
OPERAS: A Framework for the Formal

Modelling of Multi-Agent Systems and Its
Application to Swarm-Based Systems

Ioanna Stamatopoulou1, Petros Kefalas2, and Marian Gheorghe3

1 South-East European Research Centre, Thessaloniki, Greece
istamatopoulou@seerc.org

2 Department of Computer Science, CITY College, Thessaloniki, Greece
kefalas@city.academic.gr

3 Department of Computer Science, University of Sheffield, UK
M.Gheorghe@dcs.shef.ac.uk

Abstract. Swarm-based systems are a class of multi-agent systems
(MAS) of particular interest because they exhibit emergent behaviour
through self-organisation. They are biology-inspired but find themselves
applicable to a wide range of domains, with some of them characterised
as mission critical. It is therefore implied that the use of a formal frame-
work and methods would facilitate modelling of a MAS in such a way
that the final product is fully tested and safety properties are verified.
One way to achieve this is by defining a new formalism to specify MAS,
something which could precisely fit the purpose but requires significant
period to formally prove the validation power of the method. The alter-
native is to use existing formal methods thus exploiting their legacy. In
this paper, we follow the latter approach. We present OPERAS, an open
framework that facilitates formal modelling of MAS through employing
existing formal methods. We describe how a particular instance of this
framework, namely OPERASXC , could integrate the most prominent
characteristics of finite state machines and biological computation sys-
tems, such as X-machines and P Systems respectively. We demonstrate
how the resulting method can be used to formally model a swarm system
and discuss the flexibility and advantages of this approach.

1 Introduction

Despite the counter arguments which justifiably raise concerns about formal
methods, there is still a strong belief by the academic community that the de-
velopment of mission critical systems demands the use of such methods for mod-
elling, verification and testing. Opposition puts forward a significant drawback;
the more complex a system is, the more difficult the modelling process turns
out to be and, in consequence, the less easy it is to ensure correctness at the
modelling and implementation level. Correctness implies that all desired safety
properties are verified at the end of the modelling phase and that an appropri-
ate testing technique is applied to prove that the implementation has been built

A. Artikis et al. (Eds.): ESAW 2007, LNAI 4995, pp. 158–174, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

OPERAS: A Framework for the Formal Modelling 159

in accordance to the verified model. The formal methods community has made
significant progress towards the development of correct systems.

On the other hand, multi-agent systems (MAS) are complex software systems
by default. Especially when the agent society grows, interaction and communi-
cation increase within a complex structure which involves variety of knowledge,
abilities, roles and tasks. Nature seems to have found ways to deal with complex
structures quite effectively. Consider, for example, biological systems from the
smallest living elements, the cells, and how they form tissues in organisms to en-
tire ecosystems and how they evolve [1]. There is growing interest in investigating
ways of specifying such systems. The intention is to create software that mimics
the behaviour of their biological counterparts. Examples of biological systems of
interest also include swarm-based systems, such as social insect colonies.

The promising feature is that these systems can be directly mapped to MAS
by considering each entity as an agent, with its own behavioural rules, knowledge,
decision making mechanisms and means of communication with the other entities
and with the environment. The overall system’s behaviour is merely the result of
the agents’ individual actions, the interactions among them and between them
and the environment. This also points to the issue of self-organisation and how
collective behavioural patterns emerge as a consequence of individuals’ local
interactions in the lack of knowledge of the entire environment or global control.

An additional key modelling aspect of swarm-based systems is their dynamic
nature and how their structure is constantly mutated. By structure we imply:
the changing number of agents, and either their physical placement in the envi-
ronment or, more generally, the structure that is dictated by the communication
channels among them. Other classes of MAS also exhibit reorganisational change,
characterised as behavioural or structural change [2].

Existing wide-spread formal methods fail to provide the appropriate features
in order to model such dynamic system organisation —most of them assume a
fixed, static structure that is not realistic (e.g. cellular and communicating au-
tomata), since communication between two agents may need to be established or
ceased at any point and also new agents may appear in the system while existing
ones may be removed. It is fairly recently that the issue of structural change is
attempted to be in essence dealt with, and this poses a kind of dilemma: should
a completely new formal notation be devised or should existing ones be used
and possibly be improved? Both approaches have complementary advantages; a
new formal method will directly tackle the problem of modelling of change but
existing ones will carry the legacy of formal testing and verification.

In this paper, we deal with the latter approach. The next section introduces the
OPERAS formal definition as a framework for modelling MAS, while Section 3
presents an instance of this framework, namely OPERASXC , which utilises ex-
isting formal methods. A brief description of a representative case study dealing
with a swarm-based system follows in Section 4 which also deals with the formal
model for the case problem in question. Finally, Section 5 discusses issues arising
from our attempt and concludes the paper.

160 I. Stamatopoulou, P. Kefalas, and M. Gheorghe

2 OPERAS: Formal Modelling of MAS

2.1 Background and Related Work

In an attempt to formally model each individual agent as well as the dynamic be-
haviour of the overall system, a formal method should be capable of rigorously
describing all the essential aspects, i.e. knowledge, behaviour, communication
and dynamics. There is a number of trade-offs on the use of formal methods
for MAS. To name a few: (a) the level of abstraction should be appropriate
enough to lead toward the implementation of a MAS but also be appropriate
enough to mathematically express specifications that can lead to formal verifi-
cation and complete testing, (b) there should be accompanying toolkits which
make their adoption wider by researchers and industry but at the same time
the tools provided should not deviate from the theoretical framework, (c) they
ought to provide means to efficiently define complex knowledge but also be able
to describe control over individual agent as well as MAS states, (d) they need to
be able to easily model individual agents but also to focus on the concurrency
and communication among them.

In agent-oriented software engineering, several approaches using formal meth-
ods have been proposed, each one focusing on different aspects of MAS devel-
opment. For example, with respect to the issue of organisation, there is a large
number of approaches employing formal methods in modelling MAS and fo-
cusing on organisational reconfiguration [3, 4, 5], specificational adaptation at
run time [6] and formal methodologies to engineer organisation-based MAS [7].
Other efforts have been directed toward moving to the implementation of a MAS
through refinement of the specification and developing proof theories for the ar-
chitecture [8], capturing the dynamics of an agent system [9], putting emphasis
on capturing and controlling the system dynamics and acting behaviour of MAS
[10]. Other approaches formally specify MAS and then directly execute the spec-
ification while verifying important temporal properties [11] or guide through a
prototyping process [12]. Less formal approaches, which accommodate the dis-
tinctive requirements of agents, have been proposed [13]. Additionally, there is
a set of general principles for capturing the organisational structure of MAS
[14] which are however linked more to implementation [15] rather than formal
modelling.

On the other hand, from a purely software engineering view, a plethora of for-
mal methods are provided (Z, VDM, FSM, Petri-Nets, CCS, CSP), with none of
them alone satisfying all the above mentioned criteria for MAS, but with a rich
legacy on specification, semantics, testing and verification. Other formal meth-
ods, such as π-calculus, mobile ambients and P Systems with mobile membranes
[16, 17, 18, 19], successfully deal with the dynamic nature of systems and con-
currency of processes but lack intuitiveness when it comes to the modelling of an
individual agent (lack of primitives and more complex data structures). Lately,
new computation approaches as well as programming paradigms inspired by bi-
ological processes in living cells, introduce concurrency as well as neatly tackle
the dynamic structure of multi-component systems (P Systems, Brane Calculus,

OPERAS: A Framework for the Formal Modelling 161

Gamma, Cham, MGS) [20, 21, 22]. An interesting comparison of various formal
methods for the verification of emergent behaviours in swarm-based systems is
reported in [23], where an asteroid exploration scenario by autonomous space-
crafts is considered. We will use the same scenario in order to benchmark our
approach.

2.2 OPERAS Definition

Our aim is to define a framework in which we can use existing formal meth-
ods to model classes of MAS where self-organisation and emergent behaviour
is achieved through a number of changes in their structure. As said in the pre-
vious section, none of the existing formal methods qualify to deal equally well
with individual agent modelling as well as dynamics of the system. We believe
that the problem will be solved by combining formal methods. But for doing so,
we should somehow distinguish between the modelling of the individual agents
(behaviour) and the rules that govern the change in the structure of the collec-
tive MAS (structure mutation). This distinction, which would greatly assist the
modeller by breaking down the work into two separate and independent activi-
ties, may be achieved by considering that each agent is wrapped by a separate
mechanism: a structural mutator. Extending an agent with a kind of a wrapper
is not a novel idea in MAS engineering though it has been primarily used for
communication purposes and not in the context of formal specification. In this
case, we refer to a structural mutator as the independent part of the agent that
is responsible for checking an agent’s internal computation state and its local
environment in order to determine whether a structural change in the system has
to take place, might that be the addition/removal of communication channels or
other agents.

In general terms, when modelling a MAS, one should specify a number of
agents, the environment in which they operate, the stimuli provided from the
environment as percepts to the agents, the agents abilities and roles, the agents
grouping and organisation and communication between them. A Multi-Agent
System model in its general form, as it is perceived from a formal modelling
perspective can be defined by the tuple (O, P, E, R, A, S) containing:

– a set of reconfiguration rules, O, that define how the system structure evolves
by applying appropriate reconfiguration operators;

– a set of percepts, P , for the agents;
– the environment’s model / initial configuration, E;
– a relation, R, that defines the existing communication channels;
– a set of participating agents, A, and
– a set of definitions of types of agents, S, that may be present in the system.

The definition is general enough not to restrict any organisational structure
that might be considered for the implementation of a MAS. In addition, the
definition could be further extended to include protocols or other features of
MAS that a modeller would wish to formally specify. For now, OPERAS fits
our purpose, that of modelling swarm-based systems. More particularly:

162 I. Stamatopoulou, P. Kefalas, and M. Gheorghe

– the rules in O are of the form condition ⇒ action where condition refers
to the computational state of agents and action involves the application of
one or more of the operators that create / remove a communication channel
between agents or introduce / remove an agent into / from the system;

– P is the distributed union of the sets of percepts of all participating agents;
– R : A × A with (Ai, Aj) ∈ R, Ai, Aj ∈ A meaning that agent Ai may send

messages to agent Aj ;
– A = {A1, . . . An} where Ai is a particular agent defined in terms of its

individual behaviour and its local mechanism for structure mutation;
– Sk = (Behaviourk, StructureMutatork) ∈ S, k ∈ Types where Types is

the set of identifiers of the types of agents, Behaviourk is the part of the
agent that deals with its individual behaviour and StructureMutatork is
the local mechanism for structure reconfiguration; each participating agent
Ai of type k in A is a particular instance of a type of agent: Ai = (Behk,
StrMutk)i.

2.3 OPERAS as an Open Framework

The general underlying idea is that an agent formal model consists of two parts,
its behaviour and its structural mutator. The behaviour of an agent can be mod-
elled by a formal method with its computation being driven by percepts from the
environment. The structural mutator can be modelled by a set of reconfiguration
rules which given the computation states of agents can change the structure of
the system. The MAS structure is determined through the relation that defines
the communication between the agents. The set of participating agents are in-
stances of agent types that may participate in the system. This deals with the
fact that an agent may be present at one instance of the system but disappear at
another or that a new agent or a new role comes into play during the evolution
of the MAS. This assumes that all agent types and roles that may participate
in the system should be known in advance.

There are still some open issues which, however, make the OPERAS ap-
proach a framework rather than a formal method. These are: (i) Which formal
method may we use in order to model the agents’ behaviour? (ii) Which formal
method may we use in order to model the structural mutator? (iii) Could the
methods in (i) and (ii) be different? (iv) Should the formal method used in (i), for
modelling behaviour, provide features for communication directly or indirectly
(implicitly through percepts from the environment) among agents’ behaviours?
(v) Should the formal method used in (ii), for modelling structure mutation,
provide features for communication directly or indirectly (through the environ-
ment)among agents’ structure mutators? (vi) Which method chosen from (i) or
from (ii) drives the computation of the resulting system? There is no unique an-
swer to these questions but the choice of formal methods which are considered
suitable to model either behaviour or structure mutation may affect the final
model developed.

It is therefore implied that there are several options which could instantiate
OPERAS into concrete modelling methods. Regarding the modelling of each

OPERAS: A Framework for the Formal Modelling 163

type of agent Sk, there are more than one options to choose from in order to
specify its behavioural part and the same applies for its structure mutation
mechanism. We have long experimented with two formal methods, which are X-
machines with its communicating counterpart and Population P Systems (PPS)
with active cells. We use X-machines because they demonstrated considerable
power in modelling reactive systems and most importantly they are accompanied
by two distinctive features: a complete testing strategy and a well-defined model
checking methodology. We chose Population P systems because of their theo-
retically sound way to model computation taking place inside a membrane-like
dynamic system. Ad hoc integration of these two methods [24, 25, 26] gave us
some preliminary results which led us to the current combined approach we take
for OPERAS. It is interesting to notice that none of the two formal methods
by itself could successfully (or at least intuitively) model a MAS [24, 25]. This is
also true, although with better results, if we use only PPSs under the OPERAS
framework (OPERASCC) [27]. The problem still exists for other formal meth-
ods too, which means the current framework gives the opportunity to combine
those methods that may be best suited to either of the two modelling tasks. In
the following, we present an instance of OPERAS, named OPERASXC , that
uses Communicating X-machines and features from PPSs.

3 OPERASXC

3.1 Modelling Behaviour

X-machines (XM), a state-based formal method introduced by Eilenberg [28], are
considered suitable for the formal specification of a system’s components. Stream
X-machines, in particular, were found to be well-suited for the modelling of re-
active systems. Since then, valuable findings using the X-machines as a formal
notation for specification, communication, verification and testing purposes have
been reported [29, 30, 31]. An X-machine model consists of a number of states and
also has a memory, which accommodates mathematically defined data structures.
The transitions between states are labelled by functions. More formally, a stream
X-machine is defined as the 8-tuple (Σ ,Γ , Q, M,Φ, F, q0, m0) where:

– Σ and Γ are the input and output alphabets respectively;
– Q is the finite set of states;
– M is the (possibly) infinite set called memory;
– Φ is a set of partial functions ϕ that map an input and a memory state to

an output and a possibly different memory state, ϕ : Σ × M → Γ × M ;
– F is the next state partial function, F : Q×Φ → Q, which given a state and

a function from the type Φ determines the next state. F is often described
as a state transition diagram;

– q0 and m0 are the initial state and initial memory respectively.

X-machines can be thought to apply in similar cases where StateCharts and
other similar notations do. In principle, X-machines are considered a generalisa-
tion of models written in such formalisms.

164 I. Stamatopoulou, P. Kefalas, and M. Gheorghe

In addition to having stand-alone X-Machine models, communication is fea-
sible by redirecting the output of one machine’s function to become input to
a function of another machine. The structure of a Communicating X-machines
(CXM) system is defined as the graph whose nodes are the components and
edges are the communication channels among them (Fig. 1). A formal definition
of CXMs can be found in [24].

Fig. 1. An abstract system consisting of two CXM components. Communication is
established by redirecting the output of a function (� symbol) to another machine’s
function which takes it as input (• symbol).

CXMs provide a straightforward way for dealing with an agent’s behaviour,
however, the structure of a communicating system must be known beforehand
and fixed throughout the computation.

3.2 Modelling Structure Mutation

A Population P System [32] is a collection of different types of cells evolving
according to specific rules and capable of exchanging biological / chemical sub-
stances with their neighbouring cells (Fig. 2). More formally, a PPS is defined
as a construct P = (V, K, γ, α, wE , C1, C2, . . . , Cn, R) where:

– V is a finite alphabet of symbols called objects;
– K is a finite alphabet of symbols, which define different types of cells;
– γ = ({1, 2, . . . n}, A), with A ⊆ {{i, j} | 1 ≤ i �= j ≤ n }, is a finite undirected

graph;
– α is a finite set of bond-making rules;
– wE ∈ V ∗ is a finite multi-set of objects initially assigned to the environment;
– Ci = (wi, ti), for each 1 ≤ i ≤ n, with wi ∈ V ∗ a finite multi-set of objects,

and ti ∈ K the type of cell i;
– R is a finite set of rules dealing with object transformation, object commu-

nication, cell differentiation, cell division and cell death.

Transformation rules replace an object within a cell. Communication rules
allow the exchange of objects between neighbouring cells, or a cell and the envi-
ronment, according to the cell type and the existing bonds among the cells. Cell

OPERAS: A Framework for the Formal Modelling 165

Fig. 2. An abstract example of a Population P System; Ci: cells, Ri: sets of rules
related to cells; wi: multi-sets of objects associated to the cells.

differentiation rules change a cell, transforming it into a cell of a new type. Cell
division rules divide a cell into two cells. Cell death rules cause the removal of a
cell from the system.

At each computation cycle, all rules regarding the transformation and commu-
nication of objects that may be applied in a cell are applied. Additionally, one out
of the applicable cell differentiation, division or death rules, non-deterministically
chosen, is also applied in each cell. When computation in all cells has finished,
the graph is decomposed and restructured according to the specified bond-making
rules in α that define the conditions under which two cells are able to communicate.

PPS provide a straightforward way for dealing with the change of a system’s
structure, however, the rules specifying the behaviour of the individual cells
(agents) are more commonly of the simple form of rewrite rules which are not
sufficient for describing the behaviour of the respective agent.

3.3 Definition of OPERASXC

We may now move on to a more formal OPERASXC definition that uses
both a CXM (indicator subscript X) and PPS-cell-inspired construct (indica-
tor subscript C) for specifying each of the agents. An abstract example of an
OPERASXC model consisting of two agents is depicted in Fig. 3.

For the following, we consider that the computation state of a CXM describing
the behaviour of an agent is a 3-tuple Q × M × Φ that represents the state the
XM is in (qi), its current memory (mi) and the last function that has been
applied (ϕi).

A MAS in OPERASXC is defined as the tuple (O, P, E, R, A, S) where:

– The rules in O are of the form condition ⇒ action where condition is a con-
junction of (q, m, ϕ) and action involves the application of one or more of the
operators attachmentATTanddetachmentDET, which reconfigure the com-
munication channels among existing CXMs and generationGEN and destruc-
tion DES, which generate or destroy an agent in/from the system. Additional

166 I. Stamatopoulou, P. Kefalas, and M. Gheorghe

Fig. 3. An abstract example of a OPERASXC consisting of two agents

communication rules also exist, as in PPS, so that there is indirect communi-
cation (through the environment) between the structural mutators (cells);

– P = PB ∪ PSM is the set of percepts of all participating agents, where
PB = Σ1 ∪ . . . ∪ Σt is the set of inputs perceived by the XM model of the
behaviour (subscript B) and PSM = (Q1×M1×Φ1)∪ . . .∪ (Q1×Mt×Φt) is
the set of objects (alphabet) of the PPS mechanism that captures structure
mutation (subscript SM), t being the number of types of agents;

– E = {(q, m, ϕ)i|1 ≤ i ≤ n, q ∈ Qi, m ∈ Mi, ϕ ∈ Φi} holding information
about the initial computation states of all the participating agents;

– R : CXM × CXM (CXM : the set of CXMs that model agent behaviour);
– A = {A1, . . . , An} where Ai = (CXMk, Ck)i is a particular agent of type k

defined in terms of its individual behaviour (CXMk) and its local structural
mutator cell for controlling reconfiguration (Ck). The structural mutator cell
is of the form Ck = (wi, ok) where wi is the multi-set of objects it contains and
ok ⊂ O is the set of rules that correspond to the particular type of agent, k;

– S = {(XTk, Ck)|∀k ∈ Type}, where XTk is an XM type (no initial state and
memory).

The above mentioned operators attachment ATT and detachment DET have
the same effect as the bond-making rules of a PPS, while the operators generation
GEN and destruction DES, have the same effect as cell division an cell death
of a PPS respectively. Formal definitions of these operators can be found in [33].

In this model, each structural mutator cell implicitly knows the computation
state (q, m, ϕ) of the underlying XM that models behaviour. Environmental in-
put is directed straight to the agent’s behavioural part. In each computation
cycle an input triggers a function of the behaviour CXM and the updated infor-
mation about the agent’s current computation state is updated in the structural
mutator cell. A copy of the object is placed in the environment for other agents
in the local environment to have access to it. Objects from the environment
representing the computation states of neighbouring agents are imported and fi-
nally, all the reconfiguration rules in O of the type of the particular cell are being
checked and if necessary applied. Since the model follows the computation rules

OPERAS: A Framework for the Formal Modelling 167

of a CXM system (triggered by the behaviour component’s input, asynchronously
for the different participating agents), computation of the behaviour-driven ver-
sion of OPERASXC is asynchronous. In another version of OPERASXC , the
computation is cell-driven, and therefore synchronous. A detailed and more for-
mal analysis of the two versions, however, falls outside the scope of this paper.
In addition, as said previously, other instances of OPERAS using these two
methods, such as OPERASCC , OPERASXX and OPERASCX are possible
but rather cumbersome.

4 OPERASXC for a Swarm-Based System

4.1 Autonomous Spacecrafts for Asteroid Exploration

A representative example of a system which clearly possesses all the afore-
mentioned characteristics of a dynamic MAS is the NASA Autonomous Nano-
Technology Swarm (ANTS) system [23]. The NASA ANTS project aims at the
development of a mission for the exploration of space asteroids with the use of
different kinds of unmanned spacecrafts. Though each spacecraft can be consid-
ered as an autonomous agent, the successful exploration of an asteroid depends
on the overall behaviour of the entire mission, as the latter emerges as a result
of self-organisation. We chose this case study because correctness of the system
has been identified as a primary requirement. Relevant work on the particular
project included research on and comparison of a number of formal methods
[23, 34], including CXMs.

The ANTS mission uses of three kinds of unmanned spacecrafts: leaders, L,
(or rulers or coordinators), workers, W , and messengers, M (Fig. 4). The leaders
are the spacecrafts that are aware of the goals of the mission and have a non-
complete model of the environment. Their role is to coordinate the actions of
the spacecrafts that are under their command but by no means should they be
considered to be a central controlling mechanism as all spacecrafts’ behaviour
is autonomous. Depending on its goals, a leader creates a team consisting of a
number of workers and at least one messengers. Workers and messengers are
assigned to a leader upon request by (i) another leader, if they are not necessary
for the fulfilment of its goals, or (ii) earth (if existing spacecrafts are not sufficient
in number to cover current needs, new spacecrafts are allocated to the mission).

A worker is a spacecraft with a specialised instrument able, upon request
from its leader, to take measurements from an asteroid while flying by it. It also
possesses a mechanism for analysing the gathered data and sending the analysis
results back to its leader in order for them to be evaluated. This in turn might
update the view of the leader, i.e. its model of the environment, as well as its
future goals.

The messengers, finally, are the spacecrafts that coordinate communication
among workers, leaders and the control centre on earth. While each messenger
is under the command of one leader, it may also assist in the communication of
other leaders if its positioning allows it and conditions demand it.

168 I. Stamatopoulou, P. Kefalas, and M. Gheorghe

Fig. 4. An instance of the ANTS mission, L: Leader, W :Worker, M :Messenger

What applies to all types of spacecrafts is that in the case that there is a
malfunctioning problem, their superiors are being notified. If the damage is ir-
reparable they need to abort the mission while on the opposite case they may
“heal” and return back to normal operation.

4.2 Leader: Formal Modelling of Behaviour in OPERASXC

The leader agent L can be modelled as an XM, whose state transition diagram
FL is depicted in Fig. 5. QL = {Processing, Malfunctioning, Aborting} is the
set of states a leader may be in. Its memory contains information about its
current status (i.e. position and operational status), the IDs and statuses of
the messengers and workers under its command, the analysis results up to this
point, its current model of the surroundings as well as its goals: ML : Status ×
P(M × Status) × P(W × Status) × AnalysisResults × Model × Goals where
Status : (Z × Z × Z) × {QL} (Z being the set of positive integers, the 3-tuple
denoting a position), P stands for power-set, M is the set of messengers, W is
the set of workers and so forth.

The input set for the leader XM is ΣL = {abrt, problem, remedy} ∪ (W ×
Status)∪(W×Measurements)∪({request, requestFromEarth, requestedFor}
× Instrument), where abrt, problem, remedy, request, requestedFor are con-
stants and Instrument is the set of containing the different types of installed
instruments of the workers. The output set ΓL is a set of informative messages.

Indicatively, some of the functions in the ΦL set (functions are of the form:
function(input, memory tuple) = (output, memory tuple′)) are:

acceptRequestForWorker ((requestedFor, instr), (, , workers, , ,)) =
(′reassigned worker′, (, , workers′, , ,))
if (wi, (, , instr)) ∈ workers
and isWorkerNeeded(wi) == false
where workers′ = workers\(wi, (, , instr))

receiveWorker(wi, (, , workers, , ,)) =
(′received worker′, (, , workers ∪ (wi), , ,))

OPERAS: A Framework for the Formal Modelling 169

Fig. 5. State transition diagram of the Leader X-machine

As aforementioned, we used XMs for agent formal modelling because they fa-
cilitate formal verification and testing. These operations are crucial in developing
mission critical systems. XmCTL , an extension of CTL for XMs, can be used to
verify models against the requirements, since it can prove that certain properties
are true. Such properties are implicitly encoded in the memory structure of the
XM model [30]. For example, the property “there exists a computation path in
which a leader will accomplish all its goals and in all previous states the leader
was employing at least one worker” is specified in XmCTL as:

E[Mx(memL(3) �= ∅) U Mx(memL(6) = ∅)]

where memL(i) indicates the i-th element in the memory tuple of the leader
model. Additionally, it is possible under certain well defined conditions, to pro-
duce a complete test set out of an XM model. The test set guarantees to deter-
mine the correctness of the implementation of each agent [31].

4.3 Worker: Formal Modelling of Behaviour in OPERASXC

The state transition diagram of the worker XM is depicted in Fig. 6. The in-
ternal states in which a worker may be are QW = {Measuring, Analysing,
Malfunctioning, Aborting} and its memory holds information about its current
status (i.e. position, operational status and installed instrument), the identity
and status of its commanding leader, the messengers which assist its commu-
nication, the target asteroid, the data received from the measurements and the
results of the data analysis: MW : Status × (L × Status) × P(M × Status) ×
T arget ×Measurements×AnalysisResults.

The input set is ΣW = {measure, analyse, send, abrt, problem, remedy} ∪
(L × Status), where abrt, problem, remedy, measure, analyse and send are
constants. The output set ΓW is a set of informative messages.

170 I. Stamatopoulou, P. Kefalas, and M. Gheorghe

Fig. 6. State transition diagram of the Worker X-machine

Indicatively, some of the functions in the ΦW set are:
produceResults(analyse, (, , , , meas, analysisResults)) =

(′analysed′, (, , , , ∅, analysisResults′)),
where analysisResults′ = analysisMechanism(meas) :: analysisResults

sendResults(send, (, , , , , res :: analysisResults)) =
(′sent results′, (, , , , , analysisResults))

leaveCurrentLeader((newLeader, st), (, (leader, st0), , , ,)) =
(′been reassigned′, (, newLeader, , , ,))
The model of the messenger agent is similarly created.

4.4 Formal Modelling of Structure Mutation in OPERASXC

According to OPERASXC , for the definition of the given system as a dynamic
MAS, we need to assume an initial configuration. To keep the size restricted for
demonstrative purposes, let us consider an initial configuration that includes one
leader L1, one messenger M1 and two workers W1, W2.

The set O contains the following reconfiguration rules regarding: (a) genera-
tion of a new worker when the control centre on earth decides it should join the
mission, (b) the destruction (i.e. removal from the system) of any kind of agent
in the case it must abort the mission, (c) the establishment of a communication
channel between a leader and a newly assigned to it worker, and (d) the removal
of a communication channel between a leader and a worker when the latter is
being reassigned to a new leader.

More particularly O contains the following rules:
If there is a need for an additional worker and earth can allocate one than a

new agent appear in system ANTS:
(, , requestWorkerFromEarth)Li ∧ earthHasAvailableWorkers() == true
⇒ GEN(Wi, q0i , m0i , ANTS)L

If an agent aborts the mission then the agent is removed from system ANTS:
(aborting, ,)∗this

⇒ DES(∗this, ANTS)∗

OPERAS: A Framework for the Formal Modelling 171

If a worker agent looses its contact with its leader then the communication
channels between the two agents are broken:
(, (, , Li, , , ,), leaveCurrentLeader)Wi

⇒ DET(Wi, Li,DET(Li, Wi, ANTS))W

If a worker agent is assigned with a new leader then a new communication
channel is established:
(, (, , newLeader, , , ,), joinNewLeader)Wi

⇒ ATT(Wi, newLeader, ANTS)W

If a leader agent is assigned with a new worker (either from another leader or
from earth) then a new communication channel is established:
(, (, , newWorker :: workers, , ,), receiveWorker)Li

⇒ ATT(Li, newWorker, ANTS)L

(, (, , newWorker :: workers, , ,), receiveWorkerFromEarth)Li

⇒ ATT(Li, newWorker, ANTS)L

where * stands for any type of agent.
The set of percepts of all agents is:

P = ΣL ∪ΣW ∪ΣM ∪ (QL×ML×ΦL)∪ (QW ×MW ×ΦW)∪ (QM ×MM ×ΦM).

Because all reconfiguration rules per type of agent rely only on conditions de-
pendent on the computation state of the agent itself (and not other agents),
the model needs not to communicate computation states among the different
agents and there are, therefore, no additional communication rules. A direct
consequence of this is that there is no need for the environment to play the role
of communication mediator between the participating entities and as such no
need for it to hold any computation state objects: E = ∅.

Since in the assumed initial configuration we consider to have one group of
spacecrafts under the command of one leader, all agents should be in communi-
cation with all others and so:

R = {(L1, W1), (L1, W2), (L1, M1), (M1, L1), (M1, W1), (M1, W2), (W1, L1),
(W1, M1), (W2, L1), (W2, M1)}

The set that contains all the agent instances becomes: A = {L1, W1, W2, M1)}
where L1 = (CXML1, CL1), Wi = (CXMWi , CWi), 1 ≤ i ≤ 2 and M1 =
(CXMM1 , CM1).

Finally, the set S that contains the “genetic codes” for all agent types is:

S = {(XTL, CL), (XTW , CW), (XTM , CM)} where L, W, M are the XMs defined
previously.

5 Conclusions and Further Work

We presented OPERAS, a framework, with which one can formally model the
behaviour and control over the internal states of an agent as well as formally
describe the mutations that occur in the structure of a MAS, as two separate

172 I. Stamatopoulou, P. Kefalas, and M. Gheorghe

components. Driven by a formal methods perspective, we employed CXMs and
ideas from PPSs to define OPERASXC , a particular instance of the framework.
These gave us the opportunity to combine the advantages that XMs have in terms
of modelling the behaviour of an agent, testing it and verifying its properties
with the advantages that PPSs have in terms of defining the mutation of the
structure of a MAS. We have experimented with modelling of various biological
and biology-inspired systems. In this paper we presented the OPERASXC model
of a swarm-based system of a number of autonomous spacecrafts, a case which
has been used by researchers for comparative study of formal methods.

We would like to continue the investigation of how OPERAS could employ
other formal methods that might be suitable for this purpose. In the near future,
we will focus on theoretical aspects of the framework, in order to demonstrate its
usefulness towards developing correct agent societies (i.e. complete testing and
verification). Although work on verification and testing has been done with XMs
[30, 31], it is important to investigate to what extent this could be inherited in a
hybrid system, like OPERASXC . Towards this direction, we are also currently
working on various types of transformations that could prove its power for formal
modelling as well as address legacy issues with respect to correctness [35]. These
developments are mainly of interest to the formal method community.

On the other hand, the MAS community might be interested in how OPE-
RASXC can facilitate the implementation of agent systems. Towards this end,
we started our efforts to achieve integration of existing development tools on
XMs and PPSs in order to come up with a new tool that will be able to initially
animate OPERASXC specified models. The integration of the necessary features
of these two tools into one will allow us to gain a deeper understanding of the
modelling issues involved in engineering agent societies with OPERASXC and
help us investigate the practicability of our approach.

Acknowledgements

The authors would like to thank the reviewers for their valuable initial and
additional comments as well as the Hellenic Artificial Intelligence Society for
funding our participation to the ESAW 2007 workshop.

References

[1] Mamei, M., Menezes, R., Tolksdorf, R., Zambonelli, F.: Case studies for self-
organization in computer science. Journal of Systems Arch. 52, 443–460 (2006)

[2] Dignum, V., Dignum, F.: Understanding organizational congruence: Formal model
and simulation framework. In: Proceedings of the Agent-Directed Simulation Sym-
posium (ADS 2007), Norfolk, USA (March 2007)

[3] Dignum, V., Dignum, F.: A logic for agent organization. In: Proceedings of the
Workshop on Formal Approaches to Multi-Agent Systems Durham, September
3-7 (2007)

OPERAS: A Framework for the Formal Modelling 173

[4] Hoogendoorn, M., Schut, M.C., Treur, J.: Modeling decentralized organizational
change in honeybee societies. In: Almeida e Costa, F., Rocha, L.M., Costa, E.,
Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 615–
624. Springer, Heidelberg (2007)

[5] Charrier, R., Bourjot, C., Charpillet, F.: Deterministic nonlinear modeling of ant
algorithm with logistic multiagent system. In: Proceedings of the 6th international
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2007).
ACM, New York (2007)

[6] Matson, E., DeLoach, S.: Formal transition in agent organizations. In: Proceedings
of the International Conference on Integration of Knowledge Intensive Multi-Agent
Systems, pp. 235–240 (2005)

[7] DeLoach, S.A.: Engineering organization-based multiagent systems. In: Garcia, A.,
Choren, R., Lucena, C., Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) SELMAS
2005. LNCS, vol. 3914, pp. 109–125. Springer, Heidelberg (2006)

[8] dInverno, M., Luck, M., Georgeff, M., Kinny, D., Wooldridge, M.: The dMARS
architechure: A specification of the distributed multi-agent reasoning system. Au-
tonomous Agents and Multi-Agent Systems 9, 5–53 (2004)

[9] Rabinovich, Z., Rosenschein, J.S.: Dynamics based control: Structure. In: Work-
shop on Multi-Agent Sequential Decision Making in Uncertain Domains, at The
5th International Joint Conference on Autonomous Agents and Multiagent Sys-
tems, Hakodate, Japan, pp. 148–161 (2006)

[10] Luck, M., d’Inverno, M.: Formal methods and agent-based systems. In: Rouff, C.,
Truszkowski, M.H.J.R.J., Gordon-Spears, D. (eds.) NASA Monographs in Systems
and Software Engineering. Springer, Heidelberg (2006)

[11] Fisher, M., Wooldridge, M.: On the formal specification and verification of multi-
agent systems. International Journal of Cooperating Information Systems 6, 37–65
(1997)

[12] Hilaire, V., Koukam, A., Gruer, P., Müller, J.P.: Formal specification and proto-
typing of multi-agent systems. In: Omicini, A., Tolksdorf, R., Zambonelli, F. (eds.)
ESAW 2000. LNCS (LNAI), vol. 1972, pp. 114–127. Springer, Heidelberg (2000)

[13] Odell, J., Parunak, H.V.D., Bauer, B.: Extending UML for agents. In: Proceed-
ings of the Agent-Oriented Information Systems Workshop at the 17th National
Conference on Artificial Intelligence, pp. 3–17 (2000)

[14] Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organiza-
tional view of multiagent systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.)
AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

[15] Gutknecht, O., Ferber, J.: MadKit: a generic multi-agent platform. In: Proc. of
the 4th International Conference on Autonomous Agents, pp. 78–79 (2000)

[16] Chopra, A.K., Mallya, A.U., Desai, N.V., Singh, M.P.: Modeling flexible business
processes. In: AAMAS 2004 (2004)

[17] Krishna, S.N., Păun, G.: P systems with mobile membranes. Natural Computing:
an international journal 4, 255–274 (2005)

[18] Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) FOSSACS 1998.
LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

[19] Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes I. Information
and Computation 100, 1–40 (1992)

[20] Păun, G.: Computing with membranes. Journal of Computer and System Sci-
ences 61, 108–143 (2000); Also circulated as a TUCS report since (1998)

[21] Banatre, J., Le Metayer, D.: The gamma model and its discipline of programming.
Science of Computer Programming 15, 55–77 (1990)

174 I. Stamatopoulou, P. Kefalas, and M. Gheorghe

[22] Berry, G., Boudol, G.: The chemical abstract machine. Journal of Theoretical
Computer Science 96, 217–248 (1992)

[23] Rouf, C., Vanderbilt, A., Truszkowski, W., Rash, J., Hinchey, M.: Verification of
NASA emergent systems. In: Proceedings of the 9th IEEE International Confer-
ence on Engineering Complex Computer Systems (ICECCS 2004), pp. 231–238
(2004)

[24] Stamatopoulou, I., Kefalas, P., Gheorghe, M.: Modelling the dynamic structure of
biological state-based systems. BioSystems 87, 142–149 (2007)

[25] Kefalas, P., Stamatopoulou, I., Gheorghe, M.: A formal modelling framework
for developing multi-agent systems with dynamic structure and behaviour. In:
Pěchouček, M., Petta, P., Varga, L.Z. (eds.) CEEMAS 2005. LNCS (LNAI),
vol. 3690, pp. 122–131. Springer, Heidelberg (2005)

[26] Stamatopoulou, I., Kefalas, P., Gheorghe, M.: Specification of reconfigurable MAS:
A hybrid formal approach. In: Antoniou, G., Potamias, G., Spyropoulos, C., Plex-
ousakis, D. (eds.) SETN 2006. LNCS (LNAI), vol. 3955, pp. 592–595. Springer,
Heidelberg (2006)

[27] Stamatopoulou, I., Kefalas, P., Gheorghe, M.: OPERASCC : An instance of a for-
mal framework for MAS modelling based on Population P Systems. In: Elefther-
akis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007.
LNCS, vol. 4860, pp. 551–566. Springer, Heidelberg (2007)

[28] Eilenberg, S.: Automata, Languages and Machines. Academic Press, London
(1974)

[29] Kefalas, P., Eleftherakis, G., Kehris, E.: Communicating X-machines: A practi-
cal approach for formal and modular specification of large systems. Journal of
Information and Software Technology 45, 269–280 (2003)

[30] Eleftherakis, G.: Formal Verification of X-machine Models: Towards Formal De-
velopment of Computer-based Systems. PhD thesis, Department of Computer
Science, University of Sheffield (2003)

[31] Holcombe, M., Ipate, F.: Correct Systems: Building a Business Process Solution.
Springer, London (1998)

[32] Bernandini, F., Gheorghe, M.: Population P Systems. Journal of Universal Com-
puter Science 10, 509–539 (2004)

[33] Kefalas, P., Eleftherakis, G., Holcombe, M., Stamatopoulou, I.: Formal modelling
of the dynamic behaviour of biology-inspired agent-based systems. In: Gheorghe,
M. (ed.) Molecular Computational Models: Unconventional Approaches, pp. 243–
276. Idea Publishing Inc. (2005)

[34] Rouff, C., Vanderbilt, A., Hinchey, M., Truszkowski, W., Rash, J.: Properties of
a formal method for prediction of emergent behaviors in swarm-based systems.
In: Procedings of the 2nd International Conference on Software Engineering and
Formal Methods, pp. 24–33 (2004)

[35] Kefalas, P., Stamatopoulou, I., Gheorghe, M.: Principles of transforming Commu-
nicating X-machines to Population P Systems. In: Proceedings of the International
Workshop on Automata for Cellular and Molecular Computing (ACMC 2007)
(2007); Also to appear in the International Journal of Foundations of Computer
Science

	OPERAS: A Framework for the Formal Modelling of Multi-Agent Systems and Its Application to Swarm-Based Systems
	Introduction
	OPERAS: Formal Modelling of MAS
	Background and Related Work
	OPERAS Definition
	OPERAS as an Open Framework

	$OPERAS_{XC}$
	Modelling Behaviour
	Modelling Structure Mutation
	Definition of $OPERAS_{XC}

	$OPERAS_{XC}$ for a Swarm-Based System
	Autonomous Spacecrafts for Asteroid Exploration
	Leader: Formal Modelling of Behaviour in $OPERAS_{XC}$
	Worker: Formal Modelling of Behaviour in $OPERAS_{XC}$
	Formal Modelling of Structure Mutation in $OPERAS_{XC}$

	Conclusions and Further Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

