4. Each product has been assigned as a result of at least one activity,
5. Each function is performed at least once in any EPC model comprising

BC/DR plan.

As the data of all the modeling perspectives is strongly interconnected – analysis
of these connections can uncover defined but unused resources, teams or team
members taking parts in no activities as well as activities defined but not per-
formed during the course of the plan. This indicates potential error in BC/DR
plan. Completeness can easily be verified automatically by analyzing the data
gathered in each of the ARIS perspectives and its interconnection with appro-
priate other perspectives – e.g. to verify that all the functions have been utilized
it is necessary to compare the set of functions from function view against all the
EPC models of process views.

4.4 Technical and Human Resource Utilization

Event traces can be algorithmically transformed to the function (activities) exe-
cution traces (basing on the assignment of teams/roles/persons and resources to
functions), which model the occupation of given resources during the simulation
of BC/DR plan.

Definition 4. Function Execution Trace of a simulation of EPC diagram
D is a sequence of 4-tuples (a, s, f, p), where a stands for unique identifier of
an activity (function), s, f – respectively: time of the start and the end of the
execution of activity a, p identifies the process containing executed function f.

Event trace makes it possible to establish:

– The total occupation of a given resource r by all the processes comprising
BC/DR plan – it is given by the sum of execution times of functions f to
which are assigned resources r ;

– The utilization of given resource r – it is the occupation of resources r related
to the total duration of BC/DR plan execution;

– The action that possibly conflict on given resource r – such a conflict may
take place when two actions use the same resource and their execution peri-
ods overlap.

– The timing of the potential resource usage conflicts.

All the above analyses can be automated with appropriately developed soft-
ware tools.

Modeling and Analyzing Disaster Recovery Plans as Business Processes 123

5 Discussion

Preparing the example illustrating the concepts of modeling BC/DR plans in
ARIS approach we tried to represent the DR plan for the library of the University
of California using ARIS models. This experiment revealed both drawback of
traditional textual forms of BC/DR plan as well as the advantages of modeling
such plans with ARIS models.

Although the analyzed plan defines all the necessary components of BC/DR
plan, i.e. roles, team member, resources, products, activities and their sequenc-
ing, it is very difficult to put all these things together. The connections between
activities and teams or team members responsible for performing them, activ-
ities and necessary resources and products resulting from these activities are
very difficult to locate as all this vital information is spread all over the text
document – the references between them are unclear and difficult to maintain.
This may lead to incompleteness of BC/DR plans. In fact, we have found the
following flaws:

– several activities without any responsible role or person assigned,
– a few activities with undefined resources or incomplete resources assigned,
– resources indicated as needed for a given activity but remaining undefined

(the need for rooms for book drying has been specified, however, even po-
tential rooms have not been indicated),

– ambiguous and potentially conflicting roles – e.g. photographing was a duty
of the Recovery team, however there is also photographer mentioned in the
whole plan whose role does seem to be conflicting with the recovery team
unless he is a member of this team, which is not quite clear – the diagram
presented in figure 1 is a proposition of resolving this ambiguity,

– one of the persons is probably overloaded with the assigned duties.

All the connections between the components of BC/DR plan, which are so
difficult to identify in the textual form of BC/DR plan are explicitly and legibly
expressed in ARIS models, especially in EPC diagrams. This makes traditional
verification techniques like walkthroughs and desk-checks easier to perform and
more efficient, while providing the ability of analyzing properties of BC/DR
plan as described in Section 4. Of course full assessment of such a plan is only
achievable with its full execution, however precise expression and prior analysis
should help to avoid exercising a defective BC/DR plan.

The properties and analysis techniques described in Section 4 provide for basic
verification and analysis of BC/DR plan properties. They can help to identify
serious flaws in BC/DR plans. The properties of resource utilization, resource
conflicts, loops in processes require in-depth analysis, usually requiring more
detailed information than defined in our approach. Exemplary issues have been
listed below:

– Some resources may be used only exclusively by single person or team at a
time. This can force other teams to wait until necessary resource has been
released by the other person or team. This situation has not been included
in our model. To account for that our model has to be enhanced.

124 A. Zalewski et al.

– Conflicts on resources may in extreme cases lead to deadlocks – as they do
in case of all parallel systems. To detect such situations it is necessary to
convert ARIS model to a fully formal model that makes appropriate analysis
possible.

– The resources can also be characterised by their capacity e.g. the capacity
of a team is number of man-hours that certain team can work during a unit
of time. Again this may be subject to further research.

6 Conclusion and Future Research

There are numerous advantages of modeling BC/DR plans as business processes
with ARIS models and methodology:

– It increases preciseness of expression and consistency of BC/DR plan;
– It ensures legible and easily understandable way of documenting and com-

municating BC/DR plan;
– It increases the efficiency of traditional verification techniques like desk-

checks and walkthroughs;
– It makes BC/DR maintenance, on-demand adjustment and audit easier;
– Assessment of BC/DR plan can be performed prior to its execution by means

of simulation or using analysis techniques and property definitions described
in this paper. The analysis encompasses timing and dynamic behaviour,
completeness and resource utilization properties;

– Monitoring and supervision of the execution of BC/DR plan is easier and
more efficient when it is modeled as business process with appropriate dia-
grams;

– It ensures considerable money savings as only plans validated and verified
on ARIS models could be exercised in reality;

– It might help to standardize BC/DR plans within a distributed organization.
– ARIS models of BC/DR plans are a common language to be used by all the

stakeholders. As it’s level of formalism is considerably higher than in the case
of a textual form it makes the communication between different stakeholders
more precise and unambiguous.

The main directions for the further research are:

– Extension of the model presented in this paper to enable in-depth analysis
of resource utilization and resource access conflicts,

– Further formalization of ARIS model – precise expression of the models used
for BC/DR modeling in algebraic terms,

– Conversion of ARIS models or its formal form to one of the models of dy-
namic, parallel systems (like Petri Nets, CSP, Lotos),

– Defining further properties of BC/DR plans that can be subject to analysis,
– Extending analysis techniques with the analysis of dynamic properties (e.g.

liveness), resource utilization, conflicts on resource usage.

Modeling and Analyzing Disaster Recovery Plans as Business Processes 125

References

1. BSI: Standard BS 25999-1:2006. Business continuity management. Code of prac-
tice, http://www.bsi-global.com

2. ISO/IEC: Information technology – Service management – Part 1: Specification
(ISO 20000-1), Part 2: Code of practice (ISO 20000-1). ISO/IEC (2005)

3. ITGI: COBIT 4.1: Control Objectives for Information and related Technology. IT
Governance Institute (2007)

4. NFPA: NFPA 1600 – Standard on Disaster/Emergency Management and Business
Continuity Programs. National Fire Protection Association (2007)

5. Swanson, M., et al.: Contingency Planning Guide for Information Technology Sys-
tems, Recommendations of the National Institute of Standards and Technology,
pp. 800–834. NIST Special Publication (June 2002)

6. Snedaker, S.: Business Continuity and Disaster Recovery for IT Professionals. El-
sevier, Amsterdam (2007)

7. Barbara, M., et al.: Effective Strategies to Ensure Business Continuity/Disaster
Recovery. Dr. Mueller.Verlag

8. Thejendra, B.: Disaster Recovery and Business Continuity. IT Governance Ltd
(2007)

9. Nelson, K.: Examining Factors Associated with IT Disaster Preparedness. In: Pro-
ceedings of the 39th Hawaii International Conference on System Sciences (HICSS
2006), p. 205b. IEEE, Los Alamitos (2006)

10. Zambon, E., et al.: A Model Supporting Business Continuity Auditing & Planning
in Information Systems. In: Second International Conference on Internet Monitor-
ing and Protection (ICIMP 2007), pp. 33–33. IEEE, Los Alamitos (2007)

11. Kepenach, R.: Business Continuity Plan Design. 8 Steps for Getting Started De-
signing a Plan. In: Second International Conference on Internet Monitoring and
Protection (ICIMP 2007), p. 27. IEEE, Los Alamitos (2007)

12. Cloth, L., Haverkort, B.R.: Model Checking for Survivability! In: Proceedings of
the Second International Conference on the Quantitative Evaluation of Systems
(QEST 2005), pp. 145–154. IEEE, Los Alamitos (2005)

13. Hayes, P., Hammons, A.: Picking up the Pieces: Utilizing Disaster Recovery Project
Management to Improve Readiness and Response. In: IEEE Industry Applications
Magazine, November/December 2002, pp. 27–36. IEEE, Los Alamitos (2002)

14. Scheer, A.W.: ARIS – Business Process Frameworks. Springer, Heidelberg (1999)
15. Scheer, A.W., et al.: Business Process Automation. Springer, Heidelberg (2004)
16. Weske, M.: Business Process Management: Concepts, Languages, Architectures.

Springer, Berlin (2007)
17. University of California: Disaster Prevention, Preparedness and Recovery

Plan, http://palimpsest.stanford.edu/bytopic/disasters/plans/ucdaviis

disasterplan2004.pdf

http://www.bsi-global.com
http://palimpsest.stanford.edu/bytopic/disasters/plans/ucdaviis_disasterplan2004.pdf
http://palimpsest.stanford.edu/bytopic/disasters/plans/ucdaviis_disasterplan2004.pdf

Analysis of Nested CRC with Additional Net

Data in Communication

Tina Mattes1, Frank Schiller1, Annemarie Mörwald2, and Thomas Honold3

1 Technische Universität München, Institute of Information Technology in Mechanical
Engineering, Boltzmannstr. 15, D-85748 Garching near Munich, Germany

{mattes,schiller}@itm.tum.de
2 sd&m AG, software design & management, Carl-Wery-Str. 42,

D-81739 Munich, Germany
annemarie.moerwald@sdm.de

3 Zhejiang University, Institute of Information and Communication Engineering,
Zheda Road, 310027 Hangzhou, P.R. China

honold@zju.edu.cn

Abstract. Cyclic Redundancy Check (CRC) is an established coding
method to ensure a low probability of undetected errors in data trans-
mission. CRC is widely used in industrial field bus systems where com-
munication is often executed through different layers. Some layers have
their own CRC and add their own specific data to the net data that is
meant to be sent. Up to now, this nesting is not yet included in the safety
proof of systems. Hence, additional effort is made to achieve a required
degree of safety which was probably on hand but could not be proven.
The paper presents an approach to involve the nesting in the calculation
of the residual error probability based on methods of coding theory. This
approach helps to reduce the number of worst case assumptions in the
overall safety proof and finally to reduce the necessary online efforts like
the number of parity bits.

Keywords: CyclicRedundancyCheck,Residual errorprobability, Safety-
critical communication.

1 Introduction

Cyclic Redundancy Check (CRC) is a common coding method to detect errors in
industrial data transmission. Especially for automated plants in safety-critical
applications, the integrity of data (e.g. data that is sent from sensors to pro-
cessing units or from processing units to actuators) is very important, since
undetected errors could lead to dangerous accidents. The goal of safety-critical
communication is to detect errors and to initiate the overall process into a safe
state, e.g. a state of reduced functionality like low speed or zero voltage. There-
fore, data transmission is an essential part of the overall safety proof [1]. A
precise measure to quantify the quality of error detection is the residual error
probability Pre. CRC guarantees a very small residual error probability with a
relatively small number of redundant bits of a checksum. That is one reason, why

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 126–138, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Analysis of Nested CRC with Additional Net Data in Communication 127

CRC is widely used e.g. in industrial field bus systems. There, communication
is often executed through different layers according to the ISO/OSI model [2].
Some layers usually have their own CRC and add their own specific data to the
net data that is meant to be sent. Since CRC itself is very efficient, it is obvious
to analyze this nesting of CRC in order to involve the decrease of Pre, which is
caused by the nesting, in the safety proof of automated plants where it has not
been considered explicitly yet. Usually, worst case assumptions are applied that
lead to additional effort and unnecessary equipment costs.

The paper is the sequel to [3]. It is structured as follows. Mathematical prin-
ciples of CRC are given in the next section including remarks on the calculation
of the residual error probability. Then the nesting and the determination of its
residual error probability are introduced. Results and examples follow before
final conclusions are drawn.

2 Principles of CRC

In this chapter, basic principles of CRC are summarized. For further and detailed
information see e.g. [4], [5].

2.1 Functionality of CRC

CRC applies a checksum, FCS (Frame Check Sequence), for error detection.
This checksum is calculated in the sender as follows: The sender handles the
original data (net data ND, information bits) consisting of m bits as a binary
polynomial nd(x). A so called generator polynomial g(x) of degree r has to be
chosen. Polynomial nd(x) is first multiplied by xr, and then divided by g(x).
The corresponding bit pattern of the remainder polynomial fcs(x) (see (1))
consisting of r bits is the checksum FCS that is attached to ND:

(nd(x) · xr) mod g(x) = fcs(x) (1)

For instance, the bit pattern of information bits ND = [1 0 1 0 1 1] and the
generator polynomial g(x) = x3+x+1 are given. The bit pattern ND leads to the
binary polynomial nd(x) = 1·x5+0·x4+1·x3+0·x2+1·x1+1·x0 = x5+x3+x+1.
The degree of g(x) is r = 3. The polynomial counterpart of the checksum FCS is
obtained by application of (1): fcs(x) = ((x5+x3+x+1)·x3) mod (x3+x+1) = x.
That means, the bit pattern FCS = [0 1 0] has to be attached to the original
data ND. The resulting bit pattern of length n = m + r is the telegram T =
[ND, FCS] that is sent to the receiver. In the example, the telegram consists of
nine bits, i.e. T = [1 0 1 0 1 1 0 1 0]. Since the equations (2) hold in the space
of binary polynomials,

t(x) mod g(x) = (nd(x) · xr + fcs(x)) mod g(x)
= nd(x) · xr mod g(x) + fcs(x) mod g(x) (2)
= fcs(x) mod g(x) + fcs(x) mod g(x)
= 0

128 T. Mattes et al.

It is checked in the receiver if the polynomial counterpart t′(x) of the received
telegram T’ is divisible by the generator polynomial (cf. (3)):

t′(x) mod g(x) = 0? (3)

If (3) is not true, the received telegram is erroneous and the error is detected; if
(3) holds, T is regarded to be transmitted correctly. For instance, as in the exam-
ple above, T = [1 0 1 0 1 1 0 1 0] is sent, g(x) = x3+x+1 and the received telegram
T’ = [0 1 0 0 1 1 0 1 1]. Since t′(x) mod g(x) = x2 + x �= 0, the falsification is
detected. The determination of FCS in the receiver and the check in the sender is
often realized by a linear feedback shift register (LFSR). It can also be modeled
by a matrix-vector-multiplication which is used to explain the determination of
the residual error probability of nested CRC in the following. Let Im denote the
unit matrix of dimension m×m, nd = (dm−1 dm−2 . . . d0) a vector whose coef-
ficients are the bits of ND, and t = (dm−1 dm−2 . . . d0fcsr−1 fcsr−2 . . . fcs0)
a vector consisting of the bits of telegram T. Then t can be calculated by means
of a matrix A of dimension m × r that depends on the generator polynomial
g(x) by:

t = nd · (Im | A). (4)

The matrix G = (Im | A) is called generator matrix. The matrix H = (AT | Ir)
is called parity-check matrix and is used for the check in the receiver. This check
can be formulated as follows where t′ denotes the vector whose coefficients are
the bits of the received telegram T’:

(AT | Ir) · t′ = 0? (5)

If (5) holds, T is regarded to be transmitted correctly.
Matrix A = (hn−1, hn−2, . . . , hr)T is assembled by the vector counterparts

hn−1, . . . , hr of the result of the modulo-division of the monomials xn−1, . . . ,
xr and the generator polynomial g(x). Consequently, the i-th row of A con-
sists of the FCS of the net data polynomial nd(x) = xn−i, i ∈ {1, 2, . . . , m}.
The i-th row of the overall generator matrix G consists of the net data ND
= (dm−1 dm−2 . . . d0), where dm−i = 1 and all other coefficients are 0, and its
corresponding FCS.

In the example above with generator polynomial g(x) = x3+x+1 and telegram
length n = 9, the calculation of the modulo-division of the monomials and g(x)
leads to: x8 mod (x3 + x + 1) = x, hence h8 = (0 1 0), x7 mod (x3 + x + 1) = 1
and h7 = (0 0 1), x6 mod (x3 + x + 1) = x2 + 1, thus h6 = (1 0 1); the further
vectors are h5 = (1 1 1), h4 = (1 1 0) and h3 = (1 1 1). Therefore matrix A is
given by:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

h8

h7

h6

h5

h4

h3

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 0 1
1 0 1
1 1 1
1 1 0
0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

Analysis of Nested CRC with Additional Net Data in Communication 129

it can easily be calculated by applying (4) to matrix A and nd = (1 0 1 0 1 1)
that t = (1 0 1 0 1 1 0 1 0) and hence the corresponding telegram is T = [1
0 1 0 1 1 0 1 0] (cf. example above). Further information about the method of
matrix-vector multiplication is given in [4], [6] and [7].

2.2 Undetectable Errors

Obviously, CRC cannot detect all errors. If in the example above, T’ = [1 0 1 0
1 1 0 1 0] then (3) holds for t′(x) and the falsification is not detectable.

Transmission errors can be modeled by superimposed error patterns F. These
patterns have the same length n like T. A bit of F is assigned with value 0, if the
corresponding bit in T is transmitted correctly, and a bit of F is allocated by value
1, if the corresponding bit in T is falsified during the transmission. Consequently,
T is superimposed by F such that T’ = T + F holds1 . A transmission error is
undetectable by CRC if and only if the polynomial corresponding to F, f(x), is
divisible by the generator polynomial g(x), since:

t′(x) mod g(x) = (t(x) + f(x)) mod g(x)
= t(x) mod g(x) + f(x) mod g(x)
= f(x) mod g(x)

holds. Therefore, if t′(x) mod g(x) is equal to zero, then f(x) mod g(x) is equal
to zero and vice versa. These undetectable error patterns including the pattern
consisting of only zeros2 form a linear code.

Since not all transmission errors are detectable it is necessary to define cri-
teria to measure the quality of error detection. One important criterion is the
Hamming Distance, which is the number of bits that at least have to be falsified
to constitute an undetectable error. This conforms to the minimum number of
entries 1 in an error pattern F of all possible error patterns.

More meaningful than Hamming Distance is the residual error probability Pre,
that is the probability that an erroneous telegram is regarded to be transmitted
correctly.

2.3 Calculation of the Residual Error Probabillity

The exact calculation of the residual error probability is usually very complex.
There are various methods to calculate Pre. One is the direct code analysis. There
all 2m−1 undetectable error patterns have to be generated explicitly. The numbers
Ai of those of i erroneous bits have to be counted (Ai, i = 1, . . . , n is the so-called
weight distribution). Using the weight distribution, Pre is calculated by (6), where
p denotes the probability that a bit is falsified during transmission3

1 Note that ’+’ stands for exclusive-or in the space of binary polynomials.
2 The pattern that consists of zeros only is not really an error pattern since each zero

stands for the correct transmission of the corresponding bit.
3 The model of the BSC (binary symmetric channel) is assumed where bits are cor-

rupted independently and the falsification from value 0 to 1 is of the same probability
p as the falsification from value 1 to 0.

130 T. Mattes et al.

Pre =
n∑

i=1

Ai · pi · (1 − p)n−i (6)

Obviously, the generation of all these error patterns leads to complexity of 2m

and the computation becomes feasible only for short telegrams. A more prac-
ticable determination of the residual error probability is the transformed code
analysis. Instead of generating all undetectable error patterns of the original
code, a much smaller set of patterns (2r patterns instead of 2m) of the corre-
sponding dual code are generated. The weight distribution Bi of this code (so
called dual weight distribution) is determined. Based on the dual weight distri-
bution it is either possible to calculate Pre directly or to calculate the weight
distribution Ai of the original code by means of the MacWilliams Identity (see
[6]) which is a numerically more stable alternative. Both options sometimes lead
to numerical problems and to inaccurate results (cf. [8]).

One possibility to generate the elements of the dual code is the application
of the matrix-vector-multiplication described in Section 2.1. Let k = (kr−1 kr−2

. . . k0) be a vector that comprises all possible vectors element of {0; 1}r, then
all elements of the dual code can be generated by applying (7) to all possible
vectors k. Consequently, the parity-check matrix H has to be generated (or the
generator matrix G, the parity-check matrix H can be easily derived from).

f = k · (AT | Ir) = k · H (7)

3 Nested CRC with Additional Net Data

In this section, the nesting of CRC with additional net data is introduced and
the calculation of its residual error probability is explained.

3.1 Description of the Nesting

Because of the standardized layer oriented communication according to the
ISO/OSI-model (cf. [2]) in typical industrial applications, a nesting of CRC is
given (s. Fig. 1).

Fig. 1. Nesting of CRC

In an upper layer, e.g. the application layer, the checksum FCS1 is calculated
from the net data ND in a CRC with generator polynomial g1(x) according to
(1) and is attached to ND. ND and FCS1 build a temporary telegram that is

Analysis of Nested CRC with Additional Net Data in Communication 131

transmitted to the lower layers. One of these layers, e.g. the link layer, attaches
its specific net data NDadd and a second checksum FCS2 to the telegram. This
FCS2 is calculated by a CRC with generator polynomial g2(x) based on a bit
pattern consisting of ND, FCS1, and NDadd. The mathematical formulation of
the calculation of FCS2 is given in (8) where madd denotes the number of NDadd

bits, r1 the degree of g1(x), and r2 the degree of g2(x).

(((nd(x) · xr1 + fcs1(x)) · xmadd + ndadd(x)) · xr2) mod g2(x) = fcs2(x) (8)

The telegramthat is finally sent to the receiver consists ofND, FCS1, NDadd, and
FCS2. The receiver checks in the corresponding lower layer if the complete received
telegram [ND’, FCS1’, NDadd’,FCS2’] is divisible by g2(x) and in the corresponding
upper layer if [ND’, FCS1’] is divisible by g1(x), i.e. it executes the following checks:

(nd′(x) · xr + fcs′1(x)) mod g(x) = 0? (9)

(((nd′(x) · xr1 + fcs′1(x)) · xmadd + nd′add(x)) · xr2 + fcs′2(x)) mod g2(x) = 0?

Only if both checks of (9) hold, the telegram is regarded to be transmitted
correctly.

3.2 Residual Error Probabillity of Nested CRC with Additional
Net Data

To compute the residual error probability, the method of transformed code anal-
ysis is applied, where the undetectable error patterns are computed by matrix
vector multiplication as described in Section 2.3. Basis for this computation is
the parity-check matrix H or the generator matrix G, respectively. As demon-
strated in Section 2.1, the i-th row of a generator matrix consists of the net data
ND = [dm−1 dm−2 . . . d0], where

dm−j =

{
1, j = i

0, j = 1, . . . , m, j �= i

and its corresponding FCS. Because of the nesting of CRC, there are two kinds
of net data, and NDadd. The structure of the generator matrix is partitioned
correspondingly. For i ∈ {1, 2, . . . , m} the i-th row of G has the form:

Gi = dm−1 dm−2 . . . d0 fcsi
1︸︷︷︸

r1

0 . . . 0︸ ︷︷ ︸
madd

fcsi
2︸︷︷︸

r2

(10)

where dm−j is defined as above, fcsi
1 denotes the FCS of ND = [dm−1 dm−2

. . . d0] calculated with generator polynomial g1(x), and fcsi
2 denotes the FCS of

the bit pattern [dm−1 dm−2 . . . d0 fcsi
1 0 . . . 0︸ ︷︷ ︸

madd

] calculated with generator

polynomial g2(x). For i ∈ {m + 1, . . . , m + madd}, the i-th row of G has the
form:

132 T. Mattes et al.

Gi = 0 . . . 0︸ ︷︷ ︸
m

0 . . . 0︸ ︷︷ ︸
r1

dadd
madd−1

. . . dadd
0 fcsi

2︸︷︷︸
r2

(11)

where

dadd
madd

=

{
1, j = i

0, j = 1, . . . , madd, j �= i

and fcsi
2 denotes the FCS of the bit pattern [dadd

madd−1
. . . dadd

0] calculated with
generator polynomial g2(x). To recapitulate (10), (11) with matrix denotation,
the generator matrix G has the form:

G =
(

Im | A1 | 0 | Ã2

0 | 0 | Imadd
| A2

)
(12)

In (12), A1 denotes the common generator matrix for a CRC with generator
polynomial g1(x) and m net data bits, A2 the common generator matrix for
a CRC with generator polynomial g2(x) and madd net data bits, a row of Ã2

consists of the FCS of the corresponding row of (Im | A1 | 0) calculated with
generator polynomial g2(x). 0 respectively I denote zero matrices and identity
matrices, respectively, of appropriate dimensions. The parity-check matrix H is
now easily derived from G as shown in (13).

H =
(

AT
1 | Ir1 | 0 | 0

ÃT
2 | 0 | AT

2 | Ir2

)
(13)

The following example illustrates the theory explained above. Given are: ND
length m = 3, NDadd length madd = 2, g1(x) = x2 + x + 1, g2(x) = x + 1,
hence r1 = 2, r2 = 1. First, matrices A1, A2 are calculated according to the
explanations in Section 2.1, because A1 is needed for the generation of Ã2 :
Since x4 mod x2 + x + 1 = x, x3 mod x2 + x + 1 = 1, x2 mod x2 + x + 1 = x + 1
and, analogously, x2 mod x + 1 = 1, x mod x + 1 = 1 the matrices are:

A1 =

⎛
⎝1 0

0 1
1 1

⎞
⎠ , A2 =

(
1
1

)
.

Matrix Ã2 in this example is a 3 × 1 matrix. The first row of Ã2 is the
checksum of the bit pattern [1 0 0 1 0 0 0] calculated with g2(x) according to (1):
(x6 + x3) · x1 mod (x + 1) = 0. The second row is (x5 + x2) · x1 mod (x + 1) = 0
and the third row is (x4 + x3 + x2) · x1 mod (x + 1) = 1. That leads to the
generator and control matrices

G =

⎛
⎜⎜⎜⎜⎝

1 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0
0 0 1 1 1 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎠ , H =

⎛
⎝1 0 1 1 0 0 0 0

0 1 1 0 1 0 0 0
0 0 1 0 0 1 1 1

⎞
⎠ .

Analysis of Nested CRC with Additional Net Data in Communication 133

The weight distribution of the dual code can now be obtained by creating all
undetectable error pattern according to (7) where k in this case comprises all
elements of {0; 1}r1+r2 . As described in Section 2.3, the weight distribution of
the original code is computed by means of the MacWilliams Identities and the
residual error probability is calculated by applying (6). The calculation of the
residual error probability of the nesting is also possible by means of stochastic
automata [9].

4 Examples and Results

The residual error probability of the introduced nesting will by definition in this
section solely refer to the falsification of the net data ND, i.e. only error patterns
F that have at least one bit of value 1 in the first m bits are involved in the
weight distribution. Therefore, the weight distribution of all undetectable error
patterns that have only zeros in the first m bits are subtracted from the weight
distribution of the nesting. Since error patterns, that have only zeros in the first
m bits, have also bit assigned by zero in the following r1 bits (because that is
the corresponding FCS to the first m bits), the error patterns, whose weights
have to be subtracted, have he form as shown in Fig. 2. These error pattern form
a code with the same weight distribution like the code generated by g2(x) for
madd ND bits.

Fig. 2. Error patterns neglected by definition

The calculated residual error probability Pre depends on the bit error proba-
bility p. An example of Pre(p) is given in Fig. 3.

There Pre is drawn over p for polynomials g1 = 14EABh4 and g2 = 1FFh
for 256 ND bits and 64 NDadd bits. The dashed horizontal line marks the value
2−(r1+r2) , that is the residual error probability in case of uniform distribution,
i.e. at p = 0.5. This line is drawn for orientation: Whenever the residual error
probability is below this line the polynomials are a good choice for the given
data lengths, if Pre crosses the line, other polynomials should be chosen. A
multitude of classified polynomials have been analyzed for different numbers
of ND and NDadd bits in order to see which classes of polynomials (primitive,
reducible, irreducible) are adequate for which data lengths. Note that all results
are trends since for every result at least one counter-example can be found. For
more detailed information see [10].
4 Note that polynomials are denoted hexadecimal; e.g. 14EABh corresponds to the

dual number 1 0100 1110 1010 1011, which corresponds to the polynomial x16 +
x14 + x11 + x10 + x9 + x7 + x5 + x3 + x + 1.

134 T. Mattes et al.

Fig. 3. Example of generated graphs

4.1 Analysis of the Number of ND Bits

Regarding the number of ND bits, m, it can be said, that this number should
be relatively small independent of the number of NDadd bits and polynomial
classes. If for any reasons m has to be large, it turned out, that if m exceeds a
certain value further enlargement has no significant effect on the residual error
probability. Fig. 4 shows the residual error probability for reducible polynomials
g1 = 15Dh, g2 = 133h, 256 NDadd bits and various ND bits; the asterisk line

Fig. 4. Example of various ND lengths

Analysis of Nested CRC with Additional Net Data in Communication 135

marks Pre for 8 ND bits, the dotted line for 108 ND bits and the drawn through
line for 208 ND bits.

In this example, the increasing of the number of information bits from 128 to
256 has no significant effect.

4.2 Analysis of the Number of NDadd Bits

The results of the analysis regarding the number of NDadd bits, madd, are very
different and therefore not to generalize. For some polynomials, a short num-
ber of additional net data bits turn out to be good, in other cases, the number
of NDadd bits has no remarkable impact on the residual error probability, and
there are also combinations where major madd guaranties a smaller residual error
probability than smallish madd. Remarkable are the graphs for identical gener-
ator polynomials as for example in Fig. 5. There g1 = g2 = 1CFh is primitive,
m = 32 and madd vary.

Fig. 5. Example of identical generator polynomials with various madd

There the graphs are identical up to a bit error probability greater than 10−4.
Then the graph for greater madd (drawn through line) turns out to be the best,
while the one with smallest madd (asterisk line) is the worst alternative. This
example illustrates the impact of the bit error probability on the residual error
probability.

4.3 Analysis of Polynomials

Concerning the choice of polynomials, it is advisable to choose different generator
polynomials since equal generator polynomials lead to a relatively high residual

136 T. Mattes et al.

Fig. 6. Example of various first generator polynomials

error probability. Fig. 6, where g2 = 133h, m = 64, madd = 32 and g1 varies,
stresses this fact, since the residual error probability for equal generator poly-
nomials (drawn through line) is much worse than the others. The second rec-
ommendation that can be posed is that the first generator polynomial should
not be a multiple of the second polynomial. In most cases, this recommendation
holds vice versa but there are a couple of exceptions in which the residual er-
ror probability of a nested CRC where the first polynomial is divisible by the
second is better than a nested CRC with coprime polynomials. In general, it
can be said, that coprime polynomials tend to be a good choice. Additionally,
a first generator polynomial that is ”good” for given ND length m is advisable.
(A polynomial is good for a given data length if the residual error probability of
the common CRC with that polynomial remains below the mark of 2−r). Con-
versely, it has no impact on the quality of nested CRC if the second polynomial
is good for length m + r1 + madd.

4.4 Remarks

The presented algorithm has theoretically no limits by the degrees of generator
polynomials (solely the computation time increases logarithmically) but for ac-
curacy reasons, the sum of data lengths should be smaller than 1000 bits. The
computation of the residual error probability for Fig. 7, where g1 = 3h, g2 is
the Ethernet polynomial of degree 32, m = 16 and madd = 64, took about 10
days5. For data lengths larger than 1000 bits the method of stochastic automata
(mentioned at the end of section 3) should be applied.

5 Pentium4 HT, 3,2 Ghz, 1GB RAM Computer.

Analysis of Nested CRC with Additional Net Data in Communication 137

Fig. 7. Ethernet polynomial

5 Conclusion and Future Work

An algorithm for the calculation of the residual error probability has been devel-
oped and implemented. Consequently, the residual error probability of the nested
CRC with additional net data can be involved in safety proofs of e.g. automated
plants and help to reduce the number of worst case assumptions. As the analysis
of the nesting showed, unfortunately, it cannot generally be said which polyno-
mials or polynomial classes guarantee the smallest residual error probability for
which data lengths. But according to the analysis, some recommendations for
the creation of a new protocol can be made regarding the parameters: number
of ND bits m, number of NDadd bit madd, choice of g1(x) and g2(x), (see Table 1).

Table 1. Recommendations for given parameters

Parameter Recommendation

m relatively small

madd relatively small (no significant impact)

g1(x) high degree
coprime to g2(x)),
good for regular CRC with m ND bits

g2(x) high degree,
coprime to g1(x)

These recommendations constrain the multitude of variations of the param-
eters and will therefore help to accelerate the process of finding suitable pa-
rameters. But anyhow it is still indispensable to validate ones parameters by a
concrete calculation of the residual error probability. Future work will include:

138 T. Mattes et al.

– the identification of the best polynomial g1(x) for given m, madd and g2(x),
– the identification of the best polynomial g1(x) for given m and for unknown

madd and g2(x)
– the identification of the best polynomial g1(x) for given m and for unknown

madd and g2(x), if the rate of detected errors is evaluated online and used in
the safety proof (see e.g. [11]).

References

1. International Electronical Comission: Functional Safety of Electrical/Electron-
ic/Programmable Electronic Safety-related Systems. (IEC 61508) (2005)

2. International Organization for Standardization, International Electrotechnical
Commission (ISO/IEC): Information Technology - Open Systems Interconnection
- Basic Reference Model: Basic Model (ISO/IEC 7498-1) (1996)

3. Mattes, T., Pfahler, J., Schiller, F., Honold, T.: Analysis of Combinations of CRC
in Industrial Communication. In: Saglietti, F., Oster, N. (eds.) SAFECOMP 2007.
LNCS, vol. 4680, pp. 329–341. Springer, Heidelberg (2007)

4. Peterson, W., Weldon, E.J.: Error Correcting Codes. MIT Press, Cambridge (1996)
5. Schiller, F., Mattes, T.: An Efficient Method to Evaluate CRC-Polynomials for

Safety-Critical Communication. Journal of Applied Computer Science 14, 57–80
(2006)

6. Mac Williams, F.J., Sloane, N.J.A.: Theory of Error-Correcting Codes. North-
Holland Mathematical Library, Amsterdam (1991)

7. Sweeney, P.: Codierung zur Fehlererkennung und Fehlerkorrektur. MIT Press,
Cambridge (1996)

8. Mattes, T.: Untersuchung zur effizienten Bestimmung der Güte von Polynomen für
CRC-Codes. University of Trier, Siemens AG, Nuremberg (2004) (in German)

9. Mattes, T.: Analysis of Nested CRC with Additional Net Data by Stochastic Au-
tomata. In: 7th IEEE International Workshop on Factory Communication Systems
Communication in Automation, Dresden, Germany, May 20-23, pp. 295–304 (2008)

10. Mörwald, A.: Analyse der Verschachtelung von CRC-Verfahren in der industriellen
Kommunikation. TU München (2007)

11. Schiller, F., Mattes, T., Büttner, H., Sachs, J.: A New Method to Obtain Suf-
ficient Independency of Nested Cyclic Redundancy Checks. In: 5th International
Conference Safety of Industrial Automated Systems, SIAS 2007, Tokyo, Japan, pp.
149–154 (2007)

Symbolic Reliability Analysis of Self-healing
Networked Embedded Systems

Michael Glaß, Martin Lukasiewycz, Felix Reimann,
Christian Haubelt, and Jürgen Teich

Hardware/Software Co-Design, Department of Computer Science
University of Erlangen-Nuremberg, Germany

{glass,martin.lukasiewycz,felix.reimann,
haubelt,teich}@cs.fau.de

Abstract. In recent years, several network online algorithms have been studied
that exhibit self-x properties such as self-healing or self-adaption. These proper-
ties are used to improve systems characteristics like, e.g., fault-tolerance, relia-
bility, or load-balancing.

In this paper, a symbolic reliability analysis of self-healing networked embed-
ded systems that rely on self-reconfiguration and self-routing is presented. The
proposed analysis technique respects resource constraints such as the maximum
computational load or the maximum memory size, and calculates the achievable
reliability of a given system. This analytical approach considers the topology of
the system, the properties of the resources, and the executed applications. More-
over, it is independent of the used online algorithms that implement the self-
healing properties, but determines the achievable upper bound for the systems
reliability. Since this analysis is not tailored to a specific online algorithm, it al-
lows a reasonable decision making on the used algorithm by enabling a rating of
different self-healing strategies. Experimental results show the effectiveness of
the introduced technique even for large networked embedded systems.

1 Introduction

Systems like, e.g., automotive or avionics electronic control unit (ECU) networks, net-
works from the area of industrial control automation, body-area networks, or sensor net-
works combine the aspects of both embedded systems and networks. Due to constraints
in area consumption, monetary costs, and energy consumption, the used resources ex-
hibit limiting properties in the field of, e.g., computational power or memory size which
is typical for embedded systems. On the other hand, the resources are distributed within
the systems and, thus, they resemble networks. This distribution is crucial to allow con-
trolling, monitoring, and analysis of the system under the aspect of limited and remote
installation spaces. Moreover, these systems have to be optimized with respect to differ-
ent criteria, ranging from monetary costs, area and power consumption, or throughput
to flexibility, reliability and fault-tolerance. Commonly, this system category is referred
to as networked embedded systems.

For the reliability analysis proposed in this work, several aspects of networked em-
bedded systems are of great importance. Commonly, networked embedded systems are

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 139–152, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

140 M. Glaß et al.

Fig. 1. A self-healing networked embedded system with a data transfer from task t1 to task t2.
In a), no defect resources are present. In case of resource failures, a reconfiguration activates
redundant task instances, cf. b), or reestablishes the communication using a dynamic rerouting,
cf. b).

deployed in unattended areas and, thus, administrative tasks and maintenance are ex-
pensive and should be avoided or are sometimes even impossible to accomplish. As a
matter of fact, resources of the networked embedded systems move from dedicated and
protected mounting spaces to installation spaces with destructive agents. These spaces
can be found near sensors or within, e.g., an engine or moving parts of vehicles. This
trend especially increases the amount of destructive influences on the used hardware,
such that permanent failures occur more frequently.

In recent years, systems have been proposed that exhibit so called self-x properties.
These systems monitor themselves and are able to react autonomously to unwanted sys-
tem states. Popular properties for self-x systems are self-adaption that allows the system
to react to different environment conditions or new applications and self-healing that al-
lows the system to react to failures and, thus, increases the reliability and fault tolerance
of the system, cf. [1]. In this work, we will focus on self-healing networked embedded
systems that are based on self-reconfiguration and self-routing. An example of such
a system is given in Fig. 1. On the systems architecture, a given set of communicat-
ing applications is executed while the communication is implemented via static routes.
Hence, there are hardly any dedicated routing resources but the resources perform both
the computation of the tasks and the routing using their point-to-point interconnections.
In case of a resource failure, the failure has to be detected, cf. [2,3]. After the detection,
the redundant instances of the tasks executed on the defect resource that are available
in the system are activated using a reconfiguration of the other resources, cf. [4]. For
all newly activated task instances and for all communication routes that use the de-
fect resource, a rerouting is performed. Besides the fact that such a system can act
autonomously, self-reconfiguration and self-routing allow a resource sharing of active
tasks and redundant, inactive tasks. Thus, highly increased costs introduced by static
structural redundancy can be avoided.

In this paper, we present a symbolic reliability analysis of such self-healing net-
worked embedded systems. This analysis aims to determine the achievable reliabil-
ity of the system, independent of the used algorithms to implement the self-healing

Symbolic Reliability Analysis of Self-healing Networked Embedded Systems 141

property. The knowledge of the achievable reliability is important since it allows to
quantify the quality of the available online algorithms. Moreover, in the design phase
of the system, the achievable reliability allows a coarse grained selection from different
system layouts and can be embedded into a design space exploration, since the calcu-
lation is much faster than an evaluation of different online algorithms. The presented
reliability analysis is based on Binary Decision Diagrams (BDDs) [5] and considers
both reconfiguration and routing using a symbolic fixed-point iteration. Moreover, even
constraints that depend on the dynamic activation of tasks are encoded in the BDD,
allowing to respect constraints like, e.g., maximum computational load of a resource.

The remainder of the paper is as follows: Section 2 discusses prior work. In Sec. 3,
a formulation of the problem we target in this work is given. Section 4 introduces
our symbolic analysis approach for self-healing networked embedded systems. Sec. 5
shows the results of the introduced technique applied to examples where several imple-
mentations of self-healing algorithms are available as well as an networked embedded
system that corresponds to systems currently used as automotive ECU networks. The
paper is concluded in Sec. 6.

2 Related Work

The reliability of self-healing networks has been widely studied, cf. [6,7,8,9]. Hence,
all these approaches focus on the network as a communication platform itself while
the aspects of nodes of the networked embedded system as both communication and
computational resource are neglected. Thus, the approaches are more related to the reli-
ability analysis of classical networks [10] and restricted to given self-healing strategies.

Other approaches can be found in the area of self-repairing embryonic cells [11] and
wireless sensor networks [12,13]. Embryonic cells have a very special architecture that
comes with a high degree of spatial redundancy to implement the self-repairing property
and, thus, are not appropriate as a networked embedded system model. Wireless sensor
networks on the other hand are highly meshed networks and have changing commu-
nication possibilities due to their wireless communication medium. Hence, since these

Fig. 2. A system specification with an application and the available resource architecture

142 M. Glaß et al.

sensor networks often include aspects of maintenance as well, simulative approaches
are used to quantify their reliability.

The typical networked embedded system is hard wired with maintenance being
hardly possible. Thus, the reliability analysis proposed in this work is inspired by the
reliability analysis of embedded systems [14] and networked embedded systems with-
out self-healing properties [15]. We will extend these approaches by considering the
reconfiguration and dynamic routing that is used by the online algorithm. Moreover,
constraints that depend on the online activation of tasks are included in the analysis as
well.

3 Problem Description

In this paper, we target the problem of determining the reliability of a self-reconfigurable
and self-routing networked embedded system. Hereby, the tasks that are executed on the
resources as well as their data dependencies are given. Moreover, the system topology
and the reliability attributes of each resource are known. The assumed failure model is
permanent failure due to resource failures.

Our formal specification of a system consists of the application, the system layout or
architecture and the relation between these two views:

– The application is modeled by a task graph gt(Vt, Et) that describes the behavior of
the system. The vertices t1, ..., t|Vt| ∈ Vt denote tasks whereas the directed edges
Et are data dependencies. Attributes like, e.g., memory usage, computational load
are assigned to tasks.

– The architecture is modeled by a graph ga(Va, Ea) and represents possible intercon-
nected hardware resources. The vertices r1, ..., r|Va| ∈ Va represent resources that
can be both processing units or communication units like buses or gateways. The
edges Ea model available communication links between the resources. Attributes
like, e.g., the memory size, maximum computational capacity or reliability are as-
signed to the resources.

Each resource has the ability to route information to all resources along the directed
communication connections, thus, from a routing point of view, all resources can be
seen as network nodes with point-to-point connections. An example of an application
and a given architecture is shown in Fig. 2.

In this model, the execution of a given task is limited to selected resources. This
is due to the fact that not each device is generally present on every resource in a het-
erogeneous system. Therefore, a relation between application and architecture called
mapping is introduced in the system model:

– The mapping M : Vt → 2Va assigns to each task t a set of possible resources for
its execution and M : Va → 2Vt assigns each resource r a set of tasks that can be
executed on r, respectively.

– An instance i = (t, r) of a task t corresponds to this task being executed on the
resource r ∈ M(t). The set of all available instances of all tasks is defined as
I = {(t, r) | t ∈ Vt, r ∈ M(t)}.

Symbolic Reliability Analysis of Self-healing Networked Embedded Systems 143

Fig. 3. A part of the application shown in Fig. 2. Depicted are the tasks that are mapped to the
resources.

In the online phase of the system, at least one instance of each task has to be activated,
i.e., has to be executed. An example of a part of the application and its relation to the
given architecture is shown in Fig. 3.

The task of the used online algorithms is to keep the networked embedded system
feasible.

Definition 1. A system is called feasible if the execution of each task of the system’s ap-
plications and their data dependencies can be correctly carried out by proper operating
system resources.

A task execution can be successfully carried out on a resource if the resource has
enough capacity to execute the task and is operating properly, i.e., it is not defect. Data-
dependencies can be implemented if there exists a set of properly operating resources
that allows to pass the data correctly from the sending to the receiving resource. In this
definition, failures that happen at task level like, e.g., soft errors or errors in the task
itself, are assumed to be handled at task level using, e.g., task re-execution, cf. [16].

4 Reliability Analysis

In this section, the symbolic reliability analysis is presented. The calculation and rep-
resentation of the so called structure function ϕ is explained in three steps: First, the
requirements for a feasible system are introduced. Afterwards, the representation of the
dynamic routing within the structure function is presented. In a final step, the given
constraints are integrated directly into ϕ. Moreover, the evaluation of ϕ to quantify the
systems reliability is explained.

4.1 The Structure Function ϕ

To model the systems behavior under the influence of failures, the structure function
ϕ : {0, 1}|Va| → {0, 1} with the Boolean vector Va = (r1, . . . , r|Va|) is calculated,
cf. [14]. At this, for each allocated resource r ∈ Va, a binary variable r is introduced
with r = 1 indicating a proper operation and r = 0 a resource failure, respectively.

144 M. Glaß et al.

This Boolean function indicates a proper operating system, i.e., a feasible system by
evaluating to ϕ = 1 and a system failure by evaluating to ϕ = 0, respectively. For a
given system specification, this function can be calculated as follows:

ϕ(Va) =∃I : ψ(Va, I) (1)

Whether a system is feasible is highly dependent on which instance of each task is
activated. Thus, the extended structure function ψ that includes both the resources and
the available task instances, is calculated first. At this, I = (i1, . . . , i|I|) is a vector
of Boolean variables encoding a task instance being activated. Applying the exists-
operator ∃ to ψ allows to eliminate the I variables by asking if there exists at least one
set of task instances that ensures a feasible system.

The requirements for a feasible system are encoded in ψ:

ψ(Va, I) =
∧
t∈Vt

⎡
⎣ ∨

i=(t,r)∈I

i

⎤
⎦ ∧ (2a)

∧
i=(t,r)∈I

i → r ∧ (2b)

∧
(t,�t)∈Et

∧
i=(t,r),
�i=(�t,�r)∈I

i ∧ ĩ → Rr,�r(Va) ∧ (2c)

∧
r∈Va

Cr(I) (2d)

At least one active instance of each task t ∈ Vt is needed to allow each application
to work properly. This is ensured by Term (2a). Term (2b) states that an activated task
instance implies a proper operating resource. Furthermore, if two instances of data de-
pendent tasks are activated, they must be able to communicate and a correct routing has
to be possible, cf. Term (2c). At this, the function Rr,�r(Va) encodes possible routings
and, thus, enables to decide whether two data dependent task instances are able to com-
municate. The calculation of this function is presented in Sec. 4.2. The given constraints
that are imposed on the resources are realized by Term (2d) using the function Cr(I).
The calculation of this function is presented in Sec. 4.3.

4.2 Encoding the Routing

The function Rrs,rd
: {0, 1}|Va| → {0, 1} evaluates to 1 if there exists a route, i.e.,

a loop free path, that implements a communication between the data dependent task
instances being executed on resource rs and rd by passing data over currently proper
operating resources only. Thus, the function evaluates to 0 if there is no route that is able
to implement the data dependency. In the following, a fixed-point iteration approach for-
mally introduces the calculation of Rrs,rd

(Va). Additionally, a symbolic version of this
fixed-point iteration is presented that enables an efficient determination of the desired
Boolean function.

Symbolic Reliability Analysis of Self-healing Networked Embedded Systems 145

Fig. 4. All possible routes from resource r1 to r3 from the example shown in Fig. 2

Fixed-Point Iteration. A route from a sender resource rs to a destination resource
rd is carried out by passing the data from one resource to another using the point-to-
point connections between the resources.1 Passing data from one resource to another is
called taking a hop, thus, one route consists of a ordered sequence of hops starting from
the sender and ending at the destination without visiting a resource more than once.
Formally, taking a hop between two resources r and r̃ is possible if

∃e = (r, r̃) ∈ Ea (3)

That means, a hop can only be taken if the resources are able to communicate using a
point-to-point connection. The possible routes from the example depicted in Fig. 2 are
shown in Fig. 4.

The determination of Rrs,rd
(Va) has to take all possible routes into account. In the

following, the determination of this Boolean function is done by a fixed-point iteration.
The single state of the fixed-point iteration are in the set S with

S = Va × 2Va . (4)

One state (r, R) ∈ S consists of a reached resource r ∈ Va and the set of resources
R ⊆ Va in form of predecessor resources that have been passed starting from the sender
resource to reach the current resource r. The function δ : S → 2S determines for a
given state (r, R) the set of reachable states:

δ((r, R)) = {(r′, R ∪ {r′}) | with (r, r′) ∈ Ea} (5)

By using δ, for a given set of states S ⊆ S the successor states are calculated by the
successor function SUCC : 2S → 2S :

SUCC(S) = {(r′, R′) | ∃(r, R) ∈ S : (r′, R′) ∈ δ((r, R))} (6)

1 Buses are modeled as a single resource with many point-to-point connections to nodes that are
attached to the bus.

146 M. Glaß et al.

Thus, the following function defines a fixed-point iteration that searches all reachable
resources with the given set of resources that are required to ensure a route:

Sj+1 = Sj ∪ SUCC(Sj) (7)

The iteration stops in the iteration k if

Sk+1 = Sk (8)

and the fixed-point is reached.
For a given sender resource rs and destination resource rd the initial state of the

iteration is
S0 = {(rs, {rs})} (9)

and the desired states for the fixed-point Sk are those where the current resource equals
the destination:

S̃k = {(rd, R)|(rd, R) ∈ Sk} (10)

With the calculated set S̃k the Boolean function that indicates whether a communication
between rs and rd is possible is as follows:

Rrs,rd
(Va) =

∨
(r,R)∈�Sk

∧
�r∈R

r̃ (11)

However, the complexity of this iteration equals the enumeration of all simple paths
that is known to be #P-complete [17].

Symbolic Approach. The basis of the determination of Rrs,rd
(Va) is #P-complete

and, thus, of a high computational complexity. In the following, the set-based fixed-
point iteration is done by a symbolic approach using Binary Decision Diagrams
(BDDs). From the experiences of Model Checking a symbolic encoding [18] speeds
up a fixed-point iteration by some orders of magnitude.

Preliminary, for each r ∈ Va a distinct Boolean function br is defined as

br : X → {0, 1} with X = {0, 1}�ld |Va|�, (12)

with x ∈ X being of the form

x = {x0, . . . , x�ld |Va|�}. (13)

Hereby, for two resources r, r̃ ∈ Va it holds

br(x) �= 0 (14a)

br(x) ∧ b
�r(x) = 0 (14b)

Thus, the function br(x) maps a resource r to a specific binary representation by evalu-
ating to 1 if x is the binary representation of r and evaluating to 0 if x is not the binary
representation of r, respectively.

Symbolic Reliability Analysis of Self-healing Networked Embedded Systems 147

Correspondingly to Eq. (4) a single state or a set of states can be defined in the binary
representation and, thus, as a BDD:

S : X × {0, 1}Va → {0, 1} (15)

Correspondingly to Eq. (5) the function δ : X × X × {0, 1}|Va| → {0, 1} encodes
whether taking a hop is possible represented as a BDD:

δ(x, x′, Va) =
∨

e=(r,�r)∈Ea

br(x) ∧ b
�r(x′) ∧ r̃ (16)

This function evaluates to 1 if the requirements stated in Eq. (3) are fulfilled. Otherwise,
δ evaluates to 0, respectively. The required paths in the form of predecessor resources
stated in Eq. (4) is incorporated through the Va variables. This is important since these
variables encode the path that is needed for the fixed-point iteration and allow defect
resources2 to falsify the possibility of taking hops at the same time.

Correspondingly to Eq. (6) the successor function is defined as

SUCC(S(x, Va)) = ∃x′ : S(x′, Va) ∧ δ(x′, x, Va). (17)

Thus, the fixed-point iteration from Eq. (7) is carried out by

Sj+1(x, Va) = Sj(x, Va) ∨ SUCC(Sj(x, Va)). (18)

The iteration stops and the fixed-point is reached if the BDDs for two subsequent itera-
tions are equal, cf. Eq. (8).

For the sender resource rs and the destination resource rd the initial state is defined
as a BDD correspondingly to Eq. (9):

S0(x, Va) = brs(x) ∧ rs (19)

For the fixed-point Sk(x, Va) the restricted states to the destination resource are deter-
mined correspondingly to Eq. (10) as follows:

S̃k(x, Va) = Sk(x, Va) ∧ brd
(x) (20)

Thus, correspondingly to Eq. (11) the desired Boolean function or BDD, respectively,
is determined as follows:

Rrs,rd
(Va) = ∃x : S̃k(x, Va) (21)

The resulting BDD for the example in Fig. 4 is shown in Fig. 5.

2 Link failures can be seamlessly introduced by adding binary Variables E that encode a proper
operation of the communication links Ea.

148 M. Glaß et al.

Fig. 5. A BDD encoding the routing possibilities from resource r1 to r3 from the example shown
in Fig. 2. Edges represent the corresponding variable to be 1 while the dashed edges depict the
variable to be 0, respectively.

4.3 Incorporating Constraints

Typical constraints for resources in self-x networked embedded systems are the max-
imum computational load or the maximum memory capacity of a specific resource.
Since the calculation of these objectives can be approximated using linear functions,
they can be expressed as linear constraints of the form

aT x ◦ b (22)

with a ∈ Z
n, b ∈ Z and ◦ ∈ {<,≤, =,≥, >}. A typical constraint for, e.g., the

maximum computational load of a resource r has the following form:

∑
i=(t,r)∈I

li · i ≤ Lr (23)

At this, li denotes the computational load arising from activating task t on resource r
while the maximum computational load of resource r is denoted as Lr. By incorporating
these constraints into ψ, system states that violate a constraint are excluded from the set
of feasible system states.

An encoding algorithm for linear constraints as Binary Decision Diagrams has been
presented in [19]. Using this algorithm, the function

Cr : {0, 1}|I| → {0, 1} (24)

can be realized. The function Cr evaluates to 1 if the task instances that are executed on
r do not violate the given constraints and evaluates to 0 if at least one of the encoded
constraints is violated, respectively. As an example, resource r3 from Fig. 2 with an

Symbolic Reliability Analysis of Self-healing Networked Embedded Systems 149

Fig. 6. A BDD encoding the computational load constraint of resource r3 shown in Fig. 2. Edges
represent the corresponding variable to be 1 while the dashed edges depict the variable to be 0,
respectively.

Lr3 of 5 is to encode. The computational demand of the tasks that are bound to r3 are
lt2 = lt3 = 3 and lt4 = lt5 = 2. Thus, the constraint can be written as

3ir2 + 3ir3 + 2ir4 + 2ir5 ≤ 5

The resulting BDD for Cr3 that is constructed using the Algorithm presented in [19] is
shown in Fig. 6.

4.4 Evaluating ϕ

In the following, we describe how to quantify the reliability of the self-x networked
embedded system based on the determined structure function ϕ. Since the reliability
Rr of each resource r ∈ Va is given in the system model, e.g., by distribution functions
like an exponential distribution or a Weibull distribution, the reliability of the system at
time t can can be calculated through using a modified Shannon-decomposition [20] on
the BDD representing ϕ:

R(t) = ϕ =Rr(t) · ϕ|r=1 + (1 − Rr(t)) · ϕ|r=0 (25)

If a Mission Time (MT) of the system is given, this decomposition directly quantifies
the reliability R(MT) of the system. In our experimental results, the Mean Time To
Failure (MTTF) =

∫ ∞
0

R(t)dt is used as the measure of reliability and is determined
by a numerical integration of Equation (25). MTTF denotes the expected value for the
failure-free time of the system.

5 Experimental Results

In this section, the results of applying our proposed analysis approach to two differ-
ent examples are presented. First, examples of an available self-healing technique for

150 M. Glaß et al.

networked embedded systems known as ReCoNets [4] are analyzed. Afterwards, a net-
worked embedded system with a specification inspired by state-of-the-art ECU net-
works from the automotive area are used to show the applicability of the proposed
approach.

ReCoNets. The self-healing technique called ReCoNets implements the self-healing
property using a one replication strategy. At this, for each active task, a replica task is
created by copying the byte code of the tasks to another resource. Of course, a replica
can only be placed at resources that are allowed by the given mappings. There are two
strategies available: The load balancing (LB) strategy places replicas under load bal-
ancing aspects. The strategy that is more focused on lifetime maximization called BCC
determines bi-connected components that can, in case of a failure, lead to a partition-
ing of the networked embedded system. With this knowledge, the BCC strategy tries
to place replicas such that a partitioning does not prevent data dependent tasks from a
correct communication. Hence, strategies based on using only one replica can, in gen-
eral, not achieve the maximum reliability, but reduce the amount of memory needed in
every resource since task replicas are created dynamically. With this example, the pos-
sibility of quantifying the effectiveness of a self-healing technique using our proposed
approach is shown. For this reason, a simple measure for the effectiveness e is used:

e =
MTTF

MTTFmax
(26)

Table 1 shows the results of the proposed reliability analysis for networked embedded
systems where a simulation of the ReCoNets techniques is available. In these testcases,
an exponential distribution function was used to model the resource reliability. The size
of the networked embedded systems was varied between 10 and 30 resources, each
having the same number of tasks. Due to the high vertex degree, these examples can be
considered to be complex examples for the analysis. For the small examples, both Re-
CoNets techniques nearly reach the upper bound of the achievable MTTF. However, the
high standard deviation shows that both techniques can also make suboptimal decisions
for the replica placement, leading to very early system failures. This is often the result
of placing task and corresponding replica in a small subnet that can be isolated from the
network by a single link or resource failure. For larger networks, the effectiveness of
both ReCoNets techniques decreases, but can still be considered as good. In all testruns
carried out, the time consumption of the proposed analysis algorithm and the ReCoNets
simulation were nearly equal. Morover, the time consumption of the proposed algorithm
is small enough to be applied in design space exploration approaches.

Table 1. Comparison of theoretical upper bound for the MTTF with the ReCoNets self-healing
system

testcases symbolic analysis ReCoNets LB ReCoNets BCC
MTTFmax MTTF deviation e MTTF deviation e

small 54.92 50.34 40.04 0.917 51.21 39.44 0.932
medium 66.91 57.20 46.28 0.854 60.25 43.21 0.900

large 176.12 137.18 127.71 0.779 144.64 138.24 0.821

Symbolic Reliability Analysis of Self-healing Networked Embedded Systems 151

Table 2. Time consumption of a single analysis run for different ECU networks

testcases specification time consumption
#ECUs #Tasks #Buses [s]

small 30 30 2 1.16
medium 50 50 3 3.63

large 70 70 4 6.69

Especially interesting is the relatively small difference in the effectiveness of both
ReCoNets methodologies with regards to the known upper bound. In [4], the relative
difference between the LB and BCC approach seemed significant. With regards to the
upper bound, the designer may choose the load balancing approach as well, since this
approach is less than 5% worse than the BCC technique and offers a better load balanc-
ing of the resources.

ECU Network. In this section, our proposed methodology is applied to artificial exam-
ples inspired by typical Electronic Control Unit (ECU) networks from the automotive
domain to show its time consumption. In these examples, the resources have a relatively
low vertex degree since they are connected via buses. These buses are typically arranged
in a star topology. The large example with 70 ECUs corresponds to recent real world
automotive networks in premium class automobiles. The experiments were carried out
on an Intel Pentium 4 3.20GHz machine with 1GB RAM.

Table 2 shows the results for three different ECU networks. The time consumption
per analysis of 1.16 to 6.69 seconds per analysis run shows that the proposed approach is
applicable for these kind of networks. Moreover, the time consumption is small enough
to be applied in design space exploration approaches where many different network
layouts have to be analyzed in order to find the optimum. However, at a certain com-
plexity, the memory consumption of the calculated BDD exceeds the computers main
memory and, thus, makes an analysis impossible. In our testcases, this problem arises
at networks with about 90 ECUs and 90 tasks.

6 Conclusion

In this paper, a reliability analysis for self-healing networked embedded systems has
been proposed. This technique allows to determine an upper bound for the MTTF
that can be achieved by self-healing techniques that rely on self-reconfiguration and
self-routing. The technique uses a fast and memory-aware symbolic representation and
respects given constraints of the system like, e.g., the maximum computational load.
Given the proposed technique, the effectiveness of different self-healing techniques for
networked embedded systems can be quantified. Moreover, an effective dimensioning
of the system in the design phase is enabled. In the future, the proposed technique will
be extended to respect a possible maintenance of resources or, more accurately, of sub-
nets of the networked embedded system.

152 M. Glaß et al.

References

1. Dai, Y.S.: Autonomic computing and reliability improvement. In: Proc. of ISORC 2005, pp.
204–206 (2005)

2. Koch, D., Streichert, T., Dittrich, S., Strengert, C., Haubelt, C., Teich, J.: An operating sys-
tem infrastructure for fault-tolerant reconfigurable networks. In: Grass, W., Sick, B., Wald-
schmidt, K. (eds.) ARCS 2006. LNCS, vol. 3894, pp. 202–216. Springer, Heidelberg (2006)

3. Garlan, D., Schmerl, B.: Model-based adaptation for self-healing systems. In: Proc. of WOSS
2002, pp. 27–32 (2002)

4. Streichert, T., Glaß, M., Wanka, R., Haubelt, C., Teich, J.: Topology-aware replica place-
ment in fault-tolerant embedded networks. In: Brinkschulte, U., Ungerer, T., Hochberger, C.,
Spallek, R.G. (eds.) ARCS 2008. LNCS, vol. 4934, pp. 23–37. Springer, Heidelberg (2008)

5. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. on
Comp. 35(8), 677–691 (1986)

6. Cankay, H.C., Nair, V.S.S.: Reliability and availability evaluation of self-healing sonet mesh
networks. In: Proc. of GLOBECOMM 1997, pp. 252–256 (1997)

7. Cankay, H.C., Nair, V.S.S.: Accelerated reliability analysis for self-healing sonet networks.
SIGCOMM Comput. Commun. Rev. 28(4), 268–277 (1998)

8. Kawamura, R., Sato, K., Tokizawa, I.: Self-healing atm networks based on virtual path con-
cept. IEEE Journal on Selected Areas in Communications 12(1), 120–127 (1994)

9. Lee, J.: Reliability models of a class of self-healing rings. Microelectronics and Reliabil-
ity 37(8), 1179–1183 (1997)

10. Politof, T., Satyanarayana, A.: Efficient algorithms for reliability analysis of planar networks
- a survey. IEEE Trans. on Reliability 35(3), 252–259 (1986)

11. Ortega, C., Tyrrell, A.: Reliability analysis in self-repairing embryonic systems. In: Proc. of
EH 1999, pp. 120–128 (1999)

12. Dressler, F., Dietrich, I.: Lifetime analysis in heterogenous sensor networks. In: Proc. of DSD
2006, pp. 606–616 (2006)

13. Elliot, C., Heile, B.: Self-organizing, self-healing wireless networks. In: Proc. of Aerospace
Conference 2000, pp. 149–156 (2000)

14. Glaß, M., Lukasiewycz, M., Streichert, T., Haubelt, C., Teich, J.: Reliability-Aware System
Synthesis. In: Proceedings of DATE 2007, pp. 409–414 (2007)

15. Streichert, T., Glaß, M., Haubelt, C., Teich, J.: Design space exploration of reliable networked
embedded systems. Journ. on Systems Architecture 53(10), 751–763 (2007)

16. Izosimov, V., Pop, P., Eles, P., Peng, Z.: Synthesis of fault-tolerant schedules with trans-
parency/performance trade-offs for distributed embedded systems. In: Proceedings of DAC
2004, pp. 550–555 (2004)

17. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM Journal on
Computing 8, 410–421 (1979)

18. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model check-
ing: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

19. Eén, N., Sörensson, N.: Translating Pseudo-Boolean Constraints into SAT. Journal on Satis-
fiability, Boolean Moelding and Computation 2, 1–25 (2006)

20. Rauzy, A.: New Algorithms for Fault Tree Analysis. Reliability Eng. and System Safety 40,
202–211 (1993)

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 153–166, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Investigation and Reduction of Fault Sensitivity in the
FlexRay Communication Controller Registers

Yasser Sedaghat and Seyed Ghassem Miremadi

Dependable Systems Laboratory, Sharif University of Technology, Tehran, Iran
y_sedaghat@ce.sharif.edu, miremadi@sharif.edu

Abstract. It is now widely believed that FlexRay communication protocol will
become the de-facto standard for distributed safety-critical automotive systems.
In this paper, the fault sensitivity of the FlexRay communication controller reg-
isters are investigated using transient single bit-flip fault injection. To do this, a
FlexRay bus network, composed of four nodes, was modeled. A total of
135,600 transient single bit-flip faults were injected to all 408 accessible single-
bit and multiple-bit registers of the communication controller in one node. The
results showed that among all 408 accessible registers, 30 registers were imme-
diately affected by the injected faults. The results also showed that 26.2% of in-
jected faults caused at least one error. Based on the fault injection results, the
TMR and the Hamming code techniques were applied to the most sensitive
parts of the FlexRay protocol. These techniques reduced the fault affection to
the registers from 26.2% to 10.3% with only 13% hardware overhead.

Keywords: Safety-critical applications, Distributed embedded systems, Flex-
Ray protocol, Fault injection.

1 Introduction

Today, many safety-critical applications are implemented as distributed embedded
systems [13], e.g. X-by-wire applications. These systems are composed of several
different types of hardware units (called nodes), e.g., processing units, sensors, and
actuators, interconnected by a communication network.

Communication in a distributed architecture can be triggered either dynamically, in
response to an event (event-driven), or statically, at predetermined moments in time
(time-driven). Examples of event-triggered protocols are Byteflight [1], CAN [2],
LonWorks [3], and Profibus [4]. The main drawback of event-triggered protocols is
their lack of predictability [5]. Examples of time-triggered protocols are SAFEbus [6],
SPIDER [7], and TTP/C [8]. The main drawback of time-triggered protocols is their
lack of flexibility [5]. To resolve the drawbacks of both event-triggered and time-
triggered protocols, other protocols such as TTCAN [9], FTT-CAN [10], and Flex
Ray [11] are introduced that can support both time-triggered and event-triggered
transmissions.

Among the latter protocols, the FlexRay protocol is advancing as the predominant
protocol and will become the de-facto industry standard for X-by-wire applications
[12], [13], [5], [14], [15]; e.g., the next edition of the BMW X5 will use the FlexRay

154 Y. Sedaghat and S.G. Miremadi

protocol in its electronically controlled dampers [12].The FlexRay protocol was
started by an industry consortium with four founding members (BMW, Daimler-
Chrysler, Philips, and Freescale) [15]. Three top design objectives were considered in
the standardization of the FlexRay protocol: high speed transmission, deterministic
communication, and fault-tolerant communication [15].

In safety-critical distributed embedded systems, a fault-tolerant communication be-
tween different nodes has a significant impact on the overall system reliability. It has
been reported [16], [13] that the overall reliability of a safety-critical distributed em-
bedded system not only depends on the reliability of the nodes, but also on the reli-
ability of the communication network.

This paper investigates the fault sensitivity of all parts of the FlexRay communication
controller using fault injection. The most and the least sensitive registers in the FlexRay
are characterized. Then, appropriate fault-tolerant techniques are applied to the most
sensitive registers, to protect the communication controller against transient faults.

The remainder of the paper is organized as follows: Section 2 introduces the
FlexRay protocol briefly. Error models and error handling mechanisms in the
FlexRay protocol are presented in Section 3. In Section 4, the experimental environ-
ment is presented. Section 5 includes the experimental results and finally, the conclu-
sions are given in Section 6.

2 The FlexRay Protocol

The FlexRay protocol provides key features of synchronization that include scalable
data transmission in both synchronous and asynchronous modes. It can support the
data rate up to 10Mbit/sec. The protocol itself offers deterministic data transmission,
guaranteed message latency and message jitter. The FlexRay supports dual and re-
dundant transmission channels and transmission mechanism is arbitration free. In ad-
dition, it has optional support of optical or electrical physical layers. The physical
layer will provide support for bus, star, and multiple star topologies [11].

From the dependability point of view, the FlexRay documents [11] specify solely
bus guardian mechanism and clock synchronization algorithms. Other features, such
as a membership service or mode management facilities, should be implemented in
software or hardware layers on top of the FlexRay. This will allow to conceive and to
implement exactly the services that are needed with the drawback that correct and
efficient implementations might be more difficult to achieve in a layer above the
communication controller [16].

One of the main purposes of this paper is to convince developers of the FlexRay
communication controller, by the experimental results, how necessary it is to reduce
the fault sensitivity of critical registers. This reduction causes to improve the reliabil-
ity of the FlexRay protocol, noticeably; and it is possible to reduce the need for
expensive fault-tolerant techniques, such as bus guardian mechanism or clock syn-
chronization algorithms.

2.1 Protocol Operation

Communications in the FlexRay protocol are based on predetermined interval times
which are named communication cycles (bus cycles). These communication cycles are

 Investigation and Reduction of Fault Sensitivity 155

executed periodically. In this protocol a communication cycle is a concatenation of a
time-triggered (or static) window, an event-triggered (or dynamic) window, a symbol
window and a network idle time (NIT) window. The size of each communication win-
dow is set statically at design time. The time-triggered window uses a Time Division
Multiple Access (TDMA) [17] mechanism; a node in FlexRay might possess several
slots in the time-triggered window, but the size of all the slots is identical. In the event-
triggered part of the communication cycle, the mechanism is Flexible TDMA (FTDMA)
[18]: time is divided into so-called minislots, each station possesses a given number of
minislots (not necessarily consecutive), and it can start the transmission of a frame inside
each of its own minislots. A minislot remains idle, if the station has nothing to transmit
which actually induces a loss of bandwidth [16]. The symbol window is a communica-
tion period in which a symbol can be transmitted on the network. The NIT window is a
communication-free period that concludes each communication cycle. Fig. 1 shows an
example of communication cycle in the FlexRay protocol.

Fig. 1. Communication Cycle in the FlexRay Protocol

The FlexRay frame consists of three parts: the header segment, the payload seg-
ment, and the trailer segment. The FlexRay header segment consists of 5 bytes. These
bytes contain one reserved bit, payload preamble indicator, null frame indicator, sync
frame indicator, startup frame indicator, frame ID, payload length, header CRC, and
cycle count.

The payload segment contains 0 to 254 bytes (0 to 127 two-byte words) of data.
Because the payload length contains the number of two-byte words, the payload seg-
ment contains an even number of bytes. The FlexRay trailer segment contains a single
field, a 24-bit CRC for the frame. The Frame CRC field contains a cyclic redundancy
check code (CRC) computed over the header segment and the payload segment of the
frame. The computation includes all fields in these segments.

In the FlexRay protocol, frames are sent in static slots or dynamic slots of each
communication cycle. Fig. 2 shows the frame format in the FlexRay protocol.

Fig. 2. Frame format in the FlexRay Protocol

Sym bol NIT

NIT
Symbol
W indowDynam ic W indowStatic W indow

Static Slots Dynam ic Slots

156 Y. Sedaghat and S.G. Miremadi

Fig. 3. The FlexRay Structure [11]

2.2 Protocol Structure

The FlexRay communication controller consists of six modules [11]: controller host
interface (CHI), protocol operation control (POC), coding and decoding (CODEC),
media access control (MAC), frame and symbol processing (FSP), and clock syn-
chronization process (CSP). Fig. 3 shows relation between these modules.

The CHI module, manages data and control flow between the host processor and
the FlexRay protocol engine within each node. The CHI module manages all data
exchange relevant to the protocol operation and manages all data exchanges relevant
to the exchange of messages. Moreover, this module manages protocol configuration
data, protocol control data, and protocol status data.

Operational modes of FlexRay modules are adjusted by POC module. Proper proto-
col behavior can only occur if the mode changes of the core modules are properly coor-
dinated and synchronized. The purpose of the POC is to react to host commands and
protocol conditions by triggering coherent changes to core modules in a synchronous
manner, and to provide the host with the appropriate status regarding these changes.

The CODEC module is responsible for en-
coding the communication elements into a bit
stream and is responsible for receiving com-
munication elements, making bit streams and
investigating correctness of bit streams.

The MAC module controls access to the
bus. In the FlexRay protocol, media access
control is based on a recurring communica-
tion cycle. Within one communication cycle,
the FlexRay offers the choice of two media
access schemes, i.e., TDMA scheme and
FTDMA scheme. The communication cycle
is the fundamental element of the media ac-
cess scheme within FlexRay.

The FSP module checks the correct timing
of received frames and received symbols with
respect to the TDMA scheme, applies further
syntactical tests to received frames, and checks
the semantic correctness of received frames.

Finally, the CSP module is responsible for
generation of timing units in the FlexRay
communication controller, e.g., communication
cycles. Moreover this module uses a distributed clock synchronization mechanism in
which each node individually synchronizes itself to its cluster by observing the timing of
transmitted sync frames from other nodes.

3 Error Models and Error Handling Mechanisms in the FlexRay
Protocol

Safety-critical applications have to function correctly even in presence of faults.
Faults can be permanent (e.g., damaged microcontrollers or communication links),
transient (e.g., caused by single event upsets or electromagnetic interferences), or

 Investigation and Reduction of Fault Sensitivity 157

intermittent (appear and disappear repeatedly). The transient faults are the most
common, and their number is continuously increasing due to the continuously raising
level of integration in semiconductors [19]. These transient single bit-flip errors are
more common consequences of transient faults [22].

3.1 Error Models in the FlexRay Protocol

According to the FlexRay protocol, the following three categories of errors are possi-
ble [11]:

1) Syntax error
Syntax error denotes the presence of a syntactic error in a time slot, and occurs in fol-
lowing conditions:

- The node starts transmitting while the channel is not in the idle state.
- A decoding error occurs.
- A frame is decoded in the symbol window or in the network idle time.
- A symbol is decoded in the static segment, the dynamic segment, or the net-

work idle time.
- A frame is received within the slot after the reception of a semantically cor-

rect frame.
- Two or more symbols are received within the symbol window.

2) Content error
Content error denotes the presence of an error in a received frame, and occurs in fol-
lowing condition:

- In the static segment, the header length the header of the received frame does
not match the stored header length in a special register (this register contains
globally configured value of the payload length of a static frame).

- In the static segment, the startup frame indicator, contained in the header of
the received frame, is set to one while the sync frame indicator is set to zero.

- In the static or in the dynamic segment, the frame ID, contained in the header
of the received frame, does not match the current value of the slot counter or
the frame ID equals to zero in the dynamic segment.

- In the static or dynamic segment, the cycle count, contained in the header of
the received frame, does not match the current value of the cycle counter.

- In the dynamic segment the sync frame indicator, contained in the header of
the received frame, is set to one.

- In the dynamic segment the startup frame indicator, contained in the header
of the received frame, is set to one.

- In the dynamic segment the null frame indicator, contained in the header of
the received frame, is set to zero.

3) Boundary violation error
Boundary violation error denotes whether a boundary violation has occurred at the
boundary of the corresponding slot. A boundary violation occurs if the node does not
consider the channel to be idle at the boundary of a slot.

3.2 Error Handling Mechanisms in the FlexRay Protocol

In order to respond to errors, two basic mechanisms are provided in the POC module
[11]. For significant errors, the POC:halt state is immediately entered. The POC also

158 Y. Sedaghat and S.G. Miremadi

contains a three-state degradation model for errors that can be endured for a limited
period of time. In this case entry to the POC:halt state is deferred, at least temporarily,
to support possible recovery from a potentially transient condition.

Errors causing immediate entry to the POC:halt state
There are three general conditions that trigger entry to the POC:halt state:

• Product-specific error conditions such as BIST errors and sanity checks.
• Error conditions detected by the host that result in a FREEZE command be-

ing sent to the POC via the CHI.
• Fatal error conditions detected by the POC or one of the core mechanisms.

Product-specific errors are accommodated by the POC, but not described in
FlexRay specification. Similarly, host detected error strategies are supported by the
POC's ability to respond to a host FREEZE command, but the host-based mechanisms
that trigger the command are beyond the scope of this specification, hence they were
not considered in this paper.

Errors handled by the degradation model
Integral to the POC is a three-state error handling mechanism referred to as the degrada-
tion model. It is designed to react to certain conditions detected by the clock synchroni-
zation mechanism that are indicative of a problem, but that may not require immediate
action due to the inherent fault tolerance of the clock synchronization mechanism. This
makes it possible to avoid immediate transitions to the POC:halt state while assessing
the nature and extent of the errors. The degradation model is embodied in three POC
states - POC:normal active, POC:normal passive, and POC:halt.

In the POC:normal active state, the node is assumed to be either error free, or at
least within error bounds that allow continued “normal operation”. Specifically, it is
assumed that the node remains adequately time synchronized to the cluster to allow
continued frame transmission without disrupting the transmissions of other nodes.

In the POC:normal passive state, it is assumed that synchronization with the re-
mainder of the cluster has degraded to the extent that continued frame transmissions
cannot be allowed because collisions with transmissions from other nodes are possi-
ble. Frame reception continues in the POC:normal passive state in support of host
functionality and in an effort to regain sufficient synchronization to allow a transition
back to the POC:normal active state.

If errors persist in the POC:normal passive state or if errors are severe enough, the
POC can transit to the POC:halt state. In this state it is assumed that recovery back to
the POC:normal active state cannot be achieved, so the POC halts the core mechanisms
in preparation for reinitializing the node. The conditions for transitioning between the
three states comprising the degradation model are configurable. Furthermore, transitions
between the states are communicated to the host allowing the host to react appropriately
and to possibly take alternative actions using one of the explicit host commands.

3.3 Error Indicator Registers of the FlexRay Communication Controller

In this protocol, there are some registers that are set in the mentioned error con-
ditions. In this paper, these registers are named “error indicator registers”. Table 1
shows these registers and their locations in the FlexRay communication controller.

 Investigation and Reduction of Fault Sensitivity 159

Activating each of these registers, may result in one or more main error types. Faults,
depending on when and where they occur, may change the expected value of some of
these registers and cause one or more main error types. In this paper, the type of oc-
curred error is not considered. However, if any of registers in the Table 1, is unex-
pectedly changed, this change is considered as an error.

Table 1. Error indicator registers (registers of the FlexRay showing the error occurrences) in
the FlexRay protocol

Registers Module Registers Modules
decoding_error_on_A

CODEC

vPOC_Freeze
POCTSS_ok vPOC_CHIHaltRequest

TSS_too_long vPOC_ErrorMode
FSS_ok zSyncCalcResult CSP

payload_ok Content_error_on_A

FSP

trailer_ok Fatal_protocol_error
BSS_ok T_StatusSlot_ValidFrame
FES_ok T_StatusSlot_SyntaxError
zBssError T_StatusSlot_ContentError

Header_Crc_error T_StatusSlot_TxConflict
Frame_Crc_error T_StatusSlot_BViolation

4 Experimental Environment

The FlexRay communication controller was implemented by hardware description
language, Verilog HDL, and specifications of this controller, e.g. timing and configu-
ration, were tested according to the FlexRay protocol conformance test specification
[20]. This controller, according to its specifications [11], has six modules to perform
its functions: controller host interface (CHI), protocol operation control (POC), clock
synchronization process (CSP), frame and symbol process (FSP), media access con-
trol (MAC), and coding and decoding (CODEC). A cluster was formed consisting of
4 nodes with single bus topology (Fig. 4). In this topology, a node is composed of a
host and a communication controller. The host typically is a hardware unit that gener-
ates data to exchange with other nodes through a communication channel.

In the experiments, instead of a real host, a data generator was implemented to
generate static frames with fixed length and dynamic frames with variable length at
the start of the communication cycles. In this cluster, any node was allowed to send
and receive frames on the communication channel.

Fig. 4. Experimental setup

160 Y. Sedaghat and S.G. Miremadi

To investigate the fault tolerance of the FlexRay communication controller, transient
single bit-flip faults were injected in all accessible registers of communication controller
modules of the node 2 and their effects on the error indicator registers were observed in
node 2 and node 4 (for observing more fault effects); and results were stored.

4.1 Fault Sensitivity Calculation Process

To inject the transient single bit-flip faults at the behavioral level in node 2, the SIN-
JECT fault injection tool [21] was used.

A fault sensitivity calculation process of a bit, by using SINJECT tool, consists of
four steps:

1- When the given workload is applied, behaviors of the error indicator registers
in a fault-free network are simulated and stored.

2- During the second step, to consider fault effects, the given workload is applied
again to the network, a single transient bit-flip fault is injected to a bit of a
communication controller register of node 2, at a random time, and the behav-
ior of the error indicator registers of node 2 and node 4 are observed.

3- During the third step of the fault sensitivity calculation process, the faulty
network behavior is compared with the behavior of the fault-free network,
which is gathered at first step, and if there is a mismatch, this injected fault is
considered as an activated fault and otherwise, this injected fault is considered
as an overwritten fault.

4- To achieve accurate fault sensitivity of a bit, several faults should be injected
to this bit (repeating the first three steps). After injecting enough bit-flip faults
and determining the number of activated faults (be Equation 1), the fault sen-
sitivity of this bit is calculated by Equation 2:

#injected faults #activated faults #overwritten faults= +

Number of activated faults
fault sensitivity of a bit= 100%

Number of all injceted faults to that bit
×

The process was repeated for all bits in all accessible registers in FlexRay commu-
nication controller and the fault sensitivity of these registers was determined.

4.2 Fault Tolerance Improvement Strategies

After determining the fault sensitivity of a register, if its sensitivity was more than an
acceptable value, a proper fault-tolerant technique would be used to reduce its vulner-
ability. The Hamming code technique with single bit correction ability and Triple
Modular Redundancy (TMR) technique were used for this purpose.

The Hamming technique was implemented on several sets of vulnerable registers.
Those sets were organized such that most related registers were encapsulated in a set;
and the size of each set varied between 10 bits and 32 bits. This implementation did
not incur any delay or limitation to access to protected registers. After changing value
of a protected register in a register set, due to protocol operations, Hamming bits of
that register set is calculated while other parts of communication controller were al-
lowed to access to that register set.

(1)

(2)

 Investigation and Reduction of Fault Sensitivity 161

TMR or Hamming techniques should be used consciously; for example, if there is
a highly fault sensitive register which immediately triggers other parts of communica-
tion controller by changing its value, the Hamming code technique should not be used
to reduce the sensitivity of this register. The main reason is that if a bit-flip fault oc-
curs in this register, the other parts of communication controller react to that fault
immediately and some errors may occur in other parts of communication controller;
in such situation, if Hamming technique is used, the occurred fault in the register is
detected and corrected while other parts of communication controller react to this
changing value again. Consequently, a bit-flip fault causes two incorrect reactions in
other communication parts. Also, if Hamming technique is implemented such that the
accessibility to that register is not allowed until the Hamming bits of this register are
calculated, some delay is inserted into the operation of communication controller and
this delay may corrupt the timing of FlexRay protocol operations. In this situation, the
TMR technique is the better option, but if the imposed delay due to Hamming tech-
nique for this type of register does not damage the FlexRay protocol timings, by
checking and testing according to the FlexRay protocol conformance test specifica-
tion [20], it is beneficial to use Hamming technique instead of TMR technique.

On the other hand, if there is a highly fault sensitive register which does not trigger
immediately other parts of communication controller by changing its value, the TMR
technique should not be used because of its ultra-high hardware overhead (200%). In
this condition, the Hamming technique is the better option.

In this paper, with respect to properties of the FlexRay communication controller
registers, the TMR technique and the Hamming technique (without incurring any de-
lay) are suggested to improve fault tolerance of this controller.

5 Experimental Results

In this paper, to assess the fault sensitivity of the FlexRay communication controller,
the nodes were connected through a passive bus network. The main reason of select-
ing bus topology is to prevent some error propagations in star coupler of star topol-
ogy. This prevention results in hiding the fault sensitivity of some communication
controller registers.

To simulate the experiments, the ModelSim 5.5 simulation environment was used.
The simulation includes four communication cycles; in the first two cycles, single
transient bit-flip fault was injected randomly, then simulation was resumed two cycles
to guarantee that the injected fault caused an error or overwritten.

5.1 The FlexRay Communication Controller Modules

To reach an accurate fault sensitivity of each register, 50 transient bit-flip faults were
injected to each bit of all accessible FlexRay controller registers (according to the
fault sensitivity calculation process) and gathered results were investigated. If there
existed a register with more than 20% of fault sensitivity, a proper fault-tolerant tech-
nique based on properties of this register were used to reduce its vulnerability.

As discussed in the previous section, the TMR technique was only used for regis-
ters which were immediately triggered other communication controller parts with

162 Y. Sedaghat and S.G. Miremadi

their changing values. In this controller, all of these kinds of registers were single-bit
register; consequently, for each single-bit register, two redundant flip-flops were added
to implement the TMR technique. Furthermore, to implement the Hamming technique,
all vulnerable registers which were not improved by TMR technique, were grouped in
some sets. These register sets were organized as discussed in the previous section.

The results show that the TMR technique masks all injected faults but the Hamming
technique is not able to tolerate all injected faults; because it is probable that faulty reg-
isters are used immediately before they are corrected. The experiment results are pre-
sented in Table 2, whereas the modeled FlexRay communication controller is not still
synthesizable, the estimated hardware overhead is based on the number of accessible
flip-flops. Table 3 contains hardware overhead of implemented techniques.

Table 2. Fault injection results

FlexRay
Module

#
Injected
Faults

Standard FlexRay Improved FlexRay
Improvement

(%)Activated Faults Activated Faults

% # %

POC 5200 2343 45.1 512 9.8 357
CODEC 32300 5396 16.7 3586 11.1 50
MAC 11050 1805 16.3 1181 10.7 52
CSP 47850 16574 34.6 4774 10 246
FSP 6850 1230 18 688 10 80
CHI 32350 8154 25.2 3300 10.2 147
ALL 135600 35502 26.2 14041 10.3 154

FlexRay
Modules

Standard FlexRay Improved FlexRay HW
Overhead

(%)# Registers # Flip-Flops # Flip-Flops

POC 28 104 (104 + 32) = 136 30.8
CODEC 104 646 (646 + 46) = 692 7.1
MAC 64 221 (221 + 28) = 249 12.7
CSP 94 957 (957 + 162) = 1119 16.9`
FSP 41 137 (137 + 20) = 157 14.6
CHI 77 647 (647 + 66) = 713 10.2
ALL 408 2712 (2712 + 354) = 3066 13.0

In the modeled FlexRay communication controller, all registers, signals and other
components are named based on FlexRay specification document (version 2.1, revi-
sion A) [11]; for more details about their responsibilities, readers are referred to [11].
Based on experimental results, Fig. 5 shows the fault sensitivity of all FlexRay com-
munication controller modules in the standard implementation (according to the
FlexRay specifications [11]) and in the improved implementation. In this figure, the
fault sensitivities of the FlexRay module registers which are more than 20% sensitive
to injected faults are presented. For more clarity, fault sensitivities are sorted in a de-
scending order.

Table 3. Hardware overheads

 Investigation and Reduction of Fault Sensitivity 163

Fig. 5. Fault sensitivities of FlexRay modules in standard and improved implementations

(a) Fault sensitivities of FlexRay Registers
(POC Module)

(b) Fault sensitivities of FlexRay Registers
(MAC Module)

(c) Fault sensitivities of FlexRay Registers (CODEC Module)

(d) Fault sensitivities of FlexRay Registers (CSP Module)

164 Y. Sedaghat and S.G. Miremadi

Fig. 5. (continued)

5.2 Overall Results

In general, fault sensitivity analysis of the FlexRay modules shows that there were 30
registers with 100% sensitivity. This fact may question use of this protocol for safety-
critical applications. In addition, in Fig. 5 there is a severe variance in the fault sensi-
tivities of the FlexRay controller registers. Our improvements make them smooth.

The FlexRay communication controller contains 408 single-bit and multiple-bit
registers in total. A number of 135,600 transient single-bit flip faults were injected to
them. 35,502 faults caused at least one error; consequently, the fault sensitivity of the
whole controller was about 26.2%.

After improving the fault sensitivity of the FlexRay communication controller, its
sensitivity was reduced from 26.2% to 10.3% (about 154% improvement), while add-
ing 354 extra flip-flops costs the controller about 13% flip-flop overhead.

Fig. 6 shows the fault sensitivity of each module in the standard implementation
and the improved implementation of FlexRay communication controller. This figure
also shows that the POC module is the most sensitive part of FlexRay communication
controller and CODEC module is the least sensitive part. Furthermore, our results
show that we were able to reduce the sensitivity of FlexRay modules to almost equal

(f) Fault sensitivities of FlexRay Registers (CHI Module)

(e) Fault sensitivities of FlexRay Registers (FSP Module)

 Investigation and Reduction of Fault Sensitivity 165

Fig. 6. Fault Sensitivity of FlexRay Communication Controller

values (difference about 1%) as compared with previous values in the standard im-
plementation.

6 Conclusions

Safety-critical automotive control systems are nowadays complex distributed embed-
ded systems and the communication protocol is an essential part of them. The
FlexRay communication protocol is now expected to become the future standard for
in-vehicle communication.

In this paper, the fault sensitivities and vulnerabilities of FlexRay communication
controller registers, based on 135,600 single-bit flip fault injections to all accessible
registers, are investigated.

The results show that the fault sensitivities of POC, CODEC, MAC, CSP, FSP, and
CHI modules are 45.1%, 16.7%, 16.3%, 34.6%, 18%, and 25.2% respectively. Moreover,
according to the fault injection results, among all 408 accessible registers, 30 registers
were immediately affected by the injected faults, 84 registers were affected between 20%
and 99%, while the remaining (294) registers were affected by less than 20%.

After determining the sensitive registers, proper fault masking and fault-tolerant
techniques, based on their properties, are applied to reduce the vulnerability of these
registers. This caused, the fault sensitivity of POC, CODEC, MAC, CSP, FSP, and
CHI modules to reduce to 9.85%, 11.1%, 10.7%, 10%, 10%, and 10.2% respectively.

In general, the fault sensitivity of FlexRay communication controller was improved
more than 2 times and in this improved implementation, none of the registers has
more than 20% fault sensitivity.

References

1. Byteflight Specification, http://www.byteflight.com/
2. CAN Specification 2.0, http://www.can-cia.org/
3. LonWorks networks, http://www.echelon.com
4. PROFIBUS DP Specification, http://www.profibus.com
5. Pop, T., Pop, P., Eles, P., Peng, Z.: Bus Access Optimization for FlexRay-based Distrib-

uted Embedded Systems. In: Design, Automation & Test in Europe Conference & Exhibi-
tion 2007 (DATE 2007), pp. 1–6. EDA Consortium, Nice (2007)

166 Y. Sedaghat and S.G. Miremadi

6. Hoyme, K., Driscoll, K.: SAFEbus. In: IEEE Aerospace and Electronic Systems Magazine
(ISSN 0885-8985), vol. 8(3), pp. 34–39. IEEE Press, Los Alamitos (1992)

7. Miner, P.S., Malekpour, M., Torres-Pomales, W.: Conceptual design of a Reliable Optical
BUS (ROBUS). In: 21st AIAA/IEEE Digital Avionics Systems Conference, pp.13D3-1–
13D3-11. IEEE Press, Irvine (2002)

8. Kopetz, H., Bauer, G.: The Time-Triggered Architecture. J. IEEE. 91(1), 112–126 (2003)
9. Road Vehicles—Controller Area Network (CAN)—Part 4: Time-Triggered Communica-

tion, ISO 11 898-4 (2000)
10. Ferreira, J., Pedreiras, P., Almeida, L., Fonseca, J.A.: The FTT-CAN protocol for flexibil-

ity in safety-critical systems. J. IEEE Micro. (Special Issue on Critical Embedded Automo-
tive Networks) 22(4), 46–55 (2002)

11. FlexRay Communications System - Protocol Specification V2.1 Revision A,
http://www.flexray.com

12. Sethna, F., Stipidis, E., Ali, F.H.: What Lessons Can Controller Area Networks Learn
From FlexRay. In: Vehicle Power and Propulsion Conference (VPPC 2006), pp. 1–4.
IEEE Press, Windsor (2006)

13. Pop, T., Pop, P., Eles, P., Peng, Z., Andrei, A.: Timing Analysis of the FlexRay Commu-
nication Protocol. In: 18th Euromicro Conference Real-Time Systems (ECRTS 2006), pp.
203–216. Kluwer Academic Publishers, Dresden (2006)

14. Hagiescu, A., Bordoloi, U.D., Chakraborty, S.: Performance Analysis of FlexRay-based
ECU Networks. In: 44th ACM/IEEE Design Automation Conference (DAC 2007), pp.
284–289. ACM, San Diego (2007)

15. Makowitz, R., Temple, C.: FlexRay- A Communication Network for Automotive Control
Systems. In: IEEE International Workshop on Factory Communication Systems (WFCS
2006), pp. 207–212. IEEE Press, Torino (2006)

16. Navet, N., Song, Y., Simonot-Lion, F., Wilwert, C.: Trends in Automotive Communica-
tion Systems. J. IEEE 93(6), 1204–1223 (2005)

17. Tindell, K., Clark, J.: Holistic Schedulability Analysis for Distributed Hard Real-Time
Systems. J. Microprocessing & Microprogramming 40, 117–134 (1994)

18. Cena, G., Valenzano, A.: Performance analysis of byteflight networks. In: IEEE Workshop
on Factory Communication Systems (WFCS 2004), pp. 157–166. IEEE Press, Vienna
(2004)

19. Izosimov, V., Pop, P., Eles, P., Peng, Z.: Design Optimization of Time- and Cost-
Constrained Fault-Tolerant Distributed Embedded Systems. In: Design, Automation and
Test in Europe Conference and Exhibition 2005 (DATE 2005), vol. 2, pp. 864–869. IEEE
Computer Society, Munich (2005)

20. FlexRay Communications System - Protocol Conformance Test Specification V2.1,
http://www.flexray.com

21. Zarandi, H.R., Miremadi, S.G., Ejlali, A.: Dependability Analysis Using a Fault Injection
Tool Based on Synthesizability of HDL Models. In: 18th IEEE International Symposium
on Defect and Fault Tolerance in VLSI Systems, pp. 485–492. IEEE Press, Boston (2003)

22. Armengaud, E., Rothensteiner, F., Steininger, A., Horauer, M.: A Method for Bit Level
Test and Diagnosis of Communication Services. In: IEEE Workshop on Design & Diag-
nostics of Electronic Circuits & Systems 2005 (DDECS 2005), p. 6. IEEE Press, Hungary
(2005)

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 167–180, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Secure Interaction Models for the HealthAgents System

Liang Xiao, Paul Lewis, and Srinandan Dasmahapatra

University of Southampton, UK
{lx,phl,sd}@ecs.soton.ac.uk

Abstract. Distributed decision support systems designed for healthcare use can
benefit from services and information available across a decentralised environ-
ment. The sophisticated nature of collaboration among involved partners who
contribute services or sensitive data in this paradigm, however, demands careful
attention from the beginning of designing such systems. Apart from the tradi-
tional need of secure data transmission across clinical centres, a more important
issue arises from the need of consensus for access to system-wide resources by
separately managed user groups from each centre. A primary concern is the de-
termination of interactive tasks that should be made available to authorised us-
ers, and further the clinical resources that can be populated into interactions in
compliance with user clinical roles and policies. To this end, explicit interaction
modelling is put forward along with the contextual constraints within interac-
tions that together enforce secure access, the interaction participation being
governed by system-wide policies and local resource access being governed by
node-wide policies. Clinical security requirements are comprehensively ana-
lysed, prior to the design and building of our security model. The application of
the approach results in a Multi-Agent System driven by secure interaction mod-
els. This is illustrated using a prototype of the HealthAgents system.

Keywords: Clinical Information System, Multi-Agent System, Security Model.

1 Introduction and Motivation

In a distributed collaborative healthcare environment, multiple clinical organisations
from geographically different sites may be involved together in the delivery of health-
care services, each having its own users, resources, and access policies. Clinical users,
residing in their own sites and doing their specific jobs, often need to access globally
available resources and services under locally set constraints.

Such an environment brings challenges to distributed healthcare system infrastruc-
tures, especially when security is a concern. Security concerns, either to a conven-
tional system or a distributed system, spread all over the system and differ from one
system to another. If they are not taken into account, as early as a system begins to be
built, the integrity and usability of the system may be critically compromised. Secu-
rity challenges for a distributed healthcare system are notable in several aspects.
Firstly, no global user repository will be available for distributed authorisation. Clini-
cal centres may join or leave independently. The management and administration of
resource access will have to be de-centralised in the network, where each site main-
tains their own users and resources to be accessed. Secondly, although access control

168 L. Xiao, P. Lewis, and S. Dasmahapatra

becomes complicated in a distributed environment, we shall bear in mind that unless
some degree of open access is promoted where hospitals and users are able to join in
freely, the system will not be able to improve clinical decision making by using the
knowledge they share. Thirdly, in such an open access condition, healthcare records
which contain sensitive private information shall by no means be disclosed, even to
collaborative centres and friendly clinicians, except for healthcare purposes. Lastly
and more complicatedly, we shall consider the access constraints not only on individ-
ual cases, but also on what each of them consists of. Can doctors have access to all
patient records in connected hospitals? Can a pathologist have access to complete
records or even alter irrelevant reports?

Generally, securing healthcare information systems should authorise users with
genuine needs to have access to the services and resource items, in order to perform
their job responsibilities. Clinical requirements must be carefully studied in order to
understand the constituents of job responsibilities and build the security model.

The rest of the paper is structured as follows. Section 2 analyses clinical security
requirements including the principles that need to be supported by the security archi-
tecture under development. Section 3 discusses existing security approaches and de-
scribes their weaknesses in handling the requirements identified. Section 4 gives an
overview of a layered security model and Section 5 illustrates this and the process of
building it in detail, using the HealthAgents system. Section 6 concludes the paper.

2 Security Requirements of Healthcare Information Systems

We shall, in the beginning, draw distinctions between the types of threats imposed to
healthcare systems and their likelihood. Though eavesdropping or hacking is a major
concern to computer network security, it is so expensive that dedicated and capable
intruders may consider using a more convenient way. Actually, 10% of GPs (general
practitioner) in the UK have experienced their computers being physically stolen [8].
More likely, improper use of the system may lead to privacy leaks, by careless (or
malicious) users, extra privileges given by the system incorrectly. A well-designed
system should not only protect the communication sites and end users, but also care-
fully authorise users with genuine needs to have access to selective sharing of infor-
mation without exposing additional information under protection. This security need
has currently not been well addressed in healthcare information systems [4]. In this
section, we outline the challenges and common security requirements of healthcare
systems in a distributed environment, where preserving privacy and maintaining
openness are crucial and information access decisions depend upon role and context.

2.1 The Distributed Environment of Healthcare Information Systems

Aggregating dispersed data into large databases is expensive and practically unfeasible,
since geographically different healthcare centres have to have control over their datasets
and at the same time maintain a globally consistent data schema. A more important
reason to oppose data consolidation is concerned with healthcare data confidentiality. In
the UK, the National Health Service (NHS), driven by the motives of easier central
administration and better information availability, attempted to build a unified electronic

 Secure Interaction Models for the HealthAgents System 169

patient record system and give access to extended NHS community. This has been op-
posed [7] [22] for the reason that such a system, collecting data from existing GP sys-
tems but out of their control, is in conflict with the ethical principle that no patient
should be identifiable other than to the GP without patient consent [5] and the result
from a survey that most patients are unwilling to share their information with NHS [6].
Another objection arises from the overwhelming workload such a centralised system
could possibly put upon a security officer responsible for managing the data sharing [4].

A distributed healthcare service infrastructure, however, implies the capability that
is required to cope with the administrative burden and the continuous maintenance
needs arising from fully functional and networked clinical centres, each of which has
its own users, data, access policies, and which assumes that cross-centre access is the
norm. A distributed environment and its associated dynamics bring other concerns,
such as patient privacy preserving, to the information-sharing healthcare network.

2.2 Preserving Privacy and Confidentiality in Shared Access

The privacy of patient information is an important issue and failure to recognise this will
lead to risk of patient safety, loss of public confidence in clinical organisations, and so
on [23]. A fundamental ethical principle stated by both the EU and the General Medical
Council in the UK is that, patients must consent to data sharing. The British Medical
Association [10] advises that clinical professionals, who have access to patient confi-
dential information in order to perform their duties, are responsible for the information
they hold under ethical or professional obligations of confidentiality and shall not use or
disclose such information for any purpose other than the clinical care of the patient to
whom it relates. This means patients shall be assured that they can trust the access of
their information, by a care team within their treating hospitals or experts involved from
collaborative centres, if any, is safe and accords with their agreement. The moving from
a traditional patient-doctor relationship towards a modern patient-healthcare service
relationship implies trust to clinical systems must be maintained rather than reliance on
doctor responsibilities. The absence of a mechanism or policy framework in the interest
of information governance and confidentiality protection, hence, may damage the
healthcare services aimed to be delivered, since private information of any individual
patient may be made available by systems to people not directly related with the care of
that patient. This will give opportunities to potential threats, possibly coming from in-
side workers, as well as outside hackers. Such threats include ungraceful private infor-
mation disclosure and abuse or even more risky, incorrect clinical decisions made for
vulnerable patients due to clinical data being wrongly altered, accidentally or deliber-
ately. It is worth noting that threats from outside intruding into the network are much
rarer than from inside. The security risks tend to increase dramatically, therefore, when
an interconnected clinical system network is in place which makes separately stored
patient records and clinical information easily accessible and lets a wider range of peo-
ple have access to them. Appropriate access control to patient records is the fundamen-
tal need for patient privacy and information security [23].

2.3 Maintaining an Open Access

Two aspects of openness must be maintained: 1) open for joining the system and not
preventing any friendly but previously unknown clinical centre (bringing in its

170 L. Xiao, P. Lewis, and S. Dasmahapatra

previously unrecognised users) from accessing information available across organisa-
tional boundaries; 2) open for information sharing to the network. Conducting
healthcare research with more open use of information (identifiable data, etc.) under
legitimate constraints and user acceptance, though not related with the clinical care
directly, advances medical knowledge and promotes higher quality of healthcare ser-
vice in the long run and is welcomed by the society. A clinical system can benefit
most from clinical data as well as patient-specific data if such information can be
machine-analysed and digested. The knowledge accumulated can be useful for later
decision makings, particularly for rare but similar cases encountered in the future,
confidential information contained in cases not being revealed.

2.4 The Different Access Needs to Data Subsets Due to Distinct Job Nature

The need of distinguishing only the relevant data for sharing among clinical profes-
sionals rather than the whole records arises from preserving privacy while maintain-
ing open access. Even if name, address and other privacy information is removed to
produce a seemingly anonymised record, a NHS clinician can easily identify a patient
by the NHS number and they must be able to do so to perform their jobs. Therefore, it
is sensible to grant access permission to particular record parts on the basis of users’
expertise. This expertise determines their actual needs of access, to the data parts they
routinely work with and by doing so, healthcare roles fulfilled. For example, pathol-
ogy medical records or reports may be sent to a pathologist involved in a patient’s
care; prescription sent to a pharmacist; and sensitive parts not sent out at all. A spe-
cialist may have more control over their own partitions, e.g. write their reports or
order certain tests, but limited permissions to other specialists’ partitions or even not
at all, e.g. to very sensitive medical test results.

2.5 The Access Policies and Principles Pertinent to Patients as Individuals

It is not rational to allow a professional to have access to all patient records, even if
limited to the data subset fitting his/her expertise. Only relevant clinicians who have
real life relationships with patients in clinical centres should access their records. This
is documented in British Medical Association’s security policy principles for clinical
information systems [7], and the feasibility of adopting it has been evidenced in [23].
Two major principles are as follows.

Principle of Access: “Each identifiable clinical record shall be marked with an access
control list naming the people or groups of people who may read it and append data to
it. The system shall prevent anyone not on the access control list from accessing the
record in any way.”

Principle of Control: “One of the clinicians on the access control list must be
marked as being responsible. Only she may alter the access control list, and she may
only add other health care professionals to it.”

A named responsible clinician, possibly a patient GP, as in the UK or a primary
care physician (PCP), as in the US, may set up a workgroup including the specialists
who together deliver healthcare to the patient. According to the Principle of Access, it
is the members of this group who will be in the patient access control list, as used by

 Secure Interaction Models for the HealthAgents System 171

 RBAC for files [16], have access to a subset of data they are responsible for, reflect-
ing their job nature. The one who sets up the workgroup will let the system know the
group members and their roles in the group, in accord with the Principle of Control.
This implies a data ownership. Such a scheme decentralises management burden and
increases scalability. The distributed environment and open access requirements sug-
gest that a named doctor may involve specialists from other sites (remote consultants,
temporary attending physicians, etc.) into healthcare procedures. For example, a
medical opinion requested on a surgical patient may require a medical registrar, from
other directorates, to exercise override access to that patient’s notes [23]. This is re-
lated with delegation [4]. Essentially, a responsible doctor grants access to local or
remote users from trusted sites and occasionally, someone acts on their behalf, imply-
ing ownership transfer. A triangle relationship is described in [15]: a patient is associ-
ated with a workgroup, of which a user is a member, so that a user is permitted access
via the workgroup to patient (“self-claimed” or “colleague-granted”/delegation).

3 Existing Security Solutions: Role-Based Access Control and
Role Mapping in a Distributed Environment

In Role-Based Access Control (RBAC) [16], permissions that describe operations
upon resources are associated with roles. Users are assigned to roles to gain permis-
sions that allow them to perform particular job functions. Privileges may be calculated
as follows [2]:
Privileges = User-Role * Role-Definition + Rules-Function (User-Attributes)

In addition to the static collection of rights accumulated by roles, a user can dy-
namically achieve extra rights if they expose certain attributes as defined by rules.
This model is efficient when many users require the same set of rights in an organisa-
tion but otherwise unmanageable or even useless when roles vary in different
conditions under which users act. In a hospital, roles can be defined for a number of
classified groups to aggregate permissions, e.g. consultant, radiologist, nurse, who
have static job functions. However, dynamic contexts exist in role playing, e.g. pa-
tients may be additionally assigned to or removed from a list for which a named doc-
tor is responsible and this influences this doctor’s role in caring these patients. RBAC
has difficulties to capture such security-relevant contexts as patient, location, and time
in healthcare environment [4]. Patient-doctor relationship is identified as a critical
clinical security constraint to record access, described in Section 2.

The Community Authorisation Service (CAS) [1] provides a solution to the man-
agement of user access control within Virtual Organisations (VOs) spanning over
multiple sites in the Grid environment. It breaks the tradition of requiring each re-
source provider to maintain the mapping of individual users (across VOs) to its local
database roles in order to authorise access to its resources. Using CAS, user member-
ships are instead based on VO roles and local resource providers only need to map
these to local database roles. This dramatically reduces the number of mapping entries
across resource providers and the duplicated maintenance burden put on them once a
new user joins or a current user privilege changes.

Such an approach requires no global user repository. However, a presumption of
using the approach, as it is in RBAC, is that a large number of users can be grouped
into several role groups requiring certain access levels in involved organisations.

172 L. Xiao, P. Lewis, and S. Dasmahapatra

For the same reason that RBAC is infeasible to address the clinical requirement
that information access or travelling may alter from patient to patient and user led as
stated in the Principle of Access, the CAS is encountered with similar difficulties.
Suppose clinicians A and B with the same speciality are from hospitals P and Q re-
spectively. They will be categorised into the same VO role and the same access rights
to data in P and Q. But in reality A shall have more privileges than B to certain data,
e.g. of patients in P under A’s care, and vice versa for B’s privileges in Q.

Managing a resource access model is complex where there is a large number and
various types of users, resource items, and access policies, user responsibilities being
dynamic and ownership being distributed. The common practice of simply defining
roles that aggregate all permissions required for the collection of resources to com-
plete tasks is not realistic due to the diversity of individual needs which literally en-
tails each individual a distinct role. Even the burden of defining and maintaining a
proper set of access control policies based on roles for automating authorisation could
be considerable. A security solution must be able to cope with the complexity.

4 Overview of a Layered Security Model

It has been pointed out that healthcare systems should be designed with multilateral
security rather than multilevel security [9]. Unlike some military systems prevent
information flow “down” from top secret to secret then to confidential, healthcare
systems usually prevent information flow “across” from one clinician to another or
from one hospital to another. This is evidenced by the requirements outlined in Sec-
tion 2.4 and Section 2.5 where different access needs to cases and case partitions are
distinguished due to distinct job responsibilities.

However, we argue a multilevel security model is more manageable, task availabil-
ity being in the top level control and resource availability to tasks in lower level con-
trol. A multilateral security model resides in the lower level and complements the
multilevel security model. The assignment of tasks to users is a business decision to
be made by stakeholders, possibly explicitly in rules. It is sensible to regard the acces-
sibility to tasks the organisational privileges with which organisation seniority is
related and access to business functions restricted. Since tasks already exist in organi-
sations and are routinely performed by specific user groups, they help to functionally
decompose the system and ease security management. If a user can perform a specific
type of task, then there must be certain resource items available to him/her to load
into the task, if not all. Without the context of accomplishing one or more tasks in
different privilege levels, information access makes no sense. The rational of using a
combined multilevel and multilateral model is further supported by the fact that a job
responsibility is determined by the level of authority and the division of work [14].
The former prevents information flow downwards and the latter prevents information
flow across, being concerned about workgroup membership and job speciality under
our further refinement. This forms a layered security architecture that addresses the
healthcare security requirements.

1) Privilege of performing various types/levels of tasks and executing associated
interaction models is determined by job title or grade/level. Users may upgrade
their job titles occasionally and this is managed locally. Semantics of job titles
and task collections must be globally defined and agreed among organisations.

 Secure Interaction Models for the HealthAgents System 173

2) Privilege of loading case instances for performing tasks (or enactment of interac-
tion models) is determined by real life workgroup memberships or job boundary.
This is managed by the locally named doctors, who shall be flagged as owners in
case records’ access control lists.

3) Privilege of accessing case record partitions (e.g. patient data, biopsy data, microar-
ray data, MRI and MRS data, diagnosis data, therapy data, surgery data, etc.) is de-
termined by job nature or specialist one takes on in hospitals (e.g. oncologist, pa-
thologist, radiologist, surgeon, etc.). This is managed by system administrators
when the account is setup and is maintained at a high level of stability.

Thus, a user’s overall privileges will be the sum of the user’s access privileges in
all tasks that user is involved in (being a policy), each of which is decided by the
particular cases he/she can operate as a workgroup member to deliver healthcare ser-
vice (being a fact upon interaction instantiation) at the time of performing tasks,
which in turn will be constrained by the accessible case partitions as determined by
user professional roles (being a fact).

User Privileges = ∑ (Interaction Model Set as determined by job level * Interaction Model’s Operational
Cases as determined by job boundary * Case Subset as determined by job nature)

Alternatively, the following meta-rule determines the prerequisite a user exercises
privileges: a user has a title above the one required for running an interaction model
can load a case, that is under the care of a workgroup which the user is a member of,
and perform operations on the case parts the user’s specialists allow.

user_privilege (user, im, case, part, operation)
job_title(user, title1) & executable(title2, im) & above(title1, title2) &
member(user, workgroup) & responsible(workgroup, patient) & own(patient, case) &
job_specialist(user, specialist) & rights(specialist, part, op)

5 Secure Interaction Models for Healthagents: A Comprehensive
Case Study

In this section, we describe our HealthAgents system, the elicitation of interaction
models, and their secure running in our layered security model for HealthAgents.

5.1 The HealthAgents Architecture

The HealthAgents [18] system is a distributed decision support system that facilitates
diagnosis and prognosis, employs a set of distributed nodes that either store patient
case data, build classifiers that are trained upon case data and capable of classifying
tumour types, or use classifiers for the diagnosis and prognosis of brain tumours. The
magnetic resonance spectroscopy (MRS) data used by the system is built up using
anonymous information from child and adult cases. Producer nodes receive requests
from clinicians and generate classifiers for particular tumours. Clinicians with cases
will employ classifiers (instead of the actual cases) to assist in the diagnosis of
patients for particular tumours. Knowledge extracted from cases is implicitly involved
for decision making and patient privacy not compromised, private case information
not being revealed in the process. The HealthAgents system consists of a variety of
agents each charged with a different task. A more detailed description of the
HealthAgents components and architecture can be found in [19].

174 L. Xiao, P. Lewis, and S. Dasmahapatra

Fig. 1. The HealthAgents system architecture and resource access flow control

5.2 Building an Interaction Model Hierarchy with a Goal-Decomposition Graph

Four major interaction models, as shown in Figure 2, are identified: create classifier,
execute existing classifier, update classifier reputation value, and update case profile.
They are elaborated as four sub-goals under the root goal of “tumour type diagnosis”
via a goal decomposition graph, useful for requirements analysis and interaction model
identification. A detailed goal decomposition procedure and underpinning process

Fig. 2. The goal-decomposition graph for HealthAgents

 Secure Interaction Models for the HealthAgents System 175

Table 1. A high level view of selected interaction models

Goal Sub-goals
(Interaction
Model)

Interaction
Model
privileges

Interaction Model
participants

Interaction Model
constraints

Tumour
type
diagnosis

Update case
profile, etc.

N/A All N/A

Update case
profile

Classify case Principal
clinicians or
above

GUI Agent, DB Agent,
Classifier Agent, and
Classifier Petitioner
Agent

The clinician can
update the specialised
data areas

Classify
case

N/A Junior
clinicians or
above

Classifier Agent, and
Classifier Petitioner
Agent

The clinician must be a
workgroup member
taking care of the case

elicitation can be found in [24]. Table 1 describes a specific branch of the graph
(“Update case profile”) for further discussion.

5.3 Secure Interaction Models and Lightweight Coordination Calculus (LCC)

Assume three job titles, senior clinician, principal clinician, and junior clinician, in
that order, forms the existing clinical hierarchy, from top to bottom. Roles in a role
hierarchy of RBAC have inheritance relationships. Likewise, a job title higher up in
the hierarchy inherits task execution privileges from a job title further down in the
hierarchy. Suppose the following rules in HealthAgents restrict task availability.

• Rule1: Senior clinicians can identify the need of new classifiers in the network
and so are able to create classifiers, using all public cases and local private cases.

• Rule2: Principal clinicians have primary healthcare responsibilities and so are
able to run classifiers, update case profiles and diagnosis results, as well as up-
date classifier reputation values.

• Rule3: Junior clinicians assist in healthcare and can run classifiers and be advised
of classification results.

Gaia [3] unifies responsibilities and permissions in a single role notion. It is also
recognised in [21] that the coordination among agents/roles and resources must enable
authorisation policy specification over interaction specification to achieve an expres-
sive and safe interaction model. Thus, role, interaction, and constraint should be cor-
related. The descriptive interaction behaviour which consists of message passing and
constraint solving have been defined in Lightweight Coordination Calculus (LCC)
[12] that can be transmitted, interpreted, and executed by agents in the network. The
LCC language has been developed in the OpenKnowledge project [13] and it uses
logic expression to regulate the message exchange protocols among participant peers
each of which plays a particular role. The LCC language combines role functions and
constraints in a single framework and this gives us the opportunity to express permis-
sion enforcement prior to responsibility fulfilment within role playing behaviour, in
the context of running interaction protocols. The following LCC clauses describe the
fundamental interaction pattern for resource access control.

a(resource_request, RRID) ::
 request(Resource, Operation, Context) ⇒ a(resource_manager, RMID)
a(resource_manager, RMID) ::

176 L. Xiao, P. Lewis, and S. Dasmahapatra

 request(Resource, Operation, Context) ⇐ a(resource_request, RRID) ← grantPermission(RRID, Re-
source, Operation, Context, Policies) then (

 response(Grant_yes) ⇒ a(resource_request, RRID) or
 response(Resource_result) ⇒ a(resource_request, RRID) ← getOperationResult(Resource, Operation,

Access_result))

Briefly, a(resource_request, RRID) :: DefRRID and a(resource_manager, RMID) ::
DefRMID denotes that agents RRID and RMID play the roles of resource_request and
resource_manager respectively as defined in the definitions follow. DefRRID has a
single and DefRMID has a composite message passing behaviour constructed using the
following forms: Defa then Defb (Defa satisfied before Defb), Defa or Defb (either Defa
or Defb satisfied), or Defa par Defb (both Defa and Defb satisfied). In the Def, Ml ⇒
Am denotes that a message Ml is sent to agent Am while Ml ⇐ Am denotes that a mes-
sage Ml is received from agent Am. In the above role definitions, a message of re-
source access request is sent from the agent that plays the request role to the agent
that plays the manager role. Upon receipt of this message, the resource manager agent
applies appropriate security policies and responds by sending back a message either
saying the request has been granted (or rejected) or by providing the actual resources
(or the results of their usage) being requested. In the Def, ←Consn denotes that a
constraint must be satisfied (as some running code) before the clause prior to it.

The notion a(id, role) defines the role a certain agent should play and its identity
can be bound with executable tasks, workgroup memberships, and professional spe-
cialists at runtime. The role playing behaviour defines the common responsibilities an
entitled user supposed to fulfil, being in a position with/above a given title as are in
Gaia, the organisational roles in well-defined positions associated with expected
behaviour. Then the memberships and professional specialists further constrain the
concrete resource usage in the role’s interaction model participation, being identity-
specific and role-independent. This layered architecture is discussed as follows, illus-
trated by a principal clinician updating case profile after classification.

Level 1: Interaction Model constraints

Fig. 3. Interaction Model: update case profile (including case classification)

 Secure Interaction Models for the HealthAgents System 177

The first layer filters interaction model availability. A principal clinician (possibly a
GP) can load cases for which they have caring responsibilities and later update its
profile (diagnosis result, etc.). A junior clinician can perform classification but cannot
do the update. Figure 3 shows the interaction model and the following LCC clauses
show its specification. The clinician plays a role of classification (R1) and updating
case profile (R5). The role changes when an accurate diagnosis result is known.

/* R1: classify a case */
a(clinician_classify, CID) ::
 requestCaseRecordByID(I) ⇒ a(database, DBID) then
 caseRecord (R) ⇐ a(database, DBID) then
 requestClassification(R, C) ⇒ a(classifier_petitioner, CPID) then
 classificationResults(S) ⇐ a(classifier_petitioner, CPID) then
 a(clinician_followingdiagnosis, CID)
/* R5: update case record and classifier reputation following diagnosis */
a(clinician_followingdiagnosis, CID) ::
 (updateCaseRecordByID(I) ⇒ a(database_update, DBID) then
 caseRecordUpdated(Y) ⇐ a (database_update, DBID))
 par
 (updateClassifier(I) ⇒ a(classifier_petitioner, CPID) then
 classifierUpdated(Y) ⇐ a (classifier_petitioner, CPID))

Level 2: Case level constraints
An interaction model is uniquely defined and its running context varies, e.g. involved
clinicians and cases. A resource manager must check the request (resource and opera-
tion) against the requester identity at runtime, in compliance with the access policies.
Specifically, the clinician must be a member of the workgroup delivering care to the
owner of the case before the case is allowed to be updated, being a meta-rule of
healthcare access control. Additional local policy rule satisfaction must also be con-
sidered for extra constraints, e.g. a particular clinician can/cannot access particular
resource items. A generic security policy schema for healthcare is described in
[25] that can complement the meta-rule with any number of specific policies.
The following shows the LCC constraints used by the database agent, being a re-
source manager, for permission checking before the actual role functions are carried
out. The database agent issues a case record (R2) and updates the same record (R6),
different levels of permissions being needed.

/* R2: send a case record for classification */
a(database_download, DBID) ::
 requestCaseRecordByID(I) ⇐ a(clinician_classify, CID) ← grantPermission(CID, I, Read, Nor-

mal_classify_from_local_site, Local_database_read_policy_set) then
 caseRecord(R) ⇒ a(clinician_classify, CID) ← getCaseRecordByID(I, R) then
 a(database_update, DBID)
/* R6: update a case record after classification */
a(database_update, DBID) ::
 updateCaseRecordByID(I) ⇐ a(clinician_followingdiagnosis, CID) ← grantPermission(CID, I, Update,

Normal_update_from_local_site, Local_database_update_policy_set) then
 caseRecordUpdated (Y) ⇒ a(clinician_followingdiagnosis, CID)

It is at the point of checking the LCC constraint of “grantPermission” that user work-
group and case will be related (clinician identity of CID and case identity of I), and other
locally set read or update policies applied, prior to the required operation. A clinician not
in the right workgroup may be able to download a case but cannot update it. The running
and execution of LCC specification is supported by the OpenKnowledge kernel.

178 L. Xiao, P. Lewis, and S. Dasmahapatra

Level 3: Case partition constraints
Similarly with level 2, a user identity is bound with professional specialists at runtime
and this will constrain further permission to case partitions, e.g. only the named clini-
cians may update or write major diagnosis results; certain specialists may write re-
ports in their areas; others on the case care list may only read those areas. Thus, a
three dimension resource request of (user, resource, operation) will be constrained in
two dimensions: user-resource must match workgroup membership and user-
operation match job specialist.

6 Conclusions and Discussion

In this paper, we have analysed the general security requirements for clinical informa-
tion systems and developed a layered security model, illustrated by its application to
the HealthAgents system but which is also applicable to other healthcare systems.

Organisational structure and context association are key assumptions to our privi-
lege model. Organising authorisation at user level cannot realise cooperation and
inter-organisational communication in extended health networks, as stated in [17].
The authors distinguish structural roles, describing prerequisites or competencies for
actions and functional roles, being bound to the realisation of actions. Such a conjunc-
tional perspective of role is in accordance with the privilege control in business proc-
esses and then their contextual constraint. The semantic similarity of clinical user
group privileges and the business processes they can perform is described in [11]. In
addition to that, access decisions need to be made on the exercise of privileges in
business processes depending upon contextual information. Structuring business
process (or task) context related constraints, e.g. attending relation between physician
and patient as well as clinician speciality, as contextual parameters to task execution
that affect access control decisions is expressed in [20].

Clinical task execution privileges, therefore, should be distinguished, and repre-
sented by the privileges of running interaction models in our approach. The layered
security model authorises at a higher level, the users’ task accessibility based on a
static organisational structure and at a lower level, within task enactment, users’ case
and case partition accessibility based on dynamic functional needs in order to perform
tasks. This inevitably avoids the occasion that a junior clinician creates a classifier of
poor quality or updates a classifier reputation value improperly.

Next, higher level business function-based constraints are coupled with lower level
data-based constraints. A limited set of data, determined by user workgroup member-
ships, will be allowed to be populated into the limited set of task functions. Finally,
data-based constrains are additionally coupled with operation-based constraints. The
available operations, determined by job nature and specialists, will be allowed, e.g.
write (reports) or update (diagnosis results), upon particular data sections. These con-
straints, as well as individually defined local policies, must be satisfied prior to inter-
action model running. In sum, we constrain the availability of tasks to users, case
availability to tasks, and further operations availability to cases, as the overall layered
security architecture. The architecture is scalable since access rights are precisely
controlled by the combination of these dimensions. For example, a senior pathologist
doctor who is responsible for a patient can update the pathology part of this patient

 Secure Interaction Models for the HealthAgents System 179

profile but someone who is a senior pathologist but not involved in caring for the
patient cannot, or someone who is a junior doctor, or someone who is not specialised
in pathology at all.

No global user account repository is required in our system. The necessary interac-
tion models are globally agreed. The case to workgroup assignment is locally defined
and user to workgroup possibly across organisations, for enabling interaction model
running. When one user invokes an interaction model and this involves resources
from other sites, the permission checking is determined by this user being involved in
patient care or not, e.g. a remote clinician may perform a classification on behalf of a
named doctor who is on holiday and delegates the responsibility to this clinician, in
emergency situations, even the local hospital has not set up a local account for the
clinician.

Interaction models can be publicly accessible since the descriptive interaction logic
among peers reveals no secret information itself and so no issue exists such as alterna-
tive interaction model provision to certain users under certain conditions. Rather,
alternative resource peers may be selected because the access to others is restrictive
or, a subset or related/alternative resource items from query returned to the requester
peer with a limited set of privileges. Such an autonomic query relaxation paradigm, as
part of our future work, will avoid additional user interaction and frustrating experi-
ence. Another direction of future work is via monitoring unsuccessful resource access,
an interaction model adjustment is advised if an access without satisfying constraints
is encountered but considered necessary. It may be useful to let such requests be re-
corded and routed to responsible doctors or other delegated authorisers who may or
may not approve the issuing of additional privileges, either permanently or temporar-
ily. With better understanding of the necessity of such exceptional requests possibly
after real life communication, critical and timely care aimed to patients will not be
compromised.

References

1. Pereira, A.L., Muppavarapu, V., Chung, S.M.: Role-based access control for grid database
services using the community authorization service. In: Transactions on Dependable and
Secure Computing, vol. 3(2), pp. 156–166. IEEE, Los Alamitos (2006)

2. M-Tech Information Technology, Inc.: Beyond Roles: A Practical Approach to Enterprise
User Provisioning (2006)

3. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia methodology for agent-oriented
analysis and design. Journal of Autonomous Agents and Multi-Agent Systems 3(3), 285–
312 (2000)

4. Zhang, L., Ahn, G., Chu, B.: A role-based delegation framework for healthcare informa-
tion systems. In: 7th ACM Symposium on Access Control Models and Technologies, pp.
125–134. ACM, New York (2002)

5. Joint Computer Group of the GMSC and RCGP: GMSC and RCGP guidelines for the ex-
traction and use of data from general practitioner computer systems by organisations ex-
ternal to the practice. Appendix III In: Committee on Standards of Data Extraction from
General Practice Guidelines (1988)

6. Hawker, A.: Confidentiality of personal information: a patient survey. Journal of Informat-
ics in Primary Care, 16–19 (1995)

180 L. Xiao, P. Lewis, and S. Dasmahapatra

7. Anderson, R.J.: Clinical system security: interim guidelines. British Medical Journal 312,
109–111 (1996)

8. Pitchford, R.A., Kay, S.: GP Practice computer security survey. Journal of Informatics in
Primary Care, 6–12 (1995)

9. Anderson, R.J.: Patient Confidentiality - At Risk from NHS Wide Networking. Proceed-
ings of Healthcare 96 (1996)

10. BMA - British Medical Association, http://www.bma.org.uk/
11. Chandramouli, R.: Business Process Driven Framework for defining an Access Control

Service based on Roles and Rules. In: 23rd National Information Systems Security Confer-
ence (2000)

12. Robertson, D.: A lightweight coordination calculus for agent systems. In: Leite, J.A.,
Omicini, A., Torroni, P., Yolum, p. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, pp. 183–
197. Springer, Heidelberg (2005)

13. Robertson, D., et al.: Open Knowledge: Semantic Webs Through Peer-to-Peer Interaction.
OpenKnowledge Manifesto (2006), http://www.openk.org/

14. Crook, R., Ince, D., Nuseibeh, B.: Modelling Access Policies Using Roles in Require-
ments Engineering. Information and Software Technology 45(14), 979–991 (2003)

15. Calam, D.: Information Governance - Security, Confidentiality and Patient Identifiable In-
formation,
http://etdevents.connectingforhealth.nhs.uk/eventmanager/upl
oads/ig.ppt

16. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-Based Access Control
Models. Computer 29(2), 38–47 (1996)

17. Blobel, B.: Authorisation and access control for electronic health record systems. Interna-
tional Journal of Medical Informatics 73(3), 251–257 (2004)

18. HealthAgents, http://www.healthagents.net/
19. Xiao, L., Lewis, P., Gibb, A.: Developing a Security Protocol for a Distributed Decision

Support System in a Healthcare Environment. In: 30th International Conference on Soft-
ware Engineering, pp. 673–682. ACM, New York (2008)

20. Hu, J., Weaver, A.C.: Dynamic, Context-Aware Access Control for Distributed Healthcare
Applications. In: 1st Workshop on Pervasive Security, Privacy and Trust (2004)

21. Omicini, A., Ricci, A., Viroli, M.: RBAC for organisation and security in an agent coordi-
nation infrastructure. Electronic Notes in Theoretical Computer Science 128(5), 65–85
(2005)

22. Anderson, R.: Undermining data privacy in health information. BMJ 322, 442–443 (2001)
23. Denley, I., Smith, S.W.: Privacy in clinical information systems in secondary care.

BMJ 318, 1328–1331 (1999)
24. Xiao, L., Greer, D.: Adaptive Agent Model: Software Adaptivity using an Agent-oriented

Model Driven Architecture. Information & Software Technology. Elsevier. In: Press
(2008), http://dx.doi.org/10.1016/j.infsof.2008.02.002

25. Xiao, L., Peet, A., Lewis, P., Dashmapatra, S., Sáez, C., Croitoru, M., Vicente, J., Gon-
zalez-Velez, H., Lluchi Ariet, M.: An Adaptive Security Model for Multi-agent Systems
and Application to a Clinical Trials Environment. In: 31st IEEE Annual International
Computer Software and Applications Conference, pp. 261–266. IEEE, Los Alamitos
(2007)

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 181–192, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Security Challenges in Adaptive e-Health Processes

Michael Predeschly, Peter Dadam, and Hilmar Acker

Institute DBIS, University Ulm
firstname.lastname@uni-ulm.de

Abstract. E-health scenarios demand system-based support of process-oriented
information systems. As most of the processes in this domain have to be
flexibly adapted to meet exceptional or unforeseen situations, flexible process-
oriented information systems (POIS) are needed which support ad-hoc devia-
tions at the process instance level. However, e-health scenarios are also very
sensitive with regard to privacy issues. Therefore, an adequate access rights
management is essential as well. The paper addresses challenges which occur
when flexible POIS and adequate rights management have to be put together.

1 Introduction

The personnel in clinical domains have to deal with a large number of different proc-
esses. Due to high workloads, exceptional situations, frequently changing diagnostics,
treatments, and accounting procedures the risk of errors is pretty high. For that reason
it is widely acknowledged that adequate process-oriented information systems (POIS)
could help to improve this situation [1]. However, clinical processes are not static by
nature. Therefore, POIS have to be flexible, i.e. to allow ad-hoc deviations at the
process-instance level [2]. While good progress has been made in understanding how
to build such powerful process management systems [3], little attention has been paid
so far how an adequate access rights management system (RMS) for such systems
should look like. In “classical” information systems, a few administrators are author-
ized to assign access rights and privileges to users. However, in flexible POIS even
end-users may be authorized to perform modifications to processes at the instance
level, i.e. to insert, delete, or move process steps. In this context the question arises,
for example, what kind of rights should be granted to an end-user to be able to insert a
new step and to assign access and execution rights to this newly inserted step without
being too restrictive at the one side or to completely undermine the RMS at the other
side. Some of the issues related to access rights management in conjunction with
flexible POIS shall be discussed in the following.

2 Challenges and Problems

Contemporary RMS have been designed to enable or to restrict access of users to
functions and data in “classical” information systems. In such information systems
users may come and go but the information systems themselves, i.e. the functions

182 M. Predeschly, P. Dadam, and H. Acker

they are providing, are rather static. If these information systems are implemented in
the traditional, monolithic fashion, access rights management is typically handled in a
centralized way. Thus such systems have an RMS component which manages which
users have which kind of permission to execute which application functions and/or
which kind of access to data has been granted to them.

These RMS maintain some kind of rights matrix which associates subjects (users)
and objects (functions, data) with access rights. If many subjects (s) and objects (o)
have to be handled, this rights matrix becomes very large if it is directly stored as full-
fledged s × o matrix. Therefore, typically only one dimension of this rights matrix is
physically stored as a so called access control list (ACL). This ACL represents for
every object the list of users which have access to it along with the corresponding
permissions. The other dimension, namely the association between users and the ob-
jects they are allowed to access is either not supported at all or must be computed by
inspecting all ACLs.

In environments with high security requirements, one wants to ensure that the se-
curity rules are always obeyed. Thus one wants to enforce mandatory access control.
In such environments, typically the assignment of access rights to users follows the
need-to-know principle. In addition, constraints like separation of duties or the en-
forcement of the four-eyes-principle also have to be supported. To implement such
principles, one usually assigns security levels or permissions to users and respective
qualifications to the objects. Only if a user’s permissions matches the respective re-
quirements of the object, the access is granted. In order to enforce mandatory access
control, the RMS is typically implemented as an “active” component sometimes
called a reference monitor [4] which controls the access to functions and objects.

All these aspects are well known and the alternative approaches to implement them
are pretty well understood in the area of “classical” monolithically implemented in-
formation systems. This picture changes significantly, however, when flexible POIS
have to be realized. Firstly, such systems are typically no longer implemented in a
monolithic fashion. Instead, the information system consists of separate, individually
invokable application functions (“services”) which interact with each other according
to a process schema which is executed by a process engine. In principle, each process
schema constitutes an own schema-specific RMS which regulates which users (based
on their roles, organizational units they belong to, etc.) can execute which process
steps. If the processes are static, i.e. all process instances execute according to the
process schema without any deviations, then there is not much difference to the “clas-
sical” monolithic information systems, at first glance. However, in many cases these
application functions come from different (and often even foreign) sources and have
not been designed to cooperate with a centralized RMS or with a reference monitor.

The situation becomes even worse, if we have to deal with flexible POIS, i.e. sys-
tems which may deviate from the pre-planned execution sequence by inserting new
process steps, deleting process steps, or moving process steps to another place in the
process schema. Furthermore it is possible to individually change the pre-planned
actor assignments at the instance level. In this case every process instance now consti-
tutes an independent instance-specific RMS (see Fig. 1. Instance rights can diverge
from the schema rights.

 Security Challenges in Adaptive e-Health Processes 183

A

B

D

C

E

A

B

D

C

E

A

B

D

E

A

B

D

C

E

FSchema

Instances

Fig. 1. Instance rights can diverge from the schema rights

Another problem is the granularity of rights used in contemporary POIS. Usually,
actor assignment expressions are used to describe for a given step who is authorized
to execute this step. The expression orgunit = “radiology” AND role =
“doctor” would mean that the actor (user) has to be a doctor from the radiology
department. As mentioned above, application functions are associated with these
steps. Thus when executing this process step the actor is allowed to use the complete
functionality this application provides. This would cause no problem if these applica-
tion functions would be limited to the task to be performed. We will address this issue
in the following section.

The rest of the paper is organized as follows: Section 3 discusses challenges of
RMS in the context of component-oriented composition of POIS. Section 4 deals with
constraints. In section 5 storage-aspects of rights information are treated and section 6
deals with the administration of RMS. Then we want to give a short introduction in
the solutions we want to integrate in today’s POIS. This solution is introduced in
section 7. Finally, section 8 gives a short conclusion of the paper.

3 Components

As mentioned above, actor assignment expressions are used in POIS to decide which
users are authorized to execute a certain process step.

Assuming the user’s task is to view a certain document and, therefore, a general
purpose text processor like Word for Windows, for example, is associated as applica-
tion function. Once invoked, such a program would in many cases not only allow to
read a document, but also allow to modify it, to store it, to print it, or to even invoke
some macros which may do very strange things. This is no specific problem of such a
text processor but is rather typical for most application functions or components. They

184 M. Predeschly, P. Dadam, and H. Acker

are usually implemented in a generic way to support a broad variety of application
domains. As a consequence the problem arises how to constrain such application
functions accordingly.

To deal with this kind of problem component systems like .NET [5] offer the pos-
sibility to implement some component specific access rights management. This is
done by special annotations in the source code which are used by the runtime envi-
ronment of the component to check whether the user has the required privileges.

Using this approach the implementer of the component decides at the source code
level which privileges are required for a user to invoke certain functions of the com-
ponent. For POIS which may integrate a large variety of different application func-
tions coming from different components, this approach is problematic for at least two
reasons: Firstly, every component implementer introduces names for privileges inde-
pendent from others (name inflation problem), and secondly, changes to the RMS will
require changes at the source code level of the affected components in many cases.

Similar problems arise when using security frameworks like JAAS [20]. JAAS is
based on PAM (Pluggable Authentication Module [21]) and mainly supports config-
urable user authentication. Thus like in .NET the method used for authenticating users
must not be hard coded in the source code. Instead, the concrete authentication
mechanism (e.g. by password, fingerprint or even retina scan) is implemented by
individual plugins. Which concrete plugin should be used for identifying the user can
be chosen in configuration files by the administrator. On the other hand JAAS also
extends the Java 2 security policies so that not only the code origin but also the cur-
rent user can be taken into account when the security manager needs to decide
whether access from the sandbox to system resources is granted or not [19]. Although
not intended to, this can be used to secure internal application functions. But therefore
the developer has to encapsulate the different functions in separate classes implement-
ing special interfaces. This leads to name inflation problems and to a quite bad system
design as well.

Therefore, such approaches are not suitable for POIS. Instead a (logically) central-
ized approach is needed. Today, this works only in environments where all compo-
nents come from the same vendor. A general vendor-independent approach is still
missing.

Web services are a variant of this component oriented software development and,
thus, have similar problems, in principle. So far, the main focus of web services (WS)
is on establishing trustful communication and on Quality-of-Service (QoS) aspects,
however. Standards such as WS-Security [6] and its extension WS-Trust [7] are ad-
dressing such issues. A centralized approach to method-based access rights manage-
ment is only discussed in [8]. [8] suggests a layer model. Rights at the bottom layer
are associated with the functions provided by the WS. A set of functions can be bun-
dled into rights packages, so-called "keys", and passed on to the next higher level.
There these keys can be combined to new keys and propagated to next higher level
and so on. However, changes performed at lower levels have significant effects on the
roles defined in higher levels. Changes to the rights at higher levels usually lead to
major changes of keys at lower levels.

 Security Challenges in Adaptive e-Health Processes 185

A problem, especially in the clinical domain, may be that the permission for a
given user to invoke a certain application function may be limited to a certain type of
process and perhaps even to a certain place within this process. E.g., the function to
administer an examination may only be allowed within treatment and diagnostic proc-
esses but not stand-alone. To read and modify a document (using a certain application
function) may be allowed during some creation phase but may be forbidden after the
document has been published. In addition, the permission to execute this function
may be even dependent on the data or document to be accessed. In total, this means
that a rather fine-granular access rights management is required.

4 Storage Aspects

As described above, ACLs are typically used to store (parts of) the rights matrix in a
compact manner. Unfortunately, this approach is not very satisfying in the POIS con-
text, because efficient access along both dimensions is necessary. Whenever respon-
sibilities of users are changed, users leave the organization or certain structural
changes in the organization happen, one has to determine which objects (and thus
their ACLs) are affected. Without adequate support of the user → object dimension
this will result in an exhaustive search through all ACLs. And there may be many of
them! Because fine-granular access rights management is needed (see above), it’s not
sufficient to store just one ACL per object (application function). One has also to
discriminate in which process schema and at what position this application function is
used. This, in turn, increases the number of ACLs significantly because a component
may easily have hundreds of occurrences of this kind.

The situation worsens when flexibility comes into the game, i.e. new process steps
are inserted at process instance level. Modifying process instance by inserting a new
step, for example, means to dynamically create a new, individual process schema.
This, in turn, leads to a new ACL because access rights have to associated with this
step. As a consequence, one has to maintain a very dynamic and potentially large
rights matrix. Solutions have to be found for both, efficient access along both dimen-
sions and for adequate storage representations. Efficient access becomes a very im-
portant factor here, because the number of users which can modify rights increases in
such flexible environments significantly (see introduction) and thus the number of
accesses to the RMS will very likely significantly increase as well.

A real world example of this problem can be found in the EU project Webocrat [9],
where an e-government solution is being developed. In small installations, such as
single municipalities, efficient access to the rights matrix is not a big problem. How-
ever, in large application domains like a whole county with a lot of users who interact
with the RMS, the realization of efficient access is a big problem. One approach un-
der investigation here is whether some kind of intelligent caching can help to improve
the situation [10].

5 Constraints

In addition to simple rights, like execute permissions, an RMS has usually also to
obey several kinds of dependencies or constraints. Separation of duties, where the

186 M. Predeschly, P. Dadam, and H. Acker

execution of a certain step by a certain user restricts the set of actors which are al-
lowed to execute subsequent steps, is an example for such a constraint. Another ex-
ample is binding, where a set of process steps has to be executed by the same actor.
This means that once the first step of this set is executed by a certain actor, “binding”
for the other steps to this set is fixed.

Such constraints may also span multiple processes. This poses new challenges in
case of flexible processes. If process steps are inserted, deleted, or moved to another
position at the process instance level, it must be immediately (and efficiently) checked
that no such constraint is violated. The constraints specified at build time must be also
valid at runtime. New constraints have to be integrated and need to be checked if they
stay in conflict to the yet specified ones. Another problem occurs in the context of
process modifications: when inserting new process steps the user is only allowed to
assign a subset of the services available in the system. For example an employee adds
a new step in a process. If he is not responsible for financial transactions assigning
financial services should not be allowed in order to prevent e.g. financial transactions
from the companies account to the account of the employee.

This kind of problems is partly addressed by W-RBAC (Workflow - Role Based
Access Control) [11]. In W0-RBAC constraints like separation of duties as well as
binding across instance boundaries can be defined. The extension W1-RBAC ad-
dresses the selective replacement and adaptation of conditions to correct modeling
errors at runtime or to handle unforeseen cases. How to support these constraints at
the process instance level, especially in the context of flexible POIS is not addressed
and will be a major challenge.

Time-based restrictions of rights are considered in GTRBAC (Generalized Tempo-
ral Role Based Access control) [12][13]. The system provides a comprehensive set of
time-based conditions which cover arbitrary periodic time periods as well as single
events. Conditions can be related to fixed points in time or to events. The approach is
general and not related to processes. The application of these concepts to POIS and to
perform the necessary checking at the process instance level is a non-trivial task,
especially when flexibility comes into the game.

6 Administration

As can be seen from the discussion above, the definition of appropriate types and levels
of rights and constraints on the one side and their association with users and application
functions (and their different occurrences) on the other side is a non trivial task. Typi-
cally, some kind of structuring or leveling is used to make this task manageable. On the
users’ side usually organizational units (departments, projects,…) and roles are used to
form groups of users having the same rights to perform certain tasks. On the objects’
side usually hierarchical structures are used to form appropriate groups.

Systems which address the users’ aspects are ARBAC97 [14] and ARBAC02 [15]
(Administrative Role Based Access Control) and the extension RBACAM (RBAC
Administration Model) [16]. ARBAC97 distinguishes between three elements of
descriptions: users, roles, and permissions. Users can be associated with roles, roles
can be associated with other roles (in order to form hierarchies), and roles can be
associated with permissions. ARBAC02 extends this approach by introducing

 Security Challenges in Adaptive e-Health Processes 187

organizational structures and hierarchies of permissions. RBACAM (RBAC admini-
stration model) complements ARBACxx by adding verification facilities to check the
modeled rights. These approaches point in the right direction. However, it remains to
be elaborated how these concepts can be applied to flexible POIS and how the support
of constraints can be integrated in such an RMS.

Using hierarchical structuring of objects in order to simplify access rights manage-
ment is a well known principle and used, for example, in the directory structure of file
systems. One single entry at the parent directory level is sufficient to set the access
rights for all files in that directory. SAM Jupiter [17] simply applies this principle to
data objects, with finer granularity. The grouping is done here according to responsi-
bilities. It is rather unclear, however, to what extend this approach can be utilized to
simplify access rights management in POIS.

Another important aspect are organizational changes and their impact on access
rights management. When departments are closed, outsourced, or combined with
other departments, actor assignment expressions at the process schema as well as at
the process instance level have to be adjusted accordingly. A detailed discussion of
this problem can be found in [18].

All approaches introduced here require a deep understanding of the RMS and
knowledge from the user which privileges and permissions exists and how they have
to be associated with users, roles, assignment expressions, and application functions
such that they show the desired effects. With the increased number of persons in
flexible POIS who interact with the RMS, user interface aspects become a very im-
portant issue. Only with a proper model, with few and easy to understand basic con-
cepts, one has a chance to enable end-users to deal with access rights managements in
a safe way.

7 Short Introduction to ARMS

All challenges presented so far have no adequate solution in today’s RMS. We propose
an integration of all these topics in one approach we call it ARMS (adaptive rights man-
agement system). Here, we want to introduce the concepts we have considered so far.

In RMS for process oriented information systems like WRBAC [11] or in IBMs MQ
Workflow the arrangement of security policies is managed as in Figure 1. The process is
created and (as already mentioned above) an actor assignment is the basis for the access
rights management. The first problem about this solution is that the actor assi-
gnment doesn’t have to be equivalent with the rights specified at a process step.

Fig. 1. Security policies in process oriented information systems

188 M. Predeschly, P. Dadam, and H. Acker

The second one is that an actor assignment is done at build time of the process and
cannot be changed at runtime. This means the rights information in such systems is
very static. One exception is the concept of W1-RBAC in WRBAC that makes it
possible to modify and change access rules at runtime.

Therefore ARMS shall be different from other systems and divide the access rights
management in two phases. Phase one is the build time phase. In this phase a lot of
validation of the modeled rights are carried out to support the administrator or process
modeler. This helps to deal with defined constraints or detecting actor assignments
that do not fit the rights basis.

For example if there is a constraint that a service only can be used by actors out of
the group of permanent employees and if a process modeler makes actor assignments
that comprises a person that do not fit this constraint ARMS gives the instruction to
change the assignment towards a correct one. ARMS therefore resolves the assign-
ment and tells the user which actors mustn’t be included or must be included because
of other constraints. This could be the case if an application should always be super-
vised by a special employee, for example.

Fig. 2. Different positions for rights validation at build time

There are many other constraints on groups (users that have to be integrated in
groups with a special kind of user) or data (data is accessible to users or not). In
ARMS all these could be efficient checked at build time. We need these validations at
build time to simplify the work of the process designer (see Figure 3) and avoid un-
necessary runtime errors.

Phase two is the runtime phase. When thinking of flexible POIS supporting devia-
tions at the process instance level, these changes are often done by normal employees.
Therefore these checks are absolutely required to support the untrained user in the
interaction with the RMS. This leads to a great usability and security problem which
we want to avoid with these validation so the user cannot make “wrong” decisions.

So at process runtime extensive checks have to be done and although these checks
need much time to be validated they must not slow down process execution. This will
be solved through the calculation of special checksums on the constraints that can be
checked faster.

The question therefore is which user has the right to perform which modification
on the process? Solutions for this problem are a clear separation of concerns, which
guarantees that no access rule is violated. In ARMS we want to realize this with a
combination of roles of authorized persons and the abilities stored in an organization
model. Users are assigned to roles which have different rights like in other systems.

 Security Challenges in Adaptive e-Health Processes 189

Additional to these roles the user has an ability field assigned to him where special
abilities can be stored to extend a role.

For realizing all the different security features mentioned so far just preventing the
execution of a service for a certain user is not enough. For some of them the application
even must have the opportunity to interact with the ARMS – therefore we have divided
the rights that can be specified for a component in several layers (see Figure. 3) accord-
ing to the functionalities of the service and the kind of security which should be
expressed.

Activity Groups

Activity
Templates

Parameters

Execution rights Functional rights Data rights

Validation

Complex
components

Data elements

External data

Fig. 3. Layer architecture for component integration into ARMS

The problem of the components is that they may come from different sources and
need to be integrated in a complex environment with many boundary conditions. The
main problem therefore is that the developer of the application should as far as possi-
ble not be engaged with the integration of his component into ARMS. So our multi
layer environment makes it possible to keep the developer away from many of the
access rights management activities.

At the execution rights layer simple components (i.e. ones which only provide the
necessary functionality for the respective process step) can be integrated in ARMS by
using Activity Templates (AT). An AT represents exactly one service function in a
POIS. In such an AT the default rights information is stored and ARMS uses this
information when performing its checks. Therefore the component developer doesn’t
have to integrate any special, security related functionality. Activity Groups are only a
hierarchisation of ATs to simplify administration.

However components often not only provide the necessary functionality. In fact
they often try to support different scenarios (like Word described above). Such com-
ponents we call complex components, because the integration might not be done
without any further work of the component developer.

One can distinguish two kinds of complex components. The first one supports
parameterization so the needed functionality can be chosen before the call is actually
made. In ARMS we support such components also by using ATs. Therefore the

190 M. Predeschly, P. Dadam, and H. Acker

number of ATs for one component is not limited. Functional parameters can be hard
coded in an AT which leads to at least one AT per component specification. With this
no security related application logic by the developer is needed.

The second kind of complex components offers a lot of functionality when the
component is running. But they not support to limit the available functions by param-
eterization of the component call. In order to integrate such components into ARMS it
is necessary that the developer does some extra work. At the moment we are working
on an interface to make this integration also simple for the developer.

The integration of data in the system is mainly done by parameterization of appli-
cations (see Fig. 4). The scope of a single parameter is narrowed or exclusive selected
to a special value to customize the data that can be accessed.

Fig. 4. Parameterization of methods to integrate data in the RMS

Through this customization the data from foreign sources can be encapsulated and
integrated in the RMS. Alternatively the data can be integrated into the POIS through
data elements. Therefore the data is copied to this data element and needs to be syn-
chronized with the external data structure.

Additionally to the integration of the applications is the number of potentially used
applications in a POIS. In a new system there probably are only a few applications
installed and used. During the lifecycle of the system the number of components in-
creases not as the number of stored processes schemas and instances from these
schemata’s increases. As mentioned above this data cannot be stored in ACLs or
Capability lists so we have to split the classical matrix into instance specific matrices
which makes it possible to handle the stored information. These instance matrices
only store the process instance relevant data. Only components and users which are
assigned to the instance are mentioned in this table.

As a result we can say ARMS shall become a prototype for adaptive POIS-RMS
which needs to address all here presented challenges. We therefore have to extend our
current approach and to finish the implementation of our current concepts.

8 Conclusion

The discussion above has shown that access rights management is a complex task
with many facets and many open questions in the context of flexible POIS have still
be to solved. We then give a short introduction in the construction of a solution we
want to implement. The main purpose of this paper was to raise awareness of these
issues and show that solutions for these problems must be found in the near future.

We are working on these solutions in the context of ARMS and will focus our
work on the component integration and the efficient storage with included validation

 Security Challenges in Adaptive e-Health Processes 191

of the rights information. When these challenges are mastered we can go into further
details of the administration aspects.

References

[1] Dadam, P., Reichert, M.: Towards a New Dimension in Clinical Information Processing.
In: Proc. MIE2000/GMDS 2000, Hannover, September 2000, pp. 295–301. IOS Press,
Amsterdam (2000)

[2] Dadam, P., Reichert, M., Kuhn, K.: Clinical Workflows – The Killer Application for
Process-oriented Information Systems? In: Abramowicz, W., Orlowska, M. (eds.) Proc.
4th Int’l Conf. on Business Information Systems BIS 2000, Poznan, Poland, April 2000,
pp. 36–59. Springer, London (2000)

[3] Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive Process Management with
ADEPT2. In: Proc. Int’l Conf. on Data Engineering, ICDE 2005, Tokyo, Demo Session,
April 2005, pp. 1113–1114 (2005)

[4] Anderson, J.P.: Computer security technology study ESD-TR-73-51, vol. 2.
[5] Microsoft Library: Security in the .NET Framework (2007),

http://msdn2.microsoft.com/en-us/library/fkytk30f.aspx
[6] Oasis WSS: SOAP Message Security, http://docs.oasis-open.org/wss/

2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
[7] Oasis WS-Trust 1.3, http://docs.oasis-open.org/ws-sx/ws-trust/200512/

ws-trust-1.3-os.html
[8] Payne, C., Thomson, D., Bogle, J., O’Brien, R.: Napoleon: A Recipe for Workflow,

Computer Security Application Conference, p. 134 (1999)
[9] Dridi, F., Pernul, B.M., Pernul, G.: Administration of an RBAC system. In: Proceedings

of the 37th Hawaii International Conference on System Sciences – 2004 (2004)
[10] Kern, A., Kuhlmann, M., Kuropka, R., Ruthert, A.: A meta model for authorisations in

application security systems and their integration into RBAC administration. In: ACM
symposium on Access control models and technologies, New York, pp. 87–96 (2004)

[11] Wainer, J., Barthelmess, P., Kumar, A.: W-RBAC – A workflow security model incorpo-
rating controlled overriding of constraints. International Journal of Cooperative Informa-
tion Systems, 455–485 (2003)

[12] Joshi J. B. D., Bertino E., Latif U., Ghafoor A.: Generalized Temporal Role Based Access
Contol Model (GTRBAC) Part 1 - Specification and Modeling, Cerias Tech Report 2001-47

[13] Joshi J. B. D., Bertino E., Latif U., Ghafoor A.: Generalized Temporal Role Based Access
Contol Model (GTRBAC) Part 2 – Expressiveness and Design Issues, Cerias Tech Report
2003-01

[14] Sandhu, R., Bhamidipati, V., Munawer, Q.: The ARBAC97 Model for Role-Based Ad-
ministration of Roles. ACM Transactions on Information and System Security 2(1), 105–
135 (1999)

[15] Oh, S., Sandhu, R.: A model for role administration using organization structure. In: Pro-
ceedings of the seventh ACM symposium on Access control models and technologies,
Monterey California, pp. 155–162 (2002)

[16] Jiong, Q., Chen-hua, M., Jian-wei, Y., Jin-xiang, D.: Research and Implementation of
Role-Based RBAC Administration Model. In: The Fifth International Conference on
Computer and Information Technology (CIT 2005) (2005)

[17] Kern, A., Schaad, A., Moffett, J.: An Administration Concept for the Enterprise Role-
Based Access Control Model, ACM, SACMAT 2003, Como, Italy, June 2–3, 2003, pp.
3–11 (2003)

192 M. Predeschly, P. Dadam, and H. Acker

[18] Weber, B., Reichert, M., Wild, W., Rinderle, S.: Balancing Flexibility and Security in
Adaptive Process Management Systems. In: Proc. 13th Int´l Conf. on Cooperative Infor-
mation Systems, Agia Napa, November 2005, pp. 59–76 (2005)

[19] Middendorf, S., Singer, R., Heid, J.: Java – Programmierhandbuch und Referenz füie
Java-2-Plattform, Standard Edition, 3rd edn (2002) (last visited on January 28, 2008),
http://www.dpunkt.de/java/Programmieren_mit_Java/Sicherheit/
14.html

[20] Lai, C., Gong, L., Koved, L., Nadalin, A., Schemers, R.: User Authentication and Au-
thorization in the Java Platform. In: Proc. 15th Annual Computer Security Applications
Conference, Phoenix, AZ, December 1999, pp. 285–290 (1999)

[21] Morgan, A.G., Kukuk, T.: The Linux-PAM System Administrators’ Guide (2008) (last
visited on May 8, 2008), http://www.kernel.org/pub/linux/libs/pam/
Linux-PAM-html/Linux-PAM_SAG.html

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 193–206, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Efficient e-Commerce Fair Exchange Protocol That
Encourages Customer and Merchant to Be Honest

Abdullah Alaraj and Malcolm Munro

Department of computer science
Durham University, the UK

{a.m.alaraj,malcolm.munro}@durham.ac.uk

Abstract. A new e-Commerce fair exchange protocol is presented in this paper.
The protocol is for exchanging payment with digital product (such as computer
software) between customer (C) and merchant (M). It makes use of Trusted
Third Party (TTP) but its use is kept to minimum when disputes arise. In this
respect it is an optimistic fair exchange protocol. A new idea, in which if the
parties are willing to exchange then they are encouraged to be honest, is origi-
nated in this protocol. The protocol has the following features: (1) It comprises
four messages to be exchanged between C and M in the exchange phase; (2) It
guarantees strong fairness for both C and M so that by the end of executing the
protocol both C and M will have each other’s items or no one has got anything;
(3) It allows both parties (C and M) to check the correctness of the item of the
other party before they send their item; (4) It resolves disputes automatically
online by the help of the Trusted Third Party (TTP); and (5) The proposed proto-
col is efficient in that it has a low number of modular exponentiations (which is
the most expensive operations) when compared to other protocols in the literature.

1 Introduction

When exchanging digital products and payments over the internet, Merchants (M) and
Customers (C) want to be sure that the exchange will be fair thus ensuring that C will
receive the right product and M will get the correct payment. Fair exchange also
means that if either or both parties are dishonest then both parties will receive each
other’s items or neither will receive anything.

There are three main processes involved in fair exchange of digital products and
payments:

1. C sends the payment to M;
2. M send the digital product to C; and
3. Dispute resolution if something goes wrong.

Processes 1 and 2 can be carried out in either order, so C sends the payment to M
and then receives the digital product or M sends the digital product to C and then
receives the payment.

This paper will firstly discuss the literature on related work, and then present the details
of the ECMH (Encouraging Customer and Merchant Honesty) protocol, and then evalu-
ates the protocol by analysing different scenarios and comparing it against existing
protocols.

194 A. Alaraj and M. Munro

2 Review of Literature

There is a number of fair exchange protocols described in the literature [5, 7, 10, 9, 3,
4, 1, 2, and 12].

Fair exchange protocols can be divided into two types: those that do not involve a
trusted Third party (TTP); and those that do. This paper is concerned with the later
type where the TTP takes all or some of the following roles: (1) ensures fairness in
the exchange, (2) acts as certificate authority that is trusted by all parties, and (3)
resolves disputes and/or validates items.

Protocols that involve a TTP can be of two types. The first type (such as [6]) uses a
TTP for delivering the exchanged items. This involves each party sending their item
to a TTP and the TTP delivering them to the parties. Involving a TTP will guarantee
the fair exchange of items, but it has some drawbacks. The TTP could be the source
of a bottleneck [10], it must always be available [8], and if the TTP crashes, the pro-
tocol will not deliver the items properly.

The second type is the protocols (such as [1, 2, 12, 5, 7, 10, 9, and 3]) where there is
minimal use of the TTP, usually when something goes wrong. In these protocols the two
parties directly exchange their items and the TTP only gets involved to resolve disputes.
This type of protocol is called "Optimistic fair exchange protocols" [3].

The Ray et al [9] optimistic fair exchange protocol allows each party to verify
whether the item they are going to receive from the other party is indeed the item they
want, and this is done before receiving the item. A merchant (M) uploads the digital
product to a TTP who encrypts it; the customer (C) downloads the encrypted digital
product from the TTP to compare it with the digital product that will be received from
M. The actual interaction between C and M in this protocol consists of four messages:
C sends to M the first message which contains the purchase order and payment token
that are encrypted; M sends a message to C which includes the encrypted digital
product; C sends a message to M which includes the decryption key for the payment
token; and finally M sends the decryption key of the product. If C has a dispute, then
C contacts the TTP to resolve it. C needs to download the product twice (from TTP
and then from M), so this will be a communication overhead.

Asokan et al [3] propose a generic optimistic fair exchange protocol that is suitable
for exchanging signatures, confidential data or payments. If the items to be exchanged
are payment and a digital product, the protocol can be explained as follows: a mer-
chant (M) and a customer (C) promise to exchange their items using 2 messages; C
sends the payment to M; M sends the digital product to C. If anything goes wrong
then the TTP will cancel the payment. If the TTP is not able to do so then the TTP can
provide an affidavit proof to be used in court to resolve the disputes. This protocol
seems to be not the best solution for exchanging digital products fairly as TTP will
not be able to resolve the disputes online.

The Zhang et al [12] fair exchange protocol for exchanging two valuable docu-
ments (the two documents can be a payment and digital product) comprises of four
messages. The two parties involved in the protocol exchange their encrypted docu-
ments in the first two messages and then exchange the keys to decrypt them. The
protocol is based on the idea of having each party verify the correctness of the key
used to encrypt the document without seeing the key itself. The TTP can be contacted
to recover the key if one party misbehaved.

 An Efficient e-Commerce Fair Exchange Protocol 195

The Alaraj and Munro [1, 15] protocol for exchanging digital products and pay-
ments consists of three messages to be exchanged between the customer (C) and the
merchant (M). The messages are: M sends the encrypted digital product and its cer-
tificate to C; C verifies it and if satisfied sends to M the payment that is encrypted
using a key that M already has; finally, the decryption key is sent to C by M when M
is satisfied with the payment. If there is any dispute, the TTP will be contacted. This
protocol enforces the customer to be honest because they cannot gain anything by
being dishonest. Alaraj and Munro [2] extended the idea in this protocol to enforce
the merchant to be honest. In this protocol C starts the exchange by sending an en-
crypted payment and its certificate to M, who verifies it and if satisfied, sends to C the
digital product that is encrypted using a key that C already has. Finally, the decryption
key is sent to M by C when C is satisfied. If there is any dispute, the TTP will be
contacted to resolve the dispute.

In this paper, we applied the techniques used in [1, 15, 2] to encourage both C and
M to be honest. This paper presents an optimistic fair exchange protocol for exchang-
ing payment and digital product between customer and merchant. The proposed pro-
tocol allows both parties (customer and merchant) to check the correctness of the item
of the other party before they send their items to them. Therefore, both parties are
encouraged to be honest. The proposed protocol overcomes the drawbacks of the
protocols in the literature.

3 Encouraging Customer and Merchant Honesty (ECMH)
Protocol

3.1 Notations

This section defines the notation used in this paper, some of which are similar to the
ones appear in [7].

• C: Customer
• M: Merchant
• TTP: Trusted Third Party which is a party neither M nor C that is trusted by

all parties. TTP will not collude with any other party
• D: Digital product
• CA: Certificate Authority
• CB: the customer’s Bank
• desc.: description of digital product
• h(X): a strong-collision-resistant one-way hash function, such as SHA-1 [14]
• pkx = (ex, nx): RSA Public Key [13] of the party x, where nx is a public

RSA modulus and ex is a public exponent
• skx = (dx, nx): RSA Private Key [13] of the party x, where nx is a public

RSA modulus and dx is a private exponent
• kx: a symmetric key generated by x
• P-Cert: Payment Certificate that is issued by CB. P-Cert contents are:

o amount: the amount of payment
o hP: hash value of payment

196 A. Alaraj and M. Munro

o heP: hash value of encrypted payment with kc
o heKc: hash value of encrypted kc
o Sig.CB: CB’s signature on P-Cert

• D-Cert: Digital-product Certificate that is issued by CA. D-Cert contents are:
o Price: price of D
o d: Description of D
o hD: hash value of D
o heD: hash value of encrypted D with km
o heKm: hash value of encrypted km
o Sig.CA: CA’s signature on D-Cert

• C.mt: the certificate for the shared public key between M and TTP; C.mt is
issued by TTP. A standard X.509 certificate is used to implement C.mt [11]

• C.ct: the certificate for the shared public key between C and TTP; C.ct is is-
sued by TTP. A standard X.509 certificate is used to implement C.ct [11]

• enc.pkx(Y): RSA encryption of Y using the public key pkx (ex, nx). That is,

enc.pkx(Y) = Y
ex

mod nx = Z

• enc.skx(Z): RSA decryption of Z using the private key skx (dx, nx). That is,

enc.skx(Z) = Z
dx

mod nx = Y

• enc.kx(Y) : encryption of Y using a symmetric key kx (kx can also be used
for decrypting enc.kx(Y))

• Sig.A (X): RSA signature of the party A on X i.e. encrypting the hash value
of X using the private key skA (dA, nA) as follows:

Sig. A (X) =))((xh
dA

mod nA

• A → B: X: A sends message X to B
• X + Y: concatenation of X and Y
• ECMH protocol: Encouraging Customer and Merchant Honesty protocol

which is the protocol presented in this paper

3.2 Protocol Description

This protocol is for exchanging a digital product D with a payment. It is assumed that
the payment in the protocol is in the form of a payment order that is issued and signed
by a customer’s bank and specifies the amount of payment to be paid, the payee and
the payer. Double spending of the same payment is assumed to be detected and there-
fore will not occur. It is assumed that the communication channels between all parties
(TTP, M and C) are resilient i.e. all sent messages will be received by their intended
recipients [9]. C and M will agree on the TTP to be used in both the pre-exchange
phase (by C) and the dispute resolution (by M) before they start the protocol.

The trustworthiness of C is governed by two things which are the payment certifi-
cate (P-Cert) issued by CB and the public key certificate (C.ct) issued by TTP. There-
fore, the payment that will be sent by C is certified by CB; and the public key to be
used by C to encrypt the key used to encrypt this payment is certified by TTP. The
trustworthiness of M is also governed by two things which are the digital product
certificate (D-Cert) issued by CA and the public key certificate (C.mt) issued by TTP.
Therefore, the digital product that will be sent by M is certified by CA; and the public

 An Efficient e-Commerce Fair Exchange Protocol 197

key to be used by M to encrypt the key used to encrypt this digital product is certified
by TTP. Therefore, this protocol encourages both C and M to be honest by sending
correct items as each party will be able to detect if the received item is incorrect.

The scenario of this protocol is like C and M exchanging their encrypted items
(payment and digital product) and their certificates. These encrypted items and their
certificates will test the trustworthy of each party. If the parties found that the other
party is trustworthy then they will complete the exchange otherwise they abort it.

3.2.1 Pre-exchange Phase
In the pre-exchange phase (Fig 1), C needs to get the certificate C.ct of the shared
public key from TTP to be used to encrypt the key used to encrypt the payment (PE-
b-M1 of Fig1). C also needs to get the payment and its certificate P-Cert from CB
(PE-b-M2 of Fig1). The P-Cert is unique for each transaction (completed exchange)
because the payment can only be used once. Also in the pre-exchange phase M needs
to get the certificate C.mt of the shared public key from TTP to be used to encrypt the
key used to encrypt D (PE-a-M1 of Fig1). M also needs to get the digital product (D)
and its certificate D-Cert from CA (PE-a-M2 of Fig1), (the CA can be thought of as
the producer of the digital product).

In this protocol, there are two public keys to be shared. The first one is shared be-
tween TTP and C. The other one is shared between TTP and M. The way in which
these keys are shared is as follows.

• Each party (C, M and TTP) has its own public and private keys. The TTP’s
public key is denoted as pkt = (et, nt) and its corresponding private key is
denoted as skt = (dt, nt). While C’s public key is denoted as pkc = (ec, nc)
and its corresponding private key is denoted as skc = (dc, nc); and M’s pub-
lic key is denoted as pkm = (em, nm) and its corresponding private key is
denoted as skm = (dm, nm).

• The shared public key between C and TTP is denoted as pkct = (ect, nct) and
its corresponding private key is denoted as skct = (dct, nct). The nct is a
product of two distinct large primes chosen by TTP.

Fig. 1. Pre-exchange phase

198 A. Alaraj and M. Munro

• The shared public key between M and TTP is denoted as pkmt = (emt, nmt)
and its corresponding private key is denoted as skmt = (dmt, nmt). The nmt
is a product of two distinct large primes chosen by TTP

3.2.2 The Exchange Phase
It is assumed that the exchange phase will take place after C finds the wanted digital
product (D) with M (either in M’s website or through the search engines). It is also
assumed that this phase will take place after C and M agree on the digital product and
negotiated the price. Hence this phase is about the actual exchange of payment and
digital product D.

Fig. 2. The exchange phase

There are four messages to be exchanged between M and C in the exchange phase
(Fig 2). These four messages are as follows.

[E-M1] C → M: desc + enc.kc(payment) + P-Cert + C.ct+ enc.pkct(kc) +
Sig.c(payment)

C sends to M message E-M1 which contains the following:

• desc: specifies what C wants from M i.e. description of D that C wants (the
description can be the digital product ID)

• enc.kc(payment): the payment that is encrypted with the key kc. kc is gen-
erated by C

• P-Cert: the payment certificate that is issued by CB
• C.ct: the shared public key certificate that is issued by TTP
• enc.pkct(kc): the key kc (that is used to encrypt the payment) is encrypted

using the shared public key pkct that is certified in C.ct
• Sig.c(payment): C’s signature on the payment. This signature can serve as

non-repudiation of origin which allows M to be sure that the payment is sent
by C. As explained in the notations section, C’s signature on payment is the
encryption of the hash value of payment using C’s private key skc

 An Efficient e-Commerce Fair Exchange Protocol 199

[E-M2] M → C: enc.km(D) + D-Cert + C.mt + enc.pkmt(km) + Sig.m(D)
On receiving message E-M1 from C, M checks the correctness of enc.kc(payment),
enc.pkct(kc), P-Cert and C.ct. The correctness of P-Cert can be checked by verifying
CB’s signature on P-Cert. Also the correctness of C.ct can be checked by verifying
TTP’s signature on C.ct.

To check that the encrypted payment is correct, M needs to check three things (1)
the amount field in P-Cert against the price field in D-Cert that M has. This is to make
sure that the payment meets the asked price; (2) the payment itself; and (3) the
encrypted payment with kc i.e. enc.kc(payment).

To check the correctness of payment, M needs to get the hash value of payment
(HP) by decrypting Sig.c(payment) using C’s public key pkc (the public keys of all
parties are publicly available) and then compare it with hash value of payment (hP)
that is included in P-Cert. That is, to check the following:

HP ?= hP

If they are the same then M can be sure that the actual payment is correct.
To check the correctness of the encrypted payment enc.kc(payment), M computes

the hash value of enc.kc(payment) (HeP) and then compare it with the hash value of
encrypted payment with kc i.e. heP which is included in P-Cert (note that it is as-
sumed that M will use the same function used by CB to compute the hash value). That
is, to check the following:

HeP ?= heP

If they are the same then M can be sure that C encrypted the payment using kc and
not another key.

M also needs to check the correctness of kc which is used to encrypt payment. To
do so, M computes the hash value of enc.pkct(kc) (HeKc) and then compare it with
heKc that is included in P-Cert, so M will check the flowing:

HeKc ?= heKc

If they are the same then M can be sure that the encrypted key is kc and not another
key. The point here is to make sure that C is honest by sending the key used to en-
crypt the payment.

Therefore, if all comparisons are correct then, at this point, M will have the follow-
ing fact. The encrypted payment is correct (i.e. it is the one described in P-Cert) and it
is indeed encrypted with kc. In addition, the encrypted key in enc.pkct(kc) is indeed kc
and not another key. The shared public key pkct used to encrypt kc is certified by
TTP. Therefore, once M got the private key (skct) of the shared public key then M
will be able to get the payment (by first decrypting enc.pkct(kc) to get kc and then
decrypting enc.kc(payment) using kc).

Now, it is M’s choice to complete the exchange or abort the protocol. If M wants to
exchange D for the payment then M sends (in E-M2) the following:

• enc.km(D): the digital product D that is encrypted with the key km that is
generated by M

• D-Cert: the digital product certificate that is issued by CA
• C.mt: the shared public key certificate that is issued by TTP

200 A. Alaraj and M. Munro

• enc.pkmt(km): the key km, that is used to encrypt D, encrypted using the
shared public key pkmt that is certified in C.mt

• Sig.m(D): M’s signature on D. This signature can serve as non-repudiation
of origin which allows C to be sure that D is sent by M. As explained in the
notations section, M’s signature on D is the encryption of the hash value of
D using M’s private key skm

Note that if M decides to abort the transaction after receiving message E-M1 and
before sending message E-M2 to C then neither M nor C lose anything.

[E-M3] C → M: enc.pkm(skct)
On receiving message E-M2 from M, C checks the correctness of enc.km(D),
enc.pkmt(km), D-Cert and C.mt. The correctness of D-Cert can be checked by
verifying CA’s signature on D-Cert. Also the correctness of C.mt can be checked by
verifying TTP’s signature on C.mt.

To check the correctness of D, C needs to check two things which are the digital
product D itself and the encrypted D with km i.e. enc.km(D). Firstly, to check the
correctness of D, C needs to get the hash value of D (HD) by decrypting Sig.m(D)
contained in message E-M2 using M’s public key pkm (the public keys of all parties
are publicly available) and then compare it with hash value of D (hD) contained in D-
Cert. That is, to check the following:

HD ?= hD

If they are the same then C can be sure that the actual D is correct. Secondly, to
check the correctness of the encrypted D enc.km(D), C computes the hash value of
enc.pkmt(D) (HeD) and then compare it with the hash value of encrypted D with km
i.e. heD which is contained in D-Cert (note that it is assumed that C will use the same
function used by CA to compute the hash value) i.e. to check the following:

HeD ?= heD

If they are the same then C can be sure that M encrypted D using km and not an-
other key.

C also needs to check the correctness of km which is used to encrypt D. To do so,
C computes the hash value of enc.pkmt(km) (HeKm) and then compares it with heKm
that is included in D-Cert, so C will check the flowing:

HeKm ?= heKm

If they are compared then C can be sure that the encrypted key is km and not an-
other key. The point here is to make sure that M is honest by sending the key used to
encrypt D.

Therefore, if all comparisons are correct then, at this point, C will have the follow-
ing fact. The encrypted D is correct (i.e. it is the one described in D-Cert) and it is
indeed encrypted with km. In addition, the encrypted key in enc.pkmt(km) is indeed
km and not another key. The shared public key pkmt used to encrypt km is certified by
TTP. Therefore, once C got the private key (skmt) of the shared public key then C will
be able to get D (by first decrypting enc.pkmt(km) to get km and then decrypting
enc.km(D) using km).

 An Efficient e-Commerce Fair Exchange Protocol 201

Now, it is C’s choice to complete the exchange or abort the protocol. If C wants to
exchange the payment for D then C sends to M the decryption key skct encrypted
using M’s public key pkm to allow M be able to decrypt the encrypted payment.

Note that C must be sure that the encrypted D matches their requirements as
explained earlier, otherwise C will be at risk if they send message E-M3 to M because
when C sends to M the decryption key then this means that they are satisfied with E-
M2 and hence M will be able to decrypt the payment.

Note that if C decides to abort the transaction after receiving message E-M2 and
before sending message E-M3 to M then neither C nor M lose anything. But once C
sends message E-M3 to M then the transaction must be completed and the protocol
will guarantee that the exchange of payment and D will be fair if the sent items are as
they described i.e. the payment matches the price that appears in message E-M2 and
also the digital product matches desc that appears in message E-M1.

[E-M4] M → C: enc.pkc(skmt)
On receiving message E-M3, M decrypts enc.pkm(skct) using M’s private key skm to
get the private key skct. Once M got skct then they decrypt enc.pkct(kc) to get kc that
can be used to decrypt the encrypted payment received in E-M1.

If C encrypted the payment using different key (i.e. M was not able to decrypt the
encrypted payment using kc) then M ignores the transaction and aborts the protocol. If
however M managed to get the payment correctly then M sends to C in E-M4 the
decryption key skmt that is encrypted using C’s public key.

On receiving message E-M4, C decrypts enc.pkc(skmt) using C’s private key skc to
get the private key skmt. Once C got skmt then they decrypt enc.pkmt(km) to get km
that can be used to decrypt the encrypted D received in E-M2.

If M encrypted D using different key (i.e. C was not able to decrypt the encrypted
D using km) then C contacts TTP for resolution (as will be explained in the next sec-
tion). If however C managed to get D correctly then the protocol finishes and the fair
exchange of payment and digital product is ensured.

3.2.3 After Exchange (Dispute Resolution)
All disputes requests, if any, will come from C because M will not need to raise dis-
putes as they get the decryption key of the encrypted payment and decrypt it before
they send the decryption key of the digital product to C. Therefore, if C has a dispute,
the following messages are executed (see Fig 3):

[DR-M1] C → TTP: D-Cert + C.mt + C.ct + enc.pkt(skct) + Sig.m(D)
In case C has a dispute, they need to send to TTP the following: D-Cert, C.mt, C.ct ,
enc.pkt(skct) and M’s signature on D that has been received in message E-M2 of the
exchange phase.

[DR-M2] TTP → M: enc.pkm(skct)
On receiving message DR-M1 above, TTP will check the correctness of D-Cert, C.mt,
C.ct by checking their signatures. If they are correct then TTP will decrypt the signa-
ture of M on D. That is, TTP decrypts Sig.m(D) to get the hash value of D included in
the signature and then compares it with the hash value of D (hD) which is included in
D-Cert. If TTP managed to decrypt Sig.m(D) correctly and the two hashes

202 A. Alaraj and M. Munro

Fig. 3. Dispute resolution

are the same then TTP is sure that M was satisfied with the payment that C sent to
them in message E-M1 of the exchange phase. This is because no other party can sign
D as it needs M’s private key which is only held by M. If M was not satisfied then
they would not send Sig.m(D) to C in message E-M2. In other words, M will send
message E-M2 (which includes Sig.m(D)) only if they are sure that the payment sent
by C is correct. If TTP found the signature of M is correct then TTP sends to M the
decryption key skct (encrypted with M’s public key) to be used to get kc that decrypts
the encrypted payment. The reason for sending the decryption key skct to M (as M is
not the one who raises the dispute) is because C may have not sent the decryption key
to M in message E-M3 or has sent incorrect decryption key.

Otherwise, if TTP found that the signature of M is incorrect then TTP sends an
abort message to C and nothing will be sent to M.

[DR-M3] TTP → C: enc.pkc(skmt)
 OR
 TTP → C: aborts;

This is the same process for message DR-M2 above, if TTP found that Sig.m(D) is
correct then TTP sends to C the decryption key skmt (encrypted with C’s public key)
to be used to get km that decrypts the encrypted D. Otherwise if Sig.m(D) is incorrect
then TTP sends an abort message to C.

It is clear that if either C has sent incorrect decryption key skct to M or C has not
sent the decryption key at all in message E-M3 then C will not get an advantage over
M because the TTP will check DRM1 that C send to the TTP in order to check the
signature of M. If the signature is correct then the TTP will send the decryption keys
to both parties (C and M) to ensure fairness. Therefore, the fairness is ensured for
both C and M. However, if the signature of M is incorrect then the TTP will reject C’s
request for the dispute.

As can be seen in the dispute resolution phase, the TTP does not need to have both
C and M to be involved in order for the dispute to be resolved; rather only the dispu-
tant (C in this protocol) and the TTP will be involved. That is, the TTP does not need

 An Efficient e-Commerce Fair Exchange Protocol 203

to contact M to verify whether or not they have received the correct decryption key;
rather TTP asks C to provide all evidences and finally will makes the resolution. M
will only be contacted by the TTP if the dispute has a resolution. Therefore, this will
reduce the number of messages needed to resolve dispute and as a result will reduce
the load on the communication channels.

4 The Protocol Analysis

In ECMH protocol, the only party to raise a dispute is C. The following scenarios are
presented and studied (Note that after C and M exchange their encrypted items in
messages E-M1 and E-M2, they exchange the decryption keys):

• C received a correct decryption key, and M either received incorrect decryption
key or has not received the decryption key at all. This case is not applicable in
the ECMH protocol because C has to send a correct decryption key to M to be
able to receive the correct decryption key from M

• C has either received incorrect decryption key or not received the decryption key
at all, and M received the correct decryption key. In this case C will make a dis-
pute to TTP as explained in section 3.2.3

• Both C and M have not received any decryption keys from each other. So, no
dispute will be made as both of them have not revealed their items (the decryp-
tion keys). This represents the case where C received E-M2 and did not send E-
M3 to M or the case where C sends E-M1 to M but M does not send E-M2 to C

• Both C and M have received incorrect items (decryption keys) from each other.
That is, C received incorrect decryption key and M received incorrect decryption
key. This case is not applicable in the ECMH protocol because C has to send a
correct decryption key to be able to receive the correct decryption key from M.
So, if M found that the decryption key is incorrect then M will not send to C nei-
ther correct the decryption key nor incorrect decryption key

• C received incorrect decryption key and M has not received the decryption key
at all. This case is not applicable in the ECMH protocol because C has to send a
correct decryption key to M to be able to receive the correct decryption key from
M. So, if M has not received the decryption key then M will not send the decryp-
tion key at all

• C has not received the decryption key at all and M received incorrect decryption
key. This case is normal to occur because if C sent incorrect decryption key then
M will not send their decryption key to C. Therefore, if this case occurs then for
C to raise a dispute to the TTP, C needs to send to the TTP a correct DR-M1 (see
message DR-M1 in section 3.2.3). If C sends the correct DR-M1 to the TTP then
the TTP will make a resolution to both C and M. However, if the TTP found that
DR-M1 is incorrect then C’s dispute will be rejected

It is clear how the design of the ECMH protocol reduces the possibilities for having
disputes. Additionally, in the ECMH protocol only C will raise disputes as M will not
send their item unless the item of C is correct. As a result, the possibilities for dis-
putes are reduced by preventing them.

204 A. Alaraj and M. Munro

In addition to the previous cases, the following cases (scenarios) are studied:

• C disputes to the TTP that they have received incorrect digital product: this
scenario is not possible because D-Cert guarantees that the digital product is
correct; and if C found that the digital product is incorrect or not the same as
they wanted then they should have not sent to M the decryption key in E-M3.
So, it is C’s fault to send to M the decryption key if they have a doubt about
the digital product. But once C sends to M the decryption key then this means
that they are satisfied with the digital product. Therefore, this scenario will not
happen because C knows the rules of the protocol which allow C to check the
digital product before they send the decryption key to M; and as a result C will
not put themselves at risk

• It is clear that M will not raise a dispute because M will receive from C the de-
cryption key skct and get the payment before they send the decryption key
skmt to C. However, the following scenarios are studied:
o M claims that they have received incorrect payment from C: this will not

occur because if M received incorrect payment then they will not send the
encrypted digital product in message E-M2 and hence no one will get ad-
vantage over the other party. However, once M sends message E-M2 to C
then this means that they are satisfied with the encrypted payment

o M claims that they have not received the decryption key skct: this is not
applicable in this protocol because if the decryption key is not received
then no party is hurt and the fairness is not compromised. The reason for
not receiving the decryption key skct may be because C is not satisfied
with the encrypted digital product

o M claims that they have received incorrect decryption key skct from C:
this is not applicable in this protocol because if the decryption key is in-
correct then no party is hurt and the fairness is not compromised as if the
skct is incorrect then M will not their decryption key (skmt) to C.

5 Comparisons

The ECMH protocol presented in this paper has been compared to some of the proto-
cols described in the literature that have the same characteristics in that they are used
for exchanging digital products and payments and are based on RSA [13]. Thus
ECMH protocol is compared to Ray et al [9] (denoted as Ray protocol) and Zhang et
al [12] (denoted as Zha protocol).

The comparisons are made using the following criteria. (1) number of messages in
both the exchange and dispute resolution phases, (2) whether or not the TTP needs to
hold a copy of an item to be exchanged, (3) whether or not all parties (M and C) will
be involved to allow the TTP to resolve any disputes, and (4) number of modular
exponentiations in both the exchange and dispute resolution phases. The modular
exponentiations are considered to be the most expensive operation [7].

The Ray et al [9] paper did not give details of the dispute resolution phase so the
number of messages and the number of modular exponentiations had to be estimated
manually. In addition, the number of modular exponentiations for Zha’s protocol has
also been estimated manually.

 An Efficient e-Commerce Fair Exchange Protocol 205

As can be seen in Table 1, all protocols have the same number of messages be-
tween C and M in the exchange phase. Ray’s protocol lets the TTP hold M’s item
before the exchange between C and M takes place. This requires more storage and
security assurance to be added to the TTP’s jobs. Additionally, this may compromise
the confidentiality of the items to be exchanged.

The Ray protocol requires both parties (C and M) to be contacted by the TTP when
one party raises a dispute; whereas in the ECMH protocol and the Zha protocol only
the disputant and the TTP will be involved. Involving both parties in dispute resolu-
tion would require more messages to be sent and hence more load on the communica-
tion channels.

The ECMH protocol has the lowest number of modular exponentiations needed to
generate and verify messages in the exchange phase. While ECMH protocol has more
modular exponentiations in the dispute resolution phase. However, most of modular
exponentiations in ECMH protocol are for adding more security assurances such as
encrypting the content of messages to prevent any other party (not those involved in
the protocol) from gaining any useful information. This means that, 4 out of 14 modu-
lar exponentiations in the exchange phase and 6 out of 9 modular exponentiations in
the dispute resolution phase are for adding such security assurances. The implication
of this is that if there is an assumption that the channels are secured then the number
of modular exponentiations are 10 and 3 for the exchange phase and dispute resolu-
tion phase, respectively.

Table 1. Protocols comparisons

 Ray protocol [9]
Zha protocol

[12]
ECMH

protocol

messages (exchange phase) 4 4 4

messages (dispute resolu-
tion)

3 to 5 3 3

TTP hold item Yes No No

Both parties are involved in
dispute resolution

Yes No No

modular exponentiations
(exchange phase)

27 20 14

modular exponentiations
(dispute resolution phase)

5 to 6 6 9

6 Conclusion

A new fair exchange protocol for exchanging digital products and payment has been
presented in this paper. It comprises four messages to be exchanged between C and
M. The protocol uses certificates that are issued by trusted parties such as a TTP, a
CA and a CB. These certificates are P-Cert which allows M to check the correctness
of payment, D-Cert which allows C to check the correctness of D, C.mt which allows
C to check the origin of the key used to encrypt the key used to encrypt D and C.ct
which allows M to check the origin of the key used to encrypt the key used to encrypt
the payment. The only way in which M might misbehave after receiving the decryp-
tion key from C is by sending incorrect decryption key or by not sending it at all. This

206 A. Alaraj and M. Munro

can be resolved automatically and online by the help of TTP. The protocol guarantees
strong fairness for both C and M.

References

1. Alaraj, A., Munro, M.: An e-commerce Fair Exchange Protocol for exchanging Digital
Products and Payments. In: Proceedings of IEEE ICDIM 2007, Lyon, pp. 248–253 (Octo-
ber 2007)

2. Alaraj, A., Munro, M.: An Efficient Fair Exchange Protocol that Enforces the Merchant to
be Honest. In: Proceedings of IEEE International Conference on Collaborative Computing:
Networking, Applications and Worksharing 2007, CollaborateCom 2007, New York,
pp.196–202 (November 2007)

3. Asokan, N., Schunter, M., Waidner, M.: Optimistic Protocols for Fair Exchange. In: Proc.
Fourth ACM Conf. Computer and Communication Security, Zurich, Switzerland, pp. 8–17
(April 1997)

4. Ben-Or, M., Goldreich, O., Micali, S., Rivest, R.: A Fair Protocol for Signing Contracts.
IEEE Trans. Information Theory 36(1), 40–46 (1990)

5. Ezhilchelvan, P., Shrivastava, S.: A Family of Trusted Third Party Based Fair-Exchange
Protocols. IEEE transactions on dependable and secure computing 2(4) (October-
December 2005)

6. Ketchpel, S.: Transaction Protection for Information Buyers and Sellers. In: Proceedings
of the Dartmouth Institute for Advanced Graduate Studies 1995: Electronic Publishing and
the Information Superhighway, Boston, USA (1995)

7. Nenadic, A., Zhang, N., Cheetham, B., Goble, C.: RSA-based Certified Delivery of E-
Goods Using Verifiable and Recoverable Signature Encryption. Journal of Universal
Computer Science 11(1), 175–192 (2005)

8. Pagnia, H., Vogt, H., Gärtner, F.: Fair Exchange. The Computer Journal 46(1) (2003)
9. Ray, I., Ray, I., Narasimhamurthy, N.: An Anonymous and Failure Resilient Fair-

Exchange E-Commerce Protocol. Decision Support Systems 39, 267–292 (2005)
10. Ray, I., Ray, I.: An Optimistic Fair Exchange E-Commerce Protocol with Automated Dis-

pute Resolution. In: Bauknecht, K., Madria, S.K., Pernul, G. (eds.) EC-Web 2000. LNCS,
vol. 1875, pp. 84–93. Springer, Heidelberg (2000)

11. Public-Key Infrastructure (X.509), The PKIX working group (accessed on 08-06-2007),
http://www.ietf.org/html.charters/pkix-charter.html

12. Zhang, N., Shi, Q., Merabti, M., Askwith, R.: Practical and Efficient Fair Document Ex-
change over Networks. The Journal of Network and Computer Applications, the Elsevier
Science Publisher 29(1), 46–61 (2006)

13. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-
key cryptosystems. Commun. ACM, 120–126 (1978)

14. Ferguson, N., Schneier, B.: Practical cryptography. Wiley, Indianpolis (2003)
15. Alaraj, A., Munro, M.: An e-Commerce Fair Exchange Protocol that Enforces the Cus-

tomer to be Honest. International Journal of Product Lifecycle Management, IJPLM
(to appear)

Creating a Secure Infrastructure for Wireless

Diagnostics and Software Updates in Vehicles

Dennis K. Nilsson, Ulf E. Larson, and Erland Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

SE-412 96 Gothenburg, Sweden
{dennis.nilsson,ulf.larson,erland.jonsson}@chalmers.se

Abstract. A set of guidelines for creating a secure infrastructure for
wireless diagnostics and software updates in vehicles is presented. The
guidelines are derived from a risk assessment for a wireless infrastructure.
From the outcome of the risk assessment, a set of security requirements to
counter the identified security risks were developed. The security require-
ments can be viewed as guidelines to support a secure implementation
of the wireless infrastructure. Moreover, we discuss the importance of
defining security policies.

Keywords: Infrastructure, vehicle, wireless, security, guidelines, policies.

1 Introduction

This paper presents guidelines for creating a secure infrastructure involving wire-
less communication for performing diagnostics and software updates in vehicles.
It is assumed that both wireless diagnostics and software updates use the same
communication channel and security principles. We assume that the security
requirements for the communication channel are the same for both wireless up-
dates and wireless diagnostics.

Today, vehicles contain a number of electronic control units (ECU). These
units are responsible for various functionality in the vehicle, ranging from small
tasks such as opening a window or unlocking a door to more advanced function-
ality such as automatic brake systems and collision warning systems [1]. Each
ECU runs its own specific and independent software. As with all software, new
improved versions are created to remedy bugs and add new functionality. As
new releases of software are available, the customer can update the software for
the corresponding ECUs by visiting an authorized service station. The service
station employee sets up a wired connection to the vehicle to update the soft-
ware. The new software is downloaded and flashed to the ROM of the particular
ECU, overwriting the old software. In addition to software updates, diagnostics
can be performed on the ECUs to detect errors or to determine the cause of
malfunctions. For example, if the head lights do not turn on, diagnostics can be
performed at a service station to find the cause of the problem (e.g., a faulty
fuse). Diagnostics is also performed in test environments to test functionality

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 207–220, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

208 D.K. Nilsson, U.E. Larson, and E. Jonsson

(e.g., lock and unlock the passenger door) and find errors in an early phase
before the software is released. These procedures which today require physical
access to set up a wired connection, may be inconvenient for the customer as
well as for the service station.

Thus, software updates via a wireless communication channel emerges as a
promising possibility. The benefits are several, including minimal customer in-
convenience, mass updates, and faster updates. In addition, it allows improved
testing and reduced time from fault to action [2].

We have analyzed the wired diagnostics and software update procedures, and
assessed the security risks associated with a wireless infrastructure. As a result
of the risk assessment, we provide a set of security requirements that can be
viewed as guidelines for creating a secure infrastructure for wireless diagnostics
and software updates. This paper is a revised version of a more extensive work [3].

The paper is outlined as follows. Section 2 discusses related research in this
area. In Section 3, we identify the attacker model, and define desired security
properties and assumptions in the wireless infrastructure. In Section 4, we assess
the risks for a wireless infrastructure. Section 5 presents the guidelines for creat-
ing an infrastructure for wireless diagnostics and software updates. In Section 6,
we discuss importance of defining security policies. Section 7 provides possible
future work directions, and Section 8 concludes the paper.

2 Related Work

The research in this area is often very specific and usually targets only one
part of the infrastructure: the communication part. For example, Mahmud et al.
present an architecture for secure software upload to vehicles using wireless com-
munication links, where the focus is on the communication links [4]. In their so-
lution, a set of authentication keys are installed in a vehicle at production time.
A central server has the same set of authentication keys. Once authentication
has been performed, the central server issues a symmetric session key to the
vehicle. The symmetric session key is then used for secure communication with
the vehicle during that session.

A discussion on securing vehicular communications is presented in [5]. The
discussion describes challenges and vulnerabilities in vehicular communications.
However, the vehicular communications only involve communications between
vehicles, and not communications with third parties for updating software. A
security architecture using secure hardware, vehicular public key infrastructure
and new methods for certificate revocation is also presented.

A comparison of different flashing methods for software updates is described
in [6]. The physical connection reflashing method is compared to software up-
dates over the air at a service station and at the customer location. The incen-
tives and challenges for updating software over the air are presented; however,
no proposals for solving the mentioned challenges are given.

A proposal of using multicasting to update the software in a large number
of vehicles is presented by Miucic et al. [7]. The security issues are carefully

Creating a Secure Infrastructure for Wireless Diagnostics 209

discussed, and the idea of a decentralized key management system, where multi-
cast session keys are generated and distributed to group members is presented.
By using an encryption key, shared by authorized members only, the security of
the multicast communication, i.e., the confidentiality and integrity of the trans-
mitted data and the authenticity of the group members, is achieved. Digital
certificates are used to provide source authenticity and integrity of the multicast
data. However, in this paper, we assume that vehicles use different software and
software versions, which makes multicast data not useful for our scenario. We
need to establish individually secure end-to-end communication.

There also exist several patents [8,9,10,11] in the area of the wireless diagnos-
tics and software updates but the descriptions are often very high-level and do
not contain any security-relevant details.

There have been substantial more work in this area; however, the work typ-
ically focuses on one aspect of the infrastructure while we take on a broader
perspective of providing guidelines for creating a secure infrastructure for wire-
less diagnostics and software updates in vehicles.

3 Background

In this section, we describe an attacker model that is specific for the wireless
infrastructure. We also present the desired security properties and assumptions
we make about the wireless infrastructure. In addition, we discuss the hardware
constraints that exist in the vehicular environment.

3.1 Attacker Model

We categorize our attacker as either an insider or an outsider [12,13]. An insider
is an authorized member of a system, in this case the infrastructure. Basically,
an insider can perform any action the authorized user can and, in addition, can
mount attacks from inside the system.

An outsider is considered an intruder to the system and can only mount at-
tacks from outside the system. For example, an outsider attacker can attack
the wireless communication link. In order to address this problem, we adopt the
Dolev-Yao attacker model [14], where an attacker can eavesdrop, intercept, mod-
ify or inject messages into the communication link. Moreover, after a successful
intrusion, an attacker can gain access to the internal network of the vehicle or
the portal, and thus execute attacks as an insider.

3.2 Desired Security Properties

In this section, we list the desired security properties for wireless diagnostics and
software updates in vehicles.

Confidentiality
The software to be installed in the ECUs is proprietary and should be kept
confidential. This includes the storage and the transmission of software binaries.

210 D.K. Nilsson, U.E. Larson, and E. Jonsson

The transmitted diagnostics requests and replies as well as the stored diagnostics
data should also be kept confidential.

Integrity
The software to be installed in the ECUs is used for controlling safety and
security-critical features and needs to be protected against modification. The
data integrity of the software must be verified such that a vehicle can assure
that the correct software has been received.

Authentication
The communication between the portal and the vehicle needs to be authen-
ticated. Mutual authentication is required to prevent impersonation of either
portal or vehicle. Moreover, data authentication is needed such that the vehicle
can verify that the received software comes from a trusted source.

Freshness
To protect against replay attacks, for example, replaying a diagnostics request
to turn off the head lights, the protocol must ensure that the messages are fresh.

Resilience to lost packets
Since wireless communication is susceptible to packet loss, the infrastructure
must be designed to handle lost packets in a graceful and secure way. The commu-
nication link must also be specifically protected against denial-of-service (DoS)
attacks to preserve the availability of the link.

3.3 Assumptions about the Wireless Infrastructure

We assume that a centralized architecture is used, since the proprietary software
and secret cryptographic keys are stored at a central location, which we denote
the portal. The portal communicates with a large number of vehicles, and each
vehicle is treated individually in terms of software and cryptographic keys. In
other words, each vehicle has its own set of installed software and keys. Therefore,
the portal must store the state (current software versions and keys) correspond-
ing to each vehicle. We assume that the portal consists of high-computational
devices with large storage areas, and therefore storing and accessing this data
in the portal is not a problem.

Furthermore, since diagnostics and software updates are performed at an in-
frequent basis per vehicle, we assume that the communication, computation and
memory overhead at the portal for each instance is insignificant. In other words,
we assume that the portal will not be a bottleneck for wireless diagnostics and
software updates, even for a large number of vehicles.

We further assume that necessary cryptographic keys (e.g., authentication
keys) are distributed offline and installed in the vehicles during manufacturing.
Therefore, key management is not an issue, since the portal and the vehicles
already have established keys when the vehicles are deployed in the network.
Moreover, since we assume that the established keys in the vehicles will be used
for the rest of their lifetime, rekeying is not considered.

Creating a Secure Infrastructure for Wireless Diagnostics 211

3.4 Limited CPU Processing Power and Memory Size

Most ECUs in the vehicle have very limited CPU processing power and memory
size. This limits the possibility to use heavy cryptographic algorithms in the en-
cryption and authentication procedures. Also, the downloaded software binaries
might not fit in the ECU RAM1 meaning that the binaries must be temporar-
ily stored somewhere else. Issues that need to be resolved include the storage
of encryption keys for the temporarily stored software binaries. Moreover, in-
corporating a firewall, IDS or logging utility in the vehicle also requires careful
consideration with respect to the limited hardware resources.

4 Assessing Security Risks for a Wireless Infrastructure

A traditional wired infrastructure, containing the three regions portal, communi-
cation link, and vehicle [6], is illustrated in Fig. 1 and can be described as follows.
The portal is communicating with a vehicle over a wired connection. For software
updates the portal accesses data (the software to be installed in the ECU) in the in-
ternal portal network and sends the data to the vehicle over the wire. Once received
in the vehicle, the data is routed through the in-vehicle network and installed in
an ECU inside the vehicle. The procedure is similar for diagnostics requests.

Fig. 1. Infrastructure for wired diagnostics and software updates

4.1 Risk Assessment for a Wireless Infrastructure

For the wired scenario, the procedures for diagnostics and software updates re-
quire physical access to the vehicle to connect it to the wire. Moreover, the
portal, the wire, and the vehicle are in a closed and controlled environment
under immediate supervision. This scenario can therefore be considered as rel-
atively secure against attacks, especially outsider attacks, but when the same
1 The software binary is downloaded to the RAM and then flashed to the ROM. The

ROM could be larger than the RAM.

212 D.K. Nilsson, U.E. Larson, and E. Jonsson

procedures are performed in a wireless infrastructure the scenario drastically
changes. We therefore perform a risk assessment using the attacker model, de-
sired security properties and assumptions, described in Section 3, as a basis,
and list the assessed security risks of attacks for each of the three regions in the
following paragraphs. We use traditional computer and network attacks [15] as
a basis to develop the security risks in our scenario. In addition, we list the risks
of consequences as a result of such attacks.

4.2 Portal Security Risks

The portal is still in a controlled environment but by setting up wireless commu-
nication links to the outside, the environment is no longer closed since an entry
point2 to the portal is introduced. The following risks are identified.

1. Impersonation
The risk for an impersonation attack increases. For a wire it is possible to
know that the vehicle is connected to the portal by physically following the
wire but for wireless communication this is not possible. An attacker can
impersonate the portal and establish a connection to a vehicle.

2. Intrusion
The entry point to the portal also poses a security risk. A weakness in the
portal could allow an intrusion, which in turn could potentially allow the
outsider attacker equal access to that of an insider. An insider can access
sensitive and proprietary data and execute more serious attacks.

4.3 Communication Link Security Risks

The communication link is no longer in a controlled and closed environment. The
wire is replaced with communication over the Internet and over-the-air. The fol-
lowing risks are identified.

3. Traffic Manipulation
The risk that an attacker can inject or modify packets in the communication
link is increased, especially due to the added exposure caused by the wireless
communication. This attack could cause diagnostics to perform actions that
they were not originally intended to perform (e.g., unlock the door instead
of checking if the door was locked). An attacker can also replay, for example,
a diagnostics request to unlock the door.

4.4 Vehicle Security Risks

The vehicle is no longer in a controlled and closed environment, and immediate
supervision may not be possible. The following risks are identified.

2 We define an entry point as a communication interface that allows entry to an internal
network.

Creating a Secure Infrastructure for Wireless Diagnostics 213

4. Impersonation
The risk for an impersonation attack is increased. For wired communication,
it is possible to physically follow a wire to know which vehicle is connected
but for wireless communication this is not feasible. An attacker can imper-
sonate a vehicle and set up communication links with the portal.

5. Intrusion
The wireless interface to the vehicle also introduces an entry point. A weak-
ness in, for example, the authentication procedure in the vehicle could allow
intrusions, which could potentially allow an outsider attacker equal access
to that of an insider. An insider can access sensitive and proprietary data
and execute more advanced attacks.

4.5 Risks of Consequences

If the attacks on the portal, communication link, and vehicle are successful, the
consequences could be disastrous.

6. Execution of Arbitrary Code
With both wireless diagnostics and software updates, it is possible to affect
the behavior of the ECUs. Thus, as a result of a successful impersonation
of the portal or an intrusion attack to the portal, an attacker can issue di-
agnostics requests or software that execute in the vehicle which believes the
requests or software originated from the real portal. Thus, an attacker can
run arbitrary code on the vehicle. A rational attacker can read confidential
data from the vehicle or, for example, unlock the driver door. A malicious at-
tacker can cause damage by, for example, disabling the brakes in the vehicle.
Furthermore, an attacker who has access to the internal portal network can
perform attacks as an insider. In addition, a successful intrusion attack to the
vehicle could allow an attacker to update the ECUs with modified versions of
software, where the attacker can control the functionality of the ECUs. A ra-
tional attacker can update the software in ECUs with performance-enhanced
versions of the software. A malicious attacker, on the other hand, can update
the ECUs with malicious versions of the software that can cause damage to
the vehicle or injury to a person (e.g., triggering the airbag remotely when
a person is sitting in the seat).

7. Disclosure of Information
A successful intrusion to the portal may allow an attacker to learn private
information about customers and access proprietary software. Moreover, a
successful impersonation attack of a vehicle could lead to the attacker get-
ting access to confidential data and proprietary software available on the
portal that is meant for the impersonated vehicle. In addition, since a ve-
hicle is susceptible to physical attacks, there is a risk that an attacker can
extract, e.g., authentication and encryption keys stored in the ECUs. Using
these keys, the attacker can impersonate a vehicle or eavesdrop encrypted
communication. An attacker could also access private data and proprietary
software stored in the vehicle or sent over the communication link.

214 D.K. Nilsson, U.E. Larson, and E. Jonsson

8. Denial of Service
An attacker can execute a DoS attack targeting the portal, the communi-
cation link, or the vehicle causing software updates to fail or diagnostics
to report incorrect values. As a consequence, legitimate users can be pre-
vented from updating potentially vulnerable software. Furthermore, this at-
tack could cause damage to the vehicle or injury to a person in the vehicle.

Based on these risks, we develop a set of security requirements which is pre-
sented in the next section.

5 Guidelines for a Secure Wireless Infrastructure

For the wireless infrastructure, the portal is communicating with a vehicle over
the Internet and over-the-air. This infrastructure is also divided into three re-
gions: portal, communication link and vehicle, as illustrated in Fig. 2. For each
of the three regions we define a set of security requirements and discuss what
protection is offered if the requirements are met. Several security requirements
might seem obvious for Internet traffic and high-end Internet servers but for low-
performance devices and special-purpose networks those security requirements
are often lacking (cf. the complete lack of security features for wireless software
updates in sensor networks [16]). Therefore, our set of security requirements
can be seen as guidelines for creating a secure wireless infrastructure. In the
following paragraphs a brief description of each region followed by the security
requirements is presented.

Fig. 2. Infrastructure for wireless diagnostics and software updates

5.1 Portal Security Requirements

The portal consists of servers and databases in the internal portal network and has
an interface to the Internet. It has access to file servers with proprietary software
that is to be installed in the vehicles and databases containing information about
vehicles and what hardware and software versions they contain. Furthermore, the

Creating a Secure Infrastructure for Wireless Diagnostics 215

portal has access to databases that contain cryptographic keys for authentication
with the vehicles. Thus, the portal has access to sensitive data.

1. Preventing Impersonation of Portal
Security Requirement: The portal must possess something unique that can
be used to establish its identity. Certificates suitable for the vehicle environ-
ment [17] should be used, and the public key of the portal should be installed
in vehicles during manufacturing. A method for handling certificate revoca-
tion must also be incorporated [18]. The portal must ensure that data sent
from the portal cannot be spoofed or modified. Sensitive data should, for
example, be signed using the portal’s private key.

Achieved Security: Prevents an outsider attacker from forging the portal
identity and impersonating the portal to set up communication links with
the vehicle.

2. Intrusion Protection
Security Requirement: The portal is a traditional environment in the sense
that it consists of powerful devices, and there already exist a number of best
practices for firewalls, logging, and Intrusion Detection Systems (IDS) [19]
that should be used.

Achieved Security: A firewall and an IDS assist in preventing and alerting
on intrusion attempts on the portal.

5.2 Communication Link Security Requirements

The communication link connects the portal to the vehicle, and is divided into
two parts: over-the-cable and over-the-air. The security requirements for the
over-the-cable and the over-the-air communication are the same.

3. Secure End-to-End Communication
Security Requirement: A secure end-to-end channel for diagnostics and soft-
ware updates [20] must be established. Data traffic should be encrypted and
integrity protected using, for example, the TLS protocol. Cryptographic al-
gorithms must be chosen carefully to agree with the limited resources in
the vehicle. A comparison of cryptographic algorithms for use in a vehicular
environment is found in [13], and a performance evaluation of public-key
cryptosystem operations in WTLS is found in [21]. Moreover, the software
and diagnostics requests should use timestamps or other methods to guar-
antee freshness.

Achieved Security: Secure end-to-end communication prevents packets from
being read, injected, modified and replayed by both insider and outsider
attackers.

5.3 Vehicle Security Requirements

The vehicle contains sensitive data, such as cryptographic keys and proprietary
software, stored in the ECUs. Furthermore, received diagnostics requests and
software are executed respectively installed in the ECUs.

216 D.K. Nilsson, U.E. Larson, and E. Jonsson

4. Preventing Impersonation of Vehicle
Security Requirement: The vehicle must possess something unique to estab-
lish its identity. An analogy is client certificates in TLS [22]. These certifi-
cates should be installed in the vehicle during manufacturing.

Achieved Security: Prevents both insider and outsider attackers from imper-
sonating a vehicle.

5. Intrusion Protection
Security Requirement: The vehicle is a nontraditional environment in the
sense that it consists of resource-constrained embedded devices. The security
requirements must be adjusted accordingly. A firewall should be used to
block incoming traffic from non-trusted parties and to allow only trusted
parties to connect to the vehicle. In addition, an IDS should be installed
in the vehicle to detect unauthorized accesses and raise alerts on intrusion
attempts on the vehicle. Proper trace and network logging should be enabled.

Achieved Security: A firewall and an IDS assist in preventing and alerting
on intrusion attempts. In addition, in the event of an intrusion, log data can
be analyzed and used to reconstruct the actions after the intrusion [23]. This
information can be used to prevent future intrusions.

5.4 Risks of Consequences

The risks of attacks on the portal, communication link, and vehicle could be
reduced by taking the proposed security requirements into consideration. If an
attack is successful, the risks of consequences could be lowered by consulting the
following security requirements.

6. Preventing Execution of Arbitrary Code
Security Requirement: A filter, e.g., a blacklist, which contains a list of dis-
allowed commands, must be used at the portal to prevent generating diag-
nostics requests or software that contain certain dangerous3 commands that
should not be allowed to be executed remotely in the ECUs. These commands
should still be available when physically connecting to the vehicle. Therefore,
a solution to remove these commands from the command set is not suitable.
Moreover, the software and the diagnostics requests should be signed by the
portal, and the vehicle must verify that the received software and requests
have not been altered. The vehicle should also use a filter to prevent danger-
ous commands from executing remotely in the ECUs. This is comparable to
server-side security enforcements for cross-site scripting attacks [24].
Achieved Security: An insider attacker is prevented from generating and send-
ing diagnostics requests and software that contain dangerous commands. Since
these commands are not allowed in the requests and software created at the
portal, theywill not be executed in theECUs.Anoutsider attacker is prevented
from generating and modifying the software and diagnostics requests. An at-
tacker is also prevented from executing dangerous commands in the ECUs.

3 Commands such as triggering the airbag or turning off the head lights. Such commands
must be well-defined before deployment.

Creating a Secure Infrastructure for Wireless Diagnostics 217

7. Secure Storage and Communication
Security Requirement: The portal must encrypt the proprietary software bi-
naries and the private information it stores about customers using a strong
symmetric cipher, e.g., AES. Access to the data requires proper authenti-
cation and authorization. Data traffic in the internal portal network should
be protected using, e.g., the transport layer security (TLS) protocol. On the
other hand, the vehicle should use a tamper-resistant storage to store sen-
sitive data, such as encryption and authentication keys, private information
and downloaded software. For example, a trusted platform module [25] could
be used. Moreover, data traffic on the in-vehicle network should be protected
with respect to data authentication [26].

Achieved Security: Prevents an outsider attacker from accessing sensitive
data in the portal and the vehicle. Moreover, an attacker is prevented from
injecting messages as well as altering messages in the internal portal network
and the in-vehicle network.

8. Denial-of-Service Protection
Security Requirement: The portal and the vehicle should use proper DoS pro-
tection, although such solutions exists for traditional environments [27], they
are nonexistent for vehicles. In addition, the communication protocol must
be resistant to packet loss caused by not only communication problems, such
as bad reception, but also intentional attacks. Therefore, a reliable protocol
which also can handle low bandwidth communication with long delays must
be used. For example, the SCTP [28] protocol provides reliable message-
stream communication.

Achieved Security: Proper DoS protection assists in preventing availability
attacks. Furthermore, a reliable protocol helps for protecting the availability
of the link.

6 Security Policies

Since wired diagnostics and software updates typically are performed in closed
and controlled environments with immediate supervision, security policies have
been nonexistent. However, for allowing wireless diagnostics and software up-
dates, defining a set of security policies is imperative. If several parties are in-
volved, e.g., portal, service station, and vehicle owner, it is especially important
to define who is allowed to perform what actions. We provide a few policies as
examples. Policies for various involved parties must be specified.

– Only the portal is allowed to create and sign software.
– The portal and service stations are allowed to perform software updates of

signed software on the vehicle.
– The vehicle must verify the authenticity of the received software to verify

that it was created by the portal.
– The portal and service stations are allowed to send diagnostics requests.

218 D.K. Nilsson, U.E. Larson, and E. Jonsson

Furthermore, policies for the ECUs must be well-defined.

– A time limit, e.g., 30 minutes, for updating the software on the same ECU
should be used.

– Only ECUs that do not affect the maneuverability of the vehicle are allowed
to be updated over-the-air.

– Prerequisites for updates include the engine being turned off for at least one
hour, a velocity of zero mph, and no driver or passengers in the vehicle.

– A time limit, e.g., 1 minute, for responding to repeated diagnostics requests
should be used.

– Only non-safety critical diagnostics requests are allowed to be sent to safety-
critical ECUs, and only safety-critical diagnostics requests are allowed to be
sent to non-safety critical ECUs.

These examples are only a few of the policies that need to be defined. A
thorough analysis of all the ECUs in the vehicle to classify them into safety-
critical classes [29] and defining policies for the different ECUs and classes is
required to properly specify security policies. These policies define the security
of the ECUs and prevent attackers from installing malicious software and vehicle
owners from boosting the performance in the ECUs. Moreover, combination of
policies could prevent denial-of-service attacks on the ECUs and more advanced
cyber attacks [30,31] targeting the safety of the vehicle. Thus, the policies are
the vanguard of security and safety on the vehicle and the portal.

7 Future Work

The most pertinent issue for the near future is to scrutinize the in-vehicle network
for possible entry points and weaknesses. A risk analysis of the ECUs is to be
conducted, and measures to provide the necessary security are to be evaluated.

Another possible direction is to explore the possibilities of using an IDS in the
vehicle. The IDS could trigger on reads and writes to security-critical data or
on abnormal activities, and thus detect attacks on the vehicle. Finally, it would
be interesting to investigate the possibility to include a firewall in the vehicle
to prevent unwanted external accesses as well as an internal filtering service
within the in-vehicle network to block accesses to certain ECUs with respect
to safety. It would be highly interesting to investigate how an IDS, firewall or
filtering service can be adapted to the typical vehicular communication, which
is significantly different from Internet traffic.

8 Conclusion

This paper aims to deepen the awareness of security risks involved in creating
an infrastructure for wireless software updates and diagnostics in vehicles and
provides guidelines for improving the security. The security risks for a wireless
infrastructure are first assessed. The result is used to develop a set of guidelines

Creating a Secure Infrastructure for Wireless Diagnostics 219

for creating a secure infrastructure. The infrastructure is subdivided into the
portal, the communication link, and the vehicle, and a number of security risks
in each part are identified. These risks must seriously be taken into consideration
when designing the infrastructure and security must be incorporated from the
very start. Consequently, we have listed a number of security requirements and
discussed the importance of defining security policies.

References

1. See, W.-B.: Vehicle ECU Classification and Software Architectural Implications.
Technical report, Feng Chia University, Taiwan (2006)

2. Miucic, R., Mahmud, S.M.: An In-Vehicle Distributed Technique for Remote Pro-
gramming of Vehicles’ Embedded Software. Technical report, Electrical and Com-
puter Engineering Department, Wayne State University, Detroit, MI 48202 USA
(2005)

3. Nilsson, D.K., Larson, U.E., Jonsson, E.: Creating a Secure Infrastructure for Wire-
less Diagnostics and Software Updates in Vehicles. Technical report, Chalmers
University of Technology, 2008:02 (2008)

4. Mahmud, S.M., Shanker, S., Hossain, I.: Secure Software Upload in an Intelligent
Vehicle via Wireless Communication Links. In: Proceedings of IEEE Intelligent
Vehicles Symposium, pp. 587–592 (2005)

5. Raya, M., Papadimitratos, P., Hubaux, J.-P.: Securing Vehicular Communications.
IEEE Wireless Communications 13(5), 8–15 (2006)

6. Shavit, M., Gryc, A., Miucic, R.: Firmware Update over the Air (FOTA) for Au-
tomotive Industry. Technical Report 2007-01-3523, SAE (2007)

7. Miucic, R., Mahmud, S.M.: Wireless Multicasting for Remote Software Upload in
Vehicles with Realistic Vehicle Movement. Technical report, Electrical and Com-
puter Engineering Department, Wayne State University, Detroit, MI 48202 USA
(2005)

8. Parrillo, L.C.: Wireless motor vehicle diagnostic and software upgrade system. U.S.
patent 5442553 (1995)

9. Lightner, B., Botrego, D., Myers, C., Lowrey, L.H.: Wireless diagnostic system and
method for monitoring vehicles. U.S. patent 6636790 (2003)

10. Suman, M.J., Zeinstra, M.L.: Remote vehicle programming system. U.S. patent
5479157 (1995)

11. Chen, C.-H.: Vehicle security system having wireless function-programming capa-
bility. U.S. patent 6184779 (2001)

12. Wolf, M., Weimerskirch, A., Paar, C.: Security in Automotive Bus Systems. In:
Workshop on Embedded IT-Security in Cars, Bochum, Germany (November 2004)

13. Raya, M., Hubaux, J.-P.: The Security of Vehicular Ad Hoc Networks. In: Pro-
ceedings of the 3rd ACM Workshop on Security of Ad Hoc and Sensor Networks,
pp. 11–21. ACM Press, New York (2005)

14. Dolev, D., Yao, A.C.: On the Security of Public Key Protocols. IEEE Transactions
on Information Theory 29(2), 198–208 (1983)

15. Howard, J.D., Longstaff, T.A.: A Common Language for Computer Security Inci-
dents (SAND98-8667) (1998),
http://www.cert.org/research/taxonomy_988667.pdf

16. Hui, J.: Deluge 2.0 - TinyOS Network Programming Manual (2005),
http://www.cs.berkeley.edu/~jwhui/research/deluge/deluge-manual.pdf

http://www.cert.org/research/taxonomy_988667.pdf
http://www.cs.berkeley.edu/~jwhui/research/deluge/deluge-manual.pdf

220 D.K. Nilsson, U.E. Larson, and E. Jonsson

17. IEEE. 1609.2. Standard for Wireless Access in Vehicular Networks (2004)
18. Raya, M., Jungels, D., Papadimitratos, P., Aad, I., Hubaux, J.-P.: Certificate Revo-

cation in Vehicular Networks. Technical report, Laboratory for computer Commu-
nications and Applications (LCA), EPFL, Switzerland, 2006. LCA-Report-2006-
006.

19. US-CERT. Current Malware Threats and Mitigation Strategies (2005),
http://www.us-cert.gov/reading_room/malware-threats-mitigation.pdf

20. Nilsson, D.K., Larson, U.E.: Secure Firmware Updates over the Air in Intelligent
Vehicles. In: Proceedings of the First IEEE Vehicular Networking & Applications
Workshop (Vehi-Mobi), pp. 380–384 (2008)

21. Levi, A., Savas, E.: Performance Evaluation of Public-Key Cryptosystem Opera-
tions in WTLS Protocol. In: Proceedings of the Eighth IEEE International Sym-
posium on Computers and Communications, pp. 1245–1250 (2003)

22. Network Working Group. The TLS Protocol Version 1.0 (1999)
23. Nilsson, D.K., Larson, U.E.: Conducting Forensic Investigations of Cyber Attacks

on Automobile In-Vehicle Networks. In: Proceedings of the First ACM Interna-
tional Conference on Forensic Applications and Techniques in Telecommunications,
Information and Multimedia (e-Forensics). ACM Press, New York (2008)

24. Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: A static analysis tool for detecting
web application vulnerabilities. In: Proceedings of the 2006 IEEE Symposium on
Security and Privacy (S&P), pp. 258–263 (2006)

25. Trusted Computing Group. Trusted Platform Module Specification (2003),
https://www.trustedcomputinggroup.org/specs/TPM

26. Nilsson, D.K., Larson, U.E., Jonsson, E.: Efficient In-Vehicle Delayed Data Au-
thentication based on Compound Message Authentication Codes. In: Proceedings
of the IEEE 68th Vehicular Technology Conference (VTC2008-Fall) (2008)

27. Deal, R.: Cisco Router Firewall Security. Cisco Press (2004)
28. Network Working Group. Stream Control Transmission Protocol (SCTP) Specifi-

cation (2006)
29. Nilsson, D.K., Phung, P.H., Larson, U.E.: Vehicle ECU Classification Based on

Safety-Security Characteristics. In: Proceedings of the 13th International Confer-
ence on Road Transport and Information Control (RTIC) (2008)

30. Hoppe, T., Dittman, J.: Sniffing/Replay Attacks on CAN Buses: A simulated attack
on the electric window lift classified using an adapted CERT taxonomy. In: Pro-
ceedings of the 2nd Workshop on Embedded Systems Security (WESS), Salzburg,
Austria (2007)

31. Nilsson, D.K., Larson, U.E.: Simulated Attacks on CAN Buses: Vehicle virus. In:
Proceedings of the Fifth IASTED Asian Conference on Communication Systems
and Networks (ASIACSN). ACTA Press (2008)

http://www.us-cert.gov/reading_room/malware-threats-mitigation.pdf
https://www.trustedcomputinggroup.org/specs/TPM

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 221–234, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Finding Corrupted Computers Using Imperfect Intrusion
Prevention System Event Data

Danielle Chrun1, Michel Cukier1, and Gerry Sneeringer2

1 Center for Risk and Reliability, University of Maryland
College Park, Maryland 20742-7531

2 Office of Information Technology, University of Maryland
College Park, Maryland 20742-7531

{chrun,mcukier,sneeri}@umd.edu

Abstract. With the increase of attacks on the Internet, a primary concern for
organizations is how to protect their network. The objectives of a security team
are 1) to prevent external attackers from launching successful attacks against
organization computers that could become compromised, 2) to ensure that or-
ganization computers are not vulnerable (e.g., fully patched) so that in either case
the organization computers do not start launching attacks. The security team can
monitor and block malicious activity by using devices such as intrusion preven-
tion systems. However, in large organizations, such monitoring devices could
record a high number of events. The contributions of this paper are 1) to intro-
duce a method that ranks potentially corrupted computers based on imperfect
intrusion prevention system event data, and 2) to evaluate the method based on
empirical data collected at a large organization of about 40,000 computers. The
evaluation is based on the judgment of a security expert of which computers were
indeed corrupted. On the one hand, we studied how many computers classified as
of high concern or of concern were indeed corrupted (i.e., true positives). On the
other hand, we analyzed how many computers classified as of lower concern
were in fact corrupted (i.e., false negatives).

Keywords: Security Metrics, Empirical Study, Intrusion Prevention Systems.

1 Introduction

With the increase of attacks on the Internet, a primary concern for organizations is how to
protect their network. To do so, organizations monitor their traffic using security devices
such as intrusion detection systems or intrusion prevention systems. The monitored ac-
tivity provides some insight into an organization’s security and identifies potentially
corrupted computers. While in some organizations the quantity of monitored traffic is
manageable, it becomes a hassle to analyze security data for large organizations. For
example, intrusion prevention systems could record thousands of alerts per day and the
security team cannot investigate every alert. Moreover, although intrusion prevention
systems are aimed at detecting and blocking malicious activity, they also raise false
alarms. Due to 1) the potentially large quantity of data to deal with, and 2) the number of

222 D. Chrun, M. Cukier, and G. Sneeringer

false alarms, it is of main interest to organize the generated alerts and to extract infor-
mation from the collected data that would be useful to the security team.

This paper presents a method to retrieve useful information for the security team
from data collected by an intrusion prevention system (IPS). The method consists in
identifying potentially corrupted computers inside the organization and ranking them
according to three metrics: the coefficient of consecutiveness indicating during how
many consecutive weeks IPS alerts were observed, the number of weeks during which
alerts were raised and the number of distinct attack types. Based on these metrics, po-
tentially corrupted computers can be ranked. We will show that the proposed method
helps the security team gaining some insight into the organization’s security. The in-
troduced method is evaluated for data collected at a large organization of about 40,000
computers. The evaluation is based on the judgment of a security expert of which
computers were indeed corrupted. On the one hand, we studied how many computers
classified as of high and medium concern were indeed corrupted (i.e., true positives).
On the other hand, we analyzed how many computers classified as of low concern were
in fact corrupted (i.e., false negatives).

The remainder of the paper is structured as follows. Section 2 describes the related
work on data analysis of security logs. Section 3 introduces the concepts relative to
IPSs. Section 4 defines the method. Section 5 presents the evaluation of the method.
We provide conclusions in Section 6.

2 Related Work

A lot of research focuses on analyzing security logs for security assessment. To face the
possibly high quantity of data to analyze, a common step is to reduce data before ana-
lyzing it. [1] describes an architecture to analyze distributed darknet traffic: first, col-
lected data on attacks are filtered; secondly, forensics is used to analyze the reduced data.
[2] focuses on analyzing data of a denial of service. In order to study the traffic volume
per protocol, a categorization of the collected network traffic by protocol was made.

Analyzing large amounts of security data becomes an emerging task in the intrusion
detection field. Indeed, intrusion detection systems face two main issues: 1) a high
number of alarms can be raised and 2) there can be many false alarms among them.
Thus, the objective is to decrease the number of false alarms. Research was conducted
to retrieve normal behavior (i.e., traffic that is not malicious) from the dataset using
several techniques: time series [3], data mining [4, 5, 6, 7, 8, 9, 10 and 11] and corre-
lation [6, 12, 13, 14, 15 and 16]. A common practice is to use historical data to define
normal behavior so that future alarms can be handled more efficiently. Data mining
techniques can be used to achieve this goal. However, research projects differ in the
data mining technique used: association rules [10], frequent episode rules [4, 9], clas-
sification [11] or clustering [5, 6, 7, 8 and 9]. A commonly used method in intrusion
detection is alert correlation. [13] defines a model for intrusion detection alert correla-
tion and presents three examples of correlation: aggregation of alerts referring to a
single targeted host, aggregation of alerts referring to hosts vulnerable to an attack
occurrence and aggregation according to alerts similarities (such as alerts caused by the
same event or referring to the same vulnerabilities). [5 and 6] introduce a cooperative
intrusion detection framework in which functions to manage, cluster, merge and cor-
relate alerts were implemented. The objective was to correlate alerts to generate more
global alerts and discard false alarms.

Finding Corrupted Computers Using Imperfect Intrusion Prevention System Event Data 223

In [11], the authors present the Adaptive Learner for Alert Classification (ALAC)
system. ALAC is a system to reduce false positives in intrusion detection systems and
relies on two elements: 1) expert judgment and 2) machine learning techniques. An
analyst classifies alerts as true positives or false positives. Then, ALAC autonomously
processes alerts that have been classified by the analyst. The accuracy of ALAC is as
good as the quality of the analyst’s classification.

3 On the Use of Intrusion Prevention System Event Data

3.1 Approach

Many organizations use security devices to monitor their network activity. The quantity
of data collected per day can be so substantial that every event identified by a security
device cannot be investigated by the security team. Hence, retrieving meaningful in-
formation from the collected data on the malicious activity would give a more detailed
insight to security administrators into the network’s security. The main issue is that the
data currently collected are far from being perfect. For example, the data collected by
security devices, such as intrusion prevention systems (IPSs), might contain alerts for
activity that is not malicious (i.e., false positives) and might not detect some malicious
activity (i.e., false negatives). Moreover, they will not include new attacks in the case of
signature-based IPSs. They often rely on the trust we have in the security devices and
the vendors. No ground truth is provided. Details are lacking on the meaning of the data
and how they are produced (the security devices are black boxes for which vendors
only release few details).

Two approaches are then possible. The first one is to work on obtaining datasets
clean enough so that accurate security estimations are possible. The second one is to
accept that the dataset is imperfect but that useful information regarding an organiza-
tion’s security can be retrieved. In this paper, we adopt the second approach.

In this paper, we provide a method to extract useful information from IPS event data.
The suggested method aims at extracting a list of potentially corrupted organization
computers that would then be handled by the security team. Those computers manifest
in the IPS dataset as the potential source of attacks. The dataset might not only contain
attackers who willingly launch attacks. It might also include computers that may not
have been fully patched. Once the list of suspected computers is identified, the security
team can make a decision regarding these computers. For example, a decision could
consist in blocking the IP address from the network until the computer is cleaned.

3.2 Intrusion Prevention Systems

An IPS is a security device that monitors malicious activity and reacts in real-time by
blocking a potential attack. An IPS is considered as an extension of an intrusion de-
tection system (IDS). An IDS is a passive device that monitors activity whereas an IPS
is an active device that blocks potential malicious activity. For our study, we focus on
signature-based IPSs: the IPS blocking decision relies on a set of signatures that are
regularly released by the vendor as attacks are newly discovered on the Internet. When
characteristics of an attack match the ones of a defined signature, the attack is blocked
and an alert is recorded in the IPS logs.

224 D. Chrun, M. Cukier, and G. Sneeringer

We assume that the IPS is located at the edge of the organization. In other words, the
IPS monitors 1) malicious activity originating inside the organization and targeting
outside computers, 2) malicious activity originating outside the organization and tar-
geting organization computers.

We define an alert in the IPS dataset as a source IP address (SIP/attacker) attacking a
destination IP address (DIP/target) with a certain type of attack (signature) at a given
time.

3.3 Dataset: Assumptions

As previously mentioned, the IPS dataset has several issues. We have not evaluated the
IPS and thus do not know how many false positives and false negatives the IPS pro-
duces. Moreover, since the IPS is a signature-based device, new attacks will not be
detected nor blocked.

Furthermore, the dataset does not include the case where a computer inside the or-
ganization attacks another computer inside the organization. The IPS is located at the
edge of the organization so it cannot detect traffic within the organization. Besides, this
study solely focuses on computers with static IP addresses.

Finally, we cannot prove that a blocked attack would have been harmful to the tar-
geted computer. Indeed, for an attack to be successful, the targeted computer should
have the associated vulnerability. We have scanned several computers for which an IPS
alert was raised and noticed that in many cases the vulnerability associated with the
alert was not present. This means that even without the IPS, the attack would not have
been successful. This also indicates that the IPS identifies and detects an attack in its
early stage preferring to block attacks that would not have been successful instead of
not blocking a potentially successful attack.

4 Method

The next sub-sections present the method to identify potentially corrupted organization
computers. First, we define three metrics to characterize the activity in the IPS dataset.
Then, we present the method for ranking the potentially corrupted computers according
to the three metrics values.

4.1 Metrics

A computer is of main concern to the security team if 1) it appears often in the IPS
dataset as the source of an attack, and 2) it launches a wide range of different attack
types. Therefore, we introduce the following metrics for a computer: 1) a coefficient of
consecutiveness of the number of weeks for which at least one alert was raised, 2) the
number of weeks for which at least one alert was raised, and 3) the number of different
signatures (i.e. attack types) associated to the computer. We defined these metrics that
we believe are appropriate for attackers. These metrics might be less relevant for targets
(computers under attack).

4.1.1 Coefficient of Consecutiveness
Computers that appear in the IPS dataset for many consecutive weeks are of main
concern for the organization’s security team, seeming to indicate that a computer is

Finding Corrupted Computers Using Imperfect Intrusion Prevention System Event Data 225

launching attacks during several consecutive weeks and has not been checked. We
define the coefficient of consecutiveness as:

Cons = Week/(Max - Min + 1)

where Max is the identifier of the last week when the computer appears in the dataset,
Min is the identifier of the first week, and Week is the number of distinct weeks. The
consecutiveness factor is positive and the maximum value is 1. Let us consider a
computer that appears in the IPS dataset at weeks 2, 3, 6, 8, 9, among 10 weeks of
observation (Figure 1). In this case, Max = 9, Min = 2 and Week = 5. The consecu-
tiveness factor is: 5/(9-2+1) = 0.625.

Fig. 1. Consecutiveness Factor

The closer to 1 the coefficient of consecutiveness is, the more focus the security
team should put on the computer. However, if a computer only appears once in the IPS
dataset, it means that Week = 1. Nonetheless, it does not necessarily mean that the se-
curity team should focus on that computer. This emphasizes that the number of weeks
is also an important metric.

4.1.2 Number of Weeks
The number of weeks for which at least one alert was associated to the computer is the
second metric.

However, the case where the number of weeks is 1 may be misleading. In this case
(the computer was recorded as an attacker only for one week along the considered pe-
riod of time), the coefficient of consecutiveness would be 1 and the computer would be
reported to the security team. Considering the computers for which Week = 1 would
raise a lot of alerts for computers that are in fact not corrupted. Therefore, we discard
for the study all computers where week = 1.

Hence, the minimum is Week = 2 and the maximum is the number of weeks during
which data have been collected.

The number of weeks reflects the frequency at which the computer appears in the
IPS dataset. A computer with a large number of weeks reveals that the computer is
potentially corrupted and has not been checked.

4.1.3 Number of Signatures
Finally, we believe that the number of distinct attack signatures associated with a given
computer is important. It reflects the range of different attack types one computer
seemed to have launched. Note that a great number of distinct signatures might also
reveal that the computer contains several vulnerabilities.

The minimum number is 1 and the maximum is the total number of existing distinct
signatures in the IPS.

1 2 3 4 5 6 7 8 9 10 Week

X X X XX

226 D. Chrun, M. Cukier, and G. Sneeringer

4.2 Level of Criticality

We define the level of criticality of a computer as the 3-tuple {Cons, Week, Sign} (Cons
stands for the coefficient of consecutiveness, Week for the number of weeks, Sign for
the number of signatures). The higher the level of criticality, the more important it is for
the security team to check that computer.

We identify three levels of interest: high concern, concern, and low concern. We
define thresholds for each metric so that the interval is cut into three intervals: C1 and
C2 are thresholds for the consecutiveness factor, W1 and W2 for the number of weeks,
S1 and S2 for the number of distinct signatures. We decided to visualize each computer
by using a Cartesian coordinate system: the coordinates are the consecutiveness factor,
the number of weeks and the number of signatures. In other words, each computer is
represented in a 3-D space. Hence, by considering the thresholds and the 3-D space, we
can visualize a cube that is cut into 27 sub-cubes (Figure 2a).

We then introduce three colors associated with the three levels of criticality: 1) green
regions (G) depict computers of low concern, 2) yellow regions (Y) group computers of
concern that should be checked by the security team, and 3) red regions (R) show
computers of high concern that should be addressed in priority. For each sub-cube, a
security expert helped us decide on their level of criticality and thus their associated
color. Figure 2b depicts the colors selected for the 27 sub-cubes.

4.3 Method for Identifying Computers of Concern

The method consists in five steps: 1) analysis of the IPS dataset to identify computers
that were the source of alerts, 2) calculation of the level of criticality for each identified
computer, 3) determination of thresholds for the three metrics, 4) investigation of
computers in the red region and 5) investigation of computers in the yellow region.

(a) (b)

Fig. 2. Visualization of Metrics (a) and Colored Zones (b)

Step 1: Analysis of the IPS dataset
The identification of computers that were the source of alerts in the IPS dataset is done
through the extraction of the internal IP addresses that appear as the source of alerts in
the IPS dataset.

Step 2: Calculation of the level of criticality
To calculate a level of criticality, a period of time for which to calculate the metrics
needs to be defined. We advise selecting a period long enough to allow a metric like the

Finding Corrupted Computers Using Imperfect Intrusion Prevention System Event Data 227

coefficient of consecutiveness to be relevant (at least 5 weeks for the coefficient of
consecutiveness to be meaningful).

Step 3: Determination of thresholds for the three metrics
We believe that threshold values (C1, C2, W1, W2, S1, S2) are organization dependent.
Characteristics, such as the size of the organization, the type of the organization can
greatly differ between organizations. In that sense, we advise each organization to
choose its own thresholds.

Steps 4 and 5: Investigation of computers in the red and yellow regions
As the method consists in ranking computers in function of the level of criticality in
order to focus on the computers of main concern, the security team should focus in
priority on the computers in the red region.

Depending on the available sources of information, checking a potentially corrupted
computer would include:

- Using the IPS dataset to look at the date and time of events,
- Using the IPS dataset to understand the attack type,
- Investigating previous incidents with that particular IP address.

The method tends to identify computers that appear frequently in the IPS dataset:
those are the computers in the red and yellow regions (the frequency is reflected by the
metrics Cons and Week, Sign interferes in making the distinction between the red and
yellow regions). Hence, our method will not raise a flag for a computer that is involved
in a single alert that could be harmful. Therefore, the method does not identify all po-
tential corrupted computers.

Also, the method identifies computers that may be corrupted or not. For the re-
maining of the paper, we call:

- False negatives: corrupted computers that have not been identified by the
method,

- True positives: corrupted computers that have been identified by the
method,

- False positives: non-corrupted computers that have been identified by the
method,

- True negatives: non-corrupted computers that have not been identified by
the method.

The thresholds C1, C2, W1, W2, S1 and S2 are chosen by making a trade-off between
the number of true positives and the number of false negatives.

5 Evaluation

5.1 Approach

In this section, we will evaluate the presented method. We will study IPS event data
collected on a large public university (University of Maryland) composed of about
40,000 computers. The considered IPS dataset covers a period of 17 months, from

228 D. Chrun, M. Cukier, and G. Sneeringer

September 1st 2006 to January 31st 2008. The IPS raised an average of around 142 alerts
per day during the studied period for computers inside the campus that are detected
transmitting potentially malicious traffic toward computers outside the campus. Over
the 17 months, 1,441 different computers inside the organization that launched at least
one attack were identified.

First, we need to define a time period on which to apply the metrics. The campus is
much less populated during the summer break (3 months) and the winter break (1
month). In other words, the traffic recorded by the IPS may drop during these periods
due to fewer students/computers. In order not to bias the results, we should apply the
metrics over a period greater than 3 months. We decided to apply the metrics over a
6-month period. In order to show how the metrics evolved over time, we calculated the
metrics for increments of 2 weeks. On each period of 6 months, we extracted a list of
computers and calculated the associated metrics.

We then asked the Director of Security of the Office of Information Technology at
the University of Maryland, to indicate which computers were corrupted among the
ones identified by our method. To do so, the Director of Security needed to investigate
every computer. This step relies on expert judgment and human activity, as opposed to
an automated investigation. As previously stated, we believe that computers for which
Week = 1 are of less interest that those that appear at least two weeks over a 6-month
period. By eliminating those computers, we are left with 303 computers to investigate.

We recognize that we rely on expert judgment to indicate which computers are
corrupted. Another security expert might provide slightly different results. To decrease
the potential bias due to expert judgment, we asked the Director of Security: 1) to use a
systematic method for deciding if a computer is corrupted, and 2) to be conservative in
his judgment (the Director will declare a computer corrupted (respectively
non-corrupted) only if he is sure that the computer is corrupted (respectively
non-corrupted)). Such requirements led to many investigated computers without clear
decision. Among the 303 investigated computers, for 76 (25%) of them it was unclear
whether they were corrupted. One reason is that the analyzed data went back to Sep-
tember 2006 making it difficult to make sure if the flagged computer was indeed
corrupted.

First, in order to investigate the computers to determine if they are corrupted, the
Director of Security needed the following information:

- For each computer: the number of alerts triggered in the IPS, the signature
list associated to these alerts (SL), the time span for these alerts by signa-
ture, the list of computers targeted (target list TL), the list of incidents as-
sociated to the computer,

- A list of signatures known to trigger false alarms,
- A list of signatures known to be non-malicious.

Figure 3 depicts the sequential questions to answer regarding a given computer to
determine if it is corrupted (C), non-corrupted (NC), or undetermined (O for other). If
the answer to a question is “yes”, the computer can be classified and the Director of
Security investigates another computer. If the answer is “no”, the Director of Security
moves to the next question. These steps are the ones that were followed by the Director
of Security to investigate the computers in order to evaluate the suggested method.

Finding Corrupted Computers Using Imperfect Intrusion Prevention System Event Data 229

Fig. 3. Flowchart of the Steps of the Investigation

First, classifying computers as (non)-corrupted involves investigating the target list
(TL): does the target list contain computers in the adjacent address blocks? If yes, it is
possible that the computer is scanning the adjacent IP addresses range in order to detect
computers. In that case, the computer is classified as corrupted. Otherwise, the signa-
ture list (SL) needs to be investigated: does the signature list contain signatures known
to not produce false alerts? If yes, the computer is classified as corrupted. Six sequential
steps consist in investigating the target list and the signature list. The seventh step aims
at searching into the incident data in order to find an incident report involving the
computer under investigation: if there is an incident report to support the alert associ-
ated with the computer, then the computer is classified as corrupted. If none of these
steps allows classifying the computer as (non)-corrupted, the Director of Security will
examine the specific circumstances of the alerts: if the investigation reveals malicious
activity, the computer is corrupted; otherwise, if the investigation indicates false alerts,
the computer is non-corrupted; otherwise, the computer is classified as undetermined.

Out of 303 investigated computers, 91 (30%) were identified as corrupted and 136
(45%) were identified as non-corrupted. One important measure is to find how many
among the 303 identified computers led to an interesting investigation (independently
of the outcome). The issue is whether the method identifies computers worth investi-
gating or flags computers clearly of no concern leading to a waste of the time for the
security team. Among the 303 flagged computers, the Director of Security found that
the investigation was useful for all the identified computers. Indeed, either the com-
puter is declared corrupted and the security team did check it or should have checked it,
or the computer is not corrupted and the IPS itself needs to be retuned to reduce the
number of alerts raised for non-corrupted computers. This high percentage indicates

230 D. Chrun, M. Cukier, and G. Sneeringer

that the proposed method is already of practical use for the security team. Although the
number of non-corrupted investigated computers is high, the non-corrupted computers
may reveal events that could not have been identified otherwise. For example, we
identified an event where 64 systems tried to access Facebook using a suspicious PHP
argument and users who operated Nmap. The computers involved in these two events
were identified as non-corrupted but provided an additional insight into the organiza-
tion’s security.

The next step is to assess our method to know if it correctly identifies the
(non)-corrupted computers. Each computer will be assigned a color: red (R), yellow
(Y), green (G), and an investigation result: corrupted (C) or non-corrupted (NC)
computer. A computer that was in the red or yellow regions and was identified as
corrupted is a true positive. On the contrary, a computer that was in the green region
and was identified as corrupted is a false negative. All combinations of color and in-
vestigation result are given in Table 1. Note that when the investigation could not tell if
a computer was corrupted or not, we will use O (O stands for “Other”). For example,
RO groups computers that are in the red region and that could not be identified as
corrupted or non-corrupted by the Director of Security.

Table 1. All Combinations of Color and Investigation Result

Color Investigation result Notation Conclusion
R C RC True Positive (TP)
R NC RNC False Positive (FP)
Y C YC True Positive (TP)
Y NC YNC False Positive (FP)
G C GC False Negative (FN)
G NC GNC True Negative (TN)
R O RO -
Y O YO -
G O GO -

5.2 Results

We studied 23 periods of 6 months from September 1st 2006 to January 31st 2008 with
increments of 2 weeks. Period 1 is the period from September 1st 2006 to February 28th
2007. Period 2 covers September 15th 2006 to March 14th 2007, etc. Period 23 defines
the period from August 1st 2007 to January 31st 2008. For each period, we extracted the
address of the organization computers that raised at least one alert corresponding to an
attack towards a computer outside the University of Maryland and calculated the as-
sociated metrics. We applied the following thresholds: C1 = 0.5 and C2 = 0.8 for the
coefficient of consecutiveness, W1= 2 and W2 = 4 for the number of distinct weeks, S1
= 1 and S2 = 2 for the number of distinct signatures. For each of the 23 periods of 6
months, our method automatically puts each flagged computers in a green, yellow or
red region. According to the identification of the (non)-corrupted computers by the
Director of Security, we can calculate 1) the number of true/false positives based on the
results in the yellow and red regions, and 2) the number of true/false negatives based on
the results in the green region. The results are shown in Table 2.

Finding Corrupted Computers Using Imperfect Intrusion Prevention System Event Data 231

Note first that the number of computers for which it could not be decided whether
they were corrupted or not highly depends on the region. In the red region, they rep-
resent 12% (Period 1), 0% (Period 12) and 20% (Period 23). In the yellow region, we
find 26% (Period 1), 38% (Period 12), and 36% (Period 23). In the green region, we
have 71% (Period 1), 54% (Period 12), and 32% (Period 23). It is interesting to note
that often the red region has the lowest percentage and the green region has the highest
percentage of computers that could not be clearly identified as (non)-corrupted. This
increases the confidence in our method since the computers in the red region should
have the highest likelihood of being corrupted and the green region should have a much
lower likelihood of being corrupted. This shows that the information provided to the
security team should be useful as it seems to rank the computers based on the likelihood
of corruption.

Graphs of the evolution of true positives, false positives, true negatives and false
negatives over the 23 periods are shown in Figure 4. The results show that the method is
improving regarding the number of true negatives. At Period 1, among the computers in
the green region (i.e., computer of low concern), only 10% were not corrupted. How-
ever, the trend significantly changes over time. At Period 23, among the computers in
the green region, 91.7% were not corrupted.

Table 2. Results of the Evaluation

P
er

io
d

R
M

R
N

M

Y
M

Y
N

M

G
M

G
N

M

O
R

O
Y

O
G

T
P

F
P

T
N

F
N

T
P

/P

(%
)

F
P

/P

(%
)

T
N

/N

(%
)

F
N

/N

(%
)

1 19 3 24 10 18 2 3 12 49 43 13 2 18 76.8 23.2 10.0 90.0
2 19 4 30 10 17 1 3 13 46 49 14 1 17 77.8 22.2 5.6 94.4
3 21 5 29 8 17 1 3 14 44 50 13 1 17 79.4 20.6 5.6 94.4
4 17 5 34 7 19 1 2 16 39 51 12 1 19 81.0 19.0 5.0 95.0
5 14 5 35 7 17 1 2 15 38 49 12 1 17 80.3 19.7 5.6 94.4
6 13 5 33 6 20 8 2 15 35 46 11 8 20 80.7 19.3 28.6 71.4
7 13 5 30 5 20 14 2 11 40 43 10 14 20 81.1 18.9 41.2 58.8
8 10 4 35 4 18 14 1 13 34 45 8 14 18 84.9 15.1 43.8 56.2
9 10 3 33 5 17 13 2 12 36 43 8 13 17 84.3 15.7 43.3 56.7

10 11 3 29 3 17 11 2 11 39 40 6 11 17 87.0 13.0 39.3 60.7
11 10 2 24 4 17 12 2 8 38 34 6 12 17 85.0 15.0 41.4 58.6
12 12 2 13 5 16 12 0 11 33 25 7 12 16 78.1 21.9 42.9 57.1
13 9 1 13 6 13 12 0 10 34 22 7 12 13 75.9 24.1 48.0 52.0
14 6 0 11 6 13 18 0 6 30 17 6 18 13 73.9 26.1 58.1 41.9
15 3 1 10 7 8 19 0 5 30 13 8 19 8 61.9 38.1 70.4 29.6
16 3 0 6 8 6 20 0 7 30 9 8 20 6 52.9 47.1 76.9 23.1
17 3 2 4 9 5 39 0 6 30 7 11 39 5 38.9 61.1 88.6 11.4
18 3 2 3 10 4 36 0 6 27 6 12 36 4 33.3 66.7 90.0 10.0
19 2 3 3 8 5 39 0 6 28 5 11 39 5 31.2 68.8 88.6 11.4
20 2 3 1 8 6 41 0 6 28 3 11 41 6 21.4 78.6 87.2 12.8
21 2 3 0 8 6 43 0 5 28 2 11 43 6 15.4 84.6 87.8 12.2
22 2 3 0 8 6 44 0 5 26 2 11 44 6 15.4 84.6 88.0 12.0
23 1 3 1 6 4 44 1 4 23 2 9 44 4 18.2 81.8 91.7 8.3

On the other hand, the method identifies a high percentage of true positives at Period
1 but a low percentage at Period 23. At Period 1, the method identified 76.8% of the
computers in the red and yellow regions as being indeed corrupted. At Period 23, the

232 D. Chrun, M. Cukier, and G. Sneeringer

method only found 18.2% of corrupted computers in the red and yellow regions. These
numbers might indicate that our method is worsening over time. More details are
necessary to better understand the reasons for the obtained results. As expected, over
time, the security team learned how to integrate the results provided by the IPS in their
overall security solution. The number of identified corrupted computers is 61 at Period
1, 41 at Period 12, and only 6 at Period 23. This clearly indicates that the IPS is helping
the security team improving the overall organization’s security. These numbers help
putting in perspective the only 18.2% of corrupted computers in the regions of concern.
At Period 23, only 5 computers were placed in the red region and 11 in the yellow re-
gion. Among them, 3 computers were incorrectly put in the red region when they were
not corrupted and 6 in the yellow region. On the other hand, at Period 23, most com-
puters were placed in the green region (71). Among them, only 4 (5.6%) were incor-
rectly put in the green region, i.e., they were identified as of low concern when in fact
they were corrupted. The method seems thus to be able to correctly identify the biggest
volumes of events, i.e. corrupted computers at Period 1 and non-corrupted computers at
Period 23.

Fig. 4. Evolution of False Negatives (FN), True Negatives (TN), False Positives (FP) and True
Positives (TP)

6 Conclusion

We presented a method to extract useful information from imperfect IPS event data in
order to rank potentially corrupted computers in an organization. We introduced three
metrics to quantify the level of criticality of a computer: the coefficient of consecu-
tiveness, the number of distinct weeks and the number of distinct signatures. The

Finding Corrupted Computers Using Imperfect Intrusion Prevention System Event Data 233

method classifies computers into regions of main concern (red regions), concern (yel-
low region), or lower concern (green region). We applied the method to IPS event data
collected in an organization of about 40,000 computers. We evaluated our method by
comparing the results obtained by our method with the identification of (non)-corrupted
computers by a security expert. We showed that: 1) the percentage of computers iden-
tified as corrupted is higher for computers in the red region than for computers in the
green region, 2) the trend of the number of true negatives increases over time, 3) the
security team seems to integrate the IPS in their overall organization’s security as the
number of computers identified as corrupted decreases over time.

Acknowledgements

The authors would like to thank Robin Berthier for the fruitful discussions during the
development of this paper.

This research has been supported in part by NSF CAREER award 0237493.

References

1. Bailey, M., Cooke, E., Jahanian, F., Provos, N., Rosaen, K., Watson, D.: Data Reduction for
the Scalable Automated Analysis of Distributed Darknet Traffic. In: Proceedings of the
USENIX/ACM Internet Measurement Conference, New Orleans (2005)

2. Sung, M., Haas, M., Xu, J.: Analysis of DoS attack traffic data. In: 2002 FIRST Conference,
Hawaii (2002)

3. Viinikka, J., Debar, H., Mé, L., Séguier, R.: Time series modeling for IDS alert manage-
ment. In: Proceedings of the 2006 ACM Symposium on Information, computer and com-
munications security, pp. 102–113. ACM Press, New York (2006)

4. Clifton, C., Gengo, G.: Developing custom intrusion detection filters using data mining. In:
MILCOM 2000. 21st Century Military Communications Conference Proceedings, vol. 1
(2000)

5. Cuppens, F.: Managing alerts in a multi-intrusion detection environment. In: Proceedings of
the 17th Annual Computer Security Applications Conference, vol. 32. IEEE Computer
Society, Los Alamitos (2001)

6. Cuppens, F., Miege, A.: Alert correlation in a cooperative intrusion detection framework.
In: IEEE Symposium on Security and Privacy, pp. 202–215 (2002)

7. Julisch, K.: Mining Alarm Clusters to Improve Alarm Handling Efficiency. In: Proceedings
of the 17th Annual Computer Security Applications Conference (ACSAC), pp. 12–21
(2001)

8. Julisch, K.: Data mining for Intrusion Detection. Applications of Data Mining in Computer
Security. Kluwer Academic Publishers, Dordrecht (2002)

9. Julisch, K., Dacier, M.: Mining intrusion detection alarms for actionable knowledge. In:
Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 366–375. ACM Press, New York (2002)

10. Manganaris, S., Christensen, M., Zerkle, D., Hermiz, K.: A data mining analysis of RTID
alarms. Computer Networks 34(4), 571–577 (2000)

11. Pietraszek, T.: Using Adaptive Alert Classification to Reduce False Positives in Intrusion
Detection. In: Recent Advances In Intrusion Detection: 7th International Symposium.
Springer, Heidelberg (2004)

234 D. Chrun, M. Cukier, and G. Sneeringer

12. Debar, H., Wespi, A.: Aggregation and correlation of intrusion-detection alerts. Recent
Advances in Intrusion Detection. Springer, Heidelberg (2001)

13. Morin, B., Me, L., Debar, H., Ducasse, M.: M2D2: A Formal Data Model for IDS Alert
Correlation. In: Recent Advances in Intrusion Detection: 5th Internatonal Symposium.
Springer, Heidelberg (2002)

14. Ning, P., Xu, D., Healey, C., Amant, R.S.: Building attack scenarios through integration of
complementary alert correlation methods. In: Proceedings of the 11th Annual Network and
Distributed System Security Symposium, pp. 97–111 (2004)

15. Valdes, A., Skinner, K.: Probabilistic Alert Correlation. In: Proceedings of the Fourth In-
ternational Workshop on the Recent Advances in Intrusion Detection (2001)

16. Valeur, F., Vigna, G., Kruegel, C., Kemmerer, R.: Comprehensive approach to intrusion
detection alert correlation. IEEE Transactions on Dependable and Secure Computing 1(3),
146–169 (2004)

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 235–248, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Security Threats to Automotive CAN Networks – Practical
Examples and Selected Short-Term Countermeasures

Tobias Hoppe, Stefan Kiltz, and Jana Dittmann

Otto-von-Guericke University of Magdeburg
ITI Research Group on Multimedia and Security

Universitaetsplatz 2
39106 Magdeburg, Germany

{tobias.hoppe,stefan.kiltz,
jana.dittmann}@iti.cs.uni-magdeburg.de

Abstract. The IT security of automotive systems is an evolving area of re-
search. To analyse the current situation we performed several practical tests on
recent automotive technology, focusing on automotive systems based on CAN
bus technology. With respect to the results of these tests, in this paper we dis-
cuss selected countermeasures to address the basic weaknesses exploited in our
tests and also give a short outlook to requirements, potential and restrictions of
future, holistic approaches.

Keywords: Automotive, IT-Security, Safety, Practical tests, Exemplary threats
and countermeasures.

1 Introduction / Motivation

The complexity of current automobiles is constantly increasing. Modern cars contain
a variety of Electronic Control Units (ECUs) that are connected to each other via
different kinds of bus systems in order to reduce the amount of cables needed.

But this growing complexity and added functionality might increasingly attract at-
tackers to misuse these systems for their individual purposes, which has already been
speculated about by IT security researchers like Eugene Kaspersky [1]. Another factor
is the trend of increasing information exchange between automotive systems and the
outside world: For example, [2] demonstrated a technique to inject forged traffic in-
formation into navigation systems using the wireless protocols RDS (Radio Data
System and TMC (Traffic Message Channel). And future technologies like car-to-car
(C2C) [3] or car-to-infrastructure (C2I) communication are already discussed to im-
plement several new automotive applications.

Looking at these trends and the high safety risks of such fast-moving computing
systems, automotive IT security is an important emerging area of research: Unlike
within typical home PC systems, a successful security violation on an automotive IT
system might not only cause nuisance and disclose sensitive data but also directly
endanger the safety of its human users (drivers, occupants) and environment [4].

In this paper we illustrate that already today the IT security of current automotive
systems has to be addressed more forceful. We demonstrate this by summarising

236 T. Hoppe, S. Kiltz, and J. Dittmann

results of several practical tests we performed on current automotive hardware based
on the controller area network (CAN) bus system [5]. The basic weaknesses exploited
in these tests are identified to discuss potential countermeasures for the future.
Though suggestions for holistic approaches for long-term solutions are shortly intro-
duced, we do focus on short-term countermeasures which address the basic weak-
nesses identified so far and might help achieve a reasonable security compromise
until such a major redesign in future.

The paper is structured as follows: In the following section 2 we shortly present the
state of art of automotive IT security measures, starting with existing applications. In
the section 3 we describe our practical tests investigating attacks on exemplary auto-
motive components, which have been partly extended for this publication and illus-
trate potential impacts to safety and comfort. They also serve as a basis for section 4
to identify what security aspects have been violated and which basic weaknesses have
been exploited in these tests. In that section we also discuss potential countermeasures
(some of which could already been demonstrated practically) as well as their potential
and restrictions. The last section 5 concludes this paper with a summary and an
outlook.

2 State of the Art

Whilst car manufacturers have improved the safety of their automobiles a lot during
the past decades, adequate holistic concepts for IT security are not available yet. As
state of the art, IT security mechanisms based on encryption or digital signatures can
already be found in today’s cars [6], but only in a very local scope protecting single
components or functionalities:

Anti-theft systems like central locking or the immobiliser use cryptographic proto-
cols. One example is the keyless entry which typically uses a cryptographic chal-
lenge-response to protect against replay-attacks: The car generates a random value
(challenge) which has to be processed by the key remote using its secret key. After
passing back the correct result, the car doors will be opened. Even if an attacker re-
cords the entire communication between the car and the key remote during this proc-
ess, a replay of these logs does not allow him to enter the car in the absence of the
authentic driver. However, such systems have to be designed carefully. Recently a
successful side channel attack on the proprietary system “Keeloq” has been presented
by [7]. It yields a manufacturer specific master key allowing an attacker access every
car after sniffing two messages from a distance up to 300 ft.

Other potential attack targets car manufacturers are trying to protect are the con-
tents of memory chips, especially of rewritable flash memory holding updateable
programme code and configuration data. One motivation is the protection of their
intellectual property represented by this data. Other threats are posed by common
attacker types like car tuners who frequently modify programme code or configura-
tion data to achieve a higher power output (or, increasingly, also less fuel consump-
tion / eco tuning). Since such unauthorised manipulations also affect issues like safety
and liability, therefore the integrity of flash updates has to be ensured, too. In the
context of the HIS (“Herstellerinitiative Software”) group in Germany [8] several car

 Security Threats to Automotive CAN Networks 237

manufacturers joined and developed a common specification for secure flashing,
which employs digital signatures as cryptographic mechanism.

Although these examples for sound IT security approaches can already be found in
current cars of many manufacturers, they are only covering a very local scope. They
are not conceived to provide a holistic protection for the entire system. This is demon-
strated in the following section 3 by presenting results from practical tests we per-
formed in the past months.

3 Practical Demonstration of Exemplary Automotive IT Security
Threats

Several practical test setups have been created to demonstrate IT security threats of
current automotive technology, to analyse potential safety implications and to define
and evaluate first countermeasures. In this section we summarise the basic principles
and results of these tests to give an overview on our previous work. While most of
these tests have been described in more detail in previous publications, we also have
extended some of them recently to offer new results for this publication.

The tests were performed on a test setup consisting of real automotive hardware. It
contains a wiring harness and different electronic control units (ECUs) of a recent
model (built in 2004) of a big international car producer. Cars of this series use the
CAN bus for the communication between the separate devices. Supported by different
bus interfaces, a PC system can be used to investigate or interact with the automotive
system. Fig. 1 illustrates this test setup.

Fig. 1. Illustration of the practical test environment of automotive hardware

3.1 Analyses on the Electric Window Lift

The first potential attack target we investigated was the electric window lift. Early
practical tests performed on this target were done within a simulation environment.
For this purpose we used a simplified car environment which is part of CANoe, an
established development and simulation software from Vector Informatik [9] widely
used throughout the automotive industry.

238 T. Hoppe, S. Kiltz, and J. Dittmann

In this test, a few lines of malicious code have been added to any ECU attached to
the simulated Comfort CAN subnetwork. By waiting until some condition occurs (in
this case when the car’s speed exceeds 200 km/h) the code then replays the CAN
message containing the flag for opening the driver window. Although the real console
still sends its messages in the same frequency indicating that no button is currently
pushed, the window opens and blocks until the driver reacts by pushing the “close”
button. More details about this test can be found in [10] (as well as [4] and [11]).

Meanwhile, the completion of the aforementioned physical test setup allowed us to
demonstrate similar results on a real window lifter (being part of the door control
modules in our practical test setup, see left part of Fig. 2) during a student project.

After identifying the CAN messages relevant for triggering the window lifts, an at-
tack strategy similar to the simulated attack has been conceived: Every time a CAN
message is observed on the comfort CAN subnetwork containing a flag set to open
the window, a new copy is generated onto this bus specifying an opposite (close) or
cleared (no action) flag. This practical test on current real automotive hardware con-
stitutes a Denial-of-Service (DoS) attack on the window lifts (availability aspects).

The implications of a successful attack can affect both, comfort (the window can-
not be moved any more) and safety (if the shocked driver loses control).

Fig. 2. Electric window lift (section 3.1), Indicator bulb, off (section 3.2)

3.2 Analyses on the Warning Lights

As a second target, the warning lights (the indicators) have been analysed. Amongst
others, the anti-theft system triggers them once an intrusion into a parked and secured
car is detected. A common scenario is an unauthorised opening of a door. Triggered
by a corresponding event from the door contact sensor, the door control module re-
ports this event to the Comfort system ECU, which also contains anti theft system
functionality. Now, an alarm is generated for a few minutes by sending alternating
command telegrams to the vehicle electronics ECU to set or unset the warning lights.

This scenario served as another test case. In our evaluation we found that every
component with access to the Comfort CAN subnetwork (this might be an original
ECU after the injection of malicious code or an additionally attached device like a
developer’s circuit board) can heavily interfere with this process by immediately
sending an “off” command once an “on” command (sent by the Comfort system
ECU) is observed. Even though the “on” commands do not get removed from the
Comfort CAN subnetwork, in our tests [11] this attack proved to be quite powerful:
The indicator bulbs (see right part of Fig. 2) stay completely dark most of the time,

 Security Threats to Automotive CAN Networks 239

while (apparently due to timing reasons) sometimes only a short, weak glowing ap-
peared (though this is not expected to be noticeable through orange glass covers).

While for this attack target comfort implications are hardly relevant, it could affect
the safety e.g. if it activates while the car broke down and hinders it to indicate a
warning to other road users.

3.3 Analyses on the Airbag Control System

Another automotive component which we checked for security vulnerabilities was the
airbag control system. In this attack, which is described in more detail in [12], the
airbag control module was removed from the system. This might be done by an at-
tacker to endanger the cars occupants (by the loss of a safety system), but much more
common purposes are monetary interests. Unfortunately, as more and more police and
press reports state, the theft of airbag systems is already quite common.

Within the attack examined, the attacker tries to suppress several signs of this re-
moval which might sooner or later raise suspicion. One example clearly visible to the
driver is the airbag warning lamp within the within the instrument cluster which indi-
cates a failure (or absence) of the airbag control system. Another sign would be the
failure of a communication with the “defective” system using the diagnostics proto-
col, which might be performed in the car service station by connecting to the car’s
diagnostics interface.

In [12] we managed to emulate the behaviour of a fully functional airbag control
module within a diagnostics session by any device with access to the powertrain CAN
subnetwork (where the removed system also was attached to). In practice this might
be another original device after some software manipulation or an additionally at-
tached cheap circuit board; in our tests we used a PC system attached to the power-
train network via the CAN bus interface. After recording the reactions to diagnostic
queries during a regular diagnostics session, these replies could successfully replayed
in the absence of the airbag control module. The diagnostics software reports the
presence of the device (including its name, part no., etc.) and attests the absence of
any error conditions.

Since this technique only covers the diagnostics protocol so far, it does not yet also
lead to an expiration of the airbag warning light within the instrument cluster, which
is triggered by the CAN gateway ECU. To monitor the presence of each other, ECUs
generally do not use the diagnostics protocol, but monitor other messages usually
transmitted by the respective device – in this case by the airbag control module. In
[12] we preliminarily addressed this problem by removing the airbag system from the
gateway’s device list. To the gateway it looks as if no airbag system was installed in
the first place (which is an option in some countries), therefore no error condition is
generated and the airbag warning light is not triggered. However, for an attacker this
approach still had a few drawbacks. One is the removed device list entry which might
raise attention when listing it during a diagnostics session. An attentive driver might
also discover that, directly after entering ignition state, the airbag lamp does not show
up shortly during the startup checks.

In additional tests we conducted for this publication, we could also practically
demonstrate a more appropriate solution: we identified the relevant CAN message the
gateway ECU expects from the airbag control module. This allows emulating also the

240 T. Hoppe, S. Kiltz, and J. Dittmann

general communication of the airbag control system (beyond the diagnostics protocol
already covered). By replaying this message in its original frequency onto the power-
train CAN subnetwork, the malicious device can also pretend the presence of the
airbag system among the other ECUs. Since this message also contains a bit flag to
set and unset the airbag lamp in the instrument cluster, also a successful startup check
could be emulated this way by the malicious device.

While not reducing comfort (the driver will not notice any lack of functionality in
regular operation) potential safety implications in emergency cases could be severe.

4 Analysis of the Underlying Problems; Capabilities and
Restrictions of Potential Countermeasures

In this section we identify basic weaknesses in today’s automotive systems that made
the exemplary attacks in our practical tests possible. Based on this, potential counter-
measures for future systems are discussed, some of which have already been tested in
our test environment.

In the practical tests described in section 3, we accessed the car’s IT infrastructure
from within its internal bus systems. In the scope of this paper, we do not focus on the
question, what technique a potential attacker might have chosen to get into this posi-
tion. As already mentioned earlier, he might simply have placed some additional
circuit board onto the bus wires, like we did with the CAN bus adapter we used (on
most current cars adequate, exposed positions can be found where wires of the corre-
sponding buses are located). But an attacker could also reduce the required amount of
physical access and equipment by injecting malicious code into an existing device,
e.g. by exploiting unsecured diagnostics interfaces, manipulated update discs for me-
dia systems distributed by social engineering or exploiting potential weaknesses of
wireless communication systems (like future C2C/C2I systems).

Consequently, also the internal communication of a car will have to be secured
more in future. The following five central security aspects and privacy concerns
known from IT security help to identify weaknesses in section 4.1 and discuss poten-
tial countermeasures afterwards:

• Confidentiality / Privacy
• Integrity
• Availability
• Authenticity
• Non-Repudiation

4.1 Analysis of Underlying Problems Relevant for the Exemplary Tests

The exemplary attacking strategies that we utilised in the practical tests primarily
exploited drawbacks of the CAN bus protocol frequently employed in today’s auto-
mobiles. For this reason we concentrate on discussing exemplary requirements for a
secure automotive bus communication, using the CAN bus as example.

Though the CAN bus does provide measures to ensure aspects like the integrity of
the transmitted information from the functional safety perspective (protection against

 Security Threats to Automotive CAN Networks 241

unintended transmission errors by Cyclic Redundancy Checks / CRC), the existing
measures do not meet the requirements from the IT security perspective. For example,
a CRC checksum is not sufficient for detecting falsified contents of a CAN message
which has intentionally been generated by an attacker – just because he would also re-
adjust the CRC information accordingly.

When looking at the IT security aspects listed at the beginning of section 4, for
none of them sufficient measures are provided at the CAN bus level, yet:

Confidentiality / Privacy: A message sent onto a CAN bus can at least be received
by all other ECUs connected to that bus system. Based on the type identifier (ID) of
the message, each ECU decides if or if not to use it. If a gateway is amongst these
nodes and transmits the message into another subnetwork, even more nodes are af-
fected. So in general, each of the receiving nodes can principally read the up to 8
bytes transported with each message. However, in some applications the transmitted
information might be regarded confidential; by collecting information from CAN bus
systems, an attacker could for example be empowered to conclude privacy-relevant
information (e.g. driving behaviour) of the current (or during diagnostic sessions even
about previous) drivers. Encryption or anonymisation would reduce threats like these.

Integrity: With reference to the example given at the beginning of this subsection, a
checksum is not a sufficient measure to ensure integrity from the IT security perspec-
tive. Appropriate measures known from desktop IT would be cryptographic hash
functions, message authentication codes (MAC) or digital signatures, which cannot be
“re-adjusted” by an attacker without knowledge of a secret (private) key.

Authenticity: The CAN bus protocol provides no authenticity measures, CAN bus
messages do not even contain a sender or receiver address. If a node is not configured
to be a regular receiver of the respective type of message (with respect to its ID), the
message and its contents are ignored. The usual sender of each message type is im-
plicitly known, but a node has no possibility to verify this assumption. As our practi-
cal tests showed, malicious nodes can easily spoof messages usually sent by others.
Receiving devices cannot detect that these come from a non-authentic source, rely on
the forged contents and consequently perform unauthorised actions. In future automo-
tive networks this could be addressed e.g. by MACs or digital signatures.

Availability: Using techniques like repeatedly sending unauthorised error flags or
high-priority messages, a malicious node can easily overload an entire CAN (sub-)
network. During such a DoS-attack, none of the other devices in this network would
be available. To ensure availability in the face of DoS-attacks is a difficult problem in
general. The specification of the oncoming FlexRay bus system [13] considers the
option of disconnecting malfunctioning devices or branches from the network by
node-local or central “bus guardians”. However, this also seems to be more a safety
measure against unintended malfunctions than to address security viewpoints.

Non-repudiation: After an incident like the spoofing attacks in our practical tests it is
hard for the attacked devices to deliver proof of their innocence (i.e. that they did
really receive such a malicious command or, respectively, that they did not send such
a message). In the absence of mechanisms for the four aspects above, this is even
more difficult to ensure.

242 T. Hoppe, S. Kiltz, and J. Dittmann

In the following two subsections, exemplary countermeasures are being discussed
that could help to increase the IT security of future automobiles by addressing these
problems like the basic weaknesses exploited in our practical tests.

As mentioned before, a holistic approach obviously would be the best choice. But
ensuring a maximum number of the IT security aspects introduced before would re-
quire an expensive, major redesign. In section 4.3 some current efforts of automotive
IT security researchers are described.

While such extensive solutions are expected to be inevitable in the long-term, sim-
pler and cheaper solutions might be a way to address the most urgent weaknesses in
the near future. In section 4.2 we therefore focus on discussing first concepts that
might help to address basic weaknesses which made our practical tests succeed, which
are mainly the missing authenticity measures in CAN communication.

4.2 Discussion of Short-Term Countermeasures to Address the Demonstrated
Threats, Their Potential and Restrictions

To implement a minimal protection against basic attacking techniques like the ones
presented in the practical tests, in this subsection we discuss two different approaches:

Approach a) Intrusion Detection techniques
Often when a given system has no effective means to prevent some kind of attacks
initially, it should at least be tried to detect them. In the desktop IT domain such com-
ponents are usually called Intrusion Detection Systems (IDS) [14]. Once an incident
has been discovered by such a system (having discovered suspicious activity patterns
in the network activity or at some end system), it might generate warnings or trigger
reactions to limit the consequences of the attack (in that case such systems are often
also called Intrusion Response or Intrusion Prevention Systems / IPS).

A potential application of Intrusion Detection approaches to automotive systems
could be useful as well: In an emergency case where an attack is detected which has
not been thwarted by other existing measures, a warning could be generated to the
driver and advise him to perform an appropriate reaction (e.g. stop the car at the next
safe position). Automatic, autonomous reactions of an automotive IPS could also be
discussed as a further option. However, due to the high safety risks in an automotive
environment and the ever-present risk of potential false positive classifications or the
choice of inappropriate reactions, such an extension would have to be developed with
great care.

With reference to the practical attacks investigated in section 3, we already identi-
fied several patterns which could be applied to detect such attacks. We shortly intro-
duce these patterns below, one of which we have already tested in practice and
discussed in more detail in the context of [15].

Pattern 1: Increased Message Frequency
Often CAN messages of a given ID are broadcasted by a single sending device and in
a constant frequency. In our examples this applies to the state of the window switches
(first part of section 3.1) as well as to the message triggering the warning lights (sec-
tion 3.2). As we demonstrated in the tests, another (malicious) device with access to
the respective (sub-) network can simply add contradicting messages of the same type
to the bus communication to achieve unauthorised actions by the receivers. However,

 Security Threats to Automotive CAN Networks 243

since removing existing messages is a lot harder to achieve, this often results in a
notably higher occurrence rate and frequently changing semantic contents of mes-
sages having the respective ID. Such features can serve as a simple detection pattern
for this kind of attack, indicating authenticity and integrity violations. We could al-
ready demonstrate the effectiveness of this approach practically: in [15] we imple-
mented this detection pattern for a prototypical IDS component and successfully
tested it within our setup for the attack on the warning lights described in section 3.2.

Pattern 2: Obvious Misuse of Message-IDs
In the practical tests, unauthorised messages have been put on the bus by a device
different from the original sender. Since the receiving nodes have no proof of the
authenticity of the message (i.e. if it really has been sent by the original sender), this
attack proved to be very effective. However, these injected messages will also arrive
at the original sending ECU. Currently, from the perspective of an attacker, this is no
serious problem, because that device is not expected to evaluate this type of message,
if this is usually only sent by itself. Consequently, with little effort some IDS func-
tionality could be added to any ECU looking for suspicious incoming messages like
such ones using its exclusive message ID. This could also be applied to gateway
ECUs: Given, a gateway is configured to pass messages of type ma from a subnetwork
na to another subnetwork nb using the (maybe differing) ID mb. If in this setup a mali-
cious message with the ID mb is injected to the target network nb (which would not be
visible to the originally sender, which is only responsible to detect forged messages of
type ma in the source network na), the gateway would be able to detect this incident
(unauthorised use of its exclusive ID mb within nb) accordingly.

Pattern 3: Low-Level Communication Characteristics
In addition to the techniques chosen in the previous patterns, the last pattern discussed
in this section uses a substantially different approach to detect forged messages that
have been injected into a CAN network from an arbitrary bus location. While the
previous patterns only regarded information available from the data link layer (OSI
level 2), we assume that for this purpose also information from the physical layer
(OSI layer 1) could be useful: To put a CAN message onto the bus, every ECU has to
pass it to some CAN controller which generates the corresponding electrical signal at
the bus wires. These controllers are available from different manufacturers (partly as
CPU integrated circuitry). While all of them are supposed to fulfil the CAN specifica-
tions in the end, it might be possible to identify features characteristic for each indi-
vidual chip when looking more closely at the electrical signal generated. Such fea-
tures might be voltage amplitudes and their stability, the shape of the clock edges,
propagation delays, signal attenuation due to wire lengths etc. While still being within
valid intervals or above/below acceptable thresholds, these low-level communication
characteristics could be analysed by a special detection unit to identify the authentic
device which has sent the current message. Such a system could provide useful addi-
tional information allowing the verification of the authenticity of sending nodes
within CAN networks (without the need of any change to existing bus specifications).

Discussion of restrictions
However, with respect to the three patterns mentioned above, a few restrictions can be
identified: As already mentioned, pattern 1 is only applicable to messages transmitted
cyclically. It cannot be applied to message types that only appear occasionally (e.g.

244 T. Hoppe, S. Kiltz, and J. Dittmann

which are only sent once as an indication of some event). Furthermore, pattern 1 and
pattern 2 can obviously only be used to detect an incident, as long as the original
sender is still present and functional. Pattern 3 is principally capable of compensating
these restrictions of pattern 1 and 2. However, if malicious messages are sent by the
same device (i.e. the attacker managed to modify the original sending ECU directly,
e.g. by injecting malicious code), their low-level characteristics do not differ. Another
expected problem might be that different ECUs can use the same CAN controllers
(same manufacturer, same product line). Amongst these, the differences can be ex-
pected to be much smaller. So an interesting point of research would be finding ap-
propriate features with an adequate resolution also for these cases. Also the problem
of a legitimate swap of an ECU (e.g. due to component failure) would have to be
addressed.

Approach b) Proactive Forensics Support
Assuming that IT security related attacks will increase in future, also post-incident
inquiries on automotive systems might get more and more common (driven by police,
insurance companies etc.). As the practical attack introduced in section 3.3 shows,
finding a responding and faultless airbag control system during a diagnosis session is
no reliable indication against a theft suspicion. Currently on the one hand diagnostics
are only designed to detect unintended failures (safety violations) and are not secured
against intended attacks (security violations). On the other hand, it would be too time
consuming to dismantle a huge set of potentially affected cars to look for the physical
presence of the components – and a clever attacker could have even placed dummies.

To also speed up the search for suspected security incidents, the diagnosis system
would have to be extended accordingly. Not only safety related events (more or less
random component failures, blackouts and other malfunctions) would have to be
logged but also additional information especially relevant for security related inquir-
ies. This might contain information about flash operations (updated device, time-
stamp, source etc…), systems being connected from the outside, power downtimes
and many more. If present, also the intrusion detection components discussed above
could notify the black box about suspicious events, e.g. to increase the logging inten-
sity. To protect this sensitive data and avoid additional costs for the regular compo-
nents, it could be stored in a single protected device like a black box and additionally
get configured to be privacy preserving for the drivers.

When discussing this approach, also a few downsides of this approach have to be
mentioned. Although memory devices are constantly getting cheaper and more pow-
erful, especially the physical protection requirements would make such a black box
relatively expensive without an obvious benefit to the customer. In the past, such a
system for safety purposes (accident recorder) was already offered as option (e.g. [16]
by an international car manufacturer. Although due to concerned customers it was
made possible to erase the stored information at any time, they did not accept the
system and it finally did not establish at the market in great numbers. So maybe pri-
vacy concerns were not addressed well enough in the system and its marketing. An-
other problem would be that malicious code, once present in the system, might try to
flood the data recorder by spoofing useless information. This way an attacker might
try to overwrite stored evidence or to hide them in a vast number of irrelevant entries.

 Security Threats to Automotive CAN Networks 245

4.3 The Need for Long-Term Solutions for Holistic Automotive IT Security
Concepts, Their Potential and Restrictions

In the long run, holistic security concepts for automotive systems are inevitable. Re-
search about an appropriate basis for the implementation of such security measures
has just started in the last few years (e.g. [17]). This subsection gives a short overview
on selected approaches currently discussed, their potential and remaining restrictions.

Looking at the special requirements of automotive systems and their role in every
day life yields a few important requirements individual to this domain: Unlike home
or office computer systems, cars are a kind of target frequently being physically ex-
posed to different kinds of attackers (even the owner can be interpreted as an attacker
if he tries to ‘tune’ or unlock some features in his home garage). This means, beneath
a protection against software-based attacks like prevailing in desktop IT, the design of
a holistic security concept for automotive IT systems should also put special focuses
on hardware-related attacks. Another important factor is economy, i.e. the high cost
restrictions car manufacturers have to face. The components to establish a holistic
automotive security platform have to be as cheap as possible.

Especially to guarantee aspects like authenticity or integrity, current IT security
measures rely on asymmetric cryptography which is known to be computationally
very expensive. To reduce computation and therefore hardware costs, alternative
asymmetric algorithms like elliptic curve cryptography (ECC) are currently discussed
[6], which are more efficient (compared to RSA, for example). An additional measure
to address this is implementing these consuming algorithms in hardware.

To provide trustworthy computing platforms in the desktop IT domain, several in-
ternational companies joined in the Trusted Computing Group (TCG) [18]. So-called
Trusted Platform Modules (TPMs) developed by the TCG can already be found in
many computers sold today and first security-related applications increasingly use the
features of these hardware components. The potential of the underlying Trusted Com-
puting (TC) technology for the protection of automotive IT systems is currently being
researched (for example see [19]). Due to the special requirements for the automotive
domain (see above) current TPMs have been identified as inappropriate for the auto-
motive application. Since current TPMs are separate chips being connected via bus
systems, they are vulnerable to hardware attacks and are not suited for the automotive
application with users not being trustworthy. Instead, one-chip solutions are being
discussed combining CPU and TPM in a single, secured chip. To be as cost efficient
as possible, it might only contain the least subset of TC functionality necessary for the
automotive application.

Once such a secure hardware basis will be available in future, the automotive ap-
plications will also need to use these newly provided functions in order to really tap
the potential this new security basis offers. So we expect a major redesign of automo-
tive components and networks to be necessary in that stage. With reference to the
results of our practical tests in section 3, the following example illustrates this: A car
manufacturer might decide to utilise such an automotive Trusted Computing basis
only for securing the different kinds of software updates (flashing, update media etc.)
and selected sensitive information like the mileage counter. Consequently, this will
not cover attacks from the bus level, if the communication between single, protected
ECUs will still use unsecured communication channels (like automotive bus systems

246 T. Hoppe, S. Kiltz, and J. Dittmann

established today – at least an additional security layer would be required on top that
utilises the functions provided by the TC basis).

Other remaining questions are how to keep the deployed crypto algorithms up to
date to face the continuous improvements in cryptanalysis. Currently, the life cycle of
cryptographic algorithms is significantly lower than the typical life time of current
cars (which might easily be on the road for around 20 years). Hardware implementa-
tions of cryptographic algorithms (as discussed) are performing better and are cheaper
than software implementations. On the other hand they are harder to maintain. Field-
Programmable Gate Array (FPGA) chips might be a compromise to address this.

Fig. 3. Exemplary low-tech attack on multimedia system interfaces

Besides the fact that every future automotive security solution will only be a com-
promise between the achievable security level and the resulting costs, the following
last scenario demonstrates that even a technically perfect IT security solution (if actu-
ally possible) could not be expected to provide a full protection against intended at-
tacks without respecting the human factor, as already known from the desktop IT
security domain. Users tend to ignore warning messages and click them away if they
bother them too frequently (e.g. whilst surfing through the web). Others enter sensi-
tive information into forged phishing web pages because an authentic looking email
advised them to do so.

As an example for such “Social Engineering” attacks in the automotive domain we
prepared a multimedia disc containing MP3 music. An attacker might give or send
this disc to his victim as a ‘kind’ gift, knowing that the victim might listen to it at his
next car ride. The multimedia system, which is part of our automotive test environ-
ment, plays the music and, for comfort reasons, always shows artist and title informa-
tion about the current track (read from tag information contained) on its display using
a large font. After a few regular songs, a specially prepared section might have been
inserted by the attacker. In our tests we have split one song into short fragments and
specified a seriously looking warning message as track information on every second
fragment, while letting the entries in the other fragments (nearly) blank. When the
player reaches this location during playback, it starts to display a flashing warning
message (Fig. 3). This attack might even get extended by mixing a horrific warning
signal into the sound material. Frightened by this situation, the driver might not real-
ise the simplicity of this hoax and be seduced to follow such a malicious advice, and
e.g. stop the car immediately – while the system still operates as designed.

Obviously, this attack does not need to break any technical security mechanisms in
order to be effective. Beneath a secure technical platform, for a sound design of an

 Security Threats to Automotive CAN Networks 247

automotive system in its entirety also non-technical aspects need to be addressed –
like a very careful design of the user interfaces. For example, passing metadata of
entertainment media (like MP3 tags) also to the instrument cluster (which seems not
to be supported in our test setup) would be even more critical. Where such arbitrary
information is to be displayed, the designers should take great care to always empha-
sise the context of information being displayed. Although it consumes a bit more
valuable display area, leading “artist:” or “title:” strings in the same font size, which
are displayed by default, might be an appropriate measure to address this.

5 Summary and Outlook

With the focus on CAN based attacks on automotive IT systems, in this paper we
motivated the development of more efficient automotive IT security measures in the
future. Based on the results from our practical tests, we identified basic weaknesses in
today’s automotive communication networks and discussed future countermeasures.
In this publication we focused on short-term solutions addressing the most basic
weaknesses that made our test results possible. We discussed a few exemplary ap-
proaches for such mechanisms (some of which we already tested in practice) with
their individual advantages, potential and restrictions. In the long run, holistic long-
term solutions will be inevitable. We shortly introduced some basic approaches that
are currently discussed by automotive IT security researchers and also discussed ex-
emplary advantages, potential and restrictions of these more holistic approaches.

Acknowledgments. The work described in this paper has been supported in part by
the European Commission through the EFRE Programme “Competence in Mobility”
(COMO) under Contract No. C(2007)5254. The information in this document is pro-
vided as is, and no guarantee
or warranty is given or
implied that the information is
fit for any particular purpose.
The user thereof uses the info-
rmation at its sole risk and
liability.

References

1. Kaspersky, E.: Viruses coming aboard?, Viruslist.com Weblog January 24, 2005 (June 2008),
http://www.viruslist.com/en/weblog?discuss=158190454&return=1

2. Barisani,A., Daniele, B.: Unusual Car Navigation Tricks: Injecting RDS-TMC Traffic In-
formation Signals. In: Can Sec West, Vancouver (2007)

3. Car-2-Car Communication Consortium (June 2008), http://www.car-2-car.org/
4. Lang, A., Dittmann, J., Kiltz, S., Hoppe, T.: Future Perspectives: The Car and its IP-

Address - A Potential Safety and Security Risk Assessment. In: Saglietti, F., Oster, N.
(eds.) SAFECOMP 2007. LNCS, vol. 4680. Springer, Heidelberg (2007)

5. BOSCH CAN, Website (June 2008), http://www.can.bosch.com/

248 T. Hoppe, S. Kiltz, and J. Dittmann

6. Wolf, M., Weimerskirch, A., Wollinger, T.: State of the Art: Embedding Security in Vehi-
cles. EURASIP Journal on Embedded Systems 2007, 16 (2007); Article ID 74706, 16
pages, 2007. doi:10.1155/2007/74706

7. Press release of Ruhr-Universität Bochum: Remote keyless entry system for cars and
buildings is hacked, may 31st, Link (2008), http://www.crypto.rub.de/
imperia/md/content/projects/keeloq/keeloq_en.pdf

8. HIS: Herstellerinitiative Software (June 2008), http://www.automotive-his.de/
9. Vector Informatik (June 2008), http://www.vector-informatik.com/

10. Hoppe, T., Dittmann, J.: Sniffing/Replay Attacks on CAN Buses: A Simulated Attack on
the Electric Window Lift Classified using an Adapted CERT Taxonomy. In: 2nd Work-
shop on Embedded Systems Security (WESS 2007), A Workshop of the IEEE/ACM EM-
SOFT 2007 and the Embedded Systems Week, October 4 (2007)

11. Hoppe, T., Kiltz, S., Lang, A., Dittmann, J.: Exemplary Automotive Attack Scenarios:
Trojan horses for Electronic Throttle Control System (ETC) and replay attacks on the
power window system. In: Automotive Security - VDI-Berichte 2016, 23. VDI/VW Ge-
meinschaftstagung Automotive Security, Wolfsburg, Germany, 27-28 November 2007, pp.
165–183. VDI-Verlag (2007) ISBN 978-3-18-092016-0

12. Hoppe, T., Dittmann, J.: Vortäuschen von Komponentenfunktionalität im Automobil:
Safety- und Komfort-Implikationen durch Security-Verletzungen am Beispiel des Airbags.
In: Sicherheit 2008; Sicherheit - Schutz und Zuverlässigkeit, Saarbrücken, Germany, April
2008, pp. 341–353 (2008) ISBN 978-3-88579-222-2

13. FlexRay - The communication system for advanced automotive control applications (June
2008), http://www.flexray.com/

14. Stakhanova, N., Basu, S., Wong, J.: A Taxonomy of Intrusion Response Systems. nterna-
tional Journal of Information and Computer Security 1(1), 169–184 (2007)

15. Hoppe, T., Kiltz, S., Dittmann, J.: IDS als zukünftige Ergänzung automotiver IT-
Sicherheit. In: DACH Security 2008, June 24-25, 2008, Technische Universität Berlin (to
appear, 2008)

16. Website Kienzle-Automotive, product page of the Unfalldatenspeicher UDS system (June
2008), http://kienzle-automotive.com/index.php?108&tt_products=33

17. Jan Pelzl: Secure Hardware in Automotive Applications. In: 5th escar conference – Em-
bedded Security in Cars, November 6./7, Munich, Germany (2007)

18. Trusted Computing Group (June 2008),
https://www.trustedcomputinggroup.org/

19. Bogdanov, A., Eisenbarth, T., Wolf, M., Wollinger, T.: Trusted Computing for Automo-
tive Systems; In: Automotive Security - VDI-Berichte 2016, 23. VDI/VW Gemeinschaft-
stagung Automotive Security, Wolfsburg, Germany, 27-28 November 2007. VDI-Verlag,
pp. 227-237, (2007) ISBN 978-3-18-092016-0

Constructing a Safety Case for
Automatically Generated Code from

Formal Program Verification Information

Nurlida Basir1, Ewen Denney2, and Bernd Fischer1

1 ECS, University of Southampton, Southampton, SO17 1BJ, UK
{nb206r,b.fischer}@ecs.soton.ac.uk
2 USRA/RIACS, NASA Ames Research Center

Mountain View, CA 94035, USA
Ewen.W.Denney@nasa.gov

Abstract. Formal methods can in principle provide the highest levels of assur-
ance of code safety by providing formal proofs as explicit evidence for the as-
surance claims. However, the proofs are often complex and difficult to relate to
the code, in particular if it has been generated automatically. They may also be
based on assumptions and reasoning principles that are not justified. This causes
concerns about the trustworthiness of the proofs and thus the assurance claims.
Here we present an approach to systematically construct safety cases from in-
formation collected during a formal verification of the code, in particular from
the construction of the logical annotations necessary for a formal, Hoare-style
safety certification. Our approach combines a generic argument that is instanti-
ated with respect to the certified safety property (i.e., safety claims) with a de-
tailed, program-specific argument that can be derived systematically because its
structure directly follows the course the annotation construction takes through the
code. The resulting safety cases make explicit the formal and informal reasoning
principles, and reveal the top-level assumptions and external dependencies that
must be taken into account. However, the evidence still comes from the formal
safety proofs. Our approach is independent of the given safety property and pro-
gram, and consequently also independent of the underlying code generator. Here,
we illustrate it for the AutoFilter system developed at NASA Ames.

Keywords: Automated code generation, formal program verification, Hoare
logic, fault tree analysis, safety case, Goal Structuring Notation.

1 Introduction

Model-based design and automated code generation have become popular, but substan-
tial obstacles remain to their widespread adoption in safety-critical domains: since code
generators are typically not qualified, there is no guarantee that their output is safe, and
consequently the generated code still needs to be fully tested and certified. Here, for-
mal methods such as formal software safety certification [6] can be used to demonstrate
safety of the generated code (i.e., that the execution of the code does not violate a spec-
ified property) by providing formal proofs as explicit evidence or certificates for the

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 249–262, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

250 N. Basir, E. Denney, and B. Fischer

assurance claims. However, several problems remain. For automatically generated code
it is particularly difficult to relate the proofs to the code; moreover, the proofs are the
final stage of a complex process and typically contain many details. This complicates
an intuitive understanding of the assurance claims provided by the proofs. Hence, it is
important to make explicit which claims are actually proven, and on which assumptions
and reasoning principles both the claims and the proofs rest. Moreover, the complexity
of the tools used can lead to unforeseen interactions and thus causes additional concerns
about the trustworthiness of the assurance claims. We thus believe that traceability be-
tween the proofs on one side and the certified program and the used tools on the other
side is important to gain confidence in the formal certification process.

Here, we address these problems and present an approach currently under develop-
ment to systematically derive safety cases from information collected during the formal
software safety certification phase, in particular the construction of the necessary log-
ical annotations. The purpose of these safety cases is to provide a “structured reading
guide” for the program and the safety proofs that will allow users to understand the
safety claims without having to understand all the technical details of the formal ma-
chinery. We use a fault tree analysis to identify possible risks to the program safety
and the certification process, as well as their interaction logic, and thus to derive the
structure of the safety cases. We then use a generic, multi-tiered argument [3] that is
instantiated with respect to a given safety property and program. Its three tiers together
constitute a single safety case that justifies the safety of the program. The upper tier
simply instantiates the notion of safety and the formal definitions for the given safety
property while the two lower tiers argue the safety of the program as governed by the
property. The lower tiers are constructed individually to reflect the program structure.
This can be done systematically because their structure directly follows the course the
annotation construction takes through the program. In principle, our approach is thus in-
dependent of the given safety property and program, and consequently also independent
of the underlying code generator [10].

We have developed the overall structure of the generic safety case and manually
instantiated it for several examples, using only information logged during annotation
construction. We expect that this process can be automated easily and that it will fur-
thermore be straightforward to integrate with existing tools to construct safety cases
such as Adelard’s ASCE tool [1]. The program safety case will eventually be comple-
mented by an additional safety case that will argue the safety of the underlying safety
logic (the language semantics and the safety policy) with respect to the safety property
(i.e., safety claims), as well as other components such as the theorem prover. This will
clearly communicate how the safety claims, key safety requirements, and evidence for
the program safety are connected. We expect that this will alleviate distrust in code
generators, which remains a problem for their use in safety-critical applications.

2 Background

Here, we give a brief overview of automated code generation; we focus on the certifi-
able code generation approach, where the assurance is not implied by the trust in the
generator but follows from an explicitly and independently constructed argument for
the generated code.

Constructing a Safety Case for Automatically Generated Code 251

2.1 Assurance for Automated Code Generation

Automated code generation [5] is a technique for automatically constructing software
from (high-level) problem specifications or models. Code generators typically work by
adapting and instantiating pre-defined code fragments for (parts of) the problem spec-
ification, and composing these partial solutions. They have a significant potential to
eliminate manual coding errors and reduce costs and development times. Obviously, to
realize any benefits from code generation, the generated code needs to be shown cor-
rect or at least safe. In correct-by-construction techniques such as deductive synthesis
[23] or refinement [22] this is done by a mathematical meta-argument. However, such
techniques remain difficult to implement and extend and have not found widespread
application. A formal verification of the generator would provide a similar level of
assurance, but remains unfeasible with the existing program verification techniques.
Currently, generators are thus validated primarily by testing [24], in line with software
development standards for safety-critical domains such as DO-178B [21]. However,
this time-consuming and expensive process slows down generator development and ap-
plication, and only few generators have been qualified.

We believe that product-oriented assurance approaches are a viable alternative to the
process-oriented approaches outlined above. Here, checks are performed on each and
every generated program rather than on the generator itself. Hence, assurance is not im-
plied by the trust in the generator but follows from an explicitly constructed argument
for the generated code. In our approach [8,9,11], we focus on safety properties, which
are generally accepted as important for quality assurance and are also often used in code
reviews of high-assurance software. We then use program verification techniques based
on Hoare logic to formally demonstrate that the generated code satisfies the safety prop-
erties of interest. Our approach generally follows similar lines as proof carrying code
[16] but it works on the source code level instead of the object code level [6]. However,
both approaches exploit formal safety proofs as explicit evidence or certificates for the
assurance claims over the untrusted code.

2.2 Formal Software Safety Certification

The purpose of software safety certification is to demonstrate that a program meets its
high-level requirements and remains safe in the presence of known hazards. Formal
software safety certification uses formal techniques based on program logics to show
that the program does not violate certain conditions during its execution. A safety prop-
erty is an exact characterization of these conditions, based on the operational semantics
of the programming language. Each safety property thus describes a class of hazards.
A safety policy is a set of Hoare rules designed to show that safe programs satisfy the
safety property of interest. In our framework, the rules are formalized using the usual
Hoare triples extended with a “shadow” environment which records safety information
related to the corresponding program variables, and a safety predicate that is added to
the computed verification conditions (VCs) [6]. However, here we focus on the infor-
mation provided by constructing the annotations, and leave the details of constructing
(i.e., applying the Hoare rules) and proving (i.e., calling the theorem prover) the VCs to
the complementary system-wide safety case.

252 N. Basir, E. Denney, and B. Fischer

Fig. 1. System Architecture

Formal software safety certification follows the same technical approach as program
verification. A VC generator (VCG) traverses the code backwards and applies the Hoare
rules to produce VCs, starting with any safety requirements on output variables. If all
VCs are proven by an automated theorem prover (ATP), we can conclude that the pro-
gram is safe wrt. the given safety property. This approach shift the trust burden from
the program to the certification system: instead of having to trust an arbitrary program
to be safe, users have to trust the certifier to be correct.

Figure 1 shows the overall system architecture of our certification approach. In this,
the original code generator (in this case, the AutoFilter system [28]) has been extended
with the annotation inference subsystem and the standard machinery of Hoare-style
verification techniques (i.e., VCG, simplifier, ATP, domain theory, and proof checker)
to achieve a fully automated verification of the generated code. The architecture dis-
tinguishes between trusted (in grey) and untrusted components (in white) as shown in
Figure 1. Trusted components must be correct because any errors in them can compro-
mise the assurance provided by the overall system. Untrusted components, on the other
hand, are not crucial to the assurance because their results are double-checked by at
least one trusted component.These components and their interactions are described in
more detail in [6,8,9].

Rather than acting as a black-box verification tool which provides a simple pass/fail
result, our certification approach provides a structured safety arguments, supported by
a body of evidence (i.e., safety cases) to demonstrate why the generated code can be
assumed to be sufficiently safe. The safety case is generated from the analysis of the
code and provides a high-level traceable argument of how the code complies with the
specified safety property. The inference engine supplies information to the safety case
generator, which renders this along with the code. The safety case generator identifies
each part of the program that can draw attention to potential certification problems and
select appropriate evidence to reason correctness of the underlie safety claims and the
certification process. By elucidating the reasoning behind the certification process, there
is less of a need to trust the tool.

Constructing a Safety Case for Automatically Generated Code 253

Here, we use initialization safety (i.e., each variable or individual array element has
explicitly been assigned a value before it is used) as an example, but our framework
can handle a variety other safety properties including absence of out-of-bounds array
accesses [6]; we expect that other properties handled by proof-carrying code such as
null pointer dereferences [16] can be formalized easily. However, we are not restricted
to showing exception freedom but can also encode domain-specific properties such as
matrix symmetry or coordinate frame consistency (which requires significant proofs
involving matrix algebra and functional correctness), whose violation will not immedi-
ately cause a run-time exception but still renders the code unsafe.

The Hoare-approach to safety certification is more flexible than special-purpose
static analysis tools such as PolySpace [18] that can only handle the comparatively sim-
ple language-specific properties. It also provides explicit evidence in form of proofs,
which static analysis tools typically lack.

2.3 Annotation Inference

In order to achieve a fully automated verification, a program logic requires annotations
(i.e., pre- and post-conditions, and loop invariants) at key program locations. These
annotations serve as lemmas that facilitate the proof of VCs, but they have to be estab-
lished in their own right (i.e., they will produce VCs that show that they hold at their
given location). The purpose of annotation inference [8,9] is to construct these anno-
tations automatically, by analyzing the program structure. In our case, the annotations
must formalize all pertinent information that is necessary for the ATP to prove that all
potentially unsafe locations are in fact safe. If the program is safe, this information
will be established or “defined” at some location (which we thus call a definition) and
maintained along all control-flow paths to all the potentially unsafe locations, where
it is used. The idea of the annotation inference algorithm, therefore, is to “get the in-
formation from definitions to uses”, i.e., to find the endpoints of all such generalized
def -use-chains, to construct the formulae used in the annotations, and to annotate the
program along the paths.

The annotation inference algorithm itself is generic, and parametrized with respect
to a library of coding patterns that depend on the safety policy and the code gener-
ator. The use of these patterns isolates the annotation construction from the internal
details of the code generation and also allows us to a certain degree to handle code
that has been modified manually. The patterns characterize the notions of definitions
and uses that are specific to the given safety property. For example, for initialization
safety, definitions correspond to variable initializations while uses are statements which
read a variable, whereas for array bounds safety, definitions are the array declarations
(where the shadow variables get their values from the declared bounds), while uses
are statements which access an array variable. The inferred annotations are thus highly
dependent on the actual program and the properties being proven. For example, for
initialization safety, an invariant on a for-loop might express that an array has been ini-
tialized up to the loop index (∀j ≤ i ·Ainit[j] = INIT). The VCG will turn this annotation
into three VCs, corresponding to establishing the invariant on loop entry, preservation
of the invariant by the loop body, and implication by the “exit form” of the invariant
(i.e., over the loop bounds) of the loop post-condition. For other safety properties, the

254 N. Basir, E. Denney, and B. Fischer

annotations can be seen as encapsulating the safety requirements directly. In the case of
the symmetry policy, a postcondition ∀i, j · M [i, j] = M [j, i] expresses the symmetry
of M . Again, this will be converted into VCs and checked by the prover. However, it
is the def -use-dependencies, rather than the annotations or the VCs, which govern the
overall structure of both the safety argument and the safety case.

3 Hazard Analysis for Formal Program Verification

While formal program verification has become a viable alternative in demonstrating
program safety, doubts about the trustworthiness of the verification proofs remain.
These doubts concern not only the correctness of the proofs (i.e., whether each proof
step is legal in the underlying calculus) or the correctness of any of the other tools that
handle the verification conditions, but also the question whether the proofs actually en-
tail program safety. Since there are many possible ways in which the trustworthiness
can be compromised, a fault tree analysis is required to identify the chain of causes and
their interaction logic that initiate this undesired event.

However, our situation is complicated by the fact that the code generator is a meta-
level system, and we do not know the application context of the generated program. In
order to analyze the situation already at this meta-level (rather than deferring this to the
final application), we need to make the simplifying but conservative assumption that
every violation of the safety property is a “potential condition that can cause harm to
personnel, system, property or environment”, i.e., a hazard [15].

A further complication is caused by the fact that the certification system is purely
observational in the sense that it cannot introduce any additional hazards as defined
above, but should nonetheless be included in the hazard analysis. We thus need to look
at the interaction between the code generator and the certification system to identify
faults of the combined system. We consider two sets of indicators, namely the output
of the code generator, or more precisely, whether the generated code is safe or unsafe,
and the output of the certification system, or more precisely, its claim about the safety
of the code (i.e., safe, unsafe, or unknown). We then consider all situations in which
these two indicators do not agree as abnormal or faults of the combined system. The
most critical fault, on which we concentrate here, occurs if the code exhibits an unsafe
behavior when it is executed but the certification system claims that all safety properties
were proven to hold.

The fault tree shown in Figure 2 demonstrates how the combinations of events that
could lead to the top-level hazard (i.e., an undetected violation of the safety property)
are linked together. It focuses on showing possible events that might invalidate the
safety claim construction as it follows the structure of the generated code. A complete
analysis would also need to look at other hazards, e.g., incorrect proofs or inconsistent
axioms; the corresponding fault tree will lead to the system-wide safety case and is left
for future work.

Figure 2 shows that there are two potential causes for the top-level hazard, either a
missed potentially unsafe location in the code or the certification system erroneously
concluded that all locations in the code are safe. Potentially unsafe locations in the
generated code can be missed because of

Constructing a Safety Case for Automatically Generated Code 255

– an incomplete or incorrect formalization of the safety policy corresponding to the
given safety property (i.e., the failure to detect a location as potentially unsafe),

– an incomplete or incorrect representation of the safety requirements in critical an-
notations (e.g., a wrong global post-condition on the output variables),

– missing VCs (e.g., due to errors in the VCG), or
– incomplete coverage of the program, missing claims for any variable, occurrence

or path in the program.

Here, our safety case will focus on the last cause, as it is the only cause directly related
to the code generator. All other causes will be handled by the complementary system-
wide safety case.

Fig. 2. Fault Tree for Program Verification

Since any location is considered safe if a proof for its corresponding safety obligation
can be found, assuming the hypotheses available at that location, the conclusion that the
program is safe at all locations can be wrong due to three reasons:

– the proof can be technically wrong (i.e., not conform to the inference rules of the
underlying calculus), or

– the safety obligation that is proven can be wrong (i.e., does not imply the safety of
the location), or

– the hypotheses used in the proof can be wrong (i.e., do not hold at the location).

Here, we concentrate on the last two reasons and rely on proof checking [29] to mitigate
the hazards connected with the first cause. The safety obligation can be wrong if any
of the critical annotations are wrong (similar to the case of missing a potentially unsafe
location described above), or if the safety policy (including the safety predicate) or its

256 N. Basir, E. Denney, and B. Fischer

implementation in the VCG are wrong. The hypotheses can be wrong because they have
been constructed wrongly at a definition or result from a definition that is on an incorrect
path, or because they are not maintained along the paths from the definition to the use, or
because the different hypotheses from the different paths are inconsistent to each other.

4 Constructing Safety Cases Via Annotation Inference

In our work, we consider each violation of the given safety property by the generated
code as a hazard. The purpose of the safety case described here is to construct a safety
case that argue that the safety property is in fact not violated and thus that the risk
associated with this hazard (as identified in section 3) is controlled or mitigated and can
not lead to a system failure.

Safety cases [4] are structured arguments, supported by a body of evidence, that
provide a convincing and valid case that a system is acceptably safe for a given ap-
plication in a given operating environment. In our case, the high-level structure of this
argument is constructed from information collected by the annotation inference algo-
rithm. However, the evidence still comes from the formal safety proofs. The safety case
makes explicit the formal and informal reasoning principles, and reveals the top-level
assumptions and external dependencies that must be taken into account. It also provides
information about why the generated code can be assumed to be sufficiently safe. It can
thus be thought of as “structured reading guide” for the safety proofs and act as a trace-
able route to the safety requirements, safety claims and evidence that are required to
show safety of the generated code.

We use the Goal Structuring Notation [14] as technique to explicitly represent the log-
ical flow of the safety argument. Basically, the safety arguments presented here indicates
a linkage between evidence (i.e., formal proofs) and safety claims i.e., that there is no vi-
olation to the given safety property that lead to the incorrect formal proofs, and thus the
code is indeed safe with respect to the initialization before use safety property. Here, we
provide a simplified overview of this safety case. We concentrate on its generic structure
and describe its different tiers. We further concentrate on the program itself, leaving the
remaining elements (i.e., the formal framework, the certification system and its individual
components, and the safety proofs) of the combined safety case for future work.

4.1 Tier I: Explaining the Safety Notion

Figure 3 shows the the top tier of the safety case. It starts with the top-level safety goal
(i.e., the safety of the generated code with respect to the safety property of interest) and
shows how this is achieved by a defensible argument based on the partial correctness of
the generated code. The argument stresses the meaning of the Hoare-style framework,
specialized to the given safety property. However, the argument structure remains inde-
pendent of the property. Here, contexts explain the informal interpretation of key no-
tions like “safe” and “safety property”. Constraints outline limitations of the approach,
in particular, the fact that certification works on an intermediate representation of the
source code and only shows a single property, e.g., init-before-use. Hyperlinks refer to
additional evidence in the form of documents containing, for example, the model from
which the source code has been generated.

Constructing a Safety Case for Automatically Generated Code 257

Goal: The code is safe to execute
wrt. the “init-before-use” safety
property

Context: safe = code does not
violate given safety property
during execution

Context: Generated by Autofilter
from the model quaternion_ds1

Constraint: Certification works on
intermediate representation only

Context: safety property =
requirement to be maintained
continuously by program

Context: init-before-use =
variable or array element is
explicitly assigned by a value
before it is read

Constraint: focus on given safety
property only

Goal: all read accesses to all
variables are safe wrt.
init-before-use

Goal: Formalization of safety
policy is adequate

Model: Hoare-style program
verification using specific proof
rules

Justification: proof of
correctness ensure safety of
execution

Constraint: partial correctness
proof only (no termination)

Model: Semantic safety
definition n, n’ |= x safe init iff
xinit = init

Justification: safety policy
defined in terms of read accesses

Context: safety policy = set of
Hoare rules designed to show
that safe programs satisfy the
safety property of interest

Context: “shadow variable”
record safety-relevant
information for variables

Strategy: Argument
based on partial
correctness wrt.
init-before-use policy

J

J

Fig. 3. Tier I of Derived Safety Case: Explaining the Safety Notion

The key strategy at this tier and its model (i.e., a Hoare-style partial correctness proof
using the dedicated proof rules of the init-before-use safety policy) as well as its limi-
tations (i.e., no termination proof) are made explicit. The strategy reduces showing the
safety of the whole program to showing the safety of all read accesses, which emerges
as first subgoal. This is justified by the fact that the safety property is defined in terms
of variable read accesses. The subgoal is further elaborated by a model of the semantic
safety definition, which exactly defines what is meant by “safe”, using the notion of
shadow variables given as context. The strategy’s second subgoal is to show that the
safety policy adequately represents the safety property, which is also the foundation of
the strategy’s original justification (i.e., the claim that the proofs ensure the safe execu-
tion of the program). This subgoal is not elaborated further in this safety case but leads
to the complementary safety case for the safety logic.

4.2 Tier II: Arguing over the Variables

The second tier reduces the safety of all variables in two steps, first to the safety of each
individual variable (justified by the fact that the safety property is defined on individual
variables) and then to the safety of the individual occurrences. Note that the number of
subgoals of both strategies (see Figure 4 for the goal structure) and the safety conditions
are program-specific. This information is provided by the annotation inference.

Both strategies are predicated on the assumption that they iterate over the complete
list of variables (resp. occurrences). Each individual occurrence then leads to a subgoal

258 N. Basir, E. Denney, and B. Fischer

Goal: all read accesses to all
variables are safe wrt.
init-before-use

Justification: Safety property
defined on individual variables

Assumption: Complete list of
variables

Goal: xinit is safe Goal: xhatmin is safe Goal: r is safe

Justification: Only read
accesses can violate safety

Assumption: Complete list of
occurrences

Goal: xhatmin is safe at location
#161

Goal: xhatmin is safe at location
#265

Goal: xhatmin is safe at location
#294

Goal: Safety condition xhatmin init

(3,0) = init holds at this location
Justification: Safety condition is
derived by instantiation of the
safety predicate over

Justification: Soundness and
completeness of safety policy

Strategy: Argument over
all read access
occurrences of xhatmin

Strategy: Argument over
each variable individually

J J

A J

A J

Fig. 4. Tier II of Derived Safety Case: Arguing over the Variables

to show that the computed safety condition is valid at the location of the variable’s
occurrence. This reduction to a formal proof obligation is justified by the soundness and
completeness of the safety policy; in addition, the specific form of the safety condition
is also justified. Note that some of the root cause identified in the fault tree remain
as assumptions in the safety case (i.e., the list of variables and their occurrences are
assumed to be complete). However, these can be checked easily, since they require no
deep analysis of the generated code; in fact, the check could be automated easily.

4.3 Tier III: Arguing over the Paths

The final tier (see Figure 5 for the goal structure) argues the safety of each individual
variable access, using a strategy based on establishing and maintaining appropriate in-
variants. This directly reflects the course the annotation inference has taken through the
code. The first subgoal is thus to show that the variable safety is established on all paths
leading to the current location, using an argument over all definition locations. Here,
the model for the subgoal corresponds to the pattern that was applied during annotation
inference to identify the definition. Each definition thus leads to a corresponding sub-
goal and then further to any number of VCs, although here only a single VC emerges in
both cases. The proof from these VCs demonstrate that the risk identified in the hazard
analysis (cf. Figure 2) does not occur for the given program.

Goals that concern properties of the program (e.g., “xhatmin is defined”) are decom-
posed into subgoals that comprise program-independent tasks for the prover, i.e., VCs.
The validity of the construction of the VCs depends on the soundness of the rules of the

Constructing a Safety Case for Automatically Generated Code 259

Model: Matrix
assignment

Assumption:
Complete list of paths

Model: Series
of assignment

Goal: xhatmin is
defined in lines
154-159

Goal: VC #17
is proven

Goal: VC #04
is proven

Goal: VC #07
is proven

Goal: VC #14
is proven

Goal: Safety condition xhatmin init

(3,0) = init holds at this location

Assumption: Complete
list of VCs

Goal: Variable safety from all
paths implies safety condition

Goal: Variable safety is established
on all paths to this location

Goal: Variable safety is maintained
on all paths to this location

Goal: VC #30
is proven

Goal: xhatmin is
defined at line
288

Goal: variable
safety maintained
on path #1

Goal: variable
safety maintained
on path #4

Strategy: Argument over
establishment, maintenance
and strength of variable safety

Strategy: Argument over
establishment of variable
safety

Strategy: Argument over
all paths

A

A

Fig. 5. Tier III of Derived Safety Case: Arguing over the Paths

VCG, the simplifier, and the definition of the safety policy, while the correspondence
to program locations is based on tracing information added by the VCG and retained
during the certification process. We have omitted these details from the safety case.

The second subgoal of the top-level strategy is to show that the established vari-
able safety is maintained along all paths. This proceeds accordingly and the VCs again
demonstrate that the identified risk is mitigated. The final subgoal is then to show that
the variable safety implies the validity of the safety condition. This can again lead to
any number of VCs. If (and only if) all VCs can be shown to hold, then the safety prop-
erty holds for the entire program. The evidence for the VCs is provided by the formal
proofs; we plan to convert these into safety cases as well.

5 Related Work

Most previous work on assurance for automated code generation has focused on tech-
niques to ensure the correctness of the code generator. Whalen et al. [27] describe a
minimum set of requirements for creating code generators that are fit for application
in safety-critical systems. However, this set includes a formal correctness proof of the
translation implemented by the generator (more precisely, an equivalence proof be-
tween model and generated code), which practically feasible only for generators with
very similar input and output notations. Our approach, in contrast, is applicable for a
much wider range of generators. Stürmer et al. [24,25] present a systematic testing ap-
proach and safeguarding techniques for model-based code generation tools. However,
the effort easily becomes excessive and testing on its own is insufficient to provide
enough assurance for safety-critical systems. Instead, some other basis is required to
trust automatically generated code. Both O’Halloran [17] and Denney et al. [11] thus

260 N. Basir, E. Denney, and B. Fischer

suggest that there should be explicit proofs for the correctness of the generated code
rather than just trust the correctness of the generator itself.

Only program verification can prove that of program is free of certain defects or does
have a certain property of interest. Traditionally, program verification concentrates on
showing full functional equivalence between specifications and programs, as for exam-
ple the KIV system [19]. Necula [16] introduced proof-carrying code (PCC) as new
technique to formally verify untrusted code based on specific safety property. PCC and
related verification techniques (including our certification approach) generate a large
amount of formal mathematical proofs, which cannot be easily understood by users.
Consequently, the proofs only tell whether a program is safe or unsafe, but offer no
insight into or explanation of the underlying reason. Only few tools combine program
verification and documentation, for example the PolySpace static analysis tool [18]. It
analyzes programs for compliance with fixed notions of safety, and produces a marked-
up browsable program together with a safety report as an Excel spreadsheet. However,
unlike our approach, PolySpace does not describe the construction of the underlying
safety claims or their relation to the program.

Hughes [13] argues that explanations are appropriate only when we are seeking to
understand why something occurred while arguments are appropriate when we want
to show that something is true. The argumentation (i.e., safety cases [4,14]) has been
adopted across many industries especially in safety-critical systems. For example, Wea-
ver [26] presents arguments that reflect the contribution of software to critical system
safety and Reinhardt [20] presents arguments over the application of the C++ program-
ming language in safety-critical systems. Audsley et al. [2] present arguments over the
correctness of specification mapping from system model to code and subsequent trans-
lation into code. In [12], Galloway et al. present a generic argument for technology sub-
stitution i.e., argue for the safety of substitution of testing with proof-based verification
in the context of certification standards like DO-178B [21]. They present an argument
on how can we reasonably conclude, from the evidence available, that the replacement
technology is at least as convincing as the evidence produced by testing and there is no
impact on system safety. All of this work remains completely generically. While our
approach uses a generic argument over safety of the generated code with respect to the
safety property of interest, it then shows how this is achieved for the specific code, by
constructing a specific defensible argument based on the partial correctness of the gen-
erated code. However, our approach remains independent of the given safety property
and program, and consequently also independent of the underlying code generator.

6 Conclusions

We believe formal methods such as formal software safety certification can provide the
highest level of assurance of the code’s safety, and have described an approach whereby
the inference of annotations drives both formal safety proofs and the construction of a
safety case. Here, assurance is not implied by the trust in the generator but follows from
an explicitly constructed argument for the generated code.

However, the proofs by themselves are no panacea, and it is important to make
explicit which claims are actually proven, and on which assumptions and reasoning

Constructing a Safety Case for Automatically Generated Code 261

principles both the claim and the proof rest. We believe that purely technical solutions
such as proof checking [29] fall short of the assurance provide by our safety case, since
they do not take into account the reasoning that goes into the construction of the VCs.
Here, we use formal proofs only as evidence and base the argumentation structure de-
rived from the course the annotation inference has taken through the code. We consider
the safety case as a first step towards a fully-fledged software certificate management
system [7].

The work we have described here is still in progress. So far, we have developed the
overall structure of the generic program safety case and instantiated it manually. The
example shown here uses code generated by our AutoFilter system [28], but the un-
derlying annotation inference algorithm has also been applied to code generated from
Matlab models using Real-Time Workshop, and we are confident that the same deriva-
tion can be applied there as well. Future work will focus on complementary safety cases
that argue the safety of the certification framework itself, in particular the safety of the
underlying safety logic (the language semantics and the safety policy) with respect to
the safety property (i.e., safety claims) and the safety of other certification components
such as the domain theory and the theorem prover.

We believe that the result of our research will be a combined safety case (i.e., for the
program being certified, as well as the safety logic and the certification system) that will
clearly communicate the safety claims, key safety requirements, and evidence required
to trust the generated code.

Acknowledgements. This material is based upon work supported by NASA under
awards NCC2-1426 and NNA07BB97C. The first author is funded by the Malaysian
Government, IPTA Academic Training Scheme.

References

1. ASCE home page (2007), http://www.adelard.com/web/hnav/ASCE
2. Audsley, N.C., Bate, I.J., Crook-Dawkins, S.K.: Automatic Code Generation for Airborne

Systems. In: Proc. of the IEEE Aerospace Conference, p. 11. IEEE, Los Alamitos (2003)
3. Basir, N., Denney, E., Fischer, B.: Deriving Safety Cases for the Formal Safety Certification

of Automatically Generated Code. In: Huhn, M., Hungar, H. (eds.) SafeCert 2008 Intl. Work-
shop on the Certification of Safety-Critical Software Controlled Systems, ENTCS. Elsevier,
Amsterdam (2008)

4. Bishop, P., Bloomfield, R.: A methodology for safety case development. In: Redmill, F., An-
derson, T. (eds.) Industrial Perspectives of Safety-critical Systems: Proc. 6th Safety-critical
Systems Symposium, pp. 194–203. Springer, Heidelberg (1998)

5. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and Applica-
tions. Addison-Wesley, Reading (2000)

6. Denney, E., Fischer, B.: Correctness of source-level safety policies. In: Araki, K., Gnesi,
S., Mandrioli, D. (eds.) Proc. FM 2003: Formal Methods. LNCS, vol. 2805, pp. 894–913.
Springer, Heidelberg (2003)

7. Denney, E., Fischer, B.: Software certification and software certificate management systems
(Position paper). In: Proc. ASE Workshop on Software Certificate Management Systems, pp.
1–5. ACM, New York (2005)

http://www.adelard.com/web/hnav/ASCE

262 N. Basir, E. Denney, and B. Fischer

8. Denney, E., Fischer, B.: A generic annotation inference algorithm for the safety certification
of automatically generated code. In: Jarzabek, S., Schmidt, D.C., Veldhuizen, T.L. (eds.)
Proc. Conf. Generative Programming and Component Engineering, pp. 121–130. ACM, New
York (2006)

9. Denney, E., Fischer, B.: Annotation inference for safety certification of automatically gen-
erated code (extended abstract). In: Uchitel, S., Easterbrook, S. (eds.) Proc. 21st ASE, pp.
265–268. IEEE, Los Alamitos (2006)

10. Denney, E., Trac, S.: A Software Safety Certification Tool for Automatically Generated Guid-
ance, Navigation and Control Code. In: Electronic Proc. IEEE Aerospace Conference. IEEE,
Los Alamitos (2008)

11. Denney, E., Fischer, B.: Certifiable program generation. In: Glück, R., Lowry, M. (eds.)
GPCE 2005. LNCS, vol. 3676, pp. 17–28. Springer, Heidelberg (2005)

12. Galloway, A., Paige, R.F., Tudor, N.J., Weaver, R.A., Toyn, I., McDermid, J.: Proof vs testing
in the context of safety standards. In: The 24th Digital Avionics Systems Conference, vol. 2,
p. 14. IEEE Press, Los Alamitos (2005)

13. Hughes, W.: Critical Thinking. Broadview Press (1992)
14. Kelly, T.P.: Arguing safety a systematic approach to managing safety cases. PhD Thesis,

University of York (1998)
15. Leveson, N.G.: Safeware: System Safety and Computers. Addison-Wesley, Reading (1995)
16. Necula, G.C.: Proof-carrying code. In: Proc. 24th Conf. Principles of Programming Lan-

guages, pp. 106–119. ACM, New York (1997)
17. O’Halloran, C.: Issues for the automatic generation of safety critical software. In: Proc.15th

Conf. Automated Software Engineering, pp. 277–280. IEEE, Los Alamitos (2000)
18. PolySpace Technologies, http://www.polyspace.com
19. Reif, W.: The KIV Approach to Software Verification. In: KORSO: Methods, Languages and

Tools for the Construction of Correct Software. LNCS, vol. 1009, pp. 339–370. Springer,
Heidelberg (1995)

20. Reinhardt, D.W.: Use of the C++ Programming Language in Safety Critical Systems. Master
Thesis, University of York (2004)

21. RTCA, Software Considerations in Airborne Systems and Equipment Certification. RTCA
(1992)

22. Smith, D.R.: KIDS: A semi-automatic program development system. IEEE Trans. on Soft-
ware Engineering 16(9), 286–290 (1990)

23. Stickel, M., Waldinger, R., Lowry, M., Pressburger, T., Underwood, I.: Deductive compo-
sition of astronomical software from subroutine libraries. In: Proc. 12th Conf. Automated
Deduction. LNCS (LNAI), vol. 814, pp. 341–355. Springer, Heidelberg (1994)

24. Stürmer, I., Conrad, M.: Test suite design for code generation tools. In: Proc. 18th Conf.
Automated Software Engineering, pp. 286–290. IEEE, Los Alamitos (2003)

25. Stürmer, I., Weinberg, D., Conrad, M.: Overview of Existing Safeguarding Techniques for
Automatically Generated Code. In: Proc. of 2nd Intl. ICSE Workshop on Software Engineer-
ing for Automotive Systems, pp. 1–6. ACM, New York (2006)

26. Weaver, R.A.: The Safety of Software–Constructing and Assuring Arguments. PhD Thesis,
University of York (2003)

27. Whalen, M.W., Heimdahl, M.P.E.: On the requirements of High-Integrity Code Generation.
In: Proc. 4th High Assurance in Systems Engineering Workshop, pp. 217–224. IEEE, Los
Alamitos (1999)

28. Whittle, J., Schumann, J.: Automating the implementation of Kalman filter algorithms. ACM
Transactions on Mathematical Software 30(4), 434–453 (2004)

29. Wong, W.: Validation of HOL proofs by proof checking. Formal Methods in System Design:
An International Journal 14, 193–212 (1999)

http://www.polyspace.com

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 263–276, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Applying Safety Goals to a New Intensive Care
Workstation System

Uwe Becker

Dräger Medical AG & Co KG
Moislinger Allee 53 – 55
23542 Lübeck, Germany

uwe.becker@draeger.com

Abstract. In hospitals today, there is a trend towards the integration of different
devices. Clinical workflow demands are growing for the integration of formally
independent devices such as ventilator systems and patient monitoring systems.
On one hand, this optimizes workflow and reduces training costs. On the other
hand, testing complexity and effort required to ensure safety increase. This in
turn gives rise to new challenges in the design of such systems. System design-
ers must change their mindset because they are now designing a set of distrib-
uted systems instead of a single system which is only connected to a central
monitoring system. In addition, the complexity of such workstation systems is
much higher than that of individual devices. This paper presents a case-study on
an intensive care workstation. To cope with this complexity, different use-cases
have been devised and a set of safety goals have been defined for each use-case.
The influence of the environment on the use-cases is highlighted and some
measures to ensure data integrity within the workstation system are shown.

Keywords: Medical devices, health care systems, systems design, resilience,
reliability, safety goals, safety cases.

1 Introduction

Cost pressure and other influences are leading to scrutiny of workflows present in
hospitals today. Device handling and treatment of patients shall be optimized to im-
prove patient outcome and/or the number of patients that can be treated within a
certain timeframe. Optimization of the clinical workflow calls for the integration of
formally independent devices such as ventilator systems and patient monitoring sys-
tems. This trend towards the integration of different devices can be observed in hospi-
tals all around the world. Facing this demand, a manufacturer of medical devices has
to find a way to integrate different types of medical devices into one workstation sys-
tem. Such an intensive care workstation system (ICWS) optimizes customer workflow
and reduces their training costs. This paper will highlight some of the new challenges
in the design of such integrated workstation systems. Due to the possibility of com-
bining different medical devices to form a workstation system, the complexity of de-
signing such an ICWS is much higher than that of designing a single, individual
device. Therefore testing complexity and effort required to ensure safety are increased.

264 U. Becker

This paper is organized as follows: section 2 describes the clinical environment the
workstation system is to be found in and the components of the ICWS itself. This
demonstrates the complexity of system design which started by defining uses-cases
for the ICWS. Section 3 describes example use-cases and possible transitions from
one use-case to other use-cases. For each use-case a set of safety goals has been de-
fined. Section 4 covers aspects of safety goal realization. The following two sections
(sections 5 and 6) describe how errors during data exchange and internal soft-errors
are handled. The paper concludes with a summary.

2 The ICWS – A Case Study

In a critical care area various medical devices are used to treat a patient. As an exam-
ple, the patient environment on a neonatal intensive care unit (NICU) typically con-
sists of the following devices:

 An Incubator
 A Radiant Heater
 Light Therapy Means
 A Patient Monitor
 Infusion Devices
 A Ventilator
 An Hospital Information System

In a NICU, the patient is often in an incubator. This device performs more than one
function. First, it serves as the patient’s bed. Second, it is equipped with some means
to warm the infant. There is a warming mattress in almost every case. Additionally, a
radiant heater may be present. Some of the incubators are even equipped with light
therapy means. The vital signs of the patient are monitored using a bedside patient
monitor, [which may or may not be connected to a central monitor]. Medicine and/or
nutrition are administered using fluid infusion devices. If pulmonary functions of the
patient are insufficient, a ventilation system is needed. In some situations, there will
even be additional devices such as imaging devices and the like.

In the past, all these systems and devices were independent of each other. One can
easily imagine that space is tight in such a scenario and that clinical staff has always
sought a way to silence multiple alarms. In addition, a way was sought to get the data
from the different devices into the hospital information system. Manufacturers have
sought to combine devices to answer the needs of the caregivers. But until recently,
interfacing or exchanging data between the devices required custom design both in
hardware and in software. In most cases, this was due to the differing protocols used.
To solve the space problem, it is common practice to group some of the devices in
tower-like assemblies. Interfacing is either not performed at all or solved using some
kind of custom-made solution. The effectiveness of these solutions is more or less
limited by the lack of information available to the customer. In some cases, not all of
the information the devices could provide was made available externally to third party
devices. To make matters even worse, each of the devices had – and still has – its own
human interface. This was true even for devices of the same manufacturer. Operation
was different for each device and is even more difficult in a “tower” of devices as

 Applying Safety Goals to a New Intensive Care Workstation System 265

described above. It is very confusing to the customers that the setting for one device is
changed in a certain way and for the next device this is done in a totally different
manner. There are diverse alarm tones and varying alarm philosophies. Even silencing
an alarm differs from device to device.

If a patient reaches a critical situation, a plurality of devices begins alarming. Each
device performs its own measurements and issues an alarm based on its own settings
and alarm philosophy. In such a critical situation, the variety of alarms is perceived as
annoying. Sometimes the alarms are perceived as disturbing during treatment in such
critical circumstances. For one, the attention of the personnel is drawn towards the
device instead of the patient and valuable time is lost. Further, despite the variety of
devices, the information required for decision-making regarding next steps for treat-
ment are not at hand. For these reasons, it can easily be understood that today there is
a strong demand for integration, or at least standardization of medical devices. This
demand is increasing. If the functions of all standalone devices could be integrated
into a single device, there could be a single point where all the alarms are collected
and displayed. There would be only a single source for all alarm tones. In addition,
there would be only a single point of control for all the different devices. Alarms
could be silenced and settings changed for all devices via this single point of control.
Also, integration of the devices could lead to better treatment of patients because it
would offer the chance for new or improved services. Among other things, this would
be possible because more information would be available only through the fact of
integrating the devices. Information would be available from different sources. This
would provide a second channel required for safety reasons for some new or im-
proved service or feature. Further, it could also be used to cross check the information
from sensors or devices. Perhaps the information from a second device would lead to
an improved diagnosis or decision for the treatment because it could show a different
light on the value measured.

Clinical demand and possible advantages seen from a Sales and Marketing per-
spective are only one side of the coin. The other side is safety and resilience. Integra-
tion of different devices is much easier if done by a manufacturer offering a broad
range of devices. In that case, all the knowledge is on hand to modify existing devices
towards the integration needs. It turns out to be advantageous if there is a single hu-
man interface with a unique philosophy behind it. This helps to reduce human errors
not only in routine but also in critical situations. In addition, it lowers the costs for
staff training. But one will not get all these advantages for free. The major drawback
is that adding a single point of control also increases the probability of adding a single
point of common failure. Failure of any one piece of the system must be handled ap-
propriately. Otherwise, failure of the common point of control could lead to failure of
multiple devices. This is of course highly undesirable. Even though the safety of the
patient may not be affected, the availability of the complete system is. The resilience
and the availability of the whole system, at least as perceived by the caregiver, should
be at least as high as that of a single or non-interfaced device. Otherwise customers
would return to the various standalone devices they are used to have and cope with.
Even if the multifunctional device is well designed, with fault tolerance and default-
ing to the safest possible state for the patient, the user's perception of the device may
be that the failure of a central component such as a user interface will mean loss of all
functionality. A workstation system must be very flexible. Users should be able to

266 U. Becker

adopt the ICWS to the actual needs of the respective patient. The ability to (re-
)configure the workstation while it is in use requires special attention during the de-
sign phase. Using the case-study of the ICWS, the following paragraphs will highlight
some aspects regarding the safety of such a highly flexible workstation system.

3 Use-Cases of the Workstation System

For most safety-related systems, operators have to demonstrate a systematic and thor-
ough consideration of safety. In most countries regulatory practice differentiates
between manufacturers of medical devices on the one hand and users on the other,
taking into consideration the limited control of the manufacturers over the operational
context of the devices. Sujan, Koornneef, and Voges [34] showed that it is essential
for the safety of medical devices that the (regulatory) gap between the two is closed.
They argue that the user has to know the safety goals from the manufacturer’s side in
order to guarantee safety of the medical device throughout its lifecycle. This knowl-
edge is normally not accessible by the user. In addition, the current situation does not
require this step neither by law nor by any directive or standard.

Common User Interface (Display and Control)

Incubator
Warming Therapy

Patient
Monitoring

Ventilation Infusion (IV
Therapy)

Fig. 1. Intensive care workstation system with all devices – each device independently connectable

From the manufacturer’s point of view, it may not be desirable to provide users with
information about the internal safety concept of medical devices. Manufacturers strive
to maximize safety for users and patients. If a smart solution to provide safety has been
found, a manufacturer may not be willing to share that special knowledge with the pub-
lic, i.e. competing manufacturers. For the reasons mentioned, it was decided to take a
new approach in developing the safety concept for a new critical care workstation sys-
tem. The system itself breaks new ground in the area of critical care. The ICWS inte-
grates many critical care devices and therefore is much more complex than the systems
and devices built before. Operation of the ICWS might be different from that of the
other devices. This was one of the reasons why it was decided to integrate the knowl-
edge and the requirements of the users even during the step of defining safety goals.

Consider an intensive care workstation system (ICWS) for the neonatal intensive
care unit (NICU). All low birth weight, premature patients on the NICU need warm-
ing therapy because they are not able to control their body temperature. In addition,

 Applying Safety Goals to a New Intensive Care Workstation System 267

the vital signs of the patients are monitored. The parameters monitored are ECG and
oxygen saturation at a minimum. Fig. 1 shows a scenario for a critically ill patient.
Such critically ill patients require an ICWS which includes infusion devices and me-
chanical ventilation. If the state of the patient improves, mechanical ventilation is no
longer required. Thus the ICWS is reconfigured accordingly (see Fig. 1 – without the
dotted part). After the situation stabilizes, the infusion of medicine may not be re-
quired, either. Therefore, the infusion devices are removed from the ICWS. The ele-
ments of Fig. 1 having solid lines show the resulting configuration.

Use-Case 1: User Stationary Reconfigures the Workstation
When first developing the safety goals, it was assumed that only the configuration of
the ICWS would change (Fig. 3). It was assumed that no other changes would be per-
formed. During the interviews with the hospital staff, it turned out that the environ-
ment of the system may change as well. Patients are grouped according to their acuity
level. This grouping may even be performed locally. If the acuity level of the patients
changes, they are moved to another area of the NICU. In terms of the ICWS use-cases
this implied that the reconfiguration of the system had to be extended from reconfigu-
ration during stationary use to reconfiguration during movement to another location.
(First use-case in Fig. 2 – changes in the use-case underlined) In addition, even the
caregivers (nurses) and the degree of supervision may change. The assessment
showed that even the skill level of the nurses may vary i.e., nurses with lower skill
levels treat patients at a lower acuity level.

Use-Case 2: User Changes Settings and Visually Checks Patient’s Reactions
Another use-case of the ICWS was that caregivers must always be able to see the pa-
tients while changing the settings. It turns out that caregivers in certain situations turn
the ICWS during the reconfiguration phase. This optimizes workflow but results in
the fact that they are no longer able to see the patients while changing the settings.
(Second use-case in Fig. 2 – changes underlined) This change in the use-case had an
additional effect on safety. If the patient is not directly visible, safety can no longer
rely on the observation of the patient's reaction upon changing a setting.

Use-Case 3: Wireless Collection of Data during Transport
Another interesting fact gathered from the assessment was that there is a difference in
the mindset between doctors on one hand and nurses and parents on the other. Doctors
are very positive toward wireless data transmission between sensors and/or different
devices of the ICWS. Nurses and parents, however, fear negative influences from the
energy of the transmitters and at least want to have a means to disable the wireless
data transmission. For this reason, safety of the workstation may not rely on wireless
data transmission.

Inclusion of customer input at the early stage of safety goal definition showed that
some of the previous assumptions no longer hold true. The invalidation of an assump-
tion will exclude that assumption from the current and future safety cases. For this
reason some safety cases, as well as actions resulting from these safety cases, had to
be re-evaluated. This re-evaluation resulted in much more complex safety cases. The
term “system-wide” had to be redefined. At the starting point, “system-wide” meant

268 U. Becker

the critical care workstation system by itself. At the end, the term “system-wide” did
not only include the ICWS but also many parts of the environment in which the work-
station system is used.

Another aspect affecting safety is the fact that caregivers tend to use every horizon-
tal surface as a depot for diapers and other things, thus, possibly impeding device
cooling. In some countries children are allowed to see their brothers and sisters on the
NICU. For this reason the ICWS had to be equipped with means to disable the user

Change Settings

Add or Remove
Devices

ICWS Reconfiguration in
Stationary and Transport
Use

Changement of Settings
with Optional Optical
Feedback

Caregiver

Fig. 2. Two ICWS Use-Case Examples

Configuration 1
is Acceptably Safe

Configuration n
is Acceptably Safe

The System is
Acceptably Safe

Transition to
Configuration 1

is Acceptably Safe

Transition to
Configuration n

is Acceptably Safe

Fig. 3. Safety Goal split into Sub-Goals for each Configuration – and Extended Safety Goals
including Transitions

 Applying Safety Goals to a New Intensive Care Workstation System 269

interface until a valid password is entered. All information gathered resulted in the
fact that additional safety cases had to be generated. Other safety cases got a much
broader scope. Their content had to cover more aspects (Fig. 3). Evaluating and ful-
filling the new safety requirements was rather complex, but eventually resulted in a
safer system because daily practice is better taken into account. It additionally
resulted in higher safety throughout the system’s lifecycle because some special
knowledge could be gathered, too. This knowledge was used to provide the user with
extended instructions for the annual safety checks (STK). Besides the required meas-
urement values, instructions for these STKs now contain some safety-goals the user
should achieve when using the system. As a matter of fact, no company secrets are
disclosed but it provides some help to the user to better understand the system and
how to ensure the safety of the whole system throughout its lifecycle.

4 Meeting Safety Goals

Manufacturers of medical devices have to document information that states why a
system can be considered sufficiently safe in a certain situation. Usually safety cases
are used to document this kind of information. For each particular context it is de-
scribed why the system can be considered acceptably safe [9, 10, 14]. The argumenta-
tion required has to be clear, comprehensive and defensible [21]. In addition, the
argumentation has to be such that there are no rebuttals [29] and it has to show that it
is safe to use the system in its intended environment [8]. This describes a goal-based
approach, where the justification is constructed via a set of claims about the system,
its behavior, and the process used to produce the system [34]. One might state that for
the justification in most cases engineering judgment is used rather than applying for-
mal logic. The judgment is performed carefully though, and all steps have been taken
to deal with the potential hazard in an appropriate manner. The sum of all safety cases
provides evidence that all hazards associated with the system have been taken into
account and the risk associated with the system is below an acceptable minimum [13,
16, 17, 18, 19, 20, 21]. In addition, there are some mandatory international standards
for performing hazard analysis and risk management [9, 10, 14]. Moreover, each
manufacturer of medical devices has to install and maintain a quality management
system. In Europe this is required by law and by the European Medical Devices Di-
rective 93/42/EEC [7]. The manufacturing of medical devices relies on a process-
based approach. It is assumed that following a well defined set of process steps during
development will result in the production of a safe system.

With this in mind it is reasonably clear that the process of manufacturing medical
devices, as well as the process of ensuring the safety of medical devices is acceptably
safe. For this reason the way to demonstrate that the safety goals of a system are
reached is to show that all safety goals and thus all safety cases result in requirements
for the system. For each requirement of the system there has to be a test ensuring the
fulfillment of this special requirement. At the end of the development stage, a trace-
ability analysis is done. This traceability analysis links the requirements with the re-
spective development documents and the respective test or test case. There may not
be a single requirement which is not linked with a document or a test. It is allowed,
though, that a certain requirement is fulfilled using different ways or measures. The
traceability towards the tests also ensures that a developer has carefully considered

270 U. Becker

the requirement and that the implementation of the requirement is effective. In addi-
tion, the quality of the implementation is improved due to peer-programming or
similar techniques. Effective realization of requirements is essential for safety re-
quirements. Testing for such requirements may to a certain degree be comparatively
expensive and time consuming. It may even be required to instrument parts of the code
to perform the test. Though there has to be a test for each requirement, testing can not be
exhaustive because for most systems this is either impractical or simply impossible.

5 Handling Errors during Data Exchange

Safety, like resilience, is a system issue. The system is safe, not the hardware, not the
electronics, not the mechanics, and not the software. Of course each of these impacts
the safety, but it is ultimately the interaction of all these elements that provides the
hazards as well as the risk reduction.

This, in other words, means that it is not useful to spend huge effort to make the
software safe as long as the hardware is error prone, might fail at any time, and might
cause potential harm. Thorough investigation has to be done if the safety level of
hardware, for example, is much lower than that of the software. It may look tempting
to let, at least under some circumstances, one element take over measures for risk
reduction from another element. These circumstances and the measures taken have to
be considered very carefully to avoid compromising the safety level of the system.
For this reason, when developing a critical care medical device, it is in general desir-
able for a system at a certain safety level that all the elements of the system should
have nearly the same safety level [10, 11].

The use-cases of the ICWS show that any device can be connected and discon-
nected at any time, triggering a reconfiguration of the system. There are three scenar-
ios regarding reconfiguration. First, an additional device may be connected to the
ICWS. The system will detect that a new device is connected. Messages to identify
the device will be exchanged. If the device is recognized and the ICWS is able to in-
tegrate that certain device, the workstation is reconfigured and the newly connected
device will be usable in the workstation environment. Second, the user may inform
the ICWS that a certain device is about to be disconnected. In that case the system
will set the device to be disconnected in the required state, e.g. “Standby”, and recon-
figure the rest of the workstation accordingly. After completion of all required steps,
the ICWS will inform the user that it is safe to remove the selected device from the
system. In the third scenario, a device is disconnected from the system without any
previous indication. This may either be caused by a failure or by an action of the user.
The ICWS will detect that it is no longer possible to exchange data with the respective
device. The ICWS will try to re-establish data communication. After a defined num-
ber of trials, the device will be considered as disconnected. The ICWS reconfigures
itself and the user is informed accordingly.

Users can plug into and unplug devices from the workstation system at any time.
Therefore the topology of the system has to be such that if one of the therapy devices
fails, no other device will fail. The devices should send out their messages and every
other device that is interested in the data may take it. The data should be marked with
a descriptor for identification and should contain information describing the source of
the respective data. To further ensure message integrity, every message should

 Applying Safety Goals to a New Intensive Care Workstation System 271

contain a check value and a sequence number. The sequence number can be realized
using a time-stamp. In most cases error correction is not required. Therefore overhead
can be reduced by selecting a check value that is only capable of detecting faults. In
case a consumer of the data detects an error it requests the sender to send the data
again.

The central control and display device requires all connected devices to send
their sensor data for display purposes. Some data will only be sent if its value
changes. Other data will be sent on a regular basis. For each of the different devices
there is a description of the data that is required to be received on a regular basis.
This data then by itself may act as keep-alive indicator. This provides an easy way
for the central control and display device to detect if data exchange with a device
ceased. A broken connection can be assumed if either the keep-alive data is not
received within a certain amount of time or if a certain amount of consecutive mes-
sages containing an error are received. After a certain amount of trials to re-
establish the data exchange, it will stop data communication with this device and
disable the respective functions. If any other device received data from the device
that failed, the central control and display device will switch the respective device
to a mode which does not require that particular data. The required information is
present at the central display and control device because such an interaction re-
quires the system to be in a certain mode of operation to ensure patient safety. The
system then is reconfigured to ensure that it is in a consistent and defined state. Of
course, an alarm is issued in such a case. In some cases even an active therapy has
to be stopped and continued with different settings. This naturally requires a high
priority alarm and further steps to ensure patient safety.

Reconfiguration of the system is not performed on the first occurrence of an er-
ror, though. Transient errors of short duration will be accepted by this scheme. In
general, there is a tolerated time for errors depending on the effect the disturbed data
exchange can have on the patient. Consider controlling an infusion pump delivering a
medicine that affects the heart. If it delivers a bolus1 and the system does not receive
the correct confirmation on the “End of bolus” command, a safety reaction has to be
performed relatively soon. For such safety-relevant features only a few number of
trials (say two or three within a few milliseconds) to re-establish a data exchange are
allowed to fail before the reconfiguration of the system is triggered. The system will
try to perform as many safety measures as possible, e.g. to trigger a reboot of the de-
vice in error. In the example above, the infusion pump will stop if the data communi-
cation to the host, i.e. the ICWS, is lost. Features that are not safety-relevant allow for
a higher number of trials. For instance the transmission of a patient’s name to a device
is not safety-relevant and thus a reaction can be triggered after more trials.

6 Coping with Internal System Errors

In safety-relevant systems like intensive care medical devices it is essential to monitor
or supervise the function of their software. This is especially true for life supporting
systems like the critical care workstation system described. The primary concern is
the safety of the system. An error in one of the software modules or a soft error in

1A bolus is an infusion with high infusion rate, usually applied to a patient for a short time.

272 U. Becker

memory may under no circumstance result in harm to a patient. The supervision of the
software modules is even more important for a workstation system. The number of
software modules dramatically increases with the number of devices. The approach to
ensure safety is twofold. Some parts of the software are considered to be part of the
dedicated “safety software”. These modules ensure that safety-relevant settings are
distributed through the system in a safe and consistent manner. Some type of redun-
dancy is used for this purpose. For instance, these modules check that if the user se-
lects a pressure of 10.0 mbar, the pneumatic controller really will receive 10.0 mbar
and not 100 mbar. The respective data is transmitted via two independent channels to
the recipient. If a deviation between the data of the two channels is detected, the value
will be rejected and the transmission has to be repeated. To increase the availability of
the system, a certain threshold for re-transmission is introduced. The system tolerates
a certain (low) amount of erroneous transfers. Once the first trials of re-transmission
are successful and the data is consistent on both channels, the system will continue
with that data. The error counter will be reset after some (say 10) transfers without
error. If the threshold is exceeded or connection to the central display and control de-
vice is lost, some parts of the system, e.g. the ventilator system, will continue their
function, i.e. ventilation, using the current settings. This increases resilience of the
system and ensures continuous treatment of the patient.

The second approach to ensure safety is to use additional online test software.
When introducing this online test software, the intention is to get high error coverage
while only inducing minimal performance impact. One goal of this test software is to
test and supervise the function of the application software. The primary focus is not
on testing the hardware but on finding transient errors in RAM and on finding errors
in the application software. The latter may either be caused by soft errors or by other
applications that erroneously have changed memory cells they were not supposed to
change. As described above, there are several possible configurations of the ICWS.
Furthermore, the system can be in different operating modes which may even be in-
dependent of the current configuration. This leads to the fact that the ICWS does not
always use all the modules of its software simultaneously. One way to reduce test
overhead is to test only active software modules. It turns out that this reduces per-
formance impact significantly. To obtain the required high error coverage, different
algorithms have been evaluated. Zhou et al. [37] proposed a sophisticated method to
test software. Unfortunately the method to check the software includes some modifi-
cations either in hardware or in the driver for that hardware. As a matter of fact, it is
not always possible to do that. As far as off-the-shelf hardware is concerned, a modi-
fication is impossible in almost every case. Our experience is that only implementa-
tion in FPGAs or other (full) custom logic can be changed with reasonable overhead.
With custom made chips, the possibility to perform changes depends on the costs, the
minimum order quantity and in some cases on other designs the chips are used in.
Modifications to operating systems may not be possible either. In aerospace or in
medical applications the operating systems are certified or at least validated. A change
in such an operating system would require a re-certification or re-validation. The cost
– both in time and money – will be prohibitive in most cases. For the reasons men-
tioned above, these elements of the system are not changed.

Reconfiguring the system is not limited to reconfiguration of the display, but may
also affect the applications and the tests running. The applications concerning a

 Applying Safety Goals to a New Intensive Care Workstation System 273

disconnected device are switched to an inactive state or even swapped out of the
memory – depending on the application. In the case of swapping out the application,
the respective memory will be marked as free and may be added to the memory
checked by the memory test routine. In either case, the supervision of the task will be
stopped because the task will no longer consume any processor time. As the task will
not own the processor, it is not able to perform any harmful action. For this reason,
system tests / self-tests are dynamically adapted to the current system configuration
and requirements.

In most situations, it is known in advance which modules of the software will be in
use in a certain situation. One could change the scheduler to access its process table to
get the information. Nevertheless the modules using processor time can be determined
easily, even if the scheduler of the operating system can not be changed. With this in-
formation, the online test instance, i.e. the test task, can be tailored to the actual needs.
The tailoring results in only these tests being executed that relate to an active module of
the software. This saves testing time, but does not compromise reliability. The seconds
lowest process priority is assigned to test task, with only the idle task having a lower
process priority. This will guarantee that the test task will not affect system perform-
ance. It is called only with a larger period, e.g. every second. In addition, it is executed
only if there is no task with a higher processing priority requiring the processor.

The online test software uses an approach which combines a watchdog and test
patterns. A watchdog timer is triggered at certain points of the control flow of the
software. If the system hangs, the watchdog is not retriggered and will provoke a sys-
tem reset. It is ensured by code reading that the watchdog is not triggered within a
timer interrupt subroutine. The parts of the software that are supervised by the safety
software are not tested separately. Each calculation and transmission of these modules
is checked. For this reason, the test software would not increase fault coverage with
these modules. For the other modules, the test software will provide input values and
compare the output values obtained with pre-computed values. In addition, the time to
produce the output values is checked. For this reason the latency of the modules and
thus performance of the ICWS is checked as well. Faults in software modules cur-
rently inactive will not influence the function of the ICWS. Therefore, testing only
active modules of the software will not reduce fault coverage of the relevant faults. It
is further assumed that the application fed with test data will be affected by the fault
in the same way it would be with application data.

Even the modules responsible for producing display output are checked. Some
parts of the display are considered safety-relevant. For this reason, the check of the
display and the respective drivers is very thorough. Users shall not notice that the dis-
play drivers are being checked. Therefore, the content of the display may not be al-
tered. A virtual screen is introduced that is larger than the display that can be seen by
the user. For testing purposes, the module which writes to the display is stimulated to
produce a certain bit pattern at a region of the screen that is not visible by the user.
The test software then checks the video memory i.e. the virtual screen. Some parts of
the screen that are not visible by the user shall be blank. The respective memory shall
therefore contain the data which was written to the memory during initialization. The
other region shall contain the bit pattern produced by the driver. All the conditions
mentioned have to be fulfilled. After the test is completed, the bit pattern is overwrit-
ten by the value used to initialize the memory. For the next test, a new output pattern
and a new region of the virtual screen is chosen.

274 U. Becker

7 Conclusion

An intensive care workstation system has been described. Safety and system design
are largely influenced by the input of the perspective users. This results in new and
extended safety goals for the system. User requirements led to a design with a central
display and control device. Such a central point of control is likely to introduce a sin-
gle point of common failure. Certain measures have been chosen to avoid such nega-
tive effects. To increase resilience of the system some components are capable of
autonomous operation. In case the central display and control device fails, the ventila-
tion part, for instance, will continue with its last settings. The patient monitoring part
will switch to its own small display and continue monitoring. In general, errors in a
module only influence the respective module. All other modules continue operation.
If required, graceful reduction of system functionality is performed to increase resil-
ience. If data exchange to one of the devices of the system fails and can not be re-
established, the ICWS will reconfigure itself accordingly. Again, graceful reduction
of functionality leads to a higher availability of the system as a whole.

Smart testing software is used to check system health. To limit performance im-
pact, only active modules of the software are checked. If a module of the software
becomes inactive because the respective device is removed from the system, it is not
tested any longer. A soft error in the memory of that module will have no effect on
the system. Thus resilience is increased. If the device is brought back to the system,
the respective module of the software is loaded again into memory. As this is done
during the reconfiguration phase of the system the small extra time required to re-load
the software module is not noticed by the user. Re-loading the software to memory
increases safety, because potential soft errors in memory are overwritten.

Further work will be done to provide patterns for safety goals that can be used with
other, new devices. Some of these patterns should be generic, such that they could be
used for other care areas. The assessment of the perspective users performed during
development can be improved also. Nevertheless, the information gained was very
valuable. This leads to the decision to let such an assessment become a mandatory
process step of the development. This will ensure both that safety is enhanced during
the whole lifecycle of a device and that the assessment itself will continually be im-
proved and optimized. Additionally, some new algorithms for the testing software
will be evaluated. This will include both online software-based self test (SBST) and
online test of the software running.

References

1. Bishop, P., Bloomfield, R., Guerra, S.: The Future of Goal-Based Assurance Cases. In:
Proc. Workshop on Assurance Cases, pp. 390–395 (2004)

2. Bloomfield, R., Bishop, P., Jones, C., Froome, P.: ASCAD – Adelard Safety Case Devel-
opment Manual, Adelard (1998)

3. Bloomfield, R., Littlewood, B.: On the use of diverse arguments to increase confidence in
dependability claims. In: Besnard, D., Gacek, C., Jones, C.B. (eds.) Structure for Depend-
ability: Computer-Based Systems from an Interdisciplinary Perspective, pp. 254–268.
Springer, Heidelberg (2006)

 Applying Safety Goals to a New Intensive Care Workstation System 275

4. Bridal, O., et al.: Deliverable D3.1 Part 1 Appendix E: Safety Case, Version1.1. Technical
Report, EASIS Consortium (February 2006), http://www.easis-online.org

5. CENELEC EN 50129 – Railway Applications – Safety related electronic systems for sig-
naling, CENELEC Brussels (2003)

6. Chinneck, P., Pumfrey, D., McDermid, J.: The HEAT/ACT Preliminary Safety Case: A
case study in the use of Goal Structuring Notation. In: 9th Australian Workshop on Safety
Related Programmable Systems (2004)

7. European Council: Council Directive 93/42/EEC of 14 June 1993 concerning medical de-
vices. Official Journal L 169, 12/07/1993, pp. 0001 – 0043 (1993)

8. Greenwell, W.S., Strunk, E.A., Knight, J.C.: Failure Analysis and the Safety-Case Lifecy-
cle, Department of Computer Science, University of Virginia

9. IEC 60601-1 – Ed. 3.0 – Medical electrical equipment – Part 1: General requirements for
basic safety and essential performance. IEC Geneva (2005)

10. IEC 60601-1-4 – Ed. 1.0 – Medical electrical equipment – Particular Requirement for the
Safety of Programmable Medical Devices. IEC Geneva (2000)

11. IEC 62304 – Ed. 1.0 – Medical device software – Software life cycle processes. IEC Ge-
neva (2006)

12. IEC 62366 – Ed. 1.0 – Medical devices – Application of usability engineering to medical
devices. Draft. IEC Geneva (2006)

13. Intl. Electrotechnical Commission. IEC 61508: Functional Safety of Electrical/ Elec-
tronic/Programmable Electronic Safety-Related Systems. Technical Report (April 1999)

14. ISO 14971:2007 – Application of risk management to medical devices. ISO Geneva
(2007)

15. Karapetian, A.V., Some, R.R., Beahan, J.J.: Radiation Fault Modeling and Fault Rate Es-
timation for a COTS Based Space- Borne Supercomputer. In: Proc. IEEE Aerospace
Conf., Mar. 2002, vol. 5, pp. 5-2121–5-2131 (2002)

16. Kelly, T., McDermid, J., Weaver, R.: Goal-Based Safety Standards: Opportunities and
Challenges. In: Proc. of the 23rd International System Safety Conference (2005)

17. Kelly, T., McDermid, J.: A Systematic Approach to Safety Case Maintenance. Reliability
Engineering and System Safety 71, 271–284 (2001)

18. Kelly, T.: A Systematic Approach to Safety Case Management. In: Kelly, T. (ed.) Proc. of
SAE 2004 World Congress (2004)

19. Kelly, T.: Managing Complex Safety Cases. In: Proc. 11th Safety Critical Systems Sym-
posium. Springer, Heidelberg (2003)

20. Kelly, T.P., McDermid, J.: Safety Case Construction and Reuse using Patterns. In: Pro-
ceedings of 16th International Conference on Computer Safety, Reliability and Security
(SAFECOMP 1997), September 1997. Springer, Heidelberg (1997)

21. Kelly, T.P.: Arguing Safety: A Systematic Approach to Managing Safety Cases. PhD The-
sis, University of York, UK (September 1998)

22. Leveson, N.G.: Safeware: System Safety and Computers. Addison-Wesley, Boston (1995)
23. McDermid, J.: Support for safety cases and safety argument using SAM. Reliability Engi-

neering and System Safety 43(2), 111–127 (1994)
24. Mukherjee, S.S., Emer, J., Reinhardt, S.K.: The Soft Error Problem: An Architectural Per-

spective. In: Proc. 11th Int’l Symp. High-Performance Computer Architecture, pp. 243–
247 (Febuary 2005)

25. Nicolescu, B., Velazco, R.: Detecting Soft Errors by a Purely Software Approach: Method,
Tools and Experimental Results. In: Proc. Design, Automation and Test in Europe Conf.
and Exhibition, pp. 57–62 (March 2003)

276 U. Becker

26. Nordland, O.: Safety Case Categories – Which One When? In: Redmill, F., Anderson, T.
(eds.) Current issues in security-critical systems, pp. 163–172. Springer, Heidelberg (2003)

27. Pradhan, D.K.: Fault-Tolerant Computer System Design. Prentice Hall, Englewood Cliffs
(1996)

28. Pullum, L.L.: Software Fault Tolerance Techniques and Implementation. Artech House
(2001)

29. Ridderhof, W., Gross, H.-G., Doerr, H.: Establishing Evidence for Safety Cases in Auto-
motive Systems – A Case Study. In: Computer Safety, Reliability, and Security, 26th In-
ternational Conference, SAFECOMP 2007, Nuremberg, Germany, pp. 1–13 (September
2007)

30. RVSM Pre-Implementation Safety Case, Eurocontrol (2001)
31. Shirvani, P.P., Saxena, N.R., McCluskey, E.J.: Software- Implemented EDAC Protection

against SEUs. IEEE Trans. Reliability 49(3), 273–284 (2000)
32. Storey, N.: Safety Critical Computer Systems. Addison-Wesley, Reading (1996)
33. Sujan, M., Harrison, M., Pearson, P., Steven, A., Vernon, S.: Demonstration of Safety in:

Healthcare Organisations. In: Górski, J. (ed.) SAFECOMP 2006. LNCS, vol. 4166.
Springer, Heidelberg (2006)

34. Sujan, M.-A., Koornneef, F., Voges, U.: Goal-Based Safety Cases for Medical Devices:
Opportunities and Challenges. In: Saglietti, F., Oster, N. (eds.) SAFECOMP 2007. LNCS,
vol. 4680, Springer, Heidelberg (2007)

35. Weaver, R., Despotou, G., Kelly, T., McDermid, J.: Combining Software Evidence: Ar-
guments and Assurance. In: Proceedings of the 2005 workshop on Realising evidence-
based software engineering, St. Louis, Missouri, pp. 1–7 (2005)

36. Weaver, R.A.: The Safety of Software – Constructing and Assuring Arguments. DPhil
Thesis, Department of Computer Science, University of York, UK (2003)

37. Zhou, Y., Lakamraju, V., Koren, I., Krishna, C.M.: Software-Based Failure Detection and
Recovery in Programmable Network Interfaces. IEEE Transactions on Parallel and Dis-
tributed Systems 18(11), 1539–1550 (2007)

38. Ziegler, J.F., et al.: IBM Experiments in Soft Fails in Computer Electronics (1978-1994).
IBM J. Research and Development 40(1), 3–18 (1996)

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 277–290, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Safety Assurance Strategies for Autonomous Vehicles

Andrzej Wardziński

Gdansk University of Technology, Department of Software Engineering
Narutowicza 11/12, 80-952 Gdansk, Poland

andrzej.wardzinski@eti.pg.gda.pl

Abstract. Assuring safety of autonomous vehicles requires that the vehicle con-
trol system can perceive the situation in the environment and react to actions of
other entities. One approach to vehicle safety assurance is based on the assump-
tion that hazardous sequences of events should be identified during hazard
analysis and then some means of hazard avoidance and mitigation, like barriers,
should be designed and implemented. Another approach is to design a system
which is able to dynamically examine the risk associated with possible actions
and then select the safest action to carry it out. Dynamic risk assessment re-
quires maintaining the situation awareness and prediction of possible future
situations. We analyse how these two approaches can be applied for autono-
mous vehicles and what strategies can be used for safety argumentation.

1 Introduction

Nowadays we can notice a tendency towards designing systems which are more and
more autonomous. In some countries we can get on autonomous buses (e.g. People
Mover [1]). In DARPA Urban Grand Challenge the autonomous vehicle mission was
to drive 100 km in urban environment and obey traffic rules (however vehicles were
not required to interpret street signs nor traffic lights) [2, 3].

Intuitively we feel that autonomous systems are not only more complex, but auton-
omy introduces new problems that may require quite novel approach for design and
development of such systems. This raises a question how much autonomous systems
differ from non-autonomous ones and whether we can apply the same approach to
safety assurance. It is not certain if the existing methods and techniques would be
adequate and sufficient.

Our objective is to investigate the issues of autonomy for safety-critical systems
and the ways of safety assurance. In Section 2 we introduce the problem of aut-
onomous vehicle safety and two approaches for safety assurance. The traditional
approach is presented in Section 3. We discuss the structure of safety argument, advan-
tages and disadvantages of the approach. The second approach is more complex as it
uses the situation awareness model to identify safe and risky actions. The approach is
discussed in Section 4. We analyse the difficulties for constructing convincing safety
argument and possible types of evidence. The results are summarised in Section 5.

2 Autonomous Vehicle Safety

Autonomy is a broad concept and there are many definitions of this term and a few
levels of autonomy can be identified [4, 5]. Generally autonomy relates to freedom to

278 A. Wardziński

determine own actions and behaviour. For the needs of the paper we will assume that
autonomy of a mobile system is the ability to accomplish a given mission without
human intervention. That means that the system should be able to make decisions
how the mission goals could be achieved and how to cope with changes in the envi-
ronment and threats.

Autonomous vehicle control system should:

− plan the mission taking into account the context of the environment (for example
other vehicles),

− act according to the plan to accomplish the mission,
− adapt the plan to changes in the environment,
− ensure safety (avoid collisions),
− efficiently use energy and prevent energy loss.

In the paper we will focus on safety of a single vehicle. We make no assumptions
about the communication with other vehicles. Vehicles can communicate or carry out
their missions without any communication. We will not refer to vehicle communica-
tion in the paper.

When we say that the vehicle should ensure safety we primarily think of avoiding
collisions with other vehicles or objects. The vehicle should keep “safe” distance from
other vehicles and objects. There are probably many ways of designing a system
which satisfies these requirements but generally we can say that there are two ap-
proaches. The approaches differ in the way system safety is perceived and assured.

1. The first approach is based on the analysis of possible accident scenarios and de-
signing protection mechanisms (barriers) that prevent transitions to unsafe states.
The way the hazardous situations are detected and accidents are avoided is deter-
mined during hazard analysis.

2. The second approach is based on dynamic risk assessment. The vehicle control
system evaluates the risk of possible actions and then selects the one that is the
least risky in the context of current situation and environment conditions.

We will discuss and compare these two approaches. The description of the a
pproaches will be somewhat simplified to show the contrast how safety can be per-
ceived and assured. In our discussion we will focus on the rationale of the ap-
proaches and ways of demonstrating safety – what strategy can be used to argue
that the system is safe.

3 The Approach Based on Predetermined Vehicle Risk
Assessment

The first method to achieve autonomous vehicle safety is based on the traditional
approach to hazard analysis and safety assurance. The objective is to identify event
sequences leading to accidents and then design mechanisms to control the risk. Sys-
tem safety is usually achieved by implementation of safety barriers. The concept of a
barrier explains the idea of the approach.

 Safety Assurance Strategies for Autonomous Vehicles 279

3.1 The Concept of a Barrier

Hollnagel [6] defines a barrier as an obstacle, an obstruction or a hindrance that may
either (a) prevent an action from being carried out or an event from taking place,
or (b) thwart or lessen the impact of the consequences. There are many forms of bar-
riers. Hollnagel classified barriers as [6]:

Material barriers, e.g. a fence,
− functional barriers, when a specific precondition is defined which has to be ful-

filled before an action can be carried out,
− symbolic barriers, e.g. signs and signals that have to be perceived and interpreted,
− immaterial barriers, that is using the knowledge to follow the rules of allowed

behaviour (e.g. Highway Code).

This classification shows that many different means can be used as barriers for
autonomous vehicles. Usually we will combine different types of barriers to achieve
more confidence in vehicle safety.

The mechanism of a barrier is intentionally simple to assure its high reliability.
When a barrier is detected (we will use symbol e1 to denote the event of barrier detec-
tion) then a specific action a1 is to be carried out. At the moment it is not relevant
whatever technology we use – barrier detection and reaction can be implemented as
a mechanical, hydraulic, electric or software system. We can use safety analysis tech-
niques like Event Trees to describe barriers (see Fig. 2).

Fig. 1. Event Tree for a barrier activated when an event e1 occurs and action a1 defined for the
barrier

In the example presented in Fig. 1 we assume that barrier action a1 guarantees pre-
vention of the accident (or gives some probability of a success). Usually we assign
probabilities to events and the tree branches (events outcomes) to calculate probabili-
ties of possible scenarios.

When the system barriers are implemented as software functions we can generalize
the code structure to look like this:

if e1 detected then a1
else if e2 detected then a2
…
else other actions

280 A. Wardziński

Different events e1, e2, …, en can be defined for each barrier. The efficiency of barri-
ers is analysed on the system level during hazard analysis and then barriers usually
can be implemented and verified separately.

We call the approach the predetermined risk assessment as the risk is assessed dur-
ing the hazard analysis stage of the system development. The barrier conditions and
actions definitions remain unchangeable during system operation however there are
possibilities for some degree of flexibility as presented in the next Section.

3.2 Examples of Barriers Use for Autonomous Vehicles

Barriers used for autonomous vehicle safety assurance can be as simple as bumper
sensors or distance sensors to detect an obstacle and then stop. However barriers can
be far more complex and sophisticated.

Spriggs in [7] describes an autonomous system which operates near to an airport’s
runaways and uses GPS coordinates to ensure operation in the allowed area only.
The vehicle control system has a definition (map) of a safe designated area. GPS -
coordinates serve as a barrier to ensure that the vehicle will not leave the safe area.

Robertson in [3] presents kinematic motion study for a vehicle operating in an ur-
ban environment and competing in DARPA Urban Challenge [2]. The result of the
study was used to define safety regions for the vehicle motion. The safety region is an
area that is required to be free from other vehicles in order to continue driving. If the
safety region is occupied by any vehicle the system should stop and wait until the safe
region is clear. The system uses a set of sensors to calculate its position in the terrain
(on the road) and positions of other vehicles and objects. This knowledge is presented
as a situation awareness model and is used to plan the vehicle movement.

These two examples show that a barrier can be a complex mechanism.
The characteristic of the approach is that the condition that activates a barrier is set up
during the hazard analysis. The occurrence of the condition is binary – the barrier
should be activated or not. We can say that this represents a binary view on safety.

The assumption of the binary view on safety is that all the risk can be avoided
(or reduced according to ALARP principle) when we define a set of conditions that
activate barriers (safety functions). This often leads to vast “safety margins”.
For example an autonomous vehicle has to stop and wait while most of human drivers
would assess that it is safe to go ahead.

3.3 Safety Argument Strategy

The approach is intended to be simple and easy for verification. We expect that the
safety argument structure would be relatively simple. We will discuss a simplified
generic model of safety argumentation using GSN notation [8, 9]. There are many
possible ways of structuring safety arguments for barriers and we have chosen
a structure which emphasizes the fact that usually each barrier can be designed, im-
plemented and verified almost independently from other barriers. The main part of
such safety argument is presented in Fig. 2.

 Safety Assurance Strategies for Autonomous Vehicles 281

G1
Autonomous Vehicle

maintains safety when
operating in the

environment

Argument by
application of

barriers

G2
Hazard analysis

provides evidence that
barriers prevent hazard

from occurence

G3

Barriers ensure
the vehicle safety

Barriers definitions
and assumptions

on the environment

G8

Barriers are activated
early enough to avoid

hazard

G4
Barriers are
implemented

and are maintained
in the environment

G9

Barrier actions allow
for successfull

hazard avoidance

G11

Vehicle starts operation
in safe state

G5
Properties of the
environment and
assumptions are

justified

Environment
definition

G12(n)

Barrier n is activated
early enough

to avoid hazard

n barriers

G13(n)

Vehicle successfully
avoids hazard when
barrier n is activated

n barriers

G10

There are no hazardous
interactions between

barrier-related functions

Argument by
functions of

detecting and
reacting to each

barrier

G6
Vehicle safety is not

threatened by
spontaneous barrier

activation

G7
System level test
results provide

evidence for system
safety

Fig. 2. General safety argument schema for barriers

There are four main claims that have to be justified in order to demonstrate system
safety. The first claim (G2) relates to the system hazard analysis which should pro-
vide evidence that barriers prevent hazard occurrence. That means that the vehicle
will not enter unsafe area (e.g. will avoid collision). This requires a thorough analysis
of the vehicle and environment properties to create a conceptual model of the system
states and possible transitions. The analysis should:

− identify safe states of the systems and hazardous states,
− identify possible accident scenarios,
− define means to prevent hazardous transitions leading to accidents (e.g. barriers),
− check barriers completeness and assess probability of hazard occurrence for condi-

tions that do not activate barriers,
− assess probability of barrier failures and evaluate likelihood of the hazard,
− provide evidence that the analysis is complete and no relevant factors had been

overlooked.

282 A. Wardziński

We should note that barriers form a consistent and comprehensive system in hazard
analysis phase only. Claims G12 and G13 relate to each barrier separately. All the
logic of system safety is built on the hazard analysis level. In the system we imple-
ment and then demonstrate each barrier function independently. The safety argument
for each barrier relates to its design, implementation, tests and verification.

Only during system level tests the barrier system mechanism is validated as a
whole (G7). There are also some conditions in the environment which are to be ful-
filled or barriers may fail otherwise. Usually barriers need some kind of devices or
equipment (e.g. GPS satellites) to be maintained in the system environment (G4).
Sometimes we also need some justification for environment properties or assumptions
on such properties (G5). An example of such assumption is maximum possible accel-
eration of other vehicles in the environment.

3.4 Summary of the Predetermined Risk Assessment Approach

The main objective of the predetermined risk assessment is to provide highly reliable,
simple, manageable, efficient, economical and verifiable solution that assures the
system safety goals. This works very well for non-autonomous systems. The approach
can also be applied for autonomous vehicles however we should be aware of some
limitations.

It is important to notice that binary safety model (division of possible states into
safe ones and unsafe ones) is an abstraction of the reality aimed in making safety
assurance techniques simpler, more reliable, easier to demonstrate and verify. That
does not mean that in reality safety is a binary attribute. It is just a simplification that
makes safety assurance process more effective.

The great advantage is that during hazard analysis we decompose the system safety
problem and then analyse each barrier separately. Each barrier can be independently
designed, implemented and tested. Additional work is required when barriers depend
on each other. When barriers interrelationship becomes more complex the amount of
work and difficulty of safety argumentation rises. If we had ten interrelated barriers
we would have to analyse hundreds of combinations.

Another disadvantage of the approach is that it is not flexible and the system per-
formance deteriorates when it is operating in an open environment as the vehicle
cannot adapt its behaviour to the changes in the environment. For example a vehicle
mentioned in Section 3.2 can wait for a long time until the safety region is clear. Most
of human drivers would asses the safe region as too vast and would assess the vehicle
behaviour as very protective. This approach is well suited for a situation of low traffic
and low speed. The approach works well when there is only a limited number of vehi-
cles and for most of the situations the safety region is clear.

There are some areas of applications for which such limitation could be a big dis-
advantage or even not acceptable. The approach is difficult to apply when the applica-
tion domain requirements relate to:

− need for efficient space utilization, like congested road traffic;
− reactions for unexpected failures and events especially when stopping is not

a proper way to ensure safety;
− driving in a terrain for which barriers are not implemented and maintained;

 Safety Assurance Strategies for Autonomous Vehicles 283

− competition between vehicles and situations like racing;
− military missions, escorting and guarding when the mission goals require taking

some risk.
It seams that application of this approach alone to autonomous systems would make it
difficult to achieve performance goals.

4 Dynamic Risk Assessment

In real world humans do not perceive safety in a binary way. We are not used to dis-
tinguish only two states: “this is not safe – I have to react to this” and “this is safe –
no reaction is needed” (however we often react to some events). We are used to talk
about the risk of an activity or a situation. We often say that something is more or less
risky in some situations. That leads to a conclusion that situation safety should not be
perceived as a binary condition but we should rather say that a situation can be char-
acterised with a specific risk level depending on the attributes relevant to safety.

4.1 Dynamic Risk Assessment Approach

The concept of risk as an attribute of a situation is quite widely used in hazard analy-
sis. When we analyse accident scenarios we identify situation attributes (events) as
risk factors which contribute to hazard.

The idea of the risk assessment approach is to design a system which is able to per-
ceive and interpret risk factors and then assess how far it is on the scale starting from
an absolutely safe state and ending with an accident. The system should be able to
assess the risk of the situation before carrying out a specific action. In that way the
system would be able to select safe actions and avoid actions leading to hazards.

The concept of situation risk assessment for autonomous vehicles was described in
[10, 11]. The general requirement for the system is to maintain situation awareness
which allows for action planning taking into account risk level of particular actions.
The concept of situation awareness is used in psychology and in robotics but it is
quite new for safety-critical systems.

The general architecture of an autonomous vehicle control system using situation
awareness model is presented in Fig. 3. In our analysis we will focus on the situation
awareness model and Task planning process. The general algorithm of the Task plan-
ning process consists of following steps:

1. Select possible scenarios of actions to be analysed and assessed.
2. Assess each scenario for:

− mission progress,
− compliance with formal safety rules (e.g. Highway Code),
− situation risk level.

3. Choose the optimal scenario (according to the vehicle strategy).
4. Communicate tasks of the chosen scenario to the Control layer.

One should note that the “rules” mentioned in point 2 can be barriers. Barriers can
be used for dynamic risk assessment approach however it is only one of three factors
of the situation assessment. An example of a rule is “vehicle to the right has the right

284 A. Wardziński

of way” when two or more vehicles approach a crossing at the same time. Another
rule can be “do not drive across the pavement”. Rules often can relate to barriers.
 The goal of step 3 is to select the best action to carry it out. The selection criteria
depend on the vehicle strategy. The strategy can give priority to safety or mission
goals depending on the mission context and current situation. For the purposes of the
paper we will assume that the strategy to assure vehicle safety and safety has higher
priority then mission goals.

Fig. 3. Autonomous vehicle control system architecture

We assume that dynamic risk assessment would allow for:

− better system resilience and survivability in unexpected situations or in emergency;
− better performance in an open (non-controlled) environment when other entities

(systems, vehicles or humans) can act independently,
− better ability to perform risky missions where some risk level has to be accepted

and the system should balance between safety and mission goals,
− operation in areas where barriers are non existing or difficult to define and imple-

ment.

4.2 Safety Assurance Using Dynamic Risk Assessment

The system safety is assured by a complex mechanism of selecting the safest possible
action for a given current situation. We will analyse this for the example similar to
presented in Section 3.1. In Fig. 4. we have a set of hazardous situations SH and some
possible scenarios of actions presented as arrows leading to other situations. Barrier

 Safety Assurance Strategies for Autonomous Vehicles 285

actions described in Section 3.1 are presented as transitions a1 and a2. The main dif-
ference in comparison to predetermined risk assessment is that the task of the vehicle
control system is not to activate automatically the barrier function a, but assess the risk
for each possible actions and then carry out the safest one. Depending on the specific
situation it can be the action a or any other action, like action b2 for situation sH2.

The main prerequisite for the approach is situation awareness model which should
provide means to distinguish situations attributes that are relevant for the system
safety. The model should allow for situation perception, identification of possible
actions and prediction of their results. The prediction should take into account
changes in the environment and actions of other entities (vehicles).

sH1

sS1

a1 sB1

SH

SS

SA

sH2

b1

sS2

Accident

No risk

Safe
situations

Hazardous
situation

High risk
of an accident

sB2

b2

a2

Fig. 4. Set of example situations and actions in context of the risk scale

A kinematic vehicle model forms the basis for the vehicle motion safety analysis.
The model will tell us what the position of the vehicle will be when specific actions
(like braking, acceleration and turning wheels) are carried out. When other vehicles
operate in the same environment then the model should be extended with behaviour of
other vehicles and possibly communication with them. When necessary the model
should also take into account the possibility of presence of humans.

The critical function of the situation awareness model is to assess the risk of any
current or predicted situation. Possible set of situations to be analysed and assessed
will usually be bigger then a set of scenarios analysed for barriers (compare to Fig. 1).

For any current situation the control system will identify possible actions and as-
sess the risk level associated with them and then select the safest one to be carried out
(or other action according to the vehicle strategy). Selection of the safest action can be
described as a following function using VDM-like notation:

286 A. Wardziński

vehicleAction(s : Situation) as : ActionScenario
post

as ∈ possibleScenarios(s)
∧
riskAssessment(s, as) =
 min{ ra | ra = riskAssessment(s, ax) ∧ ax ∈ possibleScenarios(s) }

It is important to note that for a given situation sH1 the control system does not nec-
essary need to activate the barrier function a1. The objective of the approach is to
create a model which can be used to identify the safest action for a given situation and
the selected action can be different then action a1 (like action b1).

4.3 Safety Argument Strategy

Our analysis led us to the main question in this paper – how can we gain confidence
that this approach will really ensure system safety and acceptably low risk of autono-
mous vehicle operation? Safety analysis of such systems is a subject of research and
probably there are no established methods that solve the problem.

The situation awareness model plays the main role in safety assurance as the vehi-
cle uses it to interpret the situation and to assess the risk of possible actions. The main
difference in comparison with the barrier approach is the way we handle cause-
consequences dependencies. In the traditional approach the model of system safety
and hazardous cause-consequences dependencies is created by humans in hazard
analysis phase. As a result separate safety functions for all barriers are designed and
implemented. This is quite different when we intend the vehicle control system to
maintain situation awareness and dynamically assess the risk. The model is to be
analysed as a whole and its elements cannot be analysed in separation. Providing
arguments for the system safety is more complex. A general schema of argumentation
structure is presented in Fig. 5.

First we have to demonstrate that situation awareness model with dynamic risk as-
sessment function is correct in terms of consistency with real vehicle and its operating
environment and is sufficient and adequate for vehicle safety assurance (claim G2). In
our analysis we have identified the main safety requirements for the situation aware-
ness model:

1. The model should distinguish situations that are relevant for system safety (includ-
ing safe, hazardous situations and accidents).

2. Attributes that are used to identify and classify situations should be possible to
measure with the use of sensors or their values should be possible to be deduced
from accessible information (risk factors are examples of situations attributes).

3. The model gives information what are the possible actions for current situation.
4. The model can predict and assess safety of a situation that will be the result of a

given action (or action scenario). Prediction should take into account behaviour of
other vehicles and events in the environment.

5. The model should allow for representing incomplete or uncertain data, what leads
to uncertain risk assessment [10]. The model should preserve safety when the risk
assessment results are uncertain. The loss of situation awareness (when the control
system is not able to assess the situation) is interpreted as unsafe situation.

 Safety Assurance Strategies for Autonomous Vehicles 287

Fig. 5. Safety argument structure for dynamic risk assessment approach

6. Depth of prediction of future situations is sufficient to ensure avoidance of unsafe
state what means that the vehicle after perceiving any dangerous situation has
enough time to avoid accident.

7. The model implementation is effective within required time limits.

The satisfaction of the requirements should be verified and validated for a given
vehicle and specific environment profile.

The next two claims relate to requirements that the systems should maintain the
situation awareness (G3) and should use it to control the risk (G4). Claim G3 relates
to processes that provide situation awareness information: sensor reading, sensor data
analysis and situation analysis processes in system architecture presented in Fig. 3.
The processes should provide reliable and up-to-date information to maintain the
situation awareness. The next claim (G4) is related to the use of situation awareness
knowledge and its functions (like risk assessment function) to steer the vehicle and to
ensure vehicle safety. In system architecture presented in Fig. 3 the processes task
planning and actuator control perform these tasks.

The system should be demonstrated to work safely when the operating environ-
ment is consistent with the assumed environment profile. Therefore we add the fourth
claim (G5) to provide evidence why we think the operating environment will be con-
sistent with the intended profile and how will we assure that the vehicle will not be
used in other environment what could cause errors of the situation awareness model.
Part of the claim justification should be related to assumptions about the behaviour of
other vehicles.

Justification for claims G3 and G4 can be based on the system design analysis and
demonstration of the traceable process of design, development, testing, verification
and validation. Justification for the situation awareness model (G2) is more difficult.
At the moment we do not have effective methods for the situation awareness model
analysis. One of the problems is that the model covers overall vehicle safety. That is
quite different to traditional hazard analysis approach where we divide the analysis

288 A. Wardziński

into as small pieces as it is possible and then analyse separately each hazard and each
failure mode. Risk factors in the situation awareness model are interrelated and it is
more difficult to analyse them separately. We will not be able to decompose the prob-
lem into separate and independent items. When we adjust the situation awareness
model for better reaction for a single risk factor then we usually alter assessment of
a broad set of situations.

The second difference to traditional safety assurance methods is the decision mak-
ing process. The barrier approach assumes that the control system will react immedi-
ately when a specific condition is met. This is a direct cause-consequence relation.
We can use analytical techniques like Event Tree Analysis or Fault Tree Analysis to
examine effectiveness of barriers. When the system maintains situation awareness
then the direct connection between the barrier activating event and the reaction is
broken. If the vehicle strategy is to accept some risk level then the vehicle behaviour
will differ from simple reaction to barrier activation condition.

Verification of the situation awareness model requirements presented in Section
4.2 is a very complex task even for simple simulated vehicle models. Probably it will
not be possible to verify it manually and tool support will be needed.

The main problem that we had encountered during definition of a situation aware-
ness model for a simple simulated autonomous vehicle was the correctness of the risk
assessment function. The risk level for a safe situation or for an accident is easy to
verify. However the risk level for intermediate states is more difficult for verification
as we do not have real world values that can be measured and compared to. Humans
can also differently assess the risk of the situation and our experience shows that the
assessment can be subjective. The solution of the problem that we use is scenario risk
profile analysis. The profile is used to present changes of the assessed risk level for a
scenario. For example when a scenario starts with a safe state and ends with an acci-
dent we can observe how the risk level rises. We can also identify points in time when
risk factors are detected by the vehicle or some specific conditions occurred. As a
result of the analysis we can add additional risk factors or change ratings of existing
risk factors to improve system ability to avoid hazard. It will be difficult for complex
systems to design the correct situation awareness model and then prove its safety.
The approach will be rather to analyse the system safety and then improve the model
using methods like risk profile analysis.

Another problem is how to assess the system safety level as the environmental
conditions has great influence on it. For example number of accidents will depend on
behaviour of other vehicles, weather and road conditions and so on. The system safety
requirements and safety performance can be defined and measured in the context of
a specific environment profile only.

The last of the main problems is the certainty level for prediction of other vehicle
actions. We have to accept some level of prediction uncertainty however there is
some breaking point when the vehicle control system loses the ability to preserve
safety. We discuss the problem of uncertainty in [10].

This all together gives us four types of evidence that can be used when construct-
ing arguments for situation awareness model correctness (Fig. 6).

The first type of evidence (E1) is based on the analysis of the situation awareness
model (kinematic model) and accident sequences. We analyse the model in the con-
text of identified safety requirements.

 Safety Assurance Strategies for Autonomous Vehicles 289

Evidence E2 is based on the simulation results. We define some number of scenar-
ios (safe, near-miss and accidents) and use them for analysis and simulation. The
objective of a simulation scenario is to check if the vehicle can safely operate for a
given scenario. To use large number of simulated scenarios an efficient simulation
tool is needed and also tool support for scenarios definition and validation. This
method is especially useful when it is used for testing of modified vehicle control
system using a set of already validated and documented scenarios.

Situation awareness
(SAW) model

G2

SAW model is correct and
assures vehicle safety

Hazard analysis
results:

analysis of
kinematic model

and accident
sequences

Evidence based
on simulation

Evidence based
on the analysis

of simulated and
recorded real

scenarios

Evidence based
on operational

system
performance

statistics

E1 E2 E3 E4

Fig. 6. Analysed types of evidence for claim of situation awareness model correctness

The third kind of evidence is the analysis of simulated and recorded real scenarios.
We analyse the scenario risk profile to check how the risk level was rising before an
accident, when the system became aware of the high risk level, how the risk level is
assessed in absence of any threats and if we can explain observed variations in the
scenario risk profile. Comparison of simulated scenarios and scenarios recorded dur-
ing system operation will provide evidence for the situation awareness model consis-
tency with real vehicle behaviour.

The last kind of evidence is based on data from the system operation. This data can
be a subject to reliability growth modelling. Accidents experienced during system
operation can be analysed to improve situation awareness model.

5 Summary

The use of situation awareness model and dynamic risk assessment is a novel ap-
proach for safety-critical systems. Nowadays most of safety-critical systems are not
autonomous. For simple autonomous systems the traditional approach based on prede-
termined risk assessment and a concept of a barrier is sufficient for achieving safety
and performance goals. Safety assurance methods and techniques for this approach
are mature and efficient. Main safety argument strategy is to demonstrate traceable
process from safety requirements analysis, through design, development, tests, verifi-
cation, validation to finally operation and maintenance.

In the future we can expect a tendency to use autonomous systems operating in
more complex and less controlled environments. This will raise problems presented in

290 A. Wardziński

the paper. The presented dynamic risk assessment approach would allow for devel-
opment of resilient autonomous systems. The idea of a resilient system is to sail close
to the area where accidents will happen, but always stay out of the dangerous area
[13]. Dynamic risk assessment approach promises such abilities however it is very
difficult to provide sound and convincing safety evidence. We have discussed our
experience what strategy can be used for presenting safety argument for the use of
dynamic risk assessment. The main problem is that the safety argument is not so
straightforward as in the case of the predetermined risk assessment approach. Appro-
priate safety analysis methods for situation awareness model and dynamic risk as-
sessment are not mature and are the subject of further research.

References

1. Lohmann, R.H.C.: About Group Rapid Transit and Dual-Mode Applications. In: APM
2007, 11th International Conference on Automated People Movers, Vienna (2007)

2. DARPA: Urban Challenge Rules (2006),
http://www.darpa.mil/grandchallenge

3. Robertson, S.W.H.: Motion Safety for an Autonomous Vehicle Race in an Urban Envi-
ronment. In: 2006 Australasian Conference on Robotics & Automation (2006)

4. Clough, B.T.: Metrics, Schmetrics! How The Heck Do You Determine A UAV’s Auton-
omy Anyway? In: PerMIS Conference Proceedings, Gaithersburg, pp. 1–7 (2002)

5. Sholes, E.: Evolution of a UAV Autonomy Classification Taxonomy. In: IEEE Aerospace
Conference (2007)

6. Hollnagel, E.: Accidents and Barriers. In: Hoc, J.-M., et al. (eds.) Proceedings of Lex
Valenciennes, Presses Universitaires de Valenciennes, vol. 28, pp. 175–182 (1999)

7. Springs, J.: Motion Safety for an Autonomous Vehicle Race in an Urban Environment. In:
Redmill, F., Anderson, T. (eds.) Currect Issues in Safety-critical Systems – Proceeding of
the Eleventh Safety-critical Systems Symposium. Springer, London (2003)

8. Bishop, P.G., Bloomfield, R., Guerra, S.: The future of goal-based assurance cases. In:
Proceedings of Workshop on Assurance Cases. Supplemental Volume of the 2004 Interna-
tional Conference on Dependable Systems and Networks, pp. 390–395 (2004)

9. Kelly, T.P.: Arguing Safety – A Systematic Approach to Managing Safety Cases, PhD the-
sis, University of York (1998)

10. Wardziński, A.: The Role of Situation Awareness in Assuring Safety of Autonomous Ve-
hicles. In: Górski, J. (ed.) SAFECOMP 2006. LNCS, vol. 4166. Springer, Heidelberg
(2006)

11. Wardziński, A.: Dynamic Risk Assessment in Movement Planning for Autonomous Vehi-
cles. In: International IEEE Conference on Information Technology, IT 2008, Gdansk (Po-
land), May 18-21 2008, pp. 127–130 (2008)

12. Hollnagel, E., Woods, D.D., Leveson, N.: Resilience Engineering, Ashgate (2006)

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 291–304, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Expert Assessment of Arguments:
A Method and Its Experimental Evaluation

Lukasz Cyra and Janusz Górski

Gdansk University of Technology, Department of Software Engineering
Narutowicza 11/12, 80-952 Gdansk, Poland

lukasz.cyra@eti.pg.gda.pl, jango@pg.gda.pl

Abstract. Argument structures are commonly used to develop and present
cases for safety, security and other properties. Such argument structures tend to
grow excessively. To deal with this problem, appropriate methods of their as-
sessment are required. Two objectives are of particular interest: (1) systematic
and explicit assessment of the compelling power of an argument, and (2) com-
munication of the result of such an assessment to relevant recipients. The paper
gives details of a new method which deals with both problems. We explain how
to issue assessments and how they can be aggregated depending on the types of
inference used in arguments. The method is fully implemented in a software
tool. Its application is illustrated by examples. The paper also includes the re-
sults of experiments carried out to validate and calibrate the method.

Keywords: Argument assessment, Dempster-Shafer model, Argument struc-
tures, Safety Case, Trust Case, Assurance Case.

1 Introduction

Arguments are commonly used in ‘cases’ (safety cases [13, 17, 18], assurance cases
[2], trust cases [9, 10], conformity cases [4, 5], etc.) to justify various qualities of
objects (like safety, security, privacy, conformity with standards and so on). Recently,
there is a growing interest in these subjects, which leads to the development of rele-
vant methodologies and finding new application areas for argument structures [6, 7].

The idea which lies behind the development of argument structures is to make ex-
pert judgment explicit in order to redirect the dependence on judgment to issues on
which we can trust this judgment [22]. In this way, it is possible to analyze the argu-
ment structure and take a position on it.

However, argument structures tend to grow excessively, becoming too complex to
be analyzed by non-experts. Therefore appropriate methods of assessment of argu-
ment structures are required. Two objectives are of particular interest: (1) assessment
of the compelling power of an argument structure, and (2) communication of the
result of such an assessment to relevant recipients.

The paper gives details of such an appraisal method. Although, this approach is
developed in connection with the Trust-IT methodology [9, 10], which focuses on
trust cases, it is general enough to be applied to other kinds of cases. The appraisal

292 L. Cyra and J. Górski

mechanism described in the paper is based on the Dempster-Shafer model [20, 21]. It
provides for issuing assessments and their aggregation depending on the types of
inference used in arguments. The mechanism has been already implemented in the
TCT (Trust Case Toolbox) software tool [14]. The paper includes examples of its
application which have been borrowed from the trust case developed for a real system
[19]. The paper also reports on the results of some experiments carried out to validate
and calibrate the appraisal method.

The presented method extends and modifies the approach to arguments appraisal
proposed in [12], which had problems with adapting itself to the types of arguments
occurring in trust cases. It proposes linguistic appraisal scales which are then repre-
sented in terms of Dempster-Shaffer belief functions and can be mapped onto the
Josang’s opinion triangle [15, 16]. Some of the aggregation rules (not described in
detail in the paper) are following Yager’s modification of Dempster’s rule of combi-
nation [20]. A general discussion of the role of confidence in dependability cases can
be found in [3].

2 Representing Arguments

The proposed approaches to argument representation in ‘cases’ [1, 9, 17] are influ-
enced by the Toulmin’s argument model [23]. In our approach (the Trust-IT method-
ology) we adopt this model in a fairly straightforward way as shown in Fig. 1.

Fig. 1. Trust-IT argument model

The presented structure includes a conclusion to be justified represented as a claim
(denoted). The claim is supported by an argument strategy (denoted), which
contains a basic idea how to support the conclusion. In the case of counter-argument
strategies (denoted) it includes the idea of rebuttal of the claim. The argument
strategy is related to a warrant (denoted) which justifies the inference from
premises to the conclusion. This justification may require additional, more specific
arguments, which is shown by the arrow leading from the argument to the warrant
node.

 Expert Assessment of Arguments: A Method and Its Experimental Evaluation 293

A premise can be of three different types: it can be an assumption (denoted), in
which case the premise is accepted without further justification; it can be a more spe-
cific claim which is justified further; or it can represent a fact (denoted) which is
obviously true or, otherwise, is supported by some evidence. Evidence is provided in
external (to the trust case) documents, which are pointed at by nodes of type reference
(denoted). In the case of an assumption, the referenced document can contain ex-
planation of the context in which the assumption is made.

As claims and warrants can be demonstrated using other (sub-)claims the argumen-
tation structure can grow recursively. The icons labeling different nodes shown in
Fig.1 and implemented in the supporting tool (TCT [14]) to denote elements of argu-
ment structure will be used in the subsequent examples presented in this paper.

An example argument following the model introduced in Fig. 1 is presented in
Fig. 2. The example refers to the PIPS system, the system delivering to its users
health and lifestyle related personalized services [19]. The top claim of the structure
postulates validity of information supplied to PIPS. It is demonstrated by considering
different channels through which information related to a patient’s state is supplied to
the system. This leads to four premises which are used by the argument. Three of
them: ‘Validity of information from PIPS-enabled devices’, ‘Validity of information
from questionnaires’ and ‘Validity of product codes’ are claims and are supported by
more detailed arguments. The fourth one, ‘Truthfulness of the information provided
by a patient’, is an assumption and is not further analyzed.

Fig. 2. An example argument coming from a trust case for the e-health system PIPS

To appraise the compelling power of such an argument we have introduced an ap-
praisal method which is presented in the following part of the paper. The method
consists of two steps:

Step 1 – appraisal of warrants and premises
1.1. Estimate the ‘strength’ of warrants (these, which do not have their support-

ing arguments) occurring in the argument. (This assessment is based on the
assessment of the evidence linked to the warrant but also the common
knowledge and the logical bases for the inference.)

1.2. Estimate the ‘strength’ of the facts and assumptions occurring in the argu-
ment. (This appraisal is mostly based on the assessment of the evidence
linked to the premises by the reference nodes.)

294 L. Cyra and J. Górski

Referring to the example shown in Fig. 2, the appraisal of the ‘Analysis of different
channels’ warrant would take into account if the validity of information received from
the devices, questionnaires and by reading product codes with the additional assump-
tion that patients are not cheating intentionally are sufficient to conclude the validity
of information supplied to the system.

The appraisal of the premises would assess the acceptability of the assumption that
patients are not cheating intentionally (note that this is context dependent and the
result would depend on the knowledge about the system and its environment). The
appraisal of the ‘Conformity of the PIPS-enabled devices with European Medical
Devices Directive’ fact would take into account the evidence linked to this fact by the
corresponding reference node.

Implementation of Step 1 requires that we have an appropriate scale to express the
appraisals of warrants, facts and assumptions. This should be complemented by ap-
propriate guidelines supporting the assessor.

Step 2 – automatic aggregation of the partial appraisals
2.1. Starting from the leaves of the argumentation tree, aggregate the appraisals

of the premises and warrants to obtain the appraisal of the conclusions.
2.2. Repeat the process until the top conclusion has been reached.

Referring to the example from Fig. 2, this step would result in the appraisal of the
top claim taking as an input the appraisals of warrants, facts and assumptions occur-
ring in the argumentation and recursively applying the aggregation rules.

Implementation of Step 2 requires that the appropriate aggregation rules were de-
fined covering all relevant types of warrants occurring in the arguments.

3 Appraisal Mechanism

To support experts during the appraisal process we have introduced two linguistic
scales, the Decision scale and Confidence scale. The former provides for expressing
the attitude towards acceptance or rejection of the assessed element. It distinguishes
four decision values: acceptable, tolerable, opposable and rejectable. The latter scale
provides for expressing the confidence in this decision. It distinguishes six levels of
confidence: for sure, with very high confidence, with high confidence, with low confi-
dence, with very low confidence and lack of confidence.

The scales can be combined together which results in twenty four values of the As-
sessment scale as shown in Fig. 3. The elements of the scale, which are represented as
small circles, have intuitively understandable linguistic values. For instance, the ele-
ment represented as the white circle reads: ‘with very low confidence tolerable’.

The semantics of the scales can be formalized using Dempster-Shafer’s belief and
plausibility functions [20, 21]. If s is a statement, then

-]1,0[)(∈sBel is the belief function representing the amount of belief that di-

rectly supports s,
-]1,0[)(∈sPl is a plausibility function representing the upper bound on the be-

lief in s that can be gained by adding new evidence.

 Expert Assessment of Arguments: A Method and Its Experimental Evaluation 295

lack of confidence

for sure

with very high confidence

with high confidence

with low confidence

with very low confidence

ac
ce

pt
ab

le

to
le

ra
bl

e

op
po

sa
bl

e

re
je

ct
ab

le

DECISION SCALE

C
O

N
FI

D
EN

C
E

SC
A

LE

Fig. 3. The Assessment scale as a product of Confidence scale and Decision scale

We can formally represent confidence as:

)(1)()(sPlsBelsConf −+= ,]1,0[)(∈sConf (1)

and map the interval [0,1] onto linguistic values from the Confidence scale in such a
way that lack of confidence = 0, and for sure=1.

Decision scale distinguishes four levels to express the ratio between belief (accep-
tance of a statement) and the overall confidence in the statement (without distinguish-
ing if we want it to be accepted or rejected).
Using Dempster-Shafer’s functions we can formally represent the decision concerning s
as:

⎩
⎨
⎧

=−+
≠−+−+

=
0)(1)(1

0)(1)())(1)(/()(
)(

sPlsBel

sPlsBelsPlsBelsBel
sDec ,]1,0[)(∈sDec . (2)

The interval [0,1] is mapped onto linguistic values of the Decision scale in such a
way that ‘rejectable’=0 and ‘acceptable’=1.

Fig. 4. Mapping Assessment scale on Josang’s opinion triangle

296 L. Cyra and J. Górski

We can observe that the difference between stating that something is acceptable or
rejectable is significant if enough evidence supporting such assessment is available
(which corresponds to e.g. ‘for sure’ or ‘with very high confidence’ assessments),
however, there is no difference if no evidence is present (which corresponds to the
‘lack of confidence’ assessment). To address this particular aspect, the Assessment
scale can be represented as a triangle shown in Fig. 4 and called Josang’s opinion
triangle [15, 16].

3.1 Appraisal Procedure

The Assessment scale is applied to express opinions and the level of confidence in
these opinions in relation to assumptions, facts and warrants which are not supported
by a (counter-)argument strategy.

The assessment of a single node of the structure proceeds as follows:

1) If no evidence for or against the statement representing the node is available the
‘lack of confidence’ assessment is issued and the procedure is broken.

2) In the other case, the ratio between the evidence supporting the acceptance
and rejection of the statement is assessed and an appropriate value from the
Decision scale is chosen.

3) Then, it is assessed how much evidence could additionally be provided to be
sure about the decision chosen in step 2. This amount of missing evidence
drives the selection from the Confidence scale.

4) The final assessment from the Assessment scale is obtained by combining the
two partial assessments from steps 2 and 3.

Fig. 5 presents a fragment of the user interface for issuing assessments of the TCT
tool [14]. The user can drag a small white marker over the opinion triangle shown on
the left hand side. Then, the linguistic values corresponding to the current position of
the marker are displayed in the Confidence level: and Decision: windows. It is also
possible to directly choose an appropriate linguistic assessment. Additionally, the
current levels of belief, disbelief and uncertainty are displayed as horizontal bars just
above the opinion triangle.

Fig. 5. User interface for issuing assessments of the TCT tool

 Expert Assessment of Arguments: A Method and Its Experimental Evaluation 297

3.2 Appraisal Examples

As an example let us consider fact F stating that ‘PIPS-enabled devices are confor-
mant with European Medical Devices Directive’ (see Fig. 2).

Let us assume that:

(1) There is some evidence relevant to F.
(2) All the available evidence supports F which results in choosing the ‘accept-

able’ value from the Decision scale.
(3) The evidence is almost complete, however, the certification process has not

been performed yet – which leads to the ‘with very high confidence’ assess-
ment.

Consequently, the final appraisal of F is: ‘with very high confidence acceptable’.
Let us now consider F in a different situation:

(1) There is some evidence relevant to F.
(2) The evidence demonstrates that most of the requirements of the directive are

met, however, one significant requirement is not yet fulfilled; this results in
the ‘opposable’ assessment.

(3) The evidence is substantial, however, not complete which gives the ‘with high
confidence’ assessment.

Consequently, the final appraisal of F is: ‘with high confidence opposable’.
As another example let us take warrant W (‘Analysis of different channels’) from

Fig. 2. The warrant identifies different types of channels providing information to the
system and explains that if they provide valid information, the information available
to the system is also valid.

Let us assume that:

(1) An inventory of types of channels exists.
(2) It identifies four major types of channels represented in the argument and in

addition, some other less important ones, which were not considered in the ar-
gument; this leads to the ‘tolerable’ assessment of the warrant.

(3) The inventory resulted from a formalized procedure of review of system de-
sign; this leads to the ‘for sure’ assessment.

Consequently, the final appraisal of W is: ‘for sure tolerable’.
As yet another example let us take assumption A (‘Truthfulness of the information

provided by a patient’) from Fig. 2, which states that patients will not intentionally
input false data into the system.

Let us assume that:

(1) There are bases to assess the assumption as there is some information about
in what situations and what kind of data patients input into the system.

(2) The assessor tends to accept the assumption although sees some situations
where it does not necessarily hold; the decision is to assess it as ‘tolerable’.

(3) The assessor has no doubts that she/he sees the whole scope of relevant
situations; this leads to the ‘for sure’ assessment.

Consequently, the final appraisal of A is: ‘for sure tolerable’.

298 L. Cyra and J. Górski

4 Aggregation Rules

Aggregation rules define how the appraisals of the premises and the appraisal of the
warrant are used to calculate the appraisal of the conclusion. We will briefly discuss
four basic argument types and the corresponding aggregation rules which we have
identified and illustrate their application by examples. An interested reader is referred
to [8] for more detail and the formal definition of the aggregation rules. The examples
show the results of application of the aggregation mechanisms as they are presently
implemented in the TCT tool [14].

C-argument (Complementary argument) is such where the premises provide com-
plementary support for the conclusion. In the case of C-argument not only the as-
sessments of the premises and the warrant but also the weight associated with each
premise is taken into account. The final assessment of the conclusion is a sort of
weighed mean value of the contribution of all the premises.

Fig. 6. Assessment of the conclusion of C-argument

Let us consider a C-argument shown in Fig. 6. The assessments of the warrant
and premises (together with the associated weights) are shown on the right hand
side in italic. The resulting assessment of the conclusion is ‘with high confidence
acceptable’ (printed in bold). Note that despite the fact that one of the premises is
‘tolerable’ the conclusion is ‘acceptable’. This results form the fact that the other
premises ranked ‘acceptable’ outweighed in this case. Additionally, it can be seen
that the confidence in the conclusion is slightly lower than it could be expected
while looking at the assessments of the premises. This results from the fact that
there were some doubts concerning the strength of the inference rule, reflected in
the assessment of the warrant.

Let us consider the example from Fig. 6 but with the assessment of the assumption
modified to (6, lack of confidence). In such a case the assessment of the conclusion
would be (with low confidence acceptable) which results form the fact that the other
premises are fairly high assessed and there is relatively high assessment of the war-
rant. Nevertheless, the assessment of the conclusion would be lower than in the ex-
ample shown in Fig. 6.

Another type of argument, called A-argument (Alternative argument) is encoun-
tered in situations where we have two or more independent justifications of the com-
mon conclusion. In A-arguments the confidence in the assessments coming from
different argument strategies is reinforced if the assessments agree, or it is decreased
if they contradict each other.

Let us illustrate the situation with the example shown in Fig. 7. Both arguments
support the conclusion providing high confidence. In this case the resultant assess-
ment of the conclusion is ‘with very high confidence acceptable’.

 Expert Assessment of Arguments: A Method and Its Experimental Evaluation 299

Fig. 7. Assessment of the conclusion of A-argument

In the case the arguments contradict each other, the effect is opposite. If one of the
arguments in Fig. 7 would support rejection of the conclusion and another recom-
mend acceptance, there would be no confidence in the conclusion at all and the ‘lack
of confidence’ assessment would result.

In NSC-arguments (Necessary and Sufficient Condition list argument), negative
assessments are strongly reinforced. In such arguments the acceptance of all premises
leads to the acceptance of the conclusion, whereas rejection of a single premise leads
to the rebuttal of the conclusion. An example of such an argument is shown in Fig. 8.
Each premise is a necessary condition for the conclusion. Therefore, if even one of
them is rejected, the conclusion cannot be accepted. Consequently, low assessments
of the premises leads to a rapid drop in assessment of the conclusion.

Fig. 8. Assessment of the conclusion of NSC-argument

In SC-arguments (Sufficient Condition list argument) acceptance of the premises
leads to the acceptance of the conclusion similar to NSC-arguments. An example of
such an argument is presented in Fig. 9. The difference to NSC-argument is that in
this case rejection of a single premise leads to the rejection of the whole inference.
For instance, the lack of conformity with EMD Directive does not result in invalid
information received from the devices. The only reasonable conclusion is that
in such a case we do not know anything new concerning the validity of this infor-
mation.

Fig. 9. Assessment of the conclusion of SC-argument

Detailed analysis of the inference types encountered in argument structures is pre-
sented in [8] and the aggregation rules for different types of algorithms have been
proposed. Each warrant occurring in the argumentation has its type explicitly identi-
fied and the corresponding aggregation rule assigned, which is done by the developer
of the argument structure. Additionally, for C-arguments it is necessary to assign
weights to the premises, which indicate the influence of a given premise on the con-
clusion.

300 L. Cyra and J. Górski

5 Assessment Scenarios

Arguments can be used in different contexts and their appraisal serves two basic pur-
poses:

1. to assess the compelling power of the argumentation,
2. to construct a simple and understandable message communicating the strength

of the argument to the receivers who do not have capacity or resources to
study and assess the argument themselves.

In the ‘standard’ scenario of (safety, assurance, trust) cases the argument aims to
justify some distinguished property of a considered object in its application context.
Such justification is often complex and difficult to understand without sufficient ex-
pertise and resources. In such situations the appraisal mechanism can be used by ex-
perts to record and accumulate their opinions about the argument. The mechanism
provides full traceability to the elementary assessments and the way they were com-
bined into the final one. Different experts’ opinions can be compared and, if neces-
sary, the resultant assessment can be easily computed. Such opinions can then be
communicated to the managers and other decision-makers to support their decisions
concerning suitability of the considered object for the expected purpose (for instance,
granting a license for using the object in its target context). The results of the ap-
praisal can be also communicated to broader public which can promote trust and the
feeling of safety/security.

In [11] a collaborative development process for trust cases was proposed. Its exten-
sion, taking into account the proposed appraisal mechanism which supports the as-
sessment phase in the process is illustrated in Fig. 10. The assessment phase provides,
as part of its feedback, the report on structural errors in the trust case which is a posi-
tive side effect of the application of the appraisal mechanism. It provides also an
assessed trust case which can be presented to viewers and used as a base for the next
development cycle.

Fig. 10. Trust Case development process

 Expert Assessment of Arguments: A Method and Its Experimental Evaluation 301

Another application scenario, to which the appraisal mechanism can bring a sig-
nificant value, is application of standards. Conformity assessment is a process which
ends with a binary assessment (acceptance or rejection of the claim of conformity). In
this process, fulfillment of numerous requirements is checked applying the same bi-
nary decision scale. This is mainly because of the lack of practical and usable mecha-
nisms supporting more fine differentiation of the fulfillment level of various require-
ments of the standard. In every assessment project, some of the requirements are
fulfilled better than others and are supported by stronger evidence. To exploit this
fact, more sophisticated methods of evidence and justification appraisal are needed,
which would make it possible to perform appraisal in parallel to the conformity
achievement process to get feedback on how the project is approaching full satisfac-
tion of the conformity criteria. This aspect is of particular interest if self-declaration
is taken into account (first party conformity assessment). Application of the appraisal
mechanisms could help to make self-assessment more objective and provide useful
feedback during the conformity achievement process.

To this end Standards Conformity Framework (SCF) [4, 5] has been proposed
which supports demonstration of conformity with standards. The aim of SCF is to
develop and maintain a document which justifies the claim of conformity. Its compo-
nent is a conformity case template which is a skeleton of argumentation about con-
formity, derived from a given standard. The template has gaps to be filled in during
the process of conformity demonstration. The gaps are supplemented with project
specific evidence which proves that an examined object fulfils the requirements of the
standard. It results in a complete argument which is called a Conformity Case. Such a
conformity case can be easily assessed using the appraisal mechanism proposed in
this paper. The whole process of development of templates of conformity cases, their
conversion to complete arguments and later appraisal of those arguments is fully
supported by the TCT tool.

6 Experimental Evaluation

The linguistic scales for the appraisal of arguments have been chosen deliberately to
support assessors by offering them a (not too large) set of intuitively understood values.
However, in order to perform the calculations defined in the aggregation rules, it was
necessary to represent the linguistic values as numbers from the [0,1] interval and this
mapping could have a significant impact on the computed results. There was no evi-
dence, that the most obvious, even distribution of the linguistic values over the [0,1]
interval is the most proper one. And in fact, the experiments showed the opposite.

We decided to find the mapping between linguistic scales and the [0,1] interval ex-
perimentally by calibrating the aggregation rules relating them to the expert assess-
ments of conclusions of the selected set of arguments.

A group of 31 students of the last year of a computer science university course
took part in the experiment. The students were divided into three groups, each of
which was supposed to apply one of the aggregation rules: A-rule, NSC-rule and
C-rule. SC-argument type was dropped because of its similarity to NSC-argument
type. Each student was provided with five simple trust cases composed of a claim, an
argument strategy, a warrant and premises (in the case of C-rule and NSC-rule) or a
claim with a few argument strategies (in the case of A-rule).

302 L. Cyra and J. Górski

The experiment participants were asked to assess the warrant and, in the case of
C-rule to assign weights to the premises. Then, assuming the pre-defined assessments
of each premise (in the case of C-rule and NSC-rule) or the assessments assigned to
each of the argument strategies (in the case of A-rule) the participants were asked to
give their assessment of the conclusion using the Assessment Scale. They were sup-
posed to repeat this step for 10 different sets of initial assessments of the premises
(chosen randomly) for each trust case. That makes the total of 50 assessments of the
conclusions issued by each participant. To check for consistency, each participant was
additionally asked to repeat his/her assessments for 10 randomly selected situations.

Some students were excluded from the experiment for formal reasons or because
their assessments apparently were not reasonable (for instance, they declared high
confidence in acceptance of a conclusion in a situation where the premises were with
high confidence rejectable). Finally, 8 questionnaires related to A-argument type, 6
questionnaires related to NSC-argument type and 10 questionnaires related to
C-argument type were used in the following analysis.

In the experiment the consistency of the students’ answers was measured (i.e. the
average change in a repeated assessment of the same item) and the accuracy of as-
sessments obtained by application of the aggregation rules (measured as the average
distance between the students’ answers and the results obtained by application of the
aggregation rules). The results are presented in table 1. The numbers in the table are
normalized, which means that 1 represents the distance between two adjacent posi-
tions on the linguistic scale.

The data shows that the accuracy of the results obtained by application of the ag-
gregation rules is similar to the consistency of the participants’ answers (i.e. the cor-
responding metrics for each aggregation rule do not differ significantly). This is the
maximum of what could have been achieved regarding the data set used to calibrate
the aggregation rules. The data show that using the (calibrated) aggregation rules we
can expect to obtain the results which are fairly close to the results which would be
obtained while engaging humans in the aggregation process.

Table 1. Results of experiments

Aggregation rule
A-rule NSC-rule C-rule

Confidence scale 1,03 0,94 0,84 Consistency of students’
assessments Decision scale 0,64 0,62 0,87

Confidence scale 1,06 1,10 0,90 Accuracy of assessments
obtained by application of
aggregation rules

Decision scale 0,80 0,78 0,66

Further calibration requires more data which we plan to collect in the subsequent
experiments.

7 Conclusion

This article introduced an innovative method of argument structures appraisal. The
method provides for gathering expert opinions about the inferences used in the argu-
mentation and the value of the supporting evidence. It can be applied to assess the

 Expert Assessment of Arguments: A Method and Its Experimental Evaluation 303

compelling power of arguments used in different contexts. In particular, it can be used
with respect to the arguments contained in different cases, like safety cases, security
cases, assurance cases or trust cases. It can also be used to support standards confor-
mity processes. The method has been fully implemented in the TCT tool which sup-
ports full-scale application of our Trust-IT methodology. Some experimental valida-
tion of the method has been already performed and further experiments are under
preparation.

Acknowledgement

This work was partially supported by the project ANGEL - ‘Advanced Networked
embedded platform as a Gateway to Enhance quality of Life’ (IST project 2005-IST-
5-033506-STP) and by the project PIPS – ‘Personalized Information Platform for
health and life Services’ (Contract No. 507019 IST2.3.1.11 e-Health) within the
European Commission 6th Framework Programme.

Contributions by Michal Nawrot and Michal Witkowicz in the development of the
appraisal mechanism in TCT tool are to be acknowledged.

References

1. Bishop, P., Bloomfield, R.: A Methodology for Safety Case Development, Industrial Per-
spectives of Safety-critical Systems. In: Proceedings of the Sixth Safety-critical Systems
Symposium, Birmingham (1998)

2. Bloomfield, R., Guerra, S., Masera, M., Miller, A., Sami Saydjari, O.: Assurance Cases for
Security, A report from a Workshop on Assurance Cases for Security, Washington, USA
(2005)

3. Bloomfield, R.E., Littlewood, B., Wright, D.: Confidence: Its Role in Dependability Cases
for Risk Assessment. In: 37th Annual IEEE/IFIP International Conference Dependable
Systems and Networks, pp. 338–346 (2007)

4. Cyra, L., Gorski, J.: Supporting Compliance with Safety Standards by Trust Case Tem-
plates. In: Proc. of ESREL 2007, Norway, vol. 2, pp. 1367–1374 (2007)

5. Cyra, L., Gorski, J.: Standard Compliance Framework for Effective Requirements Com-
munication. Polish Journal of Environmental Studies 16(5B), 312–316 (2007)

6. Cyra, L., Gorski, J.: Extending GQM by Argument Structures. In: 2nd IFIP Central and
East European Conference on Software Engineering Techniques CEE-SET, pp. 1–16
(2007)

7. Cyra, L., Gorski, J.: Using Argument Structures to Create a Measurement Plan. Polish
Journal of Environmental Studies 16(5B), 230–234 (2007)

8. Cyra, L., Gorski, J.: Supporting Expert Assessment of Argument Structures in Trust Cases.
In: Ninth International Probabilistic Safety Assessment and Management Conference
PSAM 9, Hong Kong, China, pp. 1–9 (2008)

9. Gorski, J., Jarzebowicz, A., Leszczyna, R., Miler, J., Olszewski, M.: Trust Case: Justifying
Trust in IT Solution, Elsevier, Reliability Engineering and System Safety, vol. 89, pp. 33–
47 (2005)

10. Gorski, J.: Trust Case – a Case for Trustworthiness of IT Infrastructures, Cyberspace Se-
curity and Defence: Research Issues. NATO ARW, pp. 125–142. Springer, Heidelberg
(2005)

304 L. Cyra and J. Górski

11. Gorski, J.: Collaborative Approach to Trustworthiness of IT Infrastructures. In: Proc. of
IEEE International Conference on Technologies for Homeland Security and Safety TE-
HOSS 2005, pp. 137–142 (2005)

12. Gorski, J., Zagorski, M.: Reasoning about Trust in IT Infrastructures. In: Proc. of ESREL
2005, pp. 689–695 (2005)

13. Greenwell, W., Strunk, E., Knight, J.: Failure Analysis and the Safety-Case Lifecycle,
Human Error, Safety and Systems Development 2004, pp. 163–176 (2004)

14. Information Assurance Group: TCT User Manual, Gdansk University of Technology
(2007),
http://kio.eti.pg.gda.pl/trust_case/download/TCTEditor_Users
_Manual.pdf

15. Josang, A., Grandison, T.: Conditional Inference in Subjective Logic. In: Proc. of the 6th
International Conference on Information Fusion, Cairns, pp. 471–478 (2003)

16. Josang, A., Pope, S., Daniel, M.: Conditional Deduction Under Uncertainty. In: Godo, L.
(ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 824–835. Springer, Heidelberg
(2005)

17. Kelly, T.: Arguing Safety – A Systematic Approach to Managing Safety Cases. PhD The-
sis, University of York, UK (1998)

18. Kelly, T., McDermid, J.: A Systematic Approach to Safety Case Maintenance. In: Felici,
M., Kanoun, K., Pasquini, A. (eds.) SAFECOMP 1999. LNCS, vol. 1698, pp. 271–284.
Springer, Heidelberg (1999)

19. PIPS Project website, http://www.pips.eu.org
20. Sentez, K., Ferson, S.: Combination of Evidence in Dempster-Shafer Theory, SANDIA

National Laboratories (2002)
21. Shafer, G.: Mathematical Theory of Evidence. Princetown University Press (1976)
22. Strigini, L.: Formalism and Judgement in Assurance Cases, Workshop on Assurance

Cases: Best Practices, Possible Obstacles, and Future Opportunities. In: Proc. of DSN
2004, Florence, Italy (2004)

23. Toulmin, S.: The Uses of Argument. Cambridge University Press, Cambridge (1969)

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 305– 319, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Formal Verification by Reverse Synthesis

Xiang Yin1, John C. Knight1, Elisabeth A. Nguyen2, and Westley Weimer1

1 University of Virginia
Department of Computer Science, Charlottesville, Virginia, U.S.A.

{xyin,knight,weimer}@cs.virginia.edu
2 The Aerospace Corporation

Software Systems Engineering Department, Chantilly, Virginia, U.S.A.
elisabeth.a.nguyen@aero.org

Abstract. In this paper we describe a novel yet practical approach to the formal
verification of implementations. Our approach splits verification into two major
parts. The first part verifies an implementation against a low-level specification
written using source-code annotations. The second extracts a high-level specifi-
cation from the implementation with the low-level specification, and proves that
it implies the original system specification from which the system was built.
Semantics-preserving refactorings are applied to the implementation in both
parts to reduce the complexity of the verification. Much of the approach is
automated. It reduces the verification burden by distributing it over separate
tools and techniques, and it addresses both functional correctness and high-level
properties at separate levels. As an illustration, we give a detailed example by
verifying an optimized implementation of the Advanced Encryption Standard
(AES) against its official specification.

Keywords: Formal verification, formal methods, software dependability.

1 Introduction

In previous work, we introduced a novel approach to software verification called
Echo [22]. In this paper we present details of a critical component of Echo, reverse
synthesis, and we show how it is used in the overall verification process. We also pre-
sent an evaluation in which we applied it to a non-trivial system.

In many cases, verification is undertaken by testing the developed software artifact
against its specification. Testing, however, is not adequate for high levels of assurance
[5]. Formal verification is an attractive alternative under such circumstances for sys-
tems in which safety and security are critical concerns. It provides confidence with
mathematical rigor that many classes of errors in software development have been
avoided or eliminated. In some cases—such as at Evaluation Assurance Level 7 of the
Common Criteria [19]—it is required. Verification of functional correctness helps to
avoid defects introduced in software development that manifest themselves as secu-
rity vulnerabilities or safety hazards. We note that this complements the notion of
proving that a system possesses certain specific safety or security properties.

Our approach is aimed at making formal verification of functional correctness more
practical. It uses existing notations, tools and techniques, distributing the verification

306 X. Yin et al.

burden over separate levels. At its core, a high-level specification is extracted from a
low-level, detailed specification of a system. We refer to this activity as reverse syn-
thesis. This low-level specification is shown to both describe the program and also
adhere to the high-level specification. Thus, formal verification by reverse synthesis
involves two proofs each of which is either generated automatically or mechanically
checked. These proofs are: (1) a proof that the source code implements the low-level
specification correctly; and (2) a proof that a high-level specification which is ex-
tracted from the low-level specification implies the original system specification. The
two proofs can be tackled with separate specialized techniques.

In order to facilitate both proofs, a variety of semantics-preserving transformations
are used to refactor the implementation. These refactorings reduce the complexity of
verification caused by program refinements and optimizations that occur in practice.
They are either effected or checked mechanically, and they are a crucial element of
our verification approach because they can be used to simplify both of the proofs, in
some cases making proofs feasible that otherwise would not be.

The introduction of a low-level specification as an intermediate point and the ap-
plication of semantics-preserving refactorings allow our approach to dovetail with
standard development processes more easily than existing approaches to formal veri-
fication. As a result, relatively few limitations are imposed on developers and many
existing software engineering development methods can continue to be used, yet for-
mal verification and all of its benefits can be applied.

In this paper, we begin by summarizing our approach to formal verification by re-
verse synthesis and then discuss the process and elements involved in detail. Next we
present a detailed example of the use of reverse synthesis: verifying an implementa-
tion of the Advanced Encryption Standard (AES) against the official AES specifica-
tion. Finally, we compare our approach to formal verification to other approaches.

2 Formal Verification by Reverse Synthesis

A crucial element of our overall approach is the use of a low-level specification since
it is the intermediate representation of the software upon which our proofs are based.
The level that we define for this is an annotated implementation, i.e., an implementa-
tion supplemented with declarative property annotations such as preconditions, post-
conditions, and invariants. These annotations can be defined and inserted into the
source code by the developers or partially generated directly from the code, to de-
scribe the desired behaviour of subprograms in the code. Existing annotation-and-
proof systems [3, 16] can verify source code against such annotations mechanically,
and in our prototype system we use SPARK Ada [3]. Although we have not done so,
our approach could be used with languages other than our choice of SPARK Ada, and
so this choice is not a fundamental limitation. Annotations and proofs of the kind we
require have also been adopted by Microsoft in both Vista and Office [8].

As part of our Echo approach [22], we assume that the original specification from
which the software was developed is complete and its semantics have been restricted
to those that can be implemented, and we assume a reasonable development practice
has been followed to create an executable implementation together with proper anno-
tations. Then our verification approach, shown in Fig. 1, consists of the following steps:

 Formal Verification by Reverse Synthesis 307

(1) Implementation Proof: A proof that the implementation implements the annota-
tions correctly. Our prototype uses the SPARK Ada system [3] for this proof.

(2) Reverse Synthesis: A mechanical extraction (with human guidance) of a high-
level abstract specification from the annotated implementation. Tools we have built
perform this extraction, and the abstract specification is written in PVS.

(3) Implication Proof: A proof that the properties of the extracted specification im-
ply the properties of the original specification. Our prototype uses the PVS system for
this proof.

The implementation proof, reverse synthesis, and the implication proof are partly
automated and partly mechanically checked. Thus, with this process we have a com-
plete formal argument that the implementation behaves according to the specification.

This approach makes verification more practical. It does this in part by combining
existing powerful techniques, in part by introducing reverse synthesis, and in part by
allowing an engineer to work with an existing implementation rather than requiring
that an implementation be designed to show compliance. Showing compliance of an
implementation with a specification should not necessitate a specific method for con-
structing the implementation: development decisions should be minimally restricted
by the goal of verification. This is not the case currently with refinement-based ap-
proaches such as the B method [1].

By exploiting existing notations and tools, the approach offers the opportunity to
make progress more quickly since existing tools both solve part of the problem and
point in a positive technical direction. Annotations are tightly coupled with the source
code, thus are suitable to prove low-level functional correctness. High-level specifica-
tion languages and are more expressive and are better at reasoning about high-level
properties. Reverse synthesis provides a mechanical link between annotations and high-
level specification proofs thereby filling in the gaps left by tools already available.

3 The Reverse Synthesis Process

Reverse synthesis, shown in Fig. 2, is composed of three phases: (1) implementation
refactoring; (2) implication refactoring; and (3) specification extraction. The refactor-
ing phases each transform the program being verified so as to preserve its semantics
but to make the associated proof easier. Implementation refactoring assists the user in
enhancing and completing the annotations of the source program and thereby

Fig. 1. Formal Verification by Reverse Synthesis

308 X. Yin et al.

facilitates the proof that the source code matches the annotations. Implication refac-
toring aids the specification extraction phase and reduces the effort in the proof that
the extracted specification implies the original one. The specification extraction phase
mechanically extracts a high-level abstract specification from the refactored annotated
implementation.

We examine these reverse synthesis steps and proofs in turn in the remainder of
this section. Implementation proof uses code-level tools such as static code analyzers,
proof obligation generators, and proof checkers. This technology is well established,
and we do not discuss it further.

3.1 Refactoring for Verification

Software implementations are often influenced by the need for efficiency in time or
space. More complex algorithms are used to reduce executions times and data struc-
tures are sometimes chosen to reduce computation (and vice versa). Such implemen-
tation decisions tend to add considerably to a program’s overall complexity. It is often
easy to show that refactoring a program and reducing its efficiency does not change
its computed function. Reducing efficiency can, however, reduce complexity and
thereby facilitate verification. Hence instead of directly extracting a high-level speci-
fication from the annotated implementation and performing proofs on them, our ap-
proach first tries to refactor the implementation and reduce the complexity of proofs
to the extent possible.

Refactoring for verification is the application of semantics-preserving transforma-
tions to the annotated implementation. The transformations modify the implementa-
tion in some way, and this usually simplifies the implementation, decreasing the
implementation’s efficiency. This is in sharp contrast to the usual role of semantics-
preserving transformations where some form of improvement in efficiency is the goal.
The standard approach is exemplified by the use of optimizing transformations in
compilation.

We hypothesize that semantics-preserving transformations are easier to carry out,
understand and prove correct at the level of the program than at the level of the proof
system. That is, given complex proof obligations for a program, it is easier to simplify
the program than to simplify the logical terms directly. A loop and its unrolled form
yield proof obligations that are equi-satisfiable, but those obligations have different
structures and are not equally easy to verify. Refactoring in reverse synthesis, there-
fore, reduces complexity while leaving the program semantics unaltered, thereby as-
sisting the proofs involved in the verification.

Refactoring for verification involves both computation and storage. Programs can
be made more amenable to verification by adding redundant computation or storage,

Fig. 2. Detailed Reverse Synthesis Process

 Formal Verification by Reverse Synthesis 309

by adding intermediate computation or storage, or by restructuring the program.
Examples of adding redundant computation include moving computations out of con-
ditionals, changing a loop that computes several things into a sequence of single-
purpose loops, increasing loop bounds to a convenient limit, and replacing iteration
with recursion. Retaining values after their initial computation so that they can be
used in other (possibly redundant or intermediate) computations is an example of add-
ing redundant storage.

Refactoring is based on the following four stages: (1) identify candidate refactor-
ing transformations—since refactoring might address certain optimizations and
refinements introduced during development, this usually needs guidance from devel-
opers to identify the occurrences of optimizations, although some can be found me-
chanically; (2) determine the order to apply the transformations—the order matters if
there are dependencies among the transformations; (3) prove the transformations are
semantics-preserving—all transformations should be proved to preserve the semantics
and should not require the user to discharge complex proof obligations. In order to
make the proofs reusable, we identify common refactoring transformations, character-
ize them into templates, and prove that they are semantics-preserving; and (4) apply
the transformations to the code—all of the transformations should be applied me-
chanically to avoid introducing errors. In our prototype toolset, we adopt the Stratego
[4] program transformation language and associated XT tools to achieve this.

Presently, refactoring for verification in our reverse synthesis approach has two
phases, namely refactoring to facilitate the implementation proof and refactoring to
facilitate the implication proof:

(1) Implementation refactoring: These transformations are intended to simplify the
proof between the code and the annotations. The transformations are usually applied
within subprograms and do not change the existing pre- and post-condition annota-
tions for the subprograms. However, corresponding proof obligations for these anno-
tations are likely to become much simpler to discharge. After the refactoring, the user
also has the chance to enhance and complete the annotations for those elements that
were otherwise obscured by the optimizations done in the original development process.

(2) Implication refactoring: These transformations are intended to aid the later
specification extraction and to simplify the proof between the extracted specifica-
tion and the original one. The transformations usually involve changes to the struc-
ture of the entire program with the goal of aligning the extracted specification and
the original specification. This alignment simplifies the implication proof. Each
transformation might involve several subprograms and the annotations usually need
to be modified, although the modification can in many cases be done mechanically.

The two refactoring phases can be overlapped since some transformations may
help both proofs. Neither one of them is strictly required. However, if they are ap-
plied, the resulting proof obligations are likely to be much simpler to discharge than
in most traditional verification circumstances because the proof involves a transfor-
mation from a more-complex to a less-complex program. Refactoring for verification
plays an important role in the whole process, and we detail an example of its applica-
tion in Section 5.

310 X. Yin et al.

3.2 Specification Extraction

The specification extraction step extracts an abstract specification from the refactored
annotated implementation to be used in the proof of implication with the original
specification. Presently, specification extraction exploits three basic techniques: (1)
architectural and direct mapping; (2) component reuse; and (3) model synthesis,
which are discussed in detail below. For any particular program, combinations of
techniques will be used, each contributing to the goal of successful specification ex-
traction for that program. We have developed a prototype toolset for specification
extraction that handles architectural and direct mapping from SPARK Ada implemen-
tations to PVS specifications completely, along with minor elements of the other two
techniques.

Specification extraction is automated or mechanically checked, which ensures the
extracted high-level specification is a correct representation of the annotated imple-
mentation. However, to make the verification sound, we must also make sure that the
extracted specification is complete, suitably abstract but not too abstract, so that we
can construct and complete the implication proof. Since we extract the high-level
specification mostly from the low-level annotations, it means we have to make sure
the annotations in the source code describe the entire semantics. Presently we have no
completely automated way to check this property, and we rely on human review and
cross-check with the derivation relations between input/output variables to do this.

Architectural and Direct Mapping. We hypothesize that it is often the case that the
architectural or high-level design information in a specification is retained in the im-
plementation. While an implementation need not mimic the specification architecture,
in practice it will often be similar in structure because repeating the architectural de-
sign effort is a waste of resources.

As an example, consider a model-based specification written in a language like Z
that specifies the desired operations using pre- and post-conditions on a defined state.
The operations reflect what the customer wants, and the implementation architecture
would almost certainly retain those operations explicitly.

The above hypothesis is implicitly assumed in the well-known Floyd-Hoare ap-
proach, which requires a stepwise proof that a function implementation complies with
its specification. This implicitly requires a mapping from functions and variables in
the specification to those in the implementation. Thus, we have not added assump-
tions, only evaluated existing ones in more detail.

In a case where the implementation retains the architectural information from the
original restricted specification, a simple way to begin the process of specification ex-
traction is to directly translate elements of the annotated implementation language,
such as packages, data types, state/operation representations, preconditions, postcon-
ditions, and invariants, into corresponding elements in the specification language. The
extracted specification will be structurally similar to the restricted specification. Such
a strategy is straightforward, but it does have considerable potential in our approach.

Component Reuse. Software reuse of both specification and code components is a
common and growing practice. If a source-code component from a library is reused in
a system to be verified and that component has a suitable formal specification, then
that specification can be included easily in the extracted specification [24].

 Formal Verification by Reverse Synthesis 311

Model Synthesis. In some cases, specification extraction may fail for part of a system
because the difference in abstraction used there between the high-level specification
and the implementation is too large. In such circumstances, we use a process called
model synthesis in which the human creates a high-level model of the portion of the
implementation causing the difficulty. The model is verified by conventional means
and then included in the extracted specification.

At present, our implementation of model synthesis relies on human insight. In
future work, we plan to mechanize model synthesis by exploring ideas such as hy-
pothesizing invariants in extended static checking [11] and obtaining partial models
and invariants from iterative abstraction refinement and software model checking.

3.3 Implication Proof

The extracted specification needs to be matched to the original specification to com-
plete the verification argument. The property that needs to be shown here is implica-
tion, not equivalence; by showing that the extracted specification implies the original
specification, but not the converse, we allow the original specification to be non-
deterministic, and allow more behaviours in the original specification than the imple-
mentation.

The implication argument is shown by matching the structures and components of
these two specifications and setting up and proving an implication theorem using the
prover associated with the specification language. The formal definition of implica-
tion we use for this is that set out by Liskov and Wing known as behavioral subtyping
[18]. Behavioral subtyping was studied in the context of languages that permit inheri-
tance, in order to define what it meant for a subtype to comply with the type con-
straints of a supertype. Intuitively, the requirement is similar in verification: we want
to ensure that the function implementation complies with the constraints defined in its
specification. While our instantiation is more general, not making assumptions on
what is or is not required of a type system, the principles are the same.

Then, by implication, we mean that the types and functions in the extracted speci-
fication are subtypes of the matching types and functions in the original specification.
More specifically, the extracted function specification (which represents the imple-
mentation) should have a weaker precondition and a stronger postcondition than the
original function specification:

originalextractedextractedoriginal PostPostPrePre ⇒∧⇒

To set up the theorem, we need human guidance to match elements such as vari-
ables and functions between the two specifications, but in many cases they can be
suggested automatically. The resulting proof obligations need to be discharged auto-
matically or interactively in a mechanical proof system. When the extracted specifica-
tion shows structure similarity to the original one, the proof usually does not require
considerable human efforts as will be illustrated in Section 5. Also, by setting up the
implication proof theorem function by function, not property by property, we can eas-
ily locate the error if the implication theorem fails to be proved, since it must be in-
side the structure or component that cannot be proved.

312 X. Yin et al.

4 An Example Application

In this section we present an example of applying formal verification by reverse syn-
thesis to a small but important application. This example illustrates the various as-
pects of the approach and provides some preliminary evaluation. A comprehensive
evaluation and development of industrial-strength support tools is relegated to future
work.

Recall that one of our goals was to allow developers the maximum freedom possi-
ble in building a system. We sought a way to assess our success in meeting this goal
as well as the utility of the overall technique. The approach we followed was to apply
the technique to an important yet publicly-available system written entirely by others.
Clearly, the system’s development was not constrained by our verification require-
ments.

For this assessment, we used an implementation of the Advanced Encryption Stan-
dard (AES) [10]. We employed the following two artifacts: (1) the Federal Informa-
tion Processing Standard (FIPS) specification of the AES [10] that specifies the AES
algorithm, a symmetric iterated block cipher, mostly in natural language, with
mathematical descriptions of some algorithmic elements; (2) a publicly available im-
plementation written in ANSI C that contains various optimizations such as loop
unrolling and function inlining. We assume that these artifacts were created by a tra-
ditional software development process, and that the developers took no actions that
would make formal verification infeasible or very difficult.

We supplemented these artifacts as necessary to apply the reverse synthesis proc-
ess. We translated the official FIPS specification into a formal specification in PVS.
We formalized all the behaviors and constraints described in the FIPS specification in
PVS and included them in the formal specification (as the original specification from
Fig. 1). In practice, a formal specification might be produced by developers, making
this type of translation unnecessary. We translated the ANSI C implementation into
SPARK Ada and added annotations for pre- and post-conditions of functions (the an-
notated implementation from Fig. 1). Again, in practice an annotated implementation
might be produced by developers, making this type of translation also unnecessary.

With these artifacts developed, we applied our reverse synthesis approach to formally
verify the functional correctness of the SPARK Ada implementation with respect to the
PVS specification. The details of the verification are described in the next section.

5 Verification of the AES Implementation

To verify the AES implementation, we applied refactoring and performed a series of
complexity-reducing, semantics-preserving transformations using Stratego/XT tools.
A proof that the code—with applied refactoring—adheres to its annotations was com-
pleted using the SPARK toolset with some straightforward human intervention. A
PVS specification was derived from the refactored annotated implementation using
our automatic specification extraction tool. The implication proof between the ex-
tracted specification and the original one was then established using the PVS theorem
prover with some straightforward human intervention. Fig. 3 shows the detailed tool
configuration we set up and the process we followed to conduct this case study. In all
cases we included and verified only functions related to encryption and decryption; we

 Formal Verification by Reverse Synthesis 313

Fig. 3. Tool Configuration for AES Verification

did not describe or verify functions related to key expansion, or any of the NIST APIs.
The relevant PVS specification contains 335 lines of functional specification, excluding
lemmas and theorems that are required to prove its correctness. The relevant SPARK
Ada code we are verifying has 733 lines of function declarations (including lookup ta-
bles), and 584 lines of function definitions excluding comments and annotations.

5.1 The Refactoring Process

According to the original AES documentation [7], the following four major optimiza-
tions had been applied to create the implementation: (1) loop unrolling; (2) word
packing; (3) table lookup; and (4) function inlining. Table lookup and function inlin-
ing were dependent since the table entries encoded part of the defined functions. For
each of the optimizations we identified, we developed a template defining the refac-
toring transformation so that they could be reused in other programs. We then charac-
terized them and proved them to be semantics-preserving using PVS. Finally, we
applied the transformations mechanically using Stratego. Besides the four major trans-
formations, we also effected several minor transformations including adjusting interme-
diate variables, removing redundant statements, and aggregating data assignments.
These transformations helped match the code to the transformation templates and clean
up the code after the transformations. Each was proved to be semantics-preserving.

Table 1 lists details of the versions of the AES code used in verification. AES1 is
the original, optimized code and each subsequent version is the result of applying a
refactoring transformation. The rightmost two columns in Table 1 present the sizes of
SPARK Ada code associated with function definitions and declarations (including
lookup tables) respectively. We used bytes instead of lines of code to more precisely
denote the size of the code since our tool does not generate proper line breaks for in-
termediate refactored code.

Table 1. AES versions transformed via refactoring for verification

Transformation Definitions (bytes) Declarations & Tables (bytes)
AES1 Original 25,415 41,924
AES2 undo loop unrolling 8,561 41,924
AES3 undo word packing 7,180 103,389
AES4 undo table lookups 8,036 7,545
AES5 undo func inlining 8,620 8,128

314 X. Yin et al.

5.2 The Refactoring Transformations

Reversing Loop Unrolling. The first transformation we applied was to undo loop
unrolling in AES1. Undoing loop unrolling involved locating the repeated code, rede-
fining it as a for-loop, and changing literal references to use the new loop induction
variable. This transformation introduced two new loop induction variables and dra-
matically shrank the code size as shown in Table 1 since vast amount of repeated code
were removed. After the transformation, loop invariants could be annotated to facili-
tate the verification. This transformation assisted the implementation proof, because
by introducing new loop invariants and removing replicated loop bodies, it substan-
tially reduced the states involved in the proof.

Loop unrolling is a well-known compiler transformation, and it might seem un-
usual for it to have been applied explicitly at the source code level in AES. However,
it is not specific to AES, because not all compilers unroll loops and because manual
unrolling is still a widespread practice (e.g. to expose concurrency). With further tool
support, both identifying unrolled loops and verifying the reversing transformation
can be done automatically (e.g., [17]). Here we manually identified two unrolled
loops, but selecting the transformation spots, performing the transformation, and
proving the preservation of the semantics were all machine checked using Stratego
and PVS.

Reversing Word Packing. The second transformation involved undoing a word-
packing representation optimization. The AES standard describes encryption in terms
of bytes, but the original implementation packs the bytes into 32-bit words to utilize
efficient word-level operations. AES1 and AES2 include utility functions to split and
combine 32-bit words; the bytes inside a word are referenced by bit shifting. In AES3,
we replaced references to 32-bit words by arrays of four bytes. Thus splitting, com-
bining, and references to bytes used native array operations. Specialized procedures
for manipulating packed data were removed, but every line of code that referenced
packed data had to be updated to use the new representation. As a result, the function
definitions shrank slightly while the lookup tables expanded considerably. This is be-
cause the tables were originally composed with 32-bit words but were composed of
four-byte arrays after undoing word packing. This transformation assisted the implica-
tion proof since the code and the specification used the same basic type to refer to
data after it and were thus easier to verify.

Data structure transformations and efficient representations are also not specific to
AES. While there has been some work toward automatically locating likely spots for
such transformations (e.g., [15]), we assume that this step is manually guided. We let
the user indicate the links between the old and new representations or provide a type
transformer. Once the types and the operations on the types have been selected, the
behavioral equivalences of the representations are checked mechanically using PVS.
Then transformation spots are selected and the code is transformed mechanically by
Stratego.

Reversing Table Lookup. The third transformation replaced table lookups with ex-
plicit computations. A major optimization in the AES implementation was combining
different cryptographic transformations into a single set of table lookups. The tables
contain pre-computed outputs and thus reduce the run-time computation. The
properties of those tables have been documented [7], and AES4 replaced references to

 Formal Verification by Reverse Synthesis 315

these tables with inlined instances of the appropriate computations using Stratego. As
a result, all tables were removed causing a dramatic code-size reduction as shown in
Table 1. This transformation supported the next one (reversing function inlining), be-
cause some inlined functions were encoded in the tables. It also made the implication
proof easier since the specification was phrased in terms of the computations, not the
tables.

This transformation can be viewed as a general form of property substitution. The
original implementation maintains the invariant Table[i] = computation(i);
the transformation replaces reads of Table[i] with instances of computa-
tion(i). Reasonable sites for such a transformation cannot, in general, be selected
automatically, but the number of computations so described in the specification is
limited, and the conventional software development artifacts may well record why
and where such pre-computed tables were applied. In general, once a human has iden-
tified a table and the computation, the transformation can be checked mechanically by
going through all the table entries and comparing them with corresponding computa-
tions. Selecting sites and performing the transformation can be done automatically
and was in our example.

Reversing Function Inlining. The final transformation we applied was to undo func-
tion inlining. After the above transformations, inlined functions continued to obscure
events that are explicitly required by the specification. Reversing such inlining aided
both the implementation proof and the implication proof. By finding cloned code
fragments, it removed replicated or similar proof obligations in the implementation
proof. By reversing the inlining, it aligned the code structure with the specification
structure so that the implication proof was easier to be constructed. In this example,
we identified and factored nine specified functions, each of which was quite small.
After undoing inlining, the verbose function-definition syntax actually increased the
source code size shown in Table 1, but the conceptual complexity was reduced.

Inlining functions is certainly not specific to AES. Finding places to undo function
inlining is known in the compiler literature as procedural abstraction [20] and is used
when optimizing for code size. Finding appropriate sites for this transformation can
thus be done automatically, or it can be guided based on the specification structure.
We prove it is semantics-preserving and perform the transforming mechanically using
PVS and Stratego respectively.

5.3 Specification Extraction and Proofs

The final program version, AES5, contained 262 lines of function declarations and ta-
ble, and 214 lines of function definitions, including 126 lines of annotations. Proof
functions and rules are also provided in additional files to facilitate the proof of the
annotations. Most of the annotations were simple postconditions that could be
straightforwardly derived, while others were loop invariants. The compliance of the
code to the annotations was proved using the SPARK toolset. It automatically dis-
charged 93% of the verification conditions, and the remaining ones needed very little
human guidance to be discharged.

Using our prototype tool, a PVS specification was then automatically extracted us-
ing architectural and direct mapping. The result contained 606 lines of PVS and
showed great similarity in structure to the original specification. Thus an implication

316 X. Yin et al.

proof relating that extracted specification to the original specification was easily con-
structed, and all resulting obligations were discharged in seconds using the PVS theo-
rem prover. More than half of the implication proof obligations could be discharged
by a simple (grind) command. Others could be discharged by applying a sequence
of proof commands and lemmas that demanded little human insight. These proofs,
combined with the proofs that the transformations were correct, provide a formal as-
surance guarantee that the AES implementation adheres to the specification.

To get an idea of how refactoring helped verification, we tried to verify the original
implementation as it was before refactoring. However, the off-the-shelf SPARK tool-
set could not even generate verification conditions. Instead it quickly exhausted heap
space and stopped, presumably because the generated proof obligations were too
large. We then tried annotating and verifying AES1, the version with loops rerolled.
The SPARK toolset generated more than 15M bytes of verification conditions which
is around 30 times larger than the refactored version. It took approximately 2 hours on
a dual 1.0 GHz UltraSparc IIIi with 2GB RAM for the tools to analyze the verifica-
tion conditions, while on the same machine it only took minutes for the refactored
version. Moreover, unlike the refactored version, the verification conditions that could
not be automatically discharged here were mostly major postconditions, whose proof
simulated traditional formal verification, and required significant human insight and
efforts.

6 Related Work

Light-weight program analyses [9] are often used to find bugs in or gain confidence
about programs. Compared to more complete formal verification, their expressive
power is limited and no formal proof of compliance is produced. Heavier-weight
techniques like the B method [1] are more suited to full formal verification, but they
intertwine code production and verification. Using the B method requires a B specifi-
cation and then enforces a lock-step code production approach on developers.

A more general technique is traditional Floyd-Hoare verification [12]. Unfortu-
nately, it requires generation and proof of many detailed lemmas and theorems. It is
very hard to automate and requires significant time and skill to complete. Annotations
and verification condition generation, such as that employed by the SPARK Ada tool-
set, is used in practice. However, the annotations used by SPARK Ada (and other
similar techniques) are generally too close to the abstraction level of the program to
encode higher-level specification properties. Thus, we use verification condition gen-
eration as an intermediate step in our approach.

Automated code generation from a formal specification to an implementation, us-
ing tools such as the SCADE Suite [21], provides an alternative to verification. This
approach constructs an implementation automatically from the specification using
formal translation rules. If the translation rules are correct, it offers the possibility of
assuring that the behaviour of the implementation is consistent with the formal speci-
fication. However, for most safety-critical systems, it is very difficult to automatically
generate a well-structured or efficient implementation from a formal specification. If
the developer changes the generated code to refine its structure or increase efficiency,
the verification argument is invalidated.

 Formal Verification by Reverse Synthesis 317

Other techniques are available for the properties that we do not address. Model
checking techniques [14], for example, have been quite successful at verifying hard-
ware, protocols and temporal properties; they complement our approach in such areas.
While model checking can generate proofs that the software model adheres to the
specification, it does not prove that the software model is faithful to the original pro-
gram. More recent model extraction [14], aims to address this problem and mechani-
cally extracts a system model from the source code so that model checking can be
applied. However, model extraction does not produce a full assurance argument since
model checking is not targeted at full functional correctness.

Related work in the reverse engineering domain retrieves high-level specifications
from the source code by semantics-preserving transformations and abstractions [6,
23]. These approaches are similar to reverse synthesis, but the goal is to make poorly-
engineered code amenable to further analyses and not to aid verification. Our ap-
proach, which incorporates intermediate annotations, can more easily capture the
properties relevant to verification while still abstracting implementation details. These
techniques, however, show the feasibility of approaches similar to reverse synthesis.

Andronick et al. developed an approach to verification of a smart card embedded
operating system [2]. Similar to reverse synthesis, they proved a C source program
against supplementary annotations and generated a high-level formal model of the an-
notated C program that was used to verify certain global security properties. Our ap-
proach incorporates refactoring and allows us to show broad compliance with the
original specification from which the system was built.

Heitmeyer et al. developed a similar approach to ours for verifying a system’s
high-level security properties [13]. Their approach is focused on verifying security
properties, whereas ours is aimed at general functionality.

7 Conclusion

We have defined a verification technique based upon the use of an intermediate point of
abstraction between a high-level formal specification and its concrete implementation.
This intermediate point is a low-level specification documented by annotated source
code. Our verification approach shows that the source code correctly implements the
annotations and that the annotated source code implies the high-level specification.

We have introduced the new technique of reverse synthesis that mechanically cre-
ates a high-level specification from the low-level specification. A crucial component
of reverse synthesis is the application of complexity-reducing but semantics-
preserving refactoring transformations. In general, it is easier to transform the
program than to transform the proof. Thus, transformations facilitate verification by
reducing the complexity of the source program and thereby the proof obligation.

Human insight guides much of the process, but the analysis and thus the verifica-
tion is either automatic or machine-checkable. It dovetails directly with traditional
development processes and artifacts. We evaluated our approach by verifying an AES
implementation against its formal specification.

Although our approach provides certain benefits over existing techniques, it is in
no way a verification “silver bullet”. As with any formal verification technique, it re-
quires the use of formal languages, various analytic tools including a theorem-proving

318 X. Yin et al.

system, and considerable skill on the part of the developer. One specific additional re-
sponsibility placed on the developer is to annotate the source code with pre- and post-
condition documentation. Although the various elements we have incorporated are not
often part of current practice, our approach can be conducted in a production setting
with comparable resources to those used now but with substantially higher assurance.

Acknowledgments. We thank Praxis High Integrity Systems for their technical sup-
port. This work was sponsored, in part, by NASA under grant number NAG1-02103.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press,
Cambridge (1996)

2. Andronick, J., Chetali, B., Paulin-Mohring, C.: Formal Verification of Security Properties
of Smart Card Embedded Source Code. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.)
FM 2005. LNCS, vol. 3582, pp. 302–317. Springer, Heidelberg (2005)

3. Barnes, J.: High Integrity Software: The SPARK Approach to Safety and Security. Addi-
son-Wesley, Reading (2003)

4. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.16. A Language
and Toolset for Program Transformation. Science of Computer Programming (2007)

5. Butler, R., Finnelli, G.: The Infeasibility of Quantifying the Reliability of Life-Critical
Real-Time Software. IEEE Trans. on Software Engineering 19(1) (1993)

6. Chung, B., Gannod, G.C.: Abstraction of Formal Specifications from Program Code. In:
IEEE 3rd Int. Conference on Tools for Artificial Intelligience, pp. 125–128 (1991)

7. Daemen, J., Rijmen, V.: AES Proposal: Rijndael. AES Algorithm Submission (1999)
8. Das, M.: Formal Specifications on Industrial Strength Code: From Myth to Reality. In:

Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144. Springer, Heidelberg (2006)
9. Das, M., Lerner, S., Seigle, M.: ESP: path-sensitive program verification in polynomial

time. Programming Languages, Design and Implementation, pp. 57-68 (2002)
10. FIPS PUB 197, Advanced Encryption Standard. National Inst. of Standards & Tech.

(2001)
11. Flanagan, C., Lieno, K.: Houdini, an annotation assistant for ESC/Java. Formal Methods

Europe, Berlin, Germany (2001)
12. Floyd, R.W.: Assigning meanings to programs. In: Schwartz, J.T. (ed.) Mathematical As-

pects of Computer Science, Proceedings of Symposia in Applied Mathematics 19 (Ameri-
can Mathematical Society), Providence, pp. 19–32 (1967)

13. Heitmeyer, C.L., Archer, M.M., Leonard, E.I., McLean, J.D.: Applying Formal Methods
to a Certifiably Secure Software System. IEEE Trans. on Soft. Eng. 34(1) (2008)

14. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley, Reading (2004)

15. Kataoka, Y., Ernst, M., Griswold, W., Notkin, D.: Automated support for program refac-
toring using invariants. In: Int. Conference on Software Maintenance, pp. 736–743 (2001)

16. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino, K.R.M.,
Poll, E.: An overview of JML tools and applications. International Journal on Software
Tools for Technology Transfer 7(3), 212–232 (2005)

17. Lerner, S.T., Millstein, E.R., Chambers, C.: Automated soundness proofs for dataflow
analyses and transformations via local rules. Princ. of Prog. Lang., 364–377 (2005)

 Formal Verification by Reverse Synthesis 319

18. Liskov, B., Wing, J.: A Behavioral Notion of Subtyping. ACM Transactions on Program-
ming Languages and Systems 16(6), 1811–1841 (1994)

19. National Institute of Standards and Technology, The Common Criteria Evaluation and
Validation Scheme, http://niap.nist.gov/cc-scheme/index.html

20. Runeson, J., Nystrom, S., Sjodin, J.: Optimizing code size through procedural abstraction.
Languages, Compilers and Tools for Embedded Systems, pp. 204–215 (2000)

21. SCADE Suite, Esterel Technologies, http://www.esterel-technologies.com/
22. Strunk, E.A., Yin, X., Knight, J.C.: Echo: A Practical Approach to Formal Verification. In:

FMICS 2005, Lisbon, Portugal (2005)
23. Ward, M.: Reverse Engineering through Formal Transformation. The Computer Jour-

nal 37(9), 795–813 (1994)
24. Weide, B.W.: Component-Based Systems. In: Marciniak, J.J. (ed.) Encyclopedia of Soft-

ware Engineering. John Wiley and Sons, Chichester (2001)

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 320–331, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Deriving Safety Software Requirements from an
AltaRica System Model

Sophie Humbert1, Christel Seguin2, Charles Castel2, and Jean-Marc Bosc1

1 Turbomeca, 64511 Bordes Cedex
{sophie.humbert,jean-marc.bosc}@turbomeca.fr

2 ONERA Centre de Toulouse, 2 avenue E. Belin, B.P. 31055 Toulouse Cedex
{charles.castel,christel.seguin}@onera.fr

Abstract. This paper presents a methodology to derive software functional re-
quirements from Preliminary System Safety Assessment analysis (PSSA) of
helicopter turboshaft engines. The proposed process starts by extracting func-
tional failure paths from system failure propagation models, using AltaRica
models and AltaRica tools. Then the paper shows how to analyse these paths to
generate minimal combinations of functional software requirements. This ap-
proach is applied to a part of the control system of a helicopter turboshaft engine.

Keywords: System safety requirements, software functional requirement, fail-
ure propagation models, AltaRica languages and tools, system control of
helicopter turboshaft engines.

1 Introduction

This paper presents a methodology to derive software functional requirements from
Preliminary System Safety Assessment analysis (PSSA) of helicopter turboshaft en-
gines. The PSSA aims at assessing whether the coarse grain system architecture meets
the system safety objectives. It provides not only evidences of the architecture safety
but also new requirements applicable to any kind of system components (software,
mechanical and electrical components, etc…). This analysis is performed before en-
tering into the detailed software design. Thus the derived software requirements drive
the traditional software development and verification/validation process. The ap-
proach relies on process, models and tools that were defined to support the safety
analysis of aeronautic complex systems. Nevertheless, it remains generic enough to be
applied to any kind of safety critical systems that integrate some software parts.

The safety analysis of complex systems usually generates at least three classes of
software requirements:

- additional functional requirements to ensure that some specific feared events
will not be induced by software subparts,

- segregation requirements to ensure the appropriate level of fault independ-
ence,

- level assurance of tasks performed in the software development process.

 Deriving Safety Software Requirements from an AltaRica System Model 321

This paper focuses on the derivation of the new functional requirements applicable to
software subparts.

It is worth noting that all the requirement classes are derived from the analysis of
functional failure paths i.e. sets of components, resources, items (not necessarily lim-
ited to one system) whose anomalous behaviour (random failure or systematic error)
could lead to a top level feared event. A first issue is the identification of these paths
when one deals with complex systems at early design stage. The use of AltaRica
models and tools was proven quite efficient to support such a kind of analysis for
various complex systems [1], [2].

So we propose to start our requirement derivation process from an AltaRica system
model that clarifies the assumptions about the hypothetical faults of any kind of system
components (including hardware and software components). The AltaRica language and
the used models are briefly presented in section 3. The section 4 presents how to extract
functional failure paths from AltaRica models and how to select a minimal subset of
software-related feared events from the paths. Complementary steps are requested to
transform each selected software feared events into functional requirements. The reader
concerned may find an overview of the global process in [3].

Finally our proposal was applied to a part of the control system of a helicopter tur-
boshaft engine. This case study is partly introduced in section 2 and it is used as lead-
ing example for sections 3 and 4. Section 5 gives details about the whole case study
and the lessons learnt from the methodology application. Finally, Section 6 discusses
related and further works.

2 Case Study Introduction

The helicopter turboshaft engine role is to maintain a constant rotation speed of the
helicopter rotor. To reach this goal, the power delivered by the engine has to be per-
manently adapted to the rotor load imposed by the helicopter flight conditions. Thus,
the fuel quantity injected inside the engine must be accurately controlled. In this case
study, only the hardware and software functions allowing the fuel metering unit con-
trol have been considered. The elements taken into account in this example are the
following:

- An actuator which shifts the fuel metering valve (FMV).
- A sensor which recopies the FMV position after each displacement.
- An electrical harness which transmits the recopied position to an Engine

Electronic Control Unit (EECU).
- An EECU which ensures the control and the monitoring of the FMV.

The EECU embedded software computes on one hand a shifting order to the actua-
tor according to the measurements coming from the engine sensors and on the other
hand, two failure detection tests. The first one is made to check the consistency be-
tween the required and the observed FMV displacement. In case of a significant dif-
ference between the two data, the EECU order a system reconfiguration in a fail-safe
mode which corresponds to the FMV freezing in its last position. The second one is
made to detect a transmission failure of the recopying sensor. In this case, the previ-
ous consistency check is inhibited.

322 S. Humbert et al.

Recopying
dSensorActuator FMV

Metered fuel

Fuel

Electrical
harness

Engine sensors

Monitoring

EECU
(HW + OS + SW)

Fuel control
computing

A

FMV Shifting
computing

Command
Monitoring

S

Fig. 1. Fuel-metering control system overview

Two feared events have been considered for this system:

- Loss of Power Control (LOPC) which corresponds to an undetected errone-
ous shifting of the FMV. Its severity is taken as hazardous.

- Spurious Loss of Automatic Control (SLAC) which corresponds to an unjus-
tified reconfiguration in a fail-safe state. Its severity is taken as major.

Safety qualitative and quantitative requirements come from the severity of the
feared events. According to the aeronautic practice, only qualitative ones are used to
derive software requirements. So, in this example, we will focus on the two following
qualitative system requirements:

- At least two hardware failures must lead to the feared event LOPC,
- No single hardware failure leads to the feared event SLAC.

3 AltaRica Modelling

3.1 The AltaRica Language and Tools

AltaRica language is a formal high-level description language. It was especially de-
signed to describe the functional and dysfunctional behaviour of industrial systems
and to analyse the potential fault propagation [4], [5]. An AltaRica model can be
analysed by different ways: simulation (interactive or Monte-Carlo simulations),
generation of minimal cuts or sequences (ordered cuts) that lead to a feared event,
model-checking... [1]. The work presented in this paper was carried out using Ce-
cilia™ OCAS workshop (Dassault Aviation).

 Deriving Safety Software Requirements from an AltaRica System Model 323

An AltaRica model consists in a set of interconnected "nodes". A node stands for a
component (or function), it may be atomic or composed of subnodes. From a formal
point of view, a node is a mode automaton [6] defined by three well identified parts.

The first part is the declaration of the different kinds of node parameters: state,
flow and event. States are internal variables which memorise current functioning
modes (failure modes or normal ones). Flows are node inputs or outputs. Possible
types of states and flows are integer interval, enumeration and Boolean. Events are
phenomena, which trigger transitions from an internal state to another. They can
model normal actions or the occurrence of failures, or reactions to input conditions.

The second part describes the automaton transitions. A transition is a triple:
g |- evt -> e where g is the guard of the transition, evt is an event name and e is
the effect of the transition. The guard is a Boolean formula over state or flow vari-
ables. It defines the configuration in which the transition can be triggered if the event
evt occurs. The effect e is a list of assignations of value to state variables. So the
transition part describes how functioning or failure states can evolve.

The third part is a set of assertions. Assertions are basic equalities or more struc-
tured equations using for instance case constructions. They establish relations be-
tween the states and the flows of the component and thus, describe how component
outputs are determined by component inputs and current functioning mode.

These concepts are illustrated by the node of the electrical harness in the next part.

3.2 Case Study's AltaRica Model

AltaRica models that are used for preliminary safety assessment focus on potential
fault propagation inside a system. Consequently, they shall depict the system compo-
nents, their interconnection and normal behaviour in accordance with the system
specification. Moreover, they shall highlight potential faulty behaviours of each com-
ponent and each failure propagation paths.

In order to clarify the dysfunctional behaviours of the hardware components (i.e.
actuator, recopying sensor, FMV and electrical harness), we use the results of the
related Failure Mode and Effects Analysis (FMEA) (cf. table 1). On the same princi-
ple, we use the results of the Software Failure Mode and Effects Analysis for the
studied software functions (i.e. FMV shifting computing and the two monitoring func-
tions: the consistency check, the recopying sensor test) (cf. table 2).

Table 1. Example of a FMEA for a hardware component

Component Failure mode Local effect System effect
Electrical harness
between the EECU
and the actuator

Erroneous data
transmission

Fault detected by the
EECU consistency
check

The FMV is frozen
(fail-safe)

Table 2. Example of a FMEA for a software function

Function Failure mode Local effect System effect
Spurious
detection

Spurious detection of an
erroneous FMV shifting

Spurious fail safe : the
FMV is frozen

Consistency
check

Loss of
detection

No possible detection of an
erroneous FMV shifting

None (dormant failure)

324 S. Humbert et al.

These data are used to determine the relevant error states, events and the abstrac-
tion level of each basic component of the AltaRica model. It is worth noting that the
model shall focus on the fault propagation. So we depict the quality of the flows
through each component rather than their concrete values.

For example, the data received from the EECU is represented by an enumerate
variable whose values are {correct, erroneous}, as it appears in the AltaRica
code of the electrical harness below.

node harness
flow

h_in : {correct, erroneous} : in;
h_out : {correct, erroneous} : out;

state
 h_state : {nominal, erroneous_transmission};
event
 fault;
trans
 h_state = nominal |- fault -> h_state := erroneous_transmission;
assert
 h_out = case{ h_state=erroneous_transmission : erroneous

else h_in };
init
 h_state = nominal;
edon

Let us comment the AltaRica code corresponding to this component. The harness
receives one input h_in and transmits one output h_out. These flows are either cor-
rect or erroneous. Initially, the harness is in a nominal state. It may fail in the
erroneous_transmission state as identified by the FMEA. This change can be
observed by the event fault as written in the transition. Finally, it is asserted that in
the erroneous_transmission state, the output is erroneous, whereas in the
nominal mode, the output is equal to the input.

Thus, as illustrated by this example, the AltaRica nodes of the components capture
a significant part of the FMEA information\n.

The whole system model is built by interconnecting all the component nodes.
Finally, the system effects of the faults or the feared events are explicitly stated in

other kind of AltaRica nodes: the observers. Generally, an observer node is connected
to the system outputs. It produces a Boolean output that indicates whether or not the
current system state corresponds to a feared event. For example, in our case study, an
observer monitors the output of the FMV node. If the FMV output is erroneous then it
means that the feared event LOPC has occurred.

More details about the techniques to build AltaRica models for fault propagation
analysis can be found in [7] or [1].

4 Preliminary System Safety Assessment (PSSA) Based on an
AltaRica Model and Software Requirements Derivation

Let us now show how such a kind of AltaRica models can be used to analyse func-
tional failure paths leading to a system feared event.

 Deriving Safety Software Requirements from an AltaRica System Model 325

4.1 Analysis of Functional Failure Paths with the AltaRica Model

Using available AltaRica tools such as the minimal sequence generation tool of the
Cecilia™ OCAS workshop, we can quite easily extract from an AltaRica model the
functional failure paths leading to a feared event. The sequence generation tool com-
putes the set of event sequences of bounded length that lead to a selected feared event.

Some examples of sequences leading to the feared SLAC and LOPC events are
given below:

For the SLAC

- SW.Consistency_check.spurious_detection
For the LOPC

- SW.Consistency_check.loss & electri-
cal_harness_between_EECU_and_actuator.fault

It is worth noting that each event name is prefixed by a component name. So the
sequence generation output highlights directly the components that contribute to the
feared event.

The second step consists in extracting the sequences that infringe at least one quali-
tative system requirement (unacceptable sequences). The system requirements that we
consider for deriving software requirements are of the following type:

Reqx = "a feared event, whose severity is s, must be caused by at least x hardware
failures". Among other things, they imply that no single software failure leads to a
feared event.

If all sequences are acceptable, then it means that all the qualitative requirements
are met. If the quantitative requirements are also met (because it is also possible to
perform quantitative analysis from AltaRica models) then the preliminary architecture
is validated from a safety point of view without deriving further requirements.

In the other case, a third step is needed to eliminate the unacceptable sequences.
They can be separated into two categories: those containing at least one software
failure, and the others.

To eliminate the unacceptable sequences of the second category, i.e. those contain-
ing no software event, the preliminary architecture has to be modified. For example,
redundancies may be added.

To eliminate a sequence swS of the first category, one may require the elimination
of all the hypothetical software errors present in swS . This can be done by adding
software requirements of the following type: "the software event e must not occur".
Nevertheless, all these derived requirements may have different importance. We con-
sider that a set of most unacceptable events is a smallest set of events that ensure the
elimination of all unacceptable sequences. Let us now clarify how such a set can be
computed.

4.2 Selection of Most Unacceptable Software Feared Events

In order to eliminate one sequence, it is sufficient to eliminate one event of the se-
quence. Several solutions can be adopted. Depending on the cases, it may be advanta-
geous to eliminate an event instead of another. For example, let A, B, C and D be four

326 S. Humbert et al.

software events, and "A; B", "C; A" and "A; D" three unacceptable sequences. To
prevent the occurrence of the first sequence, it is sufficient to eliminate A or B. To
eliminate the second sequence, it is sufficient to eliminate A or C, and for the third, A
or D. In order to prevent the three sequences, it is not necessary to eliminate the four
events. Two sufficient (minimal) solutions are conceivable: the first one is the elimi-
nation of the three events B, C and D; the second one is the elimination of the event
A. We propose a systematic method to identify all the minimal solutions.

Notations:
Let icut be the cut of the sequence i i.e. set of events that occur in the ith sequence of

a set of sequences.

Let i
jE be the jth event of icut .

Let i
je be a Boolean variable associated to i

jE , where i
je equals 1 if the event occurs,

and 0 otherwise.

Then icut can be characterised by the product ∏
=

=
iN

j

j
ii ec

1

 where ii cutN = .

Algorithm principles:
Since each cut can be expressed by a Boolean product, the union of several cuts be-
comes a Boolean sum of Boolean products. This sum formalises a necessary condition
to reach a feared event by sequences of a given bounded length. As a result, a condi-
tion sufficient to eliminate all these sequences is the negation of this sum.

Existing fault tree analysis tools can compute minimal cut sets i.e. minimal condi-
tions that entail an input Boolean formula. Consequently, we propose to apply mini-
mal cut computation to the Boolean formula representing the non-occurrence of the
feared events. So the proposed algorithm provides all the minimal solutions to elimi-
nate all the unacceptable sequences of a given bounded length.

Algorithm:
- 1st step: List all the minimal sequences that are unacceptable and which contain at
least one software event i.e. swS . Consider the cuts of these sequences and remove all

the hardware failures from these cuts. Note the list of the obtained cuts swC =[icut].

- 2nd step: Calculate min_swC corresponding to the minimal cuts of swC .

Note min_swCC = .

- 3rd step: Let F be the Boolean formula defined by ∑ ∏∑
= ==

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
==

C

i

N

j

i
j

C

i
i

i

ecF
1 11

. Calcu-

late MC = [imc], the list of the minimal cuts of ∏ ∑
= =

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

C

i

N

j

i
j

i

eF
1 1

.

 Deriving Safety Software Requirements from an AltaRica System Model 327

- 4th step: Each cut of MC represents a minimal solution, which is sufficient to elimi-
nate all the sequences of swS . The optimal solution that minimises the number of

software requirements is: { }iMC,iMIN mcArgMinmc][1∈= .

Remark:
The 2nd and 3rd steps can be automatically made by calculating the dual of the fault
tree corresponding to swC , for example using the Aralia tool [8].

Example:
Let swS the following set of unacceptable sequences where the l events represent

software events and the m events represent hardware failures:

{ ,"l;l;m","l;l","m;l","m;l;l","m;l;l","m;l"Ssw 533433221222111=
"l;l;l","l;l;m","l;l","m;l;l","m;l;l","l;l","l;l;m" 9311119310928714776363

}"l;l;m","l;l","l;l","m;l;l", 34528814910

1st step:
{ } { } { } { } { } { } { } { } { } { }[1197476635343221211 l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,lCsw =

{ } { } { } { } { } { } { }]438281109119310987 l,l,l,l,l,l,l,l,l,l,l,l,l,l,l

2nd step:
{ } { } { } { } { } { } { } { } { } { }[]11910987747663534321 l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,lC min_sw =

3rd step:

11910987747663534321 llllllllllllllllllF +++++++++=

)()()()()()()()(11910987747663534321 llllllllllllllllllF ++++++++=

Using the Aralia tool to reduce the formula, we obtain:

9765421111086432198643211110732197321 lllllllllllllllllllllllllllllllllF ++++=

111086542198654211110765421 lllllllllllllllllllllll +++

All the possible solutions for eliminating all the unacceptable sequences of swS are:

{ } { } { } { }[;l,l,l,l,l,l,l,l;l,l,l,l,l,l,l;l,l,l,l,l,l;l,l,l,l,lMC 111086432198643211110732197321=

{ } { } { } { }]1110865421986542111107654219765421 l,l,l,l,l,l,l,l;l,l,l,l,l,l,l;l,l,l,l,l,l,l,l;l,l,l,l,l,l,l

4th step:
=1mc 5, =2mc 6, =3mc 7, =4mc 8, =5mc 7, =6mc 8, =7mc 7,

=8mc 8. So, =MINmc { }973211 l,l,l,l,lmc = .

Conclusion: The smallest set of software events which is sufficient to eliminate in
order to prevent the sequences of swS is 7321 l,l,l,l and 9l . To be sure that those
events will not occur, we formulate a non-occurrence requirement for each of them in
the software specification.

328 S. Humbert et al.

5 Lessons Learnt from the Case Study

5.1 Scope of the Case Study

The lessons learnt come from the work made on an extension of the above example in
order to be closer to a real industrial case study. The system studied includes an
EECU composed of two independent channels (channel A and B) which are able to
control the fuel flow on their own. They are redundant, however at any moment, only
one channel at a time is allowed to control the fuel flow. When a channel is declared in
a fail stage, the other one can take the relay, according to channel change logic. Except
for very few differences, both channels work with the same embedded software.

The scope of our study includes:

- Components providing information to the EECU: engine sensors, helicopter com-
mands, discreet inputs…
- Main functions ensured by the EECU:

- input acquisition,
- output driving, (including the example presented part 2)
- communication management between the two channels,
- monitoring,
- actuation.

The studied safety requirements are relative to the feared events taken into account in
part 2 (SLAC and LOPC).

5.2 Feedback on the Modelling Approach

The AltaRica language expressiveness is adequate for system potential propagation
faults modelling. Except maybe for the model abstraction level choice, this modelling
approach does not present any particular difficulty. The identification of the pertinent
variables to be considered (linked to the model abstraction) can require some itera-
tion, especially when the whole system is built by interconnecting all the component
nodes. An interactive simulation tool helps evaluating if some information has been
missed out or must be refined in order to obtain a correct abstraction.

AltaRica language use is quite easy. However, it requires little experience and Al-
taRica graphical workshops (like Cecilia™ OCAS from Dassault Aviation) make the
language training easier. Additional tools make the building of a correct model easier:
syntax verification, model consistency check, and interactive simulation tools.

5.3 Feedback about the PSSA and the Derivation Approach

The analysis technique proposed reaches its goals in term of identification of software
events to be eliminated.

The sequence generation tool of Cecilia™ OCAS is very convenient to use. How-
ever, the time to get sequences increases proportionally with the size of the model,
and exponentially in relation to the depth of the course to be achieved. The factor
linked to the size of the system is the number of events of the model, and the depth of
the course is linked to the length of sequences wished.

 Deriving Safety Software Requirements from an AltaRica System Model 329

For the example presented in part 2, the time to generate sequences is very fast:
about 1 second to obtain the sequences of two events, and the same time for the se-
quences of three events (the model only contains 18 events).

For the more complex model studied which includes 357 events, the time to obtain
the list of minimal sequences of maximum two events is less than one minute and
about 2h30 for the minimal sequences list that contain maximum three events (the
times have been measured by using the version 4 of the Cecilia™ OCAS workshop
and a PC equipped with an Intel Pentium 1.73 GHz processor, 1 Go of Ram and Win-
dows 2000).
For the particular feared event SLAC, we have obtained the following results:

· 1168 minimal sequences which contain two events at the maximum,
· 18528 minimal sequences which contain three events at the maximum.

The sequence classification into acceptable/unacceptable classes was performed
using Microsoft® Excel functions of sorting and filtering.

In order to make this data treatment easier, it is necessary to carefully choose the
function names used in the AltaRica model. Here, all software functions of each
channel are included in the node called SW. Thus, the software events are easily
marked since they contain the SW word in their name. Another solution consists in
systematically adding, in the name of events representing a software event, a refer-
ence mark, as for example _SW at the end of the name of the event, in the AltaRica
models.

The identification of unacceptable sequences containing maximum two events with
Excel is fast enough whereas the identification of sequences of three events deserves a
more optimised implementation.

After treating sequences containing maximum two events, we obtained 428 unac-
ceptable sequences, which include at least one software event.

To eliminate the 428 unacceptable sequences, we applied the algorithm of optimi-
sation presented above. The search of minimal sets of software events to be forbidden
was performed by computing minimal cut with Aralia tool. As a result, we found it
was sufficient to forbid the occurrence of 22 software events. The first half concerns
the channel A of the EECU, and the other half the channel B. However, these two
channels have the same software. Thus, if two events represent the same failure mode
of the same function implanted in channel A and channel B, only one requirement is
necessary. Finally, we identified a set of 11 additional software requirements.

Then, we treated the 18528 minimal sequences that contain maximum three events.
We first started by suppressing all sequences containing one software event among
the 11 events previously identified. There remained 14188 sequences. Then we ex-
tracted the unacceptable sequences containing at least one software event. We got
only 1176 new sequences.

We applied the algorithm of optimisation to get the minimal sets of software events
to be proscribed. Finally, we identified 4 additional software events to be eliminated
(there are 8 possible minimal solutions of 4 events).

At the end, for this case study, in order to satisfy safety goals, 15 software re-
quirements have been added to the software specification.

330 S. Humbert et al.

6 Conclusion

The problem addressed in this paper is not new. In [9], the author advocates the use of
system safety analysis techniques to derive system safety constraints which must be
satisfied by software requirement. According to [10], one obstacle was the fact that
safety analyses are often supported by fault trees that are quite far from the models
used to design the software. Several proposals (see for instance [11], [12], [13], [14])
have been made to overcome this difficulty. In this work, we have selected the Al-
taRica language and additional tools because they appear to be well adapted for Pre-
liminary System Safety Assessment (PSSA) and because they are mature enough to
be used for industrial applications.

In this paper, we first focused on the technique to derive safety requirements on the
software functions by extracting functional failure paths from AltaRica model. We
highlighted here a key point: the AltaRica language has enabled to efficiently take
into account both hardware and hypothetical software faults in a same model.

Then we showed how to extract minimal sets of most unacceptable software events
from functional failure paths. We proposed a definition of these sets of events and a
way to compute them thanks to a specific use of existing tools. Thus our proposal is
complementary of works such as [10] that start with a prohibited feared event associ-
ated to a software function and then refine the definition of the feared event.

Finally, the proposed approach has been positively tested within a significant case
study.

Future works are addressing three complementary topics. First of all, experiments
are carried out to validate more extensively the proposed methodology. The sets of
most unacceptable software events are transformed into Scade observers according to
principles that are defined in [15]. These observers formalise requirements that can be
easily tested or proved on the Scade specification of the engine control system.

 Secondly, the AltaRica model of the case study is quite complex. A new PhD has
started in order to study the validation of such complex models.

Finally, our approach can be extended so as to automatically allocate development
assurance levels to software parts. In the aeronautic world, the definition of allocation
rules is under way in the revision of the standard ARP4754 [16] and these rules take
as a starting point the functional failure paths leading to feared events. The applica-
tion of these news rules to the sequences extracted from AltaRica models should be
fruitful.

References

1. Bieber, P., Bougnol, C., Castel, C., Heckmann, J.-P., Kehren, C., Metge, S., Seguin, C.:
Safety Assessment with AltaRica - Lessons learnt based on two aircraft system studies. In:
Jacquart, R. (ed.) 18th IFIP World Computer Congress, Topical Day on New Methods for
Avionics Certification, Toulouse. Kluwer Academic Publishers, Dordrecht (2004)

2. Bieber, P., Blanquart, J.-P., Durrieu, G., Lesens, D., Lucotte, J., Tardy, F., Turin, M., Se-
guin, C., Conquet, E.: Integration of formal fault analysis in ASSERT: Case studies and
lessons learnt. In: European Congress on Embedded Real-Time Software ERTS 2008,
SIA, AAAF, SEE, Toulouse (2008) (electronic paper), http://www.erts2008.org/

 Deriving Safety Software Requirements from an AltaRica System Model 331

3. Humbert, S., Bosc, J.-M., Castel, C., Darfeuil, P., Dutuit, Y., Focone, E., Seguin, C.: Dé-
clinaison d’exigences de sécurité du système vers le logiciel assistée par des modèles for-
mels. In: Potet, M.-L., Schobbens, P.-Y., Toussaint, Y., Saval, G. (eds.) AFADL 2007,
Presses universitaires de Namur, pp. 57–73 (2007)

4. Arnold, A., Griffault, A., Point, G., Rauzy, A.: The AltaRica Formalism for Describing
Concurrent Systems. Fundamenta Informaticae 40(2-3), 109–124 (2000)

5. The AltaRica project, http://altarica.labri.fr/wiki/
6. Rauzy, A.: Mode automata and their compilation into fault trees. Reliability Engineering

and System Safety 78(1), 1–12 (2002)
7. Humbert, S., Bosc, J.-M., Castel, C., Darfeuil, P., Dutuit, Y., Seguin, C.: Méthodologie de

modélisation AltaRica pour la sûreté de fonctionnement d’un système de propulsion héli-
coptère incluant une partie logicielle. In: proceedings of Lambda Mu 15, communication
113, Lille, IMdR (2006)

8. Dutuit, Y., Rauzy, A.: Exact and Truncated Computation of Prime Implicants of Coherent
and Non-Coherent Fault Trees within Aralia. Reliability Engineering and System
Safety 58(2), 127–144 (1997)

9. Leveson, N.G.: Software Safety in Embedded Computer Systems. Communications of
ACM 34(2), 34–46 (1991)

10. Hansen, K.M., Ravn, A.P., Stavridou, V.: From Safety Analysis to Software Require-
ments. IEEE Transaction on Software Engineering 24(7), 573–584 (1998)

11. Bouissou, M., Bouhadana, H., Bannelier, M., Villatte, N.: Knowledge modelling and reli-
ability processing: presentation of the FIGARO language and associated tools. In: Linde-
berg, J.F. (ed.) SAFECOMP 1991, IFAC Symposia, Trondheim, series #8, pp. 69–75. Per-
gamon Press, Oxford (1991)

12. Fenelon, P., McDermid, J.A., Nicholson, M., Pumfrey, D.J.: Towards Integrated Safety
Analysis and Design. ACM Computing Reviews 2(1), 21–32 (1994)

13. Papadopoulos, Y., Maruhn, M.: Model-based automated synthesis of fault trees from Mat-
lab-Simulink models. In: DSN 2001, International Conference on Dependable Systems
and Networks (former FTCS), Gothenburg, pp.77–82 (2001) ISBN 0-7695-1101-5

14. Bozzano, M., Villafiorita, A., et al.: ESACS: an integrated methodology for design and
safety analysis of complex systems. In: proceedings of ESREL 2003, European Safety and
Reliability Conference, Maastricht, pp. 237–245. Balkema Publishers (2003)

15. Humbert, S.: Déclinaison d’exigences de sécurité du niveau système vers le niveau logiciel
assistée par des modèles formels. PhD thesis of University of Bordeaux (2008)

16. Society of Automotive Engineers: ARP4754: Certification Considerations for Highly-
Integrated or Complex Aircraft Systems. SAE International, Warrendale, PA (1996)

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 332–345, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Model-Based Implementation of Real-Time Systems

Krzysztof Sacha

Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, Poland
k.sacha@ia.pw.edu.pl

Abstract. A method is presented for modeling, verification and automatic pro-
gramming of PLC controllers. The method offers a formal model of require-
ments, the means for defining and verifying safe behavior, and a technique for
generating program code. The modeling language is UML state machine, which
provides a widely accepted means for writing a specification at a suitable high
level of abstraction. Such an abstract specification can be validated by the user,
verified by means of a model-checker and translated automatically into a pro-
gram code, which preserves the correctness and safety of the specification. The
program code is written in one of the standardized IEC 61131 languages.

1 Introduction

This paper describes a method for modeling, verification and automatic programming
of PLC controllers, which are used in industry for solving time- and safety-critical
problems, like traffic or process control. A PLC controller is a computer-based device
that has several inputs and outputs where two-state sensors and actuators can be
plugged in. The controller executes cyclically: Polling the inputs, executing the pro-
gram and updating the outputs. The duration of each cycle introduces an explicit
granularity of time, which is measured and guaranteed by the operating system.

The modeling language is UML state machine [1], which provides a widely ac-
cepted means for writing a specification at a suitable high level of abstraction. Such
an abstract specification can be validated by the user, verified against safety require-
ments and translated automatically into a program code. To do this, a method for de-
fining the semantics of the specification is required, followed by a method of safety
verification, and the rules for automatic code generation. The problem is not new and
many methods have been developed for specifying safety critical real-time systems in
a formal manner. Those methods are based on various mathematical theories, such as
algebra [2], temporal logic [3], finite state machines [4-6] and Petri nets [7].

A UML state machine diagram describes a finite state machine augmented with hi-
erarchical structure of nested states and time sensitive behavior. Unfortunately,
whereas the syntax and the static semantics of a state machine diagram are precisely
defined, the execution semantics is only given in natural language.

The method described in this paper is based on an original model of translatable fi-
nite state time machines (FSTM), which extend the classical Moore automata with a
hierarchy of states and time. The model itself and a method for automatic code gen-
eration were described in detail in [8,9]. What was missing in those papers was a
sound method for a formal verification of such properties as safety, liveness and

 Model-Based Implementation of Real-Time Systems 333

Modeling in UML

State machine diagram

Conversion to FSTM

Finite state time machine

Code generation (STEP 7)

Program code for a PLC

Conversion to UPPAAL

Verification

Environment modeling

Fig. 1. Modeling, verification and implementation of the program code

reachability. This paper describes a concept of an integrated development environ-
ment with the potential for modeling of a controller, simulation of the environment (a
controlled plant), verification of the compound model using UPPAAL model-checker
[10] and automatic generation of IEC 61131 program code for the controller [11].

A schematic drawing of the development cycle is shown in Fig. 1. The tasks of
modeling the controller in UML, modeling the environment in UPPAAL, and formu-
lating safety requirements in a formal language of CTL formulae are done manually.
The tasks of converting the model from UML to FSTM and from FSTM to UPPAAL,
verifying the model, and generating the program code are done automatically.

The paper is organized as follows. Section 2 provides the reader with an overview
of finite state time machine and the conversion of UML models. Section 3 describes a
conversion from FSTM to UPPAAL, and Section 4 explains the rules of safety verifi-
cation in UPPAAL. The process of converting finite state time machine into a pro-
gram code is described in Section 5. An illustrative case study is provided in Section
6. A discussion of the results and plans for future work are given in Conclusions.

2 Conversion of UML State Machine to FSTM

UML state machine is a graph that shows the states an object can have, and the tran-
sitions between states that can be time or event triggered, and accompanied with ac-
tions. Relating this model to the execution of a PLC, one can note that an event is a
combination of all the input signals of the PLC, and an actions is a combination of all
the output signals of the PLC. States, transitions between states and time behavior are
defined by a program code. Basic elements of a state machine can be seen in Fig. 2.

In order to provide a means for managing complexity, UML allows for a hierarchi-
cal nesting of states. Hierarchy of states does not add any new semantics to the model,

334 K. Sacha

in that a hierarchical diagram can always be converted into a “flat” one. A formal
model of the hierarchy of states, including history indicator, entry and exit actions,
and an algorithm for flattening the hierarchy were described in detail in [9] an will not
be discussed in the rest of this paper.

Finite state time machine is a finite state Moore automaton extended with timer vari-
ables. It uses a discrete model of time, where all the timers progress synchronously with
the same granularity of time. Finite state time machine is translatable, and can be used
as a basis for automatic generation of a program code for PLC controllers [9].

Definition 1. A finite state time machine is a tuple A = (S, Σ, Γ, τ , δ, s0 , ε, Ω, ω) where
S is a finite set of states,
Σ is a finite set of input symbols,
Ω is a finite set of output symbols,
Γ is a finite set of variables called timer symbols,
τ : Γ → 2S × N+ is an injective function, called timer function (with two projections τS:

Γ → 2S and τN: Γ → N+, respectively),
δ : S × Σ × 2Γ → S is a partial function, called transition function, such that:

[(s, a, T)∈Dom(δ)] ⇔ (∀ t∈ T)[s∈ τS (t)]
s0 ∈ S is the initial state,
ε ∈ N

+ is the granularity of time,
ω : S → Ω is an output function.

Notation: N+ is the set of positive integers, R+ is the set of positive reals, Dom(δ) is
the domain of function δ, card(X) is the cardinality of a set X, and φ is an empty set.

It can be noted that a finite state time machine looks much like a Moore automaton
with three additional elements: Γ, τ , ε, which add to the model the dimension of time.
A timer symbol t∈Γ is a variable, which takes values from the set R+. The current
value of a variable t is interpreted as the duration of a period of time. Timer function τ
assigns to each timer a group of states τS (t) and a constant value τN (t). The meaning
of those elements is such that timer t is enabled, i.e. counts time, as long as the
automaton resides in one of the states from τS (t) and it expires when the current
value of t exceeds τN (t).

Timer symbols in Γ can be set in an arbitrary order: t1... tn. The current valuation of
timer symbols ŧ:Γ→ R+ can now be described as a vector of values: ŧ1... ŧn.

The execution of a finite state time machine starts in state s0 with the values of all
timers equal to 0. For a given state sk and a valuation of timers ŧk there exists a set of
expired timers, defined as:

Θ (sk , ŧk) = { t
i∈Γ: sk∈τS (t

i
) and ŧik ≥ τN (t

i
) }

The machine executes in state sk with the valuation of timers ŧk, k= 0,1..... , by taking
an input symbol ak and moving to the next state sk+1 defined by the transition function:

sk+1=δ (sk ,ak ,Θ (sk , ŧk))

When the machine enters a state sk+1 time advances and the values of enabled tim-
ers change reflecting the elapsed time interval ε:

 Model-Based Implementation of Real-Time Systems 335

ŧik+1 =

When the valuation of timers ŧ changes, the set Θ of expired timers may change as
well. This way a finite state time machine can respond to the flow of time, even if sk+1 =
sk and ak+1 = ak . Because the last argument of δ is a set of all timers expired in a given
state and time, no conflict exists if several timers expire at the same time instant.

The finite state time machine models a time-sensitive device, which advances time
with a fixed increment of ε time units. After each such increment the values of timers
and the machine state are updated as described by the transition function. The device
responds to a timed sequence of input symbols a1…aj… that occur at time
ϑ1…ϑj…[5]. The flow of time within the input sequence is not synchronized to ε-
increments of the machine. This means that a finite state time machine may or may
not capture a symbol aj of a timed input sequence, if ϑj+1−ϑj < ε.

A conversion algorithm of an UML state machine diagram into a finite state time
machine, which defines the semantics of the diagram, can be described as follows.

 S equals to the set of all states of the UML state machine.
Σ equals to the set of all events of the UML state machine; each event is a particu-

lar combination of all the input signals of the PLC.
Γ is a set of timer symbols t1,...,tn; the cardinality of Γ equals to the number of

timed transitions in the diagram (i.e. transitions triggered by an after clause) and
there is one timer symbol ti for each timed transition in the UML state machine.

τ is the timer function, which assigns to each timer symbol ti created for a timed
transition T a pair composed of a source state of this transition and the value of
the after clause of this transition.

δ is the transition function δ : S × Σ × 2
Γ → S, such that δ (s1 , a, T) = s2 if and only

if there exists a transition in the UML state machine such that s1 is the source
and s2 the destination state of this transition, and either a is the event that trig-
gers this transition (in this case T = φ), or T = {ti} and ti is the timer symbol of
this timed transition (in this case δ (s1 , a, T) = s2 for all a∈Σ).

so is the initial state of the UML state machine diagram.
ε is a characteristic of the PLC controller.
Ω equals to the set of combinations of all the output signals of the PLC that are set

by the actions of the UML state machine.
ω is the output function, which assigns to each state s∈S the output symbol q∈Ω,

which is set by all transitions to s.

3 Conversion of FSTM into UPPAAL

UPPAAL [10] is a toolbox for modeling and verification of real time systems, based
on the theory of timed automata. The core part of the toolbox is a model-checking en-
gine, which enables for verification of properties defined as CTL path formulae.

A timed automaton [4], as used in UPPAAL, is a finite state machine extended
with clock variables that evaluate to positive real numbers and state variables that

⎧
⎨
ŧik+ ε if sk+1∈τS (t

i
) and sk ∈τS (t

i
)

0 otherwise ⎩

336 K. Sacha

evaluate to discrete values. State variables are part of the state. All the clock variables
progress simultaneously. An automaton may fire a transition between two states in re-
sponse to an action, which can be thought of as an input symbol, or to a time action
related to the expiration of a clock condition. Clock variables can be reset to zero at a
transition.

Definition 2. A timed automaton is a tuple TA = (S, s0 , C, A, E, I) , where
S is a finite set of states,
C is a finite set of clock variables (called also clocks),
A is a finite set of actions,
E⊆ S × A × B (C) × 2C × S is a set of transitions between states; each transition has an

action, a guard and a set of clocks to be reset (a transition relation),
s0 ∈ S is the initial state,
I : S → B (C) is a function, which assigns invariants to states.

Notation: B(C) is a set of conjunctions over simple clock conditions, e.g. t < c or t ≥ c.
A valuation of clocks is a function ŧ: C→ R+. An expression g∈B(C) defines a set of
clock valuations that satisfy expression g; we will write ŧ∈g to mean that ŧ satisfies g.

The execution of an automaton TA starts in state s0 with the valuation ŧ0 , such that all
clock variables equal to 0. The machine executes in state s with the valuation of
clocks ŧ by performing an action:

(s, ŧ) → (s’, ŧ’) if there exists e= (s, a, g, r, s’)∈ E such that ŧ∈g and ŧ∈ I (s); the
new valuation of clocks ŧ’= ŧ over C − r and ŧ’(t)= 0 for t∈ r;

or a time action:

(s, ŧ) → (s, ŧ+ d) if ∀d’:(0 ≤ d’≤ d) ⇒ (ŧ+ d’)∈I (s)

The semantics of a timed automaton is a labeled graph consisting of nodes and
edges. Each node defines a compound state of the automaton and is a pair z= (s, ŧ)
composed of a state s and a valuation of the clock variables ŧ. The set of all nodes
Z ⊆ S × RC, and the initial state (s0 , ŧ0)∈Z. The edges in the graph are transitions,
which fulfill the conditions defined above.

A set of timed automata can be composed into a network over a common set of ac-
tions. This way a model of a controller and a controlled plant can be established, such
that an action of one automaton can trigger a transition in another one.

The cooperation between two automata is described in UPPAAL using synchroni-
zation channels, in which an action labeled c! (c is the channel name) in one automa-
ton, triggers an action labeled c? in another automaton. A pair of matching actions in
two component automata are performed simultaneously.

The actions are considered atomic with respect to the flow of time, which means
that time can flow when the automata reside in their states. However, there are also
special states, called committed states, in which delay is not allowed – such a state
must be left immediately. Committed states are routinely used to separate a ?-action
and !-action, in order to express causality relation between the two.

A compound state of a network of timed automata is a pair composed of a vector of
states of the component automata and a valuation of all the clock variables. The se-
mantics of a network is a graph composed of nodes, which are compound states, and

 Model-Based Implementation of Real-Time Systems 337

edges, which correspond to transitions in component automata. The set of all nodes
Z ⊆ S1 × ... × Sn × RC, and the initial state (s0

1,..., s0
n, ŧ0)∈Z.

A conversion of a finite state time machine into a timed automaton can be described
as follows.

Let A = (S, Σ, Γ, τ , δ, s0 , ε, Ω, ω) be a finite state time machine. The transition
function δ : S × Σ × 2

Γ → S is equivalent to a relation δ ⊆ S × Σ × 2
Γ × S such that:

δ = { (s, a, T, s’): s’= δ (s, a, T) }

For a given state s∈S there exists a set of timers T (s) = { t∈Γ: s∈τS (t) } that are
enabled in s. Any subset T = { t

1,…tk } ⊆ T (s) defines an expression gT over simple
time conditions:

ŧ1≥τN (t
1) … ŧk≥τN (t

k) & ŧk+1<τN (t
k+1) … ŧn<τN (t

n)

which must be satisfied by a valuation ŧ in order to enable the transition (s, a, T, s’)∈δ.
Timed automaton TA = (S, s0 , C, A, E, I), which is equivalent to the given finite

state time machine A can be constructed in the following way:

S = S ∪ SC (SC is a set of committed-states)
s0 = s0
C = Γ
A = Σ ∪ Ω (?-actions in Σ and !-actions in Ω)
I = φ

The set of committed states SC and the transition relation E are created in the fol-
lowing way:

1. SC = φ and E = φ
2. For each (s, a, T, s’)∈δ :

• if ω (s) = ω (s’) than a transition (s, a, g
T, Γ \ T (s) , s’)∈ E.

• if ω (s) ≠ ω (s’) than a new committed state sC is added to SC and a pair of
transitions: (s, a?, g

T, φ , sC), (sC, ω (s’)!, φ, Γ \ T (s) , s’) is added to E.

Finite state time machine uses a discrete time model with an explicit granularity ε.
UPPAAL uses continuous time model, in which transitions can fire at arbitrary points
in time, within the boundaries defined explicitly by transition guards and state invari-
ants. This means that the properties verified for a compound UPPAAL system does
not depend on the relative speed of the component automata. Hence, they are true also
for a synchronous finite state time machine.

4 Verification

The main purpose of UPPAAL is to verify the model with respect to safety require-
ments, which must be expressed in a formal language. UPPAAL uses a version of
computational tree logic (CTL) and provides a query language consisting of state
formulae and path formulae.

A state formula is an expression that can be evaluated for a particular state in order
to check a property (e.g. a deadlock). Path formulae quantify over paths of execution

338 K. Sacha

and ask whether a given state formula ϕ can be satisfied in any or all the states along
any or all the paths.

Path formulae can be classified into three types:

• Reachability properties (will ϕ be satisfied in a state of a path?) – E<>ϕ.
• Safety properties (will ϕ be satisfied in all the states along a single or along all

paths?) – E[]ϕ and A[]ϕ.
• Liveness properties (will ϕ eventually be satisfied? will ϕ respond to ψ?) – A<>ϕ

and ψ -->ϕ.

UPPAAL model-checker enables verification of the model by evaluating path for-
mulae over the reachability graph of a network of timed automata.

5 Code Generation

PLC controller is a technical implementation of a state machine, which yields output
signals in response to input signals and to the flow of time. The controller maintains
the state of the machine using flip-flops in the program code, counts time using timer
blocks, and executes cyclically, firing a transition in each execution cycle.

Cyclic execution of a controller can be described in a pseudo-code, which creates a
reference model for PLC execution:

state = initial_state ();
loop_forever {
 input = poll_the_input ();
 timers = set_timers (active_timers (state));
 state = next_state (state, timers, input);
 output = count_output (state);
 set_the_output (output);
}

The operating system of a PLC executes the following actions:

• sets the initial state (initial_state),
• executes the loop (loop_forever),
• polls the input (poll_the_input),
• counts time and sets the expired timers (set_timers),
• sets the output signals (set_the_output).

What the programmer must do is to write a code for:

• selecting the active timers, which count time in the (active_timers),
• calculating the next state of the controller (next_state),
• calculating the output (count_output).

The semantics of a PLC program, i.e. the meaning within its application domain, is
a relation between a sequence of input signals and a sequence of output signals. If we
establish a mapping between the input signals of a PLC and the input symbols of a fi-
nite state time machine, and a mapping between the output signals of a PLC and the

 Model-Based Implementation of Real-Time Systems 339

output symbols of a machine, we can think about a finite state time machine as of a
model of a program for a PLC controller.

The behavior of a PLC program is defined formally within the reference model by
the semantics of its programming language, which may be one of the IEC 61131 lan-
guages [11], e.g. ladder diagram or structured text. The behavior of a finite state time
machine has been defined in Section 2. By that means a method for translating a high
level abstract model of a finite state time machine (S, Σ, Γ, τ, δ, s0, ε, Ω, ω) into a PLC
program can formally be defined. The method consists of the following steps.

1. Mapping of sets Σ, Ω into the input and output signals of PLC. The sets of input
and output signals of a controller are usually defined in the requirements speci-
fication. Each combination of input (output) signals defines an event in the con-
trolled plant, which is perceived by the controller as an input (output) symbol.
This way, those two mappings are defined at the start of the modeling process.

2. Mapping of set S into the values of flip-flops. At least log2(n), n= card(S), flip-
flops are needed to store all the states of set S. An arbitrary one-to-one mapping
from set S to the set of n flip-flops (coding of states) can be used.

3. Mapping of set Γ into the set of timers. A separate timer with the expiration time
equal to τN (t) is allocated for each timer symbol t ∈Γ.

4. Defining function active_timers consistently with function τ. A timer block is a
conceptual device, which has one input and one output. As long as the input
equals 0, the timer block is reset with the output equal to 0. When the input
changes to 1, the timer block is enabled and starts counting time. The output
changes to 1 as soon as the input has continued to be 1 for a predefined period
of time. Function active_timers defines the input signals of all the timer blocks.
The input signal of a timer block allocated for a timer t ∈Γ , is a Boolean func-
tion over the set of flip-flops used for coding of states, such that it is true in state
s if and only if s ∈ τS(t).

5. Defining function next_state consistently with function δ. This function de-
fines the set and reset signals of flip-flops, which have been used for coding of
states. The signal to set (reset) a flip-flop is a Boolean function over the set of
flip-flops, input signals of PLC and output signal of timer blocks, such that it is
true if and only if this flip-flop is set (reset) in the next state of FSTM.

6. Defining function count_output consistently with function ω. This function de-
fines the values of output signals of PLC. The value of an output signal is a
Boolean function over the set of flip-flops, such that it is true if and only if this
output signal is set in the current state of FSTM.

6 Case Study

Consider a railroad crossing controlled by a computer system. There are two railway
tracks within the crossing, and two trains can approach the crossing simultaneously (a
single train on a track is allowed). The movement of trains is controlled by a set of
semaphores that can prevent trains from entering the crossing. The road traffic is
controlled by a gate that can be open or closed. A semaphore can be operated by a
controller to display green light, when a train approaches, but not earlier than after the

340 K. Sacha

gate has been closed. Opening and closing states of the gate are confirmed to the con-
troller by the appropriate input signals: up and down, respectively. The semaphore is
red and the gate is up in the initial state of the crossing.

A train cannot be stopped instantly. When it is detected by a train position sensor, a
controller has 30 seconds to close the gate and display green to allow the train to con-
tinue its course. After these 30 seconds, it takes further 20 seconds to reach the cross-
ing. Otherwise, if the green signal is not displayed within these 30 seconds, the train
must break in order to stop safely before the crossing. Closing the gate must last less
than 20 seconds, or else an alarm must sound. The gate can be opened when the posi-
tion sensor has sent a leave signal after the last train has left the crossing.

6.1 Modeling of the Controller

An algorithm for the railroad crossing controller, which can be a part of a broader
control system, is shown in Fig. 2 in the form of a UML state machine diagram. The
states within the graph correspond to states of the two trains that can appear within the
crossing area. The transitions between states are labeled event / action, where event
corresponds to an input symbol or the expiration of a time period, and action corre-
sponds to setting an output symbol. The graph has eleven states only, but is quite
complex due to the number of combinations of the input and output symbols.

The initial state, called Outside, corresponds to such a state of the crossing, in
which no train approaches. The gate is open in this state, and the semaphores display
red in order to prevent trains from entering the crossing. Such a state is safe in the ap-
plication domain, because no collision between cars and trains is possible.

One problem with this model relates to a time event after(20), which causes a tran-
sition from EnteringBoth to Alarm3. The requirement is such that this 20s delay

Fig. 2. UML model of the railroad crossing controller

Outside

Entering1 Entering
Both

Entering2

Alarm1 Alarm3 Alarm2

Inside1 InsideBoth Inside2

approach1 / close approach2 / close

down / green1

approach2

approach1

down / green1; green2 down / green2

Leaving

approach1

after(20) / sound

down / green2

approach2

after(20) / sound

down / green1

after(20) / sound

down / green1; green2

leave2 / red2 leave1 / red1

 / red1;red2;open

approach1 / green1

leave2 / red2; open

approach2 / green2

leave1 / red1; open

up

 Model-Based Implementation of Real-Time Systems 341

should be measured from the moment of entering state Entering1 or Entering2 and the
measurement should be continued through the period of being in state EnteringBoth.
UML does not provide any simple means for expressing such a multi-state time re-
quirement. It can only be expressed as an informal note in natural language.

FSTM model of the controller has the same set of states, input symbols and output
symbols. It has a single timer symbol t, and the timer function τS (t) = {Entering1, En-
tering2, EnteringBoth} and τN (t) = 20. The transition function is defined by the set of
all the transitions of the UML state machine. No timing problem exists in FSTM.

6.2 Verification

UPPAAL model of the controller (Fig. 3) has the same states as the finite state time
machine, plus a set of committed states. Basically, the transitions between states are
in both models the same, with exception to transitions between states that differ in the
finite state time machine on output symbols. Those transitions are split in UPPAAL
model into two consecutive transitions separated by an added committed state.

Actions, which names bear the suffix ‘?’, act like input symbols that enable the as-
sociated transitions. Actions, which names bear the suffix ‘!’, act like output symbols
that are passed to other automata in order to trigger the respective input symbols. This
way the execution of one automaton can control the execution of a other automata.

The environment of the controller consists of two trains and a gate. Each of those
elements can be modeled in UPPAAL and synchronized with the controller within a
network of timed automata.

A model of a train is shown in Fig. 4. Time invariant t≤30 of state Approaches en-
forces a transition after 30 seconds have passed since the train has entered the state. This
models the necessity of breaking the train if green has not been displayed in time. Time
condition t>20 assigned to the transition from On crossing to Faraway reflects the

Fig. 3. UPPAAL model of the railroad crossing controller

up?up?

Outside

EnteringBoth

AlarmBoth

InsideBoth

Entering2Entering1

Alarm2Alarm1

Inside2Inside1

Leaving1

C C

C

approach1? approach2?

close!
t:=0

close!
t:=0 approach2? approach1?

t >20
sound!

 t >20
 sound! t >20

 sound!

 down?

down?

green1!

C

 down?

down?

C down?

 down?

green1!
green2!

green2!

 approach1?

leave2? leave1?C
leave1?

red1!
open!

C
leave2?

Leaving2

red2!
open!approach2?

342 K. Sacha

minimum time of passing the crossing by a fast train. Time invariant t≤40 of the state
On crossing reflects the maximum time of passing the crossing by a slow train.

A model of the second train is identical, with exception to the names of actions,
which are: approach2!, leave2!, and green2?, respectively.

A model of the gate is shown in Fig. 5. Time invariants t ≤ 20 assigned to states
Closing and Opening reflect time that it takes to close or to open the gate.

The simple reachability properties can check if a given state is reachable:

• E<> train1.On crossing: This checks if train 1 can pass the crossing (a similar
property can be checked for train 2).

• E<> (train1.On crossing && train2.On crossing): This checks if both trains can
move through the crossing simultaneously.

The safety properties can check that unsafe states will never happen:

• A [] (train1.On crossing or train2.On crossing) imply gate.Closed: This ensures
that each time a train is passing the crossing, the gate is closed.

• A [] (gate.open imply (¬ train1.On crossing && ¬ train1.On crossing): This en-
sures that each time the gate is open, a train is not on the crossing.

The liveness properties can check consequences of an event, e.g.:

• train1.Approaches --> train1.On crossing: This ensures that if train 1 approaches
the crossing, it will eventually pass it (similar property can be checked for train 2).

All those properties can be verified by UPPAAL model-checker. In our example
the liveness condition is not satisfied. A counterexample is the following: Assume
that the train 2 approaches when train 1 is just leaving. The controller does not react
to approach2 in state Leaving1, hence, the transition to Outside appears without dis-
playing green2 for train 2. The train will stop and can never reach the crossing.

Open

Closed

OpeningClosing

up!

open?

close?

down!

Faraway

Approaches

approach1!
t:=0

On crossing

green1?
t:=0

t >20
leave1!

Starting

Stop green1?
t:=0

t >10
t:=0

t 40

t 30

t 25t 30

t 30

t 20 t 20

 Fig. 4. UPPAAL model of a train Fig. 5. UPPAAL model of the gate

This proves that the control algorithm is erroneous and must be modified by adding
two additional transitions to the model. The corrected finite state time machine model
of the controller is shown in Fig. 6.

 Model-Based Implementation of Real-Time Systems 343

Outside

Entering1 Entering
Both

Entering2

Alarm1 Alarm3 Alarm2

Inside1 InsideBoth Inside2

approach1 / close approach2 / close

down / green1

approach2
approach1

down / green1; green2 down / green2

Leaving

approach1

after(20) / sound

down / green2

approach2

after(20) / sound

down / green1

after(20) / sound

down / green1; green2

leave2 / red2 leave1 / red1

 / red1;red2;open

approach1 / green1

leave2 / red2; open

approach2 / green2

leave1 / red1; open

up

approach1 / close approach2 / close

Fig. 6. The corrected model of the railroad crossing controller

6.3 Implementation

There are six input signals and seven output signals at the diagram in Fig. 6. Each
combination of the input (output) signals corresponds to an input (output) symbol.
This way, there are 11 states, 64 input symbols, 128 output symbols, and 1 timer in
the finite state time machine, which defines the semantics of the diagram in Fig. 6.

PLC controller stores the states of the machine as values of its internal flip-flops.
The coding of eleven states requires at least four such flip-flops. A selected coding for
states and output signals of the railroad crossing controller is shown in Table 1.

A program for a PLC consists of a sequence of Boolean expressions to set or reset
flip-flops, timers and output signals, according to the values of input signals, flip-
flops and timers. These expressions implement the functions active_timers,
next_state and count_output described in Sect. 5. For example, timer t must be en-
abled in each of the Entering-states, and flip-flop M1 must be set at a transition from
any of the Entering-states to Alarm-states or Inside-states, i.e.:

To ensure atomicity of transitions, a two-phase implementation of next_state

function is used. In the first phase, the next state is computed and stored using a set of
auxiliary flip-flops (M11 above), which mirror the primary flip-flops that are used to
encode the model states. In the second phase, the current state is changed to the next
state by copying the values of auxiliary flip-flops to the primary flip-flops [8].

Boolean expressions can be converted into the ladder diagram as shown in Fig. 7.

() ()
()

111) (
....................................

2431432111 Res (3)

4321 11Set (2)

Set (1)

MM

leaveMMleaveMMMMM

tdownMMMMM

M4)(M3M2M1 t1

=

⋅⋅+⋅⋅⋅⋅=
+⋅+⋅⋅=

+⋅⋅=

344 K. Sacha

Table 1. The coding of states and output signals

M1 M2 M3 M4 State red1 red2 green1 green2 close open sound
0 0 0 0 Outside 1 1 0 0 0 0 0
0 1 0 1 Entering1 1 1 0 0 1 0 0
0 1 1 0 Entering2 1 1 0 0 1 0 0
0 1 1 1 EnteringBoth 1 1 0 0 1 0 0
1 1 0 1 Alarm1 1 1 0 0 1 0 1
1 1 1 0 Alarm2 1 1 0 0 1 0 1
1 1 1 1 Alarm3 1 1 0 0 1 0 1
1 0 0 1 Inside1 0 1 1 0 0 0 0
1 0 1 0 Inside2 1 0 0 1 0 0 0
1 0 1 1 InsideBoth 0 0 1 1 0 0 0
0 0 1 1 Leaving 1 1 0 0 0 1 0

(2)
M1 M2

S
M11down

(1)
M2 tM1 M3

M4

t

M3

M4

(3)
M1 M2

R
M11leave1M3 M4

leave2M3 M4

’

Fig. 7. A fragment of the ladder diagram program for the railroad crossing controller

Outside Entering

approach(nr) / a(nr):=1

Alarm

approach(nr) / a(nr):=1

Inside Leaving

approach(nr) / a(nr):=1;green(nr)
leave(nr) / a(nr):=0;red(nr)

when(For al l i<N: a(i)==0) / open

down / For all i<N: if (a(i)==1) green(i)after(20) / sound

down / For all i<N:
if (a(i)==1) green(i)

approach(nr) / a(nr):=1;c lose

approach(nr) / a(nr):=1;close
up

Fig. 8. A scalable model of the railroad crossing controller

7 Conclusions and Future Work

The paper describes a method for the specification, verification and automatic genera-
tion of code for PLC controllers. The method relies on a mathematical formalism
based on finite state time machine model. The advantages of the method are intuitive
modeling and a potential for automatic verification and implementation of the model.

 Model-Based Implementation of Real-Time Systems 345

A disadvantage is low scalability of the model with respect to the number of the
modeled objects (trains). The problem is twofold. First, the model in Fig. 6 describes
a crossing with exactly two tracks for trains. A completely new model must be built to
describe, e.g., a four track crossing. Second, the number of states of the model raises
exponentially. A way we want to follow to improve scalability is the introduction of
variables for representing a number of similar states (vector a[N] in Fig. 8). Those
variables are part of the state and do not prevent the state space explosion. However,
the model itself is parameterized with the number of tracks, and can be used to de-
scribe a crossing with an arbitrary number of tracks N.

References

1. OMG, Unified Modeling Language: Superstructure, version 2.0, August (2005)
2. Milner, R.: Operational and algebraic semantics of concurrent processes. In: van Leeuwen,

J. (ed.) Handbook of Theoretical Computer Science, pp. 1201–1242. Elsevier, Amsterdam
(1990)

3. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems. Springer, Berlin (1995)
4. Alur, R., Dill, D.: Automata-theoretic verification of real-time systems. In: Formal Meth-

ods for Real-Time Computing, Trends in Software Series, pp. 55–82. John Wiley & Sons,
Chichester (1996)

5. Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed I/O Automata,
Technical Report MIT-LCS-TR-917a, MIT Lab. for Computer Science (2004)

6. Dierks, H.: PLC-Automata, A New Class of Implementable Real-Time Automata. In: Ber-
tran, M., Rus, T. (eds.) Transformation-Based Reactive Systems Development. LNCS,
vol. 1231, pp. 111–125. Springer, Berlin (1997)

7. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Springer, Berlin (1997)

8. Sacha, K.: Automatic Code Generation for PLC Controllers. In: Winther, R., Gran, B.A.,
Dahll, G. (eds.) SAFECOMP 2005. LNCS, vol. 3688, pp. 303–316. Springer, Heidelberg
(2005)

9. Sacha, K.: Translatable Finite State Time Machine. In: Gaudin, E., Najm, E., Reed, R.
(eds.) SDL 2007. LNCS, vol. 4745, pp. 117–132. Springer, Heidelberg (2007)

10. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal, Department of Computer
Science. Aalborg University (2004)

11. IEC 61131-3, Programmable controllers – part 3: Programming languages, IEC (1993)

Early Prototyping of Wireless Sensor Network

Algorithms in PVS�

Cinzia Bernardeschi1, Paolo Masci1, and Holger Pfeifer2

1 Department of Information Engineering, University of Pisa, Italy
{cinzia.bernardeschi,paolo.masci}@iet.unipi.it

2 Institute of Artificial Intelligence, Ulm University, Germany
holger.pfeifer@uni-ulm.de

Abstract. We describe an approach of using the evaluation mechanism
of the specification and verification system PVS to support formal design
exploration of WSN algorithms at the early stages of their development.
The specification of the algorithm is expressed with an extensible set of
programming primitives, and properties of interest are evaluated with ad
hoc network simulators automatically generated from the formal speci-
fication. In particular, we build on the PVSio package as the core base
for the network simulator. According to requirements, properties of in-
terest can be simulated at different levels of abstraction. We illustrate
our approach by specifying and simulating a standard routing algorithm
for wireless sensor networks.

Keywords: WSN algorithms, simulation, PVS.

1 Introduction and Motivation

Wireless Sensor Networks (WSNs) are distributed systems consisting of a large
number of spatially distributed, autonomous and cooperating nodes. The nodes
of the network, referred to as sensor nodes, are battery-operated devices which
provide limited computation capabilities, low-rate and low-range wireless com-
munication, and are equipped with a number of sensors and actuators to monitor
physical or environmental conditions. The most characterising aspect of WSNs
is that they are deeply embedded in the real world, and provide unattended
operation for long periods of time without infrastructural support. Due to their
small size, sensor nodes can be placed in close proximity to the subject to be
monitored, thus enabling in situ monitoring of physical phenomena. A sensor
network normally constitutes a wireless ad hoc network, in which communication
is multi-hop: due to the limited operating distance of the wireless radio compared
to the physical extension of WSNs, sensor nodes must coordinate communica-
tion to forward data to a distant receiver. WSNs are highly dynamic networks:
even if nodes are placed in fixed positions, node failures (e.g., due to software

� This work was partially supported by the European Commission through the Net-
work of Excellence ReSIST (IST-026764).

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 346–359, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Early Prototyping of Wireless Sensor Network Algorithms in PVS 347

bugs or battery exhaustion), or environmental factors that are difficult to pre-
dict or avoid (e.g., physical obstacles, or humidity) may unexpectedly alter the
connectivity of the network. For some application scenarios, mobile nodes may
be involved in communication as well. Initially developed for military purposes
such as battlefield surveillance, applications of WSNs today cover a wide spec-
trum of scenarios, including many safety-critical domains. For instance, WSNs
have been deployed in critical infrastructures monitoring [1] to assess structural
health of buildings, such as a pedestrian footbridge [2], or roads. In the area of
traffic monitoring and control, a distributed application built on top of a WSN
has been developed [3] to monitor a railway network for accidental or malicious
system failures so as to prevent derailment of trains or even collisions. Wire-
less sensor networks are also deployed in health-care applications, for example
to monitor vital signs of patients through tiny wearable sensor nodes [4], or as
support and emergency systems for elderly people [5].

Large-scale networks are difficult to test, and the characteristics of wireless
sensor networks only compound the problem. Hence, simulation plays a cen-
tral role in current development processes of WSN applications. Software-based
simulators are used to provide controlled environments in which experiments
are to yield reproducible results. During the early stages of development, ap-
plications are commonly analysed with ad hoc simulators built as extensions
of existing network simulators, such as ns2, or distributed system simulators,
such as ptolemy. Once the application logic becomes consolidated, the software
is evaluated in dedicated network simulators that provide emulation of real WSN
hardware, such as TOSSim and Avrora. As of yet there is, however, no estab-
lished standard simulation framework for WSN applications, and extensions to
network simulators can usually only be accomplished by users who are familiar
with the tool [6].

Inherently, simulations can only approximate real-world computation, and the
challenge is to develop models that capture the behaviour of the environment
in which WSNs are going to be deployed as accurately as possible. Recent stud-
ies have evidenced that for wireless networks simulations there is high risk of
misleading or incorrect results because of assumptions hidden in the underlying
network simulator [7]. Even in the presence of positive simulation results, fail-
ures may still occur when the system is deployed. As with any other system,
remedying defects at this stage is costly at best, for WSNs it can be even im-
possible. Consequently, support for analysing WSN algorithms at early stages of
development is essential. With a view to the reliability and safety requirements
of applications of WSNs as the ones mentioned above, more rigorous analytical
techniques are also desirable.

In this paper we report on our work towards developing a simulation and
analysis framework for WSN algorithms within a theorem prover. Specifically,
we use the Prototype Verification System (PVS) [8, 9] to specify and simulate
WSN communication protocols in the very early stages of their design. The
distinguishing characteristics of PVS are its expressive specification language
and its powerful theorem prover. A less often used component is its ground

348 C. Bernardeschi, P. Masci, and H. Pfeifer

evaluator [10] that can be used to animate functional specifications. Although
PVS’s specification language is based on higher-order logic and features a rich
type system, a surprisingly large subset of it is executable. The ground evalu-
ator translates the executable constructs of PVS into efficient Lisp code which
can then be executed. The evaluation environment consists of a read-eval-print -
loop that reads PVS expressions from the user and returns the result of their
evaluation. The additional package PVSio [11] enhances PVS’s specification lan-
guage with built-in constructs for string manipulation, floating-point arithmetic
and input/output operations. Thus, for certain types of applications, PVS can
effectively serve as a functional programming language.

We employ the combination of PVS’s rich specification language and the
ground evaluator for early prototyping of a class of WSN algorithms. To this
end, we introduce a series of general formal PVS models that can be refined
to describe various WSN communication protocols. Specifically, we provide an
extensible set of executable communication primitives to enable rapid and easy
specification of protocols at different levels of detail. From these formal algo-
rithm specifications, efficient Lisp code can automatically be generated using
the ground evaluator and the PVSio extension. This implementation is suitable
for simulation and allows to test and evaluate the algorithm from different per-
spectives. Finally, once the simulation experiments give sufficient confidence in
the correctness of the algorithm, the PVS models can serve as the basis for the
formal verification of the desired properties using the PVS theorem prover.

To demonstrate the effectiveness of our approach, we describe its application
to the Surge routing protocol, which is used in various WSN systems, includ-
ing prototypes in a safety-critical domain [4]. We analysed the Surge protocol
under different aspects. During our tests of robustness of the protocol with re-
spect to topology changes, we were able to detect a potential problem of routing
loops that has gone unnoticed so far and can indeed be reproduced with one of
the implementations of Surge provided in the library of the widely-used WSN
operating system TinyOS.

2 PVS and PVSio

PVS is a specification and verification system which combines an expressive
specification language with an interactive proof checker. It has been used for
formal reasoning in several application domains (see [8] for an overview).

The PVS specification language builds on classical typed higher-order logic
with the usual base types, bool, nat, integer, real, among others, and the
function type constructor [A -> B]. Predicates are simply functions with range
type bool. The type system of PVS also includes record types, dependent types,
and abstract data types. The most powerful concept are predicate subtypes ; e.g.,
the type below(n:nat) : TYPE = {s: nat | s < n} denotes the type of nat-
ural numbers less than a given bound n. Usage of predicate subtypes ranges from
checking for violations such as division by zero, to expressing complex consis-
tency requirements.

Early Prototyping of Wireless Sensor Network Algorithms in PVS 349

PVS specifications are packaged as theories that can be parametric in types
and constants. A built-in prelude and loadable libraries provide standard spec-
ifications and proved facts for a large number of theories. A theory can use
the definitions and theorems of another theory by importing it. For instance,
consider the following theory execution:

execution [State : TYPE] : THEORY

BEGIN

trans : VAR [State -> State]

execute(trans)(n:nat) : RECURSIVE [State -> State] =

LAMBDA (s:State): IF n = 0 THEN s

ELSE LET s_new = trans(s) IN

execute(trans)(n-1)(s_new)
ENDIF

MEASURE n
END execution

The theory takes one type parameter, State, and defines a (higher-order) func-
tion execute that recursively applies n steps of a state-transition function trans,
which is provided as a parameter. As all functions in PVS must be total, the ter-
mination of the recursion has to be demonstrated; the MEASURE part provides the
information to the typechecker and prover to ensure this. By instantiating the
theory parameter with a concrete value, the execute function can be imported
into the context of a given algorithm specification:

simulation : THEORY

BEGIN

... % -- concrete def’n of a state type omitted

% -- definition of a single step of the algorithm

algorithm_step(s:State): State = ... % -- omitted

IMPORTING execution[State]

% -- execution of ’steps’ number of steps of the algorithm

algorithm(steps:nat) : [State -> State] =

execute(algorithm_step)(steps)

END simulation

Thus, the execution theory provides a generic mechanism to describe the exe-
cution of an algorithm, which can subsequently be used for simulation.

Using the PVS ground evaluator one can compile the executable constructs
of a specification, such as the execute function above, into efficient Lisp code.
In order to still be able to simulate theories that also involve declarative specifi-
cations, the ground evaluator is augmented by so-called semantic attachments,
through which the user can supply pieces of Lisp code and attach them to the
declarative parts. Using this mechanism the PVSio package [11] extends the
ground evaluator with a predefined library of imperative programming language
features such as side effects, unbounded loops, and input/output operations,
and also provides a high-level interface for writing user-defined semantic at-
tachments. Thus, PVS specifications can conveniently be animated within the
read-eval-print -loop of the ground evaluator.

350 C. Bernardeschi, P. Masci, and H. Pfeifer

3 Prototyping WSN Algorithms

In this section we present the basic aspects of the proposed approach. We show
that prototyping of WSN algorithms can be performed with a collection of PVS
models (theories), each of which represents a service installed on a sensor node
(e.g., packet logger, clock), or structural properties of the network (e.g., the
network graph), or communication functionalities (e.g., packet forwarding). For
each theory, a number of different versions can be provided in order to specify
and analyse WSN algorithms under several perspectives and at desired level of
detail. The most abstract theory provides i) the declaration of types for a mini-
mum set of mandatory attributes, ii) the declaration of interface functions. More
detailed theories can be derived from the abstract definition by specifying the
behaviour of interface functions, and by extending types. Abstractions enable
users to create a model comprising only the parameters of interest at the desired
levels of detail. Hence, lightweight models can be generated, and efficient code
for simulations can be obtained.

Network Connectivity. Network connectivity is modelled with a directed
graph without self-edges. We build type definition on top of directed graphs
of the NASA library [12], in order to benefit from several useful lemmas and
properties already proved in PVS. Custom network graphs can be generated. To
simplify graph specification, we use an auxiliary topology function that identi-
fies, for each node, the set of neighbouring nodes. Ideal and lossy links can be
modelled, and topology changes can be used to model node mobility. Once the
topology is given, the network graph can be instantiated with a specific inter-
face function. Sensor nodes are identified by a unique natural number less that a
given N. We developed a theory named node th that provides a type definition
for the node identifier. In the following, the theory which describes network con-
nectivity is shown (digraph[node id] is the NASA theory on directed graphs).
An example of topology and the corresponding network graph are also included.

network_graph_th: THEORY

BEGIN

IMPORTING node_th, digraphs[node_id]

%-- network_graph: a directed graph without self-edges

network_graph?(g: digraph[node_id]): bool =

(FORALL (i: node_id): vert(g)(i)) AND

(FORALL (i,j: node_id): edges(g)((i,j)) IMPLIES (i /= j))

network_graph: TYPE = {g: digraph[node_id] | network_graph?(g)}

topology: TYPE = [node_id -> finite_set[node_id]]

new_network_graph(tp: topology): network_graph

%-- instance of network graph

fully_connected_network_graph: network_graph

= new_network_graph(LAMBDA (i: node_id): {n: node_id | n /= i})

END network_graph_th

Early Prototyping of Wireless Sensor Network Algorithms in PVS 351

Services. A service is identified by a unique name. A services S is associated to
nodes by means of a function [finite set[node id] -> S]. Depending on the
algorithm specification and on the property of interest, services can be installed
on a single node, on a group of nodes, or on the entire network.

Currently, we have implemented the following services: packet logger, which
stores statistics about sent and received packets, receive buffer, which models the
buffer where packets sent by other nodes are stored, energy consumption, which
evaluates the energy spent by nodes, routing, which provides the basic definitions
for building routing tables, spanning trees and paths between nodes, and node
scheduler, which gives the sequence of nodes that execute the algorithm (e.g.,
round robin, or random). As example of service, in the following we show the
definition of energy consumption, where energy is the energy consumption of a
sensor node, network consumption is the function which associates the energy
consumption to every node. Three interface functions are declared in the theory:
two of them are used to compute energy consumption of senders and receivers,
the other one to update consumption of the sender neighbours.

energy_th: THEORY

BEGIN

%-- type definition

energy: TYPE = real

network_consumption: TYPE = [node_id -> energy]

%-- interface functions

sender_consumption: energy

receiver_consumption(g: network_graph, snd, rcv: node_id): energy

update_network_consumption(ne: network_consumption,

g: network_graph,

snd: node_id): network_consumption

END energy_th

Services are wrapped together into an extensible structure called network
state. The network state is described by the set of functions that specify the
allocation of services to nodes. For instance, in the following theory, a network
state is defined as the collection of two services (receive buffer and log):

network_th: THEORY

BEGIN

network_state: TYPE =

[# net_receive_buffer: [node_id -> receive_buffer],

net_log: [node_id -> log] #]

END network_th

The network state maintains the state of all nodes. The state of a node consists
of the state of the services installed on a node. The state of a node can be ob-
tained by indexing the network state: given a node x and a network state ns, the
state of x is ns(x), and the state of the logging service of x is net log(ns)(x).

Communication Primitives. Nodes can exchange packets. A packet is a struc-
ture with two mandatory fields (the sender and the destination), and a number

352 C. Bernardeschi, P. Masci, and H. Pfeifer

of optional fields. The sender is a single node, while destination is specified with
a finite set of nodes. Broadcast address is represented with a special constant
bcast addr, which is the full set of nodes. In the following example, a packet
consists of five fields (timestamp, source, sender, destination and payload):

packet_th: THEORY

BEGIN

IMPORTING node_th, time_th

bcast_addr: finite_set[node_id] = LAMBDA (i: node_id): node_id?(i)

packet: TYPE =

[# timestamp: time,

source_addr: node_id,

sender_addr: node_id,

destination_addr: finite_set[node_id],

payload: finite_sequence[int] #]

END packet_th

We modelled three low level single-hop primitives in order to easy the spec-
ification of communication algorithms: inject, forward and drop. Additionally,
nodes are also allowed to perform an idle transition.

Inject can be used to send out packets generated by nodes (e.g., packet gener-
ated by the application executed on nodes, or control packets generated by
the routing service): the function takes a packet as parameter, and sends out
such packet.

Forward is suitable to relay packets previously received by nodes (e.g., when
multi-hop communication is needed to reach the destination): the function
takes a packet as parameter, removes the packet from the receive buffer of the
node, and sends out a packet with a sender address automatically updated
with the identifier of the sending node.

Drop is used to discard received packets: the function takes a packet as param-
eter, and removes such packet from the receive buffer of the node.

Idle is useful to update state variables of nodes, such as energy consumption,
when no operation on incoming/outgoing packets is performed.

The implemented primitives are suitable for unicast, multicast and broadcast
communication. The side effect of sending out the packet is that neighbouring
nodes of the sender receive the packet. The graph connectivity affects reception of
packets: if node x sends out a broadcast packet, it is received only by neighbours
of x. A basic version of the forward primitive with the essential functionalities
is the following:

network_th_A: THEORY

BEGIN

IMPORTING receive_buffer_th

network_state: TYPE = [# net_receive_buffer: network_receive_buffer #]

Early Prototyping of Wireless Sensor Network Algorithms in PVS 353

% packet pk is sent out by the forwarder node

forward(pk: packet)(forwarder: node_id)

(net: network_state, g: network_graph): network_state =

LET fw_pk = pk WITH [sender_addr := forwarder],

nrb0 = update_receivers_buffer(net_receive_buffer(net), g, fw_pk),

nrb1 = update_sender_buffer(nrb0, pk)

IN net WITH [net_receive_buffer := nrb1]

END network_th_A

The sender address of the packet is updated, and update receivers buffer
and update sender buffer functions are invoked to update the network state.
A more detailed version of the above primitive could be obtained by adding, for
example, energy consumption and packet logger services to nodes. In this case,
energy th and log th theories must be imported and the functions to update
energy and log must be invoked.

Algorithms. An algorithm is specified as a cyclic procedure executed on a
generic node. For instance, let us consider the flooding algorithm [13], which
is designed to deliver packets to all nodes in the network. Flooding is typically
used for dynamic route discovery, reconfiguration/reprogramming and to request
specific data from sensors. A simple variant of flooding behaves as follows: when-
ever a node receives a packet, the packet is forwarded to neighbouring nodes if
it is received for the first time, otherwise it is dropped. The algorithm can be
specified as follows:

flooding_th: THEORY

BEGIN

IMPORTING network_th, log_th

flooding(x: node_id)(net: network_state, g: network_graph):

network_state =

IF empty?(net_receive_buffer(net)(x)) THEN idle(x)(net, g)

ELSE LET pk = getpacket(net_receive_buffer(net)(x)) IN

IF empty?(net_log(net)(x)(fw)) THEN forward(pk)(x)(net, g)

ELSE drop(pk)(x)(net, g)

ENDIF

ENDIF

END flooding_th

Flooding can be analysed at different level of abstractions by importing spe-
cific theories and leaving the specification of the flooding function unmodified.
This way, different properties of the algorithm can be analysed and different
implementations can be evaluated. For instance, energy consumption can be
analysed in the above theory by importing a different theory for the network
state. In order to discover problems of the algorithm, the underlying services
can be assumed to behave correctly. Conversely, the algorithm can be also anal-
ysed by modelling malfunctions of the underlying layers in order to evaluate, for
instance, service degradation.

354 C. Bernardeschi, P. Masci, and H. Pfeifer

4 A Case Study: Surge

In this section we analyse Surge, a popular routing protocol for WSNs. Surge is
currently part of the TinyOS distribution, and it has been used as routing service
during the evaluation of several WSN-based systems, including prototypes for
safety-critical systems [4]. We introduce Surge with an excerpt from [14]:

The Surge protocol forms a dynamic spanning tree, rooted at a single
node (the base station). Nodes route packets to the root. Nodes select a
new parent when the link quality falls below a certain threshold. Surge
suppresses cycles in the routing by dropping packets that revisit their
origin.

Modelling Surge. The Surge algorithm can be decomposed into a forward-
ing service built upon a dynamic spanning tree service which, in turn, relies on
lower level services for single-hop communication. In order to discover bugs in
the specification, such services can be analysed separately, assuming that the
underlying layers behave properly. Suppose that we are interested in analysing
the forwarding service. The spanning tree service can be assumed correct, i.e.,
it provides a correct routing table rt to the forwarding service. Hence, the for-
warding algorithm of Surge applied by a single node to a received packet can be
formally specified in PVS as follows:

surge_th: THEORY

BEGIN

IMPORTING network_th, routing_th

surge(x: node_id)(net: network_state, g: network_graph)

(base_station: node_id, rt: routing_table): network_state =

IF empty?(net_receive_buffer(net)(x)) THEN idle(x)(net, g)

ELSE LET received_pk = getpacket(net_receive_buffer(net)(x)),

source_addr = source_addr(received_pk),

sender_addr = sender_addr(received_pk),

next_hop = next_hop(x,base_station)(g,rt)

IN IF source_addr /= x

THEN forward(received_pk

WITH [destination_addr := next_hop])(x)(net, g)

ELSE drop(received_pk)(x)(net, g)

ENDIF

ENDIF

END surge_th

Analysing Surge. To analyse Surge, a WSN application must be specified in
PVS. In the following, we will explore examples of analyses.

Receive queue size. We report the results of a simulation to evaluate receive
queue size of sensor nodes in a monitoring scenario, in which sensor nodes pe-
riodically send packets to report data to the base station. The routing table is

Early Prototyping of Wireless Sensor Network Algorithms in PVS 355

assumed to be correct, but it may change. A scheduler that selects the nodes
that execute the algorithm must be specified. Every time a node is selected by
the scheduler, such node sends out a new packet and relays all packets of other
nodes. The scheduler guarantees fairness of execution between nodes. The PVS
theory for the monitoring application is the following, where node 0 is the base
station. Two recursive functions are defined: surge rec, which relays all received
packets, and surge app, which invokes the scheduler (round robin) to select a
node. The selected node, if different from the base station, sends out a packet
and relays packets of the other nodes.

surge_app_th: THEORY

BEGIN

IMPORTING surge_th

base_station: node_id = 0

surge_rec(x: node_id)(net: network_state, g: network_graph)

(base_station: node_id, rt: routing_table): RECURSIVE

network_state =

IF empty?(net_receive_buffer(net)(x)) THEN idle(x)(net, g)

ELSE LET net_prime = surge(x)(net, g)(base_station, rt)

IN surge_rec(x)(net_prime, g)(base_station, rt)

ENDIF

MEASURE size(net_receive_buffer(net)(x))

surge_app(ti, tf: nat)

(net: network_state, g: network_graph,

rt: routing_table): RECURSIVE network_state =

IF ti >= tf THEN net

ELSE LET sender = round_robin(ti),

dst = next_hop(sender, base_station)(g, rt)

IN IF sender = base_station

THEN surge_app(ti + 1, tf)(net, g, rt)

ELSE

LET net_inj = inject(new_packet(sender, dst))(sender)(net, g),

net_prime = surge_rec(sender)(net_inj, g)(base_station, rt)

IN surge_app(ti + 1, tf)(net_prime, g, rt)

ENDIF

ENDIF

MEASURE tf - ti

END surge_app_th

A simulation has been performed with grid networks of different size. Networks
of hundreds of nodes can be simulated. Results for a 25 node network are shown
in Figure 1. For each node (except for the base station) we have evaluated the
maximum number of packets in the receive buffer. The application has been
simulated several times and for different number of steps. For high number of
steps, the queue size almost stabilised. As expected, the maximum number of
packets in the receive queue is bigger for nodes closer to the base station, because
they have to relay packets for a larger number of nodes.

356 C. Bernardeschi, P. Masci, and H. Pfeifer

Fig. 1. Receive queue size for each node

5
4

1 2

3

Station
Base

(a) Network topology (b) Sent packets (D) and normalised energy (E)

Fig. 2. Topology and results of the simulation for energy consumption

Energy consumption. We report the results of a simulation to evaluate energy
consumption for the previous monitoring application. To evaluate energy con-
sumption, we used a theory providing an analytical model for idle consumption1.
The PVS specification of both Surge and the monitoring application are left un-
changed. The simulation can be executed by simply importing appropriate PVS
theories. We compared our analysis with that described in [15], for a network
of six nodes topology shown in Figure 2(a). In Figure 2(b), for each node, the
total amount of sent packets and the energy consumption is shown. The ap-
plication has been simulated for about one thousand simulation steps. Because
we modelled idle energy, the evaluated energy consumption reflects real energy
consumption. We obtained coherent results with respect to those of [15].

Robustness to topology changes. In order to test robustness of the protocol to
topology changes, we consider a monitoring application in which only one node
(node 5) periodically sends packets to the base station. The other nodes relay
packets according to the Surge algorithm. We were able to detect a potential

1 Idle consumption is the consumption of a sensor node during idle behaviour.

Early Prototyping of Wireless Sensor Network Algorithms in PVS 357

2

1

4 5

1

2

54

Station
Base

Station
Base

3

3 3

rtBrtA

Fig. 3. Routing tables used for the robustness analysis of Surge

problem of infinite loops of routed packets in the algorithm specification. There
are situations in which a packet may travel indefinitely in the network, because
the routing table may change in response to topology changes. We evidenced
such issue in a simulated grid network of 6 nodes by using routing tables rtA
and rtB (see Figure 3). The critical situation is the following: assume that the
routing table is rtA and that node 3 forwards a packet to node 2. Suppose that
the routing table changes to rtB just before node 2 forwards the packet. Hence,
the packet returns to node 3, which does not drop the packet because it is not the
source. Just before node 3 forwards the packet, the routing table may change to
rtB again, and so on. Such a pathological case is a real problem, because routing
tables may actually change during Surge operations. The specification of Surge
gives no constraints on routing table changes: the only assumption is that there
is an underlying service which provides a correct spanning tree rooted at the
base station. The design consideration discussed in [16] allows to conclude that
such a bug is indeed possible. With such an assumption, loop detection based on
the source address of the packet is not sufficient to avoid the problem. Infinite
loops of packets may overload the network and in safety critical applications the
service provided by the network could be downgraded to an unacceptable level.

5 Related Work and Conclusions

In this paper we propose a simulation and analysis framework for WSN algo-
rithms within a theorem prover. The need for formal modelling and analysis of
WSN algorithms has been pointed out in many papers. In [17], basic properties
of the Reverse Path Forwarding algorithm have been analysed with FDR and
Alloy Analyser. Scalability is the main problem of such approach: only very sim-
ple and small network configurations were analysed, and a proof by hand was
used to prove correctness of the algorithm under specific hypotheses. In [18],
TinyOS is modelled as a hybrid automaton and a sensor network is specified as
a network of hybrid automata. The proposed analysis is only oriented to evaluate
energy consumption of sensor nodes. Moreover, in [19] model checking is applied
to a TinyOS application. In [20], Lamport’s Temporal Logic of Actions is used to
model and simulate diffusion protocols for discovering routing trees for gathering

358 C. Bernardeschi, P. Masci, and H. Pfeifer

and disseminating data. The analysis focuses on performance variation of push
and pull phases of the diffusion protocol for routing trees with different shapes,
however without the objective of algorithm design evaluation. In [21] a formal
model, called Space Time Petri Nets, has been presented to model WSNs. Time
Petri Nets are augmented by adding location information to every place, and
modelling broadcast transmission with a special transition. The formalism lacks
both flexibility, as nodes cannot be modelled at different levels of abstraction,
and scalability with respect to the generation of the reachability graph. In [22],
Real-Time Maude has been applied to the OGDC density control algorithm and
networks of several hundred nodes can be analysed. The specification models a
node as an object, and the communication primitives are broadcast and unicast.
The approach is capable of modelling the algorithm at high levels of detail, and
results can be more accurate compared to other network simulators, such as ns2.

The framework proposed in this paper allows developers to formalise the WSN
at different levels of abstraction, and it can be applied at the early stage of the
development process to consolidate the algorithm design. We have used this
approach to specify and simulate the Surge routing protocol for a number of
networks with different topologies and number of nodes. During our analyses of
Surge, we were able to detect a potential problem of routing loops due to topology
changes, which has gone unnoticed so far. Further work includes the use of the
theorem prover of PVS to verify correctness properties of WSN algorithms.

References

1. Xu, N., Rangwala, S., Chintalapudi, K., Ganesan, D., Broad, A., Govindan, R.,
Estrin, D.: A wireless sensor network for structural monitoring. In: Proc. Intl. Conf.
on Embedded Networked Sensor Systems, pp. 13–24. ACM, New York (2004)

2. Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., Turon, M.:
Wireless sensor networks for structural health monitoring. In: Proc. Intl. Conf. on
Embedded Networked Sensor Systems, pp. 427–428. ACM, New York (2006)

3. Aboelela, E., Edberg, W., Papakonstantinou, C., Vokkarane, V.: Wireless sensor
network based model for secure railway operations. In: Intl. Workshop on eSafety
and Convergence of Heterogeneous Wireless Networks, pp. 623–628 (2006)

4. Lorincz, K., Malan, D.J., Fulford-Jones, T.R.F., Nawoj, A., Clavel, A., Shnayder,
V., Mainland, G., Welsh, M., Moulton, S.: Sensor networks for emergency response:
Challenges and opportunities. IEEE Pervasive Computing 3(4), 16–23 (2004)

5. Stanford, V.: Using pervasive computing to deliver elder care. IEEE Pervasive
Computing 1(1), 10–13 (2002)

6. Chen, G., Branch, J., Pflug, J., Zhu, L., Szymanski, B.: Sense: A sensor network
simulator. Advances in Pervasive Computing and Networking, 249–267 (2004)

7. Pawlikowski, K., Jeong, H., Lee, J.: On credibility of simulation studies of tele-
communication networks. IEEE Communications Magazine 40(1), 132–139 (2002)

8. Owre, S., Rushby, J., Shankar, N., von Henke, F.: Formal Verification for Fault-
Tolerant Architectures: Prolegomena to the Design of PVS. IEEE Trans. on Soft-
ware Engineering 21(2), 107–125 (1995)

9. Owre, S., Rushby, J., Shankar, N., Stringer-Calvert, D.: PVS: an experience report.
In: Applied Formal Methods. LNCS, vol. 1641, pp. 338–345. Springer, Heidelberg
(1998)

Early Prototyping of Wireless Sensor Network Algorithms in PVS 359

10. Crow, J., Owre, S., Rushby, J., Shankar, N., Stringer-Calvert, D.: Evaluating, test-
ing, and animating PVS specifications. Technical report, Computer Science Labo-
ratory, SRI International, Menlo Park, CA (2001)

11. Muñoz, C.: Rapid prototyping in PVS. Technical Report NIA Report No. 2003-03,
NASA/CR-2003-212418, National Institute of Aerospace, Hampton, VA (2003)

12. Butler, R., Sjogren, J.: A pvs graph theory library. Nasa technical memorandum
1998-206923, NASA Langley Research Center, Hampton, Virginia (1998)

13. Heinzelman, W., Kulik, J., Balakrishnan, H.: Adaptive protocols for information
dissemination in wireless sensor networks. In: Proc. Intl. Conf. on Mobile Comput-
ing and Networking, pp. 174–185. ACM, New York (1999)

14. Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSim: accurate and scalable simulation
of entire TinyOS applications. In: Proc. Intl. Conf. on Embedded Networked Sensor
Systems, pp. 126–137. ACM Press, New York (2003)

15. Shnayder, V., Hempstead, M., Chen, B., Allen, G., Welsh, M.: Simulating the
power consumption of large-scale sensor network applications. In: Proc. Intl. Conf.
on Embedded Networked Sensor Systems, pp. 188–200. ACM, New York (2004)

16. Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of reliable multi-
hop routing in sensor networks. In: SenSys 2003, pp. 14–27. ACM Press, New York
(2003)

17. Bolton, C., Lowe, G.: Analyses of the reverse path forwarding routing algorithm.
In: Proc. Intl. Conf. on Dependable Systems and Networks, pp. 485–494. IEEE
Computer Society, Los Alamitos (2004)

18. Coleri, S., Ergen, M., Koo, T.J.: Lifetime analysis of a sensor network with hybrid
automata modelling. In: Proc. Intl. Workshop on Wireless Sensor Networks and
Applications, pp. 98–104. ACM, New York (2002)

19. Xie, F., Browne, J.C.: Verified systems by composition from verified components.
SIGSOFT Softw. Eng. Notes 28(5), 277–286 (2003)

20. Nair, S., Cardell-Oliver, R.: Formal specification and analysis of performance vari-
ation in sensor network diffusion protocols. In: Proc. Symp. on Modeling, Analysis
and Simulation of Wireless and Mobile Systems, pp. 170–173. ACM, New York
(2004)

21. Luo, Y., Tsai, J.J.P.: A graphical simulation system for modeling and analysis
of sensor networks. In: ISM 2005: Proceedings of the Seventh IEEE International
Symposium on Multimedia, pp. 474–482. IEEE Computer Society, Washington
(2005)

22. Ölveczky, P., Thorvaldsen, S.: Formal modeling and analysis of the ogdc wireless
sensor network algorithm in real-time maude. In: Bonsangue, M.M., Johnsen, E.B.
(eds.) FMOODS 2007. LNCS, vol. 4468, pp. 122–140. Springer, Heidelberg (2007)

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 360–372, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Analyzing Fault Susceptibility of ABS Microcontroller

Dawid Trawczynski, Janusz Sosnowski, and Piotr Gawkowski

Institute of Computer Science, Warsaw University of Technology,
Nowowiejska 15/19, 00-665 Warsaw, Poland

{d.trawczynski,jss,gawkowsk}@ii.pw.edu.pl

Abstract. In real-time safety-critical systems, it is important to predict the im-
pact of faults on their operation. For this purpose we have developed a test bed
based on software implemented fault injection (SWIFI). Faults are simulated
by disturbing the states of registers and memory cells. Analyzing reactive and
embedded systems with SWIFI tools is a new challenge related to the simula-
tion of an external environment for the system, designing test scenarios and re-
sult qualification. The paper presents our original approach to these problems
verified for an ABS microcontroller. We show fault susceptibility of the ABS
microcontroller and outline software techniques to increase fault robustness.

Keywords: Fault injection, fault tolerance, safety evaluation, real-time embed-
ded systems, automotive systems.

1 Introduction

Recently, in automotive industry, electronic embedded systems are gaining much
interest resulting in steady increase of devices controlling various car functions in-
volved in airbags, active brakes, engine control and x-by-wire operations ([1-6] and
references). These applications result in quite complex microcontrollers for which
fault occurrence cannot be neglected. In particular, soft errors are becoming real prob-
lem. Hence, dependable operation of electronic control devices is a crucial point and
appropriate safety norms have to be assured e.g. IEC 61508 [7] or AUTOSAR [8].
This can be achieved with various redundancy techniques as well as specific error
recovery procedures ([3, 9-10] and references). An important issue is to analyze the
effectiveness of the proposed solutions for various classes of faults. In particular we
have to deal with permanent, intermittent and transient faults. In practice, transient
faults (due to electromagnetic interference, power brownouts, and environmental
disturbances) are dominating, so we are mostly interested in this class of faults.

Many approaches to analyzing fault susceptibility were proposed ([11-15] and ref-
erences therein). They base on formal methods (functional analysis, fault tree and
failure mode effect analysis) and various simulation experiments covering specific
fault models at different abstraction levels. Most simulation techniques related to
automotive systems rely on a simulation model for the entire considered system (usu-
ally in Matlab/Simulink and TrueTime [14]) enriched by some fault injection capa-
bilities [1,15]. Typically, faults are injected at some abstract level e.g. selected state
variables, abstracting from the implementation, or they are targeted at some specific

 Analyzing Fault Susceptibility of ABS Microcontroller 361

problems. In [4] the authors analyzed the impact of CAN network bandwidth (effects
of the delays and jitter resulting from the use of a shared bus) on car suspension
control performance, packet suppression faults, and sensor faults. The simulation
experiments in [1] were targeted at high level mathematical model of a car suspension
control developed in Matlab/Simulink with embedded fault injection functions.

In our approach we are closer to the real implementation and faults, which are well
emulated by the software implemented fault injection (SWIFI) tool at the level of
binary code of the evaluated system. SWIFI simulates faults in the real system by
disturbing (e.g. performing bit-flips) the states of processor registers and memory
cells (used for storing the program code, data and stack). The fault injection moments
and locations can be specified explicitly or in a pseudorandom way. The fault effects
are analyzed by comparing the behavior of the disturbed program with the reference
execution (golden run) with no faults. The SWIFI approach is a popular and widely
used dependability evaluation method for classical computational programs
[11,13,16,17]. Adapting this technique to reactive control subsystem is a kind of chal-
lenge, due to the problem of taking into account the interactions of various electronic
and mechanical subsystems as well as the impact of the environment e.g. driver reac-
tions, road and weather conditions.

To qualify the controlled object’s response to faults we have to define some per-
formance parameters that describe the quality of the performed task by the controller
in request of the driver or other car sub-circuits. The measured deviation of the ana-
lyzed parameter from the nominal values gives an indication on performance loss or
even critical and unacceptable situations. A large class of embedded systems used in
automotive or other industrial applications relates to feedback control of physical
systems. Such systems usually operate in a cyclic way. Typically they get signals
from sensors, process them and deliver output signals to the actuators. The control
algorithm may take into account system deviation from the correct behavior (due to
external disturbances or even microcontroller faults) and compensate detected error
by adjusting newly calculated outputs. In this process an important issue is to meet
time requirements while producing output signals.

To meet dependability expectations various techniques can be used that are based
on fail-silence property. Duplex systems built by pairing two subsystems with con-
tinuously compared output signals, triplicated systems with voting or cheaper designs
with limited or no hardware redundancy all can, to a certain degree, exhibit the fail-
silence property ([17] and references). In any case, the analysis of fault effects and
error propagation for simplex systems is important since often duplex implementation
is not cost effective for an application. It is worth noting that for many applications a
single temporary malfunction of the controller is not critical due to the natural inertia
of the controlled system. Moreover, a simple error recovery performed after fault
detection using the available idle time of the microcontroller (so as to not exceed real
time requirements) maybe also effective. These features have to be validated.

In the paper we present an original methodology of analyzing fault susceptibility
using SWIFI fault injector FITS [9] with appropriate adaptation to reactive systems.
This methodology has been verified for the anti-lock microcontroller, and the gained
experience can be easily extended for other reactive systems. We have also performed
similar experiments with robot and alcohol rectification microcontrollers [16].
Section 2 describes the ABS microcontroller operation in relevance to the behavior of

362 D. Trawczynski, J. Sosnowski, and P. Gawkowski

the braking system and the car. Section 3 outlines the fault injection platform and its
adaptation to the required test scenarios. Experimental results are discussed in
section 4. They show the impact of the faults on the performance of the ABS control-
ler. The last section presents the conclusion and suggestions for the future research.

2 ABS Model

To study the fault susceptibility of the ABS controller we have developed its program
and the model of the external environment covering the behavior of the car in rele-
vance to the road conditions. The modeling of ABS is based on mathematical equa-
tions describing Newton’s 2nd law of motion [18] defined separately for x, y, and z
Cartesian coordinate axis. The ABS controller model has been defined using Matlab
scripts for Simulink and is based on the mathematical model given in [18,19]. The
developed Simulink model has later been transformed into C++ language for software
fault injection based on SWIFI technology. We are mainly interested in the vehicle
motion in the x direction. Whenever a vehicle brakes or accelerates the resultant in-
stantaneous net force is lower or greater than zero. The objective of the anti-lock
braking systems is to minimize the braking distance under the constraint of the tire
slip. The tire slip occurs in situations where excessive braking force pressure is ap-
plied to braking pads while the friction force provided at the surface contact point of
the tire and the road is insufficient. Exceeding the optimal braking force results in tire
slippage, and in extreme may lead to tire locking. For the tire lock, the angular veloc-
ity of the wheel is zero, and the only friction force acting on the tire is the slippage
friction. The slip friction is usually much lower than non-slip friction and may result
in excessively long braking distance. Therefore, the anti-lock braking system has been
developed by Bosch [18] in the 1970s, so that vehicle “slip” may be prevented in
situations requiring sudden braking maneuvers. Analyzing ABS dependability we
study the motion of only one wheel relative to the quarter vehicle body mass and the
road surface.

The developed ABS controller unit (MCU) is composed of two blocks: the control
logic block module (CLB) and the signal processing block (SPB). The input signals to
the controller are brake signal (from the brake pedal), wheel angular velocity Omega,
and some constants specifying various mechanical parameters. These signals are
obtained from the controller environment. There are only two controller output sig-
nals namely the inlet and outlet valve control signals. These signals force appropriate
brake torque within the hydraulic mechanism shown in Fig. 1. The controller (MCU)
monitors sensors, calculates critical parameters and delivers control signals to actua-
tors according to the algorithm outlined in section 2.3. While computing its outputs,
the control algorithm exchanges information with a specific car behavioral model.
The car behavioral model simulates the dynamics of the vehicle. The developed
software is time triggered, a fixed sequence of tasks is activated periodically. There is
no hardware replication. The behavior of the car is modeled as the controller envi-
ronment. In the sequel we present a more detailed description.

 Analyzing Fault Susceptibility of ABS Microcontroller 363

2.1 ABS Controller

The control logic block generates two output binary signals: the inlet and outlet valve
control signals. They are connected directly to the brake torque modulator module
(BMM). This module is directly responsible for modulating the brake fluid pressure
in individual brake lines. The binary TRUE (1) signal at the inlet output port com-
mands the brake line valve to remain closed, whereas the binary outlet valve, depend-
ing on the situation, can be either closed - FALSE (0) or open – TRUE (1) at this
time. Closing the outlet valve maintains current brake line pressure resulting in a
constant torque, whereas opening the valve decreases the line pressure thus reducing
the brake torque. Similarly, the binary FALSE (0) signal at the inlet valve commands
this valve to be open thus increasing brake line pressure under the constraint that the
outlet valve is in the closed position. Properly functioning control block module,
under the condition of excessive tire slip, will generate a modulated sequence of
pulses that increase, decrease or maintain brake line pressure. The concept of the used
control algorithm is described in section 2.3.

The control logic block (CLB) accepts four binary control signals and its inputs
are coupled indirectly through two OR gates to the signal processing block (SPB).
The four input ports of the block are decrease, hold, increase, stop decrease and
they either cause opening or closing of the associated inlet and outlet valves. Al-
though the control action seems straight forward, the “tricky” part of the ABS con-
trol algorithm lies in the amount of time an inlet or outlet valve is either in the open
or close position. This time effectively generates the necessary brake torque. The
torque is a result of the brake line fluid pressure which is transmitted to the brake
pads. The pads act on the wheel rotor (brake disc) surface to generate necessary
friction torque. Therefore, a constant input to the logic control block produces a
sequence of time varying output values forming a duty cycle varied pulse. This
duty cycle modulated pulse is directly responsible for the pumping action of brakes
in ABS. Its operation is described in [18]. The CLB block co-operates with the
signal processing block(SPB).

The SPB block generates various signals needed to identify the state of the wheel.
This block outputs two groups of binary signals. The first group is related to monitor-
ing wheel acceleration and signaling crossing three thresholds: -a, +a and A. The
second group comprises 3 pairs of binary signals specifying the direction of crossing
the above mentioned thresholds: in increasing (pos.slope) or decreasing (neg slope)
direction. Moreover, SPB delivers the wheel slip coefficient slip, and the ratio of
wheel angular acceleration to velocity Om_dot/Om. All these signals enable the logic
controller (CLB) to determine if the tire has entered or is near the non-optimal fric-
tion region. If it happens, the wheel brake line is modulated as to bring the tire back
to its optimal “friction” state. The computation of these signals and associated A/+a/-
a thresholds are given in [18]. The input signals to SPB block are the vhvel, r_eff,
omega, and brake signals. The vhvel is the vehicle horizontal velocity (calculated by
car dynamics module, described in the sequel), and r_eff is the effective rolling radius
of the tire. This radius is a function of the tire stiffness and the normal force acting at
the tire contact point. The omega is the angular velocity of the wheel and brake is a
binary signal that is TRUE (1) whenever a driver presses the brake pedal.

364 D. Trawczynski, J. Sosnowski, and P. Gawkowski

2.2 ABS Environment Model

The ABS environment relates to three modules: brake modulator, tire and wheel dy-
namics module, and car dynamics. The brake modulator module (BTM) generates a
real value of the simulated brake torque applied at the wheel rotor (disc brake). This
module models a physical device and is represented in Fig. 1 as hydraulic pressure
modulator. As the inlet valve remains open, the brake torque modulator integrates a
constant rate of torque increase. When the integrator output exceeds the maximum
brake torque that a brake pad may generate, the output of the integrator is saturated
and kept constant. If the brake pedal is depressed by the driver, the torque modulator
generates zero torque. This is accomplished by resetting the output of the integrator.
In summary, BTM generates an appropriate brake torque as a function of inlet, outlet
valve signals and the brake pedal state.

Fig. 1. Block diagram of the ABS brake system with the wheel speed sensor, hydraulic pressure
modulator and electronic control unit (MCU)

The tire and wheel dynamics module (TWDM) is responsible for simulation of the
wheel angular velocity omega. This value is generated based on two inputs – the slip
(delivered by CLB) and applied brake torque (delivered by BTM). Additionally, the
wheel angular velocity is computed based on an initial wheel velocity, polar moment
of inertia of the wheel and tire, unloaded tire radius, vertical tire stiffness, effective
tire radius, and normal force due to vehicle mass. These parameters are defined in
[18,19]. Generally, as the slip value and brake torque increase, the wheel lock condi-
tion can be reached (the angular velocity of the wheel is zero). The controller there-
fore must adjust the brake torque to avoid the “wheel lock” state.

The car dynamics module (CDM) calculates the vehicle horizontal acceleration
(hac) and velocity (hvel), and the vehicle stopping distance based on only two inputs:
the wheel angular velocity omega and brake status signal. CDM calculates these
signals and simulates the motion of the vehicle in the x direction taking into account
the following parameters: vehicle mass, axle and rim mass, initial body translational
velocity, initial axle translational velocity, tire belt translational stiffness, tire belt
translational damping, vehicle translation dumping suspension, vehicle translation
stiffness suspension, stop velocity, damping of translation, and normal force at the tire
contact point. These parameters are defined in [18,19].

 Analyzing Fault Susceptibility of ABS Microcontroller 365

2.3 ABS Control Algorithm

The concept of the control algorithm is based on mathematical models from [18].
This concept has been implemented in software for x86 platform. The correctness of
the implemented algorithm has been verified in many simulation experiments involv-
ing the developed ABS controller and the environment model. The objective of the
algorithm is to decide what corrective action needs to be taken during excessive brak-
ing maneuver. The key variable of the algorithm is the wheel slip. This variable tells
the algorithm if the wheel-tire system is in the normal (optimum friction) or abnormal
(less than optimal friction) operating region. If the threshold slip is exceeded the tire
is in the abnormal region and some corrective action needs to be taken.

The algorithm operates in an iterative way with specified time slot (0.1 ms) for
each iteration. This time slot assures sufficient accuracy while controlling the brake
mechanism. If an excessive wheel slip is detected during braking, the algorithm closes
inlet and outlet valves of the brake torque modulator module (BTM) to maintain a
constant brake pressure. The algorithm then measures the slip criterion during the
subsequent iteration (time slot) and if the slip is still exceeding the required threshold,
the algorithm commands the outlet BTM valve to open, thus reducing the torque rate
at a constant rate measured in units of Nm/s. In the next phase, as the wheel speeds-
up, the algorithm measures the wheel peripheral acceleration +a and compares this
measurement with a predetermined acceleration threshold. If the threshold is not ex-
ceeded the algorithm keeps the outlet valve open. In another case the outlet valve is
closed and brake pressure is maintained constant.

In the last phase, the algorithm checks again the peripheral acceleration of the
wheel to see if it exceeds the A threshold. This threshold determines when the braking
torque should be increased again to maintain the safe braking action. As soon as this
threshold is exceeded or a negative slope is detected in the peripheral acceleration of
the wheel (here the A threshold can not be exceeded), the brake torque is increased by
closing the outlet valve and opening the inlet valve of the BTM. The pressure is in-
creased at a constant rate, either 2533 Nm/s or 19000 Nm/s, if ABS was activated for
the first time in the braking interval. The first phase of ABS braking relates to the
interval immediately after the driver has engaged the brake pedal. During this inter-
val, the maximum brake pressure is applied until the slip value does not exceed the
allowed maximum threshold. After the threshold has been exceeded, further brake
torque increase occurs at a reduced or modulated rate. In this second control phase,
the algorithm ensures that the possible wheel lock condition is avoided. The general
structure of the algorithm is given below for typical values of some parameter thresh-
olds (they can be adapted to other test scenarios):

WHILE (brake == TRUE AND vehicle_velocity > 1.5){
 inlet = OPEN
 outlet = CLOSE
 IF (first_braking_phase == TRUE) {
 brake_torque_increase_rate = 19000 Nm/s
 } ELSE {
 /*set second braking phase torque increase rate*/
 brake_torque_increase_rate = 2533 Nm/s}
 IF (current_vehicle_slip > 0.2) {
 /*close the BTM inlet valve*/

366 D. Trawczynski, J. Sosnowski, and P. Gawkowski

 inlet = CLOSE
 DO {brake_torque_decrease_rate = 19000 Nm/s}

WHILE (wheel_acceleration < 0)
 outlet = CLOSE
 DO {outlet = CLOSE}

WHILE (wheel_acceleration<3 AND
neg_slope_wheel_acceleration == FALSE)

 }
}

3 Fault Simulation Platform

To analyze fault effects in the ABS controller we use software implemented fault
injector FITS [9], which has been adapted to deal with real-time and reactive systems.
The fault injector treats the ABS controller and car environment as an integrated ap-
plication. Faults are injected by disturbing the states of processor registers or RAM
locations (storing program code and data).

Each fault injection called test needs the execution of the application and simulat-
ing a fault at an appropriate fault triggering moment. The fault triggering moment is
correlated with the program instruction i.e. its location address and execution iteration
(appearance number). The fault injection (fault triggering moment and its location)
can be either specified directly by the user or generated in an automatic way e.g. ac-
cording to pseudorandom strategy. In the pseudorandom strategy we specify only the
number of injected faults and some indications on fault location, fault type (bit flip,
bit setting, resetting and bridging), fault duration, etc. This process has to be done for
each test scenario (i.e. input data). The fault triggering moments may be restricted to
specified program modules or even code address ranges. Fault location can be defined
explicitly (e.g. specific register such as EAX or EBX, RAM memory address) or
pseudorandomly within a selected group of registers, memory code or data area. Simi-
larly, the fault type can be defined explicitly (e.g. bit flip in a specified position) or
pseudorandomly within specified bit areas and related to a fixed number of faults (e.g.
m-bit flips). Depending upon the goal of the analysis we can either generate the most
stressing fault injection scenarios (to find critical points e.g. in specified code areas)
or assure the pseudorandom selection of fault triggering moments with equal distribu-
tion within the tested code space (static strategy) or within the time of the application
execution (dynamic strategy).

In the performed experiments we specify fault-triggering moments and fault loca-
tions related only to the analyzed ABS controller. The system environment is not
disturbed. For each injected fault (a test) we check the system behavior. Test results
are identified in relevance to the reference execution of the analyzed application - so
called the golden run. The golden run delivers GR log with the registered information
on the dynamic image of the application execution. In addition, it comprises some
statistical data related to the number of writes, reads, state changes for each CPU
register, register activity [9], etc. (they are not encountered in other SWIFI injectors).
This is helpful while profiling the experiment or analyzing experimental results.

 Analyzing Fault Susceptibility of ABS Microcontroller 367

In general, test results can be qualified as: C – correct result, INC – not correct
result, T – time-out, S - system exception (e.g. access violation, invalid opcode, mem-
ory misalignment or parity errors, overflow), U – user message (generated by the
application). We have to define some procedure qualifying C and INC results. It can
be done in a general way or targeted at the considered application. In calculation
oriented applications (mostly considered in the literature [13]) the result analysis is
simple and coarse-grained e.g. binary qualification based on the comparison with the
final correct result. In real time applications the result qualification usually is more
complex due to the fact that we have to analyze the output signals trajectories in time.
Moreover, different tolerance margins and incorrect behavior severity levels can be
attributed. This may lead to fined-grained result qualification with more detailed in-
formation e.g. the file comprising the generated output results of the application. We
resolved this problem by defining a special result qualification module coupled to the
fault injector and the model of the controlled object (environment).

In the case of the ABS controller the test result analysis can be performed by se-
lecting some output control variables (e.g. control signals of a brake) and comparing
their trajectories with the non-faulty run. The comparison can be based on calculating
the mean square error. Another approach is to analyze the brake effect using two main
safety parameters – the vehicle stopping distance and its final translational velocity.
The vehicle stopping distance determines the total distance (in meters) traveled by a
car during the braking time interval. The correct state can be defined if the final vehi-
cle velocity (FV) is less than a specified value fv (m/sec) and the stopping distance
(SD) is less than sd (meters). The relative fault severity levels can also be introduced
using some knowledge on car behavior e.g. a car with a greater final velocity has a
greater final momentum and thus will likely cause more damage during a head-on
collision between two vehicles. The acceptable values for SD and FV can be based
on the analysis given in [18,19] where the authors specify nominal values of stopping
distance for a car traveling at a given initial velocity. This approach is illustrated in
the next section.

The performed experiments were targeted at transient faults (bit flips) injected into
registers (specified CPU or FPU registers, or all of them), the code or data area of the
memory used by the ABS controller. By concentrating on specified system resources
(or code segments) we can perform a deeper analysis and tune appropriate fault han-
dling mechanisms. For each experiment, we choose a representative set of input data
to assure high coverage of the code, decisions etc. The number of injected faults is
sufficiently large to assure statistical significance of the obtained results.

In many applications fail-silent hypothesis is assumed i.e. the system produces cor-
rect outputs and stops producing outputs after detecting an error. For systems with
some inertia as well with control loops fail-bounded hypothesis can also be assumed
[17]. In this case the controller produces correct outputs, does not produce outputs
after detecting some errors, produces wrong outputs within an acceptable deviation
margin from the correct ones. This margin can be defined by some application de-
pendant assertions. This approach allows postponing or even eliminating recovery.
Here the assertion should allow predicting critical situations. Within the idle time of a
controller we have to check if at the present control trajectory the worst case error
may produce a critical situation. If so, we have to perform recovery. In the opposite
case, the system follows its normal operation. Recovery can be limited to software
(re-execution of some procedures, etc.) or, if needed, instantiating spare or backup
hardware resources can do it.

368 D. Trawczynski, J. Sosnowski, and P. Gawkowski

4 Experimental Results

All simulations were performed with FITS injector within IBM PC platform (XP
Windows Professional) and the model of the environment. The ABS controller and
its environment model constitute an integrated program CE written in C++ language.
This program was implemented based on mathematical models from [18] (compare
section 2). Integrating these models we assure that the used variables and codes are
disjoint. Hence, disturbing the ABS controller we do not interfere with environment
model. The initial conditions of fault injection experiments are defined by setting
some parameters in CE e.g. initial car speed, mechanical characteristics, road condi-
tions (compare section 2). Each experiment is composed of a specified number of
tests (a single fault injection) which are performed according to the predefined sce-
nario (e.g. pseudorandom injections into code with static or dynamic strategy). For
each test the results (system behavior) are stored in a file for the purpose of detailed
analysis. We have also developed a special result qualification module (RQ) which
analyzes the system behavior and identifies correct or incorrect system status. This
status is based on the predefined criteria described in section 3. The qualification
decision is sent to the fault injector FITS which accumulates statistics from all the
tests. Moreover, it identifies timeouts and system exceptions.

The ABS control program was based on the model described in section 2. We
have considered two implementations: the basic version (BV) and fault hardened
versions (VH1, VH2). The basic version is a direct implementation of the mathemati-
cal model from [18,19]. In the fault hardened version we use the built in hardware and
software fault detection mechanisms, which generate system exceptions. Typically
these exceptions are signaled by the operating systems. It is possible to take over most
of them at the application level and perform some error recovery. For this purpose we
can use the try and catch construct provided by object oriented languages.

It assures taking over exceptions (specified by the filter or all of them – catch(...))
generated during the execution of the code within the try brackets (try {segment of the
application code}). For any specified exception (in the exception filter) we define an
appropriate handling procedure. For example, it may initiate reexecution of the pro-
gram code starting from some specified checkpoint (previously established – back-
ward recovery), suspending further execution of the thread, etc. The error correction
can be made, if the error is uniquely correlated with the disturbed program segment.
In version VH1 each captured exception initiates floating point unit (FPU) reset using
the _fpreset function. In version VH2 additional code and state recovery is added by
using a redundant DLL library and loading its static copy of the microcontroller code
whenever a system exception was raised.

The size of the generated MSVC 2005 compiler binary image of the ABS control-
ler program is approximately 100 KB for the basic version, and only 10-15 KB larger
for versions with fault tolerance mechanisms VH1 and VH2. The ABS microcontrol-
ler without fault tolerance mechanisms consists of about 640 static code assembly
instructions and 6 million dynamic instructions executed within the 15,000 simulation
iterations. The source code was about 2000 lines in C++. The tire, wheel and suspen-
sion environment model consists of about 1000 static code instructions and 12 million
dynamic instructions (for the analyzed test scenario).

 Analyzing Fault Susceptibility of ABS Microcontroller 369

In the discussed experiments, the operation of ABS is simulated for a fast braking
scenario (fast pressing of the brake pedal). The braking process is performed in re-
sponse to this input signal, taking into account the wheel speed, acceleration, etc.
Observing the system behavior we can monitor internal variables or output control
signals. The most interesting signals relate to the brake torque, car horizontal velocity
and stop distance. The presented results relate to the car initial speed 60km/hr and a
dry road. The golden run trajectories of these signals for the considered test scenario
are given in Fig. 2a, 2b and 2c (they cover real ABS operation time of 1.5 s). The
brake signal (pressing brake pedal by the driver) activates the ABS controller till the
moment of achieving velocity 1.5 m/s. So the braking distance is 14.5m at this mo-
ment which corresponds to 1.5 sec time. For comparison, we give in fig. 2d-f the plots
of the same variables in the case of an injected fault at time moment t=0.5438s (random
bit-flip in an instruction code of the ABS controller). The plots differ

Fig. 2. Sample plots showing ABS braking: a), b) and c) golden run plots for the brake torque,
vehicle speed and traveled distance in time, respectively; d), e) and f) corresponding plots
related to an injected bit-flip fault in ABS code at t=0.5438s

370 D. Trawczynski, J. Sosnowski, and P. Gawkowski

significantly from the golden run; in particular, the braking distance at time 1.5 sec is
19 m and the final speed is 11m/s. This corresponds to a dangerous situation. Such
analysis can be done manually for some selected faults to get knowledge of their
impact.

More interesting are statistical results over many faults. We have injected many
faults into the ABS controller code, CPU or FPU registers and data memory. We have
assumed that the correct behavior corresponds to the final speed FV < 1.5 m/s at t=1.5
sec and stopping distance SD < 16 m. This criteria is easier to calculate than checking
the correctness of the brake torque trajectory.

Test results for the basic controller version are shown in Fig. 3. Fault locations
REG, MEM, FPU and INSTR correspond to CPU registers, data memory area, FPU
registers and memory code area, respectively. The fault triggering moments are gen-
erated pseudo-randomly and distributed equally in time (dynamic). For the location
CODE faults are injected with equal distribution in the memory code area space
(static). A large percentage of faults resulted in system exceptions, which were not
handled, and in fact they lead to dangerous situations. Relatively small percentage of
incorrect results is due to some natural fault tolerance of the used control algorithm. A
simple recovery based on taking over exceptions increase significantly the correct
result percentage (Fig. 4). The presented results relate to latched transient faults (bit
flips in registers or code/data memory). For comparison we give results of fault injec-
tions into the code for non-latched transient faults in the ABS controller memory.

This mimics the controller implementation with code stored in a non-volatile mem-
ory e.g. flash. For version VH1 we obtained INC=1%, C=94% and S=5%. This confirms
significantly lower fault susceptibility for non-latched faults than for latched (compare
Fig. 3). Similar results can be achieved for latched faults if more efficient error recovery
mechanisms are employed (e.g. those discussed in our previous paper [9]).

Fig. 3. Test results for the ABS micro-controller basic version (BV)

We have also developed the controller version VH2* adapted to platform x86 but
without floating point unit (FPU). In this case all floating point calculations are done
in software. The number of executed instructions for the analyzed test scenario in-
creased from about 14 million in version VH2 to over 100 million in version VH2*.
Fault susceptibility of both versions was practically the same for faults injected into
registers and data memory. Faults injected into the code memory gave more correct
results for version VH2* (84.5%) than for VH2 (74%).

 Analyzing Fault Susceptibility of ABS Microcontroller 371

Fig. 4. Test results for the ABS with improved fault tolerance: version VH1 and VH2

5 Conclusion

The main goal of this paper was to verify the developed methodology for evaluating
the impact of faults on reactive systems. We have adapted our fault injector tool
(FITS) for such systems by integrating it with the analyzed application (microcontrol-
ler) and its environment. Moreover, we added an interface to deal with specialized
result qualification module and test scenario configuration. This approach has been
successfully verified for the real ABS microcontroller and practical test scenarios. The
proposed approach allows detailed behavioral analysis of the system in the presence of
faults and gives statistics on susceptibility to faults injected in specified circuit areas.
This approach is very useful in finding fault leakage sources, optimization of fault han-
dling procedures as well as evaluation of the final projects. It was also verified for other
applications [16]. We can identify program modules and data which are the most sensi-
tive to faults, analyze critical behavior of the system in the presence of faults, etc. We
can also evaluate the effectiveness of embedded fault handling procedures.

As opposed to classical calculation oriented applications, real-time and reactive
systems require more complex result qualification methods. They can be based on
observing output control signals or selected parameters describing the quality of per-
formed tasks. This approach seems to be more effective and this was proved for the
ABS controller. The experimental results showed that the basic version of the ABS
controller comprises some natural fault tolerance capabilities (due to the used algo-
rithm). This can be improved with simple exception handling procedures as well as by
using non-volatile memory for the code. In the performed experiments we use a model
of the control object and the system environment. Hence, the results depend upon the
accuracy of the used models. This drawback can be eliminated in experiments with real
objects, but such experiments are usually too expensive. Moreover there is a danger of
causing critical situations or some damages in the case of injected faults.

Further research is targeted at developing and analyzing more effective fault toler-
ance mechanisms. Here we plan to use our experience gained with calculation ori-
ented applications [9] and apply it to reactive systems. Result qualification will be
extended by introducing more categories, e.g. loss of braking (the wheel speed is zero
 for some specified minimal time), locked wheel (the wheel speed does not decrease
for more than some specified time). Moreover, we will consider distributed systems
e.g. around a CAN network [10,15].

372 D. Trawczynski, J. Sosnowski, and P. Gawkowski

Acknowledgment. This work was supported by Ministry of Science and Higher Educa-
tion grant 4297B/T02/2007/33.

References

1. Corno, F., Esposito, E., Reorda, M., Tosato, S.: Evaluating the effects of transient faults on
vehicle dynamic performance in automotive systems. In: ITC 2004, pp. 1332–1339. IEEE
Press, Los Alamitos (2004)

2. Dilger, E., Karrelmeyer, R., Straube, B.: Fault tolerant mechatronics. In: IOLTS 2004, pp.
214–218. IEEE Press, Los Alamitos (2004)

3. Mariani, R., Fuhrmann, P., Vittorelli, B.: Fault Robust Microcontrollers for Automotive
Applications. In: IEEE On-line Test Symposium, pp. 213–218. IEEE Press, Los Alamitos
(2006)

4. Gaid, M., Cela, A., Diallo, S.: Performance Evaluation of the Distributed Implementation
of a Car Suspension System. In: PDS 2006. IFAC Press (2006)

5. Nouillant, F., Aisadian, X., Moreau, A., Oustaloup, et al.: Cooperative Control for Car
Suspension and Brake Systems. J. of Auto. Tech. 4(4), 147–155 (2002)

6. Zalewski, J., Trawczynski, D., Sosnowski, J., Kornecki, A., Sniezek, M.: Safety Issues in
Avionics and Automotive Databuses. In: IFAC World Congress. IFAC Press (2005)

7. CEI International standard IEC 61508 (1998-2000)
8. AUTOSAR partnership, http://www.autosar.org
9. Gawkowski, P., Sosnowski, J.: Experimental Evaluation of Fault Handling Mechanisms.

In: Voges, U. (ed.) SAFECOMP 2001. LNCS, vol. 2187, pp. 109–118. Springer, Heidel-
berg (2001)

10. Short, M., Pont, M.J.: Fault tolerant time-triggered communication using CAN. IEEE
Transactions on Industrial Informatics 3(2), 131–142 (2007)

11. Adermaj, A.: Slightly-of-specification failures in the time triggered architecture. In: 7th
IEEE Int. Workshop on High Level Design and Validation and Test, pp. 7–12. IEEE Press,
Los Alamitos (2002)

12. Anghel, L., Leveugle, R., Vanhauwaert, P.: Evaluation of SET and SEU effects at multiple
abstraction levels. In: 11-th IEEE IOLTS Symposium, pp. 309–314. IEEE Press, Los
Alamitos (2005)

13. Arlat, J., Crouzet, Y., Karlsson, J., Folkesson, P., Fuchs, E., Leber, G.H.: Comparison of
physical and software implemented fault injection techniques. IEEE Transactions on Com-
puters 52(9), 1115–1133 (2003)

14. Cervin, A., Henriksson, D., Lincoln, D., Eker, J., Årzén, K.: How Does Control Timing
Affect Performance? IEEE Control Systems Magazine 23(3), 16–30 (2003)

15. Trawczynski, D., Sosnowski, J., Zalewski, J.: A Tool for Databus Safety Analysis Using
Fault Injection. In: Górski, J. (ed.) SAFECOMP 2006. LNCS, vol. 4166, pp. 261–275.
Springer, Heidelberg (2006)

16. Gawkowski, P., et al.: Software Implementation of Explicit DMC Algorithm with Im-
proved Dependability. In: Int. Joint Conf. on Computer, Information, and Systems Sci-
ences, and Engineering (CISSE 2007), December 3 - 12 (2007)

17. Cunha, J., Rela, M., Silva, J.: On the Use of Disaster Prediction for Failure Tolerance in
Feedback Control Systems. In: Dependable Systems and Networks 2002, pp. 123–134.
IEEE Press, Los Alamitos (2002)

18. Rangelov, K.: Simulink Model of a Quarter-Vehicle with an Anti-Lock Braking System.
Research Report, Eindhoven University of Technology (2004)

19. MSC Software: Using ADAMS/Tire. ADAMS Software Manual (2005)

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 373–386, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Formal Approach for User Interaction Reconfiguration
of Safety Critical Interactive Systems

David Navarre, Philippe Palanque, and Sandra Basnyat

Institute of Research in Informatics of Toulouse (IRIT)
University Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 9, France

{navarre,palanque,basnyat}@irit.fr

Abstract. The paper proposes a formal description technique and a supporting
tool that provide a means to handle both static and dynamic aspects of input and
output device configurations and reconfigurations. More precisely, in addition
to the notation, the paper proposes an architecture for the management of failure
on input and output devices by means of reconfiguration of in/output device
configuration and interaction techniques. Such reconfiguration aims at allowing
operators to continue interacting with the interactive system even though part of
the hardware side of the user interface is failing. These types of problems arise
in domains such as command and control systems where the operator is con-
fronted with several display units. The contribution presented in the paper thus
addresses usability issues (improving the ways in which operators can reach
their goals while interacting with the system) by increasing the reliability of the
system using diverse configuration both for input and output devices.

Keywords: Model-Based approaches, ARINC 661 specification, formal de-
scription techniques, interactive software engineering, interactive cockpits.

1 Introduction

Command and control systems have to handle large amounts of increasingly complex
information. Current research work in the field of Human-Computer Interaction pro-
motes the development of new interaction and visualization techniques in order to
increase the bandwidth between the users and the systems. Such an increase in band-
width can have a significant impact on efficiency (for instance the number of com-
mands triggered by the users within a given amount of time) and also on error-rate
[21] (the number of slips or mistakes made by the users).

Post-WIMP user interfaces [24] provide users with several interaction techniques
that they can choose from and provide the possibility to exploit different output de-
vices according to different criteria such as, work load, cognitive load, or availability
(of the system devices). This includes, for instance, keyboard and mouse as hardware
input devices and double click, drag and drop, CTRL+click, … as interaction tech-
niques. Exploiting such possibilities calls for methods, techniques and tools to support
various configurations at the specification level (specify in a complete and unambigu-
ous way the configurations i.e. the set of desired interaction techniques and output
configurations), at the validation level (ensure that the configurations meet the

374 D. Navarre, P. Palanque, and S. Basnyat

requirements in terms of usability, reliability, human-error-tolerance, fault-tolerance
and possibly security), at the implementation level (support the process of going from
the specification to the implementation of the configurations in a given system) and
for testing (how to test the efficiency of the configurations and of the re-configured
system).

A recent trend in Human-Computer Interaction addresses the issue of dynamic re-
configuration of interfaces under the concept of plasticity coined by J. Coutaz [11].
However, research work on plasticity mainly addresses reconfiguration at the output
level i.e. adapting the presentation part of the user interface to the display context
(shrinking or expanding presentation objects according to the space available on the
display). In addition, reliability issues and specification aspects of plastic interfaces
are not considered. Work recently done with web site personalization/configuration
[12] and [22] struggle with the same concepts and constraints even though, here
again, personalization remains at a cosmetic level and does not deal with how the
users interact with the web application. Our work differs significantly as users are
pilots following long and intensive training programme (including on-the-fly training)
and thus being trained to authorized reconfigurations while web users passively un-
dergo the (most of the time unexpected) reconfigurations.

These issues go beyond current state of the art in the field of interactive systems
engineering where usually each interactive system is designed with a predefined set of
input and output devices that are to be used according to a static set of interaction
techniques and are identified at design time. This set can sometimes gather many
different interaction techniques and input/output devices as, for instance, in military
cockpits [7]. Current safety critical systems, for example, the cockpit of the Airbus
A380, presents 8 display units of which 4 of them offer interaction via a mouse and a
keyboard by means of an integrated input device called KCCU (Keyboard Cursor
Control Unit). Applications are allocated to the various display units. If one of the
display units fails, then, according to predefined criteria (like the importance of the
application according to the flight phase) the applications (displayed on that faulty
unit) are migrated to other available display units. This paper proposes a formal de-
scription technique and a supporting tool that provide a means to handle both static
and dynamic aspects of input and output devices configuration and reconfiguration.
The justification of using formal description techniques is three fold:

• The possibility to define in a complete and unambiguous way the behav-
iour of the input and output devices, the interaction techniques, the author-
ised configurations and the reconfiguration mechanism

• The possibility to reason about that models in order to be able to assess
the behaviour of the configurations (e.g. for all the possible configuration
a given application is always presented to the operator)

• The possibility via the tool PetShop [6] supporting the formal notation to
interactively prototype the behaviours and to modify and adjust them ac-
cording to operator’s requirements and global performance.

The paper is structured as follows: the next section rapidly introduces the ARINC
661 specification while section 3 briefly presents the formal description technique
called ICO. Section 4 focuses on an architecture that is able to handle reconfiguration
of both input and output devices, compliant with the ARINC 661 Specification, based

 A Formal Approach for User Interaction Reconfiguration 375

on the ICO notation. Section 5 presents the configuration management and proposes a
set of configuration manager models.

2 ARINC 661 Specification

The Airlines Electronic Engineering Committee (AEEC) (an international body of
airline representatives leading the development of avionics architectures) formed the
ARINC 661 Working Group to define the software interfaces to the Cockpit Display
System (CDS) used in all types of aircraft installations. The standard is called ARINC
661 - Cockpit Display System Interfaces to User Systems [2, 3].

In ARINC 661, a user application is defined as a system that has two-way commu-
nication with the CDS (Cockpit Display System):

• Transmission of data to the CDS, which can be displayed to the flight deck
crew.

• Reception of input from interactive items managed by the CDS.

According to the classical decomposition of interactive systems into three parts
(presentation, dialogue and functional core) defined in [10], the CDS part (in Fig. 1)
may be seen as the presentation part of the whole system, provided to the crew mem-
bers, and the set of UAs may be seen as the merge of both the dialogue and the func-
tional core of this system. ARINC 661 then puts on one side input and output devices
(provided by avionics equipment manufacturers) and on the other side the user appli-
cations (designed by aircraft manufacturers). Indeed, the consistency between these
two parts is maintained through the communication protocol defined by ARINC 661.

Fig. 1. Abstract architecture and communication protocol between Cockpit Display System and
a User Application

3 ICOs a Formal Description Technique for Interactive Systems

The ICO formalism is a formal description technique dedicated to the specification of
interactive systems [17]. It uses concepts borrowed from the object-oriented approach
(dynamic instantiation, classification, encapsulation, inheritance, client/server rela-
tionship) to describe the structural or static aspects of systems, and uses high-level
Petri nets [14] to describe their dynamic or behavioural aspects.

376 D. Navarre, P. Palanque, and S. Basnyat

ICOs are dedicated to the modelling and the implementation of event-driven inter-
faces, using several communicating objects to model the system, where both behav-
iour of objects and communication protocol between objects are described by the
Petri net dialect called Cooperative Objects (CO). The ICO formalism has been ap-
plied to other domains than user interfaces as, for instance, CORBA services specifi-
cation [4] and [5].

In the ICO formalism, an object is an entity featuring four components: a coopera-
tive object which describes the behaviour of the object, a presentation part (i.e. the
graphical interface), and two functions (the activation function and the rendering
function) which make the link between the cooperative object and the presentation part.

An ICO specification fully describes the potential interactions that users may have
with the application. The specification encompasses both the "input" aspects of the
interaction (i.e. how user actions impact on the inner state of the application, and
which actions are enabled at any given time) and its "output" aspects (i.e. when and
how the application displays information relevant to the user).

This formal specification technique has already been applied in the field of Air
Traffic Control interactive applications [17], space command and control ground
systems [19], or interactive military [7] or civil cockpits [4]. The example of civil
aircraft is used in the next section to illustrate the specification of embedded systems.

4 An Architecture for Reliable and Reconfigurable User Interfaces

One of the aims of the work presented in this paper is to define an architecture that
supports usability aspects of safety-critical systems by taking into account potential
malfunctions in the input (output respectively) devices that allow the operators to
provide (perceive respectively) information or trigger commands (perceive command
results respectively) to the system. Indeed, any malfunction related to such input
devices might prevent operators to intervene in the systems functioning and thus jeop-
ardize the mission and potentially put human life at stake. In systems offering stan-
dard input device combination such as mouse + keyboard, it is possible to handle one
input device failure by providing redundancy in the use of the device. For instance a
soft keyboard such as the ones defined in [16] can provide an efficient palliative for a
keyboard failure1.

The architecture presented in Fig. 2 proposes a structured view on the findings
from of a project dealing with formal description techniques for interactive applica-
tions compliant with the ARINC 661 specification [9, 4]. Applications are executed in
a Cockpit Display System (CDS) that aim to provide flight crew with all the neces-
sary information to try to ensure a safe flight.

We are dealing with applications that exclude primary cockpit applications such as
PFD (Primary Flight Display) and ND (Navigation Displays) and only deal with
secondary applications such as the ones allocated to the MCDU (Multiple Control
Display Unit). For previous CDSs (such as the glass cockpit of the A320) these appli-
cations were not interactive (they only displayed information to the crew) and inputs

1 This kind of management of input device failure could and should prevent the typical error

message on PCs when booting with a missing keyboard "Keyboard Failure strike F1 key to
continue”.

 A Formal Approach for User Interaction Reconfiguration 377

Fig. 2. Detailed architecture compliant with ARINC 661 specification not supporting interac-
tion failures

were made available through independent physical buttons located next to the display
unit. The location in the cockpit in-between the pilot and the first officer make it pos-
sible for both of them to use such application.

Within that project, we proposed a unique notation (ICOs) to model the behaviour
of all the components of an interactive application compliant with ARINC 661 speci-
fication. This includes each interactive component (called widgets) the user applica-
tion (UA) per se and the entire window manager (responsible for the handling of
input and output devices, and the dispatching of events (both those triggered by the
UAs and by the pilots) to the recipients (the widgets or the UAs).

The two main advantages of the architecture presented in Fig. 2 are:

• Every component that has an inner behaviour (server, widgets, UA, and the
connection between UA and widgets, e.g. the rendering and activation func-
tions) is fully modelled using the ICO formal description technique thus
making it possible to analyse and verify the correct functioning of the entire
system,

• The rendering part is delegated to a dedicated language and tool (such as
SVG , Scalable Vector Graphics), thus making the external look of the user
interface independent from the rest of the application, providing a framework
for easy adaptation of the graphical aspect of cockpit applications.

However, this architecture does not support reconfiguration of input or output de-
vices in the cockpit, neither in case of redesign or in case of failure while in operation.
However, requirements specification for a display unit (DU) like the one of the Air-
bus A380 explicitly requires the possibility for the co-pilot to read information on the
DU of the pilot (in case of failure on his/her side for instance).

The new architecture we propose has been extended to explicitly manage the re-
configuration of applications on the display units. In that architecture (presented in
Fig. 3), the input and output devices are formally described using the ICO notation in
order to be handled by a configuration manager which is also responsible for recon-
figuring devices and interaction technique according to failures.

In Fig. 3 the dashed-line section highlights the improvements made with respect to
the previous architecture:

378 D. Navarre, P. Palanque, and S. Basnyat

Fig. 3. Global architecture compliant with ARINC 661 specification and supporting interaction
failures

• The left-hand part of the frame highlights the addition of ICO models dedi-
cated to both input and output devices,

• The right-hand part presents the introduction of a new component named
configuration manager responsible for managing the configuration of input
and output devices.

Even though modelling of input devices and interaction techniques has already
been presented in the context of multimodal interfaces for military cockpits [7] it was
not integrated with the previous architecture developed for interactive applications
compliant with ARINC 661 specification. The rest of the paper thus focuses on the
configuration manager that is dedicated to the dynamic reconfiguration of user inter-
action (both input devices and interaction techniques).

5 Configuration Manager Policy and Modelling

This section presents the modelling of different policies to manage both input and
output device configuration. We first present two policies and then present a possible
modelling of such policies using the ICO formalism.

5.1 Input and Output Management Policies

Configuration management activities may occur at either runtime (while a user inter-
acts with the application) or “pre-runtime” (e.g. just before starting an application or
during a switchover of users). To illustrate the different kinds of policy, we present a
pre-runtime policy where input devices are involved and a runtime policy for manag-
ing output devices.

5.2 Input Device Configuration Manager Policy

A possible use of reconfiguration is to allow customizing the interaction technique to
make the application easier to manipulate. Even if it is out of the scope of the current
version of the ARINC 661 Specification, customization of interaction techniques may
become necessary bringing a better user experience [10] in the same way as with
personal computers.

We focus only on a very simple scenario of input device configuration policy
which is based on the difference between a pilot and the associated co-pilot. The first

 A Formal Approach for User Interaction Reconfiguration 379

may be familiar with using the double-click interaction technique, but the second one
may be more familiar with using the combination of keyboard and mouse to do the
same interaction (lets say the combination of the key ALT and the mouse left click
event). This reconfiguration may be possible at both pre-runtime or at runtime.

5.3 Output Device Configuration Manager Policy

A policy has to be defined on what kind of changes have to be performed when a
display unit fails. This policy is highly based on the windowing system adopted by the
standard ARINC 661 specification.

Display Unit
 - Screen -

Window
(managed
by the CDS) Layer

(owned by one
User Application) Widget

Format

Application 1

Application 3

Application 2

Application 1

Fig. 4. ARINC 661 Specification windowing architecture

The ARINC 661 Specification uses a windowing concept which can be compared to
a desktop computer windowing system, but with many restrictions due to the aircraft
environment constraints (see Fig. 4). The windowing system is split into 4 components:

• the display unit (DU) which corresponds to the hardware part,
• the format on a Display Unit (DU), consists of a set of windows and is de-

fined by the current configuration of the CDS,
• the window is divided into a set of layers (with the restriction of only one

layer activated and visible at a time) in a given window,
• the widgets are the smallest component on which interaction occurs (they

corresponds to classical interactors on Microsoft Windows system such as
command buttons, radio buttons, check buttons, …).

When a display unit fails, the associated windows may have to be reallocated to
another display unit. This conditional assertion is related to the fact that:

• There might be not enough space remaining on the other display units (DU),
• The other applications displaying information on the other DU might have a

higher priority.

The ARINC 661 Specification does not yet propose any solution to this particular
problem but it is known as being critical and future supplements of the ARINC 661
specification may address this issue2. However at the application level, the UADF

2 ARINC 661 specification is continuously evolving since the first proposal. The draft 2 of

supplement 3 containing 374 pages has been released on August 15th 2007.

380 D. Navarre, P. Palanque, and S. Basnyat

(User Application Definition File) defines a priority ordering among the various lay-
ers included in the user application. At any given time only one layer can be active.
At runtime, the activation of a new layer must be preceded by the deactivation of the
current layer.

The policy that we have defined lays in the definition of a set of compatible win-
dows i.e. windows offering a greater or equal display size. This is related to a strong
limitation imposed by ARINC 661 which states that some methods and properties are
only accessible at design time i.e. (according to ARINC 661 specification vocabulary)
when the application is initialized. Methods and properties related to widget size are
not available at runtime and thus any reorganisation of widgets within a window is
not possible.

The only policy that can thus be implemented is a policy where first a compatible
window has to be found and then the question of priority has to be handled. As only
layers have a priority it is not possible for an application or a window to have a prior-
ity. This cannot be done either at design time or runtime and thus the management
policy can only take place at the layer level.

5.4 Configuration Manager Behaviour

This section presents possible models for the configuration management according to
the policies described above. We first present how input device configurations are
managed and then deal with output devices managements.

Input devices Management
The user interface server manages the set of widgets and the hierarchy of widgets
used in the User Applications. More precisely, the user interface server is responsible
in handling:

• The creation of widgets
• The graphical cursors of both the pilot and his co-pilot
• The edition mode
• The mouse and keyboard events and dispatching it to the corresponding

widgets
• The highlight and the focus mechanisms
• …

As it handles many functionalities, the complete model of the sub-server (dedicated
in handling widgets involved in the MPIA User Application) is complex and difficult
to manipulate without an appropriate tool.

Events received by the interaction server are in some way high level events as they
are not the raw events produced by the input devices drivers. In our architecture, the
main role of an input configuration is the role of a transducer [1]; it receives raw
events and produces higher level events. The events used by the interaction server,
and so produced by an input configuration are (normalKey, abortKey, validationKey,
pickup, unPickup, mouseDoubleClicked, mouseClicked). These events are produced
from the following set of raw events: mouseMoved, mouseDragged, mousePressed,
mouseReleased, mouseClicked and mouseDoubleClicked from the mouse driver, and
pickup and unPickup from the picking manager.

 A Formal Approach for User Interaction Reconfiguration 381

Fig. 5 shows how the reception of raw events (left side of the figure) leads to the
production of higher events (right side of the figure). For instance, when a key is
pressed, an event occurs from the keyboard driver that leads to firing the transition
called keyPressed_T1. A token that holds the key value is then produced and put into
the place p1. Depending on the value held by this token, and using the precondition
mechanism in transitions, one of the three transitions sendAbortKey, sendValidation-
Key or sendNormalKey is fired.

The rectangle at the bottom of Fig. 5 represents the subpart responsible for produc-
ing both click and double-click events. As this configuration is very simple, this pro-
duction is more or less the forward of the raw events as new events. The conversion
of the object that holds the event values is beyond the scope of this paper.

Fig. 5. Model of the raw Double Click configuration

The left and right hand sides of Fig. 6 are exactly the same as those in Fig. 5 as the
input configuration represented here receives the same set of raw events and produces
the same set of higher level events.

The difference between these two configurations is the part highlighted by the rec-
tangle in the middle of Fig. 6. The production of both a single click and double click
event now leads to the use of the Alt key from the keyboard. When a key event oc-
curs, a token is put in place p1. As in the previous case, depending on its value one
transition out of sendAbortKey, sendValidationKey, sendNormalKey or altPressed is
fired. In the first three cases, this configuration behaves the same way as the previous
configuration, but when the key code corresponds to the Alt key, a token is put in p6.
If the Alt key is released, a token is put in p4 and fires the transition altReleased,
discarding the token in place p6. If the Alt key is not released, and the mouse is
clicked, then a token is put in place p7 by the firing of transition altAndClick, and
then the transition sendMouseDblClick is fired, producing a double-click event using
the combination of a single mouse click and the keyboard. The management of the
different configurations can be seen as the management of the connections between
the input device drivers, the configuration itself and the interaction server.The input
[

382 D. Navarre, P. Palanque, and S. Basnyat

Fig. 6. Model of the raw Alt+Click configuration

devices produce events received by the configuration, which translate them into an-
other set of events, handled by the interaction server. Fig 7 presents the model of such
a configuration manager.

The four places in the central part of Fig 7 (MouseDriver, KeyboardDriver, Pick-
ingManager and InteractionServer) contain a reference to the set of models corre-
sponding to the input devices and to the interaction server. When a new configuration
is requested to be set, a token with a reference to the new configuration is put in place
NewConfiguration. Following this, the four transitions highlighted on the left hand
side are fired in sequence (could be modelled as parallel behaviour as well) in order to
register the new configuration as a listener of the events produced by the mouse
driver, the keyboard driver and the picking manager. The fourth transition registers
the interaction server as a listener of the events produced by the new configuration.

If a configuration is already set, when the new configuration is requested, a token
is put in place UnregisterCurrent in order to fire the four transitions highlighted on
the right hand side, which corresponds to the unregistering from the different models,
in parallel with registering the new configuration.

Output devices Management
In Fig. 8, we present an implementation of the previously defined policy for handling
output devices using the ICO formalism. This model is a subpart of the complete
configuration manager that can be added to the previous modelling we have done and
thus be integrated in the behaviour of our (Cockpit Display System) CDS model [9].

 A Formal Approach for User Interaction Reconfiguration 383

Fig. 7. ICO model of the configuration manager part dedicated to the input devices

The model presented here is based on a very simple case (1 layer per window and 1
window per display unit). This information flow and the operation to be performed
remain the same, but it is possible to build models for a much more complex case as
ICO proposes means to handle such complexities:

1. The display unit (DU) notifies its failure (the event may be triggered by a
sensor), and then the configuration manager located the window currently
displayed in that DU.

2. The configuration manager finds a compatible window for a reallocation of
the contained layers (here all compatible windows are listed at creation time)
and the layers are transferred to the new window.

3. As in a given window only one layer can be activated, when layers are real-
located, the configuration manager must identify the layer to be activated
(among the new set of layers related to the window presented on the non
functioning DU).

4. That part of the model determines which layer must be activated according to
the layer priority defined at creation time:

384 D. Navarre, P. Palanque, and S. Basnyat

Fig. 8. An ICO model of a configuration manager

• If the layer from the previous window has a higher priority than the one
from the new window, then the layer from the new window is deacti-
vated, sending a notification to the corresponding user application ac-
cording to the ARINC 661 Specification protocol (the UA may (or may
not) request to reactivate the layer depending on its defined behaviour).

• Otherwise, the layer from the previous window is deactivated (leading to
the same effects).

• In both case, the list of activated layers is updated.

6 Conclusion and Perspectives

This paper has addressed the issue of user interface reconfiguration in the field of
safety critical command and control systems. The application domain is civil aircraft
cockpit systems compliant with the ARINC 661 specification (which defines commu-
nication protocols and window management policy for cockpit displays systems).
This work complements previous work we have done on this topic [9] by extending
the behavioural model of cockpit display system with fault-tolerant behaviour and
with a generic architecture allowing static configuration as well as dynamic recon-
figuration of interaction techniques.

It is important to note that such fault-tolerance is only related to the user interface
part of the cockpit display system even though it takes into consideration input and
output devices as well as the behaviour of the window manager.

 A Formal Approach for User Interaction Reconfiguration 385

While the safety aspects have not been at the centre of the paper the entire work
presented here serves as a basis for supporting the design and construction of safer
interactive embedded applications and to improve operations.

Acknowledgements. This work is supported by the EU funded Network of Excel-
lence ResIST http://www.resist-noe.eu under contract n°026764.

References

1. Accot, J., Chatty, S., Maury, S., Palanque, P.: Formal Transducers: Models of Devices and
Building Bricks for Highly Interactive Systems. In: 4th EUROGRAPHICS workshop on
design, specification and verification of Interactive systems, Spain, 5-7 june 1997, pp.
143–159. Springer, Heidelberg (1997)

2. ARINC 661, Prepared by Airlines Electronic Engineering Committee. Cockpit Display
System Interfaces to User Systems. ARINC Specification 661 (2002)

3. ARINC 661-2, Prepared by Airlines Electronic Engineering Committee. Cockpit Display
System Interfaces to User Systems. ARINC Specification 661-2 (2005)

4. Bastide, R., Palanque, P., Sy, O., Navarre, D.: Formal specification of CORBA services:
experience and lessons learned. In: Proceedings of the 15th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications (Minneapolis,
Minnesota, United States). OOPSLA 2000, pp. 105–117. ACM, New York (2000)

5. Bastide, R., Sy, O., Navarre, D., Palanque, P.: A formal specification of the CORBA event
service. IFIP TC6/WG6.1. In: 4th international conference on formal methods for open ob-
ject-based distributed systems (FMOODS), Stanford univ., California, USA, pp. 371–395.
Kluwer, Dordrecht (2000)

6. Bastide, R., Palanque, P., Sy, O., Le, D.-H., Navarre, D.: PetShop a case tool for Petri net
based specification and prototyping of Corba Systems. In: Tool demonstration with Appli-
cation and Theory of Petri nets ATPN 1999, Williamsburg (USA). LNCS, pp. 66–83.
Springer, Heidelberg (1999)

7. Bastide, R., Navarre, D., Palanque, P., Schyn, A., Dragicevic, P.: A Model-Based Ap-
proach for Real-Time Embedded Multimodal Systems in Military Aircrafts. In: Sixth In-
ternational Conference on Multimodal Interfaces (ICMI 2004), Pennsylvania State Univer-
sity, USA, October 14-15, 2004, pp. 243–250. ACM Press, New York (2004)

8. Barboni, E., Navarre, D., Palanque, P., Basnyat, S.: Exploitation of Formal Specification
Techniques for ARINC 661 Interactive Cockpit Applications. In: Proceedings of HCI aero
conference (HCI Aero 2006), Seattle, USA, pp. 81–89 (September 2006)

9. Barboni, E., Conversy, S., Navarre, D., Palanque, P.: Model-Based Engineering of Wid-
gets, User Applications and Servers Compliant with ARINC 661 Specification. In: Do-
herty, G., Blandford, A. (eds.) DSVIS 2006. LNCS, vol. 4323, pp. 25–38. Springer, Hei-
delberg (2007)

10. Csíkszentmihályi, M.: Flow: The Psychology of Optimal Experience. Harper and Row,
New York (1990) ISBN 0-06-092043-2

11. Thevenin, D., Coutaz, J.: Plasticity of User Interfaces: Framework and Research Agenda.
In: Proceedings of Interact 1999, Edinburgh: IFIP TC 13, vol. 1, pp. 110–117. IOS Press,
Amsterdam (1999)

12. Eirinaki, M., Lampos, C., Paulakis, S., Vazirgiannis, M.: Web personalization integrating
content semantics and navigational patterns. In: WIDM 2004: Proceedings of the 6th an-
nual ACM international workshop on Web information and data management, pp. 72–79.
ACM Press, New York (2004)

386 D. Navarre, P. Palanque, and S. Basnyat

13. Feiler, P., Li, J.: Consistency in dynamic reconfiguration. In: International Conference on
Configurable Distributed Systems, Annapolis, MD, pp. 189–196. IEEE, Los Alamitos
(1998)

14. Genrich, H.J.: Predicate/Transitions Nets. High-Levels Petri Nets: Theory and Applica-
tion. In: Jensen, K., Rozenberg, G. (eds.), pp. 3–43. Springer, Heidelberg (1991)

15. Lakos, C.: Language for Object-Oriented Petri Nets. #91-1. Department of Computer Sci-
ence, University of Tasmania (1991)

16. MacKenzie, S., Zhang, S.X., Soukoreff, R.W.: Text entry using soft keyboards. Behaviour
& Information Technology 18, 235–244 (1999)

17. Navarre, D., Palanque, P., Bastide, R.: A Tool-Supported Design Framework for Safety
Critical Interactive Systems in Interacting with computers, vol. 15/3, pp. 309–328. El-
sevier, Amsterdam (2003)

18. Navarre, D., Palanque, P., Bastide, R.: A Formal Description Technique for the Behav-
ioural Description of Interactive Applications Compliant with ARINC 661 Specifications.
In: HCI-Aero 2004, Toulouse, France, 29 September-1st October 2004. CD-ROM pro-
ceedings (2004)

19. Palanque, P., Bernhaupt, R., Navarre, D., Ould, M., Winckler, M.: Supporting Usability
Evaluation of Multimodal Man-Machine Interfaces for Space Ground Segment Applica-
tions Using Petri net Based Formal Specification. In: Ninth International Conference on
Space Operations, Rome, Italy, June 18-22, CD-ROM proceedings (2006)

20. Petri, C.A.: Kommunikation mit Automaten. Technical Univ. Darmstadt (1962)
21. Reason, J.: Human Error. Cambridge University Press, Cambridge (1990)
22. Ríos, S.A., Velásquez, J.D., Yasuda, H., Aoki, T.: Web Site Off-Line Structure Reconfigu-

ration: A Web User Browsing Analysis, in Knowledge-Based Intelligent Information and
Engineering Systems. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS
(LNAI), vol. 4252, pp. 371–378. Springer, Heidelberg (2006)

23. User Interface Management Systems, Eurographics Seminar, Seeheim, 1983. In: Pfaff, G.
(ed.). Springer, Berlin (1983)

24. van Dam, A.: Post-WIMP user interfaces. Commun. ACM 40(2), 63–67 (1997)

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 387–400, 2008.
© Springer-Verlag Berlin Heidelberg 2008

The Wrong Question to the Right People.
A Critical View of Severity Classification Methods

in ATM Experimental Projects

Alberto Pasquini1, Simone Pozzi1,2, and Luca Save1,3

1 Deep Blue srl, Rome, Italy
2 Sapienza University of Rome, Department of Psychology of Social and

Developmental Processes, Rome, Italy
3 University of Siena, Media and Communication Department, Siena, Italy
{alberto.pasquini,simone.pozzi,luca.save}@dblue.it

Abstract. The knowledge of operational experts plays a fundamental role in
performing safety assessments in safety critical organizations. The complexity
and socio-technical nature of such systems produce hazardous situations which
require a thorough understanding of concrete operational scenarios and cannot
be anticipated by simply analyzing single failures of specific functions. This
paper addresses some limitations regarding state-of-the-art safety assessment
techniques, with special reference to the use of severity classes associated to
specific outcomes (e.g. accident, incident, no safety effect, etc.). Such classes
tend to assume a linear link between single hazards considered in isolation and
specified consequences for safety, thus neglecting the intrinsic complexity of
the systems under analysis and reducing the opportunities for an effective in-
volvement of operational experts. An alternative approach is proposed to over-
come these limitations, by allowing operational people to prioritize the severity
of hazards observed in concrete operational scenarios and by involving them in
the definition of the possible means of mitigation.

1 Introduction

Every time a new system is introduced or an existing system is significantly modified,
a safety assessment must be performed to identify if potential new risks are intro-
duced as a result of the innovation. Safety assessments, especially in complex socio-
technical domains such as Air Traffic Management (ATM), always require some kind
of involvement of people with operational experience (e.g. controllers and pilots)
whose knowledge is deemed essential for an adequate understanding and evaluation
of risk. However most of the standard safety assessment techniques adopt as a central
strategy the use of a safety matrix, aimed at classifying each hazard in terms of its
expected severity and acceptable frequency. This method is generally intended to rely
on expert judgment for an appropriate evaluation of the severity of hazards, but opera-
tional experts tend to experience difficulties when working at such a task. The as-
sessment of severity is normally based on so-called severity classification schemes
which identify a set of severity classes. Each class is associated to a different severity
level and to a specific outcome (e.g. accident, incident, no safety effect, etc.).

388 A. Pasquini, S. Pozzi, and L. Save

In this paper we elaborate on our experience with severity classification schemes in
the ATM domain to discuss the reasons why operational experts cannot easily use
these schemes: (i) Hazards are typically identified as failures to a single function of
the system, without considering the potential interactions of such function with other
parts of the system, (ii) The severity of each hazard is assessed by considering its
potential “final” effect, assuming only a linear chain of events and infringed barriers,
thus neglecting the non linear dynamics of incidental scenarios.

2 Accident Models and Limits of Probabilistic Risk Assessment

In recent years a number of theoretical contributions have investigated the complex
nature of accidents in socio-technical and safety critical systems like nuclear power
plants, chemical industry and transportation systems. These contributions pointed out
the limits of accident models based on linear sequences of events and cause-
consequence configurations. The seminal studies of Charles Perrow [1] revealed that
accidents can be seen as due too unexpected combinations or aggregations of events,
named complex interactions. More recently Reason’s Swiss Cheese Model [2, 3] has
been considered successful in representing accidents as the result of combined failures
at different levels in an organization, including unsafe acts by front-line operators and
latent conditions such as weakened barriers [4, 5] and defences. Finally, other models
like FRAM (Functional Resonance Accident Model) [6] or STAMP (System-
Theoretic Accident Model and Processes) [4] highlighted the emergent nature of fail-
ures, which are often the result of dysfunctional interactions between different parts of
the system, rather than simple malfunctions of specific components.

Compared to these theoretical advancements, there has been no comparable devel-
opment in state of the art risk assessment techniques. Most of these techniques are
based on a PRA approach (probabilistic risk assessment), i.e. they adopt as a central
concept the well known definition Risk=Severity x Frequency. In such definition both
the severity and the frequency are referred to the potential negative effects of the haz-
ards which can be experienced by a certain system. Thus, in a typical safety assess-
ment, hazards are defined as failures of one or more functions to be mitigated by
reducing the frequency of their occurrence and/or the severity of their effects. The
overall level of risk achieved by the system is the result of the aggregation of the risks
identified for each specific hazard.

While this approach is theoretically appropriate for close or simple systems essen-
tially made of hardware components, the application to complex socio-technical sys-
tems is problematic, as it relies on a linear representation of hazardous events which is
inconsistent with the complex accident models mentioned above.

2.1 Assumed Linear Link Between Hazards and Their Effects

No matter which is the specific graphical notation adopted, PRA typically relies on
models of accidents and incidents based on linear chains of events, representing the
notion that the preceding event or condition must be present for the subsequent event to
occur, i.e. if event X had not occurred than the following event Y would not have oc-
curred [4]. These event-based models make it difficult to incorporate non-linear
relationships (e.g. feedback between system components). A linear link between an

 The Wrong Question to the Right People 389

identified hazard for a specific function (e.g. a technical failure or a human error) and a
final effect of the hazard itself (e.g. a minor incident, or a severe accident) oversimplifies
the relationship between a single component failure and its possible negative safety
effects on a system level. I.e. it disregards the well-known notion that a failure to a sin-
gle function can never be considered as the sole cause of a negative effect for the safety
of a system. As the final effect is used as a criterion to assess the severity of a specific
hazard, this considerably influences the final results of the assessment. As argued by
Leveson [4], this approach -which was appropriate in process industry design (e.g. nu-
clear power plants)- is largely insufficient in other kind of systems in which emergent
configurations of different kind or resources (humans, mechanical, procedural) are es-
sential elements of both the correct and unsafe functioning of an organization [6].

2.2 Initiating Events in the Chain Assumed to Be Mutually Exclusive

A well known limitation of event based models (e.g. Fault Tree Analysis) is that basic
events are usually assumed to be mutually exclusive. While this assumption simplifies
the mathematics in a PRA, it may not match the reality. Leveson explained how
seemingly independent failures may have common systemic causes that result in co-
incident failures [4]. For instance in the Bophal accident, what might have appeared
as an unlikely coincidence of failures was engendered by common design and man-
agement decisions.

This methodological limitation of PRA is strictly related to the one mentioned be-
fore. Assuming the basic events as mutually exclusive in the determination of an
accident considerably simplifies the task of modelling cause-effect configurations,
thus making simpler the numerical definition of the risk associated to each failure at
component level. However it can hide critical interactions between different functions
or components, which are essential for identifying the appropriate mitigation means.

2.3 Functional Failures and Dysfunctional Interactions

Traditional PRAs focus on functional failures, i.e. on the non-performance or inability
of specific components to perform their intended functions. However, the more complex
safety critical systems have become, the more accidents have been determined by dys-
functional interactions [4]. Dysfunctional interactions happen when system elements
perform as it is expected (i.e. as specified by requirements) but still the overall system
behavior results to be unsafe. Accidents happen not only because a pilot deviates from a
specified procedure or because a hardware component does not perform as in its
specifications. Accidents may be engendered by a critical interaction among different
components (electromechanical, digital, human). If the safety assessment is exclusively
focussed on functions and component failures, very little insight is produced in order to
mitigate the hazardous situations deriving from dysfunctional interactions.

3 Safety Assessment Methodology in Air Traffic Management

A prerequisite for performing a safety assessment based on a PRA approach is that of
identifying a relationship between a set of identified failures for each specific function
and a set of possible consequences. In the Air Traffic Management world, this is

390 A. Pasquini, S. Pozzi, and L. Save

typically accomplished by filling in Functional Hazards Assessment (FHA) tables and
by elaborating them with cause-effects propagation models, such as Fault Tree Analy-
sis (FTA) and Event Tree Analysis (ETA).

3.1 The Assessment of Severity

SAM (Safety Assessment Methodology) [7] is the standard method for safety assess-
ment in ATM promoted by EUROCONTROL. It is made up of three main phases:
Functional Hazard Assessment (FHA), Preliminary System Safety (PSSA), System
Safety Assessment (SSA) (see central column of Figure 1). The phases are in parallel
with the lifecycle of the system under assessment (see left column in Figure 1). This
paper is mainly focused on the first phase of the SAM, i.e. the FHA.

System Definition

System Design

System
Implementation and

integration

Operations
Maintenance

Decommissioning

Functional Hazard
Assessment

Preliminary System
Safety Assessment

System Safety
Assessment

What safety requirements does
the system need to meet to
achieve an acceptable risk?

Will the proposed architecture
meet the Safety requirements?

Does the system as implemented
meet the safety requirements?

Fig. 1. The SAM Methodology

The main goal of an FHA is specifying a set of safety objectives. These are defined
by following five sub-phases:

1. Identify all potential hazards associated with the system
2. Identify hazard effects on operations, including the effect on aircraft operations
3. Assess the severity of each hazard effect
4. Specify Safety Objectives, i.e. determine the maximum frequency of a hazards’

occurrence
5. Assess the overall foreseen risk associated with introducing the change or new

system.

Operational experts involvement is quite easily achieved in the first step (identify
hazards), while the second phase (identify hazard effects) is more difficult and the

 The Wrong Question to the Right People 391

third phase (assess severity) can become extremely challenging. Operational experts
(typically air traffic controller and/or pilots) are supposed to identify, in collaboration
with technical and safety experts, the effect of each hazard identified in phase 1. Ef-
fects are then included in textual format in a specific column of the FHA table. Sub-
sequently the experts are required to classify each of these effects in terms of severity,
by using the SAM Severity Classification Scheme. The scheme identifies 5 different
Severity Classes (SC), from the most severe to the least sever:

− SC1 Accidents [most severe]
− SC2 Serious Incidents
− SC3 Major incidents
− SC4 Significant incidents
− SC5 No Immediate Effect on Safety [least severe]

In principle the same hazard can have more than one effect, based on contextual
conditions. A typical example is the differentiation of the effects of the same hazard,
based on traffic conditions (e.g. low vs high traffic) or weather conditions. However
the FHA table should identify a specific SC for each effect, without any particular
attention if two effects are produced by the same source hazard. It is to be noted that
the SCs are the same adopted in the EUROCONTROL requirements on safety occur-
rence reporting (ESARR 2 [8]), i.e. they are used by national service providers to
classify real occurrences experienced in operational air traffic control centres.

3.2 Problems with the Use of Severity Classes

According to our experience (see case studies in section 4), the severity classification
scheme is not easily applied in the Safety Assessment. While SCs are fit for purpose
when reporting and classifying real occurrences, they are very difficult to use when
assessing the safety of “pre-operational” systems. The most problematic aspect is the
assumed linear link between a specific hazard and its possible effects. A specific
failure – be it a technical failure or a human error – can never be considered as the
sole cause of an accident. For an accident to occur, a hazard very often combines with
several other hazards and contextual conditions. However, when adopting the func-
tional approach which is typical of PRA, hazards generally does correspond to
specific failures. We deal with single failures that could at the same time cause an
accident (SC1), different kinds of incidents (SC2, SC3 and SC4) or even no immedi-
ate effect on safety (SC5). This is a commonly well recognised point, as demonstrated
by the emphasis safety management systems place on near-miss events collection and
analysis [9]. A near-miss usually shares the same causal factors with real incidents,
where mostly contextual (sometimes even fortuitous) factors determine the different
outcomes (i.e. no or very limited damage in near miss). Deriving consequences from
each single hazard considered in isolation neglects the above reasoning on incident
dynamics. In theory, any hazard can result in a serious incident or in an accident,
depending on the way it interacts with other system weaknesses.

Operational experts are normally able to provide very detailed accounts on critical
situations and can give valuable insights on the possible consequences of failures or
dysfunctional interactions in concrete operational contexts. However, when faced
with the task of classifying a single failure in terms of the 5 SCs, they manifest

392 A. Pasquini, S. Pozzi, and L. Save

uncertainties, expressed with sentences like “it depends on…it depends how…”. If
forced to make a choice, they generally tend to produce classifications that reflect
certain assumptions about the contextual situation, or they provide a rationale justify-
ing their answer. Neither assumption nor the rationale will be considered in the fol-
lowing of the assessment. The resulting classification will instead directly influence
the setting of safety objectives and the definition of safety requirements.

Another spontaneous strategy is that of ranking the severity with respect to other
hazards. In so doing, experts do not take into account the SC labels (accident, serious
incident, etc), but rather reason on a priority ordering. The SAM guidance does ac-
knowledge that the same hazard can have different effects and then different sever-
ities. It is specified that SCs should be assigned to the hazard effects, rather than to
the hazard itself. The most commonly used method consists of identifying - based on
expert judgment - the worst credible effect of each hazard, then in setting safety ob-
jectives taking into account only that effect1.

The worst credible effect in the given environment of operation should determine
the severity class leading to setting of the Safety Objective, using expert judgement. It
means that somehow the probability of the hazard leading to certain effect (Pe) has
been taken into account when deciding the worst credible severity of the hazard effect
[10]. Even if the severity classification should not be influenced by considerations on
the acceptable frequency, according to this quote one could claim that the decision on
what is the worst credible effect is instead linked to considerations on the actual haz-
ard frequency2. There is an implicit recommendation not to select a too much severe
effect, unless its occurrence is not considered reasonably frequent. Ignoring such an
implicit recommendation is likely to produce overambitious safety objectives.

4 Asking the Wrong Question to the Right People

The case studies presented in this section are both pertaining to safety assessment ex-
periences in ATM related projects. The first case is the development of an FHA aimed
at assessing the improvement of a Short Term Conflict Alert (STCA) in an European
military ATC unit. The second case concerns the overall assessment process of an Air-
borne Separation Assurance System concept (ASAS), in the context of the European
Program “Mediterranean Free Flight”. These case studies provide evidence of some of
the methodological limitations described in previous sections. They also document our
attempts to overcome such limitations and propose an alternative approach.

Our approach is inspired by authors like Erik Hollnagel and Nancy Leveson and by
their recent efforts to propose methods more in line with state of the art accident mod-
els (e.g. FRAM and STAMP). Our main strategy is that of extensively rely on the
domain knowledge of expert operational personnel (e.g. controllers and pilots). The
method we suggest exploits a scenario-based approach [11, 12]. The use of scenarios

1 Note that the SAM guidance material proposes 4 different methods for setting safety objec-

tives: Quantitative Method, Prescriptive Method, Criticality Method and Qualitative Method.
For the sake of simplicity in this context we only refer to the last one.

2 On the contrary, a rigorous application of the methods requires that the severity of hazard
effects is assessed before. The acceptable frequencies are only established afterwards, based
on a Severity x Frequency matrix.

 The Wrong Question to the Right People 393

is essential to place hazards and their possible consequences in concrete operational
situations.

4.1 Case Study 1: Assessment of a New STCA for a Military Unit

Case study 1 concerns a safety assessment made in September 2006 for the introduc-
tion of an improved Short Term Conflict Alert (STCA) to be installed in a European
military ATC unit. STCA is a system that assists the controller in maintaining separa-
tion between aircraft, by generating on the controller’s display an alert of a potential
infringement of standard separation minima. The military unit under analysis was
already equipped with a modern ATC system including an STCA. However, the spe-
cific needs of the military environment (military formation flights, aerobatic maneu-
vers, etc.) created a large number of nuisance alert. The safety assessment was mainly
focused on the safety impact of new technical solutions.

Essential part of the safety assessment was an FHA workshop, based on a number
of brainstorming sessions attended by 10 people, including safety, technical and op-
erational experts (i.e. military controllers and pilots). Main objectives were: (1) Iden-
tifying the most relevant hazards, (2) Understanding their effects on the ATM system,
(3) Assessing the severity of their effects, (4) Identifying possible mitigation means.

The workshop profited from a scenario-based approach, consistently with what al-
ready made in the framework of other studies [12]. As an input to the hazard identifi-
cation phase, a set of seven military related scenarios were identified, in collaboration
with a controller and a technical expert. The scenarios were textual descriptions of
typical operational situations representative of the military environment under analy-
sis (an example is in Figure 2). Additional cells in the table provided information on
the expected behavior of current STCA and on the technical solutions included in the
improved STCA, in order to manage the specific situation.

The scenarios served to provide a description of the new system, from an opera-
tional point of view, to controllers who were not particularly familiar with STCA
functioning. A second purpose was to support hazard identification brainstorming, by
providing a concrete operational context. This purpose, in particular, was an attempt
to integrate the functional approach, which requires starting from single functions of
the system and thinking about their possible failures. The functional approach was
actually maintained. However the scenarios complemented the functional perspective,
as technical failures and human errors were imagined in concrete situations, allowing
engineers and operational experts to derive also more complex hazards, like combina-
tion of different hazards or dysfunctional interactions.

The output of the brainstorming sessions was a list of 27 hazards, including a de-
scription of possible operational consequences and effects on safety, which were
included in a typical FHA table [10, Appendix A, pp. A4-A5]. Example of hazards
were: “Duplicate Mode A”, “Lost Wingman”, “Incorrect military formation detec-
tion”, “Incorrect SSR code list input”, “Controller not aware of STCA suppressed for
specific aircraft”, etc. In the FHA table, hazards were grouped to keep a reference to
the scenario in which they were identified. According to the established method, the
hazards identification phase was followed by the assessment of hazard severity and by
the discussion about possible mitigation means. At the end all the results were in-
cluded in the FHA table.

394 A. Pasquini, S. Pozzi, and L. Save

OS 2 - AREA TO AIRWAY

Description Traffic manoeuvring inside a military area next to a civil airway (ATS
routes) with lateral or vertical manoeuvres.

Operational im-
plications

Short reaction time for controllers to react if A/C penetrates civilian air-
space.
High speed manoeuvring, high ROC/ROD and steep turns versus steady
flight profile. Aerobatics being performed both by singletons and by for-
mation flights.
Need for ATCOs to input BFL (Block Flight Levels).

STCA implica-
tions

 Nuisance alerts are generated inside formations.
 Nuisance alerts due to excessive prediction times and high speed ma-
noeuvring.
 BFL to be taken into account at the CWP
 Linear (any) prediction less accurate for the military traffic.
 If aerobatics are performed in formation, split tracks can occur.

Technical solu-
tion adopted in
the new STCA

Creation of buffer zones around aerobatic areas using wider parameters as
the Aircraft approaches the boundaries of the area.
Use of BFL as in the current system.
Dynamic activation/de-activation of STCA regions (improved FUA
Level3).

Fig. 2. Example of a scenario template used during an FHA brainstorming session

4.1.1 The Decision to Give Up with Severity Classes
While in the hazard identification phase, the workshop attendees were very active in
generating ideas and in providing descriptions of the possible consequences of the
hazards, much more difficulties were experienced when the experts when confronted
with the Severity Classification Scheme. First of all, it turned out to be difficult to
identify the specific effect on safety of each hazard. Then experts stated that none of
the hazards would have been the sole cause of an accident, but nearly all of them
could potentially play a role in determining an accident. In addition, the categories
serious incident, major accidents, significant incidents or no immediate effect on
safety were considered difficult or impossible to apply. Even the safety indicators
provided in the scheme (e.g. Effects on air navigation services, Exposure and Recov-
ery) were not considered helpful, as the associated descriptions of possible hazards
effects are obviously expressed in general and abstract terms: e.g “partial inability to
provide or maintain a safe service” or “hazard may persist for a substantial period of

 The Wrong Question to the Right People 395

time”. For example defining what is a “substantial period of time” will totally depend
on subjective evaluations of the specific operational circumstances experienced and
will not necessary imply the risk of producing a serious accident.

The limited time available for the workshop (one day and half in total) and the
feeling of being stuck with hazard classification resulted in a spontaneous solution
directly proposed by some of the attendees. While both operational and technical
experts were not able to classify hazards in terms of the SCs, they had no difficulties
in distinguishing between high severity and low severity hazards. Furthermore they
remarked the importance of establishing a priority between hazards with an immedi-
ate need for a mitigation and hazards that could have been analyzed later. In other
words, they proposed to shortlist a number of candidates for the following phases. A
further distinction was made between hazards the mitigation of which was considered
easier and hazards requiring further study. Even though this solution could appear not
rigorous in methodological terms, it highlights the strong link perceived between
hazards safety effects and the phase of designing mitigation actions.

4.2 Case Study 2: Assessment of ASAS Spacing Concepts in MFF

MFF was a large project of six years duration recently concluded, sponsored by the
European Union under the TenT Programme. MFF was co-ordinated by ENAV - the
Italian Air Traffic Control service provider - and involved several air traffic service
providers, especially from the Mediterranean area, and EUROCONTROL. The scope
of MFF was to define, test and validate operational concepts and procedures for more
efficient use of airspace through the delegation of some tasks related to separation
assurance, relying on concepts like Free Routes, ASAS Spacing & Separation, Free
Flight. It focused on the application of those procedures in the particular geographical
context of the Mediterranean area. The new operational concepts and related procedures
were defined in the early phases of the project [13] and their fitness-for-purpose was
evaluated through a set of validation exercises, with an iterative process of concept
refinement and validation. This included several cycles of Model Based Simulations,
three sets of Real Time Simulations (RTS), three Safety Cases, and an extensive set of
Flight Trials (FT). Cockpit simulations were used in support of both RTS and FT.

The research issue we faced in this project was mainly due to the experimental na-
ture of procedures and applications to be assessed. The introduction of the ASAS
procedures profoundly changes parts of the existing ATM system, including changes
in hazardous conditions and safety issues. Given the novelty of ASAS applications,
there was no previous experience of them, nor any existing system with similar char-
acteristics. The safety assessment process was then developed to face two comple-
mentary constraints.

1. Controllers needed to be familiarized with the new procedures and applications, so
that they could contribute to the safety assessment as experts.

2. No experience was available on the system behavior, so a variety of simulation
exercises was set up, in order to identify potential hazardous conditions hard to an-
ticipate in the design phase. These simulation exercises could not replicate the
complexity of a real system, but still some system elements could be put in place
and observed while working together.

396 A. Pasquini, S. Pozzi, and L. Save

The integration of Real Time Simulations with the safety assessment process
seemed a sound solution for both of the above problems [for more information on the
MFF safety assessment process and on the use of safety scenarios in RTS, please refer
to 11, 12]). The key aspect of such integration was the injection of a limited sample of
hazards in the simulation through the implementation of safety scenarios. The major
difficulty was to reconstruct a realistic situation where the procedure and the related
hazard could be analyzed from a systemic point of view, preserving all contextual
factors that shape controller’s behavior. Safety scenarios were then used to avoid the
assessment of hazards in isolation, so that credible situations could be presented to
controllers. The safety scenarios included events such as system failures, pilots and
controller errors, and other operational problems (see Table 1 below for an example
of scenario story board).

Table 1. Story board and actions for a safety scenarios

Hazard Identification Code: SA2 Airspace Sector: EW

Time Events

9.48 Accomplice Pilot Action AZA123 asks to descend to FL290 for technical reasons

9.50 If Accomplice Pilot
Action

IBE3674 and AFR432 are cleared to self-separate while
crossing

9.50 then Possible Event AZA123 interfere with IBE3674 and AFR432 (self-
separation on-going)

They provided at least two immediate benefits. First, they gave experts an opportu-

nity to reason about what did not work when the system failed, thus supporting the
safety analysts in clarifying some aspects of the hazards. Second the safety analysts
had the opportunity to learn through the direct observation of the controller behaviour
during the exercises and to obtain information directly on a series of dedicated events.

However, if we get back to the main line of reasoning of this paper, what was
observed during the RTS could not be considered satisfactory as far as the severity
assessment was concerned. Although the RTS context allowed making post-hoc ob-
servations of the events and not just guessing the possible effects of hazards, using the
5 severity classes resulted to be problematic. Firstly the most severe one (SC1) -
corresponding to an accident- is simply not simulated in the RTS environment. The
closest the simulation can get to an accident is when two aircraft pass one through the
other, which in the simulated world results in no damage to any of the two. The two
aircraft simply keep flying on their track after “the collision”. More important, the
rating on the other 4 levels was very difficult even when adopting the two basic crite-
ria indicated to rate real occurrences, namely (i) percentage of separation infringement
and (ii) whether the controller had detected the loss of separation3. The two criteria
encounter the same drawback we mentioned in the previous section, that is they both

3 The two criteria are indicated in the ESARR2 [8] and ESARR4 [10] Severity Classification

Schemes from which the SAM Scheme has been derived.

 The Wrong Question to the Right People 397

address the severity of the end result of an event, which is often the product of highly
specific contextual factors. In other words, safety analysts could not simply observe
the RTS event and then rate the severity on the basis of the separation infringed and
of the controller detection, as this would have implied rating the factors that had pro-
duced the event in the specific RTS setting rather than assessing the severity of a sin-
gle hazard. Again, we tried to partially overcome this limitation by profiting of the
controllers’ expertise. Two workshop sessions were organised after the end of two
major simulations, with the objective of reviewing the information gathered on the
hazards. Hazards were presented together with the safety scenarios, so that experts
could reason about the single hazards not in isolation, but bearing in mind a more
realistic situation, that is in interaction with the other system elements. As in the pre-
vious case study with the STCA, experts needed to reason about concrete cases in
order to draw meaningful estimate on the severity. In the MFF case, scenarios (which
had been in a sense validated in the RTS) provided these concrete cases.

The lesson we draw from the MFF case is that the severity rating encountered dif-
ficulties in its application even in a case where it could be applied as a post-event
classification (i.e. assessing events that were implemented in a simulation). In our
opinion, these difficulties stem from the nature itself of the assessment, that is from
the fact that experts are asked to assess the severity of an event as representative of a
hazard, whilst experts question this very link between hazard and event. They find it
hard to trace a linear link between the hazard and the event, and need to draw their
estimates from more complex situations, or better said from more realistic situations.

5 An Alternative Approach to Safety Assessment

In previous sections we have presented some issues we faced in the safety assessment
process, in particular those due to the severity classification scheme. In this section
we would like to draw some tentative lessons learnt from the above discussion.

5.1 Assess Hazardous Situations Rather Than Single Hazards

A direct and simple link between a specific hazard and a given effect is a rare case in
complex socio-technical systems. It is usually a complex configuration that jeopard-
izes the system defenses. However, it is almost impossible to predefine in formal
terms these configurations. They can be somehow anticipated only by means of a
thorough operational knowledge. Thus technical failures or human errors are better
understood only if analyzed in the context of concrete operational scenarios either
describing past events or envisaging future situations.

The traditional functional approach, i.e. consider individually all system functions
and imagining their possible failures, is an essential starting point of all safety as-
sessments. Nevertheless it should be always complemented by the analysis of the
same events in the context of wider hazardous situations, which are better handled
and understood by operational experts. Such an integrated approach presents at least
two main advantages:

398 A. Pasquini, S. Pozzi, and L. Save

1. It gives more opportunity to identify not only the simple functional failures, but
also those dysfunctional interactions which generally represent a more insidious
threat for the safety of a complex system.

2. It allows the assessors to work jointly on three different aspects of a traditional
safety assessment, i.e. hazards, effects and severity. The distinction between haz-
ards and effects does not make sense from an operational point of view. What is
seen as the causal factor in a certain context can be easily perceived as the conse-
quence in a different one. With respect to the assessment of severity, critical sce-
narios (i.e. hazardous situations) appear as the only meaningful context to express a
motivated judgment.

5.2 Prioritize Hazards Rather Than Classify Severity

A hidden assumption of functional approach methods is the need to perform an ex-
haustive assessment of all possible hazards. A corollary of such assumption is that
analyzing all the single functions of a system and identifying all their potential fail-
ures will ensure that a complete assessment of risks has been performed. Nevertheless
the identification of all potential hazards is far from being a viable solution for a vari-
ety of reasons.

First of all, socio-technical systems like air traffic management systems are too
complex for a detailed identification of all system functions. Secondly, hazards do not
derive only from failures of single functions but also from dysfunctional interactions
among perfectly working functions. These cannot be identified by analyzing each
function separately. In addition, due to their emerging nature, they are anyhow diffi-
cult to anticipate in pre-operational phases. Last (but not least) the time available for a
safety assessment is generally limited in real situation, so an implicit prioritization is
always made.

Based on these considerations, a detailed classification of each hazard in terms of
the 5 SCs appears less important than a careful prioritization of what has been identi-
fied. The list of hazards can be never considered exhaustive and there is generally no
time available to cover all hazards with a specific safety objective. Thus, it is of
paramount importance that the most urgent hazards to be mitigated are identified, no
matter which is their rating on the Risk Classification Scheme. In analogy with what
has been described in Case Study 1, a subset of hazards can be classified as urgent, to
make sure that fundamental design decisions are not made before these have been
adequately considered. The remaining hazards - at least those which have been con-
sidered as relevant - should also be recorded, at least to make sure that they are not
forgotten in following design stages.

5.3 Consider Safety Objectives and Mitigation Means Jointly

A sharp separation between safety assessment and design processes does not appear
realistic. From the one end, ensuring that safety is independent from production pres-
sures is an important requisite for the credibility of safety targets. In addition, the well
known phenomenon of risk homeostasis [14] should be always prevented, in order to
ensure that safety improvements are not automatically converted in production bene-
fits. On the other end, looking after safety also means thinking about alternative

 The Wrong Question to the Right People 399

design solutions, by considering measures on either the technical, the procedural and
the training side. The same safety target can be achieved with different design solu-
tions and with considerable variations in terms of cost and availability. Thus practical
considerations suggest maintaining an adequate communication flow between safety
and design at all stages of safety assessment. Separation and independence is more a
requirement for different organizational functions, rather than a prescribed working
method.

The need to consider jointly safety objectives and mitigation means is in contrast
with traditional FHA, as the FHA is supposed to reason only in terms of abstract func-
tions, without any speculation on how a specific function will be implemented. As for
the analysis of hazards and for the identification of severity classes, the approach
suggested in this paper goes in a different direction. In our opinion, if pilots and con-
trollers’ experience is essential for identifying the possible hazards effects on the
system, it is hardly understandable why their expert knowledge should not be used to
assess the safety benefits of various design solutions. This implies that mitigation
means are considered also at the FHA level, to make sure that operational experts can
actually contribute to the definition of safety objectives.

6 Conclusions

In this paper we move from the discussion of what appears to us as a fallacy in current
state-of-the-art safety assessment, that is the severity assessment seems to blatantly
contradict last-generation safety theories. The line of reasoning is then developed by
showing the impact of such fallacy in two case studies. We also present some practical
solutions we devised to mitigate the issue. We are well aware that such solutions are
mostly ad hoc adaptations, far from representing “the solution” to the point we raised.

In our opinion the key tension we encountered in the safety assessment process is
between analytical techniques and a more holistic vision. On one side, we need ana-
lytical techniques to pinpoint safety threats. On the other, these analyses “tears the
system apart” and tends to overlook the fact that in reality the system elements will
work together. To address the actual functioning of the system we then need more
holistic techniques, to “reassemble” what we have separated for clarity’s sake. Our
proposal is to ground this holistic view in narrative scenarios, to show system interac-
tions as they happen in the everyday functioning. Future research should address the
tension between the two polarities – analytical versus holistic – and devise solutions
to integrate the two perspectives. At the present moment we see the two polarities as
representing a contradictory tension we have to deal with, most likely by reflecting on
their complementarities rather than opting for one of the two.

Acknowledgements. The authors would like to express gratitude to the Eurocontrol
SPIN Task Force representatives who promoted and supported the FHA study regard-
ing the STCA. Special thanks are due to the ATCC Semmerzake team for hosting the
FHA workshop and actively contributing to it. We would also like to thank all the
colleagues of the MFF project for the fruitful collaboration on the activity. The MFF
project was partially funded by the EU under the TEN-T program. The authors grate-
fully acknowledge the support provided to this work by the EU project “ReSIST:
Resilience for Survivability in IST”.

400 A. Pasquini, S. Pozzi, and L. Save

References

1. Perrow, C.: Normal Accidents: Living with High-Risk Technologies. Basic Books, 2nd
edn. Princeton University Press, Princeton (1984)

2. Reason, J.T.: Human error. Cambridge University Press, Cambridge (1990)
3. Reason, J.T.: Managing the risks of organizational accidents. Ashgate Publishing Limited,

Hampshire (1997)
4. Leveson, N.G.: A New Accident Model for Engineering Safer Systems. Safety Sci-

ence 42(4), 237–270 (2004)
5. Leveson, N.G.: Safeware. System safety and computers. Addison Wesley Publishing Com-

pany, Reading (1995)
6. Hollnagel, E.: Barriers and accident prevention. Ashgate, Hampshire (2004)
7. EUROCONTROL, Air Navigation System Safety Assessment Methodology (SAM)

(2006)
8. EUROCONTROL, ESARR 2 - EUROCONTROL Safety Regulatory Requirement. Re-

porting and Assessment of Safety Occurrences in ATM (2000)
9. Van der Shaaf, T.W., Lucas, D.A., Hale, A.R.: Near miss reporting as a safety tool. But-

terworth-Heinemann, Oxford (1991)
10. EUROCONTROL, Air Navigation System Safety Assessment Methodology (SAM)

(2004)
11. Pasquini, A., Pozzi, S., McAuley, G.: Eliciting Information for Safety Assessment. Safety

Science (in press)
12. Pasquini, A., Pozzi, S.: Evaluation of Air Traffic Management Procedures - Safety As-

sessment in an Experimental Environment. Reliability Engineering & System
Safety 89(1), 105–117 (2005)

13. Mediterranean Free Flight, MFF Operational Concepts & Requirements (2001)
14. Wilde, G.J.S.: Target Risk. Dealing with the Danger of Death, Disease and Damage in

Everyday Decisions. PDE Publications, Toronto, Canada (1994)

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 401–414, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Context-Aware Mandatory Access Control Model
for Multilevel Security Environments

Jafar Haadi Jafarian, Morteza Amini, and Rasool Jalili

Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
{jafarian@ce,m_amini@ce,jalili@}sharif.edu

Abstract. Mandatory access control models have traditionally been employed
as a robust security mechanism in multilevel security environments like military
domains. In traditional mandatory models, the security classes associated with
entities are context-insensitive. However, context-sensitivity of security classes
may be required in some environments. Moreover, as computing technology
becomes more pervasive, flexible access control mechanisms are needed.
Unlike traditional approaches for access control, such access decisions depend
on the combination of the required credentials of users and the context of the
system. Incorporating context-awareness into mandatory access control models
results in a model appropriate for handling such context-aware policies and con-
text-sensitive class association mostly needed in multilevel security environ-
ments. In this paper, we introduce a context-aware mandatory access control
model (CAMAC) capable of dynamic adaptation of access control policies to
the context, and handling context-sensitive class association, in addition to
preservation of confidentiality and integrity. One of the most significant charac-
teristics of the model is its high expressiveness which allows us to express vari-
ous mandatory access control models such as Bell-LaPadula, Biba, Dion, and
Chinese Wall with it.

Keywords: Mandatory Access Control, Context-Awareness, Confidentiality,
Integrity.

1 Introduction

As computing technology becomes more pervasive and mobile services are deployed,
applications will need flexible access control mechanisms. Unlike traditional approa-
ches for access control, access decisions for these applications will depend on the com-
bination of the required credentials of users and the context and state of the system.

Unlike discretionary and role-based access control, mandatory access control mod-
els directly address multilevel security environments where information is classified
based on its sensitivity; although they have been deployed in commercial sectors too.

Numerous context-aware access control models are presented in literature. Mean-
while, none of these models directly target new security requirements of multilevel
environments; while some of them are applicable to such environments with consid-
erable effort. Since mandatory access control has traditionally been used in these
environments, a context-aware mandatory access control model seems the most ap-
propriate choice in this regard.

402 J.H. Jafarian, M. Amini, and R. Jalili

In traditional mandatory access control models, except for some special cases, the
security classes associated with entities are usually insensitive to context. However, in
some systems, we may need context-sensitive association of security classes. For in-
stance, in most intelligence agencies, the security level of documents decreases by the
elapse of time. Moreover, as computing technology becomes more pervasive, applica-
tions in multilevel security domains need more flexible mandatory access control
policies. Incorporating context-awareness into mandatory access control models gives
rise to a flexible and expressive model suitable for management of such con-
text-aware policies and dynamic class associations.

In this paper, we introduce CAMAC as a context-aware mandatory access control
model capable of dynamic adaptation of policies with the context and handling con-
text-sensitive class association, in addition to preserving confidentiality and integrity.
In fact, CAMAC uses Bell-LaPadula and Biba properties to preserve confidentiality
and integrity of information.

The rest of the paper is organized as follows. Section 2 introduces a brief survey on
context-aware access control models. In Section 3, CAMAC model is formally de-
scribed. In section 4, the expressiveness of CAMAC model is scrutinized. In section
5, evaluation of the model is introduced followed by our conclusion.

2 Related Work

Various mandatory access control models and policies have been introduced in litera-
ture. Bell-LaPadula [1, 2], Biba [3], Dion [4] and Chinese Wall [5] are examples of
such models and policies. Bell-LaPadula and Biba constitute the infrastructure of the
CAMAC model, although the definition used here is mostly based on a minimalist
approach introduced by Sandhu in [6, 7].

Many researches are targeted to applying context-awareness to the RBAC model.
Kumar et al. [8] proposed a context-sensitive RBAC model that enables traditional
RBAC to enforce more complicated security policies dependent on the context of an
attempted operation. Al-kahtani et al. [9] proposed the RB-RBAC model, performing
role assignment dynamically based on users' attributes or other constraints on roles.
GRBAC, Generalized RBAC, [10] incorporates three types of roles; subject roles cor-
responds to the traditional RBAC roles, object roles which are used to categorize
objects, and environment roles to capture environmental or contextual information.
Context-aware access control is achieved by employment of these role types in speci-
fication of access control policies. Zhang et al. [11] proposed DRBAC, a dynamic
context-aware access control for pervasive applications. In DRBAC, there is a role
state machine for each user and a permission state machine for each role. Changes in
context trigger transitions in the state machines. Therefore, user's role and role's per-
mission are determined according to the context. Georgiadis et al. [12] present a
team-based access control model that is aware of contextual information associated
with activities in applications. Hu et al. [13] developed a context-aware access control
model for distributed healthcare applications. The model defines the notion of context
type and context constraint to provide context-aware access control.

Ray et al. [14] proposed a location-based mandatory access control model by extend-
ing Bell-LaPadula model with the notion of location. In particular, every location is
associated with a confidentiality level and Bell-LaPadula no read-up and no write-down

 A Context-Aware Mandatory Access Control Model 403

properties are extended by taking confidentiality levels of locations into consideration.
Based on Baldauf et al.'s classification of context-aware systems [15], location-based
mandatory access control model can be categorized as a location-aware system.

3 CAMAC: A Context-Aware Mandatory Access Control Model

Through an example application enabled by a pervasive computing infrastructure in a
smart building of a military environment, we discuss motivation for access control
models such as ours. The building has many rooms including administration offices,
campuses, etc. Sensors in the building can capture, process and store a variety of in-
formation about the building, the users, and their activities. Pervasive applications in
such an environment allow military forces to access resources/information from any
locations at anytime using mobile devices (PDAs) and wireless networks. While clas-
sification is still the basis for all the access control decisions, users’ context informa-
tion and application state should also be considered. For example, an officer can only
control the audio/video equipment in a conference room if she/he is scheduled to
present in that room at that time by the manager in charge. In such applications, privi-
leges assigned to the user will change as context changes. The example above embod-
ies many of the key ideas of the research presented in this paper. To maintain system
security for such a pervasive application, we have to dynamically adapt access per-
missions granted to users as context information changes. Context information here
includes environment of the user such as location and time that the user access the
resource and system information such as CPU usage and network bandwidth. The
traditional mandatory models do not directly address the requirements of such an ap-
plication and although many context-aware access controls have been proposed in
literature, they are not appropriate for environments where security is directly contin-
gent upon classification. This paper aims at presenting a flexible and expressive
model appropriate for multilevel security environments where classification of infor-
mation is an integral property of the environment.

CAMAC is a context-aware mandatory access control model which utilizes contex-
tual information to enhance expressiveness and flexibility of traditional mandatory
access control models. Incorporation of context-awareness into the model changes
traditional models in two separate ways. Firstly, contextual information can be used to
define more sophisticated access control policies. As an example, an access control
policy might require that for a subject to acquire a read access to an object, some
timing restrictions must be satisfied. CAMAC model allows definition of such sophis-
ticated access control policies. Secondly, the confidentiality and integrity level of en-
tities can change based on contextual information. In traditional mandatory models,
the levels initially assigned to entities are not allowed to change based on the circum-
stances. For instance, confidentiality level of objects might decrease as their lifetime
increases (and so become accessible to less trustworthy subjects). CAMAC also al-
lows such dynamic level association based on contextual information.

3.1 Formal Definition of CAMAC

CAMAC model can be formally described as a ten-tuple:

〈EntitySet, RepOf, ConfLvl, IntegLvl, λ, ω, ContextPredicateSet, ContextSet, Opera-
tionSet〉

404 J.H. Jafarian, M. Amini, and R. Jalili

in which:

• EntitySet is the set of all entities in the system and is composed of four sets: User,
Subject, Object and Environment. User, Subject and Object are the set of all us-
ers, subjects and objects in the system respectively. Environment set has only one
member called environment.

• RepOf: Subject → User assigns to each subject the user who has initially initiated
or activated it. In other words, for s ∈ Subject, RepOf(s) represents the user on
behalf of whom the subject s acts.

• ConfLvl is a finite ordered set of confidentiality levels1 such as 〈cn,cn-1, …, c1〉 in
which cn and c1 are the highest and lowest levels respectively. As in
Bell-LaPadula model, each user, subject and object is associated with a confiden-
tiality level. It must be noted that there exist a difference between Bell-LaPadula
and CAMAC in terms of confidentiality level. While Bell-LaPadula confidential-
ity levels are defined by two components (a classification and a set of categories),
CAMAC confidentiality levels only include the first component, i.e. classifica-
tion. In section 5 we show that the second component, set of categories, is con-
textual information and can be easily incorporated to the model as a context type.

• IntegLvl is a finite ordered set of integrity levels such as 〈in,in-1, …, i1〉 in which in
and i1 are the highest and lowest levels respectively. As in the Biba model, each
user, subject and object is associated with an integrity level. Moreover, the above
difference also applies here; i.e. CAMAC integrity levels are defined by only a
classification component.

• λ is a mapping function which associates each user, subject and object with a
confidentiality level: λ:User ∪ Subject ∪ Object → ConfLvl

• ω is a mapping function which associates each user, subject and object with an
integrity level: ω: User ∪ Subject ∪ Object → IntegLvl.

• ContextPredicateSet is the set of current Context predicates in the system. Each
context predicate is a statement about the value of a contextual attribute. More on
context predicates will come in section 3.2.

• ContextSet is an ordered set of context types. A context type is a property related
to every entity or a subset of existing entities in the system. A context type
ct ∈ ContextSet can be formally described a 5-tuple:
ct = 〈ValueSetct, OperatorDefinerSetct, RelatorSetct, EntityTypeSetct, LURSetct〉
More details on context types are given in section 3.3.

• OperationSet is the set of all operations in the system. An operation OPR ∈ Op-
erationSet can be formally defined as a pair: OPR = 〈AccessModeOPR, Constrain-
tOPR〉
More details on OperationSet are given in section 3.5.

3.2 Context Predicate

Each context predicate is a predicate which represents the value for a contextual at-
tribute. We define a context predicate cp ∈ ContextPredicateSet as a 4-tuple:

1 Since Biba uses the term 'integrity level', for Bell-LaPadula, we prefer to use the term 'confi-

dentiality level' instead of 'security level'.

 A Context-Aware Mandatory Access Control Model 405

cp = 〈en, ct, r, v〉

where en ∈ {User, Subject, Object, Environment, ValueSetct1,… , ValueSetctn},

ct ∈ ContextSet, r ∈ RelatorSetct ,v ∈ ValueSetct, and ct1,…,ctn ∈ ContextSet. For ex-
ample, 〈John, Location, Is, Classroom〉 is a context predicate and indicates the current
location of subject John.

Management and updating context predicates is the responsibility of Context Man-
agement Unit (CMU). The details on the implementation of CMU are beyond the
scope of this paper, and will be explained in another paper. Context Managing
Framework [16], the SOCAM project [17], CASS project [18], CoBrA architecture
[19], the Context Toolkit [20] can be used as an infrastructure in implementation of
CMU. In general, we assume that CMU updates ContextPredicateSet based on
changes of environment, users and system and therefore the consistency and accuracy
of ContextPredicateSet is permanently preserved.

If 〈E, X, R, V〉 is a context predicate, X[E][R] will indicate the value assigned to en-
tity E for context type X and relator R. In other words, X[E][R] = V. For instance if
〈John, Location, Is, Classroom〉 ∈ ContextPredicateSet, then Location[John][Is] =
Classroom. If such a context predicate does not exists in ContextPredicateSet, we will
assume that X[E][R] = ⊥ (read as null).

3.3 Context Type

Informally, a context is a property related to every entity or a subset of existing enti-
ties in the system. In fact, context type represents a contextual attribute of the system;
e.g. time or location of entities. Formally, a context type ct ∈ ContextSet is defined as
a 5-tuple:

ct = 〈ValueSetct, OperatorDefinerSetct, RelatorSetct, EntityTypeSetct, LURSetct〉

More detail on each component of the context type ct is given below.

3.3.1 Set of Admissible Values: ValueSetct
ValueSetct denotes the set of values that can be assigned to variables of context type
ct. Set representation can be used to determine members of ValueSetct. For instance,
the value set of context type time can be defined in the following way using set com-
prehension: ValueSettime = {n : | 0 ≤ n ≤ 24}.

3.3.2 Operator Definer Set: OperatorDefinerSetct
OperatorDefinerSetct is comprised of a finite number of functions each of which de-
fines logical, set and other user-defined operators on the value set of context type ct.
Each of these functions requires three arguments, but the types of these arguments are
different among the functions. Generally speaking, each Operator-Definerct deter-
mines that for two arbitrary values A and B related to ValueSetct and op ∈ a subset of
OperatorSet whether (A op B) is true or not. Since the signature of each Opera-
tor-Definer function is unique, the signature must be included along the definition.
The informal signature of Operator-Definer function is as follows:

Operator-Definerct: A set of values related to ValueSetct × a set of operators × A set
of values related to ValueSetct → {true, false}

406 J.H. Jafarian, M. Amini, and R. Jalili

For some context types, the specification of an Operator-Definer function might be
complex. There exist two alternatives for definition of Operator-Definer function.
First, it can be specified using propositional logic and second, it can be incorporated
into model using an external module. The detail is omitted due to lack of space.

3.3.3 Set of Admissible Relators: RelatorSetct
RelatorSetCT represents the set of admissible relators for context type CT. For in-
stance, for context type location, RelatorSetlocation can be defined as follows:

 RelatorSetlocation = {Is, Entering, Leaving}

3.3.4 Set of Admissible Entity Types: EntityTypeSetct
EntityTypeSetct denotes the set of entity types related to context type ct. In addition,
the value set of other context types can be included in EntityTypeSetct and it simply
means that a context type might express a property about a value of another context
type. In fact, EntityTypeSetct is a subset of the set {Subject, Object, Environment, Value-
Setct1

,… , ValueSetctn
}. As an example, context type location represents a property

which is only related to users, subjects and objects and therefore:

EntityTypeSetLocation = {User, Subject, Object}

As another example, consider a context type locationlvl which associates a confiden-
tiality level with each value of context type location. Then:

EntityTypeSetlocationlvl = {ValueSetlocation}

3.3.5 Level Update Rules: LURSetct
Each level update rule (LUR) describes how confidentiality or integrity levels of us-
ers, subjects and objects are updated based on their contextual values for context type
ct. Informally, a LUR ∈ LURSetct is a state machine in which confidentiality or integ-
rity levels represent states and 'conditions on contextual values' corresponds to transi-
tions. When a contextual value of context type ct related to an entity changes, the
conditions are evaluated and entity's (confidentiality or integrity) level is updated
based on the result of evaluation.

LURSetct denotes a set which itself is comprised of two sets of LURs: confidential
level update rule set or C-LURSetct and integral level update rule set or I-LURSetct.

C-LURSetct includes confidential level update rules of type ct (C-LURct). A
C-LURct specifies how confidentiality level of entities is updated based on changes in
context predicates of type ct.

The confidential level update rules of C-LURSetct are generally divided into four
categories. The first, second and third categories includes C-LURct,USR, C-LURct,SBJ,
and C-LURct,OBJ respectively. Each of these rules defines a level update rule for confi-
dentiality level of users/subjects/objects based on changes in their contextual value for
context type ct. The fourth category includes a group of C-LURs in the form of
C-LURct,en. Each of these LURs defines a level update rule for confidentiality level of
a special entity. For instance, C-LURct,en defines how confidentiality level of an entity
en changes based on its contextual value for context type ct. It is evident that if
C-LURSetct contains a specialized C-LUR for an entity, it overrides the general
C-LURs defined in other categories. Notice that inclusion of these categories in
C-LURSetct is optional and C-LURSetct might be even empty.

 A Context-Aware Mandatory Access Control Model 407

I-LURSetct includes integral level update rules of context type ct (I-LURct). An
I-LURct specifies how integrity level of entities is updated based on changes in con-
text predicates of type ct. The integral level update rules of I-LURSetct are generally
divided into four categories as defined for C-LURSetct. As above, inclusion of these
categories in I-LURSetct is optional and I-LURSetct might be even empty.

Confidential/Integral Level Update Rule: C-LURct, I-LURct. As mentioned earlier,
each LUR is simply a state machine. Also, LURs are divided into two categories:
C-LURs and I-LURs. For a C-LUR, ConfLvl denotes the set of states and for an
I-LUR, IntegLvl constitutes this set. The transitions, on the other hand, are simply
some conditions on contextual values of entities for context type ct.

For an LUR to act in a correct way, we need to store the previous confidential-
ity/integrity levels of an entity, before applying that LUR to it. The reason for such
need will be explained later. Specifically, we need two extra variables for every pair
of (entity, context type). For a pair like (en, ct), these variables are represented by
λct(en) and ωct(en) and are initialized in the following way:

∀ ct ∈ ContextSet∀ en ∈ (Subject ∪ Object ∪ User).λct(en) = λ(en) ∧ ωct(en) = ω(en)

Each transition is composed of a set of statements each of which is a conjunction of
two conditions: one on contextual value and one on previous confidentiality/integrity
levels. The transition takes place if all conditions of all statements are evaluated to true.
For instance, suppose in a C-LURct the following transitions is defined:

{(Is, ≥,10, (=,TS)),(Is,≤ 20,(=,TS))}

This transition takes place if the following statement is evaluated to true:

(ct[en][Is] ≥ 10 ∧ λct(en) = TS) ∧ (ct[en][Is] ≤ 20 ∧ λct(en) = TS)

Furthermore, the second condition is optional and can be equal to (⊥, ⊥); since some-
times there is no restriction on the previous confidentiality/integrity level.

Due to lack of space, the formal definition of a level update rule is omitted here. In-
stead, an example is used to clarify the concept. Assume ConfLvl = 〈TS,S,C,U〉. Fig. 1
shows C-LURAge,OBJ that describes how objects' confidentiality level is updated based
on their Age.

Fig. 1. Confidential level update rules of context type Age for objects: C-LURAge,OBJ

408 J.H. Jafarian, M. Amini, and R. Jalili

C-LURAge,OBJ simply specifies that the confidentiality level of an object decreases
every decade with the restriction that the confidentiality level of an object can never
decrease more than two levels. In particular, assume a document named Doc is 10 to
20 years old and λAge(Doc) = λ(Doc) = S. When C-LURAge,OBJ is applied to Doc for
the first time, the transition ({(Is,≥,10,(=,S)), (Is,≤,20, (=,S))}) is evaluated to true and
therefore, λAge(Doc) = S, λ(Doc) = C. In other words, the above transition denotes the
following conditional statement:

(Age[Doc][Is] ≥ 10 ∧ λAge(Doc) = S) ∧ (Age[Doc][Is] ≤ 20 ∧ λAge(Doc) = S)

As long as the age of Doc is between 10 and 20, application of C-LURAge,OBJ on Doc
causes no change in levels, since none of the transitions from state C to U are evalu-
ated to true. When its age is changed to above 20, the transition ({(≥,20,Is,(=,S))}) is
evaluated to true and the following assignments takes place:

λAge(Doc) = C, λ(Doc) = U

Algorithms for Applying LURs to Entities. In this section, algorithms for applying
LURs to entities are presented. To reduce the complexity, we propose two algorithms:
one for C-LURs and one for I-LURs.

Apply-CLUR (ct ∈ ContextSet, I ∈ C-LURSetct, e ∈ EntitySet\ {environment}){
λct(e) = λ(e)
For each state s in ConfLvl

For each transition from λ(e) with label {(co1,v1,r1,P1),...,(con,vn,rn,Pn)}
to s in I

if ((P1 = (⊥,⊥) AND Operator-Definerct(ct[e][r1], co1, v1)) OR
(P1 = (do1,l1) AND Operator-Definerct(ct[e][r1],co1,v1) AND

λct(e) do1 l1))
AND
…
AND
if ((Pn = (⊥,⊥) AND Operator-Definerct(ct[e][rn], con, vn)) OR
(Pn = (don,ln) AND Operator-Definerct(ct[e][rn], con, vn) AND

λct(e) don ln))
λ(e) = s

}

In order to preserve the confidentiality level of entity before being changed, λ(e) is
assigned to λct(e). Next, each transition from state λ(e) to all other states is evaluated.
If the result of evaluation for a transition to a state s is true, s is assigned to λ(e). If
none of the transitions is evaluated to true, λ(e) is not changed.

Furthermore, for every statement (coi,vi,ri,Pi) of a transition, if Pi = (⊥,⊥), then
only the first condition will be evaluated (Operator-Definerct(ct[e][ri], coi, vi)). But if
Pi ≠ (⊥,⊥) both conditions will be evaluated:

Operator-Definerct(ct[e][ri], coi, vi) AND λct(e) doi li

To apply C-LURct to an entity en, Apply-CLUR will be called in the following way:

Apply-CLUR(ct,C-LURct,en)

 A Context-Aware Mandatory Access Control Model 409

Since the algorithm for applying I-LURs to entities has minor changes compared to
Apply-CLUR (λ substituted with ω and ConfLvl substituted with IntegLvl), we omit
the details here.

The Reason for Storing Previous Levels of Entities. As mentioned above, we need two
extra variables for each pair of (e, ct) where e ∈ EntitySet \ {environment} and ct ∈
ContextSet: one for storing previous confidentiality level of the entity before being
changed by one of C-LURs of ct and one for storing its previous integrity level before
being changed by one of I-LURs of ct. They are represented by λct(en) and ωct(en)
respectively.

Since, LURs are applied to entities on special occasions, for a change in context, it
is impossible to find out whether an LUR has already been applied to an entity or not.
In order words, when a change occurs in context, there must be a way to recognize
whether this change has already been considered or not. These extra variables are
needed to for this matter. Further detail on this issue is omitted due to lack of space.

An Algorithm for Updating Levels of an Entity. UpdateEntityLevels updates the confi-
dentiality and integrity levels of a specific entity (passed to it as an argument) based
on the appropriate LURs of all context types in ContextSet.

UpdateEntityLevels(e ∈ EntitySet\{environment}, ET ∈ {USR,SBJ,OBJ}){
for each context type ct ∈ ContextSet in order

if C-LURct,e ∈ C-LURSetct
Apply-CLUR(ct, C-LURct,e, e)

else if C-LURct,ET ∈ C-LURSetct
Apply-CLUR(ct, C-LURct,ET, e)

if I-LURct,e ∈ I-LURSetct
Apply-ILUR(ct, I-LURct,e, e)

else if I-LURct,ET ∈ I-LURSetct
Apply-ILUR(ct, I-LURct,ET, e)

}

In this algorithm, ET represents the type of Entity. USR, SBJ, and OBJ represent
User, Subject and Object sets respectively. The LURs of context types are applied
based on the ordering defined by ContextSet; i.e. the first element of the ordered set is
applied first and so forth. For each context type ct, it first checks if there is a specific
C-LUR defined for entity e (If C-LURct,e ∈ C-LURSetct) and if so, the C-LUR is ap-
plied to the entity. Otherwise, it checks if there is a general C-LUR based on the type
of entity (else if C-LURct,ET ∈ C-LURSetct) to be applied to it. The same procedure is
adopted for I-LURs.

3.4 Operations

3.4.1 AccessRightSetopr
The set of access rights in CAMAC model is comprised of read and write. In
CAMAC, every operation, based on what it carries out, includes a subset of these
modes; e.g. if it only does an observation of information and no alteration, it only
includes read and so on. AccessRightSetopr is a subset of the set {read, write} which
denotes access right set of the operation.

410 J.H. Jafarian, M. Amini, and R. Jalili

3.4.2 Constraintopr
Each operation includes a constraint which denotes the prerequisite conditions that
must be satisfied before the operation is executed. For opr ∈ OperationSet, this con-
straint is represented by Constraintopr and is mainly composed of condition blocks.
There exist three types of condition blocks: Confidential condition blocks (C-CB),
Integral condition blocks (I-CB) and Contextual condition blocks (Cxt-CB). In defin-
ing each condition block, we make use of variable USR, SBJ and OBJ to represent
user, subject and object respectively. Use of these variables allows us to define ge-
neric constraints. Next, we define different types of condition blocks and later a
grammar for derivation of constraints is presented.

Confidential Condition Block (C-CB). A confidential condition block is defined as a
triple 〈λ1, op, λ2〉 in which λ1, λ2 ∈ ConfLvl and op ∈ DomOperatorSet. For instance
〈λ(SBJ), ≥, λ(OBJ)〉 is a C-CB denoting the simple security property of
Bell-LaPadula.

Integral Condition Block (I-CB). An integral condition block is defined as a triple 〈ω1,
op, ω2〉 in which ω1, ω2 ∈ IntegLvl and op ∈ DomOperatorSet. For instance 〈ω(SBJ),
≥, ω(OBJ)〉 is an I-CB denoting the integrity *-property of Biba.

Contextual Condition Block (Cxt-CB). A contextual condition block is defined as a
triple 〈Value1, op, Value2〉ct in which Value1,Value2 ∈ ValueSetct{.element}, ct ∈ Con-
textSet and op ∈ OperatorSet. The subscript ct determines that operator definer func-
tions of context type ct must be used to evaluate this Cxt-CB. Instances of Cxt-CB are
〈Time[environment][Is], <,9〉Time and 〈Age[SBJ][Is],>,Age[OBJ][Is]〉Age.

A Grammar for Derivation of Constraints. Constraints are built using the following
unambiguous grammar:

Constraint → Constraint ∨ C1
Constraint → C1
C1 → C1 ∧ C2
C1 → C2
C2 → (Constraint)
C2 → Cxt-CB|C-CB|I-CB

For example, for an operation named GenerateReport the following constraint may
be defined using the above grammar:

ConstraintGenerateReport = (〈λ(SBJ),≥,S〉) ∨ (〈λ(SBJ),=,C〉 ∧ 〈Time[environment][Is], ≥, 6〉Time ∧
〈Time[environment][Is], ≤, 12〉Time)

Definition of operations finalizes specification of elements of CAMAC model.
Next we consider how requests are authorized in CAMAC.

3.5 Authorization of Action

A subject's request to access an object is represented by an action. Formally, an action
A is a triple 〈s, o, opr〉 in which s ∈ Subject, o ∈ Object and opr ∈ Operation. Fur-
thermore the user of an action is the user on behalf of whom the subject is acting; i.e.
u = RepOf(s). The algorithm AuthorizeAction handles authorization of actions.

 A Context-Aware Mandatory Access Control Model 411

AuthorizeAction(A = 〈s, o, opr〉)
{

u = RepOf(s)
ConstraintA = Constraintopr

 UpdateEntityLevels(u,USR)
UpdateEntityLevels(s,SBJ)
UpdateEntityLevels(o,OBJ)
λ(s) = GLB(λ(s), λ(u))

ω(s) = GLB(ω(s), ω(u))
if Read ∈ AccessRightSetopr

ConstraintA = ConstraintA ∧ (〈λ(SBJ),≥,λ(OBJ)〉 ∧
〈ω(OBJ),≥,ω(SBJ)〉)
if Write ∈ AccessRightSetopr

ConstraintA = ConstraintA ∧ (〈λ(SBJ),≤,λ(OBJ)〉 ∧
〈ω(OBJ),≤,ω(SBJ)〉)

Assign u, s, o to USR, SBJ, OBJ in ConstraintA respectively
return Evaluate(Constraintopr)

}

Upon occurrence of an action, initially the confidentiality and integrity levels of
user, subject and object of an action must be updated. As mentioned in section 3.3,
UpdateEntityLevels algorithm updates the levels of an entity using all the applicable
LURs of all context types. Calling the algorithm for user, subject and object takes care
of these updates. Since the confidentiality and integrity levels of a subject must be
dominated by the corresponding levels of its user, after updating levels of user and
subject, the following assignments seems indispensable:

λ(s) = min(λ(s), λ(u)), ω(s) = min(ω(s), ω(u))

After level updates are done, the constraint of the action must be evaluated. Con-
straint of an action A is represented by ConstraintA and is initially equal to operation
constraint. Before evaluation takes place, the corresponding confidentiality and integ-
rity constraints must be added to the constraint of action based on access right set of
the operation. In other words, if read ∈ AccessRightSetopr, simple security property of
Bell-LaPadula and simple integrity property of Biba must be added to ConstraintA

read ∈ AccessRightSetopr.ConstraintA = ConstraintA ∧ (〈λ(SBJ),≥,λ(OBJ)〉 ∧
〈ω(OBJ),≥,ω(SBJ)〉)

Also, if write ∈ AccessRightSetopr, *-property of Bell-LaPadula and integrity
*-property of Biba must be added to ConstraintA.

write ∈ AccessRightSetopr.ConstraintA = ConstraintA ∧ (〈λ(OBJ),≥,λ(SBJ)〉 ∧
〈ω(SBJ),≥,ω(OBJ)〉)

At last, u, s and o are assigned to USR, SBJ and OBJ respectively and the con-
straint is evaluated using a parser, operator definer functions of context types, and
dominance relationship. If the result of evaluation is true, the action is granted and
otherwise denied.

412 J.H. Jafarian, M. Amini, and R. Jalili

4 CAMAC Expressiveness

Various mandatory concepts can be expressed using CAMAC. In this paper, due to lack
of space, we only express set of categories with it, while some famous models and poli-
cies such as Dion and Chinese Wall can conveniently be expressed by the model.

The confidentiality levels in the original Bell-LaPadula model are defined by two
components: a classification and a set of categories. On the other hand, as defined in
section 3.1 the confidentiality levels of CAMAC model consists of the first compo-
nent and the set of categories is simply ignored. The same statement holds for
integrity levels of Biba. We intend to show that the set of categories is inherently a
contextual concept and can be simply modeled as a context type. Here, we take confi-
dentiality levels into consideration. The set of categories for integrity levels can be
modeled in a similar way.

The set of categories is a subset of a non-hierarchical set of elements and the ele-
ments of this set depend on considered environment and refer to the application area
to which information pertains or where data is to be used. A classic example of this
set is {Nato, Nuclear, Crypto} which denotes the categories in which the classifica-
tion of the confidentiality level is defined. We define a context type C-Category as
follows:

C-Category = 〈ValueSetC-Category, OperatorDefinerSetC-Category, RelatorSetC-Category, EntityType-
SetC-Category, LURSetC-Category〉

• ValueSetC-Category = {P({Nato,Nuclear,Crypto})}
• OperatorDefinerSetC-Category

{
Operator-DefinerC-Category (A ∈ ValueSetC-Category, o ∈ OperatorSet,B ∈ Val-

ueSetC-Category){
(A = {Nato} ∧ B = {Nato,NuClear} ∧ o = '⊂') ∨ ….

}
}

• RelatorSetC-Category = {Is}
• EntityTypeSetC-Category = {User, Subject, Object}
• LURSetC-Category = {C-LURSetC-Category, I-LURSetC-Category}

o C-LURSetC-Category = φ, I-LURSetC-Category = φ

Now the constraints of all operations in OperationSet are changed in the following
way:

∀ opr ∈ OperationSet | read ∈ AccessRightSetopr .
Constraintopr = (Constraintopr) ∧ (〈C-Category[OBJ][Is],⊆,C-Category[SBJ][Is]〉C-Category)

∀ opr ∈ OperationSet | write ∈ AccessRightSetopr .
Constraintopr = (Constraintopr) ∧ (〈C-Category[SBJ][Is],⊆,C-Category[OBJ][Is]〉C-Category)

Assume opr ∈ OperationSet and read ∈ AccessRightSetopr. Based on definition, a
confidentiality level L1 = (c1,s1) is higher or equal to (dominates) level L2 = (c2,s2) if
and only if the following relationships are valid: c1 ≥ c2, s1 ⊇ s2

Notice that an action A = 〈s,o,opr〉 is authorized if the following condition blocks
are true: 〈λ(s), ≥, λ(o)〉, 〈C-Category[s][Is], ⊇, C-Category[o][Is]〉

 A Context-Aware Mandatory Access Control Model 413

These condition blocks denote aforementioned relationships and since both of them
must be satisfied for an action including opr to be authorized, it has the same effect as
incorporating set of categories in confidentiality levels.

5 Evaluation and Conclusion

CAMAC model could be evaluated and compared with other mandatory models on
plenty of basis: authorization time complexity, complexity of policy description, sup-
port for context-awareness, expressiveness and security objective. Here we only con-
sider time complexity of authorization due to lack of space.

One important metric would be the computational time needed to authorize an
action.

It can be shown that for the computational time to be polynomial, the maximum of
time complexities of all Operator-Definer functions, must be polynomial. This as-
sumption may not be necessarily true in all cases. Specifically, if the function is added
as an external module to the system, there is no guarantee in this regard.

In this paper, we explained the need for a context-aware mandatory access control
model and presented CAMAC as a model which satisfies such a need. CAMAC
model utilizes context-awareness to provide dynamicity and context-sensitivity of
levels to enable specification of sophisticated mandatory policies. In addition, various
mandatory controls can be incorporated into the CAMAC model. Bell-LaPadula and
Biba strict integrity policy are the inbuilt part of the model and other Biba policies,
Chinese Wall policy and Dion can be appended to the model using context types.
Also, an amalgamation of mandatory policies can be used simultaneously. For in-
stance, Bell-LaPadula, Biba strict integrity policy, and Chinese Wall Policy can all be
deployed at once.

References

1. Bell, D.E., LaPadula, L.J.: Secure Computer System: Unified Exposition and Multics In-
terpretation. Technical Report MTR-2997 Rev. 1. MITRE Corporation (1976)

2. Bell, D.E., LaPadula, L.J.: Secure Computer Systems: Mathematical Foundations. Techni-
cal Report MTR-2547. MITRE Corporation (1976)

3. Biba, K.: Integrity Considerations for Secure Computer Systems. In: Corporation, M.
(ed.): Technical Report MTR-3153, Bedford, MA (1977)

4. Dion, L.C.: A Complete Protection Model. In: IEEE Symposium on Security and Privacy,
Oakland, CA, pp. 49–55 (1981)

5. Brewer, D.F.C., Nash, M.J.: The Chinese Wall Security Policy. In: IEEE Symposium Re-
search in Security and Privacy, pp. 215–228. IEEE CS Press, Los Alamitos (1989)

6. Sandhu, R.S.: Lattice-Based Access Control Models. IEEE Computer 26(11), 9–19 (1993)
7. Sandhu, R.S., Samarati, P.: Access Controls: Principles and Practice. IEEE Communica-

tions 32 (9), 40–48 (1994)
8. Kumar, A., Karnik, N., Chafle, G.: Context Sensitivity in Role Based Access Control.

ACM SIGOPS Operating Systems Review, 53–66 (2002)
9. Al-Kahtani, M.A., Sandhu, R.: A Model for Attribute-Based User-Role Assignment. In:

18th Annual Computer Security Applications Conference, pp. 353–364. IEEE Computer
Society Press, Las Vegas (2002)

414 J.H. Jafarian, M. Amini, and R. Jalili

10. Covington, M., Moyer, M., Ahamad, M.: Generalized role-based access control for secur-
ing future applications. In: 23rd National Information Systems Security Conference, Bal-
timore, MD, USA (2000),
http://csrc.nist.gov/nissc/2000/proceedings/toc.pdf

11. Zhang, G., Parashar, M.: Context-aware dynamic access control for pervasive applications.
In: Communication Networks and Distributed Systems Modeling and Simulation confer-
ence, San Diego (2000)

12. Georgiadis, C.K., Mavridis, I., Pangalos, G., Thomas, R.K.: Flexible Team-based Access
Control Using Contexts. In: Sixth ACM Symposium on Access Control Models and Tech-
nologies, pp. 21–27. ACM Press, Chantilly (2001)

13. Hu, J., Weaver, A.C.: A Dynamic, Context-Aware Security Infrastructure for Distributed
Healthcare Applications. In: First Workshop on Pervasive Privacy Security, Privacy, and
Trust, Boston, MA, USA (2004), http://www.pspt.org/techprog.html

14. Ray, I., Kumar, M.: Towards a location-based mandatory access control model. Computers
& Security 25, 36–44 (2006)

15. Baldauf, M., Dustdar, S.: A Survey on Context-aware Systems. Technical report TUV-
1841-2004-24. Distributed Systems Group, Technical University of Vienna (2004)

16. Korpipää, P., Mäntyjärvi, J., Kela, J., Keränen, H., Malm, E.-J.: Managing Context Infor-
mation in Mobile Devices. IEEE Pervasive Computing 2 (3), 42–51 (2003)

17. Gu, T., Pung, H.K., Zhang, D.Q.: A Middleware for Building Context-Aware Mobile Ser-
vices. In: IEEE Vehicular Technology Conference, Milan, Italy, vol. 5, pp. 2656–2660
(2004)

18. Fahy, P., Clarke, S.: CASS: Middleware for Mobile, Context-Aware Applications. In:
Workshop on Context Awareness at MobiSys., Boston, pp. 304–308 (2004)

19. Chen, H., Finn, T., Joshi, A.: Using OWL in a Pervasive Computing Broker. In: Workshop
on Ontologies in Open Agent Systems, AAMAS 2003, Melbourne, Australia, pp. 9–16
(2003)

20. Dey, A.K., Salber, D., Abowd, G.D.: A Conceptual Framework and a Toolkit for Support-
ing the Rapid Prototyping of Context-Aware Applications. Human-Computer Interaction
(HCI) Journal 16(2-4), 97–166 (2001)

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 415–428, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Formal Security Analysis of
Electronic Software Distribution Systems

Monika Maidl1, David von Oheimb1 Peter Hartmann2,
 and Richard Robinson3

1 Siemens Corporate Technology, Otto-Hahn Ring 6, 80200 München, Germany
{monika.maidl,david.von.oheimb}@siemens.com

2 Landshut University of Appl. Sciences,
Am Lurzenhof 1, 84036 Landshut, Germany
peter.hartmann@fh-landshut.de

3 Boeing Phantom Works, P. O. Box 3707, MC 7L-70,
Seattle, WA 98127-2207, USA

richard.v.robinson@boeing.com

Abstract. Software distribution to target devices like factory controllers, medi-
cal instruments, vehicles or airplanes is increasingly performed electronically
over insecure networks. Such software often implements vital functionality, and
so the software distribution process can be highly critical, both from the safety
and the security perspective. In this paper, we introduce a novel software distri-
bution system architecture with a generic core component, such that the overall
software transport from the supplier to the target device is an interaction of sev-
eral instances of this core component communicating over insecure networks.
The main advantage of this architecture is reduction of development and certifi-
cation costs. The second contribution of this paper describes the validation and
verification of the proposed system. We use a mix of formal methods, more
precisely the AVISPA tool, and the Common Criteria (CC) methodology, to
achieve high confidence in the security of the software distribution system at
moderate costs.

1 Introduction

1.1 Network Enabled Software Distribution

In recent years, computer systems that support industrial applications, energy man-
agement and distribution, transportation systems, medical and many other applica-
tions started to use network interconnections for a range of communication needs.
One such need is the distribution of software to devices in the field, in particular to
allow for software updates. If such software is used to implement critical functionality
that can affect the safety of people or valuable property, the software distribution
process itself becomes highly critical. In other words, networked software distribution
makes the safety and/or security of a system dependent upon securing communication
over potentially insecure channels, facing threats like corruption, injection, diversion,
replay, and disclosure of the software payload.

416 M. Maidl et al.

Various methods can be used to ensure security properties of networked systems.
However, methods typically used in software development, such as testing, do not
work well for security properties due to the severe consequences of subtle errors or
small oversights. After all, security properties have to hold in the presence of attack-
ers who actively try to exploit any weaknesses. A better approach to assess security of
systems is to work with a well-designed catalog of requirements that is based on a
broad range of experience. Certification according to Common Criteria, as discussed
in the next section, falls into this category. Another proven approach is to use exhaus-
tive search as offered by formal methods, in our case by model checking.

1.2 Security Certification

For assessing the security of a system, i.e., assuring that the system implements coun-
termeasures for all relevant security threats, the Common Criteria (CC) [5] is one of
the most advanced and widely accepted methodologies. The aim of an evaluation
according to the CC is to systematically and objectively demonstrate that the coun-
termeasures are sufficient and correctly implemented. The first step is to produce a
specification called Security Target (ST). It defines the Target of Evaluation (TOE)
which is the software, firmware and/or hardware component(s) to be evaluated, iden-
tifies threats the TOE is exposed to, derives objectives to cover the threats, states
functional requirements to implement the objectives, and demands assurance re-
quirements. The Security Target can be an instance of a generic Protection Profile
(PP) which specifies the evaluation of a class of systems. We have defined such PPs
for an Airplane Asset Distribution System (AADS) and its core component [7].

The CC predefined Evaluation Assurance Levels (EALs) range from 1 to 7 and de-
termine the rigor and depth of the analysis process. Evaluation at high assurance lev-
els, i.e., EAL5-EAL7, requires high effort for the design and implementation and also
for the CC evaluation. For example, EAL6 requires a semiformally verified design
based on a formal security model, and EAL7 requires full formal verification.

In [8] we have determined the assurance levels that must be met by a distribution
system for airplane software. Given the high criticality of some airplane software,
according to the NSA, EAL6 is recommended for safety-relevant threats, whereas
EAL4 is shown sufficient for threats on airline business. In general, the distribution of
software controlling safety-critical processes will require a high assurance level.

Usually CC certifications are applied to single strongly confined IT components,
not to whole distributed systems consisting of several interacting entities. This is done
mainly in order to limit the evaluation effort. The component-wise certification of
complex systems also gives flexibility for the assembly of the overall system: compo-
nents may be developed and certified individually, even by different partners.

On the other hand, we face the composition problem: the threats and vulnerabilities
at system level may be different from the ones at component level. Therefore, whether
the security objectives of the overall system are met as a consequence of the security
properties of the individually certified components is a question to be addressed sepa-
rately. The latest version 3.1 of the CC provides a first step to address this problem by
providing composed assurance package (CAP) evaluations. However, CAP evalua-
tions cannot achieve a high evaluation assurance level.

 Formal Security Analysis of Electronic Software Distribution Systems 417

1.3 Model Checking

As mentioned above, high assurance calls for formal analysis. Tool-supported formal
methods range from automatic model checkers to powerful theorem provers. In the
last years, several tools targeted for the verification of security protocols, i.e. proto-
cols that are based on the use of cryptographic measures, have been developed and
proven very successful. Among those, the AVISPA tool [1,2] offers a front-end and
several model checkers. In its design special care has been given to offer easy use
even in an industrial setting. It has been applied to many protocols, mainly of the
IETF. Other tools for verifying correctness of security protocols are ProVerif [3],
based on resolution theorem proving, and LySa [4], which is based on static analysis.

1.4 Our Contributions

Based on our experience with software distribution for avionics, automotive, and
healthcare equipment, we define a generic system architecture for a Software Distri-
bution System (SDS). We simplify the system design and its certification by defining
a generic core component, the Software Signer Verifier (SSV), instances of which are
used at every node of the system. The overall SDS from the software supplier to the
target device is essentially an interaction of several SSV instances.

For a cost-efficient and still rigorous assessment of the distributed SDS, we pro-
pose a hybrid approach, based on the Common Criteria and on formal methods, that
takes advantage of the architecture outlined above and addresses the composition
problem for CC-high assurance as mentioned in Section 0. We analyze and specify
the security requirements for the SSV and for the overall SDS with Protection Profiles
like [7]. Assuming that the involved SSV components are certified, we use the AV-
ISPA tool to formally specify and model check that the overall SDS protocol fulfils
the security objectives at system level.

The main contributions of this paper are the system architecture for a SDS, its for-
mal model as an abstract security protocol, and the validation of its system-level secu-
rity properties.

2 System Architecture of the Software Distribution System

2.1 Threats and Security Objectives for a SDS

In [8] we have presented a threat analysis and security objectives for an Airplane
Asset Distribution System (AADS). We can generalize those threats to more general
software distribution systems as follows:

Corruption. The contents of software items could be altered or replaced.

Injection. The target device's configuration could be affected by invalid software
items created by the attacker and installed on the target device.

Diversion. Software items could be diverted to an unsuitable destination, e.g. by dis-
turbing the execution of other software at that destination.

Wrong version. A mismatch between the target’s intended and actual configuration
could be caused by replaying outdated versions or by forging version numbers.

418 M. Maidl et al.

Disclosure. The attacker can get hold of the software item contents without having a
license, or reengineer functionality in order to help manipulating software.

The last threat was not included in [8] because it is not needed in the AADS context.
Yet in general, confidentiality might be necessary, e.g. to protect intellectual property.

Based on the threats described above we derive a set of security objectives that
must be met by the SDS:

Authenticity. Every software item accepted must originate from a genuine supplier.

Integrity. For every software item accepted at a target, its identity and contents must
not have been altered on the way—it must be exactly the same as at the supplier.

Confidentiality. If required, software items must be kept secret from the entry point of
the SDS (at the supplier) until reaching the target device.

Correct Destination. A target device must accept and receive only software items for
which it is the true destination intended by the target operator.

Correct Version. A target device must accept software items only in the latest version
approved by the target operator.

Note that the first three requirements are stated end-to-end, i.e. they are properties
stretching from the initial source of software assets to their final destination. In con-
trast, hop-by-hop properties refer to the transport of assets between adjacent entities,
for instance that in each step the integrity of an asset is preserved.

2.2 SDS Architecture

On the way from the software supplier to the target device, software items may be
handled at intermediate entities: software distributors or OEMs might receive the
software items from the supplier, and send it to the target operator, who bears re-
sponsibility for the safe operation of the target device, and has the authorization to
send software there. So the software distribution process consists of several hops, and
the SDS stretches over the IT systems related to the process at each of these entities.

Fig. 1 shows the overall flow of software items. Simpler scenarios are possible, e.g.
where the operator coincides with the distributor or even with the supplier.

Fig. 1. A typical Software Distribution System

For every transportation step, the software item has to be protected against the
threats listed above. Digital signatures and encryption using public key technology are
the fundamental security mechanisms used to implement protection for the SDS.
Signatures are generated by applying the private key of the sender to the contents, or
rather to the hash (which is a cryptographic checksum) of the contents. The recipient
applies the corresponding public key, compares the result with the contents which
have been received in the clear, and if there are no differences, the receiver can be

 Formal Security Analysis of Electronic Software Distribution Systems 419

sure that the contents have not been modified during transport and that only the owner
of the private key could have produced this signature. If in addition confidentiality is
required, the sender encrypts the signed message with the public key of the receiver.
Only the owner of the corresponding private key can decrypt and hence read the con-
tents, not an attacker intercepting it.

The intermediaries might just store and forward the software, or perform some lo-
cal processing, such as including owner specific license keys and setting target spe-
cific software parameters. In any case, the intermediary has to check the signature of
the previous entity and might add a new signature.

As the target operator is responsible for its target devices, he has the special task of
managing the software configurations on the devices, i.e. deciding which software
versions may be installed on which targets. This may take the form of an explicit
installation approval statement that is sent by the operator to a target, and authorizes
the installation of the software item with a suitable version at the specific target in-
stance. We do not specify how installation approval statements are transported se-
curely from the operator to the target. This can be done for example in an out of band
communication, or in a protected separate message, or it can be included in the dis-
tributed software package.

The target device verifies the integrity and authenticity of the software item using
the signature of the operator and checks, using the approval statement of the operator,
whether it is an approved recipient of the software item with the given version. Air-
plane software distribution typically uses an out of band process for the installation
approval: the airplane operator (i.e., the airline) issues installation orders in the form
of a work order on paper, to be executed by a mechanic. Similar processes might
apply in software distribution systems if target devices are located in the vicinity of
the operator. For other SDS, administration of the target device should be automatic
under remote control of the operator.

We structure the SDS into several instances of a signature application component
called Software Signer Verifier (SSV), which is responsible for applying digital sig-
natures on software items before transmitting them, and for verifying signatures on
software items received from other entities in the distribution process. For different
nodes involved in the software distribution, the SSV can be developed and certified
independently or one and the same SSV product can be used at all nodes.

2.3 SSV: The SDS Core Component

Each node in the above distribution chain runs an instance of the SSV, i.e. the SDS
core component. The SSV instances are used for:

Introducing unsigned software into the SDS by digitally signing and optionally en-
crypting it and making it available for other SSV instances.

Verifying the signature on software received from other SSV instances (after decrypt-
ing it if needed) and checking the authenticity and authorization of the sender.

Approving the software by adding a signature and optionally re-encrypting the soft-
ware and making it available to further SSV instances.

Delivering software out of the SDS after successfully verifying it.

420 M. Maidl et al.

Introduction of software into the SDS typically takes place at the supplier, yet may
take place also at intermediate entities, while software delivery happens at the soft-
ware target. All SSV instances except at a supplier verify incoming software. Adding
a new signature will be done usually at SSV instances located at distributors and op-
erators after some local processing of the software, such as adding license information
or by performing a quality inspection. Such processing is performed within the local
environment of the respective. Fig. 2 shows the SSV in its environment including the
flow of software.

Fig. 2. The generic Software Signer Verifier and its environment

3 Security Assessment of the SDS

3.1 Assumptions on the Operational Environment

Not all assurance issues related to software distribution can be covered by the security
assessment of the SDS at reasonable costs. For example the reliability of the Public
Key Infrastructure (PKI), which is used to provide keys and certificates for asset pro-
tection, is considered out of scope. According to the CC methodology, such aspects
are collected as assumptions on the operational environment of the assessed system.
The assumptions on the SSV environment are the following:

SSV protection. The SSV instances are protected against direct manipulation and
misuse. The SSVs run on a hardened operating system (OS), user access is possible
only locally and restricted by effective access control mechanisms. Keys, certificates
and other critical data are protected against manipulation and disclosure. Authorized
personnel are assumed to be trustworthy.

Secure local environment. The SSV instances and their underlying OS run in a secure
local environment, which may contain processing facilities for performing local opera-
tions on software items. An adequately configured firewall ensures that the SSV, its
underlying OS and the local environment are not compromised through network access.

Reliable PKI. It is assumed that the PKI used to certify keys used by the SSVs is
trustworthy and properly managed. Revocation information is issued regularly and
immediately after revocation of a signing key.

Target configuration enforcement. The local environment of the target SSV checks
whether the installation of received software items is authorized by an approval

 Formal Security Analysis of Electronic Software Distribution Systems 421

statement of the target operator. Depending on the system design, this assumption can
be relaxed, e.g. the SSV itself might perform such checks.

3.2 Certification of the SSV

The SSV is a component for which a security target may be produced according to the
CC methodology. The document [7] is a Protection Profile (PP) for the SSV in the
special case of airplane software distribution; however this PP can easily be adapted
to handle the very generic case discussed in this paper. The PP specifies the security
objectives of integrity and authenticity and – if required – of confidentiality at the
component level, and hence after successful CC certification of the SSV instances,
there will be sufficient evidence that the security mechanisms of SSVs achieve these
security objectives under the assumptions on the SSV environment stated above. The
remaining security objectives of correct destination and correct version and end-to-
end integrity and authenticity will be covered at system level by the formal analysis
described in the next sections.

3.3 The Protocol for End-to-End Software Distribution

In order to assess the correctness of the SDS at system level, we consider the interac-
tion between the SSV instances located at the different nodes. As the interaction con-
sists of exchanging cryptographically secured messages, we have chosen the form of a
cryptographic protocol analysis.

First we present the protocol in the common Alice-Bob notation. The different
nodes are abbreviated as follows: SUP software supplier, DIS software distributor,
OP target operator, TD target device and CA certificate authority. For each node N,
the associated private key is denoted by inv(KN).

In the first step, the supplier SSV imports assets from its local environment. In
every further step, the SSV at the respective node receives a signed asset and checks
the signature. Except in the last step, the SSV adds its approval signature, encrypts the
whole message if needed, and sends the new message to the next SSV instance.

1. SUP - {Asset.{h(Asset).DIS}_inv(KSUP).CertSUP}_KDIS -> DIS
2. DIS - {Asset.{h(Asset).DIS}_inv(KSUP).CertSUP
 .{h(Asset).OP }_inv(KDIS).CertDIS}_KOP -> OP
3. OP - {Asset.{h(Asset).DIS}_inv(KSUP).CertSUP
 .{h(Asset).OP }_inv(KDIS).CertDIS
 .{h(Asset).TD }_inv(KOP).CertOP}_KTD -> TD

We shortly explain the constructs used in Alice-Bob notation:

A - M -> B means message M sent from A to B
Asset means a software item including its identity
M.N means the concatenated contents of M and N
h(M) means the hash value of content M
{M}_inv(K) means content M signed with private key K
{M}_K means content M encrypted with public key K

422 M. Maidl et al.

As usual when producing a signature, not the asset itself is signed but only its hash
value. Note that the signature also includes the identity of the intended receiver. The
sender’s certificate, which ties the sender’s identity together with its public key, is
also included into the message. The certificates are self-signed or signed by a certifi-
cate authority (CA) that confirms the identity of the certificate holder.

In the SDS protocol, signatures are applied in parallel: every SSV keeps the old
signatures and adds its own. However, each SSV only checks the signature applied by
its immediate predecessor, but not the signatures applied in the steps before, as it is
not assumed that an SSV has a trust relationship with all previous nodes. For exam-
ple, the target device trusts its operator, but is not configured to know all potential
suppliers. For signatures with self-signed certificates, the check consists in looking up
the public key in a locally stored set of authorized senders. For instance, the target
device typically knows the public key of its operator. For CA-signed certificates, the
CA key has to be contained in a locally stored set of public keys of trusted CAs. We
assume that the two locally stored sets of trusted public keys are managed by a trust-
worthy administrator.

We do not model installation approvals explicitly. Instead, we model part of the
approval information by including the identity of the intended target device in the
asset signature applied by the operator.

3.4 Security Properties

For the SDS protocol, we formally validate the authenticity of the asset origin and the
integrity and confidentiality during asset transport. More precisely, we show that

(1) assets accepted by the target device have indeed been sent by the supplier,
(2) assets accepted by the target have not been modified during transport,
(3) asset authenticity and integrity also hop-by-hop, i.e. from any SSV instance

to the next, in particular between the operator and target device, and
(4) assets remain secret among the SSVs.

Clearly the security objectives of authenticity, integrity and confidentiality, stated
in Section 0, are covered by (1), (2), and (4). Further, when sending a message, every
sender includes the name of the intended receiver in the signature, and the receiving
SSV checks whether it is the intended destination, so together with (3), the objective
correct destination is also satisfied. In other words, the signature of the operator con-
taining the name of the target device models part of the installation approval state-
ment for the asset. The remaining part of the installation approval statement, namely
the version information, is not contained in our model. The corresponding security
objective of correct version is covered by the target configuration enforcement as-
sumption, i.e. that version checking is done by the SSV local environment.

Hence the formal analysis, presented in the next section, implies that our formal
model of the SDS architecture satisfies the security objectives at the system level. As
the implementation details of the SSVs at the different nodes are covered by CC certi-
fication, we gain substantial confidence in the overall security of the SDS.

 Formal Security Analysis of Electronic Software Distribution Systems 423

4 Formal Analysis of the SDS Protocol

The Alice-Bob notation, showing only message exchanges, is not detailed and precise
enough for any thorough analysis. It leaves important processing steps implicit, in
particular the checks an agent performs to accept a message and the parts of received
messages and other state information the agent uses to construct further messages.
The specification language of the AVISPA tool, HLPSL, offers constructs to express
all steps involved in the message exchange in a precise, declarative way. Agents are
defined generically as a role, of which multiple instances may exist in a given system
or scenario. The behavior of a role is specified as a set of state transitions. During
such a transition, an agent receives and checks messages before sending new mes-
sages, which then can be received in a transition by another agent.

Instead of individually modeling all roles, i.e. supplier, distributor, operator and
target device, we use the fact that all run an instance of the SSV component. Hence
we can specify a parameterized role, called SSV, which is then instantiated multiple
times to represent the overall SDS protocol.

Figure 3 shows the header declaration for the SSV role. The parameters are used to
configure the different instances, e.g. Import is true if signed assets may be received.
The parameter KeySet holds a set of public keys that acts as authorization informa-
tion: software items signed with a key in this set are accepted. For instance, the target
device only accepts software items signed by its operator. Alternatively, signed soft-
ware items can be sent together with a CA-signed certificate, and are accepted if the
public key of the CA is contained in KCASet.

The local variables of the SSV include the variable State, which acts as a pro-
gram counter, and others that are mainly used to hold values received in messages.

role softwareSignerVerifier(
 SND,RCV: channel(dy),
 SessN: nat, % session number, needed just for technical reasons

SUP,TD: agent, % supplier and target, just for expressing asset_end_to_end
 Import,Export: bool,% Import is true if a signed asset is expected,
 % Export is true if a signature has to be added.
 SSV, NextSSV: agent,

KSSV,KNextSSV: public_key, % public key of this SSV and the one to
 % which it sends messages

 CertSSV: {agent.public_key
 }_inv(public_key), % certificate for the private key inv(KSSV)
 KCASet: public_key set, % set of accepted CA certificates
 KeySet: public_key set % set of public keys of authorized senders
)
local
 State: nat,
 Asset: text,
 Msg,X,PrevSigs: message,
 KCA,KprevSSV: public_key,
 Cert: {agent.public_key}_inv(public_key),
 PrevSSV: agent

init
 State := 0

Fig. 3. Header and local variables of the SSV role

424 M. Maidl et al.

There are five transition rules, presented in Figure 4. The first covers the case that
an asset is imported from the local environment (in unsigned form). The second and
third rules cover the reception of a signed part, authorized either by a CA-signed cer-
tificate or by a public key contained in the internal key set. The remaining two rules
describe what the SSV does with the received asset: either forward it in signed form
to the next one, or consume it.

transition

introduceNew.
 State = 0 /\ Import = false /\ RCV(start)
 =|> State':= 1 /\ Asset' := new() /\ PrevSigs' := nil
 /\ secret(Asset',asset,{})

importCASignedCert.
 State = 0 /\ Import = true
 /\ RCV({Asset'.PrevSigs'}_KSSV)
 /\ PrevSigs' =
 X'.({h(Asset').SSV.SessN}_inv(KprevSSV').Cert')
 /\ Cert' = {PrevSSV'.KprevSSV'}_inv(KCA')
 /\ in(KCA',KCASet) % check if CA is in the accepted CA set
 =|> State':= 1
 /\ wrequest(SSV,PrevSSV',asset_hop_by_hop,Asset')

importSelfSignedCert.
 State = 0 /\ Import = true
 /\ RCV({Asset'.PrevSigs'}_KSSV)
 /\ PrevSigs' =
 X'.({h(Asset').SSV.SessN}_inv(KprevSSV').Cert')
 /\ Cert' = {PrevSSV'.KprevSSV'}_inv(KprevSSV')
 /\ in(KprevSSV',KeySet) % check if signing key acceptable
 =|> State':= 1
 /\ wrequest(SSV,PrevSSV',asset_hop_by_hop,Asset')

send.
 State = 1 /\ Export = true /\ RCV(start)
 =|> State':= 2
 /\ SND({Asset.PrevSigs.({h(Asset).NextSSV.SessN}_inv(KSSV)
 .CertSSV)}_KNextSSV)
 /\ witness(SSV,NextSSV,asset_hop_by_hop,Asset)
 /\ witness(SUP,TD ,asset_end_to_end,Asset)

final.
 State = 1 /\ Export = false /\ RCV(start)
 =|> State':= 2 /\ wrequest(TD,SUP,asset_end_to_end,Asset)

Fig. 4. Transitions of the SSV role

We explain the second transition in more detail. A transition is divided into a condi-
tion part in which a message may be received and checked, and an action part in which
a message may be sent. Variables can occur in a transition in primed or unprimed form,
where the unprimed from refers to the value of the variable before the transition,
whereas the primed form refers to the value of the same variable after the transition.

 Formal Security Analysis of Electronic Software Distribution Systems 425

Variables can obtain a new value once during a transition, either by assignments, written
in the action part, or by pattern matching in the condition part, typically during reception
of a message. For example, State = 0 means the condition that the variable State
has the value zero, while State':= 1 means that the variable State is assigned a
new value: one. The expression {Asset'.PrevSigs'}_KSSV means that a message
that must be encrypted with the key KSSV is received, the first part of which is stored
in the variable Asset, and the second part is stored in PrevSigs. The next line
specifies the constraint that the second part of the message has a specific form, namely
X'.({h(Asset').SSV.SessN}_inv(KprevSSV').Cert'). As Asset has al-
ready been assigned a value in this transition, in this way it is checked whether the hash
value of the asset is correct. Furthermore, the name of the receiving agent must be the
identity of the current SSV The public key with which the signature can be validated is
stored in KprevSSV. Next the certificate is validated: It has to contain the identity of
KprevSSV, and has to be signed by a CA whose public key is contained in KCASet.
As a by-product of these checks, the SSV learns the identity of the sender, stored in the
variable PrevSSV. As explained above, the SSV checks only the signature applied by
the direct sender. This is modeled by using the variable X' for the signatures that are
not handled and by not performing verification on X'

Fig. 5 shows the composed role called session, which ties together the instan-
tiations of the SSV needed for the end-to-end transport of one asset. Each instantiated
SSV is configured with its own parameters. For instance, the eighth parameter is the
name of the agent, i.e. SUP in the first instantiation, DIS in the second and so on.

role session(SND,RCV: channel(dy),SessN: nat,
 SUP,DIS,OP,TD: agent,
 KSUP,KDIS,KOP,KTD,KCA: public_key,
 SUPCert,DISCert,OPCert,TDCert:
 {agent.public_key}_inv(public_key),
 SUPKeySet,DISKeySet,OPKeySet,TDKeySet: public_key set)
def=

composition
 softwareSignerVerifier(SND,RCV,SessN,SUP,TD,false,true,

SUP,DIS,KSUP,KDIS,SUPCert,{KCA},SUPKeys)
/\ softwareSignerVerifier(SND,RCV,SessN,SUP,TD,true,true,

DIS,OP ,KDIS,KOP ,DISCert,{KCA},DISKeys)
/\ softwareSignerVerifier(SND,RCV,SessN,SUP,TD,true,true,

OP ,TD ,KOP ,KTD ,OPCert ,{KCA},OPKeys)
/\ softwareSignerVerifier(SND,RCV,SessN,SUP,TD,true,false,

TD,none,KTD,knone,TDCert ,{} ,TDKeys)
end role

Fig. 5. Specification of the session role

The last part of the model specifies the environment, including initializing channels
and other parameters, defining the initial knowledge of the attacker, and starting three
different sessions of the protocol, for instance a session between supplier sup1 with
a CA-signed certificate Sup1Cert, distributor dis, operator op, and target device td.

426 M. Maidl et al.

role environment() def=

local
 SND,RCV: channel(dy),
 SUP1Cert,SUP2Cert,DISCert,OPCert,TDCert:
 {agent.public_key}_inv(public_key),
 SUPKeys,DISKeys,OPKeys,TDKeys: public_key set

const
 sessN1,sessN2,sessN3: nat,

 sup1, sup2, sup3, dis, op, td : agent,
 ksup1,ksup2,ksup3,kdis,kop,ktd,kca: public_key,
 asset_hop_by_hop,asset_end_to_end,asset: protocol_id

init
 SUP1Cert := {sup1.ksup1}_inv(kca) /\
 SUP2Cert := {sup2.ksup2}_inv(ksup2) /\ % self-signed
 DISCert := {dis .kdis }_inv(kca) /\
 OPCert := {op .kop }_inv(kop) /\ % self-signed
 TDCert := {td .ktd }_inv(ktd) /\ % self-signed, unused
 SUPKeys := {} /\ % unused
 DISKeys := {ksup2, ksup3} /\ % ksup3 is unused
 OPKeys := {} /\
 TDKeys := {kop}

intruder_knowledge = { sup1, sup2, sup3, dis, op, td,
 ksup1,ksup2,ksup3,kdis,kop,ktd,kca}

composition
 session(SND,RCV,sessN1, sup1, dis, op, td,
 ksup1,kdis,kop,ktd,kca,

 SUP1Cert,DISCert,OPCert,TDCert,
 SUPKeys ,DISKeys,OPKeys,TDKeys)
 /\ session(SND,RCV,sessN2, sup2, dis, op, td,
 ksup2,kdis,kop,ktd,kca,
 SUP2Cert,DISCert,OPCert,TDCert,
 SUPKeys ,DISKeys,OPKeys,TDKeys)
 /\ session(SND,RCV,sessN3, sup2, dis, op, td,
 ksup2,kdis,kop,ktd,kca,
 SUP2Cert,DISCert,OPCert,TDCert,
 SUPKeys ,DISKeys,OPKeys,TDKeys)
end role

Fig. 6. Specification of the environment and session role instances

In order to validate or falsify the security goals specified for the system, the model
checker enumerates (essentially) all message exchanges possible for the given model
applying the usual Dolev-Yao attacker model [6], which assumes an intruder capable
of controlling the whole network traffic. He can intercept and take apart messages (as
far as he knows the secret keys required to decrypt them) and learn their contents,
construct new messages out of the material known to him, and send them to any party.

As stated in the previous section, the security properties checked for the SDS pro-
tocol are authenticity, integrity and confidentiality. These properties are specified
in HLPSL by adding annotations, as shown in Fig. 4. For instance, the annotation
witness(SSV,NextSSV,asset_hop_by_hop,Asset) asserts that agent SSV has
sent to agent NextSSV the value Asset, while the corresponding annotation

 Formal Security Analysis of Electronic Software Distribution Systems 427

wrequest(SSV,PrevSSV',asset_hop_by_hop,Asset’) expresses that the agent
SSV expects that the agent PrevSSV’ has sent the value Asset’. If during the model
checker run, a wrequest event is not matched by a previous witness event with the
same identifier (in this case, asset_hop_by_hop) such that the values of sender,
receiver and asset correspond, an attack has been found. The confidentiality goal is
expressed by another annotation: secret(Asset',asset,{}). An attack against
the confidentiality of the value Asset' is found if during the model checker run this
value becomes part of the evolving intruder knowledge, which the model checker
keeps track of. The overall system goals and system run are activated as follows:

goal
 weak_authentication_on asset_hop_by_hop
 weak_authentication_on asset_end_to_end
 secrecy_of asset
end goal
environment()

The AVISPA tool offers several model checkers as back-ends, which we have used
to validate the SDS protocol, i.e. to check the specified security properties. We have
performed the analysis on the protocol with and without encryption of messages, and
in both cases, no attack has been found.

5 Conclusions and Future Work

We have proposed an architecture for a security-critical software distribution system,
in particular the use of a generic component that is instantiated at different points of
the SDS. For assessing the security of our design, we have composed two approaches,
namely CC certification and formal analysis in the form of model checking. While the
CC methodology is strong in systematically covering the secure implementation of a
confined IT-product, it does not offer cost-efficient support for the assessment of a
system composed of several instances of a generic component with a high assurance
level. On the other hand, the automatic state exploration done by model checking is
restricted to relatively small systems, like high-level security protocols, due to the
exponential size of the state space of formal models, and dealing with implementation
details requires the use of abstractions. Hence by assessing the implementation of the
core component, the SSV, with the CC methodology and by formally analyzing the
overall SDS protocol at high level, we combine the two methodologies according to
their strengths, and gain substantial confidence in the overall security of the SDS.
Apart from its role in the security assessment, the process of writing a formal model
helps removing the inconsistencies and omissions usually present in a design speci-
fied in natural language. Moreover, having a formal model of the SDS protocol is
valuable in itself, as it provides a highly precise documentation.

As further work, we plan to extend the formal model and include full configuration
management with explicit installation instructions and configuration reports. We also
have formally modeled aspects of the PKI underlying our software distribution sys-
tem, in particular certificate initialization, and we plan to continue this work.

428 M. Maidl et al.

References

1. Armando, A., von Oheimb, D., et al.: The AVISPA Tool for the Automated Validation of
Internet Security Protocols and Applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576. Springer, Heidelberg (2005)

2. AVISPA project homepage (2005), http://www.avispa-project.org/
3. Blanchet, B.: From Secrecy to Authenticity in Security Protocols. In: Hermenegildo, M.,

Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 342–359. Springer, Heidelberg (2002)
4. Bodei, C., Buchholtz, M., Degano, P., Nielson, H.R., Nielson, F.: Static validation of secu-

rity protocols. Journal of Computer Security 13(3), 347–390 (2005)
5. Common Criteria, http://www.commoncriteriaportal.org/
6. Dolev, D., Yao, A.: On the Security of Public-Key Protocols. IEEE Transactions on Infor-

mation Theory 29(2), 198–208 (1983)
7. Hartmann, P., Tappe, J., von Oheimb, D.: Asset Signer Verifier Protection Profile, Avail-

able upon request (2008)
8. Robinson, R., Li, M., Lintelman, S., Sampigethaya, K., Poovendran, R., von Oheimb, D.,

Bußer, J., Cuellar, J.: Electronic Distribution of Airplane Software and the Impact of In-
formation Security on Airplane. In: Saglietti, F., Oster, N. (eds.) SAFECOMP 2007.
LNCS, vol. 4680, pp. 28–39. Springer, Heidelberg (2007)

The Advanced Electric Power Grid: Complexity

Reduction Techniques for Reliability Modeling

Ayman Z. Faza, Sahra Sedigh, and Bruce M. McMillin

Missouri University of Science and Technology, Rolla, MO, 65409-0040, USA
Tel: +1(573)341-7505; Fax: +1(573)341-4532

{azfdmb,sedighs,ff}@mst.edu

Abstract. The power grid is a large system, and analyzing its reliability
is computationally intensive, rendering conventional methods ineffective.
This paper proposes techniques for reducing the complexity of represen-
tations of the grid, resulting in a mathematically tractable problem to
which our previously developed reliability analysis techniques can be ap-
plied. The IEEE118 bus system is analyzed as an example, incorporating
cascading failure scenarios reported in the literature.

Keywords: Reliability, complexity reduction, power grid.

1 Introduction

Analyzing the reliability of the power grid is a computationally intensive task,
due to its scale and complexity and large number of interconnected components.
For a system of n components, where each component can either fail or func-
tion, the number of system states is 2n, increasing exponentially with the number
of components. As n approaches 30, analyzing the matrices representing those
states becomes a cumbersome and difficult task. This problem can be alleviated
by choosing smaller systems for analysis, in hope that the insights gained can
be generalized to larger systems. However, smaller systems rarely experience
the failure modes that affect large real-life systems, and hence the information
gained by analyzing them is of limited value. One of the main goals of any reli-
ability model is to capture the effects of cascading failures on the overall system
reliability. Small systems rarely experience cascading failures, which necessitates
the analysis of large systems, where such failures do occur.

The objective of our work is to quantitatively evaluate the reliability of the
power grid, and we use the IEEE118 bus system as our case study. As its name
suggests, the system has 118 buses. A total of 186 transmission lines connect
the buses to each other, making conventional analysis methods insufficient. In
this paper, we develop a method for breaking down the large system into a
number of smaller subsystems, which simplifies the analysis. We analyze each
subsystem separately and aggregate the results obtained from each subsystem
into the original large system. In doing so, we develop methods to evaluate
the overall system reliability based on the Markov chain Imbeddable Structures

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 429–439, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

430 A.Z. Faza, S. Sedigh, and B.M. McMillin

(MIS) technique discussed in our previous work [1], and introduce additional
techniques to evaluate the reliability of the subsystems created.

A load flow solution is used to simulate the IEEE118 bus system. Line outages
or contingencies can be added to the simulator by changing the parameters of the
system, and the effects of the contingencies on the functionality of the system can
be observed. The results obtained using this simulator provide useful information
about failures in the system and areas most likely to cause damage to the grid.

The main contribution of this paper is the introduction of a method to reduce
the computation complexity of representations of the grid used in analyzing
reliability, and the application of that method to the IEEE118 bus system as an
example. In addition, we produced simulation results that identify the specific
lines in the example system that could cause cascading failures, and discussed
them within the context of the reliability of the IEEE118 bus system.

In this analysis, our goal is to get closer to an accurate evaluation of the relia-
bility of the power grid, which will help identify reliability bottlenecks, eventually
resulting in a more robust and survivable grid.

The rest of the paper is organized as follows. Section 2 provides a summary of
related literature, and Section 3 defines in detail the problem being addressed.
Section 4 provides an analysis of the grid reliability at the system level, while
Section 5 explains the techniques used to evaluate the reliability of each subsys-
tem, and explains the results obtained from simulation. Section 6 completes our
analysis by showing how to aggregate the data from all the cascade scenarios,
and Section 7 concludes the paper and describes future plans for the research.

2 Related Work

The reliability of the power grid is the topic of several research studies. In this
section, we present the studies that are most closely related to our work.

Laprie et al. present a study in [2], where they analyze interdependencies
among the electric power infrastructure and the information infrastructures sup-
porting its management, control and maintenance. The paper develops a qualita-
tive model that captures these interactions for various types of failures, including
cascading, escalating and common-cause failures. Despite conceptual similarities,
the qualitative nature of their work significantly differentiates it from our quan-
titative approach.

Several papers investigate the 2003 blackout in North America, during which 50
million people were left without power. [3]. Notable examples include [4], which
also describes in detail other significant blackouts in the United States and Eu-
rope. This study also provides a general model that describes the causes and typ-
ical sequence of events in a cascading failure leading to a blackout, and suggests
means of mitigating such risks. In [5], Stefanini et al. provide another analysis of
the causes of blackouts, and observe that the interaction between the information
and power networks could lead to such failures when not properly controlled.

A number of other studies describe efforts to model and estimate the reliability
of the power grid. In [6], Chassin et al. describe the grid as a Barabasi-Albert

The Advanced Electric Power Grid: Complexity Reduction Techniques 431

network, which is a scale free network characterized by a power-law connectivity
probability, and propose a model for failure propagation in the grid. Another
study related to this topic is presented in [7], which derives the reliability of
the power grid from component attributes such as failure rate, outage time, and
unavailability.

In [8], Kazemi et al. present a reliability assessment for an automated power
distribution system, in which control equipment is added to isolate earth faults
and short-circuit faults from the rest of the system. This procedure restores
functionality to some parts of the system that were originally affected by those
faults but not directly involved in them. The behavior of the system when such
faults occur, and the probabilities of the faults occurring were used as factors
that determine the failure rates and repair times of the system components.

A project of particular relevance to our work is described in [9], where Walter
et al. develop a modeling tool called OpenSESAME, which can be used to model
fault-tolerant, highly available systems. The model can be modified to incorpo-
rate component dependencies that lead to failure propagation and common-cause
failures. The complexity of our system, however, limits our ability to use this
tool. In another study, presented in [10], a modeling framework is developed
that aims to capture the interdependencies between the electric infrastructure
and the information technology-based control system supporting it. The authors
define the states of their system and analyze its behavior, while identifying the
major challenges to refining the modeling framework and proposing approaches
for meeting these challenges.

In the area of system reduction in terms of reliability, Shooman et al. pro-
pose several techniques to reduce complex systems [11]. Such techniques in-
clude delta-Y transformation, edge factoring and polygon-chain transformations.
While these techniques are quite useful in reducing the complexity of commu-
nication networks for the purpose of reliability estimation, they are insufficient
for analysis of the power grid. The reduction methods assume that a system is
functioning as long as it stays connected with at least one link. While this may
be true for communication networks, it is rarely sufficient for the power grid,
where in addition to a connected network there should be enough capacity to
handle the power flow in the system. This renders the techniques proposed in
[11] inadequate for our purposes.

3 Problem Statement

A number of cascading failures have been documented in [12]. In our approach,
we take one cascading scenario and aggregate into subsystems all parts of the
system not involved in the cascade, while leaving intact the lines involved in
the cascade. This significantly reduces the size of the problem, and helps us
evaluate the reliability of the grid using the methods we developed in [1]. The
reliability of each subsystem is then evaluated separately, and the results are used
in evaluation of the reliability of the system as a whole. In order to illustrate
this approach, we use a cascading failure scenario as an example. The cascading

432 A.Z. Faza, S. Sedigh, and B.M. McMillin

Fig. 1. Line outage (37-39) (Reprinted from [1])

scenario selected occurs due to the failure of line (37-39) in the IEEE118 bus
system, a portion of which is depicted in Figure 1. As explained in [1] and [13], the
cascade occurs when line (37-39) fails. This leads to an overload in line (37-40),
which fails as a result and causes lines (40-42) and (40-41) to fail subsequently.

To simplify representation of the IEEE118 bus system, we aggregate into sub-
systems all lines and buses that are not directly involved in the specific (37-39)
cascade. Figure 2 shows the original IEEE118 bus diagram, with the subsystems
highlighted as boxes around parts of the large system. The subsystems were

Fig. 2. Highlighting the subsystems of the IEEE118 bus system

The Advanced Electric Power Grid: Complexity Reduction Techniques 433

Fig. 3. Simplified IEEE118 bus system diagram

formed based on minimum number of cuts; i.e., borders of the subsystems were
drawn at locations where the number of lines that would connect the subsystem
to the rest of the system is minimum. In Figure 3, the equivalent system is shown
after replacing the subsystems with nodes bearing the names M1 through M4.
Having carried out the reduction, the system now appears much smaller. Instead
of 186 lines and 118 buses, the system now has 4 large nodes (or subsystems), 9
regular nodes representing the buses, 21 lines, and 2 transformers. The resulting
topology is shown in Figure 4, in which the buses and subsystems are replaced by
small and large nodes, respectively, and the transmission lines and transformers
are represented by lines. This aggregation brings the total number of compo-
nents to 36, which is a significant reduction of the original 304 components.
The number of system states is therefore reduced significantly from 2304 to 236.
Further reduction can be carried out by assuming that the buses do not fail.
This assumption is justified because the power generators usually have enough
backup units to cover for the failed ones, and the main sources of failures in the
grid come from the transmission lines. This reduces the number of components
of interest to 27, and the overall number of states to 227. With this reduction in
mind, we can apply the MIS technique to the system to evaluate its reliability.

4 Evaluation of System Level Reliability

A detailed introduction to the MIS technique can be found in [1] or [14]; how-
ever, we briefly review the important aspects of the method in this section. The
reliability of a system of n components can be found using Equation 1 below.

Rn = (Π0)T (
n∏

l=1

Λl)u , (1)

where Π0 denotes a vector of probabilities, and

Π0 = [Pr(Y0 = S0), Pr(Y0 = S1),, Pr(Y0 = SN)]T , (2)

434 A.Z. Faza, S. Sedigh, and B.M. McMillin

where Pr(Y0 = Si) is the probability of the system initially being in state Si. Λl

represents the state transition probabilities of the system as a function of l.
Each element pij(l) in the matrix Λl represents the probability that the system

would switch from state Si to another state Sj due to the failure of component
l. Finally, the vector u is a vector of length equal to the number of states, in
which each element has a value of 1 if the corresponding state is considered a
“good” state for the system, and 0 otherwise. A system is in a “good” state if it
is functioning. It is in a “bad” state if the system has failed.

At this point, the focus of our work turns to identifying the states in which
the system is considered to be “good” or functional, and the states at which the
system is considered to have failed. The following assumptions will be made.

– If any of the subsystems M1, M2, M3 or M4 fails, the entire system will fail.
– If any two or more lines fail simultaneously, the system will fail.
– If line (37-39) fails, a cascading failure will occur and the system will fail.

The case where the failure of line (37-39) causes a cascading effect is documented
in the literature [12]. Simulation was used to identify other cases that could lead to
system failure. The results of this simulation show that failures in the system occur
when any of the lines (34-37), (38-65), (42-49), (37-40), or (41-42) fails. Details of
the cascades that occur as a result are summarized in Table 1 below.

In summary, the good states are the states in which all subsystems M1 through
M4 are functioning, and all lines in the first column of Table 1 are functioning.
Of the remaining lines, any individual line can fail without jeopardizing the good
state; i.e., two or more lines are not allowed to fail independently at the same time.
While this case is unlikely to occur, it should be stressed that it is a bad state.

Fig. 4. The IEEE118 bus system as a general node and line diagram

The Advanced Electric Power Grid: Complexity Reduction Techniques 435

Table 1. Cascading failures

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

1 34-37 35-36 43-44 failure

2 37-39 37-40 40-42 40-41 failure

3 38-65 49-69 47-69 65-68 failure

4 42-49 40-41 40-42 failure

5 37-40 37-39 40-41 failure

6 41-42 40-41 failure

Identification of the good states enables population of the values in vector
u. However, the matrix Λl is yet to be populated. As mentioned before, the
values pij(l) in the matrix Λl represent the probability that the system would
switch from state Si to another state Sj due to the failure of component l. For
example, assume S1 is the state where all components are functioning properly,
and S2 is the state in which everything is operational other than line (37-40).
The probability of switching from state S1 to state S2 is therefore equal to the
probability that line (37-40) will fail. It is important to notice that the probability
of interest p12 is the probability that line (37-40) fails under non-overloading
conditions, as explained below.

We know from the cascading failure of line (37-39) that line (37-40) becomes
overloaded when (37-39) fails. This leads to the following interpretation of the
probability of failure of line (37-40).

Pr(37 − 40) = Pr(37 − 40|NOV) ∗Pr(NOV) + Pr(37 − 40|OV) ∗Pr(OV) (3)

where Pr(37 − 40|OV) and Pr(37 − 40|NOV) represent the probability that
line (37-40) fails under overloading and non-overloading conditions, respectively.
Pr(OV) and Pr(NOV) represent the probability of overload and no overload,
respectively.

The cascading scenario indicates that line (37-40) overloads when line (37-39)
fails; hence, Pr(OV) = Pr(37 − 39).

Returning to the original purpose of this analysis, the value we needed is the
probability that line (37-40) fails, provided that all other lines stay functional,
including line (37-39). This means that line (37-39) cannot fail concurrently with
line (37-40); therefore, the probability the we need is the probability that line
(37-40) fails under non-overloading conditions; i.e., Pr(37 − 40|NOV).

Similarly, the remaining probabilities used to populate Λl represent the prob-
abilities of lines failing under non-overloading conditions.

5 Reliability Evaluation of the Reduced Subsystems

Having developed a method to evaluate the reliability of the reduced system,
we now turn to determining the probability of failure for the subsystems being
reduced. Each of the subsystems is a group of buses interconnected through a

436 A.Z. Faza, S. Sedigh, and B.M. McMillin

Table 2. Summary of line failures causing subsystem failures

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4 Remaining Lines

64-65 47-69 69-70 4-5 34-37

49-51 48-49 82-92 26-30 37-39

53-54 45-46 69-70 69-70 38-65

55-59 45-49 68-69 5-8 42-49

48-49 68-116 17-30 37-40

71-73 68-69 41-42

85-86 8-9

86-87 9-10

110-111 12-117

110-112 2-12

68-69 3-5

69-70 5-6

69-75 5-11

74-75 11-13

75-118 22-23

76-77 25-27

77-78 31-32

77-80 34-6

79-80 35-37

80-98

83-85

85-89

94-95

99-100

100-103

100-106

103-110

105-107

106-107

number of transmission lines. As in the analysis of the previous section, our main
concern is with line failures, we assume that buses do not fail. A failure in a line
within a subsystem can cause a failure of the entire subsystem. In some cases,
this failure occurs directly due to the failure of the line, and in other cases it is
due to a cascade initiated by the failure of the line.

Using the simulation, we performed a complete test to evaluate the effect of
single line failures on the functionality of the system. Some of the lines were
found to be safe; i.e., the network still functions properly after the failure of
these lines, while in other cases the system was found to fail. Table 2 shows the
lines that can cause a failure in the subsystem when they fail.

The data generated by the simulation can now be used to develop an equation
representing the failure probability of each subsystem. Since subsystem failure
can occur due to the failure of any of the lines in Table 2, the failure probability
of Subsystem m can be described as shown in Equation 4 below.

The Advanced Electric Power Grid: Complexity Reduction Techniques 437

Pr(Subsystem m fails) = Pr(Subsystem m fails due to failure in line 1)
+Pr(Subsystem m fails due to failure in line 2)

+... (4)

This can be translated into Equation 5 below, which can be subsequently
reduced to Equation 6.

Pr(Subsystem m fails) =
Pr(Subsystem m fails|line 1 fails) ∗ Pr(line 1 fails) (5)

+Pr(Subsystem m fails|line 2 fails) ∗ Pr(line 2 fails)
+...

Pr(Subsystem m fails) =∑
all lines i

Pr(Subsystem m fails|line i fails) ∗ Pr(line i fails) (6)

Note that the probability that a subsystem fails as a result of the failure of a
certain line can be either ‘1’ or ‘0’. If the line is one that can cause system-level
failure, then the probability is equal to ‘1’, otherwise it is ‘0’.

In a more general approach, we would also need to investigate the effect of con-
current failures of two or more lines. For simplicity, at this stage of the research,
we will assume that such an event is highly unlikely. Hence, the probability of
concurrent line failures is omitted from the equations.

Further Analysis of the results obtained
Table 3 presents further analysis of the results obtained through simulation.

Table 3. Analysis of the simulation results

Subsystem M1 M2 M3 M4 Remaining Lines

Total number of lines causing cascades 4 5 30 19 6

Overall number of lines in the subsystem 29 8 74 56 19

Percentage of lines causing cascades 13.8% 62.5% 40.5% 33.9% 31.6%

The table shows the percentage of lines in a subsystem that can lead to cascading
failures. Note that subsystem M1 is the most stable, with less than 14% of the lines
causing cascading failures. On the other hand, subsystems M2 and M3 have the
highest percentage of lines causing cascades, with 62.5% and 40.5%, respectively.
These numbers will help direct our future efforts towards the less stable areas, i.e.,
the areas with a large percentage of line failures that could lead to cascades.

6 Aggregation of Data from All Cascade Scenarios

In the previous sections of this paper, the reliability of the grid was evaluated by
aggregating parts of the system around a particular cascading failure scenario;

438 A.Z. Faza, S. Sedigh, and B.M. McMillin

namely, the failure of line (37-39). For the general case, a similar approach can be
taken to iteratively evaluate the system reliability, with the aggregations centered
around a different scenario in each iteration. For each case, the MIS technique
can be used to evaluate the system-level reliability, and the probability of failure
of each subsystem can be evaluated separately. After obtaining system reliability
evaluations from all different scenarios, we can aggregate them by averaging all
values.

Averaging the results, however, can be inaccurate, and a more general ap-
proach to aggregating the data would be in the form of a statistical expectation.
In other words, not all cascades are equally likely to happen, and this needs to
be reflected in the equation. Equation 7 below captures that effect.

System Reliability =
∑

all cascades, i

Ri ∗ Reli (7)

where Ri is the reliability of the system as seen by the cascading failure i, and
Reli is the relative probability that the cascading failure i will occur. Reli can
be found as follows.

Reli =
Pr(cascade i occurs)∑

all cascades j Pr(cascade j occurs)
(8)

7 Conclusions and Future Work

The electric power grid is a large system with numerous interconnected compo-
nents. In this paper, we have presented a method to reduce the complexity of
representations of the power grid, in order to simplify the evaluation of its relia-
bility. We selected a particular cascading scenario reported in the literature, and
reduced the size of the grid surrounding it by replacing large areas of the system
with equivalent nodes. Then, using the MIS technique, we evaluated the reli-
ability of the grid at the system level. In order to complete the analysis, the
probability of failure of each of the subsystems had to be calculated. This was
carried out by analyzing the transmission lines in each subsystem and determin-
ing the conditions under which the subsystem would fail.

We used simulation to gain insight into system behavior in the event of a line
failure. With this simulation, we were able to identify a number of cascading
failure scenarios in the power grid, which were then used to evaluate the failure
probabilities of the subsystems previously defined. After we developed equations
to evaluate the reliability of the system, a method was devised that would present
a more accurate estimate of the grid reliability based on the different cascading
scenarios that could take place.

Future extensions to this research will focus on determining confidence inter-
vals for these reliability estimates. The results obtained at this stage are useful in
understanding the operation of the grid, and can help in identifying critical ar-
eas in the system, which in turn facilitates efforts in hardening the grid through
redundancy and intelligent control of the system.

The Advanced Electric Power Grid: Complexity Reduction Techniques 439

The complexity reduction and reliability models developed will also be applied
to other critical infrastructures, in which the flow problem resembles that of the
power grid. Examples of such infrastructures include the ground transportation
system and the aviation system. Our ultimate goal is to help build more reliable
infrastructures in the future, and reduce interruptions and failures in existing
infrastructures.

References

1. Faza, A., Sedigh, S., McMillin, B.: Reliability Modeling for the Advanced Electric
Power Grid. In: Saglietti, F., Oster, N. (eds.) SAFECOMP 2007. LNCS, vol. 4680,
pp. 370–383. Springer, Heidelberg (2007)

2. Laprie, J.C., Kanoun, K., Kaaniche, M.: Modelling interdependencies between the
electricity and information infrastructures. In: Saglietti, F., Oster, N. (eds.) SAFE-
COMP 2007. LNCS, vol. 4680, pp. 54–67. Springer, Heidelberg (2007)

3. U.S. Canada Power System Outage Task Force: Final report on the August 14,
2003 blackout in the United States and Canada: Causes and recommendations.
Technical report (April 2004)

4. Pourbeik, P., Kundur, P., Taylor, C.: The anatomy of a power grid blackout -
root causes and dynamics of recent major blackouts. IEEE Power and Energy
Magazine 4(5), 22–29 (2006)

5. Stefanini, A., Masera, M.: The security of networked infrastructures and the role of
information and communication technologies: lessons from recent blackouts. In: In-
ternational Workshop on Complex Networks and Infrastructure Protection (March
2006)

6. Chassin, D.P., Posse, C.: Evaluating North American electric grid reliability using
the barabasi-albert network model. Physica A 55, 667–677 (2005)

7. Billinton, R., Jonnavithula, S.: A test system for teaching overall power system re-
liability assessment. IEEE Transactions on Power Systems 11(4), 1670–1676 (1996)

8. Kazemi, S., Fotuhi-Firuzabad, B.R.: Reliability assessment of an automated dis-
tribution system. IET Generation, Transportation and Distribution 1(2), 223–233
(2007)

9. Walter, M., Siegle, M., Bode, A.: OpenSESAME-the simple but extensive, struc-
tured availability modeling environment. Reliability Engineering and System Safety
(2007)

10. Chiaradonna, S., Lollini, P., Giandomenico, F.D.: On a modeling framework for
the analysis of interdependencies in electric power systems. In: Proceedings of the
37th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN 2007) (2007)

11. Shooman, A.M., Kershenbaum, A.: Methods for communication-network reliabilty
analysis: Probabilistic graph reduction. In: Proceedings of the annual Reliability
and Maintainability Symposium (1992)

12. Chowdhury, B.H., Baravc, S.: Creating cascading failure scenarios in interconnected
power systems. In: IEEE Power Engineering Society General Meeting (June 2006)

13. Lininger, A., McMillin, B., Crow, M., Chowdhury, B.: Use of max-flow on FACTS
devices. In: North American Power Symposium (2007)

14. Kuo, W., Zuo, M.J.: Optimal Reliability Modeling, Principles and Applications,
pp. 164–171. John Wiley and Sons, Inc., Hoboken (2003)

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 440–453, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Automating the Processes of Selecting an Appropriate
Scheduling Algorithm and Configuring the Scheduler

Implementation for Time-Triggered Embedded Systems

Ayman K. Gendy and Michael J. Pont

Embedded Systems Laboratory,
University of Leicester,

University Road, Leicester LE1 7RH, UK
{akg14,M.Pont}@le.ac.uk

Abstract. Predictable system behaviour is a necessary (but not sufficient)
condition when creating safety-critical and safety-related embedded systems.
At the heart of such systems there is usually a form of scheduler: the use of
time-triggered schedulers is of particular concern in this paper. It has been
demonstrated in previous studies that the problem of determining the task
parameters for such a scheduler is NP-hard. We have previously described an
algorithm (“TTSA1”) which is intended to address this problem. This paper
describes an extended version of this algorithm (“TTSA2”) which employs task
segmentation to increase schedulability. We show that the TTSA2 algorithm is
highly efficient when compared with alternative “branch and bound” search
schemes.

Keywords: Safety-related embedded systems, automatic code generation,
scheduler, time triggered.

1 Introduction

Developers creating software for use in the majority of “desktop” applications face a
very different set of challenges from those creating embedded software. For example,
the time interval within which the desktop system responds to a command may vary
significantly without causing a major problem: by contrast, even small variations in
timing behaviour (milliseconds or much less) in embedded systems may prove life
threatening in (for example) an industrial, automotive or medical system.

There are two common approaches used in building real-time embedded systems:
event-triggered (ET) and time-triggered (TT). The ET approach may prove cost
effective in cases where the system must handle many aperiodic and sporadic events
([4], [5]), since the conversion of such events to periodic events may reduce the
system utilisation. On the other hand “time-triggered systems are to be preferred with
respect to fault tolerance” [4] and are also considered as best match for supporting
safety critical applications ([1], [2], [3], [4]). In addition, it is widely recognised that
“Very safety critical systems, like X-by-wire require fault-tolerance and redundancy.
The implementation of such systems probably will fail without the framework of time-
triggered architectures” [5]. For these reasons, this paper focuses on systems with a
TT architecture.

 Automating the Processes of Selecting an Appropriate Scheduling Algorithm 441

In most TT designs, an “offline” (also known as “pre-runtime”, or “static”)
schedule is considered the best choice ([6], [7], [12], [14], [3]). It has been
demonstrated in previous studies that the problem of testing the schedulability and
determining the scheduler and task parameters for a set of tasks for such a system is
NP-hard ([7], [8], [9], [10]). As part of an effort to address these problems we
previously introduced a novel two-stage heuristic search technique (“TTSA1”) which
is intended to support the configuration of TT schedulers for use with resource-
constrained embedded systems which employ a single processor [11]. In this paper,
we extend our TTSA1 technique. Our goal is to show that, with appropriate (static)
task execution behaviour, tasks may be cleanly segmented, allowing an increase in
schedulability, while meeting the constraints of a set of periodic tasks for use with
reliable embedded systems.

The remainder of this paper is organised as follows. In Section 2, we review
previous work in scheduler design and selection. In Section 3, we introduce and
describe a modified scheduling algorithm (“TTSA2”) which is used to automate the
process of scheduler selection and configuration. In Section 4, we describe the
process used to assess the TTSA2 algorithm and present the results obtained from this
assessment. Finally, in Section 5, we discuss the results, present our conclusions and
make some suggestions for future work.

2 Related Work

In this section we review previous work in this area.

2.1 Scheduling Safety Critical Resource-Constrained Embedded Systems

A wide range of software architectures can be used for real-time systems, ranging
from a simple scheduler to a full real-time operating system (RTOS).

For resource-constrained embedded systems, which have a very limited memory
and CPU performance, a simple form of “time triggered co-operative” (TTC) – a form
of cyclic executive – scheduler ([2], [8], [12], [14], [15]), “which has low run-time
overhead”[14], is often used. For safety-critical applications which have hard real-
time constraints, such as low jitter requirements, TTC architectures demonstrate very
low levels of task jitter [16], and can maintain their low-jitter characteristics even
when techniques such as dynamic voltage scaling (DVS) are employed to reduce
system power consumption [17].

2.2 Time Triggered Co-operative Scheduler (TTC)

The TTC implementation discussed in this paper executes each task in a predefined
time intervals which is derived from a scheduler “tick”. The scheduler tick is usually
signalled by an interrupt associated with the (periodic) overflow of a hardware timer.
At each tick the status of each task is updated and tasks which are due to run are
dispatched. The processor is then often placed in an “idle” mode, where it will
remain until the next tick (in order to reduce the system power consumption).

442 A.K. Gendy and M.J. Pont

2.3 Time Triggered Hybrid Scheduler (TTH)

Despite some attractive features, a TTC solution is not always appropriate. For
example a TTC system cannot respond to a critical external event while executing
specific task: this presents problems if the required response time is shorter than the
worst case execution time, “WCET”, of any of the system tasks [18].

In these circumstances, the TTC architecture can be replaced with a fully pre-
emptive architecture (for example, a rate monotonic or the earliest deadline first,
architecture [22]). Such an approach provides flexibility (and, possibly, portability),
but it will also tend to increase the system complexity and overhead when compared
to pre-run-time scheduling ([6], [7]).

In some designs the system responsiveness can be increased while maintaining the
minimal resource requirements, by allowing a limited level of pre-emption in the
system. This can be done by employing what we call a “time-triggered hybrid”
(TTH) scheduler ([3], [19]), and others have called a “multi-rate executive with
interrupts” [20]. The TTH can be seen as a rate-monotonic scheduler that supports a
single, short, high priority, pre-empting task, and a collection of co-operative tasks
(which have equal priority which is less than that of the pre-empting task).

The pre-empting task may be used for periodic data acquisition, typically by means
of an analogue-to-digital converter or similar device. Such requirements are common
in, for example, control systems [13], and applications which involve data sampling
and Fast-Fourier transforms (FFTs) or similar techniques: see, for example, the work
by Schlindwein et al. [21].

2.4 Scheduler Design and Configuration

When implementing a TTC or TTH scheduler, the system designer has to determine
some parameters (including the length of the tick interval, the order in which tasks
must be dispatched, and the initial delay - or phase - of each task). Inappropriate
choice of these parameters may affect systems reliability (by violating task
constraints) or lead to unnecessarily high levels of task jitter and / or to increased
system power consumption. It has been demonstrated in previous studies that the
problem of determining these parameters is NP-hard ([7], [8], [9], [10]).

In order to cope with this challenge, schedulability analysis and scheduler design
have been studied extensively over many years: see, for example, work by Liu and
Layland [22] through to work by Xu [7]. Researchers have proposed solutions based
on simulated annealing techniques [9], constraint programming heuristics [30], branch
and bound algorithm ([28]), and genetic algorithms [29].

None of the work summarised above relates directly to TTC / TTH architectures:
instead, most previous studies have tended to focus on “conventional” RT operating
systems (e.g. VxWorks: [29]). Such operating systems exceed the resource require-
ments available in the types of processor considered in this study.

2.5 The TTSA1 Scheduling Algorithm

In an effort to support creation of TTC / TTH designs we have previously introduced
a novel two-stage heuristic search technique, “TTSA1”, which is intended to support
the configuration of these time-triggered schedulers for use with resource-constrained
embedded systems which employ a single processor [11].

 Automating the Processes of Selecting an Appropriate Scheduling Algorithm 443

As noted above the TTSA1 algorithm helps to automate the process of both
scheduler selection and configuration. If a suitable scheduler is identified for a given
task set, TTSA1 attempts to determine the suitable scheduler parameters (the tick
interval) and task parameters (such as the task order and task offset). In determining
these parameters, TTSA1 aims to ensure that: (i) task constraints are met; (ii) power
consumption is “as low as possible”; (iii) a fully co-operative scheduler architecture is
employed whenever possible.

The input to TTSA1 is a list of task specifications and constraints. The algorithm
tests the schedulability of the given task set, first using the TTC scheduler. If the task
set cannot be scheduled with this scheduler, the process is repeated using the TTH
scheduler. The algorithm calculates a suitable tick interval, along with the task order
and the required offset value for each task if all the tasks are schedulable; otherwise a
list of the schedulable tasks is generated.

To achieve this result, TTSA1 begins by sorting the tasks according to two criteria:
a) task precedence, b) task deadline, laxity, period, WCET, or jitter. It is then
assumed that the first task will run with zero offset and the algorithm tries to find a
suitable offset for the second task, using the longest possible tick interval. If such an
offset is identified (and the constraints of both tasks are met), a third task is added to
the system and the process is repeated. We carry on in this way until all tasks have
been scheduled (if this proves possible).

3 The TTSA2 Scheduling Algorithm

In this section, we describe a modified version of the TTSA1 algorithm (“TTSA2”).
TTSA2 employs task segmentation to increase the number of task sets which can be
scheduled.

3.1 Overview

Despite its attractive features, the TTSA1 algorithm fails to find a suitable schedule
for a set of tasks in some cases. For example assume that for a given set all tasks
have deadlines equal to their periods. Assume also that this set includes two short
tasks (Task S1 and Tasks S2), and at least one long task (Task L).

Table 1. Task specifications for task set that cannot be scheduled with TTC/TTH

Task WCET (ms) Deadline (ms) Period (ms)
A 10 50 50
B 1 10 10
C 1 10 10

The TTSA1 algorithm fails to find a suitable schedule for this set if:

Deadline (S1) < WCET (S1) + WCET (L)

and

Deadline (S2) < WCET (S2) + WCET (L)

444 A.K. Gendy and M.J. Pont

Table 2. Task specifications for task set that can be scheduled with TTC/TTH

Task WCET (ms) Deadline (ms) Period (ms)
SA1 5 45 50
SA2 5 50 50
SB1 1 10 10
SC1 1 10 10

For example Task B and / or Task C shown in Table 1 will miss their deadlines
every time Task A runs if these three tasks are scheduled using TTC / TTH. To
overcome this situation, while still using a TTC / TTH architecture, long task(s) can
be divided into multiple short tasks ([3],[8], [16]): for example Task A can be divided
into two segments, Segment SA1 and Segment SA2, as shown in Table 2.

As previously indicated, testing the schedulability of a set of tasks and finding a
suitable scheduler for them (if any) is an NP-hard problem. The problem becomes
more complex if some parts of some tasks are required to exclude parts of other tasks
in the set. For example, it may be that Segment SA2 in Task A excludes Segment SB3
and Segment SC2 in Task B and Task C respectively, and Segment SB1 in Task B
excludes Segment SC1 in Task C.

In this section we extend our previous TTSA1 algorithm to deal with such
situations. We call the resulting algorithm TTSA2. The input to TTSA2 is a list of
task specifications and constraints, including critical-section boundaries.

The TTSA2 algorithm tests the schedulability of the given task set, first using the
TTC scheduler, if possible, otherwise it will try the TTH, considering each task as a
single segment. If the task set cannot be scheduled the process is repeated after
dividing one or more long tasks into two or more shorter tasks. The algorithm
calculates a suitable tick interval, the task order, the smallest number of task segments
along with the required offset value for each task and task segment if all the tasks are
schedulable; otherwise a list of the schedulable tasks and task segments is generated.

To achieve this result, TTSA2 begins (like TTSA1) by sorting the tasks according
to two criteria: a) task precedence, b) task deadline, laxity, period, WCET, or jitter. It
is then assumed that the first task will run as one segment with zero offset and the
algorithm tries to find a suitable offset for the second task (in one segment), using the
longest possible tick interval (the greatest common divisor of the task periods). If
such an offset is identified (and the constraints of both tasks are met), a third task is
added to the system and the process is repeated. We carry on in this way until all
tasks have been scheduled (if this proves possible). If a schedule cannot be found at
any stage the last task added to the design is removed and divided into two segments.
After adding the segmentation overhead and updating the segment deadlines (as
explained in the next subsections), the search proceeds (Fig. 1).

Please note that this search process is not exhaustive, and might be described as “best
characteristics first” approach: for example, it starts with a long tick interval (which is
known to reduce power consumption) and it gradually reduces the tick interval until it
matches the timing needs of the application (if ever). We proceed iteratively, stopping
the search when we have identified the first workable solution. We assume that -
because we have begun the search with “best characteristics” - any schedule identified
will represent a good (but not necessarily completely optimal) solution.

 Automating the Processes of Selecting an Appropriate Scheduling Algorithm 445

START
Arrange tasks;
// Common divisors of task periods in descending order
GCD[t] = {GCD1, GCD2, …, GCDm}, t=1, 2,,.., m;
Sched_Strategy = {TTC, TTH};

// First check schedulability using TTC strategy
Sched_Strategy_Index = 1;
DO{
 Tick_index = 1;
 DO{
 Tick_Interval = GCD[Tick_index];
 Add the first task as one segment with zero offset;
 i = 1; Sched_Tasks = 1;
 DO{
 i++;
 Add the next task, one segment at a time;
 start segment with zero offset;
 DO{
 Sched[i] = Check_Sched(i, Tick_index,
 Sched_Strategy_Index);
 IF (Sched[i] = TRUE)
 { Sched_Tasks ++ ;}
 ELSE
 {
 Increment offset of the last added segment;
 Add the segmentation overhead;
 }
 } WHILE((constraints violated) and
 (offset<=Period));
 } WHILE (i < total number of tasks);
 IF (Sched_Tasks = total number of tasks)
 {
 Print task offsets, tick interval,
 scheduler type;
 EXIT;
 }
 ELSE
 { Tick_index++;}
 } WHILE (Tick_index <= m)
 Sched_Strategy++; // Try the TTH strategy
 } WHILE (Sched_Strategy_Index <= 2);
Print list of scheduled and unscheduled tasks;
END

Fig. 1. Pseudo code for the TTSA2 algorithm

3.2 Adjusting the Segment Deadline

If Task T is divided into n segments, ST1, ST2.., STn, then the TTSA2 algorithm
calculates the deadline of each segment as follows:

Deadline (STn) = Deadline (T) . (1)

Deadline (STi-1) = Deadline (STi) – WCET (STi), where i = n, n-1, n-2…,2 . (2)

Please notice the deadline of Segment SA1 in Table 2 as an example.
To be able to divide long tasks into multiple short tasks accurate information about

the task WCET and the points at which the task can / cannot be pre-empted (the critical

446 A.K. Gendy and M.J. Pont

sections boundaries) must be specified. This can be done using techniques such as the
“single path programming paradigm” ([24], [25]) or code balancing techniques [23].

3.3 Adding Segmentation Overhead

If a task is divided into two or more segments, the TTSA2 algorithm takes
segmentation overhead into account. This overhead represents the time needed to
save the context of the current segment and the time needed to restore this context
when the next segment becomes ready to run. The time required for saving the
context (Context_Saving_overhead) may not be the same as that required for loading
the context (Context_Loading_overhead).

If Task T is divided into n segments, ST1, ST2.., STn, then the TTSA2 algorithm
updates the segments WCETs to reflect this overhead, as follows:

WCET (ST1) = WCET (ST1) + Context_Saving_overhead . (3)

WCET (STi) = Context_Loading_overhead + WCET (STi) +
Context_Saving_overhead, where i = 2, 3…, n-1.

(4)

WCET (STn) = Context_Loading_overhead +WCET (STn) . (5)

4 The Effectiveness of the TTSA2 Scheduling Algorithm

In this section the complexity and the effectiveness of the TTSA2 is evaluated. We
compare the performance of the TTSA2 with that of the “branch and bound”
algorithm (BaB), a standard benchmark which has been used previously to test the
effectives of heuristic algorithms [26].

4.1 Algorithm Complexity

Assume we have a set of n independent tasks and that each consists of s segments.
Investigating the schedulability of these tasks by means of a BaB algorithm requires
testing n paths, each of length n!, this has a complexity of O(n.n!) which is
“computationally intractable and cannot be used in practical systems when the
number of tasks is high” [27].

As noted elsewhere [11], the offset of each task can be any value in the range [0,
Period], in ticks. Taking all possible offset combinations (tn), where t is the period,
and considering each task as set of s segments, each may has different offset, the
complexity will increase to O(tn.s .n!).

By contrast, the TTSA2 algorithm does not try all paths. In addition, it does not
change the task or / and segment offset of a given task once it has been added
successfully to the schedule (that is, added without causing violation of the constraints
of any of the tasks and segments which have been included in the schedule
previously). The complexity of this algorithm is O(n.s.t).

 Automating the Processes of Selecting an Appropriate Scheduling Algorithm 447

4.2 Algorithm Performance

An empirical test was carried out to explore the performance of the TTSA2 algorithm.
The procedure and the results of this test are discussed in this section.

4.2.1 The Test Tools
The chosen hardware platform was an NXP (formerly Philips) LPC2129 micro-
controller running on a small evaluation board. The LPC2129 is based on an
ARM7TDMI core and is typical of modern (low cost) embedded processors. The
measurements of the scheduler overhead and the segmentation overhead were carried
out using this microcontroller. This overhead was taken into account while perf-
orming the scheduling selection and configurations.

To compare the performance of the TTSA2 with that of the BaB a simple (custom)
scheduler simulator was executed on a desktop PC.

4.2.2 Task Constraints

The constraints considered in this study are described in this section.

Jitter calculation
As far as we are concerned in this paper, a task’s jitter is the variation in the interval
between the start times of the task. The starting time of each task is recorded so that
the jitter statistics can be estimated. In the experiment discussed in the present paper,
the upper bound of task jitter is (pseudo) randomly generated according to Equation 6.

0 ≤ Jitter ≤ P(i) , where P(i) is the period of Task i. (6)

Precedence
If it is required that Task A precedes Task B, then, in any tick, Task B is allowed to
start its execution only after Task A completes its execution (e.g. see [28]).

In the current study, the precedence relation between any two tasks, A and B, is
(pseudo) randomly generated iff

P(A) = P(B) . (7)

and

P(A) ≥ (WCET(A) + WCET (B)) . (8)

Exclusion
If it is required that Segment SA2 in Task A excludes Segment SB3 in Task B, then, at
any tick, Segment SA2 is not allowed to pre-empt Segment SB3 and vice versa [28].

In the current study some tasks segments in each set were (pseudo) randomly
selected to have an exclusion relation between them.

Distance
The distance relation between any two tasks, A and B, can be defined as the minimum
distance between the completion of Task A and the start of Task B [29].

In the current study the precedence relation between two tasks was (pseudo)
randomly generated according to Equation 9.

448 A.K. Gendy and M.J. Pont

0 ≤ Distance(A, B) ≤ P(A) – (WCET(A) + WCET (B)) . (9)

given that:

P (A) = P (B) and P(A) ≥ (WCET(A) + WCET (B)) (10)

Latency
The latency relation between any two tasks, A and B, can be defined as the maximum
distance between the completion of Task B and the start of Task A [29].

In the current study the latency relation between two tasks was (pseudo) randomly
generated as follows:

If there are no distances constraint between Task A and Task B then:

(WCET(A) + WCET (B)) ≤ Latency(A, B) ≤ Max (P(A), P(B)) (11)

given that:

Max (P(A), P(B)) ≥ (WCET(A) + WCET (B)) . (12)

Otherwise:

(WCET(A) + WCET (B) + Distance (A,B)) ≤ Latency(A, B) ≤ P(A) . (13)

4.2.3 Dataset Used
To explore the effectiveness of this algorithm, 1000 sets of tasks were (pseudo)
randomly generated. Each set consisted of 3, 4 and 5 tasks specified by WCETs,
deadlines and periods. These specifications were generated according to the following
criteria:

0 < WCET(i) ≤ 2000 µs . (14)

WCET(i) < P(i) ≤ 10000 µs . (15)

WCET(i) ≤ D(i) ≤ P(i) . (16)

In order to simplify the calculations, task periods were (pseudo) randomly
generated at multiples of 1 ms (constrained by (15)). Task constraints of precedence,
exclusion, distance, latency, and upper bound of jitter were also (pseudo) randomly
generated and were in line with the findings from previous studies (e.g. see [28], [29])
and are (pseudo) randomly generated constrained by Equation 6 – Equation 16.

4.2.4 Results (Small Task Sets)
We tested the effectiveness of the TTSA2 algorithm when scheduling small sets of
tasks (each contains 3, 4, or 5 tasks) and compared the results with those from the
TTSA1 and the BaB algorithms. The results obtained from the BaB algorithm with /
without using task segmentation are recorded as BaB1 and BaB2 respectively.

Fig. 2 to Fig. 4. show the number of task sets that was found to be schedulable
using TTSA1, TTSA2, BaB1, and BaB2. Please note that the results obtained by
combining the (unique) results from TTSAx-EDF, TTSAx-LLF, TTSAx-Jitter,

 Automating the Processes of Selecting an Appropriate Scheduling Algorithm 449

TTSAx-RM, and TTSAx-SJF are shown in these figures as TTSAx-ALL, where x
equals 1 or 2 for TTSA1 and TTSA2. The number of trials until each algorithm
identified the set of tasks as schedulable/unschedulable and the total time are also
shown in Table 3.

Table 3. Number of trials and the total time

TTC TTH
3-task set

TTSA1 TTSA2 BaB1 BaB2 TTSA1 TTSA2 BaB1 BaB2

Minimum number of trials 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00

Maximum number of trials 2.70E+02 5.80E+02 2.97E+03 4.66E+06 1.65E+02 3.30E+02 2.83E+03 1.99E+05

Average number of trials 2.46E+01 4.63E+01 3.51E+02 1.75E+04 1.59E+01 3.04E+01 1.97E+02 2.08E+03

Total number of trials 2.46E+04 4.63E+04 3.51E+05 1.75E+07 1.59E+04 3.04E+04 1.97E+05 2.08E+06

Total time (s) 4.00E+00 4.00E+00 3.90E+01 8.49E+02 2.50E+00 2.50E+00 2.50E+01 1.17E+02

TTC TTH
4-task set

TTSA1 TTSA2 BaB1 BaB2 TTSA1 TTSA2 BaB1 BaB2

Minimum number of trials 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00

Maximum number of trials 2.65E+02 5.30E+02 7.23E+04 1.60E+08 2.65E+02 5.30E+02 4.21E+04 2.78E+07

Average number of trials 3.49E+01 7.01E+01 5.45E+03 5.30E+05 2.49E+01 4.99E+01 3.24E+03 1.13E+05

Total number of trials 3.49E+04 7.01E+04 5.44E+06 5.29E+08 2.49E+04 4.99E+04 3.23E+06 1.13E+08

Total time (s) 3.50E+00 4.50E+00 2.22E+02 1.73E+04 2.50E+00 4.50E+00 1.11E+02 4.17E+03

TTC TTH
5-task set

TTSA1 TTSA2 BaB1 BaB2 TTSA1 TTSA2 BaB1 BaB2

Minimum number of trials 4.00E+00 4.00E+00 4.00E+00 4.00E+00 4.00E+00 4.00E+00 4.00E+00 4.00E+00

Maximum number of trials 1.40E+02 3.14E+02 1.03E+06 1.21E+09 1.02E+02 2.26E+02 1.33E+06 1.98E+08

Average number of trials 4.04E+01 8.58E+01 8.84E+04 2.04E+07 2.93E+01 6.34E+01 5.41E+04 5.09E+06

Total number of trials 4.04E+04 8.58E+04 8.84E+07 2.04E+10 2.93E+04 6.34E+04 5.41E+07 5.09E+09

Total time (s) 2.50E+00 6.00E+00 3.69E+03 2.94E+06 2.50E+00 3.50E+00 5.26E+03 3.79E+05

From the results obtained it was noted that:

• TTSA2 found a suitable scheduler for more sets than TTSA1.
• Because TTSA2 tries to find a suitable (TTC or TTH) scheduler using the lowest

number of task segments, the results obtained from TTSA1 are found to be a
subset of the complete list of valid schedules identified by TTSA2. This means
that all the schedulers identified by both TTSA1 and TTSA2 have the same
scheduling overhead and power consumption.

• The results obtained from TTSA1 and TTSA2 (when overheads are taken into
account) are found to be a subset of the complete list of valid schedules
identified by BaB1 and BaB2, respectively. In addition, although TTSA1 and
TTSA2 test the schedulability using a subset of all the possible offset
combinations, they produce results which are similar to those obtained with the
BaB1 and BaB2 methods.

• The criteria used for adding the tasks to the TTSA1 and TTSA2 have an impact
on the schedulability of the set (different criteria may give different results).

450 A.K. Gendy and M.J. Pont

• Combining results from the variations of TTSA1 and variations of TTSA2
together gives results which are very close to those obtained from the BaB1 and
BaB2 respectively while requiring a much lower number of trials, and hence less
time (see Table 3).

4.2.5 Results (Large Task Set)
The results shown in Fig. 2. to Fig. 4. consider a maximum of 5 tasks. This is not an
unrealistic number for the resource-constrained systems we are concerned with in this
paper. However, this task set does not fully test the algorithm. In order to explore the
performance of TTSA2 on larger problems, 1000 new data sets were created. Each
data set consisted of 50 tasks, each with a maximum execution time of 2 ms and

Fig. 2. Number of Scheduled task sets (3
interdependent tasks in each set)

Fig. 3. Number of Scheduled task sets (4
interdependent tasks in each set)

Fig. 4. Number of Scheduled task sets (5
interdependent tasks in each set)

Fig. 5. Number of Scheduled task sets (50
interdependent tasks in each set)

 Automating the Processes of Selecting an Appropriate Scheduling Algorithm 451

maximum period of 200 ms. The task sets were (pseudo) randomly created according
to the constraints described previously. To reduce the length of the major cycle, task
periods were (pseudo) randomly generated as a multiple of 20 ms.

The results from this test are shown in Fig. 5. It took approximately 1 minute to
complete the schedulability test for one set of 50 tasks using TTSA2-EDF, and a total
of approximately 6 minutes to complete the test for TTSA2-All. It was not possible
to complete this search using a BaB approach as this would have required performing
a huge number of trials.

5 Discussion and Conclusions

It has been previously demonstrated that using offline, or pre-runtime, scheduling
helps in reducing the complexity of inspecting and verifying the timing behaviour of
safety critical embedded systems ([6], [7]).

In this paper we introduced a new offline scheduling algorithm, TTSA2, which
helps to automate the process of determining the parameters required to schedule a
given set of tasks in a resource-constrained embedded system employing a TTC or
TTH architecture. The TTSA2 algorithm tries to find a suitable scheduler for the set
of tasks by dividing each task into two or more segments. While searching for a
workable scheduler the proposed scheduling algorithm ensures that the CPU power
consumption is “as low as possible” (by choosing the longest possible tick interval),
and the task constraints as well as individual segment constraints are met (by
adjusting the segment offsets, tick interval, and task orders), using the lowest number
of segments. If the tasks cannot all be scheduled (for example, if some timing const-
raints of one or more tasks cannot be met), a list of the schedulable/unschedulable
tasks is generated. The algorithm improves on the performance of both a BaB search
and a previous version of this algorithm (TTSA1).

The algorithm can be used as part of a tool for automatic code generation for safety–
critical, resource-constrained embedded systems. Using such a tool will not only reduce
the time and effort required to develop such systems but will reduce the probability of
scheduling errors, which may cause serious damage (see [31] for an example), as well.

In the current work we assume that a task can be divided into two or more
segments only at certain points of time (the critical segment boundaries). Future work
needs to be done to determine more efficient way to find the points of time at which
task can be divided. In addition, other methods are needed to explore ways for
choosing the pre-empting task in the TTH scheduler, in order to improve the results.

References

1. Domaratsky, Y., Perevozchikov, M.: Highly dependable time-triggered operating system-
static scheduling approach and effective run-time implementations, Dedicated Systems
Magazine, pp. 77–84 (October-December 2000)

2. Kopetz, H.: Real-Time Systems, Design Principles for Distributed Embedded
Applications. Kluwer Academic, Dordrecht (1997)

3. Pont, M.J.: Patterns For Time-Triggered Embedded Systems. Addison-Wesley, Reading
(2001)

452 A.K. Gendy and M.J. Pont

4. Scheler, F., Schröder-Preikschat, W.: Time-Triggered vs. Event-Triggered: A matter of
configuration? In: Dulz, W., Schröder-Preikschat, W. (eds.) MMB Workshop Proceedings
(GI/ITG Workshop on Non-Functional Properties of Embedded Systems Nuremberg, pp.
107–112. VDE Verlag, Berlin (2006) ISBN 978-3-8007-2956-2

5. Albert, A.: Comparison of Event-Triggered and Time-Triggered Concepts with Regard to
Distributed Control Systems, Embedded World 2004, Nuremberg, WEKA Verlag, pp.
235–252 (2004)

6. Xu, J.: Making Software Timing Properties Easier to Inspect and Verify. IEEE
Software 20(4), 34–41 (2003)

7. Xu, J., Parnas, D.L.: Priority Scheduling Versus Pre-Run-Time Scheduling. Int. Journal of
Time-Critical Systems 18, 7–23 (2000)

8. Baker, T.P., Shaw, A.: The Cyclic Executive Model and Ada. Real-Time Systems 1(1), 7–
25 (1989)

9. Tindell, K., Burns, A., Wellings, A.: Allocating Hard Real-Time Tasks: An NP-Hard
Problem Made Easy. Real-Time Systems 4(2), 145–165 (1992)

10. Baruah, S.K.: The Non-Preemptive Scheduling of Periodic Tasks Upon Multiprocessors.
Real-Time Systems 32(1-2), 9–20 (2006)

11. Gendy, A.K., Pont, M.J.: Automatically Configuring Time-Triggered Schedulers for Use
with Resource-Constrained, Single-Processor Embedded Systems. IEEE Trans. on
Industrial Informatics 4(1), 37–46 (2008)

12. Gangoiti, U., Marcos, M., Estévez, E.: Using Cyclic Executives for Achieving Closed
Loop Co-Simulation. In: Proc. of the Joint 44th IEEE Control and Decision Conference
and European Control Conference CDC-ECC 2005, Sevilla, pp. 3790 –4785 (2005)

13. Buttazzo, G.C.: Rate monotonic vs. EDF: Judgement day. Real-Time Systems 29(1), 5–26
(2005)

14. Huang, C., Chang, L., Kuo, T.: A Cyclic-Executive-Based QoS Guarantee over USB. In:
IEEE 9th Real-Time and Embedded Technology and Applications Symposium, Toronto,
Canada, May 27-30, 2003, pp. 88–95 (2003)

15. Burns, A.: Generating Feasible Cyclic Schedules. Control Engineering Practice 3(2), 151–
162 (1995)

16. Locke, C.D.: Software Architecture for Hard Real-Time Applications: Cyclic Executives
Vs. Fixed Priority Executives. Real-Time Systems 4(1), 37–52 (1992)

17. Phatrapornnant, T., Pont, M.J.: Reducing Jitter in Embedded Systems Employing A Time-
Triggered Software Architecture and Dynamic Voltage Scaling. IEEE Transactions on
Computers (Special Issue on Design and Test of Systems-On-a-Chip) 55(2), 113–124 (2006)

18. Allworth, S.T.: An Introduction to Real-Time Software Design. Macmillan, London (1981)
19. Maaita, A., Pont, M.J.: Using Planned Pre-Emption to Reduce Levels ff Task Jitter in a

Time-Triggered Hybrid Scheduler, UK Embedded Forum, Birmingham, UK, University of
Newcastle (2005)

20. Kalinsky, D.: Context Switch. Embedded Systems Programming 14(1), 94–105 (2001)
21. Schlindwein, F.S., Smith, M.J., Evans, D.H.: Spectral Analysis of Doppler Signals and

Computation of the Normalized First Moment in Real Time. Using a Digital Signal
Processor, Medical & Biological Engineering & Computing 26, 228–232 (1988)

22. Liu, C.L., Layland, J.W.: Scheduling Algorithms for Multiprogramming in a Hard Real-
Time Environment. Journal of the ACM 20(1), 40–61 (1973)

23. Gendy, A.K., Pont, M.J.: Towards a Generic Single-Path Programming Solution with
Reduced Power Consumption. In: Proceedings of the ASME 2007 International Design
Engineering Technical Conferences & Computers and Information in Engineering
Conference (IDETC/CIE 2007), Las Vegas, Nevada, USA, September 4-7 (2007)

 Automating the Processes of Selecting an Appropriate Scheduling Algorithm 453

24. Puschner, P., Burns, A.: Writing Temporally Predictable Code. In: Proc. 7th IEEE
International Workshop on Object-Oriented Real-Time Dependable Systems, pp. 85–91
(January 2002)

25. Puschner, P.: The Single-Path Approach Towards WCET-Analysable Software. In: Proc.
IEEE International Conference on Industrial Technology, pp. 699–704 (December 2003)

26. Cucu, L., Sorel, Y.: Non-Preemptive Multiprocessor Scheduling for Strict Periodic
Systems with Precedence Constraints. In: Proc. 23rd Annual Workshop of the UK
Planning and Scheduling Special Interest Group, PLANSIG 2004, Cork, Ireland
(December 2004)

27. Buttazzo, G.: Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications. Kluwer Academic, Dordrecht (1997)

28. Xu, J., Parnas, D.L.: Scheduling Processes with Release Times, Deadlines, Precedence and
Exclusion Relations. IEEE Transactions on Software Engineering 16(3), 360–369 (1990)

29. Sandström, K., Norström, C.: Managing Complex Temporal Requirements in Real-Time
Control Systems. In: 9th IEEE Conf. Engineering of Computer-Based Systems. IEEE,
Sweden (2002)

30. Ekelin, C., Jonsson, J.: Evaluation of Search Heuristics for Embedded System Scheduling
Problems. In: Proc. Int. Conf. Principles and Practice of Constraint Programming, Paphos,
Cyprus, pp. 640–654 (2001)

31. Reeves, G.: What Really Happened on Mars?, – Authoritative Account (1997),
http://research.microsoft.com

Author Index

Acker, Hilmar 181
Alaraj, Abdullah 193
Amini, Morteza 401

Back, Jonathan 99
Basir, Nurlida 249
Basnyat, Sandra 373
Bates, Andy 5
Becker, Uwe 263
Bernardeschi, Cinzia 346
Blandford, Ann 99
Bosc, Jean-Marc 320
Brooke, Phillip J. 30

Castel, Charles 320
Charalambous, Ramon 30
Chen, DeJiu 72
Chialastri, Antonio 86
Chrun, Danielle 221
Cukier, Michel 221
Cyra, Lukasz 291

Dadam, Peter 181
Dasmahapatra, Srinandan 167
Denger, Christian 44
Denney, Ewen 249
Dittmann, Jana 235
Domis, Dominik 58

Ellims, Michael 16

Faza, Ayman Z. 429
Fischer, Bernd 249
Furniss, Dominic 99

Gawkowski, Piotr 360
Ge, Xiaocheng 30
Gendy, Ayman K. 440
Glaß, Michael 139
Górski, Janusz 291

Hartmann, Peter 415
Haubelt, Christian 139
Hildebrandt, Michael 99
Hollnagel, Erik 1

Honold, Thomas 126
Hoppe, Tobias 235
Humbert, Sophie 320

Ince, Darrel 16

Jafarian, Jafar Haadi 401
Jalili, Rasool 401
Johansson, Rolf 72
Jonsson, Erland 207

Kiltz, Stefan 235
Knight, John C. 305

Larson, Ulf E. 207
Lewis, Paul 167
Liggesmeyer, Peter 44
Lönn, Henrik 72
Ludzia, Marcin 113
Lukasiewycz, Martin 139

Maidl, Monika 415
Masci, Paolo 346
Mattes, Tina 126
McMillin, Bruce M. 429
Miremadi, Seyed Ghassem 153
Mörwald, Annemarie 126
Munro, Malcolm 193

Navarre, David 373
Nguyen, Elisabeth A. 305
Nilsson, Dennis K. 207

O’Halloran, Colin 5

Paige, Richard F. 30
Palanque, Philippe 373
Papadopoulos, Yiannis 72
Pasquini, Alberto 387
Petre, Marian 16
Pfeifer, Holger 346
Pont, Michael J. 440
Pozzi, Simone 86, 387
Predeschly, Michael 181

456 Author Index

Reimann, Felix 139
Rivett, Roger 12
Robinson, Richard 415

Sacha, Krzysztof 332
Sandberg, Anders 72
Save, Luca 387
Schiller, Frank 126
Sedaghat, Yasser 153
Sedigh, Sahra 429
Seguin, Christel 320
Sneeringer, Gerry 221
Sosnowski, Janusz 360
Sztandera, Piotr 113

Teich, Jürgen 139
Törner, Fredrik 72

Törngren, Martin 72
Trapp, Mario 44, 58
Trawczynski, Dawid 360

van Moorsel, Aad 13
von Oheimb, David 415

Wardziński, Andrzej 277
Weimer, Westley 305

Xiao, Liang 167

Yin, Xiang 305

Zalewski, Andrzej 113
Zalewski, Marek 113

	Title Page
	Preface
	Organization
	Table of Contents
	Critical Information Infrastructures: Should Models Represent Structures or Functions?
	Introduction
	The Structural Approach to System Modeling
	The Functional Approach to System Modeling
	References

	Security and Interoperability for MANETs and a Fixed Core
	Introduction
	Security Versus Risk in Mobile Ad-Hoc Networks (MANETs)
	Dynamic Risk Management
	Node and Service Discovery in Ad Hoc Networks
	MANET and Fixed-Core Interoperability

	Identity Management
	Verification, Validation and Certification (VV&C)
	Conclusions

	Technology, Society and Risk
	Panel: Complexity and Resilience
	Reference

	The Effectiveness of T-Way Test Data Generation
	Introduction
	Contributions of This Work

	Related Work
	Combinatorial Techniques
	Code Mutation

	The Experimental Study
	The Data Set
	Procedure Employed
	Code Selected
	Experiment 1
	Experiment 2
	Investigations

	Threats to Validity
	Conclusions
	Future Work
	References

	Towards Agile Engineering of High-Integrity Systems
	Introduction
	Background and Related Work
	Plan-Driven Processes
	Agile Processes
	Applying APs to HIS

	Adapting APs to HIS Development
	Agility Across the HIS Development Spectrum
	Using Risk as a Driver for Planning and Design
	Documentation
	Incremental Development Process
	Testing
	Customising an Agile Process for HIS

	Case Study
	User Stories
	Safety Stories
	Planning and Risk Management
	Test-Driven Development
	Safety Process

	Conclusions
	References

	SafeSpection – A Systematic Customization Approach for Software Hazard Identification
	Introduction
	Existing Software Safety Analysis Approaches
	A General View on Existing Software Safety Approaches
	Detailed Discussion of Selected Approaches

	The SafeSpection Framework
	Approach to Systematization
	The SafeSpection Framework Concepts and Their Application

	SafeSpection Application
	The Application Context
	The Application Process
	The Application Results

	Conclusion
	References

	Integrating Safety Analyses and Component-Based Design
	Introduction
	Safety Analyses
	Automated Safety Analyses of Model-Based Design
	Component-Based Software Engineering
	Safe Component Model
	Specification
	Realization
	Relation between Specification and Realization

	Current Status
	Summary and Conclusion
	References

	Modelling Support for Design of Safety-Critical Automotive Embedded Systems
	Introduction
	Overview of EAST-ADL2
	Hierarchies and Levels of Abstraction
	Requirements and Traceability Support

	Safety Case Support in EAST-ADL2
	Error Modelling Support in EAST-ADL2
	Key Concepts and Domain Model
	Analysis Leverage and Tool Support through HipHOPS Method

	Example Case Study: Electronic Column Lock
	Conclusions
	References

	Resilience in the Aviation System
	Introduction
	What Is Resilience in Aviation?
	The International Nature of Air Transport: Rules and Regulatory Bodies
	Main Actors

	Resilience between Automation and Training
	Building a “Safe Crew”
	The Role of Automation: the Tension between Under-Redundancy and Over-Redundancy

	Conclusions
	References

	Resilience Markers for Safer Systems and Organisations
	Introduction
	Background
	Cognitive Resilience at the Individual Level
	Resilience at the Small Team Level
	Identifying Resilience in the Nuclear Domain
	Discussion and Conclusions
	References

	Modeling and Analyzing Disaster Recovery Plans as Business Processes
	Introduction
	The Missing Parts of Business Continuity Management
	Modeling BC/DR Plans as Business Processes
	Organizational View of BC/DR Plans
	Data View of BC/DR Plans
	Function View of BC/DR Plans
	Product/Service View of BC/DR Plans
	Process/Control View of BC/DR Plans

	Analyzing Properties of BC/DR Plans
	Simulation
	Timing and Dynamic Behaviour
	Completeness
	Technical and Human Resource Utilization

	Discussion
	Conclusion and Future Research
	References

	Analysis of Nested CRC with Additional Net Data in Communication
	Introduction
	Principles of CRC
	Functionality of CRC
	Undetectable Errors
	Calculation of the Residual Error Probabillity

	Nested CRC with Additional Net Data
	Description of the Nesting
	Residual Error Probabillity of Nested CRC with Additional Net Data

	Examples and Results
	Analysis of the Number of ND Bits
	Analysis of the Number of ND_{add} Bits
	Analysis of Polynomials
	Remarks

	Conclusion and Future Work
	References

	Symbolic Reliability Analysis of Self-healing Networked Embedded Systems
	Introduction
	Related Work
	Problem Description
	Reliability Analysis
	The Structure Function ω
	Encoding the Routing
	Incorporating Constraints
	Evaluating ω

	Experimental Results
	Conclusion
	References

	Investigation and Reduction of Fault Sensitivity in the FlexRay Communication Controller Registers
	Introduction
	The FlexRay Protocol
	Protocol Operation
	Protocol Structure

	Error Models and Error Handling Mechanisms in the FlexRay Protocol
	Error Models in the FlexRay Protocol
	Error Handling Mechanisms in the FlexRay Protocol
	Error Indicator Registers of the FlexRay Communication Controller

	Experimental Environment
	Fault Sensitivity Calculation Process
	Fault Tolerance Improvement Strategies

	Experimental ResultsIn this paper, to assess the fault sensitivity
	The FlexRay Communication Controller Modules
	Overall Results

	Conclusions
	References

	Secure Interaction Models for the HealthAgents System
	Introduction and Motivation
	Security Requirements of Healthcare Information Systems
	The Distributed Environment of Healthcare Information Systems
	Preserving Privacy and Confidentiality in Shared Access
	Maintaining an Open Access
	The Different Access Needs to Data Subsets Due to Distinct Job Nature
	The Access Policies and Principles Pertinent to Patients as Individuals

	Existing Security Solutions: Role-Based Access Control and Role Mapping in a Distributed Environment
	Overview of a Layered Security Model
	Secure Interaction Models for Healthagents: A Comprehensive Case Study
	The HealthAgents Architecture
	Building an Interaction Model Hierarchy with a Goal-Decomposition Graph
	Secure Interaction Models and Lightweight Coordination Calculus (LCC)

	Conclusions and Discussion
	References

	Security Challenges in Adaptive e-Health Processes
	Introduction
	Challenges and Problems
	Components
	Storage Aspects
	Constraints
	Administration
	Short Introduction to ARMS
	Conclusion
	References

	An Efficient e-Commerce Fair Exchange Protocol That Encourages Customer and Merchant to Be Honest
	Introduction
	Review of Literature
	Encouraging Customer and Merchant Honesty (ECMH) Protocol
	Notations
	Protocol Description

	The Protocol Analysis
	Comparisons
	Conclusion
	References

	Creating a Secure Infrastructure for Wireless Diagnostics and Software Updates in Vehicles
	Introduction
	Related Work
	Background
	Attacker Model
	Desired Security Properties
	Assumptions about the Wireless Infrastructure
	Limited CPU Processing Power and Memory Size

	Assessing Security Risks for a Wireless Infrastructure
	Risk Assessment for a Wireless Infrastructure
	Portal Security Risks
	Communication Link Security Risks
	Vehicle Security Risks
	Risks of Consequences

	Guidelines for a Secure Wireless Infrastructure
	Portal Security Requirements
	Communication Link Security Requirements
	Vehicle Security Requirements
	Risks of Consequences

	Security Policies
	Future Work
	Conclusion
	References

	Finding Corrupted Computers Using Imperfect Intrusion Prevention System Event Data
	Introduction
	Related Work
	On the Use of Intrusion Prevention System Event Data
	Approach
	Intrusion Prevention Systems
	Dataset: Assumptions

	Method
	Metrics
	Level of Criticality
	Method for Identifying Computers of Concern

	Evaluation
	Approach
	Results

	Conclusion
	References

	Security Threats to Automotive CAN Networks – Practical Examples and Selected Short-Term Countermeasures
	Introduction / Motivation
	State of the Art
	Practical Demonstration of Exemplary Automotive IT Security Threats
	Analyses on the Electric Window Lift
	Analyses on the Warning Lights
	Analyses on the Airbag Control System

	Analysis of the Underlying Problems; Capabilities and Restrictions of Potential Countermeasures
	Analysis of Underlying Problems Relevant for the Exemplary Tests
	Discussion of Short-Term Countermeasures to Address the Demonstrated Threats, Their Potential and Restrictions
	The Need for Long-Term Solutions for Holistic Automotive IT Security Concepts, Their Potential and Restrictions

	Summary and Outlook
	References

	Constructing a Safety Case for Automatically Generated Code from Formal Program Verification Information
	Introduction
	Background
	Assurance for Automated Code Generation
	Formal Software Safety Certification
	Annotation Inference

	Hazard Analysis for Formal Program Verification
	Constructing Safety Cases Via Annotation Inference
	Tier I: Explaining the Safety Notion
	Tier II: Arguing over the Variables
	Tier III: Arguing over the Paths

	Related Work
	Conclusions
	References

	Applying Safety Goals to a New Intensive Care Workstation System
	Introduction
	The ICWS – A Case Study
	Use-Cases of the Workstation System
	Meeting Safety Goals
	Handling Errors during Data Exchange
	Coping with Internal System Errors
	Conclusion
	References

	Safety Assurance Strategies for Autonomous Vehicles
	Introduction
	Autonomous Vehicle Safety
	The Approach Based on Predetermined Vehicle Risk Assessment
	The Concept of a Barrier
	Examples of Barriers Use for Autonomous Vehicles
	Safety Argument Strategy
	Summary of the Predetermined Risk Assessment Approach

	Dynamic Risk Assessment
	Dynamic Risk Assessment Approach
	Safety Assurance Using Dynamic Risk Assessment
	Safety Argument Strategy

	Summary
	References

	Expert Assessment of Arguments: A Method and Its Experimental Evaluation
	Introduction
	Representing Arguments
	Appraisal Mechanism
	Appraisal Procedure
	Appraisal Examples

	Aggregation Rules
	Assessment Scenarios
	Experimental Evaluation
	Conclusion
	References

	Formal Verification by Reverse Synthesis
	Introduction
	Formal Verification by Reverse Synthesis
	The Reverse Synthesis Process
	Refactoring for Verification
	Specification Extraction
	Implication Proof

	An Example Application
	Verification of the AES Implementation
	The Refactoring Process
	The Refactoring Transformations
	Specification Extraction and Proofs

	Related Work
	Conclusion
	References

	Deriving Safety Software Requirements from an AltaRica System Model
	Introduction
	Case Study Introduction
	AltaRica Modelling
	The AltaRica Language and Tools
	Case Study's AltaRica Model

	Preliminary System Safety Assessment (PSSA) Based on an AltaRica Model and Software Requirements Derivation
	Analysis of Functional Failure Paths with the AltaRica Model
	Selection of Most Unacceptable Software Feared Events

	Lessons Learnt from the Case Study
	Scope of the Case Study
	Feedback on the Modelling Approach
	Feedback about the PSSA and the Derivation Approach

	Conclusion
	References

	Model-Based Implementation of Real-Time Systems
	Introduction
	Conversion of UML State Machine to FSTM
	Conversion of FSTM into UPPAAL
	Verification
	Code Generation
	Case Study
	Modeling of the Controller
	Verification
	Implementation

	Conclusions and Future Work
	References

	Early Prototyping of Wireless Sensor Network Algorithms in PVS
	Introduction and Motivation
	PVS and PVSio
	Prototyping WSN Algorithms
	A Case Study: Surge
	Related Work and Conclusions
	References

	Analyzing Fault Susceptibility of ABS Microcontroller
	Introduction
	ABS Model
	ABS Controller
	ABS Environment Model
	ABS Control Algorithm

	Fault Simulation Platform
	Experimental Results
	Conclusion
	References

	A Formal Approach for User Interaction Reconfiguration of Safety Critical Interactive Systems
	Introduction
	ARINC 661 Specification
	ICOs a Formal Description Technique for Interactive Systems
	An Architecture for Reliable and Reconfigurable User Interfaces
	Configuration Manager Policy and Modelling
	Input and Output Management Policies
	Input Device Configuration Manager Policy
	Output Device Configuration Manager Policy
	Configuration Manager Behaviour

	Conclusion and Perspectives
	References

	The Wrong Question to the Right People.A Critical View of Severity Classification Methodsin ATM Experimental Projects
	Introduction
	Accident Models and Limits of Probabilistic Risk Assessment
	Assumed Linear Link Between Hazards and Their Effects
	Initiating Events in the Chain Assumed to Be Mutually Exclusive
	Functional Failures and Dysfunctional Interactions

	Safety Assessment Methodology in Air Traffic Management
	The Assessment of Severity
	Problems with the Use of Severity Classes

	Asking the Wrong Question to the Right People
	Case Study 1: Assessment of a New STCA for a Military Unit
	Case Study 2: Assessment of ASAS Spacing Concepts in MFF

	An Alternative Approach to Safety Assessment
	Assess Hazardous Situations Rather Than Single Hazards
	Prioritize Hazards Rather Than Classify Severity
	Consider Safety Objectives and Mitigation Means Jointly

	Conclusions
	References

	Formal Security Analysis of Electronic Software Distribution Systems
	Introduction
	Network Enabled Software Distribution
	Security Certification
	Model Checking
	Our Contributions

	System Architecture of the Software Distribution System
	Threats and Security Objectives for a SDS
	SDS Architecture
	SSV: The SDS Core Component

	Security Assessment of the SDS
	Assumptions on the Operational Environment
	Certification of the SSV
	The Protocol for End-to-End Software Distribution
	Security Properties

	Formal Analysis of the SDS Protocol
	Conclusions and Future Work
	References

	The Advanced Electric Power Grid: Complexity Reduction Techniques for Reliability Modeling
	Introduction
	Related Work
	Problem Statement
	Evaluation of System Level Reliability
	Reliability Evaluation of the Reduced Subsystems
	Aggregation of Data from All Cascade Scenarios
	Conclusions and Future Work
	References

	Automating the Processes of Selecting an Appropriate Scheduling Algorithm and Configuring the Scheduler Implementation for Time-Triggered Embedded Systems
	Introduction
	Related Work
	Scheduling Safety Critical Resource-Constrained Embedded Systems
	Time Triggered Co-operative Scheduler (TTC)
	Time Triggered Hybrid Scheduler (TTH)
	Scheduler Design and Configuration
	The TTSA1 Scheduling Algorithm

	The TTSA2 Scheduling Algorithm
	Overview
	Adjusting the Segment Deadline
	Adding Segmentation Overhead

	The Effectiveness of the TTSA2 Scheduling Algorithm
	Algorithm Complexity
	Algorithm Performance

	Discussion and Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

